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ABSTRACT 

 

 

 

STOCHASTIC ANALYSIS AND PROBABILISTIC DOWNSCALING OF SOIL MOISTURE  

 

 

 

Many applications require fine-resolution soil-moisture maps that exhibit realistic 

statistical properties (e.g., spatial variance and correlation).  Existing downscaling models can 

estimate soil-moisture based on its dependence on topography, vegetation, and soil 

characteristics.  However, observed soil-moisture patterns also contain stochastic variations 

around such estimates.  The objectives of this research are to perform a geostatistical analysis of 

the stochastic variations in soil moisture and to develop downscaling models that reproduce the 

observed statistical features while including the dependence on topography, vegetation, and soil 

properties.  Extensive soil-moisture observations from two catchments are used for the 

geostatistical analysis and model development, and two other catchments are used for model 

evaluation.  The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) 

model is used to downscale soil moisture, and the difference between the point measurements 

and the EMT+VS estimates are considered to be the stochastic variations.  The stochastic 

variations contain a temporally stable pattern along with temporally unstable patterns.  All of 

these patterns include spatially correlated and uncorrelated variations.  Moreover, the spatial 

variance of the stochastic patterns increases with the mean moisture content.  The EMT+VS 

model can reproduce the observed statistical features if it is generalized to include stochastic 

deviations from equilibrium soil moisture, variations in porosity, and measurement errors.  It can 

also reproduce most observed properties if stochastic variations are inserted directly in its soil 

moisture outputs.  These analyses and downscaling models provide insight into the nature of 
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stochastic variations in soil moisture and can be further tested by application to other catchments 

and larger regions.   
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1. INTRODUCTION 

 

 

 

Fine-resolution maps (10-30 m grid cells) of volumetric water content (soil moisture) are 

important for many applications.  They can improve agricultural production (Holzman et al., 

2014; Phillips et al., 2014), vector-borne infectious disease outbreak prediction (Montosi et al., 

2012; Patz et al., 1998), weather and climate modeling (Pal and Eltahir, 2001; Seuffert et al., 

2002), forest fire prediction (Bartsch et al., 2009), and crop yield quantification (de Wit and van 

Diepen, 2007; Green and Erskine, 2004). 

For some applications, it is particularly important for the soil-moisture maps to reproduce 

the statistical properties of the observed patterns.  For example, accurate assessment of spatial 

and temporal soil-moisture variability supports crop and water management (Chen et al., 2011).  

In addition, Wood (1997) demonstrated that proper characterization of soil moisture’s spatial 

variability is important for accurate estimation of coarse-resolution evaporation during different 

atmospheric states (both low and high demands).  Moreover, proper characterization of the soil-

moisture probability density function (PDF) is useful for improving simulation of sub-grid 

processes in land-surface models, evaluating remotely sensed soil-moisture data, and estimating 

fine-scale hydrologic, ecological, and biogeochemical fluxes (Ryu and Famiglietti, 2005).  

Because soil moisture is a principle variable in determining soil strength (Horn and Fleige, 

2003), reproducing observed ranges of soil moisture is also vital for assessing vehicle 

trafficability (Flores et al., 2014), vehicle impacts (Shoop et al., 2005), and soil damage (Vero et 

al., 2014). 

Several studies have characterized the statistical properties of soil-moisture patterns 

including the PDF, spatial variability, and correlation structure.  Various PDFs have been 
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evaluated by their ability to describe the observed spatial distribution of soil moisture.  For large 

regions, a beta distribution (Ryu and Famiglietti, 2005) and a lognormal distribution (Choi and 

Jacobs, 2007) can fit the sample distributions well during dry conditions.  However, these same 

studies concluded that a normal distribution fits the data better when considering the full range of 

conditions.  For small catchments, a normal distribution has also been found to adequately 

describe the PDF of soil moisture (Western et al., 2002).  In addition, the spatial variability of 

soil moisture has been demonstrated to change based on the spatial-average soil moisture 

(Famiglietti et al., 2008).  Some studies have reported increasing spatial variability with 

increasing spatial average (De Lannoy et al., 2006; Famiglietti et al., 1998; Western and 

Grayson, 1998), while others have reported an inverse relationship (Brocca et al., 2007; 

Famiglietti et al., 1999; Hupet and Vanclooster, 2004).  Still others observed maximum 

variability at intermediate values of the average (Owe et al., 1982; Vereecken et al., 2007).  Also, 

the spatial correlation length of soil moisture varies between regions and can vary temporally 

within the same region.  For example, studies have found increasing (Brocca et al., 2007), 

decreasing (Western et al., 1998), and site-dependent (Western et al., 2004) relationships 

between correlation length and spatial-average soil moisture. 

Fine-resolution maps of soil moisture are typically produced by downscaling coarse-

resolution data.  Coarse-resolution soil moisture is available from various resources including 

Advanced Microwave Scanning Radiometer–EOS (AMSR-E) (Njoku et al., 2003), Soil Moisture 

and Ocean Salinity (SMOS) (Kerr et al., 2010), and Soil Moisture Active Passive (SMAP) 

(Entekhabi et al., 2010; Reichle et al., 2017).  SMERGE is a synthesis of SMAP satellite-based 

data and model runs providing daily values from 1979 to 2015 (Crow et al., 2017).  

Geoinformation-based downscaling methods use a combination of fine-resolution topography, 
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vegetation, and soil data to infer fine-scale variations in soil moisture (Busch et al., 2012; 

Coleman and Niemann, 2013; Pellenq et al., 2003; Ranney et al., 2015).  These methods rely on 

known relationships between soil moisture and topography (Grayson et al., 1997; Western et al., 

1999), vegetation (Ranney et al., 2015), and soil characteristics (Famiglietti et al., 1998; Takagi 

and Lin, 2011).  The soil moisture patterns generated by these methods reproduce the spatial 

structures implied by the site characteristics, but they have not been shown to reproduce the 

statistical properties of the observed soil moisture patterns. 

Other downscaling methods specifically aim to reproduce soil moisture’s statistical 

properties.  For example, multifractal interpolation techniques have been proposed to downscale 

soil moisture (Kim and Barros, 2002; Kumar, 1999; Mascaro et al., 2010).  While these methods 

are able to approximate the observed soil-moisture variability and correlation structure at 

multiple spatial scales, they downscale soil moisture to spatial resolutions (200-825 m) that may 

be too coarse for some applications.  Additionally, they do not consider soil moisture’s 

dependence on topography, vegetation, and soil characteristics. 

The primary objectives of this research are:  (1) to characterize the stochastic variability 

of soil moisture within the catchment scale and (2) to develop downscaling models that 

reproduce the observed statistical features of soil moisture (while including soil moisture’s 

dependence on topography, vegetation, and soil characteristics).  Extensive ground-based soil-

moisture measurements from two catchments (Tarrawarra and Cache la Poudre) are used for the 

stochastic analysis and model development, and two other catchments (Nerrigundah and Satellite 

Station) are used for model evaluation.  The Equilibrium Moisture from Topography, 

Vegetation, and Soil (EMT+VS) model (Ranney et al., 2015) is used to estimate soil moisture 

based on the available site properties (topography and vegetation).  The deviations between the 
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observations and EMT+VS estimates are considered the stochastic variations.  Geostatistical 

analysis is used to analyze these variations.  Then, the EMT+VS model is generalized to simulate 

the stochastic variations.  Two model versions are developed:  the indirect model and the direct 

model.  The indirect model introduces stochastic variability through the site properties that are 

supplied to the EMT+VS model.  Because the variations are introduced through the inputs, the 

indirect model may be more transferable between catchments.  The direct model introduces the 

stochastic variations directly in the soil moisture, which requires no assumptions about the 

factors causing the stochastic variability.  The following section (“Resources”) describes the 

study catchments and the existing EMT+VS model.  Then, Section 3 (“Soil-Moisture Analysis”) 

presents the methodology and results of the geostatistical analysis.  Section 4 (“Model 

Development”) shows the methodology and results for both generalized models.  Finally, Section 

5 (“Conclusions”) summarizes the main conclusions from this study and discusses avenues for 

further research. 
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2. RESOURCES 

 

 

 

2.1 Study Sites 

Soil-moisture data are used from four catchments:  Tarrawarra, Cache la Poudre, 

Nerrigundah, and Satellite Station.  Tarrawarra and Cache la Poudre are used for model 

development because they have sampling locations that are dense enough to calculate reliable 

semivariograms for the geostatistical analysis.  Additionally, both catchments have enough 

sample dates to observe how the semivariograms change in time and with mean moisture 

content.  Nerrigundah and Satellite Station have fewer sampling locations and/or fewer 

observation dates, so they are used for model validation.   

The Tarrawarra catchment (Western and Grayson, 1998) is in southern Victoria, 

Australia (37° 39’ S and 145° 26’ E) and has an approximate area of 10.5 ha.  The vegetation 

consists of perennial improved pastures.  The climate is sub-humid with a mean annual 

precipitation of 820 mm.  Elevation data are available from a 5 m digital elevation model (DEM) 

(Figure 1a), and the maximum elevation difference (total relief) is approximately 25 m.  Soil-

moisture data are available on a 10 by 20 m grid at 454 locations.  These data were collected 

using a time-domain reflectometer (TDR) in the top 30 cm of the soil (Western et al., 1999).  

Samples were taken on 13 dates from September 27, 1995 to November 29, 1996. 

The Cache la Poudre catchment (Lehman and Niemann, 2008) is near Rustic, Colorado, 

USA (40° 41’ 56” N and 105° 30’ 30” W) and has an approximate area of 8.0 ha.  The climate is 

semiarid with a mean annual precipitation of 400 mm.  Elevation data are available from a 15 m 

DEM (Figure 1b), and the total relief is approximately 118 m.  The catchment has aspect 

dependent vegetation with coniferous forest on the north-facing hillslope and shrubs on the 
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south-facing hillslope.  Fractional vegetation cover data (generated from litter depth 

measurements and vertical photographs) are available on the 15 m grid.  Soil-moisture data are 

also available on the 15 m grid at 350 locations.  These data were collected using a TDR in the 

top 5 cm of the soil.  Samples were taken on nine dates from April 22, 2008 to June 24, 2008.  

The Nerrigundah catchment (Walker et al., 2001) is near Dungog, New South Wales, 

Australia (32° 19’ S and 151° 43’ E) and has an approximate area of 6.0 ha.  The vegetation 

consists of natural grasses. The climate is sub-humid with a mean annual precipitation of 1,000 

mm.  Topographic data are available from a 20 m DEM (Figure 1c), and the total relief is 

approximately 38 m.  Soil-moisture data are available on the same 20 m grid at 238 locations.  

These data were collected using a TDR in the top 15 cm of the soil (Walker et al., 2001).  

Samples were taken on 12 dates from August 27, 1997 to September 22, 1997.  

The Satellite Station catchment (Western et al., 2004) is approximately 70 km north of 

Auckland, New Zealand (36° 24’ S and 174° 42’ E) and has an approximate area of 60 ha.  The 

vegetation is predominately pasture.  The climate is sub-humid with a mean annual precipitation 

of 1,200 mm.  Topographic data are available from a 40 m DEM (Figure 1d), and the total relief 

is approximately 80 m.  Soil-moisture data are available on the 40 m grid at 370 locations.  These 

data were collected using a TDR in the top 30 cm of the soil (Western et al., 2004).  Samples 

were taken on six dates from March 25, 1998 to October 30, 1999.  

2.2 Existing EMT+VS Model 

The EMT+VS model uses an analytical expression to calculate fine-resolution soil-

moisture patterns from temporally varying spatial-average soil moisture values.  The fine-

resolution variations in soil moisture are inferred from fine-resolution topographic data and fine-

resolution vegetation and soil data if available.  A detailed description of the EMT+VS model is 
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presented by Coleman and Niemann (2013) and Ranney et al. (2015), so only a brief summary is 

provided here. 

The EMT+VS model is based on the water balance for a soil layer whose upper limit is at 

the ground surface.  Four processes can add or remove water from this layer:  infiltration F , 

deep drainage G , lateral flow L , and evapotranspiration E  (ET).  Assuming equilibrium at each 

time, the water balance can be written: 

     
A A A

FdA GdA L EdA  (1) 

where A  is the land area that is upslope from the edge of a fine-resolution grid cell.  

Infiltration is described using a simple approach that accounts for interception by 

vegetation: 

  0 1F F V   (2) 

where 0F  is the infiltration rate where the canopy is absent,   is the interception efficiency of 

the vegetation, and V  is the fractional vegetation cover.  The infiltration model can also account 

for orographic precipitation and elevation dependent potential ET (Cowley et al., 2017), but 

those components are neglected here due to the small elevation ranges at the application 

catchments. 

Deep drainage is described using Darcy’s Law under the assumption that gravity controls 

the hydraulic gradient and using the Campbell (1974) equation to estimate the unsaturated 

hydraulic conductivity.  Specifically: 

 ,

v

s vG K






 
  

 
 (3) 
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where ,s vK  is vertical saturated hydraulic conductivity,   is the depth-averaged volumetric soil 

moisture in the soil layer,   is porosity, and  v  is the vertical pore disconnectedness index. 

Lateral flow is also described using Darcy’s Law under the assumption that the lateral 

hydraulic gradient is a function of the topographic slope, which is similar to TopModel (Beven 

and Kirkby, 1979).  The thickness of the soil layer is modeled as a function of topographic 

curvature (Heimsath et al., 1999).  Thus, lateral flow is: 

 min
0 ,

min

h

s vL c K S



  
 

 

   
    

  
 (4) 

where 
0  is the layer thickness where topographic curvature is zero, min  is the minimum 

topographic curvature where the layer is present,   is topographic curvature, c  is the length of 

the fine-resolution grid cell,   is the anisotropy of the saturated hydraulic conductivity,  h  is the 

horizontal pore disconnectedness index, S  is topographic slope, and   is a parameter relating 

the horizontal hydraulic gradient to topographic slope.  

The ET expression begins with a supplied spatial-average potential ET.  The potential ET 

is partitioned into a potential evaporation and a potential transpiration using the fractional 

vegetation cover V .  It is also partitioned into radiation and aerodynamic terms using the 

Priestley-Taylor assumption (Priestley and Taylor, 1972).  Spatial variations in solar insolation 

are included in the radiation terms using the Potential Solar Radiation Index (PRSI), which 

depends on the topographic slope and aspect among other variables (Dingman, 2002).  The ET 

expression is: 

  1
1 1

r a

p

p

I
E E V V

 

   


   

                    

 (5) 
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where pE  is the potential ET, pI  is the PSRI,   is the portion of transpiration that is derived 

from the soil layer,   is the shading effect on soil evaporation,   is the Priestly-Taylor 

coefficient minus one, r  is the radiation ET exponent, and a  is the aerodynamic ET 

exponent. 

The soil moisture is determined from the water balance using a solution strategy from 

Coleman and Niemann (2013).  First, a set of analytical solutions is obtained for soil moisture 

under the assumption that each of the outflow terms in the water balance dominates.  Then, the 

final soil-moisture estimate is determined by a weighted average of the analytical solutions, 

where the weights are the magnitudes of the outflow terms in the water balance.  The final soil-

moisture estimate   is: 

 
G G L L R R A A

G L R A

w w w w

w w w w

   


  


  
 (6) 

where G , L , R , and A  are the analytical soil-moisture values if deep drainage, lateral flow, 

radiation ET, and aerodynamic ET dominate, respectively.  The variables Gw , Lw , Rw , and Aw  

are the associated weights.   

 The analytical soil moisture values are: 

 
DDI

DDI
G   (7) 

 
LFI

LFI
L   (8) 

 
REI

REI
R   (9) 

 
AEI

AEI
A   (10) 
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where  is the spatial-average soil moisture, DDI  is the deep drainage index, LFI is the lateral 

flow index, REI  is the radiation ET index, and AEI is the aerodynamic ET index.  The variables 

DDI , LFI , REI , and AEI  are the spatial-averages of the indices.  The indices are: 

 

1

,

1
DDI 

v

s v

V

K





 

   
 

 (11) 

 

1 11

min

0 ,v min

1
LFI

h hh

s

V A

K cS

 





  



     

           

 (12) 

 

1 1 1

1 1 1
REI

(1 )

r r r

p p

V

E I V V

 





 




      
               

 (13) 

 

1/ 1/

1 1
AEI

(1 )

a a

p

V

E V V 

 

 


 

    
         

 (14) 

Spatial variations in DDI  are produced by spatial variations in V  and soil properties if fine-

resolution data are available to describe soil variations.  Spatial variations in LFI  are produced 

by variations in  , A , and S  (and potentially vegetation and soil properties).  Spatial variations 

in REI  are produced by variations in pI  (and possibly vegetation and soil variations).  Spatial 

variations in AEI  are produced by vegetation and soil variations if fine-resolution data are 

available.  The weights are: 

 
DDI

v

Gw



 
  
 

 (15) 

 
LFI

h

Lw



 
  
 

 (16) 

 
REI

r

Rw



 
  
 

 (17) 
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AEI

a

Aw



 
  
 

 (18) 

The weights vary in time due to temporal variations in  . 

For the present study, fine-resolution topographic and vegetation data are used as inputs 

at Cache la Poudre, while only topographic data are used at the other catchments (it is assumed 

that 1.0V   for these other catchments).  Fine-resolutions soil data was not included because 

Ranney et al. (2015) found that soil properties were not useful when downscaling.  The spatial-

average soil moisture   is calculated from the available soil-moisture observations on each 

date.  The remaining parameter values (Table 1) are obtained from the calibrations performed by 

Hoehn (2016) and Hoehn et al. (2017).  In those calibrations, the allowable parameter ranges 

were determined from the available catchment information.  Within those ranges, the parameter 

values were chosen to maximize the average Nash Sutcliffe Coefficient of Efficiency from all 

available dates. 
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3. SOIL-MOISTURE ANALYSIS 

 

 

 

3.1 Analysis Methodology 

 The soil-moisture observations from the study catchments are assumed to be the sum of 

a deterministic and a stochastic component.  The deterministic component contains the variations 

caused by soil moisture’s dependence on topography and other fine-resolution variables and can 

be estimated using the pre-existing EMT+VS model.  The stochastic component represents 

variations around the deterministic component.  Thus, the observed stochastic component 
obs  

can be estimated as: 

    obs obs  (19) 

where obs  is the observed soil-moisture pattern and   is the EMT+VS model’s estimated 

pattern. 

The  obs  patterns can also be decomposed into temporally stable and unstable patterns.  

The stable pattern is a time-invariant stochastic pattern that contributes to  obs  to some extent on 

every sample date.  The stable stochastic pattern ,s obs  can be estimated as the temporal average 

of the observed stochastic patterns: 

   , E s obs obs  (20) 

where  E  denotes the temporal average.  The unstable stochastic patterns ,u obs  are variations 

around the stable pattern on each date and can be estimated as: 

 , ,   u obs obs s obs  (21)  
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The patterns for obs ,  obs , ,s obs , and ,u obs  are analyzed using semivariograms.  This 

technique was introduced by Matheron (1963) and has been previously applied to obs  patterns 

(De Lannoy et al., 2006; Korres et al., 2015; Petrone et al., 2004; Western et al., 1998; Western 

et al., 2004).  However, it has not been used to examine obs , ,s obs , or ,u obs .  The sample 

semivariogram sg  is calculated using:  

  
 

 
2

,

1

2
s i j

i j

g h z z
N h

   (22) 

where h  is a lag or separation distance between two selected points in a catchment, N  is the 

number of pairs of points for each lag, i  and j  are indices for the two locations separated by 

distance h , and 
iz  and jz  are the values of the variable of interest at those two locations (i.e. 

obs ,  obs , ,s obs , or ,u obs  in the analyses below).  The number of lag bins was determined as 

the number of fine-resolution grid cells in the shorter of the two spatial dimensions.  These bins 

were divided into equal sizes based on the maximum possible distance between two points.  

The semivariogram has three main properties:  the nugget, range, and sill.  The nugget is 

the y-intercept of a semivariogram, the range is the lag beyond which the semivariance becomes 

relatively constant, and the sill is the value of that relatively constant semivariance.  The nugget 

is produced by spatially uncorrelated variability and can be caused by measurement error and 

sub-grid variability (Western et al., 2004). The difference between the sill and the nugget (the 

partial sill) describes the contribution of spatially correlated variability.  The range is related to 

the correlation length. 

An exponential semivariogram model with a nugget was fit to the sample semivariogram 

of each pattern using a weighted least squares method from Cressie (1985).  The exponential 
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form was selected because it usually fits the sample semivariograms well (McBratney and 

Webster, 1986; Western et al., 2004) compared with other models (e.g, spherical, circular, etc.).  

The exponential semivariogram eg  has the form: 

    2 2 /1 e h r

e n sg h       (23) 

where 
2

n  is the nugget, 
2

s  is the partial sill, r  is the correlation length, and the sill is equal to 

2 2

n s  .  Thus, the nugget, partial sill, and correlation length of the sample semivariograms can 

be estimated by 
2

n , 
2

s , and r , respectively. 

3.2 Analysis Results 

The temporal-average semivariograms of obs  and  obs  are shown as symbols in Figure 

2 (all figures in this section also show modeling results, but those results are discussed later).  

The obs  semivariogram exhibits both a nonzero nugget and partial sill at both catchments.  The 

sill at Tarrawarra is larger than Cache la Poudre, and the contributions of nugget and partial sill 

are different.  The nugget comprises a much smaller portion of the sill at Tarrawarra (13%) than 

at Cache la Poudre (55%), which suggests that correlated variability plays a much larger role in 

obs  at Tarrawarra than at Cache la Poudre.  The correlation lengths are similar at both 

catchments (about 30 m at Tarrawarra and about 40 m at Cache la Poudre).  Western et al. (1998) 

used visual inspection to estimate the semivariogram properties for obs  at Tarrawarra.  They 

estimated that the nugget comprises 29% of the sill and found an average correlation length of 50 

m.  

The contribution of the stochastic component to the overall soil-moisture observations 

can be examined by comparing the sills of  obs  and obs .  The sill for  obs  is approximately 
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64% of the sill for obs  at Tarrawarra and about 84% at Cache la Poudre.  Thus, the stochastic 

variations are important at both catchments, but more so at Cache la Poudre.  The sill of Cache la 

Poudre is slightly larger than Tarrawarra.  At Tarrawarra, the nugget for  obs  is 47% of the sill, 

and the correlation length is approximately 34 m.  At Cache la Poudre, the nugget is 56% of the 

sill, and the average correlation length is approximately 21 m.  Thus, both catchments have 

roughly equal contributions from correlated variability to  obs , but Cache la Poudre has a 

slightly larger contribution of uncorrelated variability.  At Tarrawarra, the correlation lengths of 

 obs  from individual dates range from 19 to 135 m (compared to 18 to 65 m for obs ), while at 

Cache la Poudre it ranges from 9 to 31 m (compared to 10 to 71 m for obs ).  The correlation 

lengths of the pre-existing EMT+VS model   range from 28 to 96 m at Tarrawarra and from 32 

to 71 m at Cache la Poudre. 

The diamonds in Figure 3 show the semivariogram of ,s obs .  The sill for ,s obs  is a 

substantial portion of the sill for  obs  at both catchments (30% at Tarrawarra and 41% at Cache 

la Poudre).  The higher percentage at Cache la Poudre suggests that the stable stochastic pattern 

plays a larger role at this catchment.  At Tarrawarra, the nugget for ,s obs  is 14% of the sill, and 

the correlation length is approximately 31 m.  At Cache la Poudre, the nugget for ,s obs  is 48% 

of the sill, and the correlation length is approximately 25 m.  Thus, uncorrelated variability plays 

a larger relative role in ,s obs  for Cache la Poudre than Tarrawarra.  

The triangles in Figure 3 show the temporal-average semivariogram of ,u obs .  At 

Tarrawarra, the nugget for ,u obs  is 62% of the sill, and the correlation length is approximately 
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45 m.  At Cache la Poudre, the nugget for ,u obs  is 48% of the sill, and the correlation length is 

approximately 14 m.  Thus, in contrast to the stable patterns, uncorrelated variation plays a 

smaller relative role in ,u obs  for Cache la Poudre than Tarrawarra. 

Figure 4 plots the semivariogram properties of  obs  on each date against the associated 

spatial-average soil moisture  .  The nugget remains relatively constant at Tarrawarra, but it 

increases with  at Cache la Poudre.  The correlation length of  obs  exhibits no dependence on 

  at either catchment.  Western et al. (2004) found that the correlation length of soil moisture 

obs   increases with   at multiple catchments.  The present results then suggest that this 

increasing trend is due to the deterministic component rather than the stochastic component.  The 

partial sill for  obs  increases with   at Tarrawarra, which indicates a greater contribution from 

correlated variation on wetter dates.  However, the partial sill remains fairly constant at Cache la 

Poudre.  Western et al. (2004) reported that the variance of obs  increases with   at multiple 

catchments.  Similar behavior is implied by the nuggets and partial sills of  obs  at both 

catchments.  However, the increasing variance is due to increasing correlated variation at 

Tarrawarra and increasing uncorrelated variation at Cache la Poudre. 

Figure 5 plots the semivariogram properties of ,u obs  on each date against the associated 

 .  The nugget exhibits no dependence on   at either catchment, indicating that the 

uncorrelated variance in ,u obs  remains fairly constant.  Similarly, the correlation lengths exhibit 

no clear relationship with   at either catchment.  For two dates at Tarrawarra, the exponential 

semivariogram fits the sample semivariogram poorly.  To accommodate for this anomaly, the 7 
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largest lags (of the 23 total) were excluded when fitting the exponential semivariogram.  This 

modification produced more reasonable semivariogram properties for one date, but an unusually 

large correlation length (197 m) was still estimated for the other date (this value falls beyond the 

limits of the graph in Figure 5).  The partial sill increases with   at both catchments, which 

indicates a greater contribution from correlated variance during wetter conditions.  Overall, these 

results suggest that the behavior of the unstable stochastic patterns is similar at both catchments. 

The differences between the semivariogram properties in Figure 4 and Figure 5 reveal the 

influence of ,s obs  on the stochastic patterns.  At Cache la Poudre, for example, subtracting ,s obs  

from  obs  results in a larger nugget in ,u obs  (compared to  obs ) for dry conditions.  In contrast, 

this subtraction tends to decrease the nugget in ,u obs for wet conditions.  Although the stable 

pattern is constant, this example demonstrates how its combination with the unstable patterns 

decreases the nugget of  obs  on drier dates and increases the nugget on wetter dates.  Thus, at 

Cache la Poudre, the nugget of  obs  has a positive relationship with  , while the nugget of 

,u obs  remains relatively constant.  
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4. MODEL DEVELOPMENT 

 

 

 

4.1 Indirect Model Methodology 

The indirect generalization of the EMT+VS model introduces stochastic variations by 

treating some model inputs as random variables.  Although many inputs might contain spatial 

variations, the goal is to reproduce the observed stochastic features using as few random 

variables as possible.  Thus, stochastic variations are included in only three ways:  porosity, soil 

moisture disequilibrium, and measurement error.  

Porosity has been shown to vary substantially at the catchment scale (Bakr et al., 1978).  

A stochastic porosity 
*  is included in the model by combining the existing calibrated porosity 

value   with a stochastic perturbation 
*p : 

  * *1 p       (24) 

Because porosity is temporally constant under most conditions (except after soil disturbances, 

such as tillage), *p  is considered a stable stochastic pattern.  Thus, only a single pattern is 

generated and used on each sample date.  Studies have also demonstrated that porosity can have 

both spatial correlation (Bakr, 1976; Wang and Shao, 2013) and sub-grid variability (Duffera et 

al., 2007).  Thus, *p  is constructed using a correlated random field 
*

cp  and an uncorrelated 

random field 
*

up : 

 
* * * c up p p   (25) 

Both 
*

cp  and 
*

up  are assumed to be normally distributed with zero mean and homogeneous.  

Heteroscedasticity of the  obs , ,s obs , and ,u obs  patterns was explored, but no consistent 
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behavior was observed for the two catchments (see APPENDIX).  
*

cp  is assumed to have a 

separable exponential correlation function and is generated using Fast Sequential Simulation 

(Dolloff and Doucette, 2014).  Generating fields of 
*

cp  requires specification of its standard 

deviation 
cp  and correlation length  p .  Similarly, generating fields of 

*

up  requires 

specification of its standard deviation 
up . 

The pre-existing EMT+VS model calculates soil moisture by assuming equilibrium 

between the inflows and outflows of the soil layer.  In reality, these flows are usually unbalanced 

and soil moisture is dynamic (e.g., Gaur and Mohanty, 2016).  To allow deviations from 

equilibrium, the indirect model includes a stochastic variable.  Specifically, when the equilibrium 

condition is imposed, the equilibrium soil moisture is considered stochastic (
* ) and assumed to 

be: 

  * *1 d     (26) 

where 
*d  is a random field that characterizes the deviations from equilibrium.  Because such 

deviations vary in time, 
*d  is considered an unstable stochastic variable, so different patterns are 

generated for each date.  To maintain parsimony, 
*d  is assumed to contain only a correlated 

pattern.  Similar to porosity, 
*d  is assumed to be normally distributed with zero mean and 

homogeneous.  Thus, generating fields of 
*d  requires specification of its standard deviation d  

and correlation length d . 

Including the porosity perturbation *p  and the deviation from equilibrium *d  in the 

EMT+VS model development produces new stochastic indices *DDI , *LFI , *REI , and *AEI : 
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These stochastic indices are then used to calculate new stochastic soil moisture values using 

Equations 7-10 (
*G , 

*L , 
*R , and 

*A ).  New stochastic weights are calculated using Equations 

15-18 (
*

Gw , 
*

Lw , 
*

Rw , and 
*

Aw ). 

In addition to the natural stochastic variations, the soil moisture observations also include 

measurement errors (Coleman and Niemann, 2013; Western and Grayson, 1998).  Measurement 

errors must be simulated in order for the model to reproduce the properties of the observed soil 

moisture patterns.  Measurement errors 
*e  are included by revising Equation 6 to become: 

 

* * * * * * * *
* *

* * * *

G G L L R R A A

G L R A

w w w w
e

w w w w

   


  
 

  
 (31) 

TDR measurement errors do not depend on spatial-average soil moisture (Roth et al., 1990), so 

Equation 31 assumes that the measurement errors are additive.  The pattern of measurement error 

differs on each sampling date, so 
*e  is considered temporally unstable and different patterns are 

generated for each date.  Measurement error is also expected to be independent between 

sampling locations, so 
*e  is considered an uncorrelated random field.  Thus, generating fields of 

*e  field requires only specification of its standard deviation e . 
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In the end, the indirect model introduces six new time-invariant parameters (
cp ,  p , 


up , d , d , and e ) that must be estimated before soil-moisture simulations can be generated.  

For Tarrawarra and Cache la Poudre, these parameters estimated using the graphs shown in 

Figure 4 and Figure 5.  To generate these figures, the indirect model’s stochastic component 
* , 

stable pattern 
* s , and the unstable patterns 

* u  are determined based on the same procedure 

from the analysis methodology: 

 
* *     (32) 

 
* *    s E  (33) 

 
* * *

u s     (34) 

To ensure the stability of results, 2,000 model realizations were generated for each date, and the 

average semivariogram was used, though useful results can also be generated using fewer 

realizations (e.g., 500 realizations).  The parameters were manually calibrated to minimize the 

root-mean-squared error (RMSE) between the observed and modeled semivariogram properties.  

Specifically, the parameters associated with unstable patterns ( d , d , and e ) were first 

adjusted to minimize RMSE between ,u obs  and 
* u .  Then, the parameters associated with 

stable patterns (
cp ,  p , and 

up ) were adjusted to minimize RMSE between  obs  and 
* .  

The calibrated parameters for the indirect model are shown in Table 2. 

The indirect model also allows calculation of confidence limits for the EMT+VS model’s 

estimated soil moisture ( ).  For each fine-resolution grid cell, all 2,000 realizations of 
*  were 

sorted from smallest to largest, and the empirical cumulative distribution function (CDF) was 



22 

computed using the plotting position formula from Cunnane (1978).  The desired quantiles are 

computed by linearly interpolating between the CDF values that are represented in the dataset. 

4.2 Direct Model Methodology 

The direct model introduces stochastic variations directly in the final EMT+VS soil 

moisture.  This model only introduces unstable stochastic patterns, so it is applicable if soil-

moisture downscaling is only required for a single date.  The direct model soil moisture 
*

d  is: 

  * * * *1    d a b c  (35) 

where   is the pre-existing EMT+VS estimate, *a  is a correlated random field with a separable 

exponential correlation function, 
*b  is an uncorrelated random field, and *c  is an uncorrelated 

random field (representing measurement error).  *a , 
*b , and *c  are assumed to be normally 

distributed with zero means and spatially homogeneous.  Generating fields of *a  requires 

specification of its standard deviation a  and correlation length a .  Generating fields of 
*b  

requires specification of its standard deviation b , and generating fields of *c  requires 

specification of its standard deviation  c .  

In the end, the direct model introduces four new parameters ( a , a  , b , and  c ) that 

must be estimated before soil-moisture simulations can be generated.  Because this model does 

not introduce stable stochastic variations, these parameters estimated using only the graphs 

shown in Figure 4.  The direct models’ stochastic component 
*

d , stable pattern 
*

,s d , and its 

unstable patterns 
*

,u d  can be estimated as: 

 
* *

d d     (36) 

 
* *

,s d dE      (37) 
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* * *

, ,u d d s d     (38) 

Again, 2,000 model realizations were generated for each date, and the average semivariogram of 

all realizations was used.  The direct model parameters were manually calibrated to minimize the 

RMSE between the semivariogram properties of 
*

d  and  obs  using Figure 4.  The calibrated 

parameters for the direct model are shown in Table 3. 

The direct model allows confidence limits for   to be computed analytically.  Because 

direct model’s stochastic variation is produced by a linear combination of normally distributed 

random variables, the distribution of 
*

d  is also normal (Johnson and Wichern, 2002).  Therefore, 

the standard deviation of the direct model’s stochastic component *
d

  can be determined from 

the following equation: 

  *

2
2 2 2


      

d
a b c  (39) 

This standard deviation is then combined with the z-scores to calculate the desired quantiles 

(Isotalo, 2001). 

4.3 Calibrated Model Results 

The temporal-average semivariograms for the modeled soil moisture (
*  and 

*

d ) and the 

associated stochastic components (
*  and 

*

d ) are shown in Figure 2.  For both soil moisture 

and its stochastic component, the models reproduce the observed nugget, correlation length, and 

partial sill at both catchments.  Reproducing the nugget and partial sill indicates that the models 

include the correct amounts of uncorrelated and correlated variations, respectively.  The 

reproduction of the correlation length suggests that the models include the appropriate 

correlation lengths in their correlated patterns.  



24 

The semivariograms for the modeled stable patterns (
*

s  and 
*

,s d ) and the temporal-

average semivariograms for the modeled unstable patterns (
*

u  and 
*

,u d ) are shown in Figure 3.  

The indirect model closely approximates the contribution of the stable pattern to the overall 

stochastic component (31% at Tarrawarra and 40% at Cache la Poudre for the indirect model 

compared to 30% and 41%, respectively, for the observations).  The indirect model also closely 

approximates the observed semivariogram shapes.  At Tarrawarra, for example, the nugget for 

*

s  is 19% of its sill, and the correlation length is approximately 35 m, compared 14% and 31 m, 

respectively, for ,s obs .  At Tarrawarra, the nugget for 
*

u  is 62% of its sill, and the correlation 

length is approximately 41 m, compared to 62% and 45 m, respectively, for ,u obs .  Overall, 

these results indicate that the indirect model reproduces the semivariogram features of both the 

stable and unstable patterns. 

The direct model, however, is not able to reproduce the features of stable and unstable 

semivariograms because it does not introduce any stable patterns.  The semivariogram for 
*

,s d  

includes slight variance because the temporal-average of the unstable stochastic patterns is not 

exactly zero.  Thus, the decomposition of the generated soil moisture patterns produces a stable 

pattern with low uncorrelated variance. 

Figure 4 plots the semivariogram properties of the modeled stochastic component (
*  

and 
*

d ) on each date against the associated  .  At Tarrawarra, both models produce a 

relatively constant nugget, which is also seen for the observations.  For both models, the constant 

nugget is caused by 
*e  and 

*c  and their additive relationship with  .  In the indirect model, for 

example, 
*e  enters the final soil moisture equation additively (Equation 31), and each analytical 
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soil moisture value in the same equation depends on   (Equations 7-10).  The additive 

relationship implies that the contribution of measurement error remains constant as   changes.  

At Cache la Poudre, both models reproduce the positive trend between the nugget and  .  In the 

indirect model, this trend primarily results from 
*

up  and its multiplicative relationship with   

(Equations 25 and 27-30).  As   increases, uncorrelated variations in porosity produce a larger 

nugget in 
* .  In the direct model, this positive trend is caused by 

*b  and its multiplicative 

relationship with   (Equation 35).  For both catchments, the modeled correlation length does 

not change with  , which is consistent with the observations.  The constant correlation length is 

determined by the prescribed correlation lengths of the stochastic variations.  For both 

catchments, the models produce a positive trend between partial sill and  .  This behavior 

matches the observations at Tarrawarra but not at Cache la Poudre.  In the indirect model, the 

trend results from 
*

cp  and 
*d  and their multiplicative relationships with  .  As   increases, 

correlated variations in porosity and disequilibrium produce a larger partial sill in 
* .  In the 

direct model, this trend is caused by a  and its multiplicative relationship with  . 

Figure 5 plots the semivariogram properties of the modeled unstable patterns (
*

u  and 

*

,u d ) on each date against the associated  .  At both catchments, the indirect model produces a 

relatively constant nugget as   changes, which matches the observations.  For both models, this 

behavior is due to the influence of 
*e  and 

*c  and their additive relationship with  .  However, 

the direct model produces a slight positive relationship between the nugget and  , which is due 

to the influence of 
*b  and its multiplicative relationship with  .  At both catchments, the 

models reproduce the relatively constant correlation lengths.  At both catchments, the models are 
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also able to reproduce the positive trend between partial sill and  .  For the indirect model, this 

trend is primarily due to the influence of 
*d  and its multiplicative relationship with  .  As   

increases, correlated variations in disequilibrium produce a larger partial sill in 
*

u .  In the direct 

model, this trend is caused by 
*a  and its multiplicative relationship with  .  

Example soil-moisture patterns (obs ,  , 
* , and 

*

d ) are shown in Figure 6.  The pre-

existing EMT+VS model ( ) reproduces the observed dependence on topography (Figure 1) and 

vegetation.  The generalized models maintain much of that dependence but also produce patterns 

that are more visually similar to the observations.  However, the models are not able to reproduce 

all observed tendencies.  At Tarrawarra, for example, the observations have contiguous wet 

locations in the valleys, while the generalized models have less continuity of these features.  

Additionally, the observations have a dry patch on the north-facing hillslope that is not fully 

reproduced by the generalized models.  The models’ inability to reproduce these features may be 

caused in part by the use of homogeneous random fields.  As expected, the generalized models 

do not produce wet and dry locations at exactly the right locations, but the tendencies of the 

modeled patterns are very similar the observations. 

Histograms of obs ,  , 
* , and 

*

d  for dry, intermediate, and wet dates are shown in 

Figure 7.  The pre-existing EMT+VS model does not reproduce the observed histograms of soil 

moisture or the extreme values of soil moisture in the catchments.  Both the indirect and direct 

models are able to reproduce the histogram shape on all three dates at both catchments.  

Example lower and upper confidence limits from the indirect and direct models are 

shown in Figure 8 for an example date.  The lower limit represents the 10th percentile and the 

upper limit represents the 90th percentile of soil moisture.  The indirect and direct models 
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produce almost the same confidence interval maps.  However, the difference between the upper 

and lower limit (i.e. confidence interval) is not equal for all fine-resolution locations on a given 

date.  Although each new stochastic variable is homogeneous, the spatial heterogeneity of the 

confidence interval indicates that the modeled stochastic patterns (
*  and 

*

d ) are 

heterogeneous.  In the indirect model, this heterogeneity is caused by spatial variations in 

vegetation and topography.  In the direct model, this heterogeneity is directly proportional to the 

pre-existing EMT+VS model estimate  .  Both models produce narrower confidence intervals at 

dry locations and wider intervals at wet locations. 

Figure 9 plots the percentage of the soil moisture observations from all dates that fall 

within the confidence intervals (y-axis) as a function of the selected confidence level (x-axis).  

At Tarrawarra, too many observations fall within the confidence intervals for both models when 

the selected interval is less than 90%.  If the selected confidence interval is 50%, for example, 

about 56% of the observations fall within the specified range.  These confidence intervals are too 

wide because the modeled soil moisture distribution does not perfectly match the observed 

distribution.  The accuracy of the confidence interval improves for larger confidence levels.  At 

Cache la Poudre, the confidence interval error is less than 2% for all confidence levels 

considered. 

Figure 10 shows the temporal-average statistical moments (standard deviation, skewness, 

and kurtosis) of obs ,  , 
* , and 

*

d .  The pre-existing EMT+VS model substantially 

underestimates standard deviation, while the generalized models very closely reproduce the 

observed standard deviation.  At Tarrawarra, the pre-existing EMT+VS model does not 

accurately reproduce skewness and kurtosis, while the indirect and direct models more closely 

reproduce these statistics (with the indirect model performing slightly better). At Cache la 
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Poudre, both models can approximate the observed statistics (again with the indirect model 

performing slightly better), but the improvement upon the pre-existing EMT+VS model is more 

difficult to see.   

4.4 Uncalibrated Model Results 

The previous section showed that the generalized models can reproduce nearly all the 

observed statistical properties if the models are calibrated with local soil moisture observations.  

In many practical circumstances, however, sufficient data may not be available to allow 

catchment-specific calibration.  This section examines the performance of the indirect and direct 

models if they are applied to the Nerrigundah and Satellite Station catchments without any local 

calibration for the indirect and direct model parameters.  The parameters for the generalized 

EMT+VS models are estimated by taking the average between the calibrated parameters at 

Tarrawarra and Cache la Poudre (see average columns in Table 2 and Table 3).  The calibrated 

parameters for the pre-existing EMT+VS model (Table 1) were used to estimate  . 

The temporal-average semivariograms for the modeled soil moisture (
*  and 

*

d ) and the 

associated stochastic component (
*  and 

*

d ) at Nerrigundah and Satellite Station are shown in 

Figure 11.  At Nerrigundah, both models produce almost identical results and underestimate the 

variance in the soil moisture and its stochastic component for all lag distances.  At Satellite 

Station, both models produce semivariograms that roughly approximate the observed 

semivariograms, but the indirect model performs slightly better. 

The semivariograms for the modeled stable patterns (
*

s  and 
*

,s d ) and the temporal-

average semivariograms for the unstable patterns (
*

u  and 
*

,u d ) at Nerrigundah and Satellite 

Station are shown in Figure 12.  For both catchments, the observed stable patterns represent a 



29 

larger portion of the stochastic variance than the unstable patterns (in contrast to Tarrawarra and 

Cache la Poudre).  At Nerrigundah, the indirect model reproduces the unstable patterns, but it 

underestimates the contribution of the stable pattern.  At Satellite Station, the indirect model 

roughly reproduces the semivariograms for both the stable and unstable patterns.  The direct 

model does not reproduce the semivariograms for the stable and unstable patterns because it does 

not include any stable stochastic variables. 

The plots comparing semivariogram properties to   are not shown for the model 

validation. Because of the narrow range of most average soil-moisture values at Nerrigundah and 

the small number of sample dates at Satellite Station, no clear trends are visible in the 

observations. Thus, the ability of the generalized EMT+VS models to match the observations is 

difficult to interpret. 

Example soil-moisture patterns (obs ,  , 
* , and 

*

d ) for Nerrigundah and Satellite 

Station are shown in Figure 13.  Similar to Tarrawarra and Cache la Poudre, the pre-existing 

EMT+VS model is able to reproduce the dependence on topography (Figure 1).  The generalized 

models maintain much of that dependence but also produce patterns that are more visually 

similar to the observations.  At Satellite Station, the observed pattern exhibits more spatially 

continuous wet locations in the valleys than the patterns produced by the generalized models. 

Histograms of obs ,  , 
* , and 

*

d  for dry, intermediate, and wet dates at Nerrigundah 

and Satellite Station are shown in Figure 14.  The pre-existing EMT+VS model again does not 

reproduce the observed histograms of soil moisture, and it does not capture the extreme values of 

soil moisture in the catchments.  Both the indirect and direct models are able to approximate the 

histogram shapes for all three dates despite the flaws in their semivariograms that were observed 

earlier. 
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The performance of the indirect and direct model confidence intervals is shown in Figure 

15.  At Nerrigundah, both models consistently underestimate the confidence interval because 

they underestimate the variance of stochastic component at this site.  At Satellite station, the 

confidence intervals are relatively accurate (and the indirect model performs better than the 

direct model) for confidence levels smaller than about 80%.  Above this level, the confidence 

interval is underestimated (and the direct model performs better). 

Figure 16 shows the temporal-average statistical moments (standard deviation, skewness, 

and kurtosis) of obs ,  , 
* , and 

*

d .  The pre-existing EMT+VS model substantially 

underestimates standard deviation, while the generalized models more closely reproduce the 

observed standard deviation.  At Nerrigundah, both generalized models underestimate the 

observed standard deviation, which is because the parameters controlling the standard deviation 

of stochastic variations are uncalibrated.  At Satellite Station, the indirect and direct models very 

accurately reproduce the observed standard deviation.  Although uncalibrated parameters are 

used at Nerrigundah and Satellite Station, the generalized models are able to approximate all of 

the observed statistical moments more accurately than the pre-existing EMT+VS model.   
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5. CONCLUSIONS 

 

 

 

The primary objectives of this study were (1) to characterize the stochastic variability of 

soil moisture at the catchment scale and (2) to develop downscaling models that reproduce the 

observed statistical features of soil moisture.  The stochastic variations in soil moisture were 

obtained by removing the dependence on site properties such as topography and vegetation from 

soil-moisture observations.  These variations were then decomposed into a stable pattern (that 

can be present to some extent on every date) and unstable patterns that vary through time.  

Geostatistical analysis was then used to analyze each of those patterns.  Two downscaling 

models were developed to include stochastic variations in soil moisture.  In the indirect model, 

stochastic variations were introduced through porosity perturbations, deviations from equilibrium 

moisture, and measurement errors.  In the direct model, the stochastic variations were directly 

introduced into the final soil moisture values.  The following conclusions can be made from the 

results: 

1. The stochastic component of soil moisture represents a substantial portion of the overall 

soil-moisture variation.  The sill of the stochastic component is on average approximately 

64% and 84% of the sill of overall soil moisture at Tarrawarra and Cache la Poudre, 

respectively.  Thus, a majority of the variation at both catchments can be considered 

stochastic. 

2. The stochastic component exhibits non-trivial semivariogram features (i.e. a nonzero 

nugget, correlation length, and partial sill).  The presence of a nonzero nugget and partial 

sill indicates that the stochastic component includes both correlated and uncorrelated 

patterns.  At both catchments, the nugget is on average about half of the total sill, which 
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implies that the correlated and uncorrelated patterns contribute about equal variation on 

average. 

3. The semivariogram of the stochastic component also depends on the spatial-average soil 

moisture.  At Tarrawarra, the nugget remains relatively constant while the partial sill 

increases with spatial-average soil moisture.  At Cache la Poudre, the nugget increases 

with spatial-average soil moisture, while the partial sill remains relatively constant.  The 

correlation length remains approximately constant at both catchments. 

4. The stochastic variations also include a temporally stable pattern with substantial 

variability.  The sill of the stable pattern is 30% and 41% of the sill of the stochastic 

component at Tarrawarra and Cache la Poudre, respectively.  The stable patterns at both 

catchments also exhibit nonzero nuggets and partial sills, which indicate contributions 

from both correlated and uncorrelated patterns. 

5. The semivariograms of the unstable patterns depend on the spatial-average soil moisture, 

and this dependence is similar at both catchments.  In particular, the nugget and the 

correlation length remain relatively constant, while the partial sill increases with spatial-

average soil moisture. 

6. The indirect downscaling model is able to reproduce nearly all the observed statistical 

features for the catchments where its stochastic parameters were calibrated.  Specifically, 

it reproduces the semivariograms of the soil moisture, stochastic component, stable 

pattern, and unstable patterns.  It also reproduces the appropriate dependencies on the 

spatial-average soil moisture (aside from the partial sill of the stochastic component at 

Cache la Poudre).  In addition, the indirect model adequately reproduces the soil moisture 

histograms for both catchments.  At low confidence levels, the indirect model’s 
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confidence intervals can include as much as 6% too many observations.  However, the 

intervals become more accurate for larger confidence levels. 

7. The direct model produces very similar results to the indirect model except that it does 

not distinguish between stable and unstable patterns.  Thus, it is unable to reproduce the 

semivariograms for the stable pattern and the unstable patterns.  

8. Both models provide only approximate results when they are not calibrated to local 

observations.  In particular, the semivariograms produced by the models include 

substantial errors at Nerrigundah but perform better at Satellite Station.  For both 

catchments, however, the soil moisture histograms and confidence limits remain 

relatively accurate.  Thus, the models cannot simulate realistic spatial patterns without 

calibration, but they may still be able to approximate the overall soil moisture frequency 

distribution. 

Two main avenues are open for future research.  First, similar analyses should be 

performed using additional catchments.  The physical factors that control the stochastic model 

parameters (i.e. the standard deviations and correlation lengths) remain unknown.  Thus, these 

parameters currently cannot be estimated without calibration.  If additional catchments were 

analyzed and compared to the present study, the controlling factors might become more clear.  

Second, similar analyses should be performed on larger regions.  Second, similar analyses should 

be performed using fine-resolution soil moisture data from larger regions. This study considered 

only soil moisture patterns within small spatial extents (catchments).  Soil moisture may exhibit 

stochastic variations with correlation lengths beyond what can be observed within the spatial 

extents of catchments. 
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TABLES AND FIGURES 

 

 

 

Table 1. Inputs and parameters for the pre-existing EMT+VS model based on Hoehn (2016) and Hoehn et al. (2017).  All inputs and 

parameters were calibrated except those marked by an asterisk, which were directly specified.  Parameters without provided units are 

dimensionless.  

 

Category Parameter Symbol (units) Tarrawarra 
Cache la 

Poudre 
Nerrigundah 

Satellite 

Station 

Climate Coarse potential ET  (mm/day)pE  2.25* 2.55* 2.81* 2.28* 

 Priestly-Taylor coefficient minus one   0.26* 0.26* 0.26* 0.26* 

Climate & 

Vegetation 
Aerodynamic ET exponent a  5 3.60 5 1 

 Radiation ET exponent r  3.55 5 1.60 5 

Vegetation Interception efficiency   0.37 0.89 0.96 0.40 

 Portion of transpiration from soil layer   0.83 0.04 1 0.10 

 Shading effect on soil evaporation   1* 1.92 1* 1* 

Soil Thickness Layer thickness where topographic 

curvature is zero 0  (m)  0.3* 0.05* 0.25* 1* 

 Minimum curvature where layer is present min  (1/m)  -886375 -651810 -643233 -660661 

Soil Hydraulics Porosity 3 3 (m /m )  0.70 0.409 0.435 0.484 

 Vertical saturated hydraulic conductivity ,  (mm/day)s vK  386.3 984.9 36.0 59.0 

 Horizontal pore disconnectedness index  h  6.92 14.36 5.01 8.31 

 Vertical pore disconnectedness index  v  14.12 14.10 29.15 15.74 

 
Anisotropy of saturated hydraulic 

conductivity 
  47.2 75.4 209 500 

 
Relation of hydraulic to topographic 

gradient 
  1.00 3.00 1.00 2.38 
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Table 2. Manually calibrated parameters for the indirect model.  Parameters without units are 

dimensionless. 

 

Category Parameter 
Symbol 

(units) 
Tarrawarra 

Cache la 

Poudre 
Average 

Porosity 
Correlated porosity 

standard deviation 


cp  0.040 0.11 0.075 

 
Porosity correlation 

length 
 (m) p  42 m 38 m 40 m 

 
Uncorrelated porosity 

standard deviation 


up  0.006 0.122 0.064 

Disequilibrium Correlated 

disequilibrium 

standard deviation 
d  0.041 0.108 0.075 

 
Disequilibrium 

correlation length 
 (m)d  52 m 20 m 36 m 

Measurement 

Error 

Measurement error 

standard deviation e  0.019 0.018 0.019 
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Table 3. Manually calibrated parameters for the direct model.  Parameters without units are 

dimensionless. 

 

Category Parameter 
Symbol 

(units) 
Tarrawarra 

Cache la 

Poudre 
Average 

Multiplicative  Correlated standard 

deviation a  0.057 0.140 0.099 

 Correlation length  (m)a  42 m 31 m 37 m 

 Uncorrelated 

standard deviation 
b  0.028 0.120 0.074 

Additive  Measurement error 

standard deviation 
 c  0.016 0.020 0.018 
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Figure 1. Elevation maps of the two analysis catchments (a) Tarrawarra and (b) Cache la Poudre 

and the two evaluation catchments (c) Nerrigundah and (d) Satellite Station.  
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Figure 2. Semivariograms of observed soil moisture obs , observed stochastic component  obs , 

indirect model soil moisture 
* , indirect model stochastic component 

* , direct model soil 

moisture 
*

d , and direct model stochastic component 
*

d  at (a) Tarrawarra and (b) Cache la 

Poudre.  These semivariograms are the average of all sample dates’ semivariograms. 
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Figure 3. Semivariograms of observed stable stochastic pattern ,s obs , observed unstable 

stochastic patterns ,u obs , indirect model stable pattern 
*

s , indirect model unstable patterns 
*

u , 

direct model stable pattern 
*

,s d , and direct model unstable patterns 
*

,u d  at (a) Tarrawarra and 

(b) Cache la Poudre.  The semivariograms for the unstable patterns are the average of all sample 

dates’ semivariograms.  
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Figure 4. Scatter plots of the nugget, correlation length, and partial sill of the observed stochastic 

component of soil moisture  obs , indirect model stochastic component 
* , and direct model 

stochastic component 
*

d  as a function of spatial-average soil moisture at (a) Tarrawarra and (b) 

Cache la Poudre.   
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Figure 5. Scatter plots of the nugget, correlation length, and partial sill of the observed unstable 

patterns ,u obs , indirect model unstable patterns 
*

u , and direct model unstable patterns 
*

,u d  as a 

function of the spatial-average soil moisture at (a) Tarrawarra and (b) Cache la Poudre.  The 

arrow represents a sample date with a correlation length of 197 m for ,u obs .  
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Figure 6. Example maps of observed soil moisture obs , pre-existing EMT+VS model estimate  

 , indirect model soil moisture 
* , and direct model soil moisture 

*

d  at (a) Tarrawarra on 02-

Sep-96 and (b) Cache la Poudre on 28-May-08.  
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Figure 7. Example histograms of observed soil moisture obs , pre-existing EMT+VS model 

estimate  , indirect model soil moisture 
* , and direct model soil moisture 

*

d  on a dry, 

intermediate, and wet date at (a) Tarrawarra and (b) Cache la Poudre.  
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Figure 8. Example 80% confidence limits on soil-moisture and the difference between the upper 

and lower limits at (a) Tarrawarra on 02-Sep-96 and (b) Cache la Poudre on 28-May-08.  Lower 

limit represents the 10% quantile, the upper limit represents the 90% quantile.  
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Figure 9. Evaluation of estimated confidence intervals by comparing the percentage of 

observations within the bounds (y-axis) at the selected confidence levels (x-axis) at (a) 

Tarrawarra and (b) Cache la Poudre averaged for all sample dates.   
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Figure 10. Average statistical moments (standard deviation, skewness, and kurtosis) of observed 

soil moisture obs , pre-existing EMT+VS model estimate  , indirect model soil moisture 
* , 

and direct model soil moisture 
*

d  at (a) Tarrawarra and (b) Cache la Poudre.  
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Figure 11. Semivariograms of the observed soil moisture obs , observed stochastic component

 obs , indirect model soil moisture 
* , indirect model stochastic component 

* , direct model 

soil moisture 
*d , and direct model stochastic component 

* d  at (a) Nerrigundah and (b) Satellite 

Station.  These semivariograms are the average of all sample dates’ semivariograms. 
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Figure 12. Semivariograms of observed stable pattern ,s obs , observed unstable pattern ,u obs , 

indirect model stable pattern 
*

s , indirect model unstable pattern 
*

u , direct model stable pattern 

,s d , and direct model unstable pattern ,u d  at (a) Nerrigundah and (b) Satellite Station.  The 

semivariograms for the unstable patterns are the average of all sample dates’ semivariograms.  
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Figure 13. Example maps of observed soil moisture obs , pre-existing EMT+VS model estimate 

 , indirect model soil moisture 
* , and direct model soil moisture 

*

d  at (a) Nerrigundah on 27-

Aug-97 and (b) Satellite Station on 25-Mar-98.   
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Figure 14. Example histograms of observed soil moisture obs , pre-existing EMT+VS model 

estimate  , indirect model soil moisture 
* , and direct model soil moisture 

*

d  on a dry, 

intermediate, and wet date at (a) Nerrigundah and (b) Satellite Station.  
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Figure 15. Evaluation of estimated confidence intervals by comparing the percentage of 

observations within the bounds (x-axis) at the selected confidence levels (y-axis) at (a) 

Nerrigundah and (b) Satellite Station averaged for all sample dates.   
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Figure 16. Average statistical moments (standard deviation, skewness, and kurtosis) of observed 

soil moisture obs , pre-existing EMT+VS model estimate  , indirect model soil moisture 
* , 

and direct model soil moisture 
*

d  at (a) Nerrigundah and (b) Satellite Station.  
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APPENDIX 

 

 

 

This appendix contains histograms results and a heteroscedastic analysis of the stochastic 

component of soil moisture.  Histograms of  obs , 
* , and 

* d  for dry, intermediate, and wet 

dates at Tarrawarra, Cache la Poudre, Nerrigundah, and Satellite Station are shown in Figure 17.  

The distributions of  obs  are centered at zero and appear to be approximately normal and 

symmetrical at all sites, which supports the introduction of normally distributed random 

variables in the generalized EMT+VS models.  Both the indirect and direct models are able to 

approximate the histogram shapes for all three dates.  The generalized models provide a better fit 

at Tarrawarra and Cache la Poudre than at Nerrigundah and Satellite Station, which is expected 

because these sites were manually calibrated.  

Histograms of , s obs , 
* s , and 

*

, s d  at Tarrawarra, Cache la Poudre, Nerrigundah, and 

Satellite Station are shown in Figure 18.  The distributions of , s obs  appear to be normal and 

approximately symmetrical at all sites.  The indirect model approximately reproduces the 

histogram shape of the observed stable pattern for all sites.  However, 
* s  matches the histogram 

shape of , s obs  slightly better at Tarrawarra and Cache la Poudre.  Despite using uncalibrated 

stochastic parameters, the indirect model still approximately reproduces the observed histogram 

shape at Nerrigundah and Satellite Station.  The direct model does not reproduce the shape as 

well as the indirect model, which is because the direct model does not introduce any stable 

stochastic variations. 

 Histograms of ,u obs , 
* u , and 

*

,u d  for dry, intermediate, and wet dates at Tarrawarra, 

Cache la Poudre, Nerrigundah, and Satellite Station are shown in Figure 19.  The distributions of 
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, s obs  appear to be normal and approximately symmetrical at all sites.  The indirect model 

approximately reproduces the histogram shape of the observed unstable patterns at Tarrawarra 

and Cache la Poudre.  As expected, the direct model produces a wider distribution than the 

observed unstable patterns to account for its narrower distribution in the stable pattern. 

A heteroscedastic analysis was conducted to investigate whether the standard deviation of 

the stochastic component of soil moisture varies spatially.  In particular, the standard deviations 

of  obs , ,s obs , and ,u obs  are compared to seven catchment attributes and indices: LFI , REI , V , 

 , S , elevation, and A .  The analysis catchments Tarrawarra and Cache la Poudre are used in 

this analysis.  The following procedure is the same for each catchment attribute.  First, the values 

of  obs , ,s obs , ,u obs , LFI , REI , V ,  , S , elevation, and A  are determined for each location in 

a catchment.  Second, the data are sorted by a given attribute in ascending order.  Third, the 

attributes and corresponding stochastic soil-moisture values are grouped into bins, each 

containing 20 data points (except the final bin, which contains the remaining values).  Fourth, the 

mean attribute value and the standard deviation of  obs , ,s obs , and ,u obs  are calculated within 

each bin.  Finally, the mean attribute values and the standard deviations are plotted against one 

another to examine the level of homogeneity. 

The results for  obs , ,s obs , and ,u obs  are shown in Figure 20.  At Tarrawarra, the 

standard deviations of  obs , ,s obs , and ,u obs  shows a decreasing trend with REI .  However, 

Cache la Poudre shows an increasing trend.  Similarly, the standard deviations show a slight 

increasing trend with V  at Cache la Poudre.  Finally, the standard deviations of  obs , ,s obs , and 

,u obs  show decreasing trends with S  at Tarrawarra.  However, no trend is noticeable at Cache la 
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Poudre.  Thus, although there is evidence of slight heterogeneity in this figure, the results are 

inconsistent between sites.  The attributes without any observable trends are shown in Figure 21.  

For each attribute presented in this figure, the standard deviation of  obs , ,s obs , and ,u obs  

remains relatively constant as the attribute values change.  

This same analysis was conducted for the indirect model stochastic component 
*  and 

the direct model stochastic component 
* d  using 2,000 realizations and taking the average 

standard deviation.  Figure 22 compares the heterogeneity of the observed stochastic component   

to that of the modeled stochastic component (
*  and 

* d ).  At Cache la Poudre, both generalized 

models reproduce the observed spatial variations in the stochastic component.  However, at 

Tarrawarra, both model miss the dependence on REI  and slope.  Figure 23 shows the attributes 

without any observable trends.  For each attribute presented in this figure, the indirect and direct 

models are able to approximate the relatively constant standard deviation values as the attribute 

values change.  
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Figure 17. Example histograms of the observed stochastic component of soil moisture  obs , 

indirect model stochastic component 
* , and direct model stochastic component 

*

d  on a dry, 

intermediate, and wet date at (a) Tarrawarra, (b) Cache la Poudre, (c) Nerrigundah, and (d) 

Satellite Station.  
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Figure 18. Example histograms of the observed stable stochastic pattern ,s obs , indirect model 

stable pattern 
*

s , and direct model stable pattern 
*

,s d  at (a) Tarrawarra, (b) Cache la Poudre, (c) 

Nerrigundah, and (d) Satellite Station.  



67 

 

Figure 19. Example histograms of the observed unstable patterns ,u obs , indirect model unstable 

patterns 
*

u , and direct model unstable patterns 
*

,u d  at (a) Tarrawarra, (b) Cache la Poudre, (c) 

Nerrigundah, and (d) Satellite Station.  
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Figure 20. Comparison of standard deviation of  obs , ,s obs , and ,u obs  to REI  at (a) Tarrawarra 

and (b) Cache la Poudre, V  at (c) Tarrawarra and (d) Cache la Poudre, and S  at (e) Tarrawarra 

and (f) Cache la Poudre.   
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Figure 21. Comparison of standard deviation of  obs , ,s obs , and ,u obs  to LFI  at (a) Tarrawarra 

and (b) Cache la Poudre, elevation at (c) Tarrawarra and (d) Cache la Poudre,   at (e) 

Tarrawarra and (f) Cache la Poudre, and A  at (g) Tarrawarra and (h) Cache la Poudre.  
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Figure 22. Comparison of standard deviation of  obs , 
* , and 

* d  to REI  at (a) Tarrawarra and 

(b) Cache la Poudre, V  at (c) Tarrawarra and (d) Cache la Poudre, and S  at (e) Tarrawarra and 

(f) Cache la Poudre.  
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Figure 23. Comparison of standard deviation of  obs , 
* , and 

* d  to LFI  at (a) Tarrawarra and 

(b) Cache la Poudre, elevation at (c) Tarrawarra and (d) Cache la Poudre,   at (e) Tarrawarra 

and (f) Cache la Poudre, and A  at (g) Tarrawarra and (h) Cache la Poudre. 


