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ABSTRACT

EVALUATING SOFT BIOMETRICS IN THE CONTEXT OF FACE RECOGNITION

Soft biometrics typically refer to attributes of people such as their gender, the shape

of their head, the color of their hair, etc. There is growing interest in soft biometrics as a

means of improving automated face recognition since they hold the promise of significantly

reducing recognition errors, in part by ruling out illogical choices. Here four experiments

quantify performance gains on a difficult face recognition task when standard face recog-

nition algorithms are augmented using information associated with soft biometrics. These

experiments include a best-case analysis using perfect knowledge of gender and race, support

vector machine-based soft biometric classifiers, face shape expressed through an active shape

model, and finally appearance information from the image region directly surrounding the

face. All four experiments indicate small improvements may be made when soft biometrics

augment an existing algorithm. However, in all cases, the gains were modest. In the context

of face recognition, empirical evidence suggests that significant gains using soft biometrics

are hard to come by.
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Chapter 1

Introduction

This thesis explores the performance gain when using the information of soft biometrics

to improve existing face recognition algorithms. A challenging data set for face recognition,

the Good,the Bad and the Ugly data set is introduced. The review of related work is also

presented. Moreover, my own work of classifying soft biometrics and using them to improve

the performance of the baseline algorithms is described. Two new soft biometrics, face

geometry and face halo, are created and their performance on improving baseline algorithms

is examined. In order to show the potential capability of perfect knowledge of soft biometrics,

experiments using the ground truth of gender and race are conducted. A discussion of the

experimental result, a conclusion of the whole thesis and future work conclude this thesis.

1.1 Soft Biometrics

In recent years, soft biometrics have generated considerable interest in the research com-

munity as a possible method for improving face recognition performance. It is stated in [13]

that soft biometrics are defined as characteristics that provide some information about the

individual, but lack the distinctiveness and permanence to sufficiently differentiate any two

individuals. Wikipedia defines soft biometrics as physical, behavioural or adhered human

characteristics, classifiable in predefined human compliant categories, established and time-

proven by humans with the aim of differentiating individuals. Unfortunately, there is no

universally accepted definition of the term soft biometric. In its strongest form, soft biomet-

rics are discrete features that divide people into non-overlapping groups, such as gender, age,

or eye color. Weaker definitions admit any non-facial feature of a person, for example weight

or hair color. Still other researchers use the term to refer to any attribute of a face that is

extracted and analyzed independently of the subject’s identity. Examples of this range from
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small localized features such as moles or scars to slightly larger features such as periocular

regions to wholistic features extracted from the face such as gender or race.

What these definitions have in common is the idea of a soft biometric as an attribute

that is computed independently from the subject’s identity. One difference between soft

biometrics is that they can be presented in discrete or continuous values. They can be a

discrete category used to detect mismatches. Taking gender as an example, it can take

only two discrete values - male and female. An image pair of different genders can be

detected as a non-match pair without further computation. Soft biometrics can also be

continuous numbers to be combined with other similarity measures. Still taking the example

of gender, a gender predictor can give continuous positive numbers to indicate a male and

negative numbers to indicate a female. It makes sense that some men look more masculine

than other men and some women look more feminine than other women. Those continuous

numbers can be used to weight the similarity score of an image pair computed from certain

face recognition algorithm. One might argue that soft biometrics are just a new name for

facial similarity measures in this case. Another difference between soft biometrics is that

some of them come from the face (e.g. eye color, gender or race), and some of them do not

belong to the face (e.g. weight or hair color). Soft biometrics that belong to the face can be

learned from face images while those do not come from face can not be learned given only

face images.

1.2 Background

Researchers have used soft biometrics in various ways to tackle the problem of face

recognition. Park and Jain [12], [13] use gender and local facial marks as soft biometrics and

combine them with a traditional face recognition algorithm (FaceVACS). They were able

to increase the recognition rate by about 1% on the FERET data set. Dantcheva et al. [7]

looked at eye color in the visible spectrum as a soft biometric, but noted that 90% of the

population have brown irises. Lyle et al. [18] analyzed images from the FRGC data set and

classified periocular regions by gender and race. They were able to reduce the equal error
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rate by fusing the periocular soft biometric data from both eyes with LBP over the face

region.

Kumar et al. [15] introduce the use of describable visual attributes, which are continuous

labels that can be given to an image to describe its appearance, for face verification and

image search. However, only a subset of what they are using are soft biometrics. Scheirer

et al. [27] extend Kumar et al.’s work by introducing a Bayesian approach to combining

descriptive attributes and producing accurate weighting factors to apply to match scores

from face recognition algorithms based on incomplete observations made at match time.

However, the descriptive attributes they use include a person’s occupation, places they live

and so forth. Table 1.1 shows some of the soft biometrics/attributes used frequently. The

second column indicates their relationship to the face. Some of them are independent from

the face, some are directly related to the face and some are indirectly related to the face

but can be predicted from it. The third columns shows their category. They can be soft

biometrics (S. B.), personal attribute (P. A.), or environmental attribute(E. A.).

1.3 Research Goals

Current face recognition algorithms are evaluated via face verification. Given a pair of

two face images, the algorithms return a similarity score describing the similarity of two

images. Ideally, a pair containing the same subject (a match pair) will be given a high

similarity score and a pair containing different subjects (a non-match pair) will be given

a low similarity score. Using soft biometrics can help compute the similarity score. As

aforementioned, soft biometrics can be presented using discrete or continuous values. If they

are in discrete values, they are simply used to prune the non-match pairs. An image pair

with different values of the same soft biometric is treated as a non-match pair (e.g. an image

of female and an image of male). If soft biometrics are in continuous values, they can be

used to weight the similarity score from the face recognition algorithm. For a pair of two

images, each of which yields a continuous value of certain soft biometric, these two values

can be combined in certain way and the combined value can be treated as a weight of the
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Table 1.1: Attributes/soft biometrics used frequently
Attribute / Soft Biometrics relationship Category

Gender Indirect S. B.
Race Indirect S. B.
Age Indirect S. B.
Hair Direct S. B.

Wearing Hat Direct S. B.
Eyebrow Direct S. B.

Eye Color Direct S. B.
Glasses Direct S. B.

Cheek Color Direct S. B.
Nose Shape Direct S. B.
Mustache Direct S. B.
Skin Color Direct S. B.
Face Shape Direct S. B.

Height Independent S. B.
Weight Independent S. B.

Occupation Independent P. A.
Lighting Condition Independent E. A.

Places Independent E. A.

similarity score computed from an existing face recognition algorithm.

Since a lot of the soft biometrics are directly or indirectly related to face images, the

information they provide can not be seen as independent knowledge compared to what an

existing face recognition algorithm already discovers. For instance, gender information is

often implied in many face recognition methods. Current algorithms tend not to confuse a

pair of female and male images.

This thesis tries to address 3 questions.

• Will using soft biometrics provide significant help in terms of improving the perfor-

mance of existing face recognition algorithms?

• How much do soft biometrics help improve the performance?

• How much improvement can be achieved if the ground truth information of soft bio-

metrics is available?
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In order to answer these questions, I choose to work on a challenging data set, namely,

the Good, the Bad and the Ugly (GBU) [23] data set. Two baseline algorithms have been

developed to provide benchmark performance on this data set. The data set and these two

baseline algorithms are introduced in the following sections.

1.4 The Good, the Bad and the Ugly Data Set

Kumar et al.’s work [15] on the Labeled Faces in the Wild (LFW) data set shows that

using face attributes only can achieve comparable performance as the state of the art algo-

rithms. We also conducted our experiments on LFW data set in the first place. However, the

ground truth of the soft biometrics labels is not publicly available, which makes a supervised

classification method difficult to implement. Due to this reason, we switch to another data

set created for face recognition by Phillips et al.. This data set is composed of frontal face

images in various lighting and focus conditions, which makes it very challenging to recognize

faces.

1.4.1 Description of the Data Set

This thesis uses a challenging data set, namely the Good, the Bad and the Ugly (GBU) [23]

data set. It contains frontal face images in various lighting and focus conditions. GBU has

three partitions, the Good partition, the Bad partition and the Ugly partition, divided ac-

cording to the difficulty. Their difficulty is determined by the verification rate (VR) of fusing

three top performers in the FRVT 2006 [25]. Verification is the process of a system declaring

a person to be who they claim based upon the quality of match between a new face image of

the person and a stored face image of the person. Pairs of images in the Good partition, the

Bad partition and the Ugly partition are considered easy, of average difficulty and difficult

to recognize, respectively.

Each partition has a target set and a query set. Each of these two sets contains 1,085

images for 437 distinct people. Face pairs are composed of images one coming from the

target set and the other coming from the query set. The total number of match face pairs
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and non-match face pairs is 3,297 and 1,173,928 respectively for each partition. The base

VR when the false accept rate (FAR) equals 0.001 is 0.98, 0.80 and 0.15 for the Good, the

Bad and the Ugly partition, respectively. This data set provides researchers with an easy

problem, a relatively hard problem and a hard problem simultaneously, which is beneficial

to evaluate a face recognition algorithm. My work will focus on tackling the easy problem

and the hard problem, i.e., the Good and Ugly partition.

In terms of soft biometrics, gender and race are two very important ones. They are

relatively easy to classify and can provide useful information. In this data set, 58% of the

people are male and 42% are female. The percentage of Caucasian, Asian, Hispanic and

other races is 69%, 22% , 4% and 5%. Figure 1.1 shows matching face pairs from each of

the partitions1.

1This figure is from [23]
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Figure 1.1: Examples of face pairs of the same person from each of the partitions: (a) good,
(b) challenging, and (c) very challenging.
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Chapter 2

Related Work

Google Scholar attests to the level of interest in soft biometrics. At the time of writing, a

search for the terms +”soft biometrics” and +face produced 170 articles since the beginning

of 2011. Although some of these papers only mention soft biometrics as a future research

topic, most of the rest address how to automatically extract soft biometric features from face

images, in particular gender, age and race, and focus on how to integrate the information

of these soft biometrics into a face recognition algorithm. (See Lyle [18] and Shan [28] for

tables comparing classification accuracies.) Researchers adopt different ways to automati-

cally extract soft biometric features. Some use a universal framework and some use a specific

algorithm for each specific soft biometric.

2.1 Automatic Estimation of Soft Biometrics

Gutta et al. [10] presented a mixture of experts for the classification of gender, ethnic

origin, and pose of human faces. Ensembles of radial basis functions (RBFs) compose the

mixture of experts. Besides the ensembles of RBFs, they also used a SVM classifier with RBF

kernel for gating the inputs. Their gender classifier achieved an average accuracy rate of 96%,

their ethnicity classifier yielded an average accuracy of 92% and their SVM classification rate

on pose is 100%. These results on gender and ethnicity were reported on good quality face

images from the FERET database where there are little the expression and pose variations.

Jain and Lu [16] proposed a Linear Discriminant Analysis (LDA) based scheme to tackle

the two-class (Asian vs. non-Asian) ethnicity classification problem. Multiscale analysis and

an ensemble framework based on the produce rule were adopted to enhance the classification

performance. This scheme had an accuracy of 96.3% on a database combining AsianPF01,

Yale, AR and NLPR (The first three are publicly available while the last one is not). This
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combined data set has 263 subjects, each of which has 10 images (with equal balance between

Asian and non-Asian classes).

Lin et. al. proposed a novel approach for recognizing the gender, ethnicity and age using

face images. Their approach combined Gabor filter, Adabost learning and SVM classification.

Facial features are extracted via banks of Gabor filters and Adaboost learning. Then SVM

classifiers based on the features are trained to recognize soft biometrics. Their experimental

results on FERET data set showed good performance. They also showed that a preprocessing

step can further improve the performance.

Kumar et al.’s work [15], which is closely related to ours and will be elaborated later,

used a large set of low level features to train an SVM classifier with RBF kernels to extract

soft biometrics. A few low level features from this set which are most related to the specific

soft biometric are picked as the input of that specific SVM classifier associated with that soft

biometric. Reasonable classification rates are reported for the attributes they are classifying.

Lyle et al. [18] compute periocular texture from grayscale images using Local Binary

Patterns. Then an SVM classifier is trained to classify the texture features. They conduct

their experiments on the visible spectrum periocular images obtained from the FRGC face

dataset. For 4232 periocular images of 404 subjects, they achieved a baseline gender and

ethnicity classification accuracy of 93% and 91% in cross validation. They also showed that

by fusing the periocular soft biometric data from both eyes with LBP over the face region,

periocular recognition can be improved.

2.2 Integrating Soft Biometrics to Improve Recogni-

tion Performance

More relevant to this paper are efforts that use soft biometric features to improve recogni-

tion performance in challenging data sets. Besides different ways to extract soft biometrics,

there are also different ways to fuse the information of soft biometrics into an existing face

recognition algorithm. One is to use soft biometrics to prune the search space [8] [11].

Another is to use the information of soft biometrics as a weight to be added to or multiplied
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by the scores of an existing face recognition algorithm. [27] [12] [13] [14]. Moreover, a face

recognition system can be built using only soft biometrics without any other face recognition

alrogithm and still achieve good performance [15].

Jain et.al. [12] [13] explored the question on whether soft biometric traits can assist

user recognition. They divided their recognition system into two subsystems. The first

one is a traditional biometric identifier called primary biometric system and the second

is based on soft biometric traits called secondary biometric system. They formulate the

recognition process from the perspective of probability conditioned on features corresponding

to these two subsystems. Moreover, they also introduced a weighting of the two subsystems

and a weighting of different soft biometric traits to pay more attention to the important

features/soft biometrics. Preliminary experiments conducted on a fingerprint database of

160 users by synthetically generating soft biometric traits showed that using additional soft

biometric information significantly improves ( 6%) the recognition performance. Their later

experiments on a database of 263 users showed a 5% improvement of recognition performance

on a fingerprint system when using soft biometrics like gender, ethnicity, and height as

additional information.

Jain and Park [14] use local facial marks such as freckles, moles and scars to improve

the rank-1 face identification rate of a traditional face recognition algorithm (FaceVACS).

Active Appearance Model (AAM) was used to locate facial landmarks. Then they adopted

Laplacian-of-Gaussian and morphological operators to detect facial marks. On the FERET

data set, they were able to increase the recognition rate by about 1%. On the Mugshot data

set, the improvement of recognition rate is 1.26%.

Dantcheva et al. [7] looked at eye color in the visible spectrum as a soft biometric. They

examined the influence of illumination, presence of glasses and color perception of left and

right eye. An automatic eye color detection system was built using iris localization and

classification based on Gaussian Mixture Models (GMM) with Expectation Maximization

(EM). It should be noted that 90% of the population have brown irises.

A successful example of applying soft biometrics is the work of Kumar et al. [15]. I
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implemented a similar method to conduct general classification of soft biometrics. I also

used the distance to the hyperplane as one of a few ways to estimate the soft biometrics.

In their paper, they introduce the use of describable visual attributes, which are labels

that can be given to an image to describe its appearance, for face verification and image

search. A part of these describable visual attributes is composed of soft biometrics such as

gender, race and so forth. They used Amazon Turk, http://mturk.com., to collect labels of

thousands of images easily and with very low overhead.

Given an image, a pool of different low-level features are extracted according to local

regions on a face, pixel representation methods, normalization methods and aggregation

methods. Forward feature selection (FFS) is applied to select a group of features tuned to

the classification task of the specific attribute from the pool. SVM with an RBF kernel is

adopted for the task. A grid search of the SVM parameters is performed, which is quite time-

consuming. The classifiers learned from this training procedure is called attribute classifiers.

Besides attribute classifiers, they also construct another kind of classifiers named simile

classifiers.These classifiers measure how similar a part of a person’s face, such mouths, noses

and eyes, is to the same part of a set of reference people. Support vector machines are

trained for each reference person to distinguish a region on their face from the same region

on others. Instead of using FFS, a set of possible features are manually selected and classifiers

are trained for each reference person/region/feature type combination.

In order to determine if two face images, I1 and I2 belong to the same subject, a verifi-

cation classifier is learned using SVM. Each image’s distance to the SVM hyper-plane from

attribute classifiers and simile classifiers is stored. Let ai = Ci(I1) and bi = Ci(I2) be the

outputs of the ith attribute classifier for each face (1 ≤ i ≤ n). The absolute distance of ai

and bi and the difference of their signs are important to estimate how far two images are in

terms of the specific attribute. Therefore, the absolute difference of the distances and the

product of the distances are gathered into a tuple pi:

pi =< |ai − bi|, aibi > (2.1)

The input of the verification classifier is then the concatenation of these tuples obtained from
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all n attribute/simile classifiers. Pairs of face images from the same person form positive

examples and those from different persons form negative examples. The verification classifier

is also SVM with an RBF kernel. The authors train this classifier with default parameters.

Although they avoid the term soft biometrics, Kumar et al. [15] use crowd sourcing to

collect soft-biometric-like attribute labels for face images from the LFW data set, including

gender, age, hair color, hair line, nose shape, face shape and attractiveness. They also collect

labels for attributes that are clearly not soft biometrics because they are image specific, for

example lighting conditions, quality of focus and whether the mouth is open or closed. They

were able to generate impressive recognition results; unfortunately, it is difficult to know

why, since they combined soft biometric and image-specific attributes and applied them to a

data set where there are known correlations between imaging conditions and subject identity.

Scheirer et al.’s work [27] shares the same spirit of mine, i.e., improving the performance

of baseline algorithms using soft biometrics. Two main differences exist between their work

and my work. One is that they used contextual information such as occupation and places

a person lives. The other is that they built a Bayesian network to combine attributes and

produce a weight factor while I used normalized SVM scores as a weight factor.

They extend Kumar et al.’s work by introducing a Bayesian approach to combining

descriptive attributes. The Bayesian attribute network can produce a weight when matching

a query image and a gallery image. Specifically, an attribute network is built for each gallery

image given a set of visual and contextual attributes using a fast Noisy-OR formulation, an

approximation of the full binary Conditional Probability Tables (CPTs). When comparing

probe and gallery images, the probe image with its observed attributes is matched to each

gallery image with its corresponding attribute network. A weight is generated after solving

each network. This weight is then used to multiply the match score from the baseline

algorithm to improve the identification rate.

They used the same classifiers constructed in the work of Kumar et al. [15], which extract

low level features to build SVM classifiers for soft biometrics. Besides these classifiers directly

derived Kumar et. al.’s work, they also adopted a robust age estimation approach from Chen
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et al. [4] that has provided good performance on two data sets, MORPH and PAL.

Their experiments on MBGC [21] data set yield an improvement over the baseline al-

gorithm. It shows that using descriptive attributes including contextual information when

matching pairs of face images yields an improvement of the identification rate by up to 32.8%

over the baseline algorithm. However, the descriptive attributes they use include a person’s

occupation, places they live and so forth. These cannot be extracted from the image itself.

It sparks a question on how well soft biometrics alone can do to improve the performance of

face recognition algorithms.

Although Kumar et.al and Scheirer et al.’s work showed good improvement in perfor-

mance when soft biometrics are integrated with additional appearance and contextual at-

tributes, they did not present results of using only soft biometrics related to faces. My work

will be focusing on using only face related soft biometrics to improve existing face recognition

algorithms. Results on the Good, the Bad and the Ugly data set are presented in this paper

indicating that using only these soft biometrics does not help much in terms of improving

the face recognition performance.

2.3 Two Baseline Face Recognition Algorithms on GBU

Data Set

2.3.1 Local Region PCA

Local Region PCA (LRPCA) [23] is an extension of principle component analysis (PCA)

face recognition algorithm [30]. After face alignment, LRPCA extracted a face chip and

thirteen local regions. These local regions correpsond to regions of interest on a face, such

as eyes, nose, mouth, etc. PCA is then applied on these 14 regions. Figure 2.1 shows a

cropped face and the thirteen local regions 1. In each region, self quotient normalization [32]

is conducted to reduce the influence of illumination variation. A simple Z-normalization is

1This figure comes from [23]

13



then adopted after self quotient normalization.

Figure 2.1: A cropped face and the thirteen local regions.

During training, PCA is computed for each region and this representation is whitened

according to the eigen value. The projected value on each dimension is then weighted using

Fisher’s criterion. Dimensions with larger ratio of between-class variation and within-class

variation are given larger weights. During testing, coefficients after PCA projection in each

region are concatenated to form a single vector. As a result, each image corresponds to one

vector. Similarity between a pair of face images is measured by calculating the Pearsons

correlation coefficient of the two vectors.

2.3.2 Cohort Linear Discriminant Analysis

Cohort Linear Discriminant Analysis (CohortLDA) [17] extends Linear Discriminant

Analysis (LDA) algorithm using color spaces and cohort normalization. The main differences

between CohortLDA and standard LDA are two-fold. One is the preprocessing step and the

other is the introduction of a cohort set to adjust the distance of a pair of face images.

Specifically, CohortLDA uses both the R channel from RGB color space and the I channel
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from YIQ color space, trying to conserve the structure of the face and reduce the influence

of strong illumination respectively. During training, it seeks a projection that maximizes the

ratio of between-class scatter and within-class variance. Figure 2.2 presents the LDA faces

computed from the red channel and I channel2.

Figure 2.2: Top row: LDA faces acquired from the red channel after log and z-norm. Bottom
row: LDA faces obtained from the I chrominance after Z-normalization.

In face verification, the distance/similarity scores are turned to binary numbers using

certain threshold in order to determine whether a pair of face images comes from the same

subject or not. Since some pairs of images can be harder to match than others, a fixed

threshold is not the best way to determine match/non-match pairs. As a result, a cohort

set containing a set of images is used to adjust the distance. During face verification, k

nearest neighbors from the cohort set of each query image and target image are selected.

Then their average distance to the k neighbors is computed as an indication of the difficulty

of the query/target image. The distance of the query and target image is calculated as their

original distance subtracted by their difficulty. The final distance is calculated by summing

up the red channel and I chrominance images.

This paper presents four studies meant to explore the potential of soft biometrics to

2This figure comes from [17]
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improve face recognition performance. The first is a best-case analysis. If we have perfect

information about a categorical soft biometric, in this case ground truth information about

gender and race, how much does it improve face recognition performance on challenging

data sets? The second looks at the same question in a more realistic scenario: how much

do gender and race improve performance when they must be inferred from images via an

imperfect classifier? The third study looks at the effectiveness of a non-categorical facial

feature, facial geometry, as a soft biometric. Finally, the fourth study looks at adding non-

facial information by analyzing the image region just outside the face – a region containing

hair, ears and the neck – as a soft biometric.

Although by no means exhaustive, these studies (along with a couple of studies from the

literature; see below) lead to a common conclusion. They suggest that soft biometrics can

produce small increases in recognition performance on challenging data sets, particularly

when used as soft weights rather than hard constraints. The small size of the performance

gain, however, suggests that much of the information in soft biometrics is either already

exploited by traditional face recognition algorithms or else redundant with other information

in the face. Otherwise, we would expect the performance gains from integrating new and

independent sources of information to be larger.
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Chapter 3

Using soft biometrics derived from im-
ages

3.1 Learning Soft Biometrics

In this section, I present a general method for estimating soft biometrics and then explore

the effectiveness of incorporating soft biometrics into the recognize process.

Our approach here is inspired by the work of Kumar et al. [15], although for several

reasons that will become apparent, ours is more limited in scope. Kumar et al. [15] defined

a set of image features a priori along with 73 attributes. Some of these attributes describe

properties of the face and are traditionally thought of as soft biometrics. Others pertain

to imaging conditions, for example harsh versus soft lighting. In all cases, extensive hand

labeled data is combined with a two stage SVM learning procedure to ultimately create a

face recognition algorithm. A striking aspect of the work is that impressive face recognition

results are demonstrated using the Labeled Faces in the Wild dataset and a classifier based

upon the 73 attributes.

A precise adaptation of the 73 attribute algorithm to the GBU Challenge Problem is

neither feasible nor even relevant to the topic of soft biometrics. It is not feasible due to a

lack of detailed hand generated training data. It is not relevant in so much as attributes such

as harsh versus soft lighting, whether a person’s teeth are visible, or their mouth is open

are not soft biometrics. I am interested in exploring the performance gain of using only face

related soft biometrics, rather than the gains associated with lighting conditions. Therefore,

the full set of attributes used in Kumar et. al.’s work are not adopted in my work. To be

clear, Kumar et al. [15] never claimed that their attributes were all soft biometrics.
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3.1.1 Low-Level Feature Extraction

We have implemented a reduced attribute system for learning soft biometrics. It begins

with a four step procedure to extract low-level features. A complete feature type is con-

structed by first choosing a local face region. The pixel values in that region are converted

to one of the pixel value types from RGB, HSV, image intensity, edge magnitude and edge

orientation. Mean normalization, or energy normalization, may be applied. Finally, there

is an option to use histograms to aggregate the values from the previous steps. Local face

regions are detected using Stasm [19]. Stasm is an extension to the Active Shape Model [5].

It is initialized using the eye coordinates provided with the GBU dataset. Figure 3.1 shows

an example of fiducial points detection using Stasm. Figure 3.2 shows the local regions

extracted from a face. A summary of options to extract low-level features is presented in

Table 3.1.

Figure 3.1: Stasm detection

After low level feature extraction, I adopt Support Vector Machine (SVM) introduced

by Vapnik [31] as my classifier to estimate soft biometrics. A brief description of SVM is

presented below.
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Figure 3.2: Extracted local regions

Table 3.1: Feature type options

Pixel Types Normalization Aggregation
RGB
HSV
Image Intensity
Edge Magnitude
Edge Orientation

None
Mean Normalization
Energy Normaliza-
tion

None
Histogram

3.1.2 Classification Method for Soft Biometrics: Support Vector
Machine

Given a set of n input vectors x and outputs yi ∈ {−1,+1}, one tries to find a weight

vector w and offset b defining a hyperplane that maximally separates the examples. This

can be formalized as the minimization problem

min
w,b

||w||2

2
subject to yi(w · xi + b) > 1, for ∀i (3.1)

Using convex optimization theorem [3], it turns out that the solution for w can be written

in the form

w =
n∑
i=1

αiyixi

where the coefficients αi are non-negative. The xi with αi > 0 are called support vectors.

For more general SVMs one can consider kernels which implicitly map the x into a high-
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dimensional space called the feature space; w and b then define a hyperplane in this space.

There are a lot of kernels available, such as polynomial, Gaussian radial basis function,

hyperbolic tangent and so forth. Kernels are usually chosen via experimental results or

empirical experience. Moreover, if the data are not linearly separable – even in feature space

– one needs to relax the constraints in eq. (3.1) then has to tune an extra parameter C which

controls how “soft” the constraint is made.

min
w,b,ξ
{||w||

2

2
+ C

n∑
i=1

ξi}

subject to yi(w · xi + b) > 1− ξi, ξi > 0 for ∀i
(3.2)

3.1.3 SVM Classification Results on Soft Biometrics

To augment the gender, age and race information already available for GBU, we hand la-

beled additional soft biometrics, specifically hair color (black/other), eyebrows (thin/other),

head shape (chubby/thin) and eye color (dark/other). Race was reduced here to either white

or other. Then for each of these soft biometrics and different combinations of low-level fea-

tures as summarized in Table 3.1 an SVM is trained and evaluated using cross validation.

Features that performed best were then manually chosen as the basis for or a small set of

classifiers for each soft biometric. When multiple classifiers were selected, the final label is

determined by a vote.

To avoid testing and training on the same people, the standard GBU training set,

GBU Train Uncontrolledx8, was used throughout the soft biometric learning procedure. Not

all of the soft biometrics initially considered proved useful. For example, many subjects in

GBU are college students and of approximately equivalent age. Hence classification on age

is trivial but not helpful. Table 3.2 provides classification results for the final SVMs selected.

Columns indicate performance on the cross validation tests over the training data, followed

by the good and ugly GBU partitions.
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Table 3.2: SVM classification results for soft biometrics in cross validation training/test as
well as the good and ugly GBU partitions.

Train/Test Good Ugly
gender 91.2% 86.6% 84.3%
race 90.5% 89.1% 84.2%
eye color 71.6% 78.2% 68.0%
hair color 83.7% 76.3% 76.6%
eyebrow 74.2% 70.5% 66.1%

3.1.4 A comparison on Gender Classification: SVM vs. AdaBoost

In order to show that our SVM classification method achieves reasonable results, I use

the gender identification algorithm using AdaBoost proposed by Baluja and Rowley [1] to

compare our SVM method to. The code is implemented by Bekios-Calfa et. al. [2] and

available online. Baluja and Rowley adopted Adaboost, a fast and efficient technique, which

combines a number of weak classifiers into a strong classifier. Five simple comparisons

based on pixel values are presented using different ranges, which yield over one million weak

classifiers for 20x20 images. AdaBoost is then applied that iteratively chooses the best weak

classifier given the current weights. Then the weights are updated accordingly with respect

to the classification results. Their experimental results on the Color FERET data set [24]

shows slightly better performance than the baseline result. Note that their AdaBoost based

method lays a much less computation burden than the baseline.

Following their protocol, I also use face images whose size is 20x20 with eye coordinates

locating at (5,5) and (15,5) in my experiments. Moreover, the face image is further masked to

discard unnecessary background information using the same mask provided in [1]. 1000 weak

classifiers are used when learning the strong classifier using AdaBoost. Gender classification

rates are then computed using Baluja and Rowley’s method, where the same GBU training

and test sets are used. Table 3.3 shows the classification results of our SVM classifier and

Baluja and Rowley’s AdaBoost based classifier.

It can be observed that our SVM classification method performs better on the Ugly

partition but worse on the Good partition, when compared to Baluja and Rowley’s technique.
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Table 3.3: Gender classification: Baluja and Rowley’s vs. our SVM on the Good and Ugly
partitions.

Good Ugly
Our SVM 86.6% 84.3%
Baluja and Rowley’s 88.3% 81.5%

Their overall performance is close to each other. Although there is no demonstration that the

SVM classification result is the state of the art, its performance is reasonable and comparable.

Moreover, our SVM classifier is a very general method, which can be also used to estimate

race, eye color, hair color, etc.

3.1.5 Integrating Soft Biometrics in Existing Algorithms: A Soft
Weighting Scheme

There are different ways to integrate soft biometrics given the result (a similarity/distance

matrix) of an existing face recognition algorithm. I present results of using soft biometrics

either as a weighting scheme to fuse their information with the similarity/distance matrix

in this section and as a pruning method in the next section. Since a distance matrix can be

easily converted to a similarity matrix, I will only mention similarity matrix from now on.

It is natural to think of soft biometrics as discrete values, such as male/female and

Asian/Caucasian. However, assigning hard labels for these soft biometrics may not help

identify the person. The reasons are two-fold. One is that automatic classification methods

make mistakes. The other is that even if a pair of face images share the same label of a soft

biometric, the presence of that soft biometric may vary between them. For instance, one

man can look more manly than another man. In cases like this, it would be more suitable

to assign a score of that soft biometric indicating the degree of its presence, which could

provide much richer information. Therefore, I adopt the distance to the SVM hyperplane

as a score of the soft biometric and present the results. The results of using hard labels are

described in the next section.

The procedure is described as follows. For each soft biometric, we store each image’s

distance to the hyperplane from each of the SVM classifiers corresponding to different fea-
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Table 3.4: Weighting using soft biometrics on the Ugly partition
no SB gender race eye color hair color eyebrow all

LRPCA 70.9% 73.0% 72.2% 70.7% 71.3% 71.5% 72.4%
CohortLDA 84.1% 84.2% 84.2% 82.6% 82.2% 82.3% 83.8%
Fusion 98.4% 98.4% 98.2% 98.0% 98.1% 98.2% 98.4%

(a) Good partition

no SB gender race eye color hair color eyebrow all
LRPCA 8.3% 8.8% 8.1% 7.7% 8.3% 8.1% 8.0%
CohortLDA 11.4% 12.0% 10.7% 10.9% 11.5% 12.2% 11.7%
Fusion 15.2% 16.4% 13.7% 15.3% 16.5% 16.2% 15.5%

( b) Ugly partition

tures for a soft biometric. To combine these distances into a single one, we normalize each

distance using the standard deviation of all the distances from the corresponding SVM and

the distances after normalization are added together as a final distance. This is used to

combine the features/distances from the same soft biometric.

Given a pair of images, we compute the absolute difference of their distance as a score

representing how far these two images are in terms of the soft biometric. In order to combine

this score, denoted as s, with similarity matrices, we turn this distance measure into a

similarity measure using smax− s, where smax is the maximum score of all image pairs. This

similarity measure is then used to weight, through multiplication, similarity scores obtained

by a face recognition algorithm.

Tables 3.4a and 3.4b show the verification rate at FAR=0.001 using these soft biometrics

as weights combined with the three algorithms introduced earlier. The ”no SB” column

of each table shows the verification rate of the algorithm without any additional weighting

by soft biometrics. The last column shows the verification rate when combining all these

soft biometrics together as a weight matrix. Gender in most cases improves performance,

although less then when ground truth gender information is used, which is presented in

Chapter 4. The other soft biometrics make little improvement or even degrade performance.

Furthermore, even when all the soft biometrics are combined, the net change in verification

is neither of practical significance nor even always positive.
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3.1.6 Integrating Soft Biometrics in Existing Algorithms: A Hard
Pruning Method

Besides using the distance to the hyperplane in the SVM as a weight, I also used a hard

classification as a way to prune the similarity matrix. A pair of images with different discrete

values for the same soft biometric can be marked as a non-match pair immediately without

further computation. It not only reduces the computation burden, but also is the most

suitable way to prune the similarity matrix when the ground truth labels are known. Of

course, when it comes to an automatic classification method for the soft biometrics, the risks

would be high discarding non-match pairs since it can mark a match pair as a non-match

pair when it makes a classification mistake on one of the images. Since there are much more

non-match pairs than match pairs, it would even hurt the performance if many match pairs

are denoted as non-match pairs.

I pick the two most promising soft biometrics, gender and race, and conduct the following

experiment. For a pair of images, SVM classification is applied based on the corresponding

low-level features. Then I check the hard classification labels of them. If the labels are

of different values, then this pair is regarded as a non-match pair and is pruned from the

similarity matrix, meaning that its similarity score is set to -1000 (-1000 denotes a infinitely

small score). The verification rate is then computed on the pruned similarity matrix.

Experimental results are shown in Table 3.5a and 3.5b. Except for the case that pruning

using gender on the Ugly partition improves the performance of Fusion by 0.5%, performance

in all other cases is hurt by this brute force pruning method. An important lesson is evident

in Table 3.5. Making hard decisions, in other words pruning options, based on imperfect

estimates of a soft biometric can easily do more harm than good.

3.2 Geometry

This experiment was designed to test another continuous (rather than categorical) soft

biometric extracted from the face region. I was curious whether all the information in the

face was already accounted for by the existing face recognition algorithms (particularly the
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Table 3.5: Verification rates with learned soft biometrics.
No SB G R G & R

LRPCA 70.9% 61.9% 58.1% 59.4%
CohortLDA 84.1% 71.4% 65.0% 66.2%
Fusion 98.4% 81.4% 73.7% 74.9%

(a) Good partition

No SB G R G & R
LRPCA 8.3% 7.6% 6.4% 6.6%
CohortLDA 11.4% 10.6% 9.1% 9.6%
Fusion 15.2% 15.7% 12.8% 12.6%

(b) Ugly partition

fusion algorithm), or whether a new feature could provide non-redundant information. After

piloting several possible features, I settled on the geometry of facial landmarks as the most

promising. These landmarks do not vary much within the same face. Moreover, they tend to

differ a lot between faces from different subjects. Therefore, I think they are a good feature

to discriminate faces.

Face shape is not a new feature in the field of face recognition. [33] [6] [9] have already

used this kind of features to identify faces. However, two issues imply that face shape

should be another good soft biometric to aid the baseline face recognition algorithms. One

is that landmark localization was hard due to variations of poses and expressions. However,

since GBU is only composed of frontal images, more accurate facial landmark localization

should be expected. The other is that the two baseline algorithms, namely LRPCA and

CohortLDA, do not explicitly explore by face shape. So it should introduce new and useful

information when we add face shape to these algorithms. It can be expected that adding

face shape information to face recognition algorithms which already take into consideration

the locations of facial landmarks would not help much.

In particular, Stasm [19] is used to localize the landmarks on a face, ignoring landmarks

around the mouth since they are too sensitive to changes in expression. To compare two face

images, we use Stasm to find the landmark positions in each image, translate the landmarks

so that they are centered around the origin, and then subtract the positions of the landmarks
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in the first image from the positions of the corresponding landmarks in the second image.

The result is a vector of relative landmark displacements. An SVM is trained to distinguish

displacement vectors generated from matching pairs from displacement vectors generated

from mismatched pairs.

Some methodological details follow. Since there exist many more non-match pairs than

match pairs, using them all would produce an unbalanced training set. To provide SVM

training with a balanced input, we use all the match pairs and randomly sample the same

amount of non-match pairs with replacement. This is done several times, each of which

produces an SVM classifier with different parameters. Cross-validation is used to determine

when to stop training the SVM, with the restriction that no subject can appear in both the

training set and the validation set to avoid using person-affiliated information.

The kernel of our SVM is a radial basis function (RBF) and the parameters are found via

grid search. Once training is complete, each SVM votes to decide whether a novel pair of test

images is a match or non-match. Since some classifiers perform better in cross validation

than others, there are some ”wise” voters and some ”not-so-wise” voters. Therefore, we

weight votes by the classifier’s cross validation score. The overall decision is the sum of the

weighted votes.

Table 3.6a shows the verification rate of the 3 face recognition algorithms and their

verification rates after weighting using the geometric soft biometric score information on

GBU. As with the earlier experiments, adding the facial landmark soft biometric improved

performance on the Ugly partition, but not dramatically. The performance of the fusion

algorithm improved by 3%, while the performance of the other two algorithms improved

slightly less. Performance on the Good data set actually dropped slightly for Fusion and

CohortLDA, although in the case of the Fusion algorithm the drop was only 0.5%.

While not necessarily an improvement of great practical note, face shape as expressed

through geometry yields the greatest gain of any measured soft biometric so far considered for

the Ugly partition. In order to judge the statistical significance of adding the information

provided by geometry, McNemar’s test [34] is carried out and the resulting p-values are
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Table 3.6: Comparing performance with and without face geometry added to an existing
algorithm. a) verification rates with and without additional constraint from face geometry,
b) p-values for McNemar’s testing statistical significance of improvement.

Good Ugly
LRPCA 70.9% 8.3%
LRPCA + Geometry 73.2% 9.5%
CohortLDA 84.1% 11.4%
CohortLDA + Geometry 83.0% 13.4%
Fusion 98.4% 15.2%
Fusion + Geometry 97.9% 18.2%

(a)

Good Ugly
LRPCA w&w/o Geometry 4.9e-8 2.4e-4
CohortLDA w&w/o Geometry 1.3e-2 1.5e-7
Fusion w&w/o Geometry 2.0e-2 2.9e-11

(b)

shown in Table 3.6b. Given a baseline algorithm without geometry and the same baseline

algorithm with geometry, the null hypothesis H0 is that when only one of them succeeds,

the chance of the success coming from the former is the same as that coming from the latter.

With a confidence level of 95%, H0 is rejected in all 6 cases, showing that all differences are

statistically significant, with the improvements on the Ugly partition unquestionably so.

3.3 Non-face Biometrics: Halo PCA

This study was inspired by an experimental result about human face recognition reported

by O’Toole et. al. [26]. They showed pairs of face images from the ugly partition of GBU to

human observers and asked them whether the faces matched or not, under two conditions.

In the first condition, subjects were shown the oval of the face, but the image beyond the

face oval was grayed out. This had the effect of blocking out not only the background but

also the subject’s hair, ears and neck. In the second condition, it was the oval of the face

that was grayed out while everything else was preserved. Surprisingly, the human observers

were about as accurate at matching faces when the face was obscured as when the face was

present but everything else was obscured. This suggested to us that we should look for soft
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biometrics outside the oval of the face.

Traditional face recognition systems pay much attention to the inner region of a face

(face oval). It is true that humans can do a good job identifying persons well using only the

face oval. There is no doubt that eyes, noses, mouths are important to the recognition of

a face. However, Sinha et. al. [29] pointed out that processing performed by the human

vision system to judge identity is better characterized as head recognition rather than face

recognition. It suggested that there is useful information in the region outside of the face oval

and inside of the head region. It is common sense that different people have different hair

styles and face contours and they do not change much within a period of time. Considering

this cue may help with the recognition process. The background outside of the head region

is often discarded since it varies a lot very quickly.

Another reason of looking at the region between head and face oval is that face recognition

problem can become more challenging due to insufficient lighting, poor focus and so on,

leading to the eyes, noses and mouths difficult to recognize. Therefore, using the inner

region of the face to recognize subjects is not reliable. In cases like this, hair style and face

contours come to be a more robust feature to rely on.

To construct a non-face soft biometric that was not dominated by useless background

information, we extracted a ”halo” which is a curved band just outside the face oval, as

shown in Figure 3.3. Such halos show the hair and ears of the subject as well as part of

the neck. The halo excludes the face and most of the background. This halo shaped region

around the head does not vary a lot under these poor conditions. Moreover, it varies among

different subjects, meaning that this can be a good feature to distinguish persons.

We then explored how discriminate such halos are. In particular, we adopted Principle

Component Analysis (PCA) as our framework. Instead of using inner faces to generate

eigenfaces, we used halo images to generate eigenhalos. Given a new face image, its halo

was extracted and projected using eigenhalos. The distance between a pair of face images is

defined as the angle between them after projection. Table 3.7 shows the verification rate of

eigenhalos at a false accept rate (FAR) of 0.001 for the Good and Ugly partitions.
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Figure 3.3: An example of the halo image

Table 3.7: Verification rate of Eigenhalos on the Good and Ugly partitions.
Good Ugly

Halo PCA 38.2% 4.4%

It is surprising that eigenhalos do as well as 4.4% on the Ugly partition, where the

best performance so far is 15.2%, given by the fusion of three commercial face recognition

systems. After all, it is a simple feature derived without reference to the face. Nonetheless,

the goal is not to build another face recognition algorithm, but to determine if soft biometric

information from outside the face can be fused with traditional face recognition algorithms

to improve performance. To determine the best weighting of eigenhalo similarity vs. face

similarity, we plotted recognition as a function of relative weight, as shown in Figure 3.4 for

the good partition and Figure 3.5 for the ugly partition.

We draw three conclusions from this experiment.

• There is a benefit to using the halo information as a soft biometric. Fusing HaloPCA

with a face recognition algorithm almost always improves the verification rate of the

original algorithm, as long as the weight on HaloPCA is small. (One exception is

Fusion+HaloPCA on the good partition.)

• The benefits of the halo are small, however, particularly for the Fusion algorithm,

which is the best face recognition algorithm tested.
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Figure 3.4: Fusing HaloPCA on Good

• There is no ”universal” weight for fusing HaloPCA with other algorithms. The weight

depends on the algorithm and the data set.

3.4 Conclusion

In this chapter, I describe the SVM classification method to estimate face related soft

biometrics based on low-level features. Two methods for integrating the information of

soft biometrics in baseline algorithms are presented. One is to use the distance to SVM

hyperplane as a soft weight and the other is to use the hard label as a pruning method.

Comparing one with the other, it shows that soft weighting strategy works much better and

using hard labels to prune the image pairs can easily do more harm than good given an

imperfect classifier.

Furthermore, another continuous soft biometric, namely geometry is tested as a soft
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Figure 3.5: Fusing HaloPCA on Ugly

biometric. It improves the baseline algorithm performance better than other obvious soft

biometrics since the two baseline algorithms do not consider the face shape much. It shows

that whether a soft biometric is going to help improve the performance a lot depends on the

algorithm itself. The soft biometric should introduce as much independent information as

possible in order to improve the verification score by a large amount.

Finally, Halo PCA is introduced as a soft biometric, inspired by previous studies that

claim there is useful information in the region between the face oval and the head. Just by

looking at the halo itself, where the face oval and the background are masked out, we achieve

a recognition rate of 4.4% on the Ugly partition, which is more than a half of what LRPCA

achieves. Fusing Halo PCA with existing baseline algorithms also shows an improvement of

the recognition rate.
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Chapter 4

Best-Case Analysis: Gender and Race

4.1 Potential Improvement Analysis

In order for a soft biometric to help improve the performance of a face recognition algo-

rithm, the algorithm itself is expected to have claimed a pair of images with different soft

biometric labels to be a match pair. For example, a pair of female and male images are clas-

sified as a match pair. We analyze the mistakes made by LRPCA [23] and CohortLDA [17]

and a fusion of three of the best performing commercial algorithms in the Face Recognition

Vendor Test (FRVT) 2006 [22] regarding confusing gender and race on the good and ugly

partitions. The procedure is described as follows. For each image in the query set, we find

its nearest neighbor. If the nearest neighbor has the same gender/race as the query image,

it is considered that the algorithm makes a correct decision with respect to gender/race.

Otherwise, it is a wrong decision and can be fixed using the information of gender/race.

Table 4.1a and 4.1b show the percentage of query images whose nearest neighbor

matches in terms of gender/race on the Good and Ugly partitions. It can be seen that all

three algorithms do well internally on matching gender and race on the Good partition, while

not so well on the Ugly partition. We will predict that using information of gender/race will

not help much on the Good partition. However, it will improve the performance of the

algorithms on the Ugly partition by a notable amount.

4.2 Best-Case Analysis: Gender and Race

The goal of this study was to determine how much recognition performance might be

improved in practice using common soft biometrics. We chose to analyze performance with
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Table 4.1: Potential improvement analysis on the Good and Ugly partition.

Gender Race
LRPCA 98.2% 97.5%
CohortLDA 99.4% 99.4%
Fusion 100% 100%

(a) The Good Partition

Gender Race
LRPCA 71.9% 69.8%
CohortLDA 87.6% 84.8%
Fusion 89.9% 86.5%

(b) The Ugly Partition

regard to the Good, Bad and Ugly (GBU) Challenge Problem [23], since it allowed us to

analyze the effects of soft biometrics on data for which existing face recognition algorithms

perform well (the so-called good partition) as well as data on which existing algorithms

perform poorly (the ugly partition). The data also contains ground truth information for a

couple of soft biometrics, namely gender and race1.

We analyzed the performance of three algorithms on the good and ugly partitions: two

open-source algorithms (local region PCA (LRPCA) [23] and CohortLDA [17]), and a fusion

of three of the best performing commercial algorithms in the Face Recognition Vendor Test

(FRVT) 2006 [22]. For every algorithm, we looked at its performance without using gender

or race as a soft biometric, and compared it to the algorithm’s performance when similarity

scores between images with incompatible soft biometrics were disallowed. In other words,

matches between men and women or between people of different races were pruned from the

set of possible matches.

Tables 4.2a and 4.2b shows the results for the good partition and ugly partitions re-

spectively. The first column indicates the algorithm and the second the verification rate at

1The GBU data also includes ground truth data on age, but there is so little age variance among subjects
in the data that it is not a factor worth analyzing.
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Table 4.2: Verification rates without and with pruning by gender and/or race.

No SB G R G & R
LRPCA 70.9% 72.9% 73.0% 74.7%
CohortLDA 84.1% 85.0% 85.1% 86.4%
Fusion 98.4% 98.5% 98.5% 98.6%

(a) The Good Partition

No SB G R G & R
LRPCA 8.3% 9.7% 9.6% 11.3%
CohortLDA 11.4% 13.1% 13.0% 15.3%
Fusion 15.2% 17.9% 17.7% 20.1%

(b) The Ugly Partition

FAR=0.001 without the aid of either gender or race information. The third column shows

the results when matches across gender are disallowed, and the fourth column shows the

results when matches across race are disallowed. The last column shows the results when

both gender and race are used to disallow a match.

In all cases, performance gets slightly better when the soft biometrics are included. Since

we are using error-free ground truth values for gender and race, performance could not

logically have gotten any worse. But the gains in performance are very small. The Fusion

algorithm, in particular, does very well on the good partition without using soft biometrics;

it is right 98.4% of the time. Therefore, it doesn’t make many mistakes for the soft biometrics

to correct. Moreover, when it does make a mistake it apparently does not confuse men and

women or people of different races very often, because eliminating these mistakes only raises

performance 0.2%. The LRPCA and CohortLDA algorithms are not as good and therefore

get a bigger increase in performance, but the differences are still small: using both gender

and race improves the performance of CohortLDA by 2.3% and LRPCA by 3.8%.

One might expect, therefore, that information about gender and race would be more

useful on harder data sets, where the algorithms make more mistakes. Surprisingly, Table

4.2(b) shows the results of the same type of analysis over the ugly partition. In this case, the

baseline recognition rates of the three algorithms are 8.3%, 11.4% and 15.2%, respectively.
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Nonetheless, adding ground truth information about gender and/or race leads to only small

improvements. Adding gender information improves performance by only 1.4%, 1.7% and

2.7%, respectively. Similarly, adding race information only improves performance by 1.3%,

1.6% and 2.5%. Even combining both biometrics only creates improvements of 3%, 3.9% and

4.9%. Apparently, although these algorithms make many mistakes on the ugly partition, a

lot of them are made on the pairs of the same gender and race. Moreover, they are not in

general confusing men and women or people of different races.

Taking the row containing LRPCA in Table 4.2b, readers may be surprised to see that the

improvement of combining gender and race is greater than the addition of the improvement

of using gender and race alone. Note that the threshold is set using non-match distribution

such that the FAR equals 0.001, and also the match distribution is never changed. Compared

to using only gender or race, using both will set the similarity score of more non-match pairs

to −1000, changing the non-match distribution as well as the corresponding threshold. The

threshold can be much lower when using both gender and race to prune the similarity score.

When applying that threshold to the match distribution, we can get an increase of verification

rate greater than that from gender and race.

I hypothesize that gender and race are not terribly useful as soft biometrics because they

are global properties that determine many aspects of a person’s facial appearance. Therefore,

no matter what face recognition algorithm is used, it is fairly rare for a woman to be confused

with a man or someone who is Asian to be confused with someone who is white. Therefore

eliminating these mismatches has only a small overall effect. Some identification documents

include height information. If height Ire available as a soft biometric is might improve

performance more, since height is presumably relatively uncorrelated to facial appearance.
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Chapter 5

Conclusions and Future Work

5.1 Discussions

As can be seen from those experiments, the improvement of existing face recognition

algorithms using soft biometrics is not practically significant. The reasons are three-fold.

Firstly, soft biometrics cannot be treated as additional information independent from the

algorithm. They can be redundant. The algorithm itself may implicitly or explicitly encode

the information of soft biometrics such as gender and race. In these cases, the recognition

performance may even degrade if the soft biometrics are not used properly. Secondly, perfect

classification of the soft biometrics can not be achieved currently. Considering the first

reason, the improvement can still be algorithm-dependent even if the classification is perfect.

Even though the information of soft biometrics is independent of the recognition algorithm,

a poor classification can also degrade its performance. Thirdly, there are only a few soft

biometrics that can be extracted on a single face image. The lack of the number of available

soft biometrics limits the improvement gain of face recognition algorithms.

5.2 Conclusions

This paper presents experiments that try to improve face recognition performance using

soft biometrics. At one level, all of them succeed: face recognition performance increases

many cases. But the performance gains are never large; in fact, they could be described as

disappointingly small. Nor is there any reason to expect a large performance gain: the first

experiment shows that even perfect information about gender and race yields only a small

gain in performance. The gains seen in the other three experiments are smaller because the

soft biometrics themselves are noisy. This is consistent with the results reported by Park

and Jain [20].
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This paper is not meant to quash research in soft biometrics. Soft biometrics remains

an interesting and important research topic. After all, we tested only a handful of soft

biometrics and a handful of methods for fusing soft biometric information. Moreover, most

of the soft biometrics tested helped performance a little bit; enough soft biometrics might

lead to a qualitative improvement in performance. Nonetheless, this paper should dampen

the expectation that a few obvious soft biometrics will lead to large performance gains

on challenging data sets. To significantly improve performance, soft biometrics must be

carefully designed or trained, and breakthroughs in soft biometric feature extraction may

still be needed. In short, as a means of improving face recognition, soft biometrics are hard.

5.3 Future Work

There are some existing challenges in using soft biometrics to improve the performance

the face recognition algorithms. One is that classifying soft biometrics is a supervised task.

Since a number of training images are required to train robust classifiers for soft biometrics,

labeling them can be a difficult task. Though Amazon MTurk can be used sometimes, it is

possible that researchers do not have access to it in some cases due to security or financial

reasons. A better method for classifying soft biometrics that requires less human interaction

is needed.

The second challenge is that most soft biometrics are manually defined. Some of them

are distinguishable but some are not good enough. There are cases some soft biometrics are

ambiguous even for a human. We would like to focus on soft biometrics that help identify a

person greatly and ignore ones that are not helpful. However, no effective rules are available

to measure how good a soft biometrics is to help with identification. A good soft biometric

should be data driven rather than manually defined.

The third challenge is that many existing face recognition algorithms have already en-

coded the information of certain soft biometrics. Soft biometrics work well for improving

one face recognition algorithm can be redundant for another one. It is hard to determine

which soft biometrics would help improve certain face recognition method especially when
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the recognition method is a black box.

Given the above three challenges, we will be working on extracting soft biometrics on a

data driven manner. Both the distribution of the training images and the performance of

the face recognition algorithm would be evaluated. The question of which Soft biometrics

will be used can be answered by investigating the entropy of each potential soft biometric in

the training data and the original verification result of all the match and non-match pairs.

A soft biometric which can separate training data into clusters with close sizes and correct

many errors made by the face recognition algorithm is considered useful.
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