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ABSTRACT

EMBEDDING BASED CLUSTERING OF TIME SERIES DATA USING DYNAMIC TIME

WARPING

Voluminous time-series observational data impose challenges pertaining to storage and analyt-

ics. Identifying patterns in such climate time-series data is critical for many geospatial applica-

tions. Over the recent years, clustering has become a key computational technique for identifying

patterns/clusters. However, data with complex structures and high dimensions could lead to unin-

formative clusters and hinder the quality of clustering.

In this research, we use the state-of-the-art autoencoders with LSTMs, Bidirectional LSTMs

and GRUs to learn highly non-linear mapping functions by training the networks with subse-

quences of timeseries to perform data reconstruction. Next, we extract the trained encoders to

generate embeddings which are lightweight. These embeddings are more space efficient than the

original time series data and require less computational power and resources for further processing.

In the final step of clustering, instead of using common distance-based metrics like Euclidean

distance, we use DTW, an algorithm for computing similarity between time series by ignoring

variations in speed, to calculate similarity between the embeddings during the application of k-

Means algorithm. Based on Silhouette score, this method generates clusters which are better than

other reduction techniques.
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Chapter 1

Introduction

Observations that occur over time is regarded as sequence or time-series data [1]. A time series

T is a sequence of d-dimensional records described using the vector T = <R0, ...., Rn−1>, where Ri

= (a0, ..., ad−1) is a record at time i, for 0≤i≤(n− 1) and aij is the jth attribute of ith record [2].

Existing data analysis approaches assume that the differences between the timestamps of any two

consecutive records are nearly the same [2]. A time series can be univariate (d = 1) or multivariate

(d > 1) [3]. A univariate time series has one time-dependent attribute. For example, a univariate

time series can consist of daily temperatures recorded sequentially over 24-hour increments. A

multivariate time series is used to simultaneously capture the dynamic nature of multiple attributes.

For example, a multivariate time series for a climate dataset can consist of precipitation, humidity,

wind speed, snow depth, and temperature. In this paper, we experiment with MACA historic

dataset [4].

Time series data generated at high frequencies (daily, hourly, etc) comes with an obvious prob-

lem: you end up with a lot of data. This creates problems in storing, training machine learning

models, computations and visualization. Therefore, it is important to find innovative ways to re-

duce the size of time series data, in a way which preserves the underlying features. Thus, generat-

ing embeddings in a lower dimension have been popular among the research community. However,

in this research we are trying out a subsequence based approach for creating embeddings.

Sequence data such as time series has various patterns which are unique to them. Hence, we

will explore the effectiveness of embeddings generated by Deep Learning approach to explore

climate patterns. In this regard, a centroid based clustering method was used along with a distance

metric appropriate for sequence/time series data.
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1.1 Research Questions

The primary objective of this study was to facilitate clustering over compressed, voluminous

time series data. The specific research questions that we explored included the following:

• RQ1: How can we represent geo-spatial time series data in reduced size, while preserving

trends and patterns?

• RQ2: How can we generate a time series clustering model using embeddings?

1.2 Overview of Our Approach

In this approach, we first normalize the time series data and generate subsequences of time

series. Our approach can be distinguished from other methods in literature by using multidimen-

sional subsequences generated using a window size and a step size. Afterwards, three different

autoencoders; namely LSTM, Bidirectional LSTM and GRU (variants of RNNs), are trained using

multidimensional subsequences. Then we extract the encoder from the trained autoencoder and

predict the embeddings/latent vectors for the test data.

These embeddings are used for clustering with k-Means. An important point to note is, instead

of using Euclidean distance, we use Dynamic Time Warping (DTW) to identify similarity between

sequences by ignoring speed differences. However, our goal is to see whether we can use these

embeddings in place of original time series.

1.3 Paper Organization

The remainder of this paper is organized as follows. In section 2, we discuss some related

work in this field along with time series, auto encoders, and embeddings. Section 3, deals with the

methodology used in our time series data reduction operation, and it is followed by a discussion on

clustering the reduced time series data. In section 4, we evaluate the performance of our approach.

This includes few comparisons with other data reduction techniques. It is followed by a conclusion

in Section 5.
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Chapter 2

Background and Related Work

2.1 Related Work

2.1.1 Time-series Analysis Over Reduced Data

Enormous amounts of data generated periodically by sensors, IoT devices, etc. imposes chal-

lenges for data storage, transmission and computing. Although technology has advanced, comput-

ing on such data volumes is quite expensive and time consuming. A survey of scientific data man-

agement systems is available in [5]. Spatial time-series data storage systems include MongoDB [6],

Postgress [7], and Galileo [8]. Galileo is based on distributed hashtables and includes support for

queries such as ad hoc [9], analytic [10], and geometry [11], [12] constrained queries. Stream

processing systems include those specifically designed for time-series data based on sketches for

spatial [13] and IoT data [14], [15]. Frameworks designed to visualize time-series data include sys-

tems such as Glance [16], [17] that leverage deep networks to render visualizations and Stash [18]

that leverages distributed caching to alleviate disk accesses; these systems may leverage imputa-

tions [19], [20] that are performed using deep networks.

Thus, if we represent the data more efficiently, we can save more on storage, bandwidth and

computing. In recent times, people have used different mechanisms to reduce voluminous time

series data.

Fourier Transformation is one of the most prominent mechanisms used in many different do-

mains to represent periodic time series/sequence data in the frequency domain [21]. Discrete

Fourier Transform (DFT) of a sequence is obtained by decomposing the sequence of values into

components of different frequencies [22]. This type of compressed data allows to perform fault

analysis, remove noise, and condition monitoring of machines or systems.

Principal Component Analysis, widely known as PCA [23] is a very popular statistical tech-

nique used for data transformation, dimensionality reduction, exploration, and visualization. Ac-
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cording to [24], a variation of PCA which is particularly designed for time series is known as

Functional PCA (FPCA). However, PCA assumes that underlying subspace is linear. Therefore, it

is not suitable for this scenario.

In recent years, time series databases have remained the fastest growing category of databases

due to large volumes of time series data collected and the power it gives to entities to analyze and

derive meaningful insights. TimescaleDB is an open source database for time series data and it

is an extension of PostgreSQL. It combines the best of both relational databases (RDBMS) and

NoSQL databases, while employing some of the best compression algorithms to enable greater

storage efficiency [25].

2.1.2 Autoencoders (AE)

This is a type of artificial neural network considered as a generative model. An autoencoder

comprises of two components known as an encoder and a decoder. It is heavily used to learn

efficient encodings also known as latent vectors of unlabeled data. First, the encoder takes the

input and generates an encoding/latent vector. Next, the decoder tries to reconstruct the original

input (given to encoder) using the generated encoding. In this procedure, autoencoders are forced

to reconstruct the original input approximately by preserving only the most important features,

also known as latent features of the data [26]. Most basic autoencoder is known as undercomplete

autoendcoder [27] (Refer Figure 2.1).

In recent years, research in this area has heavily contributed to innovative variations of autoen-

coders; Denoising autoencoder [28], Sparse autoencoder [29], Contractive autoencoder [30], Con-

volutional autoencoder [31], Adversarial autoencoder [32] and Variational autoencoder (VAE) [33]

are some of those variants. According to [34], they can be roughly divided into two groups

which are (1) undercomplete autoencoders and (2) overcomplete autoencoders. In general, un-

dercomplete autoencoders are used to learn the underlying structure of data and used for visuali-

sation/clustering [35] like PCA. In contrast, overcomplete autoencoders are used for classification
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based on the assumption that higher dimensional features are better for classification [36]. All the

autoencoders focus on learning features in a unsupervised manner.

Figure 2.1: Architecture of a basic autoencoder

In undercomplete autoencoders, the latent space representation can be considered as a com-

pressed representation of the input, when the feature space of the embedding has a lower dimen-

sionality than the input space. This concept is heavily used in various domains including video

streaming services [37] [38].

2.1.3 Time Series Clustering

In [39], Ali et al. have conducted an extensive benchmark for time series clustering using

eight clustering algorithms representing three categories of clustering (Hierarchical, Partitional,

and Density-based) and three types of distance measures (Euclidean, Dynamic Time Warping

(DTW), and Shape-based) on 112 time series datasets. A phased evaluation framework has been

designed such that in each phase only one of the two building blocks of a clustering method – algo-
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rithm and distance measure – is varied at a time. Benchmark results show the overall performance

of the eight algorithms to be similar with high sensitivity to the datasets, indicating that no method

is superior to the others for all datasets.

A fast clustering method for large-scale time series data named YADING has been developed

by Ding et al. [40]. In this, time series objects were allocated to clusters that were initially induced

based on sampled subsets of the input data. However, this does not take into account the possible

subspaces of a time series data set. Further, it is not applicable for time series with variable lengths.

[41] propose a two-stage approach for clustering time series data. In the first stage, they intro-

duce a methodology to create cluster labels and thus enable transforming unsupervised learning to

supervised learning for time series data. In the second stage, an autoencoder-based deep learning

algorithm is built to model clustering time series data is presented.

2.1.4 Clustering Embeddings

Deep Embedded Clustering (DEC) [35] is a methodology which simultaneously learns feature

representations and clustering assignments using deep neural networks. Unlike the traditional

clustering algorithms (which focus on distance functions and grouping algorithms), DEC learns a

mapping from the data space to a lower-dimensional feature space. It then iteratively optimizes a

clustering objective in this lower dimensional space.

Ienco et al. proposed Deep Time Series Embedding Clustering (DeTSEC) [42] which includes

two stages. At first, a recurrent autoencoder exploits attention and gating mechanisms to produce a

preliminary embedding representation. Next, a clustering refinement stage is introduced to stretch

the embedding manifold towards the corresponding clusters.

An autoencoder based data clustering method is proposed in [43]. They use a new objective

function embedded into the autoencoder model. It contains two parts: the reconstruction error

and the distance between data and their corresponding cluster centers in the new space. During

optimization, data representation and cluster centers are updated iteratively.
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2.1.5 Distributed Learning

Deriving valuable insights from big data has become an important, yet common practice in

many sectors. Often these insights are based on leveraging algorithms that fit models to the data.

However, processing big data is always associated with numerous challenges. Including but not

limited to scalability and storage [44]. To mitigate such challenges, it requires an increased amount

of storage and computational resources that are beyond the capacity of a single machine. Thus, a

solution for this problem involves, using a distributed system which comprises of a large number

of commodity machines.

However, processing big data on a distributed system requires a lot of effort toward providing

efficient computations. While addition of more machines increases the capability of the system, it

also increases the probability of failure. Further, it should also be scalable.

To fit models on voluminous datasets, several software libraries for deep learning have been

suggested. They hide most of the complexity that is associated with the distributed environment.

Abadi et al. [45] proposed the open-source software library for deep learning known as Tensor-

flow. It relies on a computational graph to enable expressing computations and executing them

on different computational devices (CPUs, GPUs, TPUs). In this computational graph, the nodes

represent mathematical operations and the edges represent the data flow between the graph nodes.

Multidimensional data arrays known as tensors, transmit the data between graph nodes. The Ten-

sorFlow engine uses the available computational devices to execute the graph nodes. On the other

hand, there is PyTorch [46]. It also uses a computational graph. However, in Tensorflow, the com-

putational graph is generated in a static way before the code is run. But in PyTorch computational

graph is generated dynamically.
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Chapter 3

Methodology

3.1 Dataset

3.1.1 MACAv2 Historical Dataset

This archive [47] contains two different downscaled products/datasets covering the Continental

US plus Alaska and Hawaii (CONUS-plus). Both use a common set of 20 Global Climate Models

(GCMs) of Coupled Model Inter-Comparison Project 5 (CMIP5) that provides daily output of

requisite variables for historical (1950-2005) and future experiments under RCP4.5 and RCP8.5

(RCP-Representative Concentration Pathways).

A requirement for any statistically downscaled product is historical data, or training data, that

GCM output is bias corrected to. The two datasets/products use different training data. Briefly,

one dataset uses the 6 km (1/16th degree) daily product of Livneh et al. [48] from 1950-2011 that

also incorporates the Canadian portion of the Columbia River Basin. The other uses the gridMet

daily dataset at a 4 km grid (1/24th degree) from 1979-2012 [47].

The experiments described in this research uses only the historical GCM forcings of three

years (1995-1997). It contains daily climate variables for each county (identified by a Geography

Identifier known as GISJOIN).

The MACAv2 dataset currently has data for the following variables;

• min specific humidity

• max specific humidity

• min precipitation

• max precipitation

• min surface downwelling shortwave flux

• max surface downwelling shortwave flux

• min max air temperature

• max max air temperature

• min min air temperature

• max min air temperature

8



• min eastward wind

• max eastward wind

• min northward wind

• max northward wind

• min vpd

• max vpd

3.1.2 Köppen-Geiger climate classification

The Köppen climate classification is one of the most widely used climate classification sys-

tems. It was first published by German-Russian climatologist Wladimir Köppen in 1884 [49],

with several modifications by himself, notably in 1918 and 1936. Later, the climatologist Rudolf

Geiger introduced some changes to the classification system, and it is sometimes called the Köp-

pen–Geiger climate classification system [50].

This classification divides climates into five main climate groups based on seasonal precipita-

tion and temperature patterns. The five main groups are A (tropical), B (dry), C (temperate), D

(continental), and E (polar). Each group and subgroup is represented by a letter. All climates are

assigned a main group (the first letter) and all climates except for those in the E group are assigned

a seasonal precipitation subgroup (the second letter) [50]. The system assigns a temperature sub-

group for all groups other than those in the A group, indicated by the third letter for climates in B,

C, and D, and the second letter for climates in E. Figure 3.1 shows the climate classification for

North America.

According to Figure 3.1, it is clear that most of the continental US belong to three main climate

classes; Cfa (lime green), Dfa (cyan) and BSk (orange). Further, 1694, 597 and 413 counties

are covered by Cfa, Dfa and BSk respectively. Therefore, these climate classes are used for the

experiments in this research. [51] provides a text file which includes all the counties and their

respective climate classes. Therefore, the text file was processed to extract relevant GISJOINs for

required counties. Next, these GISJOINS were used to query MACAv2 historical dataset hosted in

MongoDB by Sustain project [52].
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Figure 3.1: North America map of Köppen–Geiger climate classification (from Wikimedia Commons)

3.2 Data Selection

3.2.1 Data Pre-Processing and Feature Selection

In Machine Learning, a preliminary step is to explore available datasets and prepare data in a

suitable manner. As shown in Table 3.1, values in each numerical feature lies between different

ranges. If there is a vast difference in the range, ranging from thousands to tens, models make

underlying assumptions that higher ranging numbers are more important than others. Therefore,

such significant numbers start playing a more decisive role during the training process. Thus,

feature scaling is considered essential for machine learning algorithms which calculate distances

between data points.

Normalization is a technique for scaling features, and the data is scaled between 0 and 1. This

avoids the problems by creating new values that maintain the general distribution and ratios in the
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source data, while keeping values within a scale applied across all numeric columns used in the

model.

Table 3.1: Ranges of available features

Minimum Maximum
min specific humidity 0 2.600000e-02
max specific humidity 0 2.900000e-02
min precipitation 0 2.138140e+02
max precipitation 0 2.848650e+02
min surface downwelling shortwave flux in air 1.235700e+01 4.080010e+02
max surface downwelling shortwave flux in air 1.620500e+01 4.537880e+02
min max air temperature 2.409670e+02 3.186830e+02
max max air temperature 2.454170e+02 3.271460e+02
min min air temperature 2.270000e+02 3.022600e+02
max min air temperature 2.355210e+02 3.111960e+02
min eastward wind -2.126100e+01 1.575500e+01
max eastward wind -1.362500e+01 2.027800e+01
min northward wind -1.961500e+01 1.278300e+01
max northward wind -1.332100e+01 1.934900e+01
min vpd 0 5.260000e+02
max vpd 0 9.960000e+02

3.3 Generating Embeddings

One of the main goals of this research is to explore ways in which we can reduce the size of

lengthy, high dimensional geo-spatial time-series data. With that in mind, we used an approach

which generates embeddings, using deep learning techniques (i.e. non-linear mappings).

The process of generating embeddings consists of two important steps. First, we generate

subsequences and more details can be found in Section 3.3.1. Next, we train autoencoders with

generated subsequences (Section 3.3.2). Once training is completed the encoder is separated from

the autoencoder and it is capable of generating embeddings (Section 3.3.3).

A summary of this process for data of one county is depicted in Figure 3.2.
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Figure 3.2: Summary of the process for data of one county

3.3.1 Generating Training Dataset

Once the preprocessing is done, we perform an important step. This is known as generating

subsequences of time series. In order to do that we need two parameters; window size and step

size.

• Window size - length of the subsequence (it determines how many adjacent observations

from the time series should be in one subsequence)

• Step size - the number of observation shifts over the original time series

Figure 3.3: Example of generating subsequences

For instance, assume Figure 3.3 represents a time series for 90 days and each cell represents a

day. Further, 16 attributes are reported each day (this is not explicitly shown). When the window
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size is 30 and step size is 15, the first subsequence starts at day 1 and ends on day 30. Second

subsequence starts at day 16 because the step size/stride is 15. It ends on day 45. Similarly, with

the whole 90 day time series, we can generate 5 subsequences each having a shape of 30x16.

As mentioned in Section 3.1.1, our experiments use a range of 3 years, therefore each county

has 1096 days (i.e. 365 x 3 = 1095 + 1 (1996 is a leap year)). Therefore, we are able to generate

72 subsequences each having a shape of 30x16. This is shown in the middle step of Figure 3.2.

3.3.2 Training Models

In this section we will be discussing about the neural networks used for this research. First, it is

important to mention that we selected Recurrent Neural Networks (RNNs) over traditional neural

networks [53]. RNNs are widely accepted neural network architecture for sequential or time series

data. They differentiate from other neural networks due to their ability to memorize information

from prior inputs to influence the current input and output.

Figure 3.4 shows a basic RNN. The Rolled RNN represents the entire neural network and the

Unrolled RNN represents the individual layers or time steps. In this figure it is very clear that the

output of RNNs depend on the prior elements within the sequence. Another distinguishing charac-

teristic of recurrent networks is that they share the same weight parameter across each layer of the

network. The weights are adjusted through the process of back propagation and gradient descent.

RNNs leverage back propagation through time (BPTT) algorithm to determine the gradients, which

is slightly different from traditional backpropagation as it is specific to sequence data [54].

In this research, three variants of Recurrent Neural Network (RNN) are used to compose the

network of the autoencoder. They are; Long Short Term Memory (LSTM) [55], Bidirectional

LSTMs [56] and Gated Recurrent Units (GRU) [57]. In order to compare these models, all three

have a similar architecture (refer Figure 3.5, Figure 3.6 and Figure 3.7). All three models take

subsequences as inputs (each with size 30x16) and tries to predict the same, by generating an inter-

mediate embeddding of dimensionality 7. Therefore, our model is an undercomplete autoencoder
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Figure 3.4: Rolled versus unrolled RNN (from IBM Cloud Learn Hub)

(latent space has lower dimensionality than the input space). First layer in the encoder section and

first layer in the decoder section has an output shape of 30x32.

LSTM Auto-Encoder

Long Short Term Memory (LSTM) are a type of RNNs that is useful in learning order depen-

dence in sequence prediction problems. This was introduced in [55] as a solution to the vanishing

gradient problem which was present in basic RNNs. Also, it addresses the problem of long-term

dependencies. A common LSTM unit is composed of a cell, an input gate, an output gate and a

forget gate. These gates control the flow of information which is needed to predict the output in

the network [54].

Bidirectional LSTM Auto-Encoder

This is an extension of the regular LSTM and consists of two LSTMs; one taking the input in

a forward direction, and the other in a backwards direction. This operation makes it different from

the regular LSTM. Therefore, this allows to preserve past and future information [56].
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Figure 3.5: Summary of LSTM model generated by tf.keras.Model.summary()

Figure 3.6: Summary of Bidirectional LSTM model generated by tf.keras.Model.summary()

GRU Auto-Encoder

Gated Recurrent Unit [57] is similar to LSTM and it also addresses the short-term memory

issue of vanilla RNNs. However, instead of three gates, it has two; a reset gate and an update gate.

These gates control how much and which information to retain.

3.3.3 Generating Embeddings using an Encoder

Final step in this process is to separate the encoder from the trained autoencoder. For example,

if we consider the Bidirectional model shown in Figure 3.6, first two layers; bidirectional and bidi-

rectional_1 belongs to the encoder. Once we separate it, we are capable of generating embeddings
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Figure 3.7: Summary of GRU model generated by tf.keras.Model.summary()

with a much lower dimension (7 using above mentioned models) for subsequences generated with

test data (more details in Section 4.1).
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3.4 Clustering Embeddings

Second goal of this research is to generate a time series clustering model, which resembles the

climate classes (i.e. ground truth) using the embeddings generated in the previous step.

Clustering is the task of grouping objects into clusters, so that objects in the same cluster are

more similar to each other than to objects in a different cluster. During our research we have

used a well known clustering algorithm, k-Means [58]. More details on k-Means algorithm is

available in Section 3.4.1. Calculating distances among data points is an important step in k-Means

algorithm and Euclidean distance is frequently used for this calculation. However, this distance

metric does not ignore variations in speed when calculating distances between sequences/time

series. Therefore, it is not quite suitable for distance calculations between sequences. Hence, we

used a different distance metric, know as Dynamic Time Warping (DTW), and details are included

in 3.4.2.

3.4.1 k-Means algorithm

k-Means is a centroid based clustering technique which was introduced by Lloyd in 1982 [58].

This is an iterative algorithm that tries to partition n observations into k distinct non-overlapping

subgroups, known as clusters. According to the pseudo-code in Figure 3.8, first it randomly selects

k objects in D. These initially represents a cluster center/centroid. Next, each of the remaining

objects are assigned to the cluster to which it is the most similar, based on a distance metric calcu-

lated between the object and the cluster center/centroid. k-Means algorithm iteratively improves

the within-cluster variation, also known as sum of squared error. Then for each cluster, it computes

the new mean (i.e. new centroid) using the objects assigned to the cluster in the previous iteration.

Next, all the objects are reassigned using the updated means as the new cluster centers. The it-

erations continue until the clusters formed in the current round are similar to those formed in the

previous round [59].

The k-Means algorithm does not guarantee to converge to the global optimum and often termi-

nates at a local optimum. Further, the results may depend on the initial random selection of cluster
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Figure 3.8: Pseudocode for k-Means algorithm (from [58])

centers. To obtain good results in practice, it is common to run the k-Means algorithm multiple

times with different initial cluster centers [59].

3.4.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) [60] is a mapping of points between a pair of unequal length

time series/sequences, T1 and T2, by ignoring variations in speed, known as warping (refer Fig-

ure 3.9). It is designed to minimize the pairwise Euclidean distance between points and is consid-

ered the state-of-the-art, most accurate similarity measures for time series data [61]. The optimal

mapping should adhere to three rules.

Figure 3.9: Comparison of Euclidean and DTW (from [62])

• Every point from T1 must be aligned with one or more points from T2, and vice versa.

• The first and last points of T1 and T2 must align.
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• No cross-alignment is allowed, that is, the warping path must increase monotonically.

Figure 3.10 shows the pseudo-code for DTW distance matrix calculation for two time se-

ries [63]. S[n,m] contains the DTW distance between two time series. For the experiments, we

have used a package named tslearn [64], and it is capable of measuring DTW similarity between

multidimensional time series as well.

Figure 3.10: Pseudocode for DTW algorithm (from [63])
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Chapter 4

Evaluation

In this chapter we contrast different methods which were used to evaluate and compare our

methodology. Section 4.1 includes details on how data was utilized for experiments. Section

4.2 includes experiments on training models, while section 4.3, includes details and experiments

on clustering original time series data versus embeddings. Distributed training experiments are

presented in section 4.4.

Unless noted explicitly, hyper parameters in table 4.1 are used for model training during the

experiments described in following sections.

Table 4.1: Default hyper parameters for model training

Hyper parameter Default value
Learning Rate 0.001

Epochs 200
Batch Size 40

In addition, parameters in table 4.2 are used when generating time series sub-sequences (as a

preprocessing step) and embeddings (using autoencoders).

Table 4.2: Default parameters for sub-sequences and embeddings

Parameter Default value
Window Size 30

Step Size 15
Embedding Dimension 7

4.1 Data for training and testing

As mentioned in Section 3.1, MACA dataset is used for all the experiments and we have specifi-

cally focused on 3 different climate classes covering CONUS; BSk, Cfa and Dfa. According to [51]
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Cfa, Dfa and BSk cover 1694, 597 and 413 counties respectively. However, some counties belong

to multiple climate classes. Therefore, to make the experiments more clear, we have removed such

overlapping counties. After the removal we are left with 1542, 476 and 369 counties for Cfa, Dfa

and BSk climate classes respectively.

If we use varying number of counties for the 3 climate classes, the trained models will be more

biased towards the climate classes which have more data. Therefore, it was necessary to reduce

the data size to the limiting climate type. In this scenario, it was BSk. Thus, 369 counties per each

climate class was used for training and testing.

Out of each 369 counties per climate class, 80% (i.e. 295) was used as training data and 20%

(i.e. 74) as testing data. Hence, a total of 885 counties were used to train models, while 222

counties were used for testing.

4.2 Embeddings

In this section, we discuss the experiments performed during training of models. Mainly we

have used 3 types of autoencoders; LSTM, Bidirectional LSTM and GRU, each having a similar

architecture except for the units used within.

4.2.1 Model training and testing

Figure 4.1 corresponds to the training error of 3 models, when training with default hyperpa-

rameters mentioned in Table 4.1. Mean Squared Error (MSE) was used as the cost function for

models. MSE measures the average squared difference between an observation’s actual and pre-

dicted values. From an autoencoder’s point of view, this is the reconstruction loss. The goal was

to minimize MSE to improve the accuracy of the models.

Additionally it is important to keep in mind that the models were trained with subsequences of

time series generated at an intermediate step. Each county has 72 matrices and each matrix has a

size of 30x16.
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Figure 4.1: Training error for 3 models

Over 200 epochs, all three models improved significantly by reducing the MSE. Both LSTM

and GRU models have reduced the MSE from 0.018 to o.0.004. However, Bidirectional LSTM

outperforms LSTM and GRU models by reaching a MSE of 0.003. In addition, we evaluated

the trained models with test data (using tf.keras.Model.evaluate()). This function calculates the

average of MSE values for each sample in the test dataset. Table 4.3 includes the average MSE

values achieved by each model. Therefore, we selected Bidirectional LSTM based autoencoder as

the best model and used it for all other experiments.

Table 4.3: Average MSE values for testing data

Model Loss
LSTM 0.0047

BiLSTM 0.0040
GRU 0.0051
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4.2.2 Hyperparameters

Batch Size

As shown in Figure 4.2, batch size of 40 resulted in the lowest MSEs at the end of training

for all 3 models. Further, the same batch size achieves lower MSEs for almost all the epochs,

compared to other two batch sizes 80 and 120. In addition, although it is not reported, the training

times decreased when the batch size increased. This is due to less number of weight updates taking

place within an epoch.

Figure 4.2: Training error for 3 models with different batch sizes

Learning Rate

The learning rate is a hyperparameter that controls how much to change the model in response

to the estimated error each time the model weights are updated. Therefore selecting a suitable

learning rate is challenging. In Figure 4.3 we have experimented with three different learning rates

and plotted the MSE/loss. For LSTM and BiLSTM models, a learning rate of 0.1 resulted in Nan

values. That is the reason for not seeing a green line in first two graphs. The reason for this is,

when learning rate is too large, Stochastic Gradient Descent can diverge into infinity. Even for

GRU, loss begins to increase when learning rate is 0.1.
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Figure 4.3: Training error for 3 models with different learning rates

Even for a learning rate of 0.01 the loss function does not seem to be consistent for all three

models, as it is for 0.001. Therefore, we have selected 0.001 as the learning rate for all our experi-

ments.
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4.3 Clustering

This section contains details about clustering experiments performed using embeddings ver-

sus other alternative methods. Section 4.3.2 presents the metrics used to measure the quality of

generated clusters. Remaining sections include details about clustering experiments.

4.3.1 t distributed Stochastic Neighbor Embedding

It is important to note that t distributed Stochastic Neighbor Embedding [65] widely known as

t-SNE, introduced by Van der Maaten et al. has been used in next few sections to visualize high

dimensional data. It is an extension of Stochastic Neighbor Embedding (SNE) [66], created and

published in 2003 by Hinton et al..

t-SNE is a non-linear dimensionality reduction technique used to visualize high-dimensional

data, by giving each data point a location in a two or three-dimensional map. Further, it produces

significantly better visualizations by reducing the tendency to crowd points together in the center

of the map [65].

First, it starts by converting high-dimensional Euclidean distances between datapoints into

conditional probabilities that represent similarities. The similarity of datapoint xj to datapoint xi

is the conditional probability, pj|i, that xi would pick xj as its neighbor, if neighbors were picked

in proportion to their probability density under a Gaussian centered at xi. For nearby datapoints,

pj|i is relatively high, whereas for widely separated datapoints, pj|i will be extremely small (refer

Figure 4.4) [65].

Mathematically, conditional probability p(j|i) is given by first equation in Figure 4.5. σi is the

variance of the Gaussian that is centered on datapoint xi.

Moreover, [65] states that SNE can also be applied to datasets that consist of pairwise similar-

ities between objects rather than high-dimensional vector representations of each object, provided

these similarities can be interpreted as conditional probabilities. The same concept was used when

utilizing the t-SNE implementation available in sklearn.manifold.TSNE [67]. We provided a dis-
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Figure 4.4: Probability distribution of original high dimensional data

Figure 4.5: Conditional probabilities for high dimensional and low dimensional data

tance matrix consisting of DTW pairwise similarities between time-series (original/embeddings).

This was required because scikit-learn implementation does not support 3-dimensional datasets.

Dimensions of our datasets;
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• original time series –> 222, 1096, 16

• embeddings –> 222, 72, 7

In the high-dimensional space, [65] convert distances into probabilities using a Gaussian dis-

tribution. However, in the low-dimensional map, they use a probability distribution that has much

heavier tails than a Gaussian to convert distances into probabilities, known as Student t-distribution

(refer Figure 4.6).

Figure 4.6: Comparison of Gaussian versus Student-t distribution

Thus, for the low-dimensional counterparts yi and yj , of the high-dimensional datapoints xi

and xj , it is possible to compute a similar conditional probability, which is denoted by q(j|i). If

the map points yi and yj correctly model the similarity between the high-dimensional datapoints xi

and xj , the conditional probabilities p(j|i) and q(j|i) will be equal. Motivated by this observation,

SNE aims to find a low-dimensional data representation that minimizes the mismatch between

p(j|i) and q(j|i) [65].
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A natural measure of the faithfulness with regards to p(j|i) and q(j|i) is the Kullback-Leibler

divergence [65]. t-SNE minimizes the sum of Kullback-Leibler divergences [68] over all datapoints

using a gradient descent method. Then gradient is treated as repulsion and attraction between

points. Thus, the low-dimensional space is adjusted in small steps over the iterations, based on the

calculated gradients.

Unless noted explicitly, Dynamic Time Warping (DTW) is used to calculate distances between

geo-spatial time series (both original and embeddings) for all visualization purposes.

4.3.2 Metrics

The silhouette coefficient [69] measures how similar an object is to its own cluster (tightness),

compared to other clusters (separation). This is calculated using the mean intra-cluster distance (a)

and the mean nearest-cluster distance (b) for each sample. The Silhouette Coefficient for a sample

is (b − a)/max(a, b). The silhouette coefficient is only defined if; 2 <= number of clusters <=

(number of samples - 1). This score ranges from -1 to +1. Values near 0 indicate overlapping

clusters. In general, negative values indicate that an object has been assigned to the wrong cluster

[70]. On the other hand, silhoutte coefficient can be used to determine the appropriate number of

clusters.

4.3.3 Climate classes of original versus embeddings (without clustering)

Each point in Figure 4.7 (a) represents the time series for 3 years for a particular county (i.e.

1096x16 matrix) and each point in Figure 4.7 (b) represents the compressed time series (i.e. 72x7)

for a specific county based on the embeddings. Further, it represents how each time series (original

and embeddings based) belongs to the three climate classes (no clustering is performed).

In order to know how well the three climate classes are represented as clusters with original

versus embeddings, we have calculated the Silhouette score. It is clear in Figure 4.7 that the

climate classes in embeddings representation (right) are more tight and separated than the original

representation (left). Further, it is reflected in the calculated Silhouette scores; Original: 0.235,

Embeddings: 0.563.
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Figure 4.7: Climate classes of original time series versus embeddings, visualized using 2D t-SNE plots

4.3.4 Comparison between climate regions versus clustering of embeddings

Figure 4.8: Climate regions and clustering of embeddings
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Both plots in Figure 4.8 are related to embeddings. Left plot shows how the points belong

to the three climate classes, while right plot shows how the same embeddings are clustered by k-

Means, when using DTW as the distance metric. The clusters are numbered as 0,1 and 2. It is very

clear that k-Means algortihm has identified clusters, identical to actual climate class clustering.

Therefore, both plots yield a Silhouette score of 0.563.

4.3.5 Reduced features from Random Forest versus embeddings

Random Forest (RF) is a widely known classification model and it is an ensemble of decision

tree algorithms. However, Random Forests are frequently used for feature selection during data

science workflows. Such suitability is there because the tree-based strategies used by RFs, ranks

the features by how well they improve the purity of the node. Therefore, a RF with 100 decision

trees were trained using normalized training data. Once the training is over, we could find out the

feature importance of each feature. Table 4.4 contains importance score for each feature.

Table 4.4: Feature Importance using Random Forest Classifier

Feature Feature Importance
min specific humidity 0.058
max specific humidity 0.044

min precipitation 0.019
max precipitation 0.034

min surface downwelling shortwave flux in air 0.066
max surface downwelling shortwave flux in air 0.072

min max air temperature 0.083
max max air temperature 0.077
min min air temperature 0.085
max min air temperature 0.061

min eastward wind 0.053
max eastward wind 0.055
min northward wind 0.058
max northward wind 0.063

min vpd 0.05
max vpd 0.122
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One important thing to note is, the sum of feature importances add up to 1 and features with

higher feature importance are more important than others. Therefore, we used a threshold value of

0.06 to select features from the original 16 features. By using this threshold value, we were able to

reduce the dimensionality by half. Selected features are;

• max vpd

• min min air temperature

• min max air temperature

• max max air temperature

• max surface downwelling shortwave flux

• min surface downwelling shortwave flux

• max northward wind

• max min air temperature

Next, we extract the selected features from testing dataset and normalized them. Afterwards,

timeseries matrices were formed for each county, which are of size 1096x8. These time series were

plotted using t-SNE according to climate classes (refer Figure 4.9 left) and performed a k-Means

clustering with DTW distance metric (refer Figure 4.9 right). Silhouette score for climate classes

is 0.315 and clustering is 0.332.

Figure 4.10 shows how the clustering created using our new approach (i.e. embeddings) com-

pare to the clustering using reduced features by RF. Embedding based clustering is having a higher

Silhouette score of 0.563 while the other is having only 0.332.

4.3.6 Reduced features from PCA versus embeddings

Principal Component Analysis known as PCA is a popular dimensionality reduction technique.

In this section, we have tried to use this method and compare it against our new embeddings

approach. The first step in this process is to fit the normalized training data using PCA. When

doing so, PCA will create a similar number of new principal components (16 with this dataset),

and each principal component is a linear combination of the original features. Then we need to

identify how many components we need to keep for the rest of the process. To make this decision

accurately we can use the cumulative variance plot.
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Figure 4.9: RF selected features based climate classes versus clustering

Figure 4.10: Embeddings clustering versus RF selected features based clustering

On the y-axis of Figure 4.11 shows the amount of variance captured, depending on the number

of components we include. A rule of thumb is to preserve around 80% of the variance. In this
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Figure 4.11: Cumulative explained variance by PCA components

instance, cumulative variance of first two components cover just above 80%. Thus, we decided

to use the first two components. Then we reduce the dimensionality of normalized testing data

from 16 to 2. Hence, for each county we will have a matrix of 1096x2. These time series were

plotted using t-SNE according to climate classes (refer Figure 4.12 left) and performed a k-Means

clustering with DTW distance metric (refer Figure 4.12 right). Silhouette score for climate classes

is 0.309 and clustering is 0.343.

Figure 4.13 shows how the clustering created using our new approach (i.e. embeddings) com-

pare to the clustering based on PCA components. Embedding based clustering is having a higher

Silhouette score of 0.563 while the PCA based method is having only 0.343.

4.3.7 DTW versus other distance metrics

All the experiments that were discussed in this chapter used Dynamic Time Warping (DTW)

as the distance metric (refer Section 3.4.2) during distance calculation between multidimensional

time series for clustering and visualization (t-SNE plots). Hence, we wanted to see how it compares

with other distance metrics. In this section, we have experimented and reported the results by
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Figure 4.12: PCA component based climate classes versus clustering

Figure 4.13: Embeddings clustering versus PCA component based clustering

using another popular distance metric known as Euclidean distance. In general, for points given by

Cartesian coordinates in n-dimensional Euclidean space, the distance is calculated using the below

formula [71],

34



d (p, q) =

√

√

√

√

n
∑

i=1

(pi − qi)
2

In order to calculate the Euclidean distance, it is necessary for the two time series to be of same

dimension and same size. Data in this dataset fulfills this requirement. Therefore, we were able to

calculate Euclidean distances of original time series as well as embeddings.

Hence, we tried to cluster original time series and embeddings using k-Means clustering al-

gorithm. Once using DTW as the distance metric and next time using Euclidean distance. It is

important to note that t-SNE plots in both Figure 4.14 and Figure 4.15 are drawn using DTW

distance (Otherwise, the visualization of the points becomes confusing and uncomparable).

Figure 4.14(a) shows a comparison of original time series climate classification (a point rep-

resents a 1096x16 matrix for a county). Figure 4.14(b) and Figure 4.14(c) represents the three

clustering groups (0.0, 1.0 and 2.0) when DTW and Euclidean distances are used for clustering

original time series respectively. As depicted in table 4.5, the Silhouette score for the Euclidean

distance based representation is 0.321 and it is higher than that for DTW distance based repre-

sentation, which is only 0.210. This might be due to more separation between climate classes in

Euclidean based representation.

Figure 4.14: DTW versus Euclidean distance for original time series
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Figure 4.15: DTW versus Euclidean distance for Embeddings

Next, we tried out DTW and Euclidean distance metrics to cluster embeddings. Refer Fig-

ure 4.15. Climate classification of embeddings is plotted in Figure 4.15(a). Figure 4.15(b) and

Figure 4.15(c) represents the three clustering groups (0.0, 1.0 and 2.0) when DTW and Euclidean

distances are used to cluster embeddings respectively. As shown in table 4.5, a Silhouette score

of 0.563 is achieved by DTW based clustering of embeddings. And this is higher than that of

Euclidean based one (0.546).

As shown in table 4.5, DTW based embeddings clustering is much better than any other.

Table 4.5: Silhouette scores for DTW versus Euclidean distance

Dist. Calc. Method Original clustering Embeddings clustering
DTW 0.210 0.563

Euclidean 0.321 0.546

4.3.8 Discussion

Table 4.6 represents the Silhouette scores for clusterings based on three dimensionality re-

duction techniques which were experimented. Namely, Random Forest based reduced feature

clustering, Principal Components based clustering and embeddings based clustering. By consid-
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ering Silhouette scores, it is evident that embeddings based clustering is outperforming other two

methods. On the other hand, embeddings based clustering generates 3 clusters which is exactly

similar to the 3 climate classes (i.e. ground truth) (refer Figure 4.8). Thus, we can conclude that

an efficient time series clustering model can be built using embeddings.

Table 4.6: Comparison of Silhouette scores

Reduction Method Silhouette Score
RF 0.332

PCA 0.343
Embeddings 0.563

4.4 Training time and cluster size

4.4.1 Cluster set up

In this study, we used clusters with 4-10 nodes. Each node has 64 GB RAM and 16 CPUs

(Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz). Further, each node is running CentOS (version

8.4.2105). However, in these experiments, each node is utilizing only 1 CPU during the training

process. Additionally, we use version 3.6.8 of Python, version 2.6.2 of tensorflow and version

0.23.0 of Horovod (more details on Horovod in Section 4.4.2).

4.4.2 Distributed training

As depicted in table 4.7, training models using a single machine was very time consuming.

To be precise, LSTM, Bidirectional LSTM and GRU models were trained for 2 hours 52 minutes,

3 hours 23 minutes, and 3 hours 3 minutes respectively. Hence, it was quite important to try

and reduce the training times. To achieve this, Horovod [72] was used. It is a distributed deep

learning training framework for TensorFlow [45], Keras [73], PyTorch [46], and Apache MXNet

[74], developed by Uber. This enables distributed deep learning fast and easy to use by bringing

model training times down from days and weeks to hours and minutes. Further, with Horovod, an
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existing training script can be scaled up to run on hundreds of CPUs/GPUs in just a few lines of

Python code.

To achieve distributed learning, two approaches are available; Model parallelization and Data

parallelization. In our experiments, we used data parallelization. In this, all the workers own a

replica of the model. The global batch of data is split into multiple minibatches, and processed by

different workers. Each worker computes the corresponding loss and gradients with respect to the

data it possesses. Before the updating of the parameters at each epoch, the loss and gradients are

averaged among all the workers through a collective operation [75].

For instance, this is how the data was split into multiple minibatches, when there was 4 nodes

in the distributed cluster;

From each climate class there were 295x72 = 21240 subsequences as training data (295 coun-

ties per climate class). Therefore, a total of 21240x3 = 63720 subsequences were available (3

climate classes were used). Each of the nodes were responsible for training the model with quarter

of the full training data (i.e. 15930 subsequences), since there are 4 nodes in the cluster. Similarly,

when there were more nodes in the cluster, training data was split across nodes accordingly.

Table 4.7: Training times of models

1 Node 4 Nodes 6 Nodes 8 Nodes 10 Nodes
LSTM 172m 22s 47m 37s 33m 5s 25m 13s 21m 21s
BiLSTM 203m 51s 56m 57s 39m 29s 30m 17s 25m 19s
GRU 183m 30s 50m 38s 35m 20s 27m 21s 22m 44s

As it is shown, when there are n number of nodes in the cluster, the training times have de-

creased by almost n fold. For instance time taken by BiLSTM model when running with only one

machine is 203 minutes. With a 4 node cluster, time taken in reduced to 56 minutes. Therefore, the

speedup can be calculated by 203 minutes/56 minutes = 3.6. The reason for this could be directly

attributed to the data parallel architecture used during distributed training. However, the reason

for not achieving a speed up of exactly 4, might be due to the overheads involved in distributed
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Figure 4.16: Distributed training times of models

training. Thus, it is evident that scalability can be achieved using a distributed training framework

like Horovod.
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Chapter 5

Conclusions

We presented our methodology to effectively represent a geo-spatial, climate time series dataset

using embeddings. This reduced dataset could be used for analytical applications such as visualiza-

tion. Further, it enables to reduce the storage overheads, computational cost and time for analytical

tasks.

5.1 Research Question 1(RQ1)

Representing geo-spatial time series data in reduced size (35x less) is achieved by generating

subsequences of the original time series, training a Bidirectional LSTM autoencoder and generat-

ing embeddings from the extracted encoder of the autoencoder. The embeddings contain the most

relevant features of the original time series.

5.2 Research Question 2(RQ2)

Quality of the embeddings based clustering using k-Means and DTW (as distance metric), out-

performed the Random Forest based reduced feature clustering and Principal Components based

clustering. Further, with embeddings based clustering, distance metric DTW performed better

compared to Euclidean distance.
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