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ABSTRACT 
 
 
 

LESSONS IN ESTABLISHING PLANT COMMUNITIES ON CONSTRUCTED FENS FOR 

OIL SANDS MINE RECLAMATION 

 
 

The third-largest proven oil deposit in the world is in Alberta, underlying 142,000 square 

kilometers of Canada’s boreal covered by forested uplands and peatland basins. The vast deposit is in the 

form of oil sands that consist of a mixture of sand, water, clay and oil. Where oil sands are near surface, 

they are excavated in open-pit mines that remove the overburden landscape to extract the resource. 

Reclamation is a legislative condition for oil sands operators to replace ecosystems that are lost. This 

involves recontouring the surface to recreate landscape processes and introducing plant species common 

in regional reference sites. Fen peatlands are the most dominant ecosystem type but provincial standards 

have allowed compensation with marsh wetland as they are easier to create. Oil sands extraction and 

reclamation is highly controversial with opponents suggesting that destroyed peatlands will not be 

restored. Scientists, operators and regulators are more aware that peatland reclamation is critical and 

despite the constraints, research is underway in two reclamation fens that have recently been constructed. 

To effectively reclaim fens, we need to understand how plant species and communities respond to 

environmental gradients, the most effective methods to introduce species, and which success criteria are 

achievable. In the following chapters, I examine drivers of plant community assembly in natural and 

reclaimed fens and consequences of abiotic, biotic, and construction constraints on ecosystem structure 

and function. A major constraint in fen reclamation is achieving optimal surface topography and seasonal 

water table position to support desired plants. Moss-dominated fens are the most common regional 

peatland type and evaluating the response of mosses to submergence in natural fens provides insight into 

species selection and processes of recovery for reclaimed fens. I conducted a field experiment to 

determine the short and long-term tolerances of four fen mosses to submergence from 1 to 8 weeks. I 
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found that moss species vary in their responses to submergence duration and that shifts in community 

composition that support tolerant dominant species such as Tomentypnum nitens increased moss 

community resilience and provide stability in boreal fen ecosystems.  

As part of a multi-stakeholder collaboration, the first self-sustaining reclamation fen and 

associated watershed was constructed within an oil sands mine site north of Fort McMurray, Alberta. To 

determine the most effective approach to establish fen plants, I designed and implemented a large-scale 

multifactorial field experiment that tested introducing moss layer transfer material (MLT), seeds, and 

seedlings under wood-strand mulch and with a Typha latifolia weeding treatment. Four years after 

planting, the MLT and Juncus balticus seedling treatment supported the highest fen bryophyte and 

vascular plant cover and species richness. Weeding did reduce T. latifolia cover but was not necessary in 

areas where seedlings or MLT was introduced. The most successful fen species to establish was C. 

aquatilis, which rapidly colonized but also reduced cover and richness of bryophytes and other vascular 

plants. To provide a broader context, I examined vegetation establishment across the two reclaimed fens 

that had different water level gradients and species introduction approaches. Despite differences, peat-

accumulating bryophyte and vascular plant communities developed in both fens. Community convergence 

occurred due to dominance of C. aquatilis, and community divergence occurred in response to water level 

gradients. Dominant species adapted to site conditions can be introduce by basic approaches such as 

seeding. Intensive approaches such as planting seedlings or spreading MLT should be prioritized in areas 

of overlap along water level gradients between desirable and undesirable communities to deter 

establishment of non-peat forming species. Bryophyte cover and desirable species richness was highest 

following intensive approaches and where the summer water level was -10 cm to -40 cm from the soil 

surface. My research shows that it is possible to reclaim peat-accumulating bryophyte and vascular plant 

communities in the post-mining landscape of Alberta and that a range of successful outcomes are 

achievable. Previous assertions that fens cannot be reclaimed after mining activities are antiquated as 

large-scale construction designs and species introduction approaches are actively underway and the 

results are proven.  
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1 INTRODUCTION 
 
 
 

Humans have altered natural landscapes for thousands of years, but intensification over the last 

50 years facilitated by advancements in technology and increases in demand have caused large-scale land 

conversions and substantial losses of ecological services (Bradshaw and Chadwick 1980, Millennium 

Ecosystem Assessment 2005, Suding 2011). The repercussions of degraded landscapes extend from 

irreversible losses in biodiversity to detrimental effects on human health (Millennium Ecosystem 

Assessment 2005). The importance of reversing degradation has never been greater and there is now 

consensus among land managers, policy makers, and the public that this century is in fact ‘the era of 

restoration in ecology’ (E.O. Wilson 1992). Aldo Leopold’s work to reconstruct a sample of the native 

landscape at the University of Wisconsin Arboretum laid the foundation for restoring degraded 

ecosystems (Leopold 1934, Zedler 1999). As research progressed at the arboretum, the importance of 

ecological processes on the practice of restoration was revealed and integrated to recreate self-sustaining 

analogue ecosystems (Curtis and Partch 1948, Jordan et al. 1990). Ecological restoration is now defined 

as the process of assisting the recovery of damaged, degraded, or destroyed ecosystems (SER 2004). 

Despite being a relatively young scientific discipline, with publications in peer-reviewed journals 

beginning around 1990, ecological concepts such as succession, competition, disturbance, and ecosystem 

function are commonly explored and tested in restoration projects (Young et al. 2005).  

Reclamation is like restoration but occurs where there has been a complete loss of ecosystem 

services and a replacement ecosystem is constructed (Lima et al. 2016). Reclamation projects are 

typically large in scale and constructed in heavily disturbed environments where connectivity to remnants 

of the pre-existing landscape is limited or nonexistent (Bradshaw and Chadwick 1980).  Initial efforts 

improved degraded areas by surface recontouring, stabilization to prevent erosion or leaching of 

pollutants, and were vegetated with quick-growing ruderal plants or by economical approaches that 

depend on spontaneous recolonization (Walker et al. 2007, Skousen and Zipper 2014). Although 

collaborations and advancements in reclamation have occurred, many industry practitioners are engineers, 
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contractors, and planners who follow antiquated legislative directives that do not integrate ecological 

concepts into project designs (SMCRA 1977, EPEA 2000). Some of the biggest challenges facing 

landscape-scale reclamation are the technologies and knowledge required, and the balance between 

desired ecological complexity and the enormous cost of implementation (Menz et al. 2013). The task is 

not easy because it involves understanding not only interactions between environment and plants, but also 

constraints specific to the site and disturbance type (Bradshaw and Chadwick 1980). Advocates 

supporting innovative approaches or scientific research are few in the industry, but the opportunity for 

improvement is enormous and relationships need to be forged. Collaborations with government agencies, 

industry partners, and scientists are key to developing evidence-based approaches that improve the 

practice of reclamation in heavily degraded landscapes. This is particularly important in the boreal region 

of Alberta, Canada where reclamation solutions are required after large-scale oil sands mining. 

The third-largest proven oil deposit in the world is in Alberta, Canada, underlying 142,000 square 

kilometers and estimated to contain nearly 1.7 trillion barrels of bitumen or 10 % of the world’s oil 

reserves (Natural Resources Canada 2017, Figure 1.1). The vast deposit was formed by estuarine and 

marine organisms and sediment and consist of a mixture of sand, water, clay and a type of oil called 

bitumen (Hein and Cotterill 2006). Bitumen is so viscous that it must be heated in situ to be pumped out 

or excavated in open-pit mines. Twenty percent of the oil sands deposit is near surface, within 70 m of the 

ground surface, and recoverable through conventional surface mining. The process involves removing and 

stockpiling the overburden to extract the oil sands resource. Bitumen is then separated from oil sands 

using hot water, NaOH and steam, a process that results in tailings slurry by-product. Tailings slurry 

consists of fine sand, clay, water, residual bitumen and dissolved organic and mineral compounds that is 

pumped into holding ponds to settle solid particles from water (Quagraine et al. 2005). Because of the 

regional geochemistry and the bitumen extraction process, resulting tailings sand used to recontour the 

landscape has high salinity, high pH, and contain residual hydrocarbon products (Hein and Cotterill 

2006).  This typically results in reclaimed sites having higher salinity levels than pre-mining ecosystems 

(Howat 2000, Purdy et al. 2005, Trites and Bayley 2009a, 2009b). The need for reclamation solutions is 
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enormous as 10 mines are currently operating with leases that cover over 167,000 ha, with net impacts to 

peatlands estimated to be approximately 12,000 ha (Rooney et al. 2012). However, the nature of mining 

by-products material used for reclamation and extent of open-pit mining disturbance area make it 

challenging to reconstruct the entire landscape to resemble and function like the pre-existing ecosystems 

(Johnson and Miyanishi 2008, Rooney et al. 2012).   

A legislative condition for oil sands project approvals includes implementing a reclamation plan 

following mine closure. The standard requires disturbed lands to be reclaimed to an ‘equivalent land 

capacity’, which encompasses land uses similar to predisturbance conditions but not necessarily identical 

to it (Government of Alberta 1999).  Since the first large-scale mining operation near Fort McMurray 

began producing oil in 1967, reclamation has focused on marsh wetlands because they are easier to create 

and often spontaneously occur (Fung and Macyk 2000, Stolte et al. 2000, Rowland et al. 2009, Alberta 

Environment 2010, Daly et al. 2012). The time has come however to advance the practice of oil sands 

reclamation because the pre-existing landscape in the mineable area supported 62 % peatlands (Raine et 

al. 2002 in Rooney et al. 2012), the majority of which are groundwater supported fens (Vitt et al. 1998). 

Peatlands form where net primary production exceeds decomposition resulting in accumulation of 

partially decayed organic matter as peat and are a critical component in global carbon and nitrogen cycles 

(Wieder et al. 2006, Loisel et al. 2014). Oil sands reclamation is highly controversial with opponents 

suggesting that these destroyed peatlands will not be restored and the associated loss of stored carbon 

drastically amplifies CO2 emission from oil production (Rooney et al. 2012). Regulators are more aware 

that restoring the essential function of carbon storage from peatlands in oil sands reclamation projects is 

key and new initiatives that inform development of regulatory guidelines are swiftly being prioritized 

(CEMA 2014, Environment and Parks 2017).   

In the following chapters, I examine drivers of plant community assembly in natural and 

reclaimed peatlands and consequences of abiotic, biotic, and construction constraints on ecosystem 

structure and function (Figure 1.2). I studied these topics with bryophyte and vascular plants in the boreal 

oil sands region of Alberta, Canada. I conducted a field experiment in a natural fen, designed a large-scale 
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multi-factorial experiment in a reclaimed fen, and synthesized results across two reclaimed fens to extract 

commonalities and provide guidance for future projects. I address concepts of species and community-

levels of resistance and resilience to disturbance, effects of dominant species, ecological succession and 

niches, plant competition and facilitation, priority effects, and alternate states. My research aims to 

integrate ecological concepts into mine reclamation projects to advance the practice and increase the  

likelihood of successful outcomes. This work has been a collaboration with government agencies, 

industry partners, and colleagues in the United States and Canada to develop solutions that are evidence-

based yet practical at large-scales. 

Specifically, I address three main questions: (1) what is the tolerance of fen moss species and 

moss communities to submergence duration? (2) what methods are most effective to establish and support 

fen bryophyte and vascular plants in a constructed boreal fen? And, (3) what are the similarities in 

vegetation establishment between two regional reclaimed fens given differences in species introduction 

methods and water level gradients? 

1.1 CHAPTER OVERVIEWS 

In Chapter 2, I examine the tolerance of four fen mosses and moss communities to submergence 

duration.  This chapter was published in January 2018 in the Journal of Vegetation Science.   

Borkenhagen, A. and Cooper, D.J., 2018. Tolerance of fen mosses to submergence, and the 

influence on moss community composition and ecosystem resilience. Journal of Vegetation Science, 

29(2), pp.127-135. 

Disturbances to moss dominated peatlands such as fires, large precipitation events, permafrost 

thaw, or human land use changes can create temporary or permanent submerged areas (Turetsky and 

Louis 2006, Stinson et al. 2011). Additionally, a major constraint in fen reclamation is achieving the 

optimal surface topography and seasonal water table position within the hydrologic niche of desired 

peatland plants. Flooding in peatlands can affect ecosystem function by altering greenhouse gas fluxes 

and reducing vegetation cover (Kelly et al. 1997, Roulet et al. 1997, St. Louis et al. 2000). Shifts in 
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community composition and establishment of more tolerant species can limit these changes (Camill 1999, 

Beilman 2001, Granath et al. 2010), although recovery could depend on the frequency and duration of 

flooding, water chemistry, and an available submergence tolerant species pool. My goal with this research 

was to determine how moss species recover following flooding events and the implications on the 

resilience of boreal fens (Turetsky et al. 2012).  

To assess the tolerances of fen mosses to submergence duration and the implications on moss 

community resilience, I conducted an experiment in a rich-fen near Fort McMurray, Alberta in 2014, 

2015 and 2017. Four replicate plugs of four common fen moss species (Hamatocaulis vernicosus, 

Sphagnum warnstorfii, Tomentypnum nitens, and Aulacomnium palustre) were extracted from 

monospecific patches and submerged in dugout pits under 10 cm of water for 8, 6, 4, 2, or 1 week(s). All 

plugs were removed from the water and planted at the site in a bare peat area with near surface water 

tables (Figure 1.3). To determine the short and long-term effects of submergence, canopy cover of live 

(green) moss was visually estimated to the nearest percent in each plug to species six weeks after 

submergence and 11 months after submergence. Using this experiment, I tested the following hypotheses: 

(1) Fen moss species tolerance to submergence duration will coincide with their occurrence along a 

hummock-hollow gradient, (2) When intolerant species decline in abundance, other more tolerant species 

may establish, forming a diverse moss community that maintains or restores moss cover, and (3) Fen 

moss community resilience to disturbance from submergence duration is maintained by tolerant species 

and/or shifts in community composition. 

In Chapter 3, I designed and implemented a multi-factorial experiment testing various species 

introduction approaches on a reclaimed fen and evaluated establishment of bryophytes and vascular plants 

over four years.  

As part of a multi-stakeholder collaboration between Canadian and American Universities, 

industry partners, and government funding agencies, the first self-sustaining reclamation fen and 

associated watershed was constructed within the Millennium mine lease at Suncor Energy Inc. oil sands 

mining operations site, near Fort McMurray, Alberta (Price et al. 2010, Daly et al. 2012). The overall 



6 
 

research program goal is to create a functioning fen comparable to natural fens in the region and to 

develop applicable methods for similar reclamation projects.  

Designed by Price et al. (2010), construction of the Nikanotee Fen (the Fen) was completed in 

2013.  The Fen was designed so that annual precipitation would be adequate to infiltrate and recharge the 

watershed to maintain hydrologic conditions suitable for fen vegetation establishment and peat 

accumulation (Price and Whitehead 2001, Price et al. 2010). The project includes an upland watershed of 

tailings material that provides surface and ground water flow into a fen basin constructed of salvaged 

donor rich fen peat substrate (Price et al. 2010). To accelerate the establishment of target species, the Fen 

was planted in 2013 with different methods of introduction for fen vascular plant and bryophyte species.  

The experiment was a two-factor randomized block split-plot design (n = 12 blocks). Due to 

unexpected flooding and peat subsidence, only 5 replicate blocks were available for sampling and 

analysis (Figure 1.4). The blocks are divided into 7 whole-plot factor planting treatments; (1) Carex 

aquatilis seedlings; (2) Juncus balticus seedlings; (3) C. aquatilis seedlings + moss layer transfer (MLT) 

material; (4) J. balticus seedlings + MLT material; (5) MLT material; (6) mixed seeds; and (7) an 

unplanted control. Seeds were locally collected and sown or grown into seedlings by a local nursery. 

Seedlings were planted at a density of 3/m2. Material for the MLT was harvested from the top 10 cm of a 

rich-fen using a large rototiller mounted to an excavator and spread by hand at a 1:10 ratio of harvested to 

donor site (Rochefort et al. 2003). All species selected for introduction are regionally abundant in rich 

fens (Chee and Vitt 1989) and some exhibit suitable tolerances to elevated salinity levels (Pouliot et al. 

2012, Pouliot et al. 2013). Each plot is further divided into 4 split-plot mulchweed treatments (mulch/no 

weed, mulch/weed, no mulch/weed, no mulch/no weed). To protect establishing bryophytes and reduce 

non-peatland species invasion, WoodStraw® mulch was applied to create 90% cover, similarly to 

agricultural straw applications in bog restorations (Rochefort et al. 2003). A Typha latifolia weeding 

treatment was implemented for the first three years to suppress establishment and allow desirable fen 

species to proliferate and potentially exclude future T. latifolia invasions (Lishawa et al. 2017). 
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My objectives with this research were to evaluate bryophyte, vascular plant, and T. latifolia 

percent cover and community diversity over four years in response to planting treatments, wood-strand 

mulch, weeding, and depth to water level. Using this experiment, I tested the following hypotheses: (1) 

Bryophyte cover would be greatest where the moss layer transfer was used and under wood-strand mulch, 

(2) Vascular plant cover would be highest where the moss layer transfer and seedlings were introduced, 

(3) Typha latifolia cover would be higher in unplanted areas and reduced by a weeding treatment, and (4) 

Bryophyte and vascular plant diversity would be highest where the moss layer transfer was used.   

In Chapter 4, I collaborated with researchers at the Syncrude Sandhill Fen, led by Dr. Dale Vitt of 

Southern Illinois University, to compare vegetation establishment at both constructed fens in 2017 and 

evaluate outcomes from different species introduction methods and water level gradients.  

New regulatory directives prompted initiatives by two large oil sands mine companies to design 

and construct fen peatlands (Daly et al. 2012, Wytrykush et al. 2012). Because peatland creation is a new 

concept, the development teams generated different designs. The Nikanotee Fen and watershed was 

constructed within the Millennium mine lease at Suncor Energy Inc. and completed in 2013. The design 

was based modeling of long-term climate data and vegetation moisture requirement thresholds and 

consisted of an isolated upland-fen system (Price and Whitehead 2001, Price et al. 2010, Daly et al. 2012, 

Ketcheson et al. 2016). The Sandhill Fen and watershed was constructed on Syncrude Canada Limited's 

Mildred Lake lease and completed in 2012. The design was based on regional groundwater exchange 

dynamics, and mimicked an undulating landscape of connected hummock uplands, ephemeral draws, and 

fen basins (Wytrykush et al. 2012, Ketcheson et al. 2016).   

Species introduction approaches at the two reclaimed fens varied from natural regeneration in 

unplanted areas, basic approaches that included broadcast seeding, to intensive approaches of planting 

seedlings and harvested surface fen propagules using the moss layer transfer method (Rochefort et al. 

2003). Evaluating outcomes of these methods across sites can help inform decisions about when we can 

rely on natural regeneration or basic approaches, where more intensive intervention is required, and 

whether selected species are appropriate or chosen targets are realistic given constraints (Prach and Hobbs 
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2008, Matthews and Spyreas 2010, Holl and Aide 2011). Abiotic and biotic factors may also influence 

species and community development, in particular water table depth and competition by dominant 

species. Understanding the factors that affect establishment of peat-forming vegetation is essential to 

efficiently allocate reclamation resources and maximize successful outcomes in future projects (Holl and 

Aide 2011). Vegetation surveys and depth to water table measurements were conducted at both fens in 

July 2017 (Figure 1.5). My goal with this research was to extract commonalities and determine the most 

effective strategies to establish peat-forming plants in reclaimed fens. In the chapter, I address the 

following five questions: (1) Which plants are abundant in the reclamation fens and how do these species 

respond to the water level gradient? (2) Do vegetation communities at the sites converge or diverge and 

how are they influenced by the species introduction approach and water level gradient? (3) Which 

communities support bryophytes and desirable fen species cover and species richness? (4) How does 

water level affect bryophyte cover and desirable fen species richness in each community? And (5) How 

does the ratio of desirable to undesirable species of each community vary in response to the species 

introduction approach and water level gradient?  
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1.2  FIGURES 

 
 

 

Figure 1.1 Oil sands deposit in Alberta, Canada. Image courtesy of the Energy Resources Conservation 
Board and RB Capital Markets.  
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Figure 1.2 Conceptual model of the process and concepts that influenced experimental designs, analysis 
and interpretation of results during my dissertation research.   
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Figure 1.3 Moss community plugs planted in bare peat at a rich-fen site following 8 weeks of 
submergence in situ.  
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Figure 1.4  Top - Areal view of the Nikanotee Fen in 2013. The subplots are distinguishable as mulched 
(light squares) and un-mulched (dark squares) treatments. Pooled water is visible on the west side and in 
the middle of the fen. Bottom - Map of experimental design and treatment plots sampled at the Nikanotee 
Fen. Plots planted in 2014 were not sampled in this study.  
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Figure 1.5  Conducting vegetation surveys of bryophyte and vascular plant species at the Sandhill Fen in 
2017. Pictured are from left to right, Dr. Dale Vitt, Melissa House, and Jeremy Hartsock. 
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2 TOLERANCE OF FEN MOSSES TO SUBMERGENCE, AND THE INFLUENCE ON 
MOSS COMMUNITY COMPOSITION AND ECOSYSTEM RESILIENCE 

 
 

2.1 INTRODUCTION 

Northern peatlands contain one of the largest carbon pools in the biosphere (Yu 2012) and have 

been a critical component of the global carbon cycle throughout the Holocene (Harden et al. 1992; 

Vasander & Kettunen 2006; Yu et al. 2010). Disturbances to peatlands such as fires, peat-harvest, and 

flooding can lead to carbon loss as living biomass and stored peat is combusted, decomposed, or eroded 

(Turetsky & Louis 2006; Stinson et al. 2011). Increases in disturbance frequency and intensity in recent 

decades have shifted Canada’s boreal forests from a carbon sink to a source, a trend that is projected to 

intensify (Goodale et al. 2002; Wieder et al. 2009; Metsaranta et al. 2010). Moss-dominated communities 

play a key role in the resilience and stability of boreal ecosystems, with ecological models clearly 

indicating their strong influence on the cycling of water, nutrients, energy, and carbon (Turetsky et al. 

2012).  Empirical evidence that identifies the resistance and resilience of moss species and communities 

to perturbations is limited, yet critical to inform model estimates and predict ecosystem responses to 

disturbances (Turetsky et al. 2012).  

Flooding is the submergence of an area that is normally exposed due to water table rise above the 

soil surface. Flood disturbance caused by beaver damming, large precipitation events, permafrost thaw, or 

human land use changes can create temporary or permanent submerged areas (Turetsky & Louis 2006). 

Increases in the residence time of water above the soil surface or water alkalinity can lead to mortality of 

intolerant species and a transition from bog to fen or marsh communities with a reduction in plant cover 

and increase in open water (Asada et al. 2005; Granath et al. 2010; Vicherová et al. 2015). Flooding 

dramatically affects ecosystem function by increasing heat fluxes (Roulet et al. 1992), methane emissions 

(Roulet et al. 1997; Kelly et al. 1997), and dissolved organic carbon and nitrogen production (Kim et al. 

2014), as well as decreases in carbon sequestration due to a reduction in vegetation cover (St. Louis et al. 

2000). Shifts in community composition and establishment of more tolerant species can limit these 
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changes (Camill 1999; Beilman 2001; Granath et al. 2010), although recovery could depend on the 

frequency and duration of flooding, water chemistry, and an available submergence tolerant species pool.  

The frequency and duration of flooding in boreal peatlands due to climate change and human 

activities is expected to increase. Average annual precipitation and mean annual temperature rise (Price et 

al. 2013) have already increased the rate of permafrost melting and created positive feedbacks by 

increasing the number and extent of thermokarst ponds (Walter et al. 2006; Turetsky et al. 2007). Recent 

extreme fires have exceeded the known range of natural variation in the boreal forest (Kelly et al. 2013) 

and deep burning of peat soil has increased the extent and duration of flooding (Lukenbach et al. 2015). 

Direct anthropogenic disturbances from livestock-grazing (Worrall et al. 2007), roads (Joosten & Clarke 

2002; Bocking et al. 2017), and water supply reservoir construction (Kelly et al. 1997; St. Louis et al. 

2000) can also flood peatlands through surface compaction and water impoundment. Evaluating the effect 

of these alterations on peatland moss species and communities is vital for assessing impacts to ecosystem 

function and the processes of recovery.  

Flooding may not always alter a peatlands function because moss communities exist along a 

broad range of hydrologic conditions (Zoltai & Vitt, 1995; Asada et al. 2005; Granath et al. 2010). The 

species that persist in saturated sites are resistant to some duration of submergence and shifts in 

community composition that include these species could prevent carbon losses after a disturbance. 

Changes have been observed when fen vegetation cover increases around thermokarst ponds and within 

collapse scars in bogs with thawing permafrost (Camill 1999; Payette et al. 2004), post-fire depressions 

(Benscoter et al. 2005; Lukenbach et al. 2015), and experimentally flooded complexes (Asada et al. 

2005). The vegetation in these features typically shift from Sphagnum spp. dominated to true mosses (Vitt 

& Chee 1990), with increased peat accumulation rates compared to adjacent drier or frozen areas 

(Robinson & Moore 1999; Turetsky et al. 2000). Fen mosses have defined niches along microtopographic 

gradients relative to water level (Gignac et al. 1991; Rydin & Jeglum 2013; Vitt 2014), and the 

desiccation tolerance of many moss species has been extensively studied (Proctor 2001; Oliver et al. 
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2005; Proctor et al. 2007; Manukjanová et al. 2014), but their tolerance to submergence remains poorly 

known.   

The tolerance of a species or community to disturbance can be measured as its resistance and 

resilience (Holling 1973; Rykiel 1985). Resistance is the short-term degree of change caused by a 

disturbance and can be calculated as the ratio of a measured variable in perturbed and unperturbed 

samples. Resilience is the long-term change of a measured variable returning to its predisturbance level 

and can be measured as the ratio between the perturbed and control samples (Griffiths & Philippot 2013). 

Together, they are important metrics of ecosystem stability and recovery toward the pre-disturbance 

condition or displacement towards an alternate state (Pimm 1984; Gunderson 2000). Losing dominant 

species that are intolerant of a certain type or level of disturbance can erode ecosystem function (Smith & 

Knapp 2003; Sasaki & Lauenroth 2011; Winfree et al. 2015; Lohbeck et al. 2016), but if other tolerant 

species can establish, the community may shift and retain a similar function (Robinson & Moore 1999; 

Camill et al. 2001; Turetsky et al. 2007).  

Understanding the tolerance of fen moss species and moss communities to a submergence 

duration gradient will provide guidance for predicting the effects of natural or human caused flooding 

variation and ecosystem resilience. I conducted a field experiment to assess the short and long-term 

responses to submergence duration of four regionally abundant fen moss species and the communities 

they dominate, Aulacomnium palustre (Hedw.) Schwaegr., Hamatocaulis vernicosus (Mitt.) Hedenäs, 

Sphagnum warnstorfii Russ., and Tomentypnum nitens (Hedw.) Loeske. In this paper I test the following 

hypotheses: (1) Fen moss species tolerance to submergence duration will coincide with their occurrence 

along a hummock-hollow gradient, (2) When intolerant species decline in abundance, other more tolerant 

species may establish, forming a diverse moss community that maintains or restores moss cover, and (3) 

Fen moss community resilience to disturbance from submergence duration is maintained by tolerant 

species and/or shifts in community composition.  
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2.2 METHODS 

STUDY SITE 

The study was conducted in a treed rich fen dominated by Larix laricina, Betula glandulosa, 

Carex aquatilis, Tomentypnum nitens, and Sphagnum angustifolium. The fen is located 25 km north of 

Fort McMurray, Alberta, Canada (56° 56' 34" N, 111° 33' 9" W) and has an average annual precipitation 

of 419 mm, approximately 316 mm falling as rain and 134 cm as snow. Mean daily temperature during 

the growing season (May to September), is 13.3o C (local weather station at 56° 39' N, 111° 13' W; 

Environment Canada 2016a). The experiment was conducted from June 10, 2014 to June 12, 2015. For 

the growing months during the length of the study, the mean temperature was 14.5 o C and total rainfall 

was 224 mm (Environment Canada 2016b). Additional experimentation was conducted from July 10 to 

August 19, 2017, when the mean temperature was 18 o C and total rainfall was 35 mm (Environment 

Canada 2017b).  

Fen water samples were collected on August 8, 2014, and July 11, 2015, from three hand-dug pits 

where the submergence experiment was conducted. Electrical conductivity (EC) and pH was measured at 

the time of sampling using a Thermo Scientific™ Orion™ Conductivity and Temperature probe. Water 

samples were taken in clean 60 ml high density polyethylene vials, filtered in the lab within 24 hours 

through 0.45 µm nitrocellulose filters, decanted, and frozen until analysis at the Biotron Experimental 

Climate Change Research Facility at Western University, London, Ontario, Canada. Major anions and 

cations analyzed included F-, Cl-, Br-, NO3
−, PO4

3-, SO4
-2, Na+, NH4+, K+, Mg2+, and Ca2+ (Appendix I). 

Elemental concentrations were within ranges observed for other regional rich fens (Vitt & Chee 1990). 

Mosses were submerged in hand-dug pits within a few meters of where they were naturally growing in 

the fen. 

EXPERIMENTAL DESIGN AND SAMPLING 

Four moss species were selected for this study based on their commonality and abundance in 

regional fens (Chee & Vitt 1989) and occurrence along a hummock-hollow gradient (Vitt & Andrus 1977; 
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Gignac et al. 1991; Hedenäs & Kooijman 1996; Hájková & Hájek 2004). Hamatocaulis vernicosus (Mitt.) 

Hedenäs is found in lawns or wet depressions, Sphagnum warnstorfii Russ. forms low hummocks or 

lawns, Tomentypnum nitens (Hedw.) Loeske creates hummocks, and Aulacomnium palustre (Hedw.) 

Schwaegr. occurs on hummock tops (Vitt 2014). These species are most abundant in regional fens where 

the water table is 10 to 30 cm below the surface (Gignac et al. 1991; Vitt 2014). Four replicate plugs (10 

cm diameter and 5 cm deep) of each species were extracted in PVC tubes from monospecific patches 

(>95% of target species) in the fen over the course of eight weeks. The plugs were named to represent the 

original dominant moss; 1) TnOM: Tomentypnum nitens Original Moss, 2) HvOM: Hamatocaulis 

vernicosus Original Moss, 3) ApOM: Aulacomnium palustre Original Moss, and, 4) SwOM: Sphagnum 

warnstorfii Original Moss. The plugs were submerged at the same site in dugout pits under 10 cm of 

water for 8, 6, 4, 2, or 1 week(s) from June 1-July 30, 2014.  All moss plugs were removed from the water 

on August 6, 2014 and planted at the site in bare peat where the water table averaged 7 cm below the soil 

surface at the time of planting. This area was selected to ensure that none of the species would be water 

stressed and they would not undergo a second submergence event. Moss cores were sheltered from full-

sun using a suspended 50 % black shade cloth from the date of planting to the end of the 2014 growing 

season. To determine the short and long-term effects of submergence, absolute percent canopy cover of 

live (green) moss was visually estimated to the nearest percent in each plug to species on September 23, 

2014 (six weeks after submergence) and June 12, 2015 (11 months after submergence) (Appendix II). My 

original experiment did not include a non-submergence control. I conducted additional experimentation 

from July 10 to August 19, 2017 to test control transplants for their short-term response of planting 

without submergence (zero-weeks). Four replicate plugs of each moss species were extracted and planted 

as in the original experiment. After six weeks, the effect of planting was evaluated by estimating the 

absolute percent canopy cover of live moss. In the original experiment, the plugs were planted from 

August 6, 2014 and evaluated on September 23, 2014. The climatic conditions during these 6 weeks 

differed slightly as 2017 averaged 5 o C warmer and received 24 mm less precipitation, which is a 

disadvantage for desiccation prone mosses. In contrast, moss cover either did not decline or declined to 
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the same degree as the submerged population (H. vernicosus) suggesting that the additional experiment 

successfully tested the effect of planting despite the difference in year and seasonal period. Statistical 

analysis did not directly compare responses of submergence controls to the submerged plugs.  

DATA ANALYSIS 

To evaluate the short and long-term effects of submergence duration on moss percent cover, I 

used a one-way nonparametric Kruskal and Wallis Rank Sum Test, because variances were non-constant 

and data were not normally distributed. A Conover multiple comparison test was performed post-hoc to 

determine statistical significance (α = 0.05) between the sample medians (Conover & Iman 1979; 

Conover 1999). To evaluate the change from short and long-term evaluation periods, I used a two-way 

ANOVA with weeks of submergence and evaluation period as fixed factors. A Tukey-adjusted least 

squares means test was applied when the main effect was significant to determine statistical significance 

(α=0.05) between the marginal means. All analyses were performed in R using the Stats and PMCMR 

packages (R Core Team 2016). One replicate plug of T. nitens that had been submerged for 4 weeks was 

disturbed during planting and removed from the analysis a priori.  

Resistance and resilience were calculated as change relative to the control (Kaufman 1982) using 

log response ratios (Hedges et al. 1999), which is the effect size of a log-proportional change between the 

treatment and control. I refer to resistance as the species’ or moss communities’ short-term (6 weeks after 

submergence) percent cover over the non-submergence control percent cover, and resilience as the long-

term (11 months after submergence) percent cover of formerly submerged plugs over the pre-

submergence canopy cover, standardized as 100 percent cover. Values greater than -0.7 indicate high 

resistance/resilience and represent less than a 50 % proportional change in response to disturbance 

compared to control values. 

2.3 RESULTS 

The four tested fen moss species differed in their response to duration of submergence, but 

tolerances did not completely coincide with their occurrence along a hummock-hollow gradient (Figure 
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2.1; Appendix III). During our experiment, H. vernicosus was the only tested moss whose cover did not 

decline in response to submergence duration or change between short and long-terms. Tomentypnum 

nitens was the second most tolerant species, declining significantly after 8 weeks of submergence in the 

short-term but having some recovery over the long-term. Aulacomnium palustre cover declined in the 

short-term after 4 or more weeks of submergence, however recovery over the long-term was limited in 

plugs submerged for 6 weeks or longer. Sphagnum warnstorfii was most negatively affected by 

submergence, declining to less than 2 % across all submergence durations over the long-term. 

The reduction in moss cover when intolerant species were lost due to submergence was buffered 

in some cases by changes in moss species composition over-time (Figure 2.1; Appendix III). 

Tomentypnum nitens maintained dominance in the TnOM plugs, contributing 98 % of total moss cover 

over the long-term. In the HvOM plugs, H. vernicosus contributed 85 - 90 % of total moss cover as 

Ptychostomum pseudotriquetrum (Hedw.) D.T. Holyoak et N. Pedersen (common in fen lawns), T. nitens, 

and Calliergon giganteum (Schimp.) Kindb. (common in fen pools) established in plugs across all 

submergence durations. Aulacomnium palustre contributed 90 % of total moss cover over the short-term 

in the ApOM plugs, but only 75 % in the long-term after T. nitens established. Despite the relative decline 

in A. palustre, total moss cover increased to a greater extent over the long-term because of T. nitens, 

particularly in plugs submerged for up to 6 weeks. Sphagnum warnstorfii in the SwOM plugs declined 

from 54 % to 5 % of total moss cover over time after T. nitens and A. palustre established. Despite the 

near loss of S. warnstorfii the establishment of other moss species restored moss cover in plugs that had 

been submerged for up to 2 weeks. 

Fen moss community resilience to submergence duration was maintained by tolerant species and 

shifts in community composition (Figure 2.2). Hamatocaulis vernicosus and the moss community in 

HvOM plugs were resistant and resilient to all submergence durations, averaging 4 % and 19 % 

proportional change from control in the short (resistance metric (RsM) = 0.04) and long-term (resistance 

metric (RlM) = -0.21). Tomentypnum nitens and the moss community in TnOM plugs were resistant and 

resilient to up to 6 weeks of submergence, and recovered from 25 % to 15 % proportional change from 
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control over time (RsM = -0.29 and RlM = -0.17). Aulacomnium palustre was only resistant to up to 2 

weeks of submergence, and decreased from 23 % to 35 % proportional change from control over time 

(RsM = -0.27 and RlM = -0.42). However, increases in T. nitens cover in the moss community in the 

ApOM plugs provided resilient to up to 4 weeks of submergence. Despite a shift in composition in the 

SwOM plugs, the moss community was not resilient to submergence. This suggests that if losses of 

intolerant species are significant, recovery of moss cover may take more than one growing season.  

2.4 DISCUSSION 

Hamatocaulis vernicosus and T. nitens were most tolerant of submergence and when intolerant 

species declined in abundance, T. nitens commonly established to restore moss cover and increase moss 

community resilience. The shift in species composition suggests that ecosystem resilience can be 

maintained by diversity if tolerant species are present and able to replace intolerant species following a 

disturbance (Elmqvist et al. 2003). This provides insight into how disturbance tolerant species increase 

ecosystem stability and resilience in response to environmental changes (Smith & Knapp 2003; Sasaki & 

Lauenroth 2011).  

As expected, H. vernicosus tolerated submergence as it occurs in areas of rich fens that 

experience recurring flooding (Vitt 2014). Tomentypnum nitens was also resistant to submergence, an 

unexpected result for this species that typically forms hummocks in boreal fens (Vitt 2014). This suggests 

that submergence tolerance may be an evolutionary innovation as Tomentypnum and Hamatocaulis are in 

the same clade of Amblystegiaceae mosses (Hedenäs & Kooijman 1996).  Although T. nitens typically 

occurs higher above the water table, its hydrologic niche overlaps that occupied by H. vernicosus 

(Hedenas & Kooijman 1996). Tomentypnum nitens’ adaption to relatively dryer habitats may be the 

derived trait (Hedenas & Kooijman 1996) and biotic interactions at the water level could restrict it to 

hummocks (Gignac 1992; Robroek et al. 2007; Udd et al. 2015).  

Aulacomnium palustre was tolerant of short periods of submergence, possibly due to its 

morphological characteristics. Aulacomnium palustre is considered semi-aquatic and may persist for short 
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periods under water as stem tomentum and tightly clustered leaves can trap air bubbles and provide a 

source of carbon dioxide (Vitt & Glime 1984). However, its high leaf density and thick cell walls (Crum 

& Anderson 1981) would likely reduce carbon assimilation under longer durations of submergence, 

especially in stagnant water (Rice & Schuepp 1995; Jenkins & Proctor 1985). Semi-aquatic species of 

Sphagnum can also tolerate short periods of submergence (Vitt & Glime 1984; Rice & Schuepp 1995; 

Granath et al. 2010), although the loss of S. warnstorfii in our experiment could have resulted from 

changes in growth form. Sphagnum survival has been shown to be impeded by etiolation and dissociation 

into loose mats when subjected to long-term flooding, making them more prone to desiccation when the 

water receded (Rochefort et al. 2002).  

The chemistry of flood waters can also directly affect moss species persistence, which is normally 

buffered by subsurface water tables. High levels of calcium and bicarbonate, and high pH in rich fen 

waters has been shown to limit intolerant Sphagnum spp. due to saturation of cell wall exchange sites and 

their insufficient control over the balance of intracellular Ca2+ concentrations (Vicherová et al. 2015). In 

contrast, submergence for three weeks under high Ca2+ and pH waters enhanced the growth of T. nitens, 

H. vernicosus, A. palustre, and other true mosses (Vicherová et al. 2015). Rich fen waters can therefore 

limit intolerant species from persisting and encourage tolerant species to dominate in areas that undergo 

frequent or long duration flood events (Granath et al. 2010; Vicherová et al. 2015). 

Changes in moss community composition over-time varied depending on the original species 

tolerance of submergence and the other species’ ability to establishment.  Submergence tolerant species 

can maintain their dominance, whereas less tolerant species decline in abundance and open canopy space 

for other species. The processes that allowed other species to establish in the plugs were not investigated, 

however the immigration potential of mosses is high because of their high fecundity and dispersal ability 

(Campbell et al. 2003), multiple asexual reproduction strategies (Frey & Kürschner 2011), and abundance 

of propagules retained in surface peat layers (Campeau & Rochefort 1996).  

Establishment potential and competitive ability differs by moss species (Li & Vitt 1995; 

Borkenhagen & Cooper 2016), and our findings suggest that a few dominant resistant and resilient 
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species, not species richness, were most important for recovering ecosystem function following 

disturbance (Winfree et al. 2015). Tomentypnum nitens established in plugs of all tested mosses and may 

have reduced the recovery of the less tolerant S. warnstorfii and A. palustre. Similar interactions have 

been observed in multi-species experiments where Sphagnum spp. was outcompeted by true mosses in 

wet rich fens (Udd et al. 2015) and A. palustre was competitively excluded in mature communities (Li & 

Vitt 1995). In boreal rich fens, T. nitens is one of the most abundant and has the widest habitat niche 

breath among true peatland moss species (Gignac 1992; Vitt et al. 2009). The ability of T. nitens to 

establish and dominate is likely influenced by its resistance and resilience to submergence along with its 

tolerance of desiccation (Manukjanová et al. 2014; Goetz & Price 2015; Borkenhagen & Cooper 2016). 

My results stress the importance of T. nitens in maintaining ecosystem function and resilience to drying 

and flooding disturbances.  

If flood duration increases in fens, particularly where flood tolerant species such as T. nitens or H. 

vernicosus are absent, ecosystems could lose moss cover and transition into an alternative state. Legacy 

effects that persist after flood-waters receded could include bare areas devoid of live mosses or the 

invasion of aquatic vascular plant species that alter ecosystem function because they contribute little to 

carbon sequestration (Camill 1999; Beilman 2001; Asada et al. 2005; Rochefort et al. 2002; Campeau et 

al. 2004). My experiment evaluated the effect of a one-time flood but suggests that the limitations on 

moss persistence would be further exacerbated by an increase in flood frequency and/or duration. 

The restoration of peatlands disturbed by natural or anthropogenic caused flooding could expedite 

the recovery of natural structure and function (Falk et al. 2006; Suding 2011) and offset carbon losses 

(Vasander et al. 2003; Andersen et al. 2016; Chimner et al. 2016). However, species selection must 

consider water chemistry and the potential for recurring floods, especially in future climates scenarios 

(Harris et al. 2006; Price et al. 2013). Efforts to restore peatland mosses on oil and gas well pads, and oil-

sands and peat mines have been successful, but not in areas that regularly flood due to construction 

constraints and land settling (Rochefort et al. 2002; Campeau et al. 2004; Caners & Lieffers 2014; 

Ketcheson et al. 2016). Legacy effects of flooding have also been observed where Sphagnum spp. 
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recolonization was limited in areas with deep flooding (Campeau et al. 2004) and efforts to recreate pools 

in restored peatlands have failed to establish plant communities similar to those of natural peatland pools 

(Fontaine et al. 2007). To limit the effects of future flood disturbance, introducing moss species that are 

tolerant of a range of submergence durations and water chemistry could allow restored ecosystems to 

reverse carbon losses.  

Disturbances have increased recently in boreal peatlands, altering their carbon balance from a 

sink to a source (Turetsky & Louis 2006; Metsaranta et al. 2010). Because peatlands are hydrologically 

and climatically regulated (Zoltai & Vitt 1995; Yu et al. 2010), many disturbances exacerbate drying or 

flooding. Mosses are a critical component of boreal peatland vegetation and although their response to 

desiccation has been documented (Manukjanová et al. 2014), the consequences of flooding is poorly 

understood. My research indicates that some fen moss species are resistant to submergence and resilient 

to at least two months of submergence. The abundance of less tolerant species may decline in response to 

submergence, but rapid shifts in community composition can provide resilience to recovery where 

flooding is of shorter duration or frequency. Species diversity is often reported to provide ecosystem 

stability (Loreau et al. 2002; Hooper et al. 2005), but our results indicate that recovery by the dominant 

tolerant species is more important. I provide empirical evidence of the tolerances of certain dominant fen 

mosses to submergence disturbance, substantiating the critical role moss communities have in 

maintaining the functional stability of boreal ecosystems.   
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2.5  FIGURES 
 

 

Figure 2.1. Percent cover of live moss from plugs named to represent the original dominant moss; TnOM= 
Tomentypnum nitens Original Moss, HvOM = Hamatocaulis vernicosus, ApOM = Aulacomnium palustre Original 
Moss, and, SwOM= Sphagnum warnstorfii Original Moss. Additional species that opportunistically established 
during the experiment include Ptychostomum pseudotriquetrum and Calliergon giganteum. Responses to the five 
durations of submergence were evaluated six weeks after submergence (Short-term response) and 11-months after 
submergence (Long-term response). Bars represent means values with standard error.  Means with different letters 
represent total moss covers that are significantly different within short and long-term response periods (Kruskal-
Wallis Conover’s test for multiple comparison, P < 0.05; n = 4 for each species, except T. nitens in Week 4 has n = 
3). Multiple comparisons data for original moss species from each plug are presented in Appendix III, Table A3.2. 
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Figure 2.2. Effect of submergence duration on the resistance and resilience of four fen mosses and the 
moss communities within plugs named to represent the original dominant moss; TnOM= Tomentypnum 

nitens Original Moss, HvOM = Hamatocaulis vernicosus, ApOM = Aulacomnium palustre Original 
Moss, and, SwOM= Sphagnum warnstorfii Original Moss. Resistance is a log ratio of the short-term (6 
weeks after submergence) percent cover response over a non-submergence control, and resilience is the 
log-ratio of the long-term (11 months after submergence) percent cover response of formerly submerged 
plugs over the pre-submergence canopy cover. Points represent means values with standard error bars. 
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3 METHODS FOR VEGETATION ESTABLISHMENT IN A CONSTRUCTED FEN IN 
ALBERTA’S OIL SANDS REGION 

 
 

3.1 INTRODUCTION  

Impacts to wetland ecosystems have been a persistent outcome of human land-use. Although 

avoidance of wetland loss should be prioritized during development, restoration actions are required as 

compensation where degradation occurs (Government of Canada 1991, Alberta Environment and 

Sustainable Resource Development 2013). Ecological restoration is the process of assisting the recovery 

of damaged, degraded, or destroyed ecosystems and its complexity is undeniable (SER 2004). Constraints 

vary with location, ecosystem type, abiotic and biotic resistances, regulations, and project goals (Suding 

2011). Reclamation is like restoration but occurs where there has been a complete loss of ecosystem 

services and the land surface is recontoured to construct a replacement ecosystem (EPEA 2000, Lima et 

al. 2016). Reclamation projects have additional constraints as they are typically large in scale, can have 

novel geochemical conditions, and are conducted in heavily disturbed environments where connectivity to 

remnants of the pre-existing landscape is limited or nonexistent (Bradshaw and Chadwick 1980). 

Challenges associated with reclamation of a specific wetland type are particularly applicable in Alberta, 

Canada, where large-scale disturbances to peatlands are occurring due to resource extraction and 

standardized reclamation methods do not exist (Foote 2012).   

Mining activities in Alberta’s oil sands region has resulted in the removal of large areas of boreal 

forest, of which 50 - 60 % is dominated by peatlands (Vitt et al. 1998, Rooney et al. 2012).  Conservative 

estimates of the net impacts to peatland area from mining activities total approximately 12,000 hectares 

and no current closure plan proposes to mitigate this loss with peatland reclamation projects (Rooney et 

al. 2012). Wetland reclamation efforts over the last 30 years have focused on marshes and shallow water 

wetlands because they are easier to create in a post-mining landscape and were within the regulatory 

guidelines of restoring to ‘equivalent land capacity’ (Conservation and Reclamation Regulation 1993, 

Daly 2011, Alberta Environment 2014). Regulators and operators are now aware that this land-conversion 
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has broad implications of altered structure and function, and efforts have shifted towards developing 

methods that reconstruct the pre-existing peatlands (Daly et al. 2012, Wytrykush et al. 2012).  

Peatlands are challenging wetlands to reclaim as they take hundreds to thousands of years to 

develop into the mature ecosystems that dominate the region (Halsey et al. 1998). However, recent 

advances in reclamation approaches and hydrologic modeling suggested that landscape-scale fen peatland 

creation is possible in a post-mining landscape (Price et al. 2010). This compensation is appropriate as 

groundwater supplied fens are the most common peatland type in the region (Vitt et al. 1998, Halsey et al. 

2003). To comply with a new regulatory framework and test conceptual designs, a watershed supporting a 

pilot reclamation fen was constructed in an oil sands mine north of Fort McMurray, Alberta (Price et al. 

2010, Daly et al. 2012, Ketcheson et al. 2016). The goal was to create a self-sustaining carbon-

accumulating fen that supports vegetation typical of natural regional fens (Daly et al. 2012). Here, I 

present results from a large-scale experiment that was conducted over four years to test various species 

introduction approaches to establish bryophytes and vascular plants on the constructed fen.  

Fen restoration has been conducted in a variety of different regions, most of which has focused on 

restoring hydrologic regimes and introducing plant species in intact but disturbed sites (Cooper et al. 

1998, Cooper et al. 2000, Patterson and Cooper 2007, Mälson and Rydin 2007, Mälson et al. 2010, 

Cooper et al. 2017, Graf and Rochefort 2008, Graf and Rochefort 2010, Chimner et al. 2016, Andersen et 

al. 2016, Bess et al. 2014, Cobbaert et al. 2004, Lamers et al. 2015).  Challenges of fen reclamation in 

constructed sites are more complex due to uncertainties in water budgets, surface topography, substrate 

heterogeneity, diversions from conceptual specifications, and absence of a propagule seed bank (Daly et 

al. 2012, Ketcheson et al. 2016). Landscapes reclaimed after oil sands mining are also commonly saline 

because the extraction exhumes marine deposits that are reused for construction (Howat 2000, Daly et al. 

2012). Species introduction strategies must consider these constraints and selected species tolerant of 

anticipated reclamation conditions.   

Bryophyte establishment is a key step in reassembling boreal fen communities as they are 

important peat-formers, provide stability and resilience to disturbance, and are the dominant ground cover 
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(Turetsky 2003, Turetsky et al. 2012). Mosses have been successfully reestablished in harvested bogs 

(Bugnon et al. 1997, Gorham and Rochefort 2003, Andersen et al. 2013, González and Rochefort 2014) 

and hydrologically restored fens (Cobbaert et al. 2004, Graf and Rochefort 2008, Graf and Rochefort 

2010, Bess et al. 2014) using the moss layer transfer method (Rochefort et al. 2003, Rochefort and Lode 

2006). The moss layer transfer method harvests a peatland’s entire surficial propagule bank, which is then 

spread in the restoration or reclamation area. Previous research has shown that mosses have higher 

regeneration rates under shade due to microclimate moderation of temperature, light, relative humidity, 

and soil moisture (Graf and Rochefort 2010, Price et al. 1998). Shade can be provided by mulch, 

considered essential for Sphagnum spp. regeneration (Rochefort et al. 2003), or nurse plants such as the 

pioneer moss Polytrichum strictum or herbaceous plant Scirpus cyperinus (Groeneveld et al. 2007, Graf 

and Rochefort 2010). Microclimate moderation by mulch or planted nurse seedlings is important for 

Sphagnum spp. establishment in bog restoration, but fens have higher water levels and vascular plant 

cover so the need to implement a shade treatment may not be as critical for true-moss regeneration in 

reclaimed fens.  

Efforts to limit the establishment of species that do not occur in regional fens may also be 

required to suppress development of an alternate marsh wetland community (Beisner et al. 2003, Suding 

et al. 2004). Poulin et al. (2012) showed that eight years after bog restoration, Typha latifolia cover was 

higher in restored sites compared to reference bogs and suggested that targeted weeding could prevent 

invasion. Typha latifolia is undesirable in reclaimed fens because it is not a peatland species and can form 

dense monocultures that reduce diversity and alter ecosystem function (Zedler and Kercher 2004, Shih 

and Finkelstein 2008, Koropchak and Vitt 2012). 

My research is the first to experimentally test multiple plant introduction methods on a 

constructed fen in a post-mining landscape. This research aims to promote fen bryophyte and vascular 

plant establishment, reduce T. latifolia cover, and establish a diverse assemblage of fen plant species. My 

objectives were to evaluate bryophyte, vascular plant, and T. latifolia percent cover and species diversity 

over four years in response to planting treatments, wood-strand mulch, weeding, and depth to water level. 
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I tested the hypotheses that: (1) bryophyte cover would be greatest where the moss layer transfer was used 

and under wood-strand mulch, (2) vascular plant cover would be highest where the moss layer transfer 

and seedlings were introduced, (3) Typha latifolia cover would be higher in unplanted areas and reduced 

by a weeding treatment, and (4) bryophyte and vascular plant diversity would be highest where the moss 

layer transfer was used.   

3.1 METHODS 

STUDY SITE 

This project is located on the Millennium mine lease at Suncor Energy Inc., 35 km north of Fort 

McMurray, Alberta (56°43′35″N, 111°22′49″W). Average annual precipitation is 419 mm, with 

approximately 316 mm falling as rain and 134 cm as snow. Growing season (May to September) daily 

temperatures average 13.3 o C with 287 mm of precipitation (weather station at 56° 39' N, 111° 13' W, 

Environment Canada 2018). Growing season precipitation has varied from near-average (2013 = 310 mm, 

2014 = 281 mm, and 2016 = 331) to below average (2015 = 203 mm and 2017 = 210 mm). Peak July 

temperatures exceeded local averages by 3 to 5 degrees (Table A4.1). 

Following the design guidelines of Price et al. (2010), construction of the Nikanotee Fen (the 

Fen) was completed in 2013.  The design was based on numerical modelling of climate normals and fen 

vegetation water requirements (Price and Whitehead 2001). The site was constructed to maintain a range 

of hydrologic conditions suitable for fen vegetation establishment and peat accumulation (Price et al. 

2010). The project includes an upland watershed of tailings material that provides surface and ground 

water flow into a fen basin constructed of salvaged donor rich fen peat substrate (Price et al. 2010). The 

peat was derived from horizons that would have no living seeds, roots or rhizomes. The fen construction 

approach, design, and hydrologic processes are described in Ketcheson et al. (2016).  
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EXPERIMENTAL DESIGN 

My experiment was a two-factor randomized block split-plot design (n = 5 blocks). The blocks 

are divided into 7 whole-plot factor planting treatments; (1) Carex aquatilis seedlings (Carex); (2) Juncus 

balticus seedlings (Juncus); (3) C. aquatilis seedlings and moss layer transfer (MLT + Carex); (4) J. 

balticus seedlings and moss layer transfer (MLT +Juncus); (5) moss layer transfer (MLT); (6) mixed 

seeds (Seeds); and (7) unplanted bare-peat control (Unplanted) plots. Each plot is further divided into 4 

split-plot mulchweed treatments (mulch/no weed, mulch/weed, no mulch/weed, no mulch/no weed). 

Whole-plots were 17 X 18 m and split-plots were 8 X 8.5 m. Seed and Unplanted plots had a higher 

potential to be colonized by invasive species so were designed to be half the size of other treatments plots 

to limit the overall abundance of invasive species in the Fen (whole-plots were 8 X 18 m and split-plots 

were 4 X 8.5 m). Planting occurred from mid-June to mid-July, 2013. 

I selected two species for planting as seedlings that are regionally common in rich and saline fens. 

Carex aquatilis is among the most common Cyperaceae species found in boreal peatlands, particularly 

rich fens, across Canada (Gignac et al. 2004). It is an ideal candidate for boreal peatland restoration due to 

its ability to colonize following disturbance, wide distribution along climatic, water table, pH, electrical 

conductivity (EC), and substrate type gradients and ease of propagation (Gignac et al. 2004, Koropchak 

2010, Mollard et al. 2012). Juncus balticus is a rhizomatous species common throughout Canada, 

occurring in wet meadows and fens (Cooper et al. 2006). It is tolerant of mild to moderate soil salinities, 

with EC values ranging from 0.1 to 20.1 mS/cm (mean 3.3 mS/cm; Kantrud et al. 1989) and is highly 

rated for seed availability and establishment potential for alkaline and saline fen reclamation (Ross et al. 

2014). Seedlings were grown over the 2012-2013 winter in the nursery and planted at a density of 3/m2. 

In one block, Carex was incorrectly planted at 4/m2. The plots were combined as analysis showed no 

statistical differences in response variables between these densities.  

Restoration methods typically focus on planting seedlings to ensure rapid establishment, however 

germination of seeds applied to soils is an alternate method that is less expensive and time consuming 

than planting seedlings (van der Valk et al. 1999). To determine the germination success and 
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establishment potential, species common in regional saline and rich fens were introduced in a seed 

mixture. The number of pure live seeds per square meter (pls/m2) varied by species due to availability and 

viability. Presented values for seeding rates were calculated estimates based on percent viability 

determined by TZ test and number of seeds per dry weight. The species mixture included C. aquatilis 

(710 pls/m2), Betula pumila (620 pls/m2), Calamagrostis inexpansa (390 pls/m2), Sarracenia purpurea 

(290 pls/m2), Triglochin martima (170 pls/m2), J. balticus (110 pls/m2), and Vaccinium oxycoccos (30 

pls/m2).  The seeds were locally collected in 2012, stratified in a greenhouse, and sown in a 

sand/vermiculite mixture with a broadcast seed spreader in July, 2013.  

Material for the MLT was collected from a rich fen located 12 km west of the Fen (56° 56' 34" N, 

111° 33' 9" W). The site is dominated by regionally abundant bryophyte and vascular species (Chee and 

Vitt 1989) that have suitable tolerances to oil sands process water (Pouliot et al. 2012, Pouliot et al. 2013) 

including Tomentypnum nitens, Aulacomnium palustre, Sphagnum warnstorfii, S. angustifolium, Betula 

pumila, and Carex aquatilis. From June 19 to 26, 2013, the top 5-10 cm of the donor site was harvested 

using a large rototiller mounted on an excavator. The MLT was loaded into trucks and delivered and 

stockpiled at the Fen. The MLT was spread by hand from late-June to mid-July, 2013 at a 1:10 ratio of 

harvested to donor site (Rochefort et al. 2003).  

The application of agricultural straw mulch has facilitated moss regeneration in bogs (Rochefort 

et al. 2003) but was thought to be less desirable in the Fen as it can be susceptible to displacement by 

flowing water (Foltz and Dooley 2003). In contrast, wood-strand mulch (WoodStraw® ECM 2012) is 

more resistant to dispersal and degradation and has been shown to delay runoff and reduce sediment loss 

from bare soils (Foltz and Dooley 2003, Yanosek et al. 2006). The product is created from low grade 

debarked and water bathed Douglas fir veneer from British Columbia. To protect establishing bryophytes 

and reduce non-peatland species invasion, wood-strand mulch was applied to create 90% cover, similar to 

agricultural straw applications in bog restorations (Rochefort et al. 2003). 

Long-term mechanical removal of undesirable species is not viable in most large-scale 

reclamation settings, but intensive management of young developing stands may be possible in the initial 
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stages to limit establishment. A T. latifolia weeding treatment was implemented for the first three years to 

suppress priority effects and allow desirable fen species to establish and competitively exclude future T. 

latifolia invasions (Lishawa et al. 2017). Emerging T. latifolia shoots were clipped at the base and 

removed from the site 3-4 times throughout the first three growing seasons (2013-2015). 

FIELD DATA COLLECTION 

Vegetation surveys were conducted in mid-July from 2014 to 2017. Aerial cover was visually 

estimated to the nearest 1 percent for each species separately in the same 4 m2 quadrat that was inset 1 m 

from the edge of each split-plot. My design included 5 replicate blocks, but some plots were not planted 

because of flooding associated with unexpected site heterogeneity and others were misplanted with 

Scirpus microcarpus instead of C. aquatilis because of a delivery error. Sampling effort of split-plots in 

2014 (n = 82) was limited because of constraints on survey duration, but efforts increased in 2015 (n = 

123), 2016 (n = 121), and 2017 (n = 128) to capture variation in vegetation establishment and water level 

gradients. This resulted in different samples sizes for certain treatment plots. All treatments were samples 

with some replication and the percentage of treatments surveyed with 4 or more replicates were 43 % in 

2014, 86 % in 2015 and 2016, and 89 % in 2017.  

Depth to water level and water pH, electrical conductivity and temperature were measured in 

mid-July of 2015, 2016, and 2017 in a shallow soil pit dug adjacent to the plot. Absolute positions and 

elevations (mASL; ± 0.5 cm vertical accuracy) of plots were determined in 2015 using a Leica 

Geosystems Viva GA14 GNSS RTK GPS system. The Fen was equipped with a grid of wells with 

Odyssey Capacity Water Level Loggers and Pressure Transducer loggers that recorded daily water levels 

from March 31, 2013 to September 21, 2017.  

I was not able to sample water and soil chemistry in treatment plots each year but did subsample 

in 2014 and 2015 to provide a snapshot of differences and changes over time in solute concentrations. 

Water samples were collected from soil pits and soil samples were collected from the top 2 cm of the 

surface on August 8, 2014 and July 11, 2015 at the Fen and rich fen where the MLT was harvested. Using 
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a Thermo Scientific™ Orion™ Conductivity and Temperature probe, water electrical conductivity (EC) 

and pH were measured at the time of sampling and soil EC and pH were measured ex-situ in a soil-water 

extract based on a fixed soil:solution ratio of 1:5 (Dellavalle 1992). Water samples were taken in clean 60 

ml high density polyethylene vials, filtered in the lab within 24 hours through 0.45 µm nitrocellulose 

filters, decanted, and frozen until analysis at the Biotron Experimental Climate Change Research Facility 

at Western University, London, Ontario, Canada. Major anions and cations analyzed included Cl-, SO4
-2, 

NO3
−, Na+, K+, Mg2+, and Ca2+ (Table A4.2).  

SITE CONDITIONS  

Season and annual water level variation is presented for three plots that represent a range in water 

level depths across the Fen in Figure A4.1 with hydrologic parameters in Table A4.3. Water level varied 

in plots across the Fen throughout the season, and inter-annually between wetter and drier years. Water 

levels was highest in 2013 after planting and has generally decreased each year. Water levels in the driest 

plots maintain relatively similar hydrographs despite variation in annual precipitation. Plots with near 

surface water levels had submergence events where water regularly rose above the ground surface ranging 

for a total of 40 to 80 days per season.  

Average solute concentrations were found to be higher in the soil compared to the water and 

generally increased from 2014 to 2015. Concentrations in the water and soil at the Fen exceeded levels at 

the donor rich-fen and ranges observed regional fens (Vitt and Chee 1990, Halsey 2008) but are similar to 

slightly saline fens and reclaimed boreal communities (Purdy et al. 2005). The EC (avg = 4242 ± 1350 

uS/cm) and NA+ (avg = 398.89 ± 291.57 mg/L in 2015) values are high and concentrations are considered 

“Fair” for reclamation, but establishment of some fen vascular plant species may be reduced based on the 

suggested threshold range of 300-600 mg/L for Na+ (Howat 2000, Koropchak and Vitt 2012). These 

levels may also limit bryophytes as only a few species inhabit regional saline fens, including 

Ptychostomum pseudotriquetrum, Campylium stellatum, and Drepanocladus aduncus (Vitt et al. 1993). 

These mosses and Sphagnum warnstorfii and Tomentypnum nitens can tolerate high saline levels for up to 
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100 days of exposure (Pouliot et al. 2013), but the effect of exposure over multiple growing seasons, high 

fluxes in drier years, and increased accumulation of surface levels over time is unknown (Kessel et al. 

2018). 

DATA ANALYSIS 

To evaluate differences between the treatments, I used linear mixed effect models with planting 

and mulchweed treatments as fixed factors and treatments within replicate blocks as random factors for 

the split-plot error. To evaluate the effect of mulch on bryophyte cover, comparisons were conducted by 

averaging across weed treatment split-plots that were determined not to have a significant overall effect 

(mulch/weed and mulch/no weed vs. no mulch/weed and no mulch/no weed). Weed plots where evaluated 

similarly by averaging over mulch treatment split-plots to determine the effect of weeding on T. latifolia 

cover as mulch had no significant overall effect (weed/mulch and weed/no mulch vs. no weed/mulch and 

no weed/no mulch). Satterthwaite's (1946) method was applied to account for unequal sample sizes and 

variances. I also conducted repeated measures as survey quadrats were placed in the same location within 

split-plots in each of the four years. Repeated measures mixed models were run to determine difference 

across years using a 1st order ante-dependence covariance structure that was selected by AIC model 

comparison. A Tukey-Kramer adjusted least squares means test was applied to determine statistical 

significance (α=0.05) between the marginal means of unequal sample sizes. I also evaluated the effect of 

depth to water level in each planting treatment using a mixed effects model with depth to water level as a 

random variable and treatments within replicate blocks as random factors for the split-plot error.  Linear 

mixed effects model analyses were performed in SAS using proc MIXED (Version 9.3, Cary, NC, USA).  

3.2 RESULTS 

BRYOPHYTE COVER 

Bryophytes established in all experimental plots, at first from the MLT treatment and then 

through spontaneous colonization over time either via dispersal from MLT plots or from indigenous 
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sources outside the Fen (Figure 3.1). Bryophyte cover was affected by planting treatment from 2014 to 

2017 and by mulchweed treatment in 2014 (Table A4.4). In 2014, when averaged across weed treatments, 

bryophyte cover in unmulched plots differed by planting treatments (F6,31 = 2.6, p = 0.036) but multiple 

comparison estimates were more conservative and differences between treatments were not observed. 

Planting treatment in mulched plots did affect bryophyte cover in 2014 (F6,29 = 28.6, p < 0.001), with 

bryophytes only occurring in MLT + Juncus,  MLT + Carex, and MLT plots. In 2015, the mulch 

treatment no longer affected bryophyte cover (F3,103 = 0.6, p = 0.454) but planting treatment was still 

significant (F6,106 = 32.3, p < 0.001) and bryophyte cover was again highest in MLT + Juncus, MLT + 

Carex, and MLT plots. In 2016, bryophyte cover was also affected by planting treatment (F6,23 = 6.8, p < 

0.001) but changes in the direction of effect occurred. Bryophyte cover in unmulched MLT plots was no 

longer similar to the MLT + Juncus plots and instead had as much bryophyte cover as Unplanted plots. In 

mulched plots, bryophyte cover in MLT and MLT + Carex was similar to MLT + Juncus but also did not 

differ from plots that did not received the MLT. In contrast, bryophyte cover in unmulched Juncus and 

Seed plots became similar to MLT + Juncus and MLT + Carex plots. In 2017, bryophyte cover continued 

to differ between planting treatments (F6,26 = 5.3, p = 0.001). In unmulched plots, bryophyte cover was 

again higher in MLT + Juncus plots and lower in MLT and Unplanted plots. In mulched plots, bryophyte 

cover was higher in MLT + Juncus plots and lower in Carex, Seed, and Unplanted plots.  

In unmulched plots, bryophyte cover changed over the four years in all planting treatments except 

Carex (F3,196 = 2.3, p = 0.075) and Unplanted plots (F3,175 = 2.0, p = 0.113). Bryophyte cover in MLT + 

Juncus plots peaked in 2015, declined in 2016, but recovered in 2017. Bryophyte cover also peaked in 

2015 and declined in 2016 in MLT and MLT + Carex plots but then remained low in 2017 with covers 

similar to 2014. Bryophyte cover increased overtime in Seed and Juncus plots, with higher values from 

2015 to 2017 compared to 2014 in Seed plots, and from 2016 to 2017 compared to 2014 and 2015 in 

Juncus plots.    

In mulched plots, bryophyte cover remained unchanged over the four years in all planting 

treatments except MLT + Carex (F3,193 = 6.1, p < 0.001) and Juncus plots (F3,192 = 3.3, p = 0.021). 
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Bryophyte cover in MLT + Carex was highest in 2015, declined in 2016 and remained low 2017. In 

contrast, bryophyte cover in Juncus plots increased over time and was higher in 2017 compared to 2014. 

Bryophyte cover declined as the water level became closer to the surface in certain planting 

treatments from 2015 to 2017 (Figure 3.2, Table A4.5). Bryophyte cover was affected by water level in 

Juncus plots in all years, in MLT + Juncus plots in 2015 and 2016, in Carex plots in 2015 and 2017, and 

in MLT + Carex plots in 2017.  

VASCULAR PLANT COVER 

Vascular plant cover varied in response to planting treatment from 2014 to 2017 and was not 

affected by mulchweed treatments (Figure 3.3, Table A4.6). In 2014, vascular plant cover in MLT plots 

was higher than all other planting treatments except MLT + Carex (F3,15 = 4.5, p = 0.009). In 2015, 

vascular plant cover was higher in MLT and MLT + Carex plots compared to Unplanted, Carex and 

Juncus plots (F6,25 = 4.2, p = 0.005).  In 2016, vascular plant cover was highest in MLT, MLT + Juncus 

and Seed plots and lowest in Carex and Juncus (F6,22 = 8.3, p = 0.023). Vascular plant cover in MLT + 

Carex plots declined and became similar to Carex and Juncus plots, whereas cover in Seed plots 

increased and became comparable to MLT and MLT + Juncus. In 2017, vascular plant cover was highest 

in MLT + Juncus plots and lowest in Carex plots (F6,22 = 8.3, p = 0.023). 

Vascular plant cover changed over time in all treatments and mostly increased from 2014 to 2016. 

Responses were more variable from 2016 to 2017 as vascular plant cover declined in Unplanted and Seed 

plots, increased in MLT + Juncus plots, and remained in unchanged in other treatments. Vascular plant 

cover is additive due to the vertical layering of species canopies, so the lack of change or a decline in 

cover may represent no new recruitment or loss of species. Conversely, an increase in cover could be due 

to an increase in the number of contributing species. Vascular plant cover was only influenced by water 

level in MLT + Carex plots in 2015 and 2016 with decreasing covers at near surface water levels (Figure 

A4.2, Table A4.5).  
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Carex aquatilis percent varied by planting treatment in all years and increase over time in all 

treatments except MLT + Carex (F3,198 = 0.8, p = 0.503) (Figure 3.4A, Table A4.6). By 2017, all 

treatments, except in Juncus plots, has similar cover of  C. aquatilis and was higher than any other 

species, ranging from 40 % to 80 % cover in treatment plots. Juncus balticus cover was affected by 

planting treatment in all years and by mulchweed in 2016 and 2017 (Figure 3.4B, Table A4.6). Juncus 

balticus cover increased in Juncus (F3,124 = 8.2, p < 0.001) and Seed plots (F3,137 = 21.5, p < 0.001) from 

2014 to 2017, and increased in Unplanted plots (F3,142 = 3.7, p = 0.014) from 2014 to 2016 but then 

declined in 2017 to similar cover values as 2014. Average percent cover of J. balticus in 2017 was 55 % 

in plots where it was planted as seedlings and 17 % cover (se = 2.0) in Seed plots. Carex aquatilis cover 

in MLT and Carex plots increased where the water level was closer to the surface in 2016 and 2017, 

whereas cover decreased where the water level was closer to the surface in Seed plots in 2016 (Table 

A4.5). Juncus balticus cover was only affected by water level in Carex plots in 2015 and 2017, where it 

declined at near surface water levels, perhaps due to the increase in C. aquatilis cover (Table A4.5).  

The other introduced species did not establish as well (data not shown). Calamagrostis inexpansa 

failed to germinate in Seed plots but did reach an average of 7 % cover (se = 1.7) by 2017 in MLT plots. 

Triglochin martima successfully germinated in Seed plots, averaging 30 % cover (se = 2.5) in 2014, but 

declined to 17 % cover (se = 2.3) by 2017. Betula pumila, Sarracenia purpurea and Vaccinium oxycoccos 

did not establish in Seed plots but B. pumila and V. oxycoccos occurred sporadically (< 1 % cover) in 

MLT and MLT + Juncus plots from 2015 to 2017. 

TYPHA LATIFOLIA COVER 

Typha latifolia cover was affected by planting treatment in 2016 and mulchweed treatment from 

2015 to 2015 (Table A4.7). In unweeded treatments, cover of T. latifolia varied across planting treatments 

from 2014 to 2016 (Figure 3.5). Unplanted unweeded plots (F3,271 = 31.9, p < 0.001) had the highest cover 

of T. latifolia from 2014 to 2016, followed by Seed plots (F3,262 = 5.6, p = 0.001) from 2014 to 2016 and 

MLT plots (F3,282 = 4.0, p = 0.008) from 2014 to 2015. In unweeded Unplanted and Seed plots, T. latifolia 
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cover increased from 2014 to 2016, but declined in 2017 to the same cover as 2014. The reason for the 

change may be related to water availability as annual precipitation and water levels were high in 2016 

when T. latifolia increased and were lower in 2017 when T. latifolia declined (Table A4.1, Figure A4.1). 

Typha latifolia increased where water levels were closer to the surface in MLT + Carex plots in 2015 and 

then in Unplanted, MLT and MLT + Carex plots in 2016 (Table A4.8). The effect of water level was 

greatest in 2017 where T. latifolia cover increased at near surface water levels in Unplanted, MLT + 

Carex, MLT + Juncus, and Seed plots. 

DIVERSITY 

Bryophyte species richness was affected by planting treatment from 2014 to 2017 and the 

mulchweed treatment in 2014 and 2016 (Table A4.9). Bryophyte species richness was highest in MLT + 

Juncus, MLT + Carex and MLT plots in 2015 and 2016 but declined in MLT plots by 2017 to values 

similar to Unplanted plots ( Figure 3.7A). By 2017, bryophyte species richness in Juncus plots increased 

significantly and was similar to MLT + Juncus plots. Bryophyte evenness was affected by planting 

treatment in all years but multiple comparison estimates were not computed for 2014 due to small sample 

sizes because bryophyte cover was so low (Table A4.9). From 2015 to 2016, evenness was highest in 

Unplanted, Juncus, Carex, and Seed plots because only a few common bryophytes colonized these areas 

(Figure 3.7B). Conversely, bryophyte evenness was lowest in MLT, MLT + Carex and MLT + Juncus 

plots because of increased number of species propagules in the MLT. By 2017, significant differences in 

bryophyte evenness occurred only between Unplanted and MLT + Juncus plots as species were gained 

and lost in treatments over the years and evenness converged.  

Bryophyte species richness increased in MLT plots in 2015 at near surface water levels, but then 

decreased at near surface water levels in MLT + Juncus and MLT + Carex plots in 2016, and MLT + 

Carex, Juncus, Seed, and Unplanted plots in 2017 (Figures A4.3, Table A.10). The effect of water level 

on bryophyte evenness was similar to species richness but with inverse relationships, decreasing in MLT 
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plots in 2015, and increased in MLT + Carex and MLT + Juncus plots in 2016 and in Carex and Juncus 

plots in 2017 (Figure A4.4, Table A.10). 

Vascular plant species richness was affected by planting treatment and mulchweed in all years 

(Table A4.9). Across mulchweed treatments, vascular species richness was highest in MLT plots and 

lowest in Carex and Juncus plots from 2014 to 2016 (Figure 3.7C). Vascular plant species richness 

changed over time in all treatments except for Carex (F3,89 = 2.3, p = 0.084) and Juncus plots (F3,89 = 2.2, 

p = 0.097). Vascular plant species richness declined in MLT, Unplanted, and Seed plots, increased in 

MLT + Juncus, and was variable was remained unchanged between 2014 and 2017 in MLT + Carex.  

Vascular plant evenness was affected by planting treatment in all years (Table A4.9) and was 

highest in Unplanted and Seed plots from 2014 and 2015 and then in Seed and Juncus plots by 2017 

(Figure 3.7D). Evenness remained unchanged in most treatments from 2014 to 2017, except in Juncus 

(F3,131 = 13.1, p < 0.001) and Carex plots (F3,131 = 9.2, p < 0.001), which increased in 2016, and MLT plots 

(F3,171 = 2.8, p = 0.041) that increased slightly in 2015 but was similar in 2017 to 2014 values. 

Vascular plant species richness declined at near surface water levels in all years and in many 

treatments (Figure A4.5, Table A4.10). Vascular plant species richness was affected by water level from 

2015 to 2017 in MLT + Carex and MLT + Juncus plots, and to a greater extent in 2017 in all treatments 

except MLT and Juncus. Vascular plant evenness had the opposite relationship with increasing evenness 

at near surface water tables in MLT plots in 2015 and in Seed plots in 2016. In 2017, vascular plant 

evenness decreased at near surface water levels in MLT and increased at near surface water levels in 

Seed, MLT + Carex, and MLT + Juncus plots (Figures A4.6, Table A4.10). 

3.4 DISCUSSION 

My research demonstrates that it is possible to establish fen bryophyte and vascular species in a 

constructed boreal fen. The moss layer transfer and Juncus balticus seedling planting treatment (MLT + 

Juncus) was most effective at maintaining bryophyte and vascular plant cover and species richness and 

excluding Typha latifolia. Plots with MLT initially supported the highest bryophyte and vascular plant 
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richness and may have acted as source populations for bryophyte dispersal to areas that did not receive 

the treatment.  Over the four years of this study, bryophyte richness increased in many treatments whereas 

vascular plant richness declined or remained unchanged. The most successful vascular fen species to 

establish was Carex aquatilis, by both seed and seedling, and it spread into all planted and unplanted 

plots. Of the other introduced fen species, Juncus balticus was most effectively introduced as seedlings, 

Triglochin maritima by seed, and Calamagrostis inexpansa, Betula pumila, and Vaccinium oxycoccos by 

propagules in the MLT. Within the water level gradient of our plots (+1 cm to -42 cm from 2014 to 

2017), weeding T. latifolia reduced its cover in the highly affected Unplanted and Seed plots, but was not 

necessary in other treatments where it was likely competitively excluded by planted species. Wood-strand 

mulch did not affect bryophyte cover beyond the first year and the effect of water level increased in 

importance for many measured variables each year. At near surface water levels, there was lower cover 

and richness of bryophytes and vascular plants, and higher T. latifolia cover.  

Bryophytes have been successfully established in peatland restoration sites using similar MLT 

methods (Rochefort et al. 2003). Unlike the recommended straw mulch that improves establishment for 

boreal bog restoration (Price et al. 1998), I found that wood-strand mulch did not affect fen bryophyte 

establishment from the MLT over time and also reduced spontaneous colonization to new areas that did 

not receive the MLT. Straw mulch provides the shade and microclimate moderation essential for 

Sphagnum spp. regeneration in bogs (Price et al. 1998, Rochefort et al. 2003). However, the use of straw 

mulch in fen restoration projects has had either a negative or no effect on fen species or bryophytes cover 

(Cobbaert et al. 2004, Graf and Rochefort 2008, Graf and Rochefort 2010, Bess et al. 2014). In our 

reclaimed fen, high soil moisture is maintained by the near surface water tables (Scarlett et al. 2017) and 

shade was provided by the abundance of vascular plants that emerge from the MLT, likely resulting in the 

wood-strand mulch providing little additional benefit. As I observed in unmulched Juncus plots, mosses 

have also successfully established without being introduced or with a mulch treatment in suitably wet and 

shady sedge communities in restored montane fens (Cooper et al. 2017). In addition, wood decomposes at 

a slower rate than straw and could have altered soil surface C:N ratios or deterred recruitment of species 



57 
 

with a preference for peat substrates. Based on these results, I do not recommend using wood-strand 

mulch at the tested application density to support bryophyte establishment in future fen reclamation 

projects, however further experimentation could improve our understanding of situations in which it could 

provide a benefit. I recommend using the MLT to facilitate rapid colonization and increase diversity of 

bryophytes and found that J. balticus functioning as a nurse plant was most effective at supporting 

bryophyte cover. This is similar to responses achieved with Scirpus cyperinus in bog restoration 

experiments (Graf and Rochefort 2010).  

Contrary to results from other field experiments (Bugnon et al. 1997, Mälson and Rydin 2007, 

Graf and Rochefort 2010), a near surface water table at the Fen was less favorable for bryophyte 

establishment and richness. This is likely due to greater annual and season variation with the water table 

regularly rising above the ground surface that produced submergence events ranging from 40 to 80 days 

per season over the four years. Previous research has shown that bryophyte species vary in their 

tolerances to submergence and frequent or reoccurring events severely limited bryophyte persistence and 

richness (Borkenhagen and Cooper 2018). Bryophytes also vary in their tolerances to different water 

chemistries (Vicherová et al. 2015) and soil and water salinity levels at the Fen exceeded conditions and 

differed in chemical composition to the rich-fen donor site where the MLT material was harvested. These 

novel conditions favored tolerant species such as Ptychostomum pseudotriquetrum and likely limited the 

survival of intolerant species present in the MLT such as Sphagnum warnstorfii (Poulin et al. 2013).  

Vascular plants rapidly spread across the Fen, established more rapidly than bryophytes, and were 

successfully introduced by seeds, seedlings, and MLT. Carex aquatilis was highly successful across the 

entire hydrologic gradient, readily established by several introduction methods, and produced more above 

ground biomass than any other species (Messner et al. in prep). Juncus balticus was more modest in its 

growth and dispersal from where it was planted but supported more bryophyte cover and species richness. 

Although not as regionally common as moss-dominated fens, herbaceous fens containing C. aquatilis or 

J. balticus naturally exist and may be appropriate reference sites for constructed fens in Alberta’s oil 

sands region (Vitt et al. 1998, Halsey 2008, Environment and Parks 2017).  Carex aquatilis has also 
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successfully colonized the reclaimed Syncrude Fen (Vitt et al. 2016) and been proposed as an ideal 

species based on its wide tolerances of water table depths and salinity (Koropchak 2010). Despite the 

advantages in a reclaimed setting, C. aquatilis is highly successful, and its height, dense litter production, 

and high density of culms suppressed bryophytes and other fen vascular plants. Depending on the goals of 

the project its dominance could be desirable or undesirable. If biomass production and carbon 

sequestration are the goals, then C. aquatilis is an excellent species to propagate. If diversity and 

bryophyte establishment are targets, then approaches that limit C. aquatilis abundance and support J. 

balticus communities should be considered.   

Typha latifolia was suppressed by weeding but also by the MLT and seedling planting treatments. 

This is a key finding because mechanical weeding of an undesirable species is not feasible on large-scale 

project sites. Typha latifolia is a ubiquitous marsh plant in our study region that is difficult to exclude 

from restored wetlands due to its prolific seed production, dispersal, good germination, rapid growth of 

rhizomes and competitive tall growth (Shih and Finkelstein 2008). Poulin et al. (2012) found that T. 

latifolia densely colonized wetter areas for years after bog restoration. Vascular plant cover in the Fen 

exceeded that typically found in bog restorations (Rochefort et al. 2013), suggesting that T. latifolia 

exclusion may be due to competition with other fen plants. Exclusion is particularly important in highly 

susceptible zones and targeted planting of C. aquatilis, which is also adapted to shallow standing water, is 

likely an effective approach to suppress T. latifolia stands in ponded areas of future reclamation projects 

(Funk et al. 2008). Typha latifolia cover in the Fen was highest in wetter areas, but also increased during a 

wet year in 2016 and declined during a dry year in 2017. This suggests that competition with planted 

vascular plants may limit invasion but interannual climate and water availability variability likely also 

have an effect. 

I observed an increase in bryophyte richness in some plots and convergence of evenness over 

time as new species were observed each year and some common species proliferated. The most common 

species in 2017 was Ptychostomum pseudotriquetrum, which occurred in all treatment plots and had the 

highest cover under J. balticus. Ptychostomum pseudotriquetrum is a ubiquitous fen moss with a slender 
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and unbranched erect form and grows intermixed with other mosses (BFNA 2014). Despite producing 

lower biomass than other fen species, P. pseudotriquetrum may be a key pioneer species because of its 

tolerance of saline conditions and elevated elemental concentrations conditions (Vitt and Chee 1990, 

Pouliot et al. 2012, Pouliot et al. 2013, Vitt and House 2015). The donor site was selected for the MLT in 

part because it contained Tomentypnum nitens and Sphagnum warnstorfii, shown to also be tolerant of 

elevated salinity levels (Pouliot et al. 2013). Tomentypnum nitens initially propagated from the MLT but 

persisted primarily under J. balticus and generally declined in abundance each year. Sphagnum 

warnstorfii was never observed in the Fen, likely due to its low tolerance to high salt concentrations and 

submergence duration (Pouliot et al. 2013, Borkenhagen and Cooper 2018). Bryophytes that established 

and increased in occurrence over time across the Fen included Calliergon giganteum, Campylium 

stellatum, Drepanocladus aduncus, Drepanocladus polygamous, Leptobryum pyriforme, and Funaria 

hygrometrica, common fen or ruderal species tolerant of elevated salinity levels and drier or wetter fen 

conditions (Vitt et al. 1993, Pouliot et al. 2013, BFNA 2014). 

Vascular plant species richness generally declined or remained unchanged while evenness was 

relatively stable in most treatments over the four years. Species known to tolerate elevated salinity levels, 

such as Triglochin maritima, Triglochin palustre, and Calamagrostis inexpansa, established and persisted 

in the Fen (Pouliot et al. 2012). In contrast, the occurrence of other wet meadow and fen species, such as 

Carex aurea, Carex disperma, Eleocharis palustris, Deschampsia caespitosa, and Hierochloe hirta, 

peaked in 2015 but then were limited or absent by 2017. The loss of these non-saline or subdominant 

species was likely influenced by increases in soil and water salinity over time or competition with 

aggressive species such as C. aquatilis, especially in areas with shallow water tables. Identifying biotic 

and abiotic constraints on establishment is a critical component of species selection for reclamation, 

however, these constraints may not be initially evident or predictable (Suding 2011, Foote 2012). 

Dominance and suppression of fen bryophytes and most vascular plant species by C. aquatilis 

was an unintended outcome in the Fen. Compared to the rich fen where the MLT was harvested and 

regional fens references (Chee and Vitt 1989), the water table at the Fen is closer to the surface and the 
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water and soil have higher salinity. Abiotic filters and species functional traits determine whether a 

species can colonize a habitat, and biotic interaction filters can either constrain or facilitate a species 

persistence within the community (Keddy 1992, Keddy 1999, Weiher et al. 2011).  Reclaimed sites 

typically have abundant resources and lack pre-existing biotic constraints resulting in novel conditions 

and interactions as communities assemble. This can lead to dominance by aggressive resource aquisitors 

and the loss of more uncommon or slower growing species (Doherty and Zedler 2014).  The Fen surface 

was also designed to be flat to retain water (Price et al. 2010), which resulted in a nearly homogeneous 

surface that may have facilitated C. aquatilis expansion compared to natural fens that are typically 

topographically, hydrologically, and geochemically variable (Chee and Vitt 1989, Sampath et al. 2016).  

My research demonstrates the successful introduction of fen bryophyte and vascular plant species 

within a constructed boreal fen over four years. Bryophyte establishment was highest under J. balticus, 

vascular plants established rapidly, C. aquatilis dominated across all treatments, and T. latifolia cover was 

reduced by planted species. Soil and water chemistry and abundance of vascular plants at the Fen are 

more similar to regional saline fens then the intended target of a moss-dominated rich-fens (Chee and Vitt 

1989, Wells and Price 2015). An herbaceous saline fen is still within the range of acceptable outcomes 

although consideration must be given to potential differences in production and carbon dynamics between 

these two fen types (Volik et al. 2017). To prioritize plant diversity and bryophyte establishment, future 

projects should be designed to have more topography and limit areas with mid-summer near surface water 

levels, select species tolerant of expected abiotic conditions, and introduce co-dominant seedling nurse 

plants. Methods of plant introduction are important to prioritize, but species selection that consider the 

characteristics of reclaimed system is critical. These characteristics can be difficult to predict where novel 

reclamation approaches are used, but an understanding of expected hydrologic and geochemical 

conditions will provide the bases for predicting the successful establishment of target species.  
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3.5  FIGURES  
 

 

Figure 3.1 Effects of planting treatments on bryophyte percent cover from 2014 to 2017. Bars represent 
mean ±1 standard error. Differences among treatments within a year indicated by letters a–c, differences 
over time within a treatment indicated by letters x–z. Means with the same letter (a–c or x–z) were not 
significantly different (Tukey-Kramer adjusted comparison of least squares means, α=0.05). 
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Figure 3.2 Effects of depth to water level and planting treatments on bryophyte percent cover from 2015 
to 2017. Significant linear regressions relationships between percent cover and depth to water level are 
presented for each planting treatment by color. 
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Figure 3.3 Effects of planting treatments on vascular plant percent cover from 2014 to 2017. Bars 
represent mean values with +1 standard error. Differences among treatments within a year indicated by 
letters a–c, differences over time within a treatment indicated by letters w–z. Means with the same letter 
(a–c or w–z) were not significantly different (Tukey-Kramer adjusted comparison of least squares means, 
α=0.05). 
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Figure 3.4 Effects of planting treatments on percent cover of Carex aquatilis (A) and Juncus balticus (B) 
from 2014 to 2017. Bars represent mean values with ±1 standard error. Differences among treatments 
within a year indicated by letters a–d, differences over time within a treatment indicated by letters w–z. 
Means with the same letter (a–d or w–z) were not significantly different (Tukey-Kramer adjusted 
comparison of least squares means, α=0.05). 
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Figure 3.5 Effects of planting and weeding treatments on the percent cover of Typha latifolia from 2014 
to 2017. Bars represent means ±1 standard error. Differences among treatments within a year indicated by 
letters a–c, differences over time within a treatment indicated by letters x–z. Means with the same letter 
(a–c or x–z) were not significantly different (Tukey-Kramer adjusted comparison of least squares means, 
α=0.05). 
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Figure 3.6. Effects of depth to water level and planting treatments on Typha latifolia percent cover from 
2015 to 2017. Significant linear regressions relationships between percent cover and depth to water level 
are presented for each planting treatment by color. 
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Figure 3.7 Effects of planting treatments on bryophyte (A, B) and vascular plant (C, D) species richness 
and evenness from 2014 to 2017. Bars represent mean values with ±1 standard error. Differences among 
treatments within a year indicated by letters a–c, differences over time within a treatment indicated by 
letters x–z. Means with the same letter (a–c or x–z) were not significantly different (Tukey-Kramer 
adjusted comparison of least squares means, α=0.05). Statistical differences between treatments in 2014 
and Carex treatment in 2015 (*) for bryophyte evenness could not be determined because of small sample 
size.  
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4 ESTABLISHMENT OF PEAT-FORMING VEGETATION AFFECTED BY WATER 
LEVEL AND SPECIES INTRODUCTION APPROACH: A COMPARISON ACROSS 
TWO CONSTRUCTED FENS IN MINED OIL SANDS LANDSCAPES OF BOREAL 

CANADA 
 
 

4.1 INTRODUCTION  

Species introduction approaches in restoration and reclamation are typically guided by traditional 

succession theory where species composition progresses towards a desirable reference ecosystem or 

defined success criteria (Walker et al. 2007). The target community can either occur spontaneously 

through passive approaches or be purposefully manipulated by active approaches to assist reassembly 

(Suding 2011). Passive approaches that depend on natural regeneration are less expensive and laborious, 

but active approaches can increase the likelihood of success and decrease time to reach the target (Holl 

and Aide 2011, Prach and Hobbs 2008). Active approaches vary in cost and effort of application from 

‘basic’, such as broadcast seeding, to ‘intensive’, such as planting seedlings or vegetative propagules. 

Restoration is the process of assisting the recovery of degraded, damaged or destroyed ecosystems (SER 

2004) and passive approaches can be used in resilient ecosystems with modest land-use histories that are 

connected to remnant reference areas (Holl and Aide 2011). Reclamation typically occurs in heavily 

disturbed areas where there has been a complete loss of an ecosystem and a replacement is constructed 

(EPEA 2000, Lima et al. 2016). Active approaches are more appropriate because soils are usually bare 

and lack propagules of desired species, and there is limited dispersal potential from nearby natural areas 

(Battaglia et al. 2008, Holl and Aide 2011). Evaluating outcomes after species introduction for 

reclamation can help inform decisionmakers about when basic approaches are suitable, where intensive 

actions are required, and whether selected species are appropriate or chosen targets are realistic given site 

constraints (Holl and Aide 2011, Matthews and Spyreas 2010, Prach and Hobbs 2008). This information 

is essential to efficiently allocate reclamation resources and maximize successful outcomes (Holl and 

Aide 2011). 
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Over time, communities in wetland restoration sites have been shown to follow successional 

patterns of convergence or divergence, resulting in outcomes that either attain or deviate from the 

proposed success criteria (Mathews and Spyreas 2010; Figure 4.1).  Convergence is when community 

composition between sites become more similar over time and divergence occurs when community 

composition between sites becomes more dissimilar (Lepš and Rejmánek 1991). Convergence can occur 

when abiotic conditions are similar or a highly successful species dominates (Mathew and Spyres 2010). 

Divergence is commonly a result of environmental gradients or pioneer species that can permanently 

influence community composition (Prach et al. 2001, del Moral et al. 2007, Fukami et al. 2005, Young et 

al. 2005). Wetlands are particularly susceptible to invasive species that initially establish and disrupt 

restoration efforts by having long-term effects on habitat structure, biodiversity, and function (Zedler and 

Kercher 2004, Trowbridge 2007) Reclaimed wetlands provide a good opportunity to study community 

development as processes similar to primary succession occur because selected species are introduced to 

the bare site and biotic and abiotic filters strongly influence outcomes. Evaluating community 

convergence and divergence across species introduction approaches and whether sites attain or deviate 

from intended targets will help to identify drivers and refine success criteria.   

Reclamation solutions are needed in the oil sands region of Alberta, Canada where large areas of 

the boreal landscape dominated by fen peatlands are removed by mining activities (Vitt et al. 1998). 

Reclamation is required to compensate for the loss of fen ecosystems, but projects over the years have 

focused on constructing marsh wetlands because they are easier to reclaim and often spontaneously form 

in disturbed basins (CEMA 2014, Daly et al. 2011). Fens are more specific in their hydrologic and 

geochemical requirements and are thought to require more precise construction designs (Price et al. 2010, 

Chimner et al. 2016).  Regulators and operators are now aware that appropriate mitigation must include 

fen reclamation, although uncertainty exists on best practices for implementation and appropriate success 

criteria (Ketcheson et al. 2016). To test the process, two large-scale experimental fens have recently been 

constructed on oil sands mines north of Fort McMurray, Alberta. The projects were designed to recreate 

natural regional fen ecosystems within the constraints of a post-mining landscape (Ketcheson et al. 2016). 
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Although the designs differed, similarities have emerged, and the vegetation data from both sites was 

synthesized to evaluate responses to environment conditions and species introduction approaches. 

The goal of each project was to design a fen with species composition and peat-accumulating 

processes like regional reference ecosystems. Reference conditions were used to set reclamation targets 

and evaluate success, but goals are increasingly being broadened to include ecosystem services and 

resilience to change because of constraints that prevent the return to historical conditions. Because there is 

high variation in regional reference fens, a range of acceptable targets may exist (Vitt et al. 1998, Halsey 

2008).  An obvious target includes the most common regional fen type, moderate to rich fens dominated 

by the mosses Tomentypnum nitens, Aulacomnium palustre, and Sphagnum species (Vitt et al. 1998, 

Halsey 2008). Sedge dominated fens are uncommon in the region but may be viable reclamation targets 

due to the rapid establishment of herbaceous plants and the wide environmental tolerance of many species 

(Vitt et al. 1998, Halsey 2008). However, because these reclaimed systems are only a few years old, 

comparing their processes or species composition to ancient reference fens may be misguided. Another 

practical target could be communities that represent a peatland initiation stage that have been identified at 

the base of regional peatlands and typically consist of sedges, shrubs and some rich-fen mosses (Bloise 

2007, Vitt et al. 2011, Koropchak et al. 2012, Borkenhagen and Cooper 2016, Berube et al. 2017).  

Alternatively, a species-level approach that targets canopy cover and desirable fen species richness 

focusses on composition and function without a direct comparison to reference communities that tend to 

be more complex than reclaimed sites (Environment and Parks 2017). 

The Sandhill Fen and Nikanotee Fen are the first two landscape-scale reclamation projects of fens 

and associated watersheds in the Alberta oil sands region. Designs and species introduction approaches 

differed yet clear patterns of vegetation establishment have emerged four and five years since project 

implementation. My goal was to extract the commonalities and determine the most effective approaches 

to establish peat-forming plants that are representative of regional fen types or stages. In the chapter, I 

address the following five questions:  
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1) Which plants are abundant in the reclamation fens and how do these species respond to the water 

level gradient?  

2) Do vegetation communities at the sites converge or diverge and how are they influenced by the 

species introduction approach and water level gradient? 

3) Which communities support bryophytes and desirable fen species cover and species richness? 

4) How does water level affect bryophyte cover and desirable fen species richness in each 

community? 

5) How does the ratio of desirable to undesirable species of each community vary in response to the 

species introduction approach and water level gradient? 

4.2 METHODS 

STUDY REGION 

Sandhill and Nikanotee Fens are located north of Fort McMurray, Alberta, Canada. Reclamation 

designs were developed based on modeling of groundwater interactions with adjacent landscapes (Pollard 

et al. 2012), vegetation moisture requirements, and long-term climate data (Price and Whitehead 2001, 

Price et al. 2010).  Average total annual precipitation in this area is 419 mm, mostly occurring as rain 

from May to September. Daily mean winter temperatures in January are -17.4 o C with average annual 

snowfall of approximately 134 cm. During the growing season, daily mean temperatures peak in July to 

17.1 o C with a total average annual rainfall of 316 mm (1981-2010 climate normal from weather station 

at 56° 39' N, 111° 13' W; Environment Canada 2018). 

SANDHILL FEN 

Sandhill Fen (SF) on the Syncrude Canada Limited's Mildred Lake lease was constructed in an 

old-oil sands mine that had been filled with consolidated tailings (Syncrude 2008). Starting in 2007, 

additional tailing sand was used to contour a network of connected upland hummocks, ephemeral 

channels, and fen basins (main fen and two perched fens) that were capped with a 0.5 m layer of 
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harvested bog and fen peat placed in the winter of 2011 (Wytrykush et al. 2012, Ketcheson et al. 2016, 

Vitt et al. 2016; Figure A5.1). The entire fen and watershed landscape is 52 hectares in size. Following 

the Guidelines for Reclamation of Terrestrial Vegetation in the Oil Sands Region, a basic species 

introduction approach was implemented that involved spreading a native seed mix in November 2011 

(Pollard et al. 2012) . Seeds were hand collected during the summer of 2011 from sites dominated by 

Carex aquatilis. Other rich fen species were also locally collected and added to the seed mixture in 

smaller abundances (1-5 %). A seeding rate is unavailable for SF, but percent contribution of species in 

the seed mix include Carex aquatilis (80 %), Carex diandra (5 %), Carex utriculata (5 %), Scirpus 

atrocinctus (5 %), Carex bebbii (1 %), Carex paupercula (1 %), Scirpus microcarpus (1 %), Carex 

lasiocarpa (<1 %), Carex rostrata (<1 %), Carex limosa (<1 %), Carex interior (<1 %), and Juncus 

tenuis (<1 %). The main fen was dry until August 2012 when water from a natural lake was supplied from 

a storage pond through 2013. Since 2014, available water has been maintained by snow melt and 

precipitation without additional intentional inputs.  

NIKANOTEE FEN 

Nikanotee Fen (NF) on the Millennium mine lease at Suncor Energy Inc. oil sands mining 

operations site was designed to be a single watershed-fen system and constructed on an overburden dump 

beginning in 2008. The pit was graded to a 3 % slope and covered with a synthetic liner to recreate a 

groundwater flow towards the fen basin. The upland aquifer was constructed of tailings sand and caped 

with 20 cm of stockpiled boreal forest floor soil. The base of the fen was lined with a 0.5 m layer of 

petroleum coke (by-product of extraction) to enhance the connectivity between the upland and fen and 

evenly distribute the groundwater before it rises through the peat. Fen peat harvested from a new lease 

area being mined was placed 2 m deep over the coke layer in the winter of 2012 (Daly et al. 2012, Price et 

al. 2010, Ketcheson et al. 2016). The entire fen and watershed landscape is 35 hectares in size.    

Passive and active approaches of species introduction were tested and applied in June and July, 

2013 (Figure A5.2). Natural regeneration in unplanted areas was tested as a passive approach, and active 
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efforts included basic approaches of broadcast seeding, and intensive approaches included planted 

seedlings and spreading moss layer transfer material (MLT). Species introduction approaches were tested 

in a two-factor randomized split-plot design with 5 replicate blocks. The blocks are divided into 7 whole-

block factor species introduction treatment plots: (1) Carex aquatilis (Carex) seedlings, (2) Juncus 

balticus (Juncus) seedlings, (3) C. aquatilis seedlings + MLT (Moss Carex), (4) J. balticus seedlings + 

MLT (Moss Juncus), (5) MLT (Moss), (6) mixed seeds (Seeded), and (7) unplanted bare-peat control 

(Unplanted). The plots are further divided into split-plots testing a wood-strand mulch cover treatment 

(WoodStraw® ECM). After four years, vascular plant and bryophyte establishment was not significantly 

affected by mulch cover so analyses were conducted by averaging across mulch and no-mulch split-plots 

(Borkenhagen and Cooper unpublished).    

Seeds of regionally common fen species were locally collected and stratified by Smoky Lake 

Forest Nursery in Smoky Lake, Alberta. The seeds were mixed together with sand and vermiculite and 

sown onto plots with a broadcast spreader. The number of pure live seeds per square meter (pls/m2) varied 

by species due to availability and viability. The species mixture included C. aquatilis (710 pls/m2), Betula 

pumila (620 pls/m2), Calamagrostis inexpansa (390 pls/m2), Sarracenia purpurea (290 pls/m2), 

Triglochin martima (170 pls/m2), J. balticus (110 pls/m2), and Vaccinium oxycoccos (30 pls/m2) 

(proportions in Table A5.1).  Seedling were grown at the nursery from the same collected seed over the 

2012-2013 winter and planted in plots at 3/m2. In one block, C. aquatilis was incorrectly planted at 4/m2. 

Analysis showed that there were no statistical differences between these densities and the response 

variables, so the plots were combined.  

The NF design tests the establishment of species introduced by MLT method using donor 

material collected from a treed rich fen located within 12 km of NF (56° 56' 34" N, 111° 33' 9" W). The 

site contains regionally abundant vascular plant and bryophyte species (Chee and Vitt 1989) that have 

suitable tolerances to oil sands process water (Pouliot et al. 2012), including Tomentypnum nitens, 

Aulacomnium palustre, Sphagnum warnstorfii, Sphagnum angustifolium, B. pumila, and C. aquatilis 

(proportions in Table A5.2). In early June 2013, the top 5-10 cm of the donor site was harvested using a 
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large rototiller mounted on an excavator. The MLT material was delivered by truck and spread by hand 

onto plots from late-June to mid-July, 2013 at a 1:10 ratio of harvested to donor site (Rochefort et al. 

2003).  

VEGETATION SAMPLING 

Surveys of vegetation composition and depth to water level were conducted at SF on July 12-13, 

2017 and at NF from July 20-25, 2017. The data represent conditions five years (SF) and four years (NF) 

after project initiation. Species canopy cover were assessed by visual estimation to the nearest 1 % cover 

in an 8 m2 circular plot at SF and a 4 m2 square plot at NF. Plot sizes differed due to original sampling 

protocols at each fen but are both within recommended plot sizes for low-growing (bryophyte) and 

herbaceous vegetation (4 – 16 m2; Chytrý and Otýpková 2003). Species-area relationships assume that 

species richness increases with increased sampling area (Connor and McCoy 1979), however species 

richness was higher at NF in 4 m2 plots (avg. = 15 species, se = 0.9) than at SF in 8 m2 plots (avg. = 9 

species, se = 0.7). In addition, Otýpková and Chytrý (2006) show that ordinations containing differently 

sized plots (of less than a factor of four) do not produce patterns associated with plot sizes.  

Depth to water level was measured in an open pit dug adjacent to the plot at SF on July 12-13, 

2017 and at NF on July 25, 2017. Total precipitation in Fort McMurray during the days between the 

survey dates was 9 mm (local weather station at 56°39′N, 111°13′W; Environment Canada, 2018). 

ANALYSIS 

Rank abundance curves were calculated to assess the relative proportion of each species within 

species introduction approaches (Kindt and Coe 2005, R-Development Core Team 2017). Best fit 

regressions for species distribution along the water level gradient at each fen were determined by 

selecting the most parsimonious model with the lowest Akaike information criterion (AIC) value (Akaike 

1987, Burnham et al. 2011). Species abundance data were relativized and plots were compared using 

Bray-Curtis dissimilarity (Bray and Curtis 1957) and analyzed using a non-metric multidimensional 

scaling ordination (NMDS). A solution for the NMDS ordination was reached in 2 dimensions after 9 
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iterations with a stress value of 0.16. A permutational multivariate analysis of variance (PERMANOVA; 

Anderson et al. 2008) was conducted to assess multivariate differences between and within species 

introduction approaches and in response to water level. Communities were determined using a group 

average cluster analysis with a cut off level of 40 % similarity, resolved by similarity profile analysis 

(SIMPROF).  A similarity percentages analysis (SIMPER) identified the species contributing most to the 

similarities and differences between groups. All multivariate analyses were conducted in Primer v6 

(Primer-E, Plymouth, UK; Clarke and Gorley 2015).  

Species were classified as desirable or undesirable based on their known occurrences in fens in 

Alberta (synthesized by D.H. Vitt from literature including Chee and Vitt 1989, Environment and Parks 

2017, Halsey 2008, Slack et al. 1980, Vitt et al. 1975, Vitt and Chee 1990; Table A5.3). Desirable species 

have been found in regional fens and consist of both bryophyte and vascular plant species. Undesirable 

species are upland, marsh or non-natives vascular plants that do not typically occur in regional fens. 

Recently published reclamation criteria for peatlands in Alberta were used to assess vegetation responses 

at the fens (Environment and Parks 2017). For the reclamation of fens from bare-soil, the targets include 

bryophyte cover ≥ 50 %, desirable species cover ≥ 50 %, undesirable species cover ≤ 20 %, and desirable 

species richness of ≥ 4-9 species depending on fen type (e.g. saline vs. rich fen).  

Diversity within communities were calculated as species richness, the total number of species in 

each plot, and average Bray-Curtis distance from group centroid, presented as a measure of beta diversity 

(Anderson et al. 2006). I calculated species richness for bryophyte, and desirables and undesirable 

species. Differences between variables were not determined statistically due to strongly unequal sample 

sizes within communities (e.g. 5 plots vs. 86 plots).  

4.3 RESULTS 

SPECIES ABUNDANCE AND RESPONSE TO WATER LEVEL 

Water levels in all plots were measured during three days in July, 2017, to determine the water 

level gradient at each site.  The water levels differed between fens, varying from +79 cm (standing water 
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above soil surface) to -50 cm (water level below the soil surface) at SF (avg = 3.7 cm, se = 3.4, n = 79) 

and from +1 cm to -36 cm at NF (avg = -17.3 cm, se = 0.9, n = 64).  Five years after seeding, 70 vascular 

plant and 24 bryophyte species were found at SF, of which 51 were desirable and 43 undesirable species 

(Table A5.3). Four years after planting, 47 vascular plant and 20 bryophyte species were found at NF 

across all treatments, of which 51 were desirable and 16 undesirable species (Table A5.3).  

The most abundant species in both fens was Carex aquatilis (Figure 4.2, Tables A5.4 and A5.5). 

Initially introduced by seed and a few seedlings at SF, and by seed, seedling, and in the MLT material at 

NF (Seeded, Carex, Moss, and Moss Carex plots), it has spread and established throughout both fens. 

Carex aquatilis was observed in 75 % of SF plots, is dominant in all but the Juncus plots at NF and 

occurred along the entire water level range (-49 cm to +79 cm) with increasing cover in intermediate 

water levels (Figure 4.3A and 4.3B). Areas with standing water in both fens were also colonized by Typha 

latifolia whose abundance had a log or 2nd degree polynomial relationship to water level, increasing from 

about -10 cm to +79 cm (Figure 4.3A and 4.3B). Even though it was not introduced, the most abundant 

species in drier areas at SF was Calamagrostis canadensis. Its distribution was linearly related to water 

level with higher cover in sites where the water level was below the soil surface (Figure 4.3A). At NF, J. 

balticus abundance was not related to water level (Figure 4.3B). The other abundant species had 2nd 

degree polynomial relationships to water level, with either increasing cover in drier areas (Sonchus 

arvensis and Ptychostomum pseudotriquetrum at SF) or at intermediate water levels (Carex utriculata and 

Ptychostomum pseudotriquetrum at NF) (Figure 4.3A and 4.3B).  

Species abundance was also related to introduction approach and/or fecundity. For example, 

Juncus balticus was introduced at NF by seed and seedling (Seeded, Juncus, and Moss Juncus plots) and 

remained dominant in the Juncus plots but was overgrown by C. aquatilis in the Moss Juncus plots over 

time (Figure 4.2). Triglochin maritima successfully established from seed in the Seeded NF plots, 

whereas Triglochin palustre, Sonchus arvensis, Carex atherodes, and Carex utriculata established in NF 

from unknown sources. Ptychostomum pseudotriquetrum was the most successful bryophyte to establish 

in both fens. It colonized 94 % of NF plots and 35 % of SF plots and had higher cover in areas with a 
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water level below -10 cm (Figure 4.3A and 4.3B). Species that were introduced but did not perform well 

include Carex diandra and Scirpus atrocinctus at SF, Betula pumila, Calamagrostis inexpansa, 

Sarracenia purpurea in Seeded NF, Betula pumila, Vaccinium oxycoccos, and all Sphagnum species in 

MLT plots at NF (Moss, Moss Carex, and Moss Juncus) (Tables A5.1 and A5.2). 

Bryophytes established throughout both fens by intensive species introduction approaches in the 

MLT plots and through spontaneous colonization in suitable areas from indigenous sources. The most 

frequent bryophytes to colonize new areas were peat-forming P. pseudotriquetrum, Aulacomnium 

palustre, and Drepanocladus polycarpus, and ruderals Leptobryum pyriforme, Funaria hygrometrica, and 

Ceratodon purpureus. Bryophyte species richness was higher where MLT was implemented with 

frequent establishment of  peat-forming mosses P. pseudotriquetrum, Tomentypnum nitens, D. 

polycarpus, Brachythecium acutum, Drepanocladus aduncus, Calliergon giganteum, Campylium 

stellatum, and ruderal Leptobryum pyriforme. Sphagnum angustifolium, S. fuscum, S. warnstorfii, and S. 

capillifolium were abundant at the donor site and in the harvested MLT but did not survive at NF (Table 

A5.2), whereas species more tolerant of the high salinity, such as Campylium stellatum and 

Drepanocladus polygamous, have increased in frequency over time. 

COMMUNITIES AT THE RECLAIMED FENS 

Five communities were determined by cluster analysis to have developed in the two fens along 

with four outlier plots. The communities were characterized by the species that contributed the greatest 

proportion of within community similarity (Table 4.1), which include Careaqu = Carex aquatilis, Calacan 

= Calamagrostis canadensis, Juncbal = Juncus balticus, Typhlat = Typha latifolia, and Trigpal = 

Triglochin palustris. Plots ordinated along the two major axes corresponding to water level and species 

introduction approach (Figure 4.4, Table 4.2, Tables A6 and A7). Depth to water level more strongly 

influenced plots along NMDS axis 1 that diverged to the wet (Typhlat) and dry (Calacan) ends of the 

water level gradient. Species introduction approach more strongly influenced plots planted with J. 

balticus at NF, such as Juncus and Moss Juncus that diverged along NMDS axis 2 (Juncbal).   



86 
 

The number of plots and the species introduction approach used at each fen differed by 

community (Figure 4.5, Table 4.1). Convergence occurred across species introduction approaches and 

fens in the Careaqu and Typhlat communities. Divergence occurred within fens due to the water level 

gradient that influenced dry (Calacan and Trigpal) and wet (Typhlat) communities, and species 

introduction approaches where J. balticus was planted (Juncbal). The Careaqu community developed 

across all species introduction approaches, including half of the Moss Juncus NF plots, the majority of 

Seeded SF, Unplanted NF, Seeded NF, and Carex NF plots, and all Moss NF and Moss Carex NF plots. 

The Juncus NF and Moss Juncus NF plots diverged equally into Juncbal and Careaqu communities.   

COMMUNITY CHARACTERISTICS 

Careaqu was the most common community type and occurred across all species introduction 

approaches in both fens (Figure 4.5). The average cover of C. aquatilis was over 60 % (Table 4.1) and the 

community occurred along the widest water level range from +78 cm to -30 cm (avg = -3 cm, se = 2.1; 

Figure 4.6A). Average bryophyte cover and species richness were low but with wide variance (6 %, se = 

1.1 and 3 species, se = 0.3; Figures 7A and 7B). Desirable species cover was high (avg = 96 %, se = 4.5) 

but species richness was low (7 species, se = 0.5), whereas undesirable species cover and species richness 

were both low (avg = 13 %, se = 1.3 and avg = 2 sp., se = 0.2; Figures 7C and 7D).   

The Calacan community is the second most common group and occurred in the driest plots at SF 

(avg = -21 cm, se = 3.1; Figure 4.6A), but was absent at NF. The average abundance of Calamagrostis 

canadensis was 48 % and the community had high multivariate dispersion (Figure 4.6B) with the most 

structural diversity, containing shrub, tree and bryophyte species (Table 4.1). Even though bryophytes 

were not intentionally introduced at SF, bryophyte cover reached 63 % and species richness peaked at 11 

species in some Calacan plots (avg = 14 %, se = 3.2 and avg = 5 species, se = 0.5; Figures 7A and 7B). 

Because many plots had typical of upland water levels deep below the surface, the community had the 

highest cover and number of undesirable species (avg = 75 %, se = 4.6 and avg = 9 sp., se = 0.6; Figures 

7C and 7D).  
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The Juncbal community developed at NF where J. balticus was introduced either by seed or 

seedling (Seeded, Juncus, and Moss Juncus) and the average water level was -21 cm (se = 2.0, n =11; 

Figure 4.6A). This community had the highest bryophyte cover and species richness (avg cover = 68 %, 

se = 7.8 and avg = 11 species, se = 1; Figures 7A and 7B) and supported the most peatland bryophyte 

species (Table 4.1). This community also had the highest cover and species richness of desirable species 

and low cover and species richness of undesirable species (Figures 7C and 7D).  

The Trigpal community occurred in dry plots at NF where the water level averaged 27 cm below 

the soil surface (se = 2.4; Figure 4.6A). Triglochin palustre was not intentionally introduced but may have 

been in the MLT material seedbank and dispersed to Unplanted and SlC plots where it established. The 

undesirable species Sonchus arvensis and Salix exigua also occurred in this community (Table 4.1), likely 

recruited by aerially dispersed seed from populations in the adjacent uplands. Bryophyte establishment 

was limited, averaging 19 % cover (se = 7.5) with 7 species (se =1.2; Figures 7A and 7B). Cover and 

species richness of desirables exceeded that of undesirables, although undesirable cover was moderate at 

an average of 36 % (se = 6.0; Figures 7C and 7D).   

The Typhlat community was dominated by Typha latifolia (Table 4.1), had the lowest 

multivariate dispersion (Figure 4.6B) and occurred only in ponded areas where the water level averaged 

52 cm above the soil surface (se = 8.2, max = 79 cm, min = 1 cm; Figure 4.6A). The community 

developed in Seeded SF and Unplanted NF plots, did not support bryophytes (Figures 7A and 7C), and 

averaged 11 % desirable cover (se = 3.0) with 2 desirable species (se = 0.4; Figures 7C and 7D).  

BRYOPHYTE COVER AND DESIRABLE SPECIES RICHNESS RESPONSE TO WATER LEVEL 

Bryophyte cover in each community varied along the water level gradient (Figure 4.8A), being 

highest in plots where the water level was between -10 cm and -40 cm deep. Bryophyte cover declined 

sharply where the water level was at or near the surface and in Careaqu community plots where the water 

level was from 0 to -25 cm because of the dense C. aquatilis canopy. Desirable species richness had a 
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similar pattern with decreasing species richness at near surface water levels and highest species richness 

where the water level was between -10 cm and -30 cm (Figure 4.8B). 

DESIRABLE TO UNDESIRABLE SPECIES RATIO RESPONSE TO INTRODUCTION APPROACH AND WATER 

LEVEL  

The desirable to undesirable species relative cover ratio (D/U), where higher values indicate 

higher relative cover of desirables, differed in each community along the water level gradient (Figure 

4.9). The Calacan community had a low D/U ratio and developed in Seeded SF plots where the water 

level averaged -21 cm (se = 3.2). Although water level ranges differed, the Juncbal community at NF 

occurred at the same average water level as the Calacan community but had a high D/U ratio (avg = -21 

cm, se = 2.0). The Trigpal community also had a high D/U ratio and developed in drier Unplanted areas 

of NF (avg = -27 cm, se = 2.4). The Careaqu community had a high D/U ratio and developed in all 

species introduction approaches, where the water level was between -30 cm and +78 cm. The Typhlat 

community had a low D/U ratio and formed at SF in plots with ponded water (avg = +52 cm, se = 8.2).  

4.4 DISCUSSION 

The two fen reclamation projects clearly demonstrate that establishing peat-forming bryophyte 

and vascular plant dominated communities along varying water level gradients is possible using targeted 

species and introduction approaches.  Four and five years after plant introductions, five community types 

developed. Two communities were found at both fens and three were specific to each fen based on water 

level gradients and species introduction approaches. Community convergence was driven by one 

dominant species, Carex aquatilis, that spread from areas of introduction, obscuring other introduced 

species, and developed near homogenous colonies at both fens. Community divergence was attributed to a 

strong water level gradient, intensive species introductions, and initial establishment of pioneer species in 

unplanted areas. Basic approaches were appropriate for rapid colonizers, but also had the greatest 

proportion of divergent trajectories driven by water level gradients and pioneer species. Certain intensive 

approaches for planted species seedlings and spreading MLT did result in diverse fen communities, but 
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others were susceptible to community convergence where C. aquatilis proliferated. Intensive approaches 

effort influenced the development of a desirable fen community and were effective in areas of niche 

overlap with undesirable communities along the water level gradient. 

Plant species that performed well across the sites included desirable and undesirable peatland 

species. The most common desirable species to establish from seeds, seedlings, and the MLT, was Carex 

aquatilis, a wide-spread sedge in boreal marshes and fens (Vitt and Chee 1990, Gignac et al. 2004, 

Bayley and Mewhort 2004). Proposed as a key candidate for wetland reclamation in the oil sands region 

(Koropchak et al. 2012), C. aquatilis has established in reclaimed marshes and well pads (Trites and 

Bayley 2009, Vitt et al. 2011, Caners and Lieffers 2014) and is tolerant of higher solute concentrations 

than most other plants species (Mollard et al. 2012). Juncus balticus successfully established from seed 

and seedlings at NF and is a viable candidate for reclamation sites that likely will become saline (Trites 

and Bayley 2009). It is common in boreal wet meadows and fens (Cooper et al. 2006) and tolerates a wide 

range of soil water solute concentrations, observed at sites with EC of 0.1 to 20.1 mS/cm (avg. = 3.3 

mS/cm; Kantrud et al. 1989). The most common bryophyte to establish was Ptychostomum 

pseudotriquetrum, a slender ruderal moss that inhabits a variety of substrates (BFNA 2014). 

Ptychostomum pseudotriquetrum is not known to be a dominant peat former in fens but is a key species in 

the recovery of recently burned peatlands (Rowe et al. 2017). Its abundance could represent an early seral 

stage of the reclamation fens and may provide the foundation for other mosses to colonize in areas with 

optimal water level depth and light availability.  

Undesirable species spontaneously established in the fens in higher abundances in the most dry 

and wet areas. Calamagrostis canadensis is a perennial grass typical of upland forests and tolerant of 

temporarily flooded areas (Kantrud et al. 1989) and commonly associated with non-saline to slightly 

saline reclaimed oil sands wet meadows (Purdy et al. 2005). Typha latifolia is a rhizomatous wetland 

plant, occurring from tidal estuaries to temporary or permanently ponded marshes (Cooper et al. 2006). 

Typha latifolia has a preferred water level depth between 0 to +32 cm (Golder Associates 2005) and its 

growth increases with increasing standing water depth (Grace 1989). It is a major concern for fen 
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reclamation because it readily colonized disturbed habitats, is tolerant of moderate salinity levels, and 

grows in dense monocultures that exclude other species (Koropchak and Vitt 2013, Shih and Finkelstein 

2008).  

Significant community convergence occurred between species introduction approaches and 

across fens due to the proliferation and dominance of C. aquatilis. Community convergence has been 

linked to dominant species in competition experiments where high relative growth rates suppress other 

planted species over time (Suter et al. 2007). Convergence has also been attributed to similarity in 

environmental conditions that support colonization and spread of adapted species (Inouye and Tilman 

1995). Carex aquatilis has an advantage over many species because it is adapted to a wide range of 

environmental conditions. The habitat niche of C. aquatilis is extremely wide, having been recorded in 

sites with pH ranging from 3.1-9.2, electrical conductivities from 36 to 8820 uS/cm, calcium 

concentration from 0.2 to 146.6 mg/L, and water level depths ranging from -80 to +80 cm (Koropchak et 

al. 2012).  It also produces long rhizomes that allow each genet to spread up to several meters per year. 

This tolerance of environmental heterogeneity and stressful abiotic conditions allows it to occupy habitats 

that restrict other species in reclamation sites. Dominance by C. aquatilis could also be a combination of 

initial propagule numbers and its increased performance relative to the decreased performance of other 

species in response to environment. 

Community divergence of areas seeded with the same species mixture occurred along the water 

level gradient that facilitated the formation of a drier upland community characterized by Calamagrostis 

canadensis and a wetter marsh community dominated by Typha latifolia. Environmental heterogeneity in 

younger sites can exert a greater influence on community development and increase divergence of 

successional pathways compared to older areas (Inouye and Tilman 1995). Similar divergent pathways 

following passive reclamation of oil well pads in Alberta occurred where higher water levels and 

homogeneous topography restricted natural bryophyte recolonization and supported higher C. aquatilis 

cover (Caners and Lieffers 2014). Priority effects of pioneer species are also stronger following passive 

reclamation approaches and initial species identity and abundance can permanently alter ecosystem 
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function resulting in undesirable alternate states (Young et al. 2001, Suding et al. 2004, Weidlich et al. 

2017).  

Basic and intensive species introduction approaches are appropriate in different situations. At 

water levels between -25 to +30 cm, the Careaqu community dominated following both basic and 

intensive approaches. At NF this included convergence of seeded and MLT plots where species richness 

was high in the first two years but then declined as C. aquatilis spread, attained high cover and taller 

stature that suppressed other species (Borkenhagen and Cooper unpublished). This indicated that 

intensive approaches of planted C. aquatilis seedlings or spreading MLT containing C. aquatilis are not 

required in certain areas. Because of the reduction of species richness overtime in plots containing C. 

aquatilis, its inclusion should be considered with caution in projects that are prioritizing biodiversity. 

Intensive approaches may be more important in shallow ponded areas where planting C. aquatilis could 

be a viable strategy to prevent the establishment of T. latifolia. The overlap between these two species 

along the water level gradient suggest that targeted introductions of C. aquatilis in areas predicted to 

become ponded could limit T. latifolia invasion to ensure that the area is colonized by desirable fen 

species. Experiments support the potential for this approach as C. aquatilis has higher performance 

(growth, fruiting, and tillering) in wetter environments compared to drier environments (Vitt et al. 2011) 

and T. latifolia cover was reduced where C. aquatilis seedlings were planted at the NF (Borkenhagen and 

Cooper unpublished). Overlaps in community distributions occurred in drier areas where intensive 

approaches could introduce Juncbal or Trigal communities to deter development of the Calacan 

community that resulted from a basic approach. 

An intensive species introduction approach was responsible for creating the Juncbal community, 

the only community to achieve fen reclamation targets for Alberta of bryophyte and desirable species 

cover and species richness (Environment and Parks 2017). All plots were planted with J. balticus 

seedlings and half the plots received the MLT. After four years, bryophytes had established in all J. 

balticus seedlings plots, a trend also documented at SF in the Calacan community where no intensive 

introductions occurred (Vitt and House 2015). This suggests that bryophyte cover and species richness 
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may increase over time in suitable areas from indigenous sources (Vitt and House 2015). Recruitment of 

peat-forming species could lag if reclaimed sites are far from source populations, however actively 

inoculating areas within the optimal hydrologic range and under co-dominant vascular plant species 

accelerated establishment and increases species richness. This also allowed the intentional selection of 

species tolerant of current or expected environmental conditions. Another potential approach could be to 

inoculate the site with adapted bryophyte species a year or two after planting once the post-construction 

environmental conditions have been evaluated.   

Bryophyte cover and desirable species richness was strongly influenced by depth to water level, 

with the highest cover and species richness occurring where the water level was between -10 cm to -40 

cm in July. This water level range is deeper than recommended for Sphagnum spp. establishment in bog 

restoration (Rochefort et al. 2003). However, experiments with fen mosses have achieved high cover in 

mesocosms with deeper water levels as species composition shifts to support more drought tolerant 

species such as Tomentypnum nitens and Aulacomnium palustre (Borkenhagen and Cooper 2016). 

Desirable species richness also declined when water levels were near the soil surface. This trend has been 

observed in other wetland types where species richness was negatively correlated with water level, flood 

duration and frequency (Casanova and Brock 2000, Dwire et al. 2006). Although rich-fens have near 

surface water levels, their high biodiversity is influenced by the numerous microhabitats and district 

hummock-hollow topography (Vitt and Chee 1990, Vitt et al. 1995). Future projects should aim to 

increase microsite topography and increase depth to water level to support bryophytes and desirable 

vascular plant cover and species richness.  

Three of the communities that developed have vegetation composition typical of natural regional 

fens based on their desirables species cover and species richness. All three communities were dominated 

by herbaceous plants, and although not as common as bryophyte-dominated fens, herbaceous rich and 

saline fens that contain C. aquatilis, J. balticus, and T. palustre exist in the region (Vitt et al. 1998, 

Halsey 2008, Environment and Parks 2017). This suggests that we need to reevaluate our short-term 

targets based on reference fens that are thousands of years old as vegetation composition common during 
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fen initiation may be more appropriate (Koropchak et al. 2012, Borkenhagen and Cooper 2016). Boreal 

peatlands can develop from pond/marsh to rich fen to poor fen to bog and peat formed by Carex species 

are commonly found at the base of profiles, but basal layers very rarely contain T. latifolia (Kuhry et al. 

1993, Zoltai and Vitt 1995, Koropchak et al. 2012). This emphasizes the importance of excluding T. 

latifolia as its presence indicates different environmental and ecological conditions that likely will not 

develop into a peat-accumulating system.  

Although function was not measured, structure-function relationships can help predict the peat-

accumulation potential of these communities (Cortina et al. 2006). Herbaceous fens and marshes 

accumulate less peat than moss-dominated wooded fens due to higher herbaceous litter quality and 

fluctuating water levels that increase decomposition rates (Thormann et al. 1999). Herbaceous plant 

productivity has been correlated with site wetness, and many fen mosses do not tolerate repeated 

inundation or wide variations in water level (Szumigalski and Bayley 1997, Thormann and Bayley 1997, 

Borkenhagen and Cooper 2018). Diversity-productivity goals for reclaimed fens may also be in 

opposition to each other as the relationship can be negative and confounded by environmental variables 

(Gough et al. 1994, Doherty and Zedler 2014). Even though species richness decreased at shallower water 

levels in communities dominated by C. aquatilis, a loss of species does not always result in a loss of 

function (Zedler 2000, Smith and Knapp 2003, Sasaki and Lauenroth 2011). Carex aquatilis at NF 

produced more biomass per square meter than any other species (Messner et al. in prep), so if stable water 

levels that promote production and reduce decomposition are maintained, high peat- accumulation rates 

driven by C. aquatilis primary production is possible.  

Predicting community development is challenging in restoration and reclamation projects as 

successional trajectories are highly variable in rate and direction and in response to environmental 

gradients and biotic interactions (Tilman 1987, Zedler and Callaway 1999, Suding and Hobbs 2009). 

Water level position and fluctuations plays a critical role in species composition within a wetland (e.g. 

Jeglum 1971, Spence 1982, Casanova and Brock 2000, Andersen et al. 2011), however additional 

analyses could include water and peat chemistry, pH, and conductivity as they have been shown to affect 
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growth and distribution of bryophytes and vascular plants across fens (Vitt and Chee 1990, Pouliot et al. 

2012, Trites and Bayley 2009, Vitt et al. 2016). Previous evaluations have shown that sodium 

concentrations increase in drier areas at SF (Vitt et al. 2016) and bryophyte cover is reduced where water 

electrical conductivity values exceed 3,250 uS/cm at NF (Borkenhagen and Cooper unpublished). 

Furthermore, the niche range of certain species in early seral communities may be wider than occupied in 

reference communities (Lepš and Rejmánek 1991). This may explain the unpredicted proliferation of C. 

aquatilis, typically a co-dominant species in regional fens (Cooper et al. 2006), and P. pseudotriquetrum, 

a slender erect moss that occurs in low abundances in rich fens (BFNA 2014).  

Despite the challenges of oil sands reclamation, peat-accumulating bryophyte and vascular plant 

dominated communities have developed in both constructed fens. Community convergence occurred 

between intensive species introduction approaches across fens due to the dominance of C. aquatilis, 

whereas community divergence occurred where a basic species introduction approach was used in 

response to a broad water level gradient. Future projects should aim to increase microtopography to 

enable summer depth to water level ranges between  -10 and -40 cm that support desirable bryophyte and 

vascular plant cover and species richness. In addition, co-dominant vascular plants, such as J. balticus, 

should be planted to encourage bryophyte establishment. Bryophytes spontaneously colonized suitable 

areas, but intensive introduction using the MLT introduced peat-forming species with high-production 

rates and tolerances to water level ranges and elevated salinity. Intensive introduction of desirable 

vascular plant species along the full water level gradient could exclude the establishment of undesirable 

upland or marsh plants that do not have peat-accumulation potential. The convergence and divergence of 

communities across constructed fens in response to abiotic and biotic conditions highlights the challenges 

of selecting species for novel environments and the importance of experimentation, comparative 

assessments, and long-term monitoring. 
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4.5 TABLES  
 
Table 4.1 Results from the Similarity Percentage analysis (SIMPER) showing the highest contributory 
species in abundance to the similarity among communities and the number of plots in each community 
(n). Includes average abundance (Av.Abund), average similarity (Av.Sim), similarity over standard 
deviation (Sim/SD), percent contribution (Contrib%), and cumulative contribution (Cum.%).  

Community Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Careaqu (n=86) Carex aquatilis 61.58 52.04 3.83 88.24 88.24 
Typha latifolia 8.09 2.06 0.39 3.5 91.74 

Juncbal (n=11) 

Juncus balticus 28.1 22.45 3.79 38.87 38.87 
Carex aquatilis 16.7 12.26 1.81 21.23 60.09 
Ptychostomum 

pseudotriquetrum 14.17 10.46 2.67 18.11 78.2 
Sonchus arvensis 4.76 2.08 0.89 3.6 81.81 
Leptobryum pyriforme 3.27 1.7 1.24 2.95 84.75 
Drepanocladus polycarpus 3.14 1.45 1.09 2.51 87.26 
Tomentypnum nitens 4.15 1.29 0.89 2.23 89.49 
Triglochin maritima 4.21 1.15 0.46 1.99 91.47 

Trigpal (n=5) 

Triglochin palustris 23.6 17.08 1.97 32.64 32.64 
Sonchus arvensis 16.75 11.89 1.28 22.73 55.36 
Carex aquatilis 11.7 7.48 1.39 14.29 69.65 
Salix exigua 10.5 3.07 0.48 5.87 75.52 
Ptychostomum pseudotriquetrum 5.63 2.61 0.96 4.98 80.5 
Leptobryum pyriforme 3.68 1.9 1.69 3.63 84.13 
Juncus balticus 3.7 1.8 1.07 3.44 87.57 
Salix species 3.82 1.77 1.02 3.39 90.95 

Typhlat (n=9) Typha latifolia 82.51 74.35 6.85 91.84 91.84 

Careath (n=2) 
Carex atherodes 38.31 31.58 NA 49.66 49.66 
Calamagrostis canadensis 24.04 21.05 NA 33.1 82.76 
Equisetum arvense 15.03 9.01 NA 14.17 96.93 

Calacan (n=28) 

Calamagrostis canadensis 47.62 39.1 3.49 76.96 76.96 
Carex aquatilis 6.04 1.49 0.35 2.93 79.88 
Rubus idaeus 4.62 1.47 0.5 2.9 82.78 
Populus balsamifera 4.77 1.47 0.51 2.88 85.67 
Ptychostomum pseudotriquetrum 4.6 1.17 0.46 2.3 87.96 
Salix species 3.61 0.91 0.48 1.78 89.75 
Leptobryum pyriforme 1.8 0.71 0.76 1.39 91.14 

Poapal (n=1) Poa palustris NA NA NA NA NA 

Popubal (n=1) Populus balsamifera NA NA NA NA NA 
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Table 4.2 Fit of continuous environmental variable vectors that are significantly correlated at α = 0.05 to 
the NMDS ordination. Coordinates on NMDS1 and NMDS2 axes are for the heads of unit length vectors 
that are scaled by their squared correlation coefficient (r2).  

 

Environmental Vectors   NMDS1 NMDS2 r2 P-value 

Depth to water level -0.9265 0.3764 0.3453 0.001 
Sp. Introduction method   0.1404 0.028 
Seeded SF 0.2126 0.1229   
Unplanted N -0.3151 -0.2369   
Seeded NF -0.3340 -0.1991   
Carex NF -0.2132 0.2246   
Juncus NF -0.2266 -0.6631   
Moss NF -0.2094 0.0355   
Moss Carex NF -0.3098 0.2911   
Moss Juncus NF -0.2196 -0.3662   
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4.6 FIGURES 
  
 

 

Figure 4.1 Conceptual figure of patterns of convergence and divergence along a success criterion over 
time following intensive (solid line) or basic (dashed line) species introduction approaches of a site 
(circle). Adapted from Mathews and Spyreas (2010) and Suding (2011). 
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Figure 4.2 Rank abundance diagram of log10 relative abundance plotted against species rank, where 1 = 
highest abundance. The top 5 ranked species are labeled for each species introduction method in the 
Sandhill Fen (SF) and Nikanotee Fen (NF). The number of species recorded at SF was 94 and at NF was 
67. Calacan=Calamagrostis canadensis, Calaine=Calamagrostis inexpansa, Careath=Carex atherodes,  
Careaqu=Carex aquatilis, Careutr= Carex utriculata, Dreppol=Drepanocladus polycarpus, 
Juncbal=Juncus balticus, Ptycpse=Ptychostomum pseudotriquetrum, Soncarv=Sonchus arvensis, 
Tomenit=Tomentypnum nitens, Trigmar=Triglochin maritima, Trigpal=Triglochin palustris, 
Typhlat=Typha latifolia. 
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Figure 4.3 Relative abundance distribution of species growing along the depth to water level gradient in 
the Sandhill Fen (A) and Nikanotee Fen (B). Water level sampled on July 13-14, 2017 at SF and July 25, 
2017 at NF. Selected species are the top 5 ranked at each fen respectively. Best fit regressions determined 
by AIC and adjusted R2 shows goodness of fit. Calacan = Calamagrostis canadensis, Careaqu = Carex 

aquatilis, Careutr = Carex utriculata, Juncbal = Juncus balticus, Ptycpse = Ptychostomum 

pseudotriquetrum, Soncarv = Sonchus arvensis, and Typhalat = Typha latifolia.  
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Figure 4.4 Non-metric multidimensional scaling (NMDS) ordination of plots from Sandhill (n=79) and 
Nikanotee (n=64) Fens. Symbols represent plots. Colors indicate communities determined by group 
average cluster analysis with a cut off level of 40% similarity and classified by the species that 
contributed the greatest proportion of similarity within groups, as determined by SIMPER analysis. 
Vectors are projected for depth to water level (DTW) and species introduction method (SSF=Seeded 
Sandhill Fen, UNF=Unplanted Nikanotee Fen(NF), SNF=Seeded NF, CNF=Carex NF, JNF=Juncus NF, 
MNF=Moss NF, MCNF=Moss Carex NF, MJNF=Moss Juncus NF; P < 0.05). Presented species are 
dominant and show their distribution relative to communities (Calacan = Calamagrostis canadensis, 
Calaine = Calamagrostis inexpansa, Careaqu = Carex aquatilis, Careath = Carex atherodes, Careutr = 
Carex utriculata, Juncbal = Juncus balticus, Popubal = Populus balsamifera, Schacu = Schoenoplectus 

acutus, Soncarv = Sonchus arvensis, Trigmar = Triglochin maritima, Trigpal = Triglochin palustris, 
Typhalat = Typha latifolia, Ptycpse = Ptychostomum pseudotriquetrum) 
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Figure 4.5 Flow diagram showing the proportion of plots in each species introduction approach that 
converged or diverged into the communities four (NF) and five (SF) years after project implementation at 
the Sandhill Fen (SF) and Nikanotee Fen (NF). Communities were determined by group average cluster 
analysis with a cut off level of 40% similarity and classified by the species that contributed the greatest 
proportion of similarity within groups, as determined by SIMPER analysis. Omitted are Poapal, n=1; and 
Popubal, n=1, which were outlier SF plots. Calacan = Calamagrostis canadensis, Careaqu = Carex 

aquatilis, Careath = Carex atherodes, Juncbal = Juncus balticus, Trigpal = Triglochin palustris, and 
Typhalat = Typha latifolia. 
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Figure 4.6 Plots showing the water level (A) and average Bray-Curtis distance from group (community) 
centroid (B) for each community. Water level depth was measured at SF on July 12-13, 2017 and at NF 
on July 25, 2017. Average Bray-Curtis distance from group centroid is presented as a measure of beta 
diversity in the communities. Boxplots show median values with the 25th and 75th percentiles, the 
whiskers show the range of values falling within 1.5 interquartile ranges of either quartile, black points 
represent outliers, and gray points show the distribution of values. Bars represent mean values with +1 
standard error. The number of plots per community vary; Calacan, n=28; Careaqu, n=86; Juncbal, n=11; 
Trigpal, n=5; Typhlat, n=9. Omitted here are Careath, n=2; Poapal, n=1; and Popubal, n=1. Communities 
were determined by group average cluster analysis with a cut off level of 40% similarity and classified by 
the species that contributed the greatest proportion of similarity within groups, as determined by SIMPER 
analysis. Calacan = Calamagrostis canadensis, Careaqu = Carex aquatilis, Juncbal = Juncus balticus, 
Trigpal = Triglochin palustris, and Typhalat = Typha latifolia. 
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Figure 4.7 Plots showing total bryophyte percent canopy cover (A) and species richness (B), and 
desirable (Des) and undesirable (Undes) peatland species percent cover (C) and species richness (D) for 
each community. Dashed lines show targets based on Environment and Parks Canada peatland 
reclamation criteria (2017). Boxplots show median values with the 25th and 75th percentiles, the whiskers 
show the range of values falling within 1.5 interquartile ranges of either quartile, black points represent 
outliers, and gray points show the distribution of values. The number of plots per community vary; 
Calacan, n=28; Careaqu, n=86; Juncbal, n=11; Trigpal, n=5; Typhlat, n=9. Omitted here are Careath, n=2; 
Poapal, n=1; and Popubal, n=1. Communities were determined by group average cluster analysis with a 
cut off level of 40% similarity and classified by the species that contributed the greatest proportion of 
similarity within groups, as determined by SIMPER analysis. Calacan = Calamagrostis canadensis, 
Careaqu = Carex aquatilis, Juncbal = Juncus balticus, Trigpal = Triglochin palustris, and Typhalat = 
Typha latifolia. 
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Figure 4.8 The effect of water level on total bryophyte cover (A) and desirable species richness (B) in 
communities across Sandhill (n=75) and Nikanotee Fens (n=64). Local polynomial regression fitting 
curve across communities with standard error shading. Communities were determined by group average 
cluster analysis with a cut off level of 40% similarity and classified by the species that contributed the 
greatest proportion of similarity within groups, as determined by SIMPER analysis. Calacan = 
Calamagrostis canadensis, Careaqu = Carex aquatilis, Juncbal = Juncus balticus, Trigpal = Triglochin 

palustris, and Typhalat = Typha latifolia. Omitted here are Careath, n=2; Poapal, n=1; and Popubal, n=1.  
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Figure 4.9 Relative cover ratio of desirable and undesirable peatland plants in each species introduction 
approach and the divergence of communities in response to water level. Values > 0 have higher relative 
cover of desirable to undesirable species. Species introduction methods include Seeded Sandhill Fen (SF), 
n=79; Unplanted Nikanotee Fen (NF), n=12; Seeded NF, n=10; Carex NF, n=9; Juncus NF, n=8; Moss 
NF, n=9; Moss Carex NF, n=6; and Moss Juncus NF, n=10. Communities were determined by group 
average cluster analysis with a cut off level of 40% similarity and classified by the species that 
contributed the greatest proportion of similarity within groups, as determined by SIMPER analysis. 
Calacan = Calamagrostis canadensis, Careaqu = Carex aquatilis, Juncbal = Juncus balticus, Trigpal = 
Triglochin palustris, and Typhalat = Typha latifolia. Omitted here are Careath, n=2; Poapal, n=1; and 
Popubal, n=1.  
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 5 SYNTHESIS 
 
 
 

The preceding chapters address key concepts that contribute to the development of reclamation 

solutions required after oil sands mining in Canada. I evaluated the response of four common moss 

species to submergence in a natural boreal fen, tested the establishment of bryophyte and vascular plants 

in a constructed fen using a large-scale multi-factorial experiment, and conducted a comparative study of 

the drivers on plant community development in two reclaimed fens in the oil sands region. Results from 

these studies highlight the critical role moss communities have in maintaining the functional stability of 

boreal ecosystems, that it is possible to establish desirable peatland species in a constructed fen, and that 

abiotic and biotic drivers influence fen community composition.  

In chapter 2, I evaluated the tolerance of four fen moss species and moss communities to 

submergence duration. Flood disturbance in peatlands can create temporary or permanently submerged 

areas that can dramatically affects ecosystem function (Roulet et al. 1992, Roulet et al. 1997, Kelly et al. 

1997, Kim et al. 2014, St. Louis et al. 2000). Fen moss species and communities occur along a depth to 

water level gradient (Gignac et al. 1991; Rydin & Jeglum 2013; Vitt 2014), but their resistance and 

resilience to different durations of submergence had not been tested. I found that moss species response to 

submergence duration was not strictly related to their preferred niche along a water level gradient and that 

more tolerant species replaced less tolerant species following flooding disturbance. Overall, moss 

communities without S. warnstorfii were resilient to 4 weeks of submergence because T. nitens and H. 

vernicosus maintained dominance or established where the cover of less resilient species was limited. I 

showed that moss species varied in their responses to submergence duration, resulting in shifts in 

community composition that increased diversity and moss community resilience. This empirical work 

demonstrates how moss communities create stability to peatlands in response to disturbance through 

shifts in community composition that support tolerant dominant species. 
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In chapter 3, I tested a variety of planting methods to determine the most effective approach to 

establish fen bryophyte and vascular plants in a constructed boreal fen. Oil sands mining in Alberta has 

disturbed large areas of fen peatlands and no formal strategies exist to reconstruct the landscape. Peatland 

reclamation is difficult, but industry and regulators are now supporting innovative research to address the 

knowledge gap and refine reclamation approaches (Price et al. 2010, Daly et al. 2012). In a large-scale 

multifactorial field experiment, I designed and implemented various species introduction approaches that 

tested introducing bryophyte and vascular plants by moss layer transfer (MLT), seeds, and seedlings 

under wood-strand mulch and with a Typha latifolia weeding treatment. Four years after planting, the 

MLT and Juncus balticus seedling treatment supported the highest fen bryophyte and vascular plant cover 

and species richness. Weeding did reduce T. latifolia cover but was not necessary in areas where 

seedlings or the MLT was introduced likely due to competitive exclusion. The most successful fen species 

to establish was C. aquatilis, which readily colonized but also reduced cover and richness of bryophytes 

and other vascular plants. Depth to water table influenced species distribution, with shallow water tables 

supporting more T. latifolia and lower bryophyte and vascular plant species richness and cover. My 

research is the first of its kind to evaluate a range of vegetation introduction methods for fen reclamation 

and shows that it is possible to restore fen peatlands in the post-mining landscape of Alberta. 

In chapter 4, I examined vegetation establishment in two regional reclaimed fens under different 

species introduction approaches and water level gradients. Two pilot fen projects on oil sands mines in 

northern Alberta were constructed to mimic natural regional fen ecosystems and consider the constraints 

of a post-mining landscape. Though the two designs differed, similarities emerged and the vegetation data 

was synthesized to extract commonalities and inform future fen reclamation efforts. Despite the 

challenges of oil sands reclamation, peat-accumulating bryophyte and vascular plant dominated 

communities developed in both constructed fens. Community convergence occurred due to the dominance 

of C. aquatilis, and community divergence occurred in response to water level gradient. Basic and 

intensive species introduction approaches are appropriate in different situations. My research showed that 

intensive approaches that introduce a dominant species adapted to site conditions are not required. 
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Dominant species with wide habitat niches and high production can outcompete other species and their 

introduction should be considered with caution in projects that are prioritizing biodiversity. Intensive 

approaches should prioritize areas of overlap in desirable and undesirable community distributions to 

deter establishment of non-peat forming species. Bryophyte cover and desirable species richness was 

highest following intensive approaches and where the summer water level was between -10 cm to -40 cm 

from the soil surface. Of the fen communities that developed, all were herbaceous dominated and 

comparable to an uncommon regional fen type. This highlights the need to shift our short-term targets 

away from moss-dominated reference fens that are thousands of years old and towards communities that 

are typically found during the initiation stage of peatlands (Koropchak et al. 2012, Borkenhagen and 

Cooper 2016). 

To prioritize plant diversity and bryophyte cover, future projects should increase 

microtopography, design for summer water tables between -10 and -40 cm from the soil surface, select 

species tolerant of expected abiotic conditions, and introduce co-dominant plants. My dissertation work is 

an integral part of the increasing body of knowledge addressing peatland reclamation issues in Alberta’s 

oil sands. My experimental design testing various species introduction approaches at Nikanotee Fen 

provided the foundation for research in greenhouse gas flux dynamics, above and below-ground nutrient 

cycling and biomass accumulation, biogeochemical processes, and the development of a functional-based 

approaches for evaluating constructed peatlands (Murray et al. 2017, Scarlett et al. 2017, Nwaishi et al. 

2015, Nwaishi et al. 2016a, 2016b, Messner et al. in prep). Future research at Nikanotee Fen includes 

evaluating the controls on water use efficiency and biogeochemical cycling of dominant vegetation and 

how this varies through the range of wetland succession trajectories, assessing the relationship between 

fen plant diversity and plant production, and altering depth to water table to maximize desirable fen 

bryophyte and vascular plants.  

This research has broad implications for peatland reclamation in the oil sands region of Alberta 

and other highly-disturbed sites worldwide. Previous assertions that peatlands cannot be reclaimed after 

mining activities are antiquated (Rooney et al. 2012) as large-scale construction designs and species 
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introduction approaches for fens are actively underway and the results are proven. Functioning 

watersheds have been constructed (Ketcheson et al. 2016), fen plant communities established (Vitt and 

House 2015, Vitt et al. 2016), biomass production and below-ground nutrient cycling processes are 

occurring (Nwaishi et al. 2016a), and carbon is being sequestered (Nwaishi et al. 2016b). The gap in our 

understanding and ability to reclaim peatlands in a post-mining landscape is narrowing.  My research 

shows that it is possible establish fen bryophyte and vascular plant communities in the post-mining 

landscape of Alberta.  This research also highlights the need for long-term monitoring of reclamation sites 

and the benefits of multi-factorial experiments, and that despite the constraints, a range of successful 

outcomes are achievable 
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Table A1.1 Water chemistry of rich fen, sampled from dugout pits on August 8, 2014 and July 11, 2015. The value presented is the mean from 
three samples with standard error in parenthesis. 

Date pH 
EC 

(uS/cm) 

F- 

(μg/ml) 

Cl- 

(μg/ml) 

Br- 

(μg/ml) 

NO3
− 

(μg/ml) 
PO4

3- 

(μg/ml) 
SO4

-2 

(μg/ml) 
Na+ 

(μg/ml) 
NH4

+ 

(μg/ml) 

K+ 

(μg/ml) 

Mg2+ 

(μg/ml) 

Ca2+ 

(μg/ml) 

08/14 6.88 340.8 0.09 4.17 < 0.05 0.16 < 0.05 4.24 8.96 0.30 5.16 10.6 26.7 

 (0.09) (72.0) (0.01) (0.62)  (0.02)  (1.84) (1.03) (0.02) (3.74) (0.64) (0.54) 

07/15 6.94 254.3 0.08 2.41 0.16 0.21 < 0.05 1.97 6.77 1.31 1.45 9.11 39.2 

 (0.06) (37.8) (0.01) (0.93) (0.01) (0.13)  (0.53) (1.68) (0.50) (0.48) (3.20) (11.4) 
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Figure A2.1 Photos of TnOM (A) and SwOM (B) plugs prior to submergence on August 6, 2014 (1), six weeks after submergence (Short-term 
response) on September 23, 2014 (2), and 11-months after submergence (Long-term response) on June 12, 2015 (3). The TnOM plug (A) was 
submerged for 8 weeks and the SwOM plug (B) that was submerged for 2 weeks. Photos of a control TnOM plug (C) and SwOM plug (D) six 
weeks after planting (Short-term response) on August 19, 2017 to effect of planting without submergence.  
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Table A3.1 Kruskal-Wallis chi-squared model results of species and total moss percent cover short and 
long-term responses to submergence duration. The plugs were named to represent the original dominant 
moss; TnOM = Tomentypnum nitens Original Moss, HvOM = Hamatocaulis vernicosus Original Moss, 
ApOM = Aulacomnium palustre Original Moss, and, SwOM = Sphagnum warnstorfii Original Moss. 
Bolded values indicate significant differences between treatment means at α = 0.05. 

Plugs Dep. variable Effect Term χ2 df P 

HvOM 

Hamatocaulis 

vernicosus 

Weeks of 
Submergence 

Short-term 4.84 4 0.304 
Long-term 7.01 4 0.136 

Total moss  
Weeks of 
Submergence 

Short-term 2.88 4 0.578 
Long-term 3.98 4 0.408 

TnOM 

Tomentypnum 

nitens 

Weeks of 
Submergence 

Short-term 13.66 4 0.009 

Long-term 10.81 4 0.029 

Total moss 
Weeks of 
Submergence 

Short-term 13.94 4 0.008 

Long-term 12.46 4 0.014 

ApOM 

Aulacomnium 

palustre 

Weeks of 
Submergence 

Short-term 15.37 4 0.004 

Long-term 14.15 4 0.007 

Total moss  
Weeks of 
Submergence 

Short-term 16.51 4 0.002 

Long-term 13.35 4 0.01 

SwOM 

Sphagnum 

warnstorfii 

Weeks of 
Submergence 

Short-term 17.36 4 0.002 

Long-term 14.40 4 0.006 

Total moss 
Weeks of 
Submergence 

Short-term 16.96 4 0.002 

Long-term 14.54 4 0.006 
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Table A3.2 Pairwise Conover multiple comparison test results of species and total moss percent cover short (St) and long-term (Lt) responses to submergence 
duration (Weeks Sub). Bolded values indicate significant differences between treatment means at α = 0.05. Means with different letters represent total moss 
covers that are significantly different within short and long-term response periods (Kruskal-Wallis Conover’s test for multiple comparison, P < 0.05; n = 4 for 
each species, except T. nitens in Week 4 has n = 3). Tomenit = Tomentypnum nitens, Aulapal = Aulacomnium palustre, Sphawar = Sphagnum warnstorfii.  

  TnOM ApOM SwOM 

Effect 
Treatment 
comparison 

Tomenit Total moss Aulapal Total moss Sphawar Total moss 

  St Lt St Lt St Lt St Lt St Lt St Lt 

Weeks 
Sub 

1 : 2 0.437 0.074 0.310 0.010 1.000 0.836 0.885 0.848 0.011 0.057 0.125 0.787 
1 : 4 0.003 0.661 0.002 0.202 <0.001 0.357 <0.001 0.567 <0.001 0.654 <0.001 0.039 

1 : 6 0.053 0.023 0.031 0.003 0.001 0.005 <0.001 0.010 <0.001 <0.001 <0.001 0.002 

 1 : 8 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 2 : 4 0.014 0.201 0.012 0.179 0.001 0.264 <0.001 0.702 0.006 0.130 <0.001 0.023 

 2 : 6 0.210 0.548 0.199 0.492 0.001 0.003 <0.001 0.015 <0.001 0.009 0.001 0.001 

 
2 : 8 <0.001 0.045 <0.001 0.044 <0.001 <0.001 <0.001 <0.001 <0.001 0.009 <0.001 <0.001 

4 : 6 0.135 0.076 0.122 0.057 0.720 0.035 0.885 0.033 0.004 <0.001 0.633 0.144 
 4 : 8 0.078 0.005 0.081 0.004 0.063 0.001 0.004 0.001 <0.001 <0.001 0.002 0.005 

 6 : 8 0.002 0.136 0.002 0.153 0.031 0.070 0.003 0.076 0.254 1.000 0.001 0.109 

Weeks 
Sub 

1 a A a A a A a A a A a A 
2 a Ab ab B a A a A b A a A 
4 bc Ab cd AB bc A b A c A b B 
6 ab Bc bc BC b B b B d B b BC 
8 c C d C c B c B d B c C 
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Table A3.3 Table for species and total moss percent cover responses to submergence duration (Weeks 
Sub) and between short and long-term evaluation periods (Term). ANOVA analyses were generated for 
species and total moss in HvOM, TnOM, and ApOM plugs. Kruskal-Wallis chi-squared analysis was 
generated for species and total moss in SwOM because variances were non-constant and data were not 
normally distributed. Bolded values indicate significant differences between treatment means at α = 0.05. 

Plugs Dep. variable Effect df Sum Sq Mean Sq F value P 

HvOM 

Hamatocaulis vernicosus Weeks Sub 4 851.4 212.9 2.040 0.1140 
Term 1 36.1 36.10 0.346 0.5608 
Weeks Sub*Term 4 794.4 198.6 1.903 0.1357 

 Total 30 3130.5 104.4   
Total moss  Weeks Sub 4 192.1 48.02 0.491 0.7424 

Term 1 422.5 422.5 4.318 0.0464 

Weeks Sub*Term 4 489.5 122.4 1.251 0.3110 
  Total 30 2935.5 97.9   

TnOM 

Tomentypnum nitens Weeks Sub 4 26480.6 6620.1  30.304  <0.0001 

Term 1 2213.2 2213.2 10.131 0.0036 

Weeks Sub*Term 4 1837.0 459.2 2.102 0.10715 
 Total 28 6116.7 218.5   
Total moss Weeks Sub 4 26688.8 6672.2 29.274 <0.0001 

Term 1 2464.1 2464.1 10.811 0.0027 

Weeks Sub*Term 4 1954.4 488.6 2.144 0.1017 
  Total 28 6381.9 227.9   

ApOM 

i Weeks Sub 4 31567.8 7892.0 37.898 <0.0001 

Term 1 469.2 469.2 2.253 0.1438 
Weeks Sub*Term 4 3146.6 786.7 3.778 0.0133 

 Total 30 6247.2 208.2   
Total moss  Weeks Sub 4 31203.9 7801.0 42.810 <0.0001 

Term 1 2975.6 2975.6 16.329 0.0003 

Weeks Sub*Term 4 5950.5 1487.6 8.164 0.0001 

Total 30 5466.7 182.2   
Plugs Dep. variable Effect χ2 df P   

SwOM 
Sphagnum warnstorfii Term 11.45 1 0.0007   
Total moss Term 0.36 1 0.5502   
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Table A3.4 Comparison of a Tukey-adjusted least squares means test for species and total moss percent 
cover responses to submergence duration (Weeks Sub) between short (St) and long-term (Lt) evaluation 
periods. Comparisons shown for ANOVA model results that where significant at the α = 0.05 level. 
Bolded values indicate significant differences between treatment means at α = 0.05. Tomenit = 
Tomentypnum nitens, Aulapal = Aulacomnium palustre. 

   HvOM TnOM ApOM 

Effect 
Weeks 

Sub 
Comparison Total moss Tomenit Total moss Aulapal Total moss 

Term 1 St : Lt 0.0196 0.2417 0.2004 0.7840 0.2003 
2 St : Lt 0.9717 0.6361 0.6598 0.2301 0.2690 
4 St : Lt 0.1182 0.0107 0.0108 

0.9076 
0.0005 <0.0001 

 6 St : Lt 0.4378 0.8682 0.4535 0.0447 

 8 St : Lt 0.8594 0.0048 0.0038 0.8459 0.7555 
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Figure A4.1. Season and annual depth to water table variation from 2013 to 2017 for three plots selected 
as examples that represent a range in water table depths (Top). Continuous measurements of water level 
relative to the soil surface (0 cm) were recorded with a waterlogger in three wells across the site 
(Bottom). Plot level depth to water table relative to soil surface was corrected using elevation and hand-
collected measurements by year. Daily precipitation data was collected onsite using a rain gauge.  
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Figure A4.2. Effects of depth to water level and planting treatments on the vascular plant percent cover 
from 2015 to 2017. Significant linear regressions relationships between percent cover and depth to water 
level are presented for each planting treatment by color. 
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Figure A4.3 Effects of depth to water level and planting treatments on bryophyte species richness from 
2015 to 2017. Significant linear regressions relationships between species richness and depth to water 
level are presented for each planting treatment by color. 
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Figure A4.4. Effects of depth to water level and planting treatments on bryophyte evenness from 2015 to 
2017. Significant linear regressions relationships between evenness and depth to water level are presented 
for each planting treatment by color. 
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Figure A4.5. Effects of depth to water level and planting treatments on the vascular plant species richness 
from 2015 to 2017. Significant linear regressions relationships between species richness and depth to 
water level are presented for each planting treatment by color. 
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Figure A4.6. Effects of depth to water level and planting treatments on the vascular plant evenness from 
2015 to 2017. Significant linear regressions relationships between evenness and depth to water level are 
presented for each planting treatment by color. 
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Table A4.1 Monthly average air temperatures and cumulative precipitation amounts from 2013 to 2017 
on the Nikanotee Fen on the Suncor Millennium Mine north of Fort MacMurray, Alberta. Standard 
deviations in parenthesis.  

Month 2013 2014 2015 2016 2017 

Average Air Temperature (Celsius) 

January  -14.9 (6.1) -13.4 (7.4) -13.0 (6.4) -12.0 (7.5) 
February  -16.4 (3.7) -14.7 (5.2) -10.2 (5.0) -9.4 (8.0) 
March 1.4 (4.5) -8.8 (6.9) -2.4 (6.2) -2.2 (3.6) -6.9 (8.5) 
April 0.6 (4.0) 2.5 (5.9) 6.1 (5.3) 5.5 (6.2) 3.8 (4.2) 
May 15.6 (5.3) 10.2 (5.8) 13.8 (6.0) 15.0 (4.1) 14.2 (4.1) 
June 18.8 (4.2) 18.2 (4.1) 19.5 (3.6) 19.6 (3.6) 18.6 (3.4) 
July 19.5 (4.1) 22.1 (2.6) 20.4 (2.6) 20.9 (2.6) 21.4 (2.5) 
August 19.6 (2.2) 19.6 (4.6) 19.1 (3.3) 18.7 (3.3) 18.7 (2.9) 
September 14.9 (4.5) 10.6 (3.9) 10.3 (2.6) 12.3 (2.2) 13.6 (3.8) 
October 4.2 (3.5) 5.3 (3.7) 5.9 (4.3) 1.4 (2.0) NA 
November -8.8 (6.5) -10.9 (7.1) -5.3 (5.9) -1.9 (4.3) NA 
December -17.9 (3.8) -13.2 (5.3) -11.2 (5.6) -15.3 (5.8) NA 
Precipitation (mm) 

January 13.3 8.6 8.8 13.2 14.6 
February 2.7 5.5 2.1 7.4 2.8 
March 4.6 8.5 13.4 4.1 1.9 
April 23.8 10.6 2.6 15 6 
May 5.9 73.8 17.8 19.1 36.7 
June 139 47.1 29 82 102.1 
July 91.3 65.8 68.9 102.8 25.8 
August 25.7 41 37.9 53.3 29.6 
September 47.8 53.6 49.4 73.5 16.2 
October 19.2 9.2 13.4 19.7 13.9 
November 7.6 0.3 6.1 2.5 NA 
December 9.5 5.6 1.6 2 NA 
Totals 390.4 329.6 251 394.6 249.6 
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Table A4.2 Water and soil chemistry of the Nikanotee Fen (NF) and donor rich-fen (Donor) where the 
moss layer transfer material was harvested. Water samples were collected from dugout pits and soil 
samples from the surface on August 8, 2014 and July 11, 2015. The value presented is the mean from n 
samples with standard deviations in italics. Stared values are of total oxidized nitrogen (NO2

-+ NO3
-). ND 

= Not detected. 

Sample Site Date 
EC 

(uS/cm) 
pH 

Cl- 

(mg/L) 

SO4
-2 

(mg/L) 

NO3
- 

(mg/L) 

Na+ 

(mg/L) 

K+ 

(mg/L) 

Mg2+ 

(mg/L) 

Ca2+ 

(mg/L) 

Water Donor 14-Aug 341 6.88 4.17 4.24 0.16 8.96 5.16 10.55 26.72 

 
(n=3)   125 0.15 1.07 3.19 0.02 1.78 6.49 1.10 0.94 

 

Donor 15-Jul 254 6.94 2.41 1.97 0.20* 6.77 1.45 9.11 39.15 

 
(n=3) 

 
38 0.06 1.60 0.92 0.12 2.91 0.83 5.55 19.76 

Water NF 14-Aug 2602 8.11 37.91 589.00 ND 115.78 8.07 46.02 113.19 

 
(n=3) 

 

178 0.07 7.88 50.69  29.04 1.96 13.90 10.94 

 

NF 15-Jul 2711 6.66 24.24 829.07 0.09* 121.63 1.74 82.09 285.44 

 
(n=45) 

 

833 0.17 20.28 531.34 0.04 65.37 1.25 32.42 148.95 

Soil  NF 14-Aug 3160 7.48 43.60 1893.00 0.77 178.60 22.23 162.10 467.00 

 
(n=10) 

 

1061 0.12 24.82 725.60 0.71 113.32 10.83 79.99 127.98 

 

NF 15-Jul 4242 NA 63.09 2450.55 20.90 398.89 9.06 229.29 673.81 

 
(n=45) 

 

1350 NA 53.74 617.35 22.91 291.57 7.27 75.50 135.90 

  



 142 

Table A4.3 Hydrologic parameters from 2013 to 2017 for three plots selected as examples that represent 
a range in water table depths. Standard deviations in parenthesis. 

 Plots 2013 2014 2015 2016 2017 

Cumulative 
Precipitation from 
May-Sept (cm)  

 309.7 281.3 203 330.7 210.4 

Average seasonal 
depth to water table 
(cm) 

4moslmwjsw -7.99 (0.39) -6.80 (0.66) -21.74 (0.36) -19.64 (0.33) -26.00 (0.49) 

7moslmwjnw 23.86 (0.22) 9.49 (0.39) -1.61 (0.50) -8.50 (0.45) -11.90 (0.76) 

2sdw 6.18 (0.29) -1.77 (0.62) 2.28 (0.51) 2.57 (0.53) -0.21 (0.73) 

Maximum seasonal 
depth to water table 
(cm) 

4moslmwjsw -6.41 -2.27 -11.06 -12.17 -17.21 

7moslmwjnw 29.03 14.47 10.85 2.32 -3.74 

2sdw 10.32 8.64 12.19 12.14 12.52 

Minimum seasonal 
depth to water table 
(cm) 

4moslmwjsw -12.34 -15.13 -33.08 -27.29 -35.49 

7moslmwjnw 18.15 -5.10 -9.42 -20.31 -22.68 

2sdw 1.54 -18.76 -8.36 -8.98 -14.43 

Total number of days 
water table was over 
0 cm 

4moslmwjsw 0 0 0 0 0 

7moslmwjnw 73 116 23 13 0 

2sdw 78 38 63 73 63 

Total number of days 
water table was 
under 0 cm 

4moslmwjsw 16 148 184 172 95 

7moslmwjnw 0 11 65 171 50 

2sdw 0 81 61 39 64 
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Table A4.4 Effects of planting treatment (Trt), mulchweed (MW) or mulch (M), and their interactions on 
bryophyte percent cover across years and in each year from 2014 to 2017. Results from mixed-model type 
3 ANOVAs with Satterthwaite's approximation. Bolded values indicate significant differences between 
treatment means at α = 0.05. 

 
Bryophyte Cover 

Effect 
Num 

DF 

Den 

DF 

F 

Value 
Pr > F Effect 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Date 3 128 24.53 <.0001 Date 3 153 24.93 <.0001 

Trt 6 32.9 18.51 <.0001 Trt 6 30.5 14.45 <.0001 

Date*Trt 18 137 4.88 <.0001 Date*Trt 18 162 5.25 <.0001 

MW 3 99 1.65 0.1822 M 1 116 0.55 0.4617 
Date*MW 9 129 4.79 <.0001 Date*M 3 152 11.31 <.0001 

Trt*MW 18 96.9 1.77 0.0396 Trt*M 6 115 3.06 0.0081 

Date*Trt*MW 54 140 1.16 0.2407 Date*Trt*M 18 161 1.74 0.0369 
2014 2014 

Trt 6 14 20.63 <.0001 Trt 6 15.2 12.58 <.0001 

MW 3 44.2 32.62 <.0001 M 1 50.8 78.4 <.0001 

Trt*MW 18 39.6 8.55 <.0001 Trt*M 6 49.2 22.69 <.0001 

2015 2015 

Trt 6 92.1 31.94 <.0001 Trt 6 106 32.32 <.0001 

MW 3 89.3 0.26 0.8543 M 1 103 0.56 0.4543 
Trt*MW 18 89.1 0.9 0.583 Trt*M 6 103 0.47 0.8256 
2016 2016 

Trt 6 22.9 6.58 0.0004 Trt 6 23.1 6.76 0.0003 

MW 3 72.1 1.15 0.3331 M 1 86.9 0.77 0.3817 
Trt*MW 18 70.7 1.52 0.1104 Trt*M 6 85.6 2.87 0.0136 
2017 2017 

Trt 6 26.3 5.35 0.001 Trt 6 26.4 5.29 0.0011 

MW 3 77.6 1.3 0.282 M 1 91.2 0.03 0.8574 
Trt*MW 18 76.2 0.91 0.5638 Trt*M 6 89.8 1.2 0.3129 
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Table A4.5 Effects of depth to water level (DWL) in each planting treatment on bryophyte, vascular plant, Carex aquatilis, and Juncus balticus percent cover in each year from 
2015 to 2017. Results from mixed-model type 3 ANOVAs with Satterthwaite's approximation. Bolded values indicate significant differences between treatment means at α = 0.05. 

Effect DWL Bryophyte Cover Vascular Plant Cover Carex aquatilis Cover Juncus balticus Cover 

Trt N DF D DF FValue Pr > F 
N 

DF 
D DF FValue Pr > F 

N 

DF 
D DF FValue Pr > F 

N 

DF 
D 

DF 
FValue Pr > F 

2015 

Unplanted 1 16 0.09 0.767 1 15.4 0.03 0.8597 1 17.4 1.78 0.1992 1 17.6 1.21 0.286 

MLT 1 15 2.94 0.1071 1 12.1 1.16 0.3032 1 15 1.4 0.2544 1 13.9 0.18 0.6776 

MLT + Carex 1 10 0.47 0.5101 1 9.1 11.42 0.008 1 9.8 1.42 0.2617 1 8.95 3.21 0.1068 

MLT + Juncus 1 16 10.17 0.0057 1 15.7 2.88 0.1094 1 13.3 2.08 0.1728 1 14 0.42 0.5271 

Seed 1 17.6 0 0.9587 1 14.6 0.52 0.4818 1 15.2 2.69 0.1215 1 18 0.02 0.8835 

Carex 1 7.01 11.26 0.0121 1 14 0.13 0.7272 1 14 2.9 0.1108 1 11.2 4.91 0.0484 

Juncus 1 15 5.02 0.0407 1 15 0.64 0.4362 1 5.28 0.75 0.4231 1 15 2.61 0.1273 

2016 

Unplanted 1 16.4 0.1 0.7608 1 16.7 0.43 0.521 1 12.9 1.48 0.2451 1 16.2 0.44 0.5181 

MLT 1 13 3.27 0.0939 1 12.7 0.11 0.7455 1 13 13.09 0.0031 1 4.58 6.3 0.0582 

MLT + Carex 1 9.66 2.71 0.1316 1 9.94 5.2 0.0459 1 10 0.67 0.4332 1 10 0.65 0.4398 

MLT + Juncus 1 11.4 8.31 0.0144 1 12.8 2.31 0.1528 1 17 3.94 0.0637 1 11.5 0.14 0.7167 

Seed 1 18 0.1 0.7511 1 15.2 0.11 0.7427 1 15.8 4.59 0.0481 1 18 0.56 0.4654 

Carex 1 7.83 3.11 0.1166 1 16 0.57 0.4599 1 11.7 7.29 0.0197 1 16 1.19 0.2919 

Juncus 1 13.5 21.05 0.0005 1 16 0.78 0.3888 1 9.12 2.05 0.186 1 15.8 3.01 0.1022 

2017 

Unplanted 1 19.6 0 0.9743 1 18.5 0.28 0.6016 1 12.4 1.5 0.2442 1 15.3 0.94 0.3486 

MLT 1 16.7 2.63 0.1236 1 14.5 0.64 0.4366 1 14.1 22.52 0.0003 1 16.6 0.27 0.607 

MLT + Carex 1 10 5.65 0.0389 1 10 0.04 0.8392 1 10 0.09 0.7761 1 9.96 0.47 0.5083 

MLT + Juncus 1 16.5 0.88 0.362 1 17 2.33 0.1453 1 6.73 0.27 0.6177 1 17 0.65 0.4314 

Seed 1 18 1.97 0.1771 1 17.5 0.38 0.5444 1 18 1.47 0.2409 1 18 1.24 0.2795 

Carex 1 16 5.94 0.0269 1 16 1.1 0.3108 1 16 5.29 0.0353 1 16 5.05 0.0391 

Juncus 1 16 6.12 0.025 1 16 0.7 0.4162 1 5.14 3.65 0.1127 1 1.82 2.89 0.2435 
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Table A4.6 Effects of planting treatment (Trt), mulchweed (MW), and their interactions on vascular plant, Carex aquatilis, and Juncus balticus 
percent cover across years and in each year from 2014 to 2017. Results from mixed-model type 3 ANOVAs with Satterthwaite's approximation. 
Bolded values indicate significant differences between treatment means at α = 0.05. 

 Vascular Plant Cover   Carex aquatilis Cover  Juncus balticus Cover 

Effect Num DF Den DF F Value Pr > F Effect 
Num 

DF 

Den 

DF 

F 

Value 
Pr > F Effect 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Date 3 182 124.6 <.0001 Date 3 150 80.08 <.0001 Date 3 161 14.6 <.0001 

Trt 6 28 8 <.0001 Trt 6 33 13.17 <.0001 Trt 6 25.6 277.99 <.0001 

Date*Trt 18 174 5.62 <.0001 Date*Trt 18 142 5.99 <.0001 Date*Trt 18 166 2.29 0.0033 

MW 3 75 0.98 0.4082 MW 3 81.3 0.45 0.7209 MW 3 76.8 4.65 0.0049 

Date*MW 9 175 0.47 0.8965 Date*MW 9 142 0.77 0.6455 Date*MW 9 148 1.26 0.2615 

Trt*MW 18 71.9 0.65 0.8475 Trt*MW 18 80 1.24 0.2548 Trt*MW 18 74 2.49 0.0032 

Date*Trt*MW 54 179 0.76 0.8762 Date*Trt*MW 54 142 0.74 0.9012 Date*Trt*MW 54 161 0.98 0.5282 

2014 2014 2014 

Trt 6 14.6 4.5 0.0089 Trt 6 14.8 12.8 <.0001 Trt 6 17.2 30.42 <.0001 

MW 3 45.7 0.3 0.8272 MW 3 46.3 0.31 0.8213 MW 3 40 5.94 0.0019 

Trt*MW 18 42 1.21 0.3003 Trt*MW 18 42.5 1.12 0.365 Trt*MW 18 36.6 8.32 <.0001 

2015 2015 2015 

Trt 6 25.3 4.16 0.0048 Trt 6 24.8 15.53 <.0001 Trt 6 29 111.05 <.0001 

MW 3 72.3 1.22 0.3102 MW 3 70.1 0.2 0.8945 MW 3 77 1.96 0.127 

Trt*MW 18 71.4 1.13 0.3422 Trt*MW 18 69.1 1.41 0.1539 Trt*MW 18 75.6 1.47 0.124 

2016 2016 2016 

Trt 6 20.2 3.18 0.023 Trt 6 23.1 8.41 <.0001 Trt 6 23.1 74.07 <.0001 

MW 3 70.7 0.74 0.5341 MW 3 72.9 1.39 0.2532 MW 3 71 4.45 0.0063 

Trt*MW 18 69.4 1.19 0.2968 Trt*MW 18 71.5 1.47 0.1271 Trt*MW 18 69.8 1.94 0.0259 

2017 2017 2017 

Trt 6 21.5 8.31 <.0001 Trt 6 22.4 5.9 0.0008 Trt 6 23.6 148.21 <.0001 

MW 3 77 2.14 0.1024 MW 3 78.5 0.99 0.4011 MW 3 77.1 5.42 0.0019 

Trt*MW 18 75.1 1.11 0.3634 Trt*MW 18 76.6 0.94 0.5331 Trt*MW 18 75.3 1.94 0.0248 
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Table A4.7 Effects of planting treatment (Trt), mulchweed (MW) or weed (W), and their interactions on 
Typha latifolia percent cover across years and in each year from 2014 to 2017. Results from mixed-model 
type 3 ANOVAs with Satterthwaite's approximation. Bolded values indicate significant differences 
between treatment means at α = 0.05. 

 
Typha latifolia Cover 

Effect 
Num 

DF 

Den 

DF 

F 

Value 
Pr > F Effect 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Date 3 170 11.32 <.0001 Date 3 202 12.27 <.0001 

Trt 6 58.3 3.41 0.006 Trt 6 60.5 3.4 0.0059 

Date*Trt 18 169 2.22 0.0046 Date*Trt 18 200 2.4 0.0017 

MW 3 92 8.74 <.0001 W 1 109 15.78 0.0001 

Date*MW 9 169 2.49 0.0106 Date*W 3 200 7.46 <.0001 

Trt*MW 18 91 1.54 0.0942 Trt*W 6 108 2.26 0.0432 

Date*Trt*MW 54 175 0.81 0.8207 Date*Trt*W 18 199 1.8 0.0278 

2014 2014 

Trt 6 22.1 1.18 0.3506 Trt 6 24 1.3 0.2944 

MW 3 48.4 1.49 0.2283 W 1 60.6 3.11 0.0827 

Trt*MW 18 46 0.56 0.9102 Trt*W 6 59.1 0.75 0.6157 

2015 2015 

Trt 6 31.5 2.09 0.0819 Trt 6 28.7 2.15 0.0773 

MW 3 77.2 13.87 <.0001 W 1 93.1 27.63 <.0001 

Trt*MW 18 75.7 1.75 0.0482 Trt*W 6 92 2.25 0.0452 

2016 2016 

Trt 6 22.3 2.86 0.0321 Trt 6 22.4 2.91 0.0299 

MW 3 70.7 8.27 <.0001 W 1 84.5 16.9 <.0001 

Trt*MW 18 69.1 1.99 0.0222 Trt*W 6 83 3.85 0.0019 

2017 2017 

Trt 6 26.1 1.88 0.1221 Trt 6 26.1 1.78 0.1425 

MW 3 79.2 4.46 0.006 W 1 95.1 5.44 0.0218 

Trt*MW 18 77.4 1.08 0.3892 Trt*W 6 93.6 0.86 0.5245 
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Table A4.8 Effects of depth to water level (DWL) in each planting treatment on Typha latifolia percent 
cover in each year from 2015 to 2017. Results from mixed-model type 3 ANOVAs with Satterthwaite's 
approximation. Bolded values indicate significant differences between treatment means at α = 0.05. 

Effect DWL Typha latifolia Cover 

Trt 
N 

DF 

D 

DF 
FValue Pr > F 

2015 

Unplanted 1 18 0.55 0.469 
MLT 1 14.8 0.57 0.4609 
MLT + Carex 1 9.86 8.3 0.0166 
MLT + Juncus 1 7.56 2.18 0.1804 

Seed 1 18 2.37 0.1411 
Carex 1 5.13 0.45 0.5335 

Juncus 1 15 1.43 0.2511 

2016 

Unplanted 1 17 5.79 0.0278 
MLT 1 11.4 5.48 0.0382 

MLT + Carex 1 7.53 27.43 0.001 
MLT + Juncus 1 12.8 2.82 0.1175 

Seed 1 17.5 2.66 0.1208 
Carex 1 7.09 3.41 0.1069 
Juncus 1 16 1.68 0.2132 

2017 

Unplanted 1 20 7.04 0.0153 
MLT 1 16.8 0.62 0.4427 
MLT + Carex 1 9.61 8.22 0.0174 

MLT + Juncus 1 17 6.9 0.0177 
Seed 1 16 10.58 0.005 
Carex 1 7.42 0.51 0.4961 

Juncus 1 5.48 5.33 0.0644 
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Table A4.9 Effects of planting treatment (Trt), mulchweed (MW), and their interactions on species richness and evenness of bryophytes and 
vascular plants across years and in each year from 2014 to 2017. Results from mixed-model type 3 ANOVAs with Satterthwaite's approximation. 
Bolded values indicate significant differences between treatment means at α = 0.05. 

 Bryophyte Species Richness Bryophyte Evenness Vascular Plant Species Richness Vascular Plant Evenness 

Effect 
Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Num 

DF 

Den 

DF 

F 

Value 
Pr > F 

Date 3 110 106.19 <.0001 3 49.3 1.27 0.2934 3 164 20.25 <.0001 3 168 8.23 <.0001 

Trt 6 29.1 30.44 <.0001 6 31.9 14.1 <.0001 6 23.5 13.78 <.0001 6 26.6 5.8 0.0006 

Date*Trt 18 123 4.63 <.0001 17 60 3.37 0.0003 18 155 4.36 <.0001 18 160 3.18 <.0001 

MW 3 105 4.36 0.0062 3 40.1 1.27 0.2972 3 90.2 6.96 0.0003 3 90.2 1.34 0.2654 

Date*MW 9 113 0.49 0.8791 9 54 0.81 0.6103 9 158 1.56 0.1328 9 176 0.46 0.8987 

Trt*MW 18 101 1.01 0.4583 18 92.8 0.98 0.4927 18 85.7 1.23 0.2532 18 87 1.78 0.0411 

Date*Trt*MW 54 126 0.79 0.8373 40 100 0.82 0.7545 54 157 0.57 0.9902 54 163 0.62 0.979 

2014 

Trt 6 12.1 22.51 <.0001 5 12.7 5.02 0.0093 6 15.6 13.12 <.0001 6 17.2 3.22 0.0261 

MW 3 44 4.32 0.0094 3 12.8 2.14 0.1445 3 45.8 4.13 0.0112 3 47.6 0.6 0.6166 

Trt*MW 18 38.9 1.96 0.0394 5 12.2 0.18 0.9661 18 42 1.77 0.0638 18 44 0.67 0.8225 

2015 

Trt 6 23.3 28.39 <.0001 6 24.5 14.81 <.0001 6 20.3 15.7 <.0001 6 19.4 4.24 0.0069 

MW 3 70.6 1.95 0.1296 3 58.9 0.77 0.5159 3 69.3 10.01 <.0001 3 71.9 1.2 0.3172 

Trt*MW 18 69.6 1.34 0.1916 17 57.6 0.85 0.6296 18 67.8 1 0.4719 18 70.1 1.13 0.342 

2016 

Trt 6 22 14.15 <.0001 6 22.6 10.7 <.0001 6 23 4.95 0.0022 6 28 4.41 0.0029 

MW 3 69.4 3.09 0.0325 3 66.7 2.33 0.082 3 68.9 3.05 0.0343 3 73.4 1.27 0.2924 

Trt*MW 18 67.9 0.64 0.8518 18 65.8 3.59 <.0001 18 67.9 0.99 0.4827 18 71.9 1.45 0.1351 

2017 

Trt 6 24.7 7.39 0.0001 6 24.8 3.07 0.0219 6 24.7 5.2 0.0014 6 25.4 4.16 0.0048 

MW 3 75.1 2.25 0.089 3 73.3 1.02 0.3903 3 75.2 5.07 0.003 3 78.2 1.78 0.1586 

Trt*MW 18 73.8 1.07 0.3946 18 70.9 0.73 0.7675 18 74 1.4 0.1579 18 76.6 1.67 0.0638 
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Table A4.10 Effects of depth to water level (DWL) in each planting treatment on bryophyte and vascular plant species richness and evenness in each year from 2015 to 2017. 

Results from mixed-model type 3 ANOVAs with Satterthwaite's approximation. Bolded values indicate significant differences between treatment means at α = 0.05. 

Effect DWL Bryophyte Species Richness Bryophyte Evenness Vascular Plant Species Richness Vascular Plant Evenness 

Trt N DF D DF FValue Pr > F N DF D DF FValue Pr > F N DF D DF FValue Pr > F N DF D DF FValue Pr > F 

2015 

Unplanted 1 16.7 0.14 0.7151 1 12.5 0.06 0.8058 1 18 1.9 0.1847 1 16.9 0.47 0.5027 

MLT 1 13.7 4.74 0.0474 1 15 8.64 0.0102 1 15 0.23 0.637 1 15 3 0.1038 

MLT + Carex 1 9.06 0.04 0.8384 1 8.84 1.23 0.2965 1 8.28 10.96 0.0102 1 9.08 5.41 0.0448 

MLT + Juncus 1 14.8 4.52 0.0507 1 16 2.79 0.1143 1 15.8 8.37 0.0107 1 16 1.72 0.2086 

Seed 1 15.1 0.28 0.603 1 15.1 0.02 0.9019 1 17.3 0.23 0.6377 1 17.8 0.5 0.4887 

Carex 1 6.91 1.74 0.2291 1 3.21 0.5 0.5261 1 5.24 3.24 0.1291 1 6.32 0.82 0.3973 

Juncus 1 5.59 0.05 0.8362 NA NA NA NA 1 15 6.97 0.0185 1 5.72 0 0.9611 

2016 

Unplanted 1 11.6 0.14 0.7152 1 12.2 0.57 0.4643 1 13.1 2.3 0.1529 1 17 0.08 0.7805 

MLT 1 5.42 0.3 0.6067 1 6.06 1.44 0.2754 1 11.5 0.96 0.3465 1 11.9 0 0.9464 

MLT + Carex 1 10 8.09 0.0174 1 9.97 7.91 0.0185 1 8.21 14.53 0.0049 1 2.26 7.34 0.0996 

MLT + Juncus 1 17 14.1 0.0016 1 14.4 14.4 0.0019 1 9.74 5.16 0.047 1 12.8 3.93 0.0694 

Seed 1 15.1 0.2 0.6644 1 17.7 1.37 0.2568 1 14.9 0.71 0.413 1 15.4 17.64 0.0007 

Carex 1 16 0.11 0.7447 1 13.1 2.16 0.1656 1 16 14.47 0.0016 1 7.54 0.21 0.6632 

Juncus 1 14.1 0 0.993 1 8.78 0.34 0.5721 1 16 1.44 0.248 1 4.28 1.38 0.3014 

2017 

Unplanted 1 9.59 9.05 0.0138 1 16.9 0 0.9656 1 10.9 11.71 0.0058 1 8.72 0.14 0.7132 

MLT 1 16.3 2.81 0.1127 1 14.7 1.28 0.2755 1 16.6 2.01 0.1746 1 16 9.16 0.008 

MLT + Carex 1 8.55 5.73 0.0417 1 5.82 0.53 0.4937 1 10 15.28 0.0029 1 9.62 10.59 0.0091 

MLT + Juncus 1 16.8 1.43 0.2483 1 16.9 0.91 0.3537 1 17 31.91 <.0001 1 7.37 44.25 0.0002 

Seed 1 17.3 6.05 0.0247 1 18 1.11 0.3063 1 17.4 14.77 0.0013 1 17.9 11.17 0.0037 

Carex 1 7.08 2.21 0.1803 1 16 9.41 0.0074 1 3.22 32.83 0.0086 1 4.77 0.13 0.7325 

Juncus 1 16 23.61 0.0002 1 16 26.04 0.0001 1 5.47 5.16 0.0677 1 6.33 5.73 0.0515 
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Table A5.1 Proportions of species introduced (Prop Initial) in 2012 at the Sandhill Fen (SF) and in 2013 
at the Nikanotee Fen (NF) compared to the species proportion within total plots surveyed in 2017 (Prop 
Final) within each species introduction method. Three seedlings per square meter of Carex aquatilis were 
planted in the NF Carex plots and of Juncus balticus in the NF Juncus plots. Proportions in 2017 
determined by rank abundance analysis.  

Species 

Prop 

Initial Prop Final Species 

Prop 

Initial Prop Final 

SF Seeded NF Seeded 

Carex aquatilis 80 31.3 Betula pumila 27 NA 

Carex diandra 5 NA Calamagrostis inexpansa 17 1.2 

Carex utriculata 5 5.1 Carex aquatilis 31 43.7 

Scirpus atrocinctus 5 <1 Juncus balticus 5 12.7 

Carex bebbii 1 <1 Vaccinium oxycoccos 1 NA 

Carex paupercula 1 NA Sarracenia purpurea 12 NA 

Scirpus microcarpus 1 <1 Triglochin maritima 7 12.8 

Carex lasiocarpa <1 NA NF Carex 

Carex rostrata <1 NA Carex aquatilis 100 68.4 

Carex limosa <1 NA NF Juncus 

Carex interior <1 NA Juncus balticus 100 39.5 

Juncus tenuis <1 NA 
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Table A5.2 Proportions of species introduced (Prop Initial) in 2013 at the Nikanotee Fen (NF) in plots 
treated with the moss layer transfer material (MLT) compared to the species proportion within total plots 
surveyed in 2017 (Prop Final). The initial proportions of species in the MLT material were determined 
prior to harvest during a vegetation survey conducted in 1 m2 plots along 3 transects on May 27-28, 2013. 
The MLT material was spread at a 1:10 ratio. Three seedlings per square meter of Carex aquatilis were 
planted in the Moss Carex plots and of Juncus balticus in the Moss Juncus plots. Proportions in 2017 
determined by rank abundance analysis.  

Species Prop Initial Prop Final 

 

Harvested 

MLT NF Moss 

NF Moss 

Carex 

NF Moss 

Juncus 

Juncus balticus NA 2.9 1.3 25.2 

Tomentypnum nitens 34.6 <1 <1 5.2 

Betula pumila 12.1 <1 NA <1 

Sphagnum angustifolium 11.4 NA NA NA 

Aulacomnium palustre 5.9 <1 NA <1 

Vaccinium.oxycoccos 5.6 <1 NA <1 

Carex aquatilis 3.9 53.2 63.7 34.8 

Sphagnum fuscum 2.8 NA NA NA 

Sphagnum warnstorfii 2.6 NA NA NA 

Sphagnum capillifolium 2.4 NA NA NA 

Larix laricina 2.4 NA NA NA 

Calliergon giganteum 1.8 <1 <1 <1 

Hamatocaulis vernicosus 1.6 <1 <1 <1 

Salix pedicellaris 1.5 <1 NA <1 

Carex gynocrates 1.3 NA NA NA 

Ptychostomum pseudotriquetrum 1.2 5.6 3.9 7.8 

Carex prairea 1.2 3.5 1.4 1.7 

Ledum groenlandicum 1 NA NA NA 

Salix planifolia 1 NA NA <1 

Plagiomnium.ellipticum <1 <1 <1 <1 

Carex limosa <1 NA NA NA 

Salix glauca <1 NA NA NA 

Drepanocladus aduncus <1 <1 <1 1 

Smilacina trifolia <1 NA NA NA 

Pohlia nutans <1 NA NA NA 

Pyrola asarifolia <1 NA NA NA 

Sphagnum magellanicum <1 NA NA NA 

Menyanthes trifolia <1 <1 <1 NA 

Potentilla palustrus <1 <1 <1 <1 

Stellaria longifolia <1 <1 NA NA 

Galium trifidum  <1 <1 <1 <1 

Oxycoccos quadripetalus <1 NA NA NA 

Carex leptalea <1 NA NA NA 

Polytricum strictum <1 NA NA NA 
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Andromeda polifolia <1 NA NA NA 

Picea mariana <1 NA NA NA 

Carex disperma <1 NA NA NA 

Salix candina <1 <1 NA NA 

Sphagnum teres <1 NA NA NA 

Viola sp.  <1 NA NA NA 

Drosera rotundifolia <1 NA NA NA 

Campilium stellatum <1 <1 <1 <1 
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Table A5.3 Species list of Desirable (D) and Undesirable (U) peatland plants and their count occurrences 
in plots at the Sandhill (n=79) and Nikanotee (n=64) Fens. Surveys were conducted at the Sandhill Fen on 
July 12-13, 2017 and at the Nikanotee Fen from July 20-25, 2017. Desirable and Undesirable peatland 
plant classifications derived by M. House and D.H. Vitt.  

Species  
Desirable/ Undesirable 

Number of occurrences 

SF NF 

Achillea millefolium U 11 0 
Agropyron trachycaulum U 2 0 
Agrostis scabra U 4 7 
Alopecurus arundinaceus U 0 1 
Aster conspicuus U 10 0 
Aster puniceus U 7 1 
Betula pumila D 2 3 
Bromus ciliatus U 4 0 
Calamagrostis canadensis U 51 0 
Calamagrostis inexpansa D 0 21 
Caltha palustris D 0 2 
Carex aquatilis D 59 64 
Carex atherodes D 2 8 
Carex aurea D 1 0 
Carex bebbii D 7 0 
Carex canescens D 1 0 
Carex diandra D 0 17 
Carex hystericina D 1 0 
Carex interior D 0 4 
Carex prairea D 0 16 
Carex pseudocyperus D 1 0 
Carex utriculata D 32 22 
Chenopodium alba U 0 1 
Cicuta bulbifera D 1 0 
Cicuta maculata D 2 3 
Crepis tectorum U 0 15 
Circium arvense U 5 0 
Cornus stolonifera U 1 0 
Dasiphora fruticosa U 3 0 
Deschampsia caespitosa U 6 6 
Eleocharis palustris D 1 0 
Epilobium angustifolium U 20 2 
Epilobium ciliatum D 0 24 
Equisetum arvense U 18 20 
Equisetum fluviatile D 1 0 
Equisetum pratense U 1 0 
Equisetum sylvaticum D 1 0 
Fragaria vesca U 19 0 
Galeopsis tetrahit U 1 0 
Galium trifidum D 0 7 
Geum aleppicum U 2 0 
Geum rivale D 2 0 
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Glyceria borealis U 3 0 
Hieracium umbellatum U 4 0 
Hippuris vulgaris U 1 3 
Hordeum jubatum U 3 23 
Juncus alpinoarticulatus D 1 0 
Juncus balticus D 0 57 
Lemna minor U 1 0 
Lotus corniculatus U 1 0 
Melilotus alba U 2 0 
Melilotus officinalis U 2 0 
Mentha arvensis U 2 0 
Menyanthes trifoliata D 0 2 
Myrica gale D 2 0 
Parnassia palustris D 6 1 
Petasites palmatus U 2 0 
Petasites sagittatus U 4 0 
Poa palustris U 13 9 
Poa pratensis U 4 0 
Polygonum amphibium U 1 0 
Populus balsamifera U 21 5 
Populus tremuloides U 13 0 
Potentilla norvegica U 0 7 
Potentilla palustris D 0 7 
Puccinellia nuttalliana D 0 6 
Ranunculus sceleratus D 0 1 
Ribes lacustre U 3 0 
Rosa acicularis U 1 0 
Rubus idaeus U 19 0 
Rubus pubescens U 15 0 
Rumex occendentalis U 0 1 
Salix candida D 0 2 
Salix exigua D 4 14 
Salix pedicellaris D 0 5 
Salix planifolia D 0 1 
Salix species D 29 39 
Schoenoplectus acutus D 11 1 
Scirpus atrocinctus D 1 0 
Scirpus microcarpus D 2 9 
Scutellaria galericulata D 3 0 
Sium suave D 0 4 
Solidago canadensis U 1 0 
Sonchus arvensis U 17 40 
Stellaria longifolia D 3 8 
Stellaria longipes D 0 5 
Taraxacum officinale U 10 0 
Trientalis borealis U 15 0 
Triglochin maritima D 4 31 
Triglochin palustris D 0 20 
Typha latifolia U 33 46 
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Utricularia minor D 11 0 
Vaccinium oxycoccos D 0 4 
Vicia americana U 3 0 
Aneura pinguis D 9 13 
Aulacomnium palustre D 25 4 
Barbula unguiculata D 1 2 
Brachythecium acutum D 8 23 
Bryum argenteum D 2 1 
Calliergon giganteum D 0 5 
Campylium stellatum D 0 18 
Ceratodon purpureus D 22 19 
Drepanocladus aduncus D 3 17 
Drepanocladus polycarpus D 13 53 
Funaria hygrometrica D 5 14 
Hamatocaulis vernicosus D 0 8 
Helodium blandowii D 1 6 
Hypnum pratense D 3 6 
Leptobryum pyriforme D 26 47 
Marchantia polymorpha D 1 13 
Plagiomnium ellipticum D 2 9 
Pohlia nutans D 6 0 
Pohlia wahlenbergii D 0 14 
Polytrichum juniperinum D 4 0 
Polytrichum strictum D 1 0 
Ptychostomum pseudotriquetrum D 28 60 
Tomentypnum nitens D 5 22 
Cephalozia connivens D 3 0 
Lophozia ventricosa D 1 0 
Riccardia multifida D 1 0 
Calypogeia phagnicola D 1 0 
Mylia anomala D 1 0 
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Table A5.4 Rank abundance results from species abundance data collected from vegetation plots in 2017 
at the Sandhill Fen. Results include species rank (Rank), abundance, proportional abundance (Proportion), 
confidence interval limits for the proportion of each species (plower and pupper), accumulated 
proportional abundance (Accumfreq), and logarithmic abundance (Logabun). 

Species Rank Abundance Proportion PLower PUpper Accumfreq Logabun 

Carex aquatilis 1 2176 31.3 24.2 38.5 31.3 3.3 

Calamagrostis canadensis 2 1877 27 21.9 32.1 58.4 3.3 

Typha latifolia 3 729 10.5 6 15 68.9 2.9 

Carex utriculata 4 352 5.1 2.7 7.4 74 2.5 

Ptychostomum pseudotriquetrum 5 209 3 1.2 4.8 77 2.3 

Populus balsamifera 6 203 2.9 1.3 4.6 79.9 2.3 

Rubus idaeus 7 142 2 0.9 3.2 81.9 2.2 

Salix species 8 138 2 0.7 3.3 83.9 2.1 

Equisetum arvense 9 90 1.3 0.4 2.2 85.2 2 

Carex atherodes 10 80 1.2 -0.5 2.8 86.4 1.9 

Aulacomnium palustre 11 66 1 0.3 1.6 87.3 1.8 

Drepanocladus polycarpus 12 65 0.9 0.1 1.7 88.3 1.8 

Leptobryum pyriforme 13 61 0.9 0.4 1.3 89.1 1.8 

Schoenoplectus acutus 14 61 0.9 -0.1 1.8 90 1.8 

Ceratodon purpureus 15 50 0.7 0.1 1.3 90.7 1.7 

Poa palustris 16 48 0.7 0.2 1.2 91.4 1.7 

Populus tremuloides 17 47 0.7 0.2 1.1 92.1 1.7 

Rubus pubescens 18 47 0.7 0.1 1.3 92.8 1.7 

Epilobium angustifolium 19 45 0.6 0.3 1 93.4 1.7 

Fragaria vesca 20 42 0.6 0.2 1 94 1.6 

Sonchus arvensis 21 35 0.5 0.2 0.8 94.5 1.5 

Bromus ciliatus 22 27 0.4 -0.2 1 94.9 1.4 

Trientalis borealis 23 24 0.3 0.1 0.6 95.3 1.4 

Myrica gale 24 16 0.2 -0.1 0.6 95.5 1.2 

Scirpus microcarpus 25 16 0.2 -0.2 0.7 95.7 1.2 

Aster conspicuus 26 15 0.2 0.1 0.4 96 1.2 

Taraxacum officinale 27 14 0.2 0 0.4 96.2 1.1 

Aneura pinguis 28 14 0.2 0 0.4 96.4 1.1 

Circium arvense 29 13 0.2 0 0.4 96.5 1.1 

Achillea millefolium 30 12 0.2 0.1 0.3 96.7 1.1 

Aster puniceus 31 11 0.2 0 0.3 96.9 1 

Petasites palmatus 32 11 0.2 -0.1 0.4 97 1 

Utricularia minor 33 11 0.2 0.1 0.3 97.2 1 

Parnassia palustris 34 11 0.2 0 0.3 97.3 1 

Carex pseudocyperus 35 10 0.1 -0.1 0.4 97.5 1 

Brachythecium acutum 36 9 0.1 0.1 0.2 97.6 1 

Petasites sagittatus 37 8 0.1 0 0.3 97.7 0.9 
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Poa pratensis 38 8 0.1 0 0.3 97.9 0.9 

Carex bebbii 39 7 0.1 0 0.2 98 0.8 

Hypnum pratense 40 7 0.1 0 0.2 98.1 0.8 

Polytrichum juniperinum 41 7 0.1 0 0.2 98.2 0.8 

Cicuta maculata 42 6 0.1 -0.1 0.2 98.2 0.8 

Deschampsia caespitosa 43 6 0.1 0 0.2 98.3 0.8 

Pohlia nutans 44 6 0.1 0 0.2 98.4 0.8 

Tomentypnum nitens 45 6 0.1 0 0.2 98.5 0.8 

Solidago canadensis 46 5 0.1 -0.1 0.2 98.6 0.7 

Funaria hygrometrica 47 5 0.1 0 0.1 98.6 0.7 

Polytrichum strictum 48 5 0.1 -0.1 0.2 98.7 0.7 

Equisetum sylvaticum 49 5 0.1 -0.1 0.2 98.8 0.7 

Agrostis scabra 50 4 0.1 0 0.1 98.8 0.6 

Hieracium umbellatum 51 4 0.1 0 0.1 98.9 0.6 

Triglochin maritima 52 4 0.1 0 0.1 99 0.6 

Salix exigua 53 4 0.1 0 0.1 99 0.6 

Dasiphora fruticosa 54 3 0 0 0.1 99.1 0.5 

Glyceria borealis 55 3 0 0 0.1 99.1 0.5 

Hordeum jubatum 56 3 0 0 0.1 99.2 0.5 

Ribes lacustre 57 3 0 0 0.1 99.2 0.5 

Vicia americana 58 3 0 0 0.1 99.2 0.5 

Drepanocladus aduncus 59 3 0 0 0.1 99.3 0.5 

Cephalozia connivens 60 3 0 0 0.1 99.3 0.5 

Scutellaria galericulata 61 3 0 0 0.1 99.4 0.5 

Stellaria longifolia 62 3 0 0 0.1 99.4 0.5 

Agropyron trachycaulum 63 2 0 0 0.1 99.4 0.3 

Geum rivale 64 2 0 0 0.1 99.5 0.3 

Melilotus alba 65 2 0 0 0.1 99.5 0.3 

Melilotus officinalis 66 2 0 0 0.1 99.5 0.3 

Mentha arvensis 67 2 0 0 0.1 99.6 0.3 

Bryum argenteum 68 2 0 0 0.1 99.6 0.3 

Plagiomnium ellipticum 69 2 0 0 0.1 99.6 0.3 

Betula pumila 70 2 0 0 0.1 99.6 0.3 

Geum aleppicum 71 2 0 0 0.1 99.7 0.3 

Carex canescens 72 1 0 0 0 99.7 0 

Cicuta bulbifera 73 1 0 0 0 99.7 0 

Cornus stolonifera 74 1 0 0 0 99.7 0 

Eleocharis palustris 75 1 0 0 0 99.7 0 

Equisetum fluviatile 76 1 0 0 0 99.7 0 

Equisetum pratense 77 1 0 0 0 99.8 0 

Galeopsis tetrahit 78 1 0 0 0 99.8 0 

Hippuris vulgaris 79 1 0 0 0 99.8 0 

Juncus alpinoarticulatus 80 1 0 0 0 99.8 0 
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Lemna minor 81 1 0 0 0 99.8 0 

Lotus corniculatus 82 1 0 0 0 99.8 0 

Rosa acicularis 83 1 0 0 0 99.8 0 

Scirpus atrocinctus 84 1 0 0 0 99.9 0 

Barbula unguiculata 85 1 0 0 0 99.9 0 

Helodium blandowii 86 1 0 0 0 99.9 0 

Lophozia ventricosa 87 1 0 0 0 99.9 0 

Riccardia multifida 88 1 0 0 0 99.9 0 

Calypogeia  phagnicola 89 1 0 0 0 99.9 0 

Carex aurea 90 1 0 0 0 99.9 0 

Polygonum amphibium 91 1 0 0 0 100 0 

Marchantia polymorpha 92 1 0 0 0 100 0 

Mylia anomala 93 1 0 0 0 100 0 

Carex hystericina 94 1 0 0 0 100 0 
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Table A5.5 Rank abundance results from species abundance data collected from vegetation plots in 2017 
at the Nikanotee Fen. Results include species rank (Rank), abundance, proportional abundance 
(Proportion), confidence interval limits for the proportion of each species (plower and pupper), 
accumulated proportional abundance (Accumfreq), and logarithmic abundance (Logabun). 

Species rank abundance proportion plower pupper accumfreq logabun 

Carex aquatilis 1 4293 44.9 38.8 51 44.9 3.6 

Juncus balticus 2 1389 14.5 10.9 18.1 59.5 3.1 

Ptychostomum pseudotriquetrum 3 600 6.3 4.5 8 65.8 2.8 

Typha latifolia 4 453 4.7 2.6 6.9 70.5 2.7 
Sonchus arvensis 5 340 3.6 2.3 4.8 74.1 2.5 

Triglochin maritima 6 300 3.1 1.8 4.5 77.2 2.5 

Triglochin palustris 7 299 3.1 1.3 4.9 80.3 2.5 

Leptobryum pyriforme 8 173 1.8 1.2 2.5 82.1 2.2 

Drepanocladus polycarpus 9 169 1.8 1.2 2.4 83.9 2.2 

Carex utriculata 10 155 1.6 0.8 2.5 85.5 2.2 

Calamagrostis inexpansa 11 145 1.5 0.6 2.4 87.1 2.2 

Tomentypnum nitens 12 138 1.4 0.4 2.5 88.5 2.1 

Salix sp 13 129 1.4 0.9 1.8 89.8 2.1 

Carex prairea 14 99 1 0.5 1.5 90.9 2 

Carex diandra 15 93 1 0.4 1.5 91.9 2 

Salix exigua 16 92 1 0.1 1.8 92.8 2 

Brachythecium acutum 17 56 0.6 0.3 0.8 93.4 1.7 

Carex atherodes 18 50 0.5 0 1 93.9 1.7 

Ceratodon purpureus 19 44 0.5 0.2 0.7 94.4 1.6 

Scirpus microcarpus 20 40 0.4 0.1 0.7 94.8 1.6 

Drepanocladus aduncus 21 38 0.4 0.2 0.6 95.2 1.6 

Hordeum jubatum 22 35 0.4 0.2 0.5 95.6 1.5 

Equisetum arvense 23 32 0.3 0.1 0.5 95.9 1.5 

Epilobium ciliatum 24 29 0.3 0.2 0.4 96.2 1.5 

Campylium stellatum 25 26 0.3 0.2 0.4 96.5 1.4 

Poa palustris 26 22 0.2 0 0.4 96.7 1.3 

Funaria hygrometrica 27 21 0.2 0.1 0.3 96.9 1.3 

Marchantia polymorpha 28 20 0.2 0.1 0.3 97.1 1.3 

Crepis tectorum 29 18 0.2 0.1 0.3 97.3 1.3 

Aneura pinguis 30 17 0.2 0.1 0.3 97.5 1.2 

Pohlia wahlenbergii 31 16 0.2 0.1 0.2 97.7 1.2 

Puccinellia nuttalliana 32 16 0.2 0 0.3 97.8 1.2 

Potentilla norvegica 33 15 0.2 0 0.3 98 1.2 

Galium trifidum 34 15 0.2 0 0.3 98.2 1.2 

Calliergon giganteum 35 13 0.1 0 0.3 98.3 1.1 

Stellaria longifolia 36 13 0.1 0 0.3 98.4 1.1 

Deschampsia caespitosa 37 11 0.1 0 0.2 98.5 1 
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Potentilla palustris 38 11 0.1 0 0.2 98.7 1 

Plagiomnium ellipticum 39 10 0.1 0 0.2 98.8 1 

Carex interior 40 10 0.1 0 0.2 98.9 1 

Agrostis scabra 41 9 0.1 0 0.2 99 1 

Hamatocaulis vernicosus 42 9 0.1 0 0.2 99.1 1 

Hippuris vulgaris 43 8 0.1 0 0.2 99.1 0.9 

Cicuta maculata 44 7 0.1 0 0.2 99.2 0.8 

Vaccinium oxycoccos 45 7 0.1 0 0.2 99.3 0.8 

Hypnum pratense 46 7 0.1 0 0.1 99.4 0.8 

Helodium blandowii 47 6 0.1 0 0.1 99.4 0.8 

Populus balsamifera 48 5 0.1 0 0.1 99.5 0.7 

Salix pedicellaris 49 5 0.1 0 0.1 99.5 0.7 

Sium suave 50 5 0.1 0 0.1 99.6 0.7 

Stellaria longipes 51 5 0.1 0 0.1 99.6 0.7 

Epilobium angustifolium 52 5 0.1 0 0.1 99.7 0.7 

Aulacomnium palustre 53 5 0.1 0 0.1 99.7 0.7 

Salix candida 54 4 0 0 0.1 99.8 0.6 

Betula pumila 55 4 0 0 0.1 99.8 0.6 

Alopecurus arundinaceus 56 2 0 0 0.1 99.8 0.3 

Menyanthes trifoliata 57 2 0 0 0.1 99.9 0.3 

Salix planifolia 58 2 0 0 0.1 99.9 0.3 

Barbula unguiculata 59 2 0 0 0.1 99.9 0.3 

Caltha palustris 60 2 0 0 0.1 99.9 0.3 

Aster puniceus 61 1 0 0 0 99.9 0 

Chenopodium alba 62 1 0 0 0 99.9 0 

Ranunculus sceleratus 63 1 0 0 0 100 0 

Bryum argenteum 64 1 0 0 0 100 0 

Parnassia palustris 65 1 0 0 0 100 0 

Schoenoplectus acutus 66 1 0 0 0 100 0 

Rumex occendentalis 67 1 0 0 0 100 0 
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Table A5.6 Plots surveyed at the Nikanotee (NF) and Sandhill (SF) Fens in each species introduction 
method type, their classification into communities, and coordinates within the NMDS ordination (Figure 
4.3). Communities defined using group cluster methods and a 40% cut-off of similarity. Species 
introduction approach (SIA) include SSF=Seeded Sandhill Fen; UNF=Unplanted Nikanotee Fen (NF); 
SNF=Seeded NF; CNF=Carex NF; JNF=Juncus NF; MNF=Moss NF; MCNF=Moss Carex NF; 
MJNF=Moss Juncus NF. 

Plot Fen SIA Community NMDS1 NMDS2 

10sljnw NF J Juncbal -0.23752 -0.81435 
10slmjsw NF J Careaqu -0.33695 -0.53619 
2sljsw NF J Careaqu -0.39868 -0.36969 
2slmjse NF J Careaqu -0.42044 -0.28671 
4sljse NF J Juncbal 0.099535 -1.22184 
4slmjse NF J Juncbal 0.006627 -1.00267 
5sljnw NF J Juncbal -0.06202 -0.88477 
7slmjsw NF J Careaqu -0.46302 -0.18838 
1mo NF M Trigpal 0.102346 -0.95222 
1mom NF M Careaqu -0.10978 -0.17559 
2mo NF M Careaqu -0.29012 0.278402 
2mom NF M Careaqu -0.27963 0.338333 
3mo NF M Careaqu -0.33018 0.347842 
3mom NF M Careaqu -0.30526 0.355178 
5mo NF M Careaqu -0.23445 -0.16728 
5mom NF M Careaqu -0.19461 -0.0235 
7mo NF M Careaqu -0.2427 0.318015 
10mosljnw NF MJ Careaqu -0.21475 -0.27008 
10moslmjse NF MJ Careaqu -0.30118 0.125356 
2mosljne NF MJ Careaqu -0.27396 -0.24239 
2moslmjnw NF MJ Juncbal -0.32513 -0.60854 
4mosljne NF MJ Juncbal -0.10278 -0.62445 
4moslmjne NF MJ Juncbal -0.00562 -0.81052 
5mosljse NF MJ Juncbal -0.18017 -0.8991 
5moslmjnw NF MJ Juncbal -0.10775 -0.59666 
7mosljse NF MJ Careaqu -0.35444 0.151107 
7moslmjsw NF MJ Careaqu -0.33019 0.113539 
10moslcse NF MU Careaqu -0.68698 0.178957 
10moslmcsw NF MU Careaqu -0.23323 0.443918 
2moslcsw NF MU Careaqu -0.25457 0.376678 
2moslmcse NF MU Careaqu -0.16211 -0.01002 
5moslmcse NF MU Careaqu -0.20803 0.283247 
7moslmcnw NF MU Careaqu -0.314 0.473563 
1sd NF S Juncbal -0.59904 -1.10355 
1sdm NF S Careaqu -0.30854 -0.61368 
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2sd NF S Careaqu -0.55343 -0.10706 
2sdm NF S Careaqu -0.33514 0.438094 
3sd NF S Careaqu -0.3747 0.10088 
3sdm NF S Careaqu -0.21904 -0.1582 
4sd NF S Careaqu -0.32823 0.050679 
4sdm NF S Careaqu -0.27591 0.167209 
5sd NF S Juncbal -0.05103 -0.81244 
5sdm NF S Careaqu -0.29444 0.046676 
10slcse NF U Careaqu -0.3481 0.477247 
1c NF U Trigpal 0.13447 -1.10994 
1cm NF U Trigpal 0.314142 -1.48229 
2c NF U Careaqu -0.3237 0.265709 
2cm NF U Careaqu -0.41579 0.239212 
2slcse NF U Careaqu -0.29254 0.508136 
2slmcnw NF U Careaqu -0.29014 0.43994 
3c NF U Careaqu -0.21917 0.192532 
3cm NF U Careaqu -0.29264 -0.05533 
4c NF U Careaqu -0.27995 0.405236 
4cm NF U Careaqu -0.22745 0.220651 
4slcsw NF U Careaqu -0.20449 0.213949 
4slmcsw NF U Trigpal 0.195652 -0.82495 
5c NF U Careaqu -0.44825 -0.17892 
5cm NF U Trigpal -0.2798 -1.12275 
5slcse NF U Careaqu -0.19636 0.159733 
5slmcsw NF U Careaqu -0.23042 0.323836 
7c NF U Typhlat -1.30448 -0.57577 
7cm NF U Careaqu -0.43899 0.359175 
7slcse NF U Careaqu -0.31356 0.330822 
7slmcne NF U Careaqu -0.23864 0.393026 
s1 SF S Careath 1.502566 0.749517 
s10 SF S Calacan 0.700258 -0.21119 
s11 SF S Careaqu 0.16569 0.367217 
s12 SF S Careaqu 0.1333 0.384581 
s13 SF S Calacan 1.54646 0.194743 
s14 SF S Calacan 1.409093 -0.4643 
s15 SF S Poapal 0.963649 -0.78445 
s16 SF S Calacan 1.327112 -0.47959 
s18 SF S Calacan 1.449852 -0.18902 
s19 SF S Calacan 1.555418 -0.05317 
s2 SF S Careaqu -0.05721 0.361721 
s20 SF S Careaqu -0.70683 0.417369 
s21 SF S Calacan 1.54536 0.063531 
s22 SF S Calacan 1.545294 0.024125 
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s23 SF S Calacan 0.981004 0.81971 
s24 SF S Calacan 1.565926 0.003437 
s26 SF S Careaqu 0.364844 0.268264 
s27 SF S Careaqu -0.03008 0.457957 
s28 SF S Careaqu -0.79448 0.099678 
s3 SF S Careaqu -0.29505 0.568465 
s30 SF S Calacan 1.133008 -0.11519 
s31 SF S Careaqu -0.65629 0.252477 
s32 SF S Careaqu -0.7606 0.661496 
s33 SF S Careaqu -0.93895 -0.01514 
s34 SF S Careaqu 0.284625 -0.29399 
s37 SF S Calacan 1.423836 -0.3111 
s38 SF S Calacan 1.331067 0.444761 
s39 SF S Careaqu -0.5861 0.318643 
s4 SF S Careaqu -0.79941 0.084076 
s40 SF S Careaqu -0.65741 0.203875 
s41 SF S Typhlat -1.01675 -0.13082 
s42 SF S Careaqu -0.33148 0.620758 
s44 SF S Calacan 1.48057 0.322658 
s45 SF S Calacan 1.537829 0.118078 
s46 SF S Typhlat -1.31061 -0.40551 
s48 SF S Careaqu -0.60047 0.293072 
s49 SF S Careaqu -0.77724 0.104205 
s5 SF S Careaqu -0.09325 0.436168 
s50 SF S Careaqu 0.367999 0.287434 
s51 SF S Calacan 1.302668 0.091393 
s53 SF S Typhlat -1.8404 -0.55111 
s54 SF S Typhlat -1.84007 -0.55026 
s55 SF S Careaqu -0.48287 0.390935 
s56 SF S Careaqu -0.48583 0.398875 
s57 SF S Careaqu 0.211445 0.333757 
s59 SF S Calacan 1.378018 -0.03269 
s6 SF S Careaqu -0.60536 0.511302 
s61 SF S Typhlat -1.24528 -0.42343 
s62 SF S Typhlat -1.42168 -0.55306 
s63 SF S Careaqu -0.39136 0.494072 
s64 SF S Calacan 1.199635 -0.36839 
s65 SF S Popubal 1.271978 -0.73687 
s66 SF S Calacan 0.74071 0.094046 
s67 SF S Careaqu -0.15043 0.511017 
s69 SF S Typhlat -1.52303 -0.63518 
s7 SF S Calacan 1.572158 0.166903 
s70 SF S Careaqu -0.34021 0.615055 
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s71 SF S Calacan 1.481673 -0.20344 
s72 SF S Calacan 1.396223 0.039603 
s73 SF S Calacan 0.96722 -0.02252 
s74 SF S Calacan 0.680034 0.286867 
s75 SF S Careaqu -0.47676 0.339848 
s76 SF S Careaqu -0.36968 0.549463 
s77 SF S Careaqu -0.54257 0.56423 
s79 SF S Calacan 1.25206 0.031327 
s8 SF S Careaqu -0.17708 0.559231 
s80 SF S Calacan 0.756369 -0.28889 
s81 SF S Careaqu 0.201078 0.351363 
s82 SF S Careaqu 0.277208 0.326433 
s83 SF S Careaqu -0.70133 0.177602 
s84 SF S Typhlat -1.02267 -0.22295 
s85 SF S Careaqu -0.04677 0.456309 
s86 SF S Careaqu 0.208893 0.299015 
s87 SF S Calacan 0.517151 0.248221 
s88 SF S Careaqu -0.18309 0.529 
s9 SF S Careaqu -0.09995 0.466619 
s91 SF S Calacan 0.831884 0.010381 
s92 SF S Careaqu -0.28141 0.561571 
s93 SF S Careath 0.870356 -0.57724 
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Table A5.7 Model results from the multivariate permutational analysis (PERMANOVA) of differences in 
species abundance between species introduction methods and depth to water level. Bolded values indicate 
significant differences between treatment means at α = 0.05. 

 
 

  

Source Effect 
df SS MS 

Pseudo-

F 
P(MC) 

Species introduction method (Trt) 7 48463 6923.3 6.6735 0.001 

Depth to water level (DTW) 82 207610 2531.8 2.4405  0.001 

Trt x DTW 23 20084 873.21 0.8417 0.749 
Residuals 30 31123 1037.4   
Total 142 354840    
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Figure A5.1 Aerial view of Sandhill Watershed in 2013. Data for this study was collected from the Main 
fen. Image provided by Syncrude Canada Ltd and Ketcheson et al. (2016). 
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Figure A5.2 Overview of Nikanotee Fen in 2014. Image provided by Andrea Borkenhagen. 

 

 


