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Abstract

The Impact of Aerosols on Space-Based Retrievals of Carbon Dioxide

This work describes an investigation into the impact of aerosols on space-based retrievals

of the column-averaged dry-air mole fraction of carbon dioxide (XCO2). It was initially hy-

pothesized that a simplified non-scattering, or “clear sky”, retrieval, which neglects scatter-

ing and absorption by clouds and aerosols, could potentially avoid errors and biases brought

about by attempting to measure properties of clouds and aerosols when there are none

present. Clear sky retrievals have the benefit of being orders of magnitude faster and po-

tentially as accurate as “full physics” retrievals that attempt to gain information about

clouds and aerosols. Real data from the Greenhouse Gases Observing Satellite (GOSAT)

and simulated data from the Orbiting Carbon Observatory-2 (OCO-2) were analyzed to find

conditions under which a clear sky retrieval might perform as well as a full physics retrieval.

It was found that for real GOSAT data the clear sky retrieval performed relatively well

over land but not as well over ocean. The opposite conclusion was found for simulated

OCO-2 data: it performed well over ocean but poorly over land. For both real GOSAT data

and simulated OCO-2 data, high levels of filtering were needed for the clear sky retrieval

to be able to perform nearly as well as or better than the full physics retrieval for both

land and ocean surfaces. Spectral residuals were then examined to determine if the clear

sky algorithm’s performance was tied to errors in the spectral fitting. It was found that

the clear sky retrievals had larger residuals than the full physics retrievals but that reducing

the clear sky residuals by allowing them to fit for a customized residual pattern did little to

reduce the XCO2 errors. It was also shown that even very clear scenes may result in small

but detectable clear sky residual patterns.
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A comparison of cloud and aerosol properties measured by the XCO2 retrieval algorithm

to aerosol optical depths from the AErosol RObotic NETwork (AERONET) revealed that

the algorithm is generally unable to accurately retrieve information about the amount of

clouds and aerosols present. Using OCO-2 simulations, it was shown that the algorithm is

also only somewhat able to retrieve the heights of the aerosol layers. Information retrieved

about individual aerosol types was shown to be even less accurate.

Finally, early work in this study prompted investigation into how sensitive the XCO2

retrieval algorithm is to the first guess of aerosol properties. χ2 space was explored by

varying the first guess of various aerosol parameters. It was revealed that the retrieved

aerosol information and XCO2 values can be highly sensitive to the first guess of the state

vector, indicating significant nonlinearity in the retrieval’s forward model.

Two main conclusions were derived from this work. The first is an analysis of real GOSAT

clear sky XCO2 retrievals and simulated OCO-2 clear sky XCO2 retrievals which revealed

that the clear sky algorithm is generally inferior to the full physics algorithm, except for

when high levels of filtering are applied. The second conclusion is that the current aerosol

parameterization leads to unacceptable levels of nonlinearity in the XCO2 retrieval. These

results motivate further study to improve the retrieval algorithm’s aerosol parameterization,

either directly or by including additional information, which may result in an improvement

of the retrieval algorithm’s ability to accurately measure XCO2 .
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CHAPTER 1

Introduction

1.1. The Importance of Carbon Dioxide Measurements

Recently, space-based instruments such as the Greenhouse Gases Observing Satellite

(GOSAT, Yokota et al. (2009)) and the Orbiting Carbon Observatory-2 (OCO-2, Crisp et al.

(2004)) have been launched with the potential to provide global measurements of greenhouse

gas concentrations, including carbon dioxide (CO2). This global coverage should improve

the accuracy of carbon flux models, which are heavily dependent on CO2 measurements, and

help to answer lingering questions about the Earth’s sources and sinks of carbon and their

interaction with the atmosphere (Rayner and O’Brien, 2001, Baker et al., 2010, Chevallier

et al., 2007, 2009). It is know that only about half of the CO2 emitted by humans stays in the

atmosphere (Le Quéré et al., 2009). The rest is absorbed by the land and ocean, but little is

known about how and where this absorption occurs, especially over land. These carbon flux

models that had previously been limited by a sparse number of ground-based measurements

of CO2 will now have vastly more data at their disposal to improve the accuracy of their

conclusions, but only if the space-based measurements are of high enough accuracy them-

selves. Specifically, it has been shown that an accuracy of better than about 0.5% (∼2 ppm

for CO2) for space-based measurements is needed to gain more information about the carbon

cycle compared to only having access to ground-based measurements (Miller et al., 2007).

In terms of a bias between the measured CO2 and how much CO2 is actual present, even a

few tenths of a ppm can be detrimental to carbon flux models (Chevallier et al., 2007, Basu

et al., 2013). It is thus critically important to minimize errors in satellite measurements of

CO2 in order to be able to provide new answers to pertinent carbon cycle questions.
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1.2. Retrieving Carbon Dioxide from Satellites

A popular way to measure, or “retrieve”, CO2 concentrations from space involves de-

tecting sunlight reflected off the surface of the Earth with hyper-spectral resolution and

determining how many CO2 molecules are in the column of air seen, or the “light-path”, by

measuring how much sunlight is absorbed by the molecules. This method is conceptually

shown in figure 1.1.

Figure 1.1. The light path is conceptually shown as the yellow beam emitting
from the sun, getting reflected off the surface of the Earth, and being detected
by the satellite.

Satellites such as GOSAT and OCO-2 make use of this method. Typically a relatively

weak CO2 absorption band located in the near-infrared around 1.6 µm and stronger CO2

absorption band in the near-infrared at 2.0 µm are used in conjunction to deduce the average

amount of CO2 in the column of air seen by the instrument’s sensors. The instrument

on GOSAT containing these bands is the Thermal And Near infrared Sensor for carbon

Observations-Fourier Transform Spectrometer (TANSO-FTS). The single value of CO2 in
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the column of air is specifically the column-averaged dry-air mole fraction of carbon dioxide,

or XCO2 :

(1.1) XCO2 =

∫∞
0
NCO2(z)dz∫∞

0
Nair(z)dz

where NCO2(z) is the molecular number density of CO2 with respect to dry air at altitude

z and Nd(z) is the molecular number density of dry air at altitude z. Because the fraction

of oxygen in air is well known (0.20935) and near uniform globally, equation 1.1 can be

simplified to:

(1.2) XCO2 = 0.20935

∫∞
0
NCO2(z)dz∫∞

0
NO2(z)dz

where the number density of O2 and CO2 can be estimated using measurements of re-

flected sunlight in the weak CO2 band, strong CO2 band, and O2 A-band. An example of

the measured spectra of all three near-infrared bands from GOSAT is shown in figure 1.2.

The properties of the three near-infrared bands for GOSAT and OCO-2 are given in

table 1.1.

Table 1.1. Properties of the three near-infrared bands used by GOSAT and
OCO-2 to retrieve XCO2 .

Band TANSO-FTS Spectral Channels OCO-2 Spectral Channels

Range [cm−1] Range [cm−1]

O2 A 12900-13200 1203 12950-13190 1016

Strong CO2 5800-6400 601 6166-6286 1016

Weak CO2 4800-5200 436 4810-4897 1016
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Figure 1.2. An example of measured radiances from GOSAT in the O2 A-
band (top), weak CO2 band (middle), and strong CO2 band (bottom).

Real data from GOSAT and simulated data from OCO-2 were used in this study. The

XCO2 retrieval algorithm used in this study, unless stated otherwise, was the NASA Atmo-

spheric CO2 Observations from Space (ACOS) algorithm (see O’Dell et al. (2012), Crisp

et al. (2010) for details).

1.2.1. Optimal Estimation. The ACOS retrieval algorithm employs optimal estima-

tion to try and accurately measure XCO2 (Rodgers, 2000). Complete details of the algorithm

can be found in the ACOS retrieval Algorithm Theoretical Basis Document (Crisp et al.,

2010). Optimal estimation of XCO2 uses a set of parameters, or a “state vector”, to create
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a modeled set of spectra, described in section 1.2, that match the spectra measured by the

satellite, moderated by prior knowledge of the different state vector elements. This is done

by using the state vector elements in the forward model, F:

(1.3) y = F(x,b) + ε

where y is a vector of the simulated radiance, F is the forward model, x is the state

vector, b is a set of other fixed input parameters, and ε is instrument and forward model

errors.

The state vector elements are listed in table 1.2. The parameters selected for inclusion in

the state vector are sensitive to the retrieved spectra and often represent physical quantities.

Details on many of the elements can be found in O’Dell et al. (2012). Of note, a CO2

profile of 20 layers is retrieved by the algorithm and then used to find the total XCO2 .

However, other retrieval algorithms use their own unique covariance matrices and CO2 profile

parameterizations.

The simulated radiances y are then used in an inverse model to try and minimize the χ2

cost function given by:

(1.4) χ2 = (F(x)− y)TS−1ε (F(x)− y) + (x− xa)TS−1a (x− xa)

where Sε is the observation error covariance matrix, xa is the a priori state vector, and

Sa is the a priori error covariance matrix. The a priori state vector and its corresponding

error covariance matrix are derived from several sources including the European Centre for
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Table 1.2. State vector elements of the ACOS XCO2 retrieval algorithm,
adapted from O’Dell et al. (2012).

Name Quantities A Priori Value A Priori 1σ Error Notes

CO2 201 Model Climatology Fixed matrix Mole Fraction

wrt. dry air

Surface Pressure 1 ECMWF 1 hPa

Temperature Offset 1 0 K 5 K Offset to prior

temperature profile

W.V. Scale Factor 1 1.0 0.5 Multiplier to prior

specific humidity profile

Aerosol Amounts 4 Varies Varies ln(optical depth)2

Aerosol Heights3 4 Varies Varies

Albedo 3 From spectra4 1.0 Albedo at band center

Albedo Slope 3 0.0 0.0005 per cm−1

Wind Speed 1 7.0 m/s 3.3 m/s Over-water only

Dispersion Offset 3 From spectra4 0.5 cm−1

Fluorescence5 1 0.0 0.0004

Wcm−2sr−1ν̃−1 Wcm−2sr−1ν̃−1

Fluorescence Slope5 1 0.0018 4.9×10−7

Wcm−2sr−1ν̃−1 Wcm−2sr−1ν̃−1

EOF Scale Factor 3 0.0 100.0

1 Profile quantities contain 20 or fewer elements, depending on the surface pressure.
2 Optical Depth at 0.76 µm.
3 Peak heights of the Gaussian distributions.
4 Estimated directly from observed spectrum; see text for details.
5 See Frankenberg et al. (2013).

Medium-Range Weather Forecasts (ECMWF) for the meteorological variables and zonally

averaged seasonal cycles coupled with a typical atmospheric growth rate (for CO2). The

equation is solved for the value of x that minimizes χ2. The new x, found by the Levenberg-

Marquardt algorithm in ACOS, is then re-run through the forward model and the result is

used to try and again find the minimum χ2. This iterative process is contented until certain

thresholds are reached that indicate the algorithm has converged to a state vector containing

optimal values that minimize the cost function.
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1.3. Cloud and Aerosol Errors in XCO2 Retrievals

One of the most significant issues that arises when measuring XCO2 is the presence of

clouds and aerosols. The main reason clouds and aerosols can ruin a retrieval is due to light-

path modification. In order to precisely measure the light path, as described in section 1.2,

the amount of molecules in the column must be established. If clouds and aerosols are present

they can scatter the reflected sunlight in different directions which can drastically alter the

length of the light-path seen by the sensor and result in significant errors when calculating

XCO2 . It has been shown that neglecting scattering and absorption by these aerosols and

clouds can lead to significant errors in retrievals of XCO2 . These errors often exceed 1% (∼4

ppm) and can be tens of ppm for high optical depth scenes (O’Brien and Rayner, 2002, Aben

et al., 2007, Butz et al., 2009).

1.4. Managing Cloud and Aerosol Errors

One method to avoid significant XCO2 errors is to include a simple parameterization

of clouds and aerosols in the XCO2 retrieval algorithm. Most algorithms that have been

developed contain some kind of method to gain information about clouds and aerosols (a

brief description of some of these algorithms’ aerosol schemes is given in section 1.4.1). This

often includes adding one or more particle “types” to the algorithm along with parameters

describing the particles. These variables are intended to represent typical clouds and aerosols

found in the atmosphere. However, the addition of cloud and aerosol parameters to the

algorithm can result in issues such as creating an under-constrained problem or inducing

nonlinearity in the forward model. Worse yet, it has been shown that these “full physics”

retrievals, which include cloud and aerosol parameterizations, may actually incur biases from

trying to account for clouds and aerosols when none are present (O’Dell et al., 2012). For
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ideal, very clear scenes this becomes an issue, because the addition of cloud and aerosol

parameters may be doing more harm than good. Figure 1.3 shows a result from O’Dell et al.

(2012) that demonstrates a bias in the full physics retrieval when applied to simulated scenes

containing no clouds or aerosols.

Figure 1.3. XCO2 error in OCO simulations containing no clouds or aerosols
compared to the ratio of the continuum signal level in the weak CO2 band
relative to the O2 A-band (R21). Black points are noiseless retrievals that
contain no cloud or aerosol parameterization, blue points are noiseless full
physics retrievals, and red points are full physics retrievals with noise added.
Taken from O’Dell et al. (2012).

1.4.1. Aerosol Parameterization. There are many ways of parameterizing aerosols

in XCO2 retrieval algorithms. ACOS does so by including four unique aerosol types. The

aerosols are assumed to have a Gaussian distribution in the vertical. The algorithm is

allowed to fit for the height of the Gaussian as well as the magnitude. It has been shown

that instruments like GOSAT and OCO-2 should be able to gain information about an aerosol

layer’s optical depth and height (Frankenberg et al., 2012). The width, however, is tightly

constrained, as GOSAT and OCO-2 spectra are not very sensitive to the width of the aerosol

layers. Other algorithms contain unique aerosol parameterizations. RemoTeC, the Karlsruhe

Institute of Technology (KIT)XCO2 retrieval algorithm, retrieves several properties of a single
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generic mie type including the size distribution, height, scattering phase matrix, etc. (Butz

et al., 2009). The Japanese National Institute for Environmental Studies (NIES) algorithm

takes aerosols from a model and only retrieves the optical depths. The research group at

the University of Leicester uses a retrieval similar to ACOS but one that only contains three

types of aerosols.

Most of this study’s analysis was done on ACOS build 3.4 and build 3.5 (see section 2.1

for details). The primary difference between these two versions is the aerosol parameteriza-

tion. Both versions attempt to retrieve height and quantity information about four unique

types of aerosols using an a priori peak height, width, and amount. Both versions fit for the

same generic water cloud and ice cloud types. Besides those two types, ACOS B3.4 fits for

two generic “Kahn” aerosol types (Kahn et al., 2001) while B3.5 uses a Modern-Era Retro-

spective Analysis for Research and Applications (MERRA) monthly climatology to choose

the two most likely aerosol types for a given retrieval’s location along with a corresponding

climatological optical depth for use as the prior. The two most likely aerosol types for B3.5

can be any two of the five MERRA types: sulfate, dust, sea salt, organic carbon, and black

carbon (Colarco et al., 2010). Select optical properties of the various aerosol types used in

ACOS B3.4 and B3.5 are listed in table 1.3.

The Kahn 2b aerosol type is a mixture of coarse and fine-mode dust while the Kahn 3b

aerosol type is a mixture of smaller carbonaceous aerosols. Both 2b and 3b also contain

sulfate and sea salt components. For the MERRA types, dust and sea salt are the largest

particle mixtures. Additional information on the MERRA aerosol types and their properties

can be found in Chin et al. (2002).

The algorithm is allowed to change the profile’s height and total integrated amount

(optical depth) in order to minimize the cost function (see section 1.2.1). The a priori
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Table 1.3. Optical properties of cloud and aerosol types in the ACOS
B3.4 and B3.5 state vectors, adapted from O’Dell et al. (2012).

Aerosol Type kext or Qext Single Scattering Albedo

0.76 µm 1.61 µm 2.06 µm 0.76 µm 1.61 µm 2.06 µm

Kahn Type 2b1 0.934 0.842 0.580 0.933 0.980 0.972

Kahn Type 3b1 0.773 0.318 0.213 0.881 0.876 0.856

Sulfate 6715.2 964.5 422.8 1.000 0.997 0.961

Dust 719.6 715.6 702.6 0.924 0.940 0.935

Sea salt 1635.3 1619.7 1675.2 1.000 0.995 0.976

Organic carbon 3060.5 431.3 150.1 0.968 0.788 0.788

Black carbon 5922.8 2434.0 1871.6 0.145 0.037 0.019

Water cloud2, Re=8 µm 2.131 2.224 2.268 1.000 0.991 0.950

Ice cloud3, Re=70 µm 1.537 1.610 1.678 1.000 0.882 0.794

1 Kahn et al. (2001)
2 Gamma distribution (Hansen and Travis, 1974)
3 Non-spherical particles according to Baum et al. (2005a,b)

Gaussian aerosol profiles for ACOS B3.4 and B3.5 are shown in figure 1.4. Due to current

implementation constraints, the total amount is retrieved as the natural logarithm of the

total optical depth at 0.76 µm for each type.

1.4.2. Non-scattering XCO2 Retrievals. This study investigates the use of non-

scattering “clear sky” retrievals that assume no aerosol or cloud effects and thus may avoid

introducing unwanted biases. Clear sky retrievals do not include scattering and absorption by

clouds and aerosols but they do include Rayleigh scattering by air molecules when necessary

(of primary importance in the O2 A-band). An analysis of retrieved aerosol optical depths

compared to true aerosol optical depths (chapter 3) revealed that the aerosol information

retrieved by various full physics algorithms was not very well correlated with the true aerosol

information for a particular scene. This motivated me to investigate how the ACOS full

physics retrieval’s ability to estimate aerosols impacts its XCO2 accuracy and to check if

simply not trying to retrieve information about aerosols would lead to a comparably accurate
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Figure 1.4. The a priori aerosol profiles for ACOS B3.4 and B3.5, assuming
a surface pressure of 1013.0 hPa. The ice cloud is shown in cyan, the water
cloud in blue, and the two Kahn aerosol types used in B3.4 in red. The ACOS
B3.5 aerosol priors for both MERRA types is shown by the dashed red line
(assuming a prior optical depth of 0.0125)

XCO2 measurement for scenes uncontaminated by significant levels of clouds or aerosols.

Previous work (Butz et al., 2013) has shown that a clear sky retrieval results in acceptable

errors over ocean for very clear scenes. Clear sky retrievals are also desirable because of their

high computational efficiency relative to full physics retrievals. This is because accurately

calculating scattering from clouds and aerosols is computationally expensive: the current

operational ACOS retrieval algorithm takes roughly 10 minutes per sounding while OCO-2

collects about 106 measurements per day. This greatly restricts the number of measurements

able to be fully processed.

1.5. Organization

A comparison of clear sky XCO2 retrievals to full physics XCO2 retrievals is given in

chapter 2. The datasets and products used in the analysis are discussed. The genetic

algorithm and bias corrections are then described and their effectiveness on reducing errors
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is assessed. Clear sky XCO2 retrievals are compared to full physics XCO2 retrievals, both

statistically and spatially for GOSAT and OCO-2 data. Clear sky spectral residuals are

compared to full physics spectral residuals for GOSAT and OCO-2 data in order to see if

a meaningful correlation exists between improvements in fitting the measured spectra and

the retrieved XCO2 errors. The creation of a custom clear sky mean residual pattern is

performed, along with an investigation into how aerosols and clouds affect the magnitude of

the residuals.

An analysis of how accurately aerosols are retrieved in GOSAT and OCO-2 measure-

ments is described in chapter 3. GOSAT aerosol optical depths are compared to AErosol

RObotic NETwork (AERONET) measurements and OCO-2 simulated aerosol optical depths

are compared to the true scene values. A spatial analysis is done on both GOSAT and OCO-

2 aerosol types. Finally, retrieved OCO-2 aerosol heights are compared to the true scene

heights as well as the retrieved XCO2 values.

XCO2 retrieval nonlinearity due to clouds and aerosols is examined in chapter 4. Specifi-

cally, exploring how XCO2 is affected by modifying the first guess of several aerosol parame-

ters. Finally, χ2 space is explored for a case where only two parameters were perturbed.

Chapter 5 summarizes the study’s results, draws logical conclusions about the utility of

clear sky XCO2 retrievals, and proposes further analyses.
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CHAPTER 2

Clear Sky XCO2 Retrievals

This chapter tests the hypothesis that clear sky XCO2 retrievals can perform as well as

or better than full physics XCO2 retrievals because they may not incur biases from trying to

retrieve clouds and aerosols when there are none present. In the first section the GOSAT and

OCO-2 datasets are described. Post-filtering via the genetic algorithm is examined followed

by a discussion on the effectiveness of bias corrections. After applying the genetic algorithm

and bias corrections to various datasets, a comparison of clear sky retrievals to full physics

retrievals is done. Next, the two retrieval types are spatially compared to check for regions

where clear sky retrievals may perform relatively better. Finally, residual patterns from both

the clear sky and full physics retrievals are examined. The impact of fitting for a custom

clear sky residual pattern on retrieved XCO2 values is evaluated along with the impact of

aerosols on the residual patterns.

2.1. XCO2 Measurements and Simulations

2.1.1. Pre-filtering. The pre-filtering applied to most of the GOSAT and OCO-2

datasets consisted of removing measurements contaminated by high levels of clouds or

aerosols using the O2 A-band cloud screener (Taylor et al., 2012, O’Dell et al., 2012). The

cloud screener works by comparing the surface pressure measured by the O2 A-band to the

surface pressure retrieved by the L2 algorithm. If the difference is on the order of several

hPa, it is likely that there is a thick cloud or aerosol layer in the light path seen by the in-

strument. The algorithm was run on all measurements because it is extremely fast and not

computationally expensive. Unfortunately, some measurements, especially those containing

low clouds, are often not removed and thus impact the results of the study. In addition
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to the O2 A-band cloud screener, most of the GOSAT datasets were pre-filtered using the

IMAP-DOAS preprocessor, which estimates XCO2 independently from both the strong and

weak CO2 bands using a non-scattering algorithm (Frankenberg et al., 2005). The ratio of

these measurements is then used, along with similar ratios of H2O, to try and identify cloudy

scenes. Similar parameters to those used in the IMAP-DOAS preprocessor were included

in the genetic algorithm (see section 2.3), so the OCO-2 and unfiltered GOSAT datasets

benefited from these filtering techniques as well. The combination of the O2 A-band cloud

screener and IMAP-DOAS results in an effective removal of many scenes contaminated by

clouds and aerosols.

2.1.2. GOSAT Datasets. The GOSAT dataset contained retrievals on real GOSAT

data from April 2009 to December 2012. The GOSAT dataset contains ocean and land

scenes that attempt to represent the majority of surface types across the globe without being

regionally biased. The unprocessed measurements, or “level 1B” data, contain radiances,

pointing data, and geometric data. These level 1B data, along with meteorological data

used as a priori information, were pre-filtered to remove low quality measurements. These

low quality measurements are those that have an unacceptably low signal to noise ratio or

contain easily detectable levels of clouds or aerosols. The remaining measurements are then

run through the retrieval algorithm which outputs many fields, including XCO2 , as “level 2”

(L2) data. Retrievals that failed to converge to a solution were not used in this study. The

retrieval algorithm used in this study was primarily the NASA ACOS algorithm. As the

algorithm is currently in development, many different versions or “builds” were used in this

study including builds 2.10, 3.4, 3.5, and 4.0. Basic details of each GOSAT dataset are given

in table 2.1.
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Table 2.1. Description of the various GOSAT XCO2 datasets used in this study.

Name # Retrievals Pre-filtered?

ACOS B2.10 220,000 Yes

ACOS B3.4 25,000 Yes

ACOS B3.4 Unfiltered 25,000 No

ACOS B3.5 25,000 Yes

ACOS B4.0 74,000 Yes

The B2.10 data consists of retrievals run on real GOSAT data and spans from April

2009 to January 2011. This dataset was available early on in the project and primarily

used for aerosol validation work (section 3.1). Two datasets exist for ACOS B3.4. A 25,000

retrieval pre-filtered GOSAT ACOS B3.4 dataset was used for much of this study’s analysis.

A corresponding unfiltered GOSAT ACOS B3.4 dataset was also used when testing the

genetic algorithm filtering (section 2.3), containing approximately 25,000 retrievals. ACOS

B3.5 was included in this study when it became available because it contains a different

aerosol scheme than B3.4, which is first described in section 1.4.1. The GOSAT ACOS

B3.5 dataset contained approximately the same 25,000 GOSAT retrievals as the pre-filtered

GOSAT ACOS B3.4 dataset. ACOS B4.0 was used primarily because additional retrievals

were desired and the algorithm had progressed to B4.0 by that point in the study. The

GOSAT ACOS B4.0 dataset contains approximately 74,000 retrievals from June 2009 to

December 2012. Only minor changes were made in the algorithm from B3.5 to B4.0.

2.1.3. OCO-2 Datasets. The OCO-2 dataset contained 43,644 simulated OCO-2 re-

trievals (see O’Brien et al. (2009) for simulator details) from 58 orbits during 17-18 June

2012 and 19-20 December 2012. These 43,644 retrievals were selected for analysis because,

of the total four days worth of measurements (156,128), they passed the O2 A-band pre-filter

described in section 2.1.1. This means approximately 30% of all measurements are kept to be

run through the L2 code while 70% are discarded due to either contamination by clouds and
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aerosols or a number of other obvious problems such as having an unusably low signal level.

In reality, OCO-2 will make roughly 1,000,000 measurements per day. These simulations,

however, were set up with a lower density of data.

Of the 43,644 measurements kept, roughly 25,000 to 40,000 make it through the L2 code

and converge to a solution. This means that approximately 15-25% of the initial OCO-2

simulated measurements end up being used for this study. Operationally, computational

limitations on running the L2 code will likely reduce that number further. Because not

all measurements are able to be processed, it has been proposed that a genetic algorithm

(described in section 2.3) be used to determine which measurements should be run through

the L2 code.

Several different versions of the simulations were performed to account for noise, a priori

meteorological knowledge, and scattering via clouds and aerosols. Details of each dataset

used are given in table 2.2. All versions, unless stated otherwise, were run using the ACOS

B3.4 retrieval algorithm.

Table 2.2. Description of the various OCO-2 XCO2 datasets used in this study.

Name Meteorology Noise Clouds and Aerosols

ACOS B3.4 02b ECMWF No No

ACOS B3.4 02b NCEP NCEP No No

ACOS B3.4 02c NCEP NCEP No Yes

ACOS B3.4 02d ECMWF Yes No

ACOS B3.4 02e NCEP NCEP Yes Yes

OCO-2 “02b” simulations are noiseless and cloud- and aerosol-free. “02c” simulations

are noiseless but contain clouds and aerosols. “02d” simulations are cloud and aerosol-free

but contain synthetic instrument noise. The noise added was Gaussian and consistent with

the measured instrument noise (O’Dell, 2010). Finally, “02e” simulations contain clouds and

aerosols as well as noise. All versions of the simulations can either use perfect or imperfect
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meteorology. Perfect meteorology means the a priori meteorology information is identical to

the “true” meteorological conditions used in the simulation. Imperfect meteorology means a

different dataset was used to obtain the a priori meteorology information. In this analysis,

National Centers for Environmental Prediction (NCEP) reanalysis data was used which

is typically slightly different than the “true” meteorological conditions used to set up the

simulation. The idea behind using imperfect meteorology is that real retrievals will also

likely have slightly erroneous a priori meteorological information compared to the true scene

conditions. This analysis focused primarily on 02e NCEP OCO-2 simulations, which are the

most realistic of those previously described: noisy, containing clouds and aerosols, and using

imperfect a priori meteorological knowledge derived from the NCEP reanalysis.

The vertical profiles of clouds and aerosols used in the OCO-2 simulations were derived

from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. CALIOP is a lidar

onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), a

joint NASA and Centre National d’Etudes Spatiales (CNES) satellite. It was launched in

April of 2006 and flies in roughly the same orbit as OCO-2 and several other environmental

satellites. The aerosol and cloud data ingested into the OCO-2 simulations is separated

into 128 vertical levels containing an ice cloud type, water cloud type, and six aerosol types

(O’Brien et al., 2009).

2.1.4. Retrieval Types. Full physics and clear sky XCO2 retrievals were performed on

both datasets over land and ocean surfaces. Clear sky retrievals ignore all scattering and

absorption by cloud and aerosol and only include Rayleigh scattering by air molecules. The

clear sky retrievals only utilize the CO2 short-wave bands at 1.6 and 2.0 µm while the full

physics retrievals also utilize the O2 A-band at 0.76 µm. Because Rayleigh scattering is

primarily important in the O2 A-band, which the clear sky retrieval doesn’t use, a different
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version of the clear sky retrieval could theoretically be run that doesn’t calculate Rayleigh

scattering in any of the bands. The full physics algorithm uses additional information from

the O2 A-band because small cloud and aerosol particles typically have a larger impact on

shorter wavelengths and thus it tries to account for these effects by fitting for the aerosol

parameters in the state vector.

Both retrieval types use the O2 A-band for pre-filtering out scenes contaminated by

significant amounts of clouds and aerosols (described in section 2.1.1). The generated XCO2

values were then compared to “true” XCO2 measurements (described in section 2.2) in order

to gauge the retrievals’ performances. The retrieved OCO-2 XCO2 used in comparisons was

the averaging kernel-corrected XCO2 . That is, a value of XCO2 that is a weighted mix of the

retrieved XCO2 and the a priori XCO2 which represents what the instrument would actually

measure (Connor et al., 2008):

(2.1) uak = Autrue + (I − A)ua

where uak is the CO2 adjusted by the averaging kernel, A is the averaging kernel matrix,

utrue is the measured CO2 profile, I is the identity matrix, and ua is the a priori CO2 profile.

The averaging kernel matrix represents the relationship between the values measured by the

instrument and the true values. In a perfect retrieval the averaging kernel matrix would

be equivalent to the identity matrix. That is, each value of the CO2 profile would only

be sensitive to the atmospheric conditions at that exact level. In real retrievals, however,

the averaging kernel matrix describes how the retrieved information is smoothed out. For

the CO2 profile, each row of the averaging kernel matrix is a function that peaks at the

corresponding pressure level. The width of the function describes the spatial resolution of
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the observing system (Rodgers, 2000). The averaging kernel can also be thought of as a

description of the vertical resolution of the measurements.

Post-filtering was accomplished via a genetic algorithm, described in section 2.3. This

step is necessary because the problem of retrieving CO2 is under-constrained (Connor et al.,

2008). That is, there can potentially be multiple valid solutions of the forward model for a

single set of measurements. Besides being under-constrained, there may be nonlinearity in

the forward model that causes the retrieval to fail in finding the true χ2 minima but rather to

settle in a local minima or broad valley of low χ2 values that does not represent the optimal

estimate of the state vector. Thus, simple threshold filters can be applied post-retrieval

to try and remove these spurious retrievals. The most common variables selected by the

genetic algorithm for filtering simulated OCO-2 data were examined in order to evaluate the

possibility of their use in pre-filtering data.

2.2. Model Validation

In order to evaluate the accuracy of the XCO2 retrievals, a “true” XCO2 was needed. For

GOSAT data the trueXCO2 was either a co-located Total Carbon Column Observing Network

(TCCON) (Wunch et al., 2011a) measurement or a consensus of model-estimated XCO2 .

TCCON is a network of ground-based Fourier transform spectrometers with a accuracy and

precision of better than 0.25% for XCO2 . The model-estimated XCO2 was an average of

seven CO2 models which were required to all agree to within 1.0 ppm of XCO2 in order to

be used for comparison. These models include two from the University of Edinborough, one

from Le Laboratoire des Sciences du Climat et de l’Environnement, two from NIES, one

CarbonTracker model, and one from David Baker of NOAA. Obviously these methods have

accuracy limitations but they are needed in order to robustly evaluate XCO2 retrievals over a
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variety of surface types. Both the scatter and bias of the datasets are evaluated to determine

the retrievals’ performance.

2.3. Genetic Algorithm

A genetic algorithm, described by Mandrake et al. (2013), was used to find the optimal

post-filters for both real GOSAT data and simulated OCO-2 data. Genetic algorithms are

optimization tools that mimic natural selection to explore high dimensional parameter spaces

(Periaux and Galan, 1995). In this case, the genetic algorithm tried to find filtering variables

that minimized the standard deviation of error in XCO2 for any given level of throughput.

Throughput represents the amount of data kept: a throughput of 30% indicates that 70% of

the data was filtered out. The standard deviation of the error was chosen to be minimized

because it is a simple parameter that effectively represents how consistently the retrieval is

able to perform. The genetic algorithm also allows for more than one “rule” to be used. That

is, one rule selects the single most effective variable in reducing error for a given throughput

while two rules selects the best combination of two rules in reducing error. For this study

five rules were typically used to ensure optimal filtering of the data. However, in many

situations fewer rules are necessary to maximize the reduction in error (see Mandrake et al.

(2013)). The “most effective” filter is that which appears most frequently and contributes

the most to reducing the standard deviation of the XCO2 error. The variables chosen by

the genetic algorithm were carefully selected to not “cheat” and give the algorithm more

information than it should have. E.g. the true XCO2 was not allowed to be chosen as a

filtering parameter.

The genetic algorithm was run multiple times for different versions of the retrieval algo-

rithm and both surface types (land and ocean), since it was hypothesized that they might
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yield different optimal filtering parameters. Common optimal filters were found which and

then used to select sets of retrievals that had low XCO2 errors.

As previously mentioned, the genetic algorithm finds optimal solutions for as many rules

as desired. That is, if only a single filtering variable is of interest, the algorithm will seek

out the single most effective filtering parameter at each throughput level. If one wants the

best combination of five filters, the algorithm will search for the best combination of five

parameters to reduce the standard deviation of the error. Typically, only 2-5 rules are needed

to effectively minimize the error at most throughput levels. This is shown in figure 2.1: after

3 rules there is only a minimal reduction in the error. The benefit of adding additional

filtering rules is thus negligible. While figure 2.1 shows an example for OCO-2 simulations

over land, even fewer rules are typically necessary for filter optimization over ocean surfaces.

Figure 2.1. Genetic algorithm filtering rules applied to OCO-2 ACOS B3.4
simulations over land for full physics (solid) and clear sky (dashed) retrievals.
The y-axis is the standard deviation of the difference between the retrieved
XCO2 and the true XCO2 . The throughput represents the percentage of data
that remains after applying the filter.

Table 2.3 shows the most common one, two, and three rule parameters selected by the

genetic algorithm for full physics retrievals over ocean. The numerical value represents

the percentage of the retrievals filtered out at all throughput levels for a given number of
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rules. For one and two rules, the CO2 ratio is typically selected as the most important

filter. The CO2 ratio is the amount of signal received in the weak CO2 band divided by the

signal received in the strong CO2 band. As the number of rules increases, the combination

of parameters becomes more complex and other variables contribute more to the filtering.

This is seen in the “3 Rules” column, where the CO2 ratio explains a small majority of

the filtering while dPABO2 (the difference between the O2 A-band retrieved pressure and L2

retrieved pressure) explains over 45%.

Table 2.3. Most frequently selected parameters for one, two, and three ge-
netic algorithm rules and the percentage of all retrievals that they filter out
(%) for full physics OCO-2 ACOS B3.4 simulations over ocean.

1 Rule % 2 Rules % 3 Rules %

CO2 Ratio 78.5% CO2 Ratio 87.9% CO2 Ratio 66.9%

Strong CO2 RMS 9.5% dPABO2 28.4% dPABO2 45.2%

Strong CO2 SNR 7.8% Solar Zenith Angle 15.7% ∆T 13.0%

Weak CO2 Noise 3.0% H2O Ratio 5.2% Strong CO2 Noise 11.9%

The most effective rules for full physics retrievals over land as well as clear sky retrievals

over ocean and land were also examined (not shown). The CO2 ratio is typically employed

as the first or second most important rule for all cases. This implies it could be used to

further pre-filter data because its value is known before running the data through the L2

code. This may be especially useful for OCO-2 because computational power will be limited

and care must be taken in selecting which L1B measurements to fully analyze.

The genetic algorithm was also run on the unfiltered GOSAT dataset. Over ocean, it was

found that the root mean square (RMS) error of the strong CO2 band was by far the most

frequently selected filter. Over land, dPABO2 (defined above) was chosen most frequently

along with the signal of the strong CO2 band.
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In this section I have demonstrated the effectiveness of the genetic algorithm at removing

additional contaminated scenes not removed by pre-filtering. For all genetic algorithm results

examined in this study, the final standard deviation of the XCO2 error is the minimum value

the algorithm could find with a given number of rules and is always lower than or roughly

equal to the value found by manually filtering the data (not shown). This indicates that the

genetic algorithm is effective at finding the best possible way to filter the data for a desired

throughput level.

2.4. Bias Correction

Because the ACOS retrieval algorithm doesn’t perfectly represent real-world physics and

may not include all sources of instrument noise, biases can occur between the retrieved

XCO2 and other measured or retrieved parameters. XCO2 biases can also be caused by

deficiencies in the implementation of the spectroscopic line shape of the O2 A-band and the

strong CO2 bands (Wunch et al., 2011b). A bias correction can be useful in dramatically

reducing the overall XCO2 errors. A single variable was selected for bias correction for the

GOSAT dataset, unique to the retrieval type and surface type. The parameter chosen was

determined by how well it was correlated with the error between the retrieved XCO2 and

“true” XCO2 (section 2.2). A linear fit was made with the independent variable being the

selected parameter and the dependent variable being the error in XCO2 . The deviation of

each XCO2 error from this line was then subtracted from the retrieved XCO2 . Bias corrections

for OCO-2 simulations were briefly examined, but were found to be less effective compared to

real GOSAT retrievals. This is likely because OCO-2 simulations do not contain real-world

noise and other factors such as spectroscopy errors that can contribute to unwanted biases.
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The bias corrections chosen for the pre-filtered GOSAT ACOS B3.4 dataset are listed

in table 2.4. They were selected by examining the correlation coefficients of many variables

compared to the error in XCO2 . The most highly correlated variable was selected in order

to maximize the reduction in the standard deviation of the XCO2 error. Multivariate bias

corrections were also explored but were found to only minimally further reduce the XCO2

error.

Table 2.4. Bias correction parameter chosen to minimize the standard devia-
tion of the XCO2 error for GOSAT ACOS B3.4 data. The correlation coefficient
(R), standard deviation before bias correction (σ), and standard deviation af-
ter bias correction (σbc) are also listed for each retrieval type.

Retrieval Type Surface Bias Correction Parameter R σ σbc

Full Physics Ocean Band 3/2 Signal Ratio 0.290 1.36 1.30

Clear Sky Ocean dPABO2 0.413 1.88 1.71

Full Physics Land Weak CO2 Albedo 0.293 1.99 1.90

Clear Sky Land dPABO2 0.392 2.13 1.96

Figure 2.2 shows the variables with the highest correlation with the XCO2 error for full

physics ocean retrievals (left) and clear sky ocean retrievals (right). The correlation between

the strong CO2 band to weak CO2 band signal ratio and the XCO2 error for full physics

ocean retrievals was 0.29, which indicates the bias correction would reduce the variance of

the dataset by 8.4%. The clear sky XCO2 errors correlated highly with dPABO2 , which is the

difference in the O2 A-band pressure and the L2 pressure. For the same ocean retrievals run

in clear sky mode, a bias correction on dPABO2 reduces the variance by approximately 17%.

Similar correlations were found over land. Figure 2.3 shows the correlation between the

weak CO2 albedo andXCO2 error for full physics retrievals over land (left). For the full physics

land retrievals analyzed, the trend in weak CO2 albedo was able to explain approximately

8.6% of the variance in XCO2 error and was thus chosen as a bias correction parameter. For

clear sky retrievals over land, the correlation between dPABO2 and XCO2 error was able to
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Figure 2.2. The left panel shows the GOSAT ACOS B3.4 full physics ocean
XCO2 errors compared to the strong CO2 signal to weak CO2 signal ratio. The
right panel shows the GOSAT ACOS B3.4 clear sky ocean XCO2 errors vs. the
difference in the O2 A-band pressure and the L2 pressure. The grey circles are
the retrieved values, the black dotted line is a binned average of the retrieved
values, and the dashed black line is a linear fit to the data points. The blue,
dotted line is a binned average of the standard deviation of the XCO2 errors.
The vertical histogram bars represent the relative amount of data in each bin.

explain approximately 15.4% of the variance in XCO2 error and was thus chosen as a bias

correction parameter. Of note, dPABO2 was the most correlated parameter for both ocean

and land clear sky retrievals. Over both surfaces, negative values of dPABO2 are associated

with negative XCO2 biases while positive values of dPABO2 are associated with positive XCO2

biases. This is because lower PABO2 values due to clouds and aerosols above the surface result

from a shorter light path, which also causes an underestimation of XCO2 . The opposite is

also true: erroneously long light paths, caused by complex scattering between the surface

and clouds or aerosols, result in a larger PABO2 and larger XCO2 . This clear and persistent

bias supports the argument that even a small amount of clouds or aerosols can dramatically

change the retrieved XCO2 value.
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Figure 2.3. The left panel shows the GOSAT ACOS B3.4 full physics land
XCO2 errors vs. the weak CO2 albedo. The right panel shows the GOSAT
ACOS B3.4 clear sky ocean XCO2 errors vs. the difference in the O2 A-band
pressure and the L2 pressure. The grey circles are the retrieved values, the
black dotted line is a binned average of the retrieved values, and the dashed
black line is a linear fit to the data points. The blue, dotted line is a binned
average of the standard deviation of the XCO2 errors. The vertical histogram
bars represent the relative amount of data in each bin.

2.5. XCO2 Retrieval Comparison

In the previous two sections I have established the effectiveness of post-filtering via the

genetic algorithm and bias corrections in creating a robust dataset that contains only high

quality XCO2 retrievals. I now apply those methods to the GOSAT and OCO-2 datasets and

calculate overall statistics in an attempt to fairly compare clear sky and full physics retrievals.

This included looking at the standard deviation of the error XCO2 , the root mean square

(RMS) error, and the reduced χ2. Various levels of post-filtering and bias corrections were

explored along with separate analyses for land and ocean retrievals. Regional biases were

examined for GOSAT data by binning retrievals in Atmospheric Tracer Transport Model

Intercomparison Project (TransCom) regions and calculating statistics for each region.
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2.5.1. Summary of GOSAT Error Statistics. The effectiveness of the genetic al-

gorithm on unfiltered GOSAT data is shown in figure 2.4. One bias correction was applied

to the dataset prior to using the genetic algorithm. Here it can be seen that over ocean

surfaces the clear sky retrieval algorithm performs worse than the full physics retrieval algo-

rithm, even at very high filtering levels. Over land, however, the clear sky retrievals become

comparable to the full physics retrievals when significantly filtered (throughput of ∼10%).

Figure 2.4. Genetic algorithm filtering applied to GOSAT ACOS B3.4 re-
trievals for land (brown) and ocean (blue) surfaces for both clear sky (dashed)
and full physics (solid) retrievals. Four genetic algorithm rules were used. The
y-axis is the standard deviation of the difference between the retrieved XCO2

and the true XCO2 . The throughput represents the percentage of data that
remains after applying the filter.

Table 2.5 shows the standard deviation of the error in XCO2 for all ocean retrievals (in-

ferred from figure 2.4). With a difference in the standard deviation of XCO2 error generally

on the order of ∼0.3-0.5 ppm, this comparison suggests that the clear sky retrieval, when ap-

plied to real GOSAT data, is generally inferior to a full physical retrieval over ocean surfaces,

regardless of filtering level. This is in contrast to Butz et al. (2013), who hypothesized that

clear sky retrievals showed promise over ocean. However, Butz et al. 2013 used a different
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technique to identify suitable retrievals and didn’t include contamination by low cloud or

aerosols in their simulations.

Table 2.5. Standard deviation (σ) of the XCO2 error at different throughput
levels using four rules for GOSAT ACOS B3.4 retrievals over ocean. One bias
correction was applied to each dataset.

No Filtering 70% 50% 30% 10% 5%

σ (Full Physics) [ppm] 1.46 1.11 1.01 0.93 0.80 0.75

σ (Clear Sky) [ppm] 2.09 1.56 1.38 1.22 1.04 0.90

Table 2.6 shows the same information but for retrievals over land. Both error standard

deviations are larger, but the difference in errors now ranges from ∼0.3-0.0, depending on

the level of filtering. This provides evidence that GOSAT clear sky retrievals performs more

comparably to full physics over land than ocean and that the difference in error can be

almost negligible at high filtering levels.

Table 2.6. Standard deviation (σ) of the XCO2 error at different throughput
levels using four rules for GOSAT ACOS B3.4 retrievals over land. One bias
correction was applied to each dataset.

No Filtering 70% 50% 30% 10% 5%

σ (Full Physics) [ppm] 2.67 1.60 1.35 1.12 0.93 0.86

σ (Clear Sky) [ppm] 3.62 1.86 1.61 1.34 1.00 0.86

In addition to statistics of the whole datasets, spatial errors in the real GOSAT retrievals

are examined to see if there was regional variability or regions where the clear sky algorithm

performed relatively better. Figures 2.5 and 2.6 show the RMS of the XCO2 error for the

GOSAT ACOS B3.4 full physics and clear sky pre-filtered datasets, respectively. These errors

were averaged for each of the TransCom regions. One bias correction for each combination

of surface type (ocean, land) and retrieval type (full physics, clear sky) was applied (see

section 2.4). All of the ocean regions perform noticeably worse for the clear sky retrievals,

which is in agreement with table 2.5. The picture for real GOSAT data over land, however,
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is less clear. Certain regions do worse while others do better, leading to overall relatively

good agreement with the total global errors in the full physics dataset (table 2.6).

Figure 2.5. RMS of the GOSAT ACOS B3.4 full physics XCO2 error for the
TransCom regions. Regions containing no data are shown in grey.

Figure 2.6. RMS of the GOSAT ACOS B3.4 clear sky XCO2 error for the
TransCom regions. Regions containing no data are shown in grey.
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The RMS of the XCO2 error includes both the scatter and bias in the data. Here the bias

itself is examined in more detail. Without applying any corrections, the full physics dataset

has an overall high bias of roughly 1.0 ppm over ocean and 0.1 ppm over land while the

clear sky dataset has a bias of -2.5 ppm over ocean -0.8 ppm over land. This means that,

for example, the clear sky retrieval on average retrieves a value of XCO2 2.5 ppm lower than

the true XCO2 amount. These are just the biases for this specific dataset; in general biases

can be highly dependent on the retrieval setup. To remove the overall XCO2 bias, a single

unique correction was applied to each surface type for both retrieval types (as described in

section 2.4). This reduces the overall bias in XCO2 to roughly zero, but obviously regional

biases may still exist. The data may also be biased against certain parameters, but spatial

biases are the most worrisome because of the potential impact they have on flux inversion

models. The bias component of the full physics and clear sky retrievals averaged over the

TransCom regions are shown in figures 2.7 and 2.8, respectively. Here the bias is defined as

the retrieved XCO2 minus the true XCO2 .

Figure 2.7. Bias of the GOSAT ACOS B3.4 full physics XCO2 error for the
TransCom regions. Regions containing no data are shown in grey.
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Figure 2.8. Bias of the GOSAT ACOS B3.4 clear sky XCO2 error for the
TransCom regions. Regions containing no data are shown in grey.

Over land the regional biases are highly variable for both the full physics dataset and the

clear sky dataset. For example, a ∼1.0 ppm bias exists over northern Africa for the clear

sky dataset while that same region has a roughly -0.5 bias for full physics. Over ocean the

sign of the bias is often the same for a given region but the magnitude appears to be larger

for the clear sky dataset. In general, the clear sky dataset does not have lower biases than

the full physics dataset. This contradicts the hypothesis that the clear sky retrieval would

have lower biases because it may avoid biases caused by clouds and aerosols for very clear

scenes. It is likely that the complexity of the retrieval algorithm as well as the choice of how

to apply the bias corrections themselves leads to the hypothesis being false. These results

demonstrate that additional work is needed to maximize the reduction in regional biases.

The difference in the mean XCO2 error is shown in figure 2.9. The values correspond to

the absolute value of the full physics XCO2 error minus the absolute value of the clear sky

XCO2 error. Thus, negative values indicate that the clear sky retrievals performed worse

while red values indicated that they performed better. It’s clear that over ocean full physics
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GOSAT retrievals are superior to clear sky retrievals. This is in agreement with the RMS

TransCom analysis. Clear sky retrievals are able to perform better over South America and

southern Africa, but differences over the other land regions are small. The exception is

Northern Africa, where it appears that full physics retrievals perform much better than clear

sky retrievals. The good performance of clear sky retrievals over northern South America

could be due to low number statistics, as only 69 retrievals were valid in that region for this

dataset.

Figure 2.9. The difference in the magnitude of the mean XCO2 errors be-
tween GOSAT ACOS B3.4 full physics retrievals and GOSAT ACOS B3.4
clear sky retrievals for the TransCom regions. Negative values (blue) indi-
cate full physics performs better while positive values (red) indicate clear sky
performs better. Regions containing no data are shown in grey.

In this section I have demonstrated that real GOSAT clear sky retrievals, when filtered

and bias corrected, perform nearly as well as full physics retrievals over land surfaces when

filtered but never as well as full physics retrievals over oceans.

2.5.2. Summary of OCO-2 Error Statistics. Simplified OCO-2 simulations were

briefly examined to further test the hypothesis that clear sky retrievals perform as well as
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full physics retrievals for perfectly clear scenes (O’Dell et al., 2012). Noiseless simulations

without clouds or aerosols and using perfect meteorology (02b OCO-2 simulations) were

run. The results showed very small XCO2 errors for both clear sky and full physics retrievals,

with the clear sky retrievals having slightly smaller error standard deviations than the full

physics retrievals over both land and ocean surfaces. The addition of noise (02d OCO-2

simulations) slightly increased the errors for both retrieval types but did not change the

relative performance of the clear sky retrieval compared to the full physics retrieval.

02b NCEP simulations, which are identical to 02b except they use imperfect NCEP

meteorology, were also run. The standard deviation of the XCO2 error was approximately

0.35 ppm for the full physics retrievals and 0.66 ppm for the clear sky retrievals. This is

likely because the clear sky retrievals were not allowed to use the O2 A-band to fit for surface

pressure and thus the differences between the NCEP meteorology and true meteorology

manifested themselves in XCO2 errors. This occurs in the realistic OCO-2 simulations (02e

NCEP) as well but the errors are small relative to those caused by other effects such as

clouds and aerosols.

For realistic simulated OCO-2 data containing noise, imperfect meteorology, and clouds

and aerosols (02e NCEP), values of the standard deviation of the XCO2 error are given in

table 2.7 for ocean retrievals. These comparisons did not have to rely on models or TCCON

measurements because the true XCO2 value for each retrieval was known. Even with no

filtering applied, the clear sky retrievals perform reasonably well compared to the full physics

retrievals over ocean surfaces. When roughly 30% of the data is kept, the retrievals are

indistinguishable in terms of their error standard deviations. The clear sky algorithm then

is able to perform slightly better than the full physics algorithm for throughput levels lower
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than ∼30%. At very low throughput levels it is likely that low number statistics prevent any

meaningful conclusion.

Table 2.7. Standard deviation (σ) of the XCO2 error at different throughput
levels using four rules for OCO-2 ACOS B3.4 simulations over ocean.

No Filtering 70% 50% 30% 10% 5%

σ (Full Physics) [ppm] 3.02 0.96 0.63 0.51 0.39 0.32

σ (Clear Sky) [ppm] 3.27 1.19 0.79 0.51 0.32 0.28

Over land, shown in table 2.8, the clear sky retrievals are unable to match the performance

of the full physics retrievals, regardless of filtering amount. However, the clear sky retrieval

does perform relatively better as the amount of filtering is increased. This is consistent with

my overall hypothesis that clear sky retrievals perform better when scenes contaminated by

clouds and aerosols are filtered out.

Table 2.8. Standard deviation (σ) of the XCO2 error at different throughput
levels using four rules for OCO-2 ACOS B3.4 simulations over land.

No Filtering 70% 50% 30% 10% 5%

σ (Full Physics) [ppm] 2.54 1.16 0.96 0.81 0.66 0.58

σ (Clear Sky) [ppm] 4.35 1.67 1.26 0.97 0.76 0.66

These statistics are visually represented in figure 2.10. The initial reduction is most

dramatic, as the algorithm was able to remove highly contaminated scenes quite easily. All

runs tend to level off at throughputs ranging from approximately 50-80%. It is initially

obvious that the clear sky retrieval XCO2 error’s standard deviation is more comparable to

the full physics retrieval over ocean scenes and especially after heavily filtering the data.

The initial separation of clear sky land scenes compared to full physics land scenes is large

(nearly a 1.5 ppm difference in standard deviations) and only “catches up” to the full physics

retrievals at very heavy filtering levels, although this is likely an effect of having too few

retrievals to properly analyze.
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Figure 2.10. Genetic algorithm filtering applied to OCO-2 ACOS B3.4 sim-
ulations for land (brown) and ocean (blue) surfaces for both clear sky (dashed)
and full physics (solid) retrievals. Four genetic algorithm rules were used. The
y-axis is the standard deviation of the difference between the retrieved XCO2

and the true XCO2 . The throughput represents the percentage of data that
remains after applying the filter.

To determine what type of scenes the genetic algorithm was filtering out, the retrieved

XCO2 was compared to the true optical depths used in the simulations without filtering and

with 30% throughput. Figure 2.11 demonstrates that the genetic algorithm, when allowed to

remove the worst 70% of ocean retrievals, manages to significantly reduce the number of high

optical depth scenes. It’s seen that the thick, low water clouds are almost entirely filtered

out along with many of the thicker ice and aerosol layers. Thus, it can be concluded that the

genetic algorithm is highly effective at removing contaminated scenes (true optical depths >

0.3) for OCO-2 retrievals over ocean. The genetic algorithm leaves somewhat contaminated

scenes (optical depths of ∼0.1-0.3) because its goal is to minimize the standard deviation of

the XCO2 error, not to simply remove high optical depth scenes.

For clear sky OCO-2 simulations over land, which have been shown to be less effective

than full physics retrievals (table 2.8), figure 2.12 shows that the genetic algorithm is less

able to remove scenes contaminated by clouds and aerosols. Specifically, a population of
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Figure 2.11. Clear sky XCO2 retrievals over ocean compared to the true
aerosol, ice cloud, and water cloud optical depths for OCO-2 ACOS B3.4
simulations. Grey dots are unfiltered values while red dots are filtered down
to a throughput of 30% using the genetic algorithm. The blue dotted lines
are binned averages of the standard deviation of the XCO2 errors for unfiltered
(red fill) and filtered (grey fill) data. The legends contain σ for the unfiltered
and filtered XCO2 values and is different for each subplot because true optical
depths of 0.0 are not included. The uncolored bars represent the relative
amount of the unfiltered data in each bin while the grey bars are the retrievals
that remain after filtering.

the thick water clouds remains. However, the genetic algorithm still effectively reduced the

XCO2 errors (blue line with grey fill), even for the thick water clouds. If the filtering is

significantly increased, the high optical depth scenes are eventually removed (not shown).

Unfortunately this type of analysis cannot be done with GOSAT retrievals because the

number of comparisons to AERONET is insufficient.

Noiseless scenes containing clouds and aerosols and imperfect meteorology (02c NCEP)

were briefly examined to test the effect of removing noise from the realistic 02e NCEP OCO-2

simulations. It was found that the overall error statistics were slightly better than for the 02e

NCEP runs. Typically the standard deviation of the XCO2 error decreased by a few percent

for all datasets tested. This again indicates that noise in the OCO-2 simulations plays only

a minor role in the final XCO2 error distribution.
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Figure 2.12. Clear sky XCO2 retrievals over land compared to the true
aerosol, ice cloud, and water cloud optical depths for OCO-2 ACOS B3.4
simulations. Grey dots are unfiltered values while red dots are filtered down
to a throughput of 30% using the genetic algorithm. The blue dotted lines
are binned averages of the standard deviation of the XCO2 errors for unfiltered
(red fill) and filtered (grey fill) data. The legends contain σ for the unfiltered
and filtered XCO2 values and is different for each subplot because true opti-
cal depths of 0.0 are not included. The uncolored bars represent the relative
amount of the unfiltered data in each bin while the grey bars are the retrievals
that remain after filtering.

Besides the standard deviation of the XCO2 error, the reduced χ2 was also used to assess

the performance of the retrieval algorithms. Figure 2.13 shows the reduced χ2 for the weak

and strong CO2 bands over all surface types. The clear sky retrievals (red) perform worse

(higher χ2 values) than the full physics retrievals (black), especially for the strong CO2 band.

Filtering has the ability to remove many of the large χ2 values found in the clear sky retrieval

but it still cannot perform as well as the full physics retrieval.

An analysis of simulated OCO-2 data was also done for regions determined to be over

snow or ice. Full physics retrievals are often unable to make accurate XCO2 measurements

over snow and ice because those surfaces are very dark in the near-infrared, where the weak

and strong CO2 bands are located (O’Dell et al., 2012). The ground track of polar orbiting

satellites, such as GOSAT, provides substantially more data over polar regions than the
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Figure 2.13. Distribution of full physics (black) and clear sky (red) χ2 values
from OCO-2 ACOS B3.4 simulated data for the weak CO2 and strong CO2

bands.

tropics and it was hypothesized that the amount of data alone could lead to accurate XCO2

estimates by employing averaging techniques to try and reduce the noise. However, the errors

for both clear sky and full physics retrievals were too large and thus any data collected over

ice or snow currently appears to be of little value.

Here I have shown that OCO-2 simulation clear sky retrievals perform almost as well as

full physics retrievals over ocean surfaces, where the genetic algorithm is able to effectively

remove scenes contaminated by clouds and aerosols. Over land, however, extremely high

levels of filtering are needed to make the clear sky XCO2 errors comparable to the full physics

errors. This contrasts the results for GOSAT data, where clear sky retrievals performed well

over land when filtered but not as well over ocean. I have also shown that, in general, the

retrieval algorithm is less able to fit the spectra for clear sky retrievals, especially in the

strong CO2 band.

2.6. Radiance Residual Fitting

The performance of a retrieval algorithm is tied closely with how well it can fit the

measured radiance spectra. Analysis was done on both the GOSAT and OCO-2 datasets
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to determine if the clear sky retrievals were fitting the spectra as well as the full physics

retrievals. This could potentially provide clues as to why the clear sky retrievals are generally

unable to consistently perform as well as the full physics retrievals.

Recent editions of the GOSAT ACOS XCO2 retrieval algorithm (B3.4 and later) contain

three empirical orthogonal functions (EOFs), one for each band. EOF analysis works by

splitting a matrix into linearly independent parts, each of which explains a certain amount

of the dataset’s variance. The first EOF pattern explains the maximum amount of variance,

the second pattern explains the next largest amount of variance, and so on. To derive the

initial value of these parameters, several thousand L1B measurements are run through the L2

retrieval code as a baseline. The first EOF pattern of the spectral residuals is then allowed

to be fit by the L2 retrieval algorithm. Here the residual is defined as the radiances modeled

by the algorithm minus the true measured radiances. The algorithm is allowed to fit the first

EOF using a scale factor to adjust the magnitude of the pattern. All the L1B measurements

are then re-run with the most prominent residual pattern in hopes that the algorithm will

be able to use the function to more effectively reduce the spectral residuals even further.

An initial comparison between clear sky residuals and full sky residuals was done. It

was then hypothesized that the EOF pattern being used in both clear sky and full physics

retrievals was not optimal for clear sky retrievals because it was derived from full physics

retrievals and would thus not contain patterns induced by unmodeled scattering by clouds

and aerosols. The clear sky retrievals were then run with EOF fitting turned off to try and

find a customized clear sky residual pattern. It was determined that for this study the mean

residual pattern was suitable to be used, rather than the first EOF of the residuals. The

clear sky retrievals were then re-run with the new, customized residual pattern. Ocean scenes

were primarily examined because that is where the largest differences in XCO2 errors between
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clear sky and full physics GOSAT retrievals were found (see section 2.5). The strong CO2

band was looked at because it showed a larger difference in the χ2 of the residuals between

the two retrieval types (see figure 2.13). A newer ACOS B4.0 dataset was used for the

clear sky retrieval tests and they were compared to full physics retrievals run using ACOS

B3.4. Because the major changes from ACOS B3.4 to ACOS B4.0 relate only to aerosol

parameterization, clear sky retrievals run with ACOS B3.4 are essentially identical to those

run with B4.0.

After analyzing GOSAT clear sky residual fitting tests, OCO-2 clear sky simulation resid-

uals were examined to determine if the amount of aerosol in a scene is directly proportional

to the magnitude of the spectral residuals. It was hypothesized that filtering out high aerosol

scenes would only leave retrievals with small residuals. This would suggest that the clear

sky retrievals perform better, at least in terms of spectral residuals, for very clear scenes.

Conversely, high aerosol scenes were also examined for clear sky retrievals with the hypoth-

esis that these retrievals would have large residuals. Noiseless simulations free of clouds

and aerosols and containing perfect meteorology (02b) were then run to further test the

hypothesis that large residuals in the clear sky retrievals are caused by cloud and aerosol

contamination.

2.6.1. GOSAT Clear Sky Residual Fitting. For normal retrievals that use a full

physics EOF fit, the strong CO2 residual patterns of 445 full physics ocean retrievals (black)

and their corresponding clear sky versions (red) are shown in figure 2.14. It’s clear that the

full physics algorithm is better able to minimize the residuals. Overall, the residual patterns

are similar but the magnitude is greater for the clear sky retrievals. The difference pattern

shown in the bottom panel is likely due to scattering and absorption by clouds and aerosols

that is not accounted for in the clear sky retrievals. The clouds and aerosols modify the
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light path and thus cause an increase or decrease in radiances measured by the satellite at

certain wavelengths, which causes the ”sawtooth” pattern. This provided motivation to try

and reduce the clear sky residuals by fitting for a custom mean residual pattern, as described

above.

Figure 2.14. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) GOSAT ACOS B3.4 retrievals and clear sky (red) GOSAT ACOS B4.0
retrievals. The bottom panel shows the difference in the residual percentages
(full physics - clear sky).

Finding custom residual patterns for the clear sky ocean retrievals was done by turning

off fitting for the first EOF in all bands (for the clear sky retrievals only the two CO2 bands

were used). The results are shown in figure 2.15. The normal full physics retrieval with EOF

fitting enabled is again shown in black as a comparison. The new clear sky retrievals have

much larger spectral residuals than both the full physics retrievals and the baseline clear sky

residuals (figure 2.14). There are significant residual spikes at most wave numbers in the

band and often times the sign of the residual is opposite that of the full physics residual.
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This was rarely the case in the baseline test, where the clear sky residuals were simply larger

in magnitude. This suggests that fitting for the residuals has a significant impact in both

the sign and magnitude of the final residual pattern. This new clear sky strong CO2 residual

pattern (shown in red), along with the weak CO2 pattern (not shown), were then saved for

use in the customized clear sky retrieval algorithm.

Figure 2.15. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) GOSAT ACOS B3.4 retrievals and clear sky (red) GOSAT ACOS B4.0
retrievals. The bottom panel shows the difference in the residual percentages
(full physics - clear sky). Residual EOF fitting was disabled for the clear sky
(red) retrievals.

Allowing the retrieval algorithm to fit for the new clear sky residual pattern results in

the strong CO2 residuals in figure 2.16. The normal full physics residuals (black) are again

plotted for comparison purposes. The clear sky residuals (red) were successfully reduced to

lower magnitudes than the initial residuals seen in figure 2.14. They are also, on average,
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smaller in magnitude than the full physics residuals. This shows that, as hypothesized,

customizing the residual fitting pattern was successful in reducing the clear sky residuals.

Figure 2.16. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) GOSAT ACOS B3.4 retrievals and clear sky (red) GOSAT ACOS B4.0
retrievals. The bottom panel shows the difference in the residual percentages
(full physics - clear sky). The clear sky retrievals were allowed to fit for the
mean residual pattern of the clear sky retrievals with EOF fitting disabled
(clear sky residual pattern in figure 2.15).

To examine whether or not the reduction of clear sky spectral residuals over ocean was

effective in reducing the overall XCO2 errors, the standard deviation of the errors for all cases

in this section were calculated and are shown in table 2.9.

Table 2.9. Standard deviation of the XCO2 error for GOSAT ACOS B3.4
and B4.0 retrievals over ocean using different residual fitting patterns.

Retrieval Type ACOS Build σXCO2
error

Full Physics ACOS B3.4 1.09 ppm

Clear Sky ACOS B4.0 1.63 ppm

Clear Sky (no fitting) ACOS B4.0 1.62 ppm

Clear Sky (custom fit) ACOS B4.0 1.60 ppm
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The initial GOSAT clear sky errors are, as shown in section 2.5, significantly worse

than the full physics retrieval errors. Interestingly, when residual fitting is turned off for

clear sky retrievals the standard deviation of the XCO2 errors stays approximately the same.

It was hypothesized that the errors would be larger because, as shown in figure 2.15, the

magnitude of the residuals is much greater. This suggests a lack of correlation between

residual magnitude and XCO2 errors, at least for clear sky GOSAT retrievals over ocean.

This conclusion is supported by looking at the residuals over land, where the clear sky

retrievals perform statistically about as well as the full physics retrievals. The same clear

sky residual pattern over ocean appears in the retrievals over land (not shown).

When clear sky retrievals were run with a custom residual pattern, the standard deviation

of the XCO2 errors is only marginally reduced compared to the baseline clear sky run (-0.03

ppm) and no-fit run (-0.02 ppm). This supports the previous claim in that a significant

reduction in residuals doesn’t necessarily mean a significant reduction in GOSAT XCO2

errors. An examination of XCO2 errors compared to other measured and retrieved parameters

(not shown) revealed all three clear sky versions have similar biases and correlations with

most parameters. The most significant changes are, not surprisingly, involve the scaling

factor of the residual fits themselves.

Overall, these tests suggest that reducing the clear sky residuals plays only a minor role

in minimizing the XCO2 error in real GOSAT retrievals.

2.6.2. OCO-2 Clear Sky Residuals. OCO-2 simulation residuals were then exam-

ined because of the potential to filter the data using the true aerosol optical depths. That is,

to be able to further test the hypothesis that the clear sky retrieval performs better for very

clear scenes. The strong CO2 band residuals for both full physics and clear sky simulated

OCO-2 retrievals over ocean are shown in figure 2.17. Confirming work done in section 2.6.1,
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the clear sky residuals (red) are larger in magnitude than the full physics residuals (black).

The sawtooth pattern seen in the GOSAT residuals (figure 2.14) is also seen in figure 2.17.

This is encouraging because provides evidence that the simulated OCO-2 clear sky retrievals

behave like clear sky retrievals run on real GOSAT data, at least in terms of their residual

patterns. The sawtooth pattern, as previously mentioned, is because the clear sky algorithm

doesn’t try and account for light path length modification due to clouds and aerosols. The

clear sky residuals are also frequently the opposite sign of the full physics residuals, a feature

also seen in clear sky GOSAT retrievals with residual fitting disabled (figure 2.15). This is

likely an artifact of the sawtooth effect just described.

Figure 2.17. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) and clear sky (red) OCO-2 ACOS B3.4 retrievals run on 02e NCEP
scenes. The bottom panel shows the difference in the residual percentages (full
physics - clear sky).

Filtering out simulated scenes with total true optical depths (water cloud + ice cloud

+ aerosols) of greater than 0.03 results in the residuals shown in figure 2.18. Compared to
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the baseline residuals (figure 2.17), retrievals of scenes with very low optical depths have

moderately lower residuals across most of the spectrum. The sawtooth pattern seen in the

clear sky residuals of figure 2.17 is no longer present and both the full physics and clear

sky retrieval residuals look more random. However, the sawtooth pattern is still seen when

differencing the two retrieval types (lower panel) but with a smaller magnitude compared to

the baseline runs. This suggests that even a small amount of clouds or aerosols can induce

a residual pattern in the clear sky retrievals.

Figure 2.18. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) and clear sky (red) OCO-2 ACOS B3.4 retrievals run on 02e NCEP
scenes. The bottom panel shows the difference in the residual percentages (full
physics - clear sky). Scenes with optical depths greater than 0.03 were filtered
out.

Looking at high optical depth cases should reveal larger residual patterns than the base-

line runs. Figure 2.19 shows that this is the case. The sawtooth pattern in the baseline runs

is amplified considerably and very pronounced in the differencing (lower panel).
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Figure 2.19. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) and clear sky (red) OCO-2 ACOS B3.4 retrievals run on 02e NCEP
scenes. The bottom panel shows the difference in the residual percentages (full
physics - clear sky). Scenes with optical depths less than 0.5 were filtered out.

As figures 2.18 and 2.19 suggest, the residual patterns in the clear sky ocean retrievals are

likely caused by clouds and aerosols. This was confirmed by running 02b ocean simulations

which are noiseless, contain no clouds or aerosols, and use perfect meteorology (as opposed

to the normally used 02e NCEP OCO-2 simulations, which are more realistic). The residuals

for clear sky (red) and full physics (black) retrievals are shown in the top panel of figure 2.20

while the difference is shown in the bottom panel of figure 2.20. Noticeable differences can

be seen in the residuals along with an overall low bias for the full physics retrievals and a

seemingly better fit for the clear sky retrievals. Overall, as hypothesized, the residuals are

smaller than any of the other tests, especially for the clear sky retrievals. This is because

the scenes contained no noise, clouds, or aerosols and thus the retrieval algorithm was better

able to fit the spectra. The relative differences shown in the bottom panel are quite small.
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This confirms the hypothesis that even small amounts of clouds and aerosols can contribute

significantly to the clear sky retrieval’s inability to properly fit the spectra.

Figure 2.20. The top panel shows the strong CO2 spectral residuals (mod-
eled radiances - measured radiances) percentages over ocean for full physics
(black) and clear sky (red) OCO-2 ACOS B3.4 retrievals run on 02b scenes.
The bottom panel shows the difference in the residual percentages (full physics
- clear sky).

2.7. Clear Sky XCO2 Summary

In this chapter I compared clear sky XCO2 retrievals to full physics XCO2 retrievals. The

use of the genetic algorithm revealed that it is an effective tool in removing contaminated

retrievals not caught by pre-filtering from XCO2 datasets. Typically, only 2-5 rules were

needed to maximize the effectiveness of filtering. Some of these rules (e.g. the CO2 ratio)

have the potential to be used as a pre-filter because their value is known before running

the L2 code. This is useful because the L2 code is computationally expensive so having the
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ability to identify low quality measurements early on will potentially allow for additional

measurements to be run through the L2 code.

From applying the genetic algorithm and bias corrections to the retrieval datasets and

computing various statistics, it can be concluded that the clear sky algorithm typically does

not perform as well as the full physics algorithm. Analysis of real GOSAT data revealed

that the clear sky retrieval is generally unable to match the performance of the full physics

retrieval. For real data over ocean the clear sky retrieval is generally worse than the full

physics retrieval while over land it is somewhat more comparable, but only after significant

filtering and a bias correction.

Simplified OCO-2 simulations were run and it was found that, as hypothesized, clear sky

retrievals can perform as well as full physics retrievals for scenes free of clouds and aerosols.

For realistic simulations, however, clear sky OCO-2 retrievals are comparable to full physics

OCO-2 retrievals only when high levels of filtering are applied. This filtering is effective

at removing low quality retrievals, which typically include scenes contaminated by clouds

and aerosols. Over ocean, keeping 30% of the data results in the two retrieval types being

indistinguishable in terms of their XCO2 errors while over land much higher levels of filtering

are needed for the clear sky retrievals to be comparable to the full physics retrievals.

Despite generally not performing as well as the full physics algorithm, the clear sky

algorithm still typically manages to retrieve XCO2 errors less than 2.0 ppm when modestly

filtered. Additionally, the computational efficiency of clear sky retrievals means they may

yet be useful for certain applications that require a large number of retrievals but have more

relaxed error requirements.

An analysis of residual patterns from clear sky and full physics GOSAT retrievals revealed

that the clear sky spectral residuals can be reduced by fitting for a customized mean residual
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pattern. However, this improvement in the residuals not directly result in a significant

reduction of XCO2 errors. For OCO-2 simulations, it was shown that filtering out all but the

clearest scenes results in a significant reduction in the clear sky residuals. However, patterns

caused by unmodeled clouds and aerosols are still visible in the clear sky residuals, even for

the clearest scenes.

Overall, the clear sky retrievals are generally inferior to full physics retrievals for both

simulated OCO-2 data and real GOSAT data, except for when high levels of filtering are

applied to remove low quality retrievals.
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CHAPTER 3

Aerosol Comparison

In the previous chapter it was shown that simply ignoring clouds and aerosols is generally

not effective in reducing XCO2 errors. This means that trying to fit for aerosols is beneficial.

However, is the aerosol parameterization in ACOS accurately measuring clouds and aerosols?

If not, this would suggest that there is likely room for improvement in the aerosol scheme.

This chapter is dedicated to investigating whether or not the aerosol parameterization in

ACOS is able to accurately gain information about clouds and aerosols. If the retrieval algo-

rithm is unable to realistically represent clouds and aerosols it suggests that other methods

could be used to try and improve the retrieval. First, the ability of the ACOS XCO2 retrieval

algorithm to properly measure aerosol optical depths is assessed both quantitatively and

spatially. The spatial distribution of the types of aerosols selected by the algorithm is also

investigated to see if regional patterns are present. Finally, the placement of aerosol layers

in OCO-2 simulations is studied to see if the algorithm is able to accurately determine the

true height and to see if the placement of the aerosol layers is correlated with XCO2 errors.

If these analyses demonstrate the inability of ACOS to retrieve information about clouds

and aerosols, it suggests other methods are needed to handle the errors caused by them.

This study also investigates whether changes made in the aerosol scheme from ACOS B3.4

to B3.5 resulted in an improvement of the retrieved aerosol properties.

3.1. Comparison to AERONET

3.1.1. AERONET Aerosol Optical Depth Measurements. AERONET is a col-

lection of ground-based sun photometers designed to provide globally distributed observa-

tions of spectral optical depth, precipitable water, and other variables relating to aerosols
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(Holben et al., 1998). They provide a cloud-screened, quality-assured product that spans

several years and has data at hundreds of locations around the globe. Figure 3.1 shows the

location of all AERONET stations active at some point during 2014.

Figure 3.1. AERONET stations active in 2014.

This network was used to analyze the XCO2 retrieval’s effectiveness at gathering informa-

tion about the scene’s aerosol profile. This is because ground-based sun photometers have

the ability to be much more accurate than space-based instruments; the uncertainty for a

newly calibrated AERONET sun photometer under cloud-free conditions is typically < ±

0.01 for wavelengths relevant to this study (Holben et al., 1998). There are many AERONET

stations across the globe that overlap in time and space with GOSAT measurements. For this

analysis, only AERONET measurements that were co-located with GOSAT measurements

to within 0.1 degrees and 30 minutes were used.

3.1.2. Comparing AERONET Aerosol Optical Depth to GOSAT. To deter-

mine if the aerosol properties measured from the retrieval algorithm were realistic, a com-

parison against AERONET data was done. Since the true aerosol properties are known for

simulated retrievals, this work was only done on real GOSAT data. The initial portion of
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this part of the study was completed before the implementation of ACOS B3.4 and thus an

older dataset run with B2.10 was used (the aerosol scheme was not changed from ACOS

B2.10 to B3.4). Since the aerosol properties of the atmosphere vary highly in both time

and space, strict co-location criteria were implemented. For a GOSAT retrieval to be used

it was required to be measured within 30 minutes and roughly 11 km (0.1 degrees) of the

AERONET measurement. The frequency of measurements made by AERONET is variable

and depends on the air mass but is typically no lower than one measurement every 15 min-

utes (Holben et al., 1998). If multiple AERONET measurement were made within a single

30 minute time segment they were averaged.

AERONET stations only measure at certain wavelengths so in order to compare AERONET

measurements to the retrieved aerosol optical depth at 0.755 µm from GOSAT, the AERONET

optical depths at 0.675 µm and 0.870 µm were averaged. This technique relies on the as-

sumption that the Ångström exponent is low for this wavelength region. The number of

AERONET stations is significant, with hundreds of sites currently in operation. However,

they are still regionally biased and only present on land. This essentially removes the pos-

sibility to validate a significant number of oceanic GOSAT aerosol measurements. Different

co-location thresholds were also tested, but it was felt that these time and space criteria

best represented a balance between actually comparing the same column of air and having

enough measurements to ensure a robust analysis.

The AERONET dataset was also compared with other retrieval algorithms including

RemoTeC (version 2.0) from the Karlsruhe Institute of Technology (KIT) and another from

Japan’s National Institute for Environmental Studies (NIES) (version v02). This was to

analyze other retrieval algorithms’ ability to gain information about aerosols.
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3.1.3. GOSAT Aerosol Optical Depth Validation Analysis. For ACOS B2.10,

figure 3.2 demonstrates the lack of significant correlation (R=0.33) between the AERONET

aerosol optical depths and the retrieved GOSAT aerosol optical depths. There is also a

high bias present in the data. The analyzed data is from all AERONET measurements that

met the previously described co-location criteria, so it may contain regional biases but an

investigation of individual sites revealed the lack of correlation is ubiquitous.

Figure 3.2. AERONET aerosol optical depth compared to the retrieved
ACOS B2.10 aerosol optical depth from GOSAT data. A linear fit is shown
by the solid black line.

After analysis had begun on the clear sky XCO2 retrievals using an updated version

of the retrieval algorithm (ACOS B3.4), this work was revisited and a comparison was

done comparing the newer algorithm’s aerosol optical depths to AERONET. The results in

figure 3.3 show a slightly more promising distribution with a lower bias at small optical depths

but still a significant amount of scatter at large aerosol optical depth values. Notice the

number of comparisons had increased due to more data having been collected. Interestingly,
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the improvements resulted from general improvements to other parts of the algorithms and

not changes in the aerosol scheme itself.

Figure 3.3. AERONET aerosol optical depth compared to the retrieved
ACOS B3.4 aerosol optical depth from GOSAT data. A linear fit is shown
by the solid black line.

Figure 3.4 shows how retrieved aerosol optical depths compare to AERONET for the

updated MERRA aerosol scheme in ACOS B3.5. The correlation has improved slightly but

overall the changes are minimal, despite significant modifications to the aerosol scheme.

Besides ACOS, RemoTeC and NIES aerosol optical depths were also briefly investigated.

It was found that RemoTeC (not shown) retrieved similar aerosol optical depths compared

ACOS B3.4, despite having a fundamentally different aerosol scheme, while NIES often

greatly underestimated the amount of aerosols in the column. These comparisons show

that obtaining accurate information about aerosol content is fundamentally difficult for any

retrieval algorithm, including ACOS.

In this section I have shown that the retrieved aerosol optical depths from GOSAT

retrievals are not well-correlated with AERONET aerosol optical depths. This suggests that
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Figure 3.4. AERONET aerosol optical depth compared to the retrieved
ACOS B3.5 aerosol optical depth from GOSAT data. A linear fit is shown
by the solid black line.

XCO2 retrieval algorithms, when applied to real GOSAT data, are unable to accurately gain

information about cloud and aerosol amounts.

3.2. OCO-2 Aerosol Optical Depth

Besides comparing real GOSAT data to AERONET, retrieved aerosol optical depths

from OCO-2 simulations can be compared to the true optical depths used in the scene.

The retrieved optical depths were compared to the true optical depths to evaluate the al-

gorithm’s ability to accurately retrieve cloud and aerosol amount information. Analyzing

OCO-2 simulations in addition to GOSAT retrievals is useful because, unlike AERONET,

the aerosols scenes used in the OCO-2 simulations are exactly represented by the retrievals.

No co-location or error assumptions are needed and every aspect of the simulated aerosol

scenes can be controlled. Simulated measurements and retrievals are also useful compared to

GOSAT measurements because they do not contain unknown instrument errors and biases.
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For realistic simulated OCO-2 ACOS B3.4 data (see section 2.1 for simulation details),

a comparison of retrieved aerosol optical depths to true aerosol optical depths is shown in

figure 3.5. This shows clearly that many scenes with high water cloud optical depths (lower

left panel) are not removed by pre-filtering. This is likely because the measured spectra

are seen as being consistent with a low optical depth scene. These scenes contain low level

water clouds that are undetected by the retrieval algorithm and not caught by any of the

pre-filters (see section 2.1). These low water clouds can be somewhat effectively removed

by filtering (not shown) but many contaminated measurements still remain. An interesting

feature can be seen in the Kahn type comparison (upper right panel): a horizontal cluster of

retrieved aerosol optical depths around 0.0125. This turned out to be retrievals that didn’t

vary much from the prior optical depth. Two faint subpopulations of low true aerosol optical

depths can also be seen in the same aerosol panel (upper right). These are primarily located

at high latitudes and are an artifact of Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) aerosol profiles, described in section 2.1.3.

Besides the water cloud outliers, there is a low bias in the retrieved total optical depths

compared to the true total optical depths (lower right panel). The correlation coefficient

is ∼0.40 between the retrieved and true total optical depths (excluding low water clouds)

and thus it can be concluded that the total optical depth can only be somewhat accurately

retrieved in realistic OCO-2 simulations. Individual aerosol types are even less constrained in

the retrieval and may deviate significantly from their true values. For aerosols, the correlation

is a mere ∼0.07 while for water cloud it’s 0.18. The ice cloud also has a correlation coefficient

of 0.03.

ACOS B3.5, which uses the MERRA setup instead of generic Kahn aerosol types, is

similar to ACOS B3.4 in most other respects and thus in comparing the two the impact

57



Figure 3.5. Heat map of the true optical depths compared to the retrieved
ACOS B3.4 optical depths from OCO-2 simulations. Optical depths are com-
pared for the ice cloud, the combined Kahn 2b and Kahn 3b aerosol layer, the
water cloud, and the total combined aerosol layer.

of changing the aerosol parameterizations can be assessed. Figure 3.6 shows the retrieved

optical depths compared to the true optical depths. The horizontal linear cluster of ACOS

B3.4 aerosol retrievals was eliminated in B3.5 because the prior was based on the MERRA

climatology and not fixed at one value. This analysis does not eliminate the possibility that

many of the retrieved optical depths in ACOS B3.5 are still staying too close to their prior,

as in B3.4. The two vertical populations of low aerosol optical depths are also seen in this
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plot because the same true optical depths are being used. Besides the change in retrieved

aerosols, the ice and water clouds differ minimally compared to B3.4.

Figure 3.6. Heat map of the true optical depths compared to the retrieved
ACOS B3.5 optical depths from OCO-2 simulations. Optical depths are com-
pared for the ice cloud, the combined aerosol layer (two MERRA types), the
water cloud, and the total combined aerosol layer.

In this section I have shown that the ACOS XCO2 retrieval algorithm is only modestly

able to retrieve cloud and aerosol optical depths. Individual retrieved components, such as

water clouds, are especially uncorrelated with their true values.
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3.3. Spatial Analysis

3.3.1. Dominant Aerosol Type. Besides validating retrieved aerosol optical depths

against AERONET for real GOSAT data and true values for OCO-2 simulations, information

about the global distribution of different aerosol types was computed to determine if there

were regional biases or patterns in the retrievals. The retrievals were divided into a 7.5x7.5

degree grid and the “dominant” aerosol type for each grid cell was computed. The dominant

aerosol type is the type which has the largest mean optical depth value for a given grid cell.

This analysis was initially done on GOSAT ACOS B3.4 data, which contains four aerosol

types: water cloud, ice cloud, Kahn 2b, and Kahn 3b. It was then done on GOSAT and

OCO-2 ACOS B3.5 data which retrieves water cloud, ice cloud, and two MERRA aerosol

types. Only four days of OCO-2 data were run so complete global coverage was lacking.

3.3.2. GOSAT Dominant Aerosol Type. The dominant retrieved aerosol type of

each grid cell for the GOSAT ACOS B3.4 dataset is shown in figure 3.7. The water cloud

type is dominant over most of the oceanic regions while the Kahn 3b type is the most

dominant type over most of the land. Over the Sahara, however, the algorithm selected ice

cloud as the most prominent aerosol type. This is likely because the ice type is similar to

a dust particle: both are typically tens of µm in diameter. Interestingly, the Kahn 2b type

is rarely selected as the most dominant aerosol. No data is present at higher latitudes in

both hemispheres due to the geometric limitations of GOSAT. Gaps in north-central South

America, central Africa, and southeast Asia are due to high levels of cloud contamination

limiting the number of retrievals that make it past pre-filtering.

Next the dominant aerosol type for GOSAT ACOS B3.5 retrievals was calculated, shown

in figure 3.8, to see if the patterns are similar to ACOS B3.4. Overall, the selection of
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Figure 3.7. The dominant aerosol type selected by ACOS B3.4 for GOSAT
data. Ice cloud is shown in yellow, Kahn 2b in orange, Kahn 3b in red, and
water cloud in blue. Grid cells containing no valid GOSAT retrievals are shown
in grey.

MERRA aerosol types seems realistic. The addition of a dust type (DU) has replaced

the ice cloud type in ACOS B3.4 over the Sahara and other regions affected by deserts.

Organic carbon (OC) seems to dominate over vegetation while sea salt (SS) is the primary

type selected over much of the ocean instead of the water cloud type. Organic carbon over

vegetative regions is logical because that type should be associated with biomass burning.

Sulfate (SO) seems to have replaced the Kahn 3b type over land. Interestingly, black carbon

(BC) is never the most dominant aerosol in a grid box.

Besides examining the overall dominant aerosol type, the secondary dominant ACOS B3.5

aerosol types were investigated. This refers to the second largest mean retrieved optical depth

for each grid box. Figure 3.9 shows the second most dominant aerosol type. Interestingly,

ice cloud is still frequently selected as a secondary aerosol over desert regions even though

the retrieval is already typically fitting for a dominant dust type. Sea salt is either the

dominant or second most dominant aerosol type selection over nearly all of the ocean while
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Figure 3.8. The dominant aerosol type selected by ACOS B3.5 for GOSAT
data. Sulfate (SO) is shown in orange, sea salt (SS) in purple, dust (DU) in
yellow, organic carbon (OC) in green, black carbon (BC) in red, ice cloud (Ice)
in light blue, and water cloud (Water) in blue. Grid cells containing no valid
GOSAT retrievals are shown in grey.

dust and sulfate combine to represent much of the land aerosols over North America, Asia,

and Europe.

The dominant aerosol types looked quite realistic so the a priori aerosols were plotted

(figure 3.10). The water cloud and ice cloud prior optical depth values are identical (0.0125)

so they are plotted as one type (blue). This revealed that the ACOS B3.5 retrieval algorithm

isn’t changing much from the prior MERRA climatological aerosol information. E.g. dust

dominating over the Sahara, sea salt over the oceans. Noticeable differences in the a priori

plot and dominant plot include the retrieval trying to increase the amount of water cloud

over vegetative regions and increase the amount of sulfate over oceans. This suggests that

perhaps the constraints on optical depth could be loosened to allow the retrieval to deviate

further from the prior information.
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Figure 3.9. The secondary dominant aerosol type selected by ACOS B3.5
for GOSAT data. Sulfate (SO) is shown in orange, sea salt (SS) in purple, dust
(DU) in yellow, organic carbon (OC) in green, black carbon (BC) in red, ice
cloud (Ice) in light blue, and water cloud (Water) in blue. Grid cells containing
no valid GOSAT retrievals are shown in grey.

Figure 3.10. The a priori MERRA aerosol type used in the GOSAT re-
trievals. Sulfate (SO) is shown in orange, sea salt (SS) in purple, dust (DU)
in yellow, organic carbon (OC) in green, black carbon (BC) in red, ice cloud
and water cloud (Ice/Water) in blue. Grid cells containing no valid GOSAT
retrievals are shown in grey.
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3.3.3. OCO-2 Dominant Aerosol Type. Besides GOSAT retrievals, OCO-2 simu-

lated retrievals were also examined to see if any regional trends were visible. The dominant

aerosol type for ACOS B3.4 is shown in figure 3.11. Where as the GOSAT retrievals (fig-

ure 3.8) showed clear regional trends with logical placement of specific aerosol types, the

pattern of dominant retrieved OCO-2 ACOS B3.4 aerosol type is less clear. As in GOSAT,

Kahn 3b aerosols are often preferentially retrieved over land. Kahn 3b also seems to be

favored over ice-covered land surfaces (Antarctica and Greenland). The ice cloud type is

rarely retrieved over land (almost none in the Sahara) but rather scattered across the oceans

along with water cloud and, to a lesser extent, the two Kahn aerosol types.

Figure 3.11. The dominant aerosol type selected by ACOS B3.4 for simu-
lated OCO-2 data. Ice cloud is shown in yellow, Kahn 2b in orange, Kahn 3b
in red, and water cloud in blue. Grid cells containing no valid OCO-2 retrievals
are shown in grey.

To assess differences between the ACOS B3.4 and B3.5 aerosol parameterizations, B3.5

was run on the same four days of simulated OCO-2 data. The dominant aerosol is shown

in figure 3.12. Compared to OCO-2 ACOS B3.4 aerosol patterns, B3.5 appears to be a

significant improvement. Similarities to the real GOSAT retrievals exist including dust over
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the Sahara and organic carbon over southern Africa, central South America, and northern

North America. Differences include the algorithm retrieving more ice and less sulfate over the

oceans. Interestingly, the OCO-2 simulations retrieve water cloud as the dominant type over

the Antarctic but primarily dust over the Arctic. This appears to be an effect of land versus

ocean surface parameterization. As previously stated, only having four days of simulated

data prevented full global coverage, but general patterns are still resolved.

Figure 3.12. The dominant MERRA aerosol type selected by ACOS B3.5
for OCO-2 data. Sulfate (SO) is shown in orange, sea salt (SS) in purple, dust
(DU) in yellow, organic carbon (OC) in green, black carbon (BC) in red, ice
cloud (Ice) in light blue, and water cloud (Water) in blue. Grid cells containing
no valid OCO-2 retrievals are shown in grey.

The GOSAT ACOS B3.5 aerosols were shown to not deviate much from the MERRA

prior aerosol information so naturally this was checked in the OCO-2 ACOS B3.5 simulations.

Because OCO-2 has a higher signal to noise ratio, it’s hypothesized that more deviations from

the prior may occur compared to GOSAT retrievals. Figure 3.13 shows the prior dominant

aerosol type. As hypothesized, the dominant OCO-2 prior types mostly match the GOSAT

prior types. This is expected because they both draw their prior information from the same
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MERRA climatology dataset. Because OCO-2 has a larger latitudinal range than GOSAT, it

is revealed that sea salt is used as the prior for the entire southern ocean while the ice/water

cloud prior is larger than any of the MERRA aerosol priors over Antarctica. Comparing

the prior OCO-2 aerosols to the retrieved aerosols reveals that the simulations tend to vary

more from the prior than in real GOSAT retrievals. Ice is increased significantly over oceans

and water cloud and sulfate are more prevalent across the globe than in the prior. Dust and

organic carbon tend to stay dominant wherever they are placed in the prior, which suggests

that the prior is perhaps too tightly constrained or simply that the prior type is properly

chosen.

Figure 3.13. The a priori MERRA aerosol type used in the OCO-2 simula-
tions. Sulfate (SO) is shown in orange, sea salt (SS) in purple, dust (DU) in
yellow, organic carbon (OC) in green, black carbon (BC) in red, ice and water
cloud (Ice/Water) in blue. Grid cells containing no valid OCO-2 retrievals are
shown in grey.

With OCO-2 simulations, unlike real GOSAT data, the true aerosol type is known. The

dominant CALIOP type used in the simulations is shown in figure 3.14. Water cloud tends to

dominate much of the globe, only interrupted by some dusty land regions, clean marine ocean
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regions, and some small patches of other types. Many of these water clouds are at low levels

and thus managed to pass the O2 A-band cloud screener (section 2.1.1). Comparing the true

CALIOP aerosol type to the dominant retrieved type in OCO-2 ACOS B3.5 (figure 3.12)

simulations reveals that, as is so often the case, the Saharan dust feature is correctly resolved.

The retrieval algorithm tends to swap water cloud for various other types across much of the

globe. Over ocean, for example, water cloud is primarily replaced by ice clouds and sea salt.

The “smoke” region in southern Africa appears to have been replaced by organic carbon,

which is logical because these types roughly correspond in terms of their properties.

Figure 3.14. The dominant CALIOP aerosol type used in the OCO-2 sim-
ulations. Clean marine is shown in orange, polluted marine in purple, dust
in yellow, clean continent in green, polluted continent in red, smoke in white,
ice cloud in light blue, and water cloud in blue. Grid cells containing no valid
OCO-2 retrievals are shown in grey.

Comparing the dominant CALIOP type to the dominant a priori MERRA type reveals

little correlation except for a dusty northern Africa. While sea salt is the primary type
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chosen over oceans for the a priori, water cloud is dominant for CALIOP. This comparison

is difficult because of the different aerosol types used in the CALIOP and MERRA products.

These comparisons of dominant GOSAT and OCO-2 aerosols suggest that there is still

room for improvement in terms of selecting appropriate prior aerosol information for ACOS

retrievals.

3.3.4. OCO-2 Aerosol Optical Depth Error Spatial Analysis. To determine

if the aerosol optical depth retrievals improved from ACOS B3.4 to B3.5, a spatial analysis of

the difference between the two versions for OCO-2 simulations is shown in figure 3.15, where

the total aerosol optical depth is the sum of the water cloud, ice cloud, and two aerosol type

optical depths. The error calculated for each build is the retrieved total optical depth minus

the true optical depth; the difference in the error is the absolute value of the ACOS B3.5 error

minus the absolute value of the B3.4 error. Thus, a negative value means an improvement

in the retrieved optical depth magnitude and a positive value means a worsening.

Figure 3.15. The difference in the magnitude of the retrieved optical depth
errors between OCO-2 simulated retrievals using ACOS B3.4 and ACOS B3.5.
Negative values (blue) indicate improvement while positive values (red) indi-
cate worsening. Grid cells containing no valid OCO-2 retrievals are shown in
grey.
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Overall there appears to be a significant amount of scatter with some potential regional

patterns. The optical depth retrievals appear to have worsened in Northern Africa, where

the aerosol type was changed from water cloud in ACOS B3.4 to dust in B3.5. The Southern

Ocean seems to also have worsened but there is no clearly dominant aerosol type in either

B3.4 or B3.5 that is to blame. The most obvious area of improvement is the Middle East,

where water cloud was changed to dust. This trend conflicts with the worsening over the

Sahara and suggests that the dominant aerosol type alone is not responsible for increases or

decreases in the retrieved optical depth error.

3.4. Aerosol Heights

Besides the optical depths of the aerosol types, the peak heights were also examined to

see if the algorithm was accurately placing the aerosol layers and to assess the choice of

prior height information. ACOS B3.5 was also examined to see if it was better at placing

the aerosol layers than B3.4. This analysis was done because small changes in the location

of the aerosol layers can have a significant impact on the light path length which impacts

the retrieved XCO2 . The Gaussian distribution of the aerosol layers was often centered near

the surface, so roughly half of the Gaussian curve was actually above the surface. Thus,

the “half height” of each retrieved aerosol layer was instead analyzed. This is the level at

which half of the area under the Gaussian curve is below and half is above. The half height

of the aerosol profiles that were ingested into the OCO-2 simulations were calculated and

compared against the retrieved aerosol heights.

Figure 3.16 shows a comparison of the OCO-2 ACOS B3.4 retrieved ice height, aerosol

height (height of the combination of the two Kahn types), water cloud height, and total

height (height of the combination of all four types) compared to their true heights over
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ocean surfaces. It’s clear that the retrieval is placing both the aerosol and water cloud layers

too high relative to their true heights. The algorithm tends to place all the aerosol layers at

approximately the same pressure level which happens to be near the prior height of ∼880mb.

The water cloud is initially placed at its prior of roughly 750mb and it is consistently pushed

down by the retrieval algorithm. Often times the algorithm is able to place the water cloud

layer near the surface, which is typically its true height. However, it is obvious that many

times the algorithm is only able to move the layer part of the way and thus results in an

over estimation of the water cloud layer’s height. The ice height is relatively well placed

over ocean, but occasionally too low in the atmosphere. This indicates that perhaps the

prior Gaussian width is too large; a narrower aerosol layer would have more freedom to

move vertically. These small changes in aerosol layer height can potentially have significant

impacts on the light path and thus the final retrieved XCO2 , therefore it’s important to

choose the prior and its uncertainty wisely.

The priori half height of the two aerosol layers was changed from ∼880mb in ACOS

B3.4 to roughly 830mb in B3.5. The new B3.5 heights over ocean are shown in figure 3.17

compared to their true values. Interestingly, despite the prior being raised from B3.4 to

B3.5, the retrieval is able to place the aerosol layers much closer to their true values near the

surface. This is evidence that the ACOS B3.5 retrieval algorithm aerosol parameterization

is an improvement on ACOS B3.4, at least in terms of its ability to move aerosol layers

around. The likely cause of this is the reduced Gaussian width of the aerosol layers in ACOS

B3.5 which increased the sensitivity of the retrieval to the layer’s width. This allows the

algorithm to more freely move the layer vertically up and down. The water cloud heights

are also somewhat shifted down, but less significantly than the aerosol layers.
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Figure 3.16. True aerosol heights compared to retrieved aerosol heights over
ocean for OCO-2 ACOS B3.4 data. Layer heights are compared for the ice
cloud, the combined Kahn 2b and Kahn 3b aerosol layer, the water cloud, and
the total combined aerosol layer.

Over land, the changes from ACOS B3.4 to B3.5 were less significant. As over the

ocean, the retrieved aerosol layer was improved by being placed lower in the atmosphere.

An interesting feature over land, shown in figure 3.18, is the retrieval’s inability to accurately

place the ice cloud layer. Over ocean (figures 3.16 and 3.17), the ice cloud is relatively well

placed but over land the retrieval consistently places the ice cloud far too high compared to

its true location in the atmosphere. This ice cloud height problem overland is a feature of

both ACOS B3.4 and B3.5 (only B3.5 is shown). Besides misplacing the ice cloud, there is
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Figure 3.17. Heat map of true aerosol heights compared to retrieved aerosol
heights over ocean for OCO-2 ACOS B3.5 data. Layer heights are compared
for the ice cloud, the combined two MERRA aerosol layer, the water cloud,
and the total combined aerosol layer.

a population of high, thin aerosols that the algorithm consistently puts too low. Overall,

however, the total aerosol layer over land is usually near the 1-to-1 line. This is because

the optical depth of the erroneously placed ice clouds doesn’t contribute much to the total

optical depth.

The retrieved OCO-2 simulation full physics heights were also compared against XCO2 er-

rors to determine if biases were present. Figure 3.19 shows retrievals over land. The retrievals

were filtered by the genetic algorithm to keep the best 60% of the data (see section 2.3).
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Figure 3.18. Heat map of true aerosol heights compared to retrieved aerosol
heights over land for OCO-2 ACOS B3.5 data. Layer heights are compared for
the ice cloud, the combined two MERRA aerosol layer, the water cloud, and
the total combined aerosol layer.

It was found that there was no significant correlation with any of the aerosol heights and

the XCO2 error. This was seen in ocean data as well (not shown). This suggests that the

placement of the aerosol layers does not directly result in a bias in the final XCO2 values.

3.5. Aerosol Comparison Summary

In this chapter it was demonstrated that the ACOS XCO2 full physics retrieval algo-

rithm has difficultly when it comes to gaining information about clouds and aerosols. The

correlation between the retrieved GOSAT aerosol optical depths and AERONET aerosol
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Figure 3.19. Heat map of XCO2 error compared to aerosol heights over land
for OCO-2 ACOS B3.4 data. The dataset was filtered to a throughput of 60%
to remove outliers. From left to right, XCO2 error is compared to the ice cloud
height, Kahn 2b height, Kahn 3b height, and water cloud height.

optical depths was poor for older versions of ACOS and only improved slightly with the

updated builds. There was moderate correlation between the retrieved OCO-2 simulation

total optical depths and the scene’s true total optical depths. However, the algorithm had

difficulty retrieving information about individual aerosol types, such as water clouds located

near the surface. Examining the dominant aerosol types for both GOSAT and OCO-2 re-

trievals revealed that the selected aerosol types seem realistic but don’t vary much from the

prior MERRA types. The retrieval algorithm, in general, does moderately well at placing
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the sum of the aerosol layers at the correct height for OCO-2 simulations. For individual

aerosol types, however, it again has difficulty properly retrieving the height of each aerosol

layer. Overall, this chapter demonstrated that the ACOS XCO2 retrieval algorithm is some-

what able to place aerosol layers but is unable to properly retrieve the amounts, especially

for individual aerosol types. These results motivated the investigation of the algorithm’s

inability to accurately retrieve aerosol information and to see if it is negatively impacting

the retrieved XCO2 values.
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CHAPTER 4

XCO2 Retrieval First Guess Sensitivity

Thus far it has been shown that ignoring clouds and aerosols is not effective in reducing

XCO2 errors and that the ACOS XCO2 retrieval algorithm generally has difficulty gaining

information about clouds and aerosols. This provided motivation to further study the algo-

rithm’s aerosol parameterization. This chapter presents an examination of whether or not

nonlinearity in the forward model could potentially cause significant errors in the retrieval

of aerosols and XCO2 values.

Optimal estimation, as described in section 1.2.1, uses a state vector of parameters to

try and match measured radiances by inputing them through a forward model then trying

to minimize χ2. If the forward model is linear, the solution will always be the same if given

enough iterations to find the χ2 minimum. This is because for a linear problem the χ2

minimum is a Gaussian in n-dimensional space, where n is the number of elements in the

state vector, and thus there is a single minimum value of χ2 and a single optimal solution

for the state vector. If the forward model is nonlinear, however, there may exist multiple

χ2 minima or a very broad range of low χ2 values. That is, the same state vector can

result in multiple, equally valid solutions. This causes the final solution to be dependent

on where one begins searching χ2 space, i.e. the “first guess”. Further, posterior error

estimates may be significantly underestimated due to this dependency because the posterior

error calculation assumes a linear model near the final retrieved solution (details on the

posterior error calculation are given in Connor et al. (2008)). One method of testing a

retrieval algorithm’s sensitivity to the first guess is to modify the first guess while keeping
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the a priori state vector the same. This ensures the cost function remains constant and

therefore that the minimum (or minima) in χ2 space is unchanged.

It has been shown that only about 1-5 pieces of aerosol information can be retrieved

from GOSAT and OCO-2 measurements (Frankenberg et al., 2012). However, the ACOS

XCO2 retrieval algorithm attempts to retrieved eight aerosol parameters (the height and

amount of four types). This suggests there may be multiple, equally valid solutions to those

eight parameters which could significantly impact the final measured XCO2 . Because ACOS

B3.4 retrieval algorithm contains 45 parameters in the state vector, χ2 cannot simply be

calculated for all first guesses, plotted, and visually inspected to determine whether or not

the algorithm is linear.

The sensitivity of the ACOS XCO2 retrieval algorithm to the first guess of its aerosol

parameters was tested using OCO-2 simulations. The eight aerosol parameters selected to

be perturbed were the amount (optical depth in natural log-space) and peak height of the

four types. This analysis was done on ACOS B3.4 to avoid the complexity of using variable

MERRA aerosol optical depth priors. Thus, the four types were the water cloud, ice cloud,

Kahn 2b aerosol, and Kahn 3b aerosol. It has been shown that the ACOS XCO2 retrieval

algorithm is not sensitive to changing the width of the aerosol layer so all four aerosol

Gaussian widths were, as they are in the standard ACOS retrieval, kept approximately

constant. The different first guesses were selected by perturbing each parameter by some

random value chosen along a Gaussian in natural log-space described by a peak at the a

priori value and a width corresponding to the parameter’s prior uncertainty. 1,000 values

were randomly selected for all eight aerosol parameters. An example of the distribution of

new first guesses for an optical depth with a prior of 0.0125 is shown in figure 4.1.
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Figure 4.1. An example of the Gaussian distribution of first guesses around
the prior aerosol optical depth (red line). 1,000 randomly selected values were
used.

Twelve unique cases were analyzed, described in table 4.1. This was to examine the

extremes of what OCO-2 can measure in terms of surface type, optical depth, solar zenith

angle, albedo, and wind speed to try and deduce what type of scenes the retrieval algorithm

is most sensitive to. These cases passed all pre-filtering tests including the O2 A-band cloud

screener so that no scenes with detectable thick cloud or aerosol layers were present.

To try and get a glimpse of the nonlinearity in χ2 space, further tests were done where only

two parameters’ first guesses were perturbed. The perturbations were linearly distributed

around the prior in order to try and map out χ2 space. It was hypothesized that perhaps

there would be obvious χ2 maxima and minima, but because the cost function is of a 45-

dimension state vector there may not be any logical pattern visible in 2-dimensional space.

The sole test done was to perturb the first guess of XCO2 and the Kahn 2b optical depth. For

this single case the Kahn 2b type was selected because it contained a few outliers clustered

near the true aerosol optical depth value so it was hypothesized that this feature would
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Table 4.1. Twelve cases used for testing aerosol parameterization first guess
sensitivity in OCO-2 ACOS B3.4 simulations and their corresponding scene
descriptions. The scene characteristics varied include the solar zenith angle
(SZA; low or high), surface albedo (low or high), surface type (land or ocean),
wind speed (low or high), and optical depth (low or high).

Case Surface SZA Reflectivity Wind Speed Optical Depth

1 Land Low High - Low

2 Land Low High - High

3 Land Low Low - Low

4 Land Low Low - High

5 Land High High - Low

6 Land High High - High

7 Land High Low - Low

8 Land High Low - High

9 Ocean - - Low Low

10 Ocean - - High Low

11 Ocean - - Low High

12 Ocean - - High High

be visible in χ2 space. The Kahn 2b optical depth first guesses were perturbed linearly in

natural log-space while the XCO2 first guess values were perturbed linearly but with the CO2

profiles in agreement with the CO2 a priori covariance matrix (S). Eigenvalue decomposition

is first used to decompose S into two matrices, P and D:

(4.1) S = PDP T

where P is an 20x20 matrix whose columns are the eigenvectors of S while D is a

diagonal matrix containing the corresponding eigenvalues (λ). P can also be referred to as

the rotation matrix. 20 independent Gaussian random numbers with a mean of zero and

a standard deviation of one were then generated and multiplied by their respective
√
λ to

obtain the vector ~r. The perturbed CO2 profile, ~c, was then found by changing the newly
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created vector ~r back into regular coordinates and adding it to the a priori CO2 profile

(~cprior).

(4.2) ~c = P T~r + ~cprior

This procedure ensures that the random XCO2 values were calculated from CO2 profiles

obeying their a priori covariance matrix, i.e. it generates CO2 perturbations and their

corresponding XCO2 values that are consistent with the assumed a priori covariance. In

order to obtain a linear distribution of XCO2 values, many perturbed CO2 profiles were

generated and an approximately linear sample of XCO2 values were chosen using binning and

then implemented in first guess sensitivity testing.

4.1. Aerosol Parameter Perturbation

The twelve cases chosen to test first guess sensitivity are shown in figure 4.2. The results

are highly variable, which would not occur if the model was perfectly linear and every case

simply converged to a single global χ2 minimum. The grey bars represent the distribution

of retrieved XCO2 values from all 1,000 aerosol first guess perturbations. The solid green

line is the true XCO2 used in each simulation. The solid purple line is the “standard” XCO2

retrieved when the L2 code is run normally using the prior aerosol heights and amounts

as the first guess. The retrieved uncertainty of the standard XCO2 is shown by the dashed

purple line.

In most of the cases the standard retrieved XCO2 (solid purple line) is close to the peak in

the distribution of 1,000 XCO2 values retrieved using variable first guesses (grey bars). This

was somewhat expected because the perturbations were distributed normally about the prior
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so it’s encouraging that the XCO2 resulting from using the prior as the first guess lies in the

middle of the distribution. However, certain cases have their peak distribution offset from

the standard retrieved XCO2 . Case 6, for example, has a standard XCO2 of ∼393.9 ppm but

the distribution has a distinct and thin peak approximately 0.2ppm higher at ∼394.1 ppm.

Other cases with obvious offsets include cases 1, 3, and 12. Other times the distribution does

not have an obvious peak in the retrieved XCO2 . Case 7, for example, appears to contain

multiple maxima and the standard XCO2 lines up with the peak at ∼392.0 ppm.

Certain cases demonstrate the ability of the retrieval algorithm to continuously converge

to nearly the same XCO2 value, despite significant perturbations to the aerosol first guesses.

This provides evidence that the retrieval’s forward model can be at least somewhat linear

in certain cases. In case 10, for example, almost all the first guess retrievals align closely

with the standard XCO2 value. Other cases, however, suggest nonlinearity in the algorithm

because they fail to converge to a single solution and the range of XCO2 values retrieved for

the first guess runs is large and often surpasses the posterior error estimation. As seen in

case 1, some retrievals have a spread of multiple ppm and often include outliers that vary

even more significantly. Despite having a peak in the first guess distribution, the range of

retrieved values can still be on the order of several ppm. Case 2 is another example of this

problem, where the first guess runs are semi-evenly distributed over a range of 5 ppm from

∼390 to ∼395 ppm. Considering the goal of OCO-2 is to constrain XCO2 precision to within

roughly 2.0 ppm (Miller et al., 2007), these results suggest that the retrieval is too sensitive

to the first guess of the aerosol parameters.

What is actually desired, of course, is that the true XCO2 value be located well within

the uncertainty bounds of the standard XCO2 . Case 10 and case 4 are excellent examples of

this occurring. Case 4’s standard XCO2 retrieval almost retrieves the true XCO2 , and the first
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Figure 4.2. Twelve cases (described in table 4.1) of the retrieved XCO2 distribution resulting from perturbing
the first guess of the height and amount of the water cloud, ice cloud, Kahn 2b, and Kahn3b aerosol layers. The
true XCO2 is shown by the solid green line. The retrieved XCO2 using the standard prior heights and amounts of
all four aerosol types is shown by the solid purple line. The retrieved posterior uncertainty of the standard XCO2

is shown by the dashed purple line. Note the variable x-axis range.
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guess tests are roughly normally distributed around the true XCO2 value with the maximum

errors only being a few tenths of a part per million. Case 10’s true XCO2 is also well within

the uncertainty of the standard XCO2 retrieval and coincides nicely with the distribution of

first guess runs. Other runs are less promising. Case 6’s true XCO2 value is at the far left

fringe of the uncertainty of the standard XCO2 as well as the likely uncertainty curves of the

majority of the first guess XCO2 values. This indicates that the uncertainty calculated for

the standard XCO2 is too small.

An interesting result is case 11. The majority of first guess XCO2 values align with the

standard XCO2 at around 392.3 ppm and the true value is essentially outside the uncertainty

bounds, which is obviously problematic. However, there is a small population of perturbed

runs that manage to find the true XCO2 of ∼393.1 ppm. This is highly suggestive of non-

linearity in the retrieval algorithm in that there are multiple χ2 minima that the algorithm

can eventually converge upon: one primary minimum at ∼392.3 ppm and another minimum

at ∼393.1 ppm. This confirms the hypothesis that the ACOS XCO2 retrieval algorithm can

behave in a nonlinear manner and that the final XCO2 is often highly sensitive to the first

guess of the aerosol parameters.

Case 6, as described above, is one where the majority of first guess runs end up close to

the standard XCO2 retrieval but far from the true XCO2 . A few results, however, managed

to retrieve a lower XCO2 much closer to the true value. Case 6 contained a high true aerosol

optical depth, which was not detected by the O2 A-band cloud screener because it was

very near the surface, and further investigation revealed that these few promising results

were unique in that they managed to approximately retrieve the high aerosol optical depth.

Figure 4.3 shows that the majority of the retrievals decided that there was essentially no

aerosol present in the scene. However, a few retrievals, corresponding to the less erroneous

83



XCO2 values, did manage to retrieve the thick aerosol layer. This suggests there are two

somewhat distinct minima in χ2 space: one with low aerosol optical depths and an erroneous

XCO2 and another with a much higher aerosol optical depth and a more accurate XCO2 .

Figure 4.3. Case 6 Kahn 3b optical depths. The final retrieved Kahn 3b
optical depths are shown in grey. The prior Kahn 3b optical depth is the red
line, the true aerosol optical depth the green line, and the standard retrieved
Kahn 3b optical depth the purple line.

Figure 4.4 demonstrates this in another way. A second, much smaller population of case

6 retrievals exists at high aerosol optical depths and ∼392 ppm (with a few at slightly lower

ppm values). This population is much closer to the true XCO2 value (392.6 ppm) than the

main population at around 394 ppm. Interestingly, there appear to be other locations at low

XCO2 and low optical depths where the algorithm was able to minimize the cost function.

This further suggests complex nonlinearity and the potential for multiple solutions in the

retrieval. The two main populations have the lowest χ2 values, which suggests that the

84



retrieval algorithm thinks they’re both equally valid solutions. The outliers tend to have

larger χ2 values which is indicative of a worse fit.

Figure 4.4. Case 6 Kahn 3b optical depths compared to the retrieved XCO2

values. The χ2 values of the final state of the forward model are shown in
orange shading. The final values are shown in black. The prior Kahn 3b value
and prior XCO2 is shown by the red diamond. The true Kahn 3b optical depth
and corresponding true XCO2 is shown by the green diamond. The standard
retrieved Kahn 3b optical depth and corresponding XCO2 is shown by the
purple diamond.

Other features discovered include bimodal distributions of the final retrieved aerosol

parameters. Figure 4.5 shows case 12 where the algorithm retrieves two populations of Kahn

3b optical depth, one at ∼0.005 and another at ∼0.060. This is the difference between an

extremely clear scene and a slightly contaminated scene. Interestingly, the standard retrieval

lies in the middle of these two populations at ∼0.014, which is very close to the prior. This

suggests that the standard retrieval is an anomaly and that the algorithm typically converges

to either smaller or larger values of the Kahn 3b optical depth.
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Figure 4.5. Case 12 Kahn 3b optical depths. The final retrieved Kahn 3b
optical depths are shown in grey. The prior Kahn 3b optical depth is the red
line, the true aerosol optical depth the green line, and the standard retrieved
Kahn 3b optical depth the purple line.

The retrieved XCO2 distribution for case 12, shown in figure 4.2, is, interestingly, not bi-

modal but roughly normal with only a few outliers. Thus, the bi-modal distribution of Kahn

3b optical depths is likely compensated elsewhere to produce a semi-normal distribution of

XCO2 values. However, this distribution is still biased relative to the true XCO2 .

4.2. Two Parameter Perturbation

Case 6 was selected to investigate further because of its interesting distribution of re-

trieved XCO2 values, as seen in figure 4.4. To simplify the analysis, only two parameters’

first guesses were perturbed instead of eight. Linearly perturbing the XCO2 and Kahn 2b

optical depth first guesses resulted in the final values shown in figure 4.6. The sparsity of
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first guess and final XCO2 values at high Kahn 2b optical depths is because many of those

retrievals failed to converge. This was expected because the retrieval algorithm has difficulty

with thick aerosol and cloud scenes.

Figure 4.6. The χ2 of the final state of the forward model are shown in
orange shading. The final values of XCO2 and Kahn 2b optical depth are
shown in black and their corresponding first guesses are shown in light grey.
The prior Kahn 2b value and prior XCO2 is shown by the red diamond. The
true Kahn 2b optical depth and corresponding true XCO2 is shown by the green
diamond.

As suggested by the eight aerosol parameter first guess perturbations of section 4.1,

multiple minima and broad valleys of low χ2 values appear to be present. Despite only per-

turbing the first guess of two parameters, multiple distinct solutions are present. Overlaying

χ2 reveals the final XCO2 values and their corresponding Kahn 2b optical depths often, but

not always, are located in regions of lower χ2 values. However, because the retrieval state

vectors contain 45 elements, it’s difficult to attribute these features to local minima in a

2-dimensional χ2 plot of just two of the state vector elements.
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In this chapter I have shown that the OCO-2 ACOS XCO2 retrieval algorithm is highly

sensitive to the first guess of aerosol parameters. Perturbing the first guess of aerosol heights

and amounts often resulted in unacceptably high variations in the retrieved XCO2 . This

implies that the algorithm’s forward model contains nonlinearity and that more information

is needed to constrain the solution. Additional measurements from other sensors in the

Afternoon Train, or “A-Train”, or more robust prior information may be useful in the future

to help solve this problem. Further examination is needed to determine if a simpler aerosol

parameterization would lead to improved results or if the decision to retrieve aerosol amounts

in log-space has a non-trivial impact on the retrieved values.
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CHAPTER 5

Discussion and Conclusions

This study investigated the impact of aerosols on retrievals of XCO2 . Initially, non-

scattering “clear sky” XCO2 retrievals were compared to full physics XCO2 retrievals which

include scattering and absorption by clouds and aerosol. The analysis of simulated OCO-2

data and real GOSAT data over ocean and land surfaces led to somewhat contradictory

results. With the use of the genetic algorithm and bias corrections when necessary, clear

sky XCO2 retrievals from simulated OCO-2 data are comparable to full physics retrievals

over ocean but less so over land while clear sky XCO2 retrievals from real GOSAT data are

comparable to full physics retrievals over land but substantially less so over ocean. Because

of this it can be concluded that the clear sky XCO2 retrieval algorithm is generally inferior to

the full physics XCO2 retrieval algorithm, except for at high levels of filtering. This filtering

removes low quality retrievals, which typically include scenes contaminated by clouds and

aerosols.

The use of a genetic algorithm showed that certain filters independent of the full physics

retrieval have the potential to be effectively used in pre-filtering the data. This could be

useful for real OCO-2 data because the L2 code is computationally expensive and additional

pre-filtering could allow for more “good” data to be fully processed. Additionally, the clear

sky retrievals still typically have relatively low errors (. 2 ppm), even if the errors are larger

than those of the full physics retrievals. Thus, the clear sky algorithm may be useful for

applications requiring a large number of retrievals and with more relaxed error requirements.

The study of clear sky spectral residuals revealed that they are larger than full physics

residuals and that they contain a specific pattern related to unmodeled scattering by clouds
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and aerosols. However, reducing these residuals by allowing the algorithm to fit for a mean

clear sky residual pattern did little to reduce the XCO2 errors and biases. This suggests

that the differences between the clear sky and full physics XCO2 retrievals are not simply a

function of the residual magnitudes. Very clear scenes were also investigated and it was found

that even thin clouds and aerosol layers can cause small but detectable residual patterns in

the clear sky retrievals.

Regarding measuring cloud and aerosol properties, it was found that the ACOS XCO2

retrieval algorithm is generally unable to accurately retrieve information about the amount of

cloud and aerosol present and only somewhat able to measure the height of cloud and aerosol

layers. Retrieving information about individual aerosol types showed even less correlation

with true values.

The first guess of various aerosol parameters was shown to significantly affect the retrieved

values of the aerosol parameters and the XCO2 . For OCO-2 simulations, the full physics

retrieval algorithm often found multiple valid minimizations of the cost function, which

indicates nonlinearity in the retrieval algorithm. This presents an opportunity to potentially

reduce both the aerosol and XCO2 errors by improving the a priori assumptions, modifying

the aerosol scheme, or incorporating new data sources into the retrievals.

Overall, this work results in two final conclusions. The first, that clear sky XCO2 retrievals

are generally unable to perform as well as full physics XCO2 retrievals, except for when

low quality retrievals are removed by high levels of filtering. The second, that the aerosol

parameterization in the full physics XCO2 retrieval algorithm results in unacceptable levels

of nonlinearity. Both of these conclusions motivate additional study of different methods

to handle scattering and absorption by clouds and aerosols in the ACOS XCO2 retrieval

algorithm.
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Future work includes looking at real data from the OCO-2 satellite, which was success-

fully launched in July of 2014. This will allow the comparison of simulated clear sky retrievals

to real retrievals along with the ability to compare real OCO-2 data to real GOSAT data

and hopefully resolve discrepancies relating to clear sky retrieval effectiveness over land com-

pared to ocean surfaces. Regarding aerosol parameterization, the placement of OCO-2 in

the A-train will allow the potentially incorporation of aerosol information from other instru-

ments including CALIOP, the Moderate-resolution Imaging Spectroradiometer (MODIS),

and CloudSat. Members of our research group, including myself, have recently submitted a

proposal to create a retrieval algorithm that uses both OCO-2 and MODIS measurements to

try and better constrain aerosols when retrieving XCO2 . Investigating other aerosols schemes

with varying levels of complexity or modifying the aerosol a priori assumptions could also

lead to improvements in the ACOS XCO2 retrieval algorithm.
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