
THESIS 

 

 

 

IMPROVING ASSESSMENTS OF FUEL TREATMENT EFFECTS ON SURFACE FUELS IN 

PONDEROSA PINE FORESTS OF THE SOUTHERN ROCKY MOUNTAINS 

 

 

 

 

 

Submitted by 

 

Emma Vakili 

 

Department of Forest and Rangeland Stewardship 

 

 

 

 

 

In partial fulfillment of the requirements 

 

For the Degree of Master of Science 

 

Colorado State University 

 

Fort Collins, Colorado 

 

Fall 2015 

 

 

Master’s Committee: 

 

 Advisor:  Chad Hoffman 

  

 Yvette Dickinson 

 Robert Keane 

 Monique Rocca 

  

  



Copyright by Emma Vakili 2015 

All Rights Reserved



 

 ii

ABSTRACT 

 

 

 

IMPROVING ASSESSMENTS OF FUEL TREATMENT EFFECTS ON SURFACE FUELS IN 

PONDEROSA PINE FORESTS OF THE SOUTHERN ROCKY MOUNTAINS 

 

 

Fuel hazard reduction treatments have been widely employed in dry forests of the 

western United States in recent decades in response to the increasing extent and severity of 

wildfires. In order to design and accurately assess the effects of these fuel hazard reduction 

treatments, accurate fuel inventories are required. However, obtaining accurate assessments of 

fuelbeds is complicated by a lack of knowledge about the effects of treatments on surface fuels 

and their spatial distribution. This thesis focuses on enhancing knowledge of treatment effects on 

surface fuels in ponderosa pine sites across Colorado and New Mexico, USA. 

The primary emphasis is on Chapter 1, which focuses on the spatial distribution of 

surface fuels and how it is changed by fuel hazard reduction treatments. I found that total surface 

fuel loads were reduced by ~10% in thinned sites and ~50% in thinned and burned sites. 

Semivariance following thin and burn treatments was similar to untreated sites and lower than 

thin-only sites for all fuel components except 1,000-hr fuels, with fuel component semivariance 

being highly predictable (R2=0.99) from fuel component mean fuel loading. The scale of spatial 

independence for all fuel components and sites ranged from <1-50 m with the shortest spatial 

scales occurring for the finest fuel components (i.e. duff, litter, etc.). Mean fuel particle diameter 

strongly predicted (R2=0.88) the distance needed to achieve sample independence. Incorporating 

such knowledge of spatial variability into fuel sampling protocols will enhance assessment of 

wildlife habitat and fire behavior and effects modeling over singular stand-level means. 
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Chapter 2 focuses on the physical characteristics of fuel particles present before and after 

fuel hazard reduction treatments. I report mean squared diameter (d2) values for downed dead 

woody surface fuels that can be used to improve fuel loading assessments using the widely 

applied planar intersect sampling protocol. The planar intersect method requires an 

approximation of the mean squared diameter (d2) of 1, 10, and 100-hr timelag size classes to 

create loading estimates for downed dead woody surface fuels. I analyzed woody surface fuels 

collected throughout the southern Rocky Mountains to create local d2 estimates for untreated, 

mechanically treated, and mechanically treated and broadcast burned sites. Resulting estimates 

were up to 38% higher in the 1- and 10-hr classes and 28% lower in the 100-hr classes when 

compared to previously published values from other regions. The new burned partially harvested 

values for 1- and 100- hour classes were also roughly 20% lower than in the other stand 

conditions.  
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CHAPTER 1: FUEL TREATMENT EFFECTS ON SPATIAL VARIABILITY OF SURFACE 

FUELS IN PONDEROSA PINE FORESTS OF THE SOUTHERN ROCKY MOUNTAINS 

 

 

 

1.1 Introduction 

 

Wildland fuels are remarkably complex across space and time, which makes them 

inherently difficult to describe accurately (Keane 2013). The most common variable used to 

describe any given fuel component is fuel loading (kg m-2) because this value is required for 

many operational fire behavior and effects models and is a key variable in fuel hazard 

assessment. This is particularly important in the context of fuel reduction treatments because fuel 

loading both helps to determine the need for fuel treatments and in assessing the treatment 

effectiveness. Numerous studies have quantified fuel loadings across a wide range of ecosystems 

(Brown and Bevins 1986; Wadleigh et al. 1998; Hély et al. 2003; Hille and Ouden 2004; 

Stephens 2004) and assessed the effect of various disturbances on fuel load including mechanical 

fuel treatments and prescribed fire (Stephens and Moghaddas 2005; Stephens et al. 2009; Scott 

1998; Sackett 1980a), insect outbreaks (Page and Jenkins 2007, Hoffman et al. 2012a), 

pathogens (Hoffman et al. 2007; Valachovic et al. 2011), wind (Woodall and Nagel 2007), and 

wildfires (Storm and Fulé 2007). However, there is a lack of information regarding the inherent 

spatial scale of fuel variability across various ecosystems, or the effects of abiotic and biotic 

disturbances on how fuels are distributed through space.  

While there is a growing understanding of how fuel spatial variability may govern the 

impact of fire on an ecosystem, there remains a lack of understanding of how fuels vary through 

space. Studies across the United States and Australia, in ecosystem types including tall grass 

prairie, pine savanna, and eucalyptus forests, have found that patterns in fire behavior are 
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strongly affected by fine scale (i.e. 0.5-10 m) heterogeneity in surface fuels (Gibson et al. 1990; 

Hobbs and Atkins 1988; Thaxton and Platt 2006; Hiers et al. 2009). Variability in fuel 

consumption, maximum surface temperatures reached, soil heating, rate of spread, flame height, 

and shrub mortality corresponded to fuel distributions at scales of 0.5 to 10 meters depending on 

the ecosystem. These differences in fire behavior are likely to lead to corresponding spatial 

variation in fire effects like seed-release, germination, and post-fire vegetation recovery (Hobbs 

and Atkins 1988; Thaxton and Platt 2006). 

One way to characterize the inherent spatial scale of fuel variability is the characteristic 

length scale (CLS)—the inherent scale at which a process or characteristic occurs over an area 

(Carlile et al. 1989) and at which the dynamics of the system are most clearly observed (Habeeb 

et al. 2005). Samples collected at scales smaller than the CLS are likely to be overwhelmed by 

strong correlations between samples, potentially obscuring the identification of true system 

dynamics, whereas samples collected at scales much larger than the CLS are likely to average 

out important dynamics of the system (Keeling et al. 1997; Habeeb et al. 2005). Although the 

concept of CLS has most often been used in modeling competition in ecological systems, it has 

recently been applied to investigations of fuel components (Kalabokidis and Omi 1992; Hiers et 

al. 2009; Keane et al. 2012a). Understanding this spatial scale can inform optimal sampling 

designs for fully characterizing the spatial distribution of fuel loading on a site, or for most 

efficiently placing samples for accurate mean loading and variance estimates. 

Previous research has suggested that wildland fuel loads are highly variable at a fine 

resolution (Kalabokidis and Omi 1992, Reich et al. 2004, Hiers et al. 2009, Keane et al. 2012b) 

and that the CLS is likely to differ between fuel particles of varying sizes (Keane et al. 2012b). 

For example, Keane et al. (2012b) found CLS of fuel loads for surface fuels less than 7.6 cm in 
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diameter tended to vary at scales ranging from less than 1 m to around 20 m, while 1000-hr fuel 

loads had CLS that varied from 20 to 160 m across a wide range of western North American 

ecosystems. Kalabokidis and Omi (1992) found a CLS of 20 to 30 m for total fuel loading in 

lodgepole pine (Pinus contorta) forest types and 60 m for big sagebrush (Artemisia tridentata) 

dominated ecosystems. Although this previous research has provided a framework to begin to 

understand the CLS associated with surface fuels it is still limited to a small number of locations 

and it is unknown what effect management actions have on the inherent spatial scales of 

variability.  

 The overall goals of this study were to quantify the fuel loading, fuel loading variability, 

and the CLS of fuel loading by surface fuel component in untreated, mechanically treated, and 

mechanically treated and burned ponderosa pine forests of the southern Rocky Mountains. 

Additionally, we assessed the relationship between fuel component size and the CLS and the 

relationship between surface fuel load variability and total surface fuel load in order to create 

scaling relationships linking our spatial variability measures to more readily measured fuel 

characteristics. 

1.2 Methods 

1.2.1 Study Sites 

 

Six sampling locations across the southern Rocky Mountains were selected to represent a 

wide range of ponderosa pine forests and current fuel treatment prescriptions across the region 

(Figure 1.1). Sites were chosen in consultation with regional and local USDA Forest Service 

personnel and were limited to areas that contained treated (either thinned or thinned and 

broadcast burned) and untreated stands that were (1) within 10 kilometers of each other; (2) of 

similar overstory composition; (3) relatively flat, with an average slope of less than 5%, although 
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small areas of up to 30% were included; (4) large enough to accommodate a 9 ha plot; and (5) 

accessible within 2.5 km of a road. Untreated plots accompanied each treated plot and where 

possible they were installed in areas slated for future fuels reduction treatments to minimize 

selection bias due to pre-treatment stand differences. 

 

Figure 1.1: Location of the six ponderosa pine-dominated study locations across the southern Rocky Mountains 

used in this study. Each treated stand location was paired with an unmanaged adjacent site.  

 

Ponderosa pine was the dominant overstory tree species at all sites, ranging from 72 to 

100% by basal area (Table 1.1). Elevation ranged from 2000 to 2800 m, covering the elevational 

distribution of ponderosa pine forests in this region (Peet 1981, Dick-Peddie 1993). Other 
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species found on our sites included quaking aspen (Populus tremuloides), Douglas-fir 

(Pseudotsuga menziesii), and blue spruce (Picea pungens). Quadratic mean diameter of the 

overstory ranged from 27.6 to 41.2 cm in untreated sites, 28.8 to 45.5 cm in thinned sites, and 

33.5 to 37.2 cm in thinned and burned sites. Tree density ranged from 101 stems per hectare in 

the thinned site at Bluewater to 1287 stems per hectare in the untreated site at Heil Valley Ranch. 

Basal area ranged from 6 to 30 m2 ha-1.  

Table 1.1 General description of study sites. Values in parentheses represent standard deviation at variable radius 

plot-level. Species composition is given by basal area. 

Site Treatment QMD (cm) TH (m) 
BA      

(m2 ha-1) 

Density 

(stems ha-1) 

Species  

Composition 

Heil Valley 

Ranch 

Untreated 27.6 (8.3) 9.6 (1.8) 30 (16) 1287 (1179) PIPO (100%) 

Thinned 28.8 (8.7) 9.1 (1.5) 15 (10) 383 (294) PIPO (100%) 

Bluewater 

Untreated 29.5 (6.5) 11.5 (2.0) 19 (8) 541 (413) PIPO (100%) 

Thinned 45.5 (14.6) 16.0 (4.9) 6 (5) 101 (220) 
PIPO (87%) 

PIED (8%) 

Messenger 

Gulch 

Untreated 41.8 (11.8) 13.9 (2.6) 14 (9) 301 (479) 
PIPO (87%) 

PSME (11%) 

Thinned 36.7 (7.5) 15.2 (2.2) 10 (6) 173 (208) 
PIPO (96%) 

PSME (4%) 

Red Feather  

Untreated 34.6 (12.5) 11.8 (2.9) 10 (8) 353 (561) 
PIPO (80%) 

PSME (12%) 

Thinned and 

burned 
33.7 (10.2) 11.6 (2.5) 7 (4) 141 (200) 

PIPO (96%) 

PSME (4%) 

Dry Lakes 

Untreated 41.2 (10.5) 12.2 (3.1) 11 (8) 534 (870) 
PIPO (84%) 

QUGA (12%) 

Thinned and 

burned 
37.2 (8.0) 13.2 (2.6) 11 (8) 161 (121) 

PIPO (98%) 

QUGA (1%) 

Sledgehammer 

Gulch 

Untreated 34.7 (9.8) 12.1 (2.9) 16 (9) 670 (1100) 
PIPO (72%) 

POTR (13%) 

Thinned and 

burned 
33.5 (12.0) 12.6 (4.0) 6 (4) 554 (1520) 

PIPO (83%) 

POTR (11%) 

QMD, quadratic mean diameter; TH, mean tree height; BA, Basal area; PIPO, Ponderosa pine; 

PIED, two needle pinyon; PSME, Douglas-fir; POTR, quaking aspen; QUGA, Gambel oak 

 

Three of the six sites were mechanically thinned with treatments designed to reduce 

crown fire hazard and restore forest structure to conditions within historical ranges of variability 
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by removing ladder fuels, incorporating openings, leaving clumps of trees, and preferentially 

retaining older trees (Kaufmann et al. 2001; Hunter et al. 2007). These sites are hereafter referred 

to as thinned sites. Each treatment on thinned sites was completed within three years prior to 

sampling. The three thinned sites were located in Heil Valley Ranch in Boulder County Open 

Space near Hygiene, Colorado, Bluewater in the Mount Taylor district of the Cibola National 

Forest in northwestern New Mexico, and Messenger Gulch in the South Park district of the Pike 

and San Isabel National Forests (Figure 1.1, Table 1.1). 

At the remaining three treated sites, treatments were designed primarily to reduce fire 

hazard without an explicit goal of restoring the forest structure and consisted of a mechanical 

treatment followed by a broadcast burn. These treatments are hereafter referred to as thinned and 

burned sites. The treatments on thinned and burned sites were completed between 6 and 8 years 

before sampling occurred. The three thinned and burned sites were Red Feather in the Canyon 

Lakes district of the Arapaho and Roosevelt National Forests, Dry Lakes in the Tres Piedras 

district of the Carson National Forest, and Sledgehammer Gulch in the South Park district of the 

Pike and San Isabel National Forests (Figure 1.1, Table 1.1).  

1.2.2 Fuel Sampling Methods 

 

To determine the spatial autocorrelation of fuels in the surface fuel layer we utilized a 9 

hectare nested cluster sampling design at each site to estimate fuel loading within surface fuel 

types and components (Figure 1.2, Table 1.2). The inventory was designed to provide multiple 

samples across a range of distances, informed by the results of Keane et al. (2012a), to provide 

inputs to spatial statistical models (see Data Analysis). The overstory and 1,000-hr fuels were 

sampled on 41 macroplots distributed across the site at variable densities (n = 41 per site). This 

included variable-radius plots using either a 2.3 or 4.6 BAF in order to characterize site-level  
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Figure 1.2: Each site was inventoried using a nested cluster sampling design (A) that included 41 macroplots, 32 

subplots, and 4 intensive plots. At each macroplot variable radius plots were used to measure the overstory and 200 

m2 fixed radius circular plots were used to sample 1,000-hr fuels. Each subplot included a 1 m2 quadrat for 

sampling live herbaceous and shrub and dead woody fuels and a 0.09 m2 frame for sampling litter and duff. Within 

each 7 by 7 m intensive plot (B) live herbaceous and dead woody fuels were sampled in each 1 m2 grid cell (n=49) 

and litter and duff were sampled within 0.09 m2 frames (n=37). Resulting n = 41 overstory and 1,000-hr fuel 

samples, n = 228 live herbaceous and dead woody fuel samples, and n = 180 litter and duff fuel samples at each 

site. 

 

estimates of basal area, species composition, average tree height and crown base height, and 

stems per hectare and 200 m2 fixed-radius plots for measuring 1,000-hr downed dead woody 

fuels. At each 200 m2 plot species, decay class (sound or rotten), length (m), and end diameters 

(m) of each fuel particle was recorded; for particles extending outside of the fixed-radius plot 

diameters were collect at the plot edge and length was measured for the portion of the particle 

inside the plot. The volume of the fuel particle was then calculated as a conical frustum 
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(Equation 1), and multiplied by a species-specific density (Harmon et al. 2008) to create a 

loading estimate. 

(1)  � = �
� �(��� + ���� + ���) 

 

 

Table 1.2 Description of the eight surface fuel types and components sampled in this study 

Fuel type 
Fuel 

component 
Particle Size Description 

Downed 

dead woody 

1-hr <0.64 cm (0.25 inch) diameter Detached woody fuel particles on the 

ground 10-hr 0.64-2.54 cm (0.25-1.0 inch) 

diameter 

100-hr 2.54-7.62 cm (1-3 inch) 

diameter 

1,000-hr >7.62 cm (3 inch) diameter 

Shrubs Shrub All sizes Shrubby biomass  

Herbaceous Herb All sizes All live grass, forb, and fern biomass 

Litter Litter All sizes excluding woody Freshly fallen non-woody material 

Duff Duff All sizes Partially decomposed biomass 

 

Litter and duff fuel loads were measured on 0.09 m2 plots located at the 32 subplot 

locations and from 37 locations within each intensive plot (Figure 1.2; n = 180 per site). Litter 

was defined as freshly fallen, readily identifiable non-woody plant necromass (Keane 2015) and 

includes the Oi soil horizon (Schoeneberger et al. 2012). Duff was defined as the layer below 

litter and above mineral soil where necromass is partially decomposed and the original source of 

fuel particles is no longer easily identifiable (Keane 2015); this is equivalent to the remainder of 

the O horizon (Schoeneberger et al. 2012). Animal droppings and pinecones were excluded from 

litter and duff collections. 

1-hr, 10-hr, and 100-hr downed dead woody fuel loadings were inventoried using 

photoload double sampling of 1 m2 quadrats, with one located at each subplot and 49 in each 

intensive plot (Figure 1.2; n = 228 per site; Keane et al. 2007). In order to account for any visual 

estimation bias, downed dead woody material was extracted and sorted by time-lag size classes 
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at a randomly selected 20% of plots (nsub-sample=48 per site). As shown by Tinkham et al. (in 

press), a 20% double sampling rate provides substantial improvements to sample bias and 

precision of the mean. In cases where a fuel particle was only partially within the 1 m2 plot only 

the portion within the sampling plot was collected. Using linear regression between the visual 

estimates and destructive samples a bias correction factor for each particle size, site, and 

observer combination was developed and applied to each visually estimated sample. 

Additionally, within each 1 m2 quadrat standing live fuels below 2.0 m were clipped at the soil 

surface and classified as shrub or herbaceous fuels (Figure 1.2; n = 228 per site). All extracted 

litter, duff, 1-hr, 10-hr, 100-hr, shrub, and herbaceous fuels were placed in ovens at 70 °C until 

the measured weight stabilized and then dry weights were recorded.  

1.2.3 Data Analysis 

 

To characterize spatial variability and CLS of fuel loading in ponderosa pine forests of 

the southern Rocky Mountains we constructed individual semivariograms generated from all 

pairs of observations for each fuel component by treatment type following Webster and Oliver 

(2007) (Figure 1.3). Additionally a semivariogram was created for each treatment across sites 

with maximum separation distances set at 200 meters, increasing the amount of data at each lag 

distance without introducing interactions between sites. 
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Figure 1.3: Elements of a semivariogram. The range is the separation distance at which the modeled curve flattens, 

and is an estimate of the characteristic length scale of a spatial process, representing the scale at which the process 

or characteristic is best described. The corresponding y-axis value along the modeled curve at the range is called 

the sill, and represents the maximum variation of the process. 

 

Semivariograms present a graphical representation of the spatial continuity of a dataset 

by calculating the variance of measured sample points as a function of their separation distance. 

We characterized our semivariogram models using three modeled variables: the range, the sill, 

and the nugget (Figure 1.3). The range was estimated as the point along the x-axis where the 

modeled curve flattens. Points located next to each other at scales below the range are spatially 

autocorrelated, while points spaced at distances larger than the range are spatially independent. 

The range value can thus be thought of as an estimate of the CLS of a spatial processes or 

characteristic of the system and represents the scale at which the process or characteristic is best 

described. The corresponding y-axis value along the modeled curve at the range is called the sill, 

and represents the maximum variation of a process or system. The sill is similar to traditional 

statistical variance estimates. The nugget is the value of the fitted semivariogram at zero 
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distance; a nugget other than zero represents measurement error or spatial variation at distances 

smaller than the sampling interval. A ‘pure nugget’ model, or one in which the sill and range are 

equal to zero and the nugget is non-zero, is the result of a process that occurs at smaller scales 

than those measured, or one which displays no autocorrelation.  

Once all pairs of locations were plotted, we fit exponential semivariograms to the data 

using maximum likelihood estimators using the GeoR and mvtnorm statistical packages in R 

(Ribeiro and Diggle 2012; Genz et al. 2014) and visually inspected the fitted models to ensure 

that isotropy assumptions were met (Prudhomme and Reed 1999, Webster and Oliver 2007). We 

assumed that the nugget was zero in all cases except where the fitted range value was 

significantly smaller than the shortest lag distance sampled (α = 0.05). In these cases, the model 

was interpreted as a pure nugget model, with a range of zero and a nugget value equal to the 

fitted sill. This process provided estimates and standard errors for the parameters of the 

semivariogram model. 

To test if the fitted range and sill values for each fuel type were equal across the three 

different treatments we used a two-sample Z-test (Equation 2) with a critical value (α) of 0.05 

using the fitted values and standard errors for CLS and semivariance. This test meets normality 

assumptions because maximum likelihood estimators are normally distributed and samples were 

independent from each other due to the distance between sites. 

(2)  � = �1� −�2�
�(��12� +��22�)

 

 We also developed scaling factors, through power function regression (Equation 3), for 

all surface fuel components in order to identify scale-invariant relationships and relate spatial 

variability to more easily measured fuelbed attributes. Power functions provide two unique 

characteristics that make them ideal candidates for investigating scaling relationships. First, they 
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are scale invariant, which means that a change in scale of the independent variable does not 

change the functional form of the equation (Gisiger 2001; Stanley et al. 2000). Secondly, they 

are considered to be universal and thus can help identify general principles that apply across a 

wide range of scales (Marquet et al. 2005). Relationships were developed using the fitted range 

as the dependent variable and surface fuel component size as measured by diameter as the 

independent variable.  

(3)  � =  ���, 

where x is the particle diameter, Y is the fitted range, a is a normalization constant, and b is the 

scaling exponent. Litter diameter was estimated as 0.2 cm following Keane et al. (2012a). 

Diameters of 1, 10 and 100-hr downed dead woody fuel particle classes were estimated as the 

midpoint of the size classes, and 1,000-hr downed dead woody fuels were divided into three 

classes (7.6-11 cm, 11-16 cm, 16+ cm), of which the mid points were used in the analysis. 

Dividing 1000-hr fuels into three size classes created a more evenly distributed set of x-values 

and avoided a function driven by one outlying point for this size category. Additionally, we 

investigated the relationships between the semivariance of fuel loading and the mean fuel 

loading by size class using a power-law function as described in equation 3, with the 

semivariance in fuel loading as the dependent variable and mean fuel loading as the independent 

variable. This analysis follows Taylor’s Law, which states the variance of a natural population is 

proportional to a power of the population mean (Taylor 1961).  

1.3 Results 

1.3.1 Total Fuel Load 

 

Across all treatment types litter and duff fuel components had the greatest fuel loads, 

comprising 78, 70, and 60% of total fuel loading for the untreated, thinned, and thinned and 
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burned sites respectively (Table 1.3). Downed dead woody fuel components comprised the next 

largest proportion of total fuel loading across all sites, comprising 20, 29, and 35% of total fuel 

loading for the untreated, thinned, and thinned and burned sites respectively. Within the downed 

dead woody fuel components the mean fuel load tended to increase as a function of fuel 

diameter, with the 1,000-hr fuel component having the greatest fuel loads in all treatment types. 

1-hr fuel loadings ranged from 0.036 to 0.049 kg m-2, while 1,000-hr fuel loadings ranged from 

0.286 to 0.400 kg m-2. Shrub and herbaceous fuels had the lowest fuel load of any fuel 

components, comprising 2, 1, and 5% of total fuel load for the untreated, thinned, and thinned 

and burned sites, respectively. Herbaceous fuel loadings were the lowest across all treatment 

types, with mean fuel loadings of 0.023, 0.017, and 0.033 kg m-2 for the untreated, thinned, and 

thin and burned sites respectively. Shrub fuels had the next smallest loading on the untreated 

(0.034 kg m-2) and thinned only sites (0.005 kg m-2) but were greater than the 1-hr downed dead 

woody fuel loading on thinned and burned sites. 

Table 1.3: Mean and standard deviation of loading by fuel component and treatment type 

Fuel Component Average Loading in kg m-2 (standard deviation) 

Time-lag class Untreated Thin Thin and Burn 

1-hr 0.049 (0.081) 0.047 (0.072) 0.036 (0.055) 

10-hr 0.123 (0.204) 0.270 (0.421) 0.118 (0.171) 

100-hr 0.093 (0.234) 0.249 (0.591) 0.141 (0.310) 

1,000-hr 0.400 (0.659) 0.323 (0.482) 0.286 (0.548) 

Total Woody 0.665 0.889 0.581 

Litter 0.660 (0.854) 0.378 (0.666) 0.363 (0.418) 

Duff 1.973 (2.864) 1.765 (2.284) 0.618 (0.907) 

Total Ground 2.633 2.143 0.981 

Shrub 0.034 (0.268) 0.005 (0.026) 0.054 (0.122) 

Herbaceous 0.023 (0.034) 0.017 (0.065) 0.033 (0.037) 

Total Live 0.057 0.022 0.087 

Total Loading 3.355 3.054 1.649 
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Across all of the management scenarios, coefficients of variation were over 100% for all 

fuel components. Thinned and burned sites had lower coefficients of variation than those of 

untreated sites for all fuel components except for 1,000-hr downed dead woody fuels. Regardless 

of changes in fuel loading, thinned sites had coefficients of variation 10 to 15% lower than those 

of untreated sites across all downed dead woody fuel components. Shrub and herbaceous fuel 

types had the highest and widest range of coefficients of variation of all fuel types (225 to 788% 

for shrub fuels and 112 to 382% for herbaceous fuels). 

Both fuel reduction treatment types reduced total fuel loads, although thinned sites had 

increased downed dead woody fuel loadings. Thinned sites averaged 33% greater total woody 

fuel loadings but 10 to 83% lower average herbaceous, shrub, litter, and duff fuel loadings than 

untreated sites (Table 1.3). Thinned and burned sites had total fuel loadings 51% lower than 

untreated sites, primarily due to an average 63% decrease in litter and duff loadings. However, 

shrub and herbaceous fuel loadings were greatest on the thinned and burned sites, with roughly a 

50% increase over untreated sites. 

1.3.2 Spatial Variability 

 

The estimated semivariance for downed dead woody fuel size classes tended to increase 

with fuel diameter (Figure 1.4, Table 1.4), with thinned sites having higher semivariance than 

thinned and burned sites for all components except 1,000-hr fuels, where they were not 

significantly different. There was no clear pattern in semivariance between untreated sites and 

either treatment type in downed dead woody fuels. The estimated semivariance for litter and duff 

did not differ significantly between untreated and thinned sites, but were significantly lower on 

thinned and burned sites for both fuel components (Figure 1.4, Table 1.4). Within untreated sites 

semivariance of shrub fuels was larger than any other surface fuel component other than 1,000-hr 
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fuels, however, in thinned and burned sites it was the second smallest of any fuel component 

indicating a more homogeneous distribution of shrubs on those sites (Table 1.4). Herbaceous 

fuels on thinned sites had the lowest estimated semivariance of any fuel component on thinned 

sites. Due to zero-heavy and extremely skewed data, we were unable to produce maximum 

likelihood estimates for shrub fuel semivariance on thinned sites or herbaceous fuel semivariance 

on untreated or thinned and burned sites. 

 
Figure 1.4: Semivariance with standard errors for (A) downed dead woody fuels and (B) litter and duff fuels by 

treatment type. Letters represent significant differences (α = 0.05). 
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Table 1.4: Variogram model fits by fuel component and treatment type. Values in parentheses represent standard 

errors. 

Fuel Component Rx Sill (kg m-2)-2 CLS (m) 

1-hr 

None 0.0254 (0.0030) a 14.50 (1.88) a 

Thin 0.0054 (0.0003) b 0.91 (0.11) b 

Thin and burn 0.0041 (0.0003) c 1.81 (0.22) c 

10-hr 

None 0.0403 (0.0022) a 1.47 (0.11) a 

Thin 0.1586 (0.0114) b 1.32 (0.13) a 

Thin and burn 0.0331 (0.0030) a 1.44 (0.20) a 

100-hr 

None 0.0558 (0.0026) a 0.89 (0.07) a 

Thin 0.3226 (0.0249) b 1.53 (0.15) b 

Thin and burn 0.0777 (0.0051) c 1.23 (0.10) b 

1,000-hr 

None* 0.3998 (0.0418) a  

Thin 0.3026 (0.0579) a 47.59 (13.10) b 

Thin and burn 0.3558 (0.0686) a 46.89 (13.21) b 

Litter 

None 0.4789 (0.0255) a 1.13 (0.08) a 

Thin 0.5518(0.0398) a 0.93 (0.11) a 

Thin and burn 0.1701 (0.0136) b 0.99 (0.12) a 

Duff 

None 5.9616 (0.3165) a 1.18 (0.08) a 

Thin 5.1888 (0.3857) a 1.02 (0.10) a 

Thin and burn 0.9112 (0.0744) b 1.16 (0.13) a 

Shrub 

None* 0.0717 (0.0002)  

Thin**   

Thin and burn 0.0133 (0.0008) 1.00 (0.09) 

Herbaceous 

None**   

Thin* 0.0041(0.0002)  

Thin and burn**   

* Pure nugget model; value given in sill column is nugget value. 

** MLE fit not possible due to distribution of data. 

 

The CLS for surface fuel loading tended to increase with fuel component size, ranging 

from 0.9 to 47 m (Table 1.4). Litter, duff, shrub, herbaceous, and 1-, 10-, and 100-hr downed 

dead woody fuels all had CLS less than 4 m with the exception of the untreated 1-hr fuels, which 

had a CLS of 14 m (Figure 1.5). 1,000-hr fuels had CLS around 47 m for the thinned and thinned 
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and burned sites and showed the greatest variability in CLS (Figure 1.5). We were unable to 

detect a CLS during our analysis of 1,000-hr fuels for untreated sites, producing a pure nugget 

model indicating that either the CLS is below 25 m or there is complete spatial randomness on 

these sites.  

 
Figure 1.5: CLS values with standard errors of (A) downed dead woody fuels and (B) litter and duff fuels by 

treatment type. Letters represent significant differences (α = 0.05) 

 

Both treatment types resulted in a decreased CLS for 1-hr fuel loading from 14.5 m in the 

untreated sites to 0.9 and 1.8 m for the thinned and thinned and burned sites (Table 1.4; Figure 

1.5). We found no significant differences among treatments in terms of the CLS for 10-hr fuels, 

which were approximately 1.4 m across all treatment types. Similarly, we found no differences 
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in the CLS of duff or litter fuel loadings, which were approximately 1 m across all treatment 

types for both fuel components (Figure 1.5). In contrast, 100- and 1,000-hr fuels in both 

treatment types had significantly increased CLS relative to untreated stands, with CLS of 100-hr 

fuels in treated sites being between 1.4 and 1.7 times larger than untreated sites. If we assume a 

1,000-hr fuel CLS of 25 m for untreated sites (pure nugget), which represents our lowest 

separation distance, we would conservatively estimate an approximately 1.9 fold increase in 

1,000-hr fuel CLS for treated sites.   

Shrub and herbaceous fuels were sparse with zero-heavy and extremely right-skewed 

data, and we were unable to fit a semivariogram for thinned shrub fuels and untreated and 

thinned and burned herbaceous fuels. Herbaceous fuels in thin-only sites produced a pure nugget 

model, implying that spatial autocorrelation occurred at scales small than our sample spacing of 

1 m. Within the herbaceous and shrub fuel types the only comparison we were able to make was 

for shrub fuel loading in untreated and thinned and burned sites, where untreated sites produced a 

pure nugget model indicating spatial autocorrelation occurred at a scale smaller than the 1 m 

CLS of thinned and burned sites.  

1.3.3 Scaling Factors 

 

Regressions of CLS to fuel components particle size across treatments provided scaling 

factors for surface fuels, showing that CLS increased with fuel particles size. Using the scaling 

function given in Equation 3, the resulting fit was 

(4) ��� = 0.217��. �! 

where d is the fuel particle diameter in cm (R2= 0.879; Figure 1.6). This fit reflects the similar 

CLS values for smaller fuels and the large increases in CLS values of larger diameter fuels, and 
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implies that on average 1-, 10-, and 100-hr fuels have CLS of 0.3, 0.5, and 4.3 m respectively, 

while particles 15 cm in diameter will have an average CLS of 31.6 m in ponderosa pine forests. 

 

Figure 1.6: Relationship between average particle diameter within each fuel component and characteristic length 

scale (R2= 0.88). 

 

Regression analysis also showed that semivariance increased with site-level average fuel 

loading across all treatment types. Fitting the data to our scaling function (Equation 3) resulted in 

the equation  

(5) �"#$%�&$�'(" = 1.862 ∗ ,-���../� 

where load is the fuel load in kg m-2 (R2 = 0.99; Figure 1.7). The scaling factor of 1.7 shows that 

the fuel load variability increases at a greater rate than average site-level loading and that a 

doubling of fuel load results in a 3.3-fold increase in variability.  
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Figure 1.7: Relationship between average site-level fuel loading within each fuel component and semivariance (R2= 

0.99). 

1.4 Discussion 

 

The study found that surface fuel loadings are highly variable across and within surface 

fuel types and components in ponderosa pine forests of the Southern Rocky Mountains 

regardless of the treatment type. We found similarly high variability for downed dead woody 

fuels to that found by Brown and Bevins (1986) and Keane et al. (2012a). However, we 

additionally showed that fuel-loading variability of litter, duff, herbaceous, and shrub fuels 

tended to be higher in ponderosa pine forests of the Southern Rocky Mountains than the 

Northern Rocky Mountains. These differences held across sites and treatment types, suggesting 

that regional differences in productivity or understory species composition, not recent 

management activity, may be the cause. 
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Both fuel reduction treatment types reduced total fuel loads and the relative amount of 

each fuel type. In particular, a markedly higher percentage of fuel loading was found in downed 

dead woody fuels on thinned and burned sites than in either of the other two management 

scenarios. Similar changes in fuel loading following prescribed burning have been found in 

ponderosa pine forests of western Montana in combination with mechanical treatments (Scott 

1998) and in burn-only treatments in Arizona (Sackett 1980a). However, fuel loads in these cases 

tended to decrease by larger percentages across fuel components, particularly in terms of the 

1,000-hr downed dead woody fuel component loading. Larger decreases in loading in other 

studies may be a result of burn objectives or of higher initial loadings leading to increased 

consumption during burning (Thaxton and Platt 2006). Similar patterns of change in fuel load 

following mechanical only and mechanical and prescribed fire treatments have also been found 

in conifer forests across the western United States (Stephens and Moghaddas 2005; Stephens et 

al. 2009). 

Recognizing and accounting for spatial variability in measuring surface fuel loading can 

improve the ability of fuel loading measurements to meet their intended purposes of informing 

management decisions. For example, mean values across a stand may not be helpful in sampling 

downed dead woody material for wildlife habitat assessment when the wildlife species in 

question requires high densities of jackstrawed logs (Bate et al. 2004). Similarly, risk of spruce 

beetle outbreak in a stand is greatly increased by the presence of heavy fuel loads concentrated in 

small areas—a phenomenon that may not be captured by a simple stand-level mean (Reynolds 

and Holsten 1994). Thaxton and Platt (2006) and Hiers et al. (2009) have suggested that 

incorporating true scales of surface fuel variability into fire modeling rather than using stand-

level means may be an important step in linking fire behavior and effects to fuel loadings. 
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Collecting meaningful data on the spatial variability of fuel loading throughout a stand requires 

an understanding of the scale of that variability. 

The CLS found in this study fall within the ranges of CLS for the fuel components 

reported for three north Rocky Mountain ponderosa pine sites in Keane et al. (2012b), but are 

greater than those reported by Hiers et al. (2009) for longleaf pine dominated stands. Regardless 

of any differences in CLS and semivariance found between these studies, there is mounting 

evidence that surface fuel loadings of all but the largest fuel components are highly variable at 

scales below 20 m, and often closer to 1 m. These findings suggest that typical sampling plot 

sizes of 0.04 to 0.09 ha are too large to capture the system dynamics of fuels complexes, and that 

smaller plot sizes are needed to improve fuels sampling to achieve a detailed picture of fuel 

distributions. In addition, our results showed that fuel reduction treatments differentially effect 

the spatial distributions of different fuel components, signifying that optimal sampling scales 

may change with management practices.  

Knowing the scaling relationships that relate spatial distributions to more readily 

measured variables such as mean loading and particle diameters can contribute to improving 

sampling designs that incorporate spatial variability. The two measures of spatial variability we 

analyzed (CLS and semivariance) showed strong predictability by either fuel particle diameter or 

stand-level mean fuel loading, variables that are more easily measured, require fewer samples to 

accurately characterize, and less post-processing of field-collected data. For example, 1-, 10-, 

and 100-hr fuels could be rapidly sampled using photoload estimation of quadrat clusters to 

capture spatial dynamics (Keane & Grey 2013; Tinkham et al. in press). If a particular precision 

is desired for a mean fuel load estimate, previously measured mean fuel loads could be used to 

predict the semivariance and inform the sample size required. 
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Although strong relationships were found between fuel components and the effect of 

fuels treatments on fuel spatial variability, certain limitations in the study design may have 

influenced specific results. Due to the intensive, time-consuming nature of the sampling design 

needed to characterize spatial variability, only a limited number of sites and treatment techniques 

could be assessed potentially limiting the inference of the results and preventing the separation of 

thin-only and burn-only treatments. Furthermore, due to the difference in time since treatment 

between the two treatment scenarios, some of the results in herbaceous and shrub fuel loading 

variability may result from the difference in time for the fuels complex to redevelop, although 

these are slow developing, low productivity systems. Further research that quantifies changes in 

the spatial scale and variability of fuels following treatments is needed, especially towards 

understanding the temporal development of fuels complexes and their implications on fuel 

treatment longevity.  
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CHAPTER 2: FUEL PARTICLE DIAMETERS FOR IMPROVED FUEL LOADING 

ESTIMATES OF SOUTHERN ROCKY MOUNTAIN PONDEROSA PINE FORESTS 

 

 

 

2.1 Introduction 

 

Downed dead woody fuel loading is an important input to many fire behavior and effects 

models, and is an important indicator of the success of fuel hazard reduction treatments (Keane 

et al. 2012b). Many sampling techniques have been developed to estimate downed dead woody 

fuel loading in fire management, but the most widely used is the planar intersect method 

developed by Van Wagner (1968) and operationalized by Brown (1971, 1974). This method is 

often used in fuel inventories in part because it is relatively simple and quick to implement in the 

field and is easily taught to fire managers (Sikkink and Keane 2008). Rather than directly 

measure the fuel load this technique makes use of fuel particle counts of downed dead woody 

biomass within size classes that correspond to the moisture time lag classes used in the National 

Fire-Danger Rating System: 1-hr (0- 0.63 cm), 10-hr (0.63 -2.54cm), and 100-hr (2.54 – 7.62 

cm) fuels (Deeming et al. 1972). These counts are multiplied by a slope correction factor and 

species-specific estimates of particle angles, specific gravity, and mean squared diameters (d2) 

for each size class to calculate fuel loading. 

However, due to differences in climate, branch growth patterns, and management 

practices, these estimates vary across broad geographical regions, by species and with stand 

management history (Brown and Roussopoulos 1974; Sackett 1980b). Stand management history 

including harvest practices, mastication, and prescribed burning can influence diameter 

distributions by selectively targeting certain sited material for removal, or through the 

preferential consumption of smaller diameter fuels. Previous studies have shown that improved 



 

 25

estimates of particle diameters result in more accurate estimates of fuel loading (Keane and Gray 

2013). Regional estimates of d2 of 1-hr, 10-hr, and 100-hr fuels for common species are available 

for the Northern Rocky Mountains (Brown and Roussopoulos 1974), the Pacific Northwest 

(Ryan and Pickford 1978), and the Southwest (Sackett 1980b). In addition, Woodall and 

Monleon (2010) used Forest Inventory and Analysis data to provide national estimates by forest 

type and Brown (1974) provided a composite value for western tree species with no geographic 

specificity. These published d2 values can vary by as much as 60% between regions for the same 

species. In addition to broad differences across geographic regions and species, d2 is also 

affected by natural disturbances and management practices such as fire and harvesting. Most 

slash d2 estimates were taken from clearcuts (Brown 1974), but clearcutting has become a more 

unpopular practice in dry forests of the southern Rocky Mountains and the Southwest in recent 

years. It is unclear how different silvicultural systems influence d2 distributions and estimates, 

particularly in fine woody fuels.  

The goal of this paper is to provide d2 for downed dead woody biomass in ponderosa pine 

(Pinus ponderosa) stands on the eastern side of the continental divide in the Rocky Mountains of 

Colorado and New Mexico under three common scenarios: natural stands, stands that have been 

partially harvested to restore a more historic forest structure and composition, and stands that 

have been underburned after a partial harvest. Currently there are no published values of d2 for 

the Southern Rocky Mountains, especially d2 values that reflect the previously mentioned current 

silvicultural practices in these systems. The d2 estimates provided in this study should improve 

downed dead woody fuel loading estimates produced using the planar intersect method in this 

region. In addition, we perform bootstrap analysis to determine the sample size required to 

produce reasonably accurate d2 estimates at a local level. This analysis will inform the decision 
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of whether to use published d2 values or create locally specific values, a process Van Wagner 

(1982) theorized would require onerous amounts of extra fieldwork. 

 

2.2 Methods 

 

We collected downed dead woody fuels from 12 ponderosa pine-dominated stands on the 

eastern side of the continental divide across Colorado and New Mexico on the Roosevelt, Pike 

and San Isabel, Carson, and Cibola National Forests and in Boulder County Open Space. 

Overstory species composition ranged from 72% to 100% ponderosa pine by basal area, with 

other trees species including Douglas-fir (Pseudotsuga menziesii), quaking aspen (Populus 

tremuloides), and Rocky Mountain juniper (Juniperus scopulorum). Sampled stands ranged in 

elevation from 2000 to 2800 m, covering the elevational distribution of ponderosa pine forests in 

this region (Peet 1981; Dick-Peddie 1993), had slopes from 0 to 30%, and included all aspects. 

Because of the wide geographic and elevational range of sites sampled, the values presented here 

provide improved estimates of fuel loading with the planar intercept method for ponderosa pine 

dominated forests across New Mexico and Colorado east of the Continental Divide (Figure 2.1). 

Six sampled stands had natural fuels, as they had not been subject to active management 

in the preceding thirty years. Three stands had been partially harvested using variable retention 

thinnings to reduce density and increase spatial heterogeneity to within the historic range of 

variation less than three years before sampling and three stands had been partially harvested and 

burned 6 to 8 years before sampling. Basal area was reduced by 8 to 68% in each treated area as 

compared to neighboring untreated stands. Our treatment sites thus differ qualitatively from 

those used in other studies (Brown and Roussopoulos 1974, Sackett 1980b, Bevins 1978) in that 

they were treated to reduce density and improve forest health while the other studies were 

conducted on stands where treatments emphasized timber harvesting. Harvesting, and 
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particularly clearcutting, tends to remove more and larger trees from the site than forest health 

treatments do, therefore potentially leaving behind different amounts and distributions of fuels 

and overstory structures. 

 

Figure 2.1: Six ponderosa pine-dominated study locations across the southern Rocky Mountains used in this study. 

Each location contains an unmanaged site and a treated site. Thinned sites had received mechanical treatments 

designed to reduce crown fire hazard and restore forest structure. Thinned and burned site treatments were 

designed primarily to reduce fire hazard and consisted of a mechanical treatment followed by a broadcast burn. 

Images from top to bottom show examples of an untreated site, a thinned site, and a thinned-and-burned site. 

 

At each stand we randomly located a 9-hectare plot such that it was completely contained 

within the treatment unit and had an average slope of less than 5%. Within each quarter of the 



 

 28

plot we randomly placed 12 1-m2 frames for a total of 48 per site and collected all woody fuels 

less than 7.62cm in diameter. Because Brown (1974) requires the user to directly measure the 

diameter of 1000-hr fuels and calculate the d2, they were not included in this study. Following 

woody fuel collection at each site we sorted all fuel into timelag classes (i.e. 1-hr, 10-hr, and 

100-hr fuel classes), with fifty particles randomly selected from each timelag class and measured 

for endpoint and midpoint diameters. These measurements were used to calculate an arithmetic 

mean diameter for each particle and a stand-level quadratic mean diameter for each timelag 

class. From the stand-level quadratic mean diameters of each timelag class the arithmetic mean 

was calculated and squared to produce our d2 estimate within each stand condition. Due to initial 

misclassifications of size class or low fuel loadings, in some cases sample sizes were less or 

more than 50 on a given site, but always at least 26 in each time lag class, which is sufficient to 

invoke the central limit theorem and thus provide an unbiased estimate of the mean (Ott and 

Longnecker 2010). Differences in the mean squared average quadratic diameter among different 

treatment types were tested using a generalized linear mixed model with treatment as a fixed 

effect, site as a random effect, and a random residual effect for each site to account for variance 

heterogeneity between treatments with a critical value (α) of 0.05. The assumed response 

distribution was lognormal.  

We used standard with-replacement bootstrapping techniques (Efron and Tibshirani 

1993) to estimate the optimal sample size required to create accurate local estimates of d2 for 

each size class and treatment combination.  For each fuel size class and treatment combination 

we created 1000 bootstrapped samples ranging in size from 5 to 200 samples in increments of 5 

and calculated the variance between the mean d2 of each of the 1000 bootstrap observations at 

each sample size. For each fuel class and treatment type we visually evaluated changes in the d2 
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variance across the range of sample sizes to determine the point where the decrease in variance 

was minimal compared with the increase in sample size (Jalonen et al. 1998). We considered the 

recommended sample size to be the visually estimated inflection point in the graph (Sikkink and 

Keane 2008).  

2.3 Results 

2.3.1 d2 for Southern Rockies Ponderosa Pine Forests 

 

D2 of 10-hr fuels did not differ significantly between natural, thinned, and thinned-and-

burned groups (p ≥ 0.12), while 1- and 100-hr fuels did have significant differences between 

untreated areas and at least one of the treatment types (Table 2.1). 1-hr d2 in thinned-and-burned 

areas was significantly lower than untreated areas (p < 0.0001) and thinned areas (p= 0.0213). 

The 100-hr d2 in thinned-and-burned areas was significantly lower than thinned plots (p = 

0.0041), although thinned-and-burned plots did not differ significantly from natural plots 

2.3.2 Required Sample Size 

 

We found that sample sizes of between 20 and 35 were optimal to determine d2 for all 

cases based on the inflection points in our bootstrap analysis (Figure 2.2). The inflection point 

represents the sample size at which the decrease in variance from increasing the sample size is 

minimal compared with the time and effort required to accomplish the increased sample size 

(Sikkink and Keane 2008). Based on these findings we would conservatively recommend that at 

least 35 samples in each size class be collected to develop local d2 estimates in ponderosa pine 

forests of the southern Rocky Mountains.    
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Table 2.1 Regional d2 estimates of downed dead woody fuel classes for ponderosa pine dominated forests. 

Significant differences within each size class of the Southern Rocky Mountain estimates are indicated by letters 

(α=0.05). This study’s Thin estimates correspond to values reported as Slash in other publications. Differences 

between Southern Rocky Mountain estimates and other regional estimates are reported in parentheses. All estimates 

are given in cm2. 

Diameter 

Class (cm) 

 Southern 

Rockies 

Brown 19741 Southwest2 Pacific 

Northwest3 

National4‡ 

0-0.63 

Natural 0.268A 0.221 (-18%) 0.244 (-10%) 0.230 (-9%) 0.053 (-80%) 

Thin 0.258B 0.160 (-38%) 0.304 (+18%) - - 

Thin and burn 0.195C - - - - 

0.63-2.54  

Natural 1.746A 1.54 (-12%) 1.53 (-13%) 1.69 (-3%) 1.56 (-11%) 

Thin 1.871A 2.05 (+10%) 1.59 (-15%) - - 

Thin and burn 1.821A - - - - 

2.54-7.62  

Natural 15.698A 20.13 (+28%) 19.16 (+22%) - 19.01 (+22%) 

Thin 18.387B 18.26 (-7%) 23.03 (+25%) - - 

Thin and burn 14.778A - - - - 

‡Numbers were estimated using a graphical estimation approach 

1Brown 1974 2Sackett 1980b 3Ryan and Pickford 1978 4Woodall and Monleon 2010 

 

Figure 2.2 Effect of sample size on the variance of sample d2  

Effect of sample size on the variance of sample d2 for (a) 1-hour fuels (b) 10-hour fuels and (c) 100-hour fuels in 

ponderosa pine dominated forests in the Southern Rocky Mountains. 

 

2.4 Discussion 

 

Comparing our values to those reported for ponderosa pine from the Southwest (Sackett 

1980b), the Pacific Northwest (Ryan and Pickford 1978), national values (Woodall and Monleon 

2010), and those reported in Brown (1974) shows that our values generally result in greater 
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estimates of the 1- and 10-hour timelag fuel loadings and a lower estimate of 100-hour timelag 

fuel loading (Table 2.1). These differences may be due to regional differences in climate, branch 

growth patterns, and common harvest or other management practices. 

Overall our values show that total woody fuel estimates that use previously published d2 

values may capture the true total fine woody fuel loading in some cases because 1- and 10-hr 

fuel components would be overestimated while 100-hr fuels would be underestimated. However, 

estimates produced using previously published values are likely to result in inaccurate 

apportionment of fuel loading by size class in ponderosa pine forests of the southern Rocky 

Mountains. Errors in fuel distribution estimates are likely to be propagated through use in fire 

effects models and carbon storage estimates.  

For any given fuelbed, loading estimates calculated using equations from Brown (1974) 

are directly proportional to the d2 values used. For example, using a value ten percent higher for 

d2 results in a ten percent higher estimate of fuel loading. In evaluating fuel treatment 

effectiveness within southern Rocky Mountain ponderosa pine forests, the d2 values presented 

here would thus result in a sizeable increase in post-treatment fuel loading of 1- and 10-hr fuels 

compared to estimates using d2 estimates from Brown (1974), assuming all other parameters in 

the model were held constant (Table 2.1). The d2 values presented would also result in a 19% 

decrease in estimated 100-hr loading for thinned-and-burned sites compared to estimates using 

100-hr slash values from Brown (1974). This suggests that it is worth considering thin-and-burn 

as a distinct disturbance category when choosing d2 values in areas where treatments involve 

broadcast burning. 

Our work also shows that contrary to the theorized effort requirements, within these 

ponderosa pine forests very few samples are needed to create local estimates of d2. The 
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recommended sample size of 35 can easily be collected and measured in under an hour using 

basic equipment, and the related calculations can be performed on a standard calculator, 

requiring no special software or expertise. While current d2 values seem to capture total fine 

woody fuel loading, such an exercise would eliminate regional bias from the distribution of fuel 

loading within particle size classes. 

 Keane and Gray (2013) found that the accuracies of planar intersect-estimated fuel loads 

increased with better estimates of woody particle diameter measurements. However, there are 

several additional factors that may also contribute to uncertainty in fuel loading estimates with 

the planar intersect method. First, as suggested by Keane and Gray (2013) assumptions regarding 

the shape of woody fuel particles may be oversimplified, diameters may not be static through 

time, and common measurement techniques may not be appropriate. Second, other parameter 

estimates beyond the scope of this study, including specific gravity and particle angle, also 

influence fuel load estimates using the planar intersect method. Finally, the design of many 

common planar intersect sampling protocols fail to take into account the spatial variability of 

fuel loading itself (Keane et al. 2012b). More research is needed to better characterize the broad 

geographic variability of these parameters, to understand changes over time, and to provide a 

more mechanistic understanding of the drivers of local variability in fuel particle paramenters. 

Improved sampling designs may be necessary to accurately capture this spatial and temporal 

variability of surface fuels; however, the development of local d2 estimates, such as done here, 

could provide a relatively simple approach that acts as a compromise between improving the 

accuracy of fuel estimates with the planar intersect approach and time and resource limitations 

for training and sampling using new methods.   
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