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ABSTRACT 

 

 

TAXONOMIC DISTINCTIONS IN THE 3D MICROMORPHOLOGY OF TOOTH MARKS 

WITH APPLICATION TO FEEDING TRACES FROM MIDDLE BED II, OLDUVAI GORGE, 

TANZANIA 

 

 

Reconstructing the ecology of Early Stone Age archaeological sites is critical to 

understanding the conditions and behaviors that led to these accumulations, particularly as 

hominins encroached upon the larger carnivore guild by regularly consuming flesh and marrow 

from mammal carcasses; a dietary shift which is often considered a catalyst towards increased 

brain and body size. However, due to the paucity of both hominin and carnivore body fossils in 

the archaeological record, little is known about the specific carnivore taxa that hominins were 

competing and interacting with. The abundance of carnivore tooth marked bone at these early 

archaeological sites highlights the potential of these traces to help refine our knowledge of past 

hominin and carnivore interactions by linking specific carnivore taxa to the feeding traces found 

on fossil bones.  

This thesis seeks to determine if variations in a carnivore’s tooth mark morphology can 

be used to differentiate between carnivore actors using feeding traces found in the archaeological 

record. Previous research seeking to link carnivores to their feeding traces have examined gross 

bone damage capabilities, gnawing damage patterns, and measurements of tooth pits from digital 

photographs. These findings have only been able to link body size of consumers to the levels of 

damage or size of tooth marks inflicted on bone surfaces during feeding. These findings are 
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limited by the qualitative or two-dimensional analyses on which they are based, but highlight the 

potential for more advanced techniques of data collection and analysis.  

Controlled feeding experiments were conducted for seven species of modern mammalian 

carnivores and a single species of crocodile. Scans of individual tooth marks were produced 

using a Nanovea white-light confocal profilometer, while 3D models of the marks were analyzed 

with Digital Surf’s Mountains Software. Tooth marks found on fossils from Middle Bed II, 

Olduvai Gorge, were scanned and compared against an actualistic sample of tooth marks.  

Quantitative analysis and statistical comparison of 3D measurements can be used to 

characterize taxonomic distinctions of tooth mark morphology between certain species as well as 

to link some fossil feeding traces to specific carnivore taxa. This method provides a means to 

identify specific carnivore actors from their feeding traces, potentially enhancing our ecological 

reconstructions of Early Stone Age archaeological sites and understanding of hominin-carnivore 

interactions as they relate to early hominin diet and behavior.  
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

Linking specific carnivore species to feeding traces found on fossil bones is critical to 

reconstructing the ecological and behavioral contexts of Early Stone Age archaeological sites. 

The Plio-Pleistocene boundary is marked by a drastic shift in hominin behavior and diet as 

hominins encroached on the larger carnivore guild by regularly consuming nutrient dense flesh 

and marrow from large mammal carcasses. This dietary shift is often considered as a catalyst 

towards increasing brain and body size in the genus Homo (Aiello & Wheeler 1995; Wood & 

Collard 1999; Ragir 2000; Stanford & Bunn 2001; Aiello & Wells 2002; Larsen 2003; Leonard 

et al. 2007; Anton & Snodgrass 2012). Faunal remains in the Pleistocene archaeological record 

sometimes bear dual-patterned bone with both tooth marks from carnivore feeding action and cut 

marks from hominin butchery action. However, understanding carcass acquisition sequences – if 

hominins accessed meat through hunting or scavenging from carnivore kills remains a long-

standing debate (Binford 1981; Brain 1981; Bunn 1982; Domínguez-Rodrigo and Barba, 2006; 

Blumenschine et al. 2007; Domínguez-Rodrigo et al. 2010, 2011, 2012; McPherron et al. 2011; 

Pante et al. 2015; Parkinson et al. 2015; Thompson et al. 2015). Due to the paucity of carnivore 

remains in the archaeological record, we cannot determine the specific carnivore actor with 

which hominins were interacting and competing, limiting our inferences regarding hominin 

carcass acquisition strategies and sequences. Therefore, the precise and accurate characterization 

of carnivore feeding trace marks left on bone is critical to our understanding of hominin-

carnivore interactions, the ecological context of archaeological sites, and behaviors related to the 

dietary shift that may have been crucial to hominin evolution.  
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 Carnivore feeding traces found on bone provide an accurate resource to link causal agents 

and their behaviors to faunal assemblages. Actualistic carnivore feeding and butchery 

experiments indicate that tooth and cut mark morphology as well as frequency is directly related 

to the relative timing of hominin and carnivore access and flesh availability on carcasses 

(Blumenschine 1988; Blumenschine & Marean 1993; Capaldo 1998; Nascou & Morin 2014). 

Therefore, if specific carnivore actors can be identified by tooth marks left on bone, analysis 

utilizing known feeding behavior and ecological contexts can be used to infer flesh availability 

and timing of access for early hominins. The exact nature of hominin-carnivore interactions has 

important implications for early hominin subsistence strategies and evolution, shaping behavioral 

traits such as foraging patterns, habitat preference, and social behaviors (Hunt 1994; Ragir 2000; 

Larsen 2003; Dunbar & Shultz 2007).  

Previous approaches seeking to link specific carnivore taxa to their feeding traces have 

been conducted by analyzing qualitative aspects of tooth mark morphology (Dominguez-Rodrigo 

2001; Njau and Blumenschine 2006; Coard 2007), gnawing patterns (Haynes 1983; Pobiner & 

Blumenschine 2003; Burke 2013), and an assessment of a carnivore’s ability to delete bone 

portions (Blumenschine & Marean 1993; Pobiner 2007; Yravedra et al. 2014). Previous 

quantitative attempts to link tooth mark morphology to specific carnivore taxa have only 

displayed a weak correlation between tooth mark size and carnivore body size (Delaney-Rivera 

2009; Dominguez-Rodrigo and Piqueras 2003). These previous approaches have been 

unsuccessful due to the methodological constraints of qualitative or two-dimensional analysis, 

which measure length and width of tooth pits from digital photographs; however, the findings of 

these previous analyses highlight the potential of feeding traces to refine our knowledge of past 

hominin and carnivore interactions with improved methods.  
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The current project uses high-resolution 3D scanning to produce a more accurate and 

precise characterization of carnivore tooth mark morphology. Additionally, the methodological 

improvements including the quantitative approach utilized here, will allow archaeologists to 

more accurately discern specific carnivore agents from trace marks left in the archaeological 

record. The goals of this thesis, therefore, are twofold:  

1. To determine if micromorphological variations in carnivore tooth mark 

morphology can be used to quantitatively discriminate between carnivore 

actors, and identify specific carnivore taxa by the feeding traces left on 

bone.  

2. To apply the findings of this actualistic study to tooth-marked fossil bones 

from a Middle Bed II (1.7 mya) archaeological site in Olduvai Gorge, 

Tanzania in order to identify carnivores responsible for feeding traces on 

these archaeological remains.  

 Achieving these goals will allow archaeologists to better understand hominin-

carnivore interactions, ecological contexts, and behaviors that led to these fossil bone 

accumulations.  

1.2 Zooarchaeological and Taphonomic Theory   

 The theoretical concepts utilized in this thesis are uniformitarianism, actualism, analogy, 

and middle range research applied towards understanding unknown aspects of the past. 

Uniformitarianism grounds the methodology and validities the theoretical approaches of using 

modern analogs in actualistic studies. Uniformitarianism hypothesizes that natural processes are 

continuous, universal, and governed by natural laws allowing for past products to be attributed to 

analogous processes currently in operation (Gould 1965; Lyman 1994). The principles of 
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uniformitarianism allow for the application of actualistic studies and inferences regarding past 

behaviors through analogous processes currently in operation.  

Middle range theory provides connections between the behaviors of modern causal 

agents and feeding traces seen in the present, with those in the fossil record allowing reliable 

application to the analysis of feeding traces found in the archaeological record (Binford 1981). 

For instance, tooth-marked bones are found in both archaeological and contemporary settings, 

and processes related to creating tooth marked bone (carnivore feeding), can be observed in the 

present as the responsible action for the final product; therefore, inferences can be made 

regarding similar processes being practiced in the past to create trace marks found in the 

archaeological record (Lyman 1994).  

Actualistic approaches seek to connect present observable behaviors and their final 

products to archaeological remains in order to infer the taphonomic processes that led to their 

archaeological deposit (Rudwick 1976). Actualistic applications in paleoarchaeology are known 

as neotaphonomy, where naturalistic and experimental procedures are used to directly observe 

the relationship between cause and archaeological effect (Lyman 1994). Ultimately, actualistic 

studies can uncover equifinalities (different events, causes, or behaviors that produce the same 

result or effects) by establishing a distinct causal link between archaeological products through 

observation of modern processes and their products (Marean 1995).  

Identification of appropriate resources or actors to be used in an actualistic approach is 

through relational analogy (Gifford-Gonzalez 1991). Gifford-Gonzalez (1991) established a 

nested model for identifying modern taphonomic processes and their causal relations to traces 

found in the archaeological record. The levels within this nested model are as follows: 
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1. Identify the trace on an archaeological product that has undergone a taphonomic 

process. 

2. Identify the effector, material, or process that modified the archaeological 

product.  

3. Identify the causal agent or physical processes responsible for the trace. 

4. Determine the behavioral context. 

5. Determine the ecological context. 

The goal of this thesis is to link the trace (carnivore tooth mark) to the actor responsible 

(specific carnivore species). These goals are accomplished through a neotaphonomic approach 

utilizing controlled feeding experiments of wild and captive carnivores in order to define and 

observe the causal relationship between process and product, carnivore actor and feeding trace. 

Middle range theory advocates for an accurate means of identification through a scientific 

approach in order to further the science of archaeology, bringing scientific methods into 

archaeological research in lieu of inference, creating a rich body of actualistic research in its 

wake: 

“What we are seeking through middle-range research are accurate means 

of identification… reliable cognitive devices… Rosetta stones that permit 

accurate conversion from observation on statics to statement about 

dynamics... to build a paradigmatic frame of reference for giving meaning 

to selected characteristics of the archaeological record through a 

theoretically grounded body of research.” Binford 1981:25 
 

Neotaphonomic approaches utilizing middle range research have interpreted a wide-range 

of effectors and agents responsible for patterns found in the archaeological record such as post-

depositional fluvial action (Pante & Blumenschine 2010), butchery traces (Blumenschine 1988; 

Selvaggio 1994), butchery trace mark morphology (Bello & Soligo 2008; Boschin & Crezzini 

2012; Bello et al. 2016; Braun et al. 2016; Pante et al. 2017), lithic typology and wear (Lin et al. 
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2010; Caruana et al. 2014; Lemorini et al. 2014), and carnivore feeding traces (Njau & 

Blumenschine 2006; Delaney-Rivera et al. 2009; Pobiner 2007; Pobiner 2015; Pante et al. 2017); 

all of which have greatly improved our understanding of past hominin behaviors and 

evolutionary precursors. This thesis seeks to build upon this great body of actualistically-based 

research by furthering our understanding of carnivore tooth mark morphology by advancing the 

methods of linking carnivore to archaeological trace.  

1.3 Scope of Thesis and Sample Characteristics 

 This thesis is comprised of two components. The first component is based upon 

actualistic feeding experiments to study the feeding traces and tooth mark morphology of eight 

mammalian carnivores and one crocodilian in both naturalistic and captive environments (Table 

1). The second component of this thesis is the analysis and comparison of archaeological trace 

marks to the actualistically generated sample. The archaeological sample consists of 30 tooth 

marks found on faunal remains from a Middle Bed II site in Olduvai Gorge, Tanzania, dating to 

approximately 1.7 million years. 

Table 1 – Summary of species included within this study.  

Common Name Scientific Name Setting 

Number of 

Individuals 

Number of 

Tooth Marks 

African Wild Dog Lycaon pictus Captive 4 31 

Grey Wolf Canis Lupus Captive 1 29 

Spotted Hyena Crocuta crocuta Wild N/A 28 

Spotted Hyena Crocuta crocuta Captive 3 30 

Striped Hyena Hyaena hyaena Captive 2 30 

African Lion Panthera leo Wild N/A 28 

African Lion Panthera leo Captive 4 30 

Brown Bear Ursus arctos Captive 2 28 

Nile Crocodile Crocodylus niloticus Captive 4 48 

Total    282 



 

 

 

 

7 

1.4 Summary 

 This thesis seeks to build upon zooarchaeological and taphonomic bodies of research that 

seek to link specific actors to their fossil traces; specifically, to link carnivores to 

micromorphological variables in tooth mark morphology. The methodology applied in this thesis 

has been successfully proven to be accurate and precise between observers as well as capable of 

discerning carnivore tooth marks from stone tool cut marks with 97.5% accuracy (Pante et al. 

2017). This method is further developed and the dataset is significantly increased within this 

thesis.  

 Chapter 2 provides an overview of biomechanical research of the carnivore feeding 

apparatus connected to maximum bite force and gross bone damage as it relates to identifying 

carnivores responsible for archaeological assemblages. Following this, previous approaches to 

identifying carnivores by their feeding traces is examined, leading to a review of high-resolution 

3D scanning applications in the field of archaeology and taphonomy.  

 Chapter 3 provides a description of the methodological protocols used within this thesis: 

methods followed for both naturalistic and controlled feeding observations; post carnivore 

feeding collection, storage, and bone cleaning methods; the high-resolution 3D scanning protocol 

used; and lastly, the statistical method of analyses utilized in this study is defined.  

 Chapter 4 and 5 present the results from the actualistic experiments and an analysis of the 

archaeological trace marks against the actualistic sample. Chapter 6 summarizes the major 

findings of this thesis, and outlines future research I hope to undertake.   
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CHAPTER 2 BACKGROUND & LITERATURE REVIEW 

The analysis of carnivore tooth marks can be used to infer carcass consumption 

sequences between distinct carnivores and hominins. The extent of damage and consumption 

inflicted by feeding carnivores corresponds to the amount of edible flesh and bone available to 

subsequent consumers of the carcass (Pobiner 2015). Members of the order Carnivora possess a 

wide-range of feeding behaviors and niches, each providing a variable amount of resources for 

scavenging hominins (Van Valkenburgh 1996; Van Valkenburgh & Molnar 2002; Pobiner 2007; 

Van Valkenburgh 2007; Pobiner 2015). Therefore, the specific carnivore species hominins were 

interacting with is directly related to resources availability and the overall diet breadth of 

hominins. Hominin dietary strategies must be analyzed alongside an ecological, behavioral, and 

taphonomic perspective of the greater carnivore guild in order to understand the effect of specific 

carnivores on spatially and temporally governed hominin behaviors related to their subsistence 

strategies.  

This chapter will provide an overview of the biomechanical research of the carnivore 

feeding apparatus connected to maximum bite force and gross bone damage. Subsequently, 

previous approaches to identifying carnivores by their feeding traces are examined. Lastly, a 

review of the application of high-resolution 3D scanning and photogrammetry in the field of 

archaeology and taphonomy is provided.  

2.1 Hominin – Carnivore Interactions: Carcass Acquisition Sequences and Hominin 

Evolution 

The ecological dynamic between hominins and carnivores has impacted the evolutionary 

trajectory of the genus Homo. Understanding the ecological contexts and human-carnivore 

interactions as animal source foods were introduced into hominin diet are critical for 
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understanding the effects this diet change would have had on hominin brain and body 

morphology (Shipman & Walker 1989; Aiello & Wheeler 1995; Wood & Collard 1999; Stanford 

& Bunn 2001; Aiello & Wells 2002; Leonard et al. 2007; Anton & Snodgrass 2012), the driving 

forces behind hominin tool development and complexity (Harris & Capaldo 1993; Roche et al. 

1999; Leigh 2012; Ruck 2014), the social organization and cultural complexity (Foley 2001; 

Dunbar & Shultz; Anton & Snodgrass 2012; Leigh 2012; Pradhan et al. 2012), and the overall 

ecological changes affecting hominin subsistence strategies (Clark & Kurashina 1979; Rogers et 

al. 1994; Potts 1998; Plummer et al. 1999; Ungar et al. 2006). Furthermore, the new dietary and 

behavioral practices of hominins such as opportunistic and power scavenging (Blumenschine & 

Cavallo 1992; Oliver 1994; Capaldo 1997; Bunn 2001; Pante et al. 2012), led to increased 

competition for resources, causing hominin induced changes to the carnivore guild (Agudo et al. 

2010; Yirga et al. 2012), and increased risk of predation or injury from carnivores (Treves & 

Treves 1999; Njau & Blumenschine 2012; Moleon et al. 2014; Camaros et al. 2016).  

The exact precursor towards inclusion of meat in early hominin diet remains unknown. 

Environmental and ecological contexts provide the most parsimonious explanation of the driving 

forces behind hominin diet change as the Pleistocene boundary is marked by increased 

seasonality (Ungar et al. 2006). The loss of stable resources such as fruits and tubers may have 

driven early hominins towards scavenging carcasses, a feeding strategy made easier by a loss of 

carnivore density and species richness, reducing competition at this time (Bunn & Ezzo 1993; 

Lewis 1996; Werdelin & Lewis 2005; Koch & Barnosky 2006). Resources such as tree-stored 

leopard kills and abandoned kills from larger felids would have provided substantial flesh in the 

same way these carnivores and their modern analogs still do today (Cavallo & Blumenschine 

1989; Van Valkenburgh et al. 2002; Pobiner 2007; Van Valkenburgh 2007). However, the exact 
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strategies of early hominin carcass acquisition, as either obligate scavengers or hunters, remains 

as a long-standing and controversial debate (Binford 1981; Brain 1981; Bunn 1982; Domínguez-

Rodrigo and Barba, 2006; Blumenschine et al. 2007; Domínguez-Rodrigo et al. 2010, 2011, 

2012; McPherron et al. 2011; Pante et al. 2015; Parkinson et al. 2015; Thompson et al. 2015).   

Analytical models aimed at deciphering the sequence of carcass access by hominins and 

carnivores include skeletal part profiles (Dart 1949; Binford 1981, 1984; Potts 1983; 

Blumenschine 1986; Bunn 1986; Bunn & Kroll 1986; Stiner 1991; Marean et al. 1992; Marean 

1998; Marean & Kim 1998; Bartram & Marean 1999), mortality profiles (Vrba 1975, 1980; 

Klein 1982; Lyman 1987; Stiner 1990; Pickering 2002; Steele 2003) and cut mark frequency and 

location (Domínguez-Rodrigo et al. 1997; 2006; Lupo & O'Connell 2002; Pickering & Egeland 

2006; Merritt 2015). These models provide a means to infer primary or secondary access to 

carcasses with a certain degree of accuracy, but taphonomic processes such as degree of 

carnivore modification, differential transport, and degree of preservation can alter assemblage 

representation and inferences (Binford 1981; Gifford 1981; Behrensmeyer 1991; Gifford-

Gonzalez 1999; Denys 2002;).  

Modern carnivores are not homogenous in their feeding behaviors and bone modification 

capabilities; identifying a carnivore’s specific taphonomic trace is needed in order to better 

understand hominin-carnivore interactions related to hominin diet and subsistence. Approaches 

towards this goal include hypothesizing scales of flesh availability to secondary hominin actors 

(Blumenschine 1986, 1988; Turner 1992, 1998; Marean & Ehrhardt 1995; Arribas and Palmqvist 

1999; Dominguez-Rodrigo 2001; Palmqvist et al. 2011; Nasau & Morin 2015; Pobiner 2015). 

Taphonomic analysis of specific carnivores have also been conducted to understand their feeding 

behaviors and the traces they would have left in the archaeological record; most studies have 
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focused on the most effective bone crunchers, the spotted hyenas (Haynes 1983; Binford et al. 

1988; Blumenschine 1988; Cruz-Uribe 1991; Marean & Spencer 1991; Lam 1992; Marean et al. 

1992; Blumenschine & Marean 1993; Capaldo & Blumenschine 1994; Selvaggio 1998; Capaldo 

1998; Dominguez-Rodrigo 1999; Pickering 2002; Faith 2007; Pobiner 2007; Lansing et al. 2009; 

Dominguez-Rodrigo 2013; Arrizia 2017). However, other species that alter bone and leave 

archaeological traces such as felids (Haynes 1983; Cavallo & Blumenschine 1989; Dominguez-

Rodrigo 1999; Pobiner & Blumenschine 2003; Pobiner 2007; Dominguez-Rodrigo & Pickering 

2010; Gidna et al. 2013), canids (Haynes 1980, 1983; Fiorillo 1991; Monahan 1999; Yravedra et 

al. 2012), ursids (Haynes 1982, 1983), crocodilians (Njau & Blumenschine 2006; Baquedano et 

al. 2012), baboons (Dominguez-Rodrigo et al. 1998; Dominguez-Rodrigo et al. 1999), and 

chimpanzees (Pickering & Wallis 1997; Plummer & Stanford 2000; Tappen & Wrangham 2000) 

have also been studied individually. 

Comparative analysis between carnivores and their taphonomic traces are largely based 

on tooth mark morphology and patterns of gross bone damage (Binford 1981; Selvaggio & 

Wilder 2001; Dominguez-Rodrigo & Piqueras 2003; Pobiner & Blumenschine 2003; Pickering 

et al. 2004; Delaney-Rivera et al. 2009; Pobiner 2015). These comparative analyses have 

observed a wide range of overlap between carnivore actors, thus providing only general guiding 

principles based on weak correlation between a carnivore’s body size and tooth pit size. More 

recently, high resolution 3D scanning and micro-photogrammetric techniques have displayed the 

ability to differentiate between cut marks produced by different tool types (Bello & Soligo 2008; 

Boschine & Crezzini 2012; Mate-Gonzalez et al. 2015). This points towards the potential of this 

technology to distinguish between the tooth marks inflicted by different carnivore species.  
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2.2 Biomechanical Analysis of Carnivore Feeding Morphology 

Biomechanical approaches, modeling cranial and appendicular morphology of extant 

carnivores can provide insights into extinct carnivore feeding behaviors. This is especially 

critical for smaller extinct carnivores, which exhibit biomechanical adaptations for extremely 

high bite force (Wroe et al. 2005) that do not coincide with the findings of tooth mark size 

correlation to carnivore body size and in turn could produce faulty references regarding flesh 

availability for scavenging hominins (Dominguez-Rodrigo & Piqueras 2003; Delaney-Rivera et 

al. 2009). Therefore, in order to better understand the ecology and energetics of hominin 

scavenging or hunting opportunities, two developments are needed.  

1. Improve the quantitative methods employed in the analysis of individual carnivore 

tooth mark morphology. 

2. Connect quantitative methods of tooth mark identification to a biomechanical 

understanding of a carnivore’s cranial and appendicular feeding apparatus to model extinct 

carnivore trace marks.  

This approach will provide a complementary framework to neotaphonomic findings, 

identifying feeding behaviors and traces of extinct carnivores unknowable through previous 

approaches. Ultimately guiding inferences regarding extinct carnivore feeding traces found on 

faunal remains in the archaeological record.  

The order Carnivora occupies a wide-range of feeding niches that can be seen in the 

diversity of their cranial, dental, and appendicular form. These morphological variations are 

linked to the properties of foods ingested and masticated by these carnivores. A biomechanical 

approach investigating the relationship between niche specialization and morphological 

characteristics of extant carnivores could identify feeding niches and biodiversity of extinct 
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carnivores critical to the ecological reconstruction of Early Stone Age archaeological sites. This 

section will outline four distinct biomechanical characteristics of carnivore morphology and how 

they relate to feeding biology and impacts to analysis of the archaeological record.  

2.2.1 Functional Appendicular Morphology 

The forelimbs of predators are an essential mechanism for prey capture, killing and 

carcass transport (Van Valkenburgh 1985). Comparisons of forelimb length and robusticity 

within extant carnivore guilds highlights their relation to niche dynamics, and can be 

extrapolated to infer hunting behaviors and guild dynamics between extinct carnivores as well as 

anthropoids (Van Valkenburgh & Molnar 2002). Felids that hunt larger prey species have more 

robust forelimbs in comparison to smaller prey specialists such as servals which have longer and 

less robust forelimbs to facilitate speed (Meachen-Samuels & Van Valkenburgh 2009). 

Functional shortening of limb bones in larger prey specialists facilitates the mechanical 

advantage needed to subdue and restrain prey before administering a killing bite (Meachen-

Samuels & Van Valkenburgh 2009). In extant canids, forelimb robusticity increases to support 

body weight (Wayne 1986). Shortened distal limb bones and extreme robusticity seen in the 

extinct giant hyena Pachycrocuta breviorstris are believed to have developed to transport large 

carcasses back to dens (Palmqvist et al. 2011). Biomechanical analysis of the appendicular form 

provides a foundation to infer diet breadth, prey size preference, and carcass acquisition 

strategies.  

2.2.2 Paranasal Sinus Cavity 

The interior paranasal sinus cavity affects the configuration of the frontal bone, altering 

skull morphology as well as overall strength by dissipating stress more evenly, allowing for a 

higher bite force. All bone-cracking hyaenids have large and elongated frontal sinuses that 
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coincide with the domed arc needed to dissipate bite force stress (Curtis & Van Valkenburgh 

2014; Tanner et al. 2008). These morphological characteristics are seen in correlation with prey 

size in other carnivores, indicating that these traits are directly linked to frontal bone vaulting to 

dissipate stress and facilitate higher bite force (Curtis & Van Valkenburgh 2014; Tseng and 

Wang 2010). There is a tradeoff in bite force and sinus shape, larger felids with stronger bite 

force for killing bites have relatively wide sinus cavities restricted to the frontal portion of the 

crania as they do not require the morphology to dissipate the higher post-canine bite force stress 

associated with bone cracking behavior (Slater & Van Valkenburgh 2009). Increasing bone 

volume in the skull by limiting sinus size allows for non-bone cracking carnivores to dissipate 

torsional loads needed to subdue, restrain, and shear their prey, whereas the larger sinus cavity in 

bone cracking carnivores allows for linear load dissipation needed for breaking bone and 

accessing within bone nutrients (Curtis & Van Valkenburgh 2014).  

The strong correlation between sinus cavity shape and size is indicative of overall bite 

force as seen in Curtis and Van Valkenburgh’s (2014) comparison between felids, canids, and 

hyaenids. These findings indicate maximums of feeding behavior related to prey size preferences 

and gross bone damage capabilities; however, carnivores display a wide-range of opportunistic 

feeding behaviors, leading to very diverse faunal assemblages (Lam 1992). Obligate scavengers 

do produce a more defined assemblage of fractured large ungulate bone, concentrating on 

marrow rich elements such as the tibia and femur, often leaving the bones of smaller prey or 

marrow depleted bones complete (Binford 1981; Palmqvist et al. 2011). A 3D volumetric 

analysis of extinct carnivores may further indicate their bone cracking abilities and effects that 

would have on the archaeological record. The relationship between sinus morphology and bite 

force indicates that species with larger sinus cavities would create larger tooth marks.  
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2.2.3 Tooth Size, Root Morphology & Breakage 

One of the most distinct morphological and biomechanical traits associated with 

mammalian carnivores is their variable dentition, which has evolved to fit a wide range of 

ecological and feeding niches. Both tooth crown and tooth root morphology can be used to infer 

feeding behavior. Crown morphology is directly linked to different feeding biology such as 

killing bites, shearing of meat from bone, and bone crushing ability (Van Valkenburgh 1996). 

Analyzing the maximum stress exerted on a tooth crown before breakage threshold indicates 

bone crunching carnivores such as hyenas can withstand significantly higher stress compared to 

canids and felids; this is largely due to the buttressed mandible that facilitates stress distribution 

throughout the cranium (Tseng and Binder 2008). Overall changes to tooth shape and size can 

also differentiate between carnivorous and herbivorous ursids, where individuals with a 

carnivorous diet possess smaller molars and carnassial blades (Sacco & Van Valkenburgh 2004). 

Furthermore, prey size preference can be determined in felids by overall robusticity of canines; 

however, there is no link to bite force through this method. as the larger canines are weaker than 

smaller canines under certain torsional and linear stresses (Meachen-Samuels & Van 

Valkenburgh 2009). Tooth root morphology can also be used to infer bite force potential, where 

larger roots and robust mandibular symphysis indicate an individual’s adaptation to processing 

harder foods (Kupczik & Stynder 2011). 

 Analysis of tooth and root size can trace the phylogeny of a species through their 

evolutionary history (Sacco & Van Valkenburgh 2004). Furthermore, prey size as well as 

ecological contexts of extinct carnivores can be inferred through analysis of craniodental 

morphology, where predators would have adapted tooth morphology to the characteristics of 

prey within their feeding niche (Meachen-Samuels & Van Valkenburgh 2008). Feeding behavior 
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and ecological reconstructions can also be inferred by the high frequencies of broken or fractured 

tooth crowns found in the archaeological record. For instance, a high amount of broken tooth 

crowns found at Rancho La Brea, California, belonging to Canis Lupus, indicate possible 

resource scarcity and this species’ attempts to crack bone for marrow (Binder et al. 2002).  When 

tooth root size is adjusted to relative skull size, C. lupus has similarly sized pre-carnassial tooth 

roots compared to hyenas, indicating their ability to process large ungulate bones (Van 

Valkenburgh 2009). Large tooth roots seen in C.lupus would also facilitate stress dissipation of 

the initial high loads associated with bone processing (Christiansen & Wroe 2007). 

 Tooth crown and tooth root morphology can be correlated to overall bite force and its 

relation to gross bone destruction and tooth mark morphology. The individual teeth of a 

carnivore are unlikely to provide much insight into tooth mark morphology. For example, the 

characteristic teeth of crocodilians leave behind distinct bisected pits; however, this diagnostic 

trait is only present on 10% of faunal remains (Njau & Blumenschine 2006). Predicted bite force 

from tooth crown and tooth root analysis is much more helpful to understand the maximum bite 

force of canines, a critical adaptation for head hunters (Van Valkenburgh 2009). Predicted bite 

force from tooth crown analysis can infer bone cracking abilities of extinct carnivores and how 

this ability would manifest in skeletal part profiles; however, the biomechanical characteristics of 

the mandible and cranial vault is much more diagnostic for bone cracking and gross bone 

damage abilities in carnivores.  

2.2.4 Mandibular Force Profiles 

Craniodental evolution via functional morphology directly influences a carnivore’s 

feeding niches and success of a species. Biomechanical linkages to diet can differentiate 

hypercarnivore taxa to more generalist carnivores through predicted bite force analysis and 
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relative cranial morphology (Tseng & Flynn 2015). Biomechanical approaches to mandibular 

force profiles analyze interdental gaps (Therrien 2005), symphyseal shape related to load 

dissipation (Wroe 2007), muscle arm momentum (Cassini & Vizcaino 2012), beam analysis of 

flex and maximum bending stress of the mandible (Sacco & Van Valkenburgh 2004), and finite 

element analysis of stress distribution along cranial arcs and forehead vaults (Tanner et al. 2007). 

Species capable of high gross bone damage exhibit increased dorsoventral buttressing under the 

premolars and the post-carnassial molars. Furthermore, for the mandible to withstand the 

bending force exerted while cracking bone, the arc of stress needs to be dissipated through a 

vaulted forehead towards the sagittal crest; therefore, dense mandibular bone between the 

mandibular corpus and the articular condyle and elongated frontal and temporal bones are 

necessary and indicative of a carnivore’s ability to withstand the stress of cracking bone (Tanner 

et al. 2007; Sacco & Van Valkenburgh 2004).  

 Mandibular force profiles and overall craniodental size can be used to infer diet breadth. 

Morphological comparison of extant carnivores to anthropoids display anthropoids were highly 

carnivorous with no indication of omnivory, suggesting a restricted dietary breadth or lack of 

resource diversity (Van Valkenburgh 2007). Furthermore, these characteristics are a large 

determinant of rank within a guild, and can therefore be related to feeding behaviors such as 

pack hunting or scavenging (Van Valkenburgh & Molnar 2002). These morphological 

distinctions also indicate inter-taxonomic variations as seen in studies between herbivorous and 

omnivorous ursids and can be used to infer diet breadth and bite force related to gross bone 

damage of extinct ursids (Sacco & Van Valkenburgh 2004). However, it is of note that 

herbivorous ursids such as Ailuropoda melanoleuca possess the strongest bite force of all ursids 
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indicating overall bite force is not reliable for omnivorous species and only indicate the ability to 

process dense foods (Kupczik & Stynder 2011).  

When applied to extinct carnivore species such as the marsupial lion Thylacoleo 

coarnifex, it is clear this species’ distinct cranial and dental morphologies related to bite force do 

not have a modern analog (Wroe 2008). Loading stress of the crania and mandible, analyzed 

from the bilateral bite force at the canines, bilateral bite force at the carnassial notch, and 

unilateral bite force at the carnassial notch indicate T.coarnifex possessed a bite force stronger 

than any felid or similarly sized carnivore as well as possessing the dorsoventrally buttressing 

and symphyseal shape needed to withstand the stresses related to cracking the bones of large 

ungulates (Wroe et al. 2005). Earlier inferences of the feeding behavior of T.coarnifex based on 

body size led to the belief it had a similar bite force and feeding niche as smaller felids such as 

the serval (Wroe et al. 2005). Body size is often used to correlate or infer tooth mark size 

(Dominguez-Rodrigo & Piqueras 2003; Delaney-Rivera 2009); however, the extreme bite force 

understood only through biomechanical analysis of Thylacoleo coarnifex indicates that this 

species would have been capable of extreme gross bone damage and left tooth marks larger than 

modern felids at a quarter of the body size (Wroe 2008). 

2.3 Biomechanical Modeling of Extinct Carnivores 

Over the past 60 million years there have been many successive clades of carnivores, 

many of which follow patterned and repeated ecological replacement within distinct feeding 

niches (Van Valkenburgh 2007). Hypercarnivores fulfill one of the most distinct feeding niches, 

hunting of prey significantly larger than themselves, but also exhibit the most evolutionary and 

ecological failures due to their large size and hunting behaviors (Werdelin & Lewis 2005; Van 

Valkenburgh et al. 2004).  Hypercarnivores are characterized by their deep jaws relative to 
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overall size, large canines and incisors designed for strong killing bites and shearing meat, as 

well as minimal grinding surface area on molars (Van Valkenburgh & Koepfili 1993). The 

emergence of the hypercarnivore feeding niche is believed to have developed due to an energetic 

tradeoff, where hunting smaller prey became too costly relative to resources gained (Van 

Valkenburgh 2009). The evolutionary adaptation that drove larger body size to facilitate hunting 

larger animals, Cope’s Rule, may have assisted the individual but it also facilitated the eventual 

failure of the clade in times of resource scarcity and ecological shifts (Van Valkenburgh et al. 

2004). Pleistocene hypercarnivores would have provided abundant carrion for scavenging 

carnivores including hominins, similar to the ecological role modern felids serve today (Pobiner 

2007; Van Valkenburgh et al. 2004). 

 The evolutionary incentive from a more specialized to generalized carnivore can be seen 

in the biomechanical adaptation of the giant hyena Pachycrocuta brevirostris.  The overall height 

of P.brevirostris was not much larger than modern hyenas; however, its robusticity and greater 

size was facilitated by the shortening of the radius and tibia relative to the humerus and femur 

(Palmqvist et al. 2011). These adaptations facilitated the ability to carry larger carcasses over 

longer distances, a necessary trait for predominately scavenging carnivores. Additionally, larger 

post-canine teeth and robusticity of the mandible placed this hypercarnivore squarely within the 

scavenger niche. This is evidenced by the lack of forelimb motor function and lower bite force, 

relative to modern hyenas, seen in the incisors and canines, displaying a lack of adaptation for 

subduing a prey or administering a killing bite needed for hunting the large prey they subsisted 

on (Palmqvist et al. 2011).  

The biomechanical understanding of P.brevirostris’s feeding niche (scavenging) and 

extinction coincides with saber-toothed cats such as Megantereon whitei (hunting) which would 
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have provided abundant carcasses to scavenge from, providing a clear indication of carcass 

acquisition sequence and behaviors that would have led to skeletal part profiles and fracture 

patterns seen in archaeological assemblages. This behavioral marker is in stark contrast to 

modern hyaenids who are seen to hunt upwards of 76% of the time in the Ngorongoro Crater 

(Honer et al. 2002).  

The shift to a more generalized behavior seen in modern hyenas was likely brought on by 

the loss of hypercarnivores that provided readily accessible and abundant carcasses to scavenge 

(Van Valkenburgh 1999; Koch & Barnosky 2006). This can also be seen in the transition 

between Homo habilis and Homo erectus, towards a larger body size which is thought to have 

facilitated in longer ranging, increasing overall resource availability, as well as the ability to 

successfully ambush hunt smaller animals as scavengeable carcasses became less common place 

across the landscape (Hunt 1994; Ragir 2000 Lieberman et al. 2009). From this ecological and 

biomechanical understanding of the evolving carnivore guild we can infer P.brevirostris would 

have produced skeletal part profiles with heavy element deletion as well as tooth marks larger 

than modern hyenas. Research focused on saber-toothed cats is needed to understand their bone 

crunching ability related to gross bone damage and skeletal part profiles; based on their 

carnassial teeth and weakness towards bilateral force in their canines, researchers believe saber-

toothed cats did not possess the cranial morphology or bite force necessary for bone cracking 

(Anyonge 1996; Biknevicius & Van Valkenburgh 1996; Van Valkenburgh et al. 1990). 

However, analysis of prey size preference and transport ability indicate sabre-toothed cats were 

effective at body part disarticulation and transport (Marean & Earhardt 1995; Arribas & 

Palmqvist 1999). These findings suggest hypercarnivores would have provided a moderate but 

viable and economic food source for scavenging hominins.  



 

 

 

 

21 

2.4 Previous Approaches for Carnivore Feeding Trace Identification and Distinction 

  Analyzing the biomechanical adaptations of carnivores provides evidence for maximum 

and minimum gross bone damage capabilities and how that would manifest in skeletal part 

profiles. These values can be determined through bone density analysis, the energetic value of 

skeletal parts, and the ecological contexts that have shaped the biomechanical characteristics of 

extant carnivores. The behavioral shift towards hunting in modern hyaenids and more generalist 

behavior such as facultative scavenging in felids and canids can be traced to the changing 

ecological contexts where populations of large prey needed for hypercarnivore subsistence 

decreased (Werdelin & Lewis 2005; Gibbard et al. 2010). However, this is problematic due to 

the highly variable feeding behaviors exhibited by carnivores, such as hunting versus scavenging 

frequency (Kruuk 1972), bone cracking performance (Sacco & Van Valkenburgh 2004), and 

prey choice (Lam 1991), which are not consistent across distinct and related carnivore 

populations. Furthermore, hypercarnivores outside of the hyena family that display the 

biomechanical ability to fracture bone for the extraction of marrow would have likely exploited 

this energetic resource if given the opportunity. However, the ability and behavior of bone 

cracking in hypercarnivores may have only been utilized at the later stages of their existence in 

times of resource scarcity or ecological shifts when carcasses could not be abandoned to 

scavengers (Van Valkenburgh et al. 1990). A modern analogue to this can be seen in captive 

carnivores who exploit resources to a greater degree and delete or fracture bones during fasting 

periods relative to periods of abundant food resources (Faith et al. 2007). Unfortunately, the 

majority of analyses of a carnivore’s ability to damage bone have been either qualitative (Bunn 

1983; Binford et al. 1988; Dominguez-Rodrigo 1999; Haynes 1982; Palmqvist & Arribas 2001), 
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anecdotal (Lam 1992, Dominguez-Rodrigo 1997, 1999), or inferential based on analysis of 

archaeological assemblages (Cruz-Uribe 1991; Pickering 2001).  

2.4.1 Gnawing Patterns & Gross Bone Damage 

  The relationship between distinct carnivore taxa and maximum gross bone damage 

capabilities has been shown through a quantitative approach controlling prey body size (Bunn 

1982; Pobiner & Blumenschine 2003; Pobiner 2007). However, these experiments were 

conducted with fully fleshed carcasses and model early-access predatory behavior rather than 

late-access scavenging behavior. The influence of prey body size on the level of skeletal damage 

is not well documented when carnivores are scavenging hominin refuse or vice versa beyond a 

single study of carcass acquisition sequences (Blumenschine 1988). Marean and Spencer (1991) 

suggest that prey body size is significant when elements have first been fractured by primary 

acting carnivores or hominins, as the small epiphyses of small prey are swallowed whole 

whereas large prey epiphyses are not. Therefore, the ratio of long bone epiphysis to shaft 

fragments in and archaeological assemblage may indicate levels of carnivore ravaging; however, 

this is likely to vary with prey body size, degree of competition, and resource scarcity (Marean & 

Spencer 1991; Blumenschine & Marean 1993). Understanding the biomechanical traits of a 

carnivore’s maximum gross bone damage ability relative to prey size, alongside actualistic 

studies of modern carnivore gross bone damage can predict skeletal part profile patterns of 

analogous extinct carnivores. A higher predicted bite force ascertained from biomechanical 

interpretations can inform analysis of the possible ranges of bone damage extinct carnivores 

would have been capable of.  

  Incorporating an energetic and mechanical understanding of bone can assist in 

characterizing feeding behavior and amount of flesh available to secondary consumers. Bone 
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density analysis, related to an animal’s size class is critical to understanding whether a carnivore 

would possess the ability to destroy certain bone elements (Lyman 1984; Marean 1991; Lam et 

al. 1999). A biomechanical approach alongside an understanding of bone density can inform 

analyses of minimum and maximum bone damage capabilities of distinct carnivores in order to 

rule out carnivore agents based on skeletal part profiles (Pobiner 2007). For instance, Pobiner 

(2007) found modern felids are shown to leave substantial flesh on size 3 & 4 carcasses but not 

on size 1 & 2 carcasses. These findings can guide analysis of skeletal part profiles to better infer 

actors feeding on larger size 3 & 4 prey but due to gross bone damage overlap and comparable 

bone deletion capabilities, determining carnivore actors which fed on smaller size 1 & 2 prey is 

not possible (Pobiner 2007). Ultimately, due to the wide overlap of carnivores with similar bite 

force related to gross bone damage, analyzing gnawing and damage patterns is not sufficiently 

accurate for taxonomic distinction.  

2.4.2 Tooth Mark Frequency & Morphology 

Analysis of individual tooth marks provides the most reliable resource for identifying 

traces to specific carnivore agent. The majority of tooth mark identification studies are 

qualitative or infer the identities of the carnivores responsible for archaeological assemblages by 

only analyzing archaeological remains rather than by demonstrating connections of actor to trace 

through actualistic studies (Collinson & Hooker 2000; Erickson & Olson 1996).  

Tooth mark distribution and frequency have been used to infer carcass consumption 

sequences (Blumenschine & Marean 1993; Blumenschine 1995) and to infer specific carnivore 

taxa responsible for feeding traces (Egeland et al. 2004). These studies are applicable to certain 

carnivores such as hyaenids who leave relatively high proportions of tooth marked shafts to 

epiphyses compared with smaller carnivores such as leopards or jackals that leave very few 
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traces on bone shafts (Pobiner 2007). However, tooth mark distribution and frequency are largely 

unreliable methods to infer which specific carnivore taxa were responsible for skeletal part 

profiles or feeding traces as there is considerable overlap of tooth mark frequencies between taxa 

(Pobiner 2007).  

Previous approaches measuring length and width of tooth pits from 2D digital images 

displayed trends between carnivores but no statistical distinguishability. A weak correlation 

between carnivore body size and tooth mark size was observed (Dominguez-Rodrigo & Piqueras 

2003; Delaney et al. 2009). Tooth mark size and morphology provides a means to differentiate 

between the larger and smaller carnivores responsible for these traces, however, as mentioned 

above, the large overlap between tooth mark morphology analyzed through current 2-

dimensional methods is insufficient for taxonomic classification.  

A biomechanical approach can assist with inferences related between overall bite force and 

tooth mark morphology where carnivores with stronger bite force would leave behind larger 

tooth marks. Unfortunately, a solely biomechanical approach fails to address the confounding 

factor of tooth mark morphology overlap correlated to body size. Knowledge of the 

biomechanical capabilities of extinct carnivores can assist in inferring possible actor to skeletal 

part profiles or tooth marks found in the archaeological record especially in outlier cases as seen 

with T. coarnifex. However, a more quantitative method is required to accurately identify tooth 

mark morphology to distinct carnivore taxa.  

2.5 Review of High-Resolution 3D Methods in Archaeology and Taphonomy 

High-resolution 3D scanning and photogrammetric methods have found a wide range of 

applications in biological and archaeological sciences. These 3D scanning technologies have the 

ability to revolutionize methods of analysis and to improve the accuracy of inferences made from 
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archaeological remains. Previous methods of analysis were limited in quantitative metrics and 

relied primarily on qualitative descriptors. For instance, identification of taphonomic traces 

found on bone from hominin butchery or carnivore feeding action have largely been conducted 

through qualitative descriptors of overall trace mark morphology (Behrensmeyer et al. 1986; 

Binford 1981; Blumenschine 1995; Blumenschine et al. 1996; Bunn 1981; Lyman 1996; Potts 

and Shipman 1981), which has led to long-standing debates regarding methodological accuracy 

and causal links of trace marks (Blumenschine et al. 1996; Dominguez-Rodrigo et al. 2010; 

Thompson et al. 2015). Similarly, biomechanical analyses relying on osteometric comparisons 

have been limited by qualitative assessment as well as varying protocols, leading to problematic 

conclusions that could not be replicated (Sholts et al. 2010). High-resolution 3D methods provide 

quantitative and standardized protocols between researchers, strengthening the accuracy of our 

interpretations of the past.  

Due to the methodological limitations of qualitative data, researchers have turned to high-

resolution 3D scanning and photogrammetric methods that can quantify morphometrics not 

observable or recordable through traditional methods. Optic microscopy provided the first 

quantitative method of analysis for micro-morphological traces (Dominguez-Rodrigo & 

Pickering 2003; Ungar 2004). The development of scanning electron microscopy (SEM) and 

digital imaging techniques provided two-dimensional images that were able to be analyzed three-

dimensionally. However, drawbacks of SEM such as high cost, the time needed to setup and take 

each photo, the possible damage to materials, the limitations of the hardware itself (only able to 

process small objects), and its overall lack of accuracy, limited widespread use of SEM 

technology (Schroettner et al. 2006). Furthermore, both of these methods were not explicitly 

quantitative and relied upon qualitative descriptors of trace mark morphologies. Advances in 
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high-resolution 3D technologies have produced a wide-range of accessible hardware, eliminating 

the majority of the difficulties associated with SEM. These technological advances provide 

researchers with a rapid means of analyzing data; an entire cranium can be scanned in 10-15 

minutes following the protocol established by Sholts et al. (2010) and high resolution scans of 

materials such as cut marks left on bone surfaces can be scanned with up to 40 nm accuracy in 

under an hour (Pante et al. 2017).   

High-resolution 3D scanning and photogrammetric methods have a wide-range of 

applications in archaeology such as: biomechanical analysis of cranial morphology for the 

purpose of taxonomic distinction and adaptive radiation lineages, lithic analysis for the purpose 

of morphological and typological distinction as well as use wear patterns, dental morphology and 

wear analysis for the purpose of evolutionary distinctions and dietary analysis, and taphonomic 

analysis of cut and tooth marks left on bone in order to discern specific actors present (a detailed 

synopsis of these applications can be seen at the end of the chapter in Table 2).  

This review section is concerned with high-resolution 3D scanning and photogrammetric 

methods as applied to the taphonomic analysis of stone and metal tool cut marks and carnivore 

tooth marks left on bone in order to discern specific effector and actor.  

2.5.1 Digital Microscopy 

The first proposals for high-resolution quantitative analysis of trace marks found in the 

archaeological record utilized SEM analysis (Potts & Shipman 1981). However, due to the 

limitations of the technology it did not see widespread use and qualitative approaches such as 

blind-testing for the degree of correspondence between annalists was relied upon (Blumenschine 

et al. 1996).  
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Bello and Soligo (2008) introduced a new method to quantify and analyze cut marks left 

on bone. Cut marks were experimentally produced using a metal knife and a flint flake on freshly 

butchered ribs of domestic pigs. Three angles of incision were used at approximately 25o, 45 o, 

and 90 o to the bone surface in order to provide a range of cut mark morphologies. Scans of the 

entire marks, ranging from 9.5 to 13.5 mm were taken, seven perpendicular profiles of the marks 

were used for analysis which were taken at 0.5 mm intervals along the mark and analyzed 

individually. Bello and Soligo (2008) introduced measurement parameters for their analysis 

which had been unattainable with previous methods: slope angles, opening angle, bisector angle, 

shoulder height, floor radius, and depth of cut. Only two of the six parameters displayed a 

statistical difference between tool types (slope and floor radius). Nevertheless, this paper set the 

foundation for future quantitative micromorphological analyses.  

The novel method proposed by Bello and Soligo (2008) was then adapted to almost a 

dozen experimental and archaeological datasets (Table 2). Bello et al. (2009) analyzed cut marks 

found at a 0.5 million-year-old Acheulean butchery site (Boxgrove, England) against 

experimental butchery marks made by a replica handaxe. Scanning resolution was lowered to 4 

µm vertically and laterally from 0.2µm, the resolution used in Bello and Soligo (2008), in order 

to cut down scan times without a tangible loss in scan quality. Additionally, the seven profiles 

taken at 0.5mm intervals were dropped in lieu of only analyzing the central profile. Cut marks 

observed from the experimental butchery created more acute opening angles, and smaller floor 

radii and were generally shallower. Bello et al. (2009) speculated these differences could be due 

to the experimental handaxes being sharper, and not as dulled from repeated use, or from a lack 

of control of force in the experimentally created marks. Bello et al. (2009) concluded that the 
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robusticity of Homo heidelbergensis may have factored into the greater force indicated by the 

larger marks, displaying the need to control force in actualistic models.  

Further work analyzed Gough’s Cave, a later Upper Palaeolithic site, with cut marked 

human remains that had led previous researches to believe that these marks indicated 

cannibalistic behavior (Bello 2011). Bello (2011) compared the Boxgrove data from Bello et al. 

(2009) as well as cut marks found on faunal remains in the site to show that much more force 

would have been needed to produce the cut marks seen at Gough’s Cave. The comparison of 

these micromorphological characteristics led Bello (2011) to conclude that the larger floor radius 

and opening angles were due to the human bodies being stiffer in rigor mortis and the tools used 

becoming dull by the high amount of force needed for ritual defleshing. Bello (2001) therefore 

concluded that these traces were not indicative of cannibalism as previously thought but rather a 

product of ritual burial practices.  

Boschin and Crezzini (2012) built upon previous work by increasing the number of stone 

and metal tool types analyzed. Twenty marks were created for each tool type (Copper blade, 

bronze blade, steel blade, flint flake, and a retouched flint flake) used during actualistic 

butcheries of cattle metapodials. Additionally, to test the comparative value of these 

experiments, 34 cut marks found on pigs from the Iron Age settlement of Trebbio, Italy were 

tested alongside their actualistic sample. Measurement metrics outlined in Bello and Soligo 

(2008) were used, excluding bisector angles due to the angle of the tool not being held constant 

during butchery. Additionally, breadth at the floor and opening of the mark was measured. A 

principal component analysis of all metrics displayed 83% accuracy in determining tool type of 

experimental marks and 59% accuracy of fossil cut marks. 
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More recently, Bello et al. (2016) analyzed three Serbian sites with human cut marked 

bone against the Gough’s Cave human cut marked bone. Measurement metrics analyzed were 

breadth at floor and opening of the mark adapted from Boschin and Crezzini (2012), opening 

angle of the mark, and depth of the mark adapted from Bello et al. (2008). Marks were analyzed 

from human bones as well as non-human bones found at the sites. Bello et al. (2016) 

characterized two distinct types of marks found on human bones, marks made from 

disarticulation, and marks made from filleting which were likely due to the processing being 

conducted after bodies had decayed for a certain amount of time.  

2.5.2 Digital Microphotogrammetry 

High-resolution digital microphotogrammetry methods have shown very interesting and 

positive results in the analysis of cut and tooth mark morphology. Digital microphotogrammetry 

captures a high volume of photographs of trace marks from multiple angles in order to produce 

high-resolution 3D model of the trace marks. This methodology provides a low cost and rapid 

method of capturing and characterizing the morphology of trace marks.  

 Mate-Gonzalez et al. (2015) developed a method and protocol for the analysis of cut 

marks. Measurement metrics that are capable of being analyzed via digital microphotogrammetry 

include width of the incision surface, width of the incision mean, width of the incision at the 

bottom, opening angle, depth, and angle of the tool impact. This method was applied to the 

analysis of flint, copper, and quartzite cutting tools and could differentiate between these tools 

with roughly 70% accuracy according to their multivariate analysis (Mate-Gonzalez et al. 2016).  

 This method has since been applied to the analysis of carnivore tooth mark morphology, 

in the only high-resolution 3D assessment of carnivore feeding traces other than this thesis 

(Arriaza et al. 2017). Arriaza et al. (2017) analyzed tooth marks created from naturalistic feeding 
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experiments of spotted hyena and African lion. Arriaza et al. (2017) report the ability to 

differentiate between these carnivore actors, following their methodology, with 76% accuracy. 

2.5.3 Non-Contact Profilometer 

The precision of the methods listed above have yet to be demonstrated or replicated. In 

the initial pilot study, Bello and Soligo (2008) reported only mean errors between observers 

(17.2%). However, a large portion of the protocol established in that paper has now been 

dropped in lieu of qualitative descriptors, leaving readers without a standardized and precise 

method to replicate these studies.  

Pante et al. (2017) provide a completely quantitative method to distinguish cut and tooth 

marks as well as a detailed and standardized protocol that was tested against inter-observer error 

prior to its application of fossil remains. Twelve cut marks and ten tooth marks were scanned and 

analyzed separately by three observers to test the precision of Pante et al.’s (2017) method. 

Profiles for analysis were extracted from the center and deepest point of the marks. Results 

displayed errors as low as 4.7% for maximum length and up to 35.9% for radius of the mark. 

Additionally, comparisons of central profiles were statistically different between observers, and 

therefore removed from analysis. Comparisons of profiles from the deepest point of the mark 

were statistically indistinguishable and recommended as the only profile to be measured due to 

the ability to accurately replicate this profile location. For this reason, it is important to note that 

the entirety of high-resolution 3D analysis of taphonomic traces prior to Pante et al. (2017) has 

only analyzed the less accurate and replicable central or intervaled profiles of trace marks. 

Furthermore, profile measurements vary in their values drastically throughout the tooth mark and 

interval profiles may not be relevant or representative of trends in tooth mark morphology. 
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Limiting profile analysis to the deepest profile provides a constant and comparable and 

replicable profile for accuracy and precise comparison between trace marks.   

High-resolution 3D scanning techniques provide researchers with the ability to analyze 

micromorphological characteristics of individual profiles of marks. However, no research prior 

to Pante et al. (2017) analyzed the entire 3D area of these trace marks. Analyzing the entirety of 

these marks through metrics such as surface area, volume, maximum depth, mean depth, 

maximum length, and maximum width can further develop comparative measurement metrics 

and produce more informative analysis. If software limits the use of the 3D analysis of entire 

mark morphologies, ArcGIS as described by Caruana et al. (2014) can be used for similar 

analytical strength. It is through this high-resolution 3D scanning method that the analysis of 

carnivore tooth marks was conducted in this thesis; providing, for the first time, a quantitative 

characterization of 3D features in carnivore tooth marks.  

2.6 Conclusion  

A biomechanical approach to carnivore feeding traces displays the wide-range of 

behaviors and niches present among taxa during the Pleistocene that are not seen in extant 

carnivores (Lewis 1996; Van Valkenburgh & Molnar 2002). The most critical biomechanical 

finding is the presence of bone cracking ability in many carnivores outside of the hyena family. 

Carnivores such as ursids (Haynes 1980; Sacco & Van Valkenburgh 2004), felids (Therrien 

2005), canids (Wroe et al. 2005), crocodilians (Njau & Blumenschine 2006), and certain 

marsupials (Attard et al. 2011) were capable of maximum gross bone damage similar to 

hyaenids. Gross bone damage, tooth mark frequency, and tooth mark morphology can be used to 

infer ecological contexts as well as the degree of competition and resource abundance 



 

 

 

 

32 

(Blumenschine & Marean 1993). However, as a marker for identifying the individual taxa 

responsible for archaeological assemblages these methods are insufficient.  

 The analysis of tooth marks has been used to infer carnivore presence and action, as well 

as to ascertain carcass consumption sequences between distinct carnivore agents and hominins. 

Through middle range research tooth mark and gross bone damage analysis has been used to 

infer how known and observable carnivore behaviors create distinct faunal assemblages and 

traces. To date, the use of tooth marks to identify specific carnivore taxa has only shown a weak 

correlation between body size and tooth mark size (Dominguez-Rodrigo & Piqueras 2003; 

Delaney-Rivera 2009). Specific carnivore actors such as crocodiles possess unique tooth 

morphology and can be identified by their distinct bisected pits; however, these distinct traces 

are not consistently present on faunal remains providing a low degree of identification (Njau & 

Blumenschine 2006). Furthermore, the qualitative nature and limited quantitative methodologies 

of tooth mark identification has led to long standing debates regarding trace mark identification 

(Selvaggio & Wilder 2001; Dominguez & Piqueras 2003; Pobiner & Blumenschine 2003).  

Binford’s (1981) argument for middle range research can be credited for the drive and 

eagerness to develop quantitative and replicable methods with high-resolution 3D scanning 

photogrammetry to answer archaeological questions. However, a significant number of the case 

studies reviewed lack a clearly standardized and tested protocol. The first step in establishing a 

new methodology should be to test the accuracy and precision of the method against control 

samples and previous methods. Recently, Molina and Heras (2015) have stressed the 

implications of the high inter-observer errors produced in their study, making the dearth of inter-

observer protocol studies in the field of dental morphology problematic. Sholts et al. (2010) 

provided a foundational protocol, initially tested for inter-observer error with a small known 
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sample, which then went to guide subsequent research. Lithic typology and wear studies have 

developed numerous distinct protocols and methods which may in turn lead to discrepancies and 

disagreements when datasets or 3D models are compared in future works, something quantitative 

research typically aims to avoid. Karasik and Smilansky (2008) utilized CLSM in order to create 

3D models for reconstruction and typological comparison, their initial research endeavor was to 

establish a means to efficiently scan their materials as well as clearly provide a replicable 

methodology for future researchers to build upon. Similarly, Pante et al. (2017) have provided a 

protocol and baseline for future taphonomic research.   

Sample sizes between research projects were highly variable, with many insufficient for 

sound statistical analysis (Table 2). Additionally, inappropriate use of fossil samples for 

comparison without established actualistic samples is widespread. For example, Stemp et al. 

(2010) compared four experimentally created flint flakes, two of which were used intensively on 

conch shells and two on dry antler in order to quantify use wear. A sample of 2 for each variable 

is not sufficient, nor can “intensive use” be quantified for comparison or replication in future 

research. Sample sizes can also easily be falsely inflated by utilizing multiple profiles of a single 

mark or inter-landmarks (Bello et al. 2011; Bello et al. 2013; Bocaege et al. 2010; Friess 2010; 

Guy et al. 2013; Molina & Heras 2015; Stemp et al. 2010); this practice would produce 

unreliable interpretations or inferences of archaeological remains. 

3D scanning techniques provide quantitative metrics to further strengthen the analysis of 

archaeological remains. Standardizing protocols provides a means for researchers to collaborate 

and compare replicable datasets, greatly increasing the accuracy of inferences and our 

understanding of the past. The full potential of these methods will take years to realize and 

conducting analysis without standardized protocols or control samples has the possibility of 
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diminishing the reputation and hence the application of high-resolution 3D scanning and 

photogrammetry. Despite the benefits discussed within this review, 3D scanning methods should 

not be used solely in research and analysis; a more holistic approach utilizing traditional methods 

in tandem with 3D scanning will provide stronger inferential power.  

Through the biomechanical analysis of extant carnivores, specific feeding behaviors such 

as prey size preference, hunting adaptation, and bite force of extinct carnivores can be inferred. 

The inferential power of biomechanics falls short of being able to link specific carnivore taxa to 

carnivore feeding traces found in the archaeological record; however, it provides a baseline for 

inferring characteristic traces such as gross bone damage, overall tooth mark size, and ecological 

contexts of extinct carnivores. An integrated approach combining actualistic studies of modern 

carnivore feeding behavior, a biomechanical understanding of the carnivore feeding apparatus, 

and a quantitative method to assess tooth mark morphology will provide the most holistic and 

accurate means to identify specific carnivore taxa to the trace marks left in the archaeological 

record. This will provide novel interpretations of the past that were previously unattainable. 



 

 

 

 

35 

 

Table 2 - Detailed overview of high-resolution 3D scanning applications in archaeology. 
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Table 2 – Continued  
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Table 2 – Continued  
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Table 2 – Continued  

Pante et al. 

2017 
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CHAPTER 3 MATERIALS AND METHODS 

The neotaphonomic study undertaken in this thesis is designed to create a controlled 

sample representative of specific carnivore tooth mark morphologies to compare to carnivore 

trace marks found on fossil bones in the archaeological record. This thesis sample consists of 

actualistic feeding trails at the Denver Zoo and Rist Canyon Wolf Sanctuary, as well as materials 

from published naturalistic feeding experiments (Blumenschine 1988; Njau & Blumenschine 

2006; Pobiner 2007). Table 3 details the characteristics of the animals and samples included in 

this thesis. The actualistic sample is also applied to interpret fossil trace marks found on faunal 

remains from a Middle Bed II site in Olduvai Gorge Tanzania dating to approximately 1.7 

million years ago. Table 3 details the characteristics of the fossils included in this thesis. A 

Nanovea ST400 white-light non-contact confocal profilometer was utilized to characterize 

individual tooth marks at the level of detail and accuracy needed to achieve the goals of this 

thesis.  

3.1 Sample 

 Previous studies that analyzed carnivore feeding traces observed that tooth mark 

morphology varies with prey size as well as the anatomical location on bone of the feeding traces 

(Lam 1999; Pobiner 2007, Delaney-Rivera et al. 2009; Andres et al. 2012; Nascou & Morin 

2014). These findings led this study to focus the feeding trials on size 3 cow limb bones and to 

only analyze marks found on the midshafts of the bones, ignoring tooth marks on or near the 

softer bone of the epiphyses (Animal size groups are based on Bunn 1982. Size 1 <23kg; Size 2, 

23-114kg; Size 3, 114-341kg.). Feeding trials were limited to less than 24-hour periods in order 

to limit feeding traces such as gross gnawing. Furthermore, feeding trials were conducted on 

fasting days for the animals, driving more interest in the bones to better replicate wild feeding 
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behavior. All tooth scores and tooth pits as defined by Selvaggio (1994) found on the midshaft 

portion of bones were included into analysis; gnaw marks, furrowing, and overlapping tooth 

marks were ignored.  

Table 3 - Summary of species and corresponding sample included within this study. 

Common Name Setting 

Number of 

Individuals 

Age 

(years) Sex 

Average  

Weight 

(kg) 

Number 

of 

Bones 

Sample 

Size 

African Wild Dog Captive 3 4 2 Female,          

1 Male 

35 6 31 

Grey Wolf Captive 1 11 1 Female 45 4 29 

Spotted Hyena Wild N/A N/A N/A N/A 9 28 

Spotted Hyena Captive 3 3 2 Female,       

1 Male 

46 6 30 

Striped Hyena Captive 2 18 1 Female,      

1 Male 

59 6 30 

African Lion Wild N/A N/A N/A N/A 9 28 

African Lion Captive 4 2 4 Male 145 4 30 

Brown Bear Captive 2 15 1 Female,         

1 Male 

250 6 28 

Nile Crocodile Captive 4 N/A N/A N/A 6 48 

Total      56 282 
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Table 4 - Characteristics of fossils included within this study. See Bunn (1982) for body size classes. 

Identification 

Number Prey Taxon Skeletal Element Body Size 

Tooth Mark 

Location 

Tooth Mark 

Type 

HWKEE 1652 Bovid Radius 3 Near Epiphysis Score 

HWKEE 2908A Bovid Calcaneum 3 Calcaneum Score 

HWKEE 2908B Bovid Calcaneum 3 Calcaneum Score 

HWKEE 4107 Bovid Metapodial 3 Midshaft Score 

HWKEE 4242 Bovid Metacarpal 3 Epiphysis Score 

HWKEE 4268 Indeterminate Femur 3 Midshaft Score 

HWKEE 60025 Indeterminate Long Bone 3 Midshaft Pit 

HWKEE 2743 Indeterminate Long Bone 3 Midshaft Score 

HWKEE 356 Indeterminate Tibia 3 Midshaft Pit 

HWKEE 3833A Indeterminate Tibia 3 Midshaft Score 

HWKEE 3833B Indeterminate Tibia 3 Midshaft Pit 

HWKEE 4168 Bovid Humerus 3 Epiphysis Score 

HWKEE 4176A Bovid Radius 3 Midshaft Score 

HWKEE 4176B1 Bovid Radius 3 Midshaft Score 

HWKEE 4176B2 Bovid Radius 3 Midshaft Score 

HWKEE 4176B3 Bovid Radius 3 Midshaft Pit 

HWKEE 1975 Indeterminate Long Bone 3 Near Epiphysis Pit 

HWKEE 677A Indeterminate Humerus 3 Head Pit 

HWKEE 677B Indeterminate Humerus 3 Head Score 

HWKEE 1045A Indeterminate Humerus 3 Near Epiphysis Pit 

HWKEE 1045B Indeterminate Humerus 3 Near Epiphysis Score 

HWKEE 1045C Indeterminate Humerus 3 Near Epiphysis Score 

HWKEE 3969 Indeterminate Cervical Vertebra 2 Zygopophysis Score 

HWKEE 1886A Indeterminate Scapula 2 Blade Score 

HWKEE 1886B Indeterminate Scapula 2 Blade Pit 

HWKEE 60021A Indeterminate Metapodial 3 Midshaft Score 

HWKEE 60021B Indeterminate Metapodial 3 Midshaft Pit 

HWKEE 600275 Indeterminate Rib 2 Head Score 

HWKEE 60050 Indeterminate Long Bone 3 Midshaft Score 
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3.2 Modern Sample: Naturalistic Observations of Wild Animals 

3.2.1 Spotted Hyena, n=28 (from Blumenschine 1988) 

 Spotted hyena (Crocuta crocuta) tooth marks were collected from Robert 

Blumenschine’s sample of carnivore only experiments conducted in the Ngorongoro 

Conservation Area, Tanzania. Tooth marks found on the midshafts of size 3 bovids were 

included in this thesis. Bones from this sample were sent to Colorado State University for 

analysis. A total of 10 bone fragments from Blumenschine’s study were included within this 

thesis. Spotted hyena feeding, defleshing and demarrowing were only partially observed by 

Blumenschine so other consumers and their traces cannot be completely ruled out.  

3.2.2 African Lion, n=28 (from Pobiner 2007) 

 African Lion (Panthera Leo) tooth marks were collected from Brianna Pobiner’s sample 

of naturally consumed bone in Ol Pejeta Conservation Area, Kenya. African lion tooth marks 

from the midshafts of size 3 equids were included in this thesis. Tooth marks were molded using 

3M ESPE Express Vinyl Polysiloxane Impression Material Putty Base and Catalyst, molds were 

sent to Colorado State University for analysis. A total of 9 bones and 29 tooth marks from 

Pobiner’s study were included within this thesis. African lion feeding was observed by Pobiner; 

however, it was not observed from start to completion and therefore other consumers and their 

traces cannot be ruled out with absolute certainty. Pobiner stipulates that the Ol Pejeta 

Conservation Area has a very low population of hyenas and jackals and it was unlikely that they 

came into contact with the carcasses. When hyena ravaging was apparent, samples were 

discarded and not included into Pobiner’s study.  
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3.3 Modern Sample: Controlled Feeding Observations of Captive Animals 

3.3.1  Nile Crocodile, n=48 (from Njau & Blumenschine 2006) 

 Nile Crocodile (Crocodylus nioloticus) tooth marks were collected from Njau and 

Blumenschine’s (2006) sample of controlled feeding observations of captive crocodiles in 

Bagamoyo, Tanzania. A total 48 tooth marks on six size 3 bovid bones from Nile crocodiles 

feeding trials in Njau and Blumenschine’s study were included in this thesis. Entire feeding 

episodes were observed by Jackson Njau, and bones were collected after 24 hours from the 

crocodile enclosures.   

3.3.2  Grey Wolf, n=29 (from Rist Canyon W.O.L.F Sanctuary) 

 Captive feeding observations of grey wolves (Canis lupus) were conducted at a private 

rehabilitation sanctuary for wolves in Colorado, USA. The sanctuary houses over 30 wolves of 

varying pedigree and admixture with domestic dog species. For this reason, only Isabeau, a 

solitary and believed to be “pure” wolf was included for feeding trials. Wolves were fed 

moderately fleshed bones on a bi-weekly basis on fasting days. Feeding behavior was observed 

during the active phase of the feeding episode and bones were collected from the enclosure after 

20-24 hours. While the wolves were fed a wide range of bones from different animals and size 

classes, only tooth marks from the midshafts of size 3 bovids were included in this thesis for 

consistency with the remainder of the sample. A total of four bones from four distinct feeding 

trials were included in this thesis.  

3.3.3 African Wild Dog, n=31; Spotted Hyena, n=30; Striped Hyena, n=30; African Lion, 

n=30; North American Brown Bear, n=28 (from Denver Zoo) 

 Captive feeding observations of African wild dog (Lycaeon pictus), spotted hyena 

(Crocuta crocuta), striped hyena (Hyaena hyaena), African lion (Panthera leo), and North 
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American brown bear (Ursus arctos), were conducted at the Denver Zoo. Animals were fed 

moderately fleshed humeri from size 3 bovids on fasting days on a bi-weekly basis. Feeding 

behavior was occasionally, but not always observed during the active phase of the feeding 

episode and bones were collected from the enclosure after 20-24 hours. A total of 26 bones for 

all species from the Denver Zoo feeding trials were included in this thesis: six from the African 

wild dogs, six from the spotted hyena, six from the striped hyena, four form the African lion, and 

six from the North American brown bear feeding trials. 

3.4 Archaeological Sample  

 Fossil trace marks are from faunal remains excavated from a Middle Bed II site in 

Olduvai Gorge, Tanzania, dating to approximately 1.7 million years. A total of 25 bones, totaling 

29 trace marks are included within this thesis. All trace marks were initially analyzed by Dr. 

Michael Pante, the zooarchaeologist for the Olduvai Gorge Archaeology Project (OGAP) with a 

10x hand lends under 100w incandescent light following the protocol set forth by Blumenschine 

et al. (1996). Fossil trace marks included in this thesis were chosen based on their initial analysis 

and condition of the bone. Replicas of the trace marks were molded using 3M ESPE Express 

Vinyl Polysiloxane Impression Material Putty Base and Catalyst following the method and 

protocol established in Bello (2011) for ease of transport to Colorado State University’s 

zooarchaeology lab for analysis. Molding was done by mixing the putty base and catalyst 

together until they formed a uniform color, pressing the putty mixture into the tooth mark, and 

leaving to set until the putty was dry (2-3 minutes).  
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3.5 Preparation of Sample for Analysis 

3.5.1 Bone collection 

 Carnivore consumed bones were collected from both the W.O.L.F Sanctuary and Denver 

Zoo within 24 hours of feeding. Animals were not allowed access to the bones for longer periods 

of time to minimize unique behaviors such as gnawing seen in captive animals, but 

uncharacteristic and not observed in the wild (Faith 2007; Gidna et al. 2013; Dominguez-

Rodrigo et al. 2015). This behavior is largely believed to occur due to the boredom experienced 

by captive animals (Faith 2007). At both the W.O.L.F Sanctuary and Denver Zoo, caretakers and 

on occasion myself entered the animal enclosures the following morning to remove the bones 

and set them aside for collection. Denver Zoo caretakers placed individual bones in bags labelled 

according to which carnivore taxa that had fed upon them.   

3.5.2 Cleaning  

 All bones from Blumenschine (1988), Njau & Blumenschine (2006), and Pobiner (2007) 

were cleaned following the same methodology. Bones were placed in a simmering solution of 

water and laundry detergent until bones were adequately defleshed. Following this, bones were 

cleaned with wooden or plastic tools as to not leave cut mark traces from the tools on the bone 

surface. Bones were then placed in a hydrogen peroxide solution for bleaching and sterilization 

and were left in open-air environments to dry.  

 Due to the biohazard risk, carnivore consumed bones from the Denver Zoo, could not be 

cleaned following the methodology of the published samples (Blumenschine 1988, Njau & 

Blumenschine 2006; Pobiner 2007). A large boiler was available from the Zoology department; 

however, the temperature was very high and not adjustable. When used with one sample, the 

high temperature led to drastic exfoliation of the bone surface and the altering of the carnivore 
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trace marks. Due to these limitations, flesh eating dermestid beetles (Dermestes maculatus) were 

used to clean the bone. Bones were fed to dermestid beetles for approximately three weeks 

depending on the amount of flesh left on the bone post carnivore feeding. Bones were labeled 

and placed into separate containers organized by the carnivore species that had fed on them to 

ensure no bones were wrongly identified at later stages of this project. Following this, bones 

were cleaned of remaining flesh and ligament with a soft bristle brush under warm water with 

care not to leave any traces on the bone and placed in an 18% hydrogen peroxide solution for 8-

12 hours for further degreasing, bleaching, and sterilization. Bones were then transported to the 

zooarchaeology lab and set under 100w incandescent lights to dry. This cleaning process took 

significantly longer and required more effort than simmering in hot water, but had the added 

benefit of ensuring the cleaning process would not alter any of the tooth marks.  

3.6 Profilometer – Scanning Procedure 

 This section briefly describes the systematic and replicable protocol for the collection and 

analysis of carnivore feeding traces left on bone using a high-resolution 3D scanner. A detailed 

overview of the methodology, justification of the methodology, as well as research citing the 

accuracy, precision, and replicability between observers can be found in Pante et al. (2017).  

3.6.1 Profilometer & Software  

 All trace marks were scanned using a Nanovea ST400 white-light non-contact confocal 

profilometer equipped with a 3 mm optical pen (Figure 1). Scanning was done at a resolution of 

40 nm on the z-axis.  All scans were analyzed using Nanovea’s expert 3D software, a customized 

version of Digital Surf’s Mountains software (2015).  
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3.6.2 Scanning & Analysis Protocol  

The resolution of the scanner was set at 5 nm along the x-axis and 10 nm along the y-

axis. A dual frequency of 300 Hz and 1000 Hz was chosen for the optical pen. Bones were 

placed underneath the optical pen, leveled along the x and y-axis and with the marks oriented 

perpendicular along the long axis of the mark. Only marks on the midshaft were included in this 

study in order to keep variation caused by bone density to a minimum (Braun et al. 2016). Once 

trace marks were scanned, files were processed in the expert 3D following the processing and 

measurement protocols outlined below.  

3.6.3 3D data processing 

Prior to any analysis, the bone surface surrounding the tooth mark was digitally leveled in 

order to clearly define the mark edges and shoulders, and to minimize the underlying shape of 

the bone from affecting measurements. This was accomplished by manually selecting an area 

surrounding the mark and removing unnecessary profiles around the mark through a polynomial 

function. The process from initial scan to cleaned and processed scan can be seen in Figure 2. 
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Figure 1 - Two studiables from a single spotted hyena tooth mark. The image on the left displays the 

unprocessed scan, the image on the right is created by removing the form of the bone and filling missing data 

points through a polynomial function. Scales on the right represent the relationship between color and depth.  

3.6.4 3D data measurement 

 Once the scans were processed and cleaned, 3D measurements of the trace marks were 

taken. Three-dimensional measurement metrics used in this thesis included surface area, volume, 

maximum depth, mean depth, maximum length, and maximum width. Description of each metric 

and how it was taken is described below.  

Surface area, volume, maximum depth, and mean depth are all measured using the 

“volume of a hole” function with the least squares setting. The measurements are taken after 

manually selecting the borders of the tooth mark from the bone surface (Figure 3). Surface area 

represents the entire 2D surface of the mark, manually defined by the user. Volume represents 

the entire 3D area of the tooth mark that has been displaced by the carnivore tooth, and is taken 

from the deepest point to the shoulder of the mark. Maximum depth is the lowest point found 
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within the tooth mark and mean depth is the average depth of the entire floor surface of the mark. 

Maximum length and width along the x and y-axes are defined with the distance tool. 

 

Figure 2 - Measurements taken during 3D analysis. The figure to the left displays the outline manually 

created in order to produce surface, volume, max depth, and mean depth values. The figure to the right 

displays the distance measurements manually created in order to produce length and width values.  

3.6.5 Profile extraction 

 A single 2D profile was taken from the tooth mark at the deepest point of the mark along 

the x-axis (Figure 4). A profile is a cross-section from the tooth mark and represents a single pass 

of the optical pen over the tooth mark during scanning. The deepest point of the mark was 

chosen for profile location as it was easily defined by the program and therefore can be precisely 

replicated between observers and accurately compared to other tooth marks. The “area of a hole” 

function was used on the 2D profile to define the coordinates of the tooth mark edges and to 

exclude the remaining bone surface from analysis. The area is defined by the software using the 

“under the waterline” option or manually defined for tooth marks that are very shallow, 
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referencing the 3D image of the mark when this cannot be accurately accomplished by the 

software.  

 

Figure 3 - Sample image of a crocodile tooth marked bone, extracted scanning surface, and cross-sectional 

profile taken across the deepest profile of the mark. 

3.6.6 Profile measurement 

Two-dimensional measurement metrics taken from a profile along the deepest point of the tooth 

mark are maximum depth, area, maximum width, roughness, opening angle, and floor radius. 

Maximum depth and area of the mark are calculated from the entire profile of the mark, 

maximum depth represents the deepest point in the profile (Figure 5). Maximum width, 

roughness, opening angle, and floor radius are measured from only the tooth mark profile, the 

user manually removes the surrounding bone outside the mark prior to analysis. Maximum width 

represents the width of the mark at its widest point from shoulder to shoulder. Roughness is 

measured using the “parameters table” function and represents the arithmetic mean deviation of 

the mark’s surface area. Opening angle and floor radius are calculated using the “contour 

analysis” function (Figure 6). Opening angle is measured from drawing two points, one from the 

first point to the deepest point along the profile and one from the last point to the deepest point 
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along the profile. Radius is measured by drawing an arc from the first and last points in the 

profile.   

 

Figure 4 - Area of a hole from the profile extracted from the deepest profile.  

 

Figure 5 – Contour analysis showing opening angle and floor radius of the tooth mark with the remaining 

bone outside of the mark removed.  

3.7 Statistical Methods – Treatment of Results 

 Statistical analyses were done in Microsoft Excel and Paleontological Statistics Software 

3.11 PAST (Hammer et al. 2001). Paired t-tests were used to test the ability of the molding 

material to accurately replicate the micromorphological characteristics of the original tooth 
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marks. Analysis of variance (ANOVA) tests were completed for each individual measurement 

metric in order to test the accuracy of the recorded variable to differentiate between carnivore 

actors. When distributions were not parametric a Kruskal-Wallis test was used in place of the 

ANOVA.  Both tests were followed with Mann-Whitney U tests to further examine the accuracy 

of each variable between each carnivore species.  

 Multivariate limited discriminant analyses were used to determine how accurate the 

recorded variables were at classifying the tooth marks. Coefficient of correlation tests were 

computed to ensure that variables were not highly correlated and incorrectly increasing the 

reported accuracy of the multivariate analysis. All measured variables were significant at the r= 

0.1 to -0.1 level and therefore considered simultaneously in the analysis. Discriminant analyses 

were conducted with carnivores organized by several groupings based on geological location, 

family level classification, and biomechanical classification. Fossil trace marks were computed 

in several discriminant analyses to determine how they would be classified within the actualistic 

sample.  
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CHAPTER 4 RESULTS  

4.1 Testing the Applicability of Replicas  

 Scans of spotted hyena (Crocuta crocuta) tooth marks were taken from the bone surface 

and from replica molds of the same tooth marks and compared using a paired t-test. Marks were 

statistically indistinguishable at a p-value of 0.05 for nine of twelve measurement metrics (Figure 

6, Table 5). Maximum depth (3D), maximum depth (profile), and area (profile) reported 

statistically were significantly higher for the original marks when compared with the replicas. 

 

Figure 6 - Principal Component Analysis between original and replica scans. Based on variables shown in 

Appendix C. Original tooth marks are represented by blue dots and shaded blue area. Replicas are 

represented by the red dots and shaded red area. 
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Table 5 - Summary statistics of tooth marks between original and replica. Statistically significant differences 

between values at the 0.05 level of probability are in italics.   

  3-D Measurements 

  

Surface 

Area 

(μm2) 

Volume        

(μm3) 

Maximum 

Depth 

(μm) 

Mean 

Depth 

(μm) 

Maximum 

Length 

(μm) 

Maximum 

Width 

(μm) 

 Mean 2862825.6 245218095.2 192.5 72.7 3181.6 1553.1 

ORIGINAL Median 2716349.9 211400000.0 181.0 63.9 3555.3 1377.2 

 

Standard 

Deviation 1824411.5 204730592.3 77.5 33.9 1479.0 672.0 

 Mean 2886420.1 254989523.8 205.7 74.1 3129.6 1564.6 

REPLICA Median 2819924.9 161800000.0 187.1 62.8 3110.8 1372.4 

 

Standard 

Deviation 1840852.2 222692887.3 83.3 35.5 1491.7 702.7 

 p-value 0.852 0.294 0.010 0.517 0.439 0.847 

        

  Profile Measurements 

  

Maximum 

Depth 

(μm) 

 Area (μm2) Width         

(μm) 

Roughness                 

(Ra) 

Angle                   

(o) 

Radius          

(μm) 

 Mean 186.1 143354.8 1432.4 5.9 144.9 2535.3 

ORIGINAL Median 174.8 95485.8 1205.0 5.0 147.0 1055.4 

 

Standard 

Deviation 74.3 113926.7 755.0 3.0 20.0 3863.2 

 Mean 204.9 163361.7 1429.0 7.1 144.0 2176.1 

REPLICA Median 186.7 127493.9 1115.0 6.4 143.9 962.6 

 

Standard 

Deviation 83.6 121432.4 697.3 3.0 17.0 2220.1 

 p-value 0.003 0.002 0.938 0.073 0.791 0.418 

 

4.2 Comparison of Inter-Carnivore Samples  

 Two of the carnivores included in this study, the African lion and spotted hyena, have 

data from captive as well as naturalistic feeding trials. These samples were compared using an 

unpaired t-test to assess the validity of combining two distinct samples of the same animal 

together within a discriminant analysis. The lion sample is very distinct between the wild and 

controlled feeding trials. Only three of the twelve measurement metrics are statistically 

indistinguishable between wild and captive; therefore, the lions are broken up into two categories 
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for analysis of individual measurement metrics but combined for multivariate analysis, 

justification for this is discussed in chapter 5. Overall, wild lions produced significantly larger 

tooth marks (Table 6). 

Table 6 - Summary statistics for tooth marks produced by wild and captive African lions. Statistically 

significant differences between values at the 0.05 level of probability are in italics.   

  3-D Measurements 

  

Surface 

Area (μm2) 

Volume        

(μm3) 

Maximum 

Depth 

(μm) 

Mean 

Depth 

(μm) 

Maximum 

Length 

(μm) 

Maximum 

Width 

(μm) 

Wild 

African 

Lion 

Mean 3567511.93 253382068.97 139.18 48.43 5080.15 995.64 

Median 2690874.88 90260000.00 105.37 35.99 5479.61 953.56 

St. Dev 2597528.05 451434045.32 86.57 41.27 2383.47 445.52 

Captive 

African 

Lion 

Mean 927210.44 36554832.47 88.14 34.39 2191.37 549.77 

Median 598074.97 15070000.00 73.38 28.49 1886.76 536.82 

St.Dev 953546.50 53591213.92 48.89 21.28 1586.38 258.79 

Difference Between 

Means 2640301.48 216827236.50 51.03 14.04 2888.78 445.87 

p-value 0.000010 0.015670 0.008292 0.110896 0.000002 0.000028 

        

  Profile Measurements 

  

Maximum 

Depth (μm) 
 Area (μm2) Width         

(μm) 

Roughness                 

(Ra) 

Angle                   

(o) 

Radius          

(μm) 

Wild 

African 

Lion 

Mean 134.68 79830.90 1120.34 4.41 152.88 1475.83 

Median 96.91 37943.11 975.00 3.67 150.24 1121.40 

St. Dev 85.40 88484.72 840.57 3.20 9.58 1126.80 

Captive 

African 

Lion 

Mean 81.70 24918.13 552.93 2.93 147.37 1265.59 

Median 70.38 18769.68 565.00 2.16 147.70 526.25 

St.Dev 46.30 24996.78 230.49 2.28 15.11 3215.33 

Difference Between 

Means 52.98 54912.77 567.41 1.48 5.51 210.24 

p-value 0.005303 0.002941 0.001364 0.047648 0.103851 0.741652 

 

The spotted hyena sample is more similar between wild and captive animals, where nine 

out of twelve measurement metrics are statistically indistinguishable between samples (Table 7), 

therefore, samples are combined for all remaining analysis, justification for this is discussed in 

chapter 5. The primary difference between these samples is that captive hyenas have a slightly 
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larger area and width in their tooth mark morphology compared to their wild counterparts. 

Interestingly, when spotted and striped hyenas are compared, they are statistically 

indistinguishable on all metrics except mean depth (3D), where striped hyenas have a slightly 

greater mean depth (3D) (Table 8).  

Table 7 - Summary statistics for tooth marks produced by wild and captive spotted hyenas. Statistically 

significant differences between values at the 0.05 level of probability are in italics.   

  3-D Measurements 

  

Surface 

Area (μm2) 

Volume        

(μm3) 

Maximum 

Depth 

(μm) 

Mean 

Depth 

(μm) 

Maximum 

Length 

(μm) 

Maximum 

Width 

(μm) 

Wild 

Spotted 

Hyena 

Mean 2965728.84 267906028.04 197.64 74.66 3118.89 1490.19 

Median 2716349.88 190000000.00 172.26 62.96 3349.72 1370.79 

St. Dev 2282294.45 273051871.30 111.70 44.93 1494.96 681.62 

Captive 

Spotted 

Hyena 

Mean 5619070.69 28667834000 249.12 99.80 3523.23 1669.99 

Median 3521412.34 310250000.00 211.08 84.61 3218.25 1363.01 

St.Dev 4859562.64 152990229670 152.42 59.26 2309.49 843.21 

Difference Between 

Means 2653341.85 28399927972 51.47 25.14 404.34 179.80 

p-value 0.0100 0.3177 0.1440 0.0713 0.4270 0.3709 

        

  Profile Measurements 

  

Maximum 

Depth (μm) 

 Area (μm2) Width         

(μm) 

Roughness                 

(Ra) 

Angle                   

(o) 

Radius          

(μm) 

Wild 

Spotted 

Hyena 

Mean 191.72 147449.39 1373.62 6.22 144.24 2226.40 

Median 170.16 90763.81 1205.00 5.09 146.73 1055.39 

St. Dev 109.24 133083.00 753.29 3.87 18.90 3376.81 

Captive 

Spotted 

Hyena 

Mean 234.76 264001.44 1869.00 11.80 149.98 2945.20 

Median 197.21 148058.59 1602.50 6.47 150.58 2279.63 

St.Dev 138.03 270113.06 829.15 23.99 12.04 2122.52 

Difference Between 

Means 43.03 116552.06 495.38 5.57 5.74 718.80 

p-value 0.1890 0.0405 0.0195 0.2187 0.1725 0.3345 
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Table 8 - Summary statistics for tooth marks produced by spotted hyenas and striped hyenas. Statistically 

significant differences between values at the 0.05 level of probability are in italics.   

  3-D Measurements 

  

Surface Area 

(μm2) 

Volume        

(μm3) 

Maximum 

Depth 

(μm) 

Mean 

Depth 

(μm) 

Maximum 

Length 

(μm) 

Maximum 

Width 

(μm) 

Spotted 

Hyena 

Mean 4314885.72 14708547370 223.82 87.44 3324.48 1581.62 

Median 3164149.86 242400000 191.53 67.74 3288.04 1370.79 

St. Dev 4013998.96 109124230890 135.32 53.77 1946.11 766.82 

Striped 

Hyena 

Mean 8942596.54 758524667 190.77 71.47 5384.16 1589.08 

Median 4388062.30 215450000 172.74 64.16 3530.50 1354.68 

St.Dev 12728985.41 1511473295 101.63 42.96 4126.91 798.45 

Difference Between 

Means 4627710.82 -13950022703 33.05 15.98 2059.67 7.46 

p-value 0.0609 0.3303 0.2005 0.1331 0.0138 0.9665 

        

  Profile Measurements 

  

Maximum 

Depth (μm) 

 Area (μm2) Width         

(μm) 

Roughness                 

(Ra) 

Angle                   

(o) 

Radius          

(μm) 

Spotted 

Hyena 

Mean 213.60 206713.14 1625.51 9.06 147.16 2591.89 

Median 181.47 116809.97 1455.00 5.99 149.70 1655.59 

St. Dev 125.53 220191.66 824.67 17.40 15.91 2808.69 

Striped 

Hyena 

Mean 191.22 173820.80 1627.50 7.47 157.31 2929.94 

Median 172.96 101752.23 1405.00 6.25 158.14 2403.63 

St.Dev 109.20 245191.37 831.58 4.08 8.74 1852.79 

Difference Between 

Means 22.38 32892.34 1.99 1.58 10.16 338.05 

p-value 0.3884 0.5387 0.9915 0.5094 0.2006 0.4993 
 

4.3 Analysis of Individual Measurement Metrics  

Analysis was conducted between all carnivore species for one measurement metric at a 

time to identify the strength of each metric to distinguish between carnivore actors. Non-

parametric Kruskal Wallis tests were used due to the sample not being normally distributed. All 

variables reported significant values at the 0.05 level of probability. Post-hoc Mann-Whitney U 

tests identify which carnivores cannot be differentiated for each individual variable. There are a 

total of 28 possible pairings between carnivore taxa. Comparisons between sets of carnivores 
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identify a range of accuracy for each measurement metric from 4 of 28 pairings for maximum 

width to 13 of 28 pairings for opening angle where the measurement metric does not differentiate 

between carnivore species at the 0.05 level of probability. Results for the post-hoc Mann-

Whitney U tests are displayed in Table 9-20, and box and whisker plots displaying the range of 

each sample for each measurement metric are shown in Figure 7-18
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Table 9 – Kruskal-Wallis and Mann-Whitney U tests for Surface Area (3D) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow.   

 

 

Figure 7 – Box and whisker plots for Surface Area (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Suface 3D 3.83E-26 1.795E-24

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0508600000 0.0000001052 0.0000000404 0.0000012220 0.4418000000 0.0000000430 0.0000000001

Grey Wolf 0.0508600000 0.0001142000 0.0000079990 0.0003916000 0.0089850000 0.0000194500 0.0000000007

Spotted Hyena 0.0000001052 0.0001142000 0.1101000000 0.6300000000 0.0000000284 0.1685000000 0.0000000110

Striped Hyena 0.0000000404 0.0000079990 0.1101000000 0.0852700000 0.0000000125 0.7922000000 0.0002633000

 Lion (Wild) 0.0000012220 0.0003916000 0.6300000000 0.0852700000 0.0000002236 0.1239000000 0.0000001213

 Lion (Captive) 0.4418000000 0.0089850000 0.0000000284 0.0000000125 0.0000002236 0.0000000116 0.0000000002

Nile Crocodile 0.0000000430 0.0000194500 0.1685000000 0.7922000000 0.1239000000 0.0000000116 0.0000044620

Grizzly Bear 0.0000000001 0.0000000007 0.0000000110 0.0002633000 0.0000001213 0.0000000002 0.0000044620
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Table 10 - Kruskal-Wallis and Mann-Whitney U tests for Volume (3D) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 8 - Box and whisker plots for Volume (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Volume 3D 1.04E-15 1.21E-22

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0889100000 0.0000002610 0.0000012070 0.0003157000 0.1807000000 0.0000004403 0.0000000004

Grey Wolf 0.0889100000 0.0001229000 0.0003170000 0.0519100000 0.0010620000 0.0000764000 0.0000000025

Spotted Hyena 0.0000002610 0.0001229000 0.7714000000 0.0405200000 0.0000000012 0.2307000000 0.0000006170

Striped Hyena 0.0000012070 0.0003170000 0.7714000000 0.0357300000 0.0000000114 0.5943000000 0.0000539200

 Lion (Wild) 0.0003157000 0.0519100000 0.0405200000 0.0357300000 0.0000013220 0.0113500000 0.0000000892

 Lion (Captive) 0.1807000000 0.0010620000 0.0000000012 0.0000000114 0.0000013220 0.0000000032 0.0000000001

Nile Crocodile 0.0000004403 0.0000764000 0.2307000000 0.5943000000 0.0113500000 0.0000000032 0.0002531000

Grizzly Bear 0.0000000004 0.0000000025 0.0000006170 0.0000539200 0.0000000892 0.0000000001 0.0002531000
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Table 11 - Kruskal-Wallis and Mann-Whitney U tests for Maximum Depth (3D) measurements between all carnivore species tooth marks. Carnivores 

that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 9 - Box and whisker plots for Maximum Depth (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Max Depth 3D 6.82E-13 6.06E-17

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0835000000 0.0000013290 0.0002153000 0.2086000000 0.0458200000 0.0000100900 0.0000000049

Grey Wolf 0.0835000000 0.0012870000 0.0331500000 0.6297000000 0.0004949000 0.0020910000 0.0000018910

Spotted Hyena 0.0000013290 0.0012870000 0.2543000000 0.0005361000 0.0000000026 0.3556000000 0.0085100000

Striped Hyena 0.0002153000 0.0331500000 0.2543000000 0.0111000000 0.0000003943 0.1404000000 0.0010550000

 Lion (Wild) 0.2086000000 0.6297000000 0.0005361000 0.0111000000 0.0029750000 0.0007367000 0.0000009180

 Lion (Captive) 0.0458200000 0.0004949000 0.0000000026 0.0000003943 0.0029750000 0.0000000434 0.0000000014

Nile Crocodile 0.0000100900 0.0020910000 0.3556000000 0.1404000000 0.0007367000 0.0000000434 0.3807000000

Grizzly Bear 0.0000000049 0.0000018910 0.0085100000 0.0010550000 0.0000009180 0.0000000014 0.3807000000
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Table 12 - Kruskal-Wallis and Mann-Whitney U tests for Mean Depth (3D) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 10 - Box and whisker plots for Mean Depth (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Mean Depth 3D 7.80E-11 3.89E-13

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.2868000000 0.0002025000 0.0321700000 0.5540000000 0.0370000000 0.0004191000 0.0000026270

Grey Wolf 0.2868000000 0.0073910000 0.2166000000 0.0815500000 0.0002907000 0.0104600000 0.0000728900

Spotted Hyena 0.0002025000 0.0073910000 0.1766000000 0.0000479700 0.0000000047 0.5252000000 0.0620100000

Striped Hyena 0.0321700000 0.2166000000 0.1766000000 0.0121000000 0.0000337200 0.1152000000 0.0045140000

 Lion (Wild) 0.5540000000 0.0815500000 0.0000479700 0.0121000000 0.2628000000 0.0001092000 0.0000014890

 Lion (Captive) 0.0370000000 0.0002907000 0.0000000047 0.0000337200 0.2628000000 0.0000012650 0.0000000139

Nile Crocodile 0.0004191000 0.0104600000 0.5252000000 0.1152000000 0.0001092000 0.0000012650 0.4479000000

Grizzly Bear 0.0000026270 0.0000728900 0.0620100000 0.0045140000 0.0000014890 0.0000000139 0.4479000000
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Table 13 – Kruskal-Wallis and Mann-Whitney U tests for Maximum Length (3D) measurements between all carnivore species tooth marks. Carnivores 

that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 11 - Box and whisker plots for Maximum Length (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Max Length 3D 7.62E-21 3.81E-18

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.3748000000 0.0000065420 0.0000012070 0.0000002078 0.4075000000 0.0000000035 0.0000000143

Grey Wolf 0.3748000000 0.0002704000 0.0000410800 0.0000015450 0.9504000000 0.0000011270 0.0000000547

Spotted Hyena 0.0000065420 0.0002704000 0.0790600000 0.0010310000 0.0028370000 0.0324000000 0.0000009226

Striped Hyena 0.0000012070 0.0000410800 0.0790600000 0.6767000000 0.0001750000 0.9776000000 0.0169200000

 Lion (Wild) 0.0000002078 0.0000015450 0.0010310000 0.6767000000 0.0000107700 0.3829000000 0.0053450000

 Lion (Captive) 0.4075000000 0.9504000000 0.0028370000 0.0001750000 0.0000107700 0.0000158200 0.0000001871

Nile Crocodile 0.0000000035 0.0000011270 0.0324000000 0.9776000000 0.3829000000 0.0000158200 0.0037290000

Grizzly Bear 0.0000000143 0.0000000547 0.0000009226 0.0169200000 0.0053450000 0.0000001871 0.0037290000
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Table 14 - Kruskal-Wallis and Mann-Whitney U tests for Maximum Width (3D) measurements between all carnivore species tooth marks. Carnivores 

that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 12 - Box and whisker plots for Maximum Width (3D) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Max Width 3D 5.52E-33 8.22E-25

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0051770000 0.0000000122 0.0000005355 0.0100600000 0.0427000000 0.0000002069 0.0000000003

Grey Wolf 0.0051770000 0.0013280000 0.0049150000 0.6078000000 0.0000086810 0.0015920000 0.0000000096

Spotted Hyena 0.0000000122 0.0013280000 0.9474000000 0.0001767000 0.0000000000 0.3775000000 0.0000001612

Striped Hyena 0.0000005355 0.0049150000 0.9474000000 0.0004232000 0.0000000029 0.5561000000 0.0000057360

 Lion (Wild) 0.0100600000 0.6078000000 0.0001767000 0.0004232000 0.0000165000 0.0003885000 0.0000000054

 Lion (Captive) 0.0427000000 0.0000086810 0.0000000000 0.0000000029 0.0000165000 0.0000000015 0.0000000001

Nile Crocodile 0.0000002069 0.0015920000 0.3775000000 0.5561000000 0.0003885000 0.0000000015 0.0000480400

Grizzly Bear 0.0000000003 0.0000000096 0.0000001612 0.0000057360 0.0000000054 0.0000000001 0.0000480400
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Table 15 – Kruskal-Wallis and Mann-Whitney U tests for Maximum Depth (Profile) measurements between all carnivore species tooth marks. 

Carnivores that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 13 - Box and whisker plots for Maximum Depth (Profile) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Max Depth Profile 1.62E-13 1.18E-17

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0096340000 0.0000002222 0.0000296200 0.1644000000 0.1204000000 0.0000015120 0.0000000037

Grey Wolf 0.0096340000 0.0048970000 0.0429600000 0.3754000000 0.0000642400 0.0042510000 0.0000048030

Spotted Hyena 0.0000002222 0.0048970000 0.4570000000 0.0005925000 0.0000000018 0.3078000000 0.0078420000

Striped Hyena 0.0000296200 0.0429600000 0.4570000000 0.0077930000 0.0000000985 0.1767000000 0.0014620000

 Lion (Wild) 0.1644000000 0.3754000000 0.0005925000 0.0077930000 0.0059130000 0.0005255000 0.0000038170

 Lion (Captive) 0.1204000000 0.0000642400 0.0000000018 0.0000000985 0.0059130000 0.0000000225 0.0000000010

Nile Crocodile 0.0000015120 0.0042510000 0.3078000000 0.1767000000 0.0005255000 0.0000000225 0.2817000000

Grizzly Bear 0.0000000037 0.0000048030 0.0078420000 0.0014620000 0.0000038170 0.0000000010 0.2817000000
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Table 16 - Kruskal-Wallis and Mann-Whitney U tests for Area (Profile) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 14 - Box and whisker plots for Area (Profile) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Area Profile 1.91E-11 4.09E-21

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0039200000 0.0000000622 0.0000053270 0.0474600000 0.0544700000 0.0000009719 0.0000000013

Grey Wolf 0.0039200000 0.0039040000 0.0478600000 0.3047000000 0.0000041610 0.0029420000 0.0000005609

Spotted Hyena 0.0000000622 0.0039040000 0.3051000000 0.0003002000 0.0000000001 0.4197000000 0.0003813000

Striped Hyena 0.0000053270 0.0478600000 0.3051000000 0.0027490000 0.0000000125 0.1877000000 0.0000657200

 Lion (Wild) 0.0474600000 0.3047000000 0.0003002000 0.0027490000 0.0000833800 0.0002085000 0.0000001213

 Lion (Captive) 0.0544700000 0.0000041610 0.0000000001 0.0000000125 0.0000833800 0.0000000025 0.0000000002

Nile Crocodile 0.0000009719 0.0029420000 0.4197000000 0.1877000000 0.0002085000 0.0000000025 0.0400600000

Grizzly Bear 0.0000000013 0.0000005609 0.0003813000 0.0000657200 0.0000001213 0.0000000002 0.0400600000
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Table 17 - Kruskal-Wallis and Mann-Whitney U tests for Width (Profile) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 15 - Box and whisker plots for Width (Profile) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Width Profile 2.78E-26 6.90E-23

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0008280000 0.0000001930 0.0000004266 0.0236000000 0.0313500000 0.0000004935 0.0000000007

Grey Wolf 0.0008280000 0.0162100000 0.0159100000 0.2729000000 0.0000010820 0.0057560000 0.0000000654

Spotted Hyena 0.0000001930 0.0162100000 0.9754000000 0.0006328000 0.0000000001 0.4137000000 0.0000030430

Striped Hyena 0.0000004266 0.0159100000 0.9754000000 0.0015700000 0.0000000006 0.5338000000 0.0000127200

 Lion (Wild) 0.0236000000 0.2729000000 0.0006328000 0.0015700000 0.0000115500 0.0006359000 0.0000000815

 Lion (Captive) 0.0313500000 0.0000010820 0.0000000001 0.0000000006 0.0000115500 0.0000000017 0.0000000002

Nile Crocodile 0.0000004935 0.0057560000 0.4137000000 0.5338000000 0.0006359000 0.0000000017 0.0002473000

Grizzly Bear 0.0000000007 0.0000000654 0.0000030430 0.0000127200 0.0000000815 0.0000000002 0.0002473000
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Table 18 - Kruskal-Wallis and Mann-Whitney U tests for Roughness (Profile) measurements between all carnivore species tooth marks. Carnivores that 

cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 16 - Box and whisker plots for Roughness (Profile) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Roughness Profile 1.51E-14 3.90E-17

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0202100000 0.0000076900 0.0000074870 0.1556000000 0.0370000000 0.0000080240 0.0000000222

Grey Wolf 0.0202100000 0.1182000000 0.0370900000 0.1199000000 0.0001389000 0.0039540000 0.0000195500

Spotted Hyena 0.0000076900 0.1182000000 0.3485000000 0.0008095000 0.0000000498 0.0341000000 0.0002115000

Striped Hyena 0.0000074870 0.0370900000 0.3485000000 0.0001550000 0.0000001758 0.2281000000 0.0069390000

 Lion (Wild) 0.1556000000 0.1199000000 0.0008095000 0.0001550000 0.0028270000 0.0001585000 0.0000000333

 Lion (Captive) 0.0370000000 0.0001389000 0.0000000498 0.0000001758 0.0028270000 0.0000000773 0.0000000023

Nile Crocodile 0.0000080240 0.0039540000 0.0341000000 0.2281000000 0.0001585000 0.0000000773 0.4002000000

Grizzly Bear 0.0000000222 0.0000195500 0.0002115000 0.0069390000 0.0000000333 0.0000000023 0.4002000000
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Table 19 - Kruskal-Wallis and Mann-Whitney U tests for Opening Angle (Profile) measurements between all carnivore species tooth marks. Carnivores 

that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 17 - Box and whisker plots for Opening Angle (Profile) measurements between all carnivore species tooth marks. 

One-way Anova Kruskal-Wallis

Opening Angle Profile 0.04474 6.66E-06

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.7787000000 0.0739600000 0.0702200000 0.6046000000 0.0808900000 0.0097220000 0.0061460000

Grey Wolf 0.7787000000 0.1995000000 0.0357300000 0.9504000000 0.1355000000 0.0169300000 0.0052150000

Spotted Hyena 0.0739600000 0.1995000000 0.0006470000 0.2157000000 0.7020000000 0.1352000000 0.0003312000

Striped Hyena 0.0702200000 0.0357300000 0.0006470000 0.0414200000 0.0014910000 0.0001230000 0.0472600000

 Lion (Wild) 0.6046000000 0.9504000000 0.2157000000 0.0414200000 0.1355000000 0.0101200000 0.0109000000

 Lion (Captive) 0.0808900000 0.1355000000 0.7020000000 0.0014910000 0.1355000000 0.3465000000 0.0016180000

Nile Crocodile 0.0097220000 0.0169300000 0.1352000000 0.0001230000 0.0101200000 0.3465000000 0.0003108000

Grizzly Bear 0.0061460000 0.0052150000 0.0003312000 0.0472600000 0.0109000000 0.0016180000 0.0003108000



 

 

 

 

70 

 

Table 20 - Kruskal-Wallis and Mann-Whitney U tests for Floor Radius (Profile) measurements between all carnivore species tooth marks. Carnivores 

that cannot be differentiated with this measurement metric are highlighted in yellow. 

 

 

Figure 18 - Box and whisker plots for Floor Radius (Profile) measurements between all carnivore species tooth marks.

One-way Anova Kruskal-Wallis

Floor Radius Profile 2.48E-17 1.25E-16

Mann-Whitney Pairwise African Wild Dog Grey Wolf Spotted Hyena Striped Hyena  Lion (Wild)  Lion (Captive) Nile Crocodile Grizzly Bear

African Wild Dog 0.0623400000 0.0035570000 0.0000215200 0.2486000000 0.0179400000 0.0048680000 0.0000000315

Grey Wolf 0.0623400000 0.3026000000 0.0064970000 0.3838000000 0.0000833800 0.2754000000 0.0000006617

Spotted Hyena 0.0035570000 0.3026000000 0.0533300000 0.0317600000 0.0000009897 0.8718000000 0.0000002398

Striped Hyena 0.0000215200 0.0064970000 0.0533300000 0.0000211000 0.0000000177 0.0684600000 0.0000412800

 Lion (Wild) 0.2486000000 0.3838000000 0.0317600000 0.0000211000 0.0002907000 0.0185900000 0.0000000221

 Lion (Captive) 0.0179400000 0.0000833800 0.0000009897 0.0000000177 0.0002907000 0.0000023720 0.0000000059

Nile Crocodile 0.0048680000 0.2754000000 0.8718000000 0.0684600000 0.0185900000 0.0000023720 0.0000005900

Grizzly Bear 0.0000000315 0.0000006617 0.0000002398 0.0000412800 0.0000000221 0.0000000059 0.0000005900
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4.4 Multivariate Linear Discriminate Analysis  

4.4.1 Potential to Discriminate Between Actors 

Linear discriminant analyses were used to determine how accurate the recorded variables 

were at classifying the tooth marks of different carnivore species. Seven models were computed, 

grouping the carnivores by different ecological, biological, and biomechanical characteristics. 

Descriptions of the groupings and results of the linear discriminant analyses are displayed in 

Table 21. A confusion matrix shows that marks are classified correctly to their carnivore agent 

from a range of 49.93% for analysis of every species included in this study as a distinct group to 

76.33% for analysis of species when grouped by their biomechanical capabilities related to 

maximum bite force. Confusion matrices for these results are displayed in Tables 22-28 and 

graphs displaying the results as 95% confidence intervals are displayed in Figures 19-25.  

Table 21 - Summary and descriptions of linear discriminant analyses. Family level classifications are Canidae 

consisting of African wild dog and grey wolf, Felidae consisting of African lion, Hyaenidae consisting of 

spotted hyena and striped hyena, Crocodylidae consisting of Nile crocodile, and Ursidae consisting of brown 

bear. Biomechanical grouping is related to gross bone damage capabilities as either bone cruncher (capable 

of breaking size 3 bone) or flesh slicer. Species within the bone cruncher grouping include spotted hyena, 

striped hyena, Nile crocodile and brown bear; species within the flesh slicer grouping include African wild 

dog, grey wolf, and African lion.   

Carnivore Grouping Accuracy of Discriminant Analysis  

All Species 49.93% 

All Species, Family Level 53.62% 

African Species Only 52.45% 

African Species Only, Family Level 56.09% 

Biomechanical, All Species 75.29% 

Biomechanical, African Species Only 76.33% 

Species Class, Reptilia vs. Mammalia 75.00% 
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Table 22 - Confusion matrix for linear discriminant analysis between all species. Accuracy of predictions is 

49.93%.  

  Predicted Groups 

  African         

Wild Dog 

Grey 

Wolf 

Spotted 

Hyena 

Striped 

Hyena 

African 

Lion 

Nile                              

Crocodile 

Brown 

Bear Total   

Given 

Groups 

African Wild 

Dog 25 1 2 0 2 1 0 31 

Grey Wolf 9 11 4 0 4 1 0 29 

Spotted Hyena 6 9 26 4 5 6 2 58 

Striped Hyena 2 8 5 9 1 1 4 30 

African Lion 16 4 5 4 24 5 0 58 

Nile Crocodile 1 4 7 3 7 18 3 43 

Brown Bear 0 1 2 5 1 2 17 28 

 Total 59 38 51 25 44 34 26 277 
 

 

Figure 19 - Graph showing results of linear discriminant analysis between all species as 95% confidence 

intervals. Results are based on measured variables shown in Appendix A. Shaded areas represent 95% 

confidence intervals for samples. Brown dots represent brown bears, green dots represent Nile crocodiles, 

blue dots represent spotted hyena, red dots represent striped hyena, pink dots represent African lions, teal 

dots represent grey wolf, and black dots represent African wild dogs.  
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Table 23 - Confusion matrix for linear discriminant analysis between all species at the family level. Accuracy 

of predictions is 53.62%. Canidae consists of African wild dog and grey wolf, Hyaenidae consist of striped 

hyena and spotted hyena, Felidae consist of African lion, Crocodylidae consist of Nile crocodile, and Ursidae 

consist of brown bear.  

  Predicted Groups 

  Canidae Hyaenidae Felidae Crocodylidae Ursidae Total 

Given 

Groups 

Canidae 42 11 5 2 0 60 

Hyaenidae 23 37 10 12 6 88 

Felidae 17 9 28 4 0 58 

Crocodylidae 3 7 11 19 3 43 

Ursidae 0 5 2 4 17 28 

 Total 85 69 56 41 26 277 

 

 

Figure 20 - Graph showing results of linear discriminant analysis between all species at the family level as 

95% confidence intervals. Results are based on measured variables shown in Appendix A. Shaded areas 

represent 95% confidence intervals for samples. Brown dots represent ursids (brown bear), green dots 

represent crocodilians (Nile crocodile), blue dots represent hyaenids (striped hyena and spotted hyena), red 

dots represent felids (African lion), and black dots represent canids (African wild dog and grey wolf).  
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Table 24 - Confusion matrix for linear discriminant analysis between all African species. Accuracy of 

predictions is 52.45%. 

  Predicted Groups 

  African         

Wild 

Dog 

Spotted 

Hyena 

Striped 

Hyena 

African 

Lion 

Nile                              

Crocodile Total   

Given 

Groups 

African Wild Dog 25 2 0 2 2 31 

Spotted Hyena 11 27 4 6 10 58 

Striped Hyena 9 6 12 1 2 30 

African Lion 17 6 2 28 5 58 

Nile Crocodile 3 9 2 10 19 43 

 Total 65 50 20 47 38 220 
 

 

Figure 21 - Graph showing results of linear discriminant analysis between all African species as 95% 

confidence intervals. Results are based on measured variables shown in Appendix A. Shaded areas represent 

95% confidence intervals for samples. Green dots represent Nile crocodile, brown dots represent striped 

hyena, blue dots represent spotted hyena, red dots represent African lion, and black dots represent African 

wild dog.  
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Table 25 - Confusion matrix for linear discriminant analysis between all African species at the family level. 

Accuracy of predictions is 56.09%. Canidae consists of African wild dog, Hyaenidae consists of striped hyena 

and spotted hyena, Felidae consists of African lion, and Crocodylidae consists of Nile crocodile.  

  Predicted Groups 

  Canidae Hyaenidae Felidae Crocodylidae Total 

Given 

Groups 

Canidae 25 2 2 2 31 

Hyaenidae 21 42 12 13 88 

Felidae 17 7 30 4 58 

Crocodylidae 3 7 11 22 43 

 Total 66 58 55 41 220 

 

 

Figure 22 - Graph showing results of linear discriminant analysis between all African species at the family 

level as 95% confidence intervals. Results are based on measured variables shown in Appendix A. Shaded 

areas represent 95% confidence intervals for samples. Green dots represent crocodilian (Nile crocodile), blue 

dots represent hyaenids (striped hyena and spotted hyena), pink dots represent felids (African lion), and 

black dots represent Canids (African wild dog).  
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Table 26 - Confusion matrix for linear discriminant analysis between all species grouped biomechanically. 

Accuracy of predictions is 75.29%. Flesh slicers consist of African wild dog, grey wolf, and African lion. Bone 

crunchers consist of striped hyena, spotted hyena, brown bear, and Nile Crocodile.  

  Predicted Groups 

  Flesh              

Slicer 

Bone         

Cruncher Total   

Given 

Groups 

Flesh Slicer 97 21 118 

Bone Cruncher 53 106 159 

 Total 150 127 277 

 

 

Figure 23 - Graph showing results of linear discriminant analysis between all species grouped 

biomechanically as 95% confidence intervals. Results are based on measured variables shown in Appendix A. 

Shaded areas represent 95% confidence intervals for samples. Blue dots represent bone crunchers and red 

dots represent flesh slicers.   
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Table 27 - Confusion matrix for linear discriminant analysis between all African species grouped 

biomechanically. Accuracy of predictions is 76.33%. Flesh slicers consist of African wild dog and African 

lion. Bone crunchers consists of striped hyena, spotted hyena, and Nile crocodile.  

  Predicted Groups 
  Flesh              

Slicer 

Bone         

Cruncher Total   

Given 

Groups 

Flesh Slicer 73 16 89 

Bone Cruncher 42 89 131 

 Total 115 105 220 

 

 

Figure 24 - Graph showing results of linear discriminant analysis between all African species grouped 

biomechanically as 95% confidence intervals. Results are based on measured variables shown in Appendix A. 

Shaded areas represent 95% confidence intervals for samples. Blue dots represent bone crunchers (striped 

hyena, spotted hyena, and Nile Crocodile) and red dots represent flesh slicers (African wild dog and African 

lion).   
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Table 28 - Confusion matrix for linear discriminant analysis between Reptilia and Mammalia species classes. 

Accuracy of predictions is 75%. Reptilia consist of Nile crocodile. Mammalia consist of African wild dog, 

African lion, striped hyena, and spotted hyena.  

  Predicted Groups 

  Mammalia  Reptilia Total 

Given 

Groups 

Mammalia  139 38 177 

Reptilia 17 26 43 

 Total 156 64 220 

 

 

Figure 25 - Graph showing results of linear discriminant analysis between Reptilia and Mammalia species 

class as 95% confidence intervals. Results are based on measured variables shown in Appendix A. Shaded 

areas represent 95% confidence intervals for samples. Green dots represent Reptilia (Nile crocodile) and red 

dots represent Mammalia (African wild dog, African lion, striped hyena, and spotted hyena) species classes.   
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4.4.2 Comparisons Between Animal Pairs 

 Analysis was conducted between each animal pairing to determine how distinguishable 

they are by their tooth mark morphology on an individual basis. Multivariate linear discriminate 

analysis demonstrates the accuracy of this method for distinguishing specific carnivore actors by 

their tooth mark morphology. A confusion matrix shows that marks are classified correctly from 

a range of 69.61% for spotted hyena and Nile crocodile to 97.19% accuracy for African lion and 

brown bear; results for all species comparisons are displayed in Table 29. Notable species 

comparisons between the African lion and the hyenas (86.23% accuracy), hyenas and Nile 

crocodile (74.70% accuracy), African wild dog and African lion (79.28% accuracy), and grey 

wolf and brown bear (96.49% accuracy) are examined with further detail in chapter 5.    

Table 29 - Species Comparisons between every carnivore included in this study. 

 

African Wild Dog & Grey Wolf 83.33%

African Wild Dog & Spotted Hyena 82.22%

African Wild Dog & Striped Hyena 91.80%

African Wild Dog & African Lion 79.28%

African Wild Dog & Nile Crocodile 87.84%

African Wild Dog & Brown Bear 98.31%

Grey Wolf & Spotted Hyena 76.45%

Grey Wolf & Striped Hyena 79.66%

Grey Wolf & African Lion 85.76%

Grey Wolf & Nile Crocodile 80.56%

Grey Wolf & Brown Bear 96.49%

Spotted Hyena & Striped Hyena 70.79%

Spotted Hyena & African Lion 83.34%

Spotted Hyena & Nile Crocodile 69.61%

Spotted Hyena & Brown Bear 89.66%

Striped Hyena & African Lion 90.50%

Striped Hyena & Nile Crocodile 79.45%

Striped Hyena & Brown Bear 81.03%

All Hyena & Nile Crocodile 74.70%

All Hyena & African Lion 86.23%

All Hyena & African Wild Dog 79.17%

African Lion & Nile Crocodile 83.20%

African Lion & Brown Bear 97.19%

Nile Crocodile & Brown Bear 85.92%

Species Comparison
Accuracy of 

Discriminant Analysis
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4.4.3 Inferred fossil trace marks  

 Fossil trace marks were computed in the African family level and biomechanical 

discriminant analyses (56.09% and 76.33% accuracy). Fossil trace marks are shown as the large 

red X’s in Figure 26 and classifications can be seen in Table 30. There is a wide distribution of 

actors present in this fossil assemblage. All fossil trace marks match between models except for 

one trace mark shown as a large yellow x in Figure 26. Four archaeological trace marks do not 

classify with any carnivore from the actualistic sample, these four trace marks do not fall outside 

of the models but rather between multiple actors.  

 

Figure 26 - Graph showing results of limited discriminant analysis as convex hulls with fossil trace marks 

within the African family level discriminant analysis. Results are based on measured variables shown in 

Appendix A. Shaded areas represent absolute ranges for the samples. Green dots represent Crocodilian, blue 

dots represent Hyaenids, pink dots represent Felids, and black dots represent Canids. Fossil trace marks are 

represented by a red X, the yellow X represents the dual classified fossil trace mark.  
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Table 30 – Classifications for fossil trace marks. Results are based on measured variables shown in Appendix 

B. See Bunn (1982) for prey size (Size 1 <23kg; Size 2, 23-114kg; Size 3, 114-341kg).  

Identification 

Number 

Skeletal 

Element 

Tooth Mark 

Location 

Prey Taxon, 

Body Size 

Family Level 

Classification 

Biomechanical 

Classification 

1652 Radius Near Epiphysis Bovid, 3 Felidae Flesh Slicer 

4242 Metacarpal Epiphysis Bovid, 3 Felidae Flesh Slicer 

4268 Femur Midshaft Indeterminate, 3 Felidae Bone Cruncher 

2743 Long Bone Midshaft Indeterminate, 3 Felidae Flesh Slicer 

4168 Humerus Epiphysis Indeterminate, 3 Felidae Flesh Slicer 

4176B1 Radius Midshaft Bovid, 3 Felidae Flesh Slicer 

4176B2 Radius Midshaft Bovid, 3 Felidae Flesh Slicer 

1886A Scapula Blade Indeterminate, 3 Felidae Flesh Slicer 

60275 Rib Head Indeterminate, 3 Felidae Flesh Slicer 

4176B3 Radius Midshaft Bovid, 3 Canidae Flesh Slicer 

1886B Scapula Blade Indeterminate, 3 Canidae Flesh Slicer 

60021A Metapodial Midshaft Indeterminate, 3 Canidae Flesh Slicer 

60021B Metapodial Midshaft Indeterminate, 3 Canidae Flesh Slicer 

4107 Metapodial Midshaft Bovid, 3 Hyaenidae Bone Cruncher 

1975 Long Bone Near Epiphysis Indeterminate, 3 Hyaenidae Bone Cruncher 

677A Humerus Head Indeterminate, 3 Hyaenidae Bone Cruncher 

677B Humerus Head Indeterminate, 3 Hyaenidae Bone Cruncher 

60050 Long Bone Midshaft Indeterminate, 3 Hyaenidae Bone Cruncher 

2908B Calcaneum Body Bovid, 3 Crocodylidae Bone Cruncher 

4176A Radius Midshaft Bovid, 3 Crocodylidae Bone Cruncher 

1045A Humerus Midshaft Indeterminate, 3 Crocodylidae Bone Cruncher 

1045B Humerus Midshaft Indeterminate, 3 Crocodylidae Bone Cruncher 

1045C Humerus Midshaft Indeterminate, 3 Crocodylidae Bone Cruncher 

3969 Cervical Vertebra Zygopophysis Indeterminate, 3 Crocodylidae Bone Cruncher 

60025 Long Bone Midshaft Indeterminate, 3 N/A N/A 

356 Tibia Midshaft Indeterminate, 3 N/A N/A 

3833A Tibia Midshaft Indeterminate, 3 N/A N/A 

3833B Tibia Midshaft Indeterminate, 3 N/A N/A 
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CHAPTER 5 DISCUSSION 

 Due to the paucity of carnivore remains in the archeological record, linking specific 

carnivores to feeding traces found on fossil bones is critical to reconstructing the ecological and 

behavioral contexts of Early Stone Age archaeological sites. Archaeological sites from the Early 

Stone Age often have dual-patterned faunal assemblages that bear both hominin butchery marks 

and carnivore tooth marks, but few body fossils of hominins or carnivores. Analysis of these 

feeding traces can refine our knowledge of past hominin and carnivore interactions as hominins 

began encroaching on the carnivore guild by regularly consuming flesh and marrow.  

 The application of high-resolution 3D scanning to the analysis of carnivore tooth mark 

morphology has provided a level of inference and confidence unattainable with previous 

methods and a higher level of confidence compared to recently employed micro photogrammetry 

(Mate-Gonzalez et al 2016; Arriaza et al. 2017). Although results are not 100% accurate in 

distinguishing between the tooth marks of different carnivore species, this project has greatly 

improved upon previous research which displayed only weak correlations between body size and 

tooth mark size (Dominguez-Rodrigo & Piqueras 2003; Delaney-Rivera et al. 2009). For 

example, within this thesis, when African carnivores are examined at the family level in a limited 

discriminate analysis, taxa can be discriminated with 56.09% accuracy and increased to 76.33% 

accuracy when examined by their biomechanical feeding classification. Furthermore, when 

carnivores are compared in pairs, accuracy increases to the 80th and 90th percentiles depending on 

taxa examined. Ultimately, high-resolution 3D scanning provides an accurate and precise method 

with which to identify specific carnivore actors from their feeding traces. Building upon this 

dataset will continue to enhance our ecological reconstructions of Early Stone Age archeological 

sites and early hominin behavior.  
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5.1 Interpretation of Results  

5.1.1 Potential and Accuracy of Molding Materials  

 Previous research tested the comparative accuracy of cut mark replicas (Bello 2011). 

However, this study was limited in sample size (n of 3) and did not examine carnivore tooth 

marks. For these reasons, a larger sample of carnivore tooth marks (n of 30) was compared 

between scans of the original marks and replicas of the same marks, ensuring confidence in the 

use of replicas in this thesis. 

The results of this comparison demonstrated that the mold replicas provided accurate 

representations and were statistically indistinguishable from the original marks for nine out of 

twelve measurements. Discrepancy between these measurements and the results of previous 

research that analyzed cut mark morphology (Bello 2011) is likely due to the molding material 

not capturing the entire curvature of the bone as tooth marks are significantly deeper and wider 

than cut marks. Furthermore, Bello (2011) did not have a sufficient sample size and their 

reported results cannot be reliably compared against. Various scanning and processing 

procedures such as rescanning along the opposite axis and adjusting the polynomial degree when 

isolating the mark during initial processing (Figure 1) were tested to confirm that these 

discrepancies were not due to methodology or user error. However, these changes did not 

improve the results. This discrepancy is a concern for the lion sample due to the wild lion tooth 

mark sample being scanned from replicas of the original tooth marks. However, when analyzed 

with a t-test, the replicas of the wild lion sample shows significantly greater values for nine of 

twelve measurements rather than an expected decrease, suggesting the discrepancy is likely due 

to other variables such as carnivore body size, bone type, flesh availability, body size, or level of 

competition, which are all variables that can affect tooth mark morphology (Blumenschine 1988; 
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Lam 1992; Blumenschine & Marean 1993; Pobiner 2007; Faith 2007; Gidna et al. 2013; Nascou 

& Mori 2014).  

5.1.2 Sources of Variation between wild and captive animals 

 Previous research has cautioned against the use of captive animals to characterize the 

behavior and patterns of feeding traces left by carnivore species (Faith 2007; Gidna 2013; 

Dominguez-Rodrigo et al. 2015). However, difference between wild and captive animals are not 

as likely to impact tooth mark morphology, which is more directly related to tooth size and 

biomechanical constraints. Furthermore, utilization of captive animals allows for control over 

variables such as carnivore age, body size, prey size, and bone type which have been shown to 

affect tooth mark morphology (Blumenschine 1988; Lam 1992; Blumenschine & Marean 1993; 

Pobiner 2007; Faith 2007; Gidna et al. 2013; Nascou & Mori 2014). Nevertheless, the cause of 

the discrepancy between wild and captive lions must be examined.  

The age and body size of a carnivore can affect the size and morphology of tooth marks. 

Previous research has shown a correlation between carnivore body size and tooth mark size 

(Delaney-Rivera et al. 2009). The captive lions included in this study were relatively young and 

not yet at their adult body weight (see Table 3 in Chapter 3). Conversely, there is no difference 

between the captive hyena and the wild hyena samples. Captive hyenas included within this 

study are at their adult body weight and similar to the African lions were fed prey they are 

known to feed on in the wild (Blumenschine 1988; Dominguez-Rodrigo 1999; Pobiner 2007). 

The similarity between the captive and wild hyena samples indicates differences in body size 

between the captive and wild African lions is likely the main variable responsible for the 

incongruity between samples; unfortunately, the body weight of the wild African lions is 
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unknown. Nevertheless, combining these distinct samples provides a more complete 

characterization of the diversity of tooth mark morphology for one carnivore taxa.  

5.1.3 Potential to discriminated between actors 

Due to the similarities between carnivore tooth size and morphology, the results are wide 

ranging and produce variable levels of accuracy between models. Analysis of individual 

measurement metrics showed that each metric was suitable for differentiating between 

carnivores; however, no metric was 100% accurate and all metrics could not differentiate 

between at least two carnivore pairs. These findings indicate the need for a multivariate approach 

where all measured variables are analyzed simultaneously for each carnivore tooth mark.  

 If all tooth marks and their measured variables are computed into a limited discriminant 

analysis without further grouping, the level of accuracy is only 49.93%. However, the 

application of high-resolution 3D scanning to taphonomy is not intended to dismiss previous 

methods; rather, this approach provides a novel and significant aid to biomechanical, behavioral, 

and ecological interpretations of a carnivore’s taphonomic imprint. These additional methods can 

inform our analysis and allow for further classification and realistic grouping of carnivores for 

statistical analysis.  

 Grouping carnivore actors where appropriate can produce higher accuracy and effectively 

increase the 49.93% accuracy to the 80-90% range. Examination of the confusion matrices and 

post-hoc Mann-Whitney U tests show the majority of the overlap is present between carnivores 

with lower bite force - the grey wolf, African wild dog, and African lion. Additionally, there is 

overlap between the larger bone crunching spotted hyena, striped hyena, Nile crocodile, and 

brown bear which produce small tooth marks that misclassify with the tooth marks of smaller 
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carnivores. Once this overlap is eliminated through further classification and grouping, the 

discriminatory power of 3D scanning methods is substantially increased.  

Limiting analysis to African carnivores at the family level provides a higher level of 

accuracy (56.09%). However, the data still presents large overlap between the African wild dog, 

African lion, and some of the spotted hyena sample, as all three of these animals produce small 

pits and scores that even at our degree of analysis are difficult to differentiate. Therefore, low 

accuracy in this model is likely due to all carnivores producing small tooth marks which 

misclassify in other groupings. Hyenas have a wide distribution as they have small tooth pits that 

classify with canids and larger tooth pits that classify with crocodiles. Most felid tooth marks are 

accurately grouped but a portion of their shorter shallower tooth scores classify with canids. 

Smaller marks produced by crocodiles classify with the felids and some of their mid-sized tooth 

marks classify with hyenas. The African wild dog has the lowest bite force and smallest tooth 

marks with very narrow and short scores and shallow pits, allowing African wild dog tooth 

marks to classify with the highest accuracy.  

When carnivores are grouped by the biomechanical capabilities of their mandible and 

cranial vault in relation to gross bone damage, accuracy increases to 76.33%. The biomechanical 

groupings are split between obligate flesh slicing carnivores with low bite force and carnivores 

with high bite force that are capable of breaking bone. Flesh slicers in this model consist of the 

African wild dog and lion; bone crunchers in this model are the spotted hyena, striped hyena, and 

Nile crocodile. Accuracy in this model is still limited by bone crunchers, who although 

possessing an extremely high bite force also produce small tooth marks that misclassify with the 

tooth marks of flesh slicers.  
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Accuracy of these models increases greatly when comparing one species to another, 

which could be justified with an understanding of ecological contexts, and an analysis of skeletal 

element profiles related to gross bone damage capabilities of certain carnivores. For example, the 

discriminant analysis is able to distinguish between hyenas and lions with 86.23% accuracy. 

African lions produce long, narrow, and shallow tooth scores; whereas hyenas produce long, 

wide, and extremely deep tooth marks comparatively (Figure 27). The ability to distinguish 

between these two actors by their feeding traces is critical to understanding hominin behavior, 

carcass acquisition sequences, and furthering the hunting vs. scavenging debate, as these actors 

would be the prominent carnivores with whom hominins would likely be interacting with. For 

instance, Early Stone Age sites such as FLK Zinjanthropus in Olduvai Gorge, Tanzania have 

been the center of debates regarding timing of access of carcasses for hominins as this site bears 

abundant dual-patterned bones with stone tool cut marks and what is thought to be felid tooth 

marks (Dominguez-Rodrigo & Barba 2006; Blumenschine et al. 2007; Dominguez-Rodrigo et al. 

2014; Pante et al. 2012; 2015; Parkinson et al. 2015). There would be a stark difference in flesh 

availability for scavenging hominins after each of these actors had fed on the carcass as lions 

would provide substantially more flesh for secondary consumers than would hyenas, who tend to 

consume not only the majority of flesh but also delete marrow rich bones from the carcass before 

hominins would have had access to it (Pobiner 2007, 2015). The ability to distinguish between 

these two carnivore actors will be significant for understanding the context and timing of dual 

patterned bones in the archaeological record.  

In similar analysis, utilizing microphotogrammetry for the comparison of African lion 

and spotted hyena tooth marks, Arriaza et al. (2017) report the ability to differentiate between 

these carnivore actors with 76% accuracy. This coincides with accuracy reported here between 



 

 

 

 

88 

these two species (83.34%). Furthermore, between striped hyenas and African lions, accuracy 

increases to 90.5%, and as mentioned above when hyaenid species are pooled, 86.23%. The 

differences between results reported here and in Arrizia et al. (2017), although not major, are 

likely due to the limitations of their methodology, as their analysis was limited to 2D profiles of 

tooth marks taken from cross-sections along the mark.  

 

Figure 27 - Sample tooth marks of African lion (left) and spotted hyena (right).  

Between hyenas and crocodiles, the African taxa that have the largest bite force, the 

discriminant analysis is able to identify marks with 74.70% accuracy. This lower accuracy is due 

to both of these actors leaving very deep tooth mark profiles, which isn’t surprising as they both 

regularly completely destroy limb bones (Blumenschine 1988; Njau & Blumenschine 2006; 

Yirga et al. 2012; Pobiner 2015). Hyena and crocodile pits are very similar in terms of depth, 

although crocodiles produce wider tooth pits. Tooth scores are similar in depth but very distinct 

in 3D and profile measurements as crocodiles often produce tooth marks with v-shaped profiles 

that are more similar to cut marks than mammalian carnivore tooth marks (Figure 28). 

Spotted Hyena African Lion 
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Crocodiles also produce much wider and longer scores as they roll their prey during submersion 

(Njau & Blumenschine 2006). Tooth scores in this case are much more reliable for classification 

and useful for analysis of dense and highly fragmented assemblages.  

The analysis of crocodile feeding traces has been limited (Njau & Blumenschine 2006; 

Baquedano et al. 2012; Njau & Blumenschine 2012). Previous research has examined unique 

qualitative features of crocodile feeding traces such as the bisected pits their unique tooth shape 

produces; however, identification of these features provides only 10% accuracy for 

differentiating carnivore tooth marks (Njau & Blumenschine 2006). Precise and accurate 

identification of crocodile feeding traces is required as many trace marks thought to be evidence 

of the earliest hominin butchery action and tool use are likely crocodile tooth marks that bear 

strong similarity to stone tool cut marks; such as the trace marks found in the Dikika 

assemblages (Ethiopia, 3.4mya), that have been the center of high-profile and unresolved 

disagreements (Dominguez-Rodrigo et al. 2010, 2011, 2012; McPherron et al. 2011; Thompson 

et al. 2015). Comparison of these controversial marks within the actualistic sample generated in 

this thesis would provide a more definitive assessment of the actor responsible for these 

archaeological traces.  
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Figure 28 – Sample tooth marks of spotted hyena (left) and Nile crocodile (right).  

Between species with smaller bite force included in this project, the African wild dog and 

African lion, the discriminant analysis classifies marks with 79% accuracy. In the confusion 

matrices, African wild dogs do not misclassify as African lions as the tooth marks of African 

wild dogs are extremely small; however, smaller pits and scores produced by the African lions 

fall within the range of African wild dogs. Overall, African wild dogs produce low frequencies 

of very short and shallow scores compared to the longer scores produced by lions (Figure 29); 

depth values are similar among the smaller lion pits but generally African lions produce deeper 

and wider pits.  

These findings coincide with previous research that claims African wild dogs exhibit 

feeding behavior involving less contact between the predator’s dentition and prey bone due to 

weak carnassial teeth, and therefore, produce minimal and very small tooth marks on the bone 

surface (Harstone-Ross 2008). Furthermore, the low incidences of extremely small tooth marks 

found on the bone surface reported here have also been observed and described by previous 

Nile Crocodile Spotted Hyena 
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actualistic research of African wild dogs (Yravedra et al. 2014). This indicates that African wild 

dog carcass-processing behavior seems to be oriented towards meat rather than bone 

consumption, making identification of African wild dogs in the archaeological record by their 

feeding traces very difficult.  

 

Figure 29 – Sample tooth marks of African wild dog (left) and African lion (right).  

 

Between the North American carnivores included in this study, the grey wolf and brown 

bear, the discriminant analysis is able to identify marks with 96.49% accuracy. This is an 

excellent result but is not all together surprising since the brown bear has the most distinct tooth 

mark morphology in this study with extremely wide and shallow marks (Figure 30).  

African Wild Dog African Lion 
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Figure 30 – Sample tooth marks of North American brown bear (left) and grey wolf (right).  

5.1.4 Inferred Fossil Trace Marks  

Fossil trace marks were computed into the family level and biomechanical discriminant 

analysis to determine how they would be classified within our actualistic sample. The fossil trace 

marks are shown as the large red x’s in the discriminant analysis in Figure 26 and their 

classifications are reported in Table 30. The analyses suggest there is a wide distribution of 

actors present in this fossil assemblage.  

All fossil trace marks match between models except for one trace mark (4268), which 

dual classifies as a felid in the family level discriminant analysis and a bone cruncher in the 

biomechanical discriminant analysis due to its deep profile. This dual classification could belong 

to a felid with higher bite force, compared to the African lion such as Dinofelis, which has fossil 

remains at this archaeological site. However, given the higher accuracy of our biomechanical 

model compared to the family level model, this is likely a smaller tooth mark produced by a bone 

cruncher.  

Brown Bear Grey Wolf 
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Four of the archaeological marks do not classify with any carnivore. This may be due to 

taphonomic processes that have abraded the bone surface and altered the tooth marks 

morphology (Behrensmeyer 1978; Shipman & Rose 1983). Alternatively, these tooth marks may 

belong to species that are extinct and have not been modeled. However, limitations of the 

samples used in this comparison cannot be ruled out; for example, leopards and cheetahs are not 

represented in this study. Tooth marks that do not classify, are not outliers falling outside of the 

carnivore groupings but rather fall within multiple ranges, and likely are too similar to multiple 

actors for accurate classification. Furthermore, the archaeological trace marks also fall within the 

area that smaller felids such as leopards and cheetahs would likely classify based on average 

body size and biomechanics (Van Valkenburgh 1996). It has been argued that scavenging from 

tree-store leopard kills may have been an important food source for early hominins, and as such, 

these species should be included in future work (Cavallo & Blumenschine 1989; Van 

Valkenburgh et al. 2002; Pobiner 2007; Van Valkenburgh 2007).  

Furthermore, analyzing the archaeological trace marks that do not classify by skeletal 

element does not provide an alternative explanation for why these traces do not classify. These 

trace marks are found on the midshaft of size 3 long bones and are therefore comparable to the 

bones used in the actualistic feeding trials. This indicates that the inability of the discriminant 

analysis to classify these marks is due either the lower accuracy of the models or the lack of 

carnivores represented in this study.  

5.2 Weaknesses, Limitations, & Future Work  

 High-resolution 3D scanning techniques have the ability to revolutionize quantitative 

methods of analysis and strengthen our interpretations by limiting observer bias, analyzing 

metrics not possible through traditional means, and by providing a quantitative assessment for 
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marks with debated origins (Dominguez-Rodrigo & Barba 2006; Blumenschine et al. 2007; 

Dominguez-Rodrigo et al. 2010, 2011, 2012; McPherron et al. 2011; Pante et al. 2015; 

Thompson et al. 2015). High-resolution 3D scanning methods are well equipped to answer 

zooarchaeological and taphonomic questions previously unknown due to traditional 

methodological limitations such as differentiating carnivore taxa by their feeding trace marks. 

Additionally, high-resolution confocal profilometers are significantly less expensive than 

traditional SEMs, and require less training and maintenance. Therefore, the significant benefits 

of this technology and methodology greatly outweigh upfront costs of the technology. As shown 

in Bello (2011) and in this project, low-cost molding materials can confidently be used in 

analysis and be accurately compared to other samples, allowing for collaboration between labs if 

costs prohibit the use of this expensive technology.  

 Variables such as prey size and feeding trial duration were controlled for in this 

experiment in order to maintain consistency between results, allowing for researchers to easily 

replicate, compare, and expand upon this research. The use of captive animals was critical to this 

quantitative approach; however, as stated above, captive animals are not completely analogous to 

wild animals in terms of behavior; how much this would affect quantitative features is unknown 

but the impact is likely minimal. Other variables such as bone type, prey size, and the amount of 

flesh present would likely have a much larger effect on tooth mark morphology. Further 

development of this research would likely see interesting results if prey type and size were 

varied. Lastly, further expanding the sample size, both in carnivores studied and number of 

feeding trials would be beneficial; this would likely result in lower accuracy and lower 

confidence levels; however, it would provide an opportunity to classify tooth marks by their type 

and anatomical location on bone.  
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 The largest issue restricting the accuracy of the approach utilized in this thesis is that 

smaller tooth marks produced by large carnivores misclassify with the tooth marks of smaller 

carnivores. These smaller tooth marks were not removed from analysis as they are important in 

characterizing the diversity of tooth mark morphology for any one taxa. Future work will focus 

on the analysis of shape and remove size from consideration.  

 When archaeological trace marks were compared in the multivariate analysis, some of 

them did not classify with any carnivore species or grouping. There are several possibilities for 

the ineffectiveness of the models when applied to these marks. Foremost, there are many other 

carnivore types that need to be analyzed such as leopards and cheetahs. There are also tooth 

marks which do not classify within our samples, and could be indicative of species that do not 

have a direct modern analog requiring future research to analyze biomechanical characteristics of 

tooth shape and predicted bite force to infer tooth mark morphology.  

 The misclassification or lack of classification for archaeological traces can also be due to 

taphonomic processes such as soil abrasion, weathering, and fluvial transport, all of which alter 

bone surfaces and trace marks found on those surfaces. This is problematic as the actualistic 

sample of tooth marks has not undergone any of these post-depositional taphonomic processes 

and is essentially fresh bone, not wholly comparable to the weathered and abraded 

archaeological trace marks. Current research is testing the effects of fluvial abrasion on 

experimentally created cut and tooth marks and has shown these processes to have a minimal 

effect on cut and tooth mark morphology (Gumrukcu et al. 2017). Therefore, the most 

parsimonious explanation for why certain archaeological trace marks do not classify within the 

actualistic sample is the limitations of sample size and carnivore actors represented in this study.  
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 High-resolution 3D scanning provides a quantitative approach to further strengthen the 

analysis and our understanding of archaeological remains. Further actualistic studies will be 

beneficial to developing a means to differentiate carnivores by their tooth mark morphology as 

demonstrated within this thesis, leading to a more holistic understanding of early hominin 

subsistence strategies.  
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CHAPTER 6 CONCLUSION 

 This study represents the first systematic analysis of carnivore tooth mark 

micromorphology. The results of this study are broadly consistent with previous attempts but 

with a significant contribution to accuracy and efficacy. These conclusions describe for the first 

time a quantifiable difference between multiple carnivores and their feeding traces. The 

significance of these results lies not only in the analysis of Bed II fossil assemblages reported 

here but in the application and demonstration of the methodology, which is broadly applicable to 

archaeological assemblages regardless of age or geographic location.  

 Although this study was limited in the number of carnivore species included, the results 

demonstrate that this method is accurate and applicable for the identification of carnivore species 

from their feeding traces. Expansion of this project is required to establish a broader database, 

allowing for improved accuracy and confidence in this methodology.  

This thesis contributes new avenues for understanding the feeding behaviors of early 

hominins through the development of new methods for analysis of hominin-carnivore 

interactions. These interactions are critical to understanding meat acquisition strategies of early 

hominins as they encroached upon the larger carnivore guild, regularly consuming flesh and 

marrow from carcasses, leading to rapid encephalization evolution of the genus Homo. Future 

research will seek to expand this exploration, to increase the accuracy of carnivore identification, 

and to better understand the specific carnivores early hominins interacted with. Ultimately, we 

seek to illuminate the relationship between early hominins and carnivores at the time when 

animal source foods were introduced into hominin diet as it corresponds to the morphological 

and technological adaptions seen in the genus Homo. As it is through this research that seeks to 

better understand the precursors of our evolutions, shifting social organization, and the 
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technological advancement of our ancestors that we will better guide the future of our planet and 

the future of humanity today.  
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APPENDIX A – ALL MEASURED DATA FROM CAPTIVE AND WILD CARNIVORES 

  THREE DIMENSIONAL MEASUREMENTS PROFILE MEASUREMENTS 

CARNIVORE 

TAXA 
MARK ID SURFACE VOLUME 

MAXIMUM 

DEPTH 

MEAN 

DEPTH 

MAXIMUM 

LENGTH  

MAXIMUM 

WIDTH  

MAXIMUM 

DEPTH  
AREA WIDTH  ROUGHNESS 

OPENING 

ANGLE 

FLOOR 

RADIUS 

African Wild Dog DZD1-1 1.83E+06 1.60E+08 152.77 87.34 2548.56 1120.68 111.27 6.35E+04 1170.00 3.32 152.85 1506.81 

African Wild Dog DZD1-2 1.41E+06 1.03E+08 170.10 73.62 2231.62 796.32 164.43 6.16E+04 685.00 10.62 132.50 440.44 

African Wild Dog DZD1-4A 2.83E+06 2.96E+08 216.56 104.67 2488.69 1617.95 192.00 1.49E+05 1480.00 6.64 155.19 2209.57 

African Wild Dog DZD1-4B 2.97E+06 3.27E+08 222.44 110.26 2529.04 1522.95 264.59 2.38E+05 1635.00 20.83 150.67 1681.39 

African Wild Dog DZD1-5 5.13E+06 4.00E+08 160.04 78.00 5959.28 1130.40 142.25 8.20E+04 1370.00 2.56 167.43 4567.77 

African Wild Dog DZD2-1 1.79E+06 8.56E+07 114.52 47.71 2324.54 1094.37 103.23 4.65E+04 1030.00 4.39 166.14 8862.49 

African Wild Dog DZD4-2 4.48E+05 2.35E+07 116.14 52.54 949.43 555.98 74.66 1.47E+04 490.00 2.37 149.70 675.27 

African Wild Dog DZD4-3A 7.64E+05 5.27E+07 153.01 68.97 1727.03 626.35 151.74 5.18E+04 895.00 7.45 144.81 912.59 

African Wild Dog DZD4-3B 5.92E+05 4.12E+07 127.31 60.75 1249.72 584.48 93.48 2.91E+04 640.00 3.80 142.59 706.44 

African Wild Dog DZD4-4 2.89E+05 2.54E+07 158.55 87.85 883.85 383.25 103.53 2.10E+04 460.00 2.28 116.45 261.55 

African Wild Dog DZD4-5 6.77E+05 2.00E+07 77.34 29.56 1201.15 704.14 70.82 2.40E+04 915.00 3.55 163.90 2475.28 

African Wild Dog DZD4-6 1.01E+06 3.11E+07 74.19 30.86 1371.11 1096.13 66.85 3.45E+04 950.00 2.58 170.41 2560.81 

African Wild Dog DZD4-7 3.14E+05 6.98E+06 60.97 22.26 829.14 486.13 59.40 1.18E+04 430.00 1.95 162.95 700.08 

African Wild Dog DZD4-8 1.17E+06 5.14E+07 118.13 44.02 1895.51 896.04 107.78 4.92E+04 850.00 3.77 153.95 1187.57 

African Wild Dog DZD4-9 2.25E+06 1.54E+08 136.96 68.23 2407.39 1052.44 131.15 9.52E+04 1290.00 3.43 157.75 1757.20 

African Wild Dog DZD4-10 1.24E+06 7.07E+07 105.36 44.83 1710.68 811.54 99.44 5.21E+04 850.00 3.05 158.21 1214.95 

African Wild Dog DZD4-11 9.87E+05 4.28E+07 112.45 43.29 2740.38 653.08 117.28 3.70E+04 665.00 5.66 151.74 796.71 

African Wild Dog DZD4-12 2.14E+06 1.83E+08 222.28 85.69 2389.20 1244.71 206.03 1.32E+05 1345.00 3.05 144.37 1334.24 

African Wild Dog DZD4-14 3.74E+05 5.48E+06 54.50 14.65 1481.22 325.52 52.48 6.79E+03 340.00 2.61 156.93 536.03 

African Wild Dog DZD4-15A 3.58E+05 5.11E+06 47.86 14.24 1467.33 307.30 49.77 8.47E+03 360.00 1.99 162.63 608.61 

African Wild Dog DZD4-15B 3.89E+05 5.86E+06 61.15 15.05 1495.12 343.75 55.19 5.11E+03 320.00 3.22 151.23 463.46 

African Wild Dog DZD6-1 1.24E+06 6.03E+07 117.85 48.43 2870.47 590.17 127.54 4.77E+04 735.00 4.38 139.31 569.75 

African Wild Dog DZD7-1 7.01E+05 2.62E+07 92.08 37.45 1164.13 809.66 92.33 3.92E+04 830.00 2.11 153.91 1307.27 
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African Wild Dog DZD7-2 2.06E+05 5.40E+06 76.29 26.15 612.26 363.18 61.48 8.56E+03 315.00 2.90 144.95 271.17 

African Wild Dog DZD7-3 5.16E+05 1.42E+07 73.54 26.83 1157.82 573.18 68.59 2.01E+04 550.00 2.57 155.02 925.25 

African Wild Dog DZD7-4 6.42E+05 1.09E+07 52.26 16.89 1697.08 546.69 51.95 1.26E+04 525.00 2.68 166.20 1197.31 

African Wild Dog DZD8-1A 5.50E+05 2.47E+07 83.25 44.86 1106.38 643.35 98.37 4.90E+04 870.00 3.22 157.39 1114.74 

African Wild Dog DZD8-1B 2.47E+05 9.97E+06 77.66 40.28 615.02 496.32 53.10 1.27E+04 460.00 2.68 157.58 635.73 

African Wild Dog DZD8-1C 2.84E+05 1.30E+07 98.42 45.96 723.07 454.13 77.10 1.44E+04 380.00 1.91 153.30 470.14 

African Wild Dog DZB8-2A 2.79E+05 4.93E+06 47.95 17.67 810.57 567.17 43.22 9.54E+03 580.00 3.04 152.04 3683.77 

African Wild Dog DZB8-2B 3.38E+04 7.66E+05 43.82 22.64 223.56 191.42 35.12 3.95E+03 180.00 1.96 145.23 166.97 

Grey Wolf  WSN1-1 2.29E+06 1.08E+08 137.79 47.37 2387.33 1423.28 147.28 1.14E+05 1780.00 7.22 164.73 3786.26 

Grey Wolf  WSN2-1 8.93E+05 7.42E+07 224.92 83.04 1141.91 1049.63 216.63 1.35E+05 1240.00 8.88 141.16 1018.87 

Grey Wolf  WSN2-2 4.85E+05 2.48E+07 127.99 51.17 1099.15 549.96 139.35 7.15E+04 975.00 3.64 146.42 894.66 

Grey Wolf  WSN2-3 2.06E+06 9.36E+07 123.09 45.42 2018.95 1454.91 115.94 9.51E+04 1515.00 3.85 159.42 3366.62 

Grey Wolf  WSH1-2 2.92E+06 2.07E+08 147.21 70.84 1839.34 2112.37 162.62 2.21E+05 2055.00 6.74 164.65 4340.53 

Grey Wolf  WSH1-3 4.30E+06 5.78E+08 381.85 134.57 3136.30 1725.36 401.54 3.92E+05 2070.00 12.81 134.10 1417.46 

Grey Wolf  WSH1-4 4.15E+06 4.78E+08 324.23 115.22 3393.46 1844.67 331.90 2.77E+05 1675.00 9.69 132.61 1150.83 

Grey Wolf  WSH1-5 2.79E+06 1.73E+08 150.47 61.99 2625.05 1163.29 158.42 1.06E+05 1610.00 7.07 156.65 4149.35 

Grey Wolf  WSH1-7 8.72E+05 5.96E+07 156.06 68.35 1620.73 974.32 163.27 9.08E+04 1190.00 5.51 150.50 1202.62 

Grey Wolf  WSH1-8 1.54E+06 7.77E+07 140.64 50.57 3277.93 789.47 144.03 5.02E+04 955.00 4.30 147.00 972.05 

Grey Wolf  WSH1-9 1.98E+06 1.16E+08 141.38 58.48 2514.72 988.30 133.29 6.99E+04 1195.00 2.57 158.49 1764.41 

Grey Wolf  WSH1-10 3.86E+06 2.61E+08 188.01 67.72 3216.49 1558.85 211.50 1.88E+05 1720.00 8.24 153.13 1951.53 

Grey Wolf  WSH1-13 9.58E+05 5.20E+07 155.48 54.24 1108.25 1104.31 121.18 5.45E+04 900.00 6.61 146.92 859.89 

Grey Wolf  WSH3-1 1.11E+06 3.89E+07 109.27 35.16 4626.59 479.27 119.99 2.51E+04 545.00 7.47 141.61 475.08 

Grey Wolf  WST1-1 1.39E+06 4.11E+07 69.61 29.49 1913.90 761.12 70.05 2.69E+04 900.00 1.78 148.18 3112.31 

Grey Wolf  WST1-2A 3.50E+05 1.26E+07 85.36 36.15 800.61 583.42 87.66 2.96E+04 620.00 2.64 149.95 645.39 

Grey Wolf  WST1-2B 2.90E+05 9.77E+06 89.02 33.71 742.06 468.93 92.72 2.46E+04 670.00 2.26 153.56 713.52 

Grey Wolf  WST1-7 1.10E+06 1.59E+07 49.68 14.51 3213.06 477.40 62.40 2.06E+04 710.00 2.05 163.76 1529.92 

Grey Wolf  WST1-8 2.95E+05 4.33E+06 46.93 14.69 640.65 707.26 41.67 9.56E+03 585.00 2.69 166.15 1479.03 

Grey Wolf  WST1-9 3.38E+05 8.26E+06 69.31 24.43 724.81 687.32 82.88 2.27E+04 530.00 3.09 146.49 483.04 

Grey Wolf  WST1-11 2.55E+06 9.31E+07 110.07 36.52 3872.67 967.99 98.57 4.80E+04 1390.00 2.92 158.05 9218.50 

Grey Wolf  WST1-12 1.02E+06 7.67E+07 169.82 75.18 1065.68 1110.57 119.47 6.22E+04 1045.00 4.85 154.12 1262.51 
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Grey Wolf  WST1-15 1.73E+06 1.67E+08 168.77 96.31 1418.31 2082.20 189.87 1.61E+05 1415.00 6.35 166.81 3423.53 

Grey Wolf  WST1-17 6.67E+05 2.13E+07 92.72 31.86 1075.18 766.70 93.02 3.35E+04 715.00 4.08 151.11 748.51 

Grey Wolf  WST1-18A 6.01E+05 2.40E+07 84.12 39.94 1060.34 875.30 81.33 4.06E+04 995.00 2.37 160.87 1501.21 

Grey Wolf  WST1-18B 5.14E+05 1.76E+07 73.12 34.17 984.59 763.81 73.12 3.25E+04 785.00 3.01 160.50 1182.38 

Grey Wolf  WST1-21 3.05E+06 3.18E+08 247.47 104.50 2755.85 1639.66 258.59 2.25E+05 1650.00 9.68 143.64 1403.27 

Grey Wolf  WST1-23 1.91E+06 1.42E+08 180.57 74.25 1730.39 1325.04 182.73 1.50E+05 2115.00 7.33 160.20 3201.08 

Grey Wolf  WST1-3 3.86E+05 2.08E+07 104.29 53.94 991.98 632.37 110.37 3.42E+04 520.00 5.32 140.34 444.28 

Spotted Hyena* NGO25-3-1 6.19E+05 3.10E+08 169.00 50.12 4267.00 2332.55 174.78 2.09E+05 2395.00 8.71 163.58 4767.01 

Spotted Hyena* NGO25-3-3 2.66E+06 1.72E+08 159.98 64.76 4316.62 816.00 146.94 6.18E+04 850.00 5.01 146.73 832.28 

Spotted Hyena* NGO25-3-7 1.96E+06 7.59E+07 96.11 38.63 1949.33 1582.92 114.40 6.33E+04 1005.00 2.97 159.35 1478.61 

Spotted Hyena* NGO25-6-2 5.22E+06 5.64E+08 267.93 107.93 2589.39 2826.95 241.88 4.10E+05 2815.00 5.21 161.76 4582.58 

Spotted Hyena* NGO25-7-1 5.08E+06 3.52E+08 225.35 69.25 5013.29 1366.49 214.74 1.41E+05 1455.00 3.36 150.98 1651.11 

Spotted Hyena* NGO25-18-1 3.31E+06 2.11E+08 215.62 63.90 3163.37 2199.23 208.59 2.08E+05 2150.00 9.29 155.91 3544.51 

Spotted Hyena* NGO25-18-2 1.04E+07 7.06E+08 184.13 67.74 5968.97 2342.90 196.45 2.82E+05 2520.00 6.25 162.23 4463.52 

Spotted Hyena* NGO25-21-1 2.73E+06 1.36E+08 114.40 49.67 2448.59 1440.71 109.22 7.70E+04 1275.00 2.03 163.36 2458.72 

Spotted Hyena* NGO25-22-1 4.47E+05 3.24E+07 163.83 72.46 842.63 764.00 139.72 5.94E+04 775.00 6.15 138.18 557.44 

Spotted Hyena* NGO25-14-1 2.72E+06 3.86E+08 317.90 142.05 3555.33 1255.44 302.53 2.38E+05 1465.00 4.39 136.55 1055.39 

Spotted Hyena* NGO25-14-2 7.57E+05 5.32E+07 172.26 70.25 1215.48 945.44 177.67 8.78E+04 1015.00 3.71 135.44 745.97 

Spotted Hyena* NGO25-14-3 5.25E+06 1.14E+09 592.78 217.58 3349.72 1887.57 575.99 5.14E+05 2065.00 20.71 117.50 1142.10 

Spotted Hyena* NGO25-14-5 3.16E+06 4.89E+08 367.72 154.65 2476.15 1328.26 369.16 2.87E+05 1500.00 6.08 126.30 914.23 

Spotted Hyena* NGO25-10-2 4.29E+06 3.55E+08 222.67 82.72 5359.92 1217.27 252.90 1.84E+05 1455.00 5.09 141.38 1218.83 

Spotted Hyena* NGO25-10-3 6.52E+06 8.17E+08 296.03 125.38 5209.10 2758.19 299.32 4.23E+05 2750.00 2.93 151.36 4425.51 

Spotted Hyena* NGO25-1-1 4.02E+06 2.43E+08 180.99 60.29 3971.66 1583.73 164.65 9.60E+04 1205.00 7.88 143.23 951.29 

Spotted Hyena* NGO25-1-2 2.00E+06 6.58E+07 104.98 32.92 4026.02 823.81 103.91 2.06E+04 690.00 9.17 149.04 957.81 

Spotted Hyena* NGO25-1-4 5.96E+06 2.74E+08 101.12 45.96 4777.30 2808.64 92.54 9.55E+04 2845.00 4.45 170.57 18191.97 

Spotted Hyena* NGO25-1-5 1.26E+06 4.34E+07 82.13 34.45 1680.25 1370.79 86.17 3.44E+04 755.00 2.81 159.45 929.77 

Spotted Hyena* NGO25-2 - 1 3.02E+06 1.90E+08 209.49 62.96 4320.04 1377.22 170.16 4.66E+04 455.00 4.54 82.14 244.91 

Spotted Hyena* NGO25-2 - 2A 3.49E+06 5.00E+08 364.23 143.36 3644.29 1463.64 346.69 1.77E+05 980.00 9.60 106.07 490.44 

Spotted Hyena* NGO25-2 - 2B 9.98E+05 5.47E+07 189.92 54.74 1777.57 941.88 195.75 9.08E+04 910.00 8.79 135.62 589.11 

Spotted Hyena* NGO25-2 - 3A 3.31E+06 1.01E+08 106.21 30.56 3852.18 2042.71 90.67 2.83E+04 850.00 4.84 157.14 1315.58 
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Spotted Hyena* NGO25-2 - 3B 1.09E+06 4.76E+07 128.57 43.75 2307.12 759.98 130.11 4.17E+04 660.00 6.70 132.51 465.78 

Spotted Hyena* NGO25-2 - 3C 7.44E+05 3.02E+07 98.44 40.51 1565.14 694.23 90.44 2.50E+04 565.00 3.66 145.22 508.01 

Spotted Hyena* NGO25-2 - 4A 3.94E+05 1.67E+07 126.34 42.45 706.52 857.35 119.70 4.70E+04 840.00 4.45 146.99 827.30 

Spotted Hyena* NGO25-2 - 4B 1.24E+05 3.59E+06 63.40 28.87 592.38 282.20 63.23 9.75E+03 295.00 2.24 139.50 226.13 

Spotted Hyena* NGO25-2 - 5 1.77E+06 9.86E+07 148.60 55.57 3522.16 1263.57 135.27 7.78E+04 1300.00 5.56 160.69 2288.07 

Spotted Hyena* NGO25-1 - 6 2.66E+06 2.98E+08 261.58 111.68 1980.23 1881.95 246.41 2.40E+05 1995.00 13.88 144.27 2741.71 

Spotted Hyena DZHP1-1 8.22E+06 1.29E+09 272.72 157.14 4214.52 2139.35 150.26 1.67E+05 2340.00 5.99 168.84 6167.43 

Spotted Hyena DZHP1-2 8.71E+05 4.43E+07 124.84 50.91 1125.83 968.01 129.10 7.22E+04 1000.00 6.12 150.90 1138.32 

Spotted Hyena DZHP1-3 1.03E+06 8.86E+07 200.15 85.68 1319.70 931.22 184.89 7.64E+04 1030.00 6.38 140.35 878.22 

Spotted Hyena DZHP2-1 7.40E+06 1.35E+09 482.45 182.81 3288.04 3037.92 472.81 9.53E+05 3220.00 11.38 122.33 7569.14 

Spotted Hyena DZHP2-2 5.00E+06 5.07E+08 286.26 101.29 3148.47 2208.34 292.77 2.98E+05 2270.00 12.18 154.88 2764.70 

Spotted Hyena DZHP3-1A 3.39E+06 2.10E+08 226.45 62.10 1644.73 1730.05 202.59 1.15E+05 1365.00 5.01 144.50 1630.70 

Spotted Hyena DZHP3-1B 2.70E+06 1.68E+08 191.53 62.23 2833.53 981.61 179.42 1.17E+05 1545.00 4.82 149.70 1655.59 

Spotted Hyena DZHP3-2 4.93E+06 4.64E+08 249.24 94.24 4255.88 1624.56 269.66 3.25E+05 2055.00 6.56 122.31 2418.80 

Spotted Hyena DZHP4-1 4.96E+06 4.85E+08 267.75 97.76 3702.18 1916.45 281.21 3.11E+05 2160.00 9.37 138.60 2591.75 

Spotted Hyena DZHP4-3 3.66E+06 2.92E+08 182.66 79.79 2845.76 1760.91 206.49 1.91E+05 1660.00 8.67 153.20 1867.69 

Spotted Hyena DZHP5-1 1.21E+07 8.31E+08 197.69 68.63 11203.91 1431.17 181.47 1.33E+05 1515.00 4.13 150.27 1795.53 

Spotted Hyena DZHP5-2 7.64E+06 4.96E+08 150.02 59.48 7680.75 1164.36 144.41 1.05E+05 1470.00 3.28 158.20 2790.63 

Spotted Hyena DZHP5-3 3.17E+06 1.60E+08 102.34 50.33 4157.58 897.56 107.35 7.74E+04 1425.00 2.44 166.13 3785.73 

Spotted Hyena DZHP5-5 3.25E+06 2.12E+08 164.81 65.23 3119.15 1294.85 175.95 1.20E+05 1460.00 2.90 153.24 1638.69 

Spotted Hyena DZHP5-7 9.07E+06 8.47E+08 219.49 93.43 5529.54 2386.25 191.83 2.29E+05 2620.00 5.73 161.96 4922.99 

Spotted Hyena DZHP5-11 1.33E+07 1.12E+08 202.67 83.55 1627.91 721.68 205.35 1.12E+05 1040.00 7.68 148.21 1013.92 

Spotted Hyena DZHP5-12A 8.30E+05 1.88E+07 59.60 22.66 2355.85 613.77 61.39 1.59E+04 580.00 3.27 163.10 958.97 

Spotted Hyena DZHP5-13 2.53E+06 1.09E+08 121.41 43.01 3674.14 775.04 132.48 6.49E+04 1180.00 3.41 153.71 1962.43 

Spotted Hyena DZHP5-15 6.89E+05 3.82E+07 117.76 55.42 801.29 1054.56 115.68 6.18E+04 1060.00 4.52 153.20 1201.19 

Spotted Hyena DZHP5-16 3.16E+06 3.29E+08 268.33 104.18 2161.22 1901.36 239.04 2.04E+05 1985.00 15.13 150.93 2140.47 

Spotted Hyena DZHP5-17 1.04E+07 2.10E+09 493.03 203.31 4735.33 2980.85 479.02 7.85E+05 3255.00 6.88 146.72 3125.76 

Spotted Hyena DZHP5-18 1.47E+06 8.39E+11 149.71 60.43 1128.09 1096.05 136.08 7.94E+04 1155.00 136.74 136.74 1907.98 

Spotted Hyena DZHP6-1A 6.14E+05 1.98E+07 80.35 32.22 959.92 916.31 72.65 3.42E+04 860.00 3.08 162.61 1519.75 

Spotted Hyena DZHP6-1B 2.44E+06 7.98E+07 86.76 32.76 3568.05 1081.82 85.36 6.65E+04 1785.00 8.48 173.14 9290.13 
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Spotted Hyena DZHP6-4 2.14E+07 4.77E+09 595.21 223.22 8309.44 3810.50 506.87 9.55E+05 3685.00 14.18 148.80 3617.70 

Spotted Hyena DZHP6-5 8.70E+06 1.41E+09 448.40 162.33 3814.52 2343.27 452.69 6.86E+05 3090.00 10.43 149.52 3545.18 

Spotted Hyena DZHP6-6 9.73E+06 2.42E+09 655.89 248.27 4455.00 2440.24 580.70 6.19E+05 3250.00 20.21 142.73 7327.62 

Spotted Hyena DZHP6-7 1.22E+07 2.04E+09 412.97 167.01 4199.33 3375.58 358.64 4.75E+05 2680.00 14.02 149.89 3346.94 

Spotted Hyena DZHP6-8 1.91E+06 2.42E+08 242.75 126.94 1837.84 1234.45 239.18 3.09E+05 1940.00 8.01 154.44 2419.89 

Spotted Hyena DZHP9-1 1.84E+06 2.17E+08 220.32 117.67 1999.34 1281.72 207.36 1.63E+05 1390.00 2.95 130.21 1362.20 

Striped Hyena DZHT1-2 1.30E+07 1.17E+09 252.74 89.67 9324.77 2020.67 245.93 2.17E+05 1895.00 6.45 155.75 2359.01 

Striped Hyena DZHT1-3 1.23E+07 8.35E+08 173.50 67.97 9557.73 1734.40 173.75 1.42E+05 1705.00 5.77 155.12 2944.49 

Striped Hyena DZHT1-4 7.69E+06 1.57E+08 85.87 20.38 8070.27 1145.65 91.71 3.94E+04 1270.00 3.14 165.58 3497.30 

Striped Hyena DZHT1-5 5.60E+07 2.77E+08 141.52 49.41 7957.42 1297.51 132.55 5.94E+04 1100.00 5.48 161.40 1859.26 

Striped Hyena DZHT1-6 4.79E+06 1.35E+08 123.56 28.25 11501.28 1095.80 125.84 6.14E+04 1065.00 5.19 162.98 1928.80 

Striped Hyena DZHT1-7 5.48E+06 2.46E+08 178.82 44.97 5824.42 1453.63 172.18 8.86E+04 1340.00 4.79 151.65 1512.89 

Striped Hyena DZHT1-8 7.18E+06 4.13E+08 171.99 51.51 8154.06 1024.43 191.25 7.37E+04 1130.00 7.93 148.74 1794.22 

Striped Hyena DZHT1-9 3.04E+06 2.41E+08 218.03 79.27 1985.36 1863.96 212.79 1.65E+05 1815.00 10.85 159.86 2560.65 

Striped Hyena DZHT1-10 4.14E+07 7.56E+09 507.30 182.51 16038.27 4263.77 601.46 1.35E+06 4600.00 16.48 151.47 5264.94 

Striped Hyena DZHT1-11 5.36E+06 3.58E+08 193.39 66.82 3178.40 2165.33 214.69 2.05E+05 2505.00 8.51 168.47 6815.64 

Striped Hyena DZHT2-1 2.93E+07 3.56E+09 293.81 121.45 14237.68 2172.54 268.60 2.64E+05 2130.00 16.35 165.85 4979.85 

Striped Hyena DZHT2-2A 1.43E+06 5.49E+07 105.00 38.48 2283.61 1033.69 99.59 5.13E+04 1020.00 3.48 163.67 2136.92 

Striped Hyena DZHT2-2B 9.37E+05 3.69E+07 94.32 39.41 1457.21 582.31 80.73 2.43E+04 565.00 2.31 146.79 563.07 

Striped Hyena DZHT2-3 7.49E+05 4.69E+07 158.80 62.64 1191.55 911.85 158.90 6.69E+04 990.00 6.48 154.38 963.50 

Striped Hyena DZHT2-4 2.11E+06 8.94E+07 94.43 42.46 2948.54 1046.01 117.43 6.55E+04 1150.00 4.39 160.61 2060.22 

Striped Hyena DZHT2-5 3.52E+06 6.30E+07 81.48 17.90 5313.80 972.58 86.39 3.00E+04 910.00 6.02 167.12 2448.24 

Striped Hyena DZHT2-6 3.98E+06 1.06E+08 90.26 26.64 4500.20 1054.75 99.29 7.08E+04 1675.00 6.05 168.46 4649.48 

Striped Hyena DZHT2-7 1.76E+06 1.25E+08 175.67 71.20 1863.17 1101.92 186.25 1.18E+05 1135.00 3.67 155.58 1371.60 

Striped Hyena DZHT2-8 3.12E+06 1.71E+08 151.54 54.82 3334.27 1256.20 125.36 5.64E+04 1020.00 3.77 156.65 1386.74 

Striped Hyena DZHT2-9 5.24E+06 4.68E+08 241.37 89.31 3726.74 1837.28 211.74 1.40E+05 1470.00 10.39 159.24 3319.66 

Striped Hyena DZHT2-10 2.37E+07 2.70E+09 247.59 113.96 12870.53 2549.76 248.31 2.10E+05 1905.00 15.48 156.36 2735.89 

Striped Hyena DZHT3-1A 1.59E+06 7.57E+07 121.62 47.47 2447.77 753.70 130.45 5.64E+04 925.00 6.63 152.90 977.39 

Striped Hyena DZHT3-1B 9.88E+05 3.59E+07 93.13 36.32 1765.26 722.64 99.56 4.32E+04 925.00 3.10 163.85 3286.82 

Striped Hyena DZHT3-2 1.06E+07 1.32E+09 382.43 124.51 5786.80 2716.25 321.21 2.87E+05 2370.00 8.13 127.42 5952.96 
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Striped Hyena DZHT3-3 7.16E+06 6.06E+08 224.82 84.68 3901.92 3028.46 192.54 2.68E+05 3130.00 8.85 165.48 8736.59 

Striped Hyena DZHT3-4A 2.55E+06 1.70E+08 209.98 66.51 2229.30 1412.46 203.18 1.47E+05 1830.00 15.77 157.05 2811.31 

Striped Hyena DZHT3-4B 2.89E+06 1.90E+08 141.18 65.68 3135.52 1249.03 151.51 1.15E+05 1605.00 5.38 160.39 2347.30 

Striped Hyena DZHT3-5 6.10E+06 1.07E+09 359.30 175.83 3189.35 2273.81 367.06 4.71E+05 2820.00 8.39 147.86 2906.18 

Striped Hyena DZHT3-7A 2.97E+06 4.26E+08 316.66 143.50 2242.34 1411.86 339.80 2.86E+05 1810.00 10.47 144.17 1637.59 

Striped Hyena DZHT3-7B 1.38E+06 5.61E+07 93.05 40.50 1507.17 1520.08 86.55 4.17E+04 1015.00 4.58 164.61 2089.81 

African Lion* A1 2.15E+06 5.89E+07 73.97 27.36 2451.92 766.84 65.85 2.00E+04 835.00 3.05 165.05 1767.36 

African Lion* A2 5.53E+06 3.45E+08 128.78 62.40 5537.56 1395.55 75.02 5.16E+04 1480.00 3.46 171.73 5806.12 

African Lion* A3 4.57E+06 2.29E+08 132.61 50.01 5479.61 1095.60 82.64 3.18E+04 800.00 3.83 165.72 2102.62 

African Lion* B1 2.11E+06 4.50E+07 66.08 21.33 9083.30 407.91 56.47 1.31E+04 490.00 2.39 156.77 2015.21 

African Lion* B2 2.49E+06 5.26E+07 57.63 21.08 6235.34 578.13 51.74 1.36E+04 500.00 2.40 161.33 830.40 

African Lion* C1 1.55E+06 3.99E+07 85.74 25.77 3030.01 625.59 96.91 3.67E+04 725.00 3.67 150.74 866.78 

African Lion* C2 3.32E+05 1.65E+07 100.26 49.62 801.10 475.14 104.41 2.98E+04 520.00 5.00 138.32 388.19 

African Lion* E1 1.47E+06 2.68E+07 56.77 18.27 3500.72 567.67 52.85 1.65E+04 580.00 2.97 160.27 893.37 

African Lion* E2 1.90E+06 4.08E+07 78.60 21.46 4685.78 515.80 70.17 1.63E+04 455.00 1.92 147.15 426.64 

African Lion* E3 3.11E+06 6.51E+07 64.77 20.90 7513.43 953.56 73.59 3.79E+04 855.00 3.02 165.26 1775.78 

African Lion* I1 1.65E+06 3.38E+07 66.68 20.45 3066.75 853.44 77.29 2.30E+04 580.00 3.52 143.26 840.31 

African Lion* J1 8.10E+06 3.77E+08 175.58 46.52 9062.31 1123.90 200.60 1.03E+05 1160.00 5.90 142.54 1030.48 

African Lion* J2 6.73E+06 5.36E+08 201.39 79.67 7024.37 1387.35 205.29 1.56E+05 1250.00 4.36 147.53 1170.37 

African Lion* K1 1.21E+06 8.62E+07 160.06 71.36 1851.20 1017.51 163.52 1.06E+05 1050.00 6.08 150.19 1142.23 

African Lion* K2 1.34E+06 2.57E+07 67.96 19.25 3278.61 662.68 70.61 2.27E+04 545.00 4.13 160.71 835.02 

African Lion* L1 6.44E+06 4.52E+08 219.71 70.19 7395.96 1288.27 226.70 1.26E+05 1295.00 5.32 138.16 993.66 

African Lion* N1 2.69E+06 8.56E+07 89.05 31.81 6043.11 815.13 85.30 3.49E+04 695.00 1.51 154.21 807.87 

African Lion* N2 3.94E+06 9.79E+07 91.52 24.85 7946.21 762.06 84.90 3.43E+04 745.00 2.78 150.24 770.89 

African Lion* N3 4.98E+06 1.85E+08 105.37 37.08 6877.84 916.79 115.47 5.12E+04 1200.00 2.33 154.49 2032.16 

African Lion* O1 2.11E+06 7.60E+07 84.27 35.99 4338.88 561.90 50.57 1.56E+04 550.00 2.09 162.91 1046.11 

African Lion* O2 4.26E+06 1.20E+08 74.41 28.27 6161.08 864.36 56.93 2.67E+04 905.00 3.43 168.55 4416.67 

African Lion* O3 3.02E+06 1.38E+08 147.45 45.70 5533.27 964.82 162.35 7.24E+04 1135.00 5.28 158.27 1667.40 

African Lion* O4 9.06E+06 7.24E+08 206.98 79.10 7922.34 1944.66 231.14 1.34E+05 1270.00 6.41 143.93 1071.72 

African Lion* O5 1.03E+06 9.03E+07 234.70 87.71 1218.44 1147.91 256.81 1.73E+05 1325.00 5.28 141.58 1159.03 
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African Lion* P1 3.00E+06 2.88E+08 225.69 96.03 4861.98 1185.50 237.56 1.67E+05 1345.00 3.67 146.29 1121.40 

African Lion* P2 3.92E+06 4.37E+08 246.61 11.46 5278.23 1009.86 206.73 1.10E+05 975.00 6.05 149.17 938.15 

African Lion* Q1 1.09E+07 2.41E+09 460.43 220.18 6948.70 2481.36 410.37 4.52E+05 2185.00 19.43 139.72 1851.40 

African Lion* S1 2.67E+06 1.87E+08 167.48 69.88 3090.43 1194.00 168.61 1.13E+05 1205.00 3.27 149.78 1255.65 

African Lion* S2 1.15E+06 8.14E+07 165.55 10.66 1105.91 1310.29 165.28 1.27E+05 1335.00 5.24 149.55 1776.02 

African Lion DZL1-1 1.04E+06 1.04E+08 237.25 100.27 1331.03 1077.22 219.77 8.99E+04 810.00 12.43 110.03 436.01 

African Lion DZL1-4 2.11E+06 6.00E+07 77.68 28.49 3602.80 873.19 77.92 2.07E+04 625.00 3.38 163.96 1087.42 

African Lion DZL1-6 4.28E+06 2.64E+08 170.91 61.70 6679.88 1275.09 143.19 6.20E+04 1070.00 4.68 148.05 1411.68 

African Lion DZL1-7A 2.84E+05 6.23E+06 54.30 21.95 630.40 536.82 53.17 1.36E+04 480.00 1.86 153.69 775.18 

African Lion DZL1-7B 3.30E+05 8.56E+06 73.38 25.93 847.57 480.53 78.08 2.20E+04 480.00 1.37 147.77 501.45 

African Lion DZL1-7C 2.99E+06 9.74E+07 101.19 32.56 5391.34 640.49 99.26 3.47E+04 775.00 4.18 156.95 1017.64 

African Lion DZL1-7D 8.06E+05 2.40E+07 76.72 29.74 1857.38 698.64 73.16 2.57E+04 775.00 2.16 160.06 1282.34 

African Lion DZL1-7E 6.63E+05 1.81E+07 67.38 27.31 1211.38 591.84 70.38 2.73E+04 715.00 1.85 158.21 1240.77 

African Lion DZL1-10 2.04E+06 3.24E+07 58.21 15.93 3840.83 600.17 65.14 1.88E+04 780.00 3.76 161.67 1591.91 

African Lion DZL2-3 2.22E+06 6.04E+07 74.50 29.57 3852.22 912.57 81.24 2.08E+04 655.00 3.85 183.15 1182.34 

African Lion DZL3-2 1.89E+05 4.65E+06 76.11 24.57 503.24 403.86 78.43 1.47E+04 430.00 1.47 141.96 368.14 

African Lion DZL3-3 1.86E+05 5.05E+06 67.60 27.15 544.06 500.00 65.35 1.53E+04 395.00 1.25 141.31 330.08 

African Lion DZL3-4 9.18E+05 1.51E+07 54.55 16.42 1972.41 585.02 25.74 1.37E+03 440.00 1.43 163.97 17847.49 

African Lion DZL3-5B 6.22E+05 1.17E+07 48.84 18.80 2596.23 359.96 44.00 6.50E+03 330.00 1.22 145.63 310.23 

African Lion DZL3-5C 5.98E+05 1.69E+07 70.84 28.70 2785.11 300.34 63.05 1.00E+04 285.00 1.56 119.52 169.11 

African Lion DZL3-5D 4.95E+05 8.04E+06 43.61 16.25 1930.96 313.69 36.40 5.29E+03 265.00 1.09 144.75 280.92 

African Lion DZL3-5E 5.85E+05 7.39E+06 41.63 12.64 4514.74 214.93 40.36 1.68E+03 175.00 0.45 156.06 230.73 

African Lion DZL3-5F 5.02E+05 6.98E+06 64.03 13.90 2963.64 234.53 58.13 5.54E+03 285.00 2.84 136.36 290.99 

African Lion DZL3-6 1.20E+06 1.10E+08 209.69 91.82 2215.47 777.01 202.53 1.02E+05 900.00 4.46 126.77 547.87 

African Lion DZL3-7 5.72E+05 2.60E+07 95.87 45.49 1969.23 363.16 86.82 2.38E+04 575.00 3.08 127.13 516.76 

African Lion DZL3-8 4.96E+05 1.36E+07 65.25 27.30 1886.76 294.29 64.27 8.38E+03 400.00 1.81 143.94 365.51 

African Lion DZL3-9 6.97E+05 4.39E+07 164.05 62.98 1109.63 781.50 156.33 6.30E+04 945.00 6.43 143.55 785.09 

African Lion DZL3-12A 2.45E+05 6.73E+06 61.37 27.41 1008.24 254.11 67.80 1.05E+04 320.00 2.01 132.03 216.33 

African Lion DZL3-12B 2.54E+05 5.38E+06 54.79 21.17 994.92 389.60 54.15 7.72E+03 315.00 2.04 147.70 313.89 

African Lion DZL3-12C 2.47E+05 8.40E+06 76.19 33.96 587.37 466.93 79.84 2.52E+04 575.00 3.94 146.31 526.25 
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African Lion DZL3-12D 1.45E+05 4.17E+06 60.92 28.82 570.98 277.01 45.42 7.39E+03 345.00 2.45 154.44 462.77 

African Lion DZL3-13A 6.57E+05 2.03E+07 75.54 30.97 1829.81 545.91 41.65 9.94E+03 565.00 1.35 165.64 1229.83 

African Lion DZL3-13B 1.24E+06 5.54E+07 98.89 44.80 3724.34 585.01 75.39 2.72E+04 625.00 2.87 149.51 769.69 

African Lion DZL3-13C 2.88E+05 1.46E+07 134.86 50.63 597.79 609.96 122.39 4.17E+04 700.00 3.58 143.51 613.59 

Nile Crocodile SCP4.1 1A 9.36E+06 9.61E+08 327.32 102.70 10117.18 1620.12 314.14 2.28E+05 1700.00 21.54 139.52 1347.34 

Nile Crocodile SCP4.1 1B 7.29E+06 8.36E+08 325.05 114.73 7273.36 1703.94 313.43 2.84E+05 1620.00 12.63 132.60 1135.76 

Nile Crocodile FEM 1A 1.59E+07 1.17E+09 222.71 73.50 11347.61 1645.79 228.69 2.50E+05 2180.00 11.76 158.45 3174.76 

Nile Crocodile FEM 1B 9.21E+06 1.01E+09 202.00 109.13 5818.99 2142.63 211.35 1.92E+05 1600.00 4.79 153.92 2026.88 

Nile Crocodile FEM 1C 6.53E+06 5.45E+08 160.34 83.45 5181.27 1398.86 156.37 1.46E+05 1750.00 10.17 158.73 2469.87 

Nile Crocodile HUM4.2 3 5.85E+05 1.71E+07 76.57 29.25 3243.23 321.12 77.17 9.52E+03 255.00 2.15 121.46 142.81 

Nile Crocodile HUM4.2 4 6.28E+06 7.92E+08 293.93 126.10 5138.83 1694.62 297.61 2.91E+05 1905.00 10.31 147.37 1869.30 

Nile Crocodile HUM4.2 6A 1.50E+06 5.37E+07 77.07 35.79 1665.02 1197.99 85.14 5.87E+04 1315.00 3.68 167.19 3059.76 

Nile Crocodile HUM4.2 6B 1.35E+06 6.26E+07 152.96 46.20 2180.24 1279.99 146.34 5.45E+04 775.00 6.73 150.74 749.10 

Nile Crocodile HUM4.2 7 8.15E+06 8.74E+08 310.60 107.27 3947.20 3104.19 310.11 4.85E+05 4495.00 9.61 156.90 19148.23 

Nile Crocodile HUM4.2 8 1.97E+07 7.54E+09 1097.59 383.08 11409.17 3410.24 111.06 2.16E+06 3750.00 16.71 115.38 1918.86 

Nile Crocodile HUM4.2 9 4.10E+06 1.10E+08 91.56 26.91 9151.51 670.86 95.00 3.43E+04 825.00 2.63 150.88 899.11 

Nile Crocodile HUM4.2 10 2.15E+06 1.23E+08 154.73 57.12 3027.15 984.03 156.52 7.34E+04 1080.00 3.13 143.22 1499.10 

Nile Crocodile KRM4 1 1.20E+07 2.22E+09 402.60 185.18 10819.70 1761.01 373.05 3.13E+05 1670.00 18.60 132.80 1170.12 

Nile Crocodile RAD4.3 1 9.99E+06 9.58E+08 315.16 95.85 12251.63 1909.03 300.69 2.79E+05 2075.00 11.44 135.34 2340.72 

Nile Crocodile RAD4.3 3A 7.77E+06 1.87E+09 562.67 240.77 3978.42 2952.22 552.10 8.80E+05 2740.00 12.10 146.31 3696.23 

Nile Crocodile RAD4.3 3B 2.26E+06 2.35E+08 331.67 104.25 1740.52 1922.32 331.44 2.44E+05 1800.00 17.34 137.74 1538.88 

Nile Crocodile RAD4.3 4 6.28E+06 1.65E+09 642.68 262.47 3421.55 2696.09 626.77 9.19E+05 2850.00 13.03 131.31 1984.42 

Nile Crocodile RAD4.3 5 7.22E+06 1.07E+09 486.59 148.41 3012.22 3399.95 492.90 7.56E+05 3800.00 15.86 153.91 5565.28 

Nile Crocodile RAD4.3 6 4.97E+06 2.42E+08 128.74 48.71 2662.83 3720.65 133.49 1.68E+05 2300.00 5.34 168.26 6463.34 

Nile Crocodile RAD4.3 7 1.44E+07 3.59E+09 562.21 249.00 7054.92 3047.10 553.27 9.35E+05 2950.00 12.53 136.24 2117.63 

Nile Crocodile RAD4.3 9 7.28E+06 1.48E+08 73.75 20.31 10630.12 1169.57 72.65 3.89E+04 1350.00 2.56 170.86 5871.13 

Nile Crocodile RAD4.3 10 6.51E+06 1.65E+09 674.55 252.49 4093.53 2940.70 668.93 1.10E+06 2900.00 23.68 131.71 1970.03 

Nile Crocodile RAD4.3 11 4.03E+06 1.31E+08 111.84 32.54 2945.09 2421.60 118.09 1.47E+05 2300.00 4.98 170.35 7827.87 

Nile Crocodile RAD4.3 12 2.34E+06 2.00E+08 217.29 85.24 3802.23 1130.26 224.14 1.21E+05 1190.00 6.01 135.71 1059.42 

Nile Crocodile RAD4.3 13 5.58E+05 2.06E+07 85.53 36.88 1284.62 688.44 84.43 2.78E+04 765.00 4.75 147.23 987.19 
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Nile Crocodile RAD4.3 14 1.15E+07 8.97E+08 214.29 78.12 6211.48 4067.54 215.94 1.75E+05 2600.00 15.00 161.92 5397.40 

Nile Crocodile RAD4.3 15 1.33E+07 3.05E+09 588.23 229.45 5660.53 3398.20 609.85 9.51E+05 3795.00 13.01 142.21 3350.86 

Nile Crocodile RAD4.3 16A 3.96E+06 5.00E+08 343.69 125.99 2995.21 2200.98 359.92 3.25E+05 1730.00 23.72 133.50 1336.68 

Nile Crocodile RAD4.3 16B 2.69E+06 3.03E+08 338.61 112.51 2543.55 1834.22 340.17 3.04E+05 1920.00 18.15 139.28 1658.46 

Nile Crocodile RAD4.3 17 8.24E+06 6.12E+08 219.30 74.25 11079.79 1381.59 212.47 1.94E+05 1550.00 4.19 147.04 1511.39 

Nile Crocodile RAD4.3 18 9.14E+05 7.77E+07 241.69 84.95 1221.40 980.02 217.67 9.67E+04 1185.00 9.95 123.16 1138.42 

Nile Crocodile RAD4.3 21 1.45E+06 3.49E+07 83.64 24.04 2784.00 1058.39 96.43 4.41E+04 1230.00 4.08 162.80 2603.44 

Nile Crocodile RAD4.3 23A 1.64E+06 8.05E+07 180.34 49.17 2432.09 988.73 176.66 8.22E+04 1015.00 4.75 146.92 1057.57 

Nile Crocodile RAD4.3 23B 4.51E+05 9.89E+06 60.55 21.96 2428.82 433.42 55.68 1.25E+04 425.00 1.72 149.19 421.73 

Nile Crocodile RAD4.3 24 1.06E+06 2.79E+07 69.04 26.21 3609.61 940.90 60.10 3.10E+04 960.00 1.39 163.88 2833.52 

Nile Crocodile RAD4.3 27 1.46E+07 4.67E+09 913.19 318.97 8782.66 3230.50 875.18 1.47E+06 3475.00 26.39 116.53 1890.12 

Nile Crocodile RAD4.3 28 5.95E+06 1.56E+09 651.41 261.49 2849.27 3651.07 623.34 9.33E+05 3540.00 20.31 147.64 3611.68 

Nile Crocodile RAD4.3 29A 9.75E+05 5.39E+07 162.60 55.28 2758.97 572.22 172.54 4.06E+04 600.00 11.47 123.07 355.07 

Nile Crocodile RAD4.3 31A 1.25E+06 6.49E+07 122.59 51.78 2848.37 828.22 122.53 3.90E+04 625.00 3.68 121.99 684.22 

Nile Crocodile RAD4.3 31B 1.17E+06 3.09E+07 85.15 26.30 1965.23 907.26 89.04 2.25E+04 940.00 5.65 160.07 2518.31 

Nile Crocodile RAD4.3 32 1.39E+06 1.52E+08 253.06 109.66 2818.63 744.93 252.42 1.08E+05 1005.00 6.27 123.16 579.82 

Nile Crocodile RAD4.3 35 3.06E+06 1.85E+08 146.54 60.25 5012.31 863.23 143.12 5.82E+04 745.00 2.96 133.94 514.07 

Brown Bear DZB1-1 1.34E+07 1.30E+09 270.16 96.77 8638.12 3028.90 227.53 1.85E+05 2630.00 9.40 31.74 12807.60 

Brown Bear DZB1-2 3.52E+07 3.49E+09 342.18 99.28 12000.99 3166.24 368.19 5.69E+05 3440.00 21.90 167.30 8120.90 

Brown Bear DZB1-3 1.31E+07 1.46E+09 257.18 111.41 6996.70 2216.41 276.93 3.40E+05 2090.00 10.73 160.16 3417.42 

Brown Bear DZB2-1A 6.23E+06 2.51E+08 144.61 40.30 8365.34 1465.39 149.32 7.67E+04 1295.00 4.74 164.36 2442.75 

Brown Bear DZB2-1B 5.02E+06 1.46E+08 110.59 29.08 7324.13 1127.52 115.01 4.78E+04 1050.00 4.24 147.17 2506.08 

Brown Bear DZB2-2 3.59E+07 3.43E+09 276.04 95.55 12469.57 3574.25 247.30 2.95E+05 3065.00 8.60 171.11 8379.33 

Brown Bear DZB2-4 3.23E+07 1.80E+09 188.98 55.68 1057.67 4112.18 173.21 1.14E+05 2040.00 9.29 12.70 44263.55 

Brown Bear DZB2-4 9.86E+06 5.00E+08 164.40 50.71 5744.07 2368.08 146.21 1.31E+05 2490.00 7.38 168.18 6917.05 

Brown Bear DZB2-6 1.93E+07 1.69E+09 230.01 77.32 8824.11 2737.11 225.16 2.70E+05 2455.00 9.89 131.44 10785.37 

Brown Bear DZB2-7 2.25E+07 2.88E+09 315.97 117.12 9053.92 3575.03 322.77 6.68E+05 4320.00 12.71 160.20 8213.63 

Brown Bear DZB2-8 1.60E+07 1.79E+09 270.03 111.90 4632.33 4895.18 299.20 7.72E+05 5325.00 9.15 172.71 19759.86 

Brown Bear DZB2-9 4.84E+06 4.92E+08 252.95 101.55 3448.99 1943.18 248.01 4.05E+05 3535.00 6.97 171.37 15156.56 

Brown Bear DZB2-10 3.48E+06 1.78E+08 198.96 51.14 3923.05 1169.25 198.07 1.06E+05 1345.00 8.49 159.84 2564.78 
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Brown Bear DZB3-1 3.40E+06 3.43E+08 229.08 100.74 1460.95 3391.07 228.75 3.57E+05 3530.00 14.42 172.50 1883.61 

Brown Bear DZB3-2B 1.93E+06 1.38E+08 176.75 71.46 2903.78 985.08 181.99 8.38E+04 750.00 3.62 132.55 506.99 

Brown Bear DZB3-2A 3.37E+06 3.78E+08 247.04 112.21 1654.42 3182.06 250.18 4.89E+05 3515.00 6.05 164.62 7060.38 

Brown Bear DZB3-3 1.15E+07 1.00E+09 243.52 86.91 9415.53 1745.21 253.03 1.92E+05 2025.00 20.57 152.65 2834.55 

Brown Bear DZB3-4 3.67E+07 6.86E+09 472.63 187.06 10251.75 4158.61 367.98 7.29E+05 4615.00 14.17 168.24 15659.26 

Brown Bear DZB3-5 2.41E+07 2.47E+09 299.68 105.35 9498.84 2691.33 322.56 4.55E+05 2765.00 16.32 163.73 8179.22 

Brown Bear DZB4-1 4.09E+07 7.72E+09 343.40 188.59 14367.91 3641.99 233.43 4.42E+05 3605.00 6.72 169.45 10768.42 

Brown Bear DZB4-2 2.96E+07 4.22E+09 297.21 140.07 10278.45 3856.21 267.13 4.12E+05 3055.00 8.25 178.35 8597.51 

Brown Bear DZB4-3 2.44E+07 2.01E+09 254.65 82.41 8486.03 3965.80 242.82 3.75E+05 2865.00 7.08 166.15 6464.56 

Brown Bear DZB4-5 4.50E+07 5.80E+09 372.47 128.92 12151.94 4726.30 337.13 4.09E+05 4235.00 21.50 172.71 16796.53 

Brown Bear DZB5-3 3.34E+07 2.52E+09 220.83 75.58 12380.39 4193.71 197.34 2.93E+05 3510.00 6.84 169.60 11576.59 

Brown Bear DZB5-4 9.15E+06 4.55E+08 123.79 49.76 6957.23 1933.50 130.93 1.28E+05 1950.00 7.68 165.89 4429.13 

Brown Bear DZB6-1 5.27E+07 5.12E+09 284.68 97.14 17318.87 4355.49 294.49 6.58E+05 4690.00 7.96 172.72 27220.58 

Brown Bear DZB6-3 1.88E+07 5.17E+09 693.03 274.68 6350.42 3827.17 732.56 7.92E+05 2625.00 32.19 121.18 1559.85 

Brown Bear DZB6-4 1.04E+07 1.95E+09 370.37 186.74 4283.06 3389.13 423.74 6.66E+05 3060.00 15.89 154.39 3810.03 
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APPENDIX B – ALL MEASURED DATA FOR MARKS INFERRED ON FOSSILS 

  THREE DIMENSIONAL MEASUREMENTS PROFILE MEASUREMENTS 

MARK ID SURFACE VOLUME 
MAXIMUM 

DEPTH 

MEAN 

DEPTH 

MAXIMUM 

LENGTH  

MAXIMUM 

WIDTH  

MAXIMUM 

DEPTH  
AREA WIDTH  ROUGHNESS 

OPENING 

ANGLE 

FLOOR 

RADIUS 

HWKEE 1652 1969100 1.03E+08 144.348 52.326 3014.31 952.34 129.174 57317.88 940 3.948 150.088 1053.434 

HWKEE 2908A 6399000 4.01E+09 1145.7 626.982 9585.20 2015.26 1262.103 1824795 2335 32.142 82.182 1090.356 

HWKEE 2908B 4679175 1.59E+09 772.938 340.494 2658.15 1729.93 901.158 1268403 2585 22.746 109.79 1335.181 

HWKEE 4107 5957125 5.74E+08 216.989 96.3 3923.00 1793.61 231.674 267013.2 2060 8.835 160.863 3260.48 

HWKEE 4242 1489100 7.94E+07 122.652 53.315 3561.14 655.48 91.656 25468.22 535 4.98 153.061 641.767 

HWKEE 4268 6208800 5.08E+08 198.52 81.817 8317.57 1479.15 138.199 95719.21 1595 3.581 157.455 3695.462 

HWKEE 60025 690774.7 1.75E+09 496.88 253.736 4450.79 1913.58 504.117 513632 1890 13.77 119.924 1274.025 

HWKEE 2743(L7) 4647850 3.33E+08 171.417 71.74 4992.97 1161.67 176.062 89551.79 1020 3.113 148.465 1012.618 

HWKEE 356(L1) 1666125 2.78E+08 395.844 166.695 1471.15 1445.91 351.917 273716.6 1425 6.851 128.08 899.964 

HWKEE 3833A(L1) 7860525 2.01E+09 595.894 255.334 4673.85 2045.55 501.908 561489 1995 17.415 124.511 1169.007 

HWKEE 3833B(L1) 1378600 1.48E+08 198.516 107.117 1503.12 1252.47 184.984 176247.2 1440 3.117 145.244 1478.021 

HWKEE 4168(L1) 3386625 1.66E+08 126.805 48.855 6558.03 752.61 156.068 56531.4 730 3.554 133.578 521.457 

HWKEE 4176A(L1) 1.01E+07 1.33E+09 398.457 131.088 9600.57 1644.47 382.988 255718.2 1730 20.87 127.633 1399.829 

HWKEE 4176B1(L1) 2628475 1.65E+08 134.35 62.9 4141.24 843.39 95.984 31011.08 685 6.502 143.758 585.084 

HWKEE 4176B2(L1) 1097250 4.17E+07 86.358 38.011 3376.85 421.34 46.446 7532.924 260 1.364 145.642 232.905 

HWKEE 4176B3(L1) 292125 1.39E+07 98.022 47.45 657.89 466.30 102.238 30523.79 605 4.475 145.034 553.162 

HWKEE 1975-2(L2) 1.19E+07 3.80E+09 812.25 319.994 3623.63 3628.37 755.724 1380591 4605 11.868 143.08 4060.098 

HWKEE 677A(L6) 3121750 2.82E+08 194.489 90.308 1925.23 1781.62 152.927 160162.3 1895 6.018 153.098 3672.922 

HWKEE 677B(L6) 5774775 4.77E+08 173.861 82.511 3986.84 1613.16 154.523 157412 2295 7.353 162.655 4898.702 

HWKEE 1045A(L6) 1503175 1.44E+08 257.98 95.731 2198.55 1379.46 255.059 76962.05 880 7.843 118.258 569.681 

HWKEE 1045B(L6) 835225 5.74E+07 147.725 68.672 1696.17 677.46 154.952 50328.47 575 5.947 102.563 387.331 

HWKEE 1045C(L6) 1.47E+07 1.85E+09 291.505 125.646 11652.27 1782.88 257.109 247717.6 2215 15.443 153.586 2708.534 

HWKEE 3969 1.16E+07 7.27E+08 167.637 62.528 8427.33 1776.35 129.128 95491.18 1845 9.022 161.59 4135.396 
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HWKEE 1886A 2822225 1.26E+08 108.846 44.704 5057.28 1150.06 87.218 27480.23 730 7.626 159.089 1153.368 

HWKEE 1886B 915375 3.17E+07 93.332 34.628 1473.78 995.46 92.473 24719.17 595 3.412 148.263 609.395 

HWKEE 60021A 312175 1.26E+07 85.391 40.412 1056.72 363.47 100.601 27780.73 545 3.678 135.718 739.021 

HWKEE 60021B 1038700 6.24E+07 133.426 60.079 1214.77 967.30 132.364 82543.66 1045 3.978 152.679 1291.862 

HWKEE 60275 2614750 3.08E+08 267.067 117.587 3297.81 919.56 204.448 112248.4 1165 4.261 139.423 913.114 

HWKEE 60050 3210775 3.16E+08 276.183 98.476 3694.54 1251.74 259.176 109852 960 7.009 134.701 640.715 
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APPENDIX C – ALL MEASURED FROM TESTING THE ACCURACY OF REPLICAS 

  THREE DIMENSIONAL MEASUREMENTS PROFILE MEASUREMENTS 

ORIGINAL 

/ REPLICA 
MARK ID SURFACE VOLUME 

MAXIMUM 

DEPTH 

MEAN 

DEPTH 

MAXIMUM 

LENGTH  

MAXIMUM 

WIDTH  

MAXIMUM 

DEPTH  
AREA WIDTH  ROUGHNESS 

OPENING 

ANGLE 

FLOOR 

RADIUS 

ORIGINAL NGO25-1-1 4.02E+06 2.43E+08 1.81E+02 6.03E+01 3.97E+03 1.58E+03 1.65E+02 9.60E+04 1.21E+03 7.88E+00 1.43E+02 9.51E+02 

ORIGINAL NGO25-1-2 2.00E+06 6.58E+07 1.05E+02 3.29E+01 4.03E+03 8.24E+02 1.04E+02 2.06E+04 6.90E+02 9.17E+00 1.49E+02 9.58E+02 

ORIGINAL NGO25-1-4 5.96E+06 2.74E+08 1.01E+02 4.60E+01 4.78E+03 2.81E+03 9.25E+01 9.55E+04 2.85E+03 4.45E+00 1.71E+02 1.82E+04 

ORIGINAL NGO25-1-5 1.26E+06 4.34E+07 8.21E+01 3.45E+01 1.68E+03 1.37E+03 8.62E+01 3.44E+04 7.55E+02 2.81E+00 1.59E+02 9.30E+02 

ORIGINAL NGO25-1-6 2.66E+06 2.98E+08 2.62E+02 1.12E+02 1.98E+03 1.88E+03 2.46E+02 2.40E+05 2.00E+03 1.39E+01 1.44E+02 2.74E+03 

ORIGINAL NGO25-2-1 3.02E+06 1.90E+08 2.09E+02 6.30E+01 4.32E+03 1.38E+03 1.70E+02 4.66E+04 4.55E+02 4.54E+00 8.21E+01 2.45E+02 

ORIGINAL NGO25-2-2A 3.49E+06 5.00E+08 3.64E+02 1.43E+02 3.64E+03 1.46E+03 3.47E+02 1.77E+05 9.80E+02 9.60E+00 1.06E+02 4.90E+02 

ORIGINAL NGO25-2-2B 9.98E+05 5.47E+07 1.90E+02 5.47E+01 1.78E+03 9.42E+02 1.96E+02 9.08E+04 9.10E+02 8.79E+00 1.36E+02 5.89E+02 

ORIGINAL NGO25-2-4A 3.94E+05 1.67E+07 1.26E+02 4.25E+01 7.07E+02 8.57E+02 1.20E+02 4.70E+04 8.40E+02 4.45E+00 1.47E+02 8.27E+02 

ORIGINAL NGO25-3-1 6.19E+05 3.10E+08 1.69E+02 5.01E+01 4.27E+03 2.33E+03 1.75E+02 2.09E+05 2.40E+03 8.71E+00 1.64E+02 4.77E+03 

ORIGINAL NGO25-3-3 2.66E+06 1.72E+08 1.60E+02 6.48E+01 4.32E+03 8.16E+02 1.47E+02 6.18E+04 8.50E+02 5.01E+00 1.47E+02 8.32E+02 

ORIGINAL NGO25-3-7 1.96E+06 7.59E+07 9.61E+01 3.86E+01 1.95E+03 1.58E+03 1.14E+02 6.33E+04 1.01E+03 2.97E+00 1.59E+02 1.48E+03 

ORIGINAL NGO25-6-2 5.22E+06 5.64E+08 2.68E+02 1.08E+02 2.59E+03 2.83E+03 2.42E+02 4.10E+05 2.82E+03 5.21E+00 1.62E+02 4.58E+03 

ORIGINAL NGO25-7-1 5.08E+06 3.52E+08 2.25E+02 6.93E+01 5.01E+03 1.37E+03 2.15E+02 1.41E+05 1.46E+03 3.36E+00 1.51E+02 1.65E+03 

ORIGINAL NGO25-10-2 4.29E+06 3.55E+08 2.23E+02 8.27E+01 5.36E+03 1.22E+03 2.53E+02 1.84E+05 1.46E+03 5.09E+00 1.41E+02 1.22E+03 

ORIGINAL NGO25-10-3 6.52E+06 8.17E+08 2.96E+02 1.25E+02 5.21E+03 2.76E+03 2.99E+02 4.23E+05 2.75E+03 2.93E+00 1.51E+02 4.43E+03 

ORIGINAL NGO25-14-1 2.72E+06 3.86E+08 3.18E+02 1.42E+02 3.56E+03 1.26E+03 3.03E+02 2.38E+05 1.47E+03 4.39E+00 1.37E+02 1.06E+03 

ORIGINAL NGO25-14-2 7.57E+05 5.32E+07 1.72E+02 7.03E+01 1.22E+03 9.45E+02 1.78E+02 8.78E+04 1.02E+03 3.71E+00 1.35E+02 7.46E+02 

ORIGINAL NGO25-18-1 3.31E+06 2.11E+08 2.16E+02 6.39E+01 3.16E+03 2.20E+03 2.09E+02 2.08E+05 2.15E+03 9.29E+00 1.56E+02 3.54E+03 

ORIGINAL NGO25-21-1 2.73E+06 1.36E+08 1.14E+02 4.97E+01 2.45E+03 1.44E+03 1.09E+02 7.70E+04 1.28E+03 2.03E+00 1.63E+02 2.46E+03 

ORIGINAL NGO25-22-1 4.47E+05 3.24E+07 1.64E+02 7.25E+01 8.43E+02 7.64E+02 1.40E+02 5.94E+04 7.75E+02 6.15E+00 1.38E+02 5.57E+02 

REPLICA NGO25-1-1 2.06E+06 1.51E+08 1.82E+02 7.35E+01 2.99E+03 1.10E+03 1.87E+02 1.17E+05 1.15E+03 3.62E+00 1.41E+02 9.49E+02 

REPLICA NGO25-1-2 1.99E+06 9.40E+07 1.44E+02 4.73E+01 4.00E+03 8.90E+02 1.43E+02 6.73E+04 9.05E+02 5.55E+00 1.50E+02 9.20E+02 
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REPLICA NGO25-1-4 5.11E+06 2.35E+08 1.09E+02 4.61E+01 4.55E+03 2.21E+03 1.25E+02 1.52E+05 2.64E+03 5.91E+00 1.72E+02 9.39E+03 

REPLICA NGO25-1-5 1.08E+06 3.97E+07 9.24E+01 3.68E+01 1.72E+03 1.08E+03 7.88E+01 2.60E+04 7.80E+02 4.00E+00 1.52E+02 1.49E+03 

REPLICA NGO25-1-6 2.82E+06 3.09E+08 2.67E+02 1.10E+02 2.06E+03 1.95E+03 2.53E+02 2.50E+05 1.94E+03 9.44E+00 1.43E+02 2.52E+03 

REPLICA NGO25-2-1 3.03E+06 1.60E+08 1.76E+02 5.28E+01 4.44E+03 1.19E+03 1.71E+02 9.17E+04 1.00E+03 6.36E+00 1.37E+02 9.30E+02 

REPLICA NGO25-2-2A 3.66E+06 6.04E+08 4.22E+02 1.65E+02 3.11E+03 1.76E+03 4.03E+02 2.23E+05 1.07E+03 1.20E+01 9.99E+01 4.90E+02 

REPLICA NGO25-2-2B 1.40E+06 9.17E+07 2.41E+02 6.55E+01 1.83E+03 1.17E+03 2.31E+02 1.27E+05 1.07E+03 1.34E+01 1.16E+02 7.37E+02 

REPLICA NGO25-2-4A 3.91E+05 1.54E+07 1.45E+02 3.93E+01 7.41E+02 7.83E+02 1.35E+02 3.39E+04 6.70E+02 3.94E+00 1.48E+02 6.95E+02 

REPLICA NGO25-3-1 6.59E+05 3.70E+08 1.87E+02 5.61E+01 4.12E+03 2.44E+03 1.83E+02 2.23E+05 2.44E+03 9.03E+00 1.62E+02 5.01E+03 

REPLICA NGO25-3-3 2.78E+06 1.62E+08 1.53E+02 5.82E+01 4.27E+03 8.47E+02 1.56E+02 6.58E+04 8.65E+02 8.11E+00 1.44E+02 7.73E+02 

REPLICA NGO25-3-7 1.83E+06 9.47E+07 1.24E+02 5.18E+01 2.16E+03 1.23E+03 1.33E+02 7.02E+04 8.80E+02 6.38E+00 1.43E+02 9.63E+02 

REPLICA NGO25-6-2 5.17E+06 6.45E+08 3.09E+02 1.25E+02 2.17E+03 3.09E+03 3.15E+02 4.98E+05 2.92E+03 9.81E+00 1.62E+02 4.78E+03 

REPLICA NGO25-7-1 5.68E+06 3.57E+08 2.14E+02 6.28E+01 5.06E+03 1.37E+03 1.76E+02 1.49E+05 1.42E+03 3.94E+00 1.57E+02 1.87E+03 

REPLICA NGO25-10-2 4.48E+06 3.57E+08 2.24E+02 7.97E+01 5.87E+03 1.39E+03 2.60E+02 1.74E+05 1.12E+03 5.47E+00 1.34E+02 7.52E+02 

REPLICA NGO25-10-3 6.78E+06 8.43E+08 3.13E+02 1.24E+02 5.35E+03 2.74E+03 3.24E+02 4.31E+05 2.47E+03 9.74E+00 1.47E+02 3.35E+03 

REPLICA NGO25-14-1 2.99E+06 3.82E+08 3.21E+02 1.28E+02 3.49E+03 1.40E+03 3.39E+02 2.63E+05 1.40E+03 5.38E+00 1.27E+02 8.55E+02 

REPLICA NGO25-14-2 7.49E+05 5.48E+07 1.90E+02 7.32E+01 1.19E+03 1.01E+03 1.97E+02 9.64E+04 9.05E+02 5.79E+00 1.33E+02 6.65E+02 

REPLICA NGO25-18-1 4.27E+06 2.40E+08 2.20E+02 5.63E+01 3.11E+03 2.77E+03 1.92E+02 1.86E+05 2.23E+03 1.07E+01 1.58E+02 4.76E+03 

REPLICA NGO25-21-1 3.15E+06 1.12E+08 1.09E+02 3.55E+01 2.59E+03 1.57E+03 1.14E+02 8.95E+04 1.22E+03 2.13E+00 1.64E+02 2.80E+03 

REPLICA NGO25-22-1 5.22E+05 3.70E+07 1.75E+02 7.08E+01 8.98E+02 8.62E+02 1.88E+02 9.74E+04 9.60E+02 8.08E+00 1.33E+02 1.01E+03 

 


