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ABSTRACT

USING MATHEMATICAL TECHNIQUES TO LEVERAGE DOMAIN KNOWLEDGE IN

IMAGE ANALYSIS FOR EARTH SCIENCE

When presented with the power of modern machine learning techniques, there is a belief that

we can simply let these algorithms loose on the data and see what they can find, unconstrained

by human choice or bias. While such approaches can be useful, they are (of course) not fully

free of bias or choice. Moreover, by utilizing the deep store of knowledge built up by scientific

domains over decades or centuries, we can make architectural choices in our machine learning

algorithms that focus the learning on features that we already know are important and informative,

leading to more efficient, explainable, and interpretable methods. In this work, we present three

examples of this approach. In the first project, to make use of the knowledge that texture is an

important attribute of clouds, we use tools from topological data analysis focusing on the texture

of satellite imagery, which leads to an effective and highly interpretable classifier of mesoscale

cloud organization. This project resulted in a paper that has been published as a journal article.

In the second project, we compare a rotationally invariant convolutional neural network against a

conventional CNN both with and without data augmentation in their performance and behaviors

on the task of predicting the major and minor axes lengths of storms in forecast data. Finally,

in the third project, we explore three different techniques from harmonic analysis to enhance the

signature of gravity waves in satellite imagery.
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Chapter 1

Introduction

The mathematical study of images has existed for a very long time and remains a hot topic

of research today. As visual creatures, humans are excellent at identifying trends, patterns, and

similarities and dissimilarities in images and video, but finding algorithms to extract those same

patterns automatically can be surprisingly challenging. Over the last decade, convolutional neural

networks (CNNs) and their derivatives have grown to dominate the field of image analysis due to

their flexibility, relative simplicity, and high performance.

However, CNNs and other deep neural networks are far from perfect. There is a tendency to

tackle any problem by deploying neural networks and to attempt to improve performance by simply

increasing the size of the network and feeding it more data. This approach feels “objective,” as the

researcher is not explicitly incorporating prior knowledge into the algorithm. However, biases will

always exist within and around such algorithms, in the data itself and questions that are asked of the

data if nowhere else. Moreover, domain knowledge can be incredibly useful in informing the types

of algorithms used, the aspects of data those algorithms focus on, and how they are implemented.

Deep neural networks are still a valid and important technique and can be modified to explicitly

incorporate even more domain knowledge, as we will explore in Chapter 3. In addition to simply

improving neural networks, however, there is a growing resurgence in classical and deterministic

mathematical techniques in image analysis.

One field that has seen rapid growth in recent years is Topological Data Analysis (TDA). Sub-

levelset or superlevelset persistent homology (which we will refer to simply as persistent homol-

ogy) is a technique that can summarize the shape and connectivity of a space. When applied to

image data, this gives a descriptor of the texture and overall structure of an image. Persistent

homology can then be used to describe or even classify sets of images, and it has been widely

used, including emerging applications in in environmental science [28, 48, 73, 83]. Because this

is a deterministic technique from a well-studied area of math, we can trace these descriptors and
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classifiers back through the algorithm, allowing us to gain a much deeper understanding of what

attributes of the images are being used to make decisions.

An even more recent field, geometric deep learning, seeks to explicitly incorporate deeply

theoretical concepts directly into sophisticated neural networks [6]. This approach uses techniques

from group theory, representation theory, and geometry to build more powerful and purposeful

networks by explicitly identifying symmetries of the data that are known to be important based on

domain knowledge. By building a network that a priori respects these symmetries, we remove the

burden on the network to learn these patterns from the data, which in theory should free it to learn

other, more sophisticated patterns.

Applied harmonic analysis has continued to develop both new techniques and refinements of

older methods that can give efficient, analytical descriptions of images. Wavelets, shearlets, and

similar methods have proven to be extremely effective at detecting edges and periodic patterns in

images without needing huge training datasets or supercomputers, and can be paired with simpler

machine learning algorithms to increase their flexibility to more general problems [20, 41, 57].

The three projects described in this document cover these varying approaches to image analysis,

with the underlying theme of using mathematical insights rather than automated algorithms. In our

uses of TDA and applied harmonic analysis (Chapters 2 and 4 respectively), this comes in the form

of using mathematical techniques to transform the data into some new form in which the features

that we’re interested in are more obvious and easily detectable even by simple machine learning

algorithms. In Chapter 3, on the other hand, we use math to inform the machine learning algorithm

itself, enforcing symmetries that we know are important in our input space. In each case, however,

we are informed by domain knowledge about what aspects of the data are relevant and important,

and use mathematics to tailor our approaches to emphasize those aspects.

1.1 Document Structure

In this document, we will discuss three projects tied together by the theme of using mathematics

to inform or enhance image analysis techniques and applications.
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In Chapter 2, we will present a completed project using TDA to classify types of clouds present

in satellite imagery. This work was motivated by questions brought to us by researchers at the Co-

operative Institute for Research in the Atmosphere (CIRA) and resulted in a paper that has been

published in Artificial Intelligence for the Earth Sciences (AIES), a journal of the American Me-

teorological Society. The paper is available in early online release [85]. In this chapter, we’ll give

an introduction to persistent homology, how it can be used for image analysis, and give an exam-

ple workflow in which persistent homology is paired with a simple machine learning algorithm to

effectively classify satellite images of cloud organizations.

In Chapter 3, we discuss a project conducted as part of the Computational and Information

Systems Lab (CISL) Visitor Program at the National Center for Atmospheric Research (NCAR).

We explored an emerging topic in machine learning, geometric deep learning, a new framework

that seeks to both provide a unifying structure for existing approaches and to give a principled

method for developing new techniques. This framework is deeply mathematical in nature and

fundamentally relies on topics from abstract algebra such as symmetry groups and group actions

and seeks to utilize domain knowledge about what sorts of symmetries are important to enhance

the power and efficiency of neural network approaches. In our work, we compare and contrast the

behaviors and performance of a rotationally invariant network based on geometric deep learning

against conventional neural networks on an example task on storm forecast data.

Finally, in Chapter 4, we present recent work done with CIRA focusing on the challenging

task of enhancing the signature of atmospheric gravity waves in satellite imagery. These gravity

waves are only faintly visible on particular moonless nights and are visible only very rarely in the

complete dataset of satellite observations, even when restricted to the sensor that can detect them.

This scarcity means that there are very, very few labeled samples with which to develop a detection

algorithm, which makes training a neural network impracticable without some form of severe data

augmentation or synthetic data generation. Instead of taking those routes, we explored a number of

deterministic transformations from harmonic analysis with the aim of distinguishing gravity waves

from other features. The eventual goal is to build this into an automated gravity wave detector

3



that can start building a larger database of occurrences, but the transformations themselves proved

interesting, and we present our work on them here as an example of how building a qualitative

understanding of transformation properties can be key to an exploratory project.

In each of these chapters, we have included a “Narrative and Contributions” section in the

introduction that gives an overview of the history of the project, who was involved, and how each

member of the team contributed to the work. We hope that these are also illustrative of the process

by which convergent research is conducted.
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Chapter 2

A Primer on Topological Data Analysis to Support

Image Analysis Tasks in Environmental Science

In this chapter, we will present a work that has been published as a journal paper. An early

online release version can be found as [85]. The majority of the content in this chapter is identical

to that of the published version, with the exception of the “Narrative and Contributions” section of

the introduction (Section 2.1.6), which is original for this dissertation.

2.1 Introduction

Methods for image analysis have become an essential tool for many environmental science (ES)

applications to automatically extract key information from satellite imagery or from gridded model

output [23, 26, 70, 89]. Machine learning (ML) methods such as convolutional neural networks

(CNNs) are now the dominant technique for many such tasks, where they operate as black boxes

[52]. This is undesirable for high stakes applications [51, 68]. In this paper, we show how a tool

that is beginning to be used in the community, namely Topological Data Analysis (TDA), can be

combined with ML methods for interpretable image analysis. TDA is a mathematical discipline

that can quantify geometric information from an image in a predictable and well-understood way.

In Section 2.4.4, we give a novel example of how we can leverage this understanding to give a

strong interpretation of ML results in terms of image features.

TDA has proven highly successful to aid in the analysis of data in a variety of applications,

including neuroscience [14, 28], fluid dynamics [46], and cancer histology [48]. In environ-

mental science, TDA has recently shown potential to help identify atmospheric rivers [59], de-

tect solar flares [19, 80], identify which wildfires are active [40], quantify the diurnal cycle in

hurricanes [83], identify local climate zones [74], detect and visualize Rossby waves [53], and

forecast COVID-19 spread using atmospheric data [73]. The purpose of this article is to pro-
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vide an intuitive introduction to TDA for the environmental science community—using a mete-

orological application as guiding example—and an understanding of where TDA might be ap-

plied. This article is accompanied by easy-to-follow sample code provided as a GitHub repository

(https://github.com/zyjux/sffg_tda) that we hope will be used by the community in new applica-

tions.

2.1.1 Guiding application - analysing the mesoscale organization of clouds

In order to provide a gentle introduction to TDA for the ES community, we illustrate its use for

a practical example. We chose the application of classifying the mesoscale organization of clouds,

specifically distinguishing four types of organization—sugar, gravel, fish, and flowers—identified

by [78]. This task provides an ideal case study for our exploration of topological data analysis for

several reasons: (1) These four organization patterns are well known from the seminal paper, [78],

and meteorological experts were able to reliably identify these patterns from satellite visible im-

agery. (2) The task can be formulated as classification of patches of single-image monochromatic

imagery, which a common TDA algorithm (persistent homology) is well-suited for. (3) TDA has

never been applied for this application, so it is novel. (4) A well developed benchmark data set

with reliable crowd sourced labels is publicly available for this task [62].

Several ML approaches have already been developed with good success for this benchmark

data set to classify the four different types [62]. We emphasize that we are not seeking to match or

exceed the performance of those ML approaches. Rather, we use this application to demonstrate

TDA as an approach that can help increase transparency, decrease computational effort, and be

feasible even if few labeled data samples are available; see Section 2.1.3.

2.1.2 Key TDA concepts discussed here

In this paper, we focus on the TDA concept that is most appropriate for image analysis, persis-

tent homology. We will provide a detailed introduction in Section 2.3, but in this subsection give a

short preview of key concepts to be discussed.
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Homology is the classical study of connectivity and the presence of holes of various dimen-

sions, giving large-scale geometric information. Persistent homology provides a descriptor with

information on the texture of an image (how rough or smooth it is) and which can be vectorized

into a format useful for machine learning. It does this by scaling through all the intensity values in

an image and recording at what intensities connected components and holes appear and disappear.

Particularly on images, persistent homology and its vectorizations can be efficiently computed, so

for image analysis (from models or satellites), the computational effort of implementing persistent

homology is small.

The results of persistent homology computations can be displayed as either persistence dia-

grams or persistence barcodes. We focus here on barcodes, in which each feature (connected com-

ponent or hole) appears as a bar which starts at the intensity value at which the feature appears,

and ends at the intensity at which it disappears. The lengths of these bars indicate the persistence

of each feature. The raw output of persistent homology is not suitable for most machine learning

tasks, as the output vector varies in length from sample to sample. While there are many proposed

solutions to this, in this paper we use persistence landscapes, which translate a barcode into a

mountain range, with the height of each mountain representing the persistence of the correspond-

ing feature. The landscape is obtained from this mountain range by taking the n highest profiles as

piecewise-linear functions, where n is a hyperparameter.

2.1.3 Advantages of TDA for image analysis tasks in environmental science

Persistent homology is a deterministic mathematical transformation (just as, say, the well

known Fourier transform). We first explore the advantages that persistent homology inherits from

being a deterministic algorithm.

1. Transparency: All the internal steps of the algorithm are known and well-understood, and

the method has a high degree of theoretical interpretation, giving it far more transparency

than most ML methods. In Section 2.4.4, we use this theoretical background to understand

what image features are driving differences in the output of persistent homology.
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2. Known failure modes: No technique is perfect, and there will always be situations that

cause errors and incorrect results. To use a method in practice, it is important to understand in

what situations it struggles and what sorts of errors can result. Because persistent homology

is a deterministic method, we can both theoretically predict these failure modes and interpret

experimental results in terms of the original feature space.

3. No need for large labeled datasets: As a deterministic algorithm, persistent homology does

not require large, reliably labeled datasets. Instead, a small set of representative examples

can be used to explore the different patterns that emerge in the transformed data. TDA is

often used in combination with a simple ML model, and the number of labeled samples

to obtain good performance is smaller than would be required to train a CNN or similar

tool without TDA. This is a huge advantage for environmental science datasets, which are

frequently large and detailed but almost entirely unlabeled.

4. Environmentally friendly: Many CNNs for image analysis tasks are known to have a sur-

prisingly high carbon footprint due to the extensive computational resources required for

model training [72, 87]. TDA is more in line with the Green AI movement [72, 87], as it en-

ables context-driven numerical results without the environmental impact inherent in training

a deep neural network.

Next we discuss the key abilities that persistent homology brings to image analysis tasks. These

fall into three general categories: the incorporation of spatial context into a deterministic algorithm,

the detection of texture and contrast, and invariance under certain transformations.

1. Incorporating spatial context: Many deterministic algorithms, as well as fully-connected

neural networks, struggle to incorporate the spatial context inherent in satellite data. Inte-

grating this spatial context is precisely what motivated the development of CNNs, but CNNs

are costly to train and challenging to make explainable. Persistent homology, naturally incor-

porates spatial context, so patterns that are evident in this spatial context can be incorporated

without resorting to CNNs or other spatially-informed neural network architectures.
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2. Detection of texture and contrast: Persistent homology excels at detecting contrast dif-

ferences in regions (small or large) that differ from the surrounding average, which gives a

representation of the texture present in an image. This focus on texture is useful in analyzing

satellite weather imagery, as texture is frequently a key distinguishing factor, even more than

a cloud being a particular shape or size.

3. Invariance to homeomorphisms: The notion of not wanting to be constrained by a partic-

ular geometry brings us to the final advantage: invariance under a common class of transfor-

mations called homeomorphisms; see Section 2.3.5.

2.1.4 Combining TDA with simple ML algorithms

For some image analysis tasks TDA methods can be used as a stand-alone tool, but for the

majority of tasks, one would first use TDA to extract topological features, then afterwards add a

simple machine learning algorithm, as shown in Figure 2.1(b). For example, the sample application

in Section 2.4 uses TDA followed by a support vector machine (SVM). TDA can thus be viewed

(a) Pure ML approach: image information extracted using a complex ML model.

(b) TDA approach: image information extracted using TDA followed by simple ML model.

Figure 2.1: Two different ways to extract desired information from imagery: (a) using a complex ML
model, typically a deep neural network; (b) using TDA followed by a simpler machine learning method.
The latter can lead to more transparent and computationally efficient approaches.
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as a transparent means to construct new, physically meaningful and interpretable features that may

reduce the need for black-box machine learning algorithms. Using TDA in this way can support

the goals of creating ethical, responsible, and trustworthy artificial intelligence approaches for en-

vironmental science outlined in [51], since transparency is a key requirement for ML approaches to

be used in tasks that affect life-and-death decision making [68], such as severe weather forecasting.

2.1.5 Objectives and organization of this article

As mentioned before, we are not attempting to set a new benchmark for accuracy in classi-

fication, nor are we declaring that this method renders existing techniques obsolete. Instead, we

seek to raise awareness of a promising technique with significant potential for ES applications and

provide the reader with a high-level understanding of how TDA works, what sorts of questions

can be asked using TDA, and how the answers obtained can be interpreted and understood. The

case study in Section 2.4 provides examples of the sorts of questions TDA can help to address,

including reports of negative examples, i.e. situations in which persistent homology is not able to

distinguish between classes, which are as informative as positive examples in order to understand

the best use of TDA.

The remainder of this article is organized as follows. Section 2.2 discusses in detail the sample

application of classifying the mesoscale organization of clouds. Section 2.3 provides an introduc-

tion to the key concepts of topological data analysis. Section 2.4 illustrates the use of these TDA

concepts for the sample application from Section 2.2, in combination with a simple support vec-

tor machine. In particular, in Subsection 2.4.4, we provide a detailed and novel discussion of the

characteristic image-level features that our combined TDA-SVM algorithm uses to classify. This

highlights the ability to identify which learned patterns can be exposed and to discuss these in the

original feature space, which is one of the greatest strengths of persistent homology and TDA. Sec-

tion 2.5 provides an overview of advanced TDA concepts that are beyond the scope of this paper.

Section 2.6 provides conclusions and suggests future work.
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2.1.6 Narrative and Contributions

This project is the one that set the tone for what the rest of my Ph.D. would be. In the summer

of 2020, I had started exploring projects with both Dr. Henry Adams and Dr. Emily J. King in the

mathematics department. Late that summer, Dr. Imme Ebert-Uphoff, a member of the Electrical

and Computer Engineering faculty and the machine learning lead at the Cooperative Institute for

Research in the Atmosphere (CIRA) approached Dr. Adams with the idea of using topological data

analysis and other mathematical tools to study satellite imagery of clouds. Dr. Adams brought this

up to me as a potential research avenue, and after a couple meetings I suggested that Dr. King

would likely also have complementary areas of expertise to bring to the project that I wanted to

learn about.

At this point, the goal was to detect convection in satellite imagery, with the motivation that

human analysts use texture as a key characteristic in detecting convection, while previous machine

learning approaches had focused more on overall brightness than textural properties. The hope

was that TDA could emphasize the texture and thus make the machine learning project easier. We

pursued this line of investigation for about a year overall, including several meetings with CIRA

researchers in large and small groups to both get feedback on our methods and to raise awareness

of the existence of TDA tools. In particular, I was mostly using datasets created and pre-processed

by Dr. Yoon-jin Lee at this point, as she was simultaneously working from a more pure machine-

learning perspective on the same problem.

Ultimately, the TDA tools I could use did not prove as fruitful as we had hoped on this problem.

The key issue was that the most distinctive properties of convection only appeared in animations or

time series data, as bubbles appeared and disappeared, and the available data was too discontinuous

in time to usefully apply existing TDA time series techniques such as vineyards. I didn’t feel like

I was able to make useful progress on this first problem, so after some conversations with Dr.

Adams, Dr. King, and Dr. Ebert-Uphoff, we broadened the scope of the problem beyond detecting

convection. I started testing methods for classifying cloud organizations using TDA, at first using

unsupervised methods such as k-means clustering on TDA summary statistics. After some initial
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interesting results, Dr. Ebert-Uphoff brought up the Rasp et al. dataset that we ended up using in

this chapter as a possible proving-ground for this application of TDA. The existence of this large,

hand-labeled dataset made it much easier to evaluate how successful the algorithm was, and to

understand how TDA algorithms responded to various types of features.

I experimented with a number of different methods through the summer and fall of 2021, and

by late 2021 had mostly developed the methods used in this paper. Throughout this time, I was

meeting weekly with Dr. Adams, Dr. King, and Dr. Ebert-Uphoff. While many Ph.D. research

topics in mathematics are hypotheses that need to be proven, this research project felt far more

exploratory: the question for me was rarely “How do I do the next step?” but “What is the next

step?”, and these weekly research meetings helped both by making me explain what I had done

and was thinking about (which often prompted new ideas) and as a way to get feedback and ideas

for next steps.

By early 2022, I had most of the theory, methods, and results presented in this chapter set, and

turned to writing. Over the spring semester, I collaboratively wrote this paper with Dr. Adams,

Dr. King, and Dr. Ebert-Uphoff. I was the main author, writing the vast majority of the text and

making the final decision on all edits, but I did receive several rounds of edits from my co-authors,

and they did write some portions of the text, particularly regarding connections between this work

and the wider research community, both in atmospheric science and TDA. As part of the editing

process, I edited all these portions that I did not write (along with everything I wrote) to ensure that

the paper had a consistent authorial voice. The remainder of this chapter outside this subsection is

presented as it appears in Artificial Intelligence for the Earth Systems, a journal of the American

Meteorological Society.

2.2 Guiding Application - Classifying the Mesoscale Organiza-

tion of Clouds from Satellite Data

To illustrate the use of TDA we consider the task of identifying patterns of mesoscale (20-

20,000km) organization of shallow clouds from satellite imagery, which has recently attracted
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much attention [18, 62, 78]. Climate models, due to their low spatial resolution, cannot model

clouds at their natural scale [29, 61]. Since clouds play a major role in the radiation budget of the

earth [49], the limited representation of clouds in climate models causes significant uncertainty for

climate prediction [29]. There has been progress in addressing this limitation from the climate

modeling side, e.g., using ML to better represent sub-grid processes [5, 47, 61, 88].

A different approach is to build a better understanding of cloud organization in satellite im-

agery [18,62,78]. One goal is to track the frequency of occurrence of certain cloud patterns across

the globe, reaching back in time as far as satellite imagery allows, to better understand changes

to the underlying meteorological conditions. To this end, in 2020 a group of scientists from an

International Space Science Institute (ISSI) International Team identified the primary types of

mesoscale cloud patterns seen in Moderate Resolution Imaging Spectroradiometer (MODIS; [34])

True Color satellite imagery, focusing on boreal winter (Dec-Feb) over a trade wind region east

of Barbados [78]. Using visual inspection they identified four primary mesoscale cloud patterns,

namely sugar, gravel, fish and flowers, shown in Figure 2.2. Subsequent study of these four cloud

types using radar imagery [78], and median vertical profiles of temperature, relative humidity and

vertical velocity [62], indicate that the four cloud types occur in climatologically distinct environ-

ments and are thus a good indication of those environments.

While humans are fairly consistent at recognizing these four patterns after some training, it

is difficult to describe them objectively so that a machine can be programmed to do the same.

Deep learning offers a potential solution; however, most deep learning approaches require a large

number of labeled images to learn from.

2.2.1 Approaches for dealing with lack of labeled samples

[62] solve the lack of labeled data for this application by a crowd-sourcing campaign using

a two-step process. First they developed a crowdsourcing environment and recruited experts to

label 10,000 images. Experts used a simple interface to mark rectangular boxes in the imagery and

label them with one of the four patterns. The labeled data set enabled the use of supervised learning
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Figure 2.2: Examples of the four cloud types from the sugar, flowers, fish, and gravel dataset from [62].
Note that [62] use the term “flower”, while we follow [78] in referring to this type as the plural “flowers”.
Image credit: Figure 1 in [62]. © American Meteorological Society. Used with permission.
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algorithms as a second step, i.e. the algorithms were supplied with pairs of input images and output

labels and then trained to estimate output labels from given imagery. Two types of supervised deep

learning algorithms were developed, one for object recognition and one for segmentation. Both

algorithms performed well [62].

In contrast, unsupervised learning approaches seek to develop models from unlabeled data

samples. Clustering—which divides unlabeled input samples into groups that are similar in some

way—is a classic unsupervised learning algorithm. For example, [18] trained an unsupervised

deep learning algorithm, in combination with a hierarchical clustering algorithm, for a closely re-

lated application, namely grouping image patches from Geostationary Operational Environmental

Satellite (GOES; [69]) imagery into clusters of similar cloud patterns. Their algorithm identified a

hierarchy of clustered mesoscale cloud patterns, but since the classes of cloud patterns were gen-

erated by a black box algorithm rather than by domain scientists, their meaning is less understood

than the four patterns from [62]. Indeed, a necessary step that comes after the unsupervised learn-

ing is to test whether the patterns identified by an algorithm correspond to climatologically distinct

environments, and if so which ones.

TDA is an alternative approach to address the lack of labels. With TDA we seek to match

imagery to the original four classes identified by [78], yet only require a small number of labeled

samples. We map patches of the MODIS imagery into topological space, then investigate whether

there are significant differences in the topological properties that we can leverage to distinguish

the patterns. TDA can thus be viewed as a means of sophisticated feature engineering, giving new,

physically meaningful topological features. Our motivation is that this approach would allow us

to identify the well established patterns from [78], but with two key differences: (1) this approach

does not require a large number of labels (less crowdsourcing required); (2) this approach is more

transparent than the supervised (such as [62]) and unsupervised (such as [18]) deep learning ap-

proaches, since topological properties can be understood intuitively.

We note that TDA can also be used in an unsupervised fashion similar to the approach of

[18], only with more transparency and computational efficiency. On its own, TDA provides an
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embedding of the image data. However, rather than the embeddings being a learned property

of a neural network whose properties can only be inferred after it is trained, and then only with

difficulty, the TDA embedding is deterministically based on topological properties of the image.

For this primer, however, we focus on the supervised task of identifying the previously established

patterns of [78].

2.2.2 Dataset details and preprocessing

The dataset from [62] provides approximately 50,000 individual cloud type “annotations”

(where each annotation is a rectangle placed on an image surrounding a particular cloud type)

on around 10,000 base images. To evaluate the quality of these crowd-sourced annotations, [62]

used a comparison of Intersection over Union (IoU) scores (also known as Jaccard index [25, 39])

between annotators analyzing the same image, and their analysis indicated that these annotations

were generally of high quality. See Figure 2.2 for examples of these cloud types; in general, sugar

type clouds are small, relatively uniformly distributed clouds; gravel type clouds are somewhat

larger than sugar clouds, and tend to show more organization; flowers type clouds are yet larger

clouds that clump together with areas of clear sky between; and fish type clouds form distinctive

mesoscale skeletal patterns. Each image in the dataset is a 14◦×21◦ (lat-lon) visible-color MODIS

image from the Terra or Aqua satellite. On these images, annotators could draw rectangular anno-

tations encompassing a single cloud type, and could apply as many annotations to each image as

they desired, so long as each annotation encompassed at least 10% of the image.

As we will discuss later, persistent homology takes as its input a space with an intensity value

at each point, which in our case corresponds to a grayscale image. The MODIS images in the

dataset from [62] were NASA Worldview True Color images in RGB [34], which we converted to

grayscale using the python package pillow, which uses the ITU-R BT.601-7 luma transform [38]

for computing intensity from RGB input:

I = 0.299R + 0.587G+ 0.114B.
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This is a transform originally developed for television broadcasting and approximates the overall

perceived brightness for each pixel, which is appropriate here as the NASA Worldview True Color

images are a close approximation of what a human observer in orbit would see. We note that this

is a difference between our work and that of [62], as they used the RGB images throughout.

2.3 Introduction to Topological Data Analysis

In this section we provide a brief introduction to relevant mathematical topics. For more details,

we refer readers to [10], [30], and [24].

2.3.1 Topology

In the broadest sense, topology is the study of the fundamental shapes of abstract mathematical

objects. When we speak of the “topology” of an object, we speak of properties that do not change

under a smooth reshaping of the object, as if it is made of a soft rubber. Some example properties

include: how many connected components the object contains, how many holes or voids it con-

tains, and in what ways the object loops back on itself. In this paper, we focus on the first two

properties: connectivity and holes.

2.3.2 Homology

Homology is one of the tools from topology that focuses on connectivity and holes. The d-

dimensional homology Hd (for d ∈ Z≥0) counts the number of d-dimensional holes (or voids)

in that object. For d = 0, the 0-dimensional homology H0 captures the number of connected

components present in an object. For d ≥ 1, the homology Hd captures holes—a 1-dimensional

hole is one that can be traced around with a 1-dimensional loop (like a loop of string), while a 2-

dimensional hole is a void. As shown in Figure 2.3, these holes and the surrounding surface need

not be circular. Because homology is only interested in counting the presence of these features,

it is invariant under any transformation of the space that does not create or destroy any holes or
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components. In our application of grayscale images, no holes of dimension 2 or larger can exist,

as that would require a dataset that is at least 3-dimensional.

Figure 2.3: Three shapes that each have the same homology—a single connected component, a single 1-
dimensional hole, and no higher-dimensional holes.

2.3.3 Persistent homology

While homology focuses on global features of the space, there is an extension, known as sub-

levelset/superlevelset persistent homology, that captures more small-scale geometry [24]. Super-

levelset persistent homology is the primary tool from TDA we use in this paper, as it gives the best

descriptor of image texture.

For an example of superlevelset persistent homology being computed on a simple surface,

see Figure 2.4. The input to superlevelset persistent homology is a d-dimensional space plus an

intensity value at every point. In our example, this is a grayscale image with two spatial dimensions

(d = 2) with the pixel values as intensities. This input is then converted into superlevelsets: each

superlevelset is a binary mask of the original space, in which only points that have an intensity

value greater than a particular cutoff value have been included. As this cutoff value sweeps down

from the maximum intensity, the homology of each superlevelset is computed and the cutoff values

at which homological features (connected components, holes) appear and disappear are tracked.

For our example, this means that as the cutoff value decreases, more and more pixels with

gradually decreasing intensities are included in the superlevelsets, and we track the connected

components and holes that appear and disappear. Because we are using superlevelsets, in which
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Figure 2.4: A grayscale image (a) ranging between intensity 0 for black and 255 for white. Four super-
levelsets from (a) at cutoff values 209, 151, 94, and 10 are shown in (b) through (e), respectively. The
pixels included in the superlevelsets are colored white. The persistence barcode for (a) is in (f), with vertical
lines indicating the intensities corresponding to the four superlevelsets in (b) through (e). The equivalent
persistence diagram is in (g). In the barcode, diagram, and landscape, red elements (bars, points, and lines,
respectively) indicate connected components (H0 features), while blue elements indicate 1-dimensional
holes (H1 features).
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we start by including the highest intensities, we can view connected components appearing at high

intensity value as being analogous to cloud tops, which are typically brighter, and holes as darker

regions within these bright clouds.

This added interpretability motivates our focus here on superlevelset persistent homology,

which are a simple variation (reflection) of the more commonly used sublevelset persistent homol-

ogy. Sublevelset persistent homology is computed the same way, but instead of each set including

all the pixels with intensities above the cutoff value, pixels with intensities below the cutoff value

are included, and the cutoff value is viewed as sweeping from low intensities up to high intensi-

ties. Throughout this paper, we will frequently omit the prefix “superlevelset” in “superlevelset

persistent homology” and simply use “persistent homology” to refer to this technique—this should

not be confused with the persistent homology technique which takes as its input a cloud of data

points [10].

In practice, it is not necessary to compute the homology for infinitely many superlevelsets—

there are algorithms which discretize the data and then use linear algebra to implement this compu-

tation efficiently. These implementations are fast for low-dimensional data (e.g., the 2-dimensional

grayscale images used in our guiding example) but become more resource-intensive when the input

space consists of higher order tensors. In this work, all homological and other TDA computations

were performed using the GUDHI software package in Python [50].

2.3.4 Persistence barcodes and diagrams

There are two main ways to display the output of persistent homology: persistence barcodes

(Figure 2.4f) and persistence diagrams (Figure 2.4g).

In a barcode, each homological feature that appears is represented by a horizontal bar, which

stretches from the cutoff value at which the corresponding feature first appears (is born) to the value

at which it disappears (dies). Because we are using superlevelset persistent homology, our cutoff

values are decreasing; thus, the intensity values on the x-axis are decreasing from left to right. The

persistence of each feature is the length of its bar. To distinguish between different homological
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classes, we color the bars depending on what dimension the homological feature is. We use red

bars for 0-dimensional features (connected components), and blue bars for 1-dimensional features

(holes). The y-axis of a persistence barcode counts the number of bars, typically ordered by birth

value.

A persistence diagram contains the same information as a persistence barcode, but represents

each feature as a point rather than as a bar. In persistence diagrams, both the x-axis and y-axis

represent intensity. The x-coordinate of this point is given by the birth cutoff value, while the y-

coordinate is the death cutoff value. Because features always die at a higher cutoff value than they

are born, all points lie above the diagonal line y = x. The persistence of a feature is represented

by how far a persistence diagram point lies above the diagonal. We present persistence diagrams

here to familiarize the reader with their use in, e.g., [40], [83], and [74], but for our case study we

focus on barcodes and landscapes.

In persistent homology, there are features that have infinite persistence—features which are

born at a particular intensity, but never die. The most common example of this is that the first

connected component to appear will eventually become the only remaining connected component,

as all other components eventually merge into it at high enough cutoff values. These infinite-

persistence points are represented as infinite bars (rays) in persistence barcodes, stretching out

of the frame to the right, and as infinite points appearing on a special “+∞” line in persistence

diagrams.

2.3.5 How to read and interpret persistence barcodes

To demonstrate how to read a persistence barcode we return to Figure 2.4. The four vertical

lines in the barcode (f) correspond to the four superlevelsets in the middle row, where white pixels

show regions included in the superlevelset. In (b), we see the first connected component appear,

corresponding to the top, infinite-length red bar in the barcode. In (c), two small components in the

lower corners appear, corresponding to the two short red bars in the barcode crossed by the second

vertical line. The short length of these bars indicates that these components are short-lived, and
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soon merge into the larger component. In (d), we see both the central 1-dimensional hole, which

corresponds to the blue bar, and the connected component within that hole which corresponds to

the red bar that is about to end near the third vertical line in the barcode. Finally, in (e), we see

almost the entire image is in the superlevelset, as the cutoff value is very small. However, the upper

two corners have just been included as two new components, which are even more short-lived than

the lower corner components, as indicated by their extremely short red bars.

Figure 2.5: Examples of deformations that all result in the same persistence barcode. The original image is
shown in (a), and the transformations are as follows: scaling in (b), rotation in (c), translation in (d), uneven
scaling in (e), shearing in (f), and general homeomorphisms in (g) and (h).
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The first thing to notice about this barcode is that there are relatively few red bars, apart from

the infinite-length bar, and those bars are quite short. This indicates that few connected components

appear and disappear as we scale through intensity values, and thus the base image is quite smooth.

There is one red bar of reasonable length, so we would expect there to be one somewhat significant

“bump”, a bright region surrounded by darker regions, which is precisely what we see in the middle

of Figure 2.4a. We also notice that there is one relatively long blue bar, which tells us that there

is a hole (dark region surrounded by brighter regions) which persists for a relatively wide range of

intensities.

Persistent homology is invariant under homeomorphisms of the input space, which are continu-

ous deformations with continuous inverses; see Figure 2.5. Examples include all the rigid motions

of the plane (rotation and translation), affine transformations (scaling, skewing, etc), as well as

more radical reshapings, so long as no “ripping” occurs. Superlevelset persistent homology is in-

variant over all such transformations. So, a cloud that has been reshaped, expanded, and moved

but which retains the same overall texture as in its original incarnation would have the same super-

levelset persistence barcodes. See Section 2.5 for some brief comments on versions of persistent

homology that can distinguish between such different deformations of an image.

2.3.6 Persistence landscapes

Persistence barcodes and diagrams have a drawback: they are not always convenient inputs for

use in machine learning tasks, as described by [7], [2], and [54], since they do not naturally live in

a vector space. To deal with this, we use persistence landscapes to summarize and vectorize the

persistence diagram [7]. A persistence landscape is a collection of piecewise-linear functions that

capture the essence of the persistence diagram.

An example of a persistence landscape computed from a small persistence barcode is shown

in Figure 2.6. We separate out a particular homological dimension (e.g., H0 or H1) and remove

any infinite bars, then create a new figure containing a collection of isosceles right triangles with

hypotenuses along the x-axis, one for each bar in the barcode. These triangles are scaled so that the
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triangle corresponding to a bar is the same width as that bar. We view this collection of triangles

as a “mountain range”, and begin to decompose it into landscape functions. The first landscape

function is the piecewise-linear function that follows the uppermost edge of the union of these tri-

angles, i.e., it is the top silhouette of the mountain range. To compute the next landscape function,

we delete the first landscape function from the mountain range, then find the piecewise-linear func-

tion that follows the uppermost edge of this new figure at every point, and so forth for the further

landscape functions. This collection of piecewise-linear functions is the persistence landscape.

The x-axis still represents intensity, while the height of each peak is proportional to the length of

the bar it came from, and is thus a measure of persistence.

Figure 2.6: The process of computing a persistence landscape from a barcode. Beginning with the barcode
in (a) (which already has the infinite bar removed), we raise a “mountain” above each bar to obtain the
“mountain range” in (b). Our first persistence landscape function is the piecewise-linear function that follows
the highest edges of the mountain range in (b), shown as the solid line in (c). The next function in (c) is
obtained by deleting in (b) the lines corresponding to this first function, then finding the piecewise-linear
function that follows the highest edges of this modified mountain range in (b)—this is the dotted line in (c).
Further landscape functions are computed similarly, by deleting previous functions in (b) and tracing along
the highest remaining edges. In (c), only the first three landscape functions are shown.
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This representation is stable—small changes to the input will only result in small changes in the

persistence landscape [7]. While the entire persistence landscape determines a persistence barcode

exactly, in our work we retain only the top several persistence landscape functions, which means

that we obtain a descriptive summary capturing the information of high-persistence points, but

ignore some information about low-persistence points.

To compute landscapes, we once again use the GUDHI software package running in Python

[50].

2.3.7 How to read and interpret persistence landscapes

We now look at a realistic example in Figure 2.7. Reviewing the barcode in 2.7b, we first

notice two red bars with high persistence—the infinite bar, as well as another that stretches nearly

all the way across the barcode. This indicates that there are two high intensity regions that are

separated by a dark region. Over middling intensities, there are few bars, indicating that outside

the two bright regions we already identified, there is little going on. Finally, when we get to lower

intensities (darker regions), there are many short bars, representing subtle variations in the dark

regions. This information, however, is somewhat hard to read in a barcode with as many bars

as this. Thus, we turn to landscapes as a way to summarize this information in a more readable

format.

Figure 2.7: (a) A 32 × 32 sample image from the grayscale MODIS imagery used in the sugar, flowers,
fish, and gravel dataset, along with (b) its persistence barcode, (c) persistence diagram, and (d) persistence
landscape with the first 5 piecewise-linear functions for each of the H0 and H1 classes.
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In the landscape in Figure 2.7d, the single tall red mountain indicates that the original image

(Figure 2.7a) contains two connected components that persist over a large range of intensity levels

(as the infinite-persistence component is implicit in the landscape). The only blue mountains in

the landscape are much smaller than the red mountains and are mainly to the right of them. This

indicates that while the original image contains numerous holes within the connected components,

they only appear near the bottom end of the intensity range, i.e. the holes do not appear until we

have started including relatively dark regions. As an example, consider the single extremely dark

pixel in the upper left-hand corner adjacent to the bright clouds, and surrounded by a moderately

dark region. This hole contributes a moderately tall blue peak far to the right in the landscape, as it

does not appear until the relatively dark region surrounding it is included into the bright adjacent

component, but will not fill in until the nearly black pixel in the middle of the hole is included.

In general, high-persistence features (long bars, tall mountains) give information about large-

scale features—the presence of two bright clouds in Figure 2.7a, for example. On the other hand,

low-persistence features (short bars, small mountains) give information about texture. In 2.7, the

short bars and small mountains appearing at lower intensity values indicate that the background

darkness in the image is relatively noisy, rather than being uniformly black or smoothly graded.

The few small blue mountains in Figure 2.7d indicate that the bright clouds also contain some

textural elements - regions of slightly darker cloud within brighter regions.

2.4 Environmental Science Satellite Case Study

Now that we have established the basic theory of TDA, we return to its application to classify-

ing mesoscale clouds.

2.4.1 Adapting persistent homology to this dataset

We want to use persistent homology and landscapes to compare the clouds present in the rect-

angular annotations on images in the dataset of [62], so we need to find a consistent vector rep-

resentation for these annotations. While the overall images in the dataset are of consistent size
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Figure 2.8: An illustration of the annotation and subsampling process. In (a), we see a full 14◦×21◦ image,
with an example Fish annotation outlined in blue, with the subsample boxes in various colors inside. In (b),
we zoom in on this annotated region, including the same color-coded subsamples, and in (c) we see the
corresponding landscapes for each subsample. Finally, in (d), the resulting averaged landscape is displayed.
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(1400 × 2100 pixels), the annotations are not. An annotated region covering more area has inher-

ently more complexity, which would yield a barcode with more bars (and thus a different vector

representation) than a smaller annotation. To account for this, we implemented a subsampling rou-

tine, which is illustrated in Figure 2.8. For each annotation, we randomly chose six 96 × 96 pixel

regions (the subsamples) and computed their persistence landscapes individually—this is shown

in Figure 2.8 (a) – (c). Each landscape consisted of 10 piecewise linear functions: five giving in-

formation on connected components (plotted in red) and five giving information on 1-dimensional

holes (plotted in blue). The height of each function was recorded at 200 evenly spaced locations

along the intensity axis, giving a vector of length 200 representing that function—these 10 vectors

of length 200 were concatenated to yield a vector of length 2000 (i.e., a point in R
2000), represent-

ing the persistence landscape of that particular subsample. This vectorization is shown in Figure

2.9. At that point, the persistent homology of each annotation was represented by a small point

cloud of six points in R
2000, one for each of the subsamples. To obtain a single point to represent

the annotation, we took the geometric vector average of the six points in the point cloud, giving

us the single vector that we can use to compare and analyze our annotations. Additionally, we can

display and interpret this average vector as a landscape, in that it can be displayed as 10 functions,

five representing the persistence and intensity ranges of connected components and five represent-

ing the same for 1-dimensional holes. This averaged landscape is visualized in Figure 2.8(d). In

particular, we can view (for instance) the first 200 values of the average landscape vector as the

heights of the first average landscape function at the 200 evenly-spaced intensity values where

we sampled the piecewise landscape functions. We can view these values as coming from two

equivalent formulations: first, as described above, as coming from a pointwise vector average, or

second, by taking the average height of the first piecewise landscape function at each of the 200

evenly-spaced intensity values across the six subsamples.
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Figure 2.9: A cartoon showing the sampling and concatenation of a persistence landscape into a vector. In
this figure, we see the landscape, each landscape function individually, and the process of sampling each
landscape function evenly and then concatenating the results into a single vector, v.

2.4.2 Dimensionality reduction and adding a simple machine learning model

to build a classifier

Once we obtained vectorized representations of each annotation, we sought to visualize the

dataset. As R
2000 is not visualizable, we applied a dimensionality reduction algorithm to yield a

representation that we can plot. We used principal component analysis (PCA), as it is a widely-

used and relatively simple technique, which in our case produced quite good results. We found that

patterns in the data were visible upon projecting down onto the first three principal components,

which captured over 90% of the variation in the high-dimensional data. We also note that the prin-

cipal component vectors from repeated random samplings were extremely consistent, indicating

that our projections were quite stable.

Once the data were projected down to three dimensions, we could visualize the data as a point

cloud, with points colored according to which cloud pattern they represent. As a note, the PCA

algorithm was entirely unsupervised with regards to these cloud pattern labels—it used only the

vectorized representation of the persistence diagram.
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We analyzed each of the six pairs of classes separately by training a support vector machine

(SVM, [4]) to find the plane that best separates the two classes of projected data in three dimen-

sions. We considered running the SVM on the high-dimensional data, but initial testing indicated

that this tended to overfit the data, and actually resulted in reduced classification performance. The

SVM was trained on a random sample of 350 annotations of each class, then performance metrics

were computed for a test set of 200 random annotations of each class. For visualizations of the

test data and SVM separating plane, as well as performance metrics for each of the six pairwise

comparisons, see Figure 2.10.

2.4.3 Results - what initial patterns emerged from applying persistent ho-

mology?

Overall, the projected points separated well, with one notable exception. We began our in-

vestigation by comparing the sugar vs. flowers patterns, as these are visually the most dissimilar

(Figure 2.2). As expected, these classes had the most distinct separation out of the six possible

pairs, as seen in Figure 2.10a. While the separation was not perfect, most of the error comes in

the form of some intermingling near the separating hyperplane. The performance of the algorithm

in separating these classes was striking, given that only a small, random subset of each annotation

was included, and that the PCA projection algorithm was entirely blind to the data labels. This ex-

ample is a clear indicator of the potential that persistent homology has to usefully extract textural

and shape differences in satellite imagery.

While not quite as exceptional, the flowers and gravel patterns also separate well, as seen in

Figure 2.10c. There is again a degree of intermingling near the separating plane, and in this case

that intermingling extends a bit farther to either side. This is what we would expect, based on

the visual presentation of the cloud regimes—the gravel class falls somewhere between sugar and

flowers in terms of cloud size and organization.

We begin to see the algorithm struggle a bit more when we attempt to separate the sugar regime

from the gravel regime. As we can see in Figure 2.10e, the intermingling of data points stretches
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(a) Sugar vs. flowers. Test data performance: 89.25%. (b) Fish vs. sugar. Test data performance: 86%.

(c) Flowers vs. gravel. Test data performance: 81%. (d) Fish vs. gravel. Test data performance: 79.5%.

(e) Sugar vs. gravel. Test data performance: 71.25%. (f) Fish vs. flowers. Test data performance: 57%.

Figure 2.10: Plots of the embedded landscape test points for each pairwise combination. Flower points are
red, sugar points are yellow, gravel points are green, and fish points are blue, with color representing the
class assigned in the crowdsourced data set in [62]. The SVM separating plane for each pair is shown in
wireframe, and the percentage of correctly classified points is reported.
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throughout the point cloud, although there is still a difference in densities between the classes on

either side of the separating hyperplane.

However, there are two classes that are effectively indistinguishable by this algorithm: the

flowers and fish patterns. The plot of these points can be seen in Figure 2.10f, and it is apparent

that there is no effective linear separator between these classes. While there is a “separating”

hyperplane plotted, it is much less relevant in this case than in the others; the data points are

remarkably evenly-mixed. This proved to be the case even when more principal components were

included. A potential explanation for why the algorithm struggles so much with this task is that the

distinguishing features of fish vs. flowers are simply too large-scale for the subsampling technique

to pick up on. The fish pattern is characterized by its mesoscale skeletal structure, particularly

in its difference from the flowers regime, which is more randomly distributed. This mesoscale

organization is simply not visible to the subsamples, as the 96× 96 patches are too small to detect

that skeletal structure. Future analyses could include using larger patches to better capture these

features and perhaps distinguish between these classes more effectively. We also note that in

[62], the fish pattern was the most controversial amongst the expert labelers, so it is perhaps not

surprising that our algorithm also struggles.

When we look at fish vs. sugar and fish vs. gravel in Figures 2.10b and 2.10d respectively, we

can see how similar these plots appear to those in Figures 2.10a and 2.10c, in which flowers was

compared with sugar and gravel. This similarity is made even more remarkable by the fact that

the sugar samples in these plots were drawn separately rather than being reused for the pairwise

comparisons (and similarly for the gravel samples). While the algorithm is not doing well at

distinguishing between fish and flowers, we can at least see that its behavior is consistent: fish and

flowers are projected similarly into the 3D embedding space, so they compare similarly with the

other classes.

Overall, this case study suggests that it is possible to use persistent homology to quantify and

understand the shape and texture of satellite cloud data. While there are cases where the algorithm

struggles, these are understandable in terms of the visual task being requested, and are internally
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consistent from sample to sample. Moreover, in the cases where the algorithm does well, it does so

consistently across repeated samples, and suggests that when these tools are appropriately applied,

excellent results can be obtained from very limited sample sizes.

2.4.4 A novel interpretation method - deriving interpretations in terms of

weather and homology

As an example of how this separation can be interpreted, we examine the case of sugar vs.

flowers. Recall that in Figure 2.11a, we saw that this pair of classes had the strongest separation in

the dataset.

(a) Most extreme sugar example. (b) Landscape for the sample in (a). (c) “Virtual” sugar landscape.

(d) Most extreme flowers example. (e) Landscape for the sample in (d). (f) “Virtual” flowers landscape.

Figure 2.11: Samples showing the sugar and flowers samples farthest from the separating hyperplane (in
(a) and (d)), and their landscapes (in (b) and (e)). The “virtual” landscapes obtained by traveling along the
line normal to the separating hyperplane are shown in (c) and (f).
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To begin, we explore what can be learned just from the summarized data, without looking at

examples. To discover what the separating plane between sugar points and flowers points repre-

sents, we create “virtual” landscapes. We first lift the separating plane in R
3 to the hyperplane in

R
2000 consisting of all the points that project (under PCA) into the separating plane in R

3. Next,

we find the line normal to this hyperplane that passes through geometric center of the data. Finally,

we choose points on this line that fall at the outer extent of the data point cloud. These points live

in the landscape embedding space (R2000), but are not sampled data points. However, by apply-

ing the inverse landscape embedding, we can visualize the landscape-like set of curves that would

give this embedded point. Virtual landscapes for sugar and flowers can be seen in Figures 2.11c

and 2.11f, respectively.

An advantage of this approach is that it synthesizes trends from the real data into a readable,

controllable format that demonstrates how SVM is separating these classes. When we compare

these virtual landscapes with the actual landscapes farthest from the separating hyperplane (seen

in Figures 2.11b and 2.11e), we can see that the virtual landscapes are smoother, but that the overall

shapes are remarkably similar.

We can also interpret the shapes of these landscapes in terms of the features present in the im-

ages. Let us examine the images and corresponding landscapes in Figure 2.11. The most prominent

feature in the two landscapes is the tall red peak in the sugar landscape, shown in Figure 2.11b. Re-

call that the red lines denote 0-dimensional homology (connected components) while the blue lines

denote 1-dimensional homology (holes). This red peak represents the presence of strongly persis-

tent connected components, i.e., separated regions of bright cloud strongly contrasting against a

much darker background. The sharpness of this peak also indicates that these features are similar

in both the intensity of the cloud top and the intensity of the surrounding background. The compar-

atively low blue curves with only a small peak at the end indicate a lack of 1-dimensional homo-

logical features (holes), and thus the texture within connected components is relatively uniform.

Looking at the image in Figure 2.11a, we see these observations borne out: there are numerous

small clouds of similar brightnesses which stand in stark contrast to the overall uniformly dark
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background, matching the tall H0 peak. Because these clouds are relatively small, there is little

discernible texture within each cloud, which corresponds to the relative absence of H1 features.

On the other hand, the flowers landscape in Figure 2.11e displays a lower red peak, with more

separated curves. This lack of concentration indicates that there is more variation in the intensity

values at which connected components appear (the brightest part of the component) and at which

they merge together (the intensity of the bridge connecting that component to another), while the

lower height indicates that these features are overall less persistent—they merge into one another

more rapidly. Additionally, there is a much stronger H1 signal in this case than in the sugar

landscape, meaning that the connected components have more internal texture, with numerous

holes appearing and disappearing over a wide range of intensity values. These observations match

with what we see in Figure 2.11d. The clouds in this image are much larger and cover more of

the frame, with varying intensities within and between the clouds, leading to the more varied H0

landscape. This image also shows much more internal texture to the clouds, with far more of a

dimpling effect than in the sugar example.

In summary, this example shows how the patterns learned by the TDA-SVM algorithm can be

translated back to homological features which in turn correspond to weather-relevant features in

the original image. This is made possible by the fact that the SVM model can be represented by a

single separating plane, which can be translated back into the space of persistence landscapes and

then interpreted, yielding a highly interpretable approach to the pairwise classification problem.

2.4.5 Comparison of this classifier to those in Rasp et al. [62]

Accuracy: The accuracy of our approach cannot be directly compared to the deep learning

algorithms in [62] because they address different tasks. The task considered here is to (1) choose

a single class (out of two) for an annotation assumed to consist of a single cloud type, (2) based

on several small patches (96 × 96 pixels). In contrast, the task considered in [62] is much more

complex, namely to (1) assign one or more labels for an annotation; (2) based on a very large

image. We choose the simpler task for our TDA approach in order to expose the properties of a
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TDA algorithm, and trying to implement a multi-label assignment (for example by using a sliding

window approach) likely would have made this exploration more complicated without providing

new insights. However, even without a direct comparison it is obvious from the results that this

first TDA-SVM approach cannot nearly achieve the accuracy of the deep learning approaches.

Required data samples: Our approach only requires a few hundred labeled data samples to

develop a classifier. This reduces the required labeling effort by two orders of magnitude relative

to the tens of thousands of labeled samples in [62].

Computational effort: Computations were performed on a Surface Pro 6 with an Intel Core i5-

8250U CPU. The computational bottleneck in this case was computing the persistent homology—

for 800 samples (and therefore 4800 subsamples to compute persistent homology for), approxi-

mately 45 minutes of wall-clock time was required. This is already much less computational time

than is generally required to train a deep network, and it is likely that this could be significantly

improved by parallelizing, as each sample can be processed entirely separately.

Interpretability and failure modes: Our approach yields a highly interpretable model that

provides an intuitive explanation of how the algorithm distinguishes different classes, while the

deep learning methods do not. Furthermore, the interpretation of the separation plane in our model

makes it easy to provide insights into failure modes, i.e. which types of mesoscale patterns can be

easily or not so easily be distinguished by their topological features, and thus by this approach.

2.5 Advanced TDA concepts

In this section we briefly discuss and provide references for some advanced TDA concepts that

are beyond the scope of this article, along with motivations for when and why readers might find

them useful.

Figure 2.5 shows that while persistent homology measures some spatial aspects of the inten-

sity function, it is also invariant under nice deformations (“homeomorphsims”) of the domain.

However, there is another (very popular) type of persistent homology, constructed using growing

offsets of a shape, or unions of growing balls, that distinguishes between different deformations of
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the domain [10, 30]. We expect that this variant of persistent homology will also find applications

in atmospheric science, and we refer the reader to [83] for such an example.

We are particularly interested to explore the use of TDA to analyze cloud properties from

satellite imagery, e.g., to detect convection. While the example here looked at large scale orga-

nization of clouds, to analyze properties like convection we would zoom far into a single cloud

and analyze its texture, e.g., seek to identify whether there is a “bubbling” texture apparent in a

considered area of the cloud. Preliminary analysis leads us to believe that it might be necessary to

use more sophisticated TDA tools for this purpose than discussed here, such as vineyards [17] or

crocker plots [82], which incorporate temporal context by analyzing the topological properties of

sequences of images, rather than individual images.

We have considered persistent homology that varies over a single parameter—the intensity of

the satellite image. However, one frequently encounters situations in which two or more parameters

naturally arise. For example, one can perform superlevelset persistent homology on a 2-channel

image, containing the intensities with respect to two frequencies, with respect to the parameter

from either the first channel or the second. In these contexts, multiparameter persistence [11–13,

81] allows one to consider both parameters at once, even though the underlying mathematics is

more subtle and computations are more difficult. A version of multiparameter persistence was

applied recently to the atmospheric domain in [79].

Persistence barcodes and diagrams are not ideal as inputs into machine learning algorithms,

because they are not vectors residing in a linear space. This is evidenced by the fact that averages

of persistence diagrams need not be unique [54]. There are a wide array of options for transforming

persistence diagrams for use in machine learning, including not only persistence landscapes [7] but

also persistence images [2] and stable kernels [63], for example. TDA has been gaining traction

in machine learning tasks as more tools become available to integrate it into existing workflows,

in both neural network layers [58] and loss functions [15]. As an example application, TDA has

recently been used to compare models with differing grids and resolutions [60].
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There is a variant of superlevelset persistent homology, called extended persistent homol-

ogy [24, Section VII.3], which performs two sweeps (instead of just one) over the range of in-

tensity values. Extended superlevelset persistent homology detects all of the features measured

by superlevelset persistent homology, plus more. It may be the case that one can extract more

discriminative information from a satellite image by instead computing the extended persistence

diagram.

2.6 Conclusions and Future Work

The primary contributions of this manuscript are as follows. (1) This paper presents, to the

best of our knowledge, the first attempt to provide a comprehensive, easy-to-understand introduc-

tion to popular TDA concepts customized for the environmental science community. In particular,

we seek to provide readers with an intuitive understanding of the topological properties that can

be extracted using TDA by translating cloud imagery into persistence landscapes, interpreting the

landscapes, then highlighting the topological properties in the original images. (2) In a case study,

we demonstrate step-by-step the process of applying TDA, combined with a simple machine learn-

ing model (SVM), to extract information from real-world meteorological imagery. The case study

focuses on how to use TDA to classify mesoscale organization of clouds from satellite imagery,

which has never been addressed by TDA before. (3) The most novel contribution is the inter-

pretation procedure we developed that projects the class separation planes identified by the SVM

algorithm back into topological space. This in turns allows us to fully understand the strategy used

by the classifier in meteorological image space, thus providing a fully interpretable classifier.

In future work we seek to explore several of the advanced methods outlined in Section 2.5.

We believe that there are many applications to be explored with TDA, including the applications

suggested by [62] for their methods, namely “detecting atmospheric rivers and tropical cyclones

in satellite and model output, classifying ice and snow particles images obtained from cloud probe

imagery, or even large-scale weather regimes” [62]. Furthermore, as discussed in Section 2.1,

TDA has already been shown to be useful to identify certain properties of atmospheric rivers,
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wildfires, and hurricanes, and we expect TDA to find additional use in those areas as well. Our

group is particularly interested in using TDA to detect convection in clouds, and to distinguish

blowing dust from, say, blowing snow, in satellite imagery.

We have only scratched the surface here of exploring how TDA can support image analysis

tasks in environmental science, but we hope that this primer will accelerate the use of TDA for this

purpose.

Data Availability Statement

The underlying crowd-sourced data from [62] are available at https://github.com/raspstephan/

sugar-flower-fish-or-gravel. The code used in our analysis will be available as a GitHub repository

at https://github.com/zyjux/sffg_tda.
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Chapter 3

Comparing Rotationally Invariant and Conventional

CNNs

3.1 Introduction

When one begins trying to create neural networks on spatial input data (i.e., data that is not just

a list of numbers, but has the additional structure that certain values come from adjacent locations),

a very natural question that arises is “how do we deal with content-preserving transformations?”

For instance, if we are attempting to perform the classic example task of distinguishing between

images of cats and dogs, a cat that has been rotated by 90 degrees or which appears in a different

place in the image is still a cat and should be treated as such. However, with an entirely naive net-

work architecture, a cat rotated by 90 degrees or even translated by a few pixels could be treated

as entirely different. There are two approaches to enable the network to handle such transforma-

tions: first, increase the sample size and diversity sufficiently (either through data augmentation,

or through increasing the number of unique samples) and make the network large enough that it

can learn these equivalences; or second, design a network architecture that a priori enforces these

behaviors.

One approach to enforce these symmetry invariances is called group convolution [16]. Broadly

speaking, group convolution generalizes the convolution used in convolutional neural networks

(CNNs) to represent a broader class of transformations. Rather than simply translating the con-

volutional filter around our input space as in CNNs, in group convolution, we apply the action

of a particular symmetry group of our input space to the filters in order to build a network that

respects that symmetry group. We will provide a more thorough introduction to group convolution

in Section 3.2.
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Basing a network on group convolution has a number of potential advantages: (1) by enforcing

the symmetry group, we restrict our search space when optimizing the network, which can enable

faster convergence in training; (2) the network is able to carry more information through its hidden

layers without increasing the number of trainable parameters; and (3) the network is inherently

robust to any transformation included in its symmetry group. As we will see later, traditional CNNs

are a special case of group convolution, where the group in question is one of translations. Some of

the desirable properties of CNNs, such as their comparative speed and low number of parameters

compared to equivalent fully-connected networks, as well as their robustness to translations, can

thus be linked to this group convolution structure.

While group convolution is theoretically elegant and has some potential advantages, it is worth

investigating how those properties play out when applied to real-world data. For this chapter,

we applied the ideas of group convolution to a dataset from the National Center for Atmospheric

Research (NCAR). The underlying data came from a collection of runs of the Weather Research

Forecasting (WRF) model described in [71, 77], on which the Hagelslag algorithm [27] was run

to extract information on severe weather events. See Section 3.3 for more information on this

dataset. Recent work on this problem has used conventional CNNs to build a semi-supervised

algorithm to classify each storm event into one of three categories: disorganized, supercell, or

quasi-linear system [76]. This is relevant for forecasting, as each category has different severe

impact weather event probabilities—supercells are associated with hail, severe thunderstorms, and

tornadoes, while quasi-linear systems are more associated with severe wind events. In that work,

some of the variables that proved useful were the lengths of the major and minor axes of the mini-

mal ellipse surrounding the storm. To explore the performance of group convolution on this form

of data, we focused on the task of predicting the major and minor axes lengths from forecasted

radar reflectivity. Our goal was to explore whether implementing rotation-invariant group convo-

lution would yield performance gains or superior generalizability on this task as a test case to see

whether it would be worth incorporating into more involved models.
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3.1.1 Organization of this Chapter

We will begin in Section 3.2 with an introduction to the theory group convolution. Next, in

Section 3.3, we will describe in more detail the dataset we use. In Section 3.4, we will discuss

our results in testing this approach on the storm data, and finally in Section 3.5, we give some

concluding thoughts and discuss potential future directions.

3.1.2 Narrative and Contributions

The majority of this work took place while I was a visitor at NCAR in the summer of 2022.

I was hosted by the Machine Integration and Learning for Earth Systems (MILES) team and su-

pervised by Dr. David John Gagne, who first brought up the topic of geometric deep learning.

Through a series of meetings, Dr. Gagne, my co-advisors Dr. Henry Adams and Dr. Emily King,

my committee member Dr. Imme Ebert-Uphoff, and myself collaboratively came up with the spe-

cific topic of utilizing geometric deep learning to enforce rotation invariance in a CNN on storm

data. The storm dataset was provided by the MILES group, and several team members including

Dr. Gagne, Dr. John Schreck, and Charlie Becker helped me understand and utilize the data.

I did the complete implementation of the rotationally invariant CNN, including translating the

concepts from [6] into practical algorithms and implementing those algorithms in Python code.

The resulting analysis is also principally my work. I met weekly with Dr. Gagne throughout this

period to discuss results and issues, and to explore new directions of inquiry.

After the visit officially ended at the end of the summer, I continued corresponding with Dr.

Gagne and continuing to work at a reduced pace on the project, and presented some preliminary

results at the Data Science Seminar at CSU, as well as part of my preliminary exam. Discussions

after those presentations led to several additional developments in the project, particularly the

section on tuning how deep in the network rotation invariance should be applied.
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3.2 Group Convolution

Our implementation of group convolution was inspired by the proto-book on geometric deep

learning by Bronstein et al. [6] as well as Cohen and Welling’s earlier work on group convolution

[16]. Code implementations of these ideas can be found in the associated GitHub repository at

https://github.com/zyjux/gdl-storm-mode; the specific implementation of group convolution and

the RICNN class can be found in the notebooks/imports subfolder.

3.2.1 The Group Convolution Operation

We begin by separating our input into two parts. The first part is our input space, which we

denote as U . This input space is the structure underlying all the data—when analyzing image-style

data (such as was done in this chapter), this input space is the pixel grid system. The second is a

signal on that input space, which we will denote x(U), which assigns one or more values to each

point in U—i.e., it is a function U 7→ R
n for some n. In image applications, this signal is the data

on the grid—in a grayscale image, this would be a single value per pixel, while for RGB images

each pixel is assigned a length 3 vector. When dealing with finite images, it is frequently useful

to think of our input space U as being the infinite discrete plane Z
2, and our signal x(U) as being

equal to 0 anywhere outside the finite region where our image is defined.

Figure 3.1: Some symmetries of a cube, with a marked point to illustrate what has changed. In (e), we also
see a transformation that is not a symmetry.
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We also choose a group G of symmetries for U . By “symmetry”, we mean an action on U

such that the image of U under this action is equal to U—for some examples, see Figure 3.1. For

example, if we rotate a cube by 90◦ about one of its faces, we get the same cube back, but if we

rotate by an angle that is not a multiple of 90◦, the result does not lie nicely on top of our original

cube, and this is therefore not a symmetry of the cube. When dealing with images, we think of

them as being part of the infinite discrete plane, where the image is the only non-zero region on the

plane, so it is worth considering symmetries of the plane. As one example, if we rotate the plane

by a multiple of 90◦ about any point, we get another copy of the plane, and if we translate by an

integer we also get another copy of the plane; both of these are symmetries because the plane is

infinite, so even if the origin moves, the result is still the same set. Importantly, we also require

that G is a group in the algebraic sense—it is closed under a binary operation (composition, in our

case), it has an identity element, and every element has an inverse. For more on symmetry groups,

see [22].

To understand how we can connect these symmetries to convolution, we begin by reviewing

the equation conventionally used for discrete convolution, where the input space U is the discrete

plane Z
2:

(x ⋆ θ)(t) =
∑

u∈U

⟨x(u), θ(u− t)⟩ (3.1)

for t ∈ U = Z
2, and where θ is the convolutional filter. The notation ⟨a, b⟩ represents the inner

product:

⟨a, b⟩ = a1b1 + a2b2 + · · · anbn

for a, b ∈ R
n. Note that the inner product within the sum is occurring at each pixel—if the data

has only a single channel, then this inner product is simple multiplication. Here, x and θ are both

functions U 7→ R
n for some n ≥ 0, while x ⋆ θ is a function U 7→ R. Geometrically, this gives us

another function on the plane, where the value at each point is obtained by translating the filter θ

to that point, multiplying it against the signal x and summing all the resulting values.
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Our formulation for group convolution, where here we still have U = Z
2, but we are using a

different group of symmetries, is

(x ⋆ θ)(h) =
∑

u∈U

⟨x(u), θ(h−1u)⟩ (3.2)

where now h ∈ G. We once again have that x and θ are functions U 7→ R
n, but in this case x ⋆ θ is

now a function G 7→ R. The term θ(h−1u) represents the action of G on the signal θ—we can find

out how h acts on θ by looking up how h−1 acts on u, and computing θ of that value. It is useful to

observe that by the properties of inner products and the way this group is acting, this is equivalent

to

(x ⋆ θ)(h) =
∑

u∈U

⟨x(hu), θ(u)⟩;

that is, we can apply the action of G to either the signal x or the filter θ. If we let G = Z
2

acting by translation, then we recover the conventional equation for convolution from Equation

3.1, confirming that standard convolution is in fact a special case of group convolution.

The key feature of group convolution is that it is equivariant to the action of G: if g ∈ G, then

θ ⋆ (g · x) = g · (θ ⋆ x), where g · x represents g acting on x. That is, applying a transformation

before performing group convolution yields the same result as performing group convolution then

applying the equivalent transformation. While we may ultimately want a network that is invari-

ant—one that is completely unaffected by the action of G on the input space, so that for g ∈ G,

θ ⋆ (g · x) = θ ⋆ x—applying invariance too early in the network can reduce its expressivity. Thus,

we build equivariant layers, then later in the architecture apply a step that converts this equivariance

to invariance.

For many groups, even non-commutative ones, we can write every element as some group

element followed by a translation. For instance, if our group G is the set of all translations and

rotations of the plane, we can write every element as first a rotation then a translation. This case

enables easier computation, as we can leverage the existing tools for computing convolutions. In

the case described where G is the set of all translations and 90◦ rotations of the plane, instead
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Figure 3.2: The initial rotationally invariant (RI) convolution layer. The input image (left) is convolved
with four rotated copies of the same filter resulting in the feature activations shown in the center, then those
copies are stacked so that the starting positions for each rotated filter (shown as red dots) are aligned.

of directly computing the group convolution in Equation 3.2, we can take our single filter θ and

compute the four rotated versions of it, then do four convolution operations with the rotated filters.

After computing these convolutions separately, we can stack them as slices in a new signal (x ⋆ θ)

on the underlying space G. A graphical representation of this can be seen in Figure 3.2.

When stacking the convolution up this way, we need to consider how to align the stacked

images. This alignment comes from considering the “starting position” of each rotated filter θ.

Suppose the starting position for the un-rotated filter is in the upper left corner of the input image,

and we apply rotation about the center of the input image. We choose the center of the image rather

than the center of the filter because we can view G as acting on either the filter or input and those

perspectives should have a common center of rotation. By choosing the center of the image, we

ensure that after applying a rotation to the image, we do not need to deal with recentering. Thus,

if we apply a counterclockwise rotation by 90◦ to the filter, the resulting starting position is in the

lower left corner; two rotations have a starting position in the lower right corner, and three rotations

have a starting position in the upper right corner; these locations are marked with red dots in Figure

3.2. In separating the group G into four slices organized by which rotation has been applied, we

want to align the starting positions, and as such, we rotate the outputs of each convolution so that
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their starting positions are in the upper left corner. This also ensures the desired property that

rotation of the input image corresponds to permutation of the slices in the output stack.

Figure 3.3: The internal rotationally invariant (RI) convolution operation. Note that the four convolution
operations in the center all use a single, common filter. Note that all the slices of the same color in the input
stacks are collected for the convolution operation in the center, as shown for the blue slices; the links for the
other colors are not shown for the sake of clarity.

As we have mentioned, the output of group convolution x ⋆ θ is a signal on G rather than

the input space U , typically the plane Z
2. Thus, the group convolution operation we have just

described only applies to the initial convolution step, when the input is a 2-dimensional image,

so we will refer to this as initial rotationally invariant (RI) convolution. For layers after the first,

we need a third, yet more general convolution operation, which we will call internal rotationally

invariant (RI) convolution:

(x ⋆ θ)(h) =
∑

g∈G

⟨x(g), θ(h−1g)⟩,

where now x and θ are functions G 7→ R
n, and x ⋆ θ is still a function G 7→ R. It is important to

note here that the action of G on x and θ is different than in Equation 3.2: in that case, we viewed

G as (for instance) translating and rotating the plane Z
2, while in this case, G is acting on itself.
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In terms of implementation, this means that while we thought of the initial group convolution

layer as being four distinct traditional convolutions with the same filter rotated by multiples of 90◦,

we can now think of these future convolutions as being more similar to traditional convolutions,

but with a higher-dimensional space for the filter to be moved through. We can achieve this as

seen in Figure 3.3 by first separating out all the slices from the output stacks of the previous layer

and grouping them by which slices they were in, then performing four conventional convolutions

using a single, common filter on the resulting arrays. The outputs of these convolutions are then

arranged as slices in the next stack corresponding to the slice they originally came from.

3.2.2 Resulting Architecture

Figure 3.4: A conventional CNN architecture, showing the flow of data through the network.

To see how this can be used to construct a neural network architecture, let us consider Figures

3.4 and 3.5. In Figure 3.4, we see a diagram of a conventional CNN architecture. We convolve our

input space with n1 different filters of size x1×x1 (where x1 is an integer, most commonly 3 or 5),

which result in n1 outputs of size a× b, called feature activations. To these feature activations, we

apply a pointwise nonlinear activation function, as well as pooling to allow connections between

more and more distant parts of the input space. We then convolve again with n2 filters, where

typically n2 > n1. Note that these filters are x2 × x2 × n1 as each filter collects information

from all the feature activations from the previous layer. Eventually, we take the results of these
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convolutions and flatten all these feature activations into a single feature vector. This vector is then

the input into one or more dense neural network layers, which do the final analysis and reduce the

dimensionality down to our final output variables.

Figure 3.5: Rotationally invariant CNN architecture, showing the flow of data through the network. The
initial RI convolution step for a single filter is shown in Figure 3.2, while the internal RI convolution step
for a single filter is shown in Figure 3.3.

Now consider Figure 3.5, which shows an example architecture of a network where G consists

of translations and 90◦ rotations of the plane. As in Figure 3.4, we begin with n1 different filters

of size x1 × x1. We compute the rotations of these filters and use those as shown in Figure 3.2 to

compute the initial RI convolution layer, the output of which is n1 feature activations, each of which

is a a × b × 4 stack. In this architecture, we view points on different slices as being distant from

one another, so when we perform pooling, it is within each slice, not between slices. For deeper,

internal RI convolutional layers, recall that we no longer need to take our filters and generate

rotations of them; instead, we are simply convolving our filters through each stack, maintaining

the underlying structure of the space as we do so, as shown in Figure 3.3.

After performing a number of these rotationally equivariant convolutions, we reach a point

where we are ready to flatten and move to the dense part of the network. However, before we do

so, we would like to move from equivariance to invariance, which we can do by pooling across the

slices in each feature activation stack, as shown in Figure 3.6. For this step, any pooling method

that does not depend on the ordering of the elements, such as pixelwise average or max pooling,
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will yield an invariant network. In our work, we used max pooling for this rotation invariant

pooling layer, based on testing performed by Hong et al. in [36]. From this point on, the network

is identical to a conventional CNN, except that the output will be entirely invariant to rotations of

the input space.

Figure 3.6: Rotational invariant pooling layer, using pixelwise maximum pooling.

We implemented these rotationally equivariant convolution and pooling layers and the rotation

invariance pooling layer as custom layers in TensorFlow [1], the code for which can be found at

https://github.com/zyjux/gdl-storm-mode. We refer to networks built using these layers as “rota-

tionally invariant CNNs” or “RICNNS”.

This approach is theoretically distinct from the third architecture type we will compare in this

paper: augmented CNNs. In an augmented CNN, the same architecture as a CNN is used, but

modifications are made to the training dataset. To augment the data, we create copies of each

sample in the training dataset, each of which has had a different transformation applied to it, then

include those comments back into the training dataset, effectively increasing its size. In particular,

for the augmented CNN used here, we generated additional samples for the training dataset by

taking each existing image and adding each 90◦ rotation, so that each image appeared four times,
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once each rotated by 0◦, 90◦, 180◦, and 270◦. The training dataset for the augmented CNN is thus

four times as large, and the intention is that the CNN learns some degree of rotation invariance on

its own, without having it hard-coded as in the RICNN.

3.3 Datasets

3.3.1 Storm Data

The dataset we used came from the underlying dataset used in Schwartz and Sobash [71] and

Sobash et al. [77]. It consisted of around 50, 000 patches of forecast data from a numerical weather

prediction model, each of which was 144× 144 pixels in size and contained a number of different

meteorological channels. These patches were centered around severe storm events, and the channel

we principally used in this work was forecasted radar reflectivity, which is commonly taken as a

measure of storm intensity—see Figure 3.7 for an example of one of these patches. The regions of

severe storm on which these patches were centered were identified by the Hagelslag algorithm [27],

which also flagged a region of pixels as being part of that storm or not; the ellipse best fitting these

pixels was computed by Hagelslag, and its major and minor axes lengths reported. Throughout

this chapter, all the models used these major and minor axes lengths as their target variables. In

the paragraphs below, we give a more detailed and technical summary of how these data were

generated.

The dataset contained 682 total runs of convection-allowing reforecast data from the Weather

Research Forecasting (WRF) algorithm version 3.6.1 [75] covering the Continental United States

(CONUS) region over the 2010-2019 date range. Of this dataset, we used the first 150 runs, cover-

ing the date range 2010-2012. All runs used the same physics parameters (see [77] for details), the

same 3 KM grid, and the operational 0.5 degree Global Forecast System (GFS) for initial condi-

tions and boundary conditions. These runs did not represent every day within the given date range.

Instead, they represented days on which the NOAA Storm Prediction Center archives had records

of severe weather events. Moreover, Sobash et al. excluded 15-July to 15-October from their date

selection each year in an attempt to focus the dataset on “high-impact warm- and cool-season se-
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Figure 3.7: An example patch of forecasted radar reflectivity centered on a storm event. The dark patch in
the center represents the region identified as “severe storm” by the Hagelslag algorithm [27].

vere weather events east of the Rockies, while neglecting events in the western United States and

in association with landfalling tropical cyclones” [77].

The output of each run was a grid covering the entire CONUS region, which is not an appropri-

ate input for a classification or regression CNN, as those are typically more effective when applied

to smaller patches. To identify relevant portions of the dataset, the MILES group had processed

these forecast runs through the Hagelslag algorithm [27]. Hagelslag is a package developed to

identify and locate severe weather events in large-scale data, as well as compute various properties

of the storms. Of particular relevance to this work, Hagelslag output a mask containing all the

pixels it identifies as being part of the storm as well as the ellipse that best fits that storm region.

The dataset that we used for this project consisted of 51,346 distinct patches from the 150 runs

discussed earlier, each of which was 144 × 144 pixels and was centered on a single storm event

identified by Hagelslag. Of note is that as the WRF forecasts covered multiple hours, the same

storm could appear multiple times in the dataset as it evolved. While these temporal links were in

the dataset, this was not incorporated in any of our models.

We separated this dataset into training, validation, and test sets. The training data contained

34,061 patches from 105 forecast runs between 24-October, 2010 and 02-March, 2012. The valida-

tion data consisted of 4,300 patches from 15 forecast runs between 15-March, 2012 and 07-April,
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2012, while the test data contained 12,985 patches from 30 forecast runs between 09-April, 2012

and 14-June, 2012.

The primary channel that we used as an input was forecasted radar reflectivity. As a standard

preprocessing step, we centered and normalized this channel across the training set, then used the

mean and standard deviation computed from the training set to normalize the validation and test

sets. Our output target variables were, for all the models below, the length of the major and minor

axes of the storm-surrounding ellipse. As the minor axis length is (by definition) always shorter

than the major axis length, sometimes by a significant margin, we also centered and normalized

the target variables so that our computation of error would not be more heavily weighted towards

the major axis values.

These training, validation, and test sets were used in all the following sections that reference

“storm data” with the exception of one portion of Section 3.4.2, which used a different method-

ology for splitting these same data into training, validation, and test sets; in particular, the dataset

described here was used for Figure 3.10, Table 3.2, and Table 3.4. We re-used these same datasets

for all models, as we were interested in comparing models, so utilizing identical dataset minimized

potential confounding sources of error in the comparisons.

3.3.2 Toy Dataset

Figure 3.8: An example image from the toy dataset.
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To test the potential of our technique in an extremely controllable setting, we first created a

synthetic toy dataset with similar target variables to our eventual storm dataset, but without any of

the noise or complexity of real data. This toy dataset consisted of 12,000 generated images, 10,000

of which were used for training, 1,000 of which were validation, and the final 1,000 of which were

the testing dataset. Each image was 128 × 128 pixels, and had an ellipse of a random size and

orientation placed at a random location within the image. The major axes of these ellipses ranged

from 10 to 40 pixels in length, and the minor axes were bounded between 1 pixel and 2/3rds of the

major axis length. The ellipse centers were chosen so that no part of the ellipse could fall outside

the borders of the image. To smooth these ellipses, we computed the distance transform of the

image, in which pixels within the ellipse had a value of 0, and every other pixel had a value that

was the Euclidean distance from that pixel to the nearest ellipse pixel. Finally, we took the negative

exponential of this distance transform, so in the final images, pixels within the ellipse had a value

of 1, and pixels around the ellipse fall off exponentially to 0. An example image is shown in Figure

3.8.

Our training target for this toy dataset was the lengths of the major and minor axes. The point

of creating this toy dataset was first to debug our RICNN architecture, and once that was complete,

to test that the generalization properties that we hoped RICNNs should have would actually show

up in practice. To test this behavior, we set up the toy dataset so that the orientation of the major

axes of all ellipses in the training and validation sets fell within π/6 of horizontal. However, the

test set had unconstrained orientation, so the major axis could be in any orientation. Our motivation

for setting up the test set in this fashion was to see how well the three architectures were able to

generalize.

As with the storm data, these exact training, validation, and test sets were used in all following

sections that reference the “toy dataset”, specifically in Figure 3.9, Table 3.1, and Table 3.4.
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Figure 3.9: Mean Squared Error on the training and validation sets across the training epochs on the toy
dataset. The CNN errors are the orange line, the augmented CNN errors are the red line, and the RICNN
errors are the blue line.

3.4 Results

3.4.1 Initial comparison on toy dataset

We trained three models, a CNN, an augmented CNN, and a RICNN, with equivalent architec-

tures and the same number of trainable parameters for 10 epochs using the adam optimizer [42]

and mean squared error (MSE) for the loss. The model architecture we used consisted of five con-

volutional layers, all with 3×3 filters, and (starting at the beginning of the network) 32, 32, 64, 64,

and 128 output channels, all using the ReLU activation function. These convolutional layers were

alternated with four max pooling layers, each using 2 × 2 pooling fields. After the final convolu-

tional layer (and rotation invariant pooling layer, if applicable), the data was flattened to a single

long vector, to which two dense neural network layers were applied, the first of which contracted

down to 32 output nodes using the ReLU activation function, and the second of which outputted

the final two prediction values with no activation function. Overall, this architecture, which was

used for all three model types, had a total of 204,482 trainable parameters on the toy dataset im-

ages. Throughout this paper, we present results training for 10 epochs—we tested training for up
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to 20 epochs, but found that performance did not typically increase, indicating that the models had

converged by the 10th training epoch.

In training, all three models performed similarly—the RICNN and augmented CNN converged

somewhat more quickly in terms of epochs, but each epoch took 4-5 times longer to process in wall-

clock time when compared to the CNN. This behavior during training can be seen in Figure 3.9.

However, on the testing data (shown in Table 3.1, along with final training and validation errors),

the CNN lost all performance, going back to an error that was worse than after the first epoch of

training, while the augmented CNN and RICNN suffered effectively no loss of performance.

Table 3.1: Training, validation, and testing mean squared errors (MSE) for CNN, augmented CNN, and
RICNN on toy dataset. The training and validation sets contained only ellipses with major axis orientation
within π/6 of horizontal, while the test set contained all orientations.

Model Training MSE Validation MSE Test MSE
CNN 0.0162 0.0196 0.7100

Aug CNN 0.0082 0.0071 0.0075
RICNN 0.0111 0.0110 0.0141

This showed that the at least in simple cases, the RICNN’s hoped-for ability to generalize did

in fact hold. However, the augmented CNN still achieved overall better performance than the

RICNN.

3.4.2 Initial Comparison on Storm Data

When moving to the real dataset, we used the same architecture as the one used on the toy

dataset. With the slightly larger input patch size (144 × 144 vs 128 × 128), the total number

of trainable parameters for each model rose to 241, 346. Performance during training (shown in

Figure 3.10) for the three models showed a similar behavior to that on the toy dataset: the RICNN

trained more quickly at first, and achieved slightly better performance than the CNN, but in terms

of ultimate accuracy, the augmented CNN was still superior. The final performance of each model

on the training, validation, and test set is shown in Table 3.2.
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Figure 3.10: Training and validation errors for the CNN, augmented CNN, and RICNN during training on
storm data.

Table 3.2: Comparison of final-epoch MSE values for the three models compared on storm data.

Model Training MSE Validation MSE Test MSE
CNN 0.0365 0.0608 0.0705

Aug CNN 0.0256 0.0278 0.0364
RICNN 0.0363 0.0409 0.0483

We also wished to test whether the RICNN would improve upon the generalizability of a CNN

on real data, similar to how it did in the toy dataset. However, in this case, separating out storms

based on orientation for training and test data (as we did for the toy dataset) was too artificial a

distinction for any real-world task. Instead, we separated our training and test data based on storm

motion direction, as computed by the Bunkers Storm Motion algorithm [8]. For our training and

validation sets, we used only storms moving in an eastward direction, while our test dataset used

only storms moving in a westward direction. This method of separating did mean that for this test,

our test set was not separated by date, but we hoped that separating by motion would make the

generalization task even harder.

The results of this test are presented in Table 3.3. It is immediately apparent that while the

augmented CNN and RICNN retained their ability to generalize from the training set to the test

set, in this case the traditional CNN retained this ability as well. This suggests that for a given
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Table 3.3: Comparison of final-epoch MSE values for the three models compared on storm data in which the
test set is composed only of west-moving storms, while the training and validation sets contain east-moving
storms.

Model Training MSE Validation MSE Test MSE
CNN 0.0290 0.0684 0.0281

Aug CNN 0.0304 0.0743 0.0333
RICNN 0.0317 0.0642 0.0255

overall direction of storm motion, there was sufficient variety in storm orientation to allow the

CNN to not require the additional machinery of augmentation or enforced rotation invariance to be

able to generalize to other motions.

It is also notable that across all three models, the performance on the validation dataset was

significantly worse than on either the test set or training set; this is surprising, as the validation set

was intermingled with the training set, while the goal was for the test set to be disjoint in storm

motion, and thus making predictions on the test set should have been harder than for the validation

set. We do not have a satisfactory explanation for this behavior, unfortunately. One hypothesis

is that when the data were split up, the validation set happened to contain a larger number of

“harder” examples, or the test set overall contained “easier” than expected examples, but this is not

something we have been able to investigate thoroughly.

3.4.3 At what layer should the network be invariant?

One aspect to model selection when building a RICNN that we mentioned briefly earlier was

the choice of how deep in the network one should move from equivariance to invariance; that

is, after which layer of the neural network should we apply the rotationally invariant pooling layer

shown in Figure 3.5. Recall that equivariance is the property that for a symmetry g ∈ G, θ⋆(g·x) =

g · (θ ⋆ x), while invariance is the property that θ ⋆ (g · x) = θ ⋆ x. To reduce this question to the

extreme, if we were to do rotation invariant pooling using max pooling after the first layer, then the

network could not distinguish between an image with a circle in one quadrant and an image with

that same circle in all four quadrants. In order to explore the consequences of applying invariance

at varying depths in the network, we trained a number of models on each dataset, in which we
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varied how many rotationally equivariant layers we applied before moving to invariance. In these

tests, we also included a model in which invariance was never applied, and the model remained

equivariant throughout. To keep the comparison fair, we kept the total number of layers constant,

using rotationally equivariant layers before moving to invariance, and conventional convolutional

layers after the invariant pooling step. The results of these tests are shown in Table 3.4.

Table 3.4: Error results for RICNNs run on both the toy dataset and storm dataset with invariance applied
after various layers. For table entries marked “Equivariant”, no rotationally invariant pooling layer was
applied, and the architecture remained equivariant throughout.

Toy Dataset
Invariance After: Training MSE Validation MSE Test MSE Running Time

Layer 1 0.0297 0.0414 0.0395 140.0 sec
Layer 2 0.0214 0.0337 0.0350 169.3 sec
Layer 3 0.0159 0.0181 0.0232 184.6 sec
Layer 4 0.0120 0.0167 0.0197 191.1 sec
Layer 5 0.0102 0.0060 0.0068 193.6 sec

Equivariant 0.0116 0.0071 1.278 196.3 sec

Storm Dataset
Invariance After: Training MSE Validation MSE Test MSE Running Time

Layer 1 0.0714 0.1052 0.0897 571.6 sec
Layer 2 0.0548 0.0885 0.0711 707.7 sec
Layer 3 0.0468 0.0786 0.0748 765.6 sec
Layer 4 0.0334 0.0684 0.0667 791.6 sec
Layer 5 0.0293 0.0665 0.0603 808.9 sec

Equivariant 0.0309 0.0684 0.0555 807.6 sec

On the toy dataset, having invariance appears to be very important, and as we moved the ro-

tation invariant pooling layer deeper into the network, the accuracy increased significantly, with

some of the largest gains happening at later layers—this indicates that for this application, main-

taining equivariance as long as possible was useful. However, having invariance present in the

model was also important: the model which remained equivariant and never moved to invariance

did not perform as well on the training and validation sets as the Layer 5 model, despite having

more trainable parameters in the final dense layers, and failed to generalize from the limited angle
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training set to the test set in which ellipses could appear at any orientation. On the other hand,

on the storm data, while moving the invariant pooling layer later in the architecture did in general

increase performance, after the first few layers we saw diminishing returns, and on this dataset, the

equivariant model performed as well if not better than the invariant models.

As equivariant convolutional layers are approximately four times as costly to compute as stan-

dard convolutional layers, each equivariant convolutional layer replaced by a standard convolu-

tional layer can reduce computational cost and running time for the network. In Table 3.4, we

also present the running time for each model, and as we can see, moving invariance deeper into

the model generally resulted in an increased run-time. The correct choice for what level to apply

invariance after will depend on the application and priorities of the user, as these models exhibited

different behaviours even on these relatively similar datasets.

3.4.4 Exact versus Approximate invariance

(a) (b) (c)

Figure 3.11: Examples of rotations used in this section. In (a), we have an example ellipse. In (b), we see
the resulting image after rotating the image in (a) by 90◦ about the center of the image. In (c), we see the
resulting image after rotating the ellipse by 90◦ about the center of the ellipse.

One aspect of these algorithms that we sought to compare was exact vs. approximate invari-

ance. The RICNN algorithm enforced exact invariance to rotations by 90◦ about the center of the

image (as shown in Figure 3.11 (a) and (b)), which was confirmed by numerical experiments—the

network gave functionally identical predictions for the same input image rotated by 90◦. On the

other hand, the augmented CNN did not have this constraint built in, and was simply encouraged
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to learn some degree of approximate invariance by augmenting the dataset. In numerical experi-

ments, the augmented CNN treated the original image and that same input image rotated by 90◦

about its center as two distinct entries, and while its predictions in both cases were of high quality

and close to the true number, they were not strongly correlated with each other. For an example of

these behaviors, see Table 3.5.

Table 3.5: Model predictions for an example ellipse (shown in Figure 3.11(a)) as well as that same image
rotated by 90◦ about the image center (shown in Figure 3.11(b)). Note that the augmented CNN’s predictions
differ between the original and rotated image, while the RICNN’s predictions are invariant.

Maj. Axis Orig. Min. Axis Orig. Maj. Axis Rot. Min. Axis Rot.
Ground Truth 25 10 25 10

Aug. CNN 24.576 10.420 25.444 10.005
RICNN 23.982 9.855 23.982 9.855

While the RICNN was invariant to 90◦ rotations, we also investigated how these networks

responded to rotations of smaller degree as well. To examine this, we used the data generation

algorithm for our toy dataset to conduct two experiments by rotating and moving an ellipse of

constant size within the image frame. In the first experiment, we took an ellipse and rotated it in a

full circle about the center of the image in 1◦ increments. In the second, we took the same ellipse

and rotated in a full circle about the center of the ellipse again in 1◦ increments. See Figure 3.11

for examples of both of these rotation types. For both experiments, we used both the augmented

CNN and RICNN to predict the major and minor axes at each angle of rotation, then computed the

variances of each axis across the rotations. The results are presented in Table 3.6.

Table 3.6: Variance in model predictions when rotating a generated member of the toy dataset around either
the center of the image or center of ellipse in 1◦ increments.

Rotating about center of image Rotating about center of ellipse
Model Maj. Ax. Var. Min. Ax. Var.

Aug. CNN 0.00379 0.00231
RICNN 0.00497 0.00228

Model Maj. Ax. Var. Min. Ax. Var.
Aug. CNN 0.00277 0.00277

RICNN 0.00407 0.00217

61



As we can see from this example, the strict invariance enforced by the RICNN architecture for

rotations of 90◦ about the center of the image did not imply invariance to all rotations. While the

network was approximately invariant to small-degree rotations, it had in most cases even higher

variance than the augmented CNN on the same task.

3.5 Conclusions and Future Work

In this chapter, we have discussed our test of using rotationally invariant CNNs (RICNNs)

on storm data, particularly in comparison to data augmentation and conventional CNNs. Overall,

while the RICNN has several theoretically desirable properties (such as strict invariance to 90◦

rotations of the input space), these did not necessarily translate into useful performance gains on

real-world data. The conventional CNN run on augmented data out-performed the RICNN in

nearly all cases, and had faster running time, as it is using highly optimized built-in TensorFlow

layers. This performance even resulted in lower variance in predictions for incrementally-rotated

inputs, despite the theoretical advantage that the strictly invariant RICNN should have had on that

test.

For this task, the RICNN’s theoretical elegance does not justify its use over the simpler and

better-performing augmented CNN, but the group convolution framework, and geometric deep

learning in general, may still prove its worth on other datasets and tasks. There remain a number

of open questions that would be worth pursuing in future work. For instance, how would group

convolution as presented here interact with other network architectures, such as a U-Net [67] or

even transformer [84]? In this work, all the networks used the same underlying architecture with

the same number of filters; however, in theory, the augmented CNN should have to dedicate more

filters to learning the rotationally symmetric patterns in its augmented dataset when compared to

the RICNN, so would we be able to achieve similar performance by reducing the sizes of the filter

banks in the RICNN? We would also like to explore uncertainty quantification methods such as

deep evidential regression to see if any of these model architectures have differing aleatoric and

epistemic uncertainty properties [3].
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While the RICNN did not prove to be qualitatively better than augmented CNNs on this task,

it did prove to be competitive in most areas, and was a flexible and customizable technique. We

hope that future work will find the tasks and datasets that can more fully utilize RICNNs and other

geometric deep learning toolsets.
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Chapter 4

Using Harmonic Analysis Techniques to Enhance

Gravity Waves in the Day-Night Band

4.1 Introduction

In this project, we present work done to identify an appropriate pre-processing algorithm that

will enhance the signature of atmospheric gravity waves in night-time satellite imagery. Due to the

extremely limited number of available hand-labeled samples, utilizing machine learning methods

that require training (such as convolutional neural networks) has not yet yielded satisfactory results

[31]. While more sophisticated machine learning methods may yet prove effective, we take a

different approach and focus here on deterministic methods drawn from harmonic analysis.

4.1.1 Motivation

As described in [55], gravity waves are an important element of atmospheric energy transfer.

These atmospheric pressure waves can be generated by a number of different energetic events, such

as powerful thunderstorms, hurricanes, and strong updrafts near geographic features like mountain

ranges, known as orographic gravity waves, as well as dynamics within the upper atmosphere such

as jet stream instabilities and other less-obvious causes. These waves transmit energy between

different parts of the atmosphere, and can have strong effects on upper atmosphere currents, which

in turn can have impacts on weather and climate. In weather and climate models, the atmospheric

processes governing the generation of gravity waves occur at smaller scales than are resolved by

these models, and as such the effects of gravity waves need to be included as a summary statistic

(or parameterized). To do this effectively, however, there is a need for reliable observations of

gravity waves to calibrate and constrain these parameterizations. However, until recently there

was no systematic way of observing gravity waves in the upper mesosphere (around 90 km above

the surface). Thus, most methodologies have explored different parameterizations by testing the
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effects of adjustments on final model results, but this is not as efficient or explainable as being able

to calibrate the gravity wave portion directly.

The key contribution of [55] is the discovery of a gravity wave signature in nightglow imagery

captured by the Day/Night Band (DNB) sensor of the Visible Infrared Imaging Radiometer Suite

(VIIRS) flying on the Suomi National Polar-orbiting Partnership (NPP) and NOAA-20 satellites.

Nightglow is an atmospheric phenomenon in which excited particles near the mesopause emit faint

amounts of visible light, which sufficiently sensitive sensors can detect [37]. The pressure changes

within a gravity wave can affect this light emission, causing wave-like patterns to appear in the

nightglow. While the DNB sensor is able to detect nightglow, it is only able to do so on moonless

nights, so the window of opportunity to detect a gravity wave event is quite small: there must be

a suitable event occurring on a moonless night within a specific time and location window during

which either the Suomi NPP or NOAA-20 satellites (both of which are polar-orbiting) pass over the

event. These stringent requirements mean that detectable gravity waves are extremely rare events

within the collection of VIIRS data. While there is a vast quantity of VIIRS data collected over the

last decade, and therefore a large number of examples of even rare events like detectable gravity

waves, the task of finding a large number of those examples by hand is intractable.

4.1.2 Chapter Overview

In this chapter, we examined a number of pre-processing algorithms which we hope to eventu-

ally develop into an automated system that can identify gravity waves in DNB imagery, making the

process of collecting a large dataset of gravity wave observations more practical. We began by ex-

amining what is distinctive and characteristic about gravity waves in DNB imagery from an image

processing perspective, and articulating what we are looking for in a detection algorithm. Starting

with this allowed us to conduct a more organized and directed search for algorithms, and gave us

a framework by which to assess the results beyond simple numerical results. The key features that

we identified are the periodicity and linearity of gravity waves, which we attempted to leverage.
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We discuss three algorithms that we tested to focus in on these properties: local autocorrelation,

wavelet-based ridge detection, and the finite Radon transform (FRT).

Autocorrelation is a simple harmonic analysis tool which we applied here in a local fashion to

try to detect periodicity. While this did detect some periodic gravity waves, it was not extremely

successful and produced many false positives coming from city lights and cloud structures. The

key issue here is that autocorrelation is sensitive to the amplitude of periodic signals, and even in

normalized patches, gravity waves are frequently low amplitude signals. Next, we used an existing

toolbox for detecting ridges in images using a wavelet-based edge and ridge detection method. This

yielded good results in some instances when tuned properly, identifying the ridge-like structures

making up the gravity waves. However, this method also had many false positives, and does not

really leverage either the periodicity or linearity properties that we identified as being important.

Finally, we tested the FRT, which breaks down a finite patch of prime size into all possible finite-

geometry lines through that space, allowing us to focus on the linear structure of gravity waves.

The finite geometry structure of these lines also meant that they are themselves periodic, and thus

also respond to the periodicity of gravity waves at the same time. However, these aspects are not

detected independently, and are entangled in complex ways that make the algorithm less than ideal.

All of these techniques yielded some promising results, but are not quite what is needed, so we

finish by discussing two approaches that we will pursue in the near future. The first is utilizing local

autocorrelation and the wavelet-based ridge detection algorithm in combination, using the ridge

detection algorithm to first detect and highlight the ridge-like features of the gravity waves (perhaps

with some modifications to restrict to more linear ridges), followed by using autocorrelation to

detect periodicity. The second is a different generalization of the continuous Radon transform to

finite spaces called the Mojette transform; in contrast to the FRT, this utilizes non-periodic lines

and does not rely on prime geometry, so would hopefully give us similar results to the FRT while

allowing us to disentangle the linearity and periodicity aspects.

This work is structured as follows: in Section 4.2, we discuss the properties of gravity waves in

DNB imagery and the corresponding desirable properties for an ideal pre-processing algorithm; in
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Sections 4.4–4.6, we present algorithms that we tested and discuss in what ways they meet or fail

to meet the criteria established in Section 4.2; finally, in Section 4.7, we present our conclusions

and future work.

All the code and data used for this project is available on GitHub at https://github.com/zyjux/

harmonic_gw.

4.1.3 Narrative and Contributions

The idea to initiate this project originated in late 2021 when my committee member Dr. Imme

Ebert-Uphoff brought up the problem of identifying gravity waves in DNB imagery, and particu-

larly the extremely small size of the datasets available. My co-advisor, Dr. Emily King, made the

suggestion of using a wavelet-based approach to identify the wave-like structures in DNB imagery,

which we later collaboratively expanded to include more classical harmonic analysis techniques.

I began to work in earnest on this in September of 2022, following the conclusion of my sum-

mer visit at the National Center for Atmospheric Research (NCAR). Throughout this project, I

continued meeting weekly with my co-advisors, Dr. King and Dr. Henry Adams, as well as Dr.

Ebert-Uphoff, to discuss progress, challenges, and results, as well as to brainstorm new ideas and

next steps. The dataset of gravity wave examples was provided by Cooperative Institute for Re-

search in the Atmosphere (CIRA) researchers, principally Dr. Katherine Haynes, who created and

coded the core of the pre-processing routine for the DNB images including the log-scaling routine

used.

The first techniques I tested were local autocorrelation and wavelet-based ridge detection. For

local autocorrelation, the idea to use autocorrelation on small patches of the image came from Dr.

King; based on that idea, I came up with the specific implementation presented in Section 4.4,

coded up the resulting algorithms, and analyzed the resulting data. The algorithms used in the

ridge detection section (Section 4.5) were developed by Dr. King’s former doctoral student, Dr.

Rafael Reisenhofer [66]. I utilized the MATLAB toolbox he developed, but did parameter tuning

to focus the ridge detection on gravity waves, and analyzed the results.
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After these techniques were giving preliminary results, I met with John Forsythe, a CIRA

scientist who had studied gravity waves in the past to get input on our preliminary results. I also

presented these results at a CIRA meeting, with the aim of getting more feedback on how the

algorithms were doing from a meteorological perspective and what to pursue next. This feedback

led to more resources for destriping algorithms, and after reviewing the feedback and results, I

decided to keep looking at alternative algorithms that could focus more on the linearity of gravity

waves. That discussion led to Dr. King suggesting I look at the ridgelet transform, which is

described in [21]. The first step in computing the ridgelet transform is computing the finite radon

transform (FRT), and I found that the FRT itself was a potentially useful tool for identifying gravity

waves. I did the implementation of the FRT into Python code, as I could not find any modern code

implementations of it, and analyzed the results.

After reviewing all the techniques so far, I developed the ideas for next steps presented as future

work in Section 4.7, and hope to pursue those in the near future.

4.2 Properties of an Ideal Transform

As we discussed in the introduction, gravity waves in DNB imagery appear as variations in

nightglow. These wavelike patterns are faint, but have distinctive structures, and multi-channel

approaches utilizing infrared imagery can be used to more fully disambiguate gravity waves from

wave-like cloud structures. In this section, we analyze the image-level features that characterize

gravity waves in DNB imagery, which allowed us to perform a more focused and systematic search

for a transform that responds well to those features. An example DNB image containing gravity

waves is shown in Figure 4.1.

These waves have two key properties that, taken together, set them apart from other features in

DNB scenes: periodicity and linearity. The algorithms we used focused on one or both of these

properties, so it is worth discussing them in more depth here. First, “periodicity” here means that

the gravity wave signature is periodic in space, in that it has repeated, alternating regions of light

and dark. However, while this periodicity is in general similar to a sine curve wave structure, it also
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Figure 4.1: An example of DNB imagery containing gravity waves (bottom center, and more faintly at the
center right). This image was collected by the NOAA-20 satellite over Western Australia at 17:16 UTC on
May 13th, 2018.

has some dissimilarities. In particular, the brightest peaks of the wave are in general no brighter

than the surrounding background nightglow, so the periodicity is principally in the valleys rather

than the peaks. The other key feature is “linearity”, which here refers to how the light and dark

regions defining the waves are composed of relatively straight lines, at least at the scales and patch

sizes at which distinguishable gravity waves appear. The ideal algorithm for preprocessing, then,

is one that responds strongly to these properties of linearity and periodicity, while de-emphasizing

features that do not have those properties.

4.3 Dataset

The dataset we are using is a small set of hand-selected VIIRS DNB [9] images that were found

to have identifiable gravity waves in them. The data were originally downloaded from the NOAA

Comprehensive Large Array-data Stewardship System (CLAss). Due to the number of constraints

on time of day, moon phase, and atmospheric conditions that are required to make gravity waves
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identifiable in DNB imagery, finding examples is extremely time-consuming. Because of this,

we used only 61 total sample images, which includes some duplication and negative examples—

because the VIIRS instrument flies on two satellites in similar orbits, when gravity waves were

identified in imagery from either the Suomi NPP or NOAA-20 satellites, imagery from the other

satellite over the corresponding location was pulled as well (if available), but in many instances

the gravity waves are not visible in these other images. Each sample was a 4064× 2304 grayscale

image, which was pre-processed using a log-scaling method and converted into 0− 255 radiances

then stored as a netCDF4 database.

4.4 Local Autocorrelation

When choosing algorithms for a task, we would like to use the simplest algorithm that gives

good performance, as that generally increases interpretability. To that end, we began our explo-

ration of algorithms with local autocorrelation, a modification of one of the simplest analysis tools

in harmonic analysis.

4.4.1 Theoretical setup

For more theoretical background on autocorrelation and its use in signal processing, see [86].

We will begin our discussion of local autocorrelation by first discussing correlation: the correlation

between two signals (e.g., images) f and g at a particular offset is given by

(f ⋆ g)(t) =
∑

x

f(x)g(x− t).

That is, we offset one signal by some amount, multiply the resulting signals against one another,

and sum across the domain. In the machine learning world, this is frequently called convolution and

is the operation that convolutional neural networks are based upon—recall that much of Chapter 3

was based upon exploring and expanding convolution. However, in the domain of image analysis,

correlation is most frequently used with two somewhat similar images, and correlation is used to

align them—the shift value t that maximizes the correlation is taken as the best alignment.
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Next, autocorrelation is simply the correlation of an image with itself—that is, where f = g.

This is used to detect periodicity—while autocorrelation always has a maximum at no shift (i.e.,

t = 0), if the signal has periodic elements, the autocorrelation will have local maxima at shifts

corresponding to multiples of the period. See Figure 4.2 for an example of autocorrelation applied

to a 1D function.

(a) (b) (c)

Figure 4.2: An example of autocorrelation on a 1D function. Subfigure (a) shows an example 1D function
with periodic elements. In (b), we see the original function overlaid with a copy (the dashed orange line) that
has been translated by 0.25. Finally, (c) shows the resulting autocorrelation with a vertical dashed orange
line showing the location in the autocorrelation corresponding to the translation shown in (b). As a note, the
x-axis in (b) represents how much of a shift has been applied to the second function. The functions have
been zero-padded outside their domain for the purposes of these multiplications, which results in the lower
peaks in the autocorrelation function at x = ±2.

Finally, while autocorrelation is typically used on an entire image or scene, for our task we

wished to detect periodic behavior in local regions within a larger scene; we therefore implemented

local autocorrelation. To perform local autocorrelation, we subdivide a larger scene into many

smaller sub-images, then compute the correlation between each small sub-image and the full-size

original image with a limited range of shifts, zero-padding the smaller sub-image to ensure its

compatibility with the large image. That is, we are focusing on a number of small patches and

seeing if there is any periodicity within their local neighborhoods. This is closely related to the

idea of self-convolution seen in [35].
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Table 4.1: A glossary of notation used in the pseudocode algorithms in this chapter.

Symbol Meaning
x← y Assign the variable x the value y.

x The mean of x.
σx The standard deviation of entries in x.
⌊x⌋ The floor of x; return the greatest integer less than or equal to x
Ax,y The value in the matrix A in row x and column y.

Ax1:x2,y1:y2 The submatrix of A containing rows x1 through x2 and columns y1
through y2 (including the left endpoints but not the right).

Mx,y The space of x× y matrices.
AT The transpose of the matrix A.

4.4.2 Code implementation

To implement this in code, we used a relatively naive version of the algorithm that does all

the multiplication directly, rather than utilizing faster techniques using the Fast Fourier Transform

(FFT) [86]. Our aim was to test the efficacy of this method, so the simplicity of the direct method

outweighed the computational efficiency of the Fourier methods. The local autocorrelation func-

tion which computed the autocorrelation of a small patch of a larger scene against the background

is given as Algorithm 1. This function output a patch of approximately the same size as the input (it

may be smaller if either the width or height of the input patch is odd) containing the autocorrelation

values for shifts of up to half the width or height in either direction. Because the autocorrelation

value was dramatically higher at no shift (i.e., at the translation vector (0, 0)), to ensure that the

display scaling is accurate, we set the center of each resulting autocorrelation patch to a null value.

In Algorithm 2, we present the computational scheme for sequentially using Algorithm 1 on

non-overlapping 50 × 50 patches across an entire DNB scene, with a 25 pixel border around the

outer edges of the scene so that the local autocorrelation for each patch can be computed without

padding. As the output patches were the same size as the input patches, we could stitch them

together to yield the local autocorrelation throughout the entire scene, as shown in Figure 4.3.

These algorithms were implemented in Python 3 principally using the numpy package, and

can be found in the local_autocorrelation.py file in https://github.com/rgcda/SymFD.
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Algorithm 1 Local autocorrelation function for a patch of a larger image. For notation used here,
see 4.1.

AUTOCORRELATE(A, x, y, w, h)
A is the entire scene as a matrix, (x, y) are the coordinates of the upper left-hand corner of the
local patch, and (w, h) are its width and height
P ← Ax:x+w,y:y+h

P ←
(

P − P
)

/σP

n←∑

i,j P
2
i,j

for xt = −⌊w/2⌋ . . . ⌊w/2⌋ do

for yt = −⌊h/2⌋ . . . ⌊h/2⌋ do

xr ← x+ xt and yr ← y + yt
C ← Axr:xr+w,yr:yr+h

C ←
(

C − C
)

/σC

Rxt,yt ←
(

∑

i,j Pi,j · Ci,j

)

/n

end for

end for

R0,0 ← NaN

return R

Algorithm 2 Routine for computing local autocorrelation across an entire scene. For notation used
here, see 4.1.

xn = ⌊4064/50⌋ − 1 = 80 and yn = ⌊2304/50⌋ − 1 = 45

for x = 25, 25 + 50, . . . 25 + xn · 50 do

for y = 25, 25 + 50, . . . 25 + yn · 50 do

Rx,y ← AUTOCORRELATE(A, x, y, 50, 50)
end for

end for

return R

4.4.3 Results

As we can see in Figure 4.3, the local autocorrelation had the ability to detect the periodicity

of gravity waves in some DNB scenes. This was a promising first result, as it indicated that at

least one of the aspects we identified as being distinctive of gravity waves can be enhanced by an

appropriate mathematical transformation.

However, local autocorrelation also responded very strongly to other features in the scene,

particularly bright city light regions. This is due to a flat, bright region giving a strong response

when multiplied against a periodic signal or, particularly, itself. Correlation detects how well two
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Figure 4.3: The same DNB scene shown in Figure 4.1, along with its local autocorrelation. Notice that local
autocorrelation detects the gravity waves at the bottom center, but does not respond to the fainter example
in the center right. Moreover, the strongest response is to the city lights in the center of the image.
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images are aligned, and these flat, bright regions aligned very well with themselves, even when

offset slightly. While thresholding the brightest parts of these regions yielded some improvement

in this regard, the issue persisted even in less bright regions.

The key issue in this case is that gravity waves have a faint signal when compared to other

features in the scene, particularly clouds. Local autocorrelation is sensitive to the amplitude of

periodicity—because we were multiplying the two signals together, given two features with the

same amount of periodicity, the one with the larger amplitude was showing up more clearly in the

autocorrelation. This means that even features that are not as periodic as gravity waves but which

have greater dynamic range had equivalent or larger signatures in the output autocorrelation. While

we did normalize the patches used in the computation of local autocorrelation, the gravity waves

were of low amplitude even relative to the dynamic range within a typical patch, so normalization

wasn’t able to resolve this issue.

Autocorrelation also did not particularly utilize the linearity of the gravity waves, so we are not

leveraging this second attribute fully. Thus, we chose to explore more complex methods as well.

4.5 Wavelet-based Ridge Detection

Wavelets are most frequently used in multiresolution analysis and synthesis, in which an image

is broken down at multiple orientations, scales, and positions, analyzed or filtered in some fashion,

and then a modified image can be reconstructed from the resulting weights. For a theoretical

introduction to this method of analysis, see [32]. However, wavelets can also be used on just the

analysis side to construct edge and ridge detection algorithms. Inspired by the cosine- and sine-

based edge detection algorithm of Kovesi [44, 45], Reisenhofer and King developed and refined a

wavelet-based analysis technique that can detect edges, ridges, and blobs [41, 64–66]. We utilized

the fine-tuned ridge detection algorithm as presented in [66], and did computations principally

using the accompanying SymFD MATLAB toolbox.
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4.5.1 Theoretical setup

While full details can be found in [66], we give a high-level introduction to the methodology

here.

Like autocorrelation, wavelet analysis is based on multiplying two signals against one another.

However, in wavelet analysis, the second signal is not another copy of the image being analyzed,

but is a particular wavelet function, which has been translated, scaled, and/or rotated. By comput-

ing these wavelet coefficients across a number of different positions, orientations, and scales, we

can obtain a rich representation of the original image called a multiresolution analysis.

There are a large number of possible wavelet functions with which to perform this analysis,

from the simple Haar wavelet to more complex Morlet and Daubechies wavelets. In [66], the pri-

mary wavelet functions used are derivatives of the Gaussian function and their Hilbert transforms.

These wavelet functions have the desirable property that they are either even or odd symmetric, and

can be arranged in pairs such that each pair contains one even-symmetric and one odd-symmetric

function which are largely equivalent in other ways. When computing the wavelet transform us-

ing each element in a given pair of wavelet functions, then, we can deduce that differences in

the wavelet coefficients arise principally from how a feature responds differently to odd vs. even

symmetry.

(a) (b) (c) (d)

Figure 4.4: Edge and ridge detection using Gaussian wavelets for ideal 1D edges and ridges. In (a) and
(b), we see an ideal 1D edge along with odd and even-symmetric wavelet functions (respectively) at three
different scales. In (c) and (d), we see an ideal 1D ridge with the same wavelet functions.
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Let us first consider the theoretically simpler discussion of detecting an idealized 1D edge

using odd and even symmetric wavelet functions, as shown in Figure 4.4 (a) and (b). We note

that the odd-symmetric wavelet will have a strong response when aligned precisely on the edge

across all scales, while the even-symmetric wavelet will integrate to zero, also at every scale. This

observation is the key to the edge-detection measure produced in [66].

On the other hand, we are interested more in ridges than edges, as we can think of each wave

in a gravity wave as a distinct ridge. An idealized 1D ridge is shown in Figure 4.4 (c) and (d). We

can observe that in this case, the responses of the odd and even symmetric wavelets have mostly

switched, with the odd-symmetric wavelet giving a response of zero at all scales when centered on

the ridge. However, while the even-symmetric wavelet gives a non-zero response across all scales,

the magnitude of that response is maximized when the width of the wavelet is scaled to be near

that of the ridge. Thus, we can detect both the presence and width of a ridge, or (alternatively)

search for ridges within specific width ranges.

To generalize this idea to two dimensions, the wavelet functions need to be modified, as the

above wavelets are themselves one-dimensional. To obtain appropriate two-dimensional wavelets,

we take our odd- and even-symmetric 1D wavelets and tensor each of them with a Gaussian func-

tion to obtain a two-dimensional function that has odd or even symmetry along one direction, and

falls off as a Gaussian in the other. These two-dimensional wavelets are then translated, scaled,

and rotated throughout the input image—the notable addition here is rotation, which is necessary

to detect edges and ridges at all orientations. The scaling done here is also not necessarily the

same in all directions (or isotropic). Anisotropic scaling, or scaling which applies unevenly to each

direction, can help detect features like edges and ridges that are more prominent in one direction,

particularly in the presence of noise, but can introduce issues in situations where the ridge or edge

is not smooth. The degree of isotropy is one of the hyperparameters that we tuned when applying

these algorithms. For further details on how this method generalizes to two dimensions, we refer

the interested reader to [66].
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4.5.2 Code implementation

For the purposes of testing whether this algorithm would be successful at identifying gravity

wave ridges in DNB imagery, we utilized the SymFD toolbox for MATLAB produced by Reisen-

hofer to accompany [66] and found at https://github.com/rgcda/SymFD. This toolbox provides

both MATLAB functions usable in scripts and a GUI. We began by using the GUI on several ex-

amples to find a parameter set which seemed to do a reasonable job of identifying gravity waves,

then used a script to automate ridge detection across all our samples.

The parameters we used are given in Table 4.2.

Table 4.2: Parameters used in SymFD for computing ridge detection.

Parameter Value
maxFeatureWidth 20
maxFeatureLength 20
minFeatureWidth 10

minContrast 4
alpha 0.2

nOrientations 2
scalesPerOctave 2

evenOddScaleOffset 1
generator SFDMexicanHatVsGauss

orientationOperator rot
thinningThreshold 0.1

minComponentLength 5
maxFeatureHeight 0

4.5.3 Results

In general, this wavelet-based ridge detection algorithm did detect gravity wave ridges. In

Figure 4.5, we see that the ridge detection algorithm principally highlighted the two regions where

gravity waves are present, while doing a significantly better job than autocorrelation at ignoring

non-gravity wave features.

However, on scenes that are not as simple it also detected many other ridges throughout the

image, to the point where it was challenging to identify the gravity waves in the scene, as in Figure
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Figure 4.5: The same DNB scene shown in Figure 1 along with the output of the ridge detection algorithm.
In the bottom image, the brighter regions correspond to more “ridge-like” regions.
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Figure 4.6: Another DNB scene containing gravity waves (seen in the bottom center) along with the corre-
sponding ridge detection output, run using the same parameters as in Figure 4.5

.
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4.6. Part of this is down to the choice of parameters—we have not necessarily found the optimal set

of parameters defining the width and length of ridge to be searched for, as well as which wavelet

functions to use. Moreover, it appears that this optimal choice may not be the same for all scenes,

making the best overall choice even trickier.

More fundamentally, this ridge detection algorithm did not fully leverage either of the defining

characteristics of gravity waves outlined in Section 4.2. It did not utilize periodicity at all, as each

ridge is detected entirely separately. While it did make some use of linearity, in that the waves are

more-or-less continuous lines, the ridge detection algorithm did not place any restrictions on how

much these ridges can bend. Thus, many of the false positives in the ridge detection output are

very “bendy” ridges that could be removed if we were able to make more full use of the linearity

property of gravity waves.

4.6 Finite Radon Transform

The Radon transform in continuous space is a theoretical construct that underlies a number of

practical tools using tomography, such as CT (computed tomography) scans. It is based on the idea

that a 2D structure can be perfectly reconstructed from all possible straight line integrals passing

through said structure [43]. In practice, this reconstruction is approximated by finitely many line

integrals. This idea has been extended to finite images in a number of ways, but we will here ex-

plore the Finite Radon Transform (FRT), which utilize prime arithmetic and the geometry of finite

fields to achieve perfect reconstruction [21]. Our goal was that by analyzing line integrals through

the image, we hoped to focus on the linearity of gravity waves, then use additional techniques such

as the Fourier transform to detect periodicity amongst line integrals along parallel lines.

4.6.1 Theoretical setup

We utilized the FRT as introduced by Do and Vetterli in [21]. The core idea of the Radon

transform is that the collection of integrals along every straight line passing through a structure

contains enough information to perfectly reconstruct that structure. When analyzing a finite image,
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the meaning of a line changes somewhat, as we no longer are dealing with continuous slopes.

However, there is one finite context in which lines have been studied extensively: finite geometries.

In particular, when our image is of size p × p, where p is a prime number, we can view the

underlying space as an instance of Fp×Fp, where Fp is the finite field on p elements. In this space,

there are precisely p+ 1 distinct slopes, and each slope yields p distinct parallel lines, so there are

a total of p(p+1) lines, each of which contains precisely p points. These lines are the solution sets

to equations of the form

ax+ by − t = 0

where all addition and multiplication is done modulo p and the line is defined by the normal vector

(a, b) and intercept t. As we can see in Figure 4.7, these lines include a degree of periodicity

induced by the mod p arithmetic, the implications of which we will discuss later.

Figure 4.7: An example finite line in a 13 × 13 patch. This is the line with normal vector (−2, 1) and
translation vector 0. Note that this single line wraps around the patch twice.

We can then define the FRT of a zero-centered (i.e., with a mean of 0) function f on a p × p

discrete image as a function of (a, b) and t:

r(a,b)(t) =
1√
p

∑

(i,j)∈L(a,b),t

f(i, j),
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where L(a,b),t is the set of points on the line defined by normal vector (a, b) and intercept t. The

scaling factor 1√
p

ensures that the ℓ2 norm is preserved by the FRT, and the zero-centering of

f yields better numerical accuracy and reconstructability properties. The collection of all these

r(a,b)(t) can be structured as a (p + 1)× p image where the x axis indexes all possible lines (a, b)

and the y axis is the intercept t; such an image is called a sinogram, following the convention of

the Radon transform in the continuous setting.

As we discussed above, there are a total of p(p + 1) distinct lines, but there are a total of p3

choices of a, b, and t, so there must be some duplication in parameters. This duplication comes

from the fact that (as in Euclidean geometry) every non-zero multiple of the normal vector (a, b)

yields the same line. However, unlike in Euclidean geometry, the choice of which multiple of the

normal vector does have an impact on the FRT.

In particular, we order the elements of the FRT by the intercept value t, and this ordering is

affected by which multiple of the normal vector (a, b) we choose. To see this, we transform the

line equation into the more intuitive slope-intercept form:

ax+ by − t = 0 =⇒ y = tb−1 − ab−1x,

in which it is useful to recall that in finite fields, the multiplicative inverse of an element b−1 is

the unique other integer c in Fp such that bc = 1. If we scale (a, b) by k, we obtain the modified

equation

y = t(kb)−1 − ab−1x,

as the k cancels out of ab−1. Thus, when we scale (a, b) by k, we are changing the interval in which

we step through the intercepts by k−1, and thus affecting the ordering of elements in the FRT.

As explored in [21], there is an optimal choice of multiple for each normal vector, where by

“optimal”, we mean minimizing the “wrap-around” effect due to the mod p arithmetic. To have a
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common place to start from, we begin with the naive set of normal vectors,

uk = (−k, 1) for k = 0, . . . , p− 1 and up = (1, 0).

The optimal choice for each k can then be computed as

(a∗k, b
∗
k) = arg min

(ak,bk)=nuk:1≤n≤p−1
Cp(bk)≥0

∥(Cp(ak), Cp(bk))∥ ,

where Cp(x) is the centralized function of period p,

Cp(x) =















x if x/p < 0.5

x− p if x/p > 0.5

for x ∈ 0 . . . p− 1. In the minimization procedure, we restrict to non-negative Cp(bk) to avoid any

ambiguity in the minimum, as ∥Cp(ak), Cp(bk)∥ = ∥ − Cp(ak),−Cp(bk)∥. It is worth noting that

these optimal normal vectors depend only on the prime size of the patch p, not on the data f . Thus,

if the FRT is to be computed repeatedly for patches of the same size, this minimization need only

be done once.

Putting this all together then, our procedure for computing the FRT using optimal normal vec-

tors consists of the following steps: compute the collection of optimal normal vectors (a∗k, b
∗
k), then

compute the FRT for each patch f as

rk(t) =
1√
p

∑

(i,j)∈Lk,t

f(i, j),

where Lk,t is the set of points on the line akx+ bky − t = 0.

One of the desirable properties of the FRT is that it yields perfect reconstructability: given the

complete collection of p(p+ 1) lines, the original p× p image can be perfectly recovered. This is
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done via finite back-projection:

f(i, j) =
1√
p

∑

(k,t)∈Pi,j

rk(t),

where Pi,j is the set of parameters (k, t) such that the lines Lk,t that go through the point (i, j).

That is,

Pi,j = {(k, t) : aki+ bkj − t = 0} .

In practice, we can recover Pi,j more efficiently from the way we store the output rk(t).

4.6.2 Code implementation

As this technique has not been extensively utilized in the past decade, little modern code ex-

isted, so we had to build our own implementations of these principles in code. The following

algorithms were all implemented in Python 3 using numpy.

First, using Algorithm 3, we computed the optimal normal vectors given a patch of prime size

p× p.

Algorithm 3 A function to compute optimal normal vectors for the FRT. For notation used here,
see 4.1.

COMPUTE_NVECS(p)
N0 ← [0, 1]

for k = 1, . . . , p− 1 do

uk ← [−k, 1]
for n = 1, . . . , p− 1 do

Tn ← n · uk mod p

if (Tn)1 < 0 then

continue to next n
end if

dn ← ∥Tn∥
end for

n∗
k ← argminn dn

Nk ← n∗
k · uk mod p

end for

Np ← [1, 0]

return N
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We stored these normal vectors and could re-use them for as many patches of the same size

as we desire. This is useful, as in searching for gravity waves, we would be applying the FRT to

many smaller patches of the same size within a larger image, or even multiple images.

Next, we utilized this list of optimal normal vectors to compute the FRT for an example patch

using Algorithm 4. This algorithm made use of the Roll(v, i) function, which takes a vector

v and cyclically permutes it by i. That is,

Roll([1, 2, ..., 10], 2) = [9, 10, 1, ..., 7, 8].

Algorithm 4 An algorithm for computing the FRT given a list of optimal normal vectors N and a
p× p input patch P . For notation used here, see 4.1.

P ← P − P

R ∈Mp,p+1

for i = 0, . . . , p do

if (Ni)1 = 0 then

R:,i =
∑

j=0,...,p−1 P
T
j,:

else

∆x = (Ni)1
∆y = −(Ni)0
for k = 0, . . . , p− 1 do

R:,i ← R:,i + ROLL(P:,k·∆x mod p, k ·∆y mod p)

end for

end if

end for

return 1√
p
R

Finally, although we did not use it in the analysis step, we also coded the finite back-projection

(FBP) reconstruction operation, making use of the same normal vectors N , and taking as input the

sinogram R.

The full Python code for all of these algorithms can be found in the FRT class in the frat.py

file in the GitHub repository at https://github.com/zyjux/harmonic_gw.
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Algorithm 5 The Finite Back Projection (FBP) reconstruction algorithm, given a list of optimal
normal vectors N and a corresponding sinogram R. For notation used here, see 4.1.

P̂ ∈Mp×p

for i = 0, . . . , p do

∆x = (Ni)1
∆y = −(Ni)0
for k = 0, . . . , p− 1 do

if (Nk)1 = 0 then

P̂k,: ← P̂k,: +R:,i

else

P̂:,k·∆x mod p ← P̂:,k·∆x mod p + ROLL(R:,i,−k ·∆y mod p)

end if

end for

end for

return 1√
p
P̂

4.6.3 Results

We first tested this methodology on a synthetic dataset we generated. We created a 149 × 149

patch (note that 149 is a prime number) containing a periodic function shown in Figure 4.8. This

function was a cosine curve crossed with the unit interval, then rotated by π/3; we varied the period

of the cosine curve to test the response of the FRT to periodic functions with the same orientation

but different frequencies.

Applying the FRT to the example from Figure 4.8 (a), we obtained a sinogram shown in Figure

4.9 (a). We can see that most of the slopes did not yield any significant response or periodicity,

with the exception of columns 73 and 147, which correspond to normal vectors (3, 2) and (2, 1)

respectively. Examining a representative line with normal vector (3, 2), shown in Figure 4.9 (b),

we see that the slope of the line was generally aligned with the peaks of the periodic function and

that the periodic behavior of the line induced by the mod p arithmetic also matched up with the

period of the underlying function.

When we applied the FRT to the example from Figure 4.8 (b), we obtained the sinogram shown

in Figure 4.9 (c). In this case, we only had one slope that yielded a strong response, column 48,
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(a) (b)

Figure 4.8: The two principal synthetic examples we will explore in this section. In (a), we see the example
with period π, and in (b) we see the example with period 2π/3.

which had normal vector (5, 3). Looking at a representative line with this normal vector, shown in

Figure 4.9 (d), we see that again the slope matched well, and the period of the line also matched.

In both instances, the FRT was able to very clearly detect the orientation and period of the

input image, and for synthetic data such as this, a technique as simple as total variation within each

column would be able to automatically detect the presence of these strong responses.

However, taken together, these examples also show that in order for the FRT to give a strong

response for a particular normal vector, both the orientation and period of the resulting lines had

to match the image being analyzed. This conflation of period and orientation in the same step is

not necessarily desirable, as we had to vary these two parameters in a strongly correlated way,

not independently, as we can see in Figure 4.10. Thus, in applications it is likely that we will

find neither the orientation nor period that matches the input signal perfectly, but instead some

relatively close approximation of both that happen to occur together. In Figure 4.9, the orientation

of the underlying periodic function in the input image was constant, only the period was changed,

but the normal vectors that responded to each example were completely different, indicating that

in fact matching the period was at least as important as matching the orientation.
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(a) (b)

(c) (d)

Figure 4.9: The sinograms and example lines for the synthetic examples. In (a), the sinogram of the
synthetic image with period π is shown, and in (b), an example line with normal vector (3, 2) (corresponding
to the 73rd column in the sinogram, which has a strong response) is shown overlaid on the input image. In
(c), the sinogram of the synthetic image with period 2π/3 is shown, and in (d), an example line with normal
vector (5, 3) (corresponding to the 48th column in the sinogram, which has a strong response) is shown
overlaid on the input image.
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Figure 4.10: Example finite lines for consecutive normal vectors, showing the correlation between orienta-
tion and period.

(a) (b)

Figure 4.11: An example of gravity waves in the DNB, shown in (a), and the FRT sinogram of the 149×149
region highlighted in magenta in the center of (a).
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When we tested this on real data, we found similar results, although as always with real data,

the results are not quite as clear-cut. In Figure 4.11, we can see in (a) an example gravity waves

region and in (b) the resulting sinogram from applying the FRT. In (b), we note that the largest

variation within a column occurred in column 0, which corresponds to simple row sums; however,

this variation was likely due to the presence of brighter clouds in the lower part of the example

image. Aside from this column, we note that there are 3 potential columns that on visual inspection

displayed some form of periodic behavior: column 50 (corresponding to normal vector (−1, 3)),

column 75 (corresponding to normal vector (−1, 2)), and column 99 (corresponding to normal

vector (1, 3)). Example lines with each of these normal vectors are displayed in Figure 4.12.

(a) (b) (c)

Figure 4.12: Examples of lines corresponding to the three distinctive columns in Figure 4.11 (b). In (a),
there is a line with normal vector (−1, 3) from column 50 of Figure 4.11 (b), in (b) there is a line with
normal vector (−1, 2) from column 75, and in (c), there is a line with normal vector (1, 3), from column 99.

While the lines shown in Figure 4.12 (a) and (b) appear to correspond to the true direction and

period of the gravity waves, the line in Figure 4.12 (c) appears to be in a direction unrelated to the

gravity waves. The choice of these three columns was subjective and visual, so utilizing a more

rigorous technique for detecting periodicity within each column would likely yield better results.

While this algorithm did leverage both the linearity and periodicity properties of gravity waves,

it entangled them in complex ways within a single step, and thus made it difficult to analyze them

separately and ensure we were obtaining the clearest signal from each. This direction of utilizing
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finite versions of the Radon transform, however, appears to be a fruitful direction to pursue. There

are other ways to translate the continuous Radon transform to finite space that do not rely so

heavily on finite geometries and prime arithmetic, and which would thus not impose constraints on

the relationship between orientation and period.

4.7 Conclusions and Future Work

Overall, all of the three methods we tested—local autocorrelation, wavelet-based ridge detec-

tion, and the FRT—showed some degree of promise at enhancing gravity waves in DNB imagery,

but none of them were as effective as desired, in part because they are not fully utilizing the charac-

teristic properties of gravity waves identified in Section 4.2. However, the results here do indicate

several promising directions to attempt next.

Beyond specific new techniques, we wish to explore making better use of the data available to

us. The DNB contains a high degree of noise, at least some of which is a highly regular “striping”

pattern due to unavoidable issues with the DNB calibration procedure. We hope to use destrip-

ing and denoising procedures, such as the one in [56] to reduce the impact of these artifacts and

increase the reliability of our methods. There are also other bands and products available from VI-

IRS, including infrared channels and a cloud mask product, which could help disambiguate gravity

waves from wave-like structures appearing in clouds. While our current methods only made use

of the single DNB channel, multi-channel approaches are helpful for humans to reliably identify

gravity waves, so it is reasonable to expect that they could be integrated into algorithmic solutions

to increase their performance as well.

As far as new methods go, there are two principal techniques we hope to implement in the near

future.

First, we intend to combine local autocorrelation and wavelet-based ridge detection. One of

the main issues with local autocorrelation was that broader patches like clouds and city lights had

strong autocorrelative properties without being the form of periodicity we were hoping to detect,

particularly when the signal we are interested in has a relatively shallow dynamic range. On the
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other hand, the ridge detection algorithm did a good job of isolating relatively narrow, ridge-like

features even when their dynamic range is quite shallow, but did not utilize either the linearity or

periodicity characteristics of gravity waves. Thus, by first applying the ridge detection algorithm

and then performing local autocorrelation on that output, we hope to combine the strengths of

both algorithms. As part of this process, we also intend to look at modifying the ridge detection

algorithm slightly to take better advantage of the linearity of gravity waves by restricting how much

a ridge can “bend”.

Second, we will look at an alternate generalization of the Radon transform to finite patches

called the Mojette transform [33]. Where the FRT relies heavily on the theory of finite geometry

and prime arithmetic to enumerate all possible lines in the patch and ensure perfect reconstructabil-

ity in all cases, the Mojette transform is in many ways more general. It does not require that patches

be of prime by prime size, and uses lines that are not periodic and thus do not all contain the same

numbers of pixels. However, the number of pixels on each line is predictable based on the im-

age size, line orientation, and intercept, so this variance in number of pixels is relatively easy to

normalize for. The orientations and number of lines is also now a hyperparameter that can be cho-

sen based on the needs of the problem. While the Mojette transform can in some situations have

“ghosts” (patterns in the image which yield a net 0 contribution to the Mojette transform, and are

thus non-reconstructable), this is not a limitation in analysis-only situations such as the detection

of gravity waves. However, the lack of periodicity in the lines used for the Mojette transform

means that we can separate the detection of linearity and of periodicity, by first using the Mojette

transform to focus our attention along lines passing through the space, then applying the Fourier

transform or autocorrelation to detect periodicity in each direction.

We hope that at least one of these two variations will yield the hoped-for enhancement of

gravity waves in DNB imagery. Our goal is to build a fully automated gravity wave detector that

can efficiently scan through the large amount of DNB data available and find more examples of

gravity waves. While we (of course) hope that we can build a well-calibrated and accurate detector,

we would also be satisfied with a detector that is successful at detecting gravity waves, but which
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also produced a relatively high rate of false positives; such a detector would make the task of

creating a high-quality hand-labeled dataset easier by several orders of magnitude. Once such a

dataset exists, more recent techniques such as convolutional neural networks can be brought to

bear on the problem. Such methods also make it easy to integrate multi-channel data, which as we

mentioned above, is frequently useful for human identification of gravity waves.

Finally, it is worth reflecting on the overall methodology by which we conducted this search.

Rather than simply trying a smattering of different techniques, we attempted to organize our search

by identifying characteristic properties of gravity waves in DNB imagery then looking for transfor-

mations and algorithms that respond well to those types of properties. This structure also gave us a

way to analyze the results beyond simple numerical scores. Particularly at early stages of a project

like this, the qualitative behavior of algorithms is at least as important as any numerical measure

of their success, and focusing on trying to enhance particular properties allowed us to assess these

behaviors on a principled way. It also made it easier to give intuitive explanations of instances

where the algorithms struggled, and guided us from our initial techniques to further variations that

we wish to try in the near future.
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Chapter 5

Conclusions

In these chapters, we have explored different approaches in how we can use domain knowledge

to inform the types of mathematical algorithms we use to analyze data. While mathematical anal-

yses and input are most commonly used on the theoretical development side of science, we hope

that these examples show that there is value in bringing this perspective at the application stage as

well.

In Chapter 2, we were motivated by observations from domain scientists that in classifying

clouds, one of the most important attributes is the texture of the cloud. While it is possible that

machine learning algorithms will pick up on this texture, it is not guaranteed, as we have little

control over what features those methods choose to prioritize. Rather than leaving this to chance,

we built an algorithm based on persistent homology that we knew from theoretical results would

summarize and emphasize the texture present in an image. Once we had this algorithm running,

we used the our knowledge of how persistent homology works to find novel ways of attributing

our results back to image-level features. This product would not have been possible without a col-

laborative environment involving both those with theoretical knowledge of how these algorithms

work and those with practical knowledge of what types of features are important to analyze.

In Chapter 3, we were again motivated by a domain expert observation about the data: storm

systems are influenced by prevailing winds and geography. The question that arose, then, was

“can we construct a model that will generalize better to other situations and locations by enforcing

rotational symmetry?” To implement this algorithm required not just coding, but use of abstract

algebra, representation theory, and geometry. In this case, the elegant theory underlying this new

model did not translate to increased performance, as the accuracy achievable by turning a large

model loose on a large collection of data is tough to beat. Still, we now know more about the types

of questions these new geometric deep learning algorithms are suitable for, and can continue to

search for applications and questions for which they are the best answer.
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Finally, in Chapter 4, we were in a situation where modern neural network methods had proven

very tricky to use, as there was only a very small dataset of examples. In this work, even more than

in the previous chapters, we explicitly used this joint practical/theoretical framework to develop

our methods: we started by analyzing the image samples available to identify properties of gravity

waves that were characteristic and physically-based and used those properties to orient our search

for methods that could enhance gravity waves. This search went back into the archives for methods

of image analysis that have largely fallen out of popular use as neural networks have risen to

dominance on image analysis tasks. In evaluating these methods, we focused our analyses on

qualitative properties and behaviors rather than on numerical scores. For early work on a large

project like this, gaining an intuitive understanding of how each algorithm behaved on the data

and what types of features it responded to was crucial. By understanding why an algorithm might

be struggling in a situation, we were able to direct our attentions towards related algorithms and

modifications that might address the issue, driving us towards ever better results.

Overall, we hope that this dissertation can serve as an example of how theoretical mathematics

can be turned to very concrete applications, and that the modes of inquiry both in the chapters and

in the narrative sections can show how valuable these interdisciplinary projects can be.
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[86] Martin Vetterli, Jelena Kovačević, and Vivek K Goyal. Foundations of Signal Processing.

Cambridge University Press, September 2014.

[87] Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, Hao Zhou, and Lei Li. A survey on green deep

learning. arXiv preprint, November 2021, 2111.05193.

[88] Janni Yuval and Paul A. O’Gorman. Stable machine-learning parameterization of subgrid

processes for climate modeling at a range of resolutions. Nature Communications, 11(1),

July 2020.

[89] Xiao Xiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng Xu, and

Friedrich Fraundorfer. Deep learning in remote sensing: A comprehensive review and list of

resources. IEEE Geoscience and Remote Sensing Magazine, 5(4):8–36, December 2017.

107


	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Document Structure

	A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science
	Introduction
	Guiding application - analysing the mesoscale organization of clouds
	Key TDA concepts discussed here
	Advantages of TDA for image analysis tasks in environmental science
	Combining TDA with simple ML algorithms
	Objectives and organization of this article
	Narrative and Contributions

	Guiding Application - Classifying the Mesoscale Organization of Clouds from Satellite Data
	Approaches for dealing with lack of labeled samples
	Dataset details and preprocessing

	Introduction to Topological Data Analysis
	Topology
	Homology
	Persistent homology
	Persistence barcodes and diagrams
	How to read and interpret persistence barcodes
	Persistence landscapes
	How to read and interpret persistence landscapes

	Environmental Science Satellite Case Study
	Adapting persistent homology to this dataset
	Dimensionality reduction and adding a simple machine learning model to build a classifier
	Results - what initial patterns emerged from applying persistent homology?
	A novel interpretation method - deriving interpretations in terms of weather and homology
	Comparison of this classifier to those in Rasp et al.

	Advanced TDA concepts
	Conclusions and Future Work

	Comparing Rotationally Invariant and Conventional CNNs
	Introduction
	Organization of this Chapter
	Narrative and Contributions

	Group Convolution
	The Group Convolution Operation
	Resulting Architecture

	Datasets
	Storm Data
	Toy Dataset

	Results
	Initial comparison on toy dataset
	Initial Comparison on Storm Data
	At what layer should the network be invariant?
	Exact versus Approximate invariance

	Conclusions and Future Work

	Using Harmonic Analysis Techniques to Enhance Gravity Waves in the Day-Night Band
	Introduction
	Motivation
	Chapter Overview
	Narrative and Contributions

	Properties of an Ideal Transform
	Dataset
	Local Autocorrelation
	Theoretical setup
	Code implementation
	Results

	Wavelet-based Ridge Detection
	Theoretical setup
	Code implementation
	Results

	Finite Radon Transform
	Theoretical setup
	Code implementation
	Results

	Conclusions and Future Work

	Conclusions
	Bibliography

