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ABSTRACT 
 
 
 

WHAT’S THE MATTER WITH WHITE MATTER? AN EVALUATION OF POSTURAL 

CONTROL MECHANISMS IN MULTIPLE SCLEROSIS 

 
 
 

Interacting with environments that are constantly varying is difficult and, as bipedal 

mammals, keeping an upright posture requires a great deal of spatial and temporal acuity. The 

studies encompassing this doctoral dissertation provide mechanistic insight into the gait and 

balance of both neuro-typical and -atypical (i.e. people living with multiple sclerosis) adults to 

understand the neural underpinnings contributing to reduced locomotion and postural control, 

thereby increasing risks of falls and injury. Enhanced comprehension of the underlying 

mechanisms for postural control were attained through the abridgment of multiple scientific 

disciplines including biomechanics, neuromechanics, and neuroimaging to apply advanced 

concepts to identify biomarkers for future therapeutic interventions. The outcomes from this 

work demonstrate that, in comparison to neurotypical adults, the people with multiple sclerosis 

walked with a more conservative and asymmetric gait pattern regardless of speed or cognitive 

load. Poorer microstructural integrity of transcallosal sensorimotor white matter fiber tracts was 

strongly associated with these behavioral deficits, thereby establishing a structure-function 

relationship that comprised both static and dynamic postural control. Implications from this 

research provide a base of knowledge for how the brain successfully coordinates and controls 

movements, laying a foundation for future neurorehabilitation approaches that increase 

independence and overall quality of life. 
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Chapter 1 | Background 
 
 
 

Disclosure Statement: The succeeding information described in background of this 

dissertation documentation were summarized into a prior published review editorial, see 

Richmond and Fling (2019) [1].  

Whether within the spectrum of aging or various neurological impairments, the ability to 

effectively maintain posture or properly ambulate is essential to the daily lifestyle of a fully 

functioning adult. Postural stability and locomotor deficits have been related to increases in fall 

rates and associated injuries that directly contribute to a decreased overall quality of life or 

reduction in independence. It has been reported that 2.8 million people are admitted to the hospital 

each year due to a fall-related incident [2] and furthermore, in 2015 fall-related injuries were 

reported to account for 50 billion dollars of annual medical care costs [3].  More insight into the 

various mechanisms and neural underpinnings contributing to falls is necessary to develop specific 

and effective rehabilitation/fall prevention strategies. 

The mechanisms of mobility are complex and involve a multitude of sensory inputs and 

motor outputs to achieve the necessary biomechanical goals of postural control. Whether 

attempting to stand still while waiting in line to buy a movie ticket or ambulating across the street 

to that movie theater, our sensory feedback systems (i.e. proprioceptive, vestibular, and visual 

systems) are constantly relaying information via the central nervous system to the brain enabling 

motor output (i.e. muscle and tendon) corrections [4]. These corrections are made, in an effort to 

maintain the center of mass (CoM), also known as the center of gravity (CoG) on Earth, within the 

base of support (BoS) defined as “the area within an outline of all ground contact points” [5]. If 

the CoG deviates outside the BoS and is not corrected in a timely manner, this will result in 
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instability and inevitably a fall [6, 7]. When this BoS becomes dynamic and the ground contact 

points are fluctuating, as seen in normal gait, the complexity of the mechanics and timing of the 

movements become imperative. It has been proposed that gait is merely a series of unstable events 

or a continuous state of imbalance by where each foot fall or step is strategically coordinated to 

prevent the act of falling [8]. Moreover, these timed corrections become increasingly difficult and 

dangerous when there is a decline in the ability to regulate or coordinate movements. Any decline 

in these abilities to regulate the locomotor properties will increase the probability of a fall [9, 10] 

and therefore result in a declined quality of life [11].  

In neurodegenerative populations such as multiple sclerosis (MS), deteriorations of 

postural control systems predispose these individuals to pathophysiological features that escalate 

mobility/postural instabilities [11, 12]. These features have promoted MS to being the leading, 

non-traumatic, neurodegenerative disease among young adults, affecting more than 2.1 million 

people worldwide and nearly a million people in the United States alone [13, 14]. Its disease 

course is highly unpredictable, attacking the central nervous system (i.e. brain and spinal cord) 

through the demyelination of axons (i.e. white matter) without affecting myelination of the 

peripheral nervous system [15-17]. Gait and postural instabilities/impairments underlie the 

progression of MS, with more than 50% of people with MS (PwMS) reporting a fall stemming 

from these instabilities since diagnosis [18]. This inevitably results in the reduction of an active 

lifestyle and increases in falls, injuries, and even mortality, compromising the ability for PwMS 

to interact with situations that arise within their everyday surroundings and environment, 

contributing to a decreased quality of life [19, 20]. Given that the chief compliant filed by 85% 

PwMS stems from gait or motor disturbances [21, 22] and that a staggering 56% of PwMS will 
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incur a fall within any given three-month span [23], identification of the postural control 

mechanisms underlying the shortened health span of these individuals is crucial.  

Biomechanics: Postural Control 

 
Human beings are constantly attempting to control (i.e. directing influence upon the 

postural system [24]), internal and external influential factors initiated in the constructs of our 

everyday lives. Occupying a world where environments are everchanging and new situations are 

constantly being encountered, modifications of behaviors both cognitively and physically are 

required. To physically adapt to these situations, postural changes or alterations in both the static 

and dynamic domains [4] of body positions are executed in response to conditions that threaten 

stability with impending fall consequences [12].  Postural control is signified as the act of 

controlling the position of the body in a given space for the primary purpose of maintaining a 

stabilized orientation [25] specifically, an upright orientation.  

Originally, postural control was hypothesized to be derived from a single system (i.e. the 

vestibulospinal system) via sets of righting and equilibrium reflexes. However, further field 

advancement allowed world renowned postural control expert, Dr. Fay B. Horak, to establish a 

multifaceted model detailing the six important domains of postural control (Figure 1.1) [9]. 

These six domains include biomechanical constraints, movement strategies, sensory strategies, 

orientation in space, control of dynamics, and cognitive processing. Collectively, the domains 

describe postural control as a complex motor skill based on the interaction of dynamic 

sensorimotor processes that are highly situation/task dependent [9]. Within each of the six 

domains consist individual resources (Figure 1.1) and any reduction, deterioration, or loss of 

these resources would effectively lead to postural instability [9]. 



 

 4 

Encompassed within each domain of postural control is the overarching goal to constrain 

the CoM/CoG within the BoS; this goal can be simplified as achieving states of stability or more 

generically signified as balance.  The CoM is the point where the entire mass of the body is 

assumed to be concentrated around. Furthermore, on Earth, where there is a strong gravitational 

presence, the CoM is recognized as the CoG. Stabilization within postural control is affected by 

Figure 1.1 | Resources required for postural 

stability and orientation. A paradigm of the six 
domains comprising postural control and the 
resources encompassed by each of the domains. The 
displayed resources are purposed to be vital for 
avoiding falls and maintaining the upright bipedal 
stance. Figure was adapted from Horak (2006) [9].  
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two factors, the height of the CoG and the size of the BoS [26]. For a human being, the CoM (i.e. 

CoG) is located in a relatively disadvantageous elevated position (~1m above the ankles) atop a 

comparatively small BoS [27], resulting in a posture that is inherently unstable. To maintain the 

upright position in the bipedal stance, postural control is dependent upon the neural regulation of 

both postural equilibrium and postural orientation [28]. The postural equilibrium systems are 

tasked with stabilizing the CoM within the BoS, requiring the coordination of the sensory and 

motor strategies to maintain stability during both static or dynamic (locomotive) posture. In 

conjunction with equilibrium, postural control orientation is attained through central neural 

interpretation of the sensory reference frames, consisting of the visual, vestibular, and 

somatosensory (i.e. proprioceptive) system inputs. Visual and vestibular inputs are imperative for 

orientation of the body, accounting for information derived from body sway (i.e. body movement 

direction and speed) and gravity, respectively [4]. Somatosensory inputs originate from a number 

of different receptors and these receptors provide information from “skin in contact with 

surfaces, limb segment orientation from muscle proprioceptors and joint receptors, as well as 

muscle length, velocity and force information” [4]. Both individually and collectively, the 

sensory reference frames provide vital feedback and feedforward information to the body for 

successful attainment and sustainment of stabilization. 

More broadly the aspects/goals of postural equilibrium and postural orientation are 

independently controlled and sometimes we relinquish one goal for another, often occurring post 

system re-weighting upon the situation/environmental circumstances encountered [4]. In an 

optimal environment (i.e. a well-lit room, on a rigid surface) the neurotypical adult has shown to 

weight the sensory system inputs of somatosensory, vestibular, and visual in a 70%, 20%, and 

10% respective system weighting [29]. Through specialized neural circuitry these aforesaid 
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inputs will facilitate a link between the mind (cognitive) and body (physical). Low-level muscle 

tension referred to as postural tone is generated to create sound structural force production in 

both the proximal and distal skeletal muscles required for stabilization of the body segments 

[27]. When groups of postural muscles are activated at one instance this is deemed as utilizing 

postural synergies [30]; to avoid the incidence of a fall, different postural strategies are applied. 

The two primary strategies employed for efficient bipedal postural control are the hip strategy 

and the ankle strategy. Basis for these strategies is dependent upon the emitted sensory feedback, 

the immediate sensory conditions, and relevant prior conditions encountered [4]. The ankle 

strategy is utilized primarily for fine adjustments of postural sway. While larger adjustments or 

instances where greater torques are required for postural sway corrections, the hip strategy is 

necessary [31]. Although these strategies are typically nominated upon the magnitude of the 

sway adjustment required, they are often used in succession of one another. In summation, 

postural control is more than a single entity, it is a multi-factorial design (referring back to 

Figure 1) contributing to how we maintain static stances and proceed through dynamic 

ambulation in a safe and effective upright manner.     

Static Postural Control 

 
 Standing in the bipedal upright position, the human body is constantly combating 

gravitational forces, requiring constant maintenance which often goes unnoticed. Whether 

standing in line at the local movie theater or endeavoring the body contortions of the 

Vrikshasana (i.e. yoga Tree Pose), the body is always attempting to achieve equilibrium and 

minimize postural sway. Static postural control, also referenced as postural steadiness, is the act 

of attempting to reach a state where no movement is occurring or as little postural sway as 

physically possible is being incurred [32]. More specifically from a biomechanical view, 
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reaching postural steadiness (i.e. the static states) is in reference to a point in time where both the 

net torques and forces acting on or within the body amount to zero [26].  Although the goal of 

the static postural control is to attain these zero states (i.e. postural steadiness), it is highly 

improbable that zero states are able to be sustained for any extended period of time. As 

previously declared, forces constantly being applied to the body by gravity and other external 

environmental kinetic factors, thereby hindering any sustainability of postural steadiness. 

Objective quantification of postural steadiness is completed with the widely-popular utilization 

of kinetic measurements such as forces, moments, masses, and accelerations. These kinetic 

measures are determined exclusive of any detailed knowledge regarding position or orientation 

[33] of the body or its segments.    

In 1687, Sir Isaac Newton developed the laws of mechanics; consisting of the 1.) law of 

inertia, 2.) law of acceleration, and 3.) law of reaction. The third law, based on reaction, states 

that “when one body applies a force to another body, the second body applies an equal and 

opposite reaction force on the first body” [34], and is has set the precedence from which all main 

forms of kinetic quantitative metrics are originated from. When quantifying postural movement, 

as the body applies forces to the earth, these forces will be signified by a single vector, 

containing a designated magnitude and direction. Thereby, a force of equal magnitude will be 

registered in the opposite direction, deemed the opposite reactive force. This single equivalent 

force, equal to the sum of the distribution of forces applied to a surface, is represented as a 

ground reaction force. Indirect quantification of changes occurring amongst ground reaction 

forces projected from the body are recorded via the force platform (Figure 1.2 [34]) [35, 36].  
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Force platforms (e.g. force plates) are biometric measuring devices providing technical 

assessments of balance or postural control/stability [36]. These assessments of balance are 

umbrellaed under the terminology of stabilometry, the quantification of forces occurring under 

the feet as a continuous displacement of the CoP [4] and can be completed with two varieties of 

commercially available force platforms, the strain gauge or the piezoelectric crystal. Both modes 

of force quantification have been heavily utilized and scrutinized in research over the past four 

decades. However, the high-frequency responsiveness of the piezoelectric crystal-based platform 

has revealed to record ground reaction forces with higher ranges and sensitivities compared to its 

strain gauge counterpart [34]. At its basis, the force platform operates to quantify ground reaction 

forces, a summation of all the distributed forces applied to the surface of force platform into a 

single resultant force vector. These resultant forces are surmised from three dimensional 

components, the +X (width), +Y (length), and +Z (vertical) (Figure 1.2). The distribution (i.e. 

the summation) of forces contacting the surface of the plate [34], are a reflection of the CoM 

Figure 1.2 | Force components. A diagramed 
depiction of reaction forces and resultant distributions 
of the total force when applied to the force plate 
surface. Adapted from “Research Methods in 

Biomechanics” by Robertson et al. (2006) [34]. 
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trajectory, defined as the CoP [25, 37]. Two-dimensional derivatives (anterior-posterior and 

medial-lateral) can be originated from the net CoP, allowing for derivation of  commonly 

reported measures such as path length, total excursion, root-mean-square, velocity, and much 

more [25]. For decades, the laboratory-grade force plate has set the standard by which measures 

of postural stability are quantified. However, due to the large expense of these devices, costing 

upwards of ~$5,000-$75,000 or more, lack of portability, and requirement for external power 

sources, often preclude this option for individuals conducting kinetic assessments in the clinical 

or field settings [38, 39]. In addition to an AC power requirement, the laboratory-grade force 

plate is also required to be fixed (bolted) to a surrounding structure, again making this instrument 

impractical in diverse research or clinical environments.  

The advancements procured during the technological revolution has provided countless 

contributions to biomechanical research, increasing our methodological capabilities to construct 

more precise objective quantifications. To alleviate some of the drawbacks that accompany the 

laboratory-grade force plate, portable force platform alternatives have been developed. These 

mobile replacements are becoming increasingly cost effective ($~795, plus software) and lighter 

Figure 1.3 | Portable alternatives. A pictorial of the 
Balance Tracking System (BTrackS) balance plate; a cost-
effective, portable, and validated instrument for 
quantifying center of pressure displacement. Adapted 

from Richmond et al. (2018) [40]. 
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(<7 kg); leading this portable revolution is the Balance Tracking System Balance Plate (BBP) 

(Balance Tracking Systems Inc., San Diego, CA, USA) (pictured in Figure 1.3 [40]). 

Demonstrating both high accuracy and precision, as well as near perfect inter-device reliability 

for both X and Y CoP directional components the BBP is vastly becoming a fierce competitor of 

the “gold standard” laboratory-grade force plate [41]. The BBP enables researchers and 

clinicians to compute CoP-derived postural metrics outside the laboratory, providing a validated 

way to deliver these outcomes with near (correlations of 0.98 or greater) perfect precision [40]. 

Kinetic Outcomes: Traditional Metrics 

  

Traditional CoP-derived metrics are the primary dependent variables utilized in the 

assessment of postural control [25] and are the result of combining both the anterior-posterior 

(AP) and medial-lateral (ML) directional components (i.e. two-dimensional (2D) measures). 

Although the evaluation of each of the directional components are imperative for the discovery 

of changes in postural control [25], measures of static postural stability are typically separated 

into discrete spatial (e.g., CoP range or distance) and temporal dimensions (e.g., duration or 

average CoP velocity). These discrete measures represent different aspects of postural control 

within the entire CoP time-series and include: 

• Path Length: the magnitude of two-dimensional displacement based on the total distance 

travelled [42]. 

!" = 	∑ &(()!*+,- − ()!*+)0 + (()!2+,- − ()!2+)0345675 	   [43] 

• Root-Mean-Square (RMS): the variability of the postural movement more specifically, 

mathematically derived as the “standard deviation of the displacement of the CoP” [25, 

42].   
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89: = &;<=-> (*4*<)?
3 	  [43] 

• Total Excursion: “the total distance traveled by the CoP over the course of the trial 

duration” [25]. 

@A@BC =	∑ [(E![F + 1] − E![F])0 + (9"[F + 1] − 9"[F])0]-?	345I75   [44] 

• Velocity: the CoP excursion or distance travelled divided by the trial time [25, 42].  

9JB"A = 	@A@BC/@  [44] 

• Ellipse Area: total area covered in the ML and AP direction using an ellipse (often 

reported as the 90% or 95% ellipse) to fit the data [42]. 

E8BE − (B = 	LMN = 	2LP.RS[0,I40]	[(UVW0 UXY0 ) − UVW	XY0 ]5/0  [44] 

• Frequency: the rotational frequency of the CoP if it travels the total excursions around a 

circle with a radius of the mean distance, in revolutions per second or Hz [44, 45]. 

9P8BZ = 	 [\[]^
0_X`ab[∗[ =	 Xd]Y\0_X`ab[   [44] 
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These dimensions have proven to be vital in indicating postural unsteadiness and 

increases in dependent variables like velocity (a temporal dimension) have been found to be in 

direct correlation to the reduction in the ability to control posture [25, 46-49]. Likewise, 

reductions in spatially derived metrics such as path length, RMS, ellipse areas and total 

excursion of the CoP path are synonymous with minimized distances traveled by the CoP (e.g. a 

smaller amount of total excursion) [49-51] or better postural control. However, caution and 

carefully established context should always prelude interpretations of CoP-derived measures. For 

Figure 1.4 | Foot Model. A graphical representation of the 
foot exterior parameters being modeled as the boundaries, 
comprising a rectangular representation of the base of 
support. Interior calculations are representative of the 
medial-lateral two-dimensional analysis. Adapted from 

Hertel et al. (2006) [52].    
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nearly half of the last century biomechanists have been engrossed with different elucidations of 

the meaning of many of these measures, thus interpretations need to be navigated carefully and 

continually evaluated to reduce the convolution of outcomes.  

Kinetic Outcomes: Time-to-Boundary  

 
Coinciding with the advancements in measurement technology, outcome analyses have 

also progressed with the turn of the new century. Instead of separating each of these dependent 

(traditional) variables into spatial or temporal dimensions, more sophisticated measures are 

revolutionizing how we evaluated postural control, in particular time-to-boundary (TTB). TTB is 

multi-dimensional measure of postural control, incorporating both spatial and temporal (i.e. 

distance and time) dimensions into a single measure along the entire CoP time series. This 

measure considers both the trajectory and velocity parameters of each CoP data points relative to 

the edge of the BoS. The instantaneous velocity of the data point is calculated (see Equation 1a) 

in each direction of the two-dimensions (i.e. AP and ML). TTB for each direction is computed 

via dividing the distance by the aforementioned instantaneous velocity (see Equation 1b) [52]. 

Boundaries for these calculations are established by a modeled-rectangle representative of the 

foot (Figure 1.4 [52]), this foot model allows for the CoP in each two-dimensional (AP and ML) 

component to be measured [52-54].    

 

Equation 1a.)  AP:  JefW_VW-	7	hijk_lk-/	[	   [52] 

                        ML: JefW_XY-	7	hijk_mn-/	[ 

Equation 1b.) AP: @@o_E!5 =	pVW_qfrIh5	/	JefW_VW5  [52] 

ML: @@o_9"5 = 	pXY_qfrIh5	/	JefW_XY5 
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 The TTB measure represents the amount of time available to make corrective postural 

adjustments prior to the incidence of a fall (e.g. the CoM traveling outside the BoS). This 

measure allows clinicians to track when, how often, and the magnitudes of the minimum time 

available to make these adjustments. It is expected that a higher frequency of recorded minima 

values and the smaller TTB magnitudes (i.e. a lower time recorded, less time until an individual 

reaches the boundary (edge) of his/her BoS) is indicative of a reduced aptitude of postural 

control. TTB has displayed inverse relationships with age; indicating that reduced margins of 

stability likely play a key role in reductions of postural control [55, 56]. Regardless of how 

postural steadiness or control is quantified, the scope of information achieved by this type of 

analysis goes beyond the parameters of the neurotypical aging population and has potential to be 

instrumental as a fall prevention aid for atypical neurodegenerative populations. 

Postural Steadiness of People with Multiple Sclerosis 

As described above, the mechanisms of postural control are complex and involve a 

multitude of sensory inputs and motor outputs to achieve the associated biomechanical goals 

required to maintain an upright postural position. Our sensory feedback systems (i.e. 

proprioceptive, vestibular, and visual systems) are constantly relaying information via the central 

nervous system to the brain for the coordination of motor output corrections [4] to accomplish 

the aforementioned biomechanical goal. If these output corrections are not executed in a timely 

manner and the CoG (ipso facto the center of pressure) deviates outside the BoS, this will 

inevitably result in instability and inevitably a fall [6, 7]. Highlighted by the importance of the 

sensory feedback system, proprioception is transmitted for input/interpretation via the cortical 

spinal tract (CST), otherwise referred to as the cortical proprioceptive tract. This white matter 

relay tract is highly conductive and relies on time sensitive information transference and 
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becomes hindered, inconsistent, and potentially dangerous when demyelination occurs. 

Demyelination is the hallmark disease characteristic of MS; an auto-immune disease causing a 

wide variety of structural, connective, and activation challenges causing further functional (i.e. 

gait and balance) deficits. Postural unsteadiness is embedded within the pathology of MS, as 

PwMS demonstrate decreased postural control amongst a multitude of dependent variables 

compared to a neurotypical population (refer to Table 1.1) [12]. PwMS exhibit postural deficits 

stemming from larger postural magnitudes, leading to an inability to control the CoM within 

their BoS. Proprioceptive information for quiet standing is initiated in the lower extremities, 

traveling up spinal cord via the dorsal columns and decussating at the ipsilateral nucleus gracilis 

post synapse. The neural transmission ascends the medial lemniscus to the ventral posterior-

lateral nuclei located within the thalamus, before arriving at the post-central gyrus and 

dispatched to the primary somatosensory cortex (Brodmann Area 3a) [57]. Dr. Brett W. Fling 

and colleagues have implicated that diminished quality of microstructure in this pathway as the 

origin for insufficiencies leading to increased postural instability [58]. Within this path lye the 

ascending dorsal column-medial lemniscus of the CST, responsible for the transmission of fine 

touch, vibration, and conscious proprioceptive information to the cerebral cortices [58]. Dr. Fling 

establishes further that poorer proprioception is associated with poorer CST microstructural 

integrity (see Figure 1.5 ) and is implicit with diminished postural steadiness [58]. Although 

blossoming associations are prevalent between the neural circuitry/sensory feedback and 

traditional postural kinetic outcomes; correlations between proprioceptive neural circuitry and 
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more advanced multi-dimensional measures of postural control (i.e. TTB) have yet to be 

established.  

Figure 1.5 | Poorer microstructure integrity of the 

proprioceptive pathway is associated with poorer 

proprioceptive-based balance performance in 

PwMS. A strong association was established 
between increasing RD (i.e. poorer white matter tract 
integrity) and poorer static postural performance (i.e. 
increased sway area) proprioceptive sensory 
reference frames in PwMS. Adapted from Fling et al. 

(2014) [58].  



 

 17 

Table 1.1: Primary Postural Stability Deficits in PwMS (Adapted from Comber et al. (2018) 

[12]) 

 

Dependent  
Variables 

Neurotypical vs. 
 Atypical Neurodegenerative Adults (PwMS)  

General Postural Outcome 

CoP Path Length Longer 
CoP Velocity Higher (in the ML direction) 
Sway Area (or 95% CE) Longer 

Quiet Stance with Eyes Open (on Rigid Surface) 

CoP Displacement Higher*: raw displacement, & RMS 
CoP Velocity Higher*: raw, larger SD, & Higher RMS 

Quiet Stance with Eyes Closed (on Rigid Surface) 

CoP Displacement Larger (AP&ML) raw displacement,  
path length, & RMS 

CoP Velocity Higher 
Time-to-contact boundaries (TTB) Lower 
CoP Area Larger 
Trunk Sway Greater 
CoG Movement Larger 
Sway Acceleration Greater 
Sway Jerk Greater 
Sway Path Larger 

Quiet Stance with Eyes Open (on Compliant Surface) 

Postural Sway Higher 
Time-to-contact boundaries (TTB) Shorter Times 
CoG Velocity Higher 

Quiet Stance with Eyes Closed (on Compliant Surface) 

Postural Sway Higher 
Time-to-contact boundaries (TTB) Shorter Times 
Total Area Covered Larger Area 
CoG Velocity Higher Velocity 

Limits of Stability 

Reaction Times Larger 
Movement Velocities Higher 
Max Excursion Lower 

Note: *Not Significant 

 

Dynamic Postural Control 

Brooks (1986) blurs the line between posture and movement by saying, “movements are 

the transition from one posture to another” [59]. In the upright bipedal position, the body is 

propelled forward through the ambulation of the lower extremities, the legs carry out propulsion 
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and add structural support of the movement; Dr. David Levine terms this action as ‘normal 

walking’ [33].  Different neural circuitry, muscles, and tendons produce the aforesaid transitions 

of postural position, creating a BoS that remains in a state of continuous modification, attempting 

to synchronize or keep up with the undulating movement of the CoM. Given the complexity of 

these movements, to coordinate the activities related to the manipulation of the BoS with the 

CoM, there is an inherent constant state of imbalance.  During ambulation, each foot strike or 

placement of the foot is strategically completed, consciously or unconsciously, in order to 

prevent a fall [37]. The ability to successfully place the swing foot in a proper orientation and 

distance from the plant foot with the expectation of controlling the CoM motion, thereby regulate 

the body’s momentum is the act of dynamic postural (balance) control [60]. Often this action can 

be described through the manner or style in which the movement (i.e. walking) is carried out, 

popularly defined as an individual’s ‘gait’ or more specifically, the depiction of coordinated 

footfall patterns and the biomechanical properties (e.g. interaction between internal and external 

factors) within the movement through neuromusculoskeletal actions [33, 61].  

The gait cycle (Figure 1.6)  is “the time interval between two successive occurrences of 

one of the repetitive events of walking”; these occurrences, also known as major events, include 

the 1.) initial contact, 2.) opposite toe off, 3.) heel rise, 4.) opposite foot initial contact, 5.) 

opposite toe off, 6.) feet adjacent, and 7.) tibia vertical [33]. These seven major events can be 

abridged into two distinct phases, the stance phase and the swing phase. Each phase is 

subdivided into distinct parts; encompassed within the stance phase is the loading response, mid-

stance, terminal stance, and pre-swing, while the swing phase can be broken down into the initial 

swing, mid-swing, and terminal swing (Figure 1.6) [33]. Due to the intricate nature of these 

complex movements, gait cycle timing is critical and signifies the different phases of gait. When 
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proceeding through the ‘normal walking’ gait cycle, 60% of the gait cycle is spent in the stance 

phase, prior to entering the final 40% of the gait cycle, the swing phase, demarked by the toe off 

action (occurring at 60% mark of the gait cycle (Figure 1.7 [62])) [33, 61]. Considering the 

complexity of these actions and the delicate timeframes to which these actions must be executed 

within, coordination between mind and body is pivotal. Unaccounted alterations of gait timing 

will enviably result in the reduction of ambulation aptitude (i.e. poorer bilateral coordination), 

thereby constructing a cascading effect of biomechanical consequences piloted by an upsurge of 

postural unsteadiness escalating the likelihood of incurring a fall.  

Figure 1.6 | Events of the gait cycle. The major events 
of the gait cycle with the subdivided phases. The 
highlighted leg is represented in teal and demonstrates 
each of the signified stages. Adapted from “Whittle’s 

Gait Analysis” by Levine, Richards and Whittle (2012) 

[33]. 
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Neural Circuitry of Gait 

Like the mechanics of the gait cycle, the neural circuitry of gait consists of several 

multifaceted components (diagramed in the Figure 1.8 schematic [63]) occurring simultaneously 

and are dependent upon the difficulty of the task being executed [61]. There are three core 

structures/regions at the levels of the brainstem and spinal cord involved in the postural control 

Figure 1.7 | Temporal phases of the gait cycle. A temporal representation of the 
events derived over two step (a gait cycle) and the various phases (i.e. stance, swing, 
and double support) comprising these intricate movements. Adapted from APDM, Inc. 

[62]. 
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of gait, including the “midbrain locomotor region [64-66]; the subthalamic locomotor region 

[67]; and the cerebellar locomotor region located in the midpart of the cerebellum [68]” [61]. 

Regulation of gait through these neuroanatomical areas can be voluntary (i.e. the act of 

intentional motor movements) or involuntary (i.e. unconscious motor movements) via both 

cognitive and automated functions. Originally, gait has been viewed as a predominantly 

automated process via the central pattern generators, select sensory feedback, and ‘low-level’ 

brain inputs acting as the primary driver of rhythmic alternating leg movements through the 

phases of the gait cycle [67, 69]. The central pattern generators located in the neural network of 

the spine are proposed to be the lower-extremity coordinating entities, independent of sensory 

feedback or higher supraspinal inputs [61]. Although it is certain the central pattern generators 

Figure 8 | Gait instability schematic. A detailed schematic identifying the prominent 
physiological and neurological factors that are associated with gait instability. Adapted 

from Hausdorff et al. (2001) [63].  
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do contribute to sustained gait, their importance as the primary or dominate functioning entity 

within locomotion has been downgraded. More recent models accentuating the roles of high-

level goal-orientation and intentional cognitive function in gait have been theorized to play a 

more dominate role in gait than initially assumed. To demonstrate the executive effect that 

physiological and neurological factors have on the reduction of dynamic postural control (i.e. 

gait), Dr. Jeffery M. Hausdorff  provided a detailed schematic (Figure 1.8) [63].  

High-level functioning is encompassed by movements that require executive function; 

this type of function is responsible for the initiation or intention of action, planning, working 

memory, and directing attention. Executive functioning requires both awareness and attention for 

performing actions within the parameters of the gait cycle. As we go through our daily routines, 

walking in these environments, we voluntarily encounter fixed obstacles (e.g., a curb or stairs) 

and others obstacles that are continuously changing (e.g., avoiding vehicles on the road or 

pedestrians when navigating a crowded sidewalk) [61]. Add-on the distracting social aspects of 

life and it is easy to understand the importance of the role that cognitive functioning plays in the 

postural control of gait. In addition to the core structures of postural control of gait are four 

cognitive processes: (1.) Cognition of bodily information (e.g. orientation of the body), (2.) 

Transmission of body information (e.g. generating a correct motor response), (3.) Motor 

programming (e.g. structural collaboration) and (4.) Postural control [61]. Detailed explanations 

of each aforesaid cognitive processes and the roles they play in allowing us to function within the 

confounds of our environments can be found in the chapter entitled Gait of the Handbook of 

Clinical Neurology [61]. Propagation of the cognitive processes occur along two separate 

locomotor neuropathways, the dorsal pathway of cognitive locomotor control and ventral 

pathway for emotional locomotor control. These neuropathways are responsible for facilitating 
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both dopaminergic (i.e. the excitatory projections) and inhibitory neuronal projections. Recalling 

that the neural network of locomotion or neural circuity composing gait is highly complex and 

requires collective labors from a multitude of neuronal structures, Dr. Anat Mirelman (2018) 

details this neural circuitry, identifying that 

“The dorsal lateral prefrontal cortex encodes the goal or plan for movement and regulates 
and controls the movement. The supplementary motor area (SMA) then decides the 
sequence of movements after input from the posterior parietal association areas and 
superior temporal gyri (perceptual integration). The hippocampus and parahippocampal 
regions contribute to spatial planning. The plan is then transferred to the primary motor 
cortex with simultaneous processing subcortically in the basal ganglia (long-term storage 
of motor programs) and cerebellum (control of timing and adaptation) with subsequent 
transfer to the spinal cord interneurons, thought to be responsible for control of activation 
of muscle firing patterns, and finally to the motor neurons in the anterior cord and the 
neuromuscular junctions. There is constant feedback and communication at all levels 
with the sensory system, particularly in regard to spatial information. The anatomic 
network of motor control is thus interlinked with the network of higher-level cognitive 
function” [61]. 
 

Clearly the complexity of the locomotive neural networks goes beyond the scope of the central 

pattern generators and furthermore, dispels the theoretical notion that our gait is completely 

automated. Many of the neural aspects of gait are still being researched and discovered, 

including how the body effectively coordinates and controls ambulation performance in gait 

through transcallosal interhemispheric communication. 

Bilateral Coordination and the Corpus Callosum 

The brain consists of two hemispheres (i.e. a right and left) connected by the largest 

white matter fiber bundle in the human nervous system, the corpus callosum [70-72]. This 

neuroanatomical structure is comprised of approximately 250 million axons [72] facilitating the 

propagation of complex movements. Communication occurring between hemispheres, 

interhemispheric communication, transpires via the commissural fibers composing the corpus 

callosum deriving control of the contralateral distal extremities. This means that control of the 
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right distal extremities is facilitated by the left hemisphere and vice versa for the right 

hemisphere (Figure 1.9) [72]. Control of these contralateral communicated movements stem 

from a designated balance of excitatory and inhibitory neurotransmission [73, 74], effective and 

efficient mobility/task execution. Performing tasks that require bimanual (i.e. upper extremities) 

or bilateral (i.e. lower extremities) coordinated movements, adds a layer of spatial and temporal 

complexity that requires effective interhemispheric communication. Many of these types of 

activities arise daily, tasks such as, opening a bottle of water or tying the laces of a shoe [74]. 

Although bimanual coordinated movements have been highly publicized over the last thirty 

years, bilateral coordinated movements which follow similar coordination principles to perform 

lower extremity ambulatory actions remain largely understudied. 

Figure 1.9 | Contralateral control. 

An illustration depicting the ability 
of each brain hemisphere to control 
the contralateral side of the body, 
imperative for bimanually or 
bilaterally coordinated activities.  
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Coordinated bilateral movements require the execution of specific spatial and temporal 

actions in larger muscle groups (verse the finer muscle movement of bimanual coordinated 

movements) to generate desired, optimal, and effective walking patterns. Utilizing both sides of 

the body, as the legs progress through either the stance or swing phases of the gait cycle, specific   

interhemispheric communication of neurotransmitter signaling must occur to enable ambulation 

to occur in a symmetrical fashion. During the initiation of gait, an increased excitation at the 

primary motor cortex (M1) transpires creating the swing phase in the initiated leg (e.g. right leg). 

After which, there is a simultaneous influx of inhibition transpiring in the opposite stance limb 

(e.g. left leg) [75] followed by continual repetitions of this ambulatory process. The entirety of 

the process is purposed to be facilitated by interhemispheric communication and principally 

accomplished through the corpus callosum [72].  

 

Figure 1.10 | Transcallosal sensorimotor white matter fiber bundles.  Segmentation of 
the eight transcallosal white matter fiber bundles composing sensorimotor tracts of the 
corpus callosum. The parcellated transcallosal bundles (dorsal premotor cortex (PMd), 
pre-supplementary (pre-SMA) and supplementary motor areas (SMA proper), anterior and 
posterior primary motor cortices (M1a, and M1p), cingulate motor areas (CMA), and the 
primary somatosensory cortices (S1)) were derived using diffusion tensor imaging and the 
Ruddy_Template built within the ExploreDTI (University Medical Center Utrecht, 
Netherlands, Version 4.8.6; www.exploredti.com) graphical toolbox atlas. Adapted from 

Ruddy et al. (2016) [70]. 
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Advancements in diffusion tensor image analysis, a magnetic resonance imaging-based 

technique, have allowed for a better understanding of the fiber orientations comprising the 

transcallosal bundles (Figure 1.10 [70]) and the sensorimotor regions the bundles bridge [ 

Ruddy_Labels: dorsal premotor cortex (PMd), pre-supplementary (pre-SMA) and supplementary 

motor areas (SMA proper), anterior and posterior primary motor cortices (M1a, and M1p), 

cingulate motor areas (CMA), and the primary somatosensory cortices (S1)] [70]. Heavily 

entrenched in movement, these connections are recognized as being essential parts of the early 

phases of motor preparation/planning (PMd, SMA proper, pre-SMA, and M1) [76] and 

extending to motor execution (M1) [77]. Traditionally, the corpus callosum is segmented into 

five anatomical sub-regions; the rostrum, genu, body, isthmus, and splenium, respectively listed 

in their anterior to posterior orientation. These sub-regions of the corpus callosum entertain 

properties that lead to the facilitation, alteration, and cultivation of predictions with respect to 

bimanual coordinated performances [74]. Anterior portions of the corpus callosum have been 

associated with upper extremity temporal coupling movements [78] as well as internally guided 

movements [79]; conversely, the posterior portions of the corpus callosum are associated with 

spatial coupling [80] and externally-guided movements [79] (for a more in depth review of these 

concepts refer to Transcallosal Control of Bilateral Actions [1]). Each sub-region is essential for 

the intricate movements and timing associated with coordination, although with time these 

parameters are inherently affected by the aging process. Like reductions in muscle tone or 

plasticity that accompany the aging process, the corpus callosum and its encompassed white 

matter fiber tracts experience a reduction in microstructural integrity across all sub-regions. 

Accompanying these age-related reductions are slower/less accurate movements with increased 

variability, and less synchronistic fluidity [81-83].  
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Although neurodegeneration is seen as a distinctive neuropathological principle of the 

aging process, it occurs at a progressively faster rate in the pathology of MS and is demarked as 

a hallmark of the disease.  PwMS have demonstrated poorer structural connectivity of the corpus 

callosum with or without the prevalence of a lesion [81, 84] and poorer interhemispheric 

inhibition between the primary motor cortices (M1a & M1p) compared to age-matched 

neurotypical adults [85]. Pertaining to movement, these individuals display slower in- and anti-

phase bimanual movements in relation to decreased integrity of the corpus callosum [86]. 

Beyond motor execution deterioration, these issues can be amplified in the supplementary and/or 

premotor cortices that play vital roles in the planning, coordinating, and execution of the 

complex events involved in both locomotion and postural stability [72]. However, a limited 

understanding exists regarding the underlying microstructural architecture of the transcallosal 

white matter fiber tracts and the effect these tracts have on the gait bilateral coordination in both 

neurotypical and atypical adults.  

Methods of collection: Kinematic, Kinetic Spatial Temporal (APDM) 

Health experts have deemed gait performance as global health marker, enabling professionals 

to use gait performance measures to predict survival, cognitive decline, overall quality of life and 

falls statuses [87]. How a fully functioning adult approaches daily life activities and generates 

their livelihood is manifested by movement and how they produce these actions neutrally and 

mechanically is necessary. Given the complexity of gait, it would be obtuse to surmise gait with 

a single method of quantification. There are multiple domains of biomechanics to derive these 

measures from and furthermore, there is a multitude of equipment used to make these 

quantifications. Listed in the respective biomechanical domains below, are common 

methodological indices used to explain gait.  
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• Kinetics: “the study of the causes of motion; the study of forces and moments of force and 

their characteristics such as work, energy, impulse, momentum, and power” [34]. 

• Kinematics: the study of motion, disregarding the causes or quantities of motion (i.e. any 

reference to forces). Examples of kinematic derived variables include velocity, speed, 

acceleration, or angular displacement [33, 34].  

• Spatial-Temporal: having both spatial and temporal qualities such as cadence and/or cycle 

time, stance and stride time, swing time, stride length, stride width, etc. 

• Additional Methods of Mobility Quantification: Phase Coordination Index and Gait 

Asymmetries, pressure values occurring under the foot during gait, Gait phase, and step 

detection. 

The equipment used to extrapolate these measures has continually developed with the evolution 

of technology. Apparatuses like instrumented walkways (e.g. GAITRite), electrogoniometers, 

force platforms, electromyography (EMG), pressure mapping technology (e.g. Tekscan F-Scan 

system (electronic insoles)), and even stopwatches have all shaped the analysis of gait. However, 

the gold standard of both kinematic and spatial-temporal gait analyses is produced by three-

dimensional motion analysis systems. This variety of quantitative analysis is completed with the 

use of high-speed infrared cameras, anatomically placed reflective markers, and special interface 

boards that synchronize frames together. The positioned reflective markers are followed within 

each frame by a minimum of two cameras at any given time to cultivate three-dimensional 

marker positions in both time and space. This type of analysis allows for the accuracy of 

kinematic measures that is unrivaled by other methods of movement analysis, registering errors 

of less than one millimeter, enabling accurate limb position coordinates and joint angles, in 

addition to calculated linear/angular velocities and accelerations [33]. Although the advancement 
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of motion capture technology throughout the last few decades has permitted resolutions to many 

of biomechanics greatest questions, three-dimensional motion analysis is not without a plethora 

of downsides. This type of system is highly dependent upon the quality of the equipment (e.g. 

cameras or interface boards), in addition to the introduction of a great deal of variability between 

system setups. Finally, these systems come with a high financial expenditure, costing often tens 

of thousands of dollars and needing the allowance of fixed position, therefore limiting the “real-

world” applications they can achieve. 

More recently, the technological advancements of accelerometers have attempted to 

resolve these “real-world” application concerns, by allowing spatial-temporal measures to be 

completed outside the laboratory. Furthermore, these devices extend research capabilities by 

making out-of-lab longitudinal (static or dynamic) assessments of postural control a reality. An 

accelerometer directly measures the accelerations embodied by the mass it’s adhered to and are 

devised by the number of axes available to quantify the movement. The accelerometers can be 

uni- or tri-axial (able to quantify movements in the x, y, and z axes), the widely-popular tri-axial 

accelerometer has become the industry standard for acceleration quantification [34]. Commonly 

paired with gyroscopes and magnetometers, accelerometers capture/store each segment of 

movement in six degrees of freedom [88] for the primary purpose of quantifying 3D linear 

accelerations, angular velocities, and orientation [89]. Specifically, the gyroscope allows for 

description of the body segment in space (angular accelerations), whereas the magnetometer, 

quantifies orientation of the movement upon magnetic field, for directional purposes [33]. 

Collectively, the tri-axial accelerometer, gyroscope, and magnetometer comprise the components 

of the inertial monitoring unit (IMU) (aka movement monitors) and provides the ability to assess 

what Dr. Horak describes as the “quality of body motion by characterizing the kinematics and 
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spatiotemporal aspects of mobility, both in the clinic and in real-life conditions” [88]. Beyond 

environmental testing factors, IMUs offer accurate metrics of impairment levels, the ability to 

increase the sensitivity of measures for clinical evaluated comparisons, and immediate 

biofeedback to enhance treatment efficacy [88].  

IMUs developed by APDM, Inc. (Portland, Oregon) and their proprietary analysis 

software have quickly become an industry favorite, their validated [89, 90] wearable alternative 

to the assessment of gait and balance has changed how we are to approach scientific exploration. 

Their wearable tri-axial system (Figure 1.11) allows researchers and clinicians to characterize 

mobility by obtaining reliable and sensitive acquisitions of spatial-temporal/kinematic data at 

high sampling rates, while permitting the access of continuous longitudinal data (up to twenty-

four hours of streamed data on a single charge) [91]. 3D spatial/temporal gait (e.g. gait speed, 

step duration, elevation at mid-swing, and much more) and balance (e.g. ranges of motion in the 

coronal, sagittal, and transverse planes) outcomes are derived on site within a matter of seconds 

Figure 1.11 | Inertial monitoring 

unit. A dimensional representation of 
the Opal, a wearable IMU developed 
by APDM, Inc. (APDM Inc., 
Portland, Oregon) to characterize the 
kinematics and spatiotemporal aspects 
of movement. 
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succeeding acquisition with proprietary algorithms built within the Mobility Lab (APDM Inc, 

Portland, Oregon) software [92]. Outside of the neurotypical population, these IMUs enable 

researchers to evaluate/objectively quantify validated clinical mobility assessments commonly 

utilized in both MS [93, 94] and Parkinson’s disease [95]. Like any method of quantification, 

IMUs are susceptible to limitations; for decades their inability to measure higher level 

kinematics (e.g. joint angles) compared to the “gold standard” have been a glaring drawback. 

However, endeavors to remedy this shortcoming are being developed with the APDM, Inc. 

Moveo Explorer software (a successor to Mobility Lab) enabling full-body kinematics to be 

procured [91] for both the lower and upper extremities [93, 96, 97] . 

Spatial-Temporal Outcome Measures 

Widespread biomechanical differentiation in population mobility has stemmed from spatial-

temporal measures, contributing to the fundamental understandings of how and why a person 

moves; measures that enable the characterization of the effectiveness of gait among neurotypical 

and atypical (impaired) populations. Traditional spatial-temporal measures entail: 

• Stride length (m) (spatial): “the distance between two successive placements of the same 

length”; a stride is consisting of two consecutive steps (e.g. a right and a left or vice versa) 

[33].  

• Step length (m) (spatial): “the amount by which the foot can be moved forwards during the 

swing phase” [33]., so that a short swing phase on one will generally reduce the  

• Cadence (steps/unit time) (temporal): “the number of steps taken in a given time”, usually 

recorded in steps per minute [33]. 

• Cycle time (s): the time taken to complete single gait cycle (e.g. heel strike of the ipsilateral 

leg) [33]. 
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• Walking speed (m/s) (spatial and temporal): “the distance covered by the whole body in a 

given time” [33]. The walking can be calculated via two separate equations: 

A. Speed (m/s) = stride length (m) x cadence (steps/min) / 120    [33] 

B. Speed (m/s) = stride length (m) / cycle time (s)     [33] 

 

Deteriorations of the spatial-temporal characteristics of gait (i.e. lower cadences, shorter stride 

and step lengths, wider steps and slower walking speed) are initiated within the aging (post-

puberty) process and followed by a progressive decline in dynamic postural control [98]. This 

decay in control and eventual debilitation stemming from a reduction of an active lifestyle via an 

increased fall risk or the fear of falling.  

Similar to the aging paradigm PwMS commonly display reduced step lengths, [11] and 

like stroke or Parkinson’s disease, PwMS often develop a more effected side pending lesion 

location and disease duration, developing asymmetries associated with power, strength, muscle 

activity, or limb loading [99-105]. More pronounced lateral gait deficits are implicated by the 

affected side during single support, whereby a reduction in step length is fabricated and the 

ensuing mechanics generate asymmetries in the gait pattern. Inevitably, the generated 

mechanisms force the adoption of compensation techniques to enable the individual to spend less 

gait cycle time on the affected side (i.e. less time in stance phase on the affected limb) exuding 

descriptions of gait pathology [33]. Although, the length or width of a step does present 

inclinations about gait deficits, these traditional spatial measures neglect to distinguish how the 

extremities are moving in relation to the overall coordination or the identification of 

asymmetrical ambulation. To rectify this dearth of knowledge, quantification of bilateral 

coordination and asymmetrical differences have been instituted via Phase Coordination Index 

(PCI).         
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Phase Coordination Index (PCI)  

PCI allows for the quantification of bilateral coordination throughout the entirety of the gait 

cycle (i.e. a stride: heel strike to heel strike with the same foot) by modeling each step as a phase 

(j).  j generation incorporates the time from the initiation of the gait cycle (initial first heel strike) 

to the heel contact of opposite the foot (Figure 1.12 [1]). The objective of PCI is to assess the 

accuracy and consistency of j generation via the j relationship between step timing of both legs 

respectively, in a normalized gait cycle [106]. A single gait cycle is modeled as 360° (i.e. one 

complete stride) and a perfect j as precisely half of the cycle, 180°. Accuracy of the j generation 

is defined as the absolute difference between the js occurring at each stride and 180°. While the 

variation (i.e. consistency) between js in the gait cycle can be with the coefficient of variation for 

the mean j on a participant by participant basis [106].  
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 Mathematically, PCI phases is calculated by deriving the average swing time values for each 

of the legs, then utilizing the leg with the higher average swing time as reference for the gait 

cycle (pictured as the left leg in Figure 1.12). Computation of j values occur in the leg opposite 

of the reference leg (pictured as the right leg in Figure 1.12). Swing timing for each leg is 

referenced from the toe off to the ith heel strike. The j of the ith stride is then calculated by the 

normalization of step time in respect to the stride time and transformed into degrees by 

multiplying by 360° (Equation 1A & 1B) [106].  

Figure 1.12 | Phase coordination index. A time-lapse representation of the 
gait cycle and the temporal bilaterally coordinated phases comprising it. PCI 
is an assessment the accuracy and consistency of phase (step) generation with 

an optimal being represented as 180° when the gait cycle (a single stride) is 

modeled as 360°. Adapted from Richmond & Fling (2019) [1]. 
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A. s6 = 360° ∗ ( xy+4xn+
xn(+,-)4xn+)     [106, 107]  

  

B.  !ℎMU{	(s) = | bx}~	[6�}Ä
bxÅ6h}	[6�}ÄÇ ∗ 360°            [108] 

 
Equation 1. (A) The original phase calculation and (B) the commonly simplified version of 

equation. 
 

To attain the PCI outcome, the summation of accuracy and consistency (Equation 2) from the 

originated js established in Equation 1A and 1B is calculated with the aim being to generate js 

as close to zero (180°) as possible [106].  

PCI = s_(J + 	PφÖÜá      [106] 

Equation 2. Calculation for the primary outcome measure of PCI. 

The accuracy (j_ABS) of phase generation is represented by the absolute value of the j and 

presented as a percentage in the  PφÖÜá outcome variable (Equation 3). The second half of the 

equation is represented by consistency (s_(J) or the coefficient of variation for the j generation 

(Equation 4)  across all recorded strides [106].    

s_Eo: = |s − 180°| à PφÖÜá = 100 ∗ (ä_Vãb5åR )    [106] 

Equation 3. Calculation for the level of accuracy of phase generation  

j_CV = 
b`ç

�}éIç [%]                              [106] 

Equation 4. Calculation for the level of consistency in phase generation  

An approximate minimum of 23 strides (~46 steps) or more are required to accurately derive a 

PCI outcome with no gait speed limitations attached to this stride/step requirement [107]. 

Interpretation of PCI outcomes are as follows: 

§ A LOWER PCI value depicts that the individual has better coordination possessing an 

enhanced ability to generate phases with more consistency and/or more accuracy [109]. 
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§ A HIGHER PCI value indicates that the individual has worse or impaired bilateral 

coordination, possessing phase generation deficiencies [109]. 

PCI has been utilized to quantify bilateral coordination in a multitude of studies involving 

both neurotypical [106, 108-110]  and various neuroatypical [111-114] populations. In 

neurotypical adults, coordination abnormalities are a common result of the aging process. Older 

adults have revealed significantly poorer (i.e. higher PCI) ability to coordinate the lower 

extremities scores compared to their younger counterparts (Figure 1.13) [110]. Likewise, 

inferior aptitudes (i.e. higher PCI) to coordinate left–right stepping have also been well-known 

Figure 1.13 | Poorer bilateral coordination identified in 

older adults. Older adults display reduced ability (i.e. 
increased PCI) to generate accurate and consistent phases 
during self-selected walking compared to young adults. 

Adapted from Swanson & Fling (2018) [103]. 
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hallmarks of Parkinson’s disease [111-114] and known prognosticator of disease severity 

concerning mobility pathology [113] and cognitive disability [112] in this population. Although, 

MS presents similar mobility deficiencies to Parkinson’s disease, to the knowledge of this 

authorship, there have been no established publications relating to PCI and PwMS.   

Dynamic Postural Control (Mobility) in Multiple Sclerosis 

 

Comparable to Parkinson’s disease, a wide breadth of research has revealed that PwMS 

develop defined spatial-temporal gait abnormalities. When walking at self-selected or fast 

walking speeds, PwMS exhibit decreased gait velocity [115-123], cadence [115, 117-123], step 

length [119-122], stride length [116-119, 121, 122], and time spent in the swing phase [115, 

118], while additionally demonstrating augmented step width [116, 117, 119-122] and time spent 

in double support [115, 117-122] (Table 1.2) in an effort adapt a more conservative gait pattern.  

 

Table 1.2: Primary Gait Deficits in Neuro-degenerative (PwMS) vs Neurotypical adults [11] 

 

Dependent Variables Self-Selected Walking Speed Fast Walking Speed 

Velocity Slower Slower 
Cadence Reduced Reduced 
Stride Length Reduced Reduced 
Step Length Reduced Inconclusive 
Double Support Duration Increased Increased 
Step Width Increased Inconclusive 
Stride Time Longer Inconclusive 
Swing Phase Duration Shorter Shorter 

 

However, these divergent gait patterns are multifactorial and extend beyond motor control 

impairments to a plethora of additional confounding impairment factors (e.g. “visual 

impairments, vestibular symptoms, weakness, spasticity, ataxia, imbalance, sensory loss, pain, 

and fatigue” [17]). Mobility deficits in PwMS can be boiled down to deficits stemming from 

three primary systems: motor, sensory, and cognitive; resulting in gait and postural control 
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impairments with an increased likelihood of a fall [12]. Given the heterogeneity of MS in 

conjunction with its inept pathology and early onset (diagnosed onset: 20-40 years old [17] & 

peak onset: 45-49 years old [15]) the neural underpinnings contributing to gait and postural 

abnormalities and subsequent falls in PwMS remain poorly understood. This is an unfortunate 

because reductions in mobility generate a cascading effect economically from indirect factors 

and direct medical costs, thereby impacting socioeconomical statuses and overall quality of life 

[124, 125]. Therefore, it is imperative that improved identification of gait abnormalities and the 

neural mechanisms underlying mobility impairments be pursued to advance neurorehabilitation 

techniques for PwMS. Also due to its heterogeneity, the rehabilitation of mobility impairments in 

PwMS is incredibly difficult and therefore a ‘one size fits all’ rehabilitative approach is less 

likely to be effective. To stratify individualized rehabilitative efforts and alleviate mobility 

impairments, the acquisition of mechanistic comprehensions concerning the microstructural 

integrity of the neural underpinnings of mobility deficits is essential.  

Neuroimaging: Diffusion Weighted Imaging 

Diffusion is the state of being spread out or transmitted especially through contact [126], 

a principle definition founded by Botanist, Dr. Robert Brown in 1826. Since Dr. Browns’ 

scientific breakthrough, the diffusion concept has evolved well-beyond the scope of botany with 

the focused efforts of history’s greatest minds including Thomas Graham, Adolf Fick, and Albert 

Einstein. Their scientific labors provided theoretical equations that have proven to be pivotal to 

the foundations of diffusion weighted imaging (DWI), a magnetic resonance imaging (MRI)-

based technique [127]. By utilizing the diffusion of water molecules dispersed throughout the 

brain, derived quantitative measures furnish an in-vivo representation of the neuroanatomical 

structures.  
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The basics of how a DWI is acquired begins at an atomic level within the human body, 

which is predominantly comprised of water molecules. Each water molecule consists of two 

hydrogen protons attached to an oxygen. The hydrogen protons go through a spin concept, where 

by in-phase spins become coherent (i.e. resulting in a strong output signal) or out of phase and 

spins become incoherent (i.e. sums of the signal cancel). When the body is placed inside the 

primary magnetic field (B0) ranging in strength from 0.5 - 7T [128], these nuclear spins align 

with that magnetic field and emit a signal that is proportional to the magnetic field (è = 	ê ∗ ë), 
deemed the Larmor frequency [129]. A rotating magnetic field (B1) or localized gradient field is 

then applied to evoke excitatory signals (i.e. tipping the proton). The applied gradient fields are 

designed to be multi-dimensional (Gx, Gy, and Gz) allowing for the differentiation of anatomical 

or neuroanatomical structures to be localized [129]. In diffusion imaging, manipulation by the 

applied gradients effects the signal strength allowing for detailed interpretations to be visualized. 

Magnetic field alterations in spin frequency occur when the gradient is turned “on”, aligning the 

protons via a 90° knock down occurrence. When the gradient is turned back “off”, the protons 

will spin back up to their desired Larmor Frequency. The rates at which these up-spins transpire 

is dependent upon the type of tissues they are contained within, a process aptly termed frequency 

encoding [129]. In order to achieve optimal image acquisition, general diffusion procurement 

with these gradients require appropriate spacing, so that they are sampling in non-collinear 

directions [130]. The emitted RF signal from this spin back is received by the RF coil then 

undergoes an analog to digital conversion, before being condensed into a k-space [131]. Prior to 

image depiction, the k-space is sorted via a Fourier Transformation and retrieved as a set of 

DWIs (diagramed in Figure 1.14). 
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When acquiring DWI’s, it is imperative to abide by the b-values (i.e. the number of 

gradients applied or more specifically, the applied diffusion weighting [127]) and the pulse 

sequences (i.e. the sequence required to achieve optimal signal to noise ratios (SNR) with 

minimal artifact introduced). A ‘b-value’ of 1000 s/mm2 is recommended as the minimal value 

required for optimal results [128] however, b-values exceeding 2000 s/mm2 are increasing in 

popularity when applying more advanced post acquisition techniques [127]. Additionally, the 

quantity of non-collinear gradient directions being applied in conjunction with the ‘b-value’ is 

central to the quality of the image output. Drs. Jacques-Donald Tournier, Susumu Mori, and 

Alexander Leemans suggest that a minimal b-value of 1000 s/mm2 will require at least 28 non-

collinear gradient directions to achieve optimal image quality. Although, the minimum gradient 

numbers applied will often climb over 45 directions with more intermediate b-values (e.g. 

A/D 

Conversion 

Figure 1.14 | Basics of DWI acquisition. Starting with initiation of image via 
MRI-based acquisition with emittance of the RF signal (top right), going through an 
analog to digital conversion (top left), collection of the signal within the k-space, 
and ending with the fourier transformation (bottom) to output the DWI image.  
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upwards of 3000 s/mm2) [128]. A rule of thumb is that the more gradient directions that can be 

applied increases the overall SNR thereby improving the quality of the output image [128].  

Beyond DWI acquisition, it is imperative to consider the type of diffusion being 

characterized. During the diffusion process, diffusion can be classified as free (isotropic) 

diffusion, where water molecules disperse throughout a space without hindrance from external 

structures; hindered (anisotropic), where the molecules come in contact and are slowed down by 

the external structures; or lastly, when a molecule is restricted within an internal structure it is 

considered to have restricted diffusion [127]. When the diffusion is isotropic it is commonly 

associated with the cerebral spinal fluid, where no hinderance is observed. External structures 

such as white matter (myelinated axons or bundles of axons) will hinder the path of molecule, 

ergo providing an anisotropic view of the microstructure. In summation, DWI measures reflect 

the amount of hinderance/restriction experienced by water molecules moving with a component 

of displacement along the axis of the applied gradient and averaged over the voxel [132].  

Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is a DWI-based mathematical approach allotting for the 

in-vivo identification of ischemic changes and the mapping of white matter microstructural 

architecture. As the only imaging technique known to map the orientation of white matter fiber 

bundles [127], DTI is based around the mathematical representation of water-flow directionality 

within a given voxel. Recorded from the scanning gradients during the diffusion sequence, water 

flow is modeled as a tensor on a voxel-by-voxel basis.  The “shape” of the tensor allows for the 

characterization of the underlying microstructure and origin of the tensor requires at least six or 

more gradient directions. The geometrics and quantitative outputs are depicted by the length 
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measures of the tensor, these are referred to as the eigenvalues (i.e. í5√î5, í0√î0, íï√îï) and the 

orientations of the tensor (i.e. the global location in the x, y, and z planes) are represented by the 

eigenvectors (identified in Figure 1.15 [133]) [134]. The combination of the eigenvectors and 

eigenvalues enable the procurement of axial diffusivity (AD), radial diffusivity (RD), mean 

diffusivity (MD), and fractional anisotropy (FA) quantitative outcome measures. AD is 

associated with the first eigenvalue (í5√î5), embodying the principle direction of the tensor. The 

average of the second and third eigenvalues ((í0√î0 +	íï√îï)/2)	construct RD and the average 

Figure 1.15 | Tensor 

composition. Illustrated 
representation of the tensor model 
as it displays the eigenvalues for 
an isotropic (middle) and 
anisotropic (bottom) voxel. 
Adapted from Moura et al. (2019) 

[126]. 
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of all three eigenvalues ((í5√î5 + í0√î0 + íï√îï)	/3), comprising a single average diffusivity 

within a particular voxel is recognized as MD. Lastly, FA quantifies on a voxel by voxel basis, 

how much isotropy (e.g. a more spherical tensor) or anisotropy (e.g. a more elongated ellipse or 

increased binding to a single axis) there is within the given voxel. Unlike the previously three 

measures, FA is differentiated by being a normalized measure and ranges from 0 (isotropic) to 1 

(anisotropic) [127, 135].  

In addition to devising a voxel-by-voxel interpretation of the underlying microstructural 

architecture, the tensor aids in connecting distant regions of the brain and parcellating white 

matter fiber pathways via an approach termed tractography [136]. Tractography can be described 

as utilizing a collection of  

“algorithms that are designed to combine local discrete (voxel-based) models of fiber 
orientation (derived from either the principal eigenvector for the diffusion tensor, peaks in 
the dODF or peaks in the fODF) and reconstruct continuous fiber pathways” [132]. 

 

Although tractography presents an enhanced view of the composition and integrity of underlying 

microarchitecture of neuroanatomical structures, fiber arrangement is chaotic throughout the 

brain and crossing fibers are inevitable. The presence of crossing-fibers can alter or constrict the 

ability to accurately tract fiber orientations and has been widely recognized as a common pitfall 

associated with DTI analysis [132]. To better account for crossing or complex fiber orientations, 

the implementation of higher order models of acquisition (e.g. High Angular Resolution 

Diffusion imaging (HARDI)) allow for the registration of angular portions of the DW signal to 

be incorporated into the tractography algorithm [128]. The continual evolution of DTI high-order 

models has allotted for the fashioning of comprehensive interpretations of the microstructural 

architecture via constrained spherical deconvolution (CSD) tractography. A sophisticated higher-

order model, CSD is able to depict white matter microarchitecture with high accuracy by 
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utilizing HARDI signals in conjunction with spherical deconvolution. The combination of CSD 

with higher-order modeling increases the parameter of possible fiber populations to infinity, 

thereby increasing the ability to account for crossing-fibers. Beyond the postulation of 

tractography outputs that incorporate augmented fiber orientations [128], CSD allows for 

quantification of connecting the homologous/non-homologous regions of the cortical motor 

networks stemming from these models [70]. However, CSD is not without pitfalls; often 

requiring higher order models (i.e. HARDI) for enhanced acquisition to provide a more robust 

accountancies of complex fiber configurations. Though this technique is optimal for fitting 

multi-tensor models (i.e. CSD), it will require enhanced acquisition parameters such as more 

non-collinear diffusion directions, higher b-values or higher spatial resolutions which increase 

scan times and drive the SNR down [127]. However, if properly fulfilled, HARDI acquisitions 

and CSD-based tractography allot for the complex fiber characterizations of the fibers 

incorporated within the corpus callosum, cortical spinal tract, and other highly fiber dense 

neuroanatomical structures [127]. Additionally, from the framework of CSD, apparent fiber 

density (AFD) can estimate the intra-axonal volume fraction within each of the single fiber 

bundles and enabling the differentiation among single fiber bundles within a regions containing 

crossing-fibers [137], giving a more inclusive view of the tract-specific differences in fiber 

density [127]. Obtaining quantifiable in-vivo measures is the initial step to furthering our 

understanding of the quantity or quality of the brain neural networks however, fitting the correct 

interpretation to these quantitative measures is imperative to the question being asked.  

Interpreting Diffusion Tensor Metrics 

Fractional anisotropy (FA) is a normalized description of the diffusion properties 

quantified from all three eigenvalues and providing a depiction of diffusion directionality in any 
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given tissue [138]. Recalling that an FA closer to one indicates a more anisotropy or a definitive 

direction of diffusion (i.e. bound to a single axis) and closer to zero is indicative of equal 

diffusion in all directions. FA has traditionally been the most frequently reported DTI measure 

however, FA is highly influenced by a number of unregulated factors and presuming any direct 

interpretation of white matter integrity as an index of myelination or myelin damage is cited as 

being “a mere oversimplification” [127]. Therefore, FA should be interpreted solely as 

benefactor to the magnitude of diffusion tractography configurations whereas the diffusion rate 

(the average of all three eigenvalues((í5√î5 + í0√î0 + íï√îï)	/3)) within a voxel, regardless 

of the direction is achieved from the mean diffusivity (MD). A higher MD value (e.g. damaged 

tissue) will equate to higher diffusion rates from increased free diffusion throughout the tissue. 

Whereas in this same tissue, the damage will construct decreased FA (i.e. less anisotropy) due to 

a loss of coherence of the primary diffusion direction [135].   

Segmenting out the eigenvalues, the first eigenvalue (î∥)	embodies the principle (axis) 

direction or axial diffusivity (AD) of diffusion occurring in the specified voxel and the average 

of the second and third (minor axes) eigenvalues (îó)	construct the radial diffusivity (RD) of the 

tensor. A decrease in the principle direction (AD) has been interpreted as a representation of 

axonal loss [127, 132]. Inversely, an increase in tensor RD indirectly signifies a reduction in 

myelin (i.e. a reduction of myelin integrity or myelin damage) [127, 139]. Further research has 

postulated RD relationships between indirect measures of axonal density, axonal diameter, and 

the fiber coherence [140, 141]. Both AD and RD allow for intuitive information to be acquired 

about specific microstructural features of white matter connections within the brain however, 

these measures neglect to contribute to insight about how an increased intra-axonal volume 

equates to a denser axonal structure, cueing the evolution of AFD. Increased densities have been 
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associated with both amplified AD and RD quantifications, identifying augmented abilities for 

white matter bundles to effectively transmit information. Raffelt et al. [137] denotes that 

interpretations of AFD should be approached with caution and “not be interpreted in terms of 

axons per unit area, but rather in terms of the space occupied by these axons (i.e. the intra-axonal 

cross-sectional area per unit area)”. Regardless of the quantitative measure or complexity of 

fibers composed, DTI permits the parcellation of white matter tracts and of the encompassed 

microstructural integrity for both neurotypical and neuroatypical populations.    

 

Diffusion Tensor Imaging and Multiple Sclerosis  

 

As an autoimmune-based neurodegenerative disease, PwMS exhibit large scale alterations or 

reductions in white matter microstructural integrity [142] along with postural control deficits 

(both static and dynamic) [11, 12]. These neurophysiological declines accompany disease 

progression [143, 144] and are synonymous with increased RD, MD, and AD outcome values, in 

addition to reduced FA values [145]. Interpolations of DTI microstructural outcomes continue to 

cultivate; nevertheless, additional mechanistic insights are warranted for connecting declines in 

microstructural integrity to postural control reductions in PwMS, which is imperative to the 

efficacy of the neurorehabilitation of mobility deficiencies.      

What has DTI told us about the neural control of gait and balance in PwMS? 

 
Maintenance of a fixed position requires a significant reliance on the vestibular, visual, and 

proprioceptive sensory reference frames to maintain an upright position [4, 146] and any 

forfeiture of this aptitude impinges an active lifestyle. PwMS have been known to express larger 

postural sway patterns (i.e. increases in center of pressure path length or sway area) over their 

disease progression [12] and structural DTI analyses have revealed neuroanatomical tract 

degradations in sensory reference frames that are related to postural unsteadiness [58].  
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Unlike neurotypical adults, PwMS display increased width in sway displacement (i.e. more 

medio-lateral displacement) that has been linked to reduced integrity of the white matter tracts in 

all three (inferior, middle, and superior) cerebellar peduncles, the general cerebellar white matter, 

pons, thalamus, anterior and middle cingulum, and the corpus callosum [147].  This relationship 

was illuminated by our laboratory, discovering a positive correlations between increased postural 

instability (i.e. increased sway area) and an enlarged proprioceptive tract RD, indicating 

reduction of myelin integrity in PwMS (Figure 1.5) [58]. In addition to the proprioceptive tract, 

the periventricular regions, corticospinal, and callosal fiber tracts all displayed reduced white 

matter microstructural integrity in connection with poorer proprioception. Specific affiliations 

between microstructural degradation related to balance control were localized to the right 

hemisphere of PwMS compared to the left [58]. This is particularly significant because the right 

hemisphere accounts for the generation of visual/spatial awareness, a sensory reference frame 

heavily weighted upon for postural stability. If the proprioceptive system becomes deficient, 

sensory re-weighting could potentially increase the reliance of these individuals on vision and in 

conjunction with proprioceptive deficits, increase the probability of instability [148]. 

Beyond static instability, gait impairments are reported in 85% of PwMS [21]. Gait or 

dynamic postural control is a sequence of continuous events designed to recover from constant 

imbalances in order to prevent a fall [60] and like the other aspects of postural control, gait 

involves regulatory strategies meant to contain the CoM within a constantly changing BoS. Gait 

spatial-temporal characteristics and clinical assessments have detailed ambulation impairments 

in PwMS, establishing affiliations between these impairments and white matter microstructural 

integrity.  
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The widely-popular, expanded disability status scale (EDSS) describes disease 

progression in reference to mobility [149] but, has identified no meaningful relationships to the 

mean or tensor directional measures (i.e. MD or RD) of microstructural integrity [150, 151]. 

However, normalized DTI-based integrity outcomes (i.e. FA) have provided positive correlations 

to this validated clinical scale [152]. A possible explanation for these conflicting results, may be 

driven by augmented inter or intra-rater variability comprising the subjectively surmised EDSS 

scores [149]. Further clinical explorations have revealed that more objective measures of gait 

such as the timed twenty-five-foot walk (T25FW (for gait speed)) [151-156], two [151] or six-

minute (for endurance) walks [155], and timed up and go (to assess turns and transitions) [155, 

157] [151] have all provided significant associations to poorer white matter microstructural 

integrity based upon DTI outcomes. Outside of clinical investigative outcomes, traditional 

spatial-temporal characteristics albeit limited in MS, have displayed significant correlations to 

tract microstructural integrity outcomes. Like EDSS, declines in gait velocity, a reputed 

prognosticator of gait performance [87], has similarly been (negatively) correlated to diminished 

corticospinal tract white matter tract microstructural integrity computed via FA [151]. More 

distinct (non-normalized) calculations of tract integrity (i.e. AD, RD, and MD) have revealed a 

structure-function association with motor pathway damage and reduced step length and stride 

time in PwMS. Specifically, distinguishing MD/AD measures as biomarkers of stride length and 

MD/RD measures as being positively associated with stride time [155]. Hubbard and colleagues 

have further elaborated that significant negative correlations between MD declines (structural 

deficits) and the 6MW, T25FW, and gait velocity but, were unable to identify significant 

relations between FA and any of the gait parameters assessed [155]. This concluding result 
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contradicts previously established [151] associations in PwMS, supporting the need for more in-

depth investigations into the intricacies of these interactions. 

Corresponding with static postural instabilities (i.e. sway increases) [58, 147] and 

decreased automatic postural responses (i.e. increased latency) [158], gait demonstrates similar 

structure-function relationships that encourages future kinetic and kinematic biomechanical 

investigations to cement these conceived mechanisms. Beyond MS literature, we can continue to 

derive further explorations from neurogenerative aging paradigms. These aging models have 

been successful in utilizing structural integrity metrics as biomarkers to gait performance and are 

detailed in The neural correlates of discrete gait characteristics in ageing: A structured review 

[159].  

In summation, more knowledge is a prerequisite to drawing parallels between the 

neurological underpinnings of neurotypical/-atypical adults and mobility, we are continually 

growing this knowledge aided by technological developments (e.g. IMUs and DTI) to 

figuratively connect these dots. Strong evidence suggests that PwMS display increased 

degeneration of white matter (e.g. indirectly measured as a rise in RD or decrease in FA) [160] in 

conjunction with postural control deficiencies [147, 158, 161, 162]. Although scientific 

comprehension has systemically surrounded interactions involving more traditional postural 

control measures, a dearth in the literature involving more complex (i.e. multi-dimensional) 

measures of mobility in PwMS has been acknowledged. Additionally, establishing enhanced 

connections to non-normalized microstructural DTI metrics (i.e. AD, MD, and RD) [151, 155] is 

imperative for bolstering biomarkers as a means of individualizing neurorehabilitation programs 

and improving the health span of PwMS.     

Dissertation Aims and Hypotheses 
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Study 1 | A Temporal Analysis of Bilateral Coordination in Neurotypical and Atypical Adults 

Specific Aim 1:  The primary objective of this investigation was to assess IMU-derived 

measures of gait temporal phase measures in neuro-atypical (i.e. PwMS) and neurotypical age-

matched adults to identify the contributions these phases make to bilateral coordination. I 

hypothesized that PwMS will demonstrate poorer bilateral coordination derived from loftier gait 

cycle phase temporal means and variance measures within the stance and double support gait 

phases than in the neurotypical population. 

Specific Aim 2: The secondary objective was to comprehend how these relationships are 

altered under a cognitive load and when walking speeds are augmented. I hypothesized that 

further conservative gait adaptations associated with ascertaining increased dynamic postural 

control will be enhanced with the augmentation of gait speed and cognitive loading in both 

populations. 

Study 2 | Bridging the Callosal Gap in Gait: A Mechanistic Evaluation of White Matter in 

Bilateral Coordination 

Specific Aim 1: To assess MRI-derived measures of transcallosal sensorimotor fiber tract 

quality and quantity (via diffusion imaging) and identify their relation to gait coordination using 

novel methods of ecologically-valid mobility assessments in 30 healthy adults. I hypothesized 

that poorer quality of white matter fiber tracts connecting the right and left sensorimotor 

cortices of the brain (i.e. transcallosal tracts) will be strongly associated with increased lower 

limb asymmetries quantified via the Phase Coordination Index (PCI), a novel and 

comprehensive metric to evaluate bipedal coordination by assessing both the accuracy and 

consistency of phase generation in locomotion (i.e. gait asymmetries). 
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Specific Aim 2: To assess MRI-derived measures of transcallosal sensorimotor fiber tract 

quality and quantity in 30 PwMS and identify their association with gait and balance 

performance. I hypothesized that PwMS will have reduced transcallosal sensorimotor fiber tract 

quality and quantity, as well as reduced gait coordination compared to the age- and gender-

matched neuro-typical cohort from Aim 1. Further, I hypothesize that associations between 

sensorimotor transcallosal structure and lower limb coordination in PwMS will be greater than 

those observed for the neuro-typical cohort in Aim 1. 

Study 3 | Advanced Characterization of Static Postural Control Dysfunction and Associated 

Neural Mechanisms in Persons with Multiple Sclerosis  

Specific Aim 1: To assess the microstructural architecture of the sensorimotor 

pathway quality and quantity (via diffusion imaging) and identify their relation to the multi-

dimensional postural control measure of time-to-boundary in neurotypical adults. I hypothesized 

that poorer quality of microstructural architecture of the sensorimotor pathway would be 

strongly associated with decreased time quantified via time-to-boundary (TTB), a novel and 

comprehensive metric to evaluate postural control by assessing both the velocities and positions 

of the center of pressure. 

Specific Aim 2: Additionally, we sought to identify how the proprioceptive neural 

underpinnings of this multi-dimensional postural control measure is different 

between PwMS and neuro-typical adults.  I hypothesized that in addition to displaying poorer 

sensorimotor pathway microstructural integrity, PwMS will exhibit shorter TTB values (i.e. 

poorer postural control) compared to their neurotypical counterparts across all postural 

conditions and emphasized during proprioceptive manipulated conditions.  
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Collectively, the three purposed examinations were designed to provide mechanistic 

insights into the gait and balance of both neuro-typical and -atypical (i.e. PwMS) adults and 

achieve a better understanding of the neural underpinnings contributing to reduced locomotion 

and postural control, thereby increasing risks of falls and injury. Predictively, these mechanisms 

will manifest through associations between substandard microstructural integrity and impaired 

mobility (graphically depicted in Figure 1.16). The novel outcomes expected from this study 

will provide comprehensive and mechanistic insights into both dynamic and static postural 

control for healthy and neurodegenerative populations. These studies will provide specific 

knowledge about how the brain controls aspects of mobility and will indicate specific neural 

targets to improve future mobility rehabilitation strategies.   

Figure 1.16 | Graphical hypothesis for the overarching 

aim. A pictorial representation of the prediction that as tract 
microstructure degeneration intensifies, mobility 
impairments will elevate in both static and dynamic 
biomechanical modalities. Adapted from Richmond & Fling 

(2019) [1].  
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Chapter 2 | A Temporal Analysis of Bilateral Coordination in Neurotypical and Atypical Adults 
 

 

 

Chapter Summary 

Background: Gait performance dictates the functional aspects of navigating the dynamic 

environments of everyday living. With each stride the lower extremities move through phases of 

stance, swing, and double support; coordinating these motions with high accuracy and 

consistency is imperative to constraining the center of mass within the base of support, thereby 

staying in an upright position. Gait abnormalities accompany neurodegeneration, impeding stride 

to stride cohesion and increasing the likelihood of a fall. Research Question: This study sought 

to better understand the temporal mechanisms underlying bilateral coordination and furthermore, 

how the temporal parameters of bilateral coordinated movements are affected by 

neurodegeneration. Methods: Bilateral coordination was quantified with the Phase Coordination 

Index (PCI). Both PCI and temporal phases of the gait cycle were acquired with inertial 

measurement units while walking at a self-selected pace, a fast pace, and under a cognitive load. 

A ‘backwards’ multiple regression and derived correlations between the PCI and gait phase 

characteristics were produced in thirty neurotypical (21 females and 8 males) adults and twenty-

seven neuro-atypical (i.e. people with multiple sclerosis (PwMS)) (20 females and 7 males) 

adults. Results: PwMS displayed significantly worse bilateral coordination compared to 

neurotypical adults regardless of cognitive loading or speed augmentation and deficits from the 

left-right stepping predicated from higher temporal gait cycle phase variances. While walking 

under a cognitive load, PwMS performed poorer than the neurotypical adults, yielding a higher 

performance cost. Additionally, PwMS established a more protective gait strategy while 

coordinating the left-right stepping patterns derived from specific temporal phase of the gait 
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cycle. Significance: This temporal analysis of bilateral coordination in PwMS, indicates poorer 

ability to derive symmetrical left-right stepping pattern and provides potential therapeutic targets 

for individualized rehabilitation strategies aimed at improving health span and overall quality of 

life.   

Introduction 

Mobility reflects the aptitude to control the displacement of the center of mass (CoM) 

during bipedal locomotion and the detailed aspects of these actions is known as gait [163]. 

During bipedal gait, the summation of specific spatial and temporal movement parameters 

transpires ambulation to effectively constrain the translating CoM within a continually re-

establishing base of support.  Gait performance has been deemed a “global health marker” and 

reputed predictor of survival, declines in cognition, falls status, and overall quality of life [87]. 

  During ambulation, each leg works independently through successive phases of stance 

and swing to establish gait patterns, thereby enabling individuals to interact within a dynamic 

daily living environment. The stance phase of the gait cycle (i.e. two successive steps or heel 

strike to heel strike on the same foot) consists of the events occurring while the foot is in contact 

with the surface, beginning with initial contact (i.e. heel strike) and ending with toe off; times 

when both feet are in contact with the surface comprise the double support stance phase [33].The 

stance phase encompasses 60% of the gait cycle (10% of which is double support) with the 

swing phase constituting the remaining 40%. The swing phase composes the time when the foot 

is not in contact with surface, from toe off to heel strike [33]. Sustainment of effective gait 

requires left-right coordination between bilateral stance and swing phases to effectively constrain 

the CoM and regulate velocity at the moment of foot placement (i.e. stepping) [164, 165]. The 

precision and consistency of the steps generated during the engagement of locomotion dictate the 
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efficacy of sustaining the CoM position within the stability region thereby preventing the 

forfeiture of postural stability.  

The degree of accuracy and consistency of left-right step coordination can be quantified 

with the Phase Coordination Index (PCI) [106] and recorded by a number of biomechanical 

modalities. Technological advancements have provided a transition from fixed laboratory-based 

kinematic modalities to more portable evaluations using instrumentation like the inertial 

monitoring unit (IMU). The IMU utilizes accelerometer-derived measures to establish spatial-

temporal quantification of movements allowing for transpiration of kinematic characterizations 

to be completed outside the laboratory environment, in a more community-dwelling setting that 

further representative of daily living [94]. IMU-based measures provide temporal signatures to 

establish quantitative measures of bilateral coordination via PCI. Associations between 

traditional broad-based spatial-temporal measures (e.g. gait speed and stride length) have been 

identified [166] however, a dearth of knowledge encompassing the specific temporal phase 

mechanisms deriving these broad associations exists. Further understanding of the phasic events 

encompassing changes in bilateral coordination is a prerequisite to establish a basic scientific 

understanding of coordinated gait and eventually specify rehabilitation aims to improve bilateral 

coordination. To our knowledge, no known IMU-based study exists exploring the 

aforementioned subject matter and furthermore, we believe an absence in the comprehension of 

these mechanistic associations extend beyond the neurotypical populations to those living with 

neurodegenerative diseases. Neurodegeneration stemming from the aging process or a 

neurological disease are known contributors of reduced bilateral coordination (i.e. higher PCI) 

[111, 112, 114].    
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Multiple sclerosis is an auto-immune based neurodegenerative disease that instigates 

mobility deficits in 93.7% of affected individuals [18]. The majority (63%) of people with 

multiple sclerosis (PwMS) incur a fall within any twelve-month span and 45% of those 

individuals will develop into recurring fallers [10]. Given that there are nearly one million adults 

living with MS in the United States [14] and the quality of life impacts that succeed falls, further 

attention is required of the event mechanisms establishing bilateral coordination and how these 

degrade with neurodegeneration. 

The purpose of this investigation was to assess IMU-derived measures of gait temporal 

phase measures in neuro-atypical (i.e. PwMS) and neurotypical age-matched adults to identify 

the contributions these phases make to bilateral coordination. Furthermore, we sought to 

comprehend how these relationships are altered under a cognitive load and when walking speeds 

are augmented. We hypothesized that PwMS will demonstrate poorer bilateral coordination 

derived from loftier gait cycle phase temporal means and variance measures within the stance 

and double support gait phases than in the neurotypical population. Furthermore, we believe that 

further conservative gait adaptations associated with ascertaining increased dynamic postural 

control will be enhanced with the augmentation of gait speed and cognitive loading in both 

populations. 

Methods 

Participants: Twenty-seven neuro-atypical adults with a confirmed diagnosis of relapse-

remitting MS (20 females & 7 males; 48 ± 12 years, 1.66 ± 0.08 m, 68.6 ± 9.2 kg, body mass 

index 24.9 ± 3.8 kg.m-2) and thirty additional sex- and age-matched neurotypical adults (21 

females & 8 males; 47 ± 15 years, 1.69 ± 0.08 m, 72.4 ± 14.2 kg, body mass index 25.3 ± 4.0 

kg.m-2) were included in this study. Participants were excluded if they were unable to safely walk 
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unassisted (an Expanded Disability Systems Scale < 4.0; PwMS median [3.5] and range [0 - 

4.0]) or if they had a joint replacement, musculoskeletal or vestibular disorder, or any additional 

neurological impairment outside of MS. This study was approved by an institutional review 

board and all participants gave their informed written consent before beginning participation. 

Walking Procedure: Participants performed three separate over ground walks for a 

duration of two-minutes; each walk was performed in the following in order: 1.) at a self-paced 

speed, 2.) while at a self-paced speed under a cognitive load, and 3.) while walking as fast as 

possible without initiating a flight phase in their gait. The two-minute walk is an alternative to 

the six-minute walk for adequately and accurately evaluating gait performance while reducing 

the effects of fatigue [167], a common concern for PwMS. All trials were completed while 

walking barefoot down a 110-foot hallway, free of any distractions or obstacles. Spatial-temporal 

parameters for the primary outcomes were acquired by six tri-axial Opal™ body-worn IMUs 

Figure 2.1 | Walking protocol. A depiction of the APDM, Inc. IMU system utilized 
with a six-sensor placement (sternum, lumbar region, wrists, and feet). These IMUs 
were utilized for all three continuous walking trials (self-selected, dual-task, and fast) 
that occurred down a 110-foot walkway. Image was adapted from APDM Inc, 

http://apdm.com. 



 

 58 

(Version 2.0, APDM Inc, Portland, OR, USA) sampled at 128 Hz [168]. IMUs were placed on 

the sternum, lower back (L4/L5 region), wrists, and feet (depicted in Figure 2.1); prior to each 

walk, participants were given instruction on the walking pace, the inclusion of the dual-task (i.e. 

cognitive loading), and to avoid deviating their gaze away from the forward position. 

 

Dual-Task Procedure: Prior to initiating any walking trials, a two-minute baseline 

examination of cognitive performance was recorded while in the seated position. While seated, 

each participant counted down from a randomized number by sevens (i.e. serial sevens), during 

this task, participants counted aloud into db9PRO VR1.0 (dB9PRO and Arcos Global Ltd., UK) 

audio recorder that was adhered to the shoulder. During the dual-task cognitive loaded walk, 

participants began the serial seven counting and then were instructed to begin walking at their 

own self-selected pace, counting aloud into the adhered db9PRO VR1.0 was sustained until the 

end of the two-minute duration. All post-error analysis of the single and dual task recordings was 

analyzed by a single trained analyst, whom established a record of total achieved values and 

errors. Single and dual task performance (Equations 1 and 2) was calculated and a prioritization 

paradigm was utilized for task dependencies (i.e. performance cost equation (see Equation 3)). 

Decreased performance when going from single to dual task conditions were indicated by a 

negative performance cost value conversely, performance improvement was specified by a 

positive value [169]. 

 

Single Task Performance = @)òMô	öõúN{ùU	Eûℎü{†{p	Ä}éx}h 	 ∗ !{ùû{Fò	()ùù{ûò	Ä}éx}h     (1) 

 

Dual Task Performance = @)òMô	öõúN{ùU	Eûℎü{†{p°é¢£6I§ ∗ !{ùû{Fò	()ùù{ûò°é¢£6I§       (2) 
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Performance	Cost = 	 (`ré¢	[éÄ£	W}Å∞fÅ�éI±}	4b6I§¢}	[éÄ£	W}Å∞fÅ�éI±})`ré¢	[éÄ£	W}Å∞fÅ�éI±}	 ∗ 100    (3)  

 

In the event of any incomplete dual-task audio stemming from technical audio difficulties 

or inabilities to complete the task, these participants were discarded from dual-task analysis. 

There were three PwMS (n = 24) and a single neurotypical (n = 28) adult excluded from the 

cognitive analyses due to complications.   

Gait Analysis: PCI was utilized as the primary outcome measure of bilateral 

coordination, measuring the accuracy (φ_ABS ) and consistency (j_CV) of phase (step) 

generation within the gait cycles of each two-minute walk. Utilizing the spatial-temporal 

parameters derived from the IMUs; PCI outcomes were generated via a custom MATLAB 

(MathWorks, Natick, MA, USA, version R2017a) script from equations originated by Dr. Mier 

Plotnik and colleges [106]. In PCI, a gait cycle is modeled as 360 degrees and a step (i.e. heel 

strike to toe off on the same foot) equating a phase (j) within the cycle (see Equation 3 and 

Figure 2) [106]. PCI calculation comprises the accuracy and consistency (seen in Equations 4 

and 5) of j generation and completed by quantifying the j relationship between the step timing 

of both legs respectively [106]. A PCI score closer to zero indicates better bilateral coordination 

or better j generation accuracy and/or consistency within the gait cycle [106, 166].  

 

PCI = s_(J + 	PφÖÜá    (4) 

 

φ_ABS = |s − 180°| à PφÖÜá = 100 ∗ (ä_Vãb5åR )    (5) 
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j_CV = 
b`ç

�}éIç [%]    (6) 

  

Beyond PCI, the generation of temporal gait cycle events were derived by APDM’s 

Mobility Lab™ (APDM Inc, http://apdm.com), a validated customized analytical software using 

data acquired by the IMUs [89, 90, 168]. From Mobility Lab™, mean times (as a percentage of 

the gait cycle) was calculated for each of the major gait phases: stance, swing, and double 

support. Additionally, coefficients of variation (CV) was calculated (CV = (standard deviation 

/mean) * 100) outside Mobility Lab™ using the for each walking trial in both populations.  

Statistical Analysis: A 2x3 repeated measures analysis of variance (RMANOVA) was 

employed to identify differences in overall PCI outcomes for all three walking conditions 

between groups. Additionally, RMANOVAs were also completed between groups for the 

consistency and accuracy of phase generation and gait speed during all three walking conditions. 

In the event that a Mauchly’s test of sphericity indicated a violation (p < 0.05), a Greenhouse 

Geisser correction was applied. Where appropriate, Bonferroni post hoc tests were performed to 

determine which of the walking conditions differed. All cognitive performance costs were 

configured in Microsoft Excel (Microsoft Office 2018, Version 16.16.18) and differentiation 

between groups for achieved values, errors, and performance costs were identified by Student 

independent t-tests. 

A backward selection multiple regression model was employed to explain the amount of 

variance or contributions to PCI scores could be explains by their swing, stance, and double 

support mean and CV gait phase measures for all three walking conditions. Pearson product 

moment correlations were then calculated for all performance variables obtained from the PCI 

and each gait phase measure in all three conditions. The product moment correlation coefficients 
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(r) establishes the relationship between PCI outcomes and phase metrics from the gait cycle 

timing (GCT). All statistical applications were computed using JASP (University of Amsterdam, 

Amsterdam, Netherlands, Version 0.11.1), and calculated with the risk of type I error set at α = 

0.05. Statistical plots and outlier identifications were derived in GraphPad Prism 8 (GraphPad 

Software, La Jolla, CA, Version 8.3.0). 

Results 

Across all three walking conditions, PwMS displayed significantly higher PCI values 

(Tables 2.1A & 2.2A) compared to their neurotypical counterparts. Additionally, this atypical 

population comparatively generated these phases composing bilateral coordination with 

significantly lower accuracy and consistency (Tables 2.1A, 2.2B, & 2.2C) for each walking 

condition. Paralleling bilateral coordinated gait deficits, PwMS performed each walking 

condition at a significantly slower pace than the neurotypical adults (Table 2.1B). 
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Table 2.1 | Summary of Means (Standard Deviations) for (A) Bilateral Coordination and (B) 

Gait Speed for the Self-Selected, Dual-Task, and Fast Walking Conditions. 

 

A.     

Walking 
Conditions 

Self-Selected Dual-Task Fast-Pace 

Group Neurotypic

al 

PwMS Neurotypical PwMS Neurotypical PwMS 

PCI (%) 1.84±0.64 2.70±1.71 1.76±0.56 2.66±1.56 2.02±0.58 2.64±1.46 

j_ABS (deg) 1.82±0.64 2.68±1.70 1.74±0.56 2.64±1.56 2.00±0.58 2.61±1.46 

j_CV (%)  0.02±0.01 0.03±0.01 0.02±0.00 0.03±0.01 0.02±0.01 0.02±0.01 

Note. PCI: Phase Coordination Index; j_ABS: Accuracy of j generation; j_CV: Consistency of 

j generation. 
 
B.    

Walking 
Conditions 

Self-Selected Dual-Task Fast-Pace 

Group Neurotypical PwMS Neurotypical PwMS Neurotypical PwMS 

Gait Speed 

(m/s) 
1.25±0.11 1.12±0.20 1.16±0.13 1.02±0.21 1.67±0.18 1.42±0.29 

Note. Gait Speed (mean ± SD). Data show a Group × Condition interaction (p = .022); 
neurotypical adults walked significantly faster than PwMS across all three conditions (p < .001).  
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Table 2.2 | Repeated Measures Analysis of Variance (RMANOVA) for the Components of 

Bilateral Coordination Across Walking Conditions and Between Groups. 

 
A. Overall Phase Coordination Index 

Within Subject Effects      

 Sum of Squares df Mean Square F p 

Walking Condition 0.375 2 0.187 0.935 0.396 

Walking Condition ✻ Group 0.675 2 0.337 1.685 0.190 

Residual 21.632 108 0.200   

Note. Type III Sum of Squares 
Between Subject Effects      

 Sum of Squares df Mean Square F p 

Group 26.588 1 26.588 7.059 0.010 
Residual 203.385 54 3.766   

Note. Type III Sum of Squares 
 
B. Accuracy of Phase Generation 

Within Subject Effects      

 Sum of Squares df Mean Square F p 

Walking Condition 0.362  2  0.181  0.916  0.403  

Walking Condition ✻ Group  0.653  2  0.327  1.653  0.196  

Residual  21.342  108  0.198    

Note. Type III Sum of Squares 
Between Subject Effects      

 Sum of Squares df Mean Square F p 

Group 26.226  1 26.226  7.031 0.010 
Residual 201.426  54 3.730    

Note. Type III Sum of Squares 
 
C. Consistency of Phase Generation 

Within Subject Effects      

 Sum of Squares df Mean Square F p 

Walking Condition 4.838e -5  2  2.419e -5  1.593  0.208  

Walking Condition ✻ Group  7.568e -5  2  3.784e -5  2.492  0.087  

Residual  0.002  108  1.518e -5    

Note. Type III Sum of Squares 
Between Subject Effects      

 Sum of Squares df Mean Square F p 

Group 0.001  1 0.001  5.776 0.020 
Residual 0.010  54 1.885e -4    

Note. Type III Sum of Squares 
 



 

 64 

Means and standard deviations for all temporal dependent variables during each of the three 

walking conditions are presented in Figure 2.2. PwMS demonstrated significantly poorer 

performance for each of the dependent gait temporal outcomes compared to their neurotypical 

counterparts.  

Self-Paced: When walking at a self-selected speed, a significant amount of variance in 

PwMS PCI score was explained by swing CV (R2 = 0.584), F (1, 25) = 35.09, p = < 0.001. In 

neurotypical adults, the amount of variance in their PCI score was explained by the double 

support mean, stance mean, double support CV, stance CV, and swing CV (R2 = 0.458), F (5, 23) 

= 3.89, p = 0.011 (Table 2.3A & 2.3B).    

Figure 2.2 | Gait cycle timing. A summary of means/ coefficient of variations ± 
standard deviations of the temporal gait phase (as a percentage of the gait cycle) 
composing bilaterally coordinated gait for each walking condition in both participant 
populations. 
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Dual-Task: During both the baseline and dual-tasked walk, PwMS exhibited counting 

deficiencies; collectively, these individuals achieved less numbers within the two-minute time 

frame and compiled more errors compared to the neurotypical population (Figure 2.3). 

Furthermore, these individuals exhibited a higher cognitive performance cost when going from 

the single- to the dual-tasked condition.  While placed under a cognitive load, a significant 

amount of variance in PwMS PCI score was explained by the double support mean, double 

support CV, and stance CV (R2 = 0.683), F (3, 22) = 15.78, p = < 0.001. Alternatively, the 

neurotypical adults exhibited a significant amount of variance in the PCI score from the stance 

CV (R2 = 0.0102), F (1, 27) = 3.07, p = 0.091 (Table 2.3A & 2.3B). 

Fast-Paced: When gait speed was augmented, a significant amount of variance in PwMS 

PCI score was explained by stance coefficient of variation (R2 = 0.343), F (1, 24) = 12.526, p = 

Figure 3 | Dual Task Performances. A.) Averages for the total numbers achieved and the 
number of errors made by both populations for the single (baseline) and dual-tasked trials. 
B.) PwMS displayed worst performance (%) over the neurotypical adults when going from 
the single to dual-tasked condition. 
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0.002. While augmented speed implementation derived no significant modeled predictors in the 

neurotypical adults (Table 2.3A & 2.3B). 
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Table 2.3 | Linear “Backwards” Regression Models Across Walking Conditions. 

 

A.) Coefficients for Final Model Outcomes 

Neuro-Atypical (PwMS)  Neurotypical 

Predictor Variable 

% of GCT 
b Intercept SE p 

 Predictor Variable 

% of GCT 
b Intercept SE p 

Self-Selected Pace      Self-Selected Pace     

Swing CV 1.685 -1.086 0.284 < .001  Double Support Mean 10.425 1138.923 4.179 0.020 

      Stance Mean -22.441  8.254 0.012 

      Double Support CV -0.274  0.135 0.054 

      Stance CV -24.631  12.182 0.055 

      Swing CV 17.862  8.098 0.038 

Fast-Pace      Fast-Pace     

Stance CV 2.334 -1.189 0.659 0.002  No Significant Predictors 

Dual-Task      Dual-Task     

Double Support Mean -0.172 3.488 0.077 0.036  Stance CV 0.666 1.004 0.380 0.091 

Double Support CV -0.683  0.227 0.006       

Stance CV 4.728  0.911 < .001       

Note. All the listed significant predictors are listed using the stepping criteria of entry: p-value < .05 and Removal: p-value < .10  

B.)  Model Summary for Final Models 

Walking Conditions r R2 Adjusted R2 RMSE 

PwMS     

Self-Selected 0.764 0.584 0.567 1.123 

Dual-Task 0.826  0.683 0.639 0.853 

Fast 0.586 0.343 0.316 1.227 

Neurotypical     

Self-Selected 0.677 0.458 0.340 0.520  

Dual-Task 0.320 0.102 0.069 0.546 

Fast 0.000 0.000 0.000 0.592 
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Discussion 

  This study provides an in-depth look at the constituents of gait phase generation and is 

the first known study to investigate bilateral coordination via PCI using IMUs in PwMS. 

Although no interaction was observed between the walking conditions and the group PCI 

outcomes, a between group effect was present. This lack of interaction with significant group 

differences suggests that PwMS, regardless of the cognitive load or the augmentation of speed 

implemented, walk with worse bilateral coordination. By demonstrating poorer bilateral 

coordination (i.e. a higher PCI) compared to the neurotypical population, our results are in 

agreement with previous MS [118] and neurodegenerative (e.g.  Parkinson Disease (PD)) [112] 

literature. Furthermore, when speed is augmented (i.e. participants directed to walk faster than 

their usual self-selected pace) neurotypical adults have historically exhibited no significant PCI 

interactions [170], coinciding with our absence of significant interactions at the faster pace. 

Additionally, this absenteeism concurs with traditional gait spatial differentiations exhibited by 

PwMS, whereby faster walking speeds have yielded an insufficient ability to enable a 

quantitative synthesis [11]. 

Deficiency in differentiation may be drawn from a reduced dependence on higher level 

brain activity during the fast walk and more reliance placed on inferior located anatomical 

structures. A shift from frontal loop activation of the cortex associated with voluntary or learned 

activities, will correspond with more automatic control over activities individuals having already 

acquired familiarization with. This type of shift would imply decreased dependencies on the 

basal ganglia, supplementary motor area (SMA), or other associated frontal-loop cortical 

structures and increased utilization curtailed from the brainstem projections including spinal 

expansions (i.e. central pattern generators) [171]. Like static postural control, dynamic postural 
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control is not reliant upon a single system but, rather a multitude of activated locations [61], 

which are weighted pending the demand placed upon them. 

When placed under a cognitive load neurotypical adults were able to achieve more 

numbers and account for less errors while performing both single and dual tasked events verse 

PwMS. More specifically, the neurotypical adult counting performance cost was less while 

maintaining a significantly faster gait speed than the PwMS, improving (~ 6%) when 

transitioning from single tasked counting to dual tasked walking. Whereas PwMS displayed less 

improvement (~ 2%) during dual tasked walking, presenting conceivable neural points of interest 

in the frontal loop of the brain. This compilation of cognitive performance cost and bilateral 

coordination deficits give rise to preliminary neural targets of interest including the SMA, pre-

SMA, and other planning/priming areas.  

Transitioning to a more biomechanically spatial view of these differentiations, PwMS 

traditionally present a more protective gait pattern denoted by decreased stride length, step 

length, and increased step width [11]. These spatial gait changes are accompanied by decreased 

time spent in the swing phase of the gait cycle and in turn spending significantly more time in 

both stride and double support phases compared to neurotypical adults, indicative of adapting 

this more conservative and protective gait strategy [11]. The temporal phase parameters of the 

gait cycle (i.e. double support, stance, and swing) as components of bilateral coordination 

presented similar findings, consistently unveiling higher variances in PwMS across all three 

walking conditions. The priority of the contributions made by these gait phases appear to be 

dictated by the walking condition. 

In neurotypical adults, displayed significantly worse bilateral coordination compared to 

their self-paced walk, disagreeing with previous neurotypical reports of no significant left-right 



 

 70 

stepping impacts stemming from dual task implications [112]. Additionally, these individuals 

exhibited no significant contributions during faster paced walking, while small contributions 

were made by a multitude of phases when walking at their self-selected pace. PwMS conversely, 

demonstrated significant contributors in all three walking conditions with higher variance of the 

swing (self-selected pace) and stance (fast pace) phases appearing to drive the bilateral 

coordinated outcomes during speed augmentation. Furthermore, under the cognitive load; double 

support CV, double support CV, and stance CV were all significant contributors, consistent with 

attaining a more conservative gait pattern. These results demonstrate that the IMU-based 

measures are able to quantify bilateral coordination discrepancies in PwMS and furthermore, that 

the variances in the temporal events should be considered when identifying any deficits or 

therapeutic approaches for PwMS.  

Although the aims purposed in this investigation were fashioned around the nature of 

basic scientific inquisition, the potential for clinical impacts through therapeutic approaches are 

evident. Wearable technology provides the ability for clinicians to determine underlying causes 

of diminutions in functional performance and furthermore, the ability to treat these attenuations 

[88]. We believe this study has the potential to extend therapeutic capabilities directed at 

improving gait asymmetries through the reduction of bilateral gait deficiencies. This can 

potentially be achieved through the development of further therapeutic modalities aimed at the 

reduction of swing variability in self-selected walking and stance variability when gait speed is 

increased. To amplify the probability of therapeutic success and direct application, further 

identification of the underlying neural mechanisms influencing bilateral coordination could aid 

in determining how the neurological deterioration of these mechanisms predicate bilateral 

differentiation.  
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This study was limited to the inclusion of only self-ambulatory relapse-remitting MS 

participants (i.e. the least severe affected MS population) and it is unknown whether the 

discoveries demonstrated in this study would be amplified or exemplify a more debilitated 

population (i.e. secondary or primary progressive MS). Additionally, outcome measures were 

restricted to temporal quantification of the gait phases, spatial phase measures are unattainable 

with the Mobility Lab™ analysis software. Future work should be centralized around the gaps in 

mechanistic knowledge, including neural mechanisms and more in-depth biomechanical 

mechanisms via motion capture-based kinematic constituents. Although the analysis of this study 

was directed with intent of a more clinical application, further knowledge could be gleaned from 

a laboratory-based kinematic and kinetic analyses, allowing for the derivation of specific powers, 

torques, and spatial measures that constitute these bilateral coordinated phase generated 

predictors.   

In conclusion, PwMS exhibit poorer accuracy and consistency in left-right stepping 

compared to neurotypical adults irrespective of the augmentation of cognition or speed. The 

variability within the temporal phases of the gait cycle, point to a more conservative walking 

patterns and augmented asymmetries indicating potential therapeutic targets. Cognition 

performance costs when transitioning to dual-tasked walking revealed further deficiencies in 

PwMS. Together, the concepts established within this research prompts the need to explore the 

underlying mechanisms of bilateral coordination and address the neural functional performance 

of these mechanisms.   
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Chapter 3 | Bridging the Callosal Gap in Gait: A Mechanistic Evaluation of White Matter in 

Bilateral Coordination 

 

 

 

Chapter Summary 

Introduction: An essential part of mobility is bilateral coordination of the lower extremities to 

produce ambulation, coordinated patterns produce locomotive actions, with each leg operating in 

its own spatial and temporal pattern. The corpus callosum, bridges the two hemispheres of the 

brain and has proven integral for the coordination of such complex movements. Both coordinated 

movement and corpus callosum structural integrity are substantially compromised in persons 

with multiple sclerosis (PwMS).  The aim of this project was to assess structural (via MRI-

derived diffusion imaging) and functional (via Transcranial Magnetic Stimulation (TMS)) 

integrity of the transcallosal sensorimotor fiber tract and identify their associations with gait 

coordination using novel methods of ecologically-valid mobility assessments in both PwMS and 

age-/gender-matched neurotypical adults. Methods: Neurotypical adults (21 female and 8 males; 

47 ± 15 years) and PwMS (20 females and 7 males; 48 ± 12 years) underwent a two-minute walk 

at a self-selected pace. Lower limb asymmetries were quantified via the Phase Coordination 

Index (PCI), a comprehensive metric to evaluate bipedal coordination by assessing both the 

accuracy and consistency of phase generation in locomotion. White matter microstructural 

architecture of transcallosal tracts connecting homologous regions of the sensorimotor cortices 

were evaluated with diffusion tensor imaging. Radial diffusivity (RD), an indirect marker of 

myelination, was utilized as the primary outcome. In addition, the ipsilateral silent period (iSP) 

was used as a functional measure of transcallosal communication quantified with TMS. Results: 

PwMS demonstrated significantly poorer ability to bilaterally coordinate the lower extremities 
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(PCI: 2.7 ± 1.7 %) during over-ground walking and poorer transcallosal white matter 

microstructural integrity of sensorimotor fiber tracts (M1a RD: 0.48e-3 ± 0.62e-4 mm2/s) in 

comparison to an age and gender matched neurotypical cohort (PCI: 1.8 ± 0.6 and M1a RD: 

0.44e-3 ± 0.31e-4 mm2/s). However, functional connectivity assessments via iSP duration and 

depth revealed no significant differentiations from neurotypical counterparts. Although, iSP 

duration in the right hemisphere was discovered to be negatively correlated with poorer bilateral 

coordination, in PwMS alone. Discussion: This analysis has revealed that PwMS walk with 

poorer consistency and accuracy in a step by step analysis of the gait cycle compared to their 

neurotypical counterparts. Furthermore, that this increase in asymmetrical gait is associated with 

microstructural degradation in PwMS. More prominently, these microstructural-bilateral 

coordination correlations were not exemplified in neurotypical adults emphasizes the importance 

of transcallosal communication in those with known deficits of this neuroanatomical structure 

and provides a foundation for future neurorehabilitation approaches. 

Introduction 

Multiple sclerosis (MS) is an auto-immune based neurodegenerative disease plaguing 

nearly one million adults in the United States [14] and has evolved into the leading non-

traumatic neurodegenerative disease among young adults [15]. This neurological condition on 

average befalls individuals between 20-40 years of age [17] and is characterized by degradations 

of the myelin sheath encompassing the white matter tracts throughout the central nervous system 

[16]. Widespread microstructural quantity and quality concerns accompany disease progression, 

yielding delays or inhibition of both sensory and motor signal propagation, leading to both 

mobility and stability impairments [172]. Mobility impairments comprise the majority (93.7 %) 
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of grievances expressed by people with MS (PwMS) [18] with 85% directed to gait as their chief 

complaint [173]. 

To move throughout these multifarious environments, the line between posture and 

movement becomes blurred whereby movements are defined by the transitions from one posture 

to another [59]. These transitions are manufactured through complex coordinated ambulatory 

arrangements to distinguish ‘normal walking’ [33]. Each movement is fashioned to constrain an 

undulating center of mass within the confines of a constantly re-establishing (via stepping) base 

of support through strategically devised foot strikes or placements, completed consciously or 

unconsciously, in order to prevent a fall [37]. Eventual walking patterns emerge to safely and 

effectively navigate the highly unpredictable and exceedingly variable environments of daily 

living. The synchronous complexity of coordinated gait patterns requires effective 

communication throughout the central nervous system to bilaterally advance body position. 

Given that each half of the body is controlled by the contralateral brain hemisphere, 

neurotransmission between brain hemispheres is imperative to gait performance.  

The corpus callosum (CC) is the largest recognized white matter fiber bundle in the 

human body [174], comprised of commissural white matter fiber tracts connecting hemispheres 

[175] and implicated as the primary site of interhemispheric information transference [74]. 

Facilitating both excitatory and inhibitory information [73], the microstructural integrity of the 

CC has been intricately linked to the governing of cognitive functions and signal input for the 

visual, motor, and somatosensory systems [71]. As a structural component of the central nervous 

system, the CC displays reductions in microstructural integrity even in the absence of lesions in 

PwMS [81, 84]. Accompanying CC microstructural reductions are compromised bimanual (i.e. 

upper extremity) coordinated movements [86]. Although, moving both hands independently in 
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the same temporal environment is important to an active lifestyle, it does not pose the threat to 

safety that deficiencies in bilateral (i.e. lower extremity) coordination implicates. PwMS have 

demonstrated reduced mobility performance [151-156] and endurance [151, 155] accompanied 

by poorer white matter microstructural integrity.  However, a dearth of knowledge exists 

concerning the neural mechanisms underlying bilateral coordinated movements.  

While interlimb coordinated movements have proven germane to mobility and quality of 

life [175]; cultivating a robust view of the underlying mechanisms of these movements requires 

going beyond structural grasps and developing a functional understanding of the role that the CC 

plays in transcallosal communication. During bilateral coordination, each leg must move 

independently of one another in the same temporal and spatial environment. These lower 

extremity movements, like bimanual coordinated movements, require precise communication 

between the two sides of the body (e.g. tying shoelaces, typing, or walking) and compelling the 

movement of one limb to have an overall inhibitory effect on the ipsilateral motor cortex [176, 

177]. Reductions in the inhibitory capability of PwMS have been reported between the primary 

motor cortices (M1) and are accompanied by poorer manual control and greater motor-related 

disease severities compared to age-matched controls [85, 178]. However, similar to structural 

comprehension, literature concerning ipsilateral inhibitory connotations of the lower extremities 

in PwMS is insufficient and needs to be further identified. 

The overarching objective of the present study was directed at providing mechanistic 

insight into the structural and functional paradigms of bilateral coordination pertaining to both 

neuro-typical and -atypical (i.e. PwMS) adults. The initial aim was to assess MRI-derived 

measures of transcallosal sensorimotor fiber tract microstructural quality (via diffusion imaging) 

in PwMS and neurotypical adults, while identifying their association with bilateral coordination 
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using novel methods of ecologically-valid mobility assessments. The secondary aim sought to 

evaluate the functional connections of CC interhemispheric transcallosal inhibition (via 

ipsilateral silent periods (iSPs)) and the connotations of this functionality reflected within 

bilateral coordination. We hypothesized that poorer quality of white matter fiber tracts 

connecting the right and left sensorimotor cortices of the brain (i.e. transcallosal sensorimotor 

tracts) will be strongly associated with increased lower limb asymmetries and inconsistencies as 

quantified by the Phase Coordination Index (PCI), specifically within the tracts comprising the 

primary motor transcallosal fiber bundle. Further postulations instigated from the augmented 

degradations of the CC microstructure are that poorer interhemispheric inhibition will 

systemically be associated with reduced bilateral coordination.  

Methods 

Participants: Thirty participants with a confirmed diagnosis of relapse-remitting MS and 

thirty additional sex- and age-matched healthy controls were included in this study 

(demographics and anthropometrics presented in Table 3.1). Participants were excluded if they 

could not safely walk three tenth of a mile (~500 yards) without a walking aid, if they had a joint 

replacement, musculoskeletal injury, vestibular disorder, or any additional diagnosed 

neurological condition outside of MS. Further, PwMS were required to have a neurologist 

confirmed diagnosis of relapsing-remitting MS and excluded if their self-administered Expanded 

Disability Status Scale (EDSS) was above a 4.0, indicating the ability to independently ambulate 

and stand/walk on a firm surface for at least 30 non-consecutive minutes. This study was 

approved by the local Institutional Review Board and all participants gave their informed written 

consent before beginning any experimental protocols. 
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Table 3.1 | Demographic, Anthropometrics, and Balance Impairment Summary Means ± 

Standard Deviations. 

 

 PwMS Neurotypical 

Sex  n = 27 n = 29 

     Female 20 21 

     Male 7 8 

Age (years) 48 ± 12 47 ± 15 

Height (m) 1.67 ± 0.08 1.69 ± 0.08 

Weight (kg) 68.6 ± 9.2 72.4 ± 14.2 

Body Mass index (kg.m-2) 24.9 ± 3.8 25.3 ± 4.0 

Self-Administered EDSS 

[median (range)] 
3.5 (0.0–4.0)  Not Applicable 

Mini-BEST   

     Overall Impairment Score 21.9 ± 3.8 25.3 ± 2.1 

     1.Anticipatory 4.9 ± 1.1 5.4 ± 0.8 

     2.Reactive Postural Control 4.1 ± 1.3 5.4 ± 0.8 

     3.Sensory Orientation 5.6 ± 0.7 5.9 ± 0.3 

     4.Dynamic Gait 7.3 ± 1.5 8.6 ± 1.1 

 

 Experimental Protocol: Each participant underwent two non-consecutive days of testing 

consisting of various neuroimaging and mobility assessments. Day one entailed a thirty-six-

minute non-contrasted magnetic resonance imaging (MRI) scan protocol comprised of four 

diffusion weighted imaging sequences (thirteen minutes) to quantify the microstructural 

structural integrity of CC transcallosal sensorimotor white matter pathways. After the MR 

procedure, participants underwent an arrangement of mobility and balance impairment 

assessments encompassed by the Mini Balance Evaluation System Test (Mini-BEST) and 

culminating with a self-paced continuous two-minute barefoot walk transpiring down a 110-foot 

hallway. Day two commenced within a two-week span of day one, day two involved the 

evaluation of the functional performance by assessing interhemispheric inhibition contained 

within transcallosal communication via transcranial magnetic stimulation (TMS).  

Mobility Impairment: Balance impairments were assessed with the Mini-BEST, a 

comprehensive impairment evaluation designed for the clinical environment and originated from 
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the BEST. The original BEST was founded on six domains: biomechanical, stability 

limits/verticality, anticipatory, reactive, sensory orientation, and stability in gait [179]; found to 

be a valid and reliable comprehensive assessment of balance impairment in neurotypical adults 

[180, 181], patients with neural injuries (e.g. stroke) [182], and neurodegenerative populations 

[183-186]. With excellent interrater (ICC ≥  0.91), and test-retest (ICC ≥  0.88) reliability [187], 

the Mini-BEST is a condensed representation of the BEST, reduced to four domains: anticipatory 

postural adjustments, reactive postural control, sensory orientation, and balance during gait 

[188]. Furthermore, the Mini-BEST has revealed comparable accuracy to the BEST in 

identifying fallers [187].  

All participants underwent the fourteen independent assessments comprising the Mini-

BEST and were rated upon the accompanied discriminate scale of 0 (unable to perform/requires 

help), 1 (moderate issues with completing the assessment), or 2 (normal performance) [188, 

189]. Detailed explanations of each Mini-BEST assessment and the official examination form 

can be found at http://www.bestest.us/ [190]. Conclusions drawn about balance impairment were 

surmised from the overall Mini-BEST score [188, 189] and specified deficits were extracted 

from the individual domains comprising the overall Mini-BEST score. Scored out of  a 

maximum 28 points, the lower the overall is score is an indication of sufficient balance 

deficiencies and overall score variations of four or more points signify a minimal clinically 

important difference (MCID) [191]. Within this examination, PwMS demonstrated increased 

balance deficits overall and within each of the domains comprising the Mini-BEST however, 

these scores did not surpass the MCID (scores displayed in Table 1). 

Bilateral Coordination: A 110-foot hallway was utilized for the continuous two-minute 

walk to minimize both the amount of turns required and points of deceleration. Each participant 
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was directed to walk at their own unimpeded self-selected pace, ambulating back and forth down 

the hallway until they exceeded the two-minute duration (data was derived from the same 

population detailed in the chapter 2 study). A step-by-step stride analyses was derived from six 

tri-axial Opal™ (sampling frequency 128 Hz, APDM Inc, Portland, OR, USA) body-worn 

inertial monitoring units placed on the sternum, lumbar, wrists, and feet. All stride outcomes 

were achieved from the APDM Inc. Mobility Lab™ (http://apdm.com) software and exported to 

a custom MATLAB (MathWorks, Natick, MA, USA, version R2017a) script for quantification 

of bilateral coordinated via PCI derived from equations developed by Plotnik and colleagues 

[106]. 

Used as the primary outcome of left-right coordinated stepping, PCI (!_#$ + 	Pφ)*+) 

represents the accuracy (φ_ABS = |! − 180°| à Pφ)*+ = 100 ∗ (
8_9:;

<=>
)) and consistency 

(j_CV = 
;@A

BCDEA
 [%]) of stepping/phase (j) generation within the gait cycle [106]. By modeling 

the gait cycle (heel strike to heel strike of the same foot, i.e. one stride) as 360° and each step as 

a j within the gait cycle, a phase generation of 180° would epitomize a perfect phase 

relationship between the step timing of both legs, ergo perfect bilateral coordination [106].  A 

PCI score closer to zero indicates better bilateral coordination, in other words, that the individual 

is generating more accurate and/or consistent phases within the gait cycle [106, 166].  

Magnetic Resonance Imaging (MRI): MRI Data Acquisition: Diffusion weighted image 

acquisition was completed with a 3.0 T Siemens MAGNETOM Prismafit (Siemens Medical 

Solutions USA, Inc., Malvern, PA) MRI scanner equipped with a 32-channel head coil and 

parallel imaging. Diffusion weighting was applied in an anterior > posterior orientation with 27 

independent non-collinear orientations (b = 2400 s/mm2) including, six unweighted images (b = 

0 s/mm2). High-angular resolution diffusion imaging was utilized in conjunction with an echo-
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planar imaging sequence (repetition time (TR) = 4000 ms, echo time (TE) = 77.00 ms, field of 

view (FoV) = 224 mm (224 mm (RL), 216 mm (AP), 144 mm (FH)), 72 (transversal) slices, slice 

thickness = 2.00 mm, and voxel dimensions= 2.0 x 2.0 x 2.0 mm). Additionally, a high-

resolution T1-weighted anatomical scan (TR = 2400 ms, TE = 2.07 ms, flip angle = 8°, FoV = 

256 mm (180 mm (RL), 256 mm (AP), 256 mm (FH)), slices = 224 (sagittal), slice thickness = 

0.8 mm, and voxel dimensions = 0.8 x 0.8 x 0.8 mm) was collected for post-processing 

registration. In addition to the thirteen minutes scan duration for diffusion weighted image 

acquisition, seven minutes were allocated for a T1-weighted image acquisition.  

Diffusion Data Processing: Transcallosal sensorimotor fiber bundle microstructural 

integrity was assessed during post processing analysis via the ExploreDTI (University Medical 

Center Utrecht, Netherlands, Version 4.8.6; www.exploredti.com) graphical toolbox; utilized for 

exploratory diffusion (tensor) MRI and fiber tractography in processing, analyzing, and 

visualizing diffusion MR data [192]. Raw images were visually inspected for evidence of excess 

motion artifact or instrumental noise via quality assurance tools available within ExploreDTI. 

Additionally, image data was corrected for the following: signal drift, Gibbs ringing, eddy 

currents, subject motion, and distortions with both eddy current and subject motion corrective 

applications being adjusted to each individuals’ own high resolution T1-weighted image. The 

eight transcallosal sensorimotor fiber tract bundles including: the posterior and anterior primary 

motor cortex (M1a and M1p), dorsal and ventral premotor cortex (PMd and PMv), 

supplementary motor area proper (SMA proper) and pre-supplementary motor area (pre-SMA), 

primary sensory cortex (S1), and the cingulate motor area (CMA)) connecting homologous 

regions for interhemispheric communication comprising the CC were segmented with the Ruddy 

atlas available within the ExploreDTI template suite [70]. Tensor estimation were performed 
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using the iteratively reweighted linear least squares approach and fiber trajectories computed 

with constrained spherical deconvolution (CSD)-based deterministic whole-brain fiber 

tractography [70, 193]. Voxel by voxel parameters for CSD tractography were as follows: 

seedpoint resolution = 2 x 2 x 2 mm, step size = 1 mm, angle threshold of >30, and fiber length 

range = 50–500 mm.  

During post-tractography analysis, each of the derived fiber bundle were again visually 

inspected for any non-transcallosal tractography components incorporated in the atlas 

architecture outcomes indicated by previous work from Ruddy and colleagues [70]. In the event 

of unintended tract inclusions, the unintentional tracts were excised with hand drawn NOT 

regions of interest. Diffusion analytics were configured from the finalized fiber bundles with 

primary (radial diffusivity (RD) and secondary (fractional anisotropy (FA) outcome measures of 

homologous transcallosal tracts being derived for each participant. The secondary outcome of 

FA is a normalized rotationally invariant index that ranges from 0 (isotropic) to 1 (anisotropic), 

higher FA values reflect higher microstructural integrity of the white matter tract [194]. 

Conversely, a higher RD value reflects poorer microstructural integrity, this primary outcome 

represents an indirect measure of myelination by analytics drawn from diffusion tensor along 

secondary and tertiary axes (l^ = [l2 + l3] / 2) [127]. Collectively, these outcome measures 

allow for an encompassed view of the transcallosal microstructural alterations between 

neurotypical adults and PwMS. 

Transcranial Magnetic Stimulation (TMS): TMS Ipsilateral Silent Period Data 

Acquisition: Subjects were seated in a fully adjustable TMS chair with their feet resting on a 

custom-built adjustable platform. Motor evoked potentials (MEP) were elicited in the tibialis 

anterior (TA) muscle of each shin with a MagPro X100 stimulator (MagVenture, Farum, 
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Denmark) using a 2x95mm angled butterfly coil (120-degree, Cool D-B80). In order to be 

consistent across participants the scalp was mapped using permanent marker. The center of the 

head was determined by measuring from the nasion to the inion and from the tragus of each ear.  

Once the center of the scalp was determined, a 2 cm mark was made laterally to each side of 

center with a 5.5 cm mark made anterior to the lateral points.  Upon anterior markings a sagittal 

line was drawn as a reference for initial coil placement. With participants seated, the ‘hot spot’ 

for cortical stimulation of the TA was determined when a TMS stimulus evoked an 

electromyography (EMG) response from the TA in the contralateral hemisphere. The resting 

motor threshold (rMT) was determined in each hemisphere and defined as the lowest stimulus 

intensity that evoked a response ≥ 50µV on five out of ten stimulations. Muscle activity was 

recorded via bipolar EMG electrodes (Ag-AgCl, 11mm diameter, 95mm2 conductive contact 

area, with 70mm distance between electrodes, BIOPAC Systems, Inc EL503) sampled at 2000Hz 

and recorded (BIOPAC Systems, Inc EMG100C).  

With each foot (independently) strapped to the platform via one-inch flat nylon webbing 

connected to a force transducer (BIOPAC Systems, Inc. TSD121C) via carabiner participants 

were asked to produce a series maximal voluntary contractions (MVC). For each TA participants 

conducted between two-five dorsiflexion MVC’s until force production no longer increased 

across attempts and the two highest values were within 10% of each other. The same process was 

replicated for the opposite leg.   

The iSP was tested in both cortical hemispheres, the order of testing (i.e. right vs. left) 

was randomized across participants. To elicit the iSP, participants were asked to maintain 

isometric dorsiflexion at 15% of their MVC. Participants were given visual biofeedback from a 

screen directly in front of them, depicting a dial overlaid with a slight transparent visual wedge.  
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As participants produced force a digital needle pivoted around the center in accordance to the 

force being produced. The transparent wedge signified where the needle should be maintained 

during the trial (i.e. 15% of MVC). Participants were asked to maintain the force as steady as 

possible during the trail.  Each trial was three minutes, during which time the researcher gave an 

ipsilateral cortical stimulation at 120% of the RMT every 7-10 seconds with a total number of 

stimulations averaging 20 per hemisphere (40 total).   

TMS Ipsilateral Silent Period Data Processing: EMG signals were filtered offline using a 

Comb Band Stop filter in the AcqKnowledge software (BIOPAC Systems, Inc., Santa Barbara, 

CA).  The Comb Band Stop filter removed the 60Hz frequencies and all over harmonics of that 

frequency (i.e. 60Hz, 120Hz, 180Hz, etc.). Filtered data was then imported into a custom 

MATLAB script where it was rectified in order to identify and calculate iSP variables for each 

leg following standard approaches [195]. Briefly, for a given leg, the EMG signal was extracted 

from 100ms prior to each stimulation to 350ms post stimulation. Duration of the iSP was 

quantified by identifying the mean consecutive difference (MCD) [196] of the EMG signal for 

the 100ms prior to each stimulation. Following stimulation, iSP onset was identified as the point 

when EMG activity dropped below 2.5 standard deviations of the pre-stimulus MCD. Offset off 

the iSP was defined as the point when the EMG signal raised above the 2.5 standard deviation 

limit for 50% of the data points in the following 5ms window. This was done to account for 

natural EMG variability and to limit any false positive silent period offsets [196]. In addition to 

iSP duration, depth of iSP inhibition was quantified two ways, first the max depth (max-diSP) 

was calculated by determining the lowest EMG amplitude during the silent period. Second the 

average EMG depth (diSP) level during the silent period was quantified as a percent of the mean 

pre-stimulus EMG.  Both measures provide an idea of how much the inhibitory activity was able 
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to reduce the voluntary TA muscle activation [197].  Finally, the presence of an ipsilateral MEP 

(iMEP) was evaluated [198]. All stimulations were visually inspected for quality with individual 

iSPs removed if no silent period was captured, the silent period was physiologically too long, or 

the ipsilateral MEP represented that of a contralateral MEP.  

Statistical Analysis: To identify group differences concerning bilateral coordination (i.e. 

PCI) an independent non-parametric Mann-Whitney t-test was performed. Differentiations 

between microstructural measures for each of the eight transcallosal sensorimotor fiber bundles 

were completed using a 2x8 repeated measure analysis of variance (RMANOVA). Multiple 

RMANOVAs were fulfilled for each of the primary and secondary DTI metrics (FA, RD, and 

AFD). Where appropriate, Bonferroni post hoc tests were performed to determine which of the 

conditions differed. Likewise, functional differentiation between hemisphere laterality and iSP 

depth was identified with a 2x2 RMANOVA and a second 2x2 RMAOVA was fulfilled to 

examine differences between hemispheres and iSP duration. Product moment correlation 

coefficients (r) established the relationships between bilateral coordination outcomes and 

transcallosal sensorimotor fiber bundle integrity metrics diffusion metrics, iSP depths, and iSP 

durations.  

Where appropriate correlations were identified as having no, weak, moderate, strong and 

very strong relationships by the following correlation coefficient ranges 0.0-0.2, 0.2-0.4, 0.4-0.6, 

0.6-0.8, and 0.8-1.0, respectively [199]. Risk of type I error was set at α = 0.05 for all statistical 

analyses. All statistical analyses were computed in JASP (University of Amsterdam, Amsterdam, 

Netherlands, Version 0.11.1) and graphical representations were derived using GraphPad Prism 

(GraphPad Software, La Jolla, CA, Version 8.3.0). 
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Results  

At a self-selected walking pace, PwMS walk with significantly poorer bilateral 

coordination compared to their neurotypical counterparts; generating phases with less accuracy 

and consistency when deriving left-right stepping patterns (Figure 3.1). PwMS also displayed 

structural differences from the neurotypical adults for the CC transcallosal sensorimotor fiber 

bundles, displaying significantly higher RD and lower FA (primary) quantifications across 

bundles (see Table 3.2). Additionally, PwMS exhibited significant relationships between 

bilateral coordination and primary/secondary diffusion metrics across transcallosal sensorimotor 

white matter fiber bundles. For example, the M1a (RD: r = 0.473, p = 0.006 (displayed in Figure 

3.3A); FA: r = -0.514, p = < 0.001) showed the strongest relationship to bilateral coordination 

and displayed this association across both diffusion outcomes. Contrariwise, the neurotypical 

Figure 3.1 | Phase Coordination Index. A.) Displayed are plotted representation of the 

stride-by-stride coordinated patterns of neurotypical adults (top) and PwMS (bottom) as 

quantified by the Phase Coordination Index (PCI). Within the plots, 180° (i.e. a perfectly 

coordinated phase(s) generation) is indicated by the red line and deviations from this line are 

indicative of worse bilateral coordination. B.) PCI performance during the 2-minute self-

selected pace walk between PwMS (1.8 ± 0.6) and neurotypical (2.7 ± 1.7) adults. The mean 

PCI value for each group represented by the colored bars (PwMS: orange & neurotypical 

adults: gold) and the shapes denoting the individual values composing the PCI means for 

each group (PwMS: darkened circles & neurotypical adults: open triangles). The single star 

indicates significance at the 5% level. 
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adults presented only a single positive correlation between bilateral coordination and RD 

microstructural integrity of the PMv.  

Table 3.2 | Summary of Means (Standard Deviations) for Transcallosal Sensorimotor Fiber 

Bundle Microstructural Integrity. 

 

Fiber Bundle 
PwMS*  Neurotypical* 

RD (mm2/s) FA  RD (mm2/s) FA 

CMA 0.49e -3 (0.49e -4) 0.40 (0.04)  0.46e -3 (0.30e -4) 0.43 (0.03) 

Pre-SMA 0.44e -3 (0.55e -4) 0.48 (0.05)  0.41e -3 (0.27e -4) 0.50 (0.04) 

SMA-Proper 0.43e -3 (0.53e -4) 0.48 (0.06)  0.40e -3 (0.29e -4) 0.51 (0.05) 

PMd 0.45e -3 (0.48e -4) 0.47 (0.05)  0.42e -3 (0.28e -4) 0.50 (0.04) 

PMv 0.49e -3 (0.40e -4) 0.40 (0.04)  0.47e -3 (0.26e -4) 0.41 (0.04) 

M1a 0.48e -3 (0.62e -4) 0.44 (0.06)  0.44e -3 (0.31e -4) 0.48 (0.04) 

M1p 0.53e -3 (0.52e -4) 0.36 (0.04)  0.49e -3 (0.31e -4) 0.38 (0.04)  

S1 0.50e -3 (0.43e -4) 0.39 (0.04)  0.47e -3 (0.43e -4) 0.42 (0.04) 

Note. * significance between groups across all transcallosal sensorimotor fiber bundles fiber 

bundles at p-value < .05. 

 

Table 3.3 | Correlations for Bilateral Coordination and Microstructural Integrity Measures of 

the Transcallosal Sensorimotor Fiber Tracts. 

 

Fiber 

Bundle 

PwMS  Neurotypical 

RD FA  RD FA 

CMA 0.395* -0.334**  0.104 -0.102 

Pre-SMA 0.401* -0.558***  0.065 -0.002 

SMA-Proper 0.439* -0.401**  0.158 -0.160 

PMd 0.434* -0.504***  0.108 -0.097 

PMv 0.355* -0.238*  0.318* -0.172 

M1a 0.473** -0.514***  0.122 -0.101 

M1p 0.308 -0.355**  0.165 -0.047 

S1 0.360* -0.346**  0.016 -0.100 

Note. * significant between fiber bundle microstructural integrity & bilateral coordination at p-

value < .05, **p < .01, ***p < .001. 

 

Functionally, both depth and duration of the iSP revealed no significant difference between 

hemispheres or groups (Figure 3.3A/3.3B & Table 3.4). Furthermore, the only functional 
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measure of transcallosal communication significantly correlated to bilateral coordination was the 

right hemisphere iSP duration, identified only in PwMS (displayed in Figure 3.2B).    

 

 

 

  

Figure 3.2 | Transcranial Magnetic Stimulation: ipsilateral Silent Period.  

A.) Ipsilateral silent period (iSP) with the depth (green) and duration (yellow measure) of 

the inhibitory signal demarked following the TMS stimulation (red hashed line) and 

resulting motor evoked potential (MEP). B.) Mean depth of the ipsilateral silent period 

(diSP) in relation to left and right hemispheres. Shows mean diSP value in both 

hemispheres for both neurotypical adults and PwMS. C.) Mean duration of the ipsilateral 

silent period (iSP) in relation to left and right hemispheres. Shows mean iSP duration 

value in both hemispheres for both neurotypical adults and PwMS. In both B and C bar 

graphs, the mean values for each group represented by the colored bars (PwMS: orange & 

neurotypical adults: gold) and the shapes denoting the individual values composing the 

PCI means for each group (PwMS: darkened circles & neurotypical adults: open triangles). 

No significance was found between groups or hemispheres. 
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Table 3.4 | Functional Associations Between Bilateral Coordination and Functional 

Connectivity of Transcallosal Communication 

 

A. ipsilateral Silent Period Duration 

ipsilateral Silent Period Duration 

Brain 

Hemisphere 

PwMS 
 

Neurotypical 

iSP (ms) r  iSP (ms) r 

Right 64.0 ± 40.3 -0.347*  74.5 ± 39.5 -0.142 

Left 69.5 ± 47.1 -0.081  76.2 ± 48.1 -0.065 

ipsilateral Silent Period Depth 

Brain 

Hemisphere 

PwMS 
 

Neurotypical 

diSP (%) r  diSP (%) r 

Right 63.1 ± 12.0 -0.086  62.7 ± 12.2 -0.049 

Left 63.2 ± 15.5 -0.123  62.2 ± 14.4 -0.126 

Note. * significant between fiber bundle microstructural integrity & bilateral coordination at p-

value < .05. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 89 

Discussion 

While walking at self-selected pace PwMS displayed overall poorer coordinated left-right 

stepping compared to neurotypical adults throughout the two-minute walking duration. This 

Figure 3.3 | Bridged correlations of bilateral coordination.  

A.) Positive correlation between microstructural integrity of the 

M1a transcallosal fiber bundle and the phase coordination index 

across all PwMS (r  = 0.473, p = 0.006) and B) Negative 

correlation between right hemisphere ipsilateral silent period 

duration and the phase coordination index across all PwMS (r  

= 0.347, p = 0.045). 
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result concurs with preceding spatial and temporal gait characteristics exhibited by PwMS, 

whereby gait patterns conform to a more fall protective strategy (i.e. increased step width, 

decreased step length, and other conservative gait adaptations) [11]. The adapted asymmetrical 

gait patterns (i.e. higher PCI) are comprised inability to generate accurate and consistent phases 

within the gait cycle compared to the neurotypical population, coinciding with previous 

outcomes from the neurotypical aging process [110] and alternative neurodegenerative 

populations (i.e. Parkinson’s Disease) [106, 111, 112]. Further identification of the mechanisms 

driving these bilateral deficits were directed at the initial structural and secondary functional 

aims of this study. As predicted, PwMS exhibited poorer structural quality of the 

transcallosal sensorimotor tracts and furthermore, that these tracts were associated with increased 

lower limb asymmetries, specifically in the primary motor transcallosal bundle. However, these 

correlating mechanisms were not extended to the age/sex-matched neurotypical adults.  

As the first known study to assess the microstructural integrity (via DTI) of the 

transcallosal sensorimotor white matter fiber bundles in PwMS, the outcomes of this 

examination parallel gross CC (e.g. rostrum, genu, body, isthmus, and splenium, listed from 

anterior to posterior, respectively) degradations [200] and reduced structural connectivity 

observations, occurring in PwMS, even in the absence of lesions [84]. This degradation of 

connections between right and left sensorimotor cortices of the brain was as hypothesized, to be 

associated with increased lower limb bilateral coordination. This observation was only 

exemplified in PwMS, correlations between microstructural integrity and bilateral coordination 

did not extend into the neurotypical-matched population. This bridged hemispheric sentiment has 

shown direct properties related to bimanual (i.e. upper extremity) coordination performance 

including: facilitation, alteration and predictions of movements [74]. In reference to the 
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orientation of bimanual movements, the anterior portions of the CC have been associated with 

upper extremity temporal coupling movement [78] and internally guided movements [79]; 

conversely, the posterior portions of the CC have been associated with spatial coupling [80] and 

externally-guided movements [79]. These parameters of coordination are essential for the 

intricate movements and timing associated with bimanually coordinated actions and extend to 

lower extremity coordinated functionality presented in this evaluation.  

When compromised (e.g. degraded), the transcallosal sensorimotor tracts of PwMS 

display connotations of corrupt coordinated mechanisms of ambulation (i.e. increased 

asymmetric function), an observation that was not echoed in the neurotypical population. 

Previous neurotypical age directed research of bimanual movements contradict this bilateral 

reflection, demonstrating strong associations between CC microstructural degradations and 

decreased ability to regulate coordinated bimanual movements (e.g. slower/less accurate 

movements, increased variability, and less synchronous) [81-83]. A uniform response confirmed 

in PwMS by Bonzano et al. [86], established that PwMS are all together slower in originating in- 

and anti-phase bimanual upper extremity tasks that are proportional to the decreased integrity of 

the CC. When extending this notion inferiorly to static/reactive postural control performance, 

Peterson et al. [161] identified similar interactions which parallel the target conclusions 

confirmed in the more dynamic task of coordinated ambulation guided by this investigation. 

As projected the microstructural quality of the M1a displayed a meaningful association 

with self-selected coordination in PwMS. These specific cortices (e.g. connecting fiber bundles), 

along with the supplementary motor cortices and premotor cortices, all play vital roles in the 

complexity of locomotion and postural stability [72]; a detailed synopsis of the neural circuitry 

behind gait can be identified in the Gait chapter of the (2018) Handbook of Clinical Neurology 
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[61] . Specifically, the M1a provides the neural system with the aptitude to turn motor plans (via 

the preSMA/SMA-proper) into firing actions, ultimately aiding the derivation of lower extremity 

propulsive properties [61]. The M1a provides a target mechanism to move forward in developing 

therapeutic approaches that could improve asymmetries in the gait of PwMS. Low frequency 

repetitive TMS (rTMS) offers a non-invasive approach to improve functional connectivity of the 

motor cortices and thereby motor function [201]. This methodology demonstrates the potential to 

affect the underlying M1a fiber bundles thus improving gait function however, the 

aforementioned success has only been concluded in the upper extremities and further 

investigation is warranted. Alternatively, prior exploration pairing adaptive learning approaches 

(via split-belt treadmill training paradigms) with non-invasive brain stimulation have yielded 

enhanced motor learning outcomes [202]. These positive effects could plausibly be translated 

into the reduction of gait asymmetries and increasing the health span of PwMS. Outside of the 

M1a connotations, moderate correlations to gait asymmetries were identified concerning both 

preSMA and SMA-proper fiber tract bundle microstructural integrity, consistent with known 

mechanisms of neural circuitry in gait. Future investigations should look further into these 

connections and their roles as functional components in planning initiations, reactions, and 

pattern generation for ambulation. 

Although the surmised rehabilitative treatments previously suggested are largely based 

around TMS inclusion and reduced interhemispheric inhibition between the M1 cortices 

compared to age-matched controls have been recognized [85], this sentiment was not 

sequentially echoed in this examination. Differentiations between groups or hemispheres were 

absent for both iSP duration and depth. This absence of discrepancy is a reiteration of prior TMS 

(upper extremity) indications for iSP depth of inhibition however, the duration of inhibition 
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seems largely consistent in revealing PwMS to have prolonged conduction of the callosal 

connections [85]. This dearth in differentiation could stem from an insufficient ability to 

propagate the elicited signal to the target of ongoing EMG activity, in this examination, the 

lower extremity. Few studies have attempted or accomplished a clear iSP recording at this 

locality, which could be due to the increased complexity of the neural pathways. Most TMS 

research applies a more direct approach (e.g. clearer path), recording reflections of inhibitory 

effects on volitional motor activity at the first dorsal interosseous of the upper extremities. 

Beyond disoriented signal conductions within the brainstem (i.e. thalamus, basal ganglia, or 

pedunculopontine nucleus), this must be navigated through the convolution of the spinal cord 

and spread into the peripherals where at any point signal dissipations are plausible. Although 

technological advancements like neuro navigation (not enabled in this examination) or the angled 

figure-eight coil (enabled) increase the likelihood of achieving desired lower extremity 

quantification (at an increased depth), we could be reaching the extent of our current 

technological capabilities.  

Regardless of the differentiation to the neurotypical adults, PwMS displayed a weak 

correlation between interhemispheric inhibition duration and bilateral coordination in the right 

(iSP dominate) hemisphere only. No other correlations were noted by PwMS or the neurotypical 

population however, this may be a reasonable conclusion on the basis of a recent bimanually 

coordinated discovery from Bortoletto et al. [203].  Their findings suggest that “the temporal 

domain is crucial for left hemisphere motor dominance”, specifically identifying that bimanually 

coordinated movements profit from signal transmission in the dominant M1 to nondominant M1 

voyage rather than the contrary direction of transmission [203]. The iSP correlation recognized 

in this lower extremity analysis could stem from similar inferences. By displaying shorter 
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conduction delays (i.e. inhibition) at the non-dominate M1 (right hemisphere) to the dominate 

M1 (left hemisphere) a description of shortened signal latency periods could be associated with 

bilaterally coordinated ambulation. To be conclusive of these hypothesized descriptions, further 

analyses need to be originated considering transcallosal conduction delays and TMS-evoked 

potentials at the P15 directed at examinations of the lower extremities. 

Although this examination of structural and functional characteristics embarks a 

significant evaluation of the mechanistic properties underlying bilateral coordinated gait, it was 

not without some notable limitations. 1.) The number of orientations utilized in the diffusion 

allocation was limited to 27 independent non-collinear orientations and considering the 

complexity of the CC structure, accounting for crossing fiber orientations is a concern. However, 

this was postulated to be remedy by utilizing a multi-tensor model (i.e. CSD) along with the 

incorporation of higher b-values. By increasing the b-value (2400 s/mm2; recommended 1000-

3000 s/mm2) and incorporating a higher order diffusion model (HARDI) [127], we believe that 

sufficient data quality was achieved to perform accurate and reliable tractography of the CC. 

Future studies may amend concerns directed towards further accountancy of crossing fiber 

orientations by incorporating more intricate diffusion-based techniques such as non-gaussian 

based analyses of diffusion kurtosis imaging (DKI). This acquisition, methodology, and 

application could allow for a better description of the underlying diffusion properties and 

enhance the detection of microstructural changes [127]. In addition to DKI, a more novel fixel-

based analysis (FBA) may be employed, this novel approach incorporates a more comprehensive 

statistical analyses of white matter quantitative measures involved in various fiber-specific 

orientations [204]. 2.) As previously declared, neuro navigational technology was not applied to 

this TMS acquisition thereby conceivably affecting the accuracy and consistency of achieving 



 

 95 

the lower extremity target area. This was remediated by applying a scalp mapping acquisition 

procedure for target locality, in conjunction with an angled figure-eight coil, and the inclusion of 

EMG recordings to verify muscle outputs. Indubitably, this acquisition technique would benefit 

from cranial navigational support however, acquisition of the interhemispheric communication 

for the lower extremities is notoriously difficult to achieve [205], as previously justified. 3.) 

Lastly, the bilateral coordinated outcomes purposed in this examination were solely derived from 

temporal aspects of the gait cycle and spatial characteristics were neglected. Future elaborations 

of asymmetric assessments and therapeutic approaches would benefit from a complete kinematic 

and kinetic profile to further describe coordinated movements. By developing a more 

encompassed view of the gait properties (joint angles, torques, powers, and more), more intricate 

therapeutic techniques can be devised to rehabilitate and hopefully, increase their quality of life.  

  Navigating the demands imposed by activities of daily living requires precise spatial and 

temporal movements, dictating not only the quality of the life span but also the health span of 

both neurotypical and neuro-atypical bipedal human beings. This innovative mechanistic 

evaluation of bilaterally coordinated movements demonstrated that PwMS walk at their self-

selected pace with worse left-right stepping patterns. Furthermore, these coordinated movements 

appear to be driven more by the microstructural integrity of the transcallosal sensorimotor fiber 

tracts and less by the functional connectivity of transcallosal connections. Specifically, the 

sensorimotor fiber bundle connecting the primary motor cortices (M1a) has emerged as a 

principal target for attenuating asymmetric ambulation and future therapeutic neurorehabilitation 

evaluations. 
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Chapter 4 | Advanced Characterization of Static Postural Control Dysfunction and Associated 

Neural Mechanisms in Persons with Multiple Sclerosis 

 

 

 

Chapter Summary 

Introduction: Controlling an upright bipedal position is a temporally complex initiative carried 

out through afferent sensory inputs and efferent postural corrective outputs. The purpose of this 

investigation was to assess the microstructural architecture of the sensorimotor pathway quality 

and identify their relation to the multi-dimensional postural control measure of time-to-boundary 

(TTB) in both neurotypical and -atypical (persons with multiple sclerosis) adults. Methods: 

Postural control was assessed with bi-directional anterior-posterior (AP) and medial-lateral (ML) 

TTB in four manipulated sensory conditions. While the microstructural integrity of the 

sensorimotor pathway was established by magnetic resonance-based diffusion imaging 

outcomes. Results: PwMS displayed significantly worse postural control (i.e. shorter TTB) in the 

AP direction compared to their neurotypical counterparts across each of the four varying sensory 

testing conditions and poorer microstructural quality of the sensorimotor pathway in comparison 

to the neurotypical adults. This atypical population displayed a negative correlation (r = -0.431, p 

= 0.016) between the integrity of the pathway and AP TTB during proprioceptive-based balance. 

Discussion: This is the first known study to establish connections between the microstructural 

integrity of the sensorimotor pathway and postural control performance via multi-dimensional 

measures. Observed indications specify that a reduction in sensorimotor pathway microstructural 

integrity is associated with poorer multi-dimensionally derived postural control in PwMS. 
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Introduction 

Postural control is signified as the act of controlling the position of the body in a given 

space for the primary purpose of maintaining a stabilized orientation [25] and is regulated by six 

mechanistic domains including: (1) biomechanical constraints, (2) movement strategies, (3) 

sensory strategies, (4) orientation in space, (5) control of dynamics, and (6) cognitive processing 

[9, 45]. Each of these domains are essential for keeping an upright body position as the body 

continually combats gravitational forces with the objective of constraining the body’s center of 

mass (CoM) within the established base of support (BoS). These aforementioned domains of 

postural control are complex and involve a multitude of sensory inputs and motor outputs to 

achieve the desired biomechanical objective, thereby maintaining an upright stabilized postural 

position [4]. Whether attempting to stand as still as possible or ambulating across the room, our 

sensory feedback systems (i.e. proprioceptive, vestibular, and visual systems) are constantly 

relaying information throughout the central nervous system for the construction and execution of 

motor output corrections [4]. We are continually learning more about the constructs composing 

these systems and how they are utilized in postural control; given recent evidence that the human 

brachial plexus is composed of 370,000 axons with a mere 6% of those axons quantified as being 

motor axons [206], further focus on the role of the sensory systems is warranted. In an optimal 

environment (i.e. a well-lit room, on a rigid surface) the neurotypical adult has shown to weight 

the sensory system inputs as 70%, 20%, and 10% for the somatosensory (e.g. proprioceptive), 

vestibular, and visual respectively [29].  

Highlighted by the dominate reliance on proprioceptive sensory feedback, registered 

afferent information containing postural positioning and surface stability is transported from the 

peripheral nervous system to the central nervous system. This communication thereby ascends 
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the spinal cord to the cerebral cortex (somatosensory cortex) via the posterior column-medial 

lemniscus (PCML) neural pathway [57]. Once organized/processed, a motor plan is relayed for 

execution from a multitude of motor cortices (primary (M1), premotor, supplementary (SMA)) 

and the parietal lobe (primary somatosensory cortex (S1)) via the descending efferent 

corticospinal tracts (CST) [207]. Collectively these ascending and descending fiber tracts can be 

described as the sensorimotor pathway, constituted of highly conductive white matter tracts and 

relying upon temporally sensitive informational transference for postural corrections. If the 

aforementioned sensory inputs are not weighted properly upon the environment or situation, the 

postural corrections will not be accurately executed in a timely or precise manner thereby 

deviating the center of gravity (i.e. CoM) beyond the parameters of the BoS, inevitably resulting 

in instability and a fall [6, 7]. 

A fall is the involuntarily result of a person coming to rest on the ground and stems from 

the reduction or loss of postural control, these declines have been found to be ubiquitous with 

aging, injuries, and disease [208]. Postural control deficiencies plague neurodegenerative disease 

populations, creating an amplified risk of fall or fall-related injuries. Multiple sclerosis (MS), is 

an autoimmune-based chorionic-inflammatory neurodegenerative disease characterized by 

deteriorations of proprioceptive information exerting influence on postural control [209]. 

Affecting more than 2.1 million people worldwide [2, 3] and approximately 1 million United 

States citizens [14], MS in a highly unpredictable disease that attacks the central nervous system 

through demyelination of the axons comprising the white matter, without affecting myelination 

of the peripheral nervous system [15-17]. Around 75% of people with multiple sclerosis (PwMS) 

will experience reduced postural control and therefore, incur an increased probability of 

sustaining a fall [210].  
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Based on previous work from our laboratory [58], identifiable deficiencies of balance 

control on proprioceptive-based tasks were associated with reduced white matter microstructural 

integrity of the cortical proprioceptive tracts in PwMS compared with age-matched neurotypical 

adults. Although this was an instrumental scientific observation, these associations were 

established using traditional single-dimensional measures of postural stability (i.e. sway area). 

These single-dimensional measures are restricted, displaying only spatial explanations of posture 

and may not accurately reflect true postural control, constructing an over amplification of 

postural deviations. Innate multi-dimensional (i.e. incorporating both spatial and temporal 

components) postural stability measures provide alternative quantifications of postural control 

capabilities with reduced limitations consistent in single-dimensional measures. Time-to-

boundary (TTB) is a multi-dimensional measure that provides the amount of time available to 

make corrective postural adjustments prior to the center of pressure (CoP) or center of gravity 

traveling outside the BoS established boundary. Precedent discoveries have demonstrated that 

multi-dimensional postural measures are a more adequate quantification for characterizing 

postural control in PwMS [211] and various stance conditions [212].  

Therefore, the aim of this investigation was to assess the microstructural architecture of 

the sensorimotor pathway quality and quantity (via diffusion imaging) and identify their relation 

to the multi-dimensional postural control measure of time-to-boundary in neurotypical adults. 

Additionally, we sought to identify how the proprioceptive neural underpinnings of this multi-

dimensional postural control measure is different between PwMS and neuro-typical adults. We 

hypothesized that poorer microstructural quality of the sensorimotor pathway will be strongly 

associated with decreased postural control performance, quantified via a shorter TTB. 

Furthermore, we theorized that in addition to displaying poorer sensorimotor pathway 
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microstructural integrity, PwMS will exhibit shorter TTB values (i.e. poorer postural control) 

compared to their neurotypical counterparts across all postural conditions and emphasized during 

proprioceptive manipulated conditions. 

 

Methods 

Participants: Twenty-seven neuro-atypical (i.e. PwMS) adults with a confirmed 

diagnosis of relapse-remitting MS (20 females & 7 males; 48 ± 12 years, 1.66 ± 0.08 m, 68.6 ± 

9.2 kg, body mass index 24.9 ± 3.8 kg.m-2) and twenty-nine additional sex- and age-matched 

neurotypical adults (21 females & 8 males; 47 ± 15 years, 1.69 ± 0.08 m, 72.4 ± 14.2 kg, body 

mass index 25.3 ± 4.0 kg.m-2) were included in this study. Participants were excluded from 

contributing to this investigation if they were unable to stand barefoot on a firm surface, 

unassisted, for at least 30 non-consecutive minutes (Expanded Disability Systems Scale < 4.0; 

PwMS median [3.5] and range [0 - 4.0]) or if they had a joint replacement, musculoskeletal or 

vestibular disorder, or any additional neurological impairment outside of MS. This study was 

approved by an institutional review board and all participants gave their informed written 

consent before beginning participation. 

Experimental Protocol: Occurring over a single testing session, both groups of 

participants underwent a mixed battery of neuroimaging and postural control assessments. The 

assessment began with a thirty-six-minute non-contrasted magnetic resonance imaging (MRI) 

scan protocol, which included a thirteen-minute diffusion weighted imaging sequence for 

quantify the microstructural integrity of the white matter sensorimotor pathways (i.e. PCML and 

CST). Following the MRI, participants performed an instrumented modified Clinical Test of 
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Sensory Interaction on Balance (imCTSIB), a traditionally clinical assessment of postural control 

under assorted sensory conditions.       

Postural Stability: Time-To-Boundary: Using the standard clinically applicable and 

widely-popular protocol of the mCTSIB, a subsidized (no conflict dome condition) version of the 

originated CTSIB [213]. Participants preformed the four separate thirty second trials (1.) eyes 

open and 2.) eyes closed on a rigid surface; 3.) eyes open and 4.) eyes closed on a compliant 

surface), whilst standing as still as possible with their hands on the hips and their feet together 

[214]. Traditionally, this clinical examination has been scored on a semi-quasi pass/fail criterion, 

if the individual is unable to perform the full 30-second trial, an average duration of the able 

trials for up to three attempts are computed to differentiate condition performances instigating 

limited objective conclusions to be drawn. If during the course of the trial, the individual: (1) 

opens their eyes in an eyes closed condition, (2) raises their arms from the hips, or (3) loses 

balance and requiring assistance from the spotting examiner to prevent a fall, deeming these 

actions a failure to maintain postural control and the timing is ceased. The total score represents 

how well an individual is able to utilize their sensory inputs when one or more sensory systems 

are manipulated [214]. To draw more objective and conclusive connotations from this clinical 

exam, the validated instrumented version of the mCTSIB (i.e. imCTSIB) was instituted [215].  

A portable force platform, the BTrackS Balance Plate (BBP) (Balance Tracking Systems 

Inc., San Diego, CA, USA) was utilized in this examination to ascertain validated biomechanical 

measures capable of quantifying objective laboratory-grade center-of-pressure (CoP) postural 

stability assessments outside the laboratory in more clinically applicable environments [40]. CoP 

data was filtered with a second order, low-pass Butterworth filter (cutoff frequency = 4 Hz) using 

the proprietary software built into the BBP prior to exporting data as text file for further TTB 
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analyses in MATLAB. The filtered CoP data was applied to a custom MATLAB script, where 

anterior-posterior (AP) and medial-lateral (ML) TTB measures were derived and applied 

discretely across each of the four sensory conditions [52]. Both directional components of the 

derived data were firstly, centered via subtraction of the mean provided by each vector from each 

data point. Subsequently, velocities for each coordinate data point were computed by exercising 

finite difference approximations on the CoP coordinate data. The TTB was achieved by dividing 

the distance between the CoP and the base of support in either direction (AP or ML) by the 

velocity of the CoP in the same calculated direction. Allowing for a point by point calculation of 

the time it would take to reach the outer parameter of the BoS at each of the computed velocity 

and relative CoP position. Each directional TTB score is representative of the smallest windows 

of time available to make corrective postural changes. In the event that a participant was unable 

to maintain their postural control or violated any of the previously established clinical mCTSIB 

errors, the participants were allotted two additional attempts at the trial. In the event that the 

participant was unable to complete any of the attempts for that trial, the trial (i.e. mCTSIB 

condition) was deemed a fail. During post-processing, all failed trials were prescribed a 0 

(indicative of a fall) for their average TTB outcome in both directions. 

Magnetic Resonance Imaging (MRI): MRI Data Acquisition: Diffusion weighted image 

acquisition was completed with a 3.0 T Siemens MAGNETOM Prismafit (Siemens Medical 

Solutions USA, Inc., Malvern, PA) MRI scanner equipped with a 32-channel head coil and 

parallel imaging. Diffusion weighting was applied in an anterior > posterior orientation with 27 

independent non-collinear orientations (b = 2400 s/mm2) including, six unweighted images (b = 

0 s/mm2). High-angular resolution diffusion imaging was utilized in conjunction with an echo-

planar imaging sequence (repetition time (TR) = 4000 ms, echo time (TE) = 77.00 ms, field of 
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view (FoV) = 224 mm (224 mm (RL), 216 mm (AP), 144 mm (FH)), 72 (transversal) slices, slice 

thickness = 2.00 mm, and voxel dimensions= 2.0 x 2.0 x 2.0 mm). Additionally, a high-

resolution T1-weighted anatomical scan (TR = 2400 ms, TE = 2.07 ms, flip angle = 8°, FoV = 

256 mm (180 mm (RL), 256 mm (AP), 256 mm (FH)), slices = 224 (sagittal), slice thickness = 

0.8 mm, and voxel dimensions = 0.8 x 0.8 x 0.8 mm) was collected for post-processing 

registration. In addition to the thirteen minutes scan duration for diffusion weighted image 

acquisition, seven minutes were allocated for a T1-weighted image acquisition.  

Diffusion Data Processing: Analysis of the sensorimotor pathway microstructural quality 

and quantity was completed with the using MRI-based diffusion tensor imaging (DTI). The 

employed with the ExploreDTI (University Medical Center Utrecht, Netherlands, Version 4.8.6; 

www.exploredti.com) graphical toolbox; utilized for exploratory diffusion (tensor) MRI and 

fiber tractography in processing, analyzing, and visualizing diffusion MR data [192]. Raw 

images were visually inspected for evidence of excess motion artifact or instrumental noise via 

quality assurance tools available within ExploreDTI. Additionally, image data was corrected for 

the following: signal drift, Gibbs ringing, eddy currents, subject motion, and distortions with 

both eddy current and subject motion corrective applications being adjusted to each individuals’ 

own high resolution T1-weighted image. Automated anatomical parcellation of the sensorimotor 

pathway were accomplished by applying the ICBM_Mori anatomical template (e.g. atlas) 

included with the ExploreDTI template suite. The ICBM_Mori template is a derivative of the 

freely available ICBM-152 anatomical template, which incorporates DTI originated fiber 

orientation and parcellation [216]. From the applied atlas, the indicated regions of interest (ROI) 

incorporating both the PCML and CST (identified in Figure 2) established the ROI-based voxel-

view of diffusion metric quantification. The primary neuroimaging analytical outcomes utilized 
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to objectively quantify the microstructural integrity of the sensorimotor pathway were radial 

diffusivity (RD) and fractional anisotropy (FA).  RD is a quantification of the secondary and 

tertiary axes (l^ = [l2 + l3] / 2) of the diffusion tensor, representing an indirect measure of 

myelination [127]. A higher RD value is indicative of poorer microstructural integrity, 

specifically thought to symbolize an indirect reduction of myelination [140, 141]. Alternatively, 

as a normalized rotationally invariant index that ranges from 0 (isotropic) to 1 (anisotropic), FA 

is able echo microstructural integrity whereby lower FA values specify poorer white matter tract 

quality [194]. Post image processing, the primary outcomes (i.e. RD and FA) for both the left 

and right sensorimotor pathway were averaged together to obtain a gross evaluation of the 

pathway microstructural integrity.  

Statistical Analysis: A 2x4 repeated measures analysis of variance (RMANOVA) was 

applied to identify differences between groups and average AP TTB measures for the four 

sensory conditions of the mCTSIB, an analysis that was repeated for the ML direction. In the 

event that a Mauchly’s test of sphericity indicated a violation (p < 0.05), a Greenhouse Geisser 

correction was applied. Where appropriate, Bonferroni post hoc tests were performed to 

determine which of the sensory conditions differed. Additionally, independent Student t-tests 

were applied to both of the neuroimaging primary outcomes for the sensorimotor pathway to 

distinguish differentiation between groups. If a violation of equal variance assumption was 

indicated via the Levene’s test, a Welch correction was implemented to the t-test. 

 Product moment correlation coefficients (r) were utilized to establish associations 

between TTB postural outcomes in both directions and sensorimotor pathway integrity diffusion 

metrics. Where appropriate correlations were identified as having no, weak, moderate, strong and 

very strong relationships by the following correlation coefficient ranges 0.0-0.2, 0.2-0.4, 0.4-0.6, 
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0.6-0.8, and 0.8-1.0, respectively [199]. Risk of type I error was set at α = 0.05 for all statistical 

analyses. All statistical analyses were computed in JASP (University of Amsterdam, Amsterdam, 

Netherlands, Version 0.11.1) and graphical representations were derived using GraphPad Prism 8 

(GraphPad Software, La Jolla, CA, Version 8.3.0).  

Results  

  PwMS displayed significantly (p = 0.018) worse postural control (i.e. shorter TTB) in the 

AP direction compared to their neurotypical counterparts across each of the four varying sensory 

testing conditions (Figure 4.1). However, in the ML direction, there were no significant (p = 

0.191) TTB differentiations between groups (Table 4.1). 
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Figure 4.1 | Time-to-boundary for each of the four conditions tested with the 

imCTSIB in the anterior-posterior direction. A significant main effect of group 

and condition (P < 0.05) was demonstrated, but a group × condition interaction 

was absent. PwMS presented shorter AP average TTB durations across all four 

conditions compared to neurotypical, indicating a reduced amount of time to 

make postural corrections. Plotted data is represented with means (underlying bar 

plot) and individual values (PwMS: closed circles and neurotypical: open 

triangles). 
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Table 4.1 | Summary of Means and Standard Deviations for the Anterior-Posterior and Medial-

Lateral mCTSIB Time-To-Boundary Measures (seconds). 

 

mCTSIB Testing Condition PwMS  Neurotypical 

Anterior-Posterior* 

1. Eyes Open - Rigid Surface 16.00 ± 6.82  20.63 ± 7.02 

2. Eyes Closed - Rigid Surface 12.80 ± 6.49  15.15 ± 5.47 

3. Eyes Open - Compliant Surface 7.09 ± 4.04  9.93 ± 4.08 

4. Eyes Closed - Compliant Surface 3.05 ± 2.49  4.37 ± 2.00 

Medial-Lateral 

1. Eyes Open - Rigid Surface 10.55 ± 4.88  12.14 ± 3.26 

2. Eyes Closed - Rigid Surface 8.41 ± 4.25  8.81 ± 2.72 

3. Eyes Open - Compliant Surface 5.44 ± 3.35  6.33 ± 2.07 

4. Eyes Closed - Compliant Surface 2.10 ± 1.76  2.98 ± 1.32 

Note.  * Significant main effect of group and AP TTB (p = 0.018) was demonstrated, but no AP 

group × condition interaction or ML effects were present. 

 

Besides possessing poorer AP postural control, PwMS presented poorer microstructural quality 

of the sensorimotor pathway in comparison to the neurotypical adults, exhibiting significantly 

(Student: p = 0.006, Welch: p = 0.008) higher RD (PwMS: 0.62e -3 ± 0.66e -4 mm2/s, 

neurotypical: 0.58e -3 ± 0.42e -4 mm2/s) quantification. FA, the normalized measure of 

microstructural quality (PwMS: 0.33 ± 0.02, neurotypical: 0.34 ± 0.02) failed to reach 

significance (p = 0.054) differentiating the groups (Figure 4.2C & 4.2D). 
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A lone significant negative correlation (r = -0.431, p = 0.016) between the integrity of the 

pathway via RD and AP TTB in the eyes open, compliant surface condition (mCTSIB condition 

2) was discovered in PwMS (Figure 4.3). No additional meaningful associations between 

pathway integrity and TTB postural metrics were identified in the neurotypical population 

(Table 4.2). 

Figure 4.2 | Diminished sensorimotor pathway microstructural integrity in PwMS. (A) 

Axial and (B) coronal views of the ICBM-152-based atlas achieved from template suite in 

ExploreDTI (University Medical Center Utrecht, Netherlands, Version 4.8.6; 

www.exploredti.com). (C) PwMS demonstrated significantly greater radial diffusivity 

(0.62e -3 (0.66e -4)) of the sensorimotor pathway white matter fiber tracts compared to 

neurotypical adults (0.58e -3 (0.42e -4)). Data are mean (± SD); ** significant group 

difference at p-value < .01. (D) PwMS displayed reduced fractional anisotropy (0.33 (0.02)) 

of the sensorimotor pathway white matter fiber tracts compared to neurotypical adults (0.34 

(0.02)) but, failed to achieve a level of significance. Data are mean (± SD); p-value = 0.054. 
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Figure 4.3 | Associations between sensorimotor pathway 

microstructural integrity and postural control via multi-dimensional 

quantification in PwMS. Poorer microstructural integrity of the 

proprioceptive (corticospinal) tracts were associated with poorer postural 

control. Two PwMS failed to complete the compliant surface/eyes open 

imCTSIB condition and were negated from the correlation. 
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Table 4.2 | Correlations for mCTSIB Anterior-Posterior Time-to-Boundary Measures and Radial 

Diffusivity Measures of Microstructural Integrity for the Sensorimotor Pathway White Matter 

Tracts. 

 

mCTSIB Testing Condition 
PwMS Neurotypical 

r p  r p 

1. Eyes Open - Rigid Surface -0.316 0.062  -0.247 0.098 

2. Eyes Closed - Rigid Surface -0.327 0.055  -0.276 0.073 

3. Eyes Open - Compliant Surface -0.431* 0.016*  -0.155 0.211 

4. Eyes Closed - Compliant Surface -0.232 0.170  -0.143 0.478 

Note.  Participants who were unable to complete the trials (i.e. given a TTB of zero) were 

excluded from the correlation analysis of that trial. No exclusions were recorded for conditions 1 

or 2 of the mCTSIB, however two PwMS (n=25) were excluded from condition 3, with eight 

PwMS (n=19) and two neurotypical adults (n=27) being excluded from the condition 4 analyses. 

* significant between fiber bundle microstructural integrity & postural control via AP TTB at p-

value < .05, **p < .01, ***p < .001. 

 

Discussion 

An expansive volume of literature has determined that, PwMS possess a reduced capacity 

to maintenance postural control and display prominent deficits regardless of the stance condition, 

detailed in the review Gait deficits in people with multiple sclerosis [12]. These surmised 

discoveries lead to the hypothesis that irrespective of the mCTSIB condition, PwMS would 

exhibit poorer postural control (i.e. shorter TTB) compared to the neurotypical adults. This 

theorization supported the AP orientation across testing conditions but disregarded the ML 

orientation, contradicting copious single-dimensional (e.g. displacement, velocity, and frequency 

analysis) [217-220] and comparable multi-dimensional (e.g. virtual time to contact) [221] 

analyses in PwMS.  

Explaining the augmented AP deficiencies in the absence of distinct ML dissimilarities 

from the neurotypical adults could be multifaceted, potentially stemming from an MS 

demographic factor (e.g. low disability, disease duration, or general active lifestyles). The 

individuals included in this examination were only clinically moderately (EDSS median of 3.5: a 
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single functional system showing moderate disability and beyond minimal disability in several 

other systems [222]) disabled with no functional impairments recognized [223]. Contrasted with 

the previous multi-dimensional [221] investigations in PwMS which included a severely disabled 

population (EDSS median of 5.0 (range 2.5–7.5)) with disabilities severe enough to fully impair 

daily activities and theoretically altering postural control considerably, over the lesser debilitated 

PwMS.  

The geometric BoS is established by the parameters of the foot, anatomically, the foot is 

designed as a first-class lever in the upright stance position and implicated as a principle 

component of AP movements during dynamic stability (e.g. six determinants of gait) indicative 

of daily activity movements [33]. However, when an individual begins to infringe on their limit 

of stability (exceed the margins of stability), it may be plausible that the individual is required to 

make alternative ML shifts in an effort to constrain the CoP within the established BoS. This 

theorization would imply that the limited ML TTB postural control outcomes could stem from 

PwMS not possessing a level of impairment that approaches the theoretical functional juncture of 

stability thereby instigating a considerable amplification of a ML postural strategy. Given that 

the BoS utilized in this analysis was derived from geometric feet parameters, a derived 

functional BoS parameter (incorporating a limit-of-stability) would ostensibly be a better 

predictor of stability boundaries, per Slobounov and colleagues outcome endorsement [55]. 

Regardless of discrepancies in directional discoveries, our multi-dimensional outcome concurs 

with the inference that with PwMS display poorer postural control compared to neurotypical 

adults [12, 58, 217, 218].  

Preceding explorations in MS have also identified that individuals stricken by this 

neurodegenerative disease develop substandard proprioceptive tract integrity (higher RD) 



 

 112 

compared to healthy controls [58]. This understanding was re-affirmed in the sensorimotor 

pathway in presented results, verifying the original hypothesis that PwMS would possess inferior 

microstructural integrity in contrast to their age- and sex-matched counterparts. Although the 

disparity between groups was substantiated in the RD outcomes, the normalized rotationally 

invariant index of FA exhibited only trending significance (p = 0.054) for group separation upon 

tract integrity. This inability to reach significance could be stem from unaccounted for partial 

volume effect-related covariates (crossing-fibers, fiber bundle thickness, fiber orientation, or 

fiber curvatures) incorporated into the ROI statistical analysis [132]. Nevertheless, evidence 

suggests that the sensorimotor pathway, a proprioceptive information highway, is degraded in 

PwMS and as originally speculated. 

 Although no correlations concerning structure and function were identified in the 

neurotypical population, our original postulation that the integrity of this postural control 

mechanism (i.e. sensorimotor pathway) would be associated with postural control performance 

in PwMS, was accurate. PwMS demonstrated a significant negative correlation between their 

microstructural integrity and postural control in the AP direction for the third condition of the 

imCTSIB. A testing condition which specifically manipulates proprioceptive feedback (i.e. 

compliant surface), while leaving the visual and vestibular system input ostensibly intact.  Of the 

four conditions, this third condition would presumably provide the greatest challenge directly to 

the proprioceptive system and thereby indicating the microstructural integrity of the 

sensorimotor pathway as a plausible mechanism for improving proprioceptive-based static 

postural performance. It is perceivable that the shorten time allotted to PwMS for making 

postural correction be derived from a temporal competition between the processing of ascending 

information and descending execution, mimicking upper-extremity paradigms [224]. Although 
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further affirming depictions of integrative trade-offs are necessary, these conceptual insights are 

in-line with previous inferences made by Fling and colleagues [58]. Their conclusions deduced 

that poorer ascending fiber tract integrity of PwMS presented strong correlations to 

proprioceptive-based balance control, configured using the single-dimensional measure of total 

sway area. These coinciding associations verify that multi-dimensional measures of 

proprioceptive-based postural control are a legitimate prognosticator of the sensorimotor 

pathway microstructural integrity.   

 The summation of connotations revealed within this examination are not without 

limitations and future directives: (1) Although, multi-dimensional postural outcomes have been 

previously established as incorporating increased capacity to detect balance differentiation over 

single-dimensional measures in PwMS [211], questions still surround more complex multi-

dimensional measures. A wider breadth of research centralized around how TTB outcomes are 

affected by acquisition durations or specifically in MS, disease duration, disease severity (e.g. 

EDSS), or lesion locality is necessary. (2) As previously detailed, a better understanding of the 

aspects surrounding functional BoS measures compared to the more geometric BoS derived 

measures need to be addressed in PwMS. (3) The ROI-based diffusion analysis employed in this 

examination could be more susceptible to errors derived from crossing-fibers than seen with the 

employment of tractography-based approaches. Advanced multi-tensor models, constrained 

spherical deconvolution (with tractography), and diffusion kurtosis tensors all allow for better 

parcellation of crossing fiber resolution and a more accurate depiction of underlying 

microarchitectural variances [127]. However, an ROI analysis benefits from reduced 

dependencies on parameter settings incorporated in tractography approaches. Additionally, the 

distinct DTI registration and automated parcellations projected by the sensorimotor pathway (i.e. 
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CST and PCML) make an ROI approach a more consistent approach for this analysis. Although 

this exam provided a fundamental approach to identifying the mechanism responsible for 

proprioceptive postural control, further explorations should advance these concepts with more 

intricate and innovative DTI approaches. 

This is the first known study to establish connections between the microstructural 

integrity of the sensorimotor pathway and postural control performance via multi-dimensional 

measures. Observed indications specify that a reduction in sensorimotor pathway microstructural 

integrity (i.e. increased RD) is associated with poorer multi-dimensionally derived postural 

control in PwMS. These results build upon previous structure-function connotations purposed 

within MS literature [58] and appoints the microstructural integrity of the sensorimotor pathway 

as biomarker for postural performance. All observations extracted from this examination support 

further research into enumerating the sensory integration contributions of postural maintenance. 
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Chapter 5 | Dissertation Summary 

 

 

 

Echoing Aristotle’s (in 4th century BC) “movement is life”, the time between birth and 

death is omnipresent with movement [225] and these movements dictate the quality of life lived. 

Achieving control within movement or stance requires incredibly complex mechanisms that 

extend from the peripheral nervous system to the central nervous system. These systems that are 

comprised of trillions of neurons, axons, and synapses to transmit temporally sensitive 

information for the purposes of functional ambulation and maintenance of an upright stance. This 

structural and functional conceptualized knowledge drew the overarching aim of this 

dissertation, to provide mechanistic insight into the gait and balance of both neuro-typical and -

atypical (i.e. PwMS) adults. Thereby providing a substantive understanding of the neural 

underpinnings contributing to reduced locomotor and postural control that proliferate fall and 

injury risks.  

As identified in the initial investigation of this dissertation work, PwMS demonstrated 

poorer left-right stepping coordination regardless of their speed or cognitive demand compared 

to neurotypical adults. Additionally, this neuroatypical participant pool accompanied the altered 

gait pattern with a more conservative overall gait strategy than the neurotypical adults as 

predicted, spending a greater percentage of gait cycle timing in contact with the ground. These 

discoveries lay the foundation for a better understanding of “where” in the gait cycle bilateral 

coordinated deficiencies are located. The outcomes of this investigation were attained using 

clinically accessible instrumentation and, beyond providing an assessment criterion for bilateral 

coordinated movements in PwMS, the outcomes could provide clinicians with an enhanced 

ability to improve the specificity of temporal gait adjustments contained within rehabilitation 
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programs. Moreover, this investigation set the stage for subsequent studies into the underlying 

neural mechanisms of bilateral coordination and structure-function affiliations.  

The second part of this composition delved further into these mechanisms, identifying the 

microstructural integrity of the transcallosal sensorimotor white matter fiber tracts comprising 

the corpus callosum as potential biomarkers of bilateral coordinated performance. PwMS had 

positive associations between diminished structural integrity across the sensorimotor callosal 

fiber bundles and poorer self-selected pace bilateral coordination, concurring with initial 

postulations that an altered corpus callosum structure makes size-able impacts on ambulatory 

performance. In particular, the primary (M1a) and supplementary (pre-SMA\ SMA-proper) 

motor fiber bundles appear to be robust targets for future intervention and neurorehabilitation 

probing. Intervening on gait adaptations and forcing PwMS to walk with a more symmetrical 

gait pattern (i.e. split-belt intervention paradigm) has the potential to gain acute improvements to 

gait performance. The neural mechanisms identified herein provides target supraspinal regions 

(i.e. M1a, pre-SMA, or SMA-proper) to evaluate the efficacy of intervening practices. 

Symmetrical insufficiencies in gait, generate both mechanical and metabolic debits, thereby 

increasing the potential for a fall and influencing quality of life. 

 The final study further detailed structure-function associations in a less dynamic, static 

postural task, where the base of support stayed constant. Using innovative multi-dimensional 

measures of postural control during procedures that increasingly challenged the postural control 

system, inadequacies were identified in PwMS substantiating the original hypotheses. However; 

uncharacteristically, PwMS only displayed significant deficits (i.e. shorter time-to-boundary) in 

the anterior-posterior direction compared to their neurotypical counterparts. This contrasting 

view may be a prospective byproduct of an amplified aptitude for time-to-boundary (a multi-
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dimensional measure) to detect balance impairments in PwMS [211] compared to traditional 

outcomes. Furthermore, these substandard temporal capacities to derive postural corrections 

during proprioceptive-based balance tasks were associated with poorer sensorimotor pathway 

(i.e. CST and PCML) microstructural integrity. These outcomes affirm previous laboratory 

conclusions [58] that static postural control is affected by proprioceptive pathway 

microstructural integrity in PwMS and revealing a biomarker for impending rehabilitative 

interventions and supporting the need for alternative assessment metrics to quantify postural 

control.  

With no known cure and such a wide breadth of individuals effected by this auto 

immune-based neurodegenerative disease, the research efforts deployed in this dissertation have 

provided a comprehensive view of the neural mechanisms underlying postural control/mobility 

impairments in PwMS. The procurement of specific biomarkers that contribute to static and 

dynamic postural control will allow for further therapeutic investigations to be established and 

optimistically implemented in the near future. My hope is that the impact unveiled within this 

conceptual knowledge will ultimately influence the MS postural control deficit model 

established by Luca Prosperini and Letzia Castelli [226] whereby, a reduction of overall postural 

control deficits (both dynamic and static) will cascade into the diminution of accidental falls and 

fear of falling, generating an upsurge in mobility. Ultimately, achieving the culminating ambition 

to influence quality of life by diminishing the number of fall-related injuries experienced by 

PwMS, and inevitably eradicate the influences of deconditioning. 
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Appendix 1 | Mini Balance Evaluation Systems Test 
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Appendix 2 | Modified Clinical Test of Sensory Interaction of Balance 

 

 

 

 

  

FALL PROOF PROGRAM: CENTER FOR SUCCESSFUL AGING, CAL STATE 

FULLERTON 

Modified Clinical Test of Sensory Interaction in Balance 

(CTSIB-M) 
 

*Administer only one trial per condition if participant able to complete first trial without loss of balance. 
 

Condition One: Eyes Open, Firm Surface  

 Trial One    Total Time: _______ /  30 sec 

   Trial Two    Total Time: _______ /  30 sec 

   Trial Three    Total Time: _______ /  30 sec  

  

Condition Two: Eyes Closed, Firm Surface 

 Trial One    Total Time: _______ /  30 sec 

   Trial Two    Total Time: _______ /  30 sec 

   Trial Three    Total Time: _______ /  30 sec  
  

Condition Three: Eyes Open, Foam Surface 

 Trial One    Total Time: _______ /  30 sec 

   Trial Two    Total Time: _______ /  30 sec 

   Trial Three    Total Time: _______ /  30 sec  
 

Condition Four: Eyes Closed, Foam Surface 

 Trial One    Total Time: _______ /  30 sec 

  Trial Two    Total Time: _______ /  30 sec 

  Trial Three    Total Time: _______ / 30 sec 
       

       TOTAL: _______ /      120 

sec 

 

Purpose of Test: 

 
This test is designed to assess how well an older adult is using sensory inputs when one or more sensory 

systems are compromised.  In condition one, all sensory systems (i.e., vision, somatosensory, and 

vestibular) are available for maintaining balance.  In condition two, vision has been removed and the older 

adult must rely on the somatosensory and vestibular systems to balance.  In condition three, the 

somatosensory system has been compromised and the older adults must use vision and the vestibular 

system to balance.  In condition four, vision has been removed and the somatosensory system has been 

compromised.  The older adults must not rely primarily on the vestibular inputs to balance. 

 

Begin timing each trial using a stopwatch.  The trial is over when (a) the participant opens 

his/her eyes in an eyes closed condition, (b) raises arms from sides, (c) loses balance and 

requires manual assistance to prevent a fall. 

 

This test provides some insight into whether each of the sensory system available for balance are being used 

effectively.  Failure to maintain balance in condition two indicates that the older adults is visually dependent.  They 

are not using somatosensory inputs to maintain balance when eyes are closed.   Failure to maintain balance in 

conditions 3 and 4 indicate that the visual and/or vestibular system is not being used to maintain balance.  Poor 

performance on this test would suggest the need for multisensory training if the medial history does not indicate that 
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Appendix 3 | Statistical Analysis: A Temporal Analysis of Bilateral Coordination in 

Neurotypical and Atypical Adults 

 

 

 

Phase Coordination Index (PCI) 

 

PCI Repeated Measures ANOVA 
Within Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  

PCI   0.477   2   0.238   1.209   0.302   

PCI ✻ Group   0.620   2   0.310   1.574   0.212   

Residual   20.891   106   0.197         

Note.  Type III Sum of Squares  

Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  

Group   19.273   1   19.273   5.766   0.020   

Residual   177.153   53   3.343         

Note.  Type III Sum of Squares  

 

PCI Descriptive Statistics 
Descriptive Statistics  
 Normal PCI  Dual Task PCI  Fast PCI  

   Neurotypical  PwMS  Neurotypical  PwMS  Neurotypical  PwMS  

Valid   29   27   29   26   29   27   

Missing   0   0   0   1   0   0   

Mean   1.840   2.704   1.759   2.528   2.018   2.636   

Std. Deviation   0.640   1.708   0.566   1.421   0.582   1.464   

Minimum   0.880   1.207   0.798   1.020   0.897   1.120   

Maximum   3.400   7.630   2.945   7.010   3.150   7.710   
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Gait Speed 

 

Gait Speed Repeated Measures ANOVA 
Within Subjects Effects  

   Sphericity Correction  Sum of Squares  df  Mean Square  F  p  

Condition   None   5.833  a  2.000  a  2.917  a  299.061  a  < .001  a  

    Greenhouse-Geisser   5.833  a  1.295  a  4.504  a  299.061  a  < .001  a  

Condition ✻ Group   None   0.095  a  2.000  a  0.048  a  4.871  a  0.010  a  

    Greenhouse-Geisser   0.095  a  1.295  a  0.073  a  4.871  a  0.022  a  

Residual   None   0.956   98.000   0.010         

    Greenhouse-Geisser   0.956   63.464   0.015         

Note.  Type III Sum of Squares  

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

 
Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  

Group   1.021   1   1.021   10.249   0.002   

Residual   4.883   49   0.100         

Note.  Type III Sum of Squares  

 

Post Hoc Tests 
Post Hoc Comparisons - Condition  

      Mean Difference  SE  t  p bonf  

Dual   Fast   -0.459   0.025   -18.670   < .001   

    Self   -0.101   0.010   -9.853   < .001   

Fast   Self   0.358   0.023   15.608   < .001   

Note.  Bonferroni adjusted confidence intervals.  

 
Descriptive Statistics  
 Self Selected  Fast  Dual  

   Neurotypical  PwMS  Neurotypical  PwMS  Neurotypical  PwMS  

Valid   29   27   29   27   27   24   

Missing   0   0   0   0   2   3   

Mean   1.249   1.122   1.671   1.415   1.156   1.019   

Std. Deviation   0.113   0.204   0.178   0.294   0.129   0.212   

Minimum   1.100   0.625   1.405   0.845   0.945   0.525   

Maximum   1.500   1.535   2.050   2.010   1.385   1.350   
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Self-Selected Walking 

 

PwMS: Backward Linear Regression 
Model Summary  
 Durbin-Watson  

Model  R  R²  Adjusted R²  RMSE  Autocorrelation  Statistic  p  

1   0.799   0.639   0.530   1.170   -0.155   2.289   0.479   

2   0.796   0.634   0.546   1.150   -0.167   2.313   0.395   

3   0.792   0.628   0.560   1.133   -0.170   2.322   0.355   

4   0.782   0.611   0.561   1.132   -0.104   2.192   0.572   

5   0.768   0.590   0.556   1.138   -0.140   2.259   0.459   

6   0.764   0.584   0.567   1.123   -0.155   2.292   0.418   

 

ANOVA  

Model   Sum of Squares  df  Mean Square  F  p  

1   Regression   48.413   6   8.069   5.889   0.001   

  Residual   27.401   20   1.370         

  Total   75.814   26           

2   Regression   48.032   5   9.606   7.261   < .001   

  Residual   27.782   21   1.323         

  Total   75.814   26           

3   Regression   47.577   4   11.894   9.267   < .001   

  Residual   28.237   22   1.284         

  Total   75.814   26           

4   Regression   46.345   3   15.448   12.057   < .001   

  Residual   29.470   23   1.281         

  Total   75.814   26           

5   Regression   44.754   2   22.377   17.290   < .001   

  Residual   31.061   24   1.294         

  Total   75.814   26           

6   Regression   44.271   1   44.271   35.087   < .001   

  Residual   31.543   25   1.262         

  Total   75.814   26           
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Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   -4625.536   4640.719     -

0.997  
 0.331         

  Double Support 

Mean  
 2.171   3.612   4.798   0.601   0.555   0.000   3526.849   

  Stance Mean   43.918   45.927   48.762   0.956   0.350   0.000   143891.498   
  Swing Mean   48.653   47.118   54.020   1.033   0.314   0.000   151450.072   

  Double Support CV   -0.127   0.240   -0.146   
-

0.527  
 0.604   0.236   4.242   

  Stance CV   -5.135   8.148   -1.378   
-

0.630  
 0.536   0.004   264.454   

  Swing CV   5.271   5.305   2.391   0.993   0.332   0.003   320.500   

2   (Intercept)   -4826.552   4544.863     -

1.062  
 0.300         

  Double Support 

Mean  
 2.079   3.546   4.595   0.586   0.564   0.000   3518.727   

  Stance Mean   46.031   44.959   51.109   1.024   0.318   0.000   142796.525   
  Swing Mean   50.551   46.166   56.126   1.095   0.286   0.000   150567.375   

  Stance CV   -6.118   7.795   -1.641   
-

0.785  
 0.441   0.004   250.616   

  Swing CV   5.614   5.174   2.547   1.085   0.290   0.003   315.667   

3   (Intercept)   -4335.391   4399.920     -

0.985  
 0.335         

  Stance Mean   43.133   44.015   47.891   0.980   0.338   0.000   141071.745   
  Swing Mean   43.657   43.974   48.472   0.993   0.332   0.000   140806.120   

  Stance CV   -8.064   6.948   -2.163   
-

1.161  
 0.258   0.005   205.222   

  Swing CV   6.920   4.600   3.139   1.504   0.147   0.004   257.191   

4   (Intercept)   -23.646   20.461     -

1.156  
 0.260         

  Swing Mean   0.567   0.509   0.629   1.114   0.277   0.053   18.866   

  Stance CV   -8.571   6.922   -2.299   
-

1.238  
 0.228   0.005   204.084   

  Swing CV   7.291   4.581   3.307   1.592   0.125   0.004   255.456   

5   (Intercept)   -0.863   0.776     -

1.112  
 0.277         

  Stance CV   -1.140   1.867   -0.306   
-

0.611  
 0.547   0.068   14.695   

  Swing CV   2.336   1.104   1.059   2.115   0.045   0.068   14.695   

6   (Intercept)   -1.086   0.676     -

1.608  
 0.120         

  Swing CV   1.685   0.284   0.764   5.923   < .001   1.000   1.000   
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Descriptives  

   N  Mean  SD  SE  

PCI   27   2.705   1.708   0.329   

Double Support Mean   27   20.111   3.774   0.726   

Stance Mean   27   60.061   1.896   0.365   

Swing Mean   27   39.944   1.896   0.365   

Double Support CV   27   6.599   1.971   0.379   

Stance CV   27   1.481   0.458   0.088   

Swing CV   27   2.250   0.775   0.149   

 

Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  Condition Index  intercept  Swing CV  

1   1   6.801   1.000   0.000   0.000   

  2   0.125   7.380   0.000   0.001   

  3   0.067   10.038   0.000   0.001   

  4   0.007   31.880   0.000   0.000   

  5   1.684e -4   200.932   0.000   0.851   

  6   7.940e -7   2926.583   0.000   0.130   

  7   1.554e -9   66144.506   1.000   0.018   

2   1   5.854   1.000   0.000   0.000   

  2   0.117   7.082   0.000   0.001   

  3   0.029   14.174   0.000   0.000   

  4   1.719e -4   184.555   0.000   0.853   

  5   7.982e -7   2708.155   0.000   0.125   

  6   1.565e -9   61157.116   1.000   0.021   

3   1   4.879   1.000   0.000   0.000   

  2   0.115   6.511   0.000   0.001   

  3   0.006   29.688   0.000   0.016   

  4   9.138e -5   231.080   0.000   0.977   

  5   1.614e -9   54976.090   1.000   0.006   

4   1   3.895   1.000   0.000   0.000   

  2   0.101   6.211   0.000   0.001   

  3   0.004   31.995   0.004   0.035   

  4   4.509e -5   293.909   0.996   0.964   

5   1   2.934   1.000   0.009   0.001   

  2   0.063   6.828   0.845   0.024   

  3   0.003   30.349   0.146   0.975   

6   1   1.947   1.000   0.026   0.026   

  2   0.053   6.085   0.974   0.974   
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Neurotypical: Backward Linear Regression 

 
Model Summary  

Model  R  R²  Adjusted R²  RMSE  Durbin-Watson  

1   0.677   0.459   0.311   0.531     

2   0.677   0.458   0.340   0.520   1.484   

 

ANOVA  

Model   Sum of Squares  df  Mean Square  F  p  

1   Regression   5.259   6   0.877   3.107   0.023   

  Residual   6.207   22   0.282         

  Total   11.467   28           

2   Regression   5.254   5   1.051   3.890   0.011   

  Residual   6.213   23   0.270         

  Total   11.467   28           

 

Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   1446.635   2203.037     0.657   0.518         

  Double Support 

Mean  
 10.432   4.272   36.256   2.442   0.023   0.000   8957.107   

  Stance Mean   -25.534   23.316   -44.398   
-

1.095  
 0.285   0.000   66791.867   

  Swing Mean   -3.056   21.479   -5.309   
-

0.142  
 0.888   0.000   56568.098   

  Double Support CV   -0.274   0.138   -0.643   
-

1.983  
 0.060   0.234   4.277   

  Stance CV   -25.179   13.033   -8.276   
-

1.932  
 0.066   0.001   745.766   

  Swing CV   18.234   8.678   9.173   2.101   0.047   0.001   774.514   

2   (Intercept)   1138.923   411.887     2.765   0.011         

  Double Support 

Mean  
 10.425   4.179   36.233   2.494   0.020   0.000   8956.128   

  Stance Mean   -22.441   8.254   -39.020   
-

2.719  
 0.012   0.000   8743.202   

  Double Support CV   -0.274   0.135   -0.645   
-

2.032  
 0.054   0.234   4.273   

  Stance CV   -24.631   12.182   -8.096   
-

2.022  
 0.055   0.001   680.511   

  Swing CV   17.862   8.098   8.986   2.206   0.038   0.001   704.408   

  



 

 153 

 

Descriptives  

   N  Mean  SD  SE  

PCI   29   1.839   0.640   0.119   

Double Support Mean   29   19.063   2.224   0.413   

Stance Mean   29   59.543   1.113   0.207   

Swing Mean   29   40.462   1.112   0.206   

Double Support CV   29   5.641   1.505   0.279   

Stance CV   29   1.162   0.210   0.039   

Swing CV   29   1.711   0.322   0.060   

 

Part And Partial Correlations  

Model   Partial  Part  

1   Double Support Mean   0.462   0.383   

  Stance Mean   -0.227   -0.172   

  Swing Mean   -0.030   -0.022   

  Double Support CV   -0.389   -0.311   

  Stance CV   -0.381   -0.303   

  Swing CV   0.409   0.330   

2   Double Support Mean   0.461   0.383   

  Stance Mean   -0.493   -0.417   

  Double Support CV   -0.390   -0.312   

  Stance CV   -0.388   -0.310   

  Swing CV   0.418   0.339   

 
Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  
Condition 

Index  
intercept  

Double 

Support Mean  

Stance 

Mean  

Double 

Support CV  

Stance 

CV  

Swing 

CV  

1   1   6.897   1.000   0.000   0.000   0.000   0.000   0.000   0.000   

  2   0.067   10.162   0.000   0.000   0.000   0.123   0.000   0.000   

  3   0.031   14.940   0.000   0.000   0.000   0.084   0.000   0.001   

  4   0.005   36.978   0.000   0.000   0.000   0.423   0.001   0.000   

  5   2.264e -5   551.988   0.000   0.003   0.000   0.072   0.845   0.858   

  6   1.090e -7   7955.621   0.001   0.945   0.023   0.289   0.098   0.079   

  7   1.305e -9   72696.129   0.999   0.051   0.977   0.008   0.056   0.062   

2   1   5.905   1.000   0.000   0.000   0.000   0.000   0.000   0.000   

  2   0.065   9.548   0.000   0.000   0.000   0.128   0.000   0.000   

  3   0.026   14.956   0.000   0.000   0.000   0.107   0.000   0.001   

  4   0.004   39.982   0.000   0.000   0.000   0.397   0.002   0.000   

  5   2.159e -5   522.954   0.000   0.005   0.000   0.073   0.934   0.951   

  6   2.230e -8   16272.261   1.000   0.995   1.000   0.294   0.064   0.048   
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Dual-Task Walking 

 

PwMS: Backward Linear Regression 

Model Summary  
 Durbin-Watson  

Model  R  R²  Adjusted R²  RMSE  Autocorrelation  Statistic  p  

1   0.828   0.686   0.586   0.914   0.070   1.822   0.640   

2   0.828   0.685   0.607   0.891   0.067   1.828   0.673   

3   0.827   0.684   0.624   0.872   0.064   1.833   0.626   

4   0.826   0.683   0.639   0.853   0.069   1.827   0.654   

 
ANOVA  

Model   Sum of Squares  df  Mean Square  F  p  

1   Regression   34.619   6   5.770   6.904   < .001   

  Residual   15.879   19   0.836         

  Total   50.498   25           

2   Regression   34.614   5   6.923   8.716   < .001   

  Residual   15.884   20   0.794         

  Total   50.498   25           

3   Regression   34.534   4   8.634   11.357   < .001   

  Residual   15.964   21   0.760         

  Total   50.498   25           

4   Regression   34.473   3   11.491   15.776   < .001   

  Residual   16.025   22   0.728         

  Total   50.498   25           

 

Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   -646.768   4196.917     -

0.154  
 0.879         

  Double Support 

Mean  
 -3.409   9.463   -9.851   

-

0.360  
 0.723   0.000   45177.504   

  Stance Mean   9.707   44.781   14.044   0.217   0.831   0.000   253664.905   

  Swing Mean   3.316   41.143   4.795   0.081   0.937   0.000   213918.648   

  Double Support 

CV  
 -0.684   0.260   -0.745   

-

2.630  
 0.016   0.207   4.842   

  Stance CV   3.650   3.966   1.137   0.920   0.369   0.011   92.286   

  Swing CV   0.668   2.421   0.397   0.276   0.786   0.008   125.447   

2   (Intercept)   -317.117   915.212     -

0.346  
 0.733         

  Double Support 

Mean  
 -3.433   9.220   -9.921   

-

0.372  
 0.714   0.000   45131.533   

  Stance Mean   6.431   18.327   9.305   0.351   0.729   0.000   44708.143   

  Double Support 

CV  
 -0.689   0.244   -0.751   

-

2.830  
 0.010   0.224   4.474   

  Stance CV   3.599   3.816   1.121   0.943   0.357   0.011   89.913   

  Swing CV   0.719   2.276   0.428   0.316   0.755   0.009   116.661   
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Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

3   (Intercept)   -241.366   864.122     -

0.279  
 0.783         

  Double Support 

Mean  
 -2.629   8.669   -7.595   

-

0.303  
 0.765   0.000   41687.196   

  Stance Mean   4.900   17.292   7.089   0.283   0.780   0.000   41580.909   

  Double Support 

CV  
 -0.697   0.237   -0.759   

-

2.940  
 0.008   0.226   4.430   

  Stance CV   4.766   0.940   1.485   5.068   < .001   0.175   5.705   

4   (Intercept)   3.488   1.774     1.966   0.062         

  Double Support 

Mean  
 -0.172   0.077   -0.497   

-

2.232  
 0.036   0.291   3.440   

  Double Support 

CV  
 -0.683   0.227   -0.744   

-

3.007  
 0.006   0.236   4.246   

  Stance CV   4.728   0.911   1.473   5.189   < .001   0.179   5.590   

 

Descriptives  

   N  Mean  SD  SE  

PCI   26   2.528   1.421   0.279   

Double Support Mean   26   21.884   4.107   0.805   

Stance Mean   26   60.950   2.056   0.403   

Swing Mean   26   39.055   2.055   0.403   

Double Support CV   26   5.939   1.548   0.304   

Stance CV   26   1.452   0.443   0.087   

Swing CV   26   2.305   0.846   0.166   

 

 

Part And Partial Correlations  

Model   Partial  Part  

1   Double Support 

Mean  
 -0.082   -0.046   

  Stance Mean   0.050   0.028   

  Swing Mean   0.018   0.010   

  Double Support 

CV  
 -0.517   -0.338   

  Stance CV   0.207   0.118   

  Swing CV   0.063   0.035   

2   Double Support 
Mean  

 -0.083   -0.047   

  Stance Mean   0.078   0.044   

  Double Support 

CV  
 -0.535   -0.355   

  Stance CV   0.206   0.118   

  Swing CV   0.070   0.040   

3   Double Support 

Mean  
 -0.066   -0.037   

  Stance Mean   0.062   0.035   
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Part And Partial Correlations  

Model   Partial  Part  

  Double Support 

CV  
 -0.540   -0.361   

  Stance CV   0.742   0.622   

4   Double Support 

Mean  
 -0.430   -0.268   

  Double Support 
CV  

 -0.540   -0.361   

  Stance CV   0.742   0.623   

 

Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  
Condition 

Index  
intercept  

Double Support 

Mean  

Double Support 

CV  

Stance 

CV  

1   1   6.810   1.000   0.000   0.000   0.000   0.000   

  2   0.124   7.402   0.000   0.000   0.000   0.002   

  3   0.061   10.579   0.000   0.000   0.122   0.000   

  4   0.005   38.496   0.000   0.000   0.736   0.033   

  5   4.642e -4   121.119   0.000   0.000   0.038   0.891   

  6   7.056e -8   9824.337   0.001   0.948   0.053   0.065   

  7   1.180e -9   75979.866   0.999   0.052   0.050   0.010   

2   1   5.840   1.000   0.000   0.000   0.000   0.000   

  2   0.097   7.774   0.000   0.000   0.000   0.002   

  3   0.060   9.890   0.000   0.000   0.145   0.000   

  4   0.003   40.941   0.000   0.000   0.801   0.052   

  5   4.372e -4   115.577   0.000   0.000   0.025   0.897   

  6   1.435e -8   20173.617   1.000   1.000   0.029   0.049   

3   1   4.886   1.000   0.000   0.000   0.001   0.001   

  2   0.069   8.414   0.000   0.000   0.075   0.048   

  3   0.041   10.865   0.000   0.000   0.075   0.132   

  4   0.003   37.450   0.000   0.000   0.808   0.800   

  5   1.542e -8   17799.882   1.000   1.000   0.041   0.020   

4   1   3.899   1.000   0.001   0.001   0.001   0.001   

  2   0.060   8.035   0.017   0.060   0.099   0.023   

  3   0.038   10.169   0.073   0.015   0.057   0.188   

  4   0.003   34.837   0.910   0.925   0.843   0.788   
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Neurotypical: Backward Linear Regression 
 

Model Summary  
 Durbin-Watson  

Model  R  R²  Adjusted R²  RMSE  Autocorrelation  Statistic  p  

1   0.397   0.158   -0.072   0.585   0.084   1.747   0.521   

2   0.397   0.157   -0.026   0.573   0.079   1.762   0.542   

3   0.387   0.150   0.008   0.563   0.088   1.726   0.469   

4   0.376   0.142   0.039   0.554   0.083   1.731   0.440   

5   0.349   0.122   0.055   0.550   0.089   1.751   0.509   

6   0.320   0.102   0.069   0.546   0.071   1.806   0.600   

 

ANOVA  

Model   Sum of Squares  df  
Mean 

Square  
F  p  

1   Regression   1.411   6   0.235   0.686   0.663   

  Residual   7.538   22   0.343         

  Total   8.950   28           

2   Regression   1.408   5   0.282   0.859   0.523   

  Residual   7.541   23   0.328         

  Total   8.950   28           

3   Regression   1.340   4   0.335   1.057   0.399   

  Residual   7.610   24   0.317         

  Total   8.950   28           

4   Regression   1.267   3   0.422   1.374   0.273   

  Residual   7.682   25   0.307         

  Total   8.950   28           

5   Regression   1.093   2   0.546   1.808   0.184   

  Residual   7.857   26   0.302         

  Total   8.950   28           

6   Regression   0.915   1   0.915   3.073   0.091   

  Residual   8.035   27   0.298         

  Total   8.950   28           
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Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   -1158.078   2293.688     -

0.505  
 0.619         

  Double Support 
Mean  

 2.275   4.796   9.511   0.474   0.640   0.000   10498.091   

  Stance Mean   9.397   23.830   19.716   0.394   0.697   0.000   65289.917   

  Swing Mean   13.742   23.036   28.849   0.597   0.557   0.000   61087.903   

  Double Support CV   -0.020   0.210   -0.036   
-

0.094  
 0.926   0.261   3.831   

  Stance CV   3.021   5.004   1.450   0.604   0.552   0.007   150.695   

  Swing CV   -1.479   3.188   -1.197   
-

0.464  
 0.647   0.006   173.848   

2   (Intercept)   -1213.877   2166.707     -

0.560  
 0.581         

  Double Support 

Mean  
 2.136   4.461   8.929   0.479   0.637   0.000   9490.187   

  Stance Mean   10.096   22.137   21.183   0.456   0.653   0.000   58879.803   

  Swing Mean   14.157   22.114   29.720   0.640   0.528   0.000   58829.376   

  Stance CV   2.915   4.767   1.399   0.611   0.547   0.007   142.959   

  Swing CV   -1.451   3.105   -1.174   
-

0.467  
 0.645   0.006   172.291   

3   (Intercept)   -246.101   431.076     -

0.571  
 0.573         

  Double Support 

Mean  
 2.555   4.293   10.679   0.595   0.557   0.000   9088.168   

  Swing Mean   4.899   8.629   10.284   0.568   0.575   0.000   9262.264   

  Stance CV   2.929   4.688   1.406   0.625   0.538   0.007   142.953   

  Swing CV   -1.464   3.053   -1.185   
-

0.480  
 0.636   0.006   172.276   

4   (Intercept)   -305.626   406.410     -

0.752  
 0.459         

  Double Support 
Mean  

 3.102   4.074   12.968   0.762   0.453   0.000   8445.262   

  Swing Mean   6.114   8.120   12.836   0.753   0.459   0.000   8463.176   

  Stance CV   0.690   0.424   0.331   1.627   0.116   0.827   1.209   

5   (Intercept)   0.386   0.920     0.419   0.679         

  Double Support 

Mean  
 0.035   0.046   0.146   0.768   0.449   0.929   1.077   

  Stance CV   0.585   0.397   0.281   1.472   0.153   0.929   1.077   

6   (Intercept)   1.004   0.442     2.274   0.031         

  Stance CV   0.666   0.380   0.320   1.753   0.091   1.000   1.000   
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Descriptives  

   N  Mean  SD  SE  

PCI   29   1.758   0.565   0.105   

Double Support Mean   29   20.291   2.363   0.439   

Stance Mean   29   60.153   1.186   0.220   

Swing Mean   29   39.852   1.187   0.220   

Double Support CV   29   4.941   1.033   0.192   

Stance CV   29   1.132   0.271   0.050   

Swing CV   29   1.718   0.457   0.085   

 

Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  Condition Index  intercept  Stance CV  

1   1   6.887   1.000   0.000   0.000   
  2   0.076   9.550   0.000   0.001   
  3   0.033   14.397   0.000   0.000   
  4   0.004   42.394   0.000   0.013   
  5   1.711e -4   200.629   0.000   0.943   
  6   9.606e -8   8467.499   0.001   0.031   
  7   1.468e -9   68485.745   0.999   0.012   

2   1   5.914   1.000   0.000   0.000   
  2   0.074   8.970   0.000   0.001   
  3   0.012   22.353   0.000   0.003   
  4   1.765e -4   183.072   0.000   0.928   
  5   1.053e -7   7494.595   0.001   0.065   
  6   1.582e -9   61142.986   0.999   0.003   

3   1   4.922   1.000   0.000   0.000   
  2   0.066   8.639   0.000   0.001   
  3   0.012   20.395   0.000   0.003   
  4   1.763e -4   167.103   0.000   0.928   
  5   3.506e -8   11848.738   1.000   0.067   

4   1   3.951   1.000   0.000   0.003   
  2   0.038   10.172   0.000   0.847   
  3   0.011   18.902   0.000   0.040   
  4   3.827e -8   10160.502   1.000   0.110   

5   1   2.961   1.000   0.001   0.005   
  2   0.033   9.484   0.065   0.994   
  3   0.006   21.375   0.934   0.001   

6   1   1.973   1.000   0.013   0.013   
  2   0.027   8.606   0.987   0.987   
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Fast-Pace Walking 

 

PwMS: Backward Linear Regression 
Model Summary  
 Durbin-Watson  

Model  R  R²  Adjusted R²  RMSE  Autocorrelation  Statistic  p  

1   0.659   0.434   0.255   1.280   -0.022   1.996   0.986   

2   0.658   0.433   0.292   1.249   -0.013   1.979   0.959   

3   0.647   0.419   0.308   1.234   0.027   1.891   0.764   

4   0.615   0.378   0.293   1.247   0.012   1.944   0.868   

5   0.613   0.376   0.322   1.222   0.001   1.967   0.912   

6   0.586   0.343   0.316   1.227   -0.066   2.106   0.758   

 

ANOVA  

Model   Sum of Squares  df  Mean Square  F  p  

1   Regression   23.880   6   3.980   2.427   0.065   

  Residual   31.151   19   1.640         

  Total   55.031   25           

2   Regression   23.840   5   4.768   3.057   0.033   

  Residual   31.190   20   1.560         

  Total   55.031   25           

3   Regression   23.034   4   5.759   3.779   0.018   

  Residual   31.997   21   1.524         

  Total   55.031   25           

4   Regression   20.812   3   6.937   4.460   0.014   

  Residual   34.219   22   1.555         

  Total   55.031   25           

5   Regression   20.681   2   10.340   6.924   0.004   

  Residual   34.350   23   1.493         

  Total   55.031   25           

6   Regression   18.872   1   18.872   12.526   0.002   

  Residual   36.159   24   1.507         

  Total   55.031   25           

 

Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   150.475   150.816     0.998   0.331         

  Double Support 
Mean  

 -1.425   1.662   -3.535   
-

0.857  
 0.402   0.002   570.810   

  Stance Mean   -0.139   0.503   -0.175   
-

0.276  
 0.786   0.074   13.478   

  Swing Mean   -2.870   2.850   -3.794   
-

1.007  
 0.327   0.002   476.542   

  Double Support CV   -0.364   0.313   -0.527   
-

1.162  
 0.260   0.145   6.910   

  Stance CV   6.090   12.370   1.528   0.492   0.628   0.003   323.289   

  Swing CV   -1.352   8.746   -0.549   
-

0.155  
 0.879   0.002   422.528   
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Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

2   (Intercept)   158.687   137.669     1.153   0.263         

  Double Support 
Mean  

 -1.508   1.534   -3.742   
-

0.983  
 0.337   0.002   510.868   

  Stance Mean   -0.202   0.281   -0.255   
-

0.719  
 0.480   0.225   4.436   

  Swing Mean   -2.946   2.738   -3.895   
-

1.076  
 0.295   0.002   462.163   

  Double Support CV   -0.357   0.302   -0.516   
-

1.181  
 0.251   0.148   6.741   

  Stance CV   4.195   1.681   1.053   2.496   0.021   0.159   6.275   

3   (Intercept)   164.779   135.819     1.213   0.239         

  Double Support 

Mean  
 -1.776   1.471   -4.406   

-

1.208  
 0.241   0.002   480.745   

  Swing Mean   -3.262   2.671   -4.313   
-

1.222  
 0.235   0.002   450.240   

  Double Support CV   -0.423   0.284   -0.612   
-

1.488  
 0.152   0.164   6.113   

  Stance CV   4.426   1.631   1.110   2.714   0.013   0.165   6.047   

4   (Intercept)   0.918   6.243     0.147   0.884         

  Swing Mean   -0.042   0.143   -0.055   
-

0.290  
 0.775   0.787   1.271   

  Double Support CV   -0.154   0.179   -0.224   
-

0.863  
 0.397   0.421   2.376   

  Stance CV   2.910   1.052   0.730   2.765   0.011   0.406   2.466   

5   (Intercept)   -0.860   1.151     -

0.748  
 0.462         

  Double Support CV   -0.176   0.160   -0.255   
-

1.101  
 0.282   0.507   1.972   

  Stance CV   3.046   0.922   0.764   3.304   0.003   0.507   1.972   

6   (Intercept)   -1.189   1.116     -

1.066  
 0.297         

  Stance CV   2.334   0.659   0.586   3.539   0.002   1.000   1.000   

 

Descriptives  

   N  Mean  SD  SE  

PCI   26   2.667   1.484   0.291   

Double Support Mean   26   16.661   3.681   0.722   

Stance Mean   26   58.147   1.871   0.367   

Swing Mean   26   41.751   1.961   0.385   

Double Support CV   26   8.563   2.147   0.421   

Stance CV   26   1.652   0.372   0.073   

Swing CV   26   2.321   0.602   0.118   
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Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  Condition Index  intercept  Stance CV  

1   1   6.859   1.000   0.000   0.000   

  2   0.073   9.710   0.000   0.000   

  3   0.057   11.006   0.000   0.000   

  4   0.012   24.338   0.000   0.003   

  5   3.629e -4   137.476   0.000   0.106   

  6   3.369e -5   451.205   0.005   0.855   

  7   1.685e -6   2017.565   0.995   0.037   

2   1   5.885   1.000   0.000   0.000   

  2   0.066   9.423   0.000   0.014   

  3   0.038   12.384   0.000   0.042   

  4   0.010   24.127   0.000   0.358   

  5   1.686e -4   186.848   0.002   0.014   

  6   1.837e -6   1789.693   0.998   0.572   

3   1   4.891   1.000   0.000   0.000   

  2   0.063   8.799   0.000   0.010   

  3   0.036   11.648   0.000   0.049   

  4   0.010   21.998   0.000   0.373   

  5   1.858e -6   1622.413   1.000   0.568   

4   1   3.938   1.000   0.000   0.001   

  2   0.046   9.271   0.008   0.080   

  3   0.016   15.853   0.000   0.656   

  4   7.934e -4   70.448   0.992   0.263   

5   1   2.955   1.000   0.005   0.003   

  2   0.030   9.855   0.912   0.050   

  3   0.015   14.047   0.083   0.948   

6   1   1.976   1.000   0.012   0.012   

  2   0.024   9.163   0.988   0.988   
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Neurotypical: Backward Linear Regression 
Model Summary  

Model  R  R²  Adjusted R²  RMSE  Durbin-Watson  

1   0.376   0.142   -0.104   0.622     

2   0.376   0.142   -0.054   0.608     

3   0.374   0.140   -0.010   0.595     

4   0.371   0.137   0.030   0.583     

5   0.330   0.109   0.038   0.581     

6   0.273   0.074   0.039   0.581     

7   0.000   0.000   0.000   0.592   1.716   

  
ANOVA  

Model   Sum of Squares  df  Mean Square  F  p  

1   Regression   1.341   6   0.224   0.578   0.744   

  Residual   8.127   21   0.387         

  Total   9.468   27           

2   Regression   1.340   5   0.268   0.725   0.612   

  Residual   8.128   22   0.369         

  Total   9.468   27           

3   Regression   1.323   4   0.331   0.934   0.462   

  Residual   8.145   23   0.354         

  Total   9.468   27           

4   Regression   1.301   3   0.434   1.274   0.306   

  Residual   8.167   24   0.340         

  Total   9.468   27           

5   Regression   1.031   2   0.516   1.528   0.237   

  Residual   8.437   25   0.337         

  Total   9.468   27           

6   Regression   0.705   1   0.705   2.091   0.160   

  Residual   8.763   26   0.337         

  Total   9.468   27           

7   Regression   .   .   .   .   .   

  Residual   .   .   .   .   .   

  Total   .   .   .   .   .   

  

Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

1   (Intercept)   -24.540   43.873     -0.559   0.582         

  Double Support 

Mean  
 0.215   0.395   0.956   0.545   0.592   0.013   75.325   

  Stance Mean   0.090   0.282   0.236   0.321   0.751   0.075   13.246   

  Swing Mean   0.437   0.887   1.167   0.493   0.627   0.007   136.856   

  Double Support CV   0.012   0.209   0.039   0.057   0.955   0.088   11.419   

  Stance CV   1.758   9.277   0.802   0.189   0.852   0.002   437.828   

  Swing CV   -1.644   6.617   -0.948   -0.248   0.806   0.003   356.683   

2   (Intercept)   -22.757   30.088     -0.756   0.457         
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Coefficients  
 Collinearity Statistics  

Model   Unstandardized  
Standard 

Error  
Standardized  t  p  Tolerance  VIF  

  Double Support 

Mean  
 0.197   0.231   0.876   0.854   0.402   0.037   26.964   

  Stance Mean   0.090   0.275   0.234   0.326   0.747   0.076   13.215   

  Swing Mean   0.402   0.629   1.074   0.640   0.529   0.014   72.051   

  Stance CV   1.897   8.748   0.865   0.217   0.830   0.002   407.758   

  Swing CV   -1.687   6.423   -0.973   -0.263   0.795   0.003   352.067   

3   (Intercept)   -25.185   27.341     -0.921   0.367         

  Double Support 

Mean  
 0.218   0.206   0.968   1.058   0.301   0.045   22.363   

  Stance Mean   0.051   0.203   0.132   0.249   0.806   0.132   7.549   

  Swing Mean   0.506   0.402   1.349   1.257   0.221   0.032   30.799   

  Swing CV   -0.296   0.337   -0.171   -0.878   0.389   0.988   1.012   

4   (Intercept)   -19.967   17.216     -1.160   0.258         

  Double Support 

Mean  
 0.214   0.201   0.950   1.063   0.299   0.045   22.224   

  Swing Mean   0.453   0.335   1.208   1.351   0.189   0.045   22.256   

  Swing CV   -0.294   0.330   -0.170   -0.890   0.382   0.988   1.012   

5   (Intercept)   -18.906   17.103     -1.105   0.280         

  Double Support 

Mean  
 0.196   0.200   0.871   0.984   0.335   0.045   22.009   

  Swing Mean   0.421   0.332   1.124   1.269   0.216   0.045   22.009   

6   (Intercept)   -2.343   3.016     -0.777   0.444         

  Swing Mean   0.102   0.071   0.273   1.446   0.160   1.000   1.000   

7   (Intercept)   2.014   0.112     17.996   < .001         

  
Descriptives  

   N  Mean  SD  SE  

PCI   28   2.014   0.592   0.112   

Double Support Mean   28   15.095   2.627   0.497   

Stance Mean   28   57.471   1.546   0.292   

Swing Mean   28   42.611   1.580   0.299   

Double Support CV   28   7.886   1.935   0.366   

Stance CV   28   1.379   0.270   0.051   

Swing CV   28   1.855   0.342   0.065   
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Collinearity Diagnostics  
 Variance Proportions  

Model  Dimension  Eigenvalue  Condition Index  intercept  Swing Mean  

1   1   6.892   1.000   0.000   0.000   

  2   0.080   9.268   0.000   0.000   

  3   0.020   18.548   0.000   0.000   

  4   0.008   29.385   0.000   0.000   

  5   2.307e -4   172.847   0.000   0.002   

  6   2.477e -5   527.468   0.040   0.032   

  7   4.113e -6   1294.469   0.960   0.966   

2   1   5.924   1.000   0.000   0.000   

  2   0.055   10.342   0.000   0.000   

  3   0.020   17.298   0.000   0.000   

  4   3.207e -4   135.913   0.000   0.003   

  5   2.554e -5   481.584   0.110   0.039   

  6   8.121e -6   854.146   0.890   0.957   

3   1   4.949   1.000   0.000   0.000   

  2   0.032   12.513   0.000   0.000   

  3   0.019   15.961   0.000   0.001   

  4   1.412e -4   187.217   0.001   0.084   

  5   1.151e -5   655.571   0.999   0.915   

4   1   3.951   1.000   0.000   0.000   

  2   0.031   11.266   0.000   0.000   

  3   0.018   14.724   0.000   0.001   

  4   2.385e -5   406.997   1.000   0.999   

5   1   2.976   1.000   0.000   0.000   

  2   0.024   11.163   0.000   0.001   

  3   2.402e -5   351.992   1.000   0.999   

6   1   1.999   1.000   0.000   0.000   

  2   6.620e -4   54.954   1.000   1.000   
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Appendix 4 | Statistical Analysis: Bridging the Callosal Gap in Gait: A Mechanistic Evaluation 

of White Matter in Bilateral Coordination 

 

 

 

Radial Diffusivity (RD) 

 

Repeated Measures ANOVA 
Within Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η²  

Radial Diffusivity   4.032e -7   7   5.760e  -8   113.307   < .001   0.323   

Radial Diffusivity ✻ Type   4.750e -9   7   6.786e -10   1.335   0.232   0.004   

Residual   1.921e -7   378   5.083e -10             

Note.  Type III Sum of Squares  

 

Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η²  

Type   1.259e -7   1   1.259e -7   13.030   < .001   0.194  

Residual   5.218e -7   54   9.664e -9           

Note.  Type III Sum of Squares  

 

PwMS: RD Correlation Matrix 
Pearson Correlations  

         Pearson's r  p  

Normal PCI   -   CMA   0.395  *  0.021   

Normal PCI   -   M1a   0.473  **  0.006   

Normal PCI   -   M1p   0.308   0.059   

Normal PCI   -   PMd   0.434  *  0.012   

Normal PCI   -   PMv   0.355  *  0.034   

Normal PCI   -   S1   0.360  *  0.033   

Normal PCI   -   SMA   0.439  *  0.011   

Normal PCI   -   preSMA   0.401  *  0.019   

 

Neurotypical: RD Correlation Matrix 
Pearson Correlations  

         Pearson's r  p  

Normal PCI   -   CMA   0.104   0.296   

Normal PCI   -   M1a   0.122   0.264   

Normal PCI   -   M1p   0.165   0.196   

Normal PCI   -   PMd   0.108   0.288   

Normal PCI   -   PMv   0.318  *  0.047   

Normal PCI   -   S1   0.016   0.466   

Normal PCI   -   SMA   0.158   0.206   

Normal PCI   -   preSMA   0.065   0.369   

Note . all tests one-tailed, for positive correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  
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Fractional Anisotropy (FA) 
 

Within Subjects Effects  

   
Sphericity 

Correction  

Sum of 

Squares  
df  

Mean 

Square  
F  p  η²  η² p  

Fractional Anisotropy   None   0.841  a  7.000  a  0.120  a  149.751  a  < .001  a  0.500   0.735   

    Greenhouse-

Geisser  
 0.841  a  4.940  a  0.170  a  149.751  a  < .001  a  0.500   0.735   

Fractional Anisotropy ✻ 

Group  
 None   0.010  a  7.000  a  0.001  a  1.812  a  0.084  a  0.006   0.032   

    Greenhouse-
Geisser  

 0.010  a  4.940  a  0.002  a  1.812  a  0.112  a  0.006   0.032   

Residual   None   0.303   378.000   8.027e -4                 

    Greenhouse-

Geisser  
 0.303   266.760   0.001                 

Note.  Type III Sum of Squares  

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

 

Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η²  η² p  

Group   0.067   1   0.067   7.902   0.007   0.128   0.128   

Residual   0.461   54   0.009                 

Note.  Type III Sum of Squares  

 

PwMS: FA Correlation Matrix 
Pearson Correlations  

         Pearson's r  p  

Normal PCI   -   CMA   -0.334  **  0.006   

Normal PCI   -   M1a   -0.514  ***  < .001   

Normal PCI   -   M1p   -0.355  **  0.004   

Normal PCI   -   PMd   -0.504  ***  < .001   

Normal PCI   -   PMv   -0.238  *  0.039   

Normal PCI   -   S1   -0.346  **  0.005   

Normal PCI   -   SMA   -0.401  **  0.001   

Normal PCI   -   preSMA   -0.466  ***  < .001   

 

Neurotypical: FA Correlation Matrix 
Pearson Correlations  

         Pearson's r  p  

Normal PCI   -   CMA   -0.102   0.300   

Normal PCI   -   M1a   -0.101   0.301   

Normal PCI   -   M1p   -0.047   0.405   

Normal PCI   -   PMd   -0.097   0.309   

Normal PCI   -   PMv   -0.172   0.187   

Normal PCI   -   S1   -0.100   0.302   

Normal PCI   -   SMA   -0.160   0.203   

Normal PCI   -   preSMA   -0.002   0.496   

Note . all tests one-tailed, for negative correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  
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Ipsilateral Silent Period (iSP) 

 

Depth of Silent Period  
Within Subjects Effects  

   
Sum of 

Squares  
df  Mean Square  F  p  η²  η² p  

Hemisphere   0.005   1   0.005   4.907e -5   0.994   0.000   0.000   

Hemisphere ✻ 

Group  
 0.140   1   0.140   0.001   0.971   0.000   0.000   

Residual   4540.529   44   103.194                 

Note.  Type III Sum of Squares  

Between Subjects Effects  

   
Sum of 

Squares  
df  

Mean 

Square  
F  p  η²  η² p  

Group   18.343   1   18.343   0.068   0.796   0.002   0.002   

Residual   11891.237   44   270.255                 

Note.  Type III Sum of Squares  

 

 

Duration of Silent Period 
Within Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η²  η² p  

Hemisphere   429.000   1   429.000   0.372   0.545   0.002   0.008   

Hemisphere ✻ Group   29.913   1   29.913   0.026   0.873   0.000   0.001   

Residual   50719.739   44   1152.721                 

Note.  Type III Sum of Squares  

Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η²  η² p  

Group   1385.689   1   1385.689   0.511   0.479   0.011   0.011   

Residual   119336.366   44   2712.190                 

Note.  Type III Sum of Squares  
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Appendix 5 | Statistical Analysis: Advanced Characterization of Static Postural Control 

Dysfunction in Persons with Multiple Sclerosis and Associated Neural Mechanisms 

 

 

 

Neuroimaging Analysis 

 
Radial Diffusivity: Independent Samples T-Test  

   Test  Statistic  df  p  Cohen's d  

CST_RD   Student   -2.569   54.000   0.006   -0.687   

    Welch   -2.531   44.038   0.008   -0.682   

Note.  For all tests, the alternative hypothesis specifies that group Neurotypical is less than group PwMS .  

 

Test of Equality of Variances (Levene's)  

   F  df  p  

CST_RD   10.536   1   0.002   

 

Group Descriptives  

   Group  N  Mean  SD  SE  

CST_RD   Neurotypical   29   5.838e -4   4.241e -5   7.876e -

6  
 

    PwMS   27   6.215e -4   6.548e -5   1.260e -

5  
 

 
Fractional Anisotropy: Independent Samples T-Test  

   t  df  p  Cohen's d  

CST_FA   1.634   54.000   0.054   0.437   

Note.  Student's t-test.  

Note.  For all tests, the alternative hypothesis specifies that group Neurotypical is greater than group PwMS .  

 

Group Descriptives  

   Group  N  Mean  SD  SE  

CST_FA   Neurotypical   29   0.343   0.021   0.004   

    PwMS   27   0.333   0.022   0.004   
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Anterior-Posterior Results 

 

AP: Repeated Measures ANOVA 
Within Subjects Effects  

   Sphericity Correction  
Sum of 

Squares  
df  

Mean 

Square  
F  p  

mCTSIB   None   6804.637  a  3.000  a  2268.212  a  214.403  a  < .001  a  

    Greenhouse-

Geisser  
 6804.637  a  2.143  a  3174.787  a  214.403  a  < .001  a  

mCTSIB ✻ 

Group  
 None   80.235  a  3.000  a  26.745  a  2.528  a  0.059  a  

    Greenhouse-
Geisser  

 80.235  a  2.143  a  37.435  a  2.528  a  0.080  a  

Residual   None   1713.832   162.000   10.579         

    Greenhouse-

Geisser  
 1713.832   115.740   14.808         

Note.  Type III Sum of Squares  

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

Between Subjects Effects  

   
Sum of 

Squares  
df  

Mean 

Square  
F  p  

Group   434.229   1   434.229   5.901   0.018   

Residual   3973.432   54   73.582         

Note.  Type III Sum of Squares  

 

Descriptives  

mCTSIB  Group  Mean  SD  N  

Rigid Surface/Eyes Open   Neurotypical   20.632   7.019   29   

    PwMS   16.001   6.820   27   

Rigid Surface/Eyes Closed   Neurotypical   15.151   5.470   29   

    PwMS   12.797   6.494   27   

Compliant Surface/Eyes Open   Neurotypical   9.931   4.077   29   

    PwMS   7.092   4.043   27   

Compliant Surface/Eyes Closed   Neurotypical   4.369   2.000   29   

    PwMS   3.048   2.493   27   

 

PwMS RD-AP Correlations 
 

Pearson Correlations  

         Pearson's r  p  

CST_RD   -   AP_TTB_Avg_RO   -0.303   0.063   

CST_RD   -   AP_TTB_Avg_RC   -0.320   0.052   

CST_RD   -   AP_TTB_Avg_CO   -0.370  *  0.029   

CST_RD   -   AP_TTB_Avg_CC   -0.308   0.059   

Note . all tests one-tailed, for negative correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  

Corrected Condition 3  
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Pearson Correlations  

         Pearson's r  p  

CST_RD   -   AP_TTB_Avg_CO   -0.431  *  0.016   

Note . all tests one-tailed, for negative correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  

 

Corrected Condition 4 

 
Pearson Correlations  

         Pearson's r  p  

CST_RD   -   AP_TTB_Avg_CC   -0.232   0.170   

Note . all tests one-tailed, for negative correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  

 

 

Neurotypical RD-AP Correlations 

 
Pearson Correlations  

         Pearson's r  p  

CST_RD   -   AP_TTB_Avg_RO   -0.247   0.098   

CST_RD   -   AP_TTB_Avg_RC   -0.276   0.073   

CST_RD   -   AP_TTB_Avg_CO   -0.155   0.211   

CST_RD   -   AP_TTB_Avg_CC   -0.110   0.285   

Note . all tests one-tailed, for negative correlation  

* p < .05, ** p < .01, *** p < .001, one-tailed  

 

Corrected Condition 4 
Pearson Correlations  

         Pearson's r  p  

CST_RD   -   AP_TTB_Avg_CC   -0.143   0.478   
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Medial-Lateral Results 

 

ML: Repeated Measures ANOVA 
Within Subjects Effects  

   Sphericity Correction  
Sum of 

Squares  
df  

Mean 

Square  
F  p  

mCTSIB   None   2379.251  a  3.000  a  793.084  a  209.092  a  < .001  a  

    Greenhouse-

Geisser  
 2379.251  a  2.385  a  997.608  a  209.092  a  < .001  a  

mCTSIB ✻ 

Group  
 None   10.091  a  3.000  a  3.364  a  0.887  a  0.449  a  

    Greenhouse-
Geisser  

 10.091  a  2.385  a  4.231  a  0.887  a  0.430  a  

Residual   None   614.464   162.000   3.793         

    Greenhouse-

Geisser  
 614.464   128.788   4.771         

Note.  Type III Sum of Squares  

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

Between Subjects Effects  

   
Sum of 

Squares  
df  

Mean 

Square  
F  p  

Group   49.202   1   49.202   1.751   0.191   

Residual   1517.717   54   28.106         

Note.  Type III Sum of Squares  

 

Descriptives  

mCTSIB  Group  Mean  SD  N  

Rigid Surface/Eyes Open   Neurotypical   12.136   3.258   29   

    PwMS   10.547   4.878   27   

Rigid Surface/Eyes Closed   Neurotypical   8.807   2.715   29   

    PwMS   8.409   4.245   27   

Compliant Surface/Eyes Open   Neurotypical   6.328   2.071   29   

    PwMS   5.440   3.353   27   

Compliant Surface/Eyes Closed   Neurotypical   2.979   1.315   29   

    PwMS   2.101   1.761   27   
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Appendix 6 | Phase Coordination Index MATLAB Code 

 

 

 

Step 1: Phase Coordination Index Calculations 
  
 %Project: Mahoney.Richmond.Study (MRS) 
 %Script Authors: Sutton Richmond, MS; Clayton Swanson, MS;  
 %                 & Zachary Haig, BS  
 %Last Revised Date: 1/22/19 
 %Coded for MAC use 
  
 %Phase Coordination Index calculations originating authors and reference: 
  
% Plotnik, M., Giladi, N., & Hausdorff, J. M. (2007). A new measure for 
%    quantifying the bilateral coordination of human gait: effects of aging 
%    and Parkinson's disease. Exp Brain Res, 181(4), 561-570. 
%     doi:10.1007/s00221-007-0955-7 
  
    %Script Equipment:APDM, Inc. Inertial Monitoring Units(6-sensor system) 
    %Collection Parameters: Sampling rate: 128 Hz 
    %Data Output: MobilityLab CSV files 
  
%Script: will output the overall PCI score, accuracy, 
%and consistency measures for three seperate (2-minute) walking conditions. 
%Additionally, this script will generate a stride-by-stride graphical 
%display of each of the walking conditions. 
  
%Additional Functions .m files REQUIRED to be in the path: 
% 1.)hline  
% 2.)vline 
  
%Experimental Procedure: (3) instrumented 2-minute walks at 1.)a 
%self-selected pace, 2.)a self-selected pace and under a cognitive load 
%(dual-task), & 3.) a fast pace. 
  
%Pre-CSV preperation: 
%1. Export APDM data (Export trial -> Check (only) the Detailed Results box 
%->  click EXPORT 
%2. In the .csv file, erase the following rows: 
    %ID Rows 3 --> 5 
    %Any gait data after Row #59 (60 +) 
%3. Script is READY to be run!!! 
%% Clear command window and workspace 
clc  
clear all 
close all 
GoBack = pwd; 
%% Load Path Data 
    %Alternative Load Option: Load the data from the designated (prompted by) 
3 digit subject number; 
    %make sure that the (3 digit subject numbers) files are located in the  
    %designated root directory.  
    % subnum = input('Enter 3 digit subject number: ', 's'); 
    % root_dir = ['/Users/suttonrichmond/Desktop/MRS_PCI_Data/']; 
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PATH = pwd 
RootPath = uigetdir(PATH); 
cd(RootPath) 
%% Results Path 
ResultDirS = [PATH '/PCIresults/SUBnumber/']; 
ResultDirW = [PATH '/PCIresults/NORMALwalk/']; 
ResultDirD = [PATH '/PCIresults/DUALwalk/']; 
ResultDirF = [PATH '/PCIresults/FASTwalk/']; 
PCIplotFolder = [PATH '/PCIplots/']; 
%% PCI Equations 
    %     phi_CV is the coefficient of variation of the mean of phi values 
    %         for each subject.    
    %         phi_CV = sigma_phi/mu_phi 
    %     Pphi_ABS is the conversion of phi_ABS to a percentage. 
    %         Pphi_ABS = 100*phi_ABS/180 
    %     Finally,   
    %         PCI = phi_CV + Pphi_ABS 
%% Load the testing condition: Normal Walking Trial 
STR1 = [RootPath,'/walk.csv']; 
NWdata = dlmread(STR1, ',',16, 5); 
%% Raw data from data sheet: 
%Gait Cycle Duration [s] [L;R]: 
Walk_GCD = [NWdata(7,:);NWdata(8,:)]; 
%Step Duration [s] [L;R]; 
Walk_StepDur = [NWdata(24,:);NWdata(25,:)]; 
%Lower Limb Swing [%GCT] [L;R]: 
Walk_SwingGCT = [NWdata(28,:);NWdata(29,:)]./100; %Convert to decimal form. 
%% Calculating True Swing Time [s] [L;R]: 
Walk_SwingT = Walk_GCD.*Walk_SwingGCT; 
  
Walk_n = length(Walk_SwingT(1,1:end)); 
  
Walk_phi = zeros(1,Walk_n-1); 
  
%Determining Short and Long Swing Times: 
Walk_tLft = Walk_SwingT(1,:); %Left Swing Time 
Walk_tRt = Walk_SwingT(2,:); %Right Swing Time 
  
if mean(Walk_tLft) < mean(Walk_tRt) 
    Walk_tS = Walk_StepDur(1,:); tL = Walk_GCD(2,:); 
else 
    Walk_tS = Walk_StepDur(2,:); tL = Walk_GCD(1,:); 
end 
  
%% Calculating phi (degrees): 
for i = 1:Walk_n-1 
    Walk_phi(i) = 360*Walk_tS(i)/tL(i);       
end 
  
% figure (1); 
% plot(Walk_phi,'MarkerSize',8,'Marker','o','LineStyle','none');%Create Plot 
% ylim([90 270]); %Set Y-axis 
% title('Normal Walking','FontSize',12,'FontName','Times New Roman');% Create 
title 
% xlabel('Stride Number','FontSize',12,'FontName','Times New Roman');% Create 
xlabel 
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% ylabel('Stepping Phase','FontSize',12,'FontName','Times New Roman');% 
Create ylabel 
% hold on 
% Xline = refline([0 180]); 
% Xline.Color = 'r'; 
% Xline.LineWidth = 2 
% % text(100,90,'PCI:' 
Walk_phi_diff = abs(Walk_phi - 180); %Absolute difference of phi values 
%% Calculate the Outcome Variables 
%Mean value of absolute differences (degrees) 
Walk_phi_abs = nanmean(Walk_phi_diff); 
%Percentage-converted phi_ABS (%) 
Walk_Pphi_abs = 100*Walk_phi_abs/180; 
%Coefficient of variation of mean of phi (%) 
Walk_phi_cv = (nanstd(Walk_phi)/nanmean(Walk_phi)); 
%Calculate PCI: 
Walk_PCI = Walk_phi_cv + Walk_Pphi_abs; 
%% Display the Outcomes 
fprintf('Phase Coordination Index (PCI) for 2 minute normal walk: 
%10.8f\n\n',Walk_PCI) 
fprintf('ABS of PCI for 2 minute normal walk: %10.8f\n\n',Walk_Pphi_abs) 
fprintf('CoV of PCI for 2 minute normal walk: %10.8f\n\n',Walk_phi_cv) 
%% Write to Walk.csv 
%PCI for the normal walking condition 
fileID = fopen([ResultDirW,'Normal Walk PCI.csv'],'a+'); 
fprintf(fileID,'%s\n', Walk_PCI(:,1)); 
fclose(fileID); 
%Percentage-converted phi_ABS (%)for the normal walking condition 
fileID = fopen([ResultDirW,'Normal Walk Percent.csv'],'a+'); 
fprintf(fileID,'%s\n', Walk_Pphi_abs(:,1)); 
fclose(fileID); 
%Coefficient of variation of mean of phi (%) for the normal walking 
%condition 
fileID = fopen([ResultDirW,'Normal Walk CoV.csv'],'a+'); 
fprintf(fileID,'%s\n', Walk_phi_cv(:,1)); 
fclose(fileID); 
% [PCI(1),phi_cv(1),Pphi_abs(1)] = PCI_Function(data2min); 
% 
% 
% 
%% Load the testing condition: Dual Task Walking Trial 
STR2 = [RootPath,'/dual.csv']; 
DWdata = dlmread(STR2, ',',16, 5); 
%% Raw data from data sheet: 
%Gait Cycle Duration [s] [L;R]: 
Dual_GCD = [DWdata(7,:);DWdata(8,:)]; 
%Step Duration [s] [L;R]; 
Dual_StepDur = [DWdata(24,:);DWdata(25,:)]; 
%Lower Limb Swing [%GCT] [L;R]: 
Dual_SwingGCT = [DWdata(28,:);DWdata(29,:)]./100; %Convert to decimal form. 
%% Calculating True Swing Time [s] [L;R]: 
Dual_SwingT = Dual_GCD.*Dual_SwingGCT; 
  
Dual_n = length(Dual_SwingT(1,1:end)); 
  
Dual_phi = zeros(1,Dual_n-1); 
  
%Determining Short and Long Swing Times: 
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Dual_tLft = Dual_SwingT(1,:); %Left Swing Time 
Dual_tRt = Dual_SwingT(2,:); %Right Swing Time 
  
if mean(Dual_tLft) < mean(Dual_tRt) 
    Dual_tS = Dual_StepDur(1,:); tL = Dual_GCD(2,:); 
else 
    Dual_tS = Dual_StepDur(2,:); tL = Dual_GCD(1,:); 
end 
  
%% Calculating phi (degrees): 
for i = 1:Dual_n-1 
    Dual_phi(i) = 360*Dual_tS(i)/tL(i);       
end 
  
Dual_phi_diff = abs(Dual_phi - 180); %Absolute difference of phi values 
%% Calculate the Outcome Variables 
%Mean value of absolute differences (degrees) 
Dual_phi_abs = nanmean(Dual_phi_diff); 
%Percentage-converted phi_ABS (%) 
Dual_Pphi_abs = 100*Dual_phi_abs/180; 
%Coefficient of variation of mean of phi (%) 
Dual_phi_cv = (nanstd(Dual_phi)/nanmean(Dual_phi)); 
%Calculate PCI: 
Dual_PCI = Dual_phi_cv + Dual_Pphi_abs; 
%% Display the Outcomes 
fprintf('Phase Coordination Index (PCI) for 2 minute dual-task walk: 
%10.8f\n\n',Dual_PCI) 
fprintf('ABS of PCI for 2 minute dual-task walk: %10.8f\n\n',Dual_Pphi_abs) 
fprintf('CoV of PCI for 2 minute dual-task walk: %10.8f\n\n',Dual_phi_cv) 
%% Write to Walk.csv 
%PCI for the dual-task walking condition 
fileID = fopen([ResultDirD,'Dual Task Walk PCI.csv'],'a+'); 
fprintf(fileID,'%s\n', Dual_PCI(:,1)); 
fclose(fileID); 
%Percentage-converted phi_ABS (%)for the dual-task walking condition 
fileID = fopen([ResultDirD,'Dual Task Walk Percent.csv'],'a+'); 
fprintf(fileID,'%s\n', Dual_Pphi_abs(:,1)); 
fclose(fileID); 
%Coefficient of variation of mean of phi (%) for the dual-task walking 
%condition 
fileID = fopen([ResultDirD,'Dual Task Walk CoV.csv'],'a+'); 
fprintf(fileID,'%s\n', Dual_phi_cv(:,1)); 
fclose(fileID); 
% [PCI(2),phi_cv(2),Pphi_abs(2)] = PCI_Function(data2min_1); 
% 
% 
% 
%% Load the testing condition: Fast Walking Trial 
STR3 = [RootPath,'/fast.csv']; 
FWdata = dlmread(STR3, ',',16, 5); 
%% Raw data from data sheet: 
%Gait Cycle Duration [s] [L;R]: 
Fast_GCD = [FWdata(7,:);FWdata(8,:)]; 
%Step Duration [s] [L;R]; 
Fast_StepDur = [FWdata(24,:);FWdata(25,:)]; 
%Lower Limb Swing [%GCT] [L;R]: 
Fast_SwingGCT = [FWdata(28,:);FWdata(29,:)]./100; %Convert to decimal form. 
%% Calculating True Swing Time [s] [L;R]: 
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Fast_SwingT = Fast_GCD.*Fast_SwingGCT; 
  
Fast_n = length(Fast_SwingT(1,1:end)); 
  
Fast_phi = zeros(1,Fast_n-1); 
  
%Determining Short and Long Swing Times: 
Fast_tLft = Fast_SwingT(1,:); %Left Swing Time 
Fast_tRt = Fast_SwingT(2,:); %Right Swing Time 
  
if mean(Fast_tLft) < mean(Fast_tRt) 
    Fast_tS = Fast_StepDur(1,:); tL = Fast_GCD(2,:); 
else 
    Fast_tS = Fast_StepDur(2,:); tL = Fast_GCD(1,:); 
end 
  
%% Calculating phi (degrees): 
for i = 1:Fast_n-1 
    Fast_phi(i) = 360*Fast_tS(i)/tL(i);       
end 
Fast_phi_diff = abs(Fast_phi - 180); %Absolute difference of phi values 
%% Calculate the Outcome Variables 
%Mean value of absolute differences (degrees) 
Fast_phi_abs = nanmean(Fast_phi_diff); 
%Percentage-converted phi_ABS (%) 
Fast_Pphi_abs = 100*Fast_phi_abs/180; 
%Coefficient of variation of mean of phi (%) 
Fast_phi_cv = (nanstd(Fast_phi)/nanmean(Fast_phi)); 
%Calculate PCI: 
Fast_PCI = Fast_phi_cv + Fast_Pphi_abs; 
%% Input the participant number for future refereence 
SN = input('Enter 3 digit subject number: ', 's'); 
subnum = str2num(SN); 
%% Display the Outcomes 
fprintf('Phase Coordination Index (PCI) for 2 minute fast walk: 
%10.8f\n\n',Fast_PCI) 
fprintf('ABS of PCI for 2 minute fast walk: %10.8f\n\n',Fast_Pphi_abs) 
fprintf('CoV of PCI for 2 minute fast walk: %10.8f\n\n',Fast_phi_cv) 
%% Write to Walk.csv 
%Participant number 
fileID = fopen([ResultDirS,'SubjectNumber.csv'],'a+'); 
fprintf(fileID,'%d\n', subnum(:,1)); 
fclose(fileID); 
%PCI for the fast walking condition 
fileID = fopen([ResultDirF,'Fast Walk PCI.csv'],'a+'); 
fprintf(fileID,'%s\n', Fast_PCI(:,1)); 
fclose(fileID); 
%Percentage-converted phi_ABS (%)for the fast walking condition 
fileID = fopen([ResultDirF,'Fast Walk Percent.csv'],'a+'); 
fprintf(fileID,'%s\n', Fast_Pphi_abs(:,1)); 
fclose(fileID); 
%Coefficient of variation of mean of phi (%) for the fast walking 
%condition 
fileID = fopen([ResultDirF,'Fast Walk CoV.csv'],'a+'); 
fprintf(fileID,'%s\n', Fast_phi_cv(:,1)); 
fclose(fileID); 
% [PCI(3),phi_cv(3),Pphi_abs(3)] = PCI_Function(data2min_2); 
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% 
% 
cd(PATH) 
%% Create a plot for the PCI 
PCIplot = figure (1); 
subplot(3,1,1); 
plot(Walk_phi,'MarkerSize',8,'Marker','o','LineStyle','none');%Create Plot 
ylim([90 270]); %Set Y-axis 
title('Self-Selected Pace Walking','FontSize',12,'FontName','Times New 
Roman');% Create title 
xlabel('Stride Number','FontSize',12,'FontName','Times New Roman');% Create 
xlabel 
ylabel('Stepping Phase','FontSize',12,'FontName','Times New Roman');% Create 
ylabel 
hold on 
Xline = refline([0 180]); 
Xline.Color = 'r'; 
Xline.LineWidth = 2; 
WPCI = num2str(Walk_PCI); 
text(2.5,100,['PCI = ' WPCI]); 
%Create Plot 
subplot(3,1,2); 
plot(Dual_phi,'MarkerSize',8,'Marker','o','LineStyle','none'); 
ylim([90 270]); %Set Y-axis 
title('Dual-Task Walking','FontSize',12,'FontName','Times New Roman');% 
Create title 
xlabel('Stride Number','FontSize',12,'FontName','Times New Roman');% Create 
xlabel 
ylabel('Stepping Phase','FontSize',12,'FontName','Times New Roman');% Create 
ylabel 
hold on 
Xline = refline([0 180]); 
Xline.Color = 'r'; 
Xline.LineWidth = 2; 
DPCI = num2str(Dual_PCI); 
text(2.5,100,['PCI = ' DPCI]); 
%Create Plot 
subplot(3,1,3); 
plot(Fast_phi,'MarkerSize',8,'Marker','o','LineStyle','none');%Create Plot 
ylim([90 270]); %Set Y-axis 
title('Fast Paced Walking','FontSize',12,'FontName','Times New Roman');% 
Create title 
xlabel('Stride Number','FontSize',12,'FontName','Times New Roman');% Create 
xlabel 
ylabel('Stepping Phase','FontSize',12,'FontName','Times New Roman');% Create 
ylabel 
hold on 
Xline = refline([0 180]); 
Xline.Color = 'r'; 
Xline.LineWidth = 2; 
FPCI = num2str(Fast_PCI); 
text(2.5,100,['PCI = ' FPCI]); 
%Save figure... 
PlotSaved = SN; 
savefig(PCIplot,[PCIplotFolder,PlotSaved]); 
    % PlotSaved = input('Enter the subject ID (example: 001):','s'); 
    % savefig(PCIplot,[PCIplotFolder,PlotSaved]); 
%% Return to the main folder (cd) 
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cd(GoBack) 
%% END of SCRIPT Step 1 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
 

Step 2: Phase Coordination Index Write Script 
 
% Script Information 
    % Originating Author:  Sutton B. Richmond, MS 
    % Last updated: 10/05/18 
% This script will allow you to compile the PCI metrics for each walking 
% conditions for the MRS Dissertation Project. 
  
%Additional Functions .m files REQUIRED to be in the path: 
% 1.)csvwrite_with_headers  
  
%REMEMBER: BEFORE running this script you should have ran each participant 
%through the PCI Calculations script FIRST. 
  
%% Set the retrieval path/directory 
PATH = pwd 
SN_PATH  = [PATH '/PCIresults/SUBnumber']; 
NW_PATH  = [PATH '/PCIresults/NORMALwalk']; 
DW_PATH  = [PATH '/PCIresults/DUALwalk']; 
FW_PATH  = [PATH '/PCIresults/FASTwalk']; 
addpath(SN_PATH); 
addpath(NW_PATH); 
addpath(DW_PATH); 
addpath(FW_PATH); 
%% Set the headers for the .csv file 
headers = {'Participant Number','Normal PCI','Dual Task PCI','Fast 
PCI','Normal CoV','Dual Task CoV','Fast CoV','Normal Pphi','Dual Task 
Pphi','Fast Pphi'} 
%% Compile the data 
csv1 = csvread('SubjectNumber.csv'); 
csv2 = csvread('Normal Walk PCI.csv'); 
csv3 = csvread('Dual Task Walk PCI.csv'); 
csv4 = csvread('Fast Walk PCI.csv'); 
csv5 = csvread('Normal Walk CoV.csv'); 
csv6 = csvread('Dual Task Walk CoV.csv'); 
csv7 = csvread('Fast Walk CoV.csv'); 
csv8 = csvread('Normal Walk Percent.csv'); 
csv9 = csvread('Dual Task Walk Percent.csv'); 
csv10 = csvread('Fast Walk Percent.csv'); 
  
AllCsv1 = [csv1,csv2,csv3,csv4,csv5,csv6,csv7,csv8,csv9,csv10]; % Concatenate 
vertically 
csvwrite_with_headers ('Phase Coordination Index 
Metrics.csv',AllCsv1,headers); 
%% END of SCRIPT Step 2 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
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Appendix 7 | Time-To-Boundary MATLAB Code 

 

 

 

Step 1: BTrackS File Converter 
 
%% BTrackS automated converter for data files:.txt to .csv files 
 %Script Author: Sutton Richmond, MS  
 %Last Revised Date: 02/11/2020 
 %Coded for MAC use 
  
%This will open a dialog box to choose your directory (your folder) where 
%the BTrackS data (.txt files) for your participant is stored. 
  
%Additional Functions .m files REQUIRED to be in the path: 
% 1.)txt2csv.m 
  
GoBack = pwd 
selpath = uigetdir(path) 
cd(selpath) 
%Converts the rigid surface with eyes open postural stabiity condition from 
%a .txt to a .csv file. 
data = importdata('rsEyesOpen.txt'); 
csvwrite('rsEyesOpen.csv',data.data); 
%Converts the rigid surface with eyes closed postural stabiity condition 
%from a .txt to a .csv file. 
data = importdata('rsEyesClosed.txt'); 
csvwrite('rsEyesClosed.csv',data.data); 
%Converts the compliant surface with eyes open postural stabiity condition 
%from a .txt to a .csv file. 
data = importdata('csEyesOpen.txt'); 
csvwrite('csEyesOpen.csv',data.data); 
%Converts the compliant surface with eyes closed postural stabiity condition 
%from a .txt to a .csv file. 
data = importdata('csEyesClosed.txt'); 
csvwrite('csEyesClosed.csv',data.data); 
cd(GoBack) 
%% END of SCRIPT Step 1 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
 

Step 2: Time-To-Boundary Foot Parcellation 
 
% Last Revised: 10/17/2018 
% Script Authors: Sutton Richmond, MS & Tyler T. Whittier, MS 
  
% Summary: This script imports an N x 4 matrix from an excel sheet with all 
% participants foot measurements.  The first two columns are the dominant 
% and non-dominant measurements from the MS group and the second 2 columns 
% are the same from the control group.  Each participant takes up 2 rows 
% with the length on the first row and width on the second as follows: 
 
%        Column1                 Column2 .             Column3 .            
Column 4 
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% Row 1:MS001 Dom. length   MS001 Non-dom. length    HC001 Dom. length   
HC001 Non-dom. length 
% Row 2:MS001 Dom. width    MS001 Non-dom. width     HC001 Dom.  width   
HC001 Non-dom. width 
% Row 3:MS002 Dom. length   MS002 Non-dom. length    HC002 Dom. length   
HC002 Non-dom. length 
% Row 4:MS002 Dom. width    MS002 Non-dom. width     HC002 Dom.  width   
HC002 Non-dom. width 
% etc. 
% The specific measurements for each individual participant are exported as 
% a .csv file into each participants folder 
  
%% Start of Script: Step 1 
%Clear command window and workspace 
clear all 
close all 
clc 
% Create a string with the filepath to the original excel file 
PATH = pwd; 
STR1 = [PATH '/Footmeasurements.xlsx']; 
% Import data.  The specific range will depend on the sample size 
DATA = xlsread(STR1, 'K:N'); 
%For each NaN value in the excel output--> Return in matrix a "0" 
DATA(isnan(DATA))=0; 
%Rotate the extracted data matrix 
DOM = rot90(DATA(:,1:2)); 
N_DOM = rot90(DATA(:,3:4)); 
%Reshape the rotated matrix to fit the order needed.  
DOM = reshape(DOM,[length(DOM(1,:))*2,1]); 
N_DOM = reshape(N_DOM,[length(N_DOM(1,:))*2,1]); 
%Place the reshaped data into DOMINATE and NON-DOMINATE columns for 
%parcilation. 
data(:,1) = DOM; 
data(:,2) = N_DOM; 
% Create a cell array of strings with each participants' identifier 
for i = 1:9 
    MRSTRINGS{i} = ['00' num2str(i)]; 
end 
for i = 10:99 
    MRSTRINGS{i} = ['0' num2str(i)]; 
end 
%Identify where each participants measurements belong.   
Start = [1:2:length(data)]; 
%Sort each participant into an individual cell in a cell array containing 
%all participants measurements 
for i = 1:length(Start) 
    MS_dat{i} = data(Start(i):Start(i)+1,1:2); 
end 
%Export a .csv file with each individual participants' measurements into 
%their specific folder. 
for i = 1:length(Start) 
    csvwrite([PATH '/' MRSTRINGS{i} '/FA.csv'], MS_dat{i}) 
end 
%% END of SCRIPT Step 2 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
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Step 3: Time-To-Boundary Calculations 
 
 %Script Information 
     
 %Clinical Exam: Modified Clinical Test of Sensory Interaction on Balance 
 %(mCTSIB) 
 %Project: Mahoney.Richmond.Study (MRS) 
 %Script Authors: Sutton Richmond, MS & Kevin Dames, PhD  
 %Last Revised Date: 06/19/2019 
 %Coded for MAC use 

  
 %Stability calculations originating authors and reference: 
     
    %Hertel, J., & Olmsted-Kramer, L. C. (2007). Deficits in 
        %time-to-boundary measures of postural control with chronic ankle 
        %instability. Gait Posture, 25(1), 33-39. 
        %doi:10.1016/j.gaitpost.2005.12.009 
     
    %Script Equipment:Balance Tracking System (BTrackS) 
    %Collection Parameters: Sampling rate: 25 Hz, Filtered: Lowpass 
    %Butterworth filter at 4Hz (BTrackS Calculated) 
 
%Additional Functions .m files REQUIRED to be in the path: 
% 1.)deriv1.m  
  
%Testing Procedure: Participant began in position (hands on the hips feet  
%togeather (Dual Stance), looking straight ahead) on the plate and static  
%stability was recorded for the duration of 30s for each mCTSIB testing  
%condition. The participants remained on the plate for the entire duration 
%of the trial. 
    %mCTSIB testing condtion order (in order, in (4) seperate data files): 
    %1. RO = Rigid Surface & Eyes Open 
    %2. RC = Rigid Surface & Eyes Closed 
    %3. CO = Compliant Surface & Eyes Open 
    %4. CC = Compliant Surface & Eyes Closed 
%Each BTrackS data file contains 30s (mCTSIB) of data in the  
%comma-separated values format with 5 columns of data as follows: 
    % Column 1: Time (sec) 
    % Column 2: COPx (cm) filtered data 
    % Column 3: COPy (cm) filtered data 
    % Column 4: ufCOPx (cm) unfiltered data 
    % Column 5: ufCOPy (cm) unfiltered data 
%Foot Anthropometrics:The foot anthropometrics file should be placed in the 
%same folder as the trial data; use the Footsorter.m script to divide 
%everything up. 
  
%% Start of Script: Step 2 
%Clear command window and workspace 
clc  
clear all 
close all 
GoBack = pwd; 
%% Set Frequency & Time to analyze 
%Set the sampling frequency 
Fs = 25; 
dt = 1/Fs; 
%% Select the Particpant & Load Data 
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    %Load the data from the prompted 3 digit subject number 
    %Subject ID: C = Control subject or M = MS subject  
    subnum = input('Enter 3 digit subject number: ', 's'); 
    %trial = input('Enter the trial type (RO, RC, CO or CC): ', 's'); 
    % root directory 
    root_dir='/Volumes/SBR_CSU/Mobility/MRS_PS_Data/'; 
    %This string is the data file for the trials 
    %Example for with trial input: STR1 = 
[root_dir,subnum,'/rsEyesOpen',trial,'.csv']; 
    STR1 = [root_dir,subnum,'/rsEyesOpen.csv']; 
    STR2 = [root_dir,subnum,'/rsEyesClosed.csv']; 
    STR3 = [root_dir,subnum,'/csEyesOpen.csv']; 
    STR4 = [root_dir,subnum,'/csEyesClosed.csv']; 
%Set the where the directory where the TTB plots will saved too. 
TTBplotFolder1 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Rigid_EO_Stabilogr
am/'; 
TTBplotFolder2 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Rigid_EO_TTB_Plot/
'; 
TTBplotFolder3 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Rigid_EC_Stabilogr
am/'; 
TTBplotFolder4 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Rigid_EC_TTB_Plot/
'; 
TTBplotFolder5 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Compliant_EO_Stabi
logram/'; 
TTBplotFolder6 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Compliant_EO_TTB_P
lot/'; 
TTBplotFolder7 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Compliant_EC_Stabi
logram/'; 
TTBplotFolder8 = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBplots/Compliant_EC_TTB_P
lot/'; 
%% Identification of the loaded data 
% This section identifies if the data files exist in the directed folder 
if exist(eval('STR1'),'file') == 2 
    data1 = dlmread(STR1, ',',1, 0); 
end 
if exist(eval('STR2'),'file') == 2 
    data2 = dlmread(STR2, ',',1, 0); 
end 
if exist(eval('STR3'),'file') == 2 
    data3 = dlmread(STR3, ',',1, 0); 
end 
if exist(eval('STR4'),'file') == 2 
    data4 = dlmread(STR4, ',',1, 0); 
end 
%% Foot anthropometrics 
%This string is the data file for the foot anthropometrics 
STR5= [root_dir,subnum,'/','FA.csv']; 
%import data file containing feet anthropometrics 
footdata=dlmread(STR5, ',',0,0); 
%Define widths of the feet (D=dominant, ND=nondominant) 
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DWidth=footdata(2,1); 
NDWidth=footdata(2,2); 
DLength=footdata(1,1); 
NDLength=footdata(1,2); 
%% Initialize the designated Results Folders 
%Identify where the data outputs will be stored  
    ResultDirAP = '/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/AP/'; 
    ResultDirML = '/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/ML/'; 
    ResultDirRight = 
'/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/Right/' 
    ResultDirLeft = '/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/Left/' 
    TTBstatsFolder 
='/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBstats/'; 
%% Initialize all outcome variables 
%This section initializes all (48 of them) the output variables (adds them 
%as blank sets) this allows the program to run fully, even if a condition 
%(the data) is not present in the participant folder (i.e. they couldn't 
%complete the condition). 
TTBXROpeaks = []; 
TTBXRCpeaks = []; 
TTBXCOpeaks = []; 
TTBXCCpeaks = []; 
TTBXROpeaks_Right = []; 
TTBXRCpeaks_Right = []; 
TTBXCOpeaks_Right = []; 
TTBXCCpeaks_Right = []; 
TTBXROpeaks_Left = []; 
TTBXRCpeaks_Left = []; 
TTBXCOpeaks_Left = []; 
TTBXCCpeaks_Left = []; 
TTBYROpeaks = []; 
TTBYRCpeaks = []; 
TTBYCOpeaks = []; 
TTBYCCpeaks = []; 
TTBXaverageRO = []; 
TTBXstdevRO = []; 
TTBXaverageRC = []; 
TTBXstdevRC = []; 
TTBXaverageCO = []; 
TTBXstdevCO = []; 
TTBXaverageCC = []; 
TTBXstdevCC = []; 
TTBXaverageRO_Right = []; 
TTBXstdevRO_Right = []; 
TTBXaverageRC_Right = []; 
TTBXstdevRC_Right = []; 
TTBXaverageCO_Right = []; 
TTBXstdevCO_Right = []; 
TTBXaverageCC_Right = []; 
TTBXstdevCC_Right = []; 
TTBXaverageRO_Left = []; 
TTBXstdevRO_Left = []; 
TTBXaverageRC_Left = []; 
TTBXstdevRC_Left = []; 
TTBXaverageCO_Left = []; 
TTBXstdevCO_Left = []; 
TTBXaverageCC_Left = []; 
TTBXstdevCC_Left = []; 
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TTBYaverageRO = []; 
TTBYstdevRO = []; 
TTBYaverageRC = []; 
TTBYstdevRC = []; 
TTBYaverageCO = []; 
TTBYstdevCO = []; 
TTBYaverageCC = []; 
TTBYstdevCC = []; 
%% Test Condition: mCTSIB: Rigid Surface & Eyes Open 
%The if statement, initiaties the analysis of the section if data is 
%present. If the data is not available, then the script will move on to the 
%next condition analysis. 
if exist('data1','var')== 1 
    %Define borders of the feet. Wider of the two feet are used as the 
    %length for TTB calculations. The width is the sum of the two feet. 
    Width=DWidth+NDWidth; 
    if DLength > NDLength; 
        Length = DLength; 
    else DLength < NDLength; 
        Length = NDLength; 
    end 
    %Determine when the person steps onto the plate and wait five seconds 
(125 
    %samples) to start trial. 
     
    %Segement out the X and Y data from the raw data; This data will include 
    %the 30 sec of testing for the mCTSIB (when collecting at 25 Hz this will 
    %be the next 750 frames) 
    ROtrialxdata=data1(:,2); 
    ROtrialydata=data1(:,3); 
    %Define base of support for TTB reference based on anthropometrics. Set 
the 
    %borders of the feet relative to the center of the base of support. This 
    %makes the centered stabiligram set in the center of the base of support 
    %rectangle. 
    %(1,1:2) = coordinate for left heel corner 
    %(2,1:2) = coordinate for left heel toe corner 
    %(3,1:2) = coordinate for right toe corner 
    %(4,1:2) = coordinate for right heel corner 
    edges=[Width*-.5 Length*-.5; 
        Width*-.5 Length*.5; 
        Width*.5 Length*.5; 
        Width*.5 Length*-.5; 
        Width*-.5 Length*-.5]; 
    %Center the stabilograms 
    ROtrialxdata(:,1) = ROtrialxdata(:,1) - mean(ROtrialxdata(:,1)); 
    ROtrialydata(:,1) = ROtrialydata(:,1) - mean(ROtrialydata(:,1)); 
    %% Plot the stabiligram with borders identified. 
    Stabilogram1 = figure(1) 
    hold on 
    plot(ROtrialxdata(:,1),ROtrialydata(:,1)), '-k'; 
    title('mCTSIB Stabiligram: Rigid Surface & Eyes Open'); 
    set(gca, 'FontSize', 18); 
    xlabel('ML COP (cm)'); ylabel('AP COP (cm)'); 
    plot(edges(:,1), edges(:,2),'-k', 'LineWidth', 2); 
    axis('square'); 
    hold off 
    %Save figure 1... 
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    PlotSaved = subnum; 
    savefig(Stabilogram1,[TTBplotFolder1,PlotSaved]); 
    %% Determine velocity of the COP in ML and AP directions 
    [copxvelRO]=deriv1(ROtrialxdata,dt); 
    [copyvelRO]=deriv1(ROtrialydata,dt); 
    %create vector for allocating distances between COP and boundary edge. A 
    %positive X means lateral movement and positive Y indicates anterior 
    %movement. 
    xboundarydistanceRO = [ ]; 
    yboundarydistanceRO = [ ]; 
    xboundarydistanceRO_Right = [ ]; 
    xboundarydistanceRO_Left = [ ]; 
    copxvelRO_Right = [ ]; 
    copxvelRO_Left = [ ]; 
    %Subtract right edge from laterally moving (+ velocity) COP and subtract 
    %position of left edge from medially moving (- velocity) COP 
    for i=1:length(ROtrialxdata); 
        if copxvelRO(i) >= 0; 
            xboundarydistanceRO(i) = edges(3,1) - ROtrialxdata(i); 
            xboundarydistanceRO_Right(i) = edges(3,1) - ROtrialxdata(i); 
            if copxvelRO(i) > 0 
                copxvelRO_Right(i,1) = copxvelRO(i); 
            else copxvelRO_Right(i,1) = inf; 
            end 
        else 
            xboundarydistanceRO(i) = ROtrialxdata(i) - edges(1,1); 
            xboundarydistanceRO_Left(i) = edges(3,1) - ROtrialxdata(i); 
            copxvelRO_Left(i,1) = copxvelRO(i); 
        end 
    end 
    xboundarydistanceRO_Right(xboundarydistanceRO_Right==0) = []; 
    xboundarydistanceRO_Left(xboundarydistanceRO_Left==0) = []; 
    copxvelRO_Right(copxvelRO_Right == 0) = []; 
    copxvelRO_Left(copxvelRO_Left == 0) = []; 
    for i = 1:length(copxvelRO_Right) 
        if copxvelRO_Right(i) == Inf 
            copxvelRO_Right(i) = 0; 
        end 
    end 
    %Subtract toe edge from laterally moving (+ velocity) COP and subtract 
    %position of heel edge from medially moving (- velocity) COP 
    for i=1:length(ROtrialydata); 
        if copyvelRO(i) >= 0; 
            yboundarydistanceRO(i) = edges(2,2) - ROtrialydata(i); 
        else 
            yboundarydistanceRO(i) = ROtrialydata(i) - edges(1,2); 
        end 
    end 
     
    TTBXRO = abs(xboundarydistanceRO'./copxvelRO); 
    TTBXRO_Right = abs(xboundarydistanceRO_Right'./copxvelRO_Right); 
    TTBXRO_Left = abs(xboundarydistanceRO_Left'./copxvelRO_Left); 
    TTBYRO = abs(yboundarydistanceRO'./copyvelRO); 
    %% Create a time vector for plotting the ML/AP TTBs 
    time_RO=1:length(TTBXRO); 
    time_RO=time_RO'; 
    %Time for right TTB 
    time_RO_Right=1:length(TTBXRO_Right); 



 

 187 

    time_RO_Right=time_RO_Right'; 
    %Time for left TTB 
    time_RO_Left=1:length(TTBXRO_Left); 
    time_RO_Left=time_RO_Left'; 
    %Find local minima (valleys) by first multiplying both series by -1 and 
use 
    %the findpeaks function to get the time index of these peaks. Then 
rectify 
    %the signal to convert back to valleys. Convert from time to sample of 
the 
    %peaks by multiplying the time index by sampling rate (25 Hz). 
    %Findpeaks commands: 
    %These can be used individually or in combination to achieve desired 
    %results. 
    %MinPeakHeight: minimum value needed to be considered a "peak". This 
    %can be positive or negative. 
    %Threshold: minimum difference in magnitude between two possible peaks 
    %to consider a second value a peak. This must be a positive integer. 
    %MinPeakDistance: minimum separation in time between a peak and 
    %surrounding potential peaks. This searches from largest magnitude 
    %first and continues until no more peaks are available. 
    %Flip to negative values so valleys become peaks. 
    TTBXRO=TTBXRO*-1; 
    TTBXRO_Right=TTBXRO_Right*-1; 
    TTBXRO_Left=TTBXRO_Left*-1; 
    %find the peaks 
    [TTBXROpeaks,TTBXROlocs]=findpeaks(TTBXRO,Fs); 
    [TTBXROpeaks_Right,TTBXROlocs_Right]=findpeaks(TTBXRO_Right,Fs); 
    [TTBXROpeaks_Left,TTBXROlocs_Left]=findpeaks(TTBXRO_Left,Fs); 
    %Flip back to positive numbers for array of times. 
    TTBXRO=TTBXRO*-1; 
    TTBXRO_Right=TTBXRO_Right*-1; 
    TTBXRO_Left=TTBXRO_Left*-1; 
    %Flip peak values also to positive numbers 
    TTBXROpeaks=TTBXROpeaks*-1; 
    TTBXROpeaks_Right=TTBXROpeaks_Right*-1; 
    TTBXROpeaks_Left=TTBXROpeaks_Left*-1; 
    %Convert from sample number to time by multiplying time index of peaks by 
    %sampling frequency. 
    TTBXROlocs=TTBXROlocs*25; 
    TTBXROlocs_Right=TTBXROlocs_Right*25; 
    TTBXROlocs_Left=TTBXROlocs_Left*25; 
    %Duplicate above steps for the anterior-posterior data 
    TTBYRO=TTBYRO*-1; 
    [TTBYROpeaks,TTBYROlocs]=findpeaks(TTBYRO,Fs); 
    TTBYRO=TTBYRO.*-1; 
    TTBYROpeaks=TTBYROpeaks.*-1; 
    TTBYROlocs=TTBYROlocs*25; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for mediolateral COP 
    TTBXaverageRO=mean(TTBXROpeaks); 
    TTBXstdevRO=std(TTBXROpeaks); 
    TTBXthresholdRO=TTBXaverageRO + 2*TTBXstdevRO; 
    TTBXaverageRO_Right=mean(TTBXROpeaks_Right); 
    TTBXstdevRO_Right=std(TTBXROpeaks_Right); 
    TTBXthresholdRO_Right=TTBXaverageRO_Right + 2*TTBXstdevRO_Right; 
    TTBXaverageRO_Left=mean(TTBXROpeaks_Left); 
    TTBXstdevRO_Left=std(TTBXROpeaks_Left); 
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    TTBXthresholdRO_Left=TTBXaverageRO_Left + 2*TTBXstdevRO_Left; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for anterior-posterior COP 
    TTBYaverageRO=mean(TTBYROpeaks); 
    TTBYstdevRO=std(TTBYROpeaks); 
    TTBYthresholdRO=TTBYaverageRO + 2*TTBYstdevRO; 
    %Create vector of maximum peak height that warrants a TTB minimum. 
    TTBXthresholdlineRO(1:length(time_RO),1)=TTBXthresholdRO; 
    
TTBXthresholdlineRO_Right(1:length(time_RO_Right),1)=TTBXthresholdRO_Right; 
    TTBXthresholdlineRO_Left(1:length(time_RO_Left),1)=TTBXthresholdRO_Left; 
    TTBYthresholdlineRO(1:length(time_RO),1)=TTBYthresholdRO; 
    %Plot TTBs for AP and ML series and label the local minima where the 
    %minimum TTB occurs. Plot the threshold as a black dashed line across the 
figures. 
    TTBplot1 = figure(2) 
    subplot(2,1,1);plot(time_RO, TTBYthresholdlineRO, '--k',time_RO,TTBYRO,'-
k', TTBYROlocs,TTBYROpeaks, 'xr','MarkerSize',12); 
    title('mCTSIB: Rigid Surface & Eyes Open'); 
    ylabel('AP Time to Boundary (s)'); 
    text(TTBYROlocs,TTBYROpeaks,num2str((1:numel(TTBYROpeaks))')); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    subplot(2,1,2);plot(time_RO, TTBXthresholdlineRO, '--k',time_RO,TTBXRO, 
'-k', TTBXROlocs,TTBXROpeaks, 'xr','MarkerSize',12); 
    text(TTBXROlocs,TTBXROpeaks,num2str((1:numel(TTBXROpeaks))')); 
    ylabel('ML Time to Boundary (s)'); 
    xlabel('Sample'); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    %Save TTB figure1... 
    PlotSaved = subnum; 
    savefig(TTBplot1,[TTBplotFolder2,PlotSaved]); 
    
    %Since the data series are all different lengths these are written out as 
    %separate data files by trial and ML/AP directions. Each of these files 
    %contains two columns: Column 1 = location (sample #, Fs = 25 Hz) of the 
    %TTB event and column two is the value of the TTB in seconds. 
  
    %ML Outputs 
    fname = [ResultDirML,'/',subnum,'_ML_RO_mCTSIB.csv']; 
    RO_mCTSIB_ML = [TTBXROlocs TTBXROpeaks]; 
    writefile(fname,RO_mCTSIB_ML); 
        fname = [ResultDirRight,'/',subnum,'_ML_RO_mCTSIB_Right.csv']; 
        RO_mCTSIB_ML_Right = [TTBXROlocs_Right TTBXROpeaks_Right]; 
        writefile(fname,RO_mCTSIB_ML_Right); 
            fname = [ResultDirLeft,'/',subnum,'_ML_RO_mCTSIB_Left.csv']; 
            RO_mCTSIB_ML_Left = [TTBXROlocs_Left TTBXROpeaks_Left]; 
            writefile(fname,RO_mCTSIB_ML_Left); 
    %AP Outputs 
    fname = [ResultDirAP,'/',subnum,'_AP_RO_mCTSIB.csv']; 
    RO_mCTSIB_AP = [TTBYROlocs TTBYROpeaks]; 
    writefile(fname,RO_mCTSIB_AP); 
end 
%END processing of mCTSIB: Rigid Surface & Eyes Open condition 
  
%% Test Condition: mCTSIB: Rigid Surface & Eyes Closed 
if exist('data2','var')== 1 
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    %Segement out the X and Y data from the raw data; This data will include 
    %the 30 sec of testing for the mBESS (when collecting at 25 Hz this will 
    %be the next 750 frames) 
    RCtrialxdata=data2(:,2); 
    RCtrialydata=data2(:,3); 
    %Center the stabilograms 
    RCtrialxdata(:,1) = RCtrialxdata(:,1) - mean(RCtrialxdata(:,1)); 
    RCtrialydata(:,1) = RCtrialydata(:,1) - mean(RCtrialydata(:,1)); 
    %% Plot the base of support and stabiligram 
    Stabilogram2 = figure(3) 
    hold on 
    plot(RCtrialxdata(:,1),RCtrialydata(:,1)), '-k'; 
    title('mCTSIB Stabiligram: Rigid Surface & Eyes Closed'); 
    set(gca, 'FontSize', 18); 
    xlabel('ML COP (cm)'); ylabel('AP COP (cm)'); 
    plot(edges(:,1), edges(:,2),'-k', 'LineWidth', 2); 
    axis('square'); 
    hold off 
    %Save figure... 
    PlotSaved = subnum; 
    savefig(Stabilogram2,[TTBplotFolder3,PlotSaved]); 
    %% Calculate distances between position of COP and the boundary the COP 
is 
    %approaching. Calculate the velocity during the interval and divide the 
    %distance to the border by the velocity of approach to get the TTB. This 
    %portion is the mediolateral direction. 
    %determine velocity of the COP in ML and AP directions 
    [copxvelRC]=deriv1(RCtrialxdata,dt); 
    [copyvelRC]=deriv1(RCtrialydata,dt); 
    %create vector for allocating distances between COP and boundary edge. A 
    %positive X means lateral movement and positive Y indicates anterior 
    %movement. 
    xboundarydistanceRC = [ ]; 
    yboundarydistanceRC = [ ]; 
    xboundarydistanceRC_Right = [ ]; 
    xboundarydistanceRC_Left = [ ]; 
    copxvelRC_Right = [ ]; 
    copxvelRC_Left = [ ]; 
    %Subtract right edge from laterally moving (+ velocity) COP and subtract 
    %position of left edge from medially moving (- velocity) COP 
    for i=1:length(RCtrialxdata);  
        if copxvelRC(i) >= 0;  
            xboundarydistanceRC(i) = edges(3,1) - RCtrialxdata(i); 
            xboundarydistanceRC_Right(i) = edges(3,1) - RCtrialxdata(i); 
            if copxvelRC(i) > 0 
                copxvelRC_Right(i,1) = copxvelRC(i); 
            else copxvelRC_Right(i,1) = inf; 
            end 
        else 
            xboundarydistanceRC(i) = RCtrialxdata(i) - edges(1,1); 
            xboundarydistanceRC_Left(i) = edges(3,1) - RCtrialxdata(i); 
            copxvelRC_Left(i,1) = copxvelRC(i); 
        end 
    end 
    xboundarydistanceRC_Right(xboundarydistanceRC_Right==0) = []; 
    xboundarydistanceRC_Left(xboundarydistanceRC_Left==0) = []; 
    copxvelRC_Right(copxvelRC_Right == 0) = []; 
    copxvelRC_Left(copxvelRC_Left == 0) = []; 
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    for i = 1:length(copxvelRC_Right) 
        if copxvelRC_Right(i) == Inf 
            copxvelRC_Right(i) = 0; 
        end 
    end 
    %Subtract toe edge from laterally moving (+ velocity) COP and subtract 
    %position of heel edge from medially moving (- velocity) COP 
    for i=1:length(RCtrialydata);  
        if copyvelRC(i) >= 0;  
            yboundarydistanceRC(i) = edges(2,2) - RCtrialydata(i); 
        else 
            yboundarydistanceRC(i) = RCtrialydata(i) - edges(1,2); 
        end 
    end 
  
    TTBXRC = abs(xboundarydistanceRC'./copxvelRC); 
    TTBXRC_Right = abs(xboundarydistanceRC_Right'./copxvelRC_Right); 
    TTBXRC_Left = abs(xboundarydistanceRC_Left'./copxvelRC_Left); 
    TTBYRC = abs(yboundarydistanceRC'./copyvelRC); 
    %% Create a time vector for plotting the ML/AP TTBs 
    time_RC=1:length(TTBXRC); 
    time_RC=time_RC'; 
    %Time for right TTB 
    time_RC_Right=1:length(TTBXRC_Right); 
    time_RC_Right=time_RC_Right'; 
    %Time for left TTB 
    time_RC_Left=1:length(TTBXRC_Left); 
    time_RC_Left=time_RC_Left'; 
    %Find local minima (valleys) by first multiplying both series by -1 and 
use 
    %the findpeaks function to get the time index of these peaks. Then 
rectify 
    %the signal to convert back to valleys. Convert from time to sample of 
the 
    %peaks by multiplying the time index by sampling rate (25 Hz). 
    %Findpeaks commands: 
    %These can be used individually or in combination to achieve desired 
    %results.  
        %MinPeakHeight: minimum value needed to be considered a "peak". This 
        %can be positive or negative. 
        %Threshold: minimum difference in magnitude between two possible 
peaks 
        %to consider a second value a peak. This must be a positive integer. 
        %MinPeakDistance: minimum separation in time between a peak and 
        %surrounding potential peaks. This searches from largest magnitude 
        %first and continues until no more peaks are available. 
    %Flip to negative values so valleys become peaks. 
    TTBXRC=TTBXRC*-1; 
    TTBXRC_Right=TTBXRC_Right*-1; 
    TTBXRC_Left=TTBXRC_Left*-1; 
    %find the peaks 
    [TTBXRCpeaks,TTBXRClocs]=findpeaks(TTBXRC,Fs); 
    [TTBXRCpeaks_Right,TTBXRClocs_Right]=findpeaks(TTBXRC_Right,Fs); 
    [TTBXRCpeaks_Left,TTBXRClocs_Left]=findpeaks(TTBXRC_Left,Fs); 
    %Flip back to positive numbers for array of times. 
    TTBXRC=TTBXRC*-1; 
    TTBXRC_Right=TTBXRC_Right*-1; 
    TTBXRC_Left=TTBXRC_Left*-1; 



 

 191 

    %Flip peak values also to positive numbers 
    TTBXRCpeaks=TTBXRCpeaks*-1; 
    TTBXRCpeaks_Right=TTBXRCpeaks_Right*-1; 
    TTBXRCpeaks_Left=TTBXRCpeaks_Left*-1; 
    %Convert from sample number to time by multiplying time index of peaks by 
    %sampling frequency. 
    TTBXRClocs=TTBXRClocs*25; 
    TTBXRClocs_Right=TTBXRClocs_Right*25; 
    TTBXRClocs_Left=TTBXRClocs_Left*25; 
    %Duplicate above steps for the anterior-posterior data 
    TTBYRC=TTBYRC*-1; 
    [TTBYRCpeaks,TTBYRClocs]=findpeaks(TTBYRC,Fs); 
    TTBYRC=TTBYRC.*-1; 
    TTBYRCpeaks=TTBYRCpeaks.*-1; 
    TTBYRClocs=TTBYRClocs*25; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for mediolateral COP 
    TTBXaverageRC=mean(TTBXRCpeaks); 
    TTBXstdevRC=std(TTBXRCpeaks); 
    TTBXthresholdRC=TTBXaverageRC + 2*TTBXstdevRC; 
        TTBXaverageRC_Right=mean(TTBXRCpeaks_Right); 
        TTBXstdevRC_Right=std(TTBXRCpeaks_Right); 
        TTBXthresholdRC_Right=TTBXaverageRC_Right + 2*TTBXstdevRC_Right; 
            TTBXaverageRC_Left=mean(TTBXRCpeaks_Left); 
            TTBXstdevRC_Left=std(TTBXRCpeaks_Left); 
            TTBXthresholdRC_Left=TTBXaverageRC_Left + 2*TTBXstdevRC_Left; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for anterior-posterior COP 
    TTBYaverageRC=mean(TTBYRCpeaks); 
    TTBYstdevRC=std(TTBYRCpeaks); 
    TTBYthresholdRC=TTBYaverageRC + 2*TTBYstdevRC; 
    %Create vector of maximum peak height that warrants a TTB minimum. 
    TTBXthresholdlineRC(1:length(time_RC),1)=TTBXthresholdRC; 
        
TTBXthresholdlineRC_Right(1:length(time_RC_Right),1)=TTBXthresholdRC_Right; 
        
TTBXthresholdlineRC_Left(1:length(time_RC_Left),1)=TTBXthresholdRC_Left; 
    TTBYthresholdlineRC(1:length(time_RC),1)=TTBYthresholdRC; 
  
    %Plot TTBs for AP and ML series and label the local minima where the 
    %minimum TTB occurs 
    TTBplot2 = figure(4) 
    subplot(2,1,1);plot(time_RC, TTBYthresholdlineRC, '--k',time_RC,TTBYRC, 
'-k', TTBYRClocs,TTBYRCpeaks, 'xr','MarkerSize',12); 
    ylabel('AP Time to Boundary (s)'); 
    title('mCTSIB: Rigid Surface & Eyes Closed'); 
    text(TTBYRClocs,TTBYRCpeaks,num2str((1:numel(TTBYRCpeaks))')); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    subplot(2,1,2);plot(time_RC, TTBXthresholdlineRC, '--k',time_RC,TTBXRC, 
'-k', TTBXRClocs,TTBXRCpeaks, 'xr','MarkerSize',12); 
    text(TTBXRClocs,TTBXRCpeaks,num2str((1:numel(TTBXRCpeaks))')); 
    ylabel('ML Time to Boundary (s)'); 
    xlabel('Sample'); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    %Save figure... 
    PlotSaved = subnum; 
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    savefig(TTBplot2,[TTBplotFolder4,PlotSaved]); 
  
    %ML Outputs 
    fname = [ResultDirML,'/',subnum,'_ML_RC_mCTSIB.csv']; 
    RC_mCTSIB_ML = [TTBXRClocs TTBXRCpeaks]; 
    writefile(fname,RC_mCTSIB_ML); 
        fname = [ResultDirRight,'/',subnum,'_ML_RC_mCTSIB_Right.csv']; 
        RC_mCTSIB_ML_Right = [TTBXRClocs_Right TTBXRCpeaks_Right]; 
        writefile(fname,RC_mCTSIB_ML_Right); 
            fname = [ResultDirLeft,'/',subnum,'_ML_RC_mCTSIB_Left.csv']; 
            RC_mCTSIB_ML_Left = [TTBXRClocs_Left TTBXRCpeaks_Left]; 
            writefile(fname,RC_mCTSIB_ML_Left); 
    %AP Outputs 
    fname = [ResultDirAP,'/',subnum,'_AP_RC_mCTSIB.csv']; 
    RC_mCTSIB_AP = [TTBYRClocs TTBYRCpeaks]; 
    writefile(fname,RC_mCTSIB_AP); 
end 
%% END processing of mCTSIB: Rigid Surface & Eyes Closed condition 
%% Test Condition: mCTSIB: Compliant Surface & Eyes Open 
if exist('data3','var')== 1 
    %Segement out the X and Y data from the raw data; This data will include 
    %the 30 sec of testing for the mBESS (when collecting at 25 Hz this will 
    %be the next 750 frames) 
    COtrialxdata=data3(:,2); 
    COtrialydata=data3(:,3); 
    %Center the stabilograms 
    COtrialxdata(:,1) = COtrialxdata(:,1) - mean(COtrialxdata(:,1)); 
    COtrialydata(:,1) = COtrialydata(:,1) - mean(COtrialydata(:,1)); 
    %% Plot the base of support and stabiligram 
    Stabilogram3 = figure(5) 
    hold on 
    plot(COtrialxdata(:,1),COtrialydata(:,1)), '-k'; 
    title('mCTSIB Stabiligram: Compliant Surface & Eyes Open'); 
    set(gca, 'FontSize', 18); 
    xlabel('ML COP (cm)'); ylabel('AP COP (cm)'); 
    plot(edges(:,1), edges(:,2),'-k', 'LineWidth', 2); 
    axis('square'); 
    hold off 
    %Save figure... 
    PlotSaved = subnum; 
    savefig(Stabilogram3,[TTBplotFolder5,PlotSaved]); 
    %% Calculate distances between position of COP and the boundary the COP 
is 
    %approaching. Calculate the velocity during the interval and divide the 
    %distance to the border by the velocity of approach to get the TTB. This 
    %portion is the mediolateral direction. 
    %determine velocity of the COP in ML and AP directions 
    [copxvelCO]=deriv1(COtrialxdata,dt); 
    [copyvelCO]=deriv1(COtrialydata,dt); 
    %create vector for allocating distances between COP and boundary edge. A 
    %positive X means lateral movement and positive Y indicates anterior 
    %movement. 
    xboundarydistanceCO = [ ]; 
    yboundarydistanceCO = [ ]; 
    xboundarydistanceCO_Right = [ ]; 
    xboundarydistanceCO_Left = [ ]; 
    copxvelCO_Right = [ ]; 
    copxvelCO_Left = [ ]; 
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    %Subtract right edge from laterally moving (+ velocity) COP and subtract 
    %position of left edge from medially moving (- velocity) COP 
    for i=1:length(COtrialxdata);  
        if copxvelCO(i) >= 0;  
            xboundarydistanceCO(i) = edges(3,1) - COtrialxdata(i); 
            xboundarydistanceCO_Right(i) = edges(3,1) - COtrialxdata(i); 
            if copxvelCO(i) > 0 
                copxvelCO_Right(i,1) = copxvelCO(i); 
            else copxvelCO_Right(i,1) = inf; 
            end 
        else 
            xboundarydistanceCO(i) = COtrialxdata(i) - edges(1,1); 
            xboundarydistanceCO_Left(i) = edges(3,1) - COtrialxdata(i); 
            copxvelCO_Left(i,1) = copxvelCO(i); 
        end 
    end 
    xboundarydistanceCO_Right(xboundarydistanceCO_Right==0) = []; 
    xboundarydistanceCO_Left(xboundarydistanceCO_Left==0) = []; 
    copxvelCO_Right(copxvelCO_Right == 0) = []; 
    copxvelCO_Left(copxvelCO_Left == 0) = []; 
    for i = 1:length(copxvelCO_Right) 
        if copxvelCO_Right(i) == Inf 
            copxvelCO_Right(i) = 0; 
        end 
    end 
    %Subtract toe edge from laterally moving (+ velocity) COP and subtract 
    %position of heel edge from medially moving (- velocity) COP 
    for i=1:length(COtrialydata);  
        if copyvelCO(i) >= 0;  
            yboundarydistanceCO(i) = edges(2,2) - COtrialydata(i); 
        else 
            yboundarydistanceCO(i) = COtrialydata(i) - edges(1,2); 
        end 
    end 
  
    TTBXCO = abs(xboundarydistanceCO'./copxvelCO); 
    TTBXCO_Right = abs(xboundarydistanceCO_Right'./copxvelCO_Right); 
    TTBXCO_Left = abs(xboundarydistanceCO_Left'./copxvelCO_Left); 
    TTBYCO = abs(yboundarydistanceCO'./copyvelCO); 
    %% Create a time vector for plotting the ML/AP TTBs 
    time_CO=1:length(TTBXCO); 
    time_CO=time_CO'; 
    %Time for right TTB 
    time_CO_Right=1:length(TTBXCO_Right); 
    time_CO_Right=time_CO_Right'; 
    %Time for left TTB 
    time_CO_Left=1:length(TTBXCO_Left); 
    time_CO_Left=time_CO_Left'; 
    %Find local minima (valleys) by first multiplying both series by -1 and 
use 
    %the findpeaks function to get the time index of these peaks. Then 
rectify 
    %the signal to convert back to valleys. Convert from time to sample of 
the 
    %peaks by multiplying the time index by sampling rate (25 Hz). 
    %Findpeaks commands: 
    %These can be used individually or in combination to achieve desired 
    %results.  
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        %MinPeakHeight: minimum value needed to be considered a "peak". This 
        %can be positive or negative. 
        %Threshold: minimum difference in magnitude between two possible 
peaks 
        %to consider a second value a peak. This must be a positive integer. 
        %MinPeakDistance: minimum separation in time between a peak and 
        %surrounding potential peaks. This searches from largest magnitude 
        %first and continues until no more peaks are available. 
    %Flip to negative values so valleys become peaks. 
    TTBXCO=TTBXCO*-1; 
    TTBXCO_Right=TTBXCO_Right*-1; 
    TTBXCO_Left=TTBXCO_Left*-1; 
    %find the peaks 
    [TTBXCOpeaks,TTBXCOlocs]=findpeaks(TTBXCO,Fs); 
    [TTBXCOpeaks_Right,TTBXCOlocs_Right]=findpeaks(TTBXCO_Right,Fs); 
    [TTBXCOpeaks_Left,TTBXCOlocs_Left]=findpeaks(TTBXCO_Left,Fs); 
    %Flip back to positive numbers for array of times. 
    TTBXCO=TTBXCO*-1; 
    TTBXCO_Right=TTBXCO_Right*-1; 
    TTBXCO_Left=TTBXCO_Left*-1; 
    %Flip peak values also to positive numbers 
    TTBXCOpeaks=TTBXCOpeaks*-1; 
    TTBXCOpeaks_Right=TTBXCOpeaks_Right*-1; 
    TTBXCOpeaks_Left=TTBXCOpeaks_Left*-1; 
    %Convert from sample number to time by multiplying time index of peaks by 
    %sampling frequency. 
    TTBXCOlocs=TTBXCOlocs*25; 
    TTBXCOlocs_Right=TTBXCOlocs_Right*25; 
    TTBXCOlocs_Left=TTBXCOlocs_Left*25; 
    %Duplicate above steps for the anterior-posterior data 
    TTBYCO=TTBYCO*-1; 
    [TTBYCOpeaks,TTBYCOlocs]=findpeaks(TTBYCO,Fs); 
    TTBYCO=TTBYCO.*-1; 
    TTBYCOpeaks=TTBYCOpeaks.*-1; 
    TTBYCOlocs=TTBYCOlocs*25; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for mediolateral COP 
    TTBXaverageCO=mean(TTBXCOpeaks); 
    TTBXstdevCO=std(TTBXCOpeaks); 
    TTBXthresholdCO=TTBXaverageCO + 2*TTBXstdevCO; 
        TTBXaverageCO_Right=mean(TTBXCOpeaks_Right); 
        TTBXstdevCO_Right=std(TTBXCOpeaks_Right); 
        TTBXthresholdCO_Right=TTBXaverageCO_Right + 2*TTBXstdevCO_Right; 
            TTBXaverageCO_Left=mean(TTBXCOpeaks_Left); 
            TTBXstdevCO_Left=std(TTBXCOpeaks_Left); 
            TTBXthresholdCO_Left=TTBXaverageCO_Left + 2*TTBXstdevCO_Left; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for anterior-posterior COP 
    TTBYaverageCO=mean(TTBYCOpeaks); 
    TTBYstdevCO=std(TTBYCOpeaks); 
    TTBYthresholdCO=TTBYaverageCO + 2*TTBYstdevCO; 
    %Create vector of maximum peak height that warrants a TTB minimum. 
    TTBXthresholdlineCO(1:length(time_CO),1)=TTBXthresholdCO; 
        
TTBXthresholdlineCO_Right(1:length(time_CO_Right),1)=TTBXthresholdCO_Right; 
        
TTBXthresholdlineCO_Left(1:length(time_CO_Left),1)=TTBXthresholdCO_Left; 
    TTBYthresholdlineCO(1:length(time_CO),1)=TTBYthresholdCO; 
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    %Plot TTBs for AP and ML series and label the local minima where the 
    %minimum TTB occurs 
    TTBplot3 = figure(6) 
    subplot(2,1,1);plot(time_CO, TTBYthresholdlineCO, '--k',time_CO,TTBYCO, 
'-k', TTBYCOlocs,TTBYCOpeaks, 'xr','MarkerSize',12); 
    ylabel('AP Time to Boundary (s)'); 
    title('mCTSIB: Compliant Surface & Eyes Open'); 
    text(TTBYCOlocs,TTBYCOpeaks,num2str((1:numel(TTBYCOpeaks))')); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    subplot(2,1,2);plot(time_CO, TTBXthresholdlineCO, '--k',time_CO,TTBXCO, 
'-k', TTBXCOlocs,TTBXCOpeaks, 'xr','MarkerSize',12); 
    text(TTBXCOlocs,TTBXCOpeaks,num2str((1:numel(TTBXCOpeaks))')); 
    ylabel('ML Time to Boundary (s)'); 
    xlabel('Sample'); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    %Save figure... 
    PlotSaved = subnum; 
    savefig(TTBplot3,[TTBplotFolder6,PlotSaved]); 
  
    % ML Outputs 
    fname = [ResultDirML,'/',subnum,'_ML_CO_mCTSIB.csv']; 
    CO_mCTSIB_ML = [TTBXCOlocs TTBXCOpeaks]; 
    writefile(fname,CO_mCTSIB_ML); 
        fname = [ResultDirRight,'/',subnum,'_ML_CO_mCTSIB_Right.csv']; 
        CO_mCTSIB_ML_Right = [TTBXCOlocs_Right TTBXCOpeaks_Right]; 
        writefile(fname,CO_mCTSIB_ML_Right); 
            fname = [ResultDirLeft,'/',subnum,'_ML_CO_mCTSIB_Left.csv']; 
            CO_mCTSIB_ML_Left = [TTBXCOlocs_Left TTBXCOpeaks_Left]; 
            writefile(fname,CO_mCTSIB_ML_Left); 
    % AP Outputs 
    fname = [ResultDirAP,'/',subnum,'_AP_CO_mCTSIB.csv']; 
    CO_mCTSIB_AP = [TTBYCOlocs TTBYCOpeaks]; 
    writefile(fname,CO_mCTSIB_AP); 
end 
% END processing of mCTSIB: Compliant Surface & Eyes Open condition 
%% Test Condition: mCTSIB: Compliant Surface & Eyes Closed 
if exist('data4','var')== 1 
    %Segement out the X and Y data from the raw data; This data will include 
    %the 30 sec of testing for the mBESS (when collecting at 25 Hz this will 
    %be the next 750 frames) 
    CCtrialxdata=data4(:,2); 
    CCtrialydata=data4(:,3); 
    %Center the stabilograms 
    CCtrialxdata(:,1) = CCtrialxdata(:,1) - mean(CCtrialxdata(:,1)); 
    CCtrialydata(:,1) = CCtrialydata(:,1) - mean(CCtrialydata(:,1)); 
    %% Plot the base of support and stabiligram 
    Stabilogram4 = figure(7) 
    hold on 
    plot(CCtrialxdata(:,1),CCtrialydata(:,1)), '-k'; 
    title('mCTSIB Stabiligram: Compliant Surface & Eyes Closed'); 
    set(gca, 'FontSize', 18); 
    xlabel('ML COP (cm)'); ylabel('AP COP (cm)'); 
    plot(edges(:,1), edges(:,2),'-k', 'LineWidth', 2); 
    axis('square'); 
    hold off 
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    PlotSaved = subnum; 
    savefig(Stabilogram4,[TTBplotFolder7,PlotSaved]); 
    %% Calculate distances between position of COP and the boundary the COP 
is 
    %approaching. Calculate the velocity during the interval and divide the 
    %distance to the border by the velocity of approach to get the TTB. This 
    %portion is the mediolateral direction. 
    %determine velocity of the COP in ML and AP directions 
    [copxvelCC]=deriv1(CCtrialxdata,dt); 
    [copyvelCC]=deriv1(CCtrialydata,dt); 
    %create vector for allocating distances between COP and boundary edge. A 
    %positive X means lateral movement and positive Y indicates anterior 
    %movement. 
    xboundarydistanceCC = [ ]; 
    yboundarydistanceCC = [ ]; 
    xboundarydistanceCC_Right = [ ]; 
    xboundarydistanceCC_Left = [ ]; 
    copxvelCC_Right = [ ]; 
    copxvelCC_Left = [ ]; 
    %Subtract right edge from laterally moving (+ velocity) COP and subtract 
    %position of left edge from medially moving (- velocity) COP 
    for i=1:length(CCtrialxdata);  
        if copxvelCC(i) >= 0;  
            xboundarydistanceCC(i) = edges(3,1) - CCtrialxdata(i); 
            xboundarydistanceCC_Right(i) = edges(3,1) - CCtrialxdata(i); 
            if copxvelCC(i) > 0 
                copxvelCC_Right(i,1) = copxvelCC(i); 
            else copxvelCC_Right(i,1) = inf; 
            end 
        else 
            xboundarydistanceCC(i) = CCtrialxdata(i) - edges(1,1); 
            xboundarydistanceCC_Left(i) = edges(3,1) - CCtrialxdata(i); 
            copxvelCC_Left(i,1) = copxvelCC(i); 
        end 
    end 
    xboundarydistanceCC_Right(xboundarydistanceCC_Right==0) = []; 
    xboundarydistanceCC_Left(xboundarydistanceCC_Left==0) = []; 
    copxvelCC_Right(copxvelCC_Right == 0) = []; 
    copxvelCC_Left(copxvelCC_Left == 0) = []; 
    for i = 1:length(copxvelCC_Right) 
        if copxvelCC_Right(i) == Inf 
            copxvelCC_Right(i) = 0; 
        end 
    end 
    %Subtract toe edge from laterally moving (+ velocity) COP and subtract 
    %position of heel edge from medially moving (- velocity) COP 
    for i=1:length(CCtrialydata);  
        if copyvelCC(i) >= 0;  
            yboundarydistanceCC(i) = edges(2,2) - CCtrialydata(i); 
        else 
            yboundarydistanceCC(i) = CCtrialydata(i) - edges(1,2); 
        end 
    end 
  
    TTBXCC = abs(xboundarydistanceCC'./copxvelCC); 
    TTBXCC_Right = abs(xboundarydistanceCC_Right'./copxvelCC_Right); 
    TTBXCC_Left = abs(xboundarydistanceCC_Left'./copxvelCC_Left); 
    TTBYCC = abs(yboundarydistanceCC'./copyvelCC); 
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    %% Create a time vector for plotting the ML/AP TTBs 
    time_CC=1:length(TTBXCC); 
    time_CC=time_CC'; 
    %Time for right TTB 
    time_CC_Right=1:length(TTBXCC_Right); 
    time_CC_Right=time_CC_Right'; 
    %Time for left TTB 
    time_CC_Left=1:length(TTBXCC_Left); 
    time_CC_Left=time_CC_Left'; 
    %Find local minima (valleys) by first multiplying both series by -1 and 
use 
    %the findpeaks function to get the time index of these peaks. Then 
rectify 
    %the signal to convert back to valleys. Convert from time to sample of 
the 
    %peaks by multiplying the time index by sampling rate (25 Hz). 
    %Findpeaks commands: 
    %These can be used individually or in combination to achieve desired 
    %results.  
        %MinPeakHeight: minimum value needed to be considered a "peak". This 
        %can be positive or negative. 
        %Threshold: minimum difference in magnitude between two possible 
peaks 
        %to consider a second value a peak. This must be a positive integer. 
        %MinPeakDistance: minimum separation in time between a peak and 
        %surrounding potential peaks. This searches from largest magnitude 
        %first and continues until no more peaks are available. 
    %Flip to negative values so valleys become peaks. 
    TTBXCC=TTBXCC*-1; 
    TTBXCC_Right=TTBXCC_Right*-1; 
    TTBXCC_Left=TTBXCC_Left*-1; 
    %find the peaks 
    [TTBXCCpeaks,TTBXCClocs]=findpeaks(TTBXCC,Fs); 
    [TTBXCCpeaks_Right,TTBXCClocs_Right]=findpeaks(TTBXCC_Right,Fs); 
    [TTBXCCpeaks_Left,TTBXCClocs_Left]=findpeaks(TTBXCC_Left,Fs); 
    %Flip back to positive numbers for array of times. 
    TTBXCC=TTBXCC*-1; 
    TTBXCC_Right=TTBXCC_Right*-1; 
    TTBXCC_Left=TTBXCC_Left*-1; 
    %Flip peak values also to positive numbers 
    TTBXCCpeaks=TTBXCCpeaks*-1; 
    TTBXCCpeaks_Right=TTBXCCpeaks_Right*-1; 
    TTBXCCpeaks_Left=TTBXCCpeaks_Left*-1; 
    %Convert from sample number to time by multiplying time index of peaks by 
    %sampling frequency. 
    TTBXCClocs=TTBXCClocs*25; 
    TTBXCClocs_Right=TTBXCClocs_Right*25; 
    TTBXCClocs_Left=TTBXCClocs_Left*25; 
    %Duplicate above steps for the anterior-posterior data 
    TTBYCC=TTBYCC*-1; 
    [TTBYCCpeaks,TTBYCClocs]=findpeaks(TTBYCC,Fs); 
    TTBYCC=TTBYCC.*-1; 
    TTBYCCpeaks=TTBYCCpeaks.*-1; 
    TTBYCClocs=TTBYCClocs*25; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for mediolateral COP 
    TTBXaverageCC=mean(TTBXCCpeaks); 
    TTBXstdevCC=std(TTBXCCpeaks); 
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    TTBXthresholdCC=TTBXaverageCC + 2*TTBXstdevCC; 
        TTBXaverageCC_Right=mean(TTBXCCpeaks_Right); 
        TTBXstdevCC_Right=std(TTBXCCpeaks_Right); 
        TTBXthresholdCC_Right=TTBXaverageCC_Right + 2*TTBXstdevCC_Right; 
            TTBXaverageCC_Left=mean(TTBXCCpeaks_Left); 
            TTBXstdevCC_Left=std(TTBXCCpeaks_Left); 
            TTBXthresholdCC_Left=TTBXaverageCC_Left + 2*TTBXstdevCC_Left; 
    %Calculate average, standard deviation, and 2X the standard deviation of 
    %the time to boundary sequence for anterior-posterior COP 
    TTBYaverageCC=mean(TTBYCCpeaks); 
    TTBYstdevCC=std(TTBYCCpeaks); 
    TTBYthresholdCC=TTBYaverageCC + 2*TTBYstdevCC; 
    %Create vector of maximum peak height that warrants a TTB minimum. 
    TTBXthresholdlineCC(1:length(time_CC),1)=TTBXthresholdCC; 
        
TTBXthresholdlineCC_Right(1:length(time_CC_Right),1)=TTBXthresholdCC_Right; 
        
TTBXthresholdlineCC_Left(1:length(time_CC_Left),1)=TTBXthresholdCC_Left; 
    TTBYthresholdlineCC(1:length(time_CC),1)=TTBYthresholdCC; 
  
    %Plot TTBs for AP and ML series and label the local minima where the 
    %minimum TTB occurs 
    TTBplot4 = figure(8) 
    subplot(2,1,1);plot(time_CC, TTBYthresholdlineCC, '--k',time_CC,TTBYCC, 
'-k', TTBYCClocs,TTBYCCpeaks, 'xr','MarkerSize',12); 
    ylabel('AP Time to Boundary (s)'); 
    title('mCTSIB: Compliant Surface & Eyes Closed'); 
    text(TTBYCClocs,TTBYCCpeaks,num2str((1:numel(TTBYCCpeaks))')); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    subplot(2,1,2);plot(time_CC, TTBXthresholdlineCC, '--k',time_CC,TTBXCC, 
'-k', TTBXCClocs,TTBXCCpeaks, 'xr','MarkerSize',12); 
    text(TTBXCClocs,TTBXCCpeaks,num2str((1:numel(TTBXCCpeaks))')); 
    ylabel('ML Time to Boundary (s)'); 
    xlabel('Sample'); 
    legend('+2 SD of average TTB Events', 'TTB', 'Min TTB'); 
    set(gca,'FontSize', 18); 
    %Save figure... 
    PlotSaved = subnum; 
    savefig(TTBplot4,[TTBplotFolder8,PlotSaved]); 
  
    % ML Outputs 
    fname = [ResultDirML,'/',subnum,'_ML_CC_mCTSIB.csv']; 
    CC_mCTSIB_ML = [TTBXCClocs TTBXCCpeaks]; 
    writefile(fname,CC_mCTSIB_ML); 
        fname = [ResultDirRight,'/',subnum,'_ML_CC_mCTSIB_Right.csv']; 
        CC_mCTSIB_ML_Right = [TTBXCClocs_Right TTBXCCpeaks_Right]; 
        writefile(fname,CC_mCTSIB_ML_Right); 
            fname = [ResultDirLeft,'/',subnum,'_ML_CC_mCTSIB_Left.csv']; 
            CC_mCTSIB_ML_Left = [TTBXCClocs_Left TTBXCCpeaks_Left]; 
            writefile(fname,CC_mCTSIB_ML_Left); 
    % AP Outputs 
    fname = [ResultDirAP,'/',subnum,'_AP_CC_mCTSIB.csv']; 
    CC_mCTSIB_AP = [TTBYCClocs TTBYCCpeaks]; 
    writefile(fname,CC_mCTSIB_AP); 
end 
% END processing of mCTSIB: Compliant Surface & Eyes Closed condition 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% Output the data set 
%Export the statistics for each trial and direction. These are exported as 
%a single csv file. These variables are in two columns. Column 1 contains 
%ML data: rows 1, 4, 7, and 10 are Rigid-Eyes Open, Rigid-Eyes Closed,  
%Compliant-Eyes Open, and Compliant-Eyes Closed TTB events.  
%Rows 2, 5, and 8, 11 are the average TTB values (in seconds).  
%Rows 3, 6, 9, and 12 are the standard deviations of the TTB values.  
%Column 2 has similar data organization but for the AP direction. 
TTBMLSeries = [length(TTBXROpeaks) length(TTBXRCpeaks) length(TTBXCOpeaks) 
length(TTBXCCpeaks)]; 
    TTBMLSeries_Right = [length(TTBXROpeaks_Right) length(TTBXRCpeaks_Right) 
length(TTBXCOpeaks_Right) length(TTBXCCpeaks_Right)]; 
    TTBMLSeries_Left = [length(TTBXROpeaks_Left) length(TTBXRCpeaks_Left) 
length(TTBXCOpeaks_Left) length(TTBXCCpeaks_Left)]; 
TTBAPSeries = [length(TTBYROpeaks) length(TTBYRCpeaks) length(TTBYCOpeaks) 
length(TTBYCCpeaks)]; 
MLStatistics = [TTBMLSeries(1,1); TTBXaverageRO; TTBXstdevRO; 
TTBMLSeries(1,2);... 
    TTBXaverageRC; TTBXstdevRC; TTBMLSeries(1,3); TTBXaverageCO; TTBXstdevCO; 
TTBMLSeries(1,4); TTBXaverageCC; TTBXstdevCC]; 
        MLStatistics_Right = [TTBMLSeries_Right(1,1); TTBXaverageRO_Right; 
TTBXstdevRO_Right; TTBMLSeries_Right(1,2);... 
            TTBXaverageRC_Right; TTBXstdevRC_Right; TTBMLSeries_Right(1,3); 
TTBXaverageCO_Right; TTBXstdevCO_Right; TTBMLSeries_Right(1,4); 
TTBXaverageCC_Right; TTBXstdevCC_Right]; 
        MLStatistics_Left = [TTBMLSeries_Left(1,1); TTBXaverageRO_Left; 
TTBXstdevRO_Left; TTBMLSeries_Left(1,2);... 
            TTBXaverageRC_Left; TTBXstdevRC_Left; TTBMLSeries_Left(1,3); 
TTBXaverageCO_Left; TTBXstdevCO_Left; TTBMLSeries_Left(1,4); 
TTBXaverageCC_Left; TTBXstdevCC_Left]; 
  
APStatistics = [TTBAPSeries(1,1); TTBYaverageRO; TTBYstdevRO; 
TTBAPSeries(1,2);... 
    TTBYaverageRC; TTBYstdevRC; TTBAPSeries(1,3); TTBYaverageCO; TTBYstdevCO; 
TTBAPSeries(1,4); TTBYaverageCC; TTBYstdevCC];  
%Antero-Posterior output values 
    AP_AllStats = [APStatistics]; 
    fname = [TTBstatsFolder,'/',subnum,'AP_TTBstatistics.csv']; 
    writefile(fname,AP_AllStats); 
%Medio-Lateral output values  
    ML_AllStats = [MLStatistics]; 
    fname = [TTBstatsFolder,'/',subnum,'ML_TTBstatistics.csv']; 
    writefile(fname,ML_AllStats); 
 %Right output values  
    Right_AllStats = [MLStatistics_Right]; 
    fname = [TTBstatsFolder,'/',subnum,'Right_ML_TTBstatistics.csv']; 
    writefile(fname,Right_AllStats);    
 %Leftl output values  
    Left_AllStats = [MLStatistics_Left]; 
    fname = [TTBstatsFolder,'/',subnum,'Left_ML_TTBstatistics.csv']; 
    writefile(fname,Left_AllStats);  
 
%% END of SCRIPT Step 3 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
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Step 4: Time-To-Boundary Write Script 
  
%Script Author: Sutton B. Richmond 
    %Last Revised Script: 10/20/2018 
    %Parent Script: MRS_TTB_mCTSIB 
    %Additional Functions .m files REQUIRED to be in the path: 
    % 1.)writefile.m  
  
%Original output files achieved from the MRS_TTB_mCTSIB (AP_TTBstatistics & 
%ML_TTBstatistics)info: 
  
%Trials for each subject will be exported as TTB statistics for each 
%direction. These are exported as a single csv file. These variables are in 
%one columns. 
%ML data:  
%Rows 1, 4, 7, and 10 are TTB events.  
%Rows 2, 5, and 8, 11 are the average TTB values (in seconds).  
%Rows 3, 6, 9, and 12 are the standard deviations of the TTB values. 
  
%AP data:  
%Rows 1, 4, 7, and 10 are TTB events.  
%Rows 2, 5, and 8, 11 are the average TTB values (in seconds).  
%Rows 3, 6, 9, and 12 are the standard deviations of the TTB values.  
  
%Clear the MATLAB spaces 
clc 
clear all 
close all 
%This will allow the script to return to the main directory. 
GoBack = pwd; 
%% AP TTB Evaluation 
cd('/Volumes/SBR_CSU/Mobility/MRS_PS_Data/TTBresults/TTBstats/'); 
uiwait(msgbox('Choose the ###AP_TTBstatistics.csv')); 
APfile = uigetfile('*.csv'); 
PATH = pwd 
STR1 = APfile; 
APdata = dlmread([PATH,'/', STR1], ',',0, 0); 
% Input the desired location where you would like to input the data within 
% the new sheet = the right side of the parameter is the location from 
% where in the original data output. 
  
%Column 1: subject ID 
    % subnum = input('Enter 3 digit subject number: ', 's'); 
    % avgTTB(1,1)= subnum; 
%Column 2: TTB Average (seconds) for Rigid Surface-Eyes Open (mCTSIB) 
%Column 3: TTB Average (seconds) for Rigid Surface-Eyes Closed (mCTSIB) 
%Column 4: TTB Average (seconds) for Compliant Surface-Eyes Open (mCTSIB) 
%Column 5: TTB Average (seconds) for Compliant Surface-Eyes Closed (mCTSIB) 
AP_TTB(1,2)= APdata(2,1); 
AP_TTB(1,3)= APdata(5,1); 
AP_TTB(1,4)= APdata(8,1); 
AP_TTB(1,5)= APdata(11,1); 
%Column 6: TTB Standard Deviation of TTB Avg for Rigid Surface-Eyes Open 
(mCTSIB) 
%Column 7: TTB Standard Deviation of TTB Avg Rigid Surface-Eyes Closed 
(mCTSIB) 
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%Column 8: TTB Standard Deviation of TTB Avg Compliant Surface-Eyes Open 
(mCTSIB) 
%Column 9: TTB Standard Deviation of TTB Avg Compliant Surface-Eyes Closed 
(mCTSIB)  
AP_TTB(1,6)= APdata(3,1); 
AP_TTB(1,7)= APdata(6,1); 
AP_TTB(1,8)= APdata(9,1); 
AP_TTB(1,9)= APdata(12,1); 
%Column 6: TTB Events (number) for Rigid Surface-Eyes Open (mCTSIB) 
%Column 7: TTB Events (Number) for Rigid Surface-Eyes Closed (mCTSIB) 
%Column 8: TTB Events (Number) for Compliant Surface-Eyes Open (mCTSIB) 
%Column 9: TTB Events (Number) for Compliant Surface-Eyes Closed (mCTSIB) 
AP_TTB(1,10)= APdata(1,1); 
AP_TTB(1,11)= APdata(4,1); 
AP_TTB(1,12)= APdata(7,1); 
AP_TTB(1,13)= APdata(10,1); 
%Write AP Outcomes 
dlmwrite('APttbSummary.csv',AP_TTB,'delimiter',',','-append'); 
%% ML TTB Evaluation 
cd(pwd); 
uiwait(msgbox('Choose the ###ML_TTBstatistics.csv')); 
MLfile = uigetfile('*.csv'); 
PATH = pwd 
STR2 = MLfile; 
MLdata = dlmread([PATH,'/', STR2], ',',0, 0); 
%     subnum = input('Enter 3 digit subject number: ', 's'); 
%     avgTTB(1,1)= subnum; 
ML_TTB(1,2)= MLdata(2,1); 
ML_TTB(1,3)= MLdata(5,1); 
ML_TTB(1,4)= MLdata(8,1); 
ML_TTB(1,5)= MLdata(11,1); 
    ML_TTB(1,6)= MLdata(3,1); 
    ML_TTB(1,7)= MLdata(6,1); 
    ML_TTB(1,8)= MLdata(9,1); 
    ML_TTB(1,9)= MLdata(12,1);    
        ML_TTB(1,10)= MLdata(1,1); 
        ML_TTB(1,11)= MLdata(4,1); 
        ML_TTB(1,12)= MLdata(7,1); 
        ML_TTB(1,13)= MLdata(10,1); 
dlmwrite('MLttbSummary.csv',ML_TTB,'delimiter',',','-append'); 
%% Right Side TTB Evaluation 
cd(pwd); 
uiwait(msgbox('Choose the ###Right_ML_TTBstatistics.csv')); 
Right_MLfile = uigetfile('*.csv'); 
PATH = pwd 
STR3 = Right_MLfile; 
Right_MLdata = dlmread([PATH,'/', STR3], ',',0, 0); 
%     subnum = input('Enter 3 digit subject number: ', 's'); 
%     avgTTB(1,1)= subnum; 
Right_ML_TTB(1,2)= Right_MLdata(2,1); 
Right_ML_TTB(1,3)= Right_MLdata(5,1); 
Right_ML_TTB(1,4)= Right_MLdata(8,1); 
Right_ML_TTB(1,5)= Right_MLdata(11,1); 
    Right_ML_TTB(1,6)= Right_MLdata(3,1); 
    Right_ML_TTB(1,7)= Right_MLdata(6,1); 
    Right_ML_TTB(1,8)= Right_MLdata(9,1); 
    Right_ML_TTB(1,9)= Right_MLdata(12,1);    
        Right_ML_TTB(1,10)= Right_MLdata(1,1); 
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        Right_ML_TTB(1,11)= Right_MLdata(4,1); 
        Right_ML_TTB(1,12)= Right_MLdata(7,1); 
        Right_ML_TTB(1,13)= Right_MLdata(10,1); 
dlmwrite('Right_MLttbSummary.csv',Right_ML_TTB,'delimiter',',','-append'); 
%% Left Side TTB Evaluation 
cd(pwd); 
uiwait(msgbox('Choose the ###Left_ML_TTBstatistics.csv')); 
Left_MLfile = uigetfile('*.csv'); 
PATH = pwd 
STR4 = Left_MLfile; 
Left_MLdata = dlmread([PATH,'/', STR4], ',',0, 0); 
%     subnum = input('Enter 3 digit subject number: ', 's'); 
%     avgTTB(1,1)= subnum; 
Left_ML_TTB(1,2)= Left_MLdata(2,1); 
Left_ML_TTB(1,3)= Left_MLdata(5,1); 
Left_ML_TTB(1,4)= Left_MLdata(8,1); 
Left_ML_TTB(1,5)= Left_MLdata(11,1); 
    Left_ML_TTB(1,6)= Left_MLdata(3,1); 
    Left_ML_TTB(1,7)= Left_MLdata(6,1); 
    Left_ML_TTB(1,8)= Left_MLdata(9,1); 
    Left_ML_TTB(1,9)= Left_MLdata(12,1);    
        Left_ML_TTB(1,10)= Left_MLdata(1,1); 
        Left_ML_TTB(1,11)= Left_MLdata(4,1); 
        Left_ML_TTB(1,12)= Left_MLdata(7,1); 
        Left_ML_TTB(1,13)= Left_MLdata(10,1); 
dlmwrite('Left_MLttbSummary.csv',Left_ML_TTB,'delimiter',',','-append'); 
  
cd(GoBack); 
 
%% END of SCRIPT Step 4 
%************************************************************************* 
%************************************************************************* 
%************************************************************************* 
 


