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ABSTRACT 

 
 

RELAX: CROSS-LAYER RESOURCE MANAGEMENT FOR RELIABLE NOC-BASED 2D 

AND 3D MANYCORE ARCHITECTURES IN THE DARK SILICON ERA 

 

Emerging 2D and 3D chip-multiprocessors (CMPs) are facing numerous challenges due to 

technology scaling that impact their reliability, power dissipation, performance, and security. With 

growing parallelism in applications and the increasing core counts, traditional resource 

management frameworks and critical on-chip components such as networks-on-chip (NoC) and 

memory controllers (MCs) do not scale well to efficiently cope with this new and complex design 

space of CMP design. Several phenomena are affecting the reliability of CMPs. For instance, 

device-level phenomena such as (Bias Temperature Instability) BTI and (Electro Migration) EM 

lead to permanent faults due to aging in CMOS logic and memory cells in computing cores and 

NoC routers of CMPs. Simultaneously, alpha particle strikes (soft errors) and power supply noise 

(PSN) impacts lead to transient faults across CMP components. There have been several attempts 

to address these challenges at the circuit and micro-architectural levels, such as guard-banding and 

over-provisioning of resources to the CMP. However, with increasing complexity in the 

architecture of today’s CMPs, mechanisms to overcome these challenges at the circuit and micro-

architectural levels alone, incur large overheads in power and performance. Hence, there is a need 

for a system-level solution that utilizes control knobs from different layers and manages the CMP 

reliability in runtime to efficiently minimize the adverse effects of these failure mechanisms while 

meeting performance and power constraints.  
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Network-on-chip (NoC) has become the defacto communication fabric in CMP 

architectures. There are different types of NoC topologies and architectures that are tailored for 

different CMP platforms based on their communication demands. The most used topology is 

2D/3D mesh-based NoC with a deadlock-free turn-model based routing scheme as it has 

demonstrated to be scaling well with the increasing core count. However, with unprecedented 

reliability and security challenges in CMP designed at the sub-nanometer technology node, the 

basic turn-model routing is proved to be inefficient to provide seamless communication between 

cores and other on-chip components. This demands for a more reliable NoC solution in 2D, and 

3D CMPs.  

Another critical criterion while designing a CMP is NoC throughput and power consumption 

in CMPs with integrated manycore accelerators. Manycore accelerator platforms operate on 

thousands of threads with hundreds of thread blocks executing several kernels simultaneously. The 

core-to-memory data generated in accelerators is very high compared to a traditional CPU 

processor. This leads to congestion at memory controllers that demands a high bandwidth NoC 

with high power and area overheads, which is not scalable as a number of cores in the accelerator 

increases. High volumes of read reply data in manycore accelerator platforms necessitate 

intelligent memory scheduling along with low latency NoC to resolve the memory bottleneck 

issue. Mechanisms to overcome these challenges require complex architectures across CMP 

interconnection fabric that are designed and integrated at various global locations. Unfortunately, 

such global fabrication of CMP processors makes them vulnerable to security threats due to 

hardware Trojans that may be inserted in third-party (3PIP) NoCs.  

 We address these issues by designing a cross-layer resource management framework called 

RELAX that enhances performance and security of NoC-based 2D and 3D CMPs, while meeting a 
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diverse set of platform constraints related to the lifetime of the CMP, dark silicon power, fault 

tolerance, thermal and real-time application performance. At the OS-level, we have developed 

several techniques such as lifetime aware application mapping heuristic, adaptive application 

degree of parallelism (DoP), slack aware checkpointing, and aging aware NoC path allocation. At 

the system level, we propose dynamic voltage scheduling (DVS), and a low power checkpointing 

mechanism to meet the dark silicon power and application deadline constraints. At the architectural 

level, we introduce several novel upgrades to the architectures of NoC routers, memory controllers 

(MCs), and network interfaces (NIs) to improve the performance of NoC-based CMPs while 

minimizing the power dissipation and mitigating security threats from hardware Trojans. 
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1. INTRODUCTION 

 

This chapter outlines the challenges of modern-day manycore chip multiprocessor (CMP) 

design and the necessity to address these challenges at different levels of abstraction using runtime 

resource management techniques, as well as novel circuit and micro-architectural innovations in 

networks-on-chip (NoC) and memory controllers (MCs). This chapter also gives a general 

overview of the contributions of this dissertation. 

 

1.1. MOTIVATION FOR NOC-BASED CMP DESIGN  

With technology scaling, there is an increasing availability of resources on electronic chips 

to support extensive parallel computing. The growth in on-chip resources is facilitated by the rising 

transistor density on-chip with each new generation as shown in Figure 1.  

 

Figure 1 Moore’s law indicating growth in transistor density with technology scaling [1] 
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Design engineers have attempted to extract higher instruction-level parallelism (ILP) by 

modifying core micro-architectures with ILP-driven enhancements and increasing the on-chip 

cache memory sizes. However, such complex single-core processors yield only 40% increase in 

performance for every 50% increase in circuit area [2]. This poor yield has led to the era of 

manycore computing where the emphasis is on using multiple small processing elements (cores) 

with dedicated memories to execute in parallel and deliver 70-80% higher performance for every 

50% increase in circuit area [2]. The advent of such manycore processors (i.e., CMPs) has resulted 

in a growing interest among researchers and engineers to leverage the parallelism by developing 

special hardware architectures with hundreds to thousands of cores, such as general purpose 

parallel accelerators and neural processors [3], as shown in Figure 2. Each core in a CMP has a 

private and shared memory to cache the data coming from main memory for computation. 

Software frameworks such as NVIDIA CUDA [4], and OpenCL [5] and OpenMP [6] have been 

developed to facilitate the parallelization of applications that leverage the available CMP resources 

for faster execution.  

 

Figure 2 IBM TrueNorth DNN Chip with 4096 cores [3] 
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However, there are two main challenges associated with the efficient execution of parallel 

applications on emerging chip multiprocessors (CMPs) with billions of transistors and hundreds 

of cores and other on-chip components.  

Firstly, with the continued scaling down in dimensions and the rise in density of transistors, 

the logic and memory cells of a manycore processor are prone to faults due to thermal hotspots, 

rapid wear out due to aging, increased soft error rate, and voltage fluctuations, as a result of 

inherent non-ideal physical phenomena in fabricated transistors. As CMPs become ubiquitous in 

the domains of defense, aerospace, healthcare, and consumer electronics, it is crucial to provide 

a reliable computing platform that can guarantee application quality of service (QoS), even in the 

presence of various types of faults.  

Secondly, the inherently parallel nature of today’s applications, together with their ever-

increasing core count results in high core-to-core and core-to-memory traffic. In the era of cloud 

computing with rigid service level agreements (SLAs) between clients and original equipment 

manufacturers (OEMs), clients cannot tolerate a slowdown in performance and downtime of 

resources that are guaranteed in the SLA. CMPs are also shared by multiple client applications 

with slices of compute and memory resources are distributed across different clients according to 

their compute and I/O requirements. The rise in data-parallel applications that utilize shared on-

chip resources demands CMPs with high bisectional bandwidth to support the seamless multi-

application execution. Bus based on-chip communication fabrics fail to meet such bandwidth 

requirements. Hence CMPs are integrated with networks-on-chip (NoCs) to improve their 

bisectional bandwidths (e.g. IBM TrueNorth, STMicroelectronics STHORM [7], [8]). But 

traditional 2D mesh-based NoC architectures [9] that are used in these chips do not offer high 

throughput for memory-intensive applications which limits the performance of CMPs with 
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integrated GPGPU accelerators. Such bandwidth challenges require new NoC and MC 

architectures that can cope with high bandwidth and low latency demands [10] together with 

intelligent scheduling of application tasks on the cores. CMPs should also ensure the security of 

critical application data with the integration of third party (3PIP) NoCs for on-chip 

communication. This compels CMPs to have on-chip communication fabrics that are tailor-made 

for different traffic patterns as well as throughput and security requirements while consuming low 

overall CMP power and area overheads.  

 

1.2. RELIABILITY CHALLENGES IN CMP DESIGN 

With shrinking transistor sizes, the reliability and lifetime of CMPs are adversely affected by 

a plethora of device-level challenges. In the following sub-sections, we briefly discuss the 

significant phenomena that limit the reliability of CMPs.  

 

1.2.1 AGING IN CIRCUITS AND POWER DELIVERY NETWORK  

Aging in circuits due to phenomena such as bias temperature instability (BTI) [11], hot carrier 

injection (HCI) [12], and electromigration (EM) [13] lead to a slowdown or permanent faults in 

the logic circuits and power delivery network of CMPs. The effect of aging is observed as a rise 

in CMOS transistor threshold voltage (VT), which results in a higher delay of logic gates that are 

in the critical path of the circuit. Figure 3 shows the illustration of BTI and HCI phenomena on a 

CMOS inverter under stress-destress cycles and varied switching activities. BTI degradation is 

directly proportional to the duration of stress window, and HCI is directly proportional to the 

switching activity of the transistor. 
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Figure 3 Time windows of hot carrier injection (HCI) and bias temperature instability (BTI) 

in a CMOS inverter [14]  

 

Electromigration (EM) is another device level phenomenon that leads to a rise in resistance of 

interconnect and power delivery network over time, which results in open or short circuits. EM is 

the phenomenon that is most dominant in wires that carry larger unidirectional currents such as 

those in the power delivery network (PDN) [15]. Figure 4 shows the effect of EM over time in a 

copper wire. High current flow causes the internal electric field to knock off ions in copper wires 

and replace the atoms with voids that increase the resistance of the wire and over time causes an 

open circuit. In some cases, the knocked off atoms get attracted to the nearby conducting wires 

leading to closed circuits. The increase in resistance in the PDN leads to a degradation in supply 

voltage (Vdd) [16] which leads to further degradation of performance. With aggressive technology 

scaling, the impact of BTI, HCI, and EM on circuit and PDN aging are exacerbated leading to 

premature chip failure if no proper measures are taken during design and runtime.  

 

Figure 4 Creation of void (open circuit) and hillock (closed circuit) by electromigration in 

Cu wire [17] 
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1.2.2 SOFT ERRORS 

Soft errors are single event upsets (SEUs) and single event transients (SETs) that are caused 

due to the interaction of high energy particles such as protons, neutrons, and alpha particles or 

heavy ions with logic gates or memory cells. When an alpha particle strikes a PN-junction, as 

shown in Figure 5, it produces a funnel of electron-hole pairs that cause a current pulse that leads 

to a single or multiple bit flip event (soft error). With scaling down of technology nodes, the critical 

charge required for single or multiple bit flips is reduced, leading to higher soft error rates (SERs) 

[18]. Studies also showed that soft error rate (SER) is inversely proportional to the supply voltage 

(Vdd) as low supply voltage further lowers the critical charge required for SEUs [19]. SETs will 

become a persistent problem with chips that are designed to operate at high frequency, as the 

probability that the glitch due to an alpha particle strike propagates to a storage element is higher 

at a higher clock speed [20]. However, commercial CMPs are designed to operate at low Vdd and 

high frequency to gain the best power performance yield from the chip. Designing purely for 

performance results in CMPs that are prone to high soft error rates (SERs).  

 

Figure 5 Illustration of alpha particle strike on an NMOS transistor [21] 

 

1.2.3 POWER SUPPLY NOISE 

With shrinking transistor size, circuits are designed to run at a higher operating clock 

frequency to extract the best performance out of CMPs. However, components (e.g., cores) that 

operate at high clock frequency also introduce noise in the Vdd and ground power lines, which is 
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called Power Supply Noise (PSN) [22]. PSN is caused by the resistive drop (IR) and inductive 

droop (L×ΔI/Δt) in Vdd and ground power lines as shown in Figure 6 that is proportional to the 

resistivity and switching activity of the wires supplying current to the circuits. PSN leads to 

voltage emergencies (VEs) that, if left unchecked, can change the outcomes of applications 

executed on CMPs designed at sub-10nm technology. The occurrence of VEs is even more 

severe in cores and NoC routers that operate in near-threshold voltage (VT) regions in low power 

computing platforms.  

 

Figure 6 Illustration of voltage droop at core 1 due to switching activity in the neighboring 

cores in a 4-core NoC-based CMP [23] 

 

1.2.4 DARK SILICON 

The execution of parallel applications generates thermal-hotspots due to the higher transistor 

packing density of modern-day CMPs even with lower dynamic per-transistor power dissipation. 

In particular, some applications with compute-intensive threads lead to hotspots, as shown in 

Figure 7. These thermal hotspots exacerbate aging in circuits and PDNs, leading to shortening of 

the lifespan of the CMP. Hence, CMPs require an efficient cooling mechanism that draws 

additional power to bring down the on-chip temperature. A CMP that generates high temperature 

also draws high power for the cooling mechanism and increases the operational cost of the data 
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center that employs it. Hence, there is a need to limit the amount of heat generated by CMPs to 

lower the overall operational cost and increase the lifetime of the CMP. A thermal design power 

constraint (TDP) is often set to overcome this thermal challenge. In most CMPs today, at any given 

time, large sections of the chip remain inactive not to exceed this TDP. This phenomenon, called 

dark-silicon (because a part of the silicon chip must remain off or “dark” to meet TDP constraints), 

is growing as technology scales. By placing limits on how many components get activated at any 

given time, dark silicon constraints help cope with the power challenge but require new approaches 

to ensure performance quality of service (QoS) guarantees. 

 

Figure 7 Thermal hotspots in a 16-core CMP due to a compute-intensive workload with 6 

tasks running on adjacent cores (on the bottom left) [24] 

 

1.3. MEMORY BOTTLENECK PROBLEM IN MANYCORE ACCELERATORS  

Today’s CMPs are frequently integrated with general-purpose GPU accelerators (GPGPUs) 

on the same die or as extension cards that can be accessed via interfaces such as PCIe to enable 

execution of data-parallel applications in the domains of machine learning, big data, and pattern 

recognition [4]. GPGPUs are utilized in tandem with CPUs to extract performance out of a CMP 

that executes emerging applications. However, the growing parallelism in manycore GPGPUs 
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leads to high communication traffic between cores and main memory (DRAM). Traditional 2D 

mesh-based NoCs cannot handle the traffic conditions of GPGPUs which have many-to-few traffic 

pattern in the request packets, and few-to-many pattern in the reply packets, as shown in Figure 8. 

Such skewed on-chip traffic in GPGPUs leads to long wait times for reply data in the memory 

controller (MC) that is connected to DRAM. This phenomenon is referred to as the memory 

bottleneck problem [10].  

 

Figure 8 Many-to-few and Few-to-many on-chip traffic in GPGPUs. C nodes are Cores, and 

MC nodes are memory controllers [25] 

 

There is an urgent need for novel NoC and MC architectures to resolve this memory 

bottleneck problem in manycore accelerators as confirmed by prior work [10] [26]. However, 

NoCs in GPGPUs incurs high power and area overheads unlike NoCs in CPUs, due to the higher 

bandwidth requirements in GPGPUs. In deep submicron technology nodes with higher transistor 

density, having a power-hungry NoC may violate the dark silicon power budget of the CMP, 

making the manycore accelerators inefficient. Thus, there is a need to innovate and design new 

energy-efficient NoC and MC architectures to extract maximum QoS out of manycore GPGPU 

accelerators in CMPs.  
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1.4. SNOOPING ATTACKS IN 3PIP NOC BASED CMPS  

Lastly, today’s CMPs have hundreds of components that are designed, integrated, and 

fabricated at global facilities. Figure 9 illustrates the different stages involved in the design cycle 

of a system on chip (SoC). In the first stage, the specifications and the functional design aspects 

of an SoC are finalized. In the second stage, design engineers develop register transfer level (RTL) 

intellectual property (IP) blocks that are combined with the IPs of third party vendors and sent to 

the SoC design integration (third) stage. In the third stage, all the IP blocks are integrated and 

validated for functional correctness and sent to the manufacturing and post-silicon testing (fourth) 

stage. The third and the fourth stages are repeated for several iterations until the chip matches the 

specifications, and finally the chip is released for packaging and deployment (final stage). With 

growing complexity in SoC design, designers are opting for third party (3PIP) NoCs, e.g., NoC 

architectures from Arteris [27]. These 3PIP NoCs are ideal candidates for inserting hardware 

Trojans [28] inside the trusted hardware at the integration and fabrication stages of the IC design, 

as shown in Figure 9, to carry out security attacks through an untrusted accomplice malicious 

software. These hardware Trojans are malicious circuits that can be used to execute different types 

of attacks such as denial-of-service attacks (DoS), side-channel attacks on shared resources, or 

data snooping attacks. Especially with the cutthroat competition in the semiconductor industry that 

is backed by geopolitical rivalries, there is a growing utilization of hardware Trojans (HTs) in 

consumer electronic devices to spy on classified information [29] of the rival nation. 

A secure network-on-chip (NoC) is crucial for safeguarding sensitive data of parallel 

applications from leaking to malicious agents. However, traditional security enhancement 

techniques, such as key-based encryption and decryption mechanisms increase NoC latency and 

power consumption [30]. Hence, in CMPs, there is a critical need for unique lightweight security 
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enhancement mechanisms that safeguard the applications executing on the CMP from hardware 

Trojan attacks, without sacrificing overall application performance. 

 

Figure 9 Illustration of a system on chip (SoC) design flow with trusted and untrusted 

stages 

 

1.5. DISSERTATION OVERVIEW 

In summary, there is a crucial need for a holistic framework in CMPs that can cope with the 

conflicting nature of CMP design goals and challenges. Such a framework is not easy to 

conceptualize because of the complex inter-dependencies between design decisions, constraints, 

and optimization goals. For example, to enhance application performance, designers may run 

parallel applications at a high degree of parallelism (DoP; i.e., with more threads), which leads to 

an increase in transient faults due to soft errors. Such execution needs to occur at a high Vdd to 

minimize transient faults. However, this leads to faster chip aging (reduced lifetime), and pressures 

on the dark-silicon power budget that may end up ultimately reducing application throughput on 

the CMP. To address the above-mentioned problems, the main contribution of this dissertation is 

the design of a novel cross-layer resource management framework (RELAX) that enhances the 

performance of NoC-based 2D and 3D CMPs, while meeting a diverse set of platform constraints 

(e.g., dark silicon, reliability, thermal, security, and application execution deadlines).  
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Figure 10 Overview of RELAX: A cross-layer resource management framework for secure, 

reliable, and performance optimized NoC-based CMP 

 

Figure 10 shows a high level overview of the RELAX framework with our published 

contributions describing various facets of this framework in [31] [32] [33] [34] [35] [36] [37] [38] 

[39]. RELAX is a cross layer framework that combines system/OS level, core level, and NoC and 

memory interface level innovations towards the design of a NoC based CMP. The RELAX 

framework takes inputs from application metadata, platform performance counters, reliability 

models, and on-chip sensors to enhance the application performance on 2D and 3D CMPs while 

satisfying system level and chip level constraints such as (lifetime, power budget, thermal, 

security, and application deadlines). Each layer receives runtime feedback from other layers and 

together they jointly enhance the CMP performance without violating the chip-level and system-

level constraints. The rest of this dissertation is organized as follows: 

In chapter 2, we address the reliability challenges due to aging in 3D NoC based CMPs. We 

propose a novel aging-aware resource management framework called ARTEMIS [31] that 
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maximizes the work performed over the lifetime of the CMP. In ARTEMIS, we propose a runtime 

application mapping and DVS-scheduling framework that can adapt to different aging scenarios 

to extend the lifetime of a 3D NoC-based CMP. ARTEMIS considers aging in both circuits (VT-

degradation) and power delivery network (IR-drop), unlike any other prior work on application 

scheduling in CMPs. Furthermore, ARTEMIS also does a novel aging enabled NoC routing path 

allocation to produce a balanced core-router aging profile to extend the lifetime of the NoC. In 

addition, this framework also meets chip-wide power constraints, thus finding applicability in 

contemporary power-constrained CMP designs.  

In chapter 3, we address the challenge of meeting application quality of service (QoS) in the 

presence of permanent faults due to aging and transient faults due to bit flips in 2D NoC based 

CMPs. As explained at the beginning of this section, it is challenging to minimize aging and 

mitigate soft errors simultaneously as their respective solutions have counter-productive effects on 

each other. Hence, we propose a novel low power checkpointing based runtime framework called 

CHARM [32] to meet the target lifetime of a CMP in the presence of soft-errors and application 

deadline constraints. CHARM dynamically manages application degree of parallelism (DoP), Vdd 

and execution frequency, to minimize the overheads of checkpointing-and-rollback mechanism 

required for error correction due to transient faults. CHARM also incorporates a reliability-aware 

NoC routing scheme that balances the NoC router and core aging in the presence of soft-errors and 

application deadlines. As a result, CHARM achieves higher application throughput compared to 

best known prior work without violating the chip-wide dark silicon power budget. 

In chapter 4, we propose a runtime framework called PARM [33] that minimizes peak power 

supply noise in low power CMPs that operate at near-threshold voltages. PARM reduces the total 

number of voltage emergencies (VEs) caused due to power supply noise (PSN) in the presence of 
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a dark silicon power budget and application deadline constraints. PARM assigns application 

mapping regions, DVS schedules, and adaptable DoP to applications arriving at runtime, to 

minimize the variation in switching activity between cores, which is the root cause of PSN in 

CMPs. Besides, PARM also encapsulates a PSN-aware NoC routing scheme called PANR that 

trades off communication latency with switching activity of the NoC routers to balance the 

switching variations between cores and NoC routers with high switching activities. This results in 

lowering the error correction overhead incurred by the checkpointing-and-rollback mechanism 

required to correct the faults caused by VEs.   

In chapter 5, we analyze the root cause of the memory bottleneck problem in GPGPU based 

CMPs and propose a memory-aware, and latency optimized, fast overlay NoC called RAPID [34]. 

In RAPID, we divide the NoC into a request and reply plane. We propose a novel NoC router 

architecture in the reply plane of the NoC called hinge router which is tailor-made for the many-

to-few and few-to-many traffic pattern in manycore GPGPU accelerators. Besides, we also 

propose a novel memory controller called burst MC which is enhanced to prioritize the incoming 

burst of read requests that create congestion at the MC-NoC interface. The proposed NoC and MC 

architectures consume lesser energy than the state-of-the-art architectures that address the memory 

bottleneck problem.  

In chapter 6, we further analyze the traffic pattern of GPGPU accelerators and resolve the 

memory bottleneck problem. We utilize the approximate computing paradigm to address the 

memory bottleneck in GPGPUs by proposing a data-aware approximate NoC architecture called 

DAPPER and a novel memory controller architecture called AMC [39]. In this contribution also, 

we divide the on-chip communication traffic into request and reply planes. In the request plane, 

we leverage the row buffer locality (RBL) and bank level parallelism (BLP) of the requests and 
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design a new scheduler that minimizes the DRAM latency. In the reply plane, we leverage the 

approximability of the data waiting in the MC output queues to coalesce the reply data and reduce 

the NoC traffic between MCs and GPGPU cores. We then utilize the fast overlay circuit 

architecture to transmit the coalesced data to destination cores in less than 3 clock cycles, which 

is significantly lower than in conventional NoC architectures. DAPPER+AMC improves NoC and 

MC throughput while minimizing the NoC and DRAM latency as well as total energy consumed 

by manycore GPGPU accelerators without sacrificing more than 1% of output correctness. 

In chapter 7, we focus on resolving security vulnerabilities in CMPs that use 3PIP NoC [38]. 

Data snooping is a significant threat in 3PIP NoCs. Hardware Trojans that are embedded in 3PIP 

NoC during design/fabrication/integration stages can potentially duplicate the sensitive application 

data and send it to a listener core that is executing a malicious application. In this chapter, we first 

demonstrate how a low power hardware Trojan can be placed in a network interface (NI) of a 3PIP 

NoC that consumes low area overheads, making it difficult to detect using functional verification 

and side channel analysis. We then propose a novel snooping invalidation module called SIM that 

is located between network interface (NI) and NoC router to detect the duplicate packets that are 

injected by the Trojan in the malicious NI and mitigate the snooping attack. Furthermore, we also 

propose a threshold activated NoC snooping detection module called THANOS, which is located 

between trusted cores and the untrusted 3PIP NoC to detect the source of an on-going snooping 

attack. THANOS is also designed to be hard to reverse engineer or get tampered by physical 

inspection attacks.  

Chapter 8 concludes this dissertation. We summarize our comprehensive body of research 

in this chapter and also make recommendations for future work. 
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2. ARTEMIS: AN AGING-AWARE RUNTIME APPLICATION MAPPING 

FRAMEWORK FOR 3D NOC-BASED CHIP MULTIPROCESSORS 

 

In emerging 3D NoC-based chip multiprocessors (CMPs), aging in circuits due to bias 

temperature instability (BTI) stress is expected to cause gate-delay degradation that, if left 

unchecked, can lead to untimely failure. Simultaneously, the effects of electromigration (EM) 

induced aging in the on-chip wires, especially those in the 3D power delivery network (PDN), are 

expected to notably reduce chip lifetime. A commonly proposed solution to mitigate circuit-

slowdown due to aging is to hike the supply voltage; however, this increases current-densities in 

the PDN due to the increased power consumption on the die, which in turn expedites PDN-aging. 

We thus note that mechanisms to enhance lifetime reliability in 3D NoC-based CMPs must 

consider circuit-aging together with PDN-aging. In this chapter, we propose a novel runtime 

framework (ARTEMIS) for intelligent dynamic application-mapping and voltage-scaling to 

simultaneously manage aging in circuits and the PDN, and enhance the performance and lifetime 

of 3D NoC-based CMPs. We also propose an aging-enabled routing algorithm that balances the 

degree of aging between NoC routers and cores, thereby increasing the combined lifetime of both. 

Our framework also considers dark-silicon power constraints that are becoming a major design 

challenge in scaled technologies, particularly for 3D stacked CMPs. Our experimental results 

indicate that ARTEMIS enables the execution of 25% more applications over the chip lifetime 

compared to state-of-the-art prior work. 

 

2.1. MOTIVATION AND CONTRIBUTION 

Bias Temperature Instability (BTI) is the most dominant physical phenomenon that degrades 

the maximum switching rate of transistors under long periods of voltage stress in emerging chip 
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multiprocessors (CMPs) [11]. BTI causes gradual circuit slowdown over the operational lifetime 

of the electronic chip. For systems manufactured at technology nodes below 45nm, BTI-induced 

delay-degradation can be quite significant [40], [41]. The principal effect of such a circuit-aging 

mechanism is to increase circuit-threshold voltage (VT), which results in higher circuit-delay. From 

a system-level perspective, such VT-degradation causes slowdown in critical paths of processor-

cores and network-on-chip (NoC) routers, thereby limiting overall system performance. With 

increasing demand for reliable CMPs with longer lifetimes in non-consumer domains such as 

aerospace, defense, automobile, and health, prolonging the useful CMP lifetime will be very 

beneficial.  

Additionally, electromigration (EM) in metal wires on the chip leads to increased 

interconnect resistance over time in CMPs. This phenomenon is most dominant in power delivery 

network (PDN) wires that carry larger unidirectional currents compared to signal wires [15], [12]. 

The increased resistance of the power-grid results in higher IR-drops in the PDN, which causes 

further circuit slowdown due to degradation of supply voltage [16]. These adverse effects of EM 

are expected to be particularly severe in 3D CMPs that possess limited number of power-pins and 

higher current densities [42]. Also, with process technology scaling, this problem is exacerbated 

due to the reduction in cross-sections of metal wires, which causes further increase in PDN current-

densities [15]. 

To mitigate BTI-induced delay degradation, while maintaining circuit operation at a 

minimum clock frequency (i.e., minimum performance level), one solution is to hike the supply 

voltage [43] adaptively over time based on the degree of circuit-aging. However, doing so 

increases current-densities in the PDN due to the increased power dissipated in the chip as a result 

of the voltage-hike. High current densities end up causing faster EM-induced PDN-aging [44], 
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hastening circuit-slowdown. Hiking supply voltage also increases VT-degradation, further 

increasing the rate of circuit-aging.  

As aging reduces the viable lifetime of current and emerging CMPs, it is becoming 

increasingly important to consider it during the design process. Unfortunately, designers today are 

more focused on meeting performance requirements, and resort to either using costly hardware 

guardbands to minimize the effect of performance variations on a die, or employing large supply 

voltage guardbands to ensure a reliable voltage supply, that ends up increasing power densities 

and peak temperature of chip, resulting in shortening chip lifetime. Practical and low-cost solutions 

to enhance lifetime are thus becoming essential, especially in dense 3D CMPs fabricated in scaled 

technologies. As noted earlier, such solutions must also consider the interdependence between 

BTI-induced circuit aging, supply voltage, and EM-induced PDN-aging.  

Yet another challenge facing CMP designers is the rise in on-chip power dissipation. The 

slowdown of power scaling with technology scaling, due to leakage and reliability concerns [45], 

[46], has led to high chip power-densities, giving rise to the dark-silicon phenomenon, whereby a 

non-negligible fraction of the chip must be shut down at any given time to satisfy the chip power-

budget. With the extent of dark-silicon increasing with every technology-generation [47], [48], 

designs are becoming increasingly power-limited rather than area-limited. Therefore, runtime 

power-saving techniques such as dynamic voltage scaling (DVS) are of paramount importance to 

extract much needed performance given a stringent chip-wide power-budget. 

To simultaneously address all the above mentioned challenges related to aging, power 

dissipation, and performance facing chip designers, in this chapter we propose a novel runtime 

aging-aware application-mapping framework called ARTEMIS. Our framework is intended for 3D 
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NoC-based CMPs and aims to increase the useful work performed over the lifetime of these chips, 

while meeting the dark-silicon power-budget (DS-PB) and application performance goals. The 

novel contributions of in this chapter are summarized below: 

• We propose a novel runtime application-mapping and DVS-scheduling framework that can 

adapt to different aging scenarios to extend the lifetime of a 3D NoC-based CMP; 

• As the impacts of PDN-aging and circuit-aging (for cores and NoC routers) on system-

performance are correlated, our framework considers aging in these components, unlike any 

prior work, while making mapping decisions to alleviate system aging; 

• Our methodology to evaluate system-aging and the resulting maximum-attainable performance 

accounts for progressive effects of IR-drops due to PDN-aging, VT-degradation due to circuit-

aging, and temperature profiles over the chip lifetime; 

• We design a novel symmetric aging-enabled NoC routing path allocation (SAR) heuristic to 

produce a balanced core-router aging profile to extend the lifetime of the NoC. In addition, SAR 

efficiently trades-off aging with network-congestion in the NoC; 

• Our framework also meets chip-wide power constraints, thus finding applicability in 

contemporary power-constrained (dark-silicon afflicted) multicore designs. 

 

2.2. RELATED WORK 

In recent years, several researchers have proposed run-time and design-time application 

mapping techniques to address the problem of circuit-aging in CMPs. Tiwari et al. [43] suggest 

mapping high-power tasks onto faster (less-aged) cores and low-power tasks onto slower cores, 

thereby “hiding” the aging in the chip. At the same time, they propose to lessen aging by scaling 

the supply voltage or the threshold voltage. Feng et al. [49] perform “local wear-leveling” by 



20 
 

scheduling tasks on cores while considering circuit-aging in sub-core components. But such wear-

leveling approaches where “younger” cores are prioritized over aged cores without considering 

application-performance (frequency) requirements lead to higher leakage power dissipation as 

faster cores are also leakier, which expedites aging. Thus, in the dark-silicon regime where 

performance is closely tied to power, wear-leveling techniques are usually sub-optimal. 

Some of the recent works propose aging-aware frameworks that discretize target lifetime of 

the chip into finer lifetime constraints, and perform runtime management to satisfy a pre-defined 

target lifetime and system performance goal. For instance, Mintarno et al. [41] use frequency, 

voltage, and cooling power as control parameters to optimize the energy-efficiency of a system 

while meeting lifetime targets. Paterna et al. [50] propose a linear-programming based task-

allocation solution to optimize energy, while [51] performs voltage tuning over shorter time-

intervals to meet aging constraints over longer time-intervals. But these techniques are either too 

time consuming to be viable for runtime decision making, or require comprehensive knowledge of 

future application characteristics, which may not be available in many environments where CMPs 

are used. In [52], M. H. Haghbayan et al. have proposed a lifetime aware runtime mapping 

framework that maps tasks on to cores to meet the dark-silicon power budget and satisfy the target 

reliability till the end of the chip lifetime. However, they have not considered other viable resource 

management approaches such as Dynamic Voltage Scaling (DVS) to execute more applications 

within a given dark- silicon power budget. They have also considered a 2D CMP where the impact 

of electro-migration (EM) is not predominant. However, recent chip designers and manufacturers 

are gravitating towards 3D CMPs, where the degradation (due to EM) in power delivery networks 

(PDN) can potentially slow down performance of on-chip components such as cores and NoC-

routers. Having redundant cores is a viable solution in a processor with a small core count. But, as 
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the core count increases, redundancy based schemes will incur very high power and area 

overheads, which is impractical in dark-silicon power constrained chips. In [47], Kapadia et al. 

have proposed a process variation aware framework for application mapping to improve the 

reliability due to soft errors in the dark-silicon era.  

More recent works have considered on-chip temperature profile as a prime contributor to 

circuit-aging and propose techniques to reduce the peak on-chip temperature with thermal-aware 

mapping techniques. Gnad et al., in [53], have proposed a framework that uses an offline generated 

frequency degradation table for various applications to estimate the aging-induced frequency 

degradation in cores before mapping, for efficient aging and dark-silicon management on a 2D 

CMP. Their framework has objectives similar to ARTEMIS, but when applied to a 3D CMP, it 

ignores PDN-aging. Further, they aim to minimize circuit-aging and power consumption in cores, 

while ignoring other on-chip components such as NoC. In [54], Singh et al., have proposed a 

mapping technique to reduce the energy consumption and the peak on-chip temperature while 

improving the application throughput of 3D video processing applications on 3D CMPs. Even 

though thermal-aware mapping minimizes aging to an extent in 2D CMPs, mitigating aging in 

cores and PDN simultaneously in 3D CMPs requires a mapping technique that is cognizant of 

degradation profiles of both cores and PDN along with the prior knowledge of workload that is 

executed on them. In [55], [56], Pasricha et al. have proposed a fault tolerant and energy efficient 

NoC routing scheme for 2D and 3D NoC based systems In [57], Rehman et al. have proposed a 

framework to address the reliability challenges due to soft-error induced failures. Their framework 

aims at leveraging the knowledge of on-chip variation and aging profiles to efficiently choose the 

hardware-software reliability mitigation and application mapping techniques, to improve the 

reliability of 2D CMPs. Unlike their framework, we balance circuit- as well as PDN-aging and 
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increase the useful lifetime of 3D CMPs in the presence of dark-silicon. In [58], a novel 

temperature-model is proposed that considers both spatial and temporal dependencies. This model 

is used by a design time task scheduling and operation point assignment mechanism, to jointly 

optimize reliability and energy of multimedia applications represented using streaming data flow 

graphs (SDFG). However, a design time task assignment does not efficiently capture a run-time 

aging profile caused by dynamic workload characteristics found in most of today’s CMPs. In [59], 

a run-time task scheduling framework is proposed to minimize the communication energy 

consumed, without effecting the throughput of multimedia applications on heterogeneous 

multicore systems in the presence of permanent and intermittent failures. In [60], a scenario-aware 

fault injection model is proposed to model intermittent failures caused by wear-out mechanisms 

on 2D MultiProcessor-System-on-Chips (MPSoCs). They further propose a wear-out-aware 

application mapping technique that maps applications based on the intermittent failure rate, which 

is an indicator of chip aging. However, this work ignores the presence of dark silicon power 

constraint that is prevailing in most of today’s multicore processors. Also, all these works do not 

consider the impact of aging in PDN. To the best of our knowledge, this work is the first work on 

lifetime-aware application mapping at runtime that considers the impact of PDN-aging on the 

lifetime of the chip, and is also tailored for the power-constrained dark-silicon design regime.  

 Aging is a concern not just for computation cores but also for NoC fabrics that connect these 

cores together. But very few works have investigated design-techniques that extend the service life 

of the NoC fabric. Bhardwaj et al. [61] have proposed an aging-aware adaptive routing algorithm 

that routes packets along the paths that are both less congested and experience smaller aging stress. 

But the authors do not consider aging in compute-cores. Our work represents one of the first efforts 
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to extend the useful lifetime of the entire chip by producing a balanced core-router aging profile, 

with our proposed symmetric aging-enabled routing path allocation (SAR) heuristic. 

 

Figure 11 Example of a 3D package for a 36-core CMP (4x3x3 3D-mesh) with a regular 3D 

power-grid that has 108 external power-pins and 108 grid-points per tier (16 grid-points 

supplying to each core). Not all vertical branches of PDN are shown, for brevity. 

 
2.3. MOTIVATION 

In this section, we illustrate the advantages of our ARTEMIS framework with the help of a 

small example. We consider a scenario in which applications arrive at runtime to be executed on 

a 36-core CMP with a core capable of executing a single thread (task) at a time. The example 

assumes a 4-thread application being mapped on to the cores of a 3D-CMP at time t, when a 12-

thread application is already executing on the bottom tier (shown in purple in Figure 11). In a 3D-

CMP, a 2D region of tiles in a central layer with less VT-degradation can have a relatively high 

PDN degradation due to the current flowing through the PDN in middle layer, to supply the 

applications that ran in the bottom layer. The variation in PDN degradation is depicted by red and 

green colored tiles and lines in Figure 11 where red PDN lines supplied more current to 

applications in the bottom layer than green PDN lines. When an aging-aware wear-leveling 

technique based on prior work [43], [49] is used, the application would be mapped to the 

rectangular region (shown in red) containing cores with the least VT-degradation, i.e., the region 
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with the youngest cores. Observe that the vertical PDN branches supplying to this region have 

high degradation (higher resistance values due to past stress). Alternatively, although the green 

rectangular region has more VT-degradation, the PDN IR-drops sustained by it are lower than the 

red region. By always prioritizing mapping of applications on to the youngest cores, without 

considering the resulting impact on EM-induced degradation in the PDN, resistances of already 

stressed PDN-wires would be further increased, thus exacerbating PDN-degradation. Therefore, 

ARTEMIS considers both VT-degradation and PDN-degradation while making mapping decisions 

to limit PDN-degradation while guaranteeing that performance and power constraints are met on 

a 3D NoC-based CMP. 

Additionally, the maximum frequency (fmax) of a core is affected by both the PDN IR-drops 

(which affects Vdd) as well as VT-degradation:  

              𝒇𝒎𝒂𝒙 =  
𝝁(𝑽𝒅𝒅−𝑽𝑻)𝜶 𝑪𝟎.𝑽𝒅𝒅                  ... (1) 

where α and μ are technology-dependent constants, and C0 is switching capacitance of the critical 

path [62]. Approximate values of these constants are listed in Table 1. 

Table 1. Thus, any mapping solution obtained without consideration of IR-drops experienced by 

cores can potentially lead to undesirable timing-errors. 

In summary, the wear-leveling based application-mapping approach (i.e., always choosing 

the youngest cores) that is used in several prior works would increase leakage power, and hence 

temperature, thus resulting in higher circuit-aging. In addition, higher leakage power dissipation 

would cause increased supply currents to be drawn from the PDN resulting in higher PDN-aging. 

In contrast, ARTEMIS prioritizes older (slower) cores that can support application frequency 
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constraints without requiring hiking of Vdd-levels. The next section presents our problem 

formulation, followed by details of the ARTEMIS framework in Section 2.2.5. 

 

2.4. PROBLEM FORMULATION 

 

2.4.1 MODELING BTI-INDUCED CIRCUIT AGING 

 In this work, we model circuit aging effects arising from BTI-induced circuit degradation, 

as BTI has been found to be one of the most dominant aging mechanisms in emerging 

semiconductor technologies. But, our framework is capable of supporting models of other aging-

mechanisms (HCI, TDDB etc.) as well. Velamala et al. [63] [64] have shown that a 

Trapping/Detrapping (TD) based BTI model is capable of accurately predicting the degradation 

under a sequence of Vdd’s used in the DVS operation. They have noted that when the supply 

voltage is changed from a higher Vdd to lower Vdd, the circuit-degradation undergoes recovery; 

this recovery behavior is not captured by conventional Reaction-Diffusion (RD) models. 

Therefore, our analysis of circuit-aging over the CMP-lifetime is based on the long-term aging 

prediction model proposed in [63], which accounts for different Vdd-levels over time. We estimate 

the effective ΔVT increase that a component (computation core or NoC router) experiences over a 

time-interval of t using equations (2) and (3): 𝜟𝑽𝑻(𝒕) = 𝑳. [𝑨 + 𝑩𝒍𝒐𝒈(𝟏 + 𝑪𝒕)]                   .. (2) 𝑳 = 𝑲𝟏. 𝐞𝐱𝐩 (−𝑬𝟎𝒌𝑻 ) . {𝒆𝒙𝒑 ( 𝜷𝑽𝟏𝑻𝒐𝒙𝒌𝑻) . 𝜶𝟏 + ⋯ + 𝒆𝒙𝒑 ( 𝜷𝑽𝑺𝑻𝒐𝒙𝒌𝑻) . 𝜶𝑺}   .. (3) 

where Vi is the ith Vdd-level utilized by the component for a time-duration αi, S is the total number 

of allowable Vdd-levels, and {α1+α2+...+αS} ≤ t. T is the average temperature of the component 

during corresponding αi. We obtain A,B, and C and other parameter-values in equations (2) and 
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(3) by solving the equations given [11], [63]- [65] that are validated against silicon data. Values 

of constants used in equations (2) and (3) are listed in Table 1. 

Table 1 Values of constants used in the models of BTI and EM aging 

Constant Description Value 𝜇 Mobility of the charge carriers 1000 cm2/V.s 𝛼 Technology dependent constant 2 𝐾1 Poisson parameter for trap distribution 0.0075 𝐸0 Electric field across the channel 0.1897 eV 𝑘, 𝑘𝐵 Boltzmann constant 0.000086 𝑇𝑜𝑥 Oxide thickness 1.4 nm 
Deff Effective diffusivity 6.7×10-15 
σc Critical stress 4.1×106 Pa Ω Atomic volume 1.182×10-29 m3 
ρ Resistivity of Cu 2.5×10-8 Ω.m 
B Effective bulk modulus for the Cu-dielectric system 109 
e Charge of an electron 1.602×10-19 C 

Zeff Apparent effective charge number 5.0 
Lwire Length of the wire 50um 

 

2.4.2 MODELING EM-INDUCED PDN AGING 

To model the phenomena of void nucleation and void growth in every horizontal and vertical 

on-chip wire, particularly those in the PDN that are under the most stress, we use the EM model 

proposed in [66] for copper (Cu) interconnects in the power grid. equation (4) gives the time tn at 

which the void nucleates: 

𝒕𝒏 = 𝑲𝒕𝑫𝒆𝒇𝒇,  𝑲𝒕 = 𝝅𝟒 ( (𝝈𝒄)𝟐𝛀𝒌𝑩𝑻(𝒆𝒁𝒆𝒇𝒇𝝆𝒋)𝟐𝑩)             ….. (4) 

Once the void nucleates at time tn, then at an observation time t0, the length of the void Lvoid 

is: 𝑳𝒗𝒐𝒊𝒅(𝒕𝟎) = (𝑫𝒆𝒇𝒇𝒌𝑩𝑻 ) 𝒆𝒁𝒆𝒇𝒇𝝆𝒋(𝒕𝟎 − 𝒕𝒏)             ….. (5) 



27 
 

The length of the void in a Cu wire increases with the product of electrical current and the 

time-duration for which the current flows through it. The length of the void in turn determines the 

increased resistance (ΔR) or degradation of the wire, which is given by:  

     ∆𝑹 = 𝒄. 𝑹𝟎 (𝑳𝒗𝒐𝒊𝒅𝑳𝒘𝒊𝒓𝒆)                      ….. (6) 

where R0 is the resistance, constant c depends on the resistivity and cross-sectional area, and Lwire 

is the wire-segment length. Table 1 lists the values we used for the constants in equations (6).  

 

2.4.3 INPUTS, ASSUMPTIONS, AND PROBLEM OBJECTIVE 

We have the following inputs to our problem: 

• A 3D NoC-based CMP with a 3D mesh NoC, of dimensions (dimx, dimy, dimz) and number of 

tiles N = dimx×dimy×dimz with each tile containing a compute core and a NoC router; 

• A set S of candidate supply voltage (Vdd) levels for the chip; 

• A chip-wide dark-silicon power budget (DS-PB); 

• An application task graph for each application: vertices with task execution-times on compute 

cores and edges with inter-task communication volumes; execution time and volume values 

are assumed available from offline profiling; 

• Degree of parallelism (DoP) of each application, and a set of n admissible rectangular/cuboidal 

shapes (x, y, and z dimensions) of regions that it could be mapped to {B1,…, Bn}; e.g., a tuple 

set {2×4×1, 4×2×1, 2×2×2} for an application with DoP=8; 

• A minimum operating frequency (and thus a corresponding maximum execution time) 

constraint for each application; 
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• A regular 3D power grid, with p×p grid-points supplying to each core and dimx×dimy×p×p 

power-pins at the top of the 3D-die, and an air-cooled heat sink at the bottom of the 3D-die;  

We make the following assumptions in our work: 

• Applications can arrive in any order at runtime and must be mapped onto the 3D CMP while 

satisfying application-specific maximum execution time and minimum frequency constraints; 

• There exists one-to-one mapping between tasks and cores, i.e., a core can execute only one 

task (thread) at any given time; 

• Applications are mapped contiguously on non-overlapping rectangular (on single tier) or 

cuboidal (across multiple tiers) shaped regions of the 3D CMP for inter-application isolation 

and more optimized communication-profiles (as recommended in prior works such as [67]); 

thread-migration is not considered; 

• A chip-wide supply voltage exists that can be scaled using DVS at runtime, as the overheads 

of implementing DVS at a per-core granularity are high for CMPs with very large core counts 

[68]; 

• Similar to prior-works (e.g., [41], [49], [51]) we assume presence of on-chip aging-sensors 

[69], [70] that provide aging information of compute-cores and NoC routers to our framework; 

we also assume voltage-sensors [71] at each power-input (PDN-grid-point) of a CMP-tile that 

track the severity of IR-drops (i.e., the degree of PDN-degradation on PDN-paths supplying to 

that core); 

• From the on-chip sensors, runtime sensed data (at a per-tile granularity), in terms of threshold-

voltage (VT) distribution and maximum IR-drops, is available after every epoch; our aging 

models (discussed in Sections 2.4.1 and 2.4.2) emulate runtime readings from sensors on real 



29 
 

chips. We define an epoch as the time-period during which the aging profile of the chip can be 

assumed to be constant; 

• The 3D CMP is rendered unusable (end of lifetime) when an incoming application is unable to 

be executed (i.e., when its minimum application frequency requirement cannot be supported) 

on any of the allowed rectangular/cuboidal regions, at any Vdd level without violating the DS-

PB constraint, when there are no other applications running at that time. 

Objective: Given the above inputs and assumptions, our objective with the ARTEMIS framework 

is to perform runtime application-mapping and DVS-scheduling on a given 3D NoC-based CMP 

platform such that the total number of applications executed over the lifetime of the chip is 

maximized, while all application-specific minimum operating frequency- and maximum runtime-

constraints, as well as CMP platform-specific DS-PB constraints are satisfied.  

 

2.5. ARTEMIS FRAMEWORK: OVERVIEW 

This section explains the design flow of the framework that involves the actual mechanism 

of run-time mapping and DVS selection along with the simulation of circuit- and PDN-aging in 

cores and routers. In manufactured CMPs, compact aging sensors such as the ones proposed in 

[69], [70], and [72] can be used to measure the on-chip aging profile. These sensors are amenable 

to use in standard cell design with minimal area and power overhead. They can be implemented in 

large numbers along the top 10% of component’s critical paths to collect high volume digital data 

on device degradation. 

ARTEMIS is a run-time application mapping framework that processes applications from the 

top of the service queue, where the applications are stored as they arrive in the run-time. The run-
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time framework receives periodic feedback (at the end of each epoch) from on-chip aging and 

power sensors (simulated models), that is used for aging- and dark-silicon-aware mapping and 

DVS scheduling. At any given time, the scaling-down of Vdd via DVS-scheduling to save power 

and to limit aging is limited by the frequency-constraints of the applications running on the 3D 

NoC-based CMP, whereas scaling-up of Vdd is constrained by the DS-PB. 

The key aspects of our proposed framework are illustrated in Figure 12. The Run-time 

application-mapping consists of assigning the application task-graph on to a chosen rectangular- 

or cuboidal-shaped region of tiles on the 3D CMP admissible for the application (from the list 

{B1,…,Bn}), as well as performing routing path allocation of the intra-application communication-

flows on the 3D NoC. The knowledge of the chip-aging profile is continuously utilized in the 

application-mapping and DVS scheduling steps.  

 

 

Figure 12 Overview of ARTEMIS runtime aging-aware application-mapping and DVS-

scheduling framework 
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The ARTEMIS framework is executed in two nested procedures: (i) Aging-aware application 

mapping and DVS (inner-loop); and (ii) Circuit- and PDN-aging analyses (outer-loop). These 

procedures are discussed in Sections 2.5.1 and 2.5.2 respectively, and the design flows for the two 

procedures are shown in Figure 13 (a) and Figure 13 (b). 

 

2.5.1 AGING-AWARE APPLICATION MAPPING AND DVS SCHEDULING 

 During each epoch at runtime, we assume that applications arrive for execution on the 3D 

NoC-based CMP. Suppose a sequence of l applications arrives in an epoch. Aging-aware 

application mapping and DVS module (inner-loop) is responsible for mapping these l applications 

onto the CMP during the epoch. If an application cannot be mapped immediately after it arrives, 

it is kept in a service queue, and mapped later. We assume processing of the service-queue on a 

first-come-first serve basis (although a priority-based processing approach could also be used). At 

the end of the epoch, aging information is updated from the on-chip circuit-aging sensors as well 

as the voltage sensors (this information is utilized by inner-loop during the next epoch). 

Subsequently, a new application sequence is serviced during each new epoch, and this process 

continues until the end of the lifetime of the 3D NoC-based CMP.  

At the start of an epoch, the application-service queue is initialized to point to the first 

application (app_ptr=0), and the local time counter1 is initialized to zero, as shown in Figure 13 

(a). Processing of the service-queue event is triggered, (i.e., new applications are serviced) when 

an application arrives or an existing one terminates. Once the event is triggered, an application 

instance is removed from the front of the queue and processed by the aging-aware mapping and 

Vdd selection phase (Figure 13 (a); discussed in section 2.5.1.1). Applications from the queue 

continue to be processed one-by-one until an “application stall” event is detected. An application 
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in a service queue can be stalled only due to the following reasons: (i) available tile constraints on 

the 3D-die; (ii) DS-PB constraint; or (iii) application frequency constraints for the given 

degradation profile of the 3D-CMP. Note that if an application is stalled when there are no other 

applications running, i.e., the chip-degradation (VT- and PDN-degradation combined) precludes it 

from meeting the application-frequency constraints, the 3D NoC-based CMP is considered as no 

longer usable and has reached its end of life. 

 

(a)                             (b) 

Figure 13 ARTEMIS design-flow: (a) Aging-aware application-mapping and DVS 

scheduling (inner loop; section 2.5.1.1); (b) Circuit- and PDN-aging analyses (outer loop; 

section 2.5.1.2). The boxes with dotted outlines are used as part of our aging-simulation 

framework; however, these steps are not required on real hardware where runtime aging 

information is assumed to be available from on-chip sensors. 
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When an “application stall” is detected or the application-service-queue becomes empty for 

the current epoch, the application(s) that have been processed by the mapping/selection phase 

(discussed in section 2.5.1.1) are mapped on to the appropriate tiles chosen by the phase. At this 

time (local time), either one or more new applications are mapped on to the 3D-CMP or an 

application just ended (which triggered the service-queue), thus the steady-state computation-

profile (i.e., CMP tile-power values, the resulting supply currents in the PDN, and thermal-profile) 

of the 3D-CMP changes. To evaluate the new computation-profile, given the tile-power-

distribution, thermal-analysis is performed to re-evaluate the thermal-profile (at per-tile 

granularity) and PDN-analysis is performed to evaluate all the branch currents and voltage-drops 

at all grid-points in the PDN. Also, a worst-case IR-drop value (WC-IR-drop, which is the 

maximum voltage-drop out of all grid-points supplying to a tile) is evaluated for each of the N 

tiles. The WC-IR-drop value is updated for each tile (at every change of computation-profile) over 

the chip-lifetime and continuously used to calculate the maximum-frequency of the tile (for a given 

Vdd) in the application-mapping step. The thermal- and PDN-analysis is discussed in sections 

2.5.1.2 and 2.5.1.3, respectively. After the mapping/selection phase, thermal-analysis, voltage (V), 

and temperature (T) values, as well as the WC-IR-drop values in the time-window ti for this (ith) 

computation-profile, is saved in the system-stats, as shown in Figure 13 (a). 

Additionally, if one or more applications are mapped at the current local time, the active-

times (AT’s) of compute-cores and NoC routers are calculated for each newly mapped application. 

For each tile, these AT’s could be represented as {Cj, Rj, tj}, where Cj and Rj take values of ‘1’ or 

‘0’ depending on whether the corresponding compute-core or NoC router is active during the time-

window tj. These AT’s for compute-cores and NoC routers are also saved in system-stats. The 



34 
 

system-stats for all time-windows over the entire epoch duration are eventually utilized for aging-

analyses (in the outer loop) at the end of the current epoch.  

 After updating system-stats, local time is advanced to the next application finish-time, and 

the corresponding application is completed, (Figure 13 (a)). As part of our DVS strategy to save 

power and limit aging, on completion of any application, we reduce Vdd to the lowest allowable 

level that would not introduce any violations in frequency constraints of existing (already running) 

applications.  

 

2.5.1.1 APPLICATION-SPECIFIC MAPPING AND VDD-SELECTION 

 For the application under consideration, this phase consists of three steps: (i) circuit- and 

PDN-aging aware region selection and Vdd-selection, (ii) communication-aware task-to-tile 

mapping, and (iii) NoC routing path allocation. We describe these steps below. 

(i) Circuit- and PDN-aging aware region selection and voltage-selection: In our framework, an 

application with a given DoP can be mapped on to rectangular or cuboidal regions on the 3D CMP, 

with shapes to be chosen from a pre-defined list {B1,…, Bn} for that application. All intra-

application communication is contained within t closed region, thus application-isolation is 

maintained and communication cross-interference is eliminated. Our heuristic in this step utilizes 

the VT-degradation profile and the WC-IR-drop profile of the 3D CMP. The objective is to find 

the region on the 3D-mesh (with one of the admissible shapes) so as to: (a) minimize leakage-

power; (b) minimize EM-induced degradation of PDN-paths supplying to cores with high WC-IR-

drops; (c) satisfy the frequency-constraint of the application by all cores within the region; (d) 

satisfy the DS-PB. In other words, we search for CMP-regions with most circuit-aging that satisfy 
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minimum application-frequency constraints and have least WC-IR-drops. To this end, we define 

the following cost-function (Ψ) for joint optimization of leakage-power and PDN-degradation: 𝚿 = ∑ {𝜶. ( 𝐦𝐚𝐱 _𝑽𝑻−𝑽𝑻𝒌𝐦𝐚𝐱 _𝑽𝑻−𝒏𝒐𝒎_𝑽𝑻) + 𝜷 (𝑾𝑪_𝑰𝑹_𝒅𝒓𝒐𝒑𝒌𝐦𝐚𝐱 _𝑰𝑹_𝒅𝒓𝒐𝒑)}𝒌=𝑫𝒐𝑷𝒌=𝟏      ….. (7) 

where, VTk is the effective VT and WC-IR-dropk is the WC-IR-drop of the kth core within the 

region of DoP cores; nom_VT is the nominal (lowest) effective VT-value of a core with no aging; 

and α and β are weighting coefficients. We define max_VT as the maximum VT value that the core 

can support for an ideal (zero) WC-IR-drop (at highest Vdd) while meeting the frequency-constraint 

of the application. Similarly, max_IR_drop is the maximum tolerable WC-IR-drop for a core for 

nominal VT and highest Vdd.  

Algorithm 1: Aging-aware region selection and Vdd-selection heuristic 

Inputs: VT-profile, WC-IR-drop profile, {B1, …, Bn} 

 

1: while (Vdd ≤ max_Vdd) do { 

2:  for each tile on the 3D NoC-based CMP do { 

3:   assume this tile to be at the minimum x, y, z coordinates of the region  
4:   for each shape in {B1, …, Bn} do {  
5:    if all tiles (compute-cores and routers) satisfy app-frequency  
6:     check if DS-PB is satisfied 
7:     calculate Ψ, choose this shape if least Ψ AND DS-PB satisfied  
8:    else go to next shape Bi (step 4) 
9:    end if  

10:  } // end for each shape … 
11: } // end for each tile … 
12:  if (no valid region found AND no DS-PB violation)  

13:   hike Vdd  
14:  end if  

15: } //end while 
16: if no valid region found 
17:   stall this application 
18: end if  

 

output: a valid region to map the application and Vdd-level, or “stall” 

 

Algorithm 1 shows the pseudo code of our region- and Vdd- selection heuristic. The heuristic 

performs a simple exhaustive search over all tiles on the 3D-mesh and over all admissible shapes 
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{B1, …, Bn} for the application under consideration. The VT-profile and WC-IR-drop profile inputs 

are used for calculating the value of Ψ. The region with the least Ψ value that satisfies the 

frequency-constraints (with maximum frequency for the selected Vdd level calculated using 

equation (1)) and at the same time does not violate the DS-PB (given that existing applications 

have been running), is selected for mapping the application under consideration. If no region on 

the 3D-mesh is found to satisfy the frequency-constraints, we repeat the search for successively 

higher Vdd-levels (which can allow using a higher frequency as per equation (1) with a better 

probability of meeting frequency-constraints) until either a valid region with minimal Ψ is found 

or the DS-PB is violated. If no valid region is found, an “application stall” event is initiated.  

We now present the theoretical time-complexity of this heuristic. At most N tiles (total tiles 

on the 3D NoC-based CMP) are considered for the prospective mapping region. Note that DoP of 

the application (relatively small integer c – treated as a constant) number of tiles are to be evaluated 

for frequency and leakage-power at each of these iterations. As, the number of candidate Vdd-levels 

|S| as well as the number of admissible shapes n are expected to be small constant integers, our 

region-selection step runs in linear complexity with respect to the number of tiles, N: O(cn|S|N). 

(ii) Communication-aware task-to-tile mapping: After the region on the 3D CMP has been selected 

(of size equal to application-DoP), our mapping heuristic maps the appropriate application-task-

graph on to the chosen CMP tiles. We utilize a fast and efficient communication-aware 

incremental-mapping approach (similar to that used in prior works such as [73] [74]) suitable for 

runtime use. 

(iii) Symmetric aging-enabled routing path allocation (SAR): In this step, we map the 

communication-flows of the current application on to the designated cuboidal region on the 3D 

NoC-based CMP. We propose an aging-enabled and congestion-aware routing scheme (SAR) to 
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produce a balanced core-router aging profile and extend the lifetime of the 3D NoC. The main 

objective of SAR is to minimize the number of runtime scenarios where application-mapping on a 

given cuboidal region is precluded due to aging in routers. Note that an application can be mapped 

only if all tiles (each tile has a compute-core and a NoC-router) within the region under 

consideration satisfy the minimum application-frequency constraint. Prior work on aging- enabled 

routing (such as [61]) considers the aging in NoC-routers but does not consider the aging in 

compute-cores. Such an approach could lead to a somewhat imbalanced aging within tiles of the 

CMP, thus potentially preventing application mapping onto desirable CMP regions due to 

excessive aging in NoC routers. SAR on the other hand enables symmetric aging on individual tiles 

of the 3D-CMP to extend the service life of NoC routers. Additionally, SAR efficiently trades-off 

aging with network-congestion in the NoC by selecting routing paths to maximize NoC-lifetime 

while leveraging the knowledge of maximum execution time constraints of applications, i.e., the 

aging metric in the routing cost function is prioritized by varying degrees, given the time-slack 

available for application-completion.  

To ensure a low-overhead implementation, path diversity, and deadlock freedom, our routing 

algorithm builds on the 4N-First turn model [55] for 3D-mesh NoCs. This routing algorithm is 

partially adaptive, and hence allows the flexibility to potentially select from among multiple next 

hop directions, at each router. We designed a cost-function for next-hop selection during routing 

that considers the difference between router-aging and core-aging (router_VT – core_VT) values to 

ensure balanced aging in CMP tiles. Moreover, as congestion in the NoC-links leads to excessive 

routing delays and thus longer application-runtimes, we prefer allocating flows to links with lesser 

communication-volumes. The following routing cost function (Rtcost), which is a linear 
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combination of the two normalized metrics, is used to make routing decisions at each hop along 

the path: 𝑹𝒕𝒄𝒐𝒔𝒕 = 𝜶𝑹. (𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆)−(𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 )𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆   

              + 𝜷𝑹. (𝒗𝒐𝒍𝒖𝒎𝒆)−(𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒗𝒐𝒍𝒖𝒎𝒆)𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 𝒗𝒐𝒍𝒖𝒎𝒆              ….. (8) 

where, αR and βR are weighting coefficients, VT difference represents (router_VT – core_VT) 

of the candidate next hop router, and volume represents the existing communication-volume 

(already allocated while routing previous flows) on the link. SAR selects the next hop with the 

minimum routing-cost, Rtcost, given in Eq. (8).  

Communication delays are calculated from the application-frequency and NoC link 

bandwidths, and thus the current application-delay can be estimated from the already routed 

communication-flows. NoC routers and links in an application region run at the same frequency 

as the cores in the region (application-frequency). Note that the goal of SAR is to extend NoC 

lifetime while meeting application execution time constraints. Thus, the values of coefficients in 

Eq. (8), αR and βR, are re-evaluated after routing each flow, as shown below: 

βR = {current app. delay}/{δ.(app. execution time constraint)} 

αR = (1 – βR)                          ….. (9) 

 Before any application communication flows are mapped to the NoC routers, we start with 

values αR =1 and βR =0. As flows are mapped and the estimated application-delay increases, the 

value of βR increases (αR decreases) proportionally until the application-delay reaches a significant 

fraction (δ) of the application execution time constraint. At this point (βR =1 and αR =0), SAR ceases 

to be aging-aware and routes on paths with minimum congestion exclusively, to meet the execution 

time constraint of the given application. Algorithm 2 below summarizes our symmetric-aging 

enabled routing scheme. 
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Note that the given application is executed on the actual 3D-CMP platform only after the 

analysis for routing path allocation is performed. The turn model rules are implemented in each 

router using simple combinational logic. The next hop selection information at each NoC router is 

stored in small next-hop routing tables that enable quick selection of the most appropriate next-

hop direction based on the source and destination of a packet. Even for the largest sized, 32-

threaded applications mapped onto a {4x4x2} cuboid on the 3D CMP platforms we considered, 

we found that the upper bound on number of communication-flows (with unique source-

destination pairs) needed to be routed through any router is 64, with our 3D turn-model based 

minimal routing scheme. Thus, a NoC router on the 3D CMP would need a next hop table of up to 

64 entries. Assuming 3 bits for the output port and 6 bits for the source and destination each, the 

footprint of the NoC routing table is only 960 bits. 

Algorithm 2: Symmetric aging-enabled routing path allocation 

Inputs: Task-graph, execution time constraints, minimum frequency, task-

mapping of current application, VT-profile of compute-cores and routers 

 

1: Initialize αR=1 and βR =0 

2: for all communication-flows do { 

3:  for all hops on the minimal path do { 

4:   select the next hop with the least Rtcost (equation 8) 
5:  } update αR and βR (equation 9) 
6: }  

   

output: all flows of the application allocated on the cuboidal CMP- region 

 

As we consider communication intensive applications for execution on the 3D CMP, there 

is a need for deeper buffers at input and output channels to avoid severe network congestion and 

application slowdown. For such conditions, we provide each input/output channel with four virtual 

channels, each consisting of a buffer of size four flits. Hence, the overall size of the buffers is up 
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to 1.7KB, assuming the flit size to be 8B. Thus, the hardware overhead of implementing SAR is 

small (960 bits or 0.12KB) when compared to the total size of the buffers. 

 

2.5.1.2 THERMAL-ANALYSIS AND EVALUATION 

To perform thermal evaluation of a given computation-profile in our framework, we utilize 

the open-source thermal emulator 3D-ICE 2.2.5 [75] which supports steady-state thermal analysis 

of 3D ICs with a conventional air-cooled heat-sink. For the given power-profile, the tool outputs 

the core-temperatures (T’s) on the 3D die. 

 

2.5.1.3 PDN-ANALYSIS AND EVALUATION 

The supply current drawn by each core is calculated from the core-power and selected Vdd-

level. Given the supply current requirements of the N cores on the 3D-CMP, we created a linear 

programming (LP) formulation and used lp_solve [76] to solve for the grid-point voltages and 

currents flowing in the 3D regular power grid. This enables the updating of {V’s, I’s} in the power-

grid and WC-IR-drops of cores in the 3D CMP, for the given time-window (ti) of the computation-

profile.  

 

2.5.1.4 CIRCUIT- AND PDN-AGING ANALYSES 

In the outer loop of our framework (Figure 13 (b)), we utilize system-stats generated by the 

inner loop over the last epoch to perform aging-analysis at the end of the epoch. Given system-

stats for the last epoch, this analysis is used to calculate the rise in effective VT values (ΔVT’s) of 

all cores and NoC routers on the 3D CMP, as well as the rise in resistance values (ΔR’s) of all 
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vertical and horizontal PDN-branches, using the circuit- and PDN-aging information. The BTI-

induced circuit-aging of compute-core and NoC router components are calculated (discussed in 

section 2.4.1) using the V’s and T’s experienced by these components during all of their AT’s over 

an entire epoch. The EM-induced PDN-degradation in PDN-branches (discussed in section 2.4.2) 

is calculated using I’s for all computation-profiles of the epoch. As effects of EM are far less 

dominant in signal interconnects compared to PDN-interconnects [15], [12], we ignore EM-

induced aging in the NoC-links and focus primarily on PDN interconnects. 

Note that the active-time windows of compute-cores and routers {Cj’s, Rj’s, tj’s} may not be 

aligned with the chip-wide computation-profile windows {V’s, T’s, I’s, ti’s}; therefore, in circuit-

aging calculations, the component AT’s are required to be split into multiple time-windows where 

computation-profiles change. Also, at the start of the very first epoch, the R’s and VT’s are 

initialized with nominal values representing no degradation and the ΔR’s and ΔVT’s are initialized 

to zero-values. Lastly, the updated aging profiles are leveraged to make mapping decisions in the 

next epoch. When the end of lifetime is encountered (discussed in section 2.5.1.1), the aging 

analyses procedure outputs the lifetime of the 3D-CMP in terms of both the total system-execution-

time (global time) and the total number of applications serviced during this time (Figure 13 (b)). 

 

2.6. EXPERIMENTAL STUDIES 

 

2.6.1 EXPERIMENTAL SETUP  

Our experiments were conducted using 13 different parallel application benchmarks taken 

from the well-known SPLASH-2 [77] and PARSEC [78] benchmark suites. We profiled the 

execution-time, power dissipation, and degree of memory-intensity of each application for 
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different application-DoPs by performing multicore simulations using the open-source tools 

SNIPER [79] and McPAT [80]. For each benchmark, the DoP resulting in highest performance 

was obtained from this profiling study and selected as the fixed DoP value for that benchmark. 

These DoP values ranged from 4 to 32. Note that increasing DoP beyond this baseline value for 

each benchmark resulted in lower performance, due to inter-thread synchronization and 

communication overheads.  

We categorized the 13 benchmarks into two groups: (i) communication-intensive 

benchmarks - {cholesky, fft, radix, raytrace, dedup, canneal, and vips}; and (ii) compute-intensive 

benchmarks – {swaptions, fluidanimate, streamcluster, blackscholes, radix, bodytrack, and 

radiosity}. As radix has properties of both, we use it in both groups. In our analyses, we employ 

three types of application sequence groups as inputs to our framework: communication-intensive, 

compute-intensive, and mixed (using all 13 applications). We assume each application-sequence 

to have 100 randomly ordered application-instances selected from the respective group. To 

enhance the statistical significance of our results, we averaged results for five different randomly 

generated application-sequences for each group.  

To simulate the chip-lifetime within a reasonable time, we extrapolate the effects of aging 

over 500 such sequences, making the total number of application-instances executed within an 

epoch to be approximately l = 50,000. Simulation times for ARTEMIS to simulate till the end of 

the lifetime were between 6 and 10 hours. The communication-intensive application workloads 

typically entailed larger simulation times because of longer chip lifetimes (see results and 

discussion in Section 2.6.2), compared to the computation-intensive workloads.  

We consider a 60-core 3D-mesh NoC based CMP platform, with dimensions 5×4×3 

(dimx×dimy×dimz). Our SNIPER simulations for application-profiling capture performance and 
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power consumption at the 22nm process technology node. Seven operating voltage levels are used, 

(|S|=7): 0.7V, 0.75, 0.8V, 0.85V, 0.9V, 0.95V, and 1.0V. Frequency-requirements of different 

applications are set between 1.5GHz and 2GHz. The following region-dimensions-lists {B1,…, Bn} 

for applications (for the given DoPs) are employed: {2×2×1} for DoP = 4, {4×2×1, 2×4×1, 2×2×2} 

for DoP = 8, {4×2×2, 2×4×2, 4×4×1} for DoP = 16, and {4×4×2} for DoP = 32. The dark-silicon 

power-budget (DS-PB) is conservatively set at 85W. The regular 3D-PDN power grid is modeled 

based on guidelines provided in [81]. With 20 cores on each tier, a total of 320 input power pins 

are used with n2=16 grid-points for each core. Nominal (initial non-aged) values of branch 

resistances are assumed to be 50mΩ [81], with 25 μm2 cross-sectional area.  

For our circuit-aging calculations, we assume a nominal effective VT of 0.3V for un-aged 

cores and routers. In our combined cost function calculations (Ψ in equation (7)) for the aging-

aware region-selection heuristic, we use α=β=0.5 (empirically derived to achieve the longest 

lifetimes); max_IR_drop and max_VT are set to 0.3V and 0.5V respectively, based on equation (1), 

with operating frequency requirement of 2GHz. In our SAR heuristic, we use δ=0.6, to calculate 

the value of βR, for an appropriate trade-off between application performance and aging. In our 

experiments, an epoch interval can range between 25 to 35 days, depending on the power profile, 

execution-times, and average DoPs of the application workload, as well as the degree of aging in 

the chip. Given the relatively slow rate of aging, such an aging-measurement interval has been 

found to be appropriate for runtime frameworks . Also, as the overheads incurred due to employing 

aging sensors have been reported to be quite small (power dissipation of 84.7nW, sensing-latency 

of 100μs, and area of 77.3μm2 per sensor at 45nm technology node) in [69], we ignore them in our 

calculations. 
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2.6.2 EXPERIMENTAL RESULTS 

Our experiments compare three variants of the proposed ARTEMIS framework with two 

other runtime mapping approaches derived from prior work. These prior works are designed for 

2D CMPs, so we extend them to 3D CMPs for a fair comparison. To investigate the effectiveness 

of the circuit-aging (leakage) and PDN-aging aware region-selection, voltage-selection, and 

mapping techniques, we adapt our ARTEMIS framework to use an XYZ-routing scheme 

(ARTEMIS-XYZ) and compare the results obtained with two other run-time mapping techniques 

that selects contiguous regions for mapping and use the same XYZ routing scheme: (i) traditional 

worst-case guard-banding approach (WC-GB): In this approach, region selection is done based 

on the runtime area constrained mapping approach from [67] that attempts to fit the maximum 

number of applications on the chip. To satisfy the application-performance requirements for an 

extended period of time, a high Vdd=1.0V is used at all times. This framework selects contiguous 

regions for mapping, to maximize the performance, and minimize the communication latency. 

However, it does not assume runtime inputs from aging-sensors to make mapping decisions and 

thus is not aging-aware; (ii) wear-leveling approach with DVS (WL+DVS): In this approach, 

contiguous region-selection for application-mapping is always done based on the lowest average 

VT-degradation in cores, as proposed in [43], [49]; in addition, Vdd is opportunistically reduced 

when possible and adaptively hiked with aging to meet application performance constraints. 

Additionally, we adapt our ARTEMIS framework to use an aging- and congestion-aware 

routing scheme (ACR) obtained from prior work in [35]. We also include results for our ARTEMIS 

framework with the proposed symmetric aging-enabled routing (SAR) scheme. Thus, the 

comparison between ARTEMIS-XYZ, ARTEMIS-ACR, and ARTEMIS-SAR allows us to determine 

the most effective 3D NoC routing approach that can help improve lifetime in 3D NoC-based 
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CMPs while meeting application performance and chip-wide power constraints. Finally, to test the 

efficiency of the ARTEMIS framework, all the experiments are conducted when the workload is 

high at a uniform inter-application arrival rate of ~1.5s while each application executes for few 

seconds on the 3D CMP.  

 
(a) 

 
(b) 

 
(c) 

Figure 14 Results comparing ARTEMIS framework variants with other approaches from 

prior work, for workloads that combine various SPLASH-2 and PARSEC benchmarks: (a) 

Total number of applications serviced over lifetime, (b) lifetime (years), (c) application-

throughput over lifetime (applications/hour) 
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Figure 14 (a) shows the total number of applications serviced over the chip lifetime, Figure 

14 (b) shows total CMP-lifetime (total system-execution-time), and Figure 14 (c) shows the 

application-throughput extracted over the service-life of the CMP for all the compared 

frameworks, across the three different types of application-input-sequences. The error-bars shown 

in Figure 14 in all our plotted results represent the range of results across simulations with five 

different randomly generated application-sequences (with individual applications in the sequence 

derived from the SPLASH-2 and PARSEC benchmark suites, as discussed earlier). As expected, 

the WL+DVS framework outperforms the WC-GB approach that does not perform DVS. By 

intelligently selecting application-regions on the 3D-die with its region-selection heuristic, our 

ARTEMIS frameworks (ARTEMIS-XYZ, ARTEMIS-ACR, and ARTEMIS-SAR) achieve a notable 

reduction in leakage-power dissipation and reduce stress on the more highly degraded PDN-paths. 

The ARTEMIS frameworks produce 9%–40% (25% average) improvement in the total number of 

applications serviced over the next best framework, WL+DVS, as well as significant 

improvements in total CMP-lifetime, as can be seen from Figure 14 (a)-(b). For communication-

intensive applications, we observed far less percentage of dark-silicon, approximately 0%–15% 

(depending on Vdd-levels and workload profiles), compared to compute-intensive applications 

where dark-silicon is approximately 10%–33%. A lower percentage of dark-silicon is indicative 

of more active cores running with less stress, whereas a higher percentage of dark-silicon indicates 

fewer active cores that are running with greater stress. 

Thus, communication-intensive applications experience less aggressive aging (because of 

their lower %dark-silicon), which results in more of these applications being executed over the 

chip lifetime and a higher lifetime compared to compute intensive applications. Figure 14 (a)-(b) 

corroborate this observation. Also, most communication-intensive applications generate relatively 
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low current-densities in the PDN, i.e., PDN-degradation is slower relative to circuit-degradation, 

which limits the improvements obtained by the ARTEMIS frameworks for such applications, as 

can be observed from Figure 14 (a). 

Next, we present an analysis of lifetime improvements obtained when our proposed 

symmetric aging-aware routing path allocation (SAR) heuristic is used with ARTEMIS (ARTEMIS-

SAR), compared to the ARTEMIS-XYZ and ARTEMIS-ACR frameworks. Our SAR heuristic enables 

better balancing of aging between compute-cores and their associated NoC-routers. While 

executing communication-intensive workloads exclusively, where the rate of aging in routers is 

comparable to that of core-aging, SAR minimizes the number of runtime scenarios when mapping 

of an application is stalled due to aged routers, thereby extending the system-lifetime. Observe in 

Figure 14 (a) that ARTEMIS-SAR produces notable improvements in number of applications 

executed over lifetime, compared to ARTEMIS-XYZ (by 4%) and ARTEMIS-ACR (by 2.2%) with 

comparable application-throughput (as shown in Figure 14 (c)), for communication-intensive 

workloads. However, the choice of routing scheme has very little effect on lifetimes for compute-

intensive and mixed workloads, where NoC-aging does not determine the service-life of the chip.  

 

Figure 15 Results showing the comparison of application throughput of ARTEMIS+SAR, 

WL+DVS, WC-GB over their respective CMP lifetimes  
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To further analyze how the behavior of different frameworks change over time, we show 

how application throughput varies across time in different frameworks in Figure 15. We consider 

ARTEMIS with SAR routing scheme and a mixed workload in this experiment. It can be seen from 

Figure 15 that WC-GB maintains a constant application throughput, while WL+DVS and 

ARTEMIS+SAR tradeoff throughput for an extended CMP lifetime. WL+DVS and 

ARTEMIS+SAR employs intelligent aging-aware application mapping for a graceful degradation 

of the CMP, and utilizes DVS to satisfy the application minimum frequency and DS-PB 

constraints. ARTEMIS+SAR further benefits from PDN-aging-aware intelligent mapping scheme 

that extends the useful lifetime of the CMP beyond that of WL+DVS, meanwhile achieving similar 

throughput. 

We also show experimental results related to the power dissipation, PDN performance, and 

VT degradation profile on the 3D CMP when using different mapping frameworks, in Figure 16. 

A comparison of the average power-dissipated per application over the chip lifetime is shown in 

Figure 16 (a). As expected, WC-GB framework, which does not utilize DVS, dissipates 

significantly more power. The leakage-optimizing mapping in ARTEMIS results in up to a 5.5% 

improvement for compute-intensive workloads (2.8% on average for all workloads) in total 

power/application over WL+DVS. We also analyze the distribution of percentage worst-case IR-

drops (%WC-IR-drops) at the end of lifetime with different frameworks. Figure 16 (b) shows the 

maximum %WC-IR-drops obtained for different frameworks at the end of chip lifetime. The 

aging-unaware WC-GB framework maps applications such that some cores are more heavily 

loaded than others, thus resulting in the shortest lifetimes with high maximum WC-IR-drops. With 

our strategy to prioritize mapping on cores with less WC-IR-drops, ARTEMIS frameworks produce 
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lower maximum %WC-IR-drop-values (by up to 9% lower), compared to WL+DVS, despite 

ARTEMIS having a longer lifetime and servicing a higher number of applications.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 16 Results showing improvements for our circuit-aging (leakage) and PDN-aging 

aware region selection and Vdd selection heuristic in the ARTEMIS frameworks: (a) power 

dissipation per application, (b) maximum %WC-IR-drop at end of lifetime, (c) Variance of 
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%WC-IR-drop at end of lifetime, (d) Mean effective VT-degradation in compute-cores at 

end of lifetime 

 
 
Figure 16 (c) shows the variance in the WC-IR-drop-distribution on the 3D chip obtained at 

the end of lifetime with different frameworks. A smaller variance of IR-drops with ARTEMIS 

frameworks (up to 24% lower compared to WL+DVS) signifies efficient management of PDN-

aging that aides in improving the longevity of the PDN, and thus the entire chip. Figure 16 (d), 

shows the mean effective VT-degradation in compute-cores at the end of lifetime, and provides 

additional insights into the lifetime improvements obtained with our circuit-aging (leakage) and 

PDN-aging aware region selection and Vdd selection heuristic. As discussed earlier, the VT-values 

of circuit components increase with aging. Given the nominal-VT of 0.3V at the start of lifetime, 

observe in Figure 16 (d) that the mean VT-degradation values at the end of lifetime for ARTEMIS 

frameworks are significantly higher (by up to 30% for compute-intensive workloads) compared to 

the WL+DVS framework. By restricting the EM-induced PDN-degradation, ARTEMIS can extend 

the tolerable degree of circuit-aging (VT-degradation) in compute-cores, while meeting the same 

performance constraints. Thus, the 3D CMP remains functional for much higher VT-degradation 

with ARTEMIS compared to other approaches. 

To obtain a more comprehensive understanding of the performance of the compared 

frameworks, we present snapshots of the 3D-CMP die at the end of lifetime, when using different 

frameworks. Figure 17 shows average values of VT-degradation and figure 8 shows maximum 

WC-IR-drops in cores at the end of CMP lifetime after executing compute intensive workloads. 

We have only considered compute intensive workloads for this analysis because VT-degradation 

and IR-drops due to these workloads are higher in cores due to their higher power dissipation 

(compared to mixed and communication-intensive workloads). 
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(a) 

 

(b) 

 

(c) 

Figure 17 Surface plots showing the effective VT degradation in cores of a 3D CMP at the 

end of their respective lifetimes using: (a) worst case guard-banding (WC-GB) technique, (b) 

wear leveling with DVS (WL+DVS) technique, and (c) proposed ARTEMIS-SAR framework. 
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 Figure 17 (a), Figure 17 (b), Figure 17 (c) show the average VT-degradation observed in 

each core at the end of CMP lifetime for WC-GB, WL+DVS, and ARTEMIS-SAR frameworks. 

We consider the end of lifetime as the condition when application performance constraints are not 

met at any CMP Vdd level, without violating the chip’s dark-silicon power budget (DS-PB) 

constraint, and when no other application is currently running on the CMP.  

Figure 17 (a) shows that when WC-GB fails, most of its cores are comparatively less aged 

than that of WL+DVS in Figure 17 (b) and ARTEMIS in Figure 17 (c). This is because WC-GB 

ambitiously tries to map the applications at a very high Vdd repeatedly on to the same, rapidly 

aging cores. Also, the PDN degradation in WC-GB is much higher than the other two frameworks 

in Figure 18 (a). As the degradation in PDN worsens, application performance constraints are not 

met within the allowed set of CMP Vdd levels. This results in end of lifetime condition in WC-GB, 

because when application-performance constraints are not met in a region, WC-GB does not 

exhaustively search for other mapping regions on the CMP even if no other applications are 

running simultaneously.  

Figure 17 (c) shows that by using ARTEMIS, the chip has more degraded cores at the end of 

the lifetime compared to the other two frameworks. This indicates that all the cores have been well 

utilized by ARTEMIS till the time it failed. Better management of EM-degradation in PDNs 

(which is explained using Figure 18), and trading off application throughput for lifetime by 

ARTEMIS (shown in Figure 15) helps to extend the functional lifetime of each individual core on 

the 3D CMP till the end of its lifetime.  
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(a) 

 

(b) 

 

(c) 

Figure 18 Surface plots showing the Worst-Case IR drops observed on each layer of a 3D 

CMP at the end of their respective lifetimes using: (a) worst case guard-banding (WC-GB) 

technique, (b) wear leveling with DVS (WL+DVS) technique, (c) proposed ARTEMIS 

framework. 
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Also, note that with ARTEMIS, cores are degraded in a pattern that is beneficial for 

contiguous mapping of applications till the CMP fails, unlike with WC-GB and with WL+DVS 

that leave fragmented regions of cores with varied degradation profiles. Figure 18 (a), 18 (b), 18 

(c) show the Worst-Case-IR-drops (WC-IR-drops), due to EM of PDN, observed at the end of the 

CMP lifetime. The colors at each tile give a comparative visualization of IR-drop values logged at 

the input pins of the cores. From figures 18 (a), 18 (b) and 18 (c), it can be seen that WC-GB is 

completely unaware of PDN aging while mapping, and hence has some hotspots (red and brown 

tiles) due to excessive mapping of tasks on to the same tiles, even when other tiles are free and less 

degraded. WL+DVS show slightly higher WC-IR-drops to ARTEMIS at the end of the CMP 

lifetime. By integrating PDN-awareness and simultaneously managing Vdd and mapping regions 

intelligently, ARTEMIS makes it possible to use the CMP well beyond the VT-degradation values 

(with similar PDN-degradation) observed using prior works (as shown in Figure 17(a), 17 (b), 17 

(c)). 

The aging aware mapping heuristic WL+DVS that is unaware of PDN degradation, tries to 

map applications on to tiles with less circuit degradation. Hence, the PDN ages at a faster rate in 

WL+DVS compared to ARTEMIS. But, as PDN degradation gets higher towards the end of the 

lifetime, applications do not meet their frequency constraint, and force a CMP Vdd hike at the time 

of mapping. Also, cores tend to dissipate more power as they get older, leading to DS-PB violation. 

This results in CMP reaching the end of lifetime condition faster. Hence PDN-aging is crucial for 

achieving longer lifetime in 3D CMPs. ARTEMIS is thus able to manage both circuit and PDN 

aging to extract more work out of the CMP in its lifetime. 
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2.7. CONCLUSIONS  

In this chapter, we proposed an aging-aware application-mapping and DVS scheduling 

framework (ARTEMIS) that considers PDN-aging of 3D NoC-based CMPs in addition to circuit-

aging (in NoC routers and cores) in both the performance and aging evaluation stages, and the 

lifetime optimization methodology. We have considered the analysis of ARTEMIS framework in a 

highly-constrained system with variable application execution time. Compared to a framework 

based on the best known prior work on aging-aware mapping techniques, ARTEMIS can service 

25% more applications (on average) over the chip lifetime, which highlights its promise for 

emerging 3D-CMPs. As part of future work, we plan to explore support for variable process 

variations, and consider a service queue model that includes wait time of an application, for further 

improvements within our framework.  
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3. CHARM: A CHECKPOINT-BASED RESOURCE MANAGEMENT FRAMEWORK 

FOR RELIABLE MULTICORE COMPUTING IN THE DARK SILICON ERA 

 

With increasing transistor miniaturization, circuit densities have drastically increased, and 

the critical charge, which is the minimum charge capable of a bit-flip in a memory- or a logic-cell, 

has significantly decreased [82] [18]. This phenomenon has caused newer process technologies to 

become more susceptible to transient-faults due to the effects of radiation, e.g., alpha-particle and 

neutron strikes. Simultaneously, circuit-aging due to phenomena such as Bias Temperature 

Instability (BTI) and Hot Carrier Injection (HCI) is becoming prominent for systems manufactured 

at technology nodes of 45nm and below [11] [40]. The principal effect of such a circuit-aging 

mechanism is to increase circuit-threshold voltage (VT), which results in higher circuit-delay in 

cores and routers, thereby limiting overall system performance. At the same time, with the extent 

of dark-silicon increasing every technology-generation (30-50% for 22nm) [47] [48], chip 

multiprocessor (CMP) designs are becoming increasingly power-limited rather than area-limited.  

Figure 19 highlights the intricate inter-dependence between various optimization metrics 

(power, performance, reliability), design-knobs (voltage, app-DoP, task-to-core mapping) and 

their effects on physical phenomena (soft-errors, circuit-aging). Figures 19 (a) and 19 (b) show the 

plots of supply voltage (Vdd) versus average core power consumed, and the number of soft-errors 

observed (we model soft-errors using the approach in [62]), for three applications of varying 

memory intensities and fixed DoPs. In modern power-constrained designs with increasing levels 

of dark-silicon, operating at lower voltages, and hence lower frequencies, can reduce the average 

power consumption of the application as shown in figure 19 (a). Additionally, low power 

techniques can potentially reduce the rate of aging on the die thereby extending useful lifetime of 
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the chip. However, the soft-error rate (SER) exponentially increases when we reduce the rate of 

circuit-aging with DVS, as shown in figure 19 (b).  

Given a fixed power budget, power savings translate to higher available power-slacks on the 

CMP-die thereby yielding higher performance by either simultaneously executing additional 

applications or running applications at higher app-DoPs. Recent works such as [83] have shown 

that by varying the degree of parallelism (DoP) of applications at runtime to adapt to the execution 

environment of the CMP, significant benefits can be achieved in terms of application service-times 

and power dissipation. Moreover, application-DoP (app-DoP) also impacts the application soft-

error reliability, aging footprint, and chip power budget. However, higher app-DoP further 

increases the probability of soft-errors during the execution of an application. Even with 

sophisticated re-execution techniques using checkpointing and rollback, such as those proposed in 

[84], the occurrence of soft-errors can incur significant overheads in terms of power dissipation 

and aging footprint – the very metrics that were expected to improve by employing low-power 

DVS techniques.  

               

                         (a)                                                                    (b) 

Figure 19 (a) Per-core power consumed by three applications of varying memory intensities 

at different supply voltages (Vdd); (b) Soft-errors observed per-core, when executing 

applications at different supply voltages 
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To solve this intricate problem, in this chapter, we propose a novel system-level runtime 

soft-error and lifetime-reliability aware resource management framework (CHARM) that employs 

dynamically adaptable application degrees of parallelism (app-DoP), together with intelligent 

application mapping and DVS strategies to maximize the number of applications serviced over the 

target lifetime of a CMP, while meeting the chip-wide dark-silicon power budget (DS-PB) and 

application performance deadlines. For applications to recover from runtime soft-errors, we also 

integrate an error checkpointing and rollback scheme within our framework. Experimental analysis 

shows that CHARM not only achieves transient fault resilience, but also achieves an improvement 

of up to 2.5× in CMP lifetime, and up to 6× in number of applications executed over CMP lifetime 

compared to the state-of-the-art. Our novel contributions in this chapter are summarized as 

follows: 

• we propose a novel runtime framework (CHARM) for application mapping and DVS that 

can adapt to different aging profiles of a chip and maximize the number of applications 

that meet their deadlines in the presence of soft-errors, over the chip lifetime; 

• CHARM manages dynamically arriving applications by varying their application-DoPs as 

well as Vdd and execution frequency, based on queue pressure and app-slack time, to 

minimize checkpointing and rollback overheads, and also to minimize the aging footprint; 

• our methodology of evaluating maximum attainable performance, in the presence of soft 

errors and system aging, accounts for computing the execution time overhead due to 

checkpointing and rollback recovery, as well as VT degradation over the lifetime of the 

chip; 

• we also propose a novel aging aware network-on-chip (NoC) routing path allocation 

scheme that balances the core-router aging profile; 
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• our framework does not violate chip-wide power constraints while mapping an application, 

thus finding applicability in contemporary power-constrained (dark-silicon afflicted) CMP 

designs. 

 

3.1 RELATED WORK 

Several efforts (e.g., [85] [86] [87]) have proposed design-time fault-tolerant task scheduling 

frameworks that assume fault-detection mechanisms implemented on the multicore platform. 

Hardening techniques such as task re-execution and replication are utilized in these works to 

probabilistically meet task-completion deadlines for real-time tasks of varying criticalities, while 

minimizing energy. However, these efforts do not consider circuit-aging due to BTI, HCI stress, 

dark-silicon challenges, runtime adaptation support, or application DoPs.  

In recent years, some researchers have proposed runtime and design-time techniques to 

address the problem of circuit-aging in CMPs. For example, Tiwari et al. [43] propose mapping 

high-power tasks onto faster (less-aged) cores and low-power tasks onto slower cores, thereby 

“hiding” the aging on the chip. They also propose to mitigate aging by scaling the supply voltage 

or the threshold voltage. Kapadia et al. [36] perform application mapping and DVS scheduling on 

the CMP while considering circuit-aging in cores and EM-aging in the power delivery network 

(PDN). Such an approach where tasks are mapped to cores without considering application-

performance requirements would lead to higher number of applications being dropped and increase 

waiting time in the service queue. Also, these works neither perform soft-error management nor 

consider the benefits of adaptable app-DoPs. 
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A recent work [83] on runtime application scheduling for CMPs employs dynamically 

adaptable application DoPs to minimize average application service times and energy, while 

meeting a chip-wide power budget and soft-error-reliability constraints. However, the work 

ignores the circuit-aging phenomena and does not perform any lifetime optimization. Moreover, 

the work does not consider error recovery or task re-execution mechanisms for reliable system 

operation, and also does not emphasize satisfying completion deadlines of applications. 

To overcome the abovementioned concerns, we propose a novel runtime resource 

management framework (CHARM) that, for the first time, considers the combined effects of 

runtime management techniques on lifetime-reliability and soft-error reliability of the CMP, to 

maximize the number of applications meeting their completion-deadlines, given a fixed CMP 

target-lifetime in years. 

 

 

Figure 20 Motivation example of runtime application-scheduling using (a) representative of 

prior works [36], [83] where low Vdd is used to preserve chip lifetime; (b) where high Vdd is 

used to reduce SER probability; (c) where the Vdd and DoP are varied adaptively to reduce 

SER and maximize the number of completed applications within a target CMP lifetime. 
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3.2 MOTIVATION 

In this section, we illustrate the advantages of our proposed CHARM framework with the 

help of a small example. We consider three scenarios in which applications arrive at runtime at a 

service-queue to be mapped onto the CMP. We call the chip as aged when the cores get slower 

due to degradation in threshold voltage VT. An application can only tolerate up to a certain number 

of soft-errors beyond which the overheads of the recovery mechanism surpasses the available 

slack-time. When this happens, that application is dropped from the service queue without 

execution. Prior works [43] [36] try to minimize aging footprint of applications by mapping them 

at low Vdd and using DVS scheduling to increase chip lifetime without effecting the performance, 

which is shown in Figure 20 (a). But they do not consider the effects of DVS and DoP on soft-

error rate (SER). SER increases exponentially with the decrease in supply voltage-Vdd, as given in 

equation (14) in Section 3.3.A. Hence the chip encounters higher SER and higher number of 

dropped applications. Intuitively, scheduling applications with high Vdd as shown in Figure 20 (b) 

reduces SER along with the application execution times. However, this leads to much lower chip 

lifetime and considerably lower number of applications serviced over the lifetime.  

In contrast, CHARM dynamically selects combinations of {DoP, voltage/frequency, mapping 

region} for the applications based on app-slack time, queue pressure, and aging profile to jointly 

minimize run times and maximize number of applications that meet their deadlines, as shown in 

Figure 20 (c). This leads to lower SER overhead and more applications meeting their deadlines 

within the power budget. As the chip gets aged, CHARM extends chip lifetime by mapping 

applications with lower voltage/frequency and higher DoP. This is done amidst a rise in SER 

probability, to scale down the power consumption and temperature footprint of the chip and also 

minimize aging of cores. The proposed approach with CHARM leads to more cores being active 



62 
 

towards the end of the target chip lifetime, resulting in more number of applications meeting their 

deadlines over the lifetime. 

 

3.3 PROBLEM FORMULATION 

A. Models for Performance and Reliability Estimation 

We begin by modeling the maximum frequency of a core based on its supply voltage as given in 

Eq. (10).  𝒇𝒎𝒂𝒙 =  
𝝁(𝑽𝒅𝒅−𝑽𝑻)𝜶 𝑪𝟎.𝑽𝒅𝒅       ….. (10) 

where, Vdd and VT are the supply voltage and effective threshold voltage of a core, α and μ are 

technology-dependent constants, and C0 is switching capacitance of the critical path [62].  

 We model circuit-aging effects arising from BTI and HCI-induced circuit degradation, as 

these have been found to be the most dominant aging mechanisms in emerging semiconductor 

technologies. Velamala et al. [63] [64] have shown that a Trapping/Detrapping (TD) based BTI 

model is capable of accurately predicting the degradation under a sequence of Vdd’s used in the 

DVS operation. They have noted that when the supply voltage is changed from a higher Vdd to 

lower Vdd, the circuit undergoes recovery. Therefore, our analysis of circuit-aging over the CMP-

lifetime is based on the long-term aging prediction model proposed in [63], which accounts for 

different Vdd-levels over time. We estimate the effective ΔVT increase that a component (core or 

NoC router) experiences over a time-interval of t using Eq. (11), where A, B and C are fitting 

parameters that are constant. 𝜟𝑽𝑻(𝒕) = 𝑳. [𝑨 + 𝑩𝒍𝒐𝒈(𝟏 + 𝑪𝒕)]                     .. (11) 
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𝑳 = 𝑲𝟏. 𝐞𝐱𝐩 (−𝑬𝟎𝒌𝑻 ) . {𝒆𝒙𝒑 ( 𝜷𝑽𝟏𝑻𝒐𝒙𝒌𝑻) . 𝜶𝟏 + ⋯ + 𝒆𝒙𝒑 ( 𝜷𝑽𝑺𝑻𝒐𝒙𝒌𝑻) . 𝜶𝑺}    .. (12) 

In equation (12), Vi is the ith Vdd-level utilized by the component for a time-duration αi, S is 

the total number of allowable Vdd-levels, and {α1+α2+...+αS} ≤ t. T is the average temperature of 

the component during corresponding αi. We use parameter-values in equations (11) and (12) from 

[63] and [64] that are validated against real silicon data.  

HCI occurs because of the irreversible deposits of charges (holes/electrons) generated in 

regions such as the gate oxide, over the lifetime of the transistor. This phenomenon also leads to 

degradation of the threshold voltage (VT) which can be modeled as a function of stress-time [88]. 

The degradation model for VT from [89] is: ∆𝑽𝑻 = 𝑨. 𝒕𝒎                 ….. (13) 

where, A and m are technology dependent parameters, and t is the time under which a component 

is under stress. We consider m to be equal to ~0.5 which is accepted over a wide range of 

processing technologies. 

Transient faults are the bit flips in logic devices due to transient phenomena such as charged 

alpha particle strikes. We model the soft error-rates (SER) as discussed in [90]. We define 𝜆(𝑓), as 

the SER at a given frequency f by the equation below: 

𝝀(𝒇) = 𝝀𝟎. 𝟏𝟎𝒅.( 𝟏−𝒇𝟏−𝒇𝒎𝒊𝒏)
          ….. (14) 

where λ0 is the SER corresponding to the highest frequency value (fmax). For compute cores we 

consider λ0 = 10-6 errors/sec and assume d=3 [83]. For NoC routers, we consider λ0 = 10-6/3 

errors/sec as a router’s area is approximately one third that of a core’s area in the CMP platform 

we analyze in this work. We compute the probability of one or more faults occurring over an 

execution period τ using equation (15):  
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𝑷(𝒇, 𝛕) = 𝟏 − 𝒆−𝝀(𝒇).𝛕           ….. (15) 𝑬(𝒇, 𝛕) = ∫ 𝝉. 𝑷(𝒇, 𝝉). 𝒅𝛕𝛕𝟎        ..… (16) 

Equation (16) gives the expected number of faults 𝐸(𝑓, 𝜏) observed in a given time interval [0, τ] 

during which f remains constant. We compute the number of faults in any given interval [τ1, τ2] as 

follows: 𝑬[𝝉𝟏, 𝝉𝟐] = 𝑬(𝒇, 𝝉𝟐) − 𝑬(𝒇, 𝝉𝟏)     .…. (17) 

We employ a checkpoint and rollback based error recovery mechanism as proposed in [91]. 

The number of checkpoints employed for a task is a function of its worst case execution time L 

and its deadline D. Using this technique, fault-free execution time of an application involves two 

overheads: checkpoint time-(Ci ) and time to sanity check the processor state-(Si). Occurrence of a 

failure further incurs time to retrieve the latest saved state and re-execution time-(Ri). The 

following equations show the overheads as a function of number of checkpoints:  𝑻𝒊(𝒏) = 𝑻𝒊 + 𝒏. 𝑪𝒊 + (𝒏 + 𝟏). 𝑺𝒊     ....... (18) 𝑭𝒊(𝒏) = 𝑻𝒊 + 𝑹𝒊 + 𝒌. ( 𝑪𝒊𝒏+𝟏) + 𝑺𝒊     ..… (19) 

Equation (18) gives the fault-free execution time of a task i with n checkpoints (Ti(n)) where, Ti is 

the ideal execution time, n.Ci represents checkpoint time and (n+1).Si represents sanity check time. 

Equation (19) gives the execution time of a task i in the presence of k faults (Fi(n)) The term 

k.(Ci/n+1) represents the re-execution time for k faults. For our system, we tolerate up to three 

faults, k=3, as we have observed that the overhead of tolerating more faults per task in applications 

we analyze surpasses the available slack-time in the best case. CHARM decides n based on the 

deadline Di of the task graph to be mapped. equation (20) gives the optimum number of 

checkpoints ni assigned to a task i:  𝒏𝒊 ≤ 𝟐. 𝑪𝒊𝑫𝒊−𝑻𝒊−𝑹𝒊−𝑺𝒊 − 𝟏         ….. (20) 
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where, Di is the deadline of the task i, Ti is the fault free execution time, Ri is the re-execution 

overhead and Si is the sanity check overhead. The periodic checkpointing interval duration for each 

task i is thus Ti/n.  

 

B. Inputs, assumptions and problem objective 

We assume the following inputs to our problem: 

➢ A 2D mesh NoC-based CMP of dimension {dimx, dimy, dimz} and number of tiles 

N=dimx×dimy×dimz; each tile has a core and a router; 

➢ A chip-wide dark-silicon power budget (DS-PB); 

➢ An application task graph for each application; vertices with task execution-times on 

compute cores and edges with inter-task communication volumes; error-free execution times and 

volume values are assumed available from offline profiling; 

➢ A set of candidate supply voltages (Vdd) = {V1, V2. …Vn}for each core; maximum frequency 

of a core for this Vdd is given by equation (10); 

➢ Application task graphs for the set P = {P1, P2, … Pη} of DoPs for all applications; an 

application i possesses |Pi| viable DoPs; an application has a maximum DoP value beyond which 

performance does not improve (or gets worse due to high synchronization overheads) - such sub-

optimal DoP values are ignored; 

➢ A set of permissible rectangular shapes of regions that an application can be mapped on to 

{B1 …. Bn}; e.g., a set {2×4, 4×2} for an application with DoP=8.  
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We make the following assumptions in our work: 

➢ There exists one-to-one mapping between tasks and cores, i.e., a core can execute only one 

task (thread) at any given time; 

➢ Applications are mapped contiguously on non-overlapping rectangular shaped regions of 

the 2D CMP for inter-application isolation and optimized communication-profiles (as 

recommended in prior works such as [67]); thread-migration is not considered; 

➢ Per-core granularity of DVS is considered, to meet DS-PB and application performance 

demands, and facilitate runtime selection of DoP for the applications to avoid execution deadline 

violations; 

➢ Similar to prior works [43] [36] we assume the presence of on-chip sensors to detect the 

VT degradation along the critical path circuits of cores and routers due to aging and send that 

information to our framework; we also assume the presence of an on-chip error detection 

mechanism to detect soft-error events in cores and routers and initiate the application re-

execution process from a checkpoint; 

➢ On-chip aging sensors monitor the runtime VT values of individual cores and routers at the 

end of each epoch and send the values to our framework, to enable smart mapping decisions; an 

epoch is defined as a time-period during which the aging profile of the chip is assumed to be 

constant or does not grow significantly; 

 

Objective: Given the above inputs and assumptions, the objective of our CHARM framework is to 

dynamically determine application-specific mapping (region selection, task-to-core mapping, and 

NoC routing), DoP values, and checkpoint periods, as well as a per-core DVS schedule, to 
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maximize the number of applications that meet their execution-deadlines, while satisfying chip-

wide DS-PB and tolerating up to k transient faults per application over a given chip target lifetime. 

 

Figure 21 Overview of CHARM runtime app-DoP selection, reliability aware mapping, and 

DVS scheduling framework.  

 

3.4 CHARM FRAMEWORK: OVERVIEW 

The key aspects of our proposed framework are illustrated in Figure 21. CHARM makes 

decisions based on the runtime input it receives from on-chip aging sensors and app-slack time = 

{worst case execution time – deadline} available for an application waiting in the queue. CHARM 

intelligently prioritizes between lifetime and performance based on the available app-slack time 

and the chip degradation profile. CHARM dynamically selects the DoP, checkpoint period, and 

per-core Vdd, for an application’s execution, based on runtime inputs and available slack. CHARM 

operates as two nested loops, (i) circuit-aging, lifetime and epoch management (Figure 22 (a), 

outer loop); and (ii) reliability-aware application mapping, DVS, and application-DoP selection 

(Figure 22 (b), inner loop). These two components are discussed in detail next. 
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A. Circuit-aging, lifetime, and epoch management 

As discussed earlier, the lifetime of a chip is divided into epochs. In each epoch, applications 

arrive to the CMP for execution. CHARM maps them immediately or keeps them in a service queue 

for mapping later. The applications waiting in the service queue are sorted at every occurrence of 

an app-event in the increasing order of their app-slack times. An app-event is defined as either the 

arrival of a new application to the CMP or the exit of a mapped application from the CMP. At an 

app-event, CHARM successively removes applications from the service queue and maps each one 

of them until there are insufficient number of consecutive idle cores on the chip to execute an 

application without violating the application deadline and the chip DS-PB constraints.  

The inner loop performs reliability-aware mapping, app-DoP selection, and Vdd selection 

during an epoch are discussed in section 3.4.B (shown as the pink box in Figure 22 (a), with an 

expanded view in Figure 22 (b)). The output of this inner loop at the end of the epoch provides 

information about the activity on the chip over the epoch, such as number of applications executed 

in the epoch, the active-times (AT’s) of compute-cores and NoC routers over the epoch, and the 

thermal profile of these components over the epoch. Given these system-stats for the last epoch, 

the rise in effective VT values (ΔVT’s) of all cores and NoC routers on the CMP (i.e., extent of BTI 

and HCI-induced circuit aging) is calculated as discussed in section 3.3.A using the Vdd’s and 

temperatures experienced by these components during all of their AT’s over the entire epoch. The 

computed ΔVT’s are saved and passed on to the inner loop for reliability aware mapping, DoP and 

Vdd selection (section 3.4.B) in the next epoch. 

Note that at the start of the very first epoch, the VT’s are initialized with nominal values 

representing no degradation and the ΔVT’s are initialized to zero-values. When the end of lifetime 

condition is encountered, the framework stops mapping applications, and outputs the lifetime of 
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the chip along with the total number of applications executed over the lifetime. We consider the 

chip as failed (end of lifetime) when an application is dropped despite there being no other 

application running on the CMP and when the overall chip aging-profile (sum of tile VT values) is 

beyond a certain threshold. 

 

 

(a) 

 
 

 

(b) 
 

 

Figure 22 CHARM design-flow: (a) circuit-aging, lifetime and epoch management (outer-

loop, Section 3.4.A); (b) reliability aware mapping, DVS and app- DoP scheduling scheme 

(inner-loop, Section 3.4.B); blocks shown with dotted outlines are simulated models used in 

our work, and are a proxy for on-chip sensors that will get the information at runtime in a 

real system. 
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B. Reliability aware mapping, DVS and app-DoP selection 

Before mapping, CHARM assigns checkpointing periods for each application as given by Eq. 

(20). Subsequently, the worst case execution time of an application is estimated, given the 

overheads of checkpointing and rollback recovery mechanism, using Eq. (18), (19). If the worst-

case execution time cannot meet the application-slack time using the available on-chip resources, 

that application is dropped from the service queue. For any application under consideration, this 

stage consists of three phases, (i) region selection, app-DoP and Vdd selection, (ii) communication-

aware task-to-tile mapping, and (iii) NoC routing path allocation. We describe each of these steps 

below. 

(i) region selection, app-DoP and voltage-selection: In our framework, an application with a given 

DoP can be mapped on to a rectangular region on the 2D CMP, with shapes to be chosen from a 

pre-defined list {B1,…, Bn} for that application. All intra-application communication is contained 

within the region, thus application-isolation is maintained and communication cross-interference 

between applications is eliminated. Our heuristic in this step utilizes the runtime VT-degradation 

profile of the CMP, which is given as: Ω =  ∑ 𝑽𝑻𝒌𝒌=𝑵𝒌=𝟏  ,        …….. (21) 

where VTk is the average VT value of the kth tile (and includes core-VT and router-VT for the tile), 

and N is the total number of tiles on the CMP. The objective of our heuristic changes according to 

the value of Ω: when the value is greater than a threshold ζ the objective is to preserve the lifetime 

of the CMP, otherwise the objective is to maximize the number of applications that complete before 

their deadlines. When the objective is to preserve lifetime, we define a metric ψ to select the 

rectangular region on the CMP: 
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𝛙 =  ∑ 𝐦𝐚𝐱 _𝑽𝑻−𝑽𝑻𝒌𝐦𝐚𝐱 _𝑽𝑻−𝒏𝒐𝒎_𝑽𝑻𝒌=𝑫𝒐𝑷𝒌=𝟏            ….. (22) 

where, VTk is the same as in Eq. (21) for cores within the region; and nom_VT is the nominal 

(lowest) effective VT-value of a core with no aging. We define max_VT as the maximum VT value 

that the core can support (at highest Vdd). In order to preserve lifetime, CHARM selects a region 

with the least ψ that satisfies the application’s deadline and DS-PB constraints. This is done 

because tiles dissipate higher leakage power when they are less aged, resulting in higher on-chip 

temperatures that cause further aging of the chip. Hence, it is intuitive to choose aged-cores that 

satisfy the application deadline, to preserve the overall lifetime of the chip.    

 

Algorithm 3: Reliability-aware region, DoP and Vdd-selection heuristic 

Inputs: VT-profile, {P1, … Pη}, {B1, …, Bn}, {V1, ….Vn}, DS-PB 

 

1: for each DoP in {P1,..Pη} & each Vdd in {V1,...Vn} & each tile in CMP, 
do{ 

2:   for each shape in {B1, …, Bn} do {   
3:     list _time.insert(Pi,Bi,Vi) 
4:     list_age.insert(Pi,Bi,Vi) 
5:   } // end for each shape   

6: }// end for  
7: if (Ω < ζ) and (app-slack time is less than τ) { 
8:   ptr = list _time.begin( ) 
9: } // end if 

10: else if ((app-slack is greater than τ) or (Ω ≥ ζ) {    
11:   ptr = list _age.begin( )   
12: } // end if    
13: while(ptr != list _time.end( )) do{  

14:   check if CMP meets DS-PB with the ptr͢͢͢͢  ->(Pi,Bi,Vi) 
15:   if (DS-PB constraint not met ): ptr++  
16: } // end while  

17: if ( (Pi,Bi,Vi) is not found) drop the application  
output: a valid region to map the application, app-DoP value and Vdd-level 

for cores in the selected region; or application being dropped 
 

Algorithm 3 shows the pseudo code for our region, DoP and Vdd selection heuristic. The 

heuristic performs a search over the available per-core supply voltages (V1, … Vn), application 

DoPs {P1, … Pη} and the permissible mapping regions {B1,…, Bn} for the application. Aging 
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profiles (VT) of cores and routers, permissible DoPs Pi, permissible shapes Bi and per-core voltages 

are given as inputs to Algorithm 3. With these inputs and the DS-PB constraint, our heuristic aims 

to find a suitable {DoP, mapping region and Vdd} combination for an application under 

consideration for mapping to the CMP.  

For any candidate combination of a given application, the heuristic estimates the number of 

soft-errors, as per Eq. (17), and computes an estimated executed time, as per Eq. (19). If the 

estimated execution time for a combination cannot meet the application deadline, the combination 

is not considered for mapping. The mapping heuristic does an exhaustive search over combinations 

of all the DoP (Pi), Vdd (Vi) and mapping regions (Bi) and sorts them into two ordered lists (lines 

1-5 in Algorithm 3). The first list, list_time, is in the increasing order of the estimated execution 

time, for a (Pi,Bi,Vi) combination. The second list, list_age, is in the increasing order of the region’s 

aging profile ψ, given by Eq. (22). If the total aging profile of the CMP (Ω from Eq. (21)), is less 

than a threshold ζ, and if the app-slack time is less than τ, the heuristic prioritizes faster app 

execution time and finds a suitable candidate from list_time (lines 7-9). In all other cases, it 

prioritizes lifetime preservation and finds a suitable candidate in the list_age (lines 10-12). The 

heuristic then starts at the beginning of the list, where the best combination is saved, and checks if 

that meets the DS-PB constraint. If not, it iterates to the next combination in the list (lines 13-16). 

If none of the combinations satisfy the DS-PB constraint, the application is dropped from the 

service queue (line 17).  

When the application arrival rate is very high, our aim is to map more applications on the 

CMP. Hence, when the queue pressure is above a threshold ‘χ’ (queue-pressure > χ), the 

application under consideration is mapped over a smaller DoP range, as given by Eq. (23), (24): 𝑸. 𝒔𝒊𝒛𝒆 > 𝛘 : P = {P1, P2,… Pk}             ….. (23) 
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𝑸. 𝒔𝒊𝒛𝒆 ≤ 𝛘 ∶ 𝑷 =  {𝑷𝟏, 𝑷𝟐, … 𝑷𝑵}            ….. (24) 

where Q.size gives the size of the service queue, and {P1, P2,… Pk} is a trimmed down list of 

permissible DoPs, with Pk < PN.  

We now present the theoretical time complexity of our heuristic. At most N tiles (total tiles 

on the 2D NoC-based CMP) are considered for the prospective mapping region. Note that the 

permissible DoPs |D|, Vdd levels |S| for the cores and number of admissible shapes n are very small 

constant integers, and the DoP of the application (relatively small integer c – treated as a constant) 

number of tiles are to be evaluated at each of these iterations. With these assumptions, our 

region/Vdd/DoP-selection heuristic effectively runs in linear-time complexity with respect to the 

number of tiles, N: O(c.n.|D|.|S|.N), and is very suitable for fast execution at runtime with low 

overhead.  

(ii) Communication-aware task-to-tile mapping: After the mapping region for an application has 

been selected (of size equal to app-DoP), our heuristic proceeds to map the application’s task-

graph on to the CMP tiles. We use a fast and efficient task-to-tile incremental-mapping approach 

(similar to that used in prior works such as [73]) suitable for use at runtime, which aims to 

minimize communication between cores. We consider the earliest deadline first (EDF) task 

scheduling scheme for each application task graph and map that task-graph on to a selected 

rectangular shaped region of tiles on the 2D CMP;  

(iii) Wear-out balancing routing path allocation (WBR): After the task to tile mapping step, we 

map the communication-flows of the current application on to the NoC in the selected region on 

the CMP. We propose an aging- and congestion-aware routing scheme (WBR) to balance the core-

router aging profile and extend the lifetime of the NoC routers along with that of the cores. WBR 

trades-off aging with network-congestion in the NoC by selecting routing paths to maximize NoC-
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lifetime while leveraging the knowledge of maximum execution time constraints of the mapped 

application. 

To ensure an implementation with low-overhead, path diversity, and deadlock freedom, our 

routing algorithm builds on the Odd-Even partially adaptive turn model routing scheme [92] for 

2D-mesh NoCs. The Odd-Even scheme typically presents multiple routing options at each hop. 

The key idea of our routing algorithm is to select the next hop (and hence a path) in such a way 

that it either preserves lifetime of the routers or reduces congestion. We designed a cost-function 

for next-hop selection during routing that considers the difference between router-aging and core-

aging (router_VT – core_VT) values to ensure balanced aging in CMP tiles. Moreover, as 

congestion in the NoC-links leads to excessive routing delays and thus longer application-

runtimes, we also prefer allocating communication flows to links with lesser communication-

volumes. The following routing cost function (Rtcost), which is a linear combination of the two 

normalized metrics, is used to make routing decisions at each hop along the path: 𝑹𝒕𝒄𝒐𝒔𝒕 = 𝜶𝑹. (𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆)−(𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 )𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 𝑽𝑻 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆   

+ 𝜷𝑹. (𝒗𝒐𝒍𝒖𝒎𝒆)−(𝒎𝒊𝒏𝒊𝒎𝒖𝒎 𝒗𝒐𝒍𝒖𝒎𝒆)𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 𝒗𝒐𝒍𝒖𝒎𝒆     ….. (25) 

 

where, αR and βR are weighting coefficients, VT difference represents (router_VT – core_VT) of the 

candidate next hop router, and volume represents the existing communication-volume (already 

allocated while routing previous flows) on the link. WBR selects the next hop with the minimum 

routing-cost, Rtcost, given in Eq. (25). The values of the coefficients in Eq. (25), αR and βR, are re-

evaluated after routing each flow, as shown below: 

βR = {current app. delay}/{δ.(app. execution time constraint)} 

αR = (1 – βR)                 . .. (26) 
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 Before any application communication flows are mapped through the NoC routers, we start with 

values αR =1 and βR =0. As flows are mapped and the estimated application-delay increases, the 

value of βR increases (and αR decreases) proportionally until the application-delay reaches a 

significant fraction (δ) of the application execution time constraint. At this point (βR =1 and αR =0), 

WBR ceases to be aging-aware and routes on paths with minimum congestion exclusively, to 

satisfy the execution time constraint of the given application. Algorithm 4 below summarizes our 

wear-out balancing NoC routing scheme. 

 

 Algorithm 4 Wear-out balancing routing path allocation  

Inputs: Task-graph, execution time constraints, minimum frequency, task-

mapping of current application, VT-profile of compute-cores and routers 

 

1: Initialize αR=1 and βR =0 

2: for all communication-flows do  

3:  for all hops on the minimal path do  

4:   select the next hop with the least Rtcost as per Eq.(25)  
5:  update αR and βR as per Eq. (26) 
6:  end for 

7: end for    

output: all flows of the application allocated in the CMP-region 
 

 

The paths that are allocated for each communication flow are stored in lightweight routing 

tables, in each NoC router. In this work, the largest size of an application footprint (DoP) is 32, 

which has an upper bound of 64 communication flows through any router. Hence, each router will 

have to store the next hop information for at most 64 paths (64 entries in a table). Assuming 2 bits 

for the output port and 6 bits for the source and destination each (for the 60-core CMP we 

consider), the footprint of the NoC routing table is only 768 bits. Thus, the hardware overheads of 

implementing WBR are low and reasonable.  
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3.5 EXPERIMENTAL STUDIES 

 

A. Simulation setup 

We conducted experiments on 13 different parallel applications from the SPLASH-2 [93] 

and PARSEC benchmark suites. These applications are executed on the cycle-accurate SNIPER 

[79] multicore simulator together with McPAT [94] to obtain their steady state power, compute 

time, and communication intensity across various app-DoPs, Vdd and clock frequencies. The DoP 

values we used ranged from 4 to 32 beyond which most of the applications were observed to have 

lower performance due to high communication (synchronization) overheads. The CHARM 

framework is implemented in C++ and is integrated with the SNIPER simulator, models for aging 

and soft-errors, and checkpointing and rollback support. CHARM also uses the open-source 

thermal emulator 3D-ICE [75] to simulate the temperature profile of the cores and routers from 

the steady state power values, assuming a conventional air-cooled heat-sink. For the given power-

profile, 3D-ICE outputs the core and router temperatures on the die. 

We categorized the 13 benchmarks into two groups: (i) memory-intensive benchmarks - 

{cholesky, fft, radix, raytrace, dedup, canneal, and vips); and (ii) compute-intensive benchmarks 

– {swaptions, fluidanimate, streamcluster, blackscholes, radix, bodytrack, and radiosity}. As 

radix has properties of both, we use it in both groups. In our analyses, we employ three types of 

application sequence groups as inputs to our framework: memory-intensive, compute-intensive, 

and mixed (using all 13 applications). Each application-sequence has 100 randomly ordered 

application-instances selected from the respective group. To enhance the statistical significance of 

our results, we averaged results over four different randomly generated application-sequences for 

each group. To simulate the chip-lifetime within a reasonable time, we extrapolate the effects of 
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aging over 500 such sequences, making the total number of application-instances executed within 

an epoch to be approximately l = 50,000. We experimented with three different inter-application 

arrival rates of 1.4s, 2.8s and 5s. We also analyzed the impact of different soft-error rates. 

We considered a 2D CMP with 60 homogeneous tiles, fabricated at 22nm. Each tile has an 

x86 core, a NoC router, and a private L1 cache. The tiles are arranged in a 10×6 mesh layout. The 

Vdd values supported by each tile (core + router) are between 0.75V-1V, in steps of 0.05V. Note 

that as all the cores on which a parallel application is mapped are operated at the same Vdd and 

clock frequency, and as there is no inter-application communication, there are no overheads due 

to voltage level converters and clock synchronizers during application execution. We considered 

the computation frequencies using Eq. (10) and obtain the respective application execution time 

from the SNIPER simulation data. The dark-silicon power budget (DS-PB) is assumed to be 80W 

for our selected 60 core chip at the 22nm node. We also considered the runtime overhead for our 

framework. The total execution time for CHARM on one of the cores is 0.36ms, which is 

insignificant compared to the average application execution time (~seconds).  

For computing the circuit-aging, we assumed the nominal VT of each core and router to be 

0.3V at the beginning of the chip lifetime. We consider a tile to be unusable after its average VT 

goes beyond 0.57V. Above that value, the maximum operating frequency of the core cannot meet 

any of the applications’ deadline constraints. The chip aging-footprint threshold ζ depends on 

workload types and arrival rates. The ζ value was empirically derived, as discussed in the next 

section. 

In the WBR routing heuristic, we use δ=0.6, to calculate the value of βR, for an appropriate 

trade-off between application performance and aging. In our experiments, an epoch interval can 
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range between 25 to 35 days, depending on the power profile, execution-times, and average DoPs 

of the application workload, as well as the degree of aging in the chip. Also, as the overheads 

incurred due to employing aging sensors have been reported to be quite small (power dissipation 

of 84.7nW, sensing-latency of 100μs, and area of 77.3μm2 per sensor at 45nm technology node 

[69]), we ignore them in our analysis. 

 

B. Simulation Results 

 
We compare our CHARM framework against an enhanced version of a prior work VARSHA 

[83] that tries to optimize the energy and performance of a multicore chip while meeting dark-

silicon power constraints as well as satisfy reliability and performance constraints. The work 

however does not employ any checkpointing and rollback based correction, nor does it consider 

circuit-aging phenomenon while mapping. While VARSHA does not consider per-core DVS, we 

have enhanced VARSHA with per-core DVS in our analysis for a fair comparison with CHARM 

which also assumes per-core DVS support. We explore three variants of our CHARM framework: 

CHARM-5, which is designed for a target lifetime of 5 years; CHARM-7, which is designed for a 

target lifetime of 7 years; and CHARM-NA, which has no target lifetime. CHARM-NA thus only 

has the soft-error prevention mechanism, and aims for high Vdd and app-DoP to get the best 

execution speeds throughout the chip lifetime. We simulated and analyzed the lifetime of the chip, 

total number of applications executed over the lifetime, average power dissipated by applications, 

and the number of functional cores at the end of the lifetime, for the four frameworks. Figure 23 

shows the lifetimes of the CMP for the different frameworks. CHARM-7 and CHARM-5 are 

designed to achieve their target lifetimes of 7 and 5 years respectively. This is made possible by 

changing the threshold value ζ for different target lifetimes and application arrival rates. For 
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CHARM-7, ζ is empirically derived to be approximately 21.5V for arrival-rate-1, 22.5V for arrival-

rate-2, and 23V for arrival-rate-3. Similarly for CHARM-5 it is approximately 27V for arrival-rate-

1, 28.5V for arrival-rate-2, and 30V for arrival-rate-3. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 23 Comparison of lifetimes of the chip for different frameworks across different 

workloads and arrival rates: (a) Arrival-rate-1, inter-app duration is 1.4s (b) Arrival-rate-2, 

inter-app duration is 2.8s (c) Arrival-rate-3, inter-app duration is 5s  
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From Figure 23 (a), Figure 23 (b) and Figure 23 (c) it is evident that CHARM-5 and CHARM-

7 either meet or come very close to achieving their target lifetimes of 5 years and 7 years 

respectively. Both CHARM-7 and CHARM-5 intelligently adapt their mapping phases to save 

lifetime or optimize performance according to the available slack time and threshold constraints. 

Without a target lifetime, CHARM-NA optimizes primarily for performance while VARSHA 

optimizes for energy, leading to their lower lifetimes. In particular, CHARM-7 achieves 50-100% 

improvement in lifetime compared to CHARM-NA, and up to 2× improvement compared to 

VARSHA.  

 Figure 24 shows the total number of applications executed over the lifetime of the chip for 

the four frameworks. At all the three arrival rates, CHARM-7 executes a higher number of 

applications than any other framework, achieving up to 2× improvement compared to CHARM-

NA and up to 6× improvement compared to VARSHA, in the number of applications executed. This 

is due primarily to the higher lifetime constraint for CHARM-7 and the ability of our proposed 

heuristics to manage circuit aging to meet this constraint, while reducing the number of dropped 

applications compared to CHARM-NA and VARSHA. CHARM-5 executes 2× more applications 

than CHARM-NA and VARSHA for compute-intensive and mixed workloads but gives results 

comparable to CHARM-NA for memory-intensive workloads when the arrival rate is high (Figure 

24 (a)). This is because, although memory-intensive apps consume less power, they run for longer 

durations and have shorter app-slack times compared to compute-intensive apps. When the arrival 

rate is high, CHARM-5 drops higher number of applications in the latter part of its lifetime owing 

to its inability to find a mapping region that meets application deadlines while preserving the 

lifetime at the same time. This leads to a similar number of applications executed in CHARM-5 

and CHARM-NA. However, when the arrival rate is low (Figure 24 (c)), CHARM-5 surpasses the 
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applications executed by CHARM-NA and VARSHA by over 2.5×. CHARM-7 executes 10-40% 

higher number of applications compared to CHARM-5, due primarily to the longer lifetime 

achieved with CHARM-7 which provides more opportunities to execute greater number of 

applications. As CHARM-NA prioritizes performance by executing applications at higher Vdd and 

DoP, and VARSHA executes applications at very high Vdd to safeguard the applications from soft-

errors in the absence of checkpointing and rollback recovery, both frameworks suffer from 

relatively lower lifetimes and application execution counts. Running at higher Vdd also leads to 

higher power dissipation and fewer number of applications running on the CMP to avoid violating 

DS-PB constraints. As a result, in CHARM-NA and VARSHA, the waiting time in the service queue 

is much higher, and a larger number of applications get dropped due to missed deadlines. 

 

 
(a) 

 
(b) 
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(c) 

Figure 24 Results comparing the number of applications executed by different frameworks 

across different workloads and arrival rates. (a) Arrival-rate-1, inter-app duration is 1.4s (b) 

Arrival-rate-2, inter-app duration is 2.8s (c) Arrival-rate-3, inter-app duration is 5s  

 

 

Figure 25 shows the average power dissipated per application by the four different 

frameworks. When the arrival rate is high (Figure 25 (a)), CHARM-7 dissipates 50-80% less power 

per application than both CHARM-NA and VARSHA with different workload types. CHARM-5 

achieves 50-80% improvement in power compared to both CHARM-NA and VARSHA. This is 

because of the queue-pressure threshold (Section 3.4.B), which does not allow high DoPs for 

applications, leading to more number of apps being mapped simultaneously and lesser average 

power dissipated per application, for CHARM-7 and CHARM-5. When the arrival-rate is moderate 

(Figure 25 (b)), CHARM-7 achieves 70% improvement compared to CHARM-NA and 80% 

improvement compared to VARSHA, and CHARM-5 achieves an improvement of 25% compared 

to CHARM-NA and 30% compared to VARSHA, for compute intensive workloads.  
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 25 Average power consumed by applications executed on different frameworks across 

different workloads and arrival rates. (a) Arrival-rate-1, inter-app duration is 1.4s (b) 

Arrival-rate-2, inter-app duration is 2.8s (c) Arrival-rate-3, inter-app duration is 5s 

 

However, both CHARM-7 and CHARM-5 achieve only 2-5% improvement for memory 

intensive workloads compared to CHARM-NA and VARSHA. This is because both CHARM-7 and 

CHARM-5 have sufficient power budget and app-slack time for these workloads to map many of 

the applications with higher Vdd and DoP, similar to CHARM-NA and VARSHA. When the arrival 
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rate is low (Figure 25 (c)), CHARM-7 dissipates around over 2× more power per application than 

CHARM-5 and up to 15% more power than CHARM-NA. In order to not significantly exceed the 

target lifetime constraint of the chip, CHARM-7 maps applications more aggressively towards the 

latter part of its lifetime, with higher DoP and Vdd. This raises the average power dissipated per 

application mapped. CHARM-NA dissipates higher power than both CHARM-5 and CHARM-7, 

because of its aggressive mapping of applications with very high Vdd and DoP. CHARM-NA and 

VARSHA dissipate power in a similar manner, within 3-8% of their respective powers except at 

the higher arrival rates of compute intensive workloads where CHARM-NA dissipates the highest 

power per application.  

 
 

Table 2 Number of functional cores at the end of the lifetime 

 CHARM-7 CHARM-5 CHARM-NA VARSHA 
Mixed 10 15 17 42 
Compute 9 14 20 55 
Memory 11 17 17 54 

 

Lastly, we analyzed the state of the chip at the end of the lifetime with the four frameworks 

to understand the implications of their chosen runtime resource management strategies. Table 2 

shows the total number of functional cores remaining at the end of the lifetime for different 

workload types. The results shown are for a single arrival rate (Arrival-rate-1) for brevity. VARSHA 

reaches the end of the lifetime much before all of its cores are degraded. This is because VARSHA 

maps applications at higher Vdd and frequency to satisfy reliability constraints. However, the 

resulting chip-aging-profile with VARSHA creates fragmentation, making it impossible to obtain 

contiguous mapping regions on the chip that meet application deadline constraints, for low or high 

DoP values. All the CHARM frameworks, however, utilize the chip till most of the cores are 

degraded, thereby utilizing the chip very effectively. On average, CHARM-7 has 5×, CHARM-5 
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has 2.5× and CHARM-NA has 2× better chip utilization vs. VARSHA by the time of the end of the 

chip lifetime. 

 

3.6 CONCLUSIONS 

 

In this chapter we proposed a novel runtime framework called CHARM that aims to 

maximize the number of applications executed reliably while meeting their performance deadlines 

without violating the dark-silicon power constraints over a given chip target lifetime. Our 

experiments show that CHARM enables up to 2.5× improvement in the lifetime, up to 6× 

improvement in number of applications executed and 5× improvement in efficiently using the 

cores during the lifetime of the chip compared to the state-of-the-art on reliability aware runtime 

application mapping. 
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4. PARM: POWER SUPPLY NOISE AWARE RESOURCE MANAGEMENT FOR NOC 

BASED MULTICORE SYSTEMS IN THE DARK SILICON ERA 

 

Today’s processors designed at sub-10nm technology nodes have high device densities and 

fast switching frequencies that cause fluctuations in supply voltage (Vdd) and ground networks. 

When cores with varying activity profiles switch at the same time, the resulting fluctuation in 

power supply leads to a reduced Vdd at the power supply grid nodes of the cores and network-on-

chip (NoC) routers in that region, which can adversely affect the execution of applications running 

on them. In this chapter, we propose a novel runtime framework to reduce the power supply noise 

(PSN) in cores and routers at runtime. Experimental results for 7nm FinFET process nodes show 

that our framework not only achieves up to 4.5× reduction in PSN, and up to 34.3% improvement 

in application performance, but also manages to map up to 38% more applications when the CMP 

is oversubscribed, compared to the state-of-the-art. 

Figure 26 shows peak PSN in the power delivery wires on the chip due to inter-core 

interference [4], which is increasing alarmingly with technology scaling by going beyond the 

permissible noise margin, making the PSN threat a serious concern for chip designers. Traditional 

approaches have addressed the PSN issue at the circuit and micro-architectural levels. Although 

PSN is most readily observed at the circuit level, the compute intensity and distribution of the 

workload on the cores decides the magnitude of PSN observed at each cycle. Hence it is important 

to address the issue of PSN at a higher level of abstraction than the circuit level. More recent 

approaches [95] [96] [97] [98] [99] [100] address PSN at the system/compiler level, and propose 

PSN aware application mapping, task scheduling, and instruction rescheduling. However, most of 

these approaches have high overheads when deployed at runtime, are agnostic to the dark silicon 
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issue, and do not consider workload activity in NoCs in tandem with cores while attempting to 

overcome the challenges associated with PSN.  

In this chapter, for the first time, we propose a novel PSN-aware runtime resource 

management framework (PARM) that employs dynamic voltage scaling (DVS), adaptable 

application degrees of parallelism (DoP), and an intelligent mapping scheme for a NoC-based CMP 

that operates at near threshold voltages within dark silicon constraints. PARM selects the mapping 

region, Vdd, and DoP for every application that arrives at runtime in such a way that the peak PSN 

in the mapping region and its vicinity is kept below a threshold, minimizing the number of voltage 

emergencies. Our key contributions in this chapter are: 

• We study the correlation of PSN with application activity, proximity of concurrently executing 

threads, and core supply voltages;  

• We utilize DVS and adaptable application DoP, to reduce the peak PSN and optimally utilize the 

available dark silicon power slack while maximizing the number of applications serviced at 

runtime; 

• We propose a novel PSN aware application mapping heuristic for emerging sub-10nm fabricated 

CMPs, to reduce the PSN in a region and minimize communication latency between tasks; 

• We devise a novel PSN-aware routing scheme that balances router activity near highly switching 

cores, and reduces the impact of the NoC traffic on PSN without incurring any additional latency. 
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Figure 26 Peak supply noise percentage, relative to the nominal near threshold supply 

voltage, across fabrication process technology nodes. 
 

4.1 RELATED WORK 

Several techniques have been proposed to cope with PSN at the circuit-level. In [101], 

conservative noise margins are used to ensure safe operation even when worst-case PSN is 

observed. In [102], decoupling capacitors are used to reduce core-to-core voltage interference. In 

[103] [104] mechanisms were presented to predict PSN and the occurrence of voltage emergencies. 

Other efforts have proposed micro-architectural solutions, to reduce inter-core interference, e.g., 

pipeline throttling, instruction rescheduling, relaxed entry/exit at synchronization barriers, etc. [95] 

- [100], [105]. But these solutions are primarily designed for single-core or few-core systems. The 

use of on-die digital sensors was proposed in [106] for the runtime measurement of PSN and to 

take reactive (corrective) measures post-detection. However, these solutions are not very beneficial 

in preventing PSN-induced voltage emergencies. Also, the penalty for error correction is expensive 

when the system is over-subscribed. In [107], Hu et al. proposed a thread mapping and migration 

scheme for Single Program Multiple Data (SPMD) applications to minimize large voltage 

fluctuations in CMPs. In [32] [108], reliability aware task mapping and NoC routing schemes have 

been proposed to minimize the effects of aging and soft errors. In [23] [109], PSN-aware workload 
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assignment schemes are proposed for 2D and 3D CMPs. The schemes map highly active threads 

at longer Manhattan distances from each other to minimize PSN in a region. However, these 

schemes do not consider the impact of activity in NoC routers on PSN. In [110], PSN-aware 

routing and flow control schemes are proposed, to reduce NoC router activity. However, 

application mapping plays a crucial role in overall NoC activity as tasks separated by longer 

distances cause more NoC routers to switch. Also, none of these works consider the low voltage 

margins imposed by NTC to meet dark silicon constraints.  

To the best of our knowledge, this is the first work that addresses PSN due to both core and 

NoC switching activity in the presence of dark silicon power constraints for CMPs executing multi-

application workloads and designed at sub-10nm technology.  

 

4.2 BACKGROUND: MODELS AND ASSUMPTIONS 

 

4.2.1.  PROCESSOR MODEL 

We assume a CMP with N tiles Ʈ = {Ʈ 1, Ʈ 2…Ʈ N}. Each tile Ʈ i , has a processing core, a NoC 

router, and L1 instruction and data caches as shown in Figure 27. The tiles also have a shared 

global L2 cache, organized in banks. The tiles are connected by a NoC fabric. The CMP is 

constrained by a dark silicon power budget (DsPB) which is the thermally safe power limit that 

the cooling system of the chip can operate effectively within. The chip supports dynamic voltage 

scaling and can operate at different supply voltages V = {V1, V2... Vs}.   
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4.2.2.  APPLICATION MODEL 

We assume the applications A = {A1, A2, ... AM} that execute on the CMP to be multithreaded, 

with each application Aj able to spawn up to K threads {T1, T2 … TK}. Each thread executes on a 

dedicated core Ci ϵ Ʈi. An application Aj can execute with different thread counts hence allowing 

for variable degree of parallelism (DoP). Each application has a performance deadline constraint. 

Application communication requirements are represented by an application graph APG = G(V, E) 

which is a directed acyclic graph, where each vertex vi ϵ V represents a thread and each edge ei,j ϵ 

E represents communication volume between thread i and thread j. All cores that execute the 

threads of an application are supplied with the same Vdd. The applications are stored in a service 

queue upon arrival at runtime and are considered for mapping to the CMP on a first-come-first-

serve (FCFS) basis. Applications are mapped on non-overlapping regions on the CMP for inter-

application isolation. In the rest of the chapter, the terms thread and task are used interchangeably. 

 

 

Figure 27 Baseline CMP with power supply domain of four tiles; each tile is powered by a 

voltage regulator (VRM) connected to a power source.  

 

4.2.3.  POWER DELIVERY NETWORK (PDN) IN CMPS 

We assume a baseline PDN with multiple independent domains as shown in . A domain is a 

group of four tiles that has its own voltage regulator module (VRM). These domains are physically 
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separated so that there is no interference between tiles from different domains. Each domain is 

powered by an independent source, which enables efficient monitoring of the power consumption 

on the chip as the core count scales up. All of the tiles in a domain are supplied with the same Vdd, 

although the actual voltage received at the tile varies due to PSN-induced variation. We assume 

the presence of digital sensors [106] to monitor the runtime PSN levels at cores and NoC routers. 

We also assume that tasks of different applications are not mapped into a single domain, which is 

ensured by limiting the DoP values of each application to be multiples of 4.  

 

4.2.4.  POWER SUPPLY NOISE (PSN) MODELING AND ESTIMATION 

PSN is caused by (i) resistive drop of power delivery wires (IR), and (ii) inductive droop due 

to wire inductance (L.Δi/Δt). While resistive drop is proportional to current flowing in the wires, 

inductive droop is proportional to the switching activity of the wires carrying current. We model 

the PDN as in previous works as shown in Figure 27, where Lb and Rb are inductance and resistance 

at a bump, Rc is resistance of the PDN wires, and Cdecap is the decapacitance between cores. The 

workload on a tile is modeled as a current source, similar to [107] [103] [109], based on power 

consumption of the core and NoC router in a tile. The dynamic values of PSN observed at each 

tile is given by: 

 ∆𝑽 = 𝑽𝒃𝒖𝒎𝒑 − 𝑽𝑻𝒊                  (27) 

 

where Vbump is the voltage supplied by the source and VTi is the voltage observed at tile i after 

on-chip parasitic drop. As in [98], we consider a PSN of 5% as a margin for a VE in near threshold 

voltages that leads to faulty outcomes for a thread executing on the PSN-affected tile. 
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    (a)                                                                    (b) 

Figure 28 (a) Peak PSN (as % of supply voltage) observed in a domain for communication- 

and compute-intensive workloads; (b) Normalized PSN due to interference between pairs of 

tasks of different switching activity (High or Low) and separated by Manhattan distances of 

1 and 2 hops.  

 

 

4.2.5.  IMPACT OF MAPPING DECISIONS AND DVS ON PSN 

PSN is significantly impacted by variations in switching activity of transistors that leads to 

interference between the current flows in wires. Moreover, as shown in Figure 28(a), the peak PSN 

observed in a domain is also directly proportional to its operating voltage (Vdd), which decides the 

maximum operating frequency (Fmax) of cores and routers in that domain. The trend exists for both 

communication-intensive and computation-intensive applications. To reduce PSN, one solution is 

to reduce Vdd. However, this also reduces Fmax, which diminishes application performance. 

Dynamic adaptation of application DoP is one way to improve performance while running at a low 

Vdd [83].  

The switching characteristics of tasks executing in close proximity to each other on a chip 

also have a considerable impact on PSN. Figure 28 (b) shows interference effects of different 

combinations of switching activities for two tasks executing on adjacent cores. We categorize 

application tasks into two bins, “High” and “Low” active, based on extensive analysis of their 
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switching activity. The PSN observed due to interference between tasks with High-Low switching 

activity (one task has high average switching activity and the other has low average switching 

activity) is up to 35% higher than tasks with High-High and Low-Low switching activity. Cores 

running low switching activity tasks get affected by the resistive and inductive interference from 

the power drawn by high switching tasks running on the neighboring cores in the same domain. 

This behavior is also observed in [111]. Interestingly, Figure 28 (b) indicates that highly interfering 

tasks mapped at a distance of 2-hops away interfere up to 10% less than tasks mapped at a distance 

of 1-hop away. None of the prior works have exploited this observation to reduce the negative 

impacts of PSN.  

Given application performance deadlines and the dark silicon power budget (DsPB) for a 

CMP, our objective is to use the above observations to opportunistically select a combination of 

Vdd, DoP, and mapping region for each application that arrives for execution at runtime, to 

minimize the PSN observed in power supply domains. The next section discusses our proposed 

framework to meet this objective. 

 

 

 

 

Figure 29 Overview of the proposed PARM framework 
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4.3 PSN AWARE RESOURCE MANAGEMENT (PARM) 

Figure 29 gives an overview of our proposed PARM framework. Offline profiling 

information about applications, and online voltage noise feedback from on-chip voltage noise 

sensors are inputs to the framework. The application profiling collects statistics on switching 

activity, power consumption, and NoC communication characteristics for all of the tasks of an 

application at different Vdd’s and DoPs. The output of the framework is a task to core mapping, Vdd 

assignment, and DoP selection for each application that arrives for execution on the NoC-based 

CMP with independent power domains. Vdd and DoP are assigned for an application at the 

beginning of its execution, and their values do not change till the application completes. Our PARM 

framework first selects an appropriate Vdd and DoP for an application to be mapped, based on the 

application performance and chip-level DsPB constraints. After Vdd and DoP selection, PARM uses 

a PSN aware mapping heuristic, to find a mapping in such a way that the total PSN in PDN domains 

is minimized; and communication distance between tasks is minimized (to improve performance). 

The following subsections discuss the components of the PARM framework. 

  

4.3.1. VDD AND DoP SELECTION  

Algorithm 5 presents our Vdd and DoP selection method. The inputs are a set of permissible 

voltages sorted in increasing order V = {V1, V2, ... VS}, and the set of applications waiting in the 

service queue A = {A1, A2, … AM}. To consume low power (and generate low peak PSN) while 

ensuring that application deadlines are met, the algorithm starts with the lowest Vdd and the highest 

DoP combination. This is because peak PSN is always low at lower Vdd values (Figure 28 (a)). 

Also, to meet application deadlines, it is intuitive to utilize the available tiles to spawn more 

number of threads (i.e., use a higher application DoP) without violating the DsPB constraint. To 



95 
 

ensure this, the permitted DoP values of an application are sorted and considered in a decreasing 

order (line 1). The minimum DoP considered in our work is 4, as single and dual threaded versions 

of applications that we analyzed had poor performance and missed deadlines. 

Our selection algorithm then iteratively searches for a suitable (Vdd, DoP) combination. First, 

the Worst Case Execution Time (WCET) of an application for a selected (Vdd, DoP) combination 

is estimated using the offline application profile data (line 5) and checked to see if the application 

deadline constraint will be met (line 6). If the deadline constraint is met, this (Vdd, DoP) 

combination is sent as an input to the PSN-aware mapping heuristic (line 7; this heuristic is 

discussed in the next subsection). If the mapping is successful, the next application in the service 

queue is processed (line 8). If not, the algorithm waits till the CMP completes a currently executing 

application (which would free up tiles for mapping), and tries again to find a mapping region (lines 

9-11). If the algorithm fails to find a mapping region, it selects the next DoP (lower value) from 

the list D, and performs the same operations as above (line 12). This can be useful to map an 

application when there are a lack of sufficient number of tiles, or a limited power budget. Selecting 

a lower DoP would resolve both of these concerns. However, if the estimated WCET (from line 

5) does not meet the application deadline constraint, the algorithm skips iterating through DoPs, 

as the lower values of DoP cannot satisfy the deadline constraint, and continues searching for a 

new (Vdd, DoP) combination with the next Vdd from the list V, that is higher than the current Vdd 

value (line 13). If the deadline constraint is not met or if the mapping region is not found on the 

CMP after exploring all Vdd and DoP combinations, the current application is dropped and the next 

waiting application is processed, to avoid stagnation in the service queue due to the stalled 

application. 
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Algorithm 5: Vdd, DoP selection 

Inputs: Vdd values sorted in increasing order V ={V1, ...VS}, applications A = {A1, … AM} 

 

1: for all Aj in A do  

2:  D ← Sort(Ai.{ D1, … DT }) //sorted in descending order 

3:  for all Vi in V do  

4:    for all Dk in D do   
5:       WCET ← EstimateExecutionTime(Vi, Dk, Aj) 
6:       if WCET < Deadline (Aj) then   
7:          if PSNAwareMapping (Vi, Dk, Aj) is successful then  
8:             goto line 1 (continue to next app in A) 
9:          else stall till an app exit event on CMP  
10:             if PSNAwareMapping (Vi, Dk, Aj) is successful then 

11:               goto line 1 (map the next app in A)  
12:            else goto line 3 (Try with lower Dk,) 
13:      else goto line 2 (Try with next Vi) 
 
Outputs: Vdd , DoP, and a valid region to map the application 

 

 

4.3.2. PSN AWARE MAPPING HEURISTIC 

Given a Vdd and DoP that satisfy the deadline constraint for the application to be mapped, we 

next attempt to find a mapping that fulfils the CMP dark silicon (DsPB) constraint and minimizes 

PSN in CMP power domains, as well as minimizing the total Manhattan distance of 

communication between tasks. This can be formulated as multi-objective optimization problem 

which has been shown to be NP-Hard. Traditional multi-objective optimization methods (e.g., 

integer programming, genetic algorithms) to solve the problem are too slow for decision making 

at runtime. Hence, we propose a fast runtime heuristic to select a suitable mapping region and meet 

all constraints. 
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Algorithm 6: PSN Aware Mapping 

Inputs: Vdd, DoP, application A, Sorted APG edges A(E) = {e12, …, enn-1} 

1: if EstimatedPowerConsumption(A) > DsPB then 
2:   return False //unable to find viable mapping  
3: H ← {Ø} L ← {Ø} // Set of clusters 

4:  for all ei in A(E) do 

5:    for each tasks Tj, connected to ei do 

6:    if Tj. ∉ H or Tj. ∉ L then  

7:      if Tj .High then push_back(Tj,H) 
8:      else push_back(Tj,L) 
9:  num_cluster ← create_clusters(H, L)    
10:  if num_available_domains < num_cluster then   
11:    return False //unable to find viable mapping 
12: else  

13:   task-cluster-to-domain-mapping() 
14:   return True 
Output: Successful mapping or indication of failed mapping  

 

 

Algorithm 6 shows our PSN-aware mapping approach. Given Vdd and DoP for the application 

A as inputs, the mapping heuristic aims to map all of the tasks of application A on to the CMP 

without violating the DsPB constraint, while minimizing the observed PSN. The algorithm first 

checks if the power consumption estimated from offline profiling is more than the available DsPB 

and returns false if the condition is not met without going further (lines 1-2). The tasks are labeled 

as high switching active or low switching active based on offline profile data (we found that more 

than two bins for switching activity increased heuristic overhead and also did not lead to notable 

benefits for runtime mapping). The heuristic utilizes the application graph APG of the application 

to be mapped to extract a sorted list of edges in the decreasing order of edge weights 

(communication volumes). To reduce PSN due to inter-task interference, the heuristic maps as 

many tasks with similar switching activity into the same power supply domain as possible. To 

reduce the NoC traffic, the heuristic also tries to map tasks with the highest communication 

volumes in the same domain. To achieve this, the heuristic iterates through the sorted edge list and 



98 
 

creates clusters of 4 tasks, corresponding to the power supply domains of 4 cores. As the tasks are 

categorized into two types (high and low switching), we create two lists corresponding to the two 

task types (line 3). The algorithm checks if tasks connected to the edge being evaluated are already 

assigned to a list (line 4); if not, they are pushed to one of the two lists (lines 5-8).  

The two lists end up with tasks arranged in the decreasing order of communication volumes, 

as the edges have been evaluated in the decreasing order of their weights. Each list is then divided 

into clusters of four tasks in the order in which they are stored in the list (line 9). Any remaining 

un-clustered tasks from each list (< four; if the list size is not a multiple of four) are grouped into 

a single cluster. Clustering is done to ensure that (1) all but one of the created clusters will have 

tasks with similar switching activity, to be mapped in the same domain, (2) tasks with high 

communication volume between them are not mapped far from each other. If the available domains 

are less than the number of clusters (line 10) the algorithm returns false (i.e., no mapping found). 

If there are sufficient number of domains, each task cluster is mapped on to domains (line 13), in 

a manner that minimizes the hop distance between inter-domain mapped tasks. Further details of 

this step are omitted due to lack of space.  

Figure 30 presents an example of the mapping heuristic for an APG and a sorted edge list. 

When mapping a task cluster on to a domain, if a cluster has two tasks of each switching activity 

level, tasks of the same level are mapped adjacent to each other, as shown in Figure 30, to reduce 

PSN due to inter-task interference (Section 4.2.4). On successful mapping, the heuristic returns 

true (line 11), indicating a successful mapping). After mapping, the tasks of the mapped application 

are scheduled using the fast and efficient earliest deadline first (EDF) scheduling scheme. For 

EDF, each task is assigned a deadline (priority) based on the deadline of the entire application, 

using a technique proposed in our prior work on task-graph scheduling [112]. 
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Figure 30 Overview of PSN aware mapping heuristic 
 

4.3.3. TIME COMPLEXITY ANALYSIS OF PARM  

The Vdd and DoP selection step runs in linear time complexity with respect to the permissible 

Vdd and DoP levels (|V | = 5, |D| = 4 in this work). In the mapping step, task clustering runs in linear 

complexity with respect to the number of edges in the APG. The total number of possible edges in 

an APG is T×(T+1)/2, where T is the total number of tasks of an application. So, the clustering 

step has O(T2) complexity. Task-cluster-to-domain-mapping() has linear complexity with respect 

to number of tiles, hence the mapping step takes O(Ʈ), where Ʈ is the total number of tiles in the 

CMP. The runtime complexity of EDF scheduling scheme, given by O(T×logT), where T is the 

total number of tasks of an application, is masked by running in parallel with the mapping scheme 

that takes longer. So, PARM runs with a complexity of O(V×D×{max(Ʈ, T2)}) which depends on 

the number of CMP tiles, or number of tasks of an application, while V and D are small integers.  

 

 

4.3.4. PSN AND CONGESTION AWARE NOC ROUTING (PANR) 

To complement our PSN-aware mapping framework (PARM), we propose a PSN- and 

congestion-aware NoC routing scheme (PANR). PANR builds on and enhances a deadlock-free 
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turn model based routing scheme called west-first routing [113]. Algorithm 7 shows the decisions 

made at each hop in a route. For each header flit in the input channel buffers of a NoC router, the 

routing scheme first computes the permitted destination hop directions (lines 1-3). It then selects 

a hop direction, from a set of permitted directions, by considering the voltage noise sensor data 

and incoming data rate (flits/cycle) from the routers in the tiles that are adjacent to the current tile. 

If the buffer occupancy of the input channel is beyond a threshold B, the output direction with the 

least incoming data rate is chosen to minimize the congestion (line 5). In the case of lower buffer 

occupancy than B, the output direction with the least observed PSN is chosen (line 6), to reduce 

the activity in the router in that direction, which in turn minimizes the overall PSN observed in the 

domain. Once a direction is decided for a header flit, the remaining flits in a packet follow the 

header flit. 

 

Algorithm 7 PSN and Congestion Aware NoC Routing 

Inputs: destination tile coordinates, PSN activity of adjacent tiles, traffic load in adjacent NoC 

routers  

1:  for each channel in Input_channels do  

2:   flit ← channel.packet.header_flit 
3:   {permissible directions} ← WestFirstRouting (flit.src, flit.dest) 
4:   if channel.buffer_occupancy > B then 
5     hop ← min_data_rate{permissible directions}  

6:   else hop ← min_PSN{permissible directions} 

7:  return hop 
Output: Next hop direction for packets in input channels 

 

 

Overhead computation: The overhead of our routing scheme involves registers to store the 

values of noise and router traffic levels of the adjacent tiles, and additional wires to transmit those 

values between tiles. In addition, two 64-bit comparators are used per router to find the minimum 

values of PSN and incoming data rates of adjacent routers. The additional circuitry at each router 

consumes ~1 mW (3%) power and ~115 μm2 (0.5%) area overhead over the baseline NoC router, 
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at the 7nm node. Hop selection takes 1 cycle in a router, at 1 GHz. This latency is masked by 

executing the selection step in parallel with the route computation step. The overhead of the 

network of digital PSN sensors used to sense the voltage noise [106], is around 413μm2 which is 

negligible compared to the core area which is ~4 mm2
, and the router area of ~71300 μm2, at a 7nm 

FinFET node. Results are calculated based on a previous work [114] that proposed a 7nm cell 

library for circuit and architectural simulation of NoCs in DSM technology nodes. 

 

4.3.5. FAULT DETECTION AND CORRECTION  

Our proposed PSN aware mapping and routing minimizes voltage fluctuations due to PSN. 

However, there may still be some cases when inter-core interferences lead to PSN above a certain 

threshold which leads to voltage emergencies (VE). VEs have the potential to cause errors in the 

functionality of logic devices and faulty application execution. To prevent such scenarios, 

applications are checkpointed at periodic intervals [91]. When a VE is detected using on-chip 

sensors in a tile that runs an application, it is rolled back to its last saved checkpoint and begins 

execution from there. 

 

4.4 EXPERIMENTS 

 

4.4.1. SIMULATION SETUP 

We conducted experiments on 13 different parallel applications from the SPLASH-2 [77] 

and PARSEC [78] benchmark suites. We used the GEM5 [115] multicore simulator to generate 

the offline profile data for applications. We modeled the PDN as discussed in section 4.2.3 using 
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the SPICE simulator. We estimated the power consumption of different applications at various Vdd, 

clock frequency values, and app-DoP, at a 7nm FinFET technology node, using data from McPAT 

[94] and ITRS [116]. The DoP values used range from 4 to 32 (in multiples of 4, beyond which 

most of the applications were observed to have lower performance due to communication 

(synchronization) overheads. The PARM framework is implemented in C++, and the models of 

PDN, and checkpointing-and-rollback are integrated into it. We conducted trace driven simulations 

and assigned application execution characteristics to the tiles that are executing it, to speed up 

analyses. The power and communication traces are captured at 0.01ms interval, while applications 

execute for 400-700ms.  

The switching activity of the core and the NoC router in a tile was observed to be directly 

proportional to its power consumption. A task running on a core that consumes more than 1.5W 

of power, for more than 150 captured intervals, on a tile that is executing it is assumed to be a high 

switching activity task, otherwise it is considered a low switching activity task. We also sample 

PSN values of the tiles at periodic intervals, and when a new application begins or a current one 

ends execution on the CMP, using the PDN SPICE model. The buffer occupancy threshold B for 

hop selection in PANR is set to 50% after analyzing the effects of different occupancy levels on 

router throughput, with a cycle-accurate NoC simulator.  

We categorized 13 benchmarks into two groups: (i) communication-intensive benchmarks: 

{cholesky, fft, radix, raytrace, dedup, canneal, vips}; and (ii) compute-intensive benchmarks: 

{swaptions, fluid-animate, streamcluster, blackscholes, radix, bodytrack, radiosity}. As radix has 

properties of both, we use it in both groups. We employed three sequences of application with up 

to 20 applications picked randomly from each of the groups mentioned above. The sequences are 

categorized as compute-intensive, communication-intensive, and mixed, according to the type of 
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applications used in each sequence. We also experimented with three different inter-application 

arrival rates of 0.2s, 0.1s, and 0.05s to test the efficiency of our framework for different CMP 

utilization (workload subscription) scenarios.  

We consider a 60 core 2D NoC-based CMP designed at 7nm FinFET technology node for 

our studies. The tiles are arranged in a 10 ×6 mesh layout. Each tile has an ARM Cortex A-73 low 

power mobile core, a NoC router, and a private L1 cache. We assume that PARM is part of the OS 

or middleware that assigns Vdd, DoP, and task-to-core mapping regions to each application 

according to the availability of DsPB and idle cores at runtime. The Vdd values supported by each 

tile (core + router) are between 0.4V (NTC) to 0.8V in steps of 0.1V. We assume that all of the 

cores on which an application is mapped to run at the same Vdd. We assume a dark silicon power 

budget (DsPB) of 65W. We treat PSN above 5% as a voltage emergency, similar to prior work 

[98]. We assume an overhead of ~256 cycles for periodic checkpointing with a 1ms checkpoint 

period, and ~10000 cycles of overhead for rolling back (restart) to an earlier state, after an error. 

 

 

4.4.2. SIMULATION RESULTS  

We compare our PARM framework against a prior work [109] that tries to minimize PSN 

using a harmonic mapping scheme, where tasks with high activity are mapped far away from each 

other. We refer to the scheme as HM. To show the impact of NoC routing on PSN, we compare 

our proposed PANR routing scheme with an XY routing scheme, and a scheme from prior work 

ICON [110] that minimizes PSN in NoCs, but is agnostic of application mapping. Overall, we 

evaluate six combinations of comparison works, HM+XY, HM+ICON, HM+PANR, PARM+XY, 

PARM+ICON, PARM+PANR. The prior works HM and ICON do not consider fault detection and 

correction in the event of failures due to VEs. For a fair comparison, we assume the presence of 
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fault detection and correction mechanisms in these works, as in our proposed work. Not having 

such mechanisms would result in unpredictable outcomes for applications, which is not desirable.  

We simulated and analyzed total execution time (Figure 31), peak and average PSN (Figure 32), 

and total number of applications executed successfully (Figure 33), for the six frameworks 

mentioned above, across different types of workloads.  

Compute intensive workload: As shown in Figure 31 and Fig.7, PARM+PANR shows up to 

25.4% improvement in execution time and 4.15× improvement in peak PSN observed compared 

to HM+XY, whereas PARM+ICON and PARM+XY show 23.3% (3.82×) and 20.3% (3.81×) 

improvements in execution time (peak PSN) respectively. The HM framework does not consider 

the negative effect of mapping tasks with varying switching intensities in close proximity on PSN, 

as shown in Figure 28(b) in section 4.2. This leads to high PSN and hence poor performance of 

applications with HM. PANR routes flits through less congested and low switching paths to 

minimize PSN in the tiles that execute tasks with high switching activity, leading to lower PSN 

(Figure 32). ICON and XY routing schemes are unaware of the core activity and create a higher 

PSN (> 5%) (Figure 32) and hence have (a few) more number of VEs than PANR. Hence, 

HM+PANR has lower execution time over HM+XY and HM+ICON, due to its PSN aware routing 

scheme that minimizes overall PSN of cores and routers, and avoids VEs. Thus for compute 

intensive workloads, intelligent task mapping and packet routing is crucial to minimize PSN. 

Communication intensive workload: NoC components consume 18-20% of the chip power, 

and are in the critical path of the application performance, when running communication intensive 

workloads. Hence it is important to consider the effects of NoC routers on PSN, along with cores. 

Figure 31 and Fig.7 show that PARM+PANR gives 34.3% improvement in execution time and 

4.5× improvement in observed PSN compared to HM+XY. This is because in communication 
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intensive workloads, PSN-aware mapping and PSN-aware NoC routing work in tandem to reduce 

overall packet latency while keeping the router activity low around highly active cores. ICON only 

considers router activity and ignores the activity in the cores while making decisions. Hence PSN 

is higher in ICON compared to XY and PANR in both HM and PARM mapping schemes, as shown 

in Figure 32. This increases the tile activity and results in more VEs and worse application 

execution time in both HM+ICON and PARM+ICON. PARM+XY shows 23.3% performance 

improvement compared to HM+XY due to the PSN-aware mapping heuristic. Even though PSN 

observed with PARM+XY is much lower than HM+XY (Figure 32), there is an increased NoC 

traffic and higher packet latency which slows down the application when the application DoP is 

high with PARM. This case is handled better by the PANR routing scheme when compared to XY. 

HM+PANR is aware of the tile PSN and hence balances the activity with its intelligent routing 

scheme. This leads to lower PSN than HM+ICON and HM+XY (Figure 32), as well as 20% 

improvement in execution time compared to HM+XY (Figure 31). This proves that PSN aware 

NoC routing schemes provide better results when they are combined with a PSN aware mapping 

scheme.  

 

 

Figure 31 Total time taken to execute 20 applications with different frameworks across 

different types of workloads. 
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Figure 32 Peak and average PSN (as % of voltage supply) observed with different 

frameworks across different types of workloads 

 

 

Mixed workload: When both types of applications are executed in a sequence, PARM+PANR 

give improvements of ~13.1%, which is better than PARM+XY (5.7%), PARM+ICON (6.5%) 

compared to HM+XY.  

 

 

Figure 33 Total number of application successfully completed across different workload 

types and arrival rates for different frameworks. 
 

Lastly, we analyze the efficiency of various mapping frameworks for different application arrival 

rates at runtime. We compare HM+XY with PARM+XY, PARM+ICON, and PARM+PANR across 

three different inter-application arrival rates and two workload types (with 20 applications each, 

as in earlier experiments). From Figure 33, it can be observed that all of the frameworks perform 

similarly at the 0.2s arrival rate since the applications arrive at a relatively slower rate. This slow 
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arrival rate allows more applications in the queue to be mapped within the given DsPB and 

deadline constraints. For communication intensive workloads, PARM+PANR maps 38(25)% more 

applications than HM+XY, and 17(9)% more application when the arrival rate is 0.1s(0.05s), 

compared to PARM+XY. For compute intensive workload PARM+PANR maps 38(18)% more 

applications than HM+XY, and 29(11)% more application when the arrival rate is 0.1s(0.05s) 

compared to PARM+XY and PARM+ICON. HM maps tasks in non-contiguous regions unlike 

PARM and scatters them across the CMP. This gives an opportunity to map more number of 

applications in HM. However, HM fails to do so without violating the DsPB constraint because of 

its increased power consumption (due to high Vdd). As PARM adaptively reduces Vdd and increases 

DoP to reduce PSN, it fits more number of applications within a given DsPB. 

 

4.5 CONCLUSION 

In this chapter, we proposed a novel runtime framework called PARM that minimizes PSN 

in near threshold voltages while meeting application performance deadlines without violating the 

DsPB constraint. We also proposed a PSN aware NoC routing scheme called PANR which routes 

flits through tiles with low switching activity to reduce the overall PSN in the CMP. Our 

experiments show that PARM enables up to 4.5× reduction in peak and average PSN observed, 

and up to 34.3% improvement in application execution times compared to the state-of-the art in 

PSN-aware runtime application mapping. PARM can be used to minimize the hardware overhead 

due to costly guardbanding techniques and decapacitance circuits to reduce the effect of 

interferences between cores, and minimize the software overhead due to schemes such as thread 

migration employed to keep the tile switching activity in check. Our experimental results also 
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show that reducing PSN in both cores and NoC routers is crucial for improvement in application 

performance.   
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5. RAPID: MEMORY-AWARE NOC FOR LATENCY OPTIMIZED GPGPU 

ARCHITECTURES 

 

In this chapter, we propose a novel memory-aware NoC that has two (request and reply) 

planes tailored to exploit the traffic characteristics in GPGPUs. The request layer consists of low 

power, and low latency routers that are optimized for the many-to-few traffic pattern. In the reply 

layer, flits are sent on fast overlay circuits to reach their destinations in just 3 cycles (at 1GHz). In 

addition, as traditional memory controllers are not aware of the application memory intensity that 

leads to higher waiting time for applications on the shader cores, we propose an enhanced memory 

controller that prioritizes burst packets to improve application performance on GPGPUs. 

Experimental results indicate that our framework yields an improvement of 4-10× in NoC latency, 

up to 63% in execution time, and up to 4× in total energy consumption compared to the state-of-

the-art. 

General Purpose Graphics Processor Units (GPGPU) are becoming popular platforms for 

efficiently executing parallel applications. GPGPUs have been used in several data driven 

applications in cutting edge technologies such as artificial intelligence, deep learning, high 

performance computing in data centers, autonomous machines, and self-driving cars [117] [118] 

[119]. Recent research on GPGPUs has led to the optimization of thread level parallelism and 

maximizing the execution of cooperative thread arrays [120] [121] [122]. This has made GPGPUs 

more viable for high performance computation. Frameworks such as CUDA [4] and OpenCL [5] 

have provided programmers with a diversity of tools to parallelize their applications and leverage 

the computing capabilities of GPGPUs. But highly parallel applications running on GPGPUs 

generate huge volumes of communication traffic between cores and memory controllers (MCs). 
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Minimizing the latency of the network-on-chip (NoC) in GPGPUs is crucial to sustain high 

application performance.  

 

Figure 34 percentage of power consumed by major components in a 16 core GPGPU across 

various parallel CUDA applications. 

 

The traffic pattern in GPGPUs is primarily many-to-few and few-to-many, with high 

volumes of traffic skewed towards memory replies [10] [26] [123]. Traditional mesh-based NoC 

topologies used in CMPs are not capable of handling such skewed traffic effectively, leading to 

underutilized resources, which increases NoC latency, and congestion at MCs. This impacts the 

performance of applications running on GPGPUs. In addition to the above challenges, the NoC 

accounts for up to 20% of total GPGPU power consumption in memory intensive applications (that 

also have higher DRAM power) at the 22nm technology node, as shown in Figure 34. There is 

thus a critical need to enhance the NoC fabric to better suit GPGPU traffic scenarios without 

increasing the area and energy footprint. 

 The main contributors to NoC latency are route computation, arbitration, and switch 

allocation at each hop. Thus, minimizing NoC latency requires optimizing some or all of these 
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steps. Also, the main contributor to NoC router area and power consumption are the input port 

buffers. In this article, based on an understanding of the traffic characteristics in GPGPUs, we 

propose a novel network architecture with low packet latency using memory-aware overlay 

circuits (described in Section 5.3.2) and with properties close to that of an ideal NoC which has 

all-to-all connections between cores and MCs. Our proposed NoC has a multi-plane, deadlock-

free physical architecture, with memory-centric enhancements for the reply traffic as well as the 

request traffic. We adapt and enhance the ideas from [124] to enable single-cycle multi-hop 

traversal in this NoC. We also propose an enhanced memory controller (MC) that prioritizes burst 

packets to reduce the memory bottleneck and network backpressure issues that lead to increased 

wait time for applications executing on GPGPUs. Overall, our novel contributions in this chapter 

can be summarized as follows: 

• We propose a novel NoC router architecture to efficiently cope with the many-to-few traffic 

pattern in the request plane, to minimize power consumption and network latency.  

• We also introduce a new router architecture in the reply plane called hinge router to support 

single cycle overlay circuits where flits travel towards their destination along each network 

dimension in a cycle, stopping only at the turns. 

• We propose a global overlay manager (GOM) that manages the time windows of each overlay 

circuit.  

• We further propose enhancements to pipelined transmission at the MCs and enable simultaneous 

circuit overlay establishment, to improve utilization of NoC resources and minimize NoC latency 

as well as application execution time. 

• We present an enhanced MC that prioritizes servicing burst packets from the output buffer of 

the MC. 
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Our rigorous experimentation with various CUDA benchmarks for 16-core, 64-core, and 144-core 

GPGPU platforms shows an improvement of 4-10× in NoC latency, 63% in application execution 

time, and up to 4× improvement in overall energy consumption, with up to 50% improvements in 

NoC area, compared to the best known prior works on NoC design for GPGPU architectures. 

 

5.1 RELATED WORK 

A few recent works have explored NoC architectures for GPGPUs. Kim et al. [10] propose 

a multiplane NoC called DA2 to improve the bandwidth utilization in links. They partition the 

network into request and reply planes, further partitioning the reply plane into multiple slices that 

are shared by MCs. With each MC possessing multiple slices instead of a single slice, the overall 

bandwidth utilization is improved. Also, as the routers in the reply plane slices do not have input 

buffers and complex arbitration, they can support higher frequency operation. However, DA2 has 

limitations due to serialization overhead and the reduced bandwidth of reply network slices, which 

effects the scalability of their model. Jang et al [26] propose an MC placement approach and a 

virtual channel partitioning scheme in mesh-based GPGPU NoCs. In their work, MCs are placed 

along the x-axis of the mesh and flits use XY routing for requests and YX routing for replies, to 

reduce congestion at MCs and competition for links along the Y-axis. However, the reply packets 

still compete with request packets for links at the center of the NoC. The work also requires a rigid 

MC placement, and consumes more area and power compared to a baseline NoC owing to 

additional virtual channels and arbitration requirements. Unlike these works, our proposed 

approach in this chapter does not incur any serialization latency.  

Another recent work [125] considers many-to-few traffic pattern in the request plane, and 

uses a constrained MC placement rule to propose a new low-cost conflict free NoC to reduce the 
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energy consumption of the NoC. The request plane of the NoC is partitioned into slices called 

enetworks that are shared between columns of cores for rapid transmission of requests to the MCs. 

A token-based mechanism is also proposed to ensure a conflict free sharing of enetworks by 

different cores that send requests to the same MC. However, when the GPGPU has over a hundred 

cores and tens of memory controllers, the channel width of the enetwork diminishes drastically 

and the token sharing network adds to the latency of the NoC. Our approach proposes a low cost 

and low power NoC in the request plane, and a fast overlay network in the reply plane that 

minimizes NoC latency, without incurring energy consumption and area overheads.   

A few recent works [126] [127] [124] also attempt to minimize NoC latency by using 

bypassing. For example, Chen et al. [124] propose single cycle multiple hop techniques that enable 

flits to bypass the router arbitration and traverse the NoC in a few cycles to their destinations. We 

adapt and enhance this approach with awareness of traffic characteristics in GPGPUs and the 

integration of smart circuit reservations, to more aggressively minimize communication conflicts, 

reduce overall NoC latency, and improve bandwidth utilization.  

 

Several other prior efforts attempt to improve latency for NoCs with awareness of traffic 

pattern characteristics. For example, Cong et al [123] propose hybridized circuit switching with 

circuit reservation that is done in advance by a global manager based on traffic pattern awareness. 

Abousamra et al. [128] [129] [130] explain the benefits of circuit switching for different traffic 

scenarios, including many-to-few and few-to-many. However, in all of these works that involve 

circuit switching, there is a notable circuit setup and teardown overhead. The effort of establishing 

a circuit is wasted when the flits do not arrive at the estimated times. Network prioritization and 

packet scheduling techniques are proposed in [131], [132] to improve NoC throughput and latency. 
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Unlike these efforts, our approach that opportunistically utilizes circuits does not incur significant 

circuit setup and teardown overheads that impact NoC latency.  

More recent work, e.g., [133], has proposed a hybrid NoC architecture with wired and 

wireless routers for improving the overall network latency. However, such wireless on-chip NoC 

components have high fabrication overheads and may also not scale well for hundreds of GPGPU 

cores. In [134] [135] [136], software and middleware level techniques such as data prefetching or 

intelligent warp scheduling are proposed to mitigate the memory bottleneck that is caused by high 

volume of read reply packets from MCs to cores. In [137] a priority NoC is proposed to resolve 

bottlenecks created by cache coherence traffic in CPU based many-core NUCA architectures. We 

propose an enhanced MC that prioritizes burst packets received from DRAM in response to the 

read request packets that are sent over a short duration. Our work is a hardware approach that is 

complementary to the higher level aforementioned solutions that alleviate the bottleneck at MCs. 

 

5.2 BACKGROUND AND MOTIVATION 

 

5.2.1. BASELINE ARCHITECTURE CONFIGURATION 

We consider a manycore GPGPU based accelerator similar to [138] as the baseline platform 

for our work. An accelerator typically consists of a traditional x86 or ARM based core, and a grid 

of shader cores with private L1 caches (instruction cache, data cache, and texture cache), to drive 

the data parallel multi-threaded workloads. A shader core consists of parallel integrated pipelines 

with a common instruction fetch unit that executes a single instruction on multiple data (SIMD) 

simultaneously. Each integrated pipeline has an integer arithmetic logic unit and a floating point 

unit. A shader core also has several load store units that fetch data from a private L1 cache or from 



115 
 

the main memory. A GPGPU based accelerator has a shared L2 cache bank located at the MCs 

that caches data coming from the main memory. All the shader cores and MCs are connected to 

an interconnection network. Whenever shader cores need to communicate with each other, this 

communication occurs via the MCs (with data stored either in L2 banks at the MCs or DRAM) 

where one shader core writes to the memory and the other reads from it. There is no direct packet 

transfer between shader cores over the NoC. The communication between CPU and GPU cores 

takes place through main memory. The shader cores send read/write requests to MCs over a NoC. 

A memory reply takes several cycles based on the location of and availability of data (either at L2 

or DRAM). The baseline NoC architecture between the shader cores and the MCs has a channel 

width of 128-bits and consists of 4-stage routers (stage 1: buffer write; stage 2: route computation, 

stage 3: virtual-channel/switch allocation; stage 4: switch/link traversal) with 5 virtual channels 

(VCs) per input port and 4 flit buffers for each VC, connected to each shader core. Flits are routed 

along the XY path from source to destination. In this work we only focus on optimizing the NoC 

that connects shader-cores and memory controllers. Henceforth, the term cores implies shaders 

cores for the remainder this article. 

 

5.2.2. OPPORTUNITIES FOR NOC OPTIMIZATIONS IN GPGPUS 

In this section we explain the motivation for our work. In highly multi-threaded applications, 

the reply arrival rate from MCs to shader cores is very high. For example, applications such as 

Transpose and Convolutions from the CUDA SDK have a reply arrival rate of 1.5-3 flits per cycle 

[123]. Such traffic needs a high throughput on-chip network fabric. But traditional homogeneous 

mesh-based NoCs are incapable of efficiently handling high volumes of reply traffic, causing 

packets to be stored in the buffers at the MCs for several clock cycles. This in turn creates 
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congestion or traffic hotspots around MCs that leads to poor overall application performance. 

Under ideal conditions we would like to have a NoC with all-to-all connections between MCs and 

shader cores to satisfy latency and throughput requirements. But such a network is impractical due 

to its high power and area overheads. Thus, there is a critical need for customized and low-

overhead NoCs for GPGPUs, to handle their unique traffic characteristics.  

In this chapter, observations regarding the traffic pattern of the applications executed on 

GPGPU are exploited to innovate and enhance the NoC architecture. Firstly, the traffic pattern of 

memory requests to the NoC, is uniquely many-to-few, i.e., memory read and write requests are 

sent from many cores to a few MCs. In traditional manycore processors with n cores each running 

a thread, the upper bound on the total number of communication flows is O(n2 
+ n×m), where m is 

the total number of MCs, and m << n. However, in a GPGPU, the upper bound on the total number 

of communication flows (each flow represents a stream of requests sent from shader cores to MCs) 

is O(n×m). In such a scenario, the number of VCs per input port of a NoC router (primarily used 

for sharing a physical channel between different communication flows) can be reduced. Secondly, 

in a many-to-few traffic scenario, the total number of possible output directions that an incoming 

flit to a NoC router takes could be restricted based on the location of the router. As shown in Figure 

35, if the packets use an XY routing scheme, based on the location of the router relative to the MC, 

flits traverse in one of the following directions (N→S, S→N, S/N→L) on the Y axis. This in turn 

reduces the total number of logical comparisons done in the route computation step compared to 

the baseline NoC router (in-depth explanation is presented in Section 5.3.1). Given the above two 

observations, we propose a new router architecture that reduces the power consumption and 

latency of the NoC in the request plane.  
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Figure 35 Demonstration of routes (represented by dashed lines) taken by the request 

packets from different cores to memory controllers in a 4×4 NoC with XY routing scheme.  

 

Figure 36 shows the traffic pattern from MCs to individual cores for a 4×4 NoC. The circles 

colored red, blue, green, and yellow denote routers at MCs. The colored arrows in (a), (b), (c), and 

(d) of Figure 36 denote the XY routes taken by the reply flits from each of the four MCs in the 

design. As there is no inter-core traffic in the reply plane in the GPGPU, it is possible to reserve 

circuits along the path shown in Figure 36 (a)-(d) for a time window, during which the flits from 

the corresponding MCs travel without having to go through the route computation stage at each 

hop. A circuit (e.g., in Figure 36 (a)) should be reserved only for a limited time window, to allow 

for circuits from other MCs to also be established (e.g., in Figure 36 (b)) as needed, depending on 

the application data requirements.  

The above process is analogous to a circuit switched network where routers reserve paths 

for a particular flow and the reservation is voided once the tail flit enters a router [128] [129] [130]. 

However in our case circuits are reserved for MC traffic only along the reply plane. We call these 

memory-aware overlay circuits because they form a new topology on top of an existing (e.g., 2D 

mesh) topology. While flits traversing these circuits would not encounter congestion delays, they 

will need to stop at every router for the crossbar and link traversal stages. However, by using 
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asynchronous links with repeaters and latches in routers, it is possible to allow flits to bypass the 

buffer write, route compute, and switch allocation stages and travel across multiple routers along 

the X or Y directions in a single cycle. Prior work [124] indicates that such asynchronous links 

need one voltage locked repeater per hop distance (~2mm) at 1 GHz clock frequency. The total 

peak power dissipated by repeaters per link is around 64μW at the 22nm technology node. In a 

12×12 NoC, there are 24 asynchronous links. The overall power overhead of asynchronous links 

is ~1.5mW, which is negligible compared to the power dissipated by cores in a 12×12 GPGPU 

platform. Similarly, the area overhead of voltage locked repeaters on asynchronous links in a 

12×12 platform is ~1.2%, since each repeater consists of 2 inverters and a feedback loop to know 

the signal swing. The authors in [124] also demonstrate that asynchronous links can traverse up to 

16 hops (router crossbar + Mux) at 1GHz frequency in 45nm technology node. Hence, in our work 

we have conservatively considered the maximum link traversal of 12 hops in each direction in the 

reply NoC that is designed at the 22nm technology node.  

 
 

Figure 36 A 4×4 NoC showing dedicated overlay circuits for each MC in a few-to-many reply 

traffic scenario 

 

 

Lastly, Figure 37 shows the number of burst requests in the total number of memory requests 

sent from shader cores to MCs when an application is executed on a GPGPU. We have identified 
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the pattern of burst requests from the traces obtained by executing CUDA benchmark applications 

on the GPGPU-simulator. When a core sends two or more requests within a short time duration, 

those requests can be labeled as burst requests. The burst requests are typically sent when the 

warps being executed on a shader core have less data locality, or because of the private L1 cache 

pollution due to excessive number of warps scheduled on the core. Burst requests generally are the 

major cause of bottlenecks at the MC, which increases warp waiting time at a shader core, and 

delays the servicing of warps that are waiting in the queue to be scheduled on the same shader 

core. To avoid this problem, the responses to burst requests, called burst packets, should be given 

a higher priority over normal packets for transmission from MC output queue.  

All of the above enhancements overcome key bottlenecks to enable low-overhead, low-

latency NoC data transfers in GPGPUs. In the next section, we explain our architecture and 

approach for GPGPU NoC optimization in detail. 

 

Figure 37 Total number of memory requests and burst requests sent across various parallel 

CUDA benchmark applications  

 
 

5.3 RAPID MEMORY-AWARE NOC: OVERVIEW 

Our RAPID memory-aware NoC architecture employs a 2D mesh topology to connect shader 
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cores and MCs. We utilize XY routing in the request plane, which ensures freedom from routing 

deadlocks. To further avoid request-reply protocol deadlock, the network is physically partitioned 

into a request plane and a reply plane each having a channel width of 64 bits. Memory requests 

from shader cores to MCs are sent on the request plane, whereas replies from the L2 and DRAM 

that arrive at MCs are sent to the cores on the reply plane. The primary constraint we consider for 

MC placement is that no two MCs can have the same X or Y coordinates. This is to ensure that 

each column and each row of the 2D-mesh NoC consists of only one memory controller. This 

constraint is crucial in establishing conflict free overlay circuits in the reply plane for high speed 

packet transfers.  

To achieve low power and low latency communication in GPGPU architectures, RAPID 

employs: (1) A request plane NoC that minimizes the energy required to deliver memory requests 

from shader cores to MCs using a modified router that is less complex than the baseline router, 

and suits the many-to-few traffic pattern; (2) A Memory Aware CiRcuit Overlay (MACRO) reply 

plane, that minimizes flit latency by establishing fast overlay circuits that change over time, and 

by utilizing single cycle multi-hop flit traversal; (3) An enhanced MC that prioritizes burst 

response packets in its buffers over the MACRO reply plane to reduce the bottleneck that adversely 

affects NoC latency. We explain the details of each contribution in the following sections. 

 

5.3.1. REQUEST PLANE NOC 

As explained in Section 5.2.2 there is a scope for trimming down the router complexity in 

the request plane NoC. Figure 38 shows the baseline router with four pipeline stages. In a baseline 

router, each channel has 5 VCs. However, in a GPGPU, the total number of communication flows 

in the request plane is significantly less compared to traditional CPU traffic as explained in section 
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5.2.2, which results in unused VCs at the input ports. The unused VCs in each router can be 

trimmed down at each input port. Trimmed VCs reduces the number of flit buffers, and the size of 

the look-up table that stores the flow control credit information in a router. We propose to reduce 

the number of VCs to 2 per channel to minimize the router power consumption, and reduce the 

VC allocation computation time.  

 
Figure 38 Baseline router with 4 stage pipeline 

 

Further, the route computation logic of the request plane routers can be simplified based on 

the location of a router. As explained in Section 5.2.2, a many-to-few traffic pattern with XY NoC 

routing restricts the flit traversal in the routers along the Y-axis. In Figure 39, the routers that are 

located north of an MC in any column do not route the incoming flits further along the North 

direction, as there is no destination MC located further North. Similarly, the routers that are located 

south of an MC in a column do not route the incoming flits further along the South direction. These 

restrictions on flit routing are because of the constraint that each column can only have one MC. 

We use this observation to reduce the number of comparison operations in the route compute stage.  
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Figure 39 Location based routers in the request plane of 2D-mesh NoC with different MC 

placements for (a) 64-core GPGPU and (b) 16-core GPGPU 

 

Algorithm 8 : Original XY Routing scheme 
1:   for flit in each input port do 
2:     if ( flit.src.x > flit.dest.x ) then 
3:      out_direction = west 
4:      else if (flit.src.x < flit.dest.x) then 
5:        out_direction = east  
6:      else if (flit.src.x == flit.dest.x) then 
7:        if (flit.src.y > flit.dest.y) then 
8:           out_direction = south 
9:        else if (flit.src.y < flit.dest.y) then 
10:          out_direction = north 
11:       else if (flit.src.y == flit.dest.y) then 
12:          out_direction = local 
13:       end if 
14:     end if 
15:  end for 
Output: out_direction 

 

 

 

 

Algorithm 8 shows the pseudo code of the original XY routing scheme. For a head flit in 

each input direction, the algorithm first compares the X-coordinates of source and destination, and 

chooses east or west as output directions (lines 1-5). If the X-coordinates of source and destination 

match, it compares Y-coordinates to choose north, south, or local as output directions (lines 6-15). 

Overall, there are six comparison operations (lines 2, 4, 6, 7, 9, 11) used to compute the output 

direction for head flit waiting in the virtual channel buffer of each input port. This amounts to six 

3-bit comparators. Algorithm 9 shows the pseudo code of the modified XY routing scheme used 

in NoC routers located north-of/south-of/on-the the MCs. The incoming flits whose X-coordinates 
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match (line 6) are directly sent to south/north/local ports (line 7) based on the location of the router. 

Hence, the modified XY routing needs only three comparison operations.  

 

Algorithm 9: Modified XY Routing scheme  
1:   for flit in each input port do 
2:     if ( flit.src.x > flit.dest.x ) then 
3:       out_direction = west 
4:     else if (flit.src.x < flit.dest.x) then 
5:        out_direction = east  
6:     else if (flit.src.x == flit.dest.x) then 
7         out_direction =north/south/local 
8:      end if 
9:  end for 
Output: out_direction 

 
 
 

 
Figure 40 Pipeline stages of a baseline router and a modified router in the request plane of 

memory aware NoC 

 

To design a functional NoC using the modified router architecture, the request plane needs 

three types of routers as shown in Figure 39 Location based routers in the request plane of 2D-

mesh NoC with different MC placements for (a) 64-core GPGPU and (b) 16-core GPGPU. For 

example, routers north (south/local) of an MC are configured with a modified XY routing scheme 

with output direction as south (north/local) in line 7 of Algorithm 9. This reduces the route 

compute time. Using the reduced VC per channel and modified XY routing scheme, we reduce the 
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pipeline stages of the modified router to two stages from four stages in the baseline router. Using 

the reduced pipeline router, as shown in Figure 40, the flit passes through a router 2 cycles faster. 

Figure 41 shows the power consumption of the modified request plane router compared to the 

baseline router. Due to the reduced VCs size, the buffer power consumption, which constitutes 

more than 60% of the router power, and virtual channel allocation and switch allocation 

(VCA+SA) power consumption are significantly lowered. Thus, having a modified router 

consumes lower power and increases the speed of NoC in the request plane. 

 
Figure 41 Power consumption of NoC router components for baseline and modified routers. 

 

 

5.3.2. MACRO REPLY PLANE NOC 

 To realize the MACRO reply plane, we require: (i) a global monitoring mechanism that 

intelligently computes time windows for each overlay circuit, and (ii) a new router architecture 

that lets the flits bypass its stages while routing them to their destination. These key components 

of the MACRO reply plane are discussed in the rest of this section. 
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5.3.2.1. GLOBAL OVERLAY MANAGER  

In our proposed approach, execution time is divided into epochs. Each epoch is divided 

further into smaller time windows. At the beginning of an epoch, a Global Overlay Manager 

(GOM) allocates an overlay circuit for each time window in the epoch. This is akin to time division 

multiplexing (TDM) of overlay circuits. Every overlay circuit is associated with a unique MC. The 

duration of a time window allocated to an overlay circuit is proportional to (i) the number of 

outstanding packets in the output queues of the MC associated with the circuit, and (ii) the packet 

arrival rate at the MC from L2 and DRAM. The GOM utilizes the values of these two parameters 

at the end of an epoch to make decisions about time window durations for the next epoch. Each 

MC sends its average reply arrival rate (from L2 and DRAM), and buffer occupancy to the GOM 

at the end of an epoch. The GOM uses that information to compute a weighted function ξ(m): 𝝃(𝒎) = 𝜶. 𝑨(𝒎) + 𝜸. 𝑩(𝒎)                    (28) 

where A(m) is the reply arrival rate and B(m) is the average buffer occupancy at the MC m in the 

previous epoch. α and γ are coefficients of the weight function. The GOM compares ξ’s of each 

MC and computes time window durations T1,T2,T3..Tm for the next epoch as: 𝑻𝒊 = 𝑲 ∗ 𝝃(𝒊)/[𝝃(𝟏) + 𝝃(𝟐) + 𝝃(𝟑) + ⋯ + 𝝃(𝒎)]             (29) 

where Ti is the time window of the ith MC overlay and 𝜉(𝑖) is its weight function. The ratio of the 

weight functions is then multiplied by a constant K which is equal to the periodicity of the time 

windows in an epoch. The time windows repeat periodically for E/K iterations in an epoch, where 

E is the epoch interval duration and K is the periodicity of the time window set. By having the time 

windows repeat and overlays switch multiple times in an epoch, MCs send flits in multiple bursts 

across an epoch. Figure 42 shows an example of time windows across two epochs. The GOM 

broadcasts time window durations at the start of an epoch to all routers. The routers store this 
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information inside special buffers and subsequently establish (and then tear down) overlay circuits 

that adhere to the allocation decisions made by the GOM. 

 
Figure 42 Time windows of overlay circuits. Each window is repeated periodically (E/K 

times) till the end of an epoch. 
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Figure 43 Overlay circuit used for broadcasting time window information to each router. 

GOM is located at core5. Broadcast over fast circuit in X direction is denoted by light blue 

line and in Y direction by red lines.  

 

One may ask two important questions about GOM operation:  

 (i) What is the overhead involved in computing and broadcasting time window information? MCs 

send their status information to the GOM at the end of their last time window in an epoch, before 

their overlay circuit is torn down. The GOM is located near the center of the NoC, so it takes up 

to three cycles for this information to travel on overlay circuits through bypass links to reach the 
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GOM. The GOM takes up to 21 cycles to process the information and compute time windows for 

each MC (as per Eqs. (28), (29)), for the next time epoch. The generated time window information 

is broadcast to the routers on a separate overlay circuit, as shown in Figure 43. As a time window 

is always < 1000 cycles in our framework, at most 10 bits are required to transmit the time window 

duration for the overlay circuit of an MC. Thus, for a 4×4 NoC with 4 MCs, only at most 40 bits 

(1 flit) must be broadcast by the GOM at the start of an epoch. Similarly, for 8×8 and 12×12 NoCs, 

the broadcast consists of 80 and 120 bits respectively, that can be accommodated in 2 flits. This 

circuit is established while the GOM computation is taking place at the beginning of each epoch. 

The broadcast operation takes three cycles over an overlay circuit. So, the entire operation takes 

less than 30 cycles (irrespective of NoC size) which is negligible compared to a typical epoch 

interval that lasts for thousands of cycles. 

(ii) Sometimes, the L2 and DRAM arrival rates at an MC vary a lot from one epoch to the next. 

How are such variations in reply arrival rate and buffer occupancies at MCs handled in an epoch? 

Such variations can lead to congestion at MCs or an underutilization of overlay circuits. To handle 

these variations, we allow time window durations to be changed across epochs, as discussed earlier 

in the section and shown in Figure 42 for T2. It is also possible to adjust the epoch time such that 

GOM updates time windows frequently and adjusts to the traffic conditions. The process of fixing 

the epoch duration happens at design time, by testing for the lowest average latency on different 

benchmarks with different epoch intervals.  

 

5.3.2.2. ROUTER ARCHITECTURE 

Along the fast overlay circuits, flits travel in the X and Y directions in one cycle, bypassing 

routers and being stopped (latched) only at turns. These turns are called hinges. To realize this 
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behavior, we propose a novel hinge router architecture, as shown in Figure 44. All routers in 

RAPID’s reply plane are hinge routers. Each port of a hinge router supports a bypass path made of 

asynchronous repeaters and links, which is shown in the figure as a green line. When not in bypass 

mode (e.g., when a flit needs to turn), the router hinges the flit in a latch. The local port receives 

flits from the core or MC interface FIFO buffer, while the other ports receive flits from other 

routers. The three main components of a hinge router are: (a) Overlay controller, (b) Route lookup 

table, and (c) Input selection. These are discussed in the rest of this subsection. 

 

Figure 44 Architecture of a hinge router on reply plane. The figure shows one asynchronous 
bypass connection between North_in and South_out ports only, although bypass paths exist 
for all ports (except local port).  

 

Overlay controller 

Algorithm 10 shows the pseudo code of the overlay controller in a hinge router. The router has 

a local counter for tracking time window duration and a global counter for tracking the epoch 

duration. At the beginning of the first epoch, the time windows are set to default values (line 2; all 

the time windows are equal). At every cycle (line 3), the controller checks if the global and local 

counters have reached their thresholds (lines 4-5). The set of time window thresholds of overlay 

circuits (T) are received from the GOM and stored in a buffer from where they are accessed and 
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checked against counters periodically. If a local counter reaches a time window threshold, the 

controller sends the overlay number for the next time window as an input to a route lookup table 

to get the crossbar configuration of the upcoming overlay circuit (line 7). The crossbar 

configuration specifies the mapping of the switch between input and output ports. The controller 

sends that information to another important module called Input selection unit (line 8) that decides 

the input source for the configuration (either latches or bypass links). It then adds the local counter 

value to the global counter (line 9), resets the local counter (line 10), and begins tracking the new 

time window. In this manner, at the end of a time window, all the hinge routers change their 

configurations collectively to form a different overlay circuit. 

Algorithm 10: Pseudo code for overlay controller operation 
Inputs: GOM_input, epoch_duration, def_ win_values; N (no. of MCs) 
Variables: local_counter, global_counter, i, set(T)  
1:   local_counter = 0; global_counter = 0; i = 0 // reset counter values 
2:   set(T) = def_ win_values // initialize time window durations 
3:   for every cycle do     
4:      if (global_counter < epoch_duration) then     
5:        if (local_counter == Ti) then 
6:           i = (i+1) % N // move to next time window 
7:           xbar_config = get_next_crossbar_config(overlayi) 
8:           input_select(xbar_config)  
9:           global_counter += local_counter 
10:          local_counter = 1           
11:       else if (local_counter < Ti) then 
12:          local_counter++ 
13:       end if 
14:     else if (global_counter == epoch_duration) then 
15:       set(T) = read_values(GOM_input) // save time windows 
16:       global_counter = 0; local_counter = 0; i = 0 // reset counters 
17:    end if 
18:  end for 
Output: Crossbar configuration for each new time window 

 

This entire operation takes two cycles at the beginning of each time window Ti, which is 

negligible when compared to the duration of the time window (~few hundred cycles). Once all the 

N time windows in the set have been serviced, the process of servicing time windows begins again 

at the first time window (line 6) and this continues till the end of the epoch (Figure 42). If the 
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global counter reaches the epoch duration value, the controller saves the GOM input it receives at 

the beginning of an epoch (line 15) in its buffers and resets the local and global counters (line 16) 

before starting to service the new epoch. 

Route lookup table 

As mentioned above, the overlay controller sends a request to the route lookup table for the 

crossbar configuration of an overlay circuit at the beginning of each time window. Each router has 

a different configuration for its lookup table based on its location on the 2D mesh. For example, 

Figure 36 showed a 4×4 architecture with m=4 MCs. Figure 36 (a)- Figure 36 (d) highlight 4 

overlay circuits with each router having different connections for different overlays depending on 

its location on the mesh. Hence, a route lookup table in a router has m rows for m overlay circuits. 

The lookup table is configured as a read-only-memory at design time in each router.  

 

 

 
 
 

 

 

Figure 45 Route look-up table for green router from Figure 36 (mapping of output to input 
ports). L is local port. Number of rows = number of overlay circuits (number of MCs); each 
column represents an output port.   

                           
Figure 45 shows an example of a route lookup table in a hinge router in a 4×4 NoC with four 

MCs. The table has mappings of output to input ports (ϕ indicates no mapping, Lat(x) indicates 

mapping between an output port and the input direction x’s latch). There are 10 possible input 

sources (bypass links and latches) for each of the 5 output ports per overlay. It takes 6 bits to 

represent all the 50 possible mappings per overlay (log250). Hence, in a 16-core system with 4 

            Routern 

Overlay1  E‒» ϕ W‒» ϕ N‒» ϕ S‒» N L‒»Lat(N) 
Overlay2 E‒» ϕ W‒» ϕ N‒» ϕ S‒» N L‒»Lat(N) 
Overlay3 E‒» ϕ W‒» L N‒» Lat(L) S‒» Lat(L) L‒»Lat(L) 
Overlay4 E‒» ϕ W‒» ϕ N‒» S S‒» ϕ L‒»Lat(S) 
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MCs and 4 overlay circuits, the size of the table is 120 bits per hinge router. In an 8×8 64-core 

architecture with 8 MCs, the routing table also has a nominal footprint of only 240 bits. In a 12×12 

144-core architecture with 12 MCs, the size of the routing table is only 480 bits. 

 

 

Figure 46 Flit propagation on bypass links of hinge routers 

 

 

Input selection 

All the connections of an overlay circuit are established at the beginning of a time window. 

A flit enters the reply plane from a local port of an MC and travels across the bypass links in the 

X direction in a single cycle and gets latched (hinged) along all the routers in that direction. The 

hinge router whose Y direction matches with that of the destination then transmits that flit across 

the bypass links in that specific Y direction. The remaining routers along the X direction whose Y 

directions do not match the flit destination do not transmit along the Y direction, and simply drop 

their hinged flits. Figure 46 illustrates this process. At router R1 a flit starts traversal from a local 

port that is connected to an MC. This flit travels through R1, R2 and R3 on the bypass links along 

the X-axis in a single cycle. The horizontal green lines show the bypass path. At each router, the 

flit is also hinged in the latch. Then in the next cycle, latched entries are matched for a turn and if 

a match is found (e.g., in R3) the flit is sent on the bypass path along the Y direction (North in this 

example), as shown in Figure 46 with blue lines at R3.  
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Algorithm 11: Pseudo code of Input selection unit  

Inputs: controller_input(xbar_config), local_coord 

1:   for each input d in xbar_config do 

2:     if ( d == latch ) then 

3:      if (Input latch[d] contains a flit) then 

4:        if (flit.dest_coord.x == local_coord.x) then 
5:          if (flit.dest_coord.y > local_coord.y) then 
6:             north_mux_select(Input_latch[d]) 
7:          else if (flit.dest_coord.y < local_coord.y) then 
8:             south_mux_select(Input_latch[d]) 
9:          else if (flit.dest_coord.y == local_coord.y) then 
10:              local_mux_select(Input_latch[d]) 
11:         end if 
12:       else if flit.dest_coord.x ≠ local_coord.x 
13:         drop(flit)    
14:       end if 
15:     end if 

16:    end if 
17:  end for  
Output: Input select for the multiplexers 

 

Algorithm 11 shows the pseudo code of the input selection unit. For each input of the crossbar 

configuration (line 1), if the input source is a latch (line 2) it is checked for a flit (line 3). If a flit 

is present, it is checked for its destination X coordinate (line 4). A match signifies either a 

destination or a turn. If the destination Y coordinate is also the same as the flit’s Y coordinate, the 

latched flit is sent to the local port (line 10), else the hinged flit is sent along the north or south 

ports (lines 6, 8) for transmission along the Y direction. If there is no match, then the hinged flit is 

dropped (line 13). Algorithm 11 can easily be implemented to complete in one cycle. Traversal 

along the X and Y directions takes one cycle each. Hence, the entire traversal along an overlay 

circuit takes a maximum of 3 cycles.  

 

5.3.2.3. OVERLAY CIRCUIT ENHANCEMENTS 

In the MACRO reply plane architecture discussed so far, MCs have to wait for 3 cycles to 
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inject successive flits even though it takes only 3 cycles to reach the destination once the flit is 

injected. Also, when an overlay circuit is established it is used only by a single MC, preventing 

the remaining MCs from returning data. To enhance the utilization and performance with overlay 

circuits, we propose two enhancements: 

(i) Overlay pipelining: If the process of sending flits is pipelined, an MC can inject a flit 

every two cycles into the network. Figure 47 explains how the pipelining is done. In the figure, 

RM is a router at the MC, RH is a router where the flit is hinged, and RD is a router at the destination 

core. A flit is first transmitted from RM at cycle 1. RH which is along the same X axis as RM receives 

it in the same cycle. In cycle 2, RH checks the Y-coordinates of the flit. In cycle 3, RH sends the 

flit in the Y direction to RD. RM can use this cycle (cycle-3) to send a second flit in the X direction, 

instead of being idle. This method of pipelining the output traffic at RM sends a flit into the NoC 

every two cycles, thus improving the overall network latency. 

 

Figure 47 Pipelining the flow at an MC on an overlay circuit 
 

(ii) Overlay multiplexing: While an MC uses its overlay circuit to send flits, some links may 

remain unused till the next window begins for the next overlay circuit. To increase the utilization 

of links, we can overlay two overlay circuits in the same time window, when the flits take XY and 

YX paths on the multiplexed overlay circuits. This can be achieved with a slight modification to 

the input selection unit and crossbar configuration sent by the GOM at the end of a time window. 

This is also feasible only when there are no conflicts in port reservations between the multiplexed 
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overlay configurations. There are no conflicts when the 2D mesh NoC has only one MC per row 

and per column, as shown in Figure 49 (a) and Figure 49 (b). Thus, the MACRO reply plane 

supports overlay multiplexing for two MCs. 

 

5.3.3. MEMORY CONTROLLER (MC) DESIGN  

We propose an enhanced MC design that prioritizes servicing responses to burst requests (or 

burst packets). We define a request as a part of the burst when it is sent by a core within the ‘burst 

duration’ after the previous request. A request is labelled as a burst request when it is sent within 

a burst duration after a previous request. So, when two or more requests are sent within a burst 

duration, they are labelled as burst packets by the network interface after being received from the 

core and before injecting into the NoC. We evaluated five different values of burst duration in our 

experiments (Section 5.4.1) and arrived on a burst duration value that gave the best results.  

 
 

Figure 48 Memory controller (MC) with separate queues for burst packet responses and 
normal packet responses. 

 

Figure 48 shows the MC architecture for achieving the proposed burst response 

prioritization. We have considered a baseline MC from [139] with an open page policy and first 
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ready- first come first serve (FR-FCFS) based scheduling policy for incoming requests. Our 

proposed MC is designed on top of the baseline MC from [139]. There is an abundance of literature 

on intelligent memory access scheduling in accelerators such as [137]. Our burst prioritization 

scheme (discussed next), if implemented on such MCs, works orthogonal to intelligent schedulers 

in reducing access latency of memory. 

When a request that is labelled as a burst request reaches an MC, it adds a burst flag to the 

request that is sent to the scheduler. The scheduler then maps the data responses that arrive from 

L2 or DRAM to the corresponding burst request, called as burst response. The burst responses are 

then stored in a separate queue called burst queue. While servicing the reply packets, an MC first 

prioritizes sending the packets waiting in the burst queue to ensure that warps that issued the 

corresponding burst memory requests receive their responses first. Typically, warps are scheduled 

in such a way that the memory access latency is hidden, by assuming the access latency of each 

warp. If the memory access latency of a warp is unusually high, the wait time cannot be hidden by 

scheduling. By prioritizing the burst packets, some warps that issued burst requests do not wait 

unusually long for the data which makes warp scheduling easier and predictable. However, to 

avoid starvation in the normal output queue, the MC services one packet from the normal queue, 

for every 3 packets from the burst queue. If the burst queue is empty, it services the normal queue 

first. Generally, an MC services the output queues in a first-come-first-serve order. This leads to 

output queues getting fully occupied due to burst packets. In such cases, the MC does not accept 

new requests, creating a back-pressure on the request plane of the NoC. However, by having two 

separate queues and more rapidly servicing burst packets, our MC prevents back-pressure on the 

request plane and improves overall application performance. 
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5.4 EXPERIMENTAL RESULTS 

 

5.4.1. EXPERIMENTAL SETUP 

 

Table 3 GPGPU-Sim parameters used for evaluation 

 

Parameters Value 

Shader Cores/MCs 132 / 12 (144-core), 56 / 8 (64-core), 
12 / 4 (16-core) 

Shader core pipeline 1536 Threads, warp size = 32 
Shader registers 32768 per core 
Constant / Texture Cache 8KB / 8KB per core 
L1, L2 cache 16KB L1 per core, 128KB L2 per MC 
NoC Topology 4×4 and 8×8 2D mesh, XY Routing 
Channel width 128 bits  
Baseline router  4-stage router, 5 VC/port, 4 buffers/VC 

 

 

We target a 16-core, a 64-core and a 144-core GPGPU for our evaluation studies, to test the 

performance, energy dissipation and scalability of the proposed RAPID NoC in comparison to 

other state-of-the art approaches. We consider a NoC fabric that is clocked at 1GHz. Table 3 shows 

the platform configurations used for our evaluation. 

We used GPGPU-Sim [139] to collect detailed application traces and simulated the network 

and memory traffic on a customized Noxim NoC simulator [140] that integrates our RAPID 

architecture model. We use trace driven simulation, as it is fairly accurate for architectural analysis 

[141], and as full system simulation is highly time consuming for design space exploration. We 

obtained traces for 10 CUDA benchmarks [4] each with a different number of kernels and levels 

of memory intensity: Breadth First Search, ConvolutionsTexture, Discrete Cosine Transform 4x4, 

LIBOR, Monte Carlo, MUMmer GPU, Neural Networks, Ray trace, Storage GPU, and Fast Walsh 



137 
 

Transform.  

We compared our architecture with four prior works that also propose NoC architectures for 

GPGPUs: [10] [26] [125] and [35] (all are discussed in Section 5.1). The architecture discussed in  

[10] is called Direct all-to-all (DA2), while that from [26] is called XYYX. The architecture 

discussed in [125], called CE-NOC, is a cost-efficient and conflict-free NoC that minimizes the 

power cost for communication in GPGPUs. We also compare our work with our prior work 

MACRO [35] that only optimizes latency on the reply network. In contrast, RAPID incorporates a 

low power request plane NoC with a low-latency MACRO reply plane and an enhanced MC 

architecture. Lastly, we also compare against a baseline NoC that uses the configuration presented 

in Table 3 and Section 5.2.1 for both the request and reply planes. Figure 49 shows the MC 

placement we used in our 16-core, 64-core and 144-core platforms. We have assumed a plastic 

ball grid array (BGA) [142] packaging scheme for easier I/O pin connection for MCs that are 

placed in the interior of the chip. 

 
Figure 49 MC placement used in evaluation (darker cells indicate MC) (a) 4×4 mesh (b) 8×8 
mesh (c) 12×12 mesh 

 

For RAPID, we experimented with five different burst durations of 2, 4, 8, 10, and 13 cycles. 

The results across five different applications are shown in Figure 50. All five durations give almost 

similar values, with a burst duration of 8 cycles giving the minimum application execution time. 

With burst durations of greater than or less than 8 cycles the burst queue is either under-occupied 
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or over-occupied. The size of the reply queue at each MC is 132 packets, as used in [139], for all 

the comparison works. In RAPID, the reply queue is split between the burst queue and normal 

queue (66 packets each). We evaluated network latency, total application execution time, and total 

energy consumption for all NoC architectures. We also explored area overheads, and the impact 

of platform scaling across the six different NoC architectures. For MACRO and RAPID, in the 

reply network, we set epoch duration as 10,000 cycles. We set α, γ coefficients of the weight 

functions from equation 𝝃(𝒎) = 𝜶. 𝑨(𝒎) + 𝜸. 𝑩(𝒎)                    (28) to 0.6, 0.4 and K = 1000.  

 

 

Figure 50 Sensitivity analysis of burst duration on a 64-core GPGPU with RAPID across 
different benchmark applications 

 

5.4.2. NETWORK LATENCY 

Figure 51 (a), (b), and (c) compare the network latency of RAPID with prior works for the 

16-core, 64-core and 144-core GPGPUs, respectively. We compare the latencies of both request 

and reply networks. Request network latency includes the waiting time of the flit in the queues of 

the source routers due to back-pressure from MCs, and the time taken by a request flit to reach its 

corresponding MC from a core. Reply network latency includes waiting time of the flit at the 

output buffers of MCs, and time taken by the flit to reach to a core from an MC.  
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From Figure 51 (a), it is evident that there is an improvement in latency of up to 4× in the 

request and 10× in the reply networks with RAPID when compared to the baseline in a 16-core 

platform. MACRO gives up to 1.5× and 9× improvement in the request and reply network latencies 

compared to the baseline. The improvement in request network latency with RAPID is due to the 

utilization of low latency router in its request plane. The reply network improvement in MACRO 

and RAPID is due to the single cycle fast overlay circuit implementation with intelligent adaptation 

and allocation of time window durations by the GOM which results in less waiting time at the MCs 

and lower congestion. Along with that, RAPID shows further improvements because of the 

improved MC architecture which prioritizes burst packets. XYYX shows slight improvements in 

request network latency due to the virtual channel separation that allocates more bandwidth to the 

request packets. However, the reply network latency suffers due to the insufficient bandwidth for 

reply packets in the NoC and the back-pressure from MCs. Also, the XY and YX paths taken by 

request and reply packets in XYYX create traffic hotspots in the center of the mesh. Table 4 gives 

the channel widths of request and reply networks for all of the comparison works.  

DA2 has a 64-bit channel width for the request network and 16-bit channel width for each 

slice in the reply network in a 16-core platform. DA2 shows a slight improvement compared to 

the baseline, of up to 10% in the request network and 50% improvement in the reply network. The 

improvements achieved because of the sliced reply network are less than the overlay-circuit based 

reply network in MACRO and RAPID due to a relatively slower DA2 reply router and serialization 

overhead. CENOC has 16-bit channel width for each of the slices in the request network of a 16-

core platform, and 64-bit channel width for the reply network. It shows up to 4× improvement in 

the request network due to its conflict free request network topology. But the reply network latency 

is worse than the baseline. The Baseline NoC is not strictly partitioned, and hence the average 
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reply network bandwidth is higher than that of CENOC. This leads to worse reply network latency 

for CENOC. 

 

Table 4 NoC channel width (bits) for each plane 

 16 cores 64 cores 144 cores 

 Req Rep Req Rep Req Rep 

Baseline  128 128 128 
XYYX [26] (plane) 64 64 64 64 64 64 
DA2 [10] (slices) 64 16(4) 64 8(8) 32 8(12) 
CENOC [125](slices) 16(4) 64 8(8) 64 8(12) 32 
MACRO [35] (plane) 64 64 64 64 64 64 
RAPID (plane) 64 64 64 64 64 64 

 

Figure 51 (b) shows the network latency in a 64-core GPGPU. RAPID shows up to 4× 

improvement in the request network and up to 60% improvement in the reply network compared 

to the baseline NoC. MACRO shows up to 70% improvement in request network and up to 3× 

improvement in the reply network. MACRO gives better reply network latency than RAPID. In a 

64-core platform, RAPID transmits requests faster than MACRO which leads to more requests 

sent to DRAM and replies coming back to MCs. This increases the queuing time for packets at the 

output buffers of MCs. In a 16-core platform, RAPID MCs are able to handle reply packets without 

significant queuing time. In a 144-core platform, the request latency of MACRO and RAPID are 

almost similar, leading to similar queuing time at MCs (but a burst prioritized reply network in 

RAPID reduces its latency). 
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(a) 

 

  
(b) 

 

 

(c) 

 

Figure 51 Comparison of network latency between Baseline, XYYX, DA2, CENOC, 
MACRO, and RAPID models for (a) 16-core and (b) 64-core and (c) 144-core GPGPU. The 
last set of bars (AVG) represents the average of all results. 
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In general, the combined (request and reply) network latency of RAPID is lower than that of 

MACRO across all platforms. XYYX gives up to 10% improvement in request network latency 

but up to 50% higher reply network latency compared to the baseline. The reason for poor network 

latency with XYYX is the same as in the 16-core scenario. DA2 gives diminished improvements 

(9% request network latency and 33% reply network latency) compared to its improvements for 

the 16-core scenario due to the increased number of MCs in the 64-core GPGPU that leads to an 

increased number of slices, which reduces the bandwidth of each slice. As a result, DA2 suffers 

with increased serialization overhead as the MC count increases. CENOC shows up to 2.5× 

improvement in the request network over the baseline but performs worse in the reply network 

that has half the bandwidth of the baseline.  

Figure 51 (c) shows the network latency of a 144-core GPGPU with 12 memory controllers. 

This result shows the scalability of our RAPID architecture compared to prior works. RAPID shows 

up to 4.5× improvement in request network and up to 10% improvement in the reply network. 

MACRO gives up to 2× improvement in the request network and up to 7% improvement in reply 

network. XYYX gives an improvement of 10-35% in the request network due to the separate 

conflict free virtual channels for request and reply packets. But, the reply network performs worse 

than the baseline by up to 25% for the same reasons as explained earlier. The NoC configuration 

used for DA2 for the 144-core case is different from the 16 and 64-core cases (Table 4). To have 

an even partition, we allocated 8-bit channel width to each of the 12 slices of the reply network. 

This reduces the request network bandwidth to one-fourth of the baseline bandwidth. Hence, the 

request network of DA2 is 20% slower than the baseline NoC in the request plane because of the 

reduced bandwidth. DA2 gets 1-9% improvement in the reply network compared to the baseline 

due to the increased bandwidth of 96 bits combining across all the slices in the reply network. 
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Hence, DA2 shows latency that is almost equal to RAPID in the reply network. However, RAPID 

has a faster request network and an enhanced MC that benefits application performance as 

discussed in the next section. An important trend to observe is that in NoC architectures that have 

a faster request network (CENOC, MACRO, and RAPID), the improvement in reply network 

latency diminishes with an increase in NoC size. This is because the request packets in these 

architectures arrive much faster to the MC compared to the baseline, DA2, and XYYX, and the 

corresponding response packets also arrive earlier and get queued at the MC to be delivered to the 

cores. As the network latency includes queuing time at the MC, this increases the reply network 

latency. However, the overall network latency is impacted significantly. 

 

5.4.3. APPLICATION EXECUTION TIME 

Figure 52 shows the normalized application execution times across different benchmark 

applications for 16, 64, and 144-core GPGPUs. In a 16-core platform, RAPID shows 10-63% 

improvement in application execution time compared to the baseline as shown in Figure 52 (a). 

MACRO shows 9-65.5% improvement compared to the baseline. This is primarily due to the low 

latency request network, and the fast overlay circuits in the reply plane for both architectures. 

RAPID shows better performance than MACRO due to the presence of the enhanced MC that 

services burst packets more rapidly. XYYX shows slightly worse performance than baseline due 

to the poor network latency as explained in Section 5.4.2. DA2 shows up to 34% and CENOC 

shows up to 10% improvement in the application performance due to their low latency conflict 

free routers in the request and reply networks respectively. However, their performance is limited 
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by the back-pressure caused by burst packets, which is seen in applications such as BFS, MUM, 

and NN. 

 
(a)  

 

(b) 

 

  
    (c) 

Figure 52 Comparison of normalized application execution times across the different 
comparison works for (a) 16-core (b) 64-core and (c) 144-core GPGPU platform 
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Some applications such as LIB, RAY and STO give negligible performance improvement 

for the 16-core platform as the memory bottleneck does not impact their computation time. These 

applications are either very small in terms of input data and execution time (RAY, STO) or they 

have relatively high number of kernels to be executed (LIB), which allows for masking the network 

latency by scheduling more warps. Figure 52 (b) shows the application execution times of different 

platforms for a 64-core GPGPU. RAPID and MACRO achieve 21-62% and 19-57% improvements 

in the application execution time compared to the baseline, respectively. XYYX performs worse 

than baseline in all cases due to the poor network latency observed in 64-core platform because of 

traffic hotspots, as discussed earlier. DA2 achieves up to 33% improvement in the application 

execution time due to improvement in the reply network latency as observed in Figure 51 (b). 

CENOC, gives around 10% application execution time due to its low latency NoC in the request 

network. However, reducing reply network latency is more critical to reduce the application 

execution time, which is not addressed effectively in CENOC.  

Figure 52 (c) shows the execution times for the 144-core GPGPU across different 

platforms. The figure shows that RAPID scales well compared to other works when the core count 

increases. XYYX, DA2, and CENOC all perform worse compared to the baseline due to their high 

request or reply network latencies. Also, when the core count is increased, more number of warps 

are scheduled in parallel creating higher number of burst packets. This is well addressed by RAPID. 

RAPID gives up to 19% improvement in application execution time compared to the baseline. 

MACRO also scales well with increased core count with an improvement of up to 7%, but less so 

than RAPID due to the lack of an enhanced MC and low latency request network in MACRO. 
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5.4.4. ENERGY CONSUMPTION 

Figure 53 shows a comparison of energy consumed by different NoC architectures for the 

16-core, 64-core and 144-core platforms across different applications. NoC power values at 22nm 

node are obtained using DSENT [143] simulations. As shown in Figure 53 (a)-(c), RAPID is the 

least energy consuming among all the compared architectures across all the platforms. RAPID 

achieves up to 4× and MACRO achieves up to 2.5× improvement in energy consumption across 

platforms. Speedup in application execution together with the low power consumption of the 

request plane routers in RAPID and the hinge router in the reply plane of both MACRO and RAPID 

enables lower energy consumption. XYYX consumes higher energy than the baseline because of 

the additional buffers used in its router architecture together with the longer duration of application 

execution compared to the baseline platform. DA2 achieves up to 43% reduction in energy 

consumption for the 16-core platform, 19% reduction in the 64-core platform, and 9% reduction 

in the 144-core platform compared to the baseline. The reason for DA2’s lower energy 

consumption is that DA2 achieves speedup in application performance and its reply slices contain 

routers with only one virtual channel per input resulting in low power consumption. CENOC 

achieves up to 1.5× reduction in energy consumption for the 16-core platform, up to 67% reduction 

in the 64-core platform, and 42% reduction in the 144-core platforms respectively. CENOC uses 

a cost-efficient router in the request network that lowers energy consumption. However, the 

improvements of DA2 and CENOC are lesser than that of RAPID and MACRO. DA2 and CENOC 

reduces power dissipation in either the reply or the request networks. In contrast, RAPID reduces 

power dissipation in both the request and reply networks, by using buffer-less hinge routers in the 

reply network and low-power, low-latency routers in the request network. 
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(a) 

 

(b) 

 

(c) 

Figure 53 Comparison of energy consumption across (a) 16-core, (b) 64-core, and (c) 144-
core systems. The last set of bars (AVG) represents the average of all results. 
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5.4.5. ROUTER AREA OVERHEAD 

 

We compared the combined area of routers of all the planes  for different platforms, across 

different platform sizes. Figure 54 shows the percentage of chip area consumed by the NoC routers 

across the comparison works. The values of NoC router areas are obtained using the DSENT tool 

and gate-level analysis at the 22 nm technology node. RAPID observes an improvement of around 

30.3% in 16-core platform, 51.9% in 64-core platform, and 54.2% in 144-core platform compared 

to that of the baseline due to the modified, trimmed-down router architecture in the request plane 

and low overhead hinge routers in the reply plane. Input buffers account for more than 50% of the 

router area in the baseline NoC. The routers used in both planes of RAPID have less number of 

buffers and hence take less area than the baseline. MACRO has slightly higher area (~10%) than 

the baseline NoC, as the request plane network is still essentially a baseline network with reduced 

channel width. Additional hardware required for the routing table, overlay management, input 

selection unit, and latching the incoming flits accounts for the overhead of around 6% for both 

MACRO and RAPID. In DA2 and CENOC, each tile has 5 routers. Each tile takes 53.4% more 

area than the baseline even though individual slice routers take less area than the baseline router. 

DA2 and CENOC consume similar area as they both employ sliced networks. CENOC has slightly 

higher area due to the presence of a token sharing network. Hence, DA2 and CENOC consume 

34%, 45.7%, and 51.9% more area than the baseline. The router area of XYYX on the other hand 

consumes more area than that of the baseline due to the presence of additional buffers that support 

multiple virtual channels to ensure deadlock free XY and YX routing. Hence, XYYX has an area 

overhead of around 143% compared to that of the baseline across all platform sizes. 
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Figure 54 NoC area (as % of total chip area) across different comparison works for different 
platform sizes 

 

 
5.5 CONCLUSION 

 
In this chapter we introduced a novel NoC architecture called RAPID that is customized 

for many-to-few and few-to-many traffic patterns in GPGPUs. RAPID utilizes a low-power and 

low-latency router architecture in the request plane, and overlay circuits to deliver flits to their 

destinations within 3 cycles in the reply plane. We proposed customized hinge routers to 

accomplish the establishment of overlay circuits in the request plane, and a global overlay manager 

that monitors and allocates overlay circuits for memory controllers (MCs) to reduce latency for 

reply traffic to the shader cores. We also proposed an enhanced MC architecture that prioritizes 

sending burst packets to overcome bottlenecks. Experimental results on 16-core, 64-core, and 144-

core platforms show an improvement of up to 4-10× in network latency, up to 67% in application 

execution time, up to 4× saving in energy, and around 50% improvement in area footprint 

compared to the baseline NoC architecture. Our experiments also show that RAPID outperforms 

several state-of-the-art architectures and is more scalable with increasing core counts. 
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6. APPROXIMATE NOC AND MEMORY CONTROLLER ARCHITECTURES FOR 

GPGPU ACCELERATORS  

 

High interconnect bandwidth is crucial for achieving better performance in many-core 

GPGPU architectures that execute highly data parallel applications. This leads to scenarios with 

rapid arrival of an even larger volume of reply data from the DRAM, which creates a bottleneck 

at memory controllers (MCs) that send reply packets back to the requesting cores over the network-

on-chip (NoC). Coping with such high volumes of data requires intelligent memory scheduling 

and innovative NoC architectures. To mitigate memory bottlenecks in GPGPUs, we first propose 

a novel approximate memory controller architecture (AMC) that reduces the DRAM latency. To 

further realize high throughput and low energy communication in GPGPUs, we propose a low 

power, approximate NoC architecture (Dapper) that increases the utilization of the available 

network bandwidth by using single cycle overlay circuits for the reply traffic between MCs and 

shader cores. Experimental results show that Dapper and AMC together increase NoC throughput 

by up to 21%; and reduce NoC latency by up to 45.5% and energy consumed by the NoC and MC 

by up to 38.3%, with minimal impact on output accuracy, compared to state-of-the-art approximate 

NoC/MC architectures. 

For today’s high-performance computing workloads, general purpose graphics processing 

units (GPGPUs) have become highly popular due to their support for massive thread and data level 

parallelism. However, parallel applications often generate large volumes of memory requests to 

memory controllers (MCs), resulting in a rapid influx of reply data from DRAM to be transmitted 

from MCs to SMs, which creates memory bottlenecks. Traditional MCs use first-ready first-come-

first-serve (FR-FCFS) that is not designed to handle such requests that may have high row buffer 
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locality (RBL) and bank level parallelism (BLP) simultaneously. Also, traditional mesh based NoC 

architectures are not designed to handle the high volumes of reply traffic between MCs and cores. 

To support the high traffic rates of GPGPUs, NoC channel widths should be increased multifold 

compared to conventional NoCs, but this leads to a significant increase in GPGPU power 

dissipation. Figure 55 gives a breakdown of power consumed by various components of a GPGPU 

when executing data parallel CUDA applications from the CUDA SDK sample code suite. For 

memory intensive applications that generate high volumes of memory requests, the NoC and MC 

together dissipate up to 30% of the overall chip power. Thus, there is a need for innovative NoC 

and MC architectures that can support the high volumes of data generated and consumed in 

GPGPUs, while dissipating low power (and energy), and without sacrificing application 

performance. 

 Recent works [144] [145] have demonstrated the impact of a new paradigm called 

approximate computing that trades-off computation accuracy for savings in energy consumption. 

Many emerging applications in the domains of machine learning, image processing, and pattern 

recognition are today exploring approximate computing techniques to save energy and also 

improve application performance while tolerating a small range of output errors. One of the main 

goals of this chapter is to exploit data approximation intelligently to increase the throughput of 

data movement between MCs and shader cores (SMs) to speed up application execution and also 

minimize the energy consumed during application execution on GPGPU platforms.  

In a typical many-core GPGPU platform, the NoC traffic consists of load/store (LD/ST) data 

with LD replies forming a majority of the traffic that causes MC bottlenecks [10]. Hardware 

designers have come up with high radix NoCs with intelligent routing schemes [26], or complex 
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warp scheduling schemes [121] to minimize the MC bottleneck. However, these techniques incur 

high power/area overheads. 

 
 

Figure 55 Breakdown of power dissipated by different components of a GPGPU when 

executing various parallel workloads 

 

In this chapter, we conjecture that several applications that use GPGPUs generate high 

volumes of data with redundant or similar values that can be approximated to reduce the number 

of packets transmitted from MCs to cores. We leverage this observation and propose an 

approximate MC architecture and a high-speed circuit overlay based NoC architecture that 

together overcome the MC bottleneck issue and minimize energy consumption more aggressively 

than state-of-the-art techniques, with minimal application accuracy degradation. Our novel 

contributions are summarized as follows: 

 

• We introduce a novel approximate memory controller architecture (AMC) that incorporates 

approximate data-aware memory scheduling in the request channel, to increase MC 

throughput by intelligently leveraging row buffer locality and bank level parallelism of DRAM 

requests; we extend the AMC with support for flagging read reply data arriving from DRAM 

for potential approximate transmission over the NoC;  
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• We introduce a data-aware approximate NoC architecture (Dapper) that utilizes asynchronous 

fast overlay circuits for transmitting both general and approximate data between MCs and 

cores in 3 cycles; we also design a novel NoC router architecture, and an arbitration 

mechanism that uses a global overlay manager (GOM) to share the overlay circuits between 

different MCs and cores;  

• We conduct rigorous simulation-based experimentation of our proposed Dapper NoC and 

AMC architectures for various CUDA applications to compare the performance and energy 

consumption against the state-of-the art. 

 

6.1 RELATED WORK 

Several prior works have addressed the issue of NoC throughput and energy consumption 

for traditional many-core processors. In [146], the authors propose a small world NoC that utilizes 

machine learning to establish fast connections between cores that generate high volumes of data. 

In [132], the authors propose an application criticality-aware packet routing scheme that prioritizes 

memory requests of time-critical applications. In [147]- [148] complex-network based application 

scheduling and mapping mechanisms have been proposed to minimize inter-cluster 

communication in heterogeneous platforms. These works are orthogonal to the proposed 

approximate NoC and MC architectures. Further, these techniques perform well in CPU based 

platforms under lighter traffic conditions, but they cannot be used to minimize the bottleneck 

caused at MCs in GPGPU platforms.  

In [149], [150] heterogeneous NoC architectures have been proposed to address many-to-few traffic 

patterns in CPU-GPU heterogeneous architectures, but, they have not addressed the bottleneck caused by 

few-to-many traffic between the last level caches (LLCs) near MCs and the cores. Further, [151] and [152] 
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discuss the benefits of mesh based NoC topologies such as scalability, simplicity and ease of 

implementation. Hence, in this work we customize the mesh based NoC topology for few-to-many traffic 

pattern in GPGPU processors. The memory bottleneck issue in many-core CPUs and GPUs has been 

addressed in a few prior works. In [153] an application-aware staged memory scheduling 

mechanism is proposed that creates batches of requests to maximize row buffer hits and bank level 

parallelism (BLP) in the DRAM, and to minimize the inter-application bandwidth interference. In 

[154], an MC that uses BLP-aware prefetching is proposed, to increase MC and DRAM 

throughput. But these works ignore the adverse impact of NoC latency on the memory bottleneck 

issue. In our work, we address the memory bottleneck issue from a perspective of both intelligent 

memory scheduling and minimizing NoC latency.   

In [155] a high performance wireless NoC architecture with short ranged wired links and 

long-range wireless links is proposed to address NoC congestion due to multicast packets arising 

from cache coherence traffic. However, this work cannot be directly adapted to GPGPU traffic 

conditions where the reply path has much longer packets (64 B each) compared to cache coherence 

traffic.  In [156] an encoding scheme along with a deadlock free corridor routing and adaptive flit 

dropping mechanisms are proposed to improve the throughput and latency of NoC under high 

multicast traffic conditions. In this work as well, the size of the packets is smaller with lower 

injection rates compared to GPGPU traffic between memory controllers and cores. This technique 

has the potential to give some improvement in GPGPU NoC throughput in the reply network with 

applications of lower memory intensity; however, it incurs high power and area overheads at MCs 

and NoC routers. Unlike the above two works, DAPPER+AMC is more lightweight and is designed 

to improve the performance of GPGPUs specifically in the commonly observed many-to-few and 

few-to-many GPGPU traffic conditions. 
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Approximate (or inexact) computing has been studied by several researchers to save energy 

by sacrificing the correctness of the output to an acceptable extent. A few works [157] [158] have 

demonstrated the use of compiler support to label and treat approximate variables differently from 

other variables and enabling inexact computing on those variables at the hardware level. Other 

works have used approximate computing at the circuit level [159] [160] to trade-off accuracy of 

the logic circuits for shorter critical paths and low operating voltages that save power and area 

footprint. A few other works have introduced approximate last level caches [161] [162]. In these 

works, the authors reduce the amount of data stored in the caches, and increase the cache hit rate 

by associating tags of multiple approximately similar blocks to the same data line. In [163], the 

authors use approximate computing with spatial and temporal locality to increase the benefit of 

instruction reuse in GPGPUs. None of these techniques can be applied for resolving the problems 

arising in MCs and NoC due to the heavy influx of memory requests that cause MC bottlenecks in 

GPGPUs.  

In [164], the authors have proposed a NoC centric approach to minimize the latency caused 

by congestion in many-core CPUs by introducing approximate compression and decompression 

of packets at network interfaces, to reduce the number of flits entering the NoC. This work utilizes 

a dictionary-based compression/decompression technique that consumes high energy and leads to 

performance overheads when the network traffic is high. However, this work ignores the 

challenges with MC scheduling to minimize the memory access latency, in GPGPUs. In contrast 

to these works, in this article, we provide a holistic solution to the memory bottleneck problem in 

GPGPUs, with a multi-pronged solution that uses approximate computing design principles with 

smart resource adaptation at both the MC and NoC architecture levels.  
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6.2 BACKGROUND AND MOTIVATION 

 

6.2.1. BASELINE CONFIGURATION 

We consider a heterogeneous accelerator-based system with an x86 CPU and a grid of 

shader-cores of GPGPUs that have private L1 caches (instruction and data) to support data parallel 

multithreaded application execution. A shader core consists of parallel integrated pipelines with a 

common instruction fetch unit that executes a single instruction on multiple data (SIMD) 

simultaneously. Each integrated pipeline has an integer arithmetic logic unit and a floating-point 

unit. A shader core also has several load store units that fetch data from a private L1 cache or from 

the main memory. A GPGPU based accelerator has an L2 cache that is shared across the shader 

cores. Each shader core also has a texture cache and a scratchpad memory. All shader cores and 

MCs are connected to an on-chip interconnection network.  

Typically, there is little to no direct communication between the shader cores on the chip, as 

there is no data shared between shader cores that are executing thread blocks. Hence, the L2 is 

used to cache the contents of private memory of each shader core. The communication between 

CPU and GPU cores takes place through main memory. The shader cores send read/write requests 

(via LD/ST instructions) to MCs over the NoC. A memory reply takes several cycles based on the 

location of and availability of data in the L2 or DRAM. The baseline NoC architecture between 

the shader cores and the MCs has a channel width of 128-bits, twice the size of 64 bit NoC channels 

in traditional CPU based platforms, and consists of 4-stage routers (stage 1: buffer write; stage 2: 

route computation, stage 3: virtual-channel/switch allocation; stage 4: switch/link traversal). There 

are 5 virtual channels (VCs) per input port and 4 flit buffers for each VC. Flits are routed along 

the XY path from source to destination. In this chapter we focus on optimizing the MC as well as 
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the interconnect between shader-cores and MCs. Henceforth, the term cores implies shader-cores 

for the remainder this article.  

 

 

(a) 

 

(b) 

Figure 56 (a) Example image showing similar data values in pixels; (b) RGB values of the 

marked locations as stored in texture memory  

 

6.2.2. DATA VALUE APPROXIMABILITY 

Several types of data parallel applications are typically executed on GPGPU platforms. Many 

of them belong to the domain of image processing, signal processing, pattern recognition, and 

machine learning. There also exist other scientific and financial applications that use GPGPUs that 

operate on large input data sets. The data used for executing image and signal processing 

applications in many cases is highly approximable. For example, as shown in Figure 56 (a), the 

areas in boxes contain pixels that are very similar to their adjacent pixels. The RGB values of two 
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pixels for each box are shown in Figure 56 (b). These values (for each box) are quite similar and 

it is not energy efficient to save and transmit cache lines containing similar RGB values separately 

from DRAM to the cores. Instead, if cache lines with same (or similar) data can be identified at 

the MCs, we can avoid their repeated transmissions to the cores, to save energy. Dapper and AMC 

are designed to realize this idea.  

 

(a) 

 

(b) 

Figure 57 (a) Normalized percentage of approximable data transmitted from main memory 

to cores in different CUDA applications; (b) Example of marking approximable variables 

using EnerJ [157] 

 

The next logical question one may ask is: how approximable are typical applications that run 

on GPGPUs? Figure 57 (a) shows the percentage of approximable data in different parallel CUDA 

applications, while still generating acceptable results. Applications such as Discrete Cosine 
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Transformation, Convolution Texture, and Raytrace can have up to 78% of approximable input 

data that can be exploited to mitigate the memory bottleneck issue and save NoC energy. By 

making use of the programming paradigm proposed in [157] , it is possible to specify approximable 

variables using the @approx keyword as highlighted in green in Figure 57 (b). Such approximable 

variables will have a distinct set of instructions for load and store that are used when compiling 

the C++ code to machine code. These instructions can be used by cores and network interfaces to 

identify approximable data and accept inexact values for them from main memory. 

6.2.3. MEMORY SCHEDULING IN GPGPUS 

DRAM is organized into a hierarchy of modules as follows: each MC has a dedicated channel 

to access DRAM DIMMs that each consist of two ranks. Each rank typically has 8 or 16 DRAM 

chips depending on the data bus width (8 or 16 bytes). Each chip has up to 32 banks that activate 

rows of data to be accessed, which are then buffered in each bank. An MC sends requests to access 

specific rows and columns within those rows across banks to read/write data. Once accessed, a 

row is either kept open (to enable fast accesses for future requests to the same row) or closed 

(written back to its respective bank before a new request arrives). Memory accesses that hit the 

rows that are already buffered are said to have row buffer locality (RBL). The performance of 

DRAM is enhanced by scheduling requests intelligently to increase the utilization of rows by 

maximizing RBL. If the subsequent accesses are not in the same row, they have to wait until the 

next row is buffered.  

To minimize access latency, DRAMs today also support bank level parallelism (BLP) where 

accesses to multiple banks are scheduled in parallel. Figure 58 (a) shows the average RBL of 

memory requests waiting in the MC input queue at any instance, and Figure 58 (b) shows the 
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average BLP in memory requests waiting in the MC input queue, for different CUDA applications. 

Most of the applications have high spatial locality leading to high RBL of around 3. CUDA 

applications also have a high BLP of above 3 in some applications due to their inherent data 

parallelism. However, prior work [153] shows that RBL and BLP is not easy to harness at the same 

time, making designers choose among the two options to increase DRAM performance. In 

contrast, in AMC we propose a novel credit-based request scheduling mechanism that leverages 

both RBL and BLP based on the runtime application characteristics, to increase NoC throughput 

and leverage the spatial locality of the approximable DRAM requests.  

 

(a)                                 (b) 

Figure 58 (a) Row buffer locality in memory requests and (b) Bank level parallelism for 

memory requests across CUDA applications 

 

6.2.4. OVERLAY CIRCUITS FOR LOW LATENCY TRAVERSAL  

As discussed earlier, in GPGPUs, read reply data is the main source of MC bottlenecks. 

Minimizing read reply latency is crucial for application performance. Also, read reply data 

comprises most of the traffic from MCs to cores in a few-to-many traffic pattern. To ensure that 

MCs do not get clogged by a heavy influx of reply data, it is intuitive to design a NoC with all-to-

all connections. However, power and wire routability constraints in modern chips limit such 

architectures. Hence, researchers have come up with smart solutions in [10], [26] where they 
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propose intelligent NoC routing schemes in tandem with MC placement to create conflict free 

paths in NoCs for packets to traverse from MCs to cores. However, the complex router design in 

such architectures adds to NoC power overheads.  

 

 

Figure 59 A 4x4 NoC showing overlay circuits for two MC’s read reply paths, in a few-to-

many traffic scenario  

 

In this chapter, we make use of the few-to-many traffic pattern of the reply packets and utilize 

an overlay circuit topology that forms dedicated circuits for each MC. An overlay circuit connects 

an MC to all the cores, forming return paths for read reply packets. Figure 59 shows how the 

circuits are established from two MCs (represented as colored circles) to cores. These overlay 

circuits are established from each MC to all the cores, on a 2D mesh-based NoC topology. An 

overlay circuit formed between an MC to the cores stays for a fixed time window during which it 

transmits the reply packets of that MC, before switching to the next overlay circuit (for another 

MC). On overlay circuits (shown with red and green colored arrows in the figure) each MC 

transmits flits of packets waiting in its queues that reach their destination cores in 3 cycles (or less) 

using asynchronous links and repeaters that bypass one or more NoC routers. Flits traverse in X 

and Y directions in one cycle each, stopping only at the turns. Hence, flits traversing over overlay 

circuits do not need switch arbitration and route computation at every hop. This leads to a low 
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energy consumption NoC that establishes high-throughput, congestion-free paths for read reply 

packets. More details about how overlay circuits are established and used for data traversal are 

discussed in the following sections. 

 

6.3 OVERVIEW OF AMC AND DAPPER  

In our approximate memory controller (AMC), we enhance GPGPU MC throughput by 

exploiting the inherent parallelism in request packets, and the approximability of the read reply 

data. In Dapper we reduce the latency of on-chip transfers by optimizing for the few-to-many 

pattern of the approximable read reply data packets between AMCs and cores.  

The AMC consists of two key components: (1) Approximate data-aware memory scheduling 

in the request channel that intelligently switches between BLP or RBL with a credit-based 

throttling mechanism, and (2) Data approximation support in the reply channel of the memory 

controller, that identifies approximable data waiting in its output queues and marks them for 

coalescence. The overlay circuits of Dapper then broadcast the flits of coalesced packets to their 

destinations over fast overlay circuits that are established for each AMC. We define coalescence 

as a group of DRAM reply data whose read reply data from AMCs are approximable and within 

an error_threshold. These replies are then coalesced into a single packet, to reduce the number of 

packets transmitted into the NoC for delivery to multiple destinations.  

Dapper employs a 2D-mesh based NoC topology to create overlay circuits between cores 

and AMCs. The network is divided into two planes (request and reply) each with 64-bit channel 

width, to avoid protocol deadlock. The NoC routes packets with an XY turn-based routing scheme 

to avoid routing deadlock. The request packets are transmitted on a request plane and the reply 

packets are transmitted via fast overlay circuits on the reply plane. A majority of the reply plane 
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traffic consists of read reply packets. Hence, Dapper performs packet coalescing using 

approximation only on read reply data that is received from DRAM. The reply plane of the NoC 

contains a novel router architecture that enables establishing and tearing down of the overlay 

circuits. More details of these modules are discussed in the following sub-sections. 

 
Figure 60 Overview of approximate data-aware memory scheduling in approximate memory 

controller (AMC) 

6.3.1. APPROXIMATE MEMORY CONTROLLER (AMC) 

AMCs are connected to the NoC through a network interface (NI) and a router. An AMC receives 

memory requests from cores and creates commands to send to DRAM. Before sending a request to an AMC, 

a core sets an approximable flag for the memory request, if the load operation is on an approximable 

variable. The NI that connects the core to the router generates flits from the memory request packet and 

adds an approximable flag to the header flit. The receiver NI connected to the AMC generates a memory 

request from these flits and sets an approximable flag for the memory request before sending to the memory 

subsystem, as shown in Figure 60. 

 

 

6.3.1.1. APPROXIMATE DATA-AWARE MEMORY REQUEST SCHEDULING 

On the request channel, the AMC has a novel scheduler to intelligently leverage RBL and 

BLP of the arriving approximable requests. An important observation is that in some applications 
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such as DCT, ConvTex, and RAY, most of the approximable data is located in nearby memory 

addresses leading to a higher row buffer locality, as shown in Figure 58 (a). For these applications, 

it is preferable to send those requests in a burst in consecutive clock cycles so that the replies arrive 

in consecutive DRAM cycles, and can be stored in adjacent output queues in the AMC, which 

facilitates higher packet coalescing in the output queue. However, it is also preferred to support 

bank level parallelism to reduce the waiting time of the high volumes of parallel memory requests 

in GPGPU applications. To leverage both RBL and BLP, we propose a credit-based scheme that 

prioritizes RBL burst commands when there is a high influx of approximable requests into the 

AMC’s input queue, and BLP otherwise. To facilitate this, we divide the input queue of an AMC 

into n parallel queues as shown in Figure 60.  

The incoming requests are stored in one of the n parallel queues based on the bank number 

of the memory request. An input queue is allocated to each memory request by performing a 

modulo operation on its bank number with the total number of input queues (queue id = bank 

number % total queues). For each input queue, the scheduler assigns a fixed and equal number of 

credits at boot up time. For each incoming request processed from a queue, a credit is deducted. 

The queues are processed only when their available credits are > 0. The total number of credits is 

equal to the total available input command queue depth at the interface between the AMC and 

DRAM. The AMC receives a signal from the DRAM after a command is processed internally to 

replenish the credits back to the queues. Figure 60 shows an overview of the approximate data-

aware scheduler in AMC. The input queues are processed by the credit manager that decides if 

RBL or BLP should be selected for the next DRAM command and controls the round-robin (RR) 

arbiter to choose the next queue. The RR arbiter then signals a queue mux that selects a queue to 

fetch the memory request from and forward the next command to DRAM.  



165 
 

Algorithm 12 : Approximate data-aware scheduling 

Inputs: num_approx_reqs (for each queue), check_depth  
1:  next_queue_id ← 0 
2:  burst_count ← 0 
3:  for each cycle do 

4:    if next_queue_id→num_approx_reqs < Threshold then  //BLP block 
5:      if next_queue_id→credits > 0 then 
6:        queue_mux_sel ← next_queue_id   
7:        next_queue_id→credits - -  
8:      end if   

9:       next_queue_id → next_queue_id + 1 mod total_num_queues // RR    
10:    else   // RBL block 

11:      if burst_count < check_depth then 

12:       queue_mux_sel ← next_queue_id   
13:       burst_count ++  
14:      else 
15:       next_queue_id→credits = credits - check_depth   

16:       burst_count ← 0       
17:        next_queue_id → next_queue_id + 1 mod total_num_queues //RR  
18:      end if 

19:   end if 
20:   increment queue credits by 1 in a RR scheme if notified by DRAM 
21: end for   

 

 

Algorithm 12 describes the functionality of the scheduler. The algorithm takes number of 

approximable requests waiting in each queue (num_approx_reqs), and check_depth as inputs. At 

every cycle, the scheduler selects a queue and checks if the total number of waiting approximable 

requests is below a threshold (line 4). It then checks if that queue has at least one credit to process 

a request (line 5). If both conditions are true, then the input queue does not contain sufficient 

requests to hit the same row buffer, thus the credit manager selects the BLP scheme for scheduling 

to leverage parallelism in DRAM commands. In the BLP scheme, an input queue is serviced in a 

round robin manner in each cycle to schedule the next command (lines 5-9). The RR arbiter sends 

the queue id as input to the queue mux to select a single request from this queue to create the next 

DRAM command (line 6), and a credit is deducted (line 7). The RR arbiter then points to the next 

queue in a round robin manner for the credit manager to process in the next cycle (line 8). If the 
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queue does not have at least one credit, the credit manager invariably selects the next input queue 

in an RR manner for processing in the next cycle (line 9). However, if the queue has more 

approximable requests than the threshold (line 10), the credit manager selects the RBL scheme for 

the next check_depth DRAM commands (lines 11-17). In RBL, the DRAM commands are sent to 

hit the same DRAM row buffer to get the maximum approximability in the read reply data. Hence, 

in each cycle the credit manager processes the same input queue till it reaches check_depth to make 

sure that all the subsequent commands are sent in a burst (lines 11-13). The credit manager notifies 

the RR arbiter to select the same queue until the burst mode is completed. As a result, the queue 

mux selects requests from the same queue for check_depth number of times. The queue’s credits 

are also deducted by check_depth (line 15). This can lead to negative credits for the queue. The 

queue is not eligible to send any requests until it replenishes its credits back to at least 1. After 

sending commands in a bursty manner from the same queue, the command manager sends an input 

to the RR arbiter to select the next queue for processing in the next cycle (line 17). The credits are 

replenished in a round robin manner when DRAM notifies the AMC that it has completed 

processing a command (line 20). The credit replenishment stops if a queue receives its quota of 

credits that are assigned at boot up time. The AMC has an internal staging buffer as shown in figure 

6 that stores the requests before processing them to DRAM commands. When this queue is full, 

the scheduler stops processing any memory requests until it is cleared. 

6.3.1.2. DATA APPROXIMATION IN REPLY CHANNEL 

 Whenever a reply is received from the DRAM, it is matched with the corresponding request 

and saved in the output queue. In the reply channel, the AMC is equipped with a data approximator 

which parses through each of the read reply data units waiting at the output queue of the AMC, 

finds the approximable data among the waiting data, and checks if any data can be coalesced before 
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sending to the NI for delivery to the destination cores. The granularity of approximable data 

waiting in the output queue is an L1 cache line because a read reply from AMC contains a cache 

line with the address that led to a cache miss. The data approximator tries to coalesce cache lines 

waiting in queue entries only if each of the variables contained in the cache lines is approximable 

and contains similar data values in all the cache line entries. Figure 61 shows an overview of the 

data approximator. If the output queue has some approximable reply data, the data approximator 

coalesces them into a single read reply data unit based on their data values to minimize the number 

of replies injected by the NI into the NoC. 

 

Figure 61 Overview of approximation done within the approximate memory controller 

(AMC) in the reply channel 

 

Algorithm 13 describes the steps involved in the data approximation phase in the reply 

channel. The algorithm takes two parameters (error_threshold, check_depth) as inputs. The 

check_depth is the same as check_depth in Algorithm 12, because it signifies the number of 

requests processed in the input queue for sending an approximable burst of commands to DRAM. 

The data approximator iterates over each entry in the output queue and checks if the data is 

approximable (line 5). If the data is not approximable, it sends the data unaltered to the NI for 

delivery (line 6). If the data is approximable, the algorithm iterates through subsequent data entries 

to find other approximable data (lines 8-9). 
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Algorithm 13: Data Approximator 

Inputs: error_threshold, check_depth  
1:  while Output_queue.size( ) > 0 do 

2:    ð ← 1 
3:    dest_list ← Ø 
4:    reply_data ← Output_queue. front( ) 
5:    if reply_data.approximable == 0 then 
6:      send_to_NI(reply_data) 
7:    else 

8:      while ð < check_depth do 

9:         nxt_data ← Output_queue.get(ð ) 
10:        if nxt_data.approximable == 1 then  // coalesce the data 
11:          if (reply_data – nxt_data)/reply_data < error_threshold then 

12:            dest_list. add(nxt_data.dest) 
13:            Output_queue.erase(ð) 
14:          end if 

15:        end if 
16:        ð++ 

17:      end 

18:      reply_data.add_dest(dest_list) 
19:   end if 
20:   send_to_NI(reply_data) 
21:   Output_queue.pop( ) 
22: end while   

If an approximable data is found, the difference between the first approximable data and the 

found data is calculated (lines 10-11). If the difference is within the error_threshold, the found 

data entry is erased from the output queue, and its destination address is saved (lines 12-13). This 

iteration process stops once it reaches the check_depth, which also signifies the maximum number 

of packets that are coalesced if their data values are within an error_threshold. The list of 

destination addresses along with the original address is appended to the first reply (line 18). The 

approximated data and the list of addresses are then sent to the NI (line 20) to generate a packet 

that is broadcast to the list of destination nodes on the overlay circuits as explained in the following 

sections.  The data types considered for approximation include both integer and floating-point 

types. For floating point data, only the mantissa is approximated for a faster computation. 
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6.3.1.3. OVERHEADS 

The power and area overheads involved in approximate data-aware scheduling in the request 

plane, and data approximation in the reply plane are minimal compared the power consumed by 

the computing shader-cores. Algorithm 12 needs n additional counters to keep track of the credits, 

where n = total number of input queues, an additional comparator, and queue mux. The credit 

manager operation takes place in 1 cycle, which is pipelined with the other stages of the AMC to 

reduce the overall latency. Algorithm 13 takes check_depth number of cycles for execution, and 

requires logic for division, a comparator, and registers to store the parameters check_depth and 

error_threshold. The NI connected to an AMC is often fully occupied at run-time, resulting in a 

wait time for data at AMCs in most cases, before they are sent to the NI. This wait time helps to 

mask the overhead involved in data approximation. A packet is only sent to the NI after it passes 

the data approximation stage. We consider all of these performance and power overheads when 

modeling the AMC for our experiments (Section 6.4). Note also that the parameters used in AMC, 

such as check_depth and error_threshold, can be updated by GPGPU firmware according to the 

needs of the application. 

 

6.3.2.  DATA AWARE APPROXIMATE NOC (DAPPER) 

The request plane of Dapper is a conventional 2D mesh based NoC with XY routing as 

mentioned in Section 6.2.1. In the reply plane, Dapper establishes dedicated overlay circuits from 

AMCs to cores. Each AMC’s overlay circuit is a predefined mapping of input and output ports in 

the reply plane NoC routers, during which flits traverse from source (AMC) to destinations (cores) 

in 3 cycles or less. An overlay circuit assigned to an AMC lasts for a time duration determined at 
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run-time. To establish overlay circuits, the reply plane NoC is equipped with (i) a global overlay 

controller that decides the time duration for which an overlay circuit is established, and (ii) 

modified routers called bypass routers through which flits traverse in X or Y axes in a single cycle, 

stopping only at a turn.  

 

6.3.2.1. GLOBAL OVERLAY CONTROLLER (GOC) 

 

 The primary function of the global overlay controller (GOC) is to determine and assign 

time durations for overlay circuits, for each AMC. The execution time is divided into epochs, and 

each epoch is further divided into time windows which are computed at the beginning of every 

epoch by the GOC. A time window for an AMC is determined at run-time based on the number of 

reply packets waiting at the AMC output queues, and the reply arrival rate at the AMC from the 

previous epoch. Each AMC sends the stats collected during an epoch to the GOC at the end of that 

epoch, using the overlay circuits. The GOC uses this received information to compute a weight 

function as shown in equation (30):  

𝝃(𝒎) = 𝜶. 𝑨(𝒎) + 𝜸. 𝑩(𝒎)                    (30) 
 

where A(m) is the reply arrival rate and B(m) is the average queue occupancy at the mth AMC in 

the previous epoch. α and γ are coefficients of the weight function. The GOC compares ξ’s of 

each AMC and computes time window durations T1, T2, T3…, Tm for the next epoch as: 𝑻𝒊 = 𝑲 ∗ 𝝃(𝒊)/[𝝃(𝟏) + 𝝃(𝟐) + 𝝃(𝟑) + ⋯ + 𝝃(𝒎)]             (31) 
 

where Ti is the time window of the ith AMC overlay and 𝜉(𝑖) is its weight function. The ratio 

of the weight functions is then multiplied by a constant K which is equal to the periodicity of the 
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time windows in an epoch. The time windows repeat periodically for E/K iterations in an epoch, 

where E is the epoch interval duration and K is the periodicity of the time window set. By having 

the time windows repeat and overlay circuits switch multiple times in an epoch, AMCs send flits 

in multiple bursts across an epoch. The time window durations are broadcast by the GOC at the 

beginning of an epoch, which is saved by the reply plane routers in dedicated registers, and then 

used for the setup and tear down of circuits. At the end of each epoch, the arrival rate A(m) and 

buffer occupancy B(m) of each AMC are sent to GOC using the corresponding overlay circuits. 

This requires 2 additional cycles at the end of each epoch (which is 10000 cycles in duration). 

 

 
 

6.3.2.2. BYPASS ROUTER ARCHITECTURE 

 

The reply plane NoC is made up of bypass routers that support flits passing through them 

without stopping at each hop for arbitration or route computation. Figure 62 shows an overview 

of a bypass router architecture. A bypass router has asynchronous bypass links connecting output 

ports to input ports and latches via a crossbar. Each input port is connected to a dedicated latch to 

save the flit that is coming over the X axis. The router also saves time windows of each overlay 

circuit received from the GOC in a local overlay controller as shown in Figure 62. The crossbar is 

configured at the beginning of each time window and reset at the end of the window to establish a 

different overlay configuration. The crossbar configuration of a router is based on its location on 

the 2D NoC and is selected by the selection unit based on the current overlay circuit. The output 

ports of a bypass router are connected to either input ports or input latches to enable flit 

transmission. In the first cycle, a flit traverses the bypass routers along the X axis through 

asynchronous links and gets latched at the input latches. In the second cycle, when the output ports 
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are connected to input latches, the flit traverses along the bypass routers in the Y direction and gets 

latched again at the input latches. In the third cycle, the flit is sent from an input latch to the local 

(core) port. Thus, flit transmission can take 1 to 3 cycles. Two key components of a bypass router 

are the overlay controller and selection unit. The overlay controller keeps track of the time 

windows and calls the selection unit to dynamically configure the crossbar to establish the overlay 

circuits. The crossbar dynamically makes connections between input latches to output ports, and 

turns flits from X axis to Y axis, and from Y axis to local out ports as explained in the subsequent 

sections. 

 

Figure 62 Overview of bypass router architecture 

 

Algorithm 14 gives an overview of the overlay controller operation. The controller gets a list of 

time window durations and epoch duration as inputs from the GOC. It sends the list of time 

windows to the selection unit as input (line 3). At every cycle, it increments a local counter to keep 

track of the epoch duration (lines 5-6). At the end of an epoch duration, updated time window 



173 
 

values are received from the GOC which are sent to the selection unit, and the local counter is reset 

(lines 8-10).  

Algorithm 14: Overlay controller operation 

Inputs: {time windows}, epoch_duration 

1:   e_counter ← 0; // reset counter value 

2:  {T1…Tk} ← {time windows} // initialize time window durations 

3:   selection unit ({T1…Tk}) 
4:   for every cycle do     
5:      if e _counter < epoch_duration then     
6:        e _counter ++; 
7:      else if e _counter == epoch_duration then 
8:        {T1…Tk} ← read_values(GOC_input) // save time windows 

9:        selection unit({T1…Tk}) 
10:       e _counter ← 0; // reset counters 
11:     end if 

12:  end for 

 

Algorithm 15 gives an overview of the selection unit operation. The inputs to the selection 

unit are the time window durations {T1…Tk} for k overlay circuits (corresponding to the k AMCs). 

In Algorithm 15, {N, E, W, S, L} means North, East, West, South, and local port. Also, La is the 

latch. The selection unit possesses knowledge of the 2D coordinates of the AMC that utilizes the 

overlay circuit on the NoC along with its own coordinates. With the given inputs, the selection 

unit creates connections for an overlay circuit between input ports, input latches and output ports. 

At the beginning of each time window, the selection unit compares the coordinates of the current 

router and the AMC for which the overlay is being established.  

Based on the location of the router, there are 4 possible scenarios for each AMC as shown in 

Figure 62. Scenario 1: If the router and AMC are at the same NoC coordinate, the local input port 

is connected to the east and west output ports and local latch (line 6). Scenario 2: If the router and 

the AMC are along the same X axis, the east and west inputs are connected to the west and east 
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output ports, and to their corresponding latches (line 8). Scenario 3: If the router and AMC are not 

along the same X axis and the router’s Y coordinate is greater than the AMC’s Y coordinate, the 

north input is connected to the south output and north latch (line 10). Scenario 4: If the router and 

AMC are not along the same X axis and the router’s Y coordinate is less than the AMC’s Y 

coordinate, the south input is connected to the north output and south latch (line 12). At the end of 

a time window, the selection unit implements connections for the overlay circuit of the next AMC 

and its corresponding time duration. This entire operation takes 2 cycles at the beginning of each 

epoch. Figure 62 shows an example of such a configuration where green lines represent the 

configuration made by the selection unit to connect the east input to east latch and west output. 

 

Algorithm 15: Selection unit operation 

Inputs: {T1…Tk}, {MC1…MCk} 
1:  ŧ←0, i←1 

2:  for each cycle do 
3:    if ŧ == Ti then 

4:      i ← (i+1) mod k  
5:      if local.(X,Y) == MCi.(X,Y) then             // scenario 1 
6:        Lin→Eout,Wout,La(L)  
7:      else if local.(Y) == MCi.(Y) then             // scenario 2 

8:         Ein→Wout, La(E) and Win→Eout, La(W)  
9:     else if local.(Y) > MCi.(Y) then 

10:        Nin→Sout, La(N)                         // scenario 3  
11:      else if local.(Y) < MCi.(Y) then              // scenario 4 

12:        Sin→Nout, La(S)  
13:      end if 

14:   else  

15:      ŧ ++ 
16:   end if 

17: end for 
 

 

Routing: For conflict free routing using bypass routers, each row in the 2D NoC should only 

have one AMC. A packet that is approximable might have more than one destination based on the 

check_depth parameter of the AMC. To accommodate more than one destination, the header flit of 
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the packet has more than one destination fields, and a destination length field. When a packet is 

ready to be transmitted at the NI of an MC, it is sent to the NI interface buffer based on the 

availability of the buffer space. At each cycle, the router transmits flits via the asynchronous links 

along the X direction and saves them at the corresponding input latches of each bypass router 

(shown via the green line in Figure 62). The Y-compare unit (Figure 62) then compares the 

destination Y coordinates of the flits with its own coordinates and sends a signal to the crossbar to 

establish hinge connections between input latches, and the north/ south/local output ports based on 

the Y coordinates of the current router at which the flit is latched and the destination router. Once 

the hinge connections between latches and output ports are established, the flits traverse in the Y 

direction (shown via the red line in Figure 62) and reach the destination router where they are sent 

to the local output port. When the tail flit passes the bypass router, the hinge connections are reset 

to tear down the connections between latches and output ports.  

Flow control: Since Dapper has lower latency than traditional NoCs, it fills up the receiving 

cores’ queues much more rapidly than a traditional, 4-stage hop-by-hop, router. Hence, it is crucial 

that a robust flow control mechanism is integrated to ensure that the receiving queues of cores do 

not fill up quickly and start creating backpressure. Unlike the wormhole switching scheme where 

the intermediate routers at each hop save flits for re-transmission, in Dapper the flits are only saved 

at the receiving core. As a result, if there is any data loss on the asynchronous links, they may be 

undetected at the receiving core. Hence, there is also a need for a mechanism to ensure lossless 

transmission of packets traversing on overlay circuits.  

To meet these goals, we use an acknowledgement-based flow control mechanism where the 

receiving cores send ACK signals back to the AMC when the packet is completely received. We 

establish ACK circuit using dedicated links of 7 bits width to send ACK signal back to AMCs. 
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Bypass routers establish an ACK circuit using ACK links for each overlay circuit. These ACK 

circuits are not shared with data packets. A core does not send an ACK signal when its input queues 

are already full or when there is data loss in the packet. To facilitate fast transmission of the ACK 

signal from the cores to an AMC, each bypass router has an ACK in and ACK out port (Figure 62), 

which are connected using asynchronous links, switch, and a selection-unit similar to the fast 

overlay circuit to relay the ACK message back to the AMC from the cores in 1-3 cycles. The AMC, 

upon receiving the ACK signals from the destination cores releases its output queue for the read 

reply data coming from DRAM. If the AMC does not receive an ACK signal, it services the next 

waiting packet in the output queue out-of-order. Based on the request type (read/write) the 

addresses of the missed request and the subsequent request are compared before the next packet is 

selected for transmission into the NoC to avoid read-after-write (RAW) or write-after-read (WAR) 

errors. Further, to avoid starvation of long waiting packets, the output queues in the AMC are 

designed as cyclic buffers so that all the waiting packets are processed in a round robin manner. 

Thus, this flow control mechanism ensures that packets at the head of the queue at the AMC do not 

block the subsequent packets that can use the available overlay circuit. To facilitate data loss 

detection, we assume the presence of a simple XOR-based parity bit error detection mechanism.  

 

6.3.2.3. OVERHEADS 

 

The overheads involved with implementing the overlay controller, selection unit, and Y-

compare are minimal. The overlay controller uses a counter, and a register to store the time window 

values received from the GOC, while the selection unit uses a counter, a cyclic register, and five 

3-bit comparator circuits. The bypass router also has an additional Y-comparator, and logic to 

establish hinge connections. All of these components together take up a very small fraction of the 
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power and area of a router. The bypass routers also do not have input buffers to save incoming 

flits, VCA, SA, and route computation logic. Hence, a bypass router consumes up to 50% less 

power compared to a traditional router. However, we increase the output buffer capacity of AMC 

by 50% as it takes at least 6 cycles for the complete read-reply transaction. All of these 

performance and power overheads are considered in our experimental analysis, presented next. 

 

6.4 EXPERIMENTS 

 

6.4.1. EXPERIMENTAL SETUP 

We target a baseline 16-core GPGPU based accelerator to test the performance, energy 

consumption, network latency, and output error of Dapper+AMC compared to the state-of-the-

art. We also test the scalability of our proposed architectures on a 64-core GPGPU. Table 5 lists 

the platform configurations. We used GPGPU-Sim [139] to collect detailed application traces 

and simulated the network and memory traffic on a customized Noxim NoC simulator [140] that 

integrates our Dapper+AMC architecture model. We obtained traces for 9 CUDA-based 

applications [4]. Table 6 gives an overview of each application and the approximable regions of 

their working data sets.  

 

Table 5 GPGPU-Sim Parameters 

Parameters Value 

Shader Cores/AMCs 12 / 4 (16-core), 56 / 8 (64-core) 
Shader core pipeline 1536 threads/core, warp size = 32 
Shader registers 32768 per core 
Constant / Texture Cache 8KB / 8KB per core 
L1, L2 cache 16KB L1 per core, 128KB L2 per MC 
NoC Topology 4×4 (16-core), 8×8 (64-core), XY Routing 
Channel width 128 bits  
Base case router architecture 4-stage router, 5 VC/port, 4 buffers/VC 



178 
 

 

Table 6 Approximable cuda benchmark applications 

Application Domain Approximable 
data 

Black Scholes Stock price evolution 
predictor 

Stock price, CDF 
data 

Convolution 
Texture 

Image texture denoising 
filter using convolution 

512 × 512 image 

Discrete Cosine 
Transform 4 × 4 

Image compression 
technique used in JPEG 

codec 

256 × 256 image 

DXTC Image texture compression 
technique 

256 × 256 image 

Fast Warshal 
Transform 

Faster version of discrete 
FFT 

1024 × 1024 matrix 

Histogram Image color segregation 
into bins 

512 × 512 image 

Merge Sort Highly parallel sorting 
algorithm 

1MB input data 

Neural Network An advanced machine 
learning technique 

Training and testing 
data sets 

Raytrace Image 3D rendering 
algorithm 

512 × 512 image 

 

 

As mentioned earlier, we use the programming paradigm proposed in EnerJ [157] to specify 

the variables in these applications that are potentially approximable. We set the epoch duration in 

Dapper+AMC as 10,000 cycles. We performed experimental sensitivity analysis for parameter 

values and accordingly set the values of α, γ coefficients of the weight function from equation (30) 

to 0.6, 0.4, and K = 1000 in equation (31) as they give the best NoC throughput for the applications 

we considered, in both 16 and 64 core platforms. We have also considered that the Threshold (line 

4) in Algorithm 12 is equal to half of the check_depth parameter value because having a threshold 

larger than check_depth/2 leads to poor approximability as the request scheduler prioritizes BLP 

over RBL even when half of the requests are approximable. Conversely, a smaller threshold might 

favor RBL over BLP even when the ratio of packets that could be coalesced is lower which 
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adversely affects the DRAM utilization. The power, performance, and area values for our NoC 

architecture, modified MCs, and cores at the 22nm node are obtained using the open source tools 

DSENT [143] and GPUWATTCH [165], and gate-level analysis. 

We compare our proposed Dapper+AMC architecture with several alternatives, as shown in 

Table 7. The baseline NoC has a channel width of 128-bits which is the size of the L1 cache line, 

to provide high throughput to MCs. We also compare with the prior work that utilizes dictionary-

based approximate compression and decompression at each network interface, called Approx-NoC 

[164]. Approx-NoC uses dictionary-based inexact compression using approximation at the sending 

network interface to reduce the number of flits that are injected into the NoC and save the overall 

energy consumed. We additionally compare our work with the memory-aware-circuit-overlay-

NoC, MACRO [35]. MACRO has a fast overlay circuit network in the reply plane from MCs to 

cores similar to that of the current work but lacks packet broadcast capability, as well as fast 

broadcast ACK system for fault tolerance, and the data approximator in its MC. The Baseline NoC, 

Approx-NoC, and MACRO have first row first come first serve (FR-FCFS) memory scheduling 

scheme in the request channel of their MCs. To analyze the drawbacks of MC scheduling without 

NoC latency optimization, we compare our work with staged memory scheduling (SMS) [153] that 

proposes an application aware bank level parallelism to minimize the wait time of packets in the 

MC input queue. However, [153] does not have a latency optimized NoC like Dapper+AMC. 

 Table 7 summarizes the NoC and MC configuration of all five comparison works. The size 

of the AMC output buffer is set to accommodate 66 data packets, as used in GPGPU-Sim, for all 

the comparison works. We also consider 4 parallel input queues in the AMC as the average bank 

level parallelism of the requests is around 3.5 as shown in Figure 58 (b). 
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Table 7 Configuration of comparison works 

 MC configuration NoC configuration 

Baseline FR-FCFS scheduler in 
request channel. FCFS 

in reply channel. 

1-plane, 128-bit wide 
channel. 

Baseline + SMS 
[153] 

Staged memory 
scheduling in request 

channel. FCFS in reply 
channel. 

1-plane, 128-bit wide 
channel. 

Approx-NoC [164] FR-FCFS scheduler in 
request channel. FCFS 

in reply channel. 

1-plane, 128-bit wide 
channel. Approx -NI 

MACRO [35] FR-FCFS scheduler in 
request channel. FCFS 

in reply channel. 

2 planes, 64 bits each. 
Overlay circuits in reply 

plane. 
Dapper+AMC Approximate data-

aware scheduler in 
request channel. Data 
approximator in reply 

channel. 

2-plane, 64 bits wide. Fast 
overlay NoC in reply plane 
with packet broadcast, and 

fast ACK mechanism 

 

 

6.4.2. SENSITIVITY ANALYSIS 

We first conduct experiments to determine the best values of buffer check_depth and 

error_threshold parameters used in our data approximation stage in the AMCs in Algorithm 12 

and Algorithm 13. We compare Dapper+AMC with different check_depths and error_thresholds 

to analyze the tradeoffs between NoC throughput improvements and the output error observed at 

the end of the application execution. Output error is computed using equations (32) and (33): 

 𝒆 = (𝑽 − 𝑽′)/𝑽                    (32) 𝒆𝒓𝒓𝒐𝒓 = 𝟏𝑴 ∗ ∑ |𝒆𝒊|𝑴𝒊=𝟎                   (33) 
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where for each point in the output that comprises of images or matrices, V and V’ are the actual 

and inexact points and M is the total number of output points. Equation (33) gives the value of 

output error obtained at the end of the simulation using approximation.  

Figure 63 (a) shows the plots of normalized NoC throughput and normalized output error 

observed with Dapper+AMC across different values of output buffer check_depths (4, 8, 12). The 

bars represent normalized average NoC throughput observed, and dots represent the normalized 

output error across different benchmark applications. Check_depth is defined to be the maximum 

number of input queue entries that are processed by the approximate-data aware scheduler of AMC 

in the RBL scheme. Check_depth is also defined as the maximum number of reply data units that 

can be coalesced in the reply channel of AMC. In this manner, the approximation knob in the 

request and the reply channels are controlled by a single parameter. All the results are normalized 

to the result for the check_depth = 4 configuration of Dapper+AMC.  From Figure 63(a), on 

average, a check_depth of 12 gives up to 3.5% higher throughput in Dapper+AMC with minimum 

increase in output error compared to check_depths of 4 and 8. Dapper+AMC leverages the 

check_depth parameter for opportunistic burst of approximable RBL requests that increases the 

number of coalescable packets. The benefits of increased check_depth can be seen better in 

applications that are both memory intensive and contain higher ratio of approximable input data 

(e.g., ConvTex, Hist). Dapper+AMC also shows throughput improvement at higher check_depths 

in applications with lower ratio of approximable data (BlackScholes, FWT, MergeSort) due to its 

intelligent memory scheduling.  
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(a) 

 

(b) 

Figure 63 Comparison of average NoC throughput and output error observed with 

Dapper+AMC across (a) check_depths, and (b) error_thresholds 

 

 

For the applications DCT, DXTC, RAY and NN, NoC throughput does not increase rapidly 

with higher check_depth, and the output error also remains constant across different check_depths. 

This is because these applications are either compute intensive or execute in a manner that does 

not fully congest the NoC. Hence, for the rest of our experimental analysis, we use check_depth = 

12. If the AMC has less than 12 buffers filled at any point, it uses the maximum buffer depth 

available. Also, check_depth > 12 leads to a higher output error in applications such as FWT and 
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DXTC along with additional processing time latency in AMC for both request scheduling and data 

coalescing which adds to the AMC bottleneck.  

Figure 63 (b) shows the plots of normalized average throughput and output error values 

observed Dapper+AMC across different error_thresholds (5%, 10%, 15%, 20%). All results are 

normalized to the result for the 5% error_threshold configuration. The applications that are 

compute intensive and highly approximable, such as DCT, DXTC, NN, and RAY, show a slight 

increase in NoC throughput at higher error_thresholds. However, for DCT, and RAY the increase 

in output error is high at higher error_thresholds due to the high volume of approximable variables 

present in the memory reply data. 

 For memory intensive approximable applications such as ConvTex and Hist, NoC 

throughput increases by around 10% if the error_threshold is increased from 10 to 15%. For 

memory intensive applications that do not have highly approximable data such as BlackScholes, 

FWT, and MergeSort, the NoC throughput remains the same even with increase in error_threshold. 

On an average an error_threshold of 10% leads to ~15% increase in output error and ~9% increase 

in throughput compared to an error_threshold of 5%. For error_thresholds of 15% and 20% the 

output error observed is 2.3× and 2.7× higher compared to error_threshold of 5%. This eventually 

leads to poor application output quality.  

We have also observed that on average, an error_threshold of 5% gives no performance 

gains compared to an error-free execution. For this reason, for the rest of our experimental analysis 

we use the error_threshold of 10% with Dapper+AMC when comparing with other architectures 

as it gives an acceptable application output error with better throughput than error_threshold of 

5%.  
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(a) 

 

(b) 

Figure 64 NoC throughput analysis of Dapper+AMC with Baseline NoC, Baseline NoC with 

SMS memory scheduling [153], Approx-NoC [164], MACRO NoC [35] for (a) 16 core and 

(b) 64 core GPGPU accelerator, across various CUDA applications. 

 

 

6.4.3.  NOC THROUGHPUT ANALYSIS 

Figure 64 (a) shows the average NoC throughput observed across different NoC and MC 

architectures in a 16-core accelerator. On average Dapper+AMC shows 21% improvement 

compared to baseline, and 21.5% improvement compared to base+SMS. Although base+SMS tries 

to maximize the number of RBL and BLP hits by forming memory request batches, it does not 

dynamically modify the RBL and BLP intensity of the commands like our scheduling scheme 

does. Secondly, it does not have a fast overlay NoC. Dapper+AMC outperforms Approx-NoC that 
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uses dictionary-based encoding and decoding at NIs by 68%, as the encoding and decoding process 

takes an additional 2-3 cycles at both the sending and receiving nodes of a NoC for all packets. 

Dapper+AMC outperforms MACRO by around 7%. These benefits are due to the joint 

optimization of request scheduling and reply packet coalescing in AMC that is absent in MACRO.  

For memory intensive and high approximable workloads such as ConvTex, DCT, and HIST the 

throughput improvement of Dapper+AMC reaches up to 40% compared to the baseline. For 

minimal approximable benchmarks like MergeSort, the throughput benefits of Dapper+AMC are 

diminished, however it achieves same throughput as the baseline. Figure 64 (b) shows that 

Dapper+AMC is highly scalable with average throughput improvement of up to 15.7% compared 

to the baseline and up to 15.34% compared to base+SMS. The improvements are slightly 

diminished in Dapper+AMC in the 64-core platform compared to the 16-core platform due to the 

higher number of cores sending more requests at the MC which increases DRAM latency for 

memory requests that worsens the MC bottleneck issue. Unlike Dapper+AMC, Approx-NoC loses 

up to 50% of its throughput in this configuration. Dapper+AMC has up to 5.35% better throughput 

than MACRO. This shows the importance of approximate data-aware request scheduling and data 

coalescing with the AMC.  

 

6.4.4. NoC LATENCY ANALYSIS 

Figure 65 (a) shows the average NoC latency observed from the source to destination in a 

16-core accelerator. Dapper+AMC is much faster than baseline and base+SMS by up to 45.5% 

and 46%, respectively. This is one of the key contributors of increase in throughput.  
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(a) 

 

 
(b) 

 

Figure 65 NoC latency analysis of Dapper+AMC with Baseline NoC, Baseline NoC with SMS 

memory scheduling, Approx-NoC, MACRO NoC for (a) 16 core and (b) 64 core GPGPU 

accelerator, across CUDA applications. 

 

The AMC’s approximate data-aware scheduling scheme is responsible for Dapper+AMC’s 

2.5% improvement compared to MACRO due to the increased approximable and coalesced read 

reply data that reduces the MC bottleneck and NoC congestion. Also, in Dapper+AMC, the ACK 

based flow-control mechanism together with the cyclic output buffer ensures that MCs utilize their 

share of overlay circuits efficiently. Approx-NoC has a higher latency compared to the baseline 

due to its slower encoding and decoding steps at the NIs.  
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Figure 65 (b) shows the comparison of NoC latency in 64-core accelerators. The baseline 

NoC latency in 64-core platforms is up to 3× higher than the 16-core platforms because of the 

increased NoC traffic due to the higher number of cores in the platform. Dapper+AMC shows up 

to 78.7% improvement compared to the baseline, and 85% improvement compared to base+SMS. 

The NoC latency in base+SMS is higher than baseline due to the waiting time (at the incoming 

buffers of the MC) needed to create batches of requests according to the SMS scheduler. This 

impact is higher in a 64-core platform than a 16-core platform. In Approx-NoC, the latency 

degradation is reduced from 50% to around 22% compared to the baseline. As the ratio of MCs to 

cores decreases from 16-cores to 64-cores, the overhead of encoding/decoding is hidden in the 

packet traversal latency, allowing the approach to recover some of its lost latency. Dapper+AMC 

performs better than MACRO by 4.8% in 64-core platform which is better than improvements of 

~3% in 16-core platform due to the higher ratio of approximable packets in Dapper+AMC in a 64-

core platform. 

6.4.5. APPLICATION EXECUTION TIME ANALYSIS 

Figure 66 (a) shows the application execution times observed in 16-core GPGPU accelerators 

for the various architectures. The throughput and latency improvements observed in the previous 

sections are translated into shorter application execution time for Dapper+AMC compared to 

baseline, and base+SMS. In 16-core platforms, Dapper+AMC achieves around 9.5% improvement 

compared to both baseline and base+SMS. The improvements for applications such as DXTC, and 

MergeSort the application execution time are not proportional to the NoC throughput and latency. 

These applications are also compute intensive where they have enough kernels to execute while 

waiting for data. The faster NoC latency can reduce the number of kernels concurrently scheduled 

on the cores that could potentially increase the execution time in these applications. In these 
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applications, Approx-NoC performs similar to Dapper+AMC. The same trends are observed in the 

64-core platform as shown in Figure 66 (b). On average Dapper+AMC shows 5.4% improvement 

compared to baseline, and 4.5% improvement compared to base+SMS. In the MergeSort 

application, base+SMS gives 35% improvement compared to baseline in a 64-core platform due 

to the batch-based memory scheduling that is optimized for highly data parallel applications. 

However, most of the contemporary applications that are highly approximable perform better with 

Dapper+AMC.  

 
(a) 

 
(b) 

Figure 66 Comparison of application execution times for baseline NoC, baseline NoC with 

SMS memory scheduling, Approx-NoC, MACRO NoC and Dapper+AMC for (a) 16 core and 

(b) 64 core GPGPU accelerator, across CUDA applications. 

 



189 
 

6.4.6. ENERGY CONSUMPTION ANALYSIS 

Figure 67 (a) shows the energy consumption of Dapper+AMC compared to the prior works 

across different benchmarks in a 16-core platform. On average, Dapper+AMC consumes up to 

38.3% less energy compared to the baseline and 38.1% less energy compared to base+SMS 

architectures. MACRO and Dapper+AMC consume lower energy due to their low power router 

architectures in the reply plane. Even though Dapper+AMC has energy overhead involved in the 

AMC architecture, the overall reduction in the number of packets injected into the NoC reduces 

the total energy consumption, compared to the baseline. Approx-NoC on the other hand consumes 

higher energy due to the higher power dissipated in its routers that need additional logic and 

content addressable storage (CAS) based registers for saving the most used values for compression 

and decompression. In Dapper+AMC, energy savings are observed for all the applications 

including those that have lower to medium ratio of approximable data such as MergeSort, FWT, 

and Blackscholes, due to the low power NoC used in the reply plane and faster execution times. 

However, the energy savings are higher when applications have a higher ratio of approximable 

packets, such as in ConvTex, DXTC and DCT.  

 

 
(a) 
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(b) 

Figure 67Comparison of energy consumption between baseline NoC, baseline NoC with SMS 

memory scheduling, Approx-NoC, MACRO NoC and Dapper+AMC for (a) 16 core and (b) 

64 core GPGPU accelerator, across CUDA applications. 

 

Figure 67 (b) shows the energy consumption of different architectures for a 64-core platform. 

In the 64-core platform, the energy savings follow the same trend as in the 16-core platform. On 

average, Dapper+AMC consumes up to 30% lower energy compared to the baseline, and 27.5% 

lower energy compared to base+SMS. However, Dapper+AMC consumes slightly higher energy 

while scheduling requests and coalescing reply packets than MACRO by around 1.5%. But this is 

not a major drawback given the improvements in NoC throughput and latency given by the 

addition of AMC in Dapper+AMC.  

 

 

 

6.4.7. OUTPUT ERROR PERCENTAGE ANALYSIS 

Obviously, it is important to analyze the error in applications that are subjected to 

approximation. Figure 68(a) shows the comparison of output error % for Approx-NoC at 10% 

error_threshold and Dapper+AMC at 10% and 15% error_threshold. Note that the baseline, 

base+SMS, and MACRO NoC are not shown, as they have no output error. The error percentage 

is computed as 100 × error from equation (33). Approx-NoC shows high percentage of error in its 
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output due to a flaw (right shift division) in its error_threshold computation which is used for 

identifying the approximable data before compression. This results in a very high error percentage 

when data values are incorrectly marked for approximation. Dapper+AMC on the other hand 

incurs 1 to 4% output error in the application. On average, Dapper+AMC gives around 2.3% error 

in application output in the 16-core platform.  

The same trend is shown in Figure 68 (b) for a 64-core platform. Although it seems intuitive 

that a 64-core platform may coalesce more packets than a 16-core platform, the ratio of 

approximable packets is dependent on the application’s input and not the platform size. Hence, the 

output error percent has no discernable change as we move from a 16-core to a 64-core platform. 

Thus, Dapper+AMC represents a promising NoC-and-MC-centric solution to improve 

performance and save energy consumption in GPGPUs for applications that have a potential for 

being approximated (i.e., applications that can tolerate some output error).  

As an illustrative example, Figure 69 shows the DCT application output under no error (when 

using the baseline NoC), and when using the Dapper+AMC in a 16-core platform. It can be 

observed that the output for the configuration of Dapper+AMC with 10% error_threshold is 

virtually indistinguishable from the no error case, while saving almost 38% energy (Figure 67 (a)) 

compared to the baseline NoC. This example highlights the exciting potential of Dapper+AMC to 

save energy in GPGPUs while increasing overall performance.  
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(a) 

 

(b) 

Figure 68 Comparison of output error values between Approx-NoC [164] and Dapper+AMC 

for (a) 16 core and (b) 64 core GPGPU accelerator, across various CUDA applications. 

 

 

 

                                        (a)                           (b)                         (c) 

Figure 69 DCT output: (a) original (no error), (b) with 10% error_threshold (c) 15% 

error_threshold in Dapper+AMC 
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6.5 CONCLUSIONS 

In this chapter, we propose a novel data-aware approximate NoC Dapper, and an 

approximate memory controller AMC, for GPGPU accelerators. Our Dapper+AMC architecture 

uses intelligent memory scheduling in the MC to increase throughput and also identifies the 

approximable data waiting in the output buffers of the MC and coalesces them to reduce the 

number of packets injected into the NoC. Also, we advocate for a fast overlay circuit based NoC 

architecture in the reply plane of the NoC for the reply packets to reach their destinations in 3 

cycles or less. Experimental results show that on average Dapper+AMC increase the NoC 

throughput by 21% in 16-core platforms and up to 7% in 64-core platforms while consuming up 

to 38% less energy compared to baseline NoC, with up to 9.5% lower application execution time 

and around 2.3% error in the application output compared to the baseline. Thus, for the class of 

emerging applications that have the ability to tolerate a small amount of error in their outputs, 

Dapper+AMC can provide significant savings at the NoC and MC level. These savings are 

orthogonal to (and can be combined with) further approximation strategies at the computation 

components (e.g., using approximate adders) to further expand the design space of trade-offs 

between application output error, energy costs, and execution time.  
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7. LIGHTWEIGHT MITIGATION OF HARDWARE TROJAN ATTACKS IN  

NOC-BASED MANYCORE COMPUTING 

 
 

Data-snooping is a serious security threat in NoC fabrics that can lead to theft of sensitive 

information from applications executing on manycore processors. Hardware Trojans (HTs) 

covertly embedded in NoC components can carry out such snooping attacks. In this chapter, we 

first describe a low-overhead snooping invalidation module (SIM) to prevent malicious data 

replication by HTs in NoCs. We then devise a snooping detection module (THANOS) to also detect 

malicious applications that utilize such HTs. Experimental analysis shows that unlike state-of-the-

art mechanisms, SIM and THANOS not only mitigate snooping attacks but also improve NoC 

performance by 48.4% in the presence of these attacks, with a minimal ~2.15% area and ~5.5% 

power overhead. With the rise in number of processing cores and growing parallelism in 

applications, the communication traffic in a manycore processor has been increasing. Chip 

designers and manufacturers are moving towards network-on-chip (NoC) as their de-facto intra-

chip communication fabric [34] [37]. Typically, emerging manycore processors have tens to 

hundreds of components that are designed either by in-house engineers or obtained from third-

party vendors (3PIP), and then finally integrated together in a single global facility. With the 

growing complexity in NoC design, designers are opting for third-party NoC IPs, e.g., [27], to 

connect the components in their processors. This global trend of distributed design, validation, and 

fabrication has led to major challenges in ensuring secure execution of applications on manycore 

platforms, in the presence of potentially untrusted hardware and software components.  

Much work has been done to mitigate side-channel attacks on shared resources and to detect 

counterfeit ICs that compromise manycore chip performance [166] [167]. This work focuses on 
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an orthogonal attack scenario where an adversary can insert a hardware Trojan (HT) into the RTL 

or the netlist of a manycore processor to disrupt or alter the integrity of its behavior without being 

detected at the post silicon verification stage. HTs can be inserted by an intellectual property (IP) 

vendor, untrusted CAD tool/designer, or at the foundry via reverse engineering [168]. We focus 

on one such attack called a data-snooping attack where a malicious software and an HT work 

together to steal information from applications executing on manycore processors.  

NoCs are ideal candidates for such attacks as they have a complex design that can be used to 

hide an HT which cannot be easily detected via functional verification. HTs can be placed in NoC 

links, routers, or network interfaces (NIs) to secretly snoop on the data or corrupt data passing 

through them. Typically, in data-snooping attacks HTs create duplicate packets with modified 

headers and send them into the NoC for an accomplice thread to receive them [28]. Several works 

propose packet encoding/error correction mechanisms such as parity bits and ECC in NoC packets 

to detect faulty data packets at the receiver [169] [170]. Other works such as [171] [172] [28] [173] 

have also proposed data protection mechanisms in the presence of an HT in NoC components. 

However, there are three major shortcomings with the state-of-the-art: (1) these works assume the 

presence of HTs in NoC routers or links which can be detected by physical inspection or functional 

verification, without employing costly security mechanisms; (2) the mechanisms proposed in prior 

works protect application data from snooping attacks but do not detect the attack and mitigate 

future attacks; and (3) most of the security enhancement mechanisms are costly to implement and 

increase NoC latency and power consumption which worsens the overall performance. It is 

important to design and deploy lightweight mechanisms that can detect the operation of malicious 

HTs embedded in NoCs and accomplice threads, and secure against their data-snooping attacks 

in emerging manycore processors.  
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In this chapter we focus on security enhancement that do not notably increase performance and 

power overheads. We provide robust yet low-power mechanisms to detect the source of the attacks 

by utilizing controlled aging in circuits at runtime, which is not easy to obfuscate or tamper with 

in the design and fabrication process. Our novel contributions in this work are as follows: 

• We first design and demonstrate a data-snooping attack using an HT in the NoC interface that 

duplicates packets and injects them into the NoC with a minimal area and power footprint, 

making it difficult to detect by traditional functional verification mechanisms; 

• We then protect against such data-snooping attacks by proposing a novel snooping invalidation 

module (SIM) that uses an encoding-based duplicate packet detection mechanism;  

• We further propose a novel data-snooping detection circuit called THANOS that uses threshold 

voltage degradation as a means to detect an on-going attack at runtime and blacklist the 

malicious software task that initiated the attack; 

• Experimental analysis shows that SIM with THANOS provides security against HTs with 

minimal area and power overhead. 

 

7.1. RELATED WORK 

Significant research has been done to increase robustness against attacks by HTs in NoCs 

by assuming that an HT tampers or snoops data passing through it. In [171], bit shuffling and 

Hamming ECC are used to reduce the effectiveness of HTs that corrupt data. In [172], security 

zones managed by a centralized security manager are proposed to protect sensitive information 

from being accessed by malicious agents. In [28] data scrambling, packet authentication, and node 

obfuscation are proposed to prevent data stealing by a compromised NoC. Data scrambling, and 

packet-authentication mechanisms use a one-time pad XOR cipher that can be broken by the 
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malicious tasks when enough encrypted packets are accumulated. In [173], CRC and algebraic 

manipulation detection (AMD) are used to encode packet headers to safeguard from faults and 

snooping attacks. In [174], a novel wave-based scheduling mechanism for NoCs is proposed that 

eliminates the need for TDMA-based NoC resource sharing, hence providing non-interference 

between different domains of applications. In [175], a process variation-based packet encoding 

and decoding mechanism is proposed to prevent data-snooping in silicon photonic NoCs. Most of 

these schemes that protect application data from NoC security attacks lack an efficient and low-

power attack detection mechanism which makes them incomplete in providing security.  

A few works address HT detection in NoC components at design-time and runtime. At 

design time, techniques such as physical inspection [176], functional testing [177], and side 

channel analysis [178] have been proposed. But testing for HTs at design time is still in infancy, 

and the growing complexity of NoC components make this even more difficult. Hence, designers 

are now exploring runtime detection methods. A key logic built-in self-test (LBIST) was proposed 

in [179] that uses test vectors generated by programmable keys to detect Trojans. However, LBIST 

requires that the chip operation should be paused while testing at regular and frequent intervals, 

which is not suitable for NoCs that should function seamlessly. A few other works such as [180] 

[181] propose in-situ HT detection modules that rely on verification units placed in NoC 

components to detect HTs. There are two limitations with all of these works: (1) the verification 

units used to detect HTs can also be reverse-engineered and tampered, (2) these mechanisms are 

used to detect only HT induced data-corruption attacks. Data-snooping attacks unlike data-

corruption attacks attempt to leak critical application data to malicious software tasks. None of the 

prior works have addressed the problem of detecting the software task that initiates data-snooping 

attacks to blacklist and prevent future attacks.  
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In [182], a run-time technique called NoCAlert is proposed to detect failures in the control 

logic of NoC components. This technique is further enhanced by [183] that proposes modules 

which alert the host system if the control logic in NoC routers detects invariance violations caused 

by HTs placed in its control-path, e.g., logic for route computation (RC) or virtual channel 

allocation (VCA). However, these techniques focus on NoC components that have substantial 

control logic, such as routers. They ignore the network interface (NI) which prevents easy 

placement of model checkers to detect packet duplication. In this chapter we propose a novel 

snooping invalidation module (SIM) in the NI that can mitigate snooping attacks. We then propose 

low-overhead techniques to detect the source of data-snooping attacks in NoCs. To the best of our 

knowledge, this is the first work that mitigates snooping attacks in NoCs with minimal performance 

and power overheads, while also detecting the source of snooping attack to protect against future 

attacks.  

 

Figure 70 Baseline NoC architecture with example routers, a PE and an NI 

 

7.2. BACKGROUND AND ATTACK MODEL 

 

7.2.1. BACKGROUND 

In this section we discuss our assumed baseline NoC design. We consider a traditional 2D 

mesh based NoC with processing elements (PE) connected to the NoC via a network interface 
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(NI). The packets entering the NoC are routed towards their destination by routers that use a hop-

by-hop, turn-based distributed deadlock free XY routing algorithm. Figure 70 shows the schematic 

of the baseline 2D mesh NoC with an NI and PE connected to routers. We use traditional 3-stage 

{buffer write, RC+VCA+SA, LT} pipelined routers in the NoC with wormhole switching and 4-

VC buffers at each input port. PEs communicate using messages that are passed to the NI which 

packetizes them before sending them to the NoC. The packets received by the NI from the NoC 

are de-packetized and sent to the connected PE. We consider ARM Cortex-A73 cores in our PEs 

that use the AXI interface for communication. Each PE has a private L1 cache and a shared 

distributed L2 cache that uses a scalable directory-based cache coherence protocol to send 

messages in the form of NoC packets.  

 

7.2.2. ATTACK MODEL 

Prior works [171] [172] [28] [173] assumed data-snooping attacks to be carried out by HTs 

embedded in NoC routers or by compromised links that enable HTs to modify the packet headers. 

These HTs, once activated by a flit with a special activation sequence, make copies of packets 

passing through the router and transmit them to the PE that has a malicious accomplice task 

running on it. Once an HT is activated in a router, it generates new packets, or diverts an existing 

packet to the PE running the accomplice task. This type of HT, that has a high 4% area overhead 

[28], may be noticed by testers while conducting physical inspection or side channel analysis. 

Moreover, this type of attack can lead to illegal utilization of router resources such as buffers, VCs, 

and switch allocators, which cause control logic violations that can be detected by secure model 

checkers [183]. We thus focus on a harder-to-detect attack with an HT embedded in the NI where 
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packets are generated, and hence packets can be duplicated with relatively simpler logic without 

interfering with the basic NI functionality.  

 

Figure 71 (a) Overview of attack model on a NoC with a malicious software task coordinating 

the data-snooping attack, (b) microarchitecture of network interface (NI) with a hardware 

Trojan embedded in packetizer module, (c) FIFO queue modification by hardware Trojan. 

 

 

Figure 71 (a) shows an overview of an on-going data-snooping attack taking place in a 2D 

NoC based manycore processor with multiple HTs activated in the NoC NI modules shown in red, 

and a malicious task running on a PE connected to the yellow router and NI. The HTs make 

duplicate copies of packets in NIs that are sent to the malicious task.  

 



201 
 

7.2.3. DESIGN DETAILS: NETWORK INTERFACE WITH A HARDWARE TROJAN 

Figure 71 (b) shows the microarchitecture of an NI with an embedded HT in the packetizer 

module. The NI receives messages from the PE via the AXI interface that are then stored in its 

buffers. The messages usually are read/write commands with address and data fields. The 

packetizer module appends source ID, destination ID, and virtual channel ID information to the 

commands and creates packets. A packet is further divided into flits, with the header flit containing 

the NoC routing related information. The packet flits are then injected into the circular flit queue 

that is accessed via head and tail pointers. After the packetizer injects a flit, the tail pointer of the 

queue is incremented. After a flit is transmitted to a router, the head pointer is incremented to 

transmit the next flit.  

An HT can potentially tamper with the pointer values to re-send duplicate packets 

intelligently. Once a flit has been transmitted from NI to the router, it stays in the cyclic queue 

until a new flit is overwritten on that location. The HT can keep track of these locations to read a 

header flit that has already been transmitted to the router, append it with a duplicate destination ID 

of the malicious node, and update the head-pointer. Figure 71 (c) shows how the HT modifies the 

head pointer. By moving the head pointer at regular intervals, the HT can send duplicate packet 

flits without having to store them externally. The duplicate packet is re-sent to the router for 

transmission. If the flit queue is full (head pointer = tail pointer), both the HT and packetizer do 

not inject new flits into the queue, and do not accept any more incoming data from the PE until the 

outstanding flits are transmitted. The HT does not interfere with the control logic which is mostly 

present in the AXI interface, and an attacker can snoop on data using this HT in NIs between two 

PEs, or between a PE and a memory controller that is connected to main memory channels.  
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We now perform an overhead analysis of this HT. The proposed HT requires an internal 

memory to save the head flit to modify its destination ID, save the header pointer of the queue, 

and save the current state of the HT (~72 bits). We designed the NI shown in Figure 71 (b) by 

modifying the CONNECT open-source NoC model [184] and used Xilinx’s Vivado HLS [185] 

tool to analyze the overheads. Table 8 shows the clock cycle period, number of flipflops and LUTs 

used for an FPGA implementation of the packetizer. The optimized design indicates that the NI 

with an HT requires an additional ~5% FFs and ~1% LUTs (1.3% area overhead) without incurring 

additional timing latency. This low overhead HT can be inserted at the RTL level, or by reverse 

engineering and changing the netlist at the place and routing stage [168] [176]. The small size of 

the HT makes it hard to detect by physical inspection or by side-channel analysis. Also, the run-

time secure model checkers from [182] [183] are not able to check the validity of flits in the NI as 

it does not interfere with the control logic. Hence, there is a need to design a low-overhead flit 

validation module in NIs to check flit validity before injecting them into the NoC. 

 

Table 8 FPGA implementation of NI packetizer with and without hardware Trojan (HT) 

 Timing 

(ns) 

Number of FFs Number of LUTs 

NI without HT 3.45 258 535 
NI with HT 3.45 273 549 

 
 

 

7.3. MITIGATION OF NOC SNOOPING ATTACKS 

We propose a novel framework that integrates two mechanisms to mitigate data snooping 

attacks from taking place, as well as to detect the source of an on-going attack, and protect against 

future snooping attacks. We rule-out data corruption attacks as they can be detected and corrected 

using ECC codes such as in [173]. Our proposed framework consists of two security mechanisms, 
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(1) a snooping invalidator module at the NI output queue to discard duplicate packets, (2) 

detection of data-snooping attacks at the PE where an accomplice thread is executing. This 

comprehensive protection framework ensures that we proactively mitigate future attacks and 

safeguard the application data for the entire lifetime of the processor. We have designed our 

security mechanism to be hard to be tampered by adversaries that use reverse engineering 

techniques to insert HTs in the netlist. Our approach also works irrespective of the HT triggering 

process to start snooping attacks such as special flit data, circuit aging, or temperature [186]. The 

following sections discuss our two security mechanisms. 

 

7.3.1. SECURITY ENHANCED NI: PREVENTING DATA-SNOOPING ATTACK  

The first security enhancement mechanism is to prevent a snooping attack with the help of 

a snooping invalidator module (SIM) at the NI. Using SIM, we aim to discard packets with invalid 

header flits from being injected into the NoC. Unlike traditional ECC-based security enhancement 

mechanisms, SIM incurs low-power and low latency overheads because of its lightweight 

computations that are designed solely to mitigate snooping attacks. Figure 72 (a) shows an 

overview of the security enhancement in NI using SIM. 

We divide the implementation of SIM across the PE and NI to prohibit 3PIP NoC 

designers/testers to reverse engineer or tamper with the secret encoding/decoding information at 

runtime. The PE and NI communicate using the standard AXI hand-shake protocol (ready, valid, 

and valid ready signals). A typical NI receives messages from the PE to be packetized and sent to 

the NoC and vice-versa. In the security enhanced NI, additional encoding information (key) is 

attached with the data received from the PE to validate the uniqueness of data packets. The 
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numbered sequence of steps shown in Figure 72 describe how a packet is validated using SIM. 

These steps are discussed next. 

  

(a) 

 

(b) 

Figure 72 (a) Security enhanced NI using SIM (b) Flowchart of snooping invalidation 

mechanism in NI 

 

In step 1, the PE data dispatcher sends a count (C: increments with each outgoing data) value 

to the NI controller along with the AXI ready signal. In step 2, the NI controller sends a buffer id 
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(B_id) that is reserved to store the incoming data along with the AXI valid signal to the PE data 

dispatcher. The NI controller simultaneously sends C to SIM that stores it in a “validation table”. 

The PE uses an XOR function f to generate an encoded key k as a function of C, B_id, and 

destination ID (dest_id) of the packet, as shown in equation (34) below. In step 3, the PE sends a 

message {data, k} combination to the data buffers and toggles the valid ready signal to high. At 

the same time, the validation table sends a c_id (location where count is stored in the table) to the 

NI controller. This is stored with the message sent by the PE. The {data, k, c_id} combination is 

stored as a unit in read/write buffers till the packet is sent out of the NI. While the size of payload 

data varies from 8B to 128B depending on message type, the values of k, C and c_id require only 

few bits of storage (see legend of Figure 72 (a)).  𝒌 = 𝑪 ⨁ 𝑩_𝒊𝒅 ⨁ 𝒅𝒆𝒔𝒕_𝒊𝒅                   (34) 𝑩_𝒊𝒅 = 𝑪 ⨁ 𝒌 ⨁ 𝒅𝒆𝒔𝒕_𝒊𝒅                   (35) 

In step 4, the {data, k, c_id} combination is sent to the packetizer to generate packets. In step 

5, flits are generated with k and c_id copied into the header flit. We save k and c_id in the 24-bits 

reserved in the header flit to store destinations of source-routing path [187] which are unused as 

we adopt distributed routing for our NoC. The flits are then saved in the output flit queue. Steps 6-

9 are part of snooping invalidation flow explained in more detail in Figure 72 (b). SIM tries to 

retrieve the encoded key k from the C entry in the validation table as a part of packet validation. 

In step 6, SIM reads dest_id, k, and c_id bits of the header flit, and performs a decoding operation 

shown in equation (35) to obtain B_id of the buffers that stored the corresponding packet data, and 

k sent by the PE (step 7). In steps 8 and 9, SIM retrieves the value of k’ stored in the buffer located 

at B_id and compares with k that is read from the header flit. If k=k’, SIM sends a valid signal that 

the header flit is valid, and it is injected into the NoC. If SIM sends an invalid signal, the flit queue 
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discards all the flits corresponding to the duplicate packet. SIM efficiently detects duplicate packets 

because, if the value of dest_id is modified by the HT, equation (35) leads to an incorrect value of 

B_id that does not retrieve the k value corresponding to the data of packet sent in step 3. Note that 

for broadcast/multicast packets, multiple keys are generated for each dest_id value and key 

verification steps 8 and 9 are performed on each of them separately. After a packet is sent out, the 

corresponding read/write data buffer and validation table entries are reused for new data. This low-

overhead SIM module with minor modifications can also be used to curb potential data duplication 

at router-link interfaces or within a router. 

 

7.3.2. OVERHEAD ANALYSIS  

Several steps in the SIM module can be performed in parallel. The existing communication 

data channel between the PE and the NI that is established by AXI interface is used to communicate 

both packet data and SIM metadata (C, k, B_id in steps 1 and 2). Hence, no additional wires are 

needed to transmit SIM metadata. Steps 1 and 2 are performed in parallel with AXI interface’s 

ready and valid signal exchange to minimize the latency overhead. Also, there is no additional 

overhead involved in steps 3 to 5. Steps 6 to 9 take one cycle in a NoC that is clocked at 1GHz 

frequency which was verified via FPGA synthesis of the modified NI [185]. This increases the 

number of pipeline stages of the NI microarchitecture. SIM takes additional memory to maintain a 

validation table, and additional logic to perform XOR and comparison operations. SIM incurs 

~5.5% more power and ~2.15% more area overhead compared to the baseline NI with a buffer 

capacity of 16 packets, at the 22nm technology node. 
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7.4. DETECTING THE SOURCE OF A DATA-SNOOPING ATTACK  

Using our security enhanced NI with the integrated SIM, we can curb packet duplication at 

the NI. However, the malicious task that is the source of the attack is still not detected that could 

initiate attacks from compromised routers or links [173]. In this section, we propose a module 

called THANOS, a novel threshold activated snooping attack detector that is implemented at the 

interface between an NI and a PE, as shown in Figure 73 (a) to detect the source of the snooping 

attack.  

 

 

Figure 73 (a) Overview of THANOS (b) block diagram of THANOS showing inputs and 

outputs (c) snooping detecting circuit used in THANOS 

 

A PE sends and receives various types of messages into the NoC that can be broadly 

classified into two types: (1) direct messages between cores for inter-core communication, and (2) 

cache-coherence messages between a PE and directory table. Figure 74 (blue bars) shows the 

average incoming-outgoing message ratio sent over 64 cores in a NoC by different PARSECv2.1 

[188] benchmark applications with 64 tasks each. The error-bars in Figure 74 represent variance 

across NoC nodes. Figure 74 shows that the ratio is less than 1 over all the benchmarks with each 
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node receiving a smaller number of messages than the messages it sends out (number of “packets” 

in a “message” can vary based on message type). Another important observation from Figure 74 

is that the incoming-outgoing message ratio is much greater than 1 (red points) when a data-

snooping attack takes place, because a PE receives significantly higher number of messages (and 

packets) than it sends out. This phenomenon can be easily detected in the short term by placing a 

counter in the NI and observing the number of incoming and outgoing messages over an epoch of 

time. However, observing messages in the short term can lead to false positives, e.g., due to 

periodic bursts of messages from a task that requires higher volumes of input data. Also, a message 

counter is not the most secure way to detect a snooping attack, given the reverse engineering 

techniques available to tamper digital logic [176].  

 

Figure 74 Average incoming-outgoing message ratio at normal PE (left), and at snooping PE 

(right) across different applications 

 

In THANOS we devise a mechanism that observes the ratio of incoming and outgoing 

messages over a period of few hours and identifies the source of a snooping attack. THANOS is 

designed using a combination of analog and digital logic to detect if a PE is snooping on messages 

over a duration of time. As THANOS is not entirely a digital logic implementation, it is hard to 

reverse engineer or tamper with, and can be used as a final frontier to mitigate data-snooping 
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attacks. THANOS receives inputs from the PE and sends a security alert signal to the PE as shown 

in Figure 73 (b). The PE then identifies the source of data-snooping attacks and takes preventive 

steps to mitigate future attacks. THANOS is designed as a standalone module that can also be used 

with prior data protection schemes [171] [172] [28] [173] to detect the source of attack. 

 

7.4.1. OVERVIEW OF SNOOPING DETECTION CIRCUIT 

We take inspiration from a controlled aging module [167] that uses threshold degradation of 

NMOS transistors due to aging phenomenon such as bias temperature instability (BTI) and hot 

carrier injection (HCI) to detect chip usage, which helps identifying counterfeit ICs. In THANOS 

we use NMOS threshold voltage degradation to detect a PE that is receiving duplicate packets 

injected by multiple HT activated NIs in the NoC. NMOS transistors undergo stress-recovery 

periods in their ON and OFF operations that leads to threshold voltage (Vth) degradation [189]. 

Figure 75 shows the Vth degradation observed across different ratios of stress and recovery in an 

NMOS transistor at 22nm using the long-term aging model proposed in [189]. At 100% stress (no 

recovery) the Vth of a transistor increases by ~ 100mV in about two hours duration. We use this 

phenomenon to detect snooping attacks. 

                                                      

7.4.1.1. OPERATION OF SNOOPING DETECTION CIRCUIT  

In our snooping detecting circuit shown in Figure 73 (c), there are 2 transistors; N1 that acts 

as a diode connected load and N2 that acts as gate-source voltage (Vgs) sensor. P1, P2, P3 are diode-

connected PMOS transistors that pull the drain voltages of S1, S2, S3 to high. Transistors S1, S2, S3 

are driven using low over-drive voltages In1, In2, In3 that barely switch them ON. We artificially 

induce stress in a selected transistor among S1/S2/S3 when a message is received and induce 
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recovery when a message is sent out. Hence, we call them stress-transistors. At any point only one 

of S1,S2,S3 are connected to the circuit (using In and sel signals). When S1/S2/S3 is turned ON, the 

source (Vx) of N2 is pulled low, which turns ON N2, leading to a “low” out state. But, when a 

stressed transistor (S1/S2/S3) undergoes Vth degradation, its over-drive voltage (In =Vgs-Vth) is not 

high enough to turn ON the stress-transistor and hence drives it into the triode region. When 

S1/S2/S3 is in the triode-region, the source voltage (Vx) of N1 is not pulled low and the out signal is 

set to “high”.  

 

Figure 75 Threshold voltage degradation observed across different stress-recovery ratios in 

a NMOS transistor at 22nm technology node 

 

Table 9 State transition of snooping detection circuit 

Stress-transistors (S1/S2/S3) Vx N2 out 

Saturated Low ON Low 
Triode High OFF High 

 

Table 9 gives the states of different transistors and the corresponding changes in out signal 

state. When a PE is not receiving snooped packets, its incoming-outgoing message ratio is less 

than 1 as shown in Figure 74. Hence, for normal NoC traffic the stress-recovery ratio of stress-
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transistors (S1/S2/S3) is less than 40%. Generally, BTI and HCI are slow wear-out phenomenon in 

logic circuits. But, we input low over-drive (Vgs-Vth) voltage of ~100mV to the stress-transistors 

through input signals In1/In2/In3. Hence, the circuit would set the out signal to high state in a 

duration of 2-3 days. However, when a malicious task on a PE is snooping with up to four HT 

activated in NIs, its incoming-outgoing message ratio is 3× the average ratio (shown in Figure 74). 

As a result, the stress-transistors in THANOS undergo 80-90% more stress than recovery when 

there is a snooping attack. From Figure 75, when a stress-transistor receives ~90% stress, its 

threshold voltage increases over a shorter duration (~3-4 hours). Hence the snooping detection 

circuit toggles the out signal to “high” state quicker when PE receives snooped packets.  

In THANOS, we use a counter to track the time taken for the out signal to change its state 

and compare it with a threshold time that is configured by a trusted PE firmware, as shown in 

Figure 73 (c). THANOS sends an ALERT signal when the time taken by the out signal to switch 

the state is less than the threshold. Overall, THANOS sends a notification about a potential 

malicious task anywhere from ~2 hours to ~2 days based on the number of HTs that are active. 

The trusted PE firmware then alerts the OS about the malicious application task executing on the 

PE, so that preventive measures can be taken.  

The snooping detection circuit should last for the lifetime of the processor to detect snooping 

attacks. However, due to artificially induced stress and recovery cycles, the stress-transistors (S1, 

S2, S3) wear-out much more rapidly than the rest of the chip. To increase the lifetime of THANOS 

we take two measures: (1) We input low over-drive voltage (In-Vth ≈ 100mV) and high Vdd using 

separate power lines for stress-transistors; after every state change of the out signal, we increment 

the In signal by ~100mV until we satisfy the MOS saturation condition (In-Vth < Vdd); (2) The 

stress-transistors are over-provisioned; we use only one stress-transistor at any time to detect an 
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attack and when an In voltage of a stress-transistor can no longer be incremented without violating 

the saturation condition, THANOS switches to the next stress-transistor using the sel signal. Using 

three stress-transistors and Vdd = 3V, THANOS can seamlessly detect snooping attacks for up to 

1.5 years. The number of stress-transistors in THANOS is hence left to the decision of the designer. 

The overhead of THANOS is negligible in power (~50 μW) and area (~0.9 μm2) compared to the 

PE (~1W, ~318mm2) at 22nm technology node as it requires just 8 MOSFETs, a counter, a 

comparator, and a simple control logic block to send input signals.  

 

7.5. EXPERIMENTS 

We target a 64-core manycore chip with low power ARM cortex-A73 cores and a 2D mesh 

NoC with 8×8 dimension to test the performance, latency, energy, and area overheads of the 

proposed lightweight snooping invalidation module (SIM) and snooping detection circuit 

(THANOS) compared to the state-of-the-art. For simulations, we modeled the behavior of SIM and 

THANOS as part of the cycle-accurate NoC simulator Noxim [140]. We obtained the power and 

area overheads of SIM and THANOS modules from post-synthesis vectorless estimation in Vivado 

[185], and Cadence Virtuoso [190], at 22nm. We integrate the latency and energy overheads of 

SIM and THANOS with Noxim for our simulations. We tested our framework using PARSECv2.1 

benchmark NoC traces generated by netrace [191] to capture the request-response dependencies 

to accurately simulate parallel application performance.  

We compare our work with a baseline NoC (with a configuration that is described in section 

7.2.1) with no security mechanism employed, and with two prior works, FortNoCs [28], and P-

Sec [173]. In [28], only data obfuscation and data scrambling techniques are implemented for a 

fair comparison. In [173] end-to-end algebraic manipulation detection (AMD) and cyclic 
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redundancy codes (CRC) are appended to the header flit for reliability against faults and HT 

attacks. We set the threshold time in the snooping detection circuit of THANOS as ~2.5 days to get 

a security violation alert. We first present results of application performance, NoC latency and 

NoC energy consumption for 4 actively snooping HTs that are randomly placed in NoC. 

Subsequently we present results for scenarios with 1 and 2 HTs operating in the NoC. 

 

(a) 

 

(b) 

 

(c) 

Figure 76 (a) Normalized application execution time, (b) normalized network latency, (c) 

normalized NoC energy consumption, across NoCs with different security mechanisms in the 

presence of 4 active HTs attempting to inject duplicate packets to an accomplice thread. 
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Figure 76 (a) shows the comparison of application execution time across different NoC 

security mechanisms. P-Sec and FortNoCs cannot prevent the injection of duplicate packets at the 

NI, and only discard faulty packets at the receiver, which leads to higher NoC traffic. Moreover, 

P-Sec takes two extra cycles for CRC+AMD encoding/decoding, and FortNoCs takes at least four 

extra cycles at the NI for node obfuscation and data scrambling techniques on the entire packet. 

This leads to poor application performance with P-Sec and FortNoCs compared to the baseline. 

SIM mitigates duplicate data packets near the source, resulting in less NoC congestion, thereby 

actually achieving 48.4% average improvement in application execution time, compared to the 

baseline.  

A similar trend is observed for network latency, shown in Figure 76 (b). The network latency 

of FortNoCs is higher due to the packet scrambling mechanism that encrypts/decrypts the entire 

packet using XOR operation, which is time consuming for packets with high payload size. 

FortNoCs incurs additional overhead due to packet authentication as an additional security 

mechanism. SIM, in comparison, takes one cycle only at the sending NI to detect duplicate packets, 

and THANOS has no latency overhead. In the absence of duplicate packets in the NoC, SIM has 

the lowest NoC latency, and achieves an average of 67.8%, 77.3% and 68.1% latency reduction 

compared to the baseline, FortNoCs, and P-Sec in the presence of active data-snooping HTs.  

Next, we analyze NoC energy consumption. Although SIM+THANOS consumes ~5.5% 

additional NI power, its energy consumption is 47.8% lower compared to baseline on average due 

to the lower application execution time as shown in Figure 76 (c). FortNoCs consumes around 

41.8% additional energy compared to the baseline due to increased execution time and the 

overheads incurred to employ XOR encryption/ decryption logic in the NI. P-Sec consumes up to 
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200% more energy compared to the baseline due to its costly AMD, and CRC codec engines 

present in NIs and NoC routers. P-Sec is thus much more expensive, although it provides combined 

safety against faults and snooping attacks.  

 

 

Figure 77 Normalized average values of application execution time, network latency, and 

NoC energy consumption across different security mechanisms with 1 HT (top), 2 HTs 

(bottom). 

 

We observe similar trends in application execution time, NoC energy, and latency even when 

fewer number of HTs are active as shown in Figure 77, with SIM+THANOS performing better 

than the baseline unlike FortNoCs and P-Sec. This shows that our proposed snooping invalidation 

and snooping detection mechanisms, SIM+THANOS, does not trade-off NoC performance and 

NoC energy consumption to provide security. Lastly, we compare area footprint of SIM+THANOS 

with other schemes. As shown in Table 10, SIM+THANOS has the lowest area footprint amongst 

the three security mechanisms. SIM+THANOS mechanism consumes only 2.15% additional area 

in the NI to implement the packet validation mechanism. 

Table 10 Area footprint of different noc security enhancement mechanisms 

SIM+THANOS FortNoCs P-Sec 

2.2 μm2 4.9 μm2 500μm2 
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7.6.  CONCLUSIONS 

In this chapter we proposed a low-overhead mechanism called SIM to prevent data-snooping 

attacks that are initiated by HTs embedded in NoC network interfaces. We also proposed a 

lightweight standalone snooping-attack detection mechanism called THANOS that uses controlled 

circuit aging to detect the source of attacks that can help processors take preventive steps to 

mitigate future attacks. In FortNoCs and P-Sec it is impossible to detect the source of the attack, 

which can be addressed by using SIM+THANOS. Experimental results show that SIM+THANOS 

reduces application execution time by 62.9% and 48.3% and energy consumption by 63.5% and 

83.7% compared to FortNoCs and P-Sec. SIM+THANOS incurs a minimal additional 5.5% power 

and 2.15% area overhead, compared to the baseline, much lower than the overhead for FortNoCs 

and P-Sec. Thus SIM+THANOS represents a promising solution to enhance NoC security in 

manycore processors.  
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8. CONCLUSION AND FUTURE WORK SUGGESTIONS 

 

8.1. RESEARCH CONCLUSION 

In this dissertation, we addressed significant challenges related to reliability, security, and 

performance bottlenecks faced by modern CMP designs. Today’s CMPs are designed to trade-off 

chip performance for improving reliability or vice-versa. We have demonstrated that using 

intelligent resource management schemes and on-chip architectural enhancements in NoC and MC 

architectures, we can accomplish the goals of improved reliability and security without sacrificing 

CMP performance. We have proposed a cross-layer framework called RELAX that uses: (i) 

resource management techniques such as application mapping, DVS scheduling and checkpointing 

interval scheduling at the OS/system level, and (ii) novel NoC and MC architectures at the 

architectural level, that work in tandem with the feedback received from on-chip sensors at the 

circuit level. RELAX enhances the reliability of CMPs in the presence of device level phenomena 

such as NBTI, HCI, EM, along with transient faults due to single and multiple bit flips in CMPs 

while adhering to platform constraints such as the dark silicon power budget, chip target lifetime, 

and application deadlines. Apart from that, RELAX resolves performance bottlenecks in CMPs 

with integrated manycore accelerators that use NoC fabrics for communication between cores and 

DRAM. Lastly, RELAX integrates lightweight security enhancement mechanisms to protect the 

CMPs from hardware Trojan attacks. Experimental results of our proposed cross-layered 

framework validate the benefits of the holistic solution that jointly enhances reliability, 

performance, and security of CMP design.  

ARTEMIS is the first component of RELAX. ARTEMIS is designed to extract useful chip 

performance from a given 3D CMP and extend its lifetime by intelligently mapping applications 
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on 2D/3D regions of the CMP and by dynamically scheduling supply voltage (Vdd) of the tiles 

with different aging profiles. Unlike the state-of-the-art, we consider both VT-degradation in cores 

and IR-drop in PDN while choosing cores for mapping applications and DVS scheduling. We also 

propose a symmetric aging-enabled routing scheme (SAR) to balance the core and NoC routing 

within a tile which prevents the cores from being disconnected from the NoC due to extremely 

aged routers. Compared to the state-of-the-art prior work, ARTEMIS enables execution of 25% 

more applications over the 3D CMP’s lifetime without sacrificing application throughput.   

 Our next contribution is CHARM, a checkpointing based runtime resource management 

framework that improves the application execution rate on CMPs in the presence of soft errors 

with a target lifetime. The underlying mechanisms for minimizing soft error rate and maximizing 

CMP lifetime are counter-productive to each other, making it difficult to find a joint solution. In 

CHARM, we have designed a heuristic that leverages the application slack time and utilizes the 

Vdd and DoP parameters to intelligently trade-off between CMP aging with the checkpointing-and-

rollback overhead of soft errors for applications with relaxed deadlines. Using CHARM, CMPs can 

meet up to 6× higher number of application deadlines in a target CMP lifetime compared to the 

state-of-the-art frameworks that are designed either to optimize for soft error reliability or lifetime 

enhancement of CMPs. 

Next, we have proposed PARM, a power supply noise (PSN) aware resource management 

framework that employs a novel heuristic to minimize the adverse effect of voltage emergencies 

on assign application DoP, Vdd, and mapping region for every application that arrives in the 

runtime to minimize the peak power supply noise observed in the CMP that is operating in the 

near threshold region. The application mapping heuristic minimizes the variation in switching 

activity between different on-chip components, which is the root cause of PSN in manycore CMPs. 
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Unlike prior works that considered NoC and core switching activity separately in their 

optimization methods, the resource management heuristic in PARM jointly balances the switching 

activity in cores and NoC elements to reduce the overall switching activity of tiles that are grouped 

into voltage islands. This PSN aware application mapping, and NoC routing minimizes the average 

PSN observed in near threshold CMPs by up to 4.5× and improves the application performance 

by up to 38% when the CMP is oversubscribed, compared to the state-of-the-art.  

 We then propose architectural innovations for resolving memory bottleneck problem in 

manycore GPGPU accelerators. We proposed RAPID, a latency optimized NoC for GPGPU 

accelerators. In RAPID, the NoC is customized for many-to-few and few-to-many traffic patterns 

in manycore GPGPUs. In the request plane, we propose a low power router that uses fewer buffers 

than traditional NoC router. In the reply plane, we propose a fast overlay circuit mechanism that 

transmits packets from MC to cores within 3 cycles. This reduces the wait time to read reply data 

in MCs which is one of the major causes of the memory bottleneck issue. We also propose an 

enhanced MC architecture that prioritizes sending burst packets that are generated as a result of 

burst requests from adjacent memory locations. Our experimental results show that by using the 

enhanced MC architecture in tandem with the RAPID NoC architecture, 64-core and 144-core 

platforms improve their NoC latency by up to 4-10× and application execution time by up to 67% 

while saving up to 4× NoC energy compared to the baseline NoC and MC architectures.  

 Our next contribution is a data-aware approximate NoC architecture called DAPPER. We 

also propose an approximate memory controller architecture called AMC to jointly maximize the 

DRAM utilization and minimize the memory bottleneck issue using the approximate computing 

paradigm. Our DAPPER+AMC architecture uses intelligent memory request scheduling in the MC 

to increase the throughput of DRAM requests serviced and then coalesces the approximable data 
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waiting in the AMC output queue to minimize the NoC traffic in the reply plane. Also, we advocate 

for a fast overlay circuit to transmit the reply packets back to the cores in less than 3 cycles. We 

utilize a global overlay manager (GOM) and an ACK-based flow control mechanism to ensure the 

overlay circuits are shared fairly between different AMCs. Experimental analysis shows that 

DAPPER+AMC increases the NoC throughput by up to 21% in 16-core platforms and up to 7% in 

64-core platforms while consuming 38% less energy compared to the baseline NoC and around 

2.5% error in application execution time.  

Lastly, we propose lightweight modules called SIM and THANOS to mitigate snooping 

attacks and detect the source of such attacks in 3PIP NoCs with hardware Trojans embedded in 

their network interfaces (NIs). SIM uses a key-based duplicate packet detection technique in the 

network interface that generates a key in trusted cores and validates it in the untrusted NIs. SIM 

consumes only 5.5% power, 2.15% area, and 1 cycle latency overhead. THANOS utilizes threshold 

degradation of stress transistors located between cores and NIs to detect the malicious application 

which is receiving the duplicate packets generated by hardware Trojans embedded in 3PIP NoC 

components. THANOS is hard to tamper with and is orthogonal to various other attack mitigation 

mechanisms that prevent different types of hardware Trojan attacks initialized from any of the 

NoC components. Using SIM+THANOS, the overall application execution time is reduced by up 

to 62.9% while consuming up to 48.3% less energy compared to the state-of-the-art snooping 

attack mitigation mechanisms. 
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8.2. SUGGESTIONS FOR FUTURE WORK  

 With the rapid growth and advancements in CMOS fabrication and integration 

methodologies, CMPs are embracing a higher number of cores that execute at higher clock speeds 

to increase their compute performance. However, a slower adaptation of memory bandwidth to 

CMP clock speeds is a significant bottleneck to realizing the full potential of CMPs. Hence, CMP 

designers are working towards reducing the distance between data and compute elements using 

several techniques such as near-memory computing, 3D integration of memory, and phase change 

material (PCM) based main memory that can store a higher volume of data with lower access 

latencies. With rapid integration methodologies, CMPs with integrated memory are going to face 

renewed threats of reliability and security. Hence, we envision the following as likely directions 

of our future work: 

•  Reliability of CMPs with emerging memory technologies: CMPs that integrate PCM based 

memory in their design are bound to face reliability challenges due to the rapid wear-out 

phenomenon that is common in phase change materials during write cycles. Hence, to increase 

the lifetime of a CMP, it is also crucial to minimize the wear out of the PCM based memory 

used in the CMPs using application mapping heuristics along with data mapping techniques 

that minimize the wear out in PCM based memory DIMMs. 

• Security enhancement in 3D CMPs with integrated memory: The threat of data loss of sensitive 

application data is very high in CMPs that integrate processing logic with memory banks in 

3D layers. Without robust security enforcing mechanism, the shared resources such as TSVs 

can be used by malicious software tasks to corrupt the data traversing from memory to cores, 

or snoop the sensitive information such as encryption/decryption keys. There is a need for 
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security enhancement in 3D ICs with integrated memory to efficiently reap other benefits of 

performance and power consumption with 3D integration. 

• Application-specific CMP reliability: With the advent of AI and machine learning, designers 

are optimizing CMPs to meet the performance requirements of the emerging applications. 

These applications might not require a similar level of reliability as the general-purpose CMPs. 

In such scenarios, there is a need to study the opportunities provided by emerging applications 

to improve CMP and memory reliability by leveraging the inherent fault tolerance of these 

applications. 

• Resiliency to soft errors and voltage emergencies in TPUs: Google’s tensor processing units 

(TPUs) are the accelerators that operate 15× faster than general-purpose GPUs on matrix 

multiplication operations. However, the rapid growth in deep neural network (DNN) 

workloads, increase the energy consumption of these processors. Hence, the TPUs are designed 

to run at a very low supply voltage (Vdd) called near-threshold voltage. In such configuration, 

the control logic, and memory elements are prone to higher single event upsets (SEUs) due to 

alpha particle strikes. Together with that, timing errors caused by power supply noise (PSN) 

also reduces the performance and reliability of the TPUs. A cross-layer solution that comprises 

of an application mapping and task migration mechanisms utilizing runtime feedback from on-

chip load monitoring system can complement the existing hardware techniques designed to 

combat soft errors in TPUs, without further increasing the overhead of the systolic arrays.   

• A holistic framework for runtime approximation selection: The approximate computing 

paradigm has demonstrated that trading off accuracy in the applications can be converted to 

savings in energy without losing CMP performance. However, several frameworks that are 

designed to leverage applications’ tolerance for inaccuracy are configured at design time to 
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utilize a constant rate of approximation throughout the application execution. However, the 

approximability of each application varies with time. Hence, there is a need for a runtime 

framework that encapsulates the variability of applications’ tolerance for inaccuracy using a 

feedback mechanism. This framework should also comprise compiler and OS-level knobs 

along with hardware modifications to accommodate the runtime selection of the rate of 

approximation.  

• Network on chip for neuromorphic computing:  Spiking neural networks (SNNs) have been 

recognized as efficient computing models for spatio-temporal pattern recognition on resource 

and power constrained platforms. SNNs, also called as neuromorphic processors comprise of 

crossbars with input-output neurons with fully connected synapses. Several bus-based and 

time-multiplexed interconnect architectures have been proposed for connecting the 

communication spike between crossbar synapses. However, due to the sharing of interconnect 

between different types of synapses, the NoC becomes the bottleneck for SNNs with a large 

number of neurons. Hence, there is a need to design interconnects that suit the SNN spike 

traffic pattern and mitigate the performance bottleneck in SNNs with a large number of 

neurons.   
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