
DISSERTATION

SPATIOTEMPORAL COMPLEXITY IN GINZBURG LANDAU EQUATIONS

FOR ANISOTROPIC SYSTEMS

Submitted by

Yang Zou

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2012

Doctoral Committee:

Advisor: Iuliana Oprea
Co-Advisor: Gerhard Dangelmayr

Steven Fassnacht
Patrick Shipman



Copyright by Yang Zou 2012

All Rights Reserved



ABSTRACT

SPATIOTEMPORAL COMPLEXITY IN GINZBURG LANDAU EQUATIONS

FOR ANISOTROPIC SYSTEMS

Nematic electroconvection is a paradigm example of pattern formation in anisotropic

extended systems, where spatiotemporal chaos can arise at the onset of electroconvec-

tion. This dissertation is devoted to characterize and identify the instability mech-

anism generating the spatiotemporal complexity in the numerical simulations of a

system of Ginzburg Landau equations, used to study the weakly nonlinear stabil-

ity of waves’ amplitudes of nematic electroconvective patterns. In particular, the

following results pertaining to spatiotemporal complexity are discussed.

First, the simulated patterns are decomposed into central and noncentral spatial

Fourier modes. The central modes form an invariant manifold, and the noncen-

tral modes are transverse variables for this manifold. Simulations indicate that the

bursts in the noncentral modes induce rapid switchings between a pair of symmetry-

conjugated chaotic saddles in the central modes. Even though there are many degrees

of freedom involved in these spatiotemporal chaotic patterns, a dimension reduction

can be made by exploiting symmetries, leading to a small number of symmetry-

adapted variables. A detailed investigation of the dynamics in the space of symmetry-

adapted variables reveals that the spatiotemporal complexity is due to in-out inter-

mittency caused by transverse instability of the invariant manifold.

Second, in order to understand the instability mechanism causing the switching

dynamics in terms of a low dimensional model, a normal form for a Hopf bifurca-

tion with a broken translation invariance posed in the space of the central modes
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is introduced. Theoretical issues relating to symmetries and invariant subspaces are

studied. A series of complex phenomena, including symmetry breaking and increas-

ing, period doubling, chaos, transient chaos, crisis-induced intermittency and in-out

intermitteny, is observed when an imperfection parameter measuring the strength of

the symmetry breaking is varied. In certain parameter regimes bursts with certain

magnitudes trigger rapid switchings between a pair of chaotic saddles. A new type

of dynamics, identified as a new type of intermittency, is also discussed. Conclusions

and further development are presented at the end of the dissertation.
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(3.16). (a): Time plots of Poincaré map of d0 and d1, the exponential
rate of “out” and “in” phases indicate this is in-out scenario. (b):
Phase plane plots of Poincare map of d0 and d1. . . . . . . . . . . . 48
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Chapter 1

Introduction

1.1 Overview

We are surrounded by a diversity of natural patterns. Some patterns are stationary,

such as roll patterns on a zebra, hexagons on a giraffe, straight or spiral patterns on

a tree bark, a variety of intricate crystallized snowflake patterns, and so on. Other

patterns vary with time, like the gaits of horses, or waves in the ocean. For example,

when a horse trots, one diagonal pair of legs move in synchrony, while the other

diagonal pair of legs move with a half-period phase shift. And when a horse paces

or gallops, legs move in a different pattern [28]. Curiosity about the mechanism

generating patterns motivates people to build up various mathematical models and

numerous experiments, making it a gigantic topic with a long history of findings and

conjectures, and a host of open questions. For example, Turing proposed a theory

of Turing instability explaining formation of stationary patterns on animals’ skins

as a result of chemical interactions with different diffusion rates [55]. Physicists

have investigated a number of fluid system experimentally, such as Rayleigh-Bénard

convection or Taylor-Couette flow, to create orderly patterns, like rolls and hexagons,

as well as disordered patterns [8].
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Symmetry, or the lack of it, is an important feature to describe patterns. For

example, 230 distinct symmetry classes are used to classify classical crystallography

[28]. For steady state patterns, such as patterns on animals’ skins, patterns can be

described by spatial symmetry. For moving patterns from thermal convections and

animal gaits, space-time symmetry can be used to characterize them. Symmetry is

also a powerful tool to investigate the pattern-formation mechanism, and a great deal

of information regarding dynamics can be deduced by symmetries of the dynamical

system.

However, some patterns are disordered and chaotic in space and time. In this

case it is extremely difficult to characterize patterns using symmetry alone. These

patterns exhibit temporal chaos in small localized regions, and localized chaotic dy-

namics in one region interacts with others to generate spatial disorder, leading to

spatiotemporal chaos (STC). STC, which was first studied in fluid systems, is among

the most fascinating patterns for both theoreticians and experimentalists. In [47] a

variety of STC examples from physics, chemistry, biology, neuroscience, and so on

are described. Loosely speaking, STC can be considered as an extended version of

low dimensional chaos, like dynamics in the Lorenz system for well chosen parame-

ters, whose creation and characterization are well known [43]. However, due to the

complexity of the coupling of many (possibly an infinite number of) spatial degrees of

freedom of the pattern, which results in disorderly variation in the extended space, it

is still an open question to find the instability mechanism generating the STC. There

are several mathematical models exhibiting STC, like Swift-Hohenberg equations,

coupled map on lattice, Ginzburg Landau equations, and so on, attracting many ap-

plied mathematicians and theoretical physicists to study their nonlinear dynamics

[17].

The objective of this dissertation is to characterize the spatiotemporal complex-

ity identified in the numerical study of a system of four globally coupled complex
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Ginzburg Landau equations, modeling the dynamics of the oscillatory instability in

anisotropic extended systems, such as the evolution of the amplitudes of two pairs of

counterpropagating traveling waves in nematic electroconvection. The form of these

Ginzburg Landau equations is inferred from translational and reflectional symme-

tries. The chaotic patterns from the system of Ginzburg Landau equations resemble

the observed experimental STC in the nematic electroconvection [21, 42, 41].

In the following section of this Chapter we describe briefly two examples from fluid

mechanics giving rise to pattern formation. One is the Rayleigh-Bénard convection,

a prototype of pattern formation and STC in extended isotropic systems. The other

example is the electroconvection in nematic liquid crystals, a prototype for an ex-

tended anisotropic system exhibiting complex dynamics. In Section 1.3 we introduce

equivarient theory briefly which formalizes the concept of symmetry of patterns and

the corresponding dynamical systems.

Mathematical models describing nonlinear dynamics in pattern formation begin in

Chapter 2, where we review a reaction diffusion system modeling a transition from a

uniform pattern to a nontrivial pattern in terms of a Hopf bifurcation in an extended

anisotropic two-dimensional system. The nematic electroconvection example can be

explained under such a mathematical framework. The oscillatory instability and

anisotropy lead to two pairs of counterpropagating traveling wave solutions in four

directions. Then we present a derivation of a system of four globally coupled Ginzburg

Landau equations modeling the dynamics of these four waves’ amplitudes based on

symmetry considerations.

The main contributions of this dissertation, focusing on nonlinear dynamics of a

system of four globally coupled Ginzburg Landau equations and its simplified versions,

are presented in Chapters 3 and 4. We describe a STC scenario from the Ginzburg

Landau system, and investigate its instability mechanism in Chapter 3. We identify

an invariant manifold within the STC, and study the relation between the full STC
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and dynamics in this manifold. A simple 2D map is provided to characterize the

instability mechanism generating the STC.

In Chapter 4, motivated by features of the dynamics in the Ginzburg Landau

system, we construct a low dimensional system to investigate how spatial modes with

different orders interact and affect the dynamics on the invariant manifold introduced

in Chapter 3. We study symmetries and invariant subspaces of this low dimensional

system, as well as a series of novel complex dynamical behavior. Finally Chapter 5

summarizes the results, and suggests some future work and possible extensions of this

investigation.

1.2 Pattern Formation

In this section we present a short introduction to two classical examples of pattern

formation. One is the Rayleigh-Bénard convection, a canonical example in isotropic

systems [8, 1, 17]. The other is nematic electroconvection, a paradigm for pattern

formation for anisotropic system [26, 24, 25]. We use a system of four globally coupled

complex Ginzburg Landau equations to study the second system in the following

Chapters.

1.2.1 Rayleigh-Bénard Convection

Rayleigh-Bénard convection is one of the most comprehensively studied nonequilib-

rium fluid system in both experimental and theoretical aspects. The idealized experi-

ment involves a pure fluid placed between two flat horizontal plates. Heat conductors

for plates maintain the lower plate at a temperature ∆T above the upper plate tem-

perature. Thus the fluid near the bottom plate expands and is less dense than the

fluid near the top plate. Assuming the density ρ depends linearly on the temper-

ature, the fluid from the bottom tends to raise up due to the buoyancy force. For
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sufficiently small temperature difference the fluid remains at rest and heat is trans-

ported only by conduction from the bottom plate to the top one. Convection sets in

when the temperature difference ∆T is strong enough to overcome the resistant effects

due to viscosity, resulting in various kinds of Rayleigh-Bénard convective patterns.

One control parameter in this setup, R, which is called the Rayleigh number, is the

dimensionless ratio of the destabilizing buoyancy force to the stabilizing dissipative

force,

R =
αg∆Td3

κν
,

where α is the thermal expansion coefficient for the fluid, g the acceleration of grav-

ity, ν the kinematic viscosity, κ the thermal diffusivity and d the plate separation

distance. There is another important dimensionless parameter, the Prandtl number,

characterizing properties of viscosity and thermal conductivity,

σ = ν/κ,

representing the ratio of the two damping mechanisms acting on the fluid.

Figure 1.1: Schematic representation of the idealized roll pattern from Rayleigh-
Bénard convection, from [17].
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For Rayleigh number R slightly above a critical value, Rc, convective rolls are

observed. The growth of the pattern is limited since convective flow transports part

of the heat, therefore decreasing the temperature gradient and the buoyancy force.

These nonlinear effects force the fluid to settle down to a certain level. Convective

rolls are formed with diameters close to the separation distance d as illustrated in

Figure 1.1. Other instabilities and subtle issues of wave number selections may result

in superpositions of rolls forming hexagons or squares [1]. All these patterns are found

in physical experiments above onset in different geometries, as shown in Figure 1.2.

Figure 1.2: Hexagonal pattern, roll pattern, and square pattern from Rayleigh-Bénard
convection in different geometries, from [1].

When the Rayleigh number R is increased further above the critical value Rc, the

convection patterns may become chaotic in space and time, leading to STC. STC

depends on a number of factors, such as the size of system, the Rayleigh number, the

Prandtl number, and the geometry of the experimental devices [1, 17]. More degrees

of freedom of STC come into play as the spatial extent increases. Here we present

two examples of STC in Figure 1.3. Figure 1.3(a) represents complex patterns formed

experimentally when a horizontal fluid is rotated about a vertical axis [32], exhibiting

the coexistence of domain of rolls of more or less uniform orientation with other

domains of a different orientation. Figure 1.3(b) shows another type of experimentally
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observed STC, spiral-defect chaos, which consists of many small spirals, targets, and

other defects in the roll structure [39]. The defects have a modest lifetime, and drift

about irregularly. New defects are constantly created as old ones disappear.

(a) (b)

Figure 1.3: Two example of STC from Rayleigh-Bénard convection under different
conditions. (a) from [32] and (b) from [39].

1.2.2 Nematic Electroconvection

Convection in nematic liquid crystals is a main paradigm for pattern formation in

anisotropic systems [26, 24, 25]. For electroconvection, the charge carrying fluid is

sandwiched between two electrode glass plates, across which an electric potential dif-

ference is applied. Unlike ordinary isotropic fluids, such as fluids in Rayleigh-Bénard

convection, molecules of nematic liquid crystals are on average locally oriented along

a preferred direction, called the director. When the amplitude and frequency of the

external electrical field are above critical values, an electrohydrodynamic instability

leads to a transition from the uniform state to a variety of patterns, including peri-

odic patterns of convection rolls, localized structures, and STC. Anisotropy in nematic

electroconvection results in four critical wave vectors with nonzero angles with respect

to the director, allowing a unique reduced description through four amplitudes asso-

ciated with two counterpropagating pairs of traveling waves in two oblique directions,
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whose dynamics is governed by Ginzburg Landau amplitude equations. One pair

of traveling waves in one oblique direction is referred to as zag rolls. The other is

referred to as zig rolls.

Nematic electroconvection is a well-suited experimental system due to easy ac-

cess to control parameters, i.e., the electrical conductivity and the amplitude and

frequency of the applied electric potential difference. In [26, 24, 25] experimental ob-

servation of a variety of patterns is reported. We briefly describe two patterns here.

One is an alternating-wave pattern provided in Figure 1.4. This pattern results from

a superposition of zig and zag standing waves. One standing wave is one quarter of

cycle out of phase with the other. The other example is STC from a different set of

control parameters. Spatial demodulation is performed to generate amplitudes of zig

and zag waves in Figure 1.5.

Figure 1.4: A time series of a pattern alternating between zig and zag rolls in nematic
electroconvection, from [25].
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Figure 1.5: Left: an example of STC in nematic electroconvection. The maxima and
minima are mapped to blue and red, respectively. Middle: the envelope of the zig
rolls. Right: the envelope of the zag rolls, from [24].

1.3 Symmetry and Equivariance

Pattern formation involves the spontaneous breaking of a symmetry [17]. In order

to formalize pattern formation from a symmetry point of view, we introduce in this

section the concept of symmetry of a dynamical system and the concept of symmetry

of a pattern, which is a solution of the governing equations of the dynamical system,

in terms of equivariant theory [11, 28, 29].

Consider a dynamical system in Rn,

dx

dt
= f(x, λ), (1.1)

which is defined by a smooth vector field f : Rn × Rr → Rn and depends on a set of

parameters λ ∈ Rr. Let γ be an n× n invertible matrix. We define a symmetry of a

dynamical system as

Definition 1.2. The invertible n × n matrix γ is a symmetry of (1.1) if for every

solution x(t) ∈ Rn of (1.1), γx(t) is also a solution.

Notice that if γ and δ are invertible matrices satisfying Definition 1.2, then both

γ−1 and γδ satisfy Definition 1.2. Therefore the set of symmetries of a dynamical

system forms a group. We can extend the concept of a symmetry in Definition 1.2
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from a concrete matrix to an abstract group element by representation theory. In

the following of this dissertation, we call an element γ of a group Γ a symmetry of

the dynamical system (1.1) if there is a representation Tγ acting on Rn such that the

matrix Tγ satisfies the hypothesis of Definition 1.2. For ease of notation we write

γx ≡ Tγx.

In application we need a more useful condition than Definition 1.2 to determine

whether a group element γ is a symmetry of a dynamical system (1.1). Suppose

y(t) = γx(t) is another solution of (1.1). Then

ẏ(t) = f(y(t)) = f(γx(t)).

In addition,

ẏ(t) = γẋ(t) = γf(x(t)).

Therefore,

f(γx(t)) = γf(x(t))

for all solutions x(t) of (1.1). Since solutions exist for any arbitrary initial conditions,

this is equivalent to

f(γx) = γf(x)

for all x ∈ Rn, leading to the following condition of a symmetry group of a dynamical

system.

Definition 1.3 (Γ-equivariant). Let Γ act on Rn and let f : Rn ×Rr → Rn in (1.1).

Then f is Γ-equivariant and Γ is a symmetry group for (1.1) if f(γx, λ) = γf(x, λ)

for all γ ∈ Γ, x ∈ Rn.

Next we formalize the notion of the symmetry of a pattern created in an equiv-

ariant dynamical system. In this finite dimensional setting a pattern is defined as an

element x in the vector space Rn in which (1.1) is posed. A symmetry of the pattern
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x is a group element σ from Γ in Definition 1.3, such that σx = x. The set of all

such σ’s also preserves a group structure, the resulting group is known as the isotropy

subgroup of x, i.e.,

Definition 1.4 (Isotropy subgroup). Let v ∈ Rn. The isotropy subgroup of v is

Σv = {γ ∈ Γ : γv = v}.

Useful information about a pattern can be obtained from its isotropy subgroup.

We can develop a technique for finding solutions with possible symmetries based on

all isotropy subgroups of the system. First we need the following definition to classify

different isotropy subgroups.

Definition 1.5 (Group orbit). Let x ∈ Rn and γ ∈ Γ. The group orbit of x is

Γx = {γx : γ ∈ Γ}.

It is easy to see that

Σγx = γΣxγ
−1,

thus the isotropy subgroup of γx is a conjugate subgroup of the isotropy subgroup

of x. Because of this conjugacy property, we consider conjugate isotropy subgroups

to be different expressions of the same symmetry, and classify patterns in terms of

conjugacy classes of isotropy subgroups, by which we mean the set of all conjugates of

a given isotropy subgroup. Containment defines relations between different conjugacy

classes. To formalize this we define the following abstract structure:

Definition 1.6 (Conjugacy classes). Let H = {Hi} and K = {Kj} be two conjugacy

classes of isotropy subgroups of Γ. Define a partial ordering ≤ on the set of such

conjugacy classes by

H ≤ K ⇔ Hi ⊆ Kj
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for some representatives Hi, Kj. The isotropy lattice of Γ in its action on Rn is the

set of all conjugacy classes of isotropy subgroups, partially ordered by ≤.

The isotropy lattice classifies all possibilities for a pattern to break symmetry,

which can be arranged in a hierarchy with the property that smaller isotropy sub-

groups correspond to breaking more symmetries.

Now we can develop a systematic method to search for patterns with any possible

symmetries, using the structure of the isotropy lattice. For a given symmetry group

in that structure, we can obtain a pattern with such symmetries using the following

definition.

Definition 1.7 (Fixed-point subspace). Let Σ ⊆ Γ be a subgroup. The fixed-point

subspace of Σ is

Fix(Σ) = {v ∈ Rn : σv = v, ∀σ ∈ Σ}.

We close this Chapter by the following theorem, which plays a vital role in the

development of the theory of equivariant dynamics.

Theorem 1.8. Let f : Rn → Rn be Γ-equivariant and let Σ ⊆ Γ be a subgroup. Then

f(Fix(Σ)) ⊆ Fix(Σ).

The above theorem implies that the dynamics of a pattern with isotropy subgroup

Σ is restricted to the subspace Fix(Σ). Therefore to seek a pattern from a dynamical

system with isotropy subgroup Σ, we restrict the search to the subspace Fix(Σ).

Unless Fix(Σ) is the whole space Rn, the searching problem is posed in a space

of lower dimension, and ought to be simpler: the bigger Σ is, the smaller is the

dimension of Fix(Σ). So we can start with the largest subgroups in the lattice of

isotropy subgroups and work down the lattice systematically to determine patterns

of the system with successively lower symmetries, i.e., smaller and smaller isotropy

subgroups.

12



Chapter 2

Globally Coupled Complex

Ginzburg Landau Equations

In this chapter we present mathematical models describing a transition from a uniform

pattern to a nontrivial pattern and the dynamics of the resulting nontrivial pattern in

anisotropic extended systems. Among physical extended anisotropic systems exhibit-

ing STC, the electroconvection in nematic liquid crystals described in Section 1.2.2

is a paradigm example, allowing theoretical studies in terms of reduced amplitude or

envelope equations of STC, which can arise directly at the onset of electroconvection

[26, 24, 25]. In the following section we set up the mathematical framework of an

anisotropic system of partial differential equations for patterns posed in a 3D layer

that is infinitely extended in the horizontal directions. The system has two reflection

invariances along two distinguished symmetry axes in the horizontal (x, y)-plane, and

in addition we assume translation invariance in each of these two directions. In such

a mathematical system pattern formation occurs if a spatiotemporally uniform solu-

tion undergoes a Hopf bifurcation, resulting in a spatiotemporal pattern with critical

wave numbers located on both symmetry axes for the oblique case. The prototype

example for this class of equations are the equations of the weak electrolyte model
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(WEM) for electroconvection in nematic liquid crystals [53, 54]. Next we derive the

amplitude equations of the spatiotemporal pattern, a system of four globally coupled

complex Ginzburg Landau equations (GCCGLEs) [22], in Section 2.2. Simulations

and analysis of the GCCGLEs are presented in the following chapters.

2.1 Hopf Bifurcation in Extended Anisotropic Sys-

tems

The phenomena of an initial, absolutely homogeneous state of a medium becoming

inhomogeneous is always related to an exchange of stability [47]. In nonlinear dy-

namics such a transitions is defined as bifurcation, from which a phase portrait of a

dynamical system changes its topological structure when a parameter is varied. We

focus on a local bifurcation in this dissertation. For a continuous dynamical system,

a local bifurcation occurs if the Jacobian matrix has an eigenvalue with zero real

part. We call it a steady state bifurcation if such an eigenvalue is zero. If this eigen-

value is nonzero but purely imaginary, we call it a Hopf bifurcation, which leads to a

spatiotemporal pattern. For global bifurcations, such as homoclinic and heteroclinic

bifurcations, see [48] for an introduction.

In this chapter we build up the mathematical framework of a Hopf bifurcation

in an extended anisotropic system with translation and reflection symmetries in the

horizontal (x, y)-plane, from which the uniform trivial pattern loses stability, and a

spatiotemporal pattern is formed. Consider the following reaction diffusion system,

∂u

∂t
= Dx

∂2u

∂x2
+ Dy

∂2u

∂y2
+ f(u,R), (2.1)

where Dx and Dy are diagonal diffusion matrices with positive entries. Due to the

anisotropy, where the property of material is directionally dependent, Dx and Dy are

14



not equal. Assuming that the uniform trivial state u(R) = 0 is a solution of all values

of the control parameter R, f(0,R) must be satisfied.

A standard linear stability analysis for the uniform trivial pattern can be applied

to investigate how a spatiotemporal pattern is generated. We compute the linearized

system of (2.1) as

∂u

∂t
= Dx

∂2u

∂x2
+ Dy

∂2u

∂y2
+ M(R)u, (2.2)

where M(R) = duf(0,R) is the Jacobian matrix of f(u,R). The spatiotemporal

periodic form u = eΣtei(px+qy)U, where (p, q) is the wave vector and U is the constant

mode, is considered, due to the translation symmetry in (x, y). Substituting it into

(2.2) leads to the following eigenvalue problem,

K(p2, q2,R)U = ΣU,

where K(p2, q2,R) = −p2Dx − q2Dy + M(R).

The neutral stability surface is defined by the eigenvalues of K as the set of all

points in the (p, q,R)-space, such that some eigenvalues of K are on the imaginary

axis, but no eigenvalues have positive real parts. Let Rc be the minimal value on

the neutral stability surface. Then the uniform state u = 0 becomes unstable for

R > Rc. Here we focus on the scenario where Kc = K(p2, q2,Rc) has a pair of

simple imaginary eigenvalues σ(p2, q2,Rc) = ±iωc, and all other eigenvalues with

negative real parts, in some neighborhood of (p2, q2,Rc), which corresponds to a Hopf

bifurcation. Then ωc > 0 is the critical temporal frequency. Due to anisotropy and

reflection symmetries along x-axis and y-axis, certain critical wave vectors (±pc,±qc)

are generated at isolated points (±pc,±qc,Rc) on the neutral stability surface, and the

corresponding spatiotemporal patterns gain stability and replace the uniform state.

The graphic representation of the neutral stability surface is presented in Figure 2.1.
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Here critical group velocities can be defined as

vp = ∂
∂p

Im σ(p2, q2,Rc)|(p2
c ,q2

c ), vq = ∂
∂q

Im σ(p2, q2,Rc)|(p2
c ,q2

c ). (2.3)

Figure 2.1: Neutral stability surface with four minima, from [58].

Next we can seek patterns with amplitudes in the form of small and slow temporal

as well as spatial modulations of periodic functions, whose leading terms are the basic

wave solutions of the linearized system (2.2). The pattern u is represented as

u =
(A1e

i(pcx+qcy)U1(z) +A2e
i(−pcx+qcy)U2(z) +

A3e
i(−pcx−qcy)U3(z) +A4e

i(pcx−qcy)U4(z)
)
eiωct + cc, (2.4)

where A1, . . . ,A4 are small and slowly varying complex amplitudes, (±pc,±qc) are

the critical wave numbers, Uj(z) are vertical critical modes, and cc refers to the com-
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plex conjugate expression. Patterns in extended anisotropic systems, such as complex

nematic electroconvective patterns in Section 1.2.2 [26, 24, 25], can be analyzed un-

der the framework of (2.4). For example, authors in [19] extracted the slowly varying

envelopes from the space-time experiment data of the pattern using a four-wave de-

modulation based on representation (2.4), and diagnosed and characterized STC.

Notice that (2.4) excludes some classic STC examples in isotropic systems, such as

Rayleigh-Benard convection, because isotropy results in a full circle of critical wave

vectors, making the representation through a finite set of plane-wave amplitudes im-

possible. In this dissertation we consider the case where pc > 0 and qc > 0, i.e.,

two pairs of counterpropagating traveling wave solutions in two oblique directions. In

(2.4), A1 and A3 are amplitudes of plane waves traveling in the directions −(pc, qc)

and (pc, qc) (‘zig-waves’), and A2 and A4 are amplitudes of plane waves traveling

in the directions (pc,−qc) and (pc,−qc) (‘zag-waves’), respectively. Analysis of the

pattern u is equivalent to analysis of the dynamics of amplitude equations.

2.2 Derivation of the Globally Coupled Complex

Ginzburg Landau Equations

The complex Ginzburg-Landau equation is one of the most popular nonlinear equa-

tions in the theory of pattern formation. Authors in [2] gave a review of various

STC in Ginzburg-Landau, such as phase turbulence and defect chaos. Models using

Ginzburg-Landau equations include pattern formation in 2D chemical reactor where

an autocatalytic reaction takes places, the dynamics of excitations in nerve mem-

branes, the field evolution in nonlinear optical resonators, structures in fluid flows,

and so on [47].

In this section we derive amplitude equations for Aj, 1 ≤ j ≤ 4, of the pattern u in

(2.4), which is a system of four globally coupled complex Ginzburg-Landau equations
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(GCCGLEs). Since the amplitudes are small and slowly varying in space and time,

we require that

|∂Aj

∂t
| ¿ |Aj| ¿ 1, |∂

2Aj

∂x2
| ¿ |∂Aj

∂x
| ¿ |Aj|, |R −Rc| ¿ 1.

Then the weakly nonlinear analysis, an expansion in terms of the order parameter,

can be applied to derive amplitude equations [23, 21].

In our case the system (2.1) has symmetries under time and space arbitrary trans-

lations

t → t + t0, x → x + x0, y → y + y0,

and two reflections

x → −x, y → −y.

When applying the above operations to the pattern (2.4), we obtain the following

symmetry actions on amplitudes Aj, 1 ≤ j ≤ 4,

t → t + t0 : (A1,A2,A3,A4) → eiωct0(A1,A2,A3,A4),

x → x + x0 : (A1,A2,A3,A4) → (eipcx0A1, e
−ipcx0A2, e

−ipcx0A3, e
ipcx0A4),

y → y + y0 : (A1,A2,A3,A4) → (eiqcy0A1, e
iqcy0A2, e

−iqcy0A3, e
−iqcy0A4),

x → −x : (A1,A2,A3,A4) → (A2,A1,A4,A3),

y → −y : (A1,A2,A3,A4) → (A4,A3,A2,A1).

(2.5)

We restrict the evolution of the amplitude equations

∂Aj/∂t = Fj(∂x, ∂y,A1, . . . ,A4), for 1 ≤ j ≤ 4,

to be invariant under symmetry operations in (2.5), therefore the general form of

expansion of the right hand side, up to third order in (∂x, ∂y,A1, . . . ,A4), and second
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order in (R−Rc,Aj), becomes

∂A1

∂t
−vp

∂A1

∂x
−vq

∂A1

∂y
= (a(R−Rc)+D̃(∂x, ∂y)+

4∑
j=1

aj|Aj|2)A1+a5A2Ā3A4+h.o.t.,

(2.6)

where D̃(∂x, ∂y) is the second-order differential operator

D̃(∂x, ∂y) = dpp∂
2
x + 2dpq∂x∂y + dqq∂

2
y ,

and a, aj, 1 ≤ j ≤ 5 are complex coefficients, computed from a third-order Taylor

expansion of (2.1). Derivation of Aj, 2 ≤ j ≤ 4, follows from reflection operators in

(2.5). For example, we derive the equation of A2 by applying x-reflection symmetry,

i.e., we change x to −x, and switch A1 with A2, and A3 with A4 in the equation

(2.6).

Assuming that group velocities vp and vq in (2.3) cannot be treated as small

parameters, we introduce slow wave variables

X± = ε(t± x/vp), Y± = ε(t± y/vq), (2.7)

the superslow time T = ε2t, and coefficient a0 = a(R − Rc)/ε
2, where 0 < ε ¿ 1.

The slow wave variables are not independent due to the relation

X+ + X− = Y+ + Y1. (2.8)

We are now ready to set up the Ginzburg-Landau system for O(1)-amplitudes Aj,

1 ≤ j ≤ 4, which depend on slow time and space variables. The envelope A1 can be

expanded in terms of order parameter ε as

A1 = εA1(T, X+, Y+) + ε2A
(2)
1 (T, X+, Y+, X−) + O(ε3), (2.9)
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Aj, 2 ≤ j ≤ 4, can be expanded in the similar way. Notice that three wave variables

on which A
(2)
1 depends can be chosen arbitrarily because of the relation (2.8), and

analogously for A
(2)
2 , A

(2)
3 , and A

(2)
4 . When the expansion (2.9) is substituted into

equation (2.6), at O(ε3) we have

−2vp
∂A

(2)
1

∂X−
=

∂A1

∂T
+ (a0 +D(∂X+ , ∂Y−) +

4∑
j=1

aj|Aj|2)A1 + a5A2Ā3A4, (2.10)

where

D(∂X+ , ∂Y−) = Dpp∂
2
X+

+ 2Dpq∂X+∂Y+ + Dqq∂
2
Y+

,

with

Dpp = dpp/v
2
p, Dpq = dpd/(vpvq), Dqq = dqq/v

2
q ,

is the rescaled differential operator. In order for the equation (2.10) to have a bounded

solution, the average of the right hand side with respect to X− must be zero, which

leads to the following globally coupled Ginzburg Landau equation,

A1T = {a0 +D(∂X+ , ∂Y+) + a1|A1|2 + a2 < |A2(ξ, Y+)|2 >

+a3 < |A3(X+ + ξ, Y+ + ξ)|2 > +a4 < |A4(X+, ξ)|2 >}A1

+a5 < A2(X+ + ξ, Y+)Ā3(X+ + ξ, Y+ + ξ)A4(X+, Y+ + ξ) >, (2.11)

where the brackets in (2.11) denote averages over ξ. The equations for A2, A3, A4

follow from (2.11) by reflection symmetries. We set independent wave variables for

Aj, 1 ≤ j ≤ 4, as

A1 = A1(X+, Y+, T ), A2 = A2(X−, Y+, T ), A3 = A3(X−, Y−, T ), A4 = A4(X+, Y−, T ).

The equation (2.11) along with the corresponding equations for the other envelopes

represent a system of globally coupled equations of the the Ginzburg Landau type.
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Numerical simulation of this system, as well as the theoretical analysis, is presented

in the following Chapter.
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Chapter 3

Spatiotemporal Complexity in the

Globally Coupled Complex

Ginzburg Landau Equations

3.1 Introduction

In this Chapter we present a qualitative and quantitative analysis of a complex spa-

tiotemporal pattern, which is a solution of four globally coupled complex Ginzburg

Landau equations (GCCGLEs) (2.11) derived in Chapter 2. Unlike a low dimensional

system, such as Lorenz equations [36] or logistic map [38], where different scenarios

to chaos, such as period doubling cascade routes [27] or intermittency transitions

[37, 45], have been established, in spatially extended systems the occurrence of com-

plex spatiotemporal dynamics is only partially understood, and the problem of finding

general approaches for the characterization of STC, as well as the identification of

instability mechanisms generating it, is still open questions in nonlinear science.

A simulated complex spatiotemporal pattern from GCCGLEs by pseudo-spectral

method is presented in Section 3.2. We decompose the pattern into central and
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noncentral spatial Fourier modes using the Fourier-Galerkin expansion. The central

modes form an invariant manifold, which is called the normal form and described in

Section 3.3. Even though the chaotic pattern involves a lot of degrees of freedom,

we reduce the dimension through exploiting the symmetries of the modes, leading to

the dynamics of two symmetry-adapted variables in Section 3.4. By the end of this

Chapter we identify and characterize the instability mechanism causing STC in terms

of in-out intermittency by a 2D map.

3.2 Spatiotemporal Chaos

In this section we present a complex spatiotemporal pattern as a simulated solution of

a system of GCCGLEs (2.11) from the previous Chapter. First we discuss the spectral

method used in solving (2.11), then we describe the pseudo-spectral numerical scheme

used to simulate (2.11).

Spectral methods can be applied to approximate solutions of partial differential

equations (PDEs) as a linear combination of continuous functions which are generally

nonzero over the whole domain of the solution. These continuous functions, called

basis functions, are chosen based on the properties of the problem, such as smoothness

or boundary conditions. The common choices include Fourier sinusoids or Chebyshev

polynomials [52]. If Fourier sinusoids are chosen as basis functions, then the spectral

method projects PDEs into the space spanned by the Fourier modes. The next task is

to solve a system of ordinary differential equations (ODEs), time-dependent variables

for the truncated Fourier modes, in the Fourier space. Spectral methods work very

well for linear PDEs. However, for nonlinear PDEs, issues of spectral method come

out due to the loss of the superposition principle for the solution from nonlinear terms.

The pseudospectral method, which has the same underlying principles as the spec-

tral method regarding an orthonormal basis functions, can be applied to solve such
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issues [58]. The collocation method is partially used in the pseudospectral method,

where the solution is approximated by a linear combination of basis functions, but

the coefficients are computed using a set of nodes in real space, called collocation

points. Therefore nonlinear terms are evaluated in real space, instead of in Fourier

space, and we can transform the result into Fourier space using a discrete Fourier

transform, usually the Fast Fourier transform (FFT). By the end, a system of ODEs

is derived and solved.

For the numerical simulation for the system of GCCGLEs (2.11) we use the fol-

lowing Fourier-Galerkin expansion,

Aj(X,Y, T ) =
M∑

m=−M

N∑
n=−N

a(j)
m,n(T )ei(mrX+nsY ), 1 ≤ j ≤ 4, (3.1)

with appropriately chosen spatial periods (2π/r, 2π/s), see [21] for details. We drop

here the subscripts ±, since they just disappear after averages are taken. By putting

(3.1) into (2.11) and projecting it in the Fourier space, we derive the following ODE

system

d

dT
a(1)

m,n = [a0 − (d20p
2
m + 2d11pmqn + d02q

2
n)]a(1)

m,n

+a1

∑
u

∑
n

∑
s

∑
t

a(1)
u,vā

(1)
s,t a

(1)
m+s−u,n+t−v

+a2

∑
u

∑
v

∑
t

a(2)
u,vā

(2)
u,ta

(1)
m,n+t−v

+a3

∑
u

∑
v

a(3)
u,vā

(3)
u,va

(1)
m,n

+a4

∑
u

∑
v

∑
s

a(4)
u,vā

(4)
s,va

(1)
m+s−u,n

+a5

∑
u

∑
v

a(2)
u,nā

(3)
u,va

(4)
m,v, (3.2)

where pm = mpcvx/(εKx), qn = nqcvy/(εKy), and Kx and Ky are spatial periods in

x and y directions, respectively [22]. Equations for a
(2)
m,n(T ), a

(3)
m,n(T ), a

(4)
m,n(T ) can
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be derived from (3.2) based on symmetry considerations. To visualize a numerical

solution as a spatiotemporal pattern, we associate with the Aj the function

u(t, x, y) = Re{A1(ε
2t,X+, Y+)ei(ωct+pcx+qcy)

+A2(ε
2t,X−, Y+)ei(ωct−pcx+qcy)

+A3(ε
2t,X−, Y−)ei(ωct−pcx−qcy)

+A4(ε
2t,X+, Y−)ei(ωct+pcx−qcy)}, (3.3)

with X± and Y± defined in (2.7). Notice that the pattern u(t, x, y) in (3.3) is spatially

periodic with periods Lx = Kx2π/pc in x-direction, and Ly = Ky2π/qc in y-direction.

For convolutions in the Fourier space, like
∑

u

∑
n

∑
s

∑
t a

(1)
u,vā

(1)
s,t a

(1)
m+s−u,n+t−v in

(3.2), we can incorporate the FFT and inverse FFT into simulations to transform con-

volution terms between real and Fourier spaces. The convolutions, which corresponds

to nested loops in simulation, can be transformed by inverse FFT to vectorwise mul-

tiplications. Then FFT can transform resulting terms from products back to Fourier

space, and ODE solvers can be used to solve them. Therefore, the overall simulation

time can be greatly reduced. The implementation of FFT and inverse FFT, as well

as vectorization in Matlab, to reduce or eliminate the loops to improve the efficiency

is discussed in detail in [58].

We have solved the differential equations for the a
(j)
m,n(T ) in (3.2) numerically for
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random initial conditions using M = N = 16, with parameters

a0 = 1, a1 = −1− 1.1806i,

a2 = −0.923− 0.5538i, a3 = −0.6442 + 1.3613i,

a4 = −0.2223− 3.3025i, a5 = −0.4647− 0.2472i,

D11 = 1 + 0.01i, D12 = 0.44 + 0.015i,

D22 = 1 + 0.03i, r = 0.074,

s = 0.076.

(3.4)

The envelopes of the resulting pattern from this simulation are depicted in Figure

3.1. Since all Y -modes (modes with n 6= 0) decay to zero, the envelopes eventually

depend only on (X,T ) (X = X+ or X−).

Figure 3.1: Color-coded plots of Ajr(X,T ) (36 space-points) for 7000 ≤ T ≤ 10000 in
Fourier-Galerkin simulation of the Ginzburg Landau system (2.11), with parameters
given in (3.4). Since the Y -modes decay to zero, the Aj eventually are functions of
(X,T ) only.
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The time series of the central modes ( modes with m = n = 0) shown in Figure

3.2(a) indicate irregular rapid transitions (“switches”) between symmetry-conjugated

copies of two chaotic sets. Phase plane plots for zooms into time windows during

which the trajectories reside in either of these sets are shown in the upper and lower

panels of Figure 3.2(b). These plots indicate that the chaotic sets are symmetric with

respect to x-reflection, i.e.

(A1, A2, A3, A4) → (A2, A1, A4, A3). (3.5)

The bursts exhibited by the time series of the first order X-modes (modes with

m = 1 and n = 0) displayed in Figure 3.3 indicate that the switches are triggered when

these modes get excited. The time series of the amplitudes of higher order noncentral

X-modes (modes with |m| > 1 and n = 0) show similar bursting behavior and lead

to the phases of non-uniform spatial behavior apparent in the plots of Ajr(X,T )

displayed in Figure 3.1. When all higher order modes in (3.1) are equal to zero, the

central modes follow a normal form for a Hopf bifurcation with O(2)×O(2)-symmetry

[49, 57], which forms a low dimensional invariant submanifold from a big system. Six

basic wave patterns are derived and analyzed in the following section. Noncentral

modes, which are transverse variables, exhibit some form of intermittent behavior

relative to the invariant subspace in Figure 3.3. The scenario of intermittency in

Figure 3.3, which indicates in-out intermittency as described in [5, 12], is provided in

detail in the Section 3.4.
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Figure 3.2: Fourier-Galerkin simulation of the Ginzburg Landau system (2.11) with
parameters given in (3.4). (a): Time plots of the central modes. (b) Phase plane
plots of the central modes for 6000 ≤ T ≤ 7000 and 7600 ≤ T ≤ 8600.
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Figure 3.3: Time plots of first X-modes (X = X+ or X−) in Fourier-Galerkin sim-
ulation of the Ginzburg Landau system (2.11), with parameters given in (3.4). All
Y -modes (n 6= 0) in (3.1) decay to zero.

3.3 An Invariant Manifold: Normal Form

3.3.1 Derivation of the Normal Form

Consider a spatially uniform and time-dependent pattern on the horizontal (x, y)-

plane with (2π/pc, 2π/qc)-periodicity in (x, y), two reflection symmetries about x

and y axises, and one overall phase symmetry imposed. The oscillatory instability

leads to a Hopf bifurcation resulting in four traveling waves in four oblique direction.

Denoting these four amplitudes by complex variables zj, 1 ≤ j ≤ 4, the dynamics of

zj in a neighborhood of the Hopf bifurcation point follows directly from the Ginzburg

Landau system (2.11) when spatial variations in (2.11) are ignored, which is the
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following Normal form for a Hopf bifurcation with O(2)×O(2)-symmetry,

ż1 = (a0 + a1|z1|2 + a2|z2|2 + a3|z3|2 + a4|z4|2)z1 + a5z2z3z4,

ż2 = (a0 + a1|z2|2 + a2|z1|2 + a3|z4|2 + a4|z3|2)z2 + a5z1z3z4,

ż3 = (a0 + a1|z3|2 + a2|z4|2 + a3|z1|2 + a4|z2|2)z3 + a5z1z2z4,

ż4 = (a0 + a1|z4|2 + a2|z3|2 + a3|z2|2 + a4|z1|2)z4 + a5z1z2z3,

(3.6)

where the dots represent the derivative d/dT with respect to a slow time T = ε2t

(recall that ε2 measures deviation of the bifurcation parameter from the critical value),

and a0, a1, . . . , a5 are complex coefficients, same as coefficients in Ginzburg Landau

equation (2.11). The system (3.6) is equivariant under the following actions of O(2)×
O(2)× S1, which can be inferred by applying spatial translations and reflections and

time translations to (2.4),

Tt t → t + t0 : (z1, z2, z3, z4) → eiωct0(z1, z2, z3, z4),

Tx x → x + x0 : (z1, z2, z3, z4) → (eipcx0z1, e
−ipcx0z2, e

−ipcx0z3, e
ipcx0z4),

Ty y → y + y0 : (z1, z2, z3, z4) → (eiqcy0z1, e
iqcy0z2, e

−iqcy0z3, e
−iqcy0z4),

Rx x → −x : (z1, z2, z3, z4) → (z2, z1, z4, z3),

Ry y → −y : (z1, z2, z3, z4) → (z4, z3, z2, z1).

(3.7)

The Ginzburg Landau system (2.11) is an extension of the ODE normal form

(3.6) and allows patterns with varying spatial periods, describing the dynamics in

a spatially extended anisotropic system with many degrees of freedom. Notice that

four central Fourier modes and zero noncentral Fourier modes in the expansion (3.1)

form an invariant manifold, and the ODE normal form describes the dynamics of the

system (3.2) restricting to the invariant manifold.

There is another way described in [49] to derive the normal form (3.6). If we

consider amplitudes of the pattern (2.4) to be spatially uniform, equivariance with
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respect to (3.7) leads to the dynamics of ż1 = g1(z) with

g1 = z1G + z2z̄3z4H,

where

G ≡ G(|z1|2, |z2|2, |z3|2, |z4|2, z1z̄2z3z̄4), H ≡ H(|z1|2, |z2|2, |z3|2, |z4|2, z̄1z2z̄3z4).

Here H(·) and G(·) are smooth complex-valued functions, and both functions are

invariant under Tx, Ty, and Tt. To derive remaining components, zi, 1 ≤ i ≤ 4, we

apply discrete reflection symmetries, Rx and Ry. For example,

g2(z1, z2, z3, z4) = g1(z2, z1, z4, z3).

Then the normal form (3.6) can be obtained by truncating gi(z1, z2, z3, z4), 1 ≤ i ≤ 4,

at the cubic order.

3.3.2 2D and 4D Invariant Subspaces

The system (3.6) is the normal form for a Hopf bifurcation with O(2)×O(2)-symmetry

posed in an eight-dimensional center eigenspace. In [49, 57] it is shown that to the

action (3.7) there correspond (up to conjugacy) six distinct two-dimensional fixed

points subspaces, which are invariant spaces for (3.6) and contain the basic periodic

solutions whose existence is guaranteed by the equivariant Hopf bifurcation theorem

[29]. These subspaces are summarized in Table 3.1(a). The differential equation for

the complex variable z occurring in Table 3.1(a) is the normal form for a standard

Hopf bifurcation,

ż = (a0 + c|z|2)z. (3.8)
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The periodic solutions of (3.8) have the form z = reiΩT with r2 = −a0r/cr and

Ω = a0i + cir
2 (subscripts r and i denote real and imaginary parts). The names in

Table 3.1(a) refer to the wave types associated with the periodic solutions residing in

the fixed point subspaces via (2.4), and are related to the maximal isotropy subgroups

of O(2)×O(2)×S1 fixing these patterns. Specifically, TW refers to oblique traveling

waves fixed by spatiotemporal translations Txt : (x, t) → (x + x0, t − (pc/ωc)x0)

and the corresponding translations Tyt; TxR and TyR refer to traveling rectangles in

the x- and y-directions which are fixed by (Txt, Ry) and (Tyt, Rx), respectively; SW

refers to oblique standing waves fixed by (x, y) → (x + x0, y − (pc/qc)x0) and RxRy;

SR refers to standing rectangles fixed by Rx and Ry; and AW refers to alternating

waves characterized by periodic reversals between stripe patterns in the two oblique

directions, which are fixed by Rx and Ry combined with a temporal phase shift by

half the period.

In addition to the two-dimensional invariant subspaces, the system (3.6) has eight

four-dimensional invariant subspaces fixed by non-maximal isotropy subgroups of

O(2) × O(2) × S1. These subspaces are summarized in Table 3.1(b). When (3.6)

is restricted to the first seven subspaces (S13 – S3+) listed in this table, the system for

the complex variables (z1, z2) becomes the normal form for a Hopf bifurcation with

O(2)-symmetry,

ż1 = (a0 + A|z1|2 + B|z2|2)z1,

ż2 = (a0 + A|z2|2 + B|z1|2)z2,
(3.9)

with A, B summarized in the last column of the table. This system is known to have

periodic solutions of the form z1 = reiΩT , z2 = 0 and z1 = z2 = reiΩT , which in

the setting of 1D spatiotemporal systems correspond to traveling waves and standing

waves, respectively. When (3.9) is defined by restricting (3.6), the traveling wave

solutions are the basic periodic solutions listed first in the containment column of

Table 3.1(b), and the standing wave solutions are the second. Generically these two
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Table 3.1: (a) 2D invariant subspaces of (3.6) and coefficients c in (3.8). (b) 4D
invariant subspaces of (3.6) and coefficients A, B in (3.9) and (3.10).

Name Subspace c
TW (z, 0, 0, 0) a1

TyR (z, z, 0, 0) a1 + a2

TxR (z, 0, 0, z) a1 + a4

SW (z, 0, z, 0) a1 + a3

SR (z, z, z, z) a1 + a2 + a3 + a4 + a5

AW (z, iz, z, iz) a1 + a2 + a3 + a4 − a5

(a)

Name Subspace containments A B
S13 (z1, z2, 0, 0) TW ,TyR a1 a2

S23 (z1, 0, z2, 0) TW ,SW a1 a3

S2− (z1, iz1, z2, iz2) TyR,AW a1 + a2 a3 + a4 − a5

S3− (z1, iz2, z2, iz1) TxR,AW a1 + a4 a2 + a3 − a5

S12 (z1, 0, 0, z2) TW ,TxR a1 a4

S2+ (z1, z1, z2, z2) TyR,SR a1 + a2 a3 + a4 + a5

S3+ (z1, z2, z2, z1) TxR,SR a1 + a4 a2 + a3 + a5

S1 (z1, z2, z1, z2) SW ,SR,AW a1 + a3 a2 + a4

(b)

solutions are the only non-transient solutions of (3.9).

The only 4D invariant subspace that contains three basic periodic solutions is the

subspace S1 in Table 3.1(b). When restricted to S1, (3.6) reduces to the normal form

for a Hopf bifurcation with D4-symmetry,

ż1 = (a0 + A|z1|2 + B|z2|2)z1 + a5z1z
2
2 ,

ż2 = (a0 + A|z2|2 + B|z1|2)z2 + a5z2z
2
1 ,

(3.10)

which describes a Hopf bifurcation with 4D center eigenspace in a system of four

identical oscillators coupled with the symmetry of a square. At the Hopf bifurcation

three different types of synchronization patterns are created, denoted rotating wave,

vertex oscillation, and edge oscillation [29, 51], which in our case correspond to the

SW , SR, and AW solutions, respectively. In addition to these basic solutions, which
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reside in 2D invariant subspaces, an unstable periodic solution with lower symmetry

and quasiperiodic solutions can exist in certain parameter regimes [51].

3.3.3 Complex Dynamics of the Normal Form

In a recent study [41] the coefficients aj in (3.6) have been computed numerically

from the governing partial differential equations of the WEM for a range of material

parameters, and it was found that in a certain parameter regime none of the basic

periodic solutions listed in Table 3.1(a) was stable. Instead, when one of the material

parameters was varied, various quasiperiodic solutions and a period doubling cascade

to chaotic dynamics did occur. In a subsequent parameter study of (3.6) [18], the

coefficients a0, a3i, and a1, a2, a4, a5 have been fixed as

a0 = 1, a1 = −1− 1.1806i, a4 = −0.2223− 3.3025i,

a3i = 1.3613, a2 = −0.923− 0.5538i, a5 = −0.4647− 0.2472i,
(3.11)

and a3r was varied in the range 0.1452 < −a3r < 0.764. In this range, which includes

one of the values computed from the WEM, all six basic periodic solutions of (3.6) are

unstable. At the left (−a3r = 0.1453) and right (−a3r = 0.764) ends the SW and TxR

solutions become stable, respectively. When −a3r is increased above 0.1453, periodic

solutions not residing in any fixed point subspace and various quasiperiodic solutions

occur as attractors for −a3r < 0.6374. Note that, due to the S1-action, periodic

solutions of (3.6) are actually relative equilibria, and the quasiperiodic solutions found

in [41, 18] are relative periodic orbits [11]. In particular, in this range a relative

periodic orbit in S1 occurs, which becomes transversely unstable and leads to a stable

relative periodic orbit outside of S1.

In the range 0.6374 < −a3r < 0.764, the dynamics of (3.6) is complex. The charac-

teristics of this dynamics are chaos, intermittency, and periodic windows terminating

or starting in period doubling cascades, and both periodic and chaotic attractors occur
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in symmetric and asymmetric (as defined below) forms. To visualize the dynamics,

symmetry adapted, ‘projective’ variables have been introduced in [18] as follows,

Dj = dj/s, 1 ≤ j ≤ 3, U = u/s2, V = v/s2, (3.12)

where zj = rje
iϕj ,

d1 = r2
1 − r2

2 + r2
3 − r2

4, u = Re(z1z3z2z4) = r1r2r3r4 cos φ,

d2 = r2
1 + r2

2 − r2
3 − r2

4, v = Im(z1z3z2z4) = r1r2r3r4 sin φ,

d3 = r2
1 − r2

2 − r2
3 + r2

4, s = r2
1 + r2

2 + r2
3 + r2

4.

(3.13)

and

ϕ = −ϕ1 + ϕ2 − ϕ3 + ϕ4, (3.14)

which leads to a closed system of differential equations for (dj, u, v, s). In the resulting

system for (Dj, U, V ), the variable s appears as an overall factor which can be formally

removed by a time rescaling leading to a reduction of the phase-space dimension to

five. Moreover, these variables satisfy the relation 256(U2 +V 2) = (r1r2r3r4)
2/s2 ≡ P

with P depending on the Dj only, which reduces the dimension to four. If all moduli

rj are nonzero, one can set (U, V ) =
√

P (cos ϕ, sin ϕ) and visualize the dynamics in

(Dj, ϕ)-space.

The continuous symmetries Tx, Ty, S1 all act trivially on the reduced variables

(dj, u, v, s) or (Dj, U, V ) corresponding to an orbit space reduction [11], whereas the

discrete symmetries act as (we set Rxy = RxRy),

Rx(d1, d2, d3, v) = (−d1, d2,−d3,−v),

Rxy(d1, d2, d3, v) = (d1,−d2,−d3, v),

Ry(d1, d2, d3, v) = (−d1,−d2, d3,−v),

(3.15)
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and leave s and u invariant (the actions on (Dj, U, V ) are identical). Thus the reduced

systems for (dj, u, v, s) or (Dj, U, V ) retain a D2-equivariance. In these variables,

relative equilibria are revealed as equilibria and relative periodic orbits as periodic

orbits.

In [18] it has been observed that in the complex regime chaotic and periodic

attractors occur in pairs distinguished by d3 > 0 and d3 < 0. If A is an attractor

in d3 > 0, say, RxA and RxyA are conjugate attractors in d3 < 0. An attractor in

d3 > 0 was called symmetric in [18] if RyA = A and asymmetric if RyA ∩ A = ∅.
Thus in the complex regime, the normal form in the reduced phase space exhibits

either two symmetric (with respect to Ry) attractors or four asymmetric attractors

(multi-stability of non-conjugate attractors has not been observed in the complex

regime). Bifurcations in which a pair of asymmetric chaotic attractors merge in a

single symmetric chaotic attractor are called symmetry increasing bifurcations, and

a bifurcation in which a symmetric periodic orbit becomes unstable and two stable

asymmetric periodic orbits are created is called a symmetry breaking bifurcation [28].

Note that, if P = (dj, u, v, s), a symmetric periodic orbit X(T ) with minimal period

Tp satisfies RyP (T + Tp/2) = P (T ).

The periodic orbit bifurcating out of S1 is symmetric, and undergoes a symmetry

breaking bifurcation at −a3r = 0.6374. When −a3r is increased above this value, the

first period doubling cascade starts at −a3r ≈ 0.64308 and accumulates at −a3r ≈
0.64418. The resulting asymmetric chaotic orbit for −a3r = 0.6442 is displayed in

Figure 3.4.
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Figure 3.4: Asymmetric chaotic attractor of the unperturbed normal form (3.6) for
−a3r = 0.6442. (a) Time series (Rj = |zj|), (b) Phase plane plots. The dots in D3(T )
mark local maxima, which have been used in [18] to define a Poincaré map.
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3.4 Intermitency

3.4.1 Introduction to Intermittency: Pomeau-Manneville In-

termittency

Time plots of the first order X-modes in Figure 3.3 illustrate intermittent behavior:

phases of periodic or nearly periodic dynamics are randomly interrupted by sudden

bursts. The word intermittency was used in fluid dynamics to describe signals from

probes alternating between flat portions and burst ones, which are defined as laminar

phases and turbulent phases. Pomeau and Manneville are pioneers for modeling and

analysis of intermittent behavior. In [37, 45] they studied intermittency in the Lorenz

system

ẋ = σ(y − z),

ẏ = −xz + rx− y,

ż = xy − bz,

by taking σ = 10, b = 8/3, and varying r from 166 to 167. Figure 3.5 shows a

transition from a limit cycle to a strange attractor at r = 166.07 for the time series

of z. Turbulent bursts randomly interrupt the stable limit cycle for r < 166.07. The

durations of the laminar phases are shorter and shorter as r is increased. Pomeau and

Manneville applied several Poincaré maps to investigate this so-called intermittency

phenomenon. By choosing the plane x = 0 as the surface of section, the transfor-

mation (yn+1, zn+1) = f(yn, zn) is obtained by connecting a given intersection of the

trajectory with the Poincaré section with the next one in the course of the motion.

Moreover, a simpler picture in terms of the transformation yn+1 = f(yn) can be de-

rived from the transformation (yn+1, zn+1) = f(yn, zn) by choosing another Poincaré

section in which zn is constant. The resulting roughly smooth single valued function
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of yn, which is provided in Figure 3.6, is nearly tangent to yn+1 = yn. We transform

solutions from differential equations to data from iterative maps, then we can apply

the knowledge from dynamics of maps to investigate the above transition.

Figure 3.5: Time series of z in the Lorenz model, from [37].

Figure 3.6: A part of the Poincaré map along the y-coordinate for r = 166.2 slightly
beyond the intermittency threshold (rT ≈ 166.06), from [45].
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The idealized picture of yn+1(yn) explaining the transition via intermittency is

presented in Figure 3.7 [45]. For r slightly below rT , which is the critical value

for the tangent bifurcation, this curve has two intersections with the identity map

yn+1 = yn, corresponding to stable and unstable limit cycles in the continuous system

from which the map is derived. They collapse into a single point at r = rT via saddle-

node bifurcation, which is also called tangent bifurcation. For r > rT , the curve is

lifted up and no longer crosses the identity map so that a channel appears between

them. The trajectory drifts slowly upwards through the channel. The time taken to

pass through it depends on the channel width. So that the narrower the channel is,

the longer the laminar time lasts. A generic form

yn+1 = yn + y2
n + ε + h.o.t

can be used to estimate the time, where ε = (r − rT )/rT . It is estimated that the

number of iterations needed to cross the channel is of the order
√

ε by approximating

the difference equation by a differential equation. Therefore, the average time between

bursts is proportional to ε−1/2. Moreover, the probability that a laminar phase has

exactly length n has a power law with exponent −1/2, and the Lyapunov number

varies as
√

ε.

The above intermittency is called Type I Pomeau-Manneville intermittency, where

a real Floquet multiplier crosses the unit circle at +1, i.e. tangent bifurcation. The

reinjection mechanism is another ingredient, reintroducing the trajectory to the vicin-

ity of the channel once it has escaped. Otherwise the iterates diverge from the channel

and never revisit the neighborhood of interest. Authors in [45] also investigated Type

II intermittency, occurring when a Floquet multiplier passes through the unit circle

as a complex conjugate pair, which is called a Hopf bifurcation, and Type III inter-

mittency, taking place when a real Floquet multiplier crosses the unit circle at −1,
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Figure 3.7: Idealized picture of yn+1(yn) explaining the transition via intermittency,
from [45].

i.e., inverse period doubling bifurcation. Extensions of Type I intermittency include

Type X intermittency [46] and Type V intermittency [7]. For Type X intermittency,

the reinjection point is close to the unstable point resulting from a saddle node bi-

furcation. Therefore, the laminar time is not controlled by the channel width, like

Type I intermittency, but by the proximity of the reinjection point to the unstable

fixed point, and by the gradient of the return map in that region. The name of this

intermittency type is from the X-shaped iterative map. Type V intermittency is gen-

erated by destroying the stability of the fixed point from a saddle node bifurcation

by colliding with a point of discontinuity. Statistical features, such as dependence

of the average laminar length on the control parameter, and scaling power-law, are

provided in [46, 7].
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3.4.2 Intermittency from the Invariant Manifold: In-Out In-

termittency

Previous pioneering work in intermittency has been done for fixed values of the local

bifurcation parameter. However, in Figure 3.3 the noncentral modes in the Ginzburg

Landau system (2.11) display intermittency relative to an invariant manifold (the

normal form). Here we discuss intermittency involving an invariant manifold in detail.

Suppose there is an invariant manifold and a corresponding attractor when the

dynamics is restricted to it. The transverse stability of such an attractor can be

determined by the largest normal Lyapunov exponent for the natural measure on this

attractor [4]. If the largest normal Lyapunov exponent is negative, the attractor is

transversely stable. If the largest normal Lyapunov exponent is positive, the attractor

in the invariant manifold is a chaotic saddle in the full space, and intermittency

appears.

There are two types of intermittency involving invariant manifolds: on-off inter-

mittency [30, 44, 56] and in-out intermittency [5, 12]. The author in [3] distinguished

them in Figure 3.8 as following: let A be the attractor in the full space, MI be the

invariant subspace, and A0 = A ∩ MI . And let A∗
0 be the attractor in MI for the

dynamics restricted to the invariant subspace MI . If A∗
0 = A0, we say the attractor

A displays on-off intermittency. If A∗
0 ⊂ A0 then we say that A displays in-out inter-

mittency. It is proved in [5] that in-out intermittency cannot occur in a skew product

system. As pointed out in [3], the skew product means dynamics within the invariant

manifold is independent of dynamics in the transverse direction, which has nothing

to do with skew symmetric matrices.

A schematic representation of the mechanism generating in-out intermittency is

depicted in Figure 3.9 from [12]. The attractors in the invariant subspace are not

necessarily chaotic. They are often periodic or equilibria. The trajectory remains

close to one of these attractors during the out phases, with the important consequence
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Figure 3.8: Schematic difference between on-off intermittency and in-out intermit-
tency, from [3]. There is only one invariant set attracting and repelling transversely
for on-off intermittency. For in-out intermittency there is more than one invariant
set in the invariant manifold with attraction and repulsion relative to the invariant
manifold.

that during these out phases the trajectory can shadow a periodic orbit, while drifting

away from the invariant subspace at an exponential rate. For parameters chosen in

(3.4) for Ginzburg Landau equations, Figure 3.2 and Figure 3.4 demonstrate that

within the invariant manifold (the normal form), there are two symmetry-related

chaotic sets, which are transversely unstable, and one invariant set, origin, which

is transversely stable. Therefore intermittency in Ginzburg Landau equations is of

in-out type.

In order to reduce the number of variables in the expansion of the spatiotemporal

chaotic pattern (3.1) and characterize the switching dynamics inside the invariant

manifold and the bursting dynamics outside the invariant manifold, we just focus

on the central modes and the modes in X-direction, since all noncentral modes in

Y -direction vanish. Motivated by Figure 3.2 and normal form symmetry-adapted

variables (3.13), we introduce the following symmetry-adapted variables for the modes

in the expansion (3.1),

d0 = |a(1)
(0,0)|2 − |a(2)

(0,0)|2 − |a(3)
(0,0)|2 + |a(4)

(0,0)|2,
d1 = |a(1)

(1,0)|2 − |a(2)
(1,0)|2 − |a(3)

(1,0)|2 + |a(4)
(1,0)|2,

(3.16)
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Figure 3.9: A schematic representation of in-out intermittency, from [12].

where d1 is representative for all noncentral modes regarding the x-reflection symme-

try, because all noncentral modes in X-direction behave qualitatively similarly and

decay very quickly with increasing order, and d0 characterizes dynamics of the nor-

mal form variables regarding the x-reflection symmetry. Notice that d1 describes the

bursting dynamics in the transverse direction of the invariant manifold, and d1 = 0

is the invariant manifold where the switching dynamics of the central modes oc-

curs. Based on (3.16), we see that switches occur between the negative and positive

symmetry-related components of d0, and O(2)×O(2)-symmetry in (2.11) is reduced

to Z(2) symmetry:

(d0, d1) → (−d0,−d1). (3.17)

Our goal here is to provide a low dimensional map to characterize the bursting-

switching dynamics in the Ginzburg Landau system. We need to simplify the dynam-
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ics concerning d0 and d1 from the continuous differential equations to discrete data

by the following Poincaré map:

ḋ0 = 0, d̈0d0 < 0, (3.18)

which corresponds to local maximum values of d0, if d0 > 0 and local minimum values

of d0, if d0 < 0. Time series and the phase portrait from the Poincaré map (3.18)

are provided in Figure 3.10. Time series of the Poincaré map (Figure 3.10(a)) indi-

cates that when the dynamics is restricted to the invariant manifold, there exist two

symmetry-related chaotic sets and an unstable equilibrium 0. These two chaotic in-

variant sets are unstable in the transverse direction. Therefore the transverse variable

d1 can get active and escape from the invariant manifold. On the other hand, even

though d0 = 0 is unstable within the invariant manifold, it is attractive in the trans-

verse direction. Therefore, d1 is attracted back to the invariant manifold at d0 = 0,

and then the trajectory moves to the chaotic sets. These two chaotic sets and d0 = 0

form a heteroclinic orbit in the full space. The symmetry (3.17) forces the trajectory

starting on the positive chaotic set to move to positive d1, and the one starting on

the negative chaotic set to move to negative d1. This is in-out intermittency, since

the intersection of the attractor of the full system and invariant manifold, A0, is not

a minimal attractor, i.e., d0 = 0 is not an attractor on A0. Figure 3.10(b) shows that

the normal form d1 = 0 is an invariant manifold.

The bursting-switching dynamics in the Poincaré map (3.18) from the Ginzburg

Landau system can be modeled by the following two-dimensional map:

X → [r exp(−aY 2) + s(1− exp(−aY 2))]X −X3,

Y → arctan(θX)
π/2

[(µ− γ exp(−bX2))|Y | − Y 2],
(3.19)
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where

a = 100, b = 10, r = 3
√

3/2− 0.1, s = −0.5,

θ = 100, µ = 1.5, γ = 1.
(3.20)

The map (3.19) uses X to produce the dynamics of d0, Y to mimic d1, and Y = 0

forms an invariant manifold, on which X follows a cubic logistic (unimodal) map,

X → rX −X3.

This construction is motivated by Figure 3.11 when the dynamics is restricted to

the invariant manifold: when r is given as the value in (3.20), two symmetry-related

chaotic sets, i.e. X → −X, appear based on corresponding initial conditions, while

X = 0 is an unstable equilibrium point of the cubic map. We denote the positive

chaotic set by C+ and the negative one by C−. When the transverse variable Y gets

active, the growth of Y induce switchings of X-variable between the positive and

negative chaotic sets, once

[r exp(−aY 2) + s(1− exp(−aY 2))] < X2.

For the transverse variable Y , we construct it to be transversely unstable on both

chaotic sets C±, and transversely stable at the equilibrium point X = 0. The choice

of (µ−γ exp(−bX2)) in (3.19) realizes the above consideration by taking appropriate

b-value, such that on C± the linear part is µ, which is bigger than 1, while on X = 0

the linear coefficient is µ − γ, which is smaller than 1. The nonlinear term −Y 2

serves as a reinjection mechanism. The absolute value of Y component and arctan(θX)
π/2

are constructed from symmetry considerations. Notice that arctan(θX)
π/2

≈ 1 on C+ and

≈ −1 on C−. Time series and phase portrait for (3.19) with parameters given in

(3.20) are presented in Figure 3.12(a) and (b).
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The low dimensional map (3.19) captures the dynamics within the invariant man-

ifold Y = 0 as a unimodal chaotic map, leading to two chaotic sets unstable in the

transverse direction. The resulting bursts from the invariant manifold “break” these

two chaotic sets, and induce switches. In order to investigate how the noncentral

modes affect the dynamics of the central modes and induce switches between a pair

of symmetry-conjugated chaotic saddles in the invariant manifold formed by the four

central modes for the Ginzburg Landau system (2.11), we study a low dimensional

model, which is an extension of the normal form with one translation symmetry

breaking terms included, in the following Chapter.
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Figure 3.10: Data of Poincaré map (3.18) regarding symmetry-adapted variables
(3.16). (a): Time plots of Poincaré map of d0 and d1, the exponential rate of “out”
and “in” phases indicate this is in-out scenario. (b): Phase plane plots of Poincare
map of d0 and d1.
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negative (b) d0, respectively, while dynamics is restricted in the invariant manifold
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Chapter 4

Perturbed Normal Form

4.1 Introduction

In Chapter 3 we identify an invariant manifold in the STC and reveal that the STC is

due to in-out intermittency caused by transverse instability of the invariant manifold.

The bursts of the transverse variables induce switchings between a pair of symmetry-

conjugated chaotic saddles in the invariant manifold (see Figure 3.2). In this chapter

we present a low dimensional model, a normal form for a Hopf bifurcation with a

broken translation invariance posed in the space of the central modes, to understand

the instability mechanism causing the switching dynamics found in the Ginzburg

Landau system.

The model, inferred from the form of the equations for the mode amplitudes a
(j)
m,n

(3.2), preserves the reflection symmetries and the Hopf normal form symmetry. Since

the Y -modes decay to zero, we include only the a
(j)
m,0 and for simplicity only the first

harmonics, m = 0,±1. We set zj = a
(j)
0,0 and ξj± = a

(j)
±1,0 and treat the ξj± as small

constants. If both ξj+ and ξj− are nonzero, the equation for z1 contains the terms

2a1ξ1+ξ1−z1 + a4(ξ1+ξ4− + ξ4+ξ1−)z4 that break the S1-symmetry, thus one of ξj+

or ξj− must be zero. Denoting by ξj the nonzero first harmonic, in order that the
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reflection symmetries are preserved the ξj must be identical for all j. Thus, setting

ξj = b, the perturbation terms in the z1-equation reduce to βz1+(a4+a5)|b|2z4, where

β = (2a1 + a2 + a3 + a4)|b|2. Since β can be absorbed into a0, our perturbed normal

form takes the form,

ż1 = a0z1 + θz4 + (a1|z1|2 + a2|z2|2 + a3|z3|2 + a4|z4|2)z1 + a5z2z3z4,

ż2 = a0z2 + θz3 + (a1|z2|2 + a2|z1|2 + a3|z4|2 + a4|z3|2)z2 + a5z1z4z3,

ż3 = a0z3 + θz2 + (a1|z3|2 + a2|z4|2 + a3|z1|2 + a4|z2|2)z3 + a5z4z1z2,

ż4 = a0z4 + θz1 + (a1|z4|2 + a2|z3|2 + a3|z2|2 + a4|z1|2)z4 + a5z3z2z1,

(4.1)

where θ = (a4 + a5)|b|2. The results of simulations of (4.1) for b = 0.2 are shown

in Figure 4.1. We observe here similar switching dynamics as in our simulations

of the Ginzburg Landau system (Figure 3.2), confirming that (4.1) provides a low-

dimensional model for this kind of dynamics. We analyze this similarity in what

follows.

For arbitrary complex θ, the perturbation terms in (4.1) are generic linear terms

that break the y-translation invariance Ty. Thus the perturbed normal form can also

be considered as an imperfect version of the normal form for a Hopf bifurcation with

one broken translation (or circular) symmetry. Investigating the effect of breaking

a translation symmetry in (3.6) is another motivation for studying (4.1), which is

related to a similar study pursued in [20], where the effect of breaking a translation

symmetry on the Hopf bifurcation with O(2)-symmetry has been investigated. The

study of [20] was motivated by setting up a low-dimensional model describing the

effect of distant sidewalls, which obviously breaks the translation invariance, on an

oscillatory instability in a 1D extended spatial system. One of the results of this

study was the identification of a solution that remarkably well resembles the so called

blinking state observed in convection experiments in binary fluids.

In our case the symmetry breaking terms can be considered as the effect of distant
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Figure 4.1: (a) Time series computed from the perturbed normal form (4.1) for aj

as used in (3.6) and (2.11) for Figures 3.4 and 3.2, with b = 0.2. (b) Phase plane
portraits corresponding to (a) for the time ranges 20, 000 ≤ T ≤ 22, 000 (upper
panels) and 10, 000 ≤ T ≤ 12, 000 (lower panels).
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sidewalls in the y-direction on an oscillatory instability in a 2D extended anisotropic

system [40]. Breaking only one translation invariance means the system has a large

aspect ratio. Another setting that leads to (4.1) is a system posed in a large but

finite cylinder [31]. Here the O(2)-symmetry in the x-direction is a true geometrical

symmetry, whereas the broken O(2)-symmetry in the y-direction results from finite

size effects captured by including symmetry breaking terms as in [20].

4.2 Symmetry Adapted Real Variables

The system (4.1) is difficult to analyze due to its high dimensionality. Polar coor-

dinates, zj = rj exp(iϕj), 1 ≤ j ≤ 4, can be applied to reduce the original eight

dimensional system to the following one,

ṙ1 = (a0r + a1rr
2
1 + a2rr

2
2 + a3rr

2
3 + a4rr

2
4)r1 + r2r3r4(a5r cos(ϕ) + a5i sin(ϕ))

+r4(θr cos(ϕ1 − ϕ4) + θi sin(ϕ1 − ϕ4)),

ϕ̇1 = a0i + a1ir
2
1 + a2ir

2
2 + a3ir

2
3 + a4ir

2
4 + r2r3r4

r1
(a5i cos(ϕ) + a5r sin(ϕ))

+ r4

r1
(θi cos(ϕ4 − ϕ1) + θr sin(ϕ4 − ϕ1)),

(4.2)

where ϕ = −ϕ1 + ϕ2 − ϕ3 + ϕ4. Equations for rj and ϕj, where 2 ≤ j ≤ 4, can

be derived from symmetry considerations. Notice that just two phase variables, ζ =

ϕ1 − ϕ4, η = ϕ3 − ϕ2, are needed in the system (4.2). To avoid singularity and

reduce the dimension further, the symmetry-adapted variables d1, d2, d3 from (3.13)

are used. Instead of u and v in (3.13), we use two pairs of phase-related variables uk,

vk, k = 1, 2, defined by

u1 = r1r4 cos(ζ)− r2r3 cos(η), v1 = r1r4 sin(ζ)− r2r3 sin(η),

u2 = r1r4 cos(ζ) + r2r3 cos(η), v2 = r1r4 sin(ζ) + r2r3 sin(η),
(4.3)
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The system of equations (4.1) becomes,

ḋ1 = 2a0rd1 + b01sd1 + b23d2d3 − 4a5i(u1v1 − u2v2) + 4θiv2,

ḋ2 = 2a0rd2 + b02sd2 + b13d1d3 + 4θiv1,

ḋ3 = 2a0rd3 + b03sd3 + b12d1d2 + 4θru1,

ṡ = 2a0rs + (b0s
2 + b1d

2
1 + b2d

2
2 + b3d

2
3)/2 + 2a5r(v

2
1 + u2

2 − u2
1 − v2

2) + 4θru2,

u̇1 = 2a0ru1 + α1su1 − β1d1v1 + δ2d3u2 − γ2d2v2 + θrd3,

v̇1 = 2a0rv1 + α2sv1 + β2d1u1 + δ1d3v2 + γ1d2u2 − θid2,

u̇2 = 2a0ru2 + α2su2 − β2d1v2 + δ1d3u1 − γ1d2v1 + θrs,

v̇2 = 2a0rv2 + α1sv2 + β1d1u2 + δ2d3v1 + γ2d2u1 − θid1,

(4.4)

where

c0 = a1 + a2 + a3 + a4, c1 = a1 − a2 + a3 − a4,

c2 = a1 + a2 − a3 − a4, c3 = a1 − a2 − a3 + a4,

ckl = (ck + cl)/2, 0 ≤ k, l ≤ 3

(4.5)

bk and bkl are real parts of ck and ck,l, i.e., bk = ckr and bkl = cklr, and

αk = (c0r + (−1)ka5r)/2, βk = (c1i + (−1)ka5i)/2,

δk = (c3r + (−1)ka5r)/2, γk = (c2i + (−1)ka5i)/2,

for k = 1, 2. The variables u1, u2, v1, and v2 are not independent, but satisfy two

relations

(u1 + u2)
2 + (v1 + v2)

2 = 4r2
1r

2
4 = (s + d1 + d2 + d3)(s− d1 − d2 + d3)/4,

(u1 − u2)
2 + (v1 − v2)

2 = 4r2
2r

2
3 = (s + d1 − d2 − d3)(s− d1 + d2 − d3)/4.

Therefore we reduce the eight dimensional system (4.1) to the six dimensional one

(4.4).

Symmetry-adapted variables in (4.3) are invariant under Tx and S1 in (3.7).
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Symmetry-breaking terms split the phase variable, ϕ = −ϕ1 + ϕ2 − ϕ3 + ϕ4, into

two parts, ζ = ϕ1 − ϕ4 and η = ϕ3 − ϕ2, and symmetry-adapted variables associated

with phases ζ and η, u1, u2, v1, and v2, are not invariant under Ty anymore, com-

pared with the action of Ty in the normal form, because y-translation symmetry is

not present in (4.4) anymore. Reflection actions, Rx, Ry, and Rxy, in (3.7), keep s

and u2 invariant, while other variables are transformed as

Rx(d1, d2, d3, u1, v1, v2) = (−d1, d2,−d3,−u1, v1,−v2),

Ry(d1, d2, d3, u1, v1, v2) = (−d1,−d2, d3, u1,−v1,−v2),

Rxy(d1, d2, d3, u1, v1, v2) = (d1,−d2,−d3,−u1,−v1, v2).

(4.6)

We close this section by a theoretical question about invariants. If we want to

include higher order terms in (4.1), and hence more terms in (4.4), an algorithm to

seek all equivariant maps must be developed. Let Γ be a symmetry group. The prob-

lem of determination of all Γ-equivariant maps can be reduced to the determination

of the polynomial Γ-equivariant maps, which is a purely algebraic problem [28, 29].

The early work about this area can be traced back from David Hilbert.

Definition 4.7 (Γ-Invariant). A polynomial h : Rn → R is Γ-invariant if h(γx) =

h(x) for all x ∈ Rn, and γ ∈ Γ.

We denote P(Γ) to be the space of all Γ-invariant polynomial.

Definition 4.8 (Hilbert Basis). The Γ-invariant polynomials u1(x), . . . , uk(x) form a

Hilbert basis for P(Γ), if for every h ∈ P(Γ), there exists a polynomial p : Rk → R,

such that

h(x) = p(u1(x), . . . , uk(x)).

The following theorem shows the finiteness of a Hilbert basis.

Theorem 4.9 (Hilbert-Weyl Theorem). Let Γ be a compact Lie group acting on a

vector space. Then there exists a finite Hilbert basis for the Γ-invariant functions.
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Notice that Hilbert bases are not unique. A Hilbert basis of polynomial invariant

functions can be used to characterize any smooth invariant function:

Theorem 4.10 (Schwartz’s Theorem). Let u1(x), . . . , uk(x) be a Hilbert basis for

P(Γ). Then for each Γ-invariant C∞ function f : Rn → R there exists a C∞ map

p : Rk → R, such that

f(x) = p(u1(x), . . . , uk(x)).

Theorem 4.11 (Poénaru’s Theorem). Let u1(x), . . . , uk(x) be a Hilbert basis and

u(x) = (u1(x), . . . , uk(x)). There exist Γ-equivariant polynomial mappings X1, . . . , Xl :

Rn → R such that for each C∞ Γ-equivariant map f : Rn → Rn, there exist C∞

maps p1, . . . , pl : Rk → R such that

f(x) = p1(u(x))X1(x) + · · ·+ pl(u(x))Xl(x)).

The simplicity of above theoretical discussion is misleading. In real applications

the explicit computations can be too difficult to implement. In our problem the

Hilbert basis for Tx, S1, Rx, and Ry is generated by the following nine invariants

s, u2, Ij = d2
j (1 ≤ j ≤ 3), J = d1d2d3, K1 = d1v2, K2 = d2v1, K3 = d3u1,

which are not independent but satisfy three relations

JK3u2 + K1K2I3 = J(sI3 − J)/4,

K2
1/I1 + K2

2/I2 + K2
3/I3 + u2

2 = (s2 − I1 − I2 + I3)/4,

J2 = I1I2I3.

Therefore theoretically we can have six invariants to generate the set of invariants, or

to form a Hilbert basis.
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Table 4.1: Invariant subspaces with corresponding isotropy subgroups for the normal
form (3.6). Here [(α, β), γ] ∈ Tx × Ty × S1 and Σ: isotropy subgroups.

Name Subspace Generators of Σ
2D invariant subspaces

TW (z, 0, 0, 0) [( θ
pc

,− θ
qc

), 0], [( φ
pc

, φ
qc

),− 2φ
ω0

]

TxR (z, 0, 0, z) [( φ
pc

, 0),− φ
ω0

], Ry

TyR (z, z, 0, 0) [(0, φ
qc

),− φ
ω0

], Rx

SW (z, 0, z, 0) [( π
2pc

, π
2qc

),− π
ω0

], [( θ
pc

,− θ
qc

), 0], RxRy

SR (z, z, z, z) Rx, Ry

AW (z, iz, z, iz) [Rx(
π

2pc
,− π

2qc
), π

2ω0
], [Ry(

π
2pc

,− π
2qc

), π
2ω0

]

4D invariant subspaces
S1 (z1, z2, z1, z2) RxRy

S13 (z1, z2, 0, 0) [(0, φ
qc

),− φ
ω0

]

S12 (z1, 0, 0, z2) [( φ
pc

, 0),− φ
ω0

]

S23 (z1, 0, z2, 0) [( π
2pc

, π
2qc

),− π
ω0

], [( θ
pc

,− θ
qc

), 0]

S2+ (z1, z1, z2, z2) Rx

S2− (z1, iz1, z2, iz2) [Rx(
π

2pc
,− π

2qc
), π

2ω0
]

S3+ (z1, z2, z1, z2) Ry

S3− (z1, iz2, z2, iz1) [Ry(
π

2pc
,− π

2qc
), π

2ω0
]

4.3 2D and 4D Invariant Subspaces

In this section we analyze basic wave solutions, 2D subspaces of (4.1), and their

creation in primary and secondary bifurcations for general θ and aj from 4D invariant

subspaces, and relate them to to basic solutions of (3.6) in the limit θ → 0.

If we translate a general pattern in y-direction, the resulting pattern, Ty(z1, z2, z3, z4)
T ,

is governed by different translated amount of y-values up to π/qc in (4.1). This fact

results from the y-translation symmetry breaking effect. If such a symmetry is pre-

served, as in the normal form (3.6), Ty-conjugate patterns follow the same dynamics.

Table 4.1 provides isotropy subgroups of all subspace for the normal form [49, 57,

23], which can be used to search thoroughly which subspaces are invariant for (4.1).

Notice that only the 2D subspaces TxR, SR, and the 4D subspaces S3+, S12, S2+,

S1 of Table 4.1 do not contain the element Ty in their isotropy subgroups, Therefore,
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only these subspaces (S3+, S12, S2+, S1, TxR, SR) are invariant in (4.1).

We study the dynamics in S3+ first. In the normal form (3.6) there is a family

of solutions in S3+, (eiβz1, e
iβz2, e

−iβz2, e
−iβz1), with arbitrary phase variable β. Due

to the symmetry breaking, the freedom of choosing β is no longer there, and only

β = kπ/2 are allowed, where k is any integer. Therefore, the phase pinning occurs

in S3+, resulting in two S3+ copies, the “plus”-copy S+
3+ = (z1, z2, z2, z1) and the

“minus”-copy S−3+ = (z1, z2,−z2,−z1). The dynamics of (4.1) restricted on these two

copies of subspace S3+ is described by the normal form for a Hopf bifurcation with

O(2)-symmetry,

ż1 = (a0 ± θ + A|z1|2 + B|z2|2)z1,

ż2 = (a0 ± θ + A|z2|2 + B|z1|2)z2,
(4.12)

with A, B given in Table 3.1(b), the plus or minus signs are determined by the ±
sign of S±3+. The remaining unbroken symmetries act in this subspace as

Tx : (z1, z2) → (eipcx0z1, e
−ipcx0z2),

Rx : (z1, z2) → (z2, z1),

Tt : (z1, z2) → eiωct0(z1, z2),

(4.13)

and Ry acts trivially. This system has three types of solutions: the trivial solution,

z1 = z2 = 0, with eigenvalues a0r ± θr and a0r ± θr; the traveling wave solution,

(z1, z2) = (z, 0) or (0, z), with eigenvalues −2(a0r ± θr) and (a0r ± θr)(Ar − Br)/Ar;

and the standing wave solution z1 = z2 6= 0 with eigenvalues −2(a0r± θr) and 2(a0r±
θr)(Br − Ar)/(Ar + Br). The system (4.12) is well studied. All other solutions are

transient. The derivation of basic wave solutions, bifurcation diagrams, and stability

properties can be found in [29].
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Restricting (4.1) to the subspaces S12 and S2+ results in

ż1 = (a0 + A|z1|2 + B|z2|2)z1 + θz2,

ż2 = (a0 + A|z2|2 + B|z1|2)z2 + θz1.
(4.14)

On the subspace S12, Rx maps S12 to its conjugate copy (0, z1, z2, 0), so reflection

over x does not hold within the invariant subspace S12. The other inherited unbroken

group actions are

Tx : (z1, z2) → (eipcx0z1, e
ipcx0z2),

Ry : (z1, z2) → (z2, z1),

Tt : (z1, z2) → eiωct0(z1, z2),

(4.15)

Notice that Tx and Tt act in the same way, which implies that translation of patterns

in S12 along x-direction by x0 is equivalent to the overall phase shift by pcx0. On the

subspace S2+ = (z1, z1, z2, z2), Tx does not hold within S2+, since it maps S2+ to a

continuous family of conjugate copies. Rx acts trivially, while

Ry : (z1, z2) → (z2, z1),

Tt : (z1, z2) → eiωct0(z1, z2).
(4.16)

System (4.14) is the four dimensional normal form for a Hopf bifurcation with broken

translation symmetry due to θ-terms. Similar setups are analyzed in [20, 35, 31].

Dangelmayr and Knobloch in [20] have pointed out that the translation symmetry

breaking terms split the eigenvalues, which are of multiplicity two in the perfect sym-

metric case (4.12), into two pairs, selecting two standing waves with phase difference

by π, i.e. (z, z) and (z,−z). We denote by θ = ε exp(iα), B − A = p exp(iγ),

r2 = x2
1 + x2

2, and β = α − γ. One standing wave, (z, z), bifurcates from the trivial

solution if a0r ≥ −ε cos α, then is followed by a perturbed version TW at a secondary

bifurcation when pr2 cos β + 2ε = 0; the other standing wave, (z,−z), is generated

from the primary bifurcation at a0r = ε cos α and followed by the perturbed TW
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resulting from a secondary bifurcation when pr2 cos β − 2ε = 0. This scenario is

confirmed by our numerical simulations, described in the next section.

In the subspace S1 the system (4.1) is reduced to

ż1 = (a0 + A|z1|2 + B|z2|2)z1 + a5z1z
2
2 + θz2,

ż2 = (a0 + A|z2|2 + B|z1|2)z2 + a5z2z
2
1 + θz1.

(4.17)

The group actions Tx result in a continuous family of conjugate copies of S1, and the

other actions are

Rx : (z1, z2) → (z2, z1),

Ry : (z1, z2) → (z2, z1),

Tt : (z1, z2) → eiωct0(z1, z2).

(4.18)

Notice that Rx and Ry act in the same way on S1, i.e., the reflection about x is

equivalent to reflection about y. The system is equivariant under (4.18); θ = 0 in

(4.17) corresponds to the normal form of a Hopf bifurcation with D4-symmetry [51].

The nonzero θ breaks the Z4-symmetry, a subgroup of D4, down to Z2.

To study bifurcations on S1, we use symmetry-adapted variables (4.3). Restricting

the dynamical system (4.4) on S1 leads to d2 = d3 = u1 = v1 = 0, and the dynamics

of the nonzero symmetry-adapted variables follows

ḋ1 = 2a0rd1 + b01sd1 + 4a5iu2v2 + 4θiv2,

ṡ = 2a0rs + (b0s
2 + b1d

2
1)/2 + 2a5r(u

2
2 − v2

2) + 4θru2,

u̇2 = 2a0ru2 + α2su2 − β2d1v2 + θrs,

v̇2 = 2a0rv2 + α1sv2 + β1d1u2 − θi(d1 + d3)

(4.19)

Two copies of SR, SR± = (z,±z), can be written as fixed points on (4.19) as s =

±u2 = −2(±θr + a0r)/α2, and d1 = v2 = 0. The primary bifurcations of SR are
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determined by the eigenvalues of the matrix




2a0r + b01s 4a5iu2 + 4θi

β1u2 − θi 2a0r + α1s


 ,

and 4(−b0θr + a0ra5r)/(b0 + a5r) for SR+, or 4(b0θr + a0ra5r)/(b0 + a5r) for SR−.

The secondary bifurcation is hard to analyze compared to (4.14) due to no closed

analytic form for TW . Notice that, in the normal form with Ty symmetry, there are

two conjugate copies of AW : AW+ = (iz, z) and AW− = (z, iz), and two conjugate

copies of SW : SW+ = (z, 0) and SW− = (0, z). Moreover, d1 = u2 = 0, s =

±v2 = −2a0r/α1 for AW±, and u2 = v2 = 0, s = ±d1 = −2a0r/b01 for SW±. When

symmetry-breaking effect slowly increases from zero, we get perturbed versions of

AW± and SW±, which are continuous variations of the perfect symmetry copies.

After some critical values, the perturbed basic patterns jump abruptly to SRs, which

are characterized by d1 = v2 = 0. These scenarios are shown in Figure 4.2, where

the parameters are chosen in (3.11) with a3r = −0.6442, which correspond to the

Feigenbaum accumulation point (see [18]).

Notice that Rx, Ry, and Rxy in (4.6) determine three fixed point spaces, Fix(Rx),

Fix(Ry), and Fix(Rxy), and S2+ ⊂ Fix(Rx), S3+ ⊂ Fix(Ry), and S1 ⊂ Fix(Rxy). We

can consider these fixed point subspaces for symmetry adapted variables to be the

generalized versions of 4D invariant subspaces.

For 2D invariant subspaces, there exist two copies of TxR and SR up to conjugacy

due to two copies of S3+, which are TxR
± = (z, 0, 0,±z) and SR± = (z, z,±z,±z).

Compared to (3.9) the differential equation for the complex variable z is

ż = (a0 ± θ + c|z|2)z, (4.20)

where the ± is determined by whether it is a ”+” or ”−” copy of TxR
± or SR±.
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Figure 4.2: (a) Existence of AW for small symmetry-breaking effects. (b) Existence
of SW for small symmetry-breaking effects. Solid lines stand for AW+ = (iz, z) in (a)
and SW+ = (z, 0) in (b) and dotted lines for AW− = (z, iz) in (a) and SW− = (0, z)
in (b). Symmetry-breaking effect parameter θ = (a4 + a5)|b|2. Here symmetric AW±

is characterized by d1 = u2 = 0 and SW± by u2 = v2 = 0.
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To sum it up, TxR and SR can be created from primary Hopf bifurcations in

(4.1). Other basic patterns in Table 3.1(a) can come out as perturbed versions from

secondary bifurcations for small symmetry breaking effects, i.e. small θ-values.

4.4 Complex Dynamics of the Perturbed Normal

Form

4.4.1 Overview

In this numerical study we vary the symmetry breaking parameter b and fix the

normal form parameters chosen in (3.11), The value a3r = −0.6442 corresponds to

the Feigenbaum accumulation point (see [18]). The similar behaviors are found for a

range of −a3r close to 0.6442. b changes in the range

0 ≤ b ≤ 0.8.

The following two main regions are distinguished based on their important dynamic

characteristics:

Region I : 0 ≤ b ≤ 0.306,

Region II : 0.306 < b ≤ 0.8.

The features of both regions are given in Figure 4.3. The Region I is characterized by

alternations between chaos and periodic windows. It starts with period doubling up to

b = 0.004, then undergoes symmetry and decreasing, followed by bistability with two

qualitatively different periodic orbits. These two orbits evolve to chaos independently

and cause crisis-induced intermittency at b = 0.0642027. Just one of them survives

after intermittency. Between b = 0.0648 and b = 0.144 there exists a number of

chaos and periodic windows, without showing any dynamics we want to focus in

this paper. At b = 0.144, switching between symmetry-conjugated chaotic saddles,
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another crisis-induced intermittency, takes place, which is similar to the switching in

GCCGLEs (2.11) (Figure 3.2).

0.0176 0.053 0.0620270.004 0.0648 0.144

Region II

0

0.309 0.528 0.8

S.I.P.D. S.D. Bistability

I.O.I.        P.O 1 P.O. in S
12

Region I

         C.I. I.  a C.I.I. b

TR
x

0.306

0.306

C.P.W.

Figure 4.3: Characteristics of region I and II. P.D.: period doubling. S.I: symmetry
increasing. S.D: symmetry decreasing. C.I.I. a and b: crisis-induced intermittency a
and b. C.P.W.: chaos and periodic windows. I.O.I.: in-out intermittency. P.O. 1:
periodic orbit in the generalized subspace S1.

The region II is composed of a variety of transitions among different periodic

orbits. Periodic Orbit I appears after in-out intermittency, which lasts between b =

0.306 and b = 0.309. We notice that in-out intermittency disappears as transient

chaos. Periodic orbit I is characterized by r1 = r3, r2 = r4, and ζ = η, which is in the

invariant subspace Fix(Rxy), a generalized version of S1.

At b = 0.528 the fixed point subspace Fix(Rxy) loses the transverse stability, and

the periodic orbit I is replaced by the periodic orbit II in the 4D subspace S12, whose

dynamics is governed by (4.14). The system (4.14) is analyzed in detail in [20]. The

translation symmetry breaking terms split the eigenvalues of the Jacobian matrix with

eigenvalues of multiplicity two in the O(2)-symmetric case into two pairs. One pair

of eigenvalues corresponds to the traveling rectangle (z, 0, 0,−z), TRx, which occurs

here at b = 0.8. The other one corresponds to the traveling rectangle (z, 0, 0, z), which
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does not show up for the range of parameters in this study.

In the following subsections, we will focus on the switching intermittency, defined

as crisis-induced intermittency in [15, 13], and in-out intermittency, which are unique

in the perturbed normal form. Then we will describe other dynamic phenomena, such

as symmetry increasing and decreasing, bistability, which are qualitatively similar to

behaviors found in the normal form [18]. We modify projective coordinates in (3.12)

to

Dj = dj/s(1 ≤ j ≤ 3), Uk = uk/s, Vk = vk/s(1 ≤ k ≤ 2),

in order to make comparison with [18], and emphasize symmetric properties by nor-

malizing variables.

4.4.2 Crisis-induced Intermittency

Crisis is the event of sudden qualitative changes in chaotic attractors as a system

parameter passes through a critical value, which is first proposed in [14]. The mech-

anism of a crisis is a collision between a chaotic attractor and a coexisting unstable

manifold, usually an unstable periodic orbit or an unstable fixed point.

Authors in [14] use the following elementary quadratic map to illustrate the crisis

phenomenon

x 7−→ C − x2. (4.21)

The bifurcation diagram of the map (4.21) is provided in Figure 4.4. When C < −1/4,

all orbits with any initial conditions move to x = −∞, because no fixed point exists.

A saddle-node bifurcation happens at C = −1/4, from which a stable and an unstable

fixed point are generated. In Figure 4.4, the unstable fixed point is denoted by the

dashed curve, and the stable one is denoted by solid curve. We can compute the
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Figure 4.4: Bifurcation diagram for the map (4.21), from [14]. The dashed line is the
unstable fixed point.

dashed curve from

x = −x∗ = −1

2
−

√
1

4
+ C, for C ≥ −1

4
.

As C is increased past −1/4, the stable fixed point goes through the period doubling,

leading to chaos [27]. Figure 4.4 indicates that for 1/4 ≤ C ≤ 2, and for any initial

point in the range |x| < x∗, the orbit of the map (4.21) is bounded, and orbits

initialized in |x| > x∗ go to x = −∞. Therefore |x| < x∗ is the basin of attraction

for the bounded orbits. Notice that at C = 2, the chaotic band intersects with the

unstable point x = x∗, then the chaotic attractor is destroyed. This type of crisis

occurs on the boundary of the basin. Therefore we call it a boundary crisis, which

lead to a destruction of the attractor and its basin. Transient chaos can be obtained

for C slightly bigger than 2. If the initial condition is in the region which was chaotic

for C slightly less than 2, one can observe orbits initially attracted to the former

67



chaotic attractor like for C < 2. After chaotically moving around for a long time, the

orbits move to some other distant attractor. The length of the transient chaos is very

sensitive to the initial conditions. However, if we have many randomly chosen initial

conditions, the average lifetime of the transient chaos can be computed. The relation

between the average lifetime of transient chaos and a system parameter is well studied

in [16, 13], from which the concept of the critical exponent of the transient chaos is

proposed.

The collision between the chaotic attractor and the unstable orbit can occur within

the basin of attraction, which is called an interior crisis, leading to sudden widening

of a chaotic attractor. Figure 4.5 provides such an example, which is an enlargement

of bifurcation diagram of the map (4.21) between 1.72 and 1.82. The dashed lines

correspond to unstable period-three orbits created from the saddle-node bifurcation.

Notice that for a certain range of C less than a critical value, chaos occurs in three

different bands. But when C is slightly bigger than the critical value, the three chaotic

regions suddenly widen to form a single band. Then for an orbit initialized in one

of these three former chaotic bands, at the beginning it moves around in a chaotic

manner, cycling between the three regions, as if C is below the critical value. After

a relatively long time, the orbit suddenly moves out of the old region and goes to a

formerly empty region, which is available after the interior crisis. Then it returns to

the old region for a while followed by another return into a new region, and so on. This

type of random alternation between two dynamical behavior is called crisis-induced

intermittency [13].

Notice that such dynamics in the map (4.21) is very representative for a class of

nonlinear maps, as the well-known logistic map

x 7−→ rx(1− x).
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Figure 4.5: Zoom in the bifurcation diagram of the map (4.21) in the period-three
saddle-node bifurcation, from [14]. The dashed lines denote the unstable period-three
orbit generated from the tangent bifurcation.

The map (4.21) becomes the logistic map by the following linear transform

x 7−→ 1

r
x +

1

2
.

The relation between the parameter r in the logistic map and C in the quadratic map

(4.21) is

2r + 4C = 1.

There is another type of crisis, which leads to attractor mergings. Suppose there

exist two chaotic attractors with a common boundary, which is an unstable manifold,

separating their basins of attraction. If symmetries are imposed in the dynamical

system, like in the case of the perturbed normal form (4.1), these two chaotic at-

tractors could enlarge and touch the basin boundary simultaneously at the crisis, as

the system parameter increases and passes through the critical value. Then a single
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chaotic attractor is formed as a result of the attractor merging. Intermittent switch-

ing occurs. For the system parameter slightly greater than the critical value, an orbit

will spend a long stretch of time in the region of one of the former attractors. After

such a time stretch, the orbit abruptly exists this region, and then spends a long

stretch of time in the region of the other former attractor, and so on. The mean time

between switches, τ , is important in the study of this dynamics. It is proved in [13]

that τ can be written as a function of bifurcation parameter b as τ ∝ |b−bc|−γ, where

γ is the critical exponent.

Figure 4.1 provides us one example of such switching intermittency from the low

dimensional system (4.1), which is of great interest since it is qualitatively similar

to simulations of the high dimensional Ginzburg Landau system (Figure 3.2). Here

we choose projective symmetry-adapted variables (3.12) to distinguish two symmetry-

conjugate copies, one corresponding to the positive band of D3, the other correspond-

ing to the negative band of D3. Simulations demonstrate that switching behavior

starts after b = 0.144, pauses at b = 0.166, and resumes at b = 0.199. Because of

symmetries (4.6) in the perturbed normal form (4.1), below the critical parameter

bc there exist two symmetry-conjugated chaotic attractors, shown in the first two

panels of Figure (4.6). Just past bc these is one big chaotic attractor resulting from

the chaotic attractor merging. Then the frequency of switchings becomes faster and

faster as the system parameter b increases, until we cannot distinguish these two sym-

metrically conjugate copies, as shown in the case at b = 0.28 (Figure 4.7(a)). The

reason of this switching dynamics is that conjugate attractors collide with unstable

invariant sets on the boundaries of their basins simultaneously at the crisis due to the

symmetry. Then the unstable submanifold of one pre-crisis chaotic attractor connects

with the stable submanifold of the conjugate one to form a heteroclinic orbit. We

estimate the mean time between switches, τ , versus different parameter values, b, to

establish the power law τ ∝ |b− bc|−γ. Figure 4.7(b) indicates that γ can be approx-
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imated to be 3.9235 in this case. Other models exhibiting the similar switching, such

as the double-well potential system, can be found in [33, 13].

Figure 4.6: Phase plots of (4.1) for b = 0.198 < bc (the first two panels) and b =
0.2 > bc (the third panel).

4.4.3 In-Out Intermittency and Transient Chaos

In-out intermittency follows the switching intermittency in the previous subsection.

Detailed description regarding in-out intermittency is presented in Section 3.4, where

the invariant manifold (the normal form) is obtained by ignoring spatial variations in

Ginzburg Landau system (2.11). In this subsection we provide an example of in-out

intermittent behavior relative to an invariant subspace forced by symmetries, followed

by transient chaos and a periodic orbit.

The symmetry Rxy in (4.6) for the perturbed normal form (4.1) induces an in-

variant subspace Fix(Rxy), i.e. d2 = d3 = u1 = v1 = 0. It is easy to check that b

in the system (4.4) is a non-normal parameter, since its variation changes the dy-

namics inside the invariant subspace Fix(Rxy) as well as the one outside it. When

the value of b gets closer to b = 0.306, (which is the continuation of Figure 4.7(a)),

the chaotic behavior in d2, d3, u1, and v1 is interrupted by regular zero-value phases.

After transient chaos for b ≥ 0.309, Fix(Rxy) becomes stable in the transverse direc-

tion. Therefore a periodic orbit residing in this subspace becomes stable in the full

71



system (4.4). Time series of d3 at b = 0.308 are provided in Figure 4.8; d2, u1, and v1,

which are not included in Figure 4.8, demonstrate similar behaviors. Extreme values

of s, denoted by se in the last panel of Figure 4.8, imply periodic phases for dynamics

near the invariant subspace. We confirm it is not on-off intermittency [30, 44, 56],

because on-off cases require chaos within the invariant subspace, normal parameters,

and skew-product, which are absent in our model. The variances of d3 within each

10-time units are used in the third panel of 4.8 to distinguish in and out phases.

Authors in [5] use a Markov chain model to investigate in-out intermittency and

derive its statistics. Here we use the least square method to compute the scaling law

(Figure 4.9), Pτ ∼ αn−3/2e−βn + γe−δn, where τ is the mean time between bursts,

Pτ is the distribution of τ , n = 0.1τ , α = 0.3321, β = 0.0524, γ = 0.0156, and

δ = 0.0506. The exponent −3/2 is from the similarity between a Brownian motion

and a chaotic walk [30]. The heavy shoulder caused by γe−δn in Figure 4.9 is another

feature distinguishing in-out and on-off cases.

Transient chaos is observed during the process of disappearance of in-out inter-

mittency in Figure 4.8. Figure 4.10 shows how the length of transients varies with

the system parameter b with fixed initial conditions. If we want to establish a scaling

law about the relation between the average length and the parameter, a large number

of initial conditions should be chosen to compute the mean length of transients.

Transient chaos is a common dynamical behavior when there exists an unstable

chaos. One famous example of transient chaos is the Lorenz system in a certain range

of parameter r, while other parameters are fixed [50]. Authors in [34, 59] point out

that when a symmetric homoclinic orbit for the origin is formed at r ≈ 13.96, chaos

is born but not attracting. Since there are two other symmetry-related stable fixed

point on the positive and negative x-axis, for any orbit we can see transient chaos

initially, as dynamics within the Lorenz chaotic attractor, then it moves to one of

these two fixed points. At r ≈ 24.06, the transient chaos is converted into a chaotic
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attractor. Ott [43] attributed this to crisis. In Section 4.4.2 we mentioned that a

boundary crisis can destroy a chaotic attractor and lead to transient chaos. If we

change parameter in the other direction, we can convert the transient chaos into a

chaotic attractor.

Transient chaos occurring in the Figure 4.10 seems to be created from the in-

creasing stability in the transverse direction of the invariant subspace as the system

parameter varies, not from a crisis. Further theoretical work needs to be developed

to prove this claim.

4.4.4 Symmetry Increasing and Decreasing, Bistability

The phenomena of symmetry increasing, symmetry decreasing and bistability are not

novel in the perturbed normal form (4.1). The qualitatively similar dynamics also

shows up in the normal form (3.6) [18].

Authors in [10, 9] introduce the concept of symmetry-increasing bifurcation to

understand and analyze the dynamics of symmetries in chaotic systems. Suppose the

group Γ is the symmetry group for a dynamical system acting on the phase space.

Assume Aλ to be an attractor depending on the system parameter λ, and Σλ to be

the symmetry of the attractor Aλ, i.e.,

Σλ = {λ ∈ Σ : λAλ = Aλ}.

A symmetry-increasing bifurcation occurs at λ = λ0 if

1. Σλ = Σ1, for λ < λ0.

2. Σλ = Σ2, for λ > λ0.

3. Σ1 ⊂ Σ2.

If the parameter λ varies in the opposite direction, we call it a symmetry-decreasing
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bifurcation. A variety of examples are provided in [10]. One simple example is the

odd-logistic equation

x 7−→ f(x, λ) = λx− x3, (4.22)

with the symmetry Z2 = {1, ρ} acting by ρx = −x. When λ < 1, the only stable

fixed point is x = 0. The pitchfork bifurcation occurs at λ = 1, leading to two stable

symmetry conjugate fixed points and one unstable fixed point, x = 0. Figure 4.11

provides bifurcation diagram for the positive fixed point. These two symmetry conju-

gate fixed points undergo a period-doubling cascade, resulting in a pair of symmetry

conjugate chaotic attractors. At λc = 3
√

3/2 these two chaotic attractors merge into

a Z2-symmetric attractor. Notice that a symmetry-increasing bifurcation is often

called switching intermittency induced by crisis which is described in Section 4.4.2,

when the average time between switches is studied.

In other situations the symmetry of an attractor varies continuously with the

system parameter without a sudden change, like symmetry-increasing in the normal

form [18] and in the perturbed normal form, which will be described later. The

concept of symmetry detectives has been developed to deal with these cases in [6].

Dangelmayr in [18] uses the normalized asymmetry measure

M = |
N−1∑
i=0

X(i)|/
N−1∑
i=0

|X(i)|

to investigate the symmetry variation of X about X = 0. A fully asymmetric orbit,

which means no sign changes of X, would have M = 1. A perfectly symmetric

attractor has M = 0.

Symmetry increasing and decreasing take places repeatedly for the whole range

of b-values in the perturbed normal form (4.1). Figure 4.12 provides examples where

b is between 0 and 0.0524. When b is progressing from 0, it is the continuation of

symmetry decreasing of P1a in [18]. The orbit undergoes period doubling as b increases
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from 0 to 0.004, where we can see that the chaotic bands in phase portrait become

thicker as b is increasing (Figure 4.12(a) upper left and right). The lower left panel

in Figure 4.12(a) illustrates that a symmetric periodic orbit show up at b = 0.0139,

which is P1sin [18]. This scenario, and simulations for nearby −a3rs (not included

here), imply that weak symmetry-breaking terms take dynamics back to the normal

form, P1s, a symmetric periodic orbit outside subspace S1. As b increases further, the

symmetry in P1s is broken, and symmetry breaking takes place (Figure 4.12(a) lower

right).

Two qualitatively different periodic orbits follow, i.e., bistability. Both stable or-

bits, one symmetric and the other asymmetric, are stable for corresponding attraction

basins (upper left of Figure 4.12(b) and (c)). On one hand, Figure 4.12(b) (upper

right and lower left) illustrates that the asymmetric periodic orbit first undergoes pe-

riod doubling to chaos. Then after critical value b = 0.0594, an intermittent switching

takes a place behaviors in D2-component, which alternates back and forth between

a pair of conjugate chaotic manifolds. On the other hand, the symmetric periodic

orbit encounters symmetry decreasing (Figure 4.12(c) upper right), period doubling

(Figure 4.12(c) lower left), and finally symmetric increasings to become a symmetric

chaotic attractor (Figure 4.12(c) lower right). The time series in Figure 4.13 describes

dynamics in the lower right panels of Figure 4.12 (b) and (c), which shows these two

chaotic state are qualitatively different. By the end the asymmetric chaos replaced

by the symmetric one through crisis.

4.4.5 A New Type of Intermittency

A new type of intermittency is found during the process of symmetry increasing, as

shown at b = 0.0125. Intermittency takes place between symmetric chaos (lower

left panel in Figure 4.14(a)) and a pair of conjugate asymmetric chaos (lower right

in Figure 4.14(a)). Time series is provided in the upper panel of Figure 4.14(b).
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The more chaotic pieces in the time series correspond to the symmetric chaos. To

investigate this type of time series further, we discretize data by the following Poincaré

map:

Ḋ3 = 0, D̈3 < 0,

which is denoted as D3(n) in the lower panel of Figure 4.14(b). The iterates D3(n+1)

versus D3(n) is provided in lower right panel of Figure 4.14(a). The symmetric chaos

corresponds to a unimodal map, and each asymmetric chaos corresponds to that pair

of leaves above the unimodal map. The pair of leaves forms a tunnel. An orbit enters

this tunnel from the top entrance, moves chaotically through the tunnel, and leaves it

from the bottom exit. Then this orbit follows the unimodal chaotic map until it moves

to the top entrance of the tunnel again. Therefore we see intermittency between two

different chaotic phases. As far as we know, this is a new type of intermittency,

which has not been investigated yet in the literature. It is the future work to study

characteristics of this type of intermittency and to construct some simple nonlinear

map with such dynamics.
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Figure 4.7: One example of crisis-induced intermittency. (a): Time series of switching
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switches. bc is the critical value for switching intermittency, which is estimated to be
0.199.

77



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−2

0

2

d 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−5

10
0

|d
3|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

va
r(

d 3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1

1.5

2

s e

t

’out’ phase ’in’ phase

Figure 4.8: Time series of (4.1) for in-out intermittency at b = 0.308. Note the second
panel is in the log scale. d2, u1, and v1, show similar behaviors as d3 (not included).
The third panel shows the variance of d3 within each 10-time units. The last panel
demonstrates extreme values of s, se, indicating a periodic orbit near the invariant
subspace.

78



0 1 2 3 4
−7

−6

−5

−4

−3

−2

−1

log(τ)

lo
g(

P
τ)
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Figure 4.10: Time series of transient chaos in (4.1) following in-out intermittency in
Figure 4.8.
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Figure 4.11: Bifurcation diagram of the odd-logistic equation (4.22), from [10]. Only
one attractor is provided.
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Figure 4.12: Period doubling, symmetry increasing, symmetry decreasing, and bista-
bility. (a): Phase portraits (D2, D3) for b = 0 (upper left), 0.004 (upper right), 0.0144
(lower left), and 0.0522 (lower right). (b): Phase portraits (D2, D3) for evolution of
the asymmetric periodic orbit at b = 0.053 (upper left), 0.0569 (upper right), 0.0594
(lower left), and 0.0596 (lower right). (c): Phase portraits (D2, D3) for evolution of
the symmetric periodic orbit at b = 0.053 (upper left), 0.0596 (upper right), 0.0609
(lower left), and 0.0611 (lower right).
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Figure 4.13: Bistability at b = 0.0611 for the perturbed normal form (4.1). Upper:
time series of an intermittent switching for D2-component for the asymmetric chaos.
Lower: time series for symmetric chaos of D2-component for symmetric chaos.

82



−0.02 0 0.02
0

0.2

0.4

0.6

0.8

D
2

D
3

−0.02 0 0.02
0

0.2

0.4

0.6

0.8

D
2

D
3

−0.02 0 0.02
0

0.2

0.4

0.6

0.8

D
2

D
3

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

D
3
(n)

D
3(n

+
1)

(a)

0 5000 10000 15000
0

0.5

1

D
3

0 5000 10000 15000
0

0.5

1

D
3(n

)

t

(b)

Figure 4.14: A new type of intermittency for the perturbed normal form (4.1) at
b = 0.0125. (a): Intermittent behavior between a pair of conjugate asymmetric chaos
(upper left and right) and symmetric chaos (lower left), and iterates of the Poincare
map in D3(n+ 1) versus D3(n) (lower right). (b): Time Series of D3 (upper) and the
Poincare map D3(n) (lower).
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Chapter 5

Conclusions

In summary, we study the nonlinear dynamics of the simulated spatiotemporal chaotic

pattern (STC) from a system of Ginzburg Landau equations. The Ginzburg Landau

system is used to study the weakly nonlinear stability of waves’ amplitudes of nemtatic

electroconvective patterns introduced in Section 1.2.2, and comparisons between pre-

dictions from the Ginzburg Landau system and the experimentally observed patterns

are made in [21, 22, 42, 41]. In this dissertation two theoretical problems relating to

this simulated STC are investigated, focusing on the symmetries and the dynamics

of the associated symmetry-adapted variables.

The first problem, identification and characterization of this STC, is presented and

explained in Chapter 3. The amplitudes of the pattern are represented in the form

of Fourier expansion. It is found that four central modes form an invariant manifold

(normal form), while other noncentral modes are equivalent to transverse variables

to this invariant manifold. Even though a large number of degrees of freedom are

involved in this STC, we can just focus on two variables based on symmetries and

the dynamics of these modes, because the higher order modes in X-direction exhibit

qualitatively similar dynamics as the first order modes in X-direction, and modes

in Y -direction decay to zeros very quickly. One variable characterizes the dynamics
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within the invariant manifold, the other describes the dynamics in the transverse

direction of the invariant manifold, which is identified as in-out intermittency. The

bursts of the transverse variable affect the dynamics of the central modes, and induce

switches between a pair of symmetry conjugate chaotic sets in the normal form. A

two-dimensional map is constructed to illustrate and analyze this process in [61].

The second problem focuses on how the noncentral modes, which are the transverse

variables for the invariant manifold formed by four central modes, affect dynamics of

the central modes [60]. We propose a perturbed normal form with a system parame-

ter representing the magnitudes of transverse variables of the invariant manifold. A

detailed study of symmetries and invariant subspaces in this system is provided, as

well as the description of its complex dynamics, including symmetry increasing and

breaking, various period doubling cascades, in-out intermittency, crisis-induced inter-

mittency, chaotic transients, and so on. In a certain range of the system parameter

dynamics of the normal form variables switches between a set of chaotic sets via crisis-

induced intermittency, also called a symmetry increasing bifurcation. Therefore, we

can conclude that the bursts of noncentral modes with certain magnitudes serve as a

bridge to connect two symmetry conjugate chaotic sets in the normal form.

Further extensions of this work include an intensive numerical study of the Ginzburg

Landau system to investigate where this STC in this dissertation is from, and what

the before and after scenarios are. Due to the expensive computations, a clever

method to chose nearby parameters and improvement of the numerical scheme need

to be developed. Another exploration here is to examine the new type of intermit-

tency described in Section 4.4.5. As far as we know, this intermittency has not been

discussed yet in the literature. A simple low dimensional map based on continuous

functions needs to be constructed to characterize this intermittency, through some

statistical properties and the scaling power law.
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