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ABSTRACT 
 
 
 

ASSESSING LONG-TERM CONSERVATION OF GROUNDWATER RESOURCES IN THE 

OGALLALA AQUIFER REGION USING HYDRO-AGRONOMIC MODELING 

 
 
 

Groundwater is vital for domestic use, municipalities, agricultural irrigation, industrial 

processes, etc. Over the past century, excessive groundwater depletion has occurred globally and 

regionally, notably in arid and semi-arid regions, often due to providing irrigation water for crop 

cultivation. The High Plains Aquifer (HPA) is the largest freshwater aquifer in the United States 

and has experienced severe depletion in the past few decades due to excessive pumping for 

agricultural irrigation. There is a need to determine management strategies that conserve 

groundwater, thereby allowing irrigation for coming decades, while maintaining current levels of 

crop yield within the context of a changing climate.  Numerical models can be useful tools in this 

effort. Hydrologic models can be used to assess current and future storage of groundwater and 

how this storage depends on system inputs and outputs, whereas agronomic models can be used 

to assess the impact of water availability on crop production. Linking these models to jointly 

assess groundwater storage and crop production can be helpful in exploring management 

practices that conserve groundwater and maintain crop yield under future possible climate 

conditions. The objectives of this dissertation are: i) to develop a linked modeling system 

between DSSAT, an agronomic model, and MODFLOW, a groundwater flow model to be used 

for evaluating long-term impacts of climate and management strategies on water use efficiency 

and farm profitability of agricultural systems while managing groundwater sustainably; ii) to use 

the DSSAT-MODFLOW modeling system in a global sensitivity analysis framework to 
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determine the system factors (climate, soil, management, aquifer) that control crop yield and 

groundwater storage in a groundwater-stressed irrigated region, thereby pointing to possibilities 

of efficient management; and iii) to quantify the effect of groundwater conservation strategies 

and climate on crop yield and groundwater storage to identify irrigation and planting practices 

that will maintain adequate crop yield while minimizing groundwater depletion. These three 

objectives are applied to the hydro-agronomic system of Finney County, Kansas, which lies 

within the HPA.    

Major findings include: 1) climate-related parameters significantly affect crop yields, 

especially for maize and sorghum, and soybean and winter wheat yields are sensitive to a 

combination of cultivar genetic parameters, soil-related parameters, and climate-related 

parameters; 2) Climatic parameters account for 44%, 29%, 40%, and 36% variation in yield of 

maize, soybean, winter wheat, and sorghum; 3) Hydrogeologic parameters (aquifer hydraulic 

conductivity, aquifer specific yield, and riverbed conductance) have a relatively low influence on 

crop yields; 4) water table elevation, recharge, and irrigation pumping are considerably sensitive 

to soil- and climate-related parameters, while ET, river leakage, and groundwater/aquifer 

discharge are highly influenced by hydrogeological parameters (e.g., riverbed conductance, and 

specific yield); 5) the best management practice is the combination of implementing drip 

irrigation  and planting quarter plots under both dry and wet future climate conditions. Other 

irrigation systems (sprinkler) and planting decisions (half-plots) can also be implemented 

without severe groundwater depletion. If crop yield is to be maintained in this region of the HPA, 

groundwater depletion can be minimized but not completely prevented. Results highlight the 

need for implementing new irrigation technologies, and likely changing crop type decisions (e.g., 
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limiting corn cultivation) in coming decades in this region of the HPA.  Results from this 

dissertation can be used in other groundwater-irrigated regions facing depletion of groundwater. 
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CHAPTER 1 - INTRODUCTION AND OBJECTIVES 
 

 

 

1.1 INTRODUCTION 

Groundwater resources are used for domestic use, municipalities, agricultural irrigation, 

industrial processes, etc. Groundwater provides drinking water for 30% of the world’s population 

and 47% of the rural population. Of the groundwater used globally, 43% is for crop irrigation 

and 24% is for industrial applications. Over the past century, groundwater resources have 

declined rapidly, notably in arid and semi-arid regions due to over-extraction for irrigation and 

lack of other viable water sources for irrigation and drinking water. Groundwater globally 

depleted by about 4,500 km3 during 1900 – 2008, with depletion rates of 126 km3 yr-1 in 1960 to 

283 km3 yr-1 in 2000 and, regionally, 1000 km3 in the United States during 1900 – 2008; 170.3 

km3 in North China Plain during 1900 – 2008; 91.3 km3 in north-central Middle East during 

2003 – 2009; and 1.5 km3 in the Nairobi aquifer, Kenya since 1950.  

The High Plains Aquifer (HPA) is the largest fresh groundwater resources in the U.S. to 

provide 30% of total crop and animal production nationally. Due to excessive pumping for 

agricultural irrigation, the HPA has experienced severe depletion in the past few decades. 

Between 1960 and 2008, groundwater storage has decreased by 360 km3, accounting for 36% of 

total groundwater depletion in U.S.A, while the change in water table elevation varies from a 

decline of 78 m (256 ft) to a rise of 26 m (85 ft), with an average of 5 m (16 ft) in decline, 

accounting for 9% of the area-weighted average saturated thickness. Declines have taken place 

mainly in Eastern Colorado, Southwest Kansas, the Panhandle of Oklahoma, and Northwest 

Texas. Increases have occurred in Central Nebraska due to higher precipitation rates, 
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composition of soil layer (e.g., the sandy soils that allow more infiltration and percolation) and 

the presence of streams for surface water irrigation. Besides exhausting a valuable resource, and 

therefore limiting future use of groundwater for irrigation and crop production, groundwater 

depletion can result in many negative issues, such as land subsidence and associated damage to 

infrastructure, wetland degradation, lowering well pumping capacity, increase in pumping costs, 

and reduction or cessation of groundwater discharge to streams.  

Land management strategies are needed to conserve groundwater in the High Plains 

Aquifer. These strategies must be implemented in accordance with expected changes in future 

climate patterns in the region. As the aquifer region covers a broad area of the United States, 

strategies must be adapted for local conditions. Spatially distributed, physically based hydro-

agronomic models can be a key tool in assessing the impacts of climate, land management, and 

local cultivation practices and conditions, to 1) enhance understanding of the interplay between 

cultivation, crop growth, climate, and groundwater resources and 2) identify strategies that can 

provide the highest degree of groundwater conservation while maintaining crop yield (i.e. 

economic prosperity) in the region. 

1.2 OBJECTIVES 

Hydrologic models can be used to assess current and future storage of groundwater and 

how this storage depends on system inputs and outputs, whereas agronomic models can be used 

to assess the impact of water availability on crop production. Linking these models to jointly 

assess groundwater storage and crop production can be helpful in exploring management 

practices that conserve groundwater and maintain crop yield with future climate conditions.  

This dissertation aims to:  
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1. develop a linked modeling system between DSSAT, an agronomic model, and 

MODFLOW, a groundwater flow model to be used for evaluating long-term impacts of 

climate and management strategies on water use efficiency and farm profitability of 

agricultural systems while managing groundwater sustainably; 

2. use the DSSAT-MODFLOW modeling system in a global sensitivity analysis framework 

to determine the system factors (climate, soil, management, aquifer) that control crop 

yield and groundwater storage in a groundwater-stressed irrigated region; and 

3. quantify the effect of groundwater conservation strategies and climate on crop yield and 

groundwater storage to identify irrigation and planting practices that will maintain 

adequate crop yield while minimizing groundwater depletion.  

These three objectives are applied to the hydro-agronomic system of Finney County, 

Kansas, which lies within the Ogallala Aquifer Region. As with many areas within the Ogallala 

Aquifer Region, Finney County has experienced significant groundwater depletion in recent 

decades due to irrigation practices, and future economic prosperity depends on future 

groundwater conservation.  

Each objective forms the basis for a journal article. The first objective has been 

summarized in a paper published in Agricultural Water Management: “DSSAT-MODFLOW: A 

new modeling framework for exploring groundwater conservation strategies in irrigated areas”, 

Agricultural Water Management 232 (2020) (Xiang et al., 2020). The second objective has been 

summarized in a manuscript submitted to Journal of Hydrology: “Using DSSAT-MODFLOW to 

Determine the Controls of Groundwater Storage and Crop Yield in Groundwater-Based Irrigated 

Regions”. The third objective is summarized in a manuscript that will be submitted to Water 

Resources Research. 
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CHAPTER 2 - DSSAT-MODFLOW: A NEW MODELING FRAMEWORK FOR 
EXPLORING GROUNDWATER CONSERVATION STRATEGIES IN IRRIGATED AREAS1 
 

 

 

2.1 INTRODUCTION 

Excessive groundwater depletion occurs in various regions of the world (Konikow and 

Kendy, 2005), principally due to intensive use of groundwater for irrigation in arid and semi-arid 

regions. According to a recent global study using hydrologic models, total global groundwater 

depletion had increased from 126 km3 yr-1 in 1960 to 283 km3 yr-1 in 2000 (Wada et al., 2010). In 

the first 8 years of the 21st century, total groundwater consumption was more than 1100 km3, 

approximately one-fourth the entire depletion experienced during the 20th century (Konikow, 

2011). Groundwater depletion has led to decreasing well yields, increased pumping costs, land 

subsidence and associated damage to infrastructure, wetland degradation, reduction in 

groundwater discharge to streams, and seawater intrusion in coastal areas (Aeschbach-Hertig and 

Gleeson, 2012; Famiglietti, 2014; Konikow and Kendy, 2005; Motagh et al., 2008; Varela-

Ortega et al., 2011; Werner, 2010; Zhang et al., 2014) 

Although groundwater sustainability, i.e. the use of groundwater without causing a 

decrease in groundwater storage, may not be possible for many arid and semi-arid regions, land 

and water management strategies can be pursued to minimize groundwater depletion while 

maintaining adequate crop yield for local populations and export. Often, numerical models are 

use1d to explore the impact of various management strategies on groundwater storage and crop 

yield. These modeling approaches can be classified into three broad modeling groups: 1) 

groundwater-based, 2) agronomic-based, and 3) linked agronomic-groundwater-based models. 

 
1
 This paper has been published in Agricultural Water Management: “DSSAT-MODFLOW: A New Modeling 

Framework for Exploring Groundwater Conservation Strategies in Irrigated Areas”, Agricultural Water 

Management 232 (2020) 



6 

 

Groundwater-based approaches use numerical groundwater flow models to simulate 

groundwater head, groundwater flow, and groundwater storage under a variety of management 

scenarios. Examples include Ebraheem et al. (2003), Dawoud et al. (2005), Mao et al. (2005), 

and Mylopoulos (2007), who used process-based groundwater flow models to investigate the 

impact of groundwater management options on groundwater storage and conservation in 

southwest Egypt, the Nile River Valley, northern China, and northern Greece, respectively. 

Models used in these studies include MODFLOW (Harbaugh, 2005), a finite difference 

groundwater flow model, and TRIWACO (Dawoud et al., 2005), a finite element groundwater 

flow model. Management strategies include reduction in pumping, new irrigation canals, 

irrigation patterns, and increase in irrigation efficiency. MODFLOW with the Farm Process 

(MF-FMP) (Schmid et al., 2006), which includes routines for plant consumptive use of water, 

was employed by Hanson et al. (2010) to evaluate sources of irrigation water for Central Valley, 

California. A recent study (Wada et al., 2012) linked global-scale hydrological land surface 

(PRC-GLOBWB) and groundwater (MODFLOW) models to simulate changes in global 

groundwater storage due to climate and groundwater pumping. These groundwater-based 

approaches, while successfully simulating groundwater energy and flow in aquifers, neglect the 

effect of groundwater management strategies on crop yield. 

In contrast, agronomic-based approaches simulate the effect of the interactions between 

genetics, weather and management (e.g. irrigation management) on crop growth, but do not 

account for the impact of groundwater availability on irrigation capacity and associated crop 

yield. Yang et al. (2006) used the DSSAT crop growth model (Jones et al., 2003) to optimize 

water use during the stages of leaf and ear growth of wheat, to minimize groundwater depletion 

in the north China Plains while Kisekka et al. (2015) used DSSAT to assess effects of various 
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irrigation management strategies on maize in western Kansas. Other agronomic models that have 

been used to explore irrigation impact on crop yield include EPIC (Williams et al., 1989), the 

SIMDualKc model (Rolim et al., 2006; Rosa and Paredes, 2011; Wu et al., 2015), AquaCrop 

(Raes et al., 2009), and APSIM (Keating et al., 2003). These models typically are applied to one-

dimensional soil profiles to represent field-scale dynamics. 

A third approach links two or more single-domain models to form an integrated 

agronomic-hydrologic modeling system. The developers of these integrated models strive to 

assess impacts of water management strategies on both groundwater storage and crop yield. The 

Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) simulates land surface hydrology 

and crop yield for a collection of hydrologic response units (HRUs) within a watershed, and has 

manual irrigation or auto-irrigation routines tied to both surface water sources and groundwater. 

However, groundwater flow in the aquifer and groundwater discharge to streams is simulated 

using simplistic flow and lagging equations, without consideration of aquifer heterogeneity or 

regional groundwater flow patterns. Cai et al. (2003) and Bulatewicz et al. (2010) developed 

specialized hydrologic-agronomic-economic modeling systems for irrigated river basins, with the 

latter using the EPIC model for crop yield simulation and the Analytical Element Model (Strack, 

1989) for groundwater flow. Xu et al. (2012) linked MODFLOW with SWAP (Soil-Water-

Atmosphere-Plant) to provide a modeling system that estimates recharge and evapotranspiration 

fluxes in groundwater systems, but did not apply it to groundwater management scenarios. 

Varela-Ortega et al. (2011) applied a linked WEAP-economic model to the Upper Guadiana 

basin in central Spain to analyze effects of water and agricultural policies; however, the 

modeling system did not use process-based groundwater flow. Hadded et al. (2013) developed 

the decision support system WEAP (Water Evaluation and Planning)-MODFLOW for 
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groundwater management in Tunisia, with WEAP passing water use to MODFLOW to simulate 

pumping and groundwater levels. Pokhrel et al. (2015) modified a global Land Surface Model 

(LSM) to include groundwater dynamics, groundwater pumping, irrigation, and crop growth to 

simulate groundwater depletion at the global scale and also for specific aquifers in the USA. 

More recently, Bailey et al. (2016) published a linked SWAT-MODFLOW, but the modeling 

system has not yet been applied to groundwater management scenarios in irrigated regions.  

Typically, the modeling systems in this third approach are designed for large (river basin, 

global) spatial and temporal scales, without consideration of field-scale crop yield, strategies, 

and conditions (e.g., soil, depth to water table, pumping depth, etc.). There is a need for a 

modeling framework that addresses field-scale cropping conditions while accounting for 

groundwater availability in space and time throughout the aquifer system. To assess groundwater 

storage and crop yield simultaneously over time under various management strategies, 

groundwater pumping should be dependent on crop water demand, and applied irrigation depths 

and timing should be constrained by available groundwater volumes and actual pumping rates 

(i.e., well capacity). 

The objective of this chapter is to present a linked agronomic-hydrological modeling 

system that can be used to evaluate alternative management strategies conducive to both 

groundwater management and crop production sustainability in groundwater-based irrigated 

regions. The modeling framework links the DSSAT model with MODFLOW, with one DSSAT 

simulation for each cultivated field within the MODFLOW aquifer modeling domain. Linkage 

occurs on an annual basis, with DSSAT-simulated irrigation depths and deep percolation 

converted to pumping rates and recharge for MODFLOW, respectively. For the following 

season, saturated thickness simulated by MODFLOW constrains pumping rates, irrigation 
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depths, and timing for each pumping well. The scheme is demonstrated for Finney County, 

Kansas, a portion of the Ogallala aquifer region experiencing severe groundwater depletion due 

to extensive groundwater pumping for irrigation. Whereas this paper focuses on the presentation 

of the model and a demonstration example, future studies can focus on assessing and quantifying 

the impact of conservation strategies on both groundwater storage and crop yield. 

2.2 DEVELOPMENT OF DSSAT-MODFLOW MODELING SYSTEM 

2.2.1 MODEL OVERVIEW 

2.2.1.1 DECISION SUPPORT SYSTEM FOR AGROTECHNOLOGY TRANSFER (DSSAT) 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a software 

application program that comprises crop simulation models for over 40 crops. DSSAT is 

supported by data base management programs for soil, weather, crop management and 

experimental data, and by utilities and application programs. The crop simulation models 

simulate growth, development and yield as a function of the soil-plant-atmosphere dynamics. 

DSSAT and its crop simulation models have been used for many applications ranging from on-

farm and precision management to regional assessments of the impact of climate variability and 

climate change. The crop models require daily weather data, soil surface and profile information, 

and detailed crop management as input (e.g., irrigation schedules). Crop genetic information is 

defined in a crop species file that is provided by DSSAT and cultivar or variety information that 

is provided by the user. Simulations are initiated either at planting or prior to planting through 

the simulation of a bare fallow period. The simulations are conducted at a daily time step and, in 

some cases, at an hourly time step depending on the process and the crop model. At the end of 

the day the plant and soil water, nitrogen and carbon balances are updated, as well as the crop’s 

vegetative and reproductive development stage. DSSAT integrates the effects of soil, crop 



10 

 

cultivar, weather and management options, and allows users to ask “what if” question by 

conducting virtual simulation experiments. 

DSSAT also provides for evaluation of crop model outputs with experimental data, thus 

allowing users to compare simulated outcomes with observed results. This is critical prior to any 

application of a crop model, especially if real-world decisions or recommendations are based on 

modeled results. Crop model evaluation is accomplished by inputting the user’s minimum data, 

running the model, and comparing outputs with observed data. DSSAT includes improved 

application programs for seasonal, spatial, sequence and crop rotation analyses that assess the 

economic risks and environmental impacts associated with irrigation, fertilizer and nutrient 

management, climate variability, climate change, soil carbon sequestration, and precision 

management (Hoogenboom et al., 2019) 

2.2.1.2 MODFLOW 

The MODFLOW (Harbaugh, 2005) is a physically-based, spatially-distributed 

groundwater flow model that solves the groundwater flow equation for spatial- and time-

dependent groundwater hydraulic head using the finite difference method. It can be used to 

simulate groundwater flow in both confined and unconfined aquifers. The aquifer model domain 

is discretized into cells laterally and vertically, with uniform properties of the aquifer (e.g., 

hydraulic conductivity, specific storage, and specific yield) within a grid cell. The MODFLOW 

can be run for steady-state or transient conditions, with the latter simulating groundwater head 

for each grid cell at each time step of the simulation period. The time domain is divided into 

stress periods, with each stress period divided into time steps. A stress period is a length of 

simulation time over which all groundwater stresses (e.g., recharge, pumping) remain constant. 
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2.2.2 DSSAT-MODFLOW MODELING SYSTEM 

The linked DSSAT-MODFLOW modeling system developed in this study is based on a 

simulation loop that passes data between DSSAT and MODFLOW on an annual basis. This 

system therefore assumes that crop growth is not dependent on the position of the water table, as 

there is no feedback between MODFLOW and DSSAT during the growing season. The current 

version of the model therefore may not be applicable regions with shallow water tables. The 

linkage process and annual simulation loop are summarized in the schematic shown in Fig. 2-1.  

Fig. 2-1. Schematic showing the procedure of linking multiple DSSAT simulations with a MODFLOW model. The modeling 
framework consists of a batch of DSSAT simulations, a MODFLOW model, and two Python scripts to transfer data between the 
models.  

For a selected model domain, one DSSAT model is run for each cultivated field according to 

field boundaries (to calculate total cultivated area), soil type, daily weather data, and cultivar 

type. Mapping DSSAT output to MODFLOW, and vice versa, is explained in the following sub-

sections. 
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Step 1: Ensemble of DSSAT Simulations  

 The DSSAT model is used to simulate crop yield and water use. The Spatial 

module/utility with a batch file is used to simulate the ensemble of DSSAT field simulations 

within the model domain. The batch file contains a list of all main .GSX input files (see Fig. 2-

S1 in Appendices for example), with one .GSX input file for each crop type within the model 

domain. Within each .GSX file, weather data, soil type, cultivar type, planting schedule, and 

irrigation method, are specified for each field of that crop type (see Fig. 2-S2 in Appendices for 

example). Within each simulation, DSSAT calculates the applied irrigation depths/amount (mm) 

throughout the growing season for each field.  

Step 2: Linkage Phase 1 (DSSAT → MODFLOW) 

Phase 1 in the linkage process converts DSSAT output to MODFLOW input, using a 

Python script. Pumped groundwater volumes are mapped to MODFLOW’s grid cells (rows and 

columns) (see gray cells on the MODFLOW grid in Fig. 2-1) using the intersected portion of 

each field in each grid cell, and then written to a text file for MODFLOW’s Well package, which 

lists the rate and corresponding layer, row, and column of each pumping cell active during the 

current growing season. As irrigation occurs only for a fraction of days during the growing 

season, consequently most daily pumping rates are 0. For the case of a field containing multiple 

irrigation wells, water use is proportionally distributed to each irrigation well according to the 

ratio of authorized withdrawal quantity of each singe well.  

Recharge volumes for each grid cell are written to a text file for MODFLOW’s Recharge 

package. Total recharge includes precipitation recharge and irrigation return recharge. As 

DSSAT simulations account for precipitation, precipitation recharge is estimated only for cells 

that do not contain a cultivated field, or for cultivated field cells during the non-growing season. 

Precipitation recharge can be estimated using a number of techniques. For the application shown 
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in this paper (Section 2.3), precipitation recharge is computed using a power function (Liu et al., 

2010). For cells that contain a cultivated field, recharge from irrigation events is assumed to be 

equal to the daily deep percolation from the bottom of the soil profile, as simulated by DSSAT. 

The depth of deep percolation is multiplied by the field area to provide a daily volumetric flow 

rate, and then mapped to the intersected grid cells. The volume of recharge for each cell is then 

divided by the cell area, to provide a rate in L/T for inclusion in MODFLOW’s Recharge 

package. (see Fig. 2- S3 in Appendices for one year example) 

Step 3: MODFLOW Simulation 

Following the conclusion of annual DSSAT runs and the conversion of irrigation depths 

to pumping rates, the MODFLOW simulation is run for the year to simulate groundwater 

hydraulic head (i.e., water table elevation for unconfined aquifers) for each finite difference grid 

cell. Daily stress periods are used to account for daily pumping rates provided by DSSAT. The 

groundwater head values at the end of the year are used to compute saturated thickness (i.e., 

groundwater head - bedrock elevation), which is used to update well capacity for each pumping 

well, as discussed in Step 4. The final groundwater head values at the end of the year are used as 

initial conditions for the simulation of the following year. 

Step 4: Linkage Phase 2 (MODFLOW → DSSAT) 

Phase 2 of the linkage process has two main purposes: (1) compute a new well capacity 

for each pumping well, and (2) update irrigation parameters in the DSSAT simulations that rely 

on the well capacity. The impact of groundwater decline expressed in the form of well capacity 

on grain yield and a producer’s irrigation decisions were demonstrated in Araya et al. (2018) and 

Rouhi Rad et al. (2019), respectively.  In this study, well capacity is defined as the maximum 

rate at which the well can reasonably operate, given the local saturated thickness of the aquifer. 
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Well capacity Qt [L3/T] is updated (see Figure 1) using the following relationship for unconfined 

aquifers (Harman, 1966): 

                                                    

2

t

t init

init

S
Q Q

S

 
=  

 
                                                            (2-1) 

Where 
init

Q and
init

S are the pumping rate [L3/T] and aquifer saturated thickness [L] at some 

designated time t = 0, and 
t

S is the aquifer saturated thickness [L] after t years. Saturated 

thickness St is calculated for each grid cell as the difference between the MODFLOW-simulated 

groundwater head (approximately equivalent to the water table in unconfined aquifers) and the 

bedrock elevation, with the latter often specified as the bottom of the lowest layer in the 

MODFLOW model. 

The IFREQ (Irrigation Frequency) and IRAMT (Irrigation Application Depth) 

parameters control irrigation application in DSSAT simulations. The IFREQ parameter relates to 

the minimum number of days between irrigation events, which is equal to the time (days) 

required to irrigate the field, and IRAMT (mm) is the irrigation management depth. These 

parameters are listed in the .GSX input files of DSSAT. The values for these two parameters are 

constrained by the rate at which the groundwater can be extracted from the aquifer, i.e., the well 

capacity of the pumping well supplying the groundwater as well as the amount of area irrigated. 

In this way, the updated well capacity of each pumping well as provided by MODFLOW is used 

to constrain the irrigation capacity simulated by DSSAT for each irrigated field in the model 

domain. To update IFREQ for each field, an assumption is made that 2.54 cm (1 inch) of water is 

supplied to the entire field. The time required to apply irrigation is then calculated by dividing 

the volume of water applied to the field by the well capacity Qt for the pumping well that 

provides water to the field. If IFREQ is calculated to be longer than 14 days, which is assumed to 
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be the longest time for a single irrigation event, then IFREQ is set to 14 days and instead the 

depth of irrigation IRAMT is re-calculated to provide a depth < 2.54 cm (1.0 inch). 

Step 5: Multiple-Year Simulation 

Multiple-year simulations are feasible through a batch file (see Fig. 2-S4 in Appendices 

for one year example) that contains a series of command-lines for looping simulations under the 

environment of DOS, OS/2, or Microsoft Windows. Command-lines in the batch are divided into 

blocks in terms of year, since the linked model exchange information annually, which is user-

friendly to prepare a batch file for the simulations of the linked model. 

2.2.3 Model CAPABILITIES AND LIMITATIONS 

Although not performed in this current study, the DSSAT-MODFLOW modeling system 

as explained in Section 2.2.2 can be used to explore alternative groundwater conservation 

strategies in irrigated areas, with both crop yield (on a field-by-field basis) and water table 

elevation and saturated thickness (on a cell-by-cell basis) tracked each year in the simulation 

period. The model can also be run under varying climate patterns to investigate the impact of 

climate on management scenarios. The variation of water table elevation and simulated crop 

yields are dynamically linked together through pumping rates and irrigation application timing 

and depth, which is conducive to making comprehensive sustainable groundwater use plans.  

Currently, the linked model does not simulate water movement in the vadose zone, i.e., 

between the bottom of the soil layer and the top of water table. In the current system, deep 

percolation from the bottom of the soil profile, as simulated by DSSAT, and precipitation-based 

recharge, as simulated by a power function, are assumed to reach the water table instantaneously. 

Future versions of the modeling system could use the UZF (Unsaturated Zone Flow) package of 

MODFLOW to route the near-surface percolation water to the water table. 
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2.3 APPLICATION OF DSSAT-MODFLOW: FINNEY COUNTY, KANSAS 

2.3.1 STUDY REGION 

The Ogallala aquifer (also often referred to as the High Plains Aquifer) underlies 

approximately 45,000 km2 and portions of South Dakota, Wyoming, Nebraska, Colorado, 

Kansas, Oklahoma, New Mexico, and Texas (Fig. 2-2), providing water for about one fifth of all 

irrigated cropland in the USA and 30% of total crop and animal production in the USA (Guru 

and Horne, 2001; Rosenberg et al., 1999). The composition of aquifer material includes poorly 

sorted clay, silt, sand, and gravel, while the composition of bedrock unit is siltstone, shale, 

loosely to moderately cemented clay and silt, chalk, limestone, dolomite, conglomerate, 

claystone, gypsum, anhydrite, and bedded salt. The elevation of the aquifer bedrock is from 366 

m (1200 ft) to 1829 m (6000 ft) above NGVD 29 (Gutentag et al., 1984). 

Approximately 88% of the water pumped from the Ogallala aquifer is used for irrigated 

agriculture, in comparison with 60% of agricultural irrigation that is dependent on groundwater 

overall in the USA (Gollehon and Winston, 2013; Scanlon et al., 2012). The agricultural area 

makes up 41% of total land area in the Ogallala Aquifer Region (OAR), which contain 53% row 

crops, 33% small grains, and 14% pasture, alfalfa, and fallow lands. Furthermore, the 

agricultural land use supplies a large percentage of the total crop and animal production for the 

United States, including 19% of wheat, 19% of cotton, 15% of corn, 3% of sorghum, and about 
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18% of cattle and swine production (“USGS High Plains Aquifer WLMS: Physical/Cultural 

Setting,” n.d.). 

Fig. 2-2. Map of study region of Finney County in the Ogallala Aquifer. The area of Finney County is enclosed with the red 
contour line. The blue domain is the Ogallala Aquifer, and the states are separated by black lines.   
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Due to excessive pumping for irrigation, the rate of groundwater depletion has increased 

from 2.6 km3 yr-1 during 1900 – 2000 to 12.5 km3 yr-1 during 2003-2013 (Famiglietti, 2014), 

with 6% of the amount of groundwater storage decreased from the predevelopment period 

(1950s) during the 20th century (McGuire et al., 2003). The change in water table elevation from 

predevelopment to 2015 ranges from a decline of 78 m (256 ft) to a rise in 26 m (85 ft), with an 

average of 5 m (16 ft) decline (McGuire, 2014). Declines occur primarily in eastern Colorado, 

southwest Kansas, Oklahoma, and Texas, and rises in central Nebraska. Saturated thickness 

ranges from > 305 m (1,000 ft) in central Nebraska to < 15 m (50 ft) in large regions of eastern 

Colorado, western Kansas, and west Texas. According to Haacker et al. (2016), current rates of 

decline in parts of the southern and central High Plains regions may result in a near-complete 

depletion of groundwater in the next 20-30 years and an associated cessation of irrigation. 

Finney County, Kansas (see Fig. 2-2 for county outline) is selected as the study area for 

the DSSAT-MODFLOW application (Fig. 2-2) due to its high dependence on groundwater for 

irrigation (roughly 97% of the total groundwater withdrawals) and a resulting 15-meter (50-feet) 

average decline in water table elevation in the majority of the county since 1950. Groundwater is 

used to irrigate 105,218 hectares (260,000 acres), using 1629 irrigation wells.  

Fig. 2-3A shows a map of average water table elevation (m) during the 1997-2007 period, 

obtained by interpolating between 522 observation wells in the county. Water table elevation 

values for the wells were obtained from the Kansas Geological Survey’s (KGS) Water Well 

Levels Database (WIZARD) and the KGS Water Well Completion Records Database (WWC5). 

About 10% of the point values were not involved in interpolation for calculating the interpolation 

error. The Ordinary Kriging method under Geostatistical Analyst Extension in ArcMap was used 

to make the interpolated surface of water table elevation maps for different years. Fig. 2-3B  
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 Fig. 2-3. Map of groundwater conditions in the Finney County. A) Average water table elevation in Finney County between 
1997 and 2007; B) Average groundwater saturated thickness between 1997 and 2007; and C) The change in groundwater 
saturated thickness between 1997 and 2007. 

shows an average saturated thickness (m) during 1997-2007 period. Saturated thickness was 

calculated as the difference between the water table elevation and the bedrock elevation. The 

bedrock elevation raster was derived from the well log data of drilled wells of WWC5 using the 

Ordinary Kriging method. Fig. 3C shows a change in saturated thickness between 1997 and 

2007, with negative values indicating an increase in water table elevation. As seen in Fig. 2-3C, 

the southern part of the county has experienced the highest water table decline, with some areas 

up to 30 m (99 ft) over the time period, due to an initially high saturated thickness and an 

imbalance between pumping and recharge.   

2.3.2 DSSAT-MODFLOW MODEL SETUP 

2.3.2.1 INITIAL DATA PROCESSING 

The fields and associated irrigation pumping wells in Finney County used for the 

DSSAT-MODFLOW model application are shown in Fig. 2-4. The spatial extent of each field 

was delineated using the National Agricultural Imagery Program (NAIP) aerial photo for 2015, 

resulting in rectangular and circular croplands within the county. Only fields with groundwater 

irrigation were included in the modeling system. These were identified using information from 

the state of Kansas’ Water Information Management and Analysis System (WIMAS) and the  
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 Fig. 2-4. Map of irrigation wells and crop types. In the Finney County, there are five major crop types, including corn, winter 
wheat, soybeans, sorghum, and triticale. 

Public Land Survey System (PLSS), with the latter dividing the land into sections and quarter 

sections. If one or more irrigation wells are in a quarter section, then the parcel is classified as 

irrigated land. If there are no wells in the quarter section, but the quarter section includes a center 

pivot, and an irrigation well is located within a certain radial distance from the field, then the 

parcel is also considered as irrigated. Using this method, 1332 groundwater-irrigated field and 

1629 irrigation pumping wells were located within the county (see Fig. 2-4). Authorized 

groundwater withdrawal quantity for each parcel, obtained from WIMAS, was used to determine 

the number of fields serviced by each pumping well, with the well’s authorized quantity 

proportionally partitioned to the fields according to field spatial area. 
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2.3.2.2 ENSEMBLE OF DSSAT SIMULATION 

The DSSAT model was previously calibrated and tested for the study area using 

experimental data, with cultivar parameters and associated calibrated values provided for corn, 

wheat, and grain in Araya et al. (2017). One DSSAT simulation was run for each of the 1332 

fields shown in Fig. 2-4 according to properties of fields (e.g., soil type, crop type, soil water 

content, etc.), planting management (e.g. planting schedule, irrigation method, etc.), weather 

information, cultivar type, etc. All input information were organized into files according to 

DSSAT input file format, including Soil Input File (.SOL), Daily Weather Data (.WTH), 

Cultivar Input File (.CUL), Spatial Execution File (.GSX). Operations and management were 

summarized in the MgmtEvents.OUT.  

As mentioned in section 2.3.2.1, all croplands in the same quarter section are considered 

as a whole parcel (field). To determine dominant soil and crop type (in 2015) for the 

groundwater-based irrigated parcels, the Soil Survey Geographic Database (SSURGO) and 

USDA’s Cropland Data Layer (CDL) were utilized, respectively. The Zonal Statistics Tool in 

ArcMap was applied to determine dominant soil and crop type (in 2015) for each irrigated field. 

Since the SSURGO maps include a vast variety of soil types and to facilitate the DSSAT 

simulation, the dominant soil types of fields were merged into the seven specific soil groups, 

including Beeler silt loam, Las clay loam, Manter fine sandy loam, Richfield silt loam, Satanta 

loam, Ulysses silt loam, and Valent fine sand. Six major crops such as corn, winter wheat, 

soybeans, sorghum, and triticale on 564, 484, 28, 206, and 50 fields, respectively, in Finney 

County (Fig. 2-4) were simulated with the DSSAT model. 

Historical weather data for 2000-2007 period was collected from a weather station 

located within the Finney County (39o N, 100o W) for DSSAT simulations. Weather data include 
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latitude (LAT), longitude (LONG), elevation (ELEV), air temperature average (TAV), air 

temperature amplitude (AMP), height of temperature measurements (REFHT), height of wind 

measurements (WNDHT), date (DATE), solar radiation (SRAD), maximum air temperature 

(TMAX), minimum air temperature (TMIN), precipitation (RAIN), and optional model 

parameters, such as dew-point temperature (DEWP), wind velocity (WIND), photosynthetic 

active radiation (PAR), respectively (Jones and Singels, 2008; Tsuji et al., 1994) (see Fig. 2-S5 

in Appendices). 

2.3.2.3 MODFLOW MODEL 

The calibrated MODFLOW model for southwest Kansas Groundwater Management 

District No.3 (GMD3), developed by the Kansas Geological Survey (KGS) (Liu et al., 2010), 

was used for linkage with the DSSAT model. The domain area of the MODFLOW model is 161 

kilometers by 241 kilometers (100 miles by 150 miles) with a rectangular expanse that contains 

GMD3 and extends approximately 9.7 kilometers (6 miles) to the north, east, south, and west 

(Fig. 2-5A). The dimensions of each grid cell are 1.61 kilometers by 1.61 kilometers (1 mile by 1 

mile). The KGS MODFLOW model contains two main phases, i.e., a steady-state simulation for 

the predevelopment period (1944-1946), and a transient simulation for the periods between 1947 

and 2007. Time-varying specified-head and time-varying flux boundaries were applied along the 

northern and southern side of the model domain and the western and eastern edges of the model 

area, respectively. The top of the Permian and Cretaceous bedrock was considered as a no-flow 

boundary for the lower boundary of the model, while land surface was treated as the upper 

boundary of the model. Hydraulic conductivity (K) and specific yield (Sy) were dynamically 

updated through the observed water levels to take into account the influence of the decline in 

water table during transient periods; therefore, the calibrated model was divided  
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Fig. 2-5. Map of the domain area of KGS MODFLOW mode, hydraulic conductivity, and specific yield. A) the domain area of 
MODFLOW model with total size of 161 kilometers by 241 kilometers (100 miles by 150 miles) and the size of 1.61 kilometers 
by 1.61 kilometers (1 mile by 1 mile) grid cell; B) the horizontal distribution of hydraulic conductivity in the KGS model area, 
with range from 0.03 to 153 m d-1, and in the Finney County enclosed within the black contour line; C) the horizontal variation in 
specific yield in the model are, with range from 0.02 to 0.34, and in the Finney County enclosed within the black contour line. 
into six periods, including predevelopment, predevelopment-1966, 1967-1976, 1977-1986, 1987-

1996, and 1997-2007. Fig. 2-5B and 2-5C show cell-by-cell values of K and Sy used in the 

aquifer during the 1997-2007 simulation period. The pumped volumes from the Ogallala aquifer 

for the model were obtained from reported water-use records during 2000 - 2007 period (Liu et 

al., 2010). 

Recharge to the water table occurs through precipitation recharge and irrigation return 

(deep percolation). Precipitation recharge was computed by a power-function relationship, and 

irrigation return recharge was calculated depending on the irrigation method. The model 

simulated stream-aquifer interaction using the stream package (STR), with 18 segments and 764 

reaches in the three major streams (i.e., Arkansas River, Cimarron River, and Crooked Creek), 
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depending on stream stage calculated by the Manning equation with the assumption of a 

rectangular channel.  

The stress period of the original KGS model is monthly, whereas the DSSAT simulations 

provide daily-based irrigation depths that are converted to daily pumping rates. As pumping 

simulated by the Well package is a stress for MODFLOW, the MODFLOW model was 

converted to daily stress periods, requiring changes to the Discretization file (.DIS), the Recharge 

Package file (.RCH), the Time-Variant Specified-Head Package file (.CHD), and the Stream 

Package file (.STR). The Well Package and Recharge Package input files were updated through 

the Phase 1 Python Code (see Figure 2-1), using depths of applied irrigation and deep percolation 

simulated by DSSAT for each cultivated field. 

2.3.2.4 LINKED DSSAT-MODFLOW MODEL FOR FINNEY COUNTY, KANSAS 

The linked DSSAT-MODFLOW modeling system for Finney County follows the data 

flow shown in Fig. 2-1. Following 1332 DSSAT simulations for the first year, with one 

simulation for each field, the DSSAT-simulated irrigation depths were converted to daily 

pumping rates for the 1629 pumping wells and mapped to the MODFLOW Well package. 

Similarly, recharge rates from precipitation and from DSSAT-simulated deep percolation were 

converted to daily recharge rates for each grid cell. The MODFLOW model was then run for that 

year, providing updated water table elevation and saturated thickness for each grid cell within the 

county boundary. The MODFLOW model for the entire GMD3 was run, with pumping rates 

only modified for the grid cells within the Finney County boundary. 

Updated saturated thickness was used to update well capacity using Equ. 2-1. To do so, 

the initial well capacity Qinit for each pumping well and the initial saturated thickness Sinit for 

each grid cell must be specified. Based on the KGS Water Well Completion Records Database 
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(WWC5), the well capacity value was available for only 503 irrigation wells in Finney County. 

Since the well capacity was measured during the 1975-1978 period for the majority of these 

irrigation wells, this period was selected to create an interpolated surface (raster) of well capacity 

in Finney County with the available values. The Geostatistical Analyst Extension in ArcMap was 

used to make the interpolated surface using Ordinary Kriging. By creating the interpolated 

surface of well capacity, the well capacity values were estimated for all irrigation pumping wells 

in the county during 1975-1978, which was considered as Qinit. Results are shown in Fig. 2-6A, 

with well capacity ranging from 1,499 to 16,566 m3 d-1 (275 to 3,039 gal min-1). Sinit values for 

the 1975-1978 period were calculated using water table elevation measurements from the KGS 

Water Well Level Database (WIZARD). Measurements from 1975 to 1978 were interpolated 

annually in the same way as for the Qinit values. Using the lithologic log information of the 

drilled wells in Finney County (as obtained from WWC5), the approximate location of the 

aquifer’s base was located and the bed-rock elevation was estimated at 2281 borehole locations. 

Subsequently, an interpolated surface of bed-rock elevation was created for the county by using 

the same interpolation method. The saturated thickness raster was created by subtracting the bed-

rock elevation raster from the water table elevation raster. The mean saturated thickness raster, 

considered as Sinit, was created in ArcMap for the period of 1975 to 1978 as the initial saturated 

thickness (Fig. 2-6B).  

The simulation was made for the 2000 - 2007 period, with simulation results compared 

against observed groundwater levels and estimated county-wide crop yield for corn, sorghum, 

winter wheat, and soybeans. A scenario without pumping was also simulated to quantify the 

influence of pumping on groundwater levels in the county. 
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 Fig. 2-6. Map of initial well capacity and saturated thickness in Finney County. A) Initial well capacity in Finney County during 
1975 to 1978; B) Initial saturated thickness in Finney County that is averaged between 1975 and 1978.  
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2.3.2.5 SCENARIO ANALYSIS 

A simple model application was performed to demonstrate the use of the DSSAT-

MODFLOW modeling system. An end-member analysis was performed for assessing the effects 

of 1) pumping at the current rates of 2000-2007, and 2) cessation of all pumping, for the 2000-

2007 time period. Crop yield for both scenarios were also assessed. Future studies can use the 

DSSAT-MODFLOW system to explore and quantify the effects of irrigation technology and 

management practices. 

2.3.3 RESULTS AND DISCUSSION 

2.3.3.1 WATER TABLE ELEVATION 

The comparison between observed and simulated water table elevation (WTE) for both 

the original MODFLOW model and the linked DSSAT-MODFLOW model is shown in Fig. 2-

7A and 7B, respectively. As seen in the figures, the points for both models are scattered along 

the 1:1 line, with no apparent pattern for either model, and average errors for the original 

MODFLOW and the linked model are -8.5 m (-28 ft) and -8.7 m (-29 ft), respectively. Fig. 2-7C 

shows the results from both models plotted against each other, showing a strong similarity in 

groundwater head output from the two models, with NSCE of 0.99 and scaled RMSE of 0.01637 

(1.637 %). This is an especially important result, as this indicates that the DSSAT-MODFLOW 

modeling system is able to provide pumping rates comparable to the reported pumping rates used 

in the original MODFLOW model. Therefore, DSSAT can be used as a “pumping rate 

simulator” for MODFLOW models in groundwater-irrigated regions. 

Fig. 2-8A shows the cell-by-cell WTE values (m) in the end of 2007 due to continuous 

pumping for the 2000-2007 periods, with high water tables in the northern and western edges of 

the county. Fig. 2-8B shows the same plot for the scenario without pumping, and Fig. 2-8C 
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shows the difference in WTE between the two scenarios (i.e., groundwater drawdown). For the 

latter, as expected large differences occur in the regions of densely-located irrigation well (see 

Fig. 2-4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-7. The comparison of simulated water table elevation (WTE) and observed water table elevation and the comparison of 
simulated water table elevation between MODFLOW model and the linked model. A) the comparison of observed and simulated 
water table elevation by the original MODFLOW model; B)  the comparison of observed and simulated water table elevation by 
the linked DSSAT-MODFLOW model; C) the comparison of simulated water table elevation between MODFLOW model and 
the linked DSSAT-MODFLOW model. 

Fig. 2-8. The water table elevation with pumping and without pumping and the groundwater drawdown in Finney County during 
2000-2007 simulated by the linked DSSAT-MODFLOW model. A) Water table elevation in the Finney County with pumping; 
B) Water table elevation in the Finney County without pumping; C) Groundwater drawdown due to pumping in the Finney 
County during 2000 – 2007. 
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2.3.3.2 CROP YIELD 

Estimates of county-wide observed and simulated crop yield for 2002 and 2007 are 

presented in Fig. 2-9 for corn, sorghum, winter wheat, and soybean. Results are shown for the  

Fig. 2-9. Comparison between measured crop yield and simulated crop yield. A) Comparison between average measured crop 
yield and simulated crop yield by the DSSAT-MODFLOW linkage in 2002. Standard error mean are 0.003, 0.2, 0.3, 16 kg ha-1 
for simulated corn, sorghum, winter wheat, soybean, respectively. B) Comparison between average measured crop yield and 
simulated crop yield by the DSSAT-MODFLOW linkage in 2007. Standard error mean are 0, 0.06, 0.5, 8 kg ha-1 for simulated 
corn, sorghum, winter wheat, soybean, respectively. 

county-based measurements and the linked DSSAT-MODFLOW model, with results from 

measurements and the linked model using a method: calculating a weighted average of crop yield 

using the area of each field. In 2002, simulated yield for the crops are extremely high (12,052 kg 

ha-1 and 9200 kg ha-1 for sorghum and winter wheat, respectively) compared to the measured 

values (2,349 kg ha-1 and 2,137 kg ha-1 for sorghum and winter wheat, respectively), possibly 

due to uncertainty in the weather data input into the DSSAT simulations. In addition, measured 

values include fields for the entire county, whereas model results are only for groundwater-

irrigated fields. Other fields may not have as high of crop yield, due to dependence on surface 

water or reliance on rainfall in the case of dryland farming, thereby decreasing the overall 
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average crop yield. Also, it could be due to the reason that the modeled crop yield does not 

account for pest/weed pressure. Furthermore, for sorghum and winter wheat, which show a large 

difference between simulated and measured values, the reason could be an inadequate calibration 

for southwest Kansas. In general, simulated yields will be difficult to match county average 

yields for sorghum and winter wheat because these crops are either not irrigated or under deficit 

irrigation, so there exists a wide standard deviation around the mean yield. In 2007, the measured 

value for corn (13,980 kg ha-1) is a little higher than the simulated value (13,677 kg ha-1), and the 

measured and simulated values for soybean are 3,120 kg ha-1 and 4,092 kg ha-1, respectively. 

2.3.3.3 Well Capacity and Saturated Thickness 

Well capacity should be tracked through time to determine feasibility of future pumping 

in the region. The relationship between well capacity (m3 d-1) for each pumping well and  

Fig. 2-10. The relationship between well capacity (m3 d-1) and groundwater saturated thickness (m) for each pumping well in 
Finney County. The relationship is tracked during the 2000-2007 time period, with well capacity decreasing as saturated 
thickness decreases. For some wells, well capacity approached 0 as the groundwater is completely depleted in the local area. 
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groundwater saturated thickness in the local area of the pumping well (i.e., the grid cell in which 

the pumping well resides) is shown in Fig. 2-10. There is one trend line for each pumping well, 

showing the decrease in well capacity during the 2000-2007 time periods due to decrease in 

saturated thickness. Each segment trends to 0, with several wells reaching 0 well capacity due to 

a complete depletion of groundwater in the local area around the pumping well. For areas with a 

large saturated thickness (> 76 m), well capacities are not significantly sensitive to the change in 

saturated thickness, whereas areas with small saturated thickness (< 18 m) exhibit a strong 

sensitivity of well capacity to saturated thickness. Similarly, well capacity is sensitive to 

saturated thickness for wells with high pumping rates (> 8000 m3 d-1), not for wells with low 

pumping rates. The trend in well capacity, of course, could be reversed if pumping ceases.  

2.3.3.4 PERCENT CHANGE IN WELL CAPACITY 

The percent change in well capacity for each pumping well during the 2000-2007 period 

in Finney County is shown in Fig. 2-11. Well capacity changes spatially in terms of crop type, 

which dictates pumping rates, and aquifer characteristics, which dictate saturated thickness. Dark 

and light blue dots represent wells that increased capacity due to replenishment of groundwater. 

However, the majority of Finney County experiences a decline in well capacity. The highest 

changes in well capacity (>60%) occurred in the north region of the Finney County in which 

corn and winter wheat were grown (see Fig. 2-4), due to low well capacity and small initial 

saturated thickness (see Fig. 2-3B and Fig. 2-6). Moderate changes in well capacity (20%-40%), 

and high changes (> 40%) occurs in the southern area, again related to initial well capacity and 

initial saturated thickness.  
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 Fig. 2-11. The change in well capacity in Finney County during the simulated 2000-2007 period, expressed as a percentage. 
Negative values indicate an increase in well capacity.  

2.3.3.5 RESULTS OF PUMPING VS. NO PUMPING 

Considering all cell-by-cell results from Finney County, average water table elevation 

gradually depletes during the 2000-2007 period. This is shown in Fig. 2-12, which shows the 

pre-development water table elevation (WTE), the elevation of the bedrock, and the WTE with 

full irrigation (i.e., the baseline model used in this study) (Fig. 2-12A). The average crop yields 

(kg ha-1) are also shown for this scenario (Fig. 2-12B). Results from the second scenario, in 

which no groundwater pumping occurs during the 1997-2007 period, are also shown, along with 

average crop yield. As seen from the results, no irrigation during the decadal period increases 

average WTE from 846 m to 848 m (2,775 ft to 2,782 ft), with the change in WTE ranging from  
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Fig. 2-12. Water table elevation (WTE) and crop yield under the scenarios of 1) full pumping and 2) no pumping) from 2000-
2007. The WTE of the pre-development period (pre-1946) and the bedrock elevation also are shown. 
 

a decline of 2 m (6 ft) to a rise of 9 m (29 ft). However, this increase is at the expense of crop 

yields, which are decreased from 16238 kg ha-1 (Corn), 4277 kg ha-1 (Soybean), 13071 kg ha-1 

(Sorghum), and 11892 kg ha-1 (Winter Wheat) for the full irrigation scenario to 2705 kg ha-1 

(Corn), 1632 kg ha-1 (Soybean), 4405 kg ha-1 (Sorghum), and 1851 kg ha-1 (Winter Wheat) for the 

non-irrigation scenario, with a decrease of crop yields by 83%, 62%, 66%, 84% for corn, 

soybean, sorghum, and winter wheat, respectively. 

 Therefore, management strategies are sought that balance between conserving 

groundwater and maintaining crop yield for future decades, i.e., that can decrease the gap 

between the “full pumping” and “no pumping” scenarios while also preserving adequate crop 

yield for the local economy. Such strategies may include implementing irrigation technology to 

increase irrigation efficiency, optimized irrigation scheduling, and crop selection. The linked 

DSSAT-MODFLOW model presented in this paper can assist in assessing the influence of these 

management strategies. The influence of future climate patterns on these impacts can also be 

estimated using the linked model. 
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2.4 SUMMARY AND CONCLUSION 

This chapter presents a linked DSSAT-MODFLOW modeling framework and applied it 

to the Ogallala aquifer within Finney County, Kansas, a region experiencing significant 

groundwater depletion due to irrigation practices. The linkage between the models occurs on an 

annual time step, with irrigation depths from an ensemble of field-scale DSSAT simulations 

(DSSAT version 4.7) converted to pumping rates for the MODFLOW simulation (MODFLOW 

2000). The MODFLOW simulates groundwater head, which can be used to update saturated 

thickness and thereby well capacities for each pumping well in the model domain. Well 

capacities are then used to constrain irrigation application in the DSSAT simulations during the 

following growing season. Python scripts are used to pass information between the two models 

and prepare input files. Batch files for DSSAT are used to run the ensemble of simulations for 

each year. Model results are tested against water table elevation and crop yield.  

This chapter focuses on the presentation and demonstration of the DSSAT-MODFLOW 

modeling system, whereas future studies can focus on assessing future conditions under changes 

in climate and management practices. The DSSAT-MODFLOW modeling system can be a 

valuable tool in assessing groundwater conservation strategies in groundwater-irrigated regions, 

since it tracks jointly groundwater resources (groundwater head, saturated thickness), pumping 

conditions (well capacity), and crop yield. Therefore, any strategy used to conserve groundwater 

can also be assessed in terms of resulting crop yield to determine feasibility for local economies. 

The model can be used to assess changes in irrigation technology, crop selection, and climate 

change. In addition, in areas where pumping rates are not readily available, the DSSAT portion 

of the linked model can be used to estimate pumping rates, based on DSSAT’s crop growth 

routines and associated irrigation depths. 
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CHAPTER 3 – USING DSSAT-MODFLOW TO DETERMINE THE CONTROLS OF 
GROUNDWATER STORAGE AND CROP YIELD IN GROUNGWATER-BASED 

IRRIGATED REGIONS2 
 
 
 

3.1 INTRODUCTION 

Groundwater resources are declining rapidly (Aeschbach-Hertig and Gleeson, 2012; 

Castle et al., 2014b; Famiglietti, 2014; Haacker et al., 2016; Konikow, 2011; Konikow and 

Kendy, 2005; McGuire et al., 2003; Virginia L McGuire, 2014; Wada, 2016; Wada et al., 2010) 

notably in arid and semi-arid regions due to overexploitation (Rodríguez-Estrella, 2012)  and 

lack of other viable water sources for irrigation and drinking water (Steward and Allen, 2016). 

Anthropogenic influences on groundwater storage (Döll et al., 2012) include  the route of water 

movement (e.g. allocation (Petts, 1996), canal (Kanooni and Monem, 2014), etc.), domestic use 

(Chávez García Silva et al., 2020), agricultural irrigation (Wada et al., 2012), and manufacturing 

and industry (Gracia-de-Rentería et al., 2020), with depletion problems becoming worse due to 

increasing population (Carter and Parker, 2009; Castle et al., 2014). According to an estimation 

by Konikow (2011), groundwater globally depleted by about 4,500 km3 during 1900 – 2008, and, 

regionally, 1000 km3 in the United States during 1900 – 2008 (Konikow, 2015); 170.3 km3 in 

North China Plain during 1900 – 2008 (Feng et al., 2013); 91.3 km3 in north-central Middle East 

during 2003 – 2009 (Voss et al., 2013); and 1.5 km3 in the Nairobi aquifer, Kenya since 1950 

(Oiro et al., 2020).  

In view of groundwater sustainability, many studies have focused on conserving 

groundwater resources (Chang et al., 2017; Gates et al., 2011; Q. Huang et al., 2013; Mays, 

2013; Sheng, 2005). Most studies use a water balance modeling approach to estimate historical 

 

2
 This paper has been submitted to Journal of Hydrology 
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and current groundwater volumes and explore the effect of management strategies and future 

stresses (e.g. population growth, land use change, climate) (Batelaan et al., 2003; Candela et al., 

2012a; Carter and Parker, 2009; Cuthbert et al., 2019; Deng and Bailey, 2017; Farhadi et al., 

2016; Gorelick and Zheng, 2015; Holman et al., 2012; Huang et al., 2013b; Jha et al., 2007; 

Kløve et al., 2014; Kumar, 2012; Masciopinto and Liso, 2016; McCallum et al., 2010; Mishra, 

2014; Sekhar et al., 2013). Other modeling approaches through the recognition that in many 

regions groundwater storage and associated fluxes are controlled by agricultural production 

through irrigation, link groundwater models to agronomic models, resulting in a hydro-

agronomic modeling approach. These approaches include the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998), although the groundwater system is simulated in a simplistic, 

lumped basis; the linked system of MODFLOW and SWAP (Soil-Water-Atmosphere-Plant) (Xu 

et al., 2012); the linked system of MODFLOW and WEAP (Water Evaluation and Planning) 

(Hadded et al., 2013); a global Land Surface Model to simulate crop growth and associated 

groundwater depletion for regions worldwide (Pokhrel et al., 2015); the linked SWAT-

MODFLOW system (Bailey et al., 2016), recently applied to assess impact of climate change on 

groundwater storage and crop yield in a large river basin in the western United States (Aliyari et 

al., 2021); and the linked DSSAT-MODFLOW system (Xiang et al., 2020), which links 

irrigation demand and groundwater pumping on an annual basis. 

However, these modeling studies have been performed without a detailed assessment of 

the factors that control groundwater storage and crop yield in these linked hydro-agronomic 

systems. Such an understanding can provide valuable insights into 1) causes for groundwater 

depletion; 2) sustainable management strategies; and 3) possible future trends of groundwater 

depletion and crop yield in such systems. Quantifying these controls can be performed through 
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model sensitivity analysis (SA) schemes, which have been widely implemented to understand 

uncertainties of a system caused by model input factors (Mishra, 2009) for parameterization 

(Castaings et al., 2009; Dzotsi et al., 2013; Khatun et al., 2018), model understanding (Francos et 

al., 2003), model development (Pathak et al., 2007), model calibration (Foglia et al., 2009), 

model verification (Pfannerstill et al., 2015; Ratto et al., 2001), optimization (Yassin et al., 

2017), model simplification (Brooks et al., 2001; Campolongo et al., 2007), uncertainty 

quantification (Vezzaro and Mikkelsen, 2012), management strategies (Roura-Pascual et al., 

2010), and system design safety (Contini et al., 2000) in different fields of science and 

technology (Badra, 2007; Davis et al., 2011; Lamboni et al., 2009; Marino et al., 2008; Pianosi et 

al., 2016; Song et al., 2015; Tjiputra et al., 2007; Zhang et al., 2020). Prior research has proved 

the necessity of sensitivity analysis (Kisekka et al., 2013; Sin et al., 2009; Trucano et al., 2006). 

SA has been applied to groundwater systems (Allen et al., 2004; Bahremand and Smedt, 2008; 

Deng and Bailey, 2020; Henderson et al., 2010; Javadi et al., 2011; Sun and Yeh, 1990; Sykes et 

al., 1985) and agronomic systems (Confalonieri et al., 2010; Dzotsi et al., 2013; Lamboni et al., 

2009; Richter et al., 2010; Ruget et al., 2002; Thorp et al., 2020; Wang et al., 2013, 2005). For 

example, to simplify the complexity of hydrological parameter dimension, Chen et al. (2017) 

used the Sobol’ method, with Latin-Hypercube sampling, to identify influential input parameters 

for the process of calibration with the goal of reducing computation cost. Climate change 

increases uncertain factors on groundwater systems, McCallum et al. (2010) used SA to 

determine the most important parameters in controlling groundwater recharge, within the context 

of climate change. For agronomic systems, Makowski et al. (2006) applied two SA schemes (i.e., 

winding stairs and extended FAST) to the AZODYN crop model to assess the contributions of 

genetic parameters on model responses. Varella et al. (2010) improved the quality of estimation 
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of soil-related parameters using the Extended FAST method and the Bayes theory-based function 

of RMSE through the STICS-wheat crop model. Adejuwon (2005) applied SA to the EPIC crop 

model to determine the suitability of an agronomic model for assessing the impact of future 

climate on crop yield prediction. However, SA has not yet been applied to a coupled 

groundwater-agronomic system, which may provide insights into the system that could not be 

achieved by assessing either system independently.  

The objective of this chapter is to present results of applying SA to the linked DSSAT-

MODFLOW modeling system (Xiang et al., 2020) to determine the governing environmental 

and management factors that control groundwater storage and crop yield in an intensively 

irrigated groundwater basin. Methods are applied to the DSSAT-MODFLOW linkage system 

using the Morris screening method followed by the Sobol’ variance-based method, using random 

sampling. In total, fifty-seven parameters are considered for this study, including 10 soil-related 

parameters, 3 hydrologic parameters, and 44 cultivar genetic parameters. The study region for 

the research is in Southwest Kansas, a portion of the High Plains Aquifer (HPA) experiencing 

overdraft due to appropriation of water for irrigation. 

3.2 MATERIALS AND METHODS 

This section provides details about the DSSAT-MODFLOW modeling system, its 

application to the study region in Southwest Kansas, and the implementation of SA to identify 

the system parameters that govern groundwater storage and crop yield. The study region will be 

presented first to provide context for the subsequent description of methods. The overall 

description of DSSAT-MODFLOW theory and linkage, and its initial application and testing to 

the study region, was detailed in Xiang et al. (2020). 
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3.2.1 STUDY REGION: FINNEY COUNTY, KANSAS 

The High Plains Aquifer (HPA), also referred to as the Ogallala Aquifer, is one of the 

largest fresh groundwater sources in the world, with a total area of 450,000 km2 (174,000 mi2), 

partially covering eight Central States, including South Dakota, Wyoming, Nebraska, Colorado, 

Kansas, Oklahoma, New Mexico, and Texas (Fig.3-1A). The agricultural area of the aquifer  

Fig. 3-1 Map of study region and related information. Fig.A shows map of study region of Finney County, southwest of Kansas, 
in the Ogallala Aquifer. The Finney County area is encompassed within the red contour line. The blue region enclosed with light 
purple line is the Ogallala Aquifer, and the states are divided with black lines; Fig.B shows map of irrigation well and crop types 
(Finney County mainly contains five crops, including corn, winter wheat, soybeans, sorghum, and triticale); Fig.C & D show 
initial well capacity during 1975-1978 and initial average saturated thickness during 1975-1978 in Finney County, respectively. 

region provides 30% of total crop and animal production for the U.S.A. (Guru and Horne, 2001; 

Rosenberg et al., 1999) accounting for 41% (i.e., 20% irrigated cropland in the U.S.A.) of total 

land area with an annual production of over $35 billion (Basso et al., 2013). Of crops produced 

in the HPA, 86% is for row crops and small grains, and 14% is for pasture, alfalfa, and fallow 

lands (“USGS High Plains Aquifer WLMS: Physical/Cultural Setting,” n.d.). Approximately 

90% of water pumped from the HPA is used for agricultural irrigation, compared with 42% of 
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groundwater withdrawn for cropland in other regions of the U.S.A. (Gollehon and Winston, 

2013; Scanlon et al., 2012). The composition of aquifer material in the HPA consists of poorly 

sorted clay, silt, sand, and gravel, and the composition of bedrock unit is siltstone, shale, loosely 

to moderately cemented clay and silt, chalk, limestone, dolomite, conglomerate, claystone, 

gypsum, anhydrite, and bedded salt. The range of the elevation of aquifer bedrock is from 366 m 

(1200ft) to 1829 m (6000ft) (Gutentag et al., 1984). 

Due to excessive pumping for agricultural irrigation, the HPA has experienced severe 

depletion in the past few decades. Between 1960 and 2008, groundwater storage has decreased 

by 360 km3, accounting for 36% of total groundwater depletion in U.S.A., while the change in 

water table elevation varies from a decline of 78 m (256 ft) to a rise of 26 m (85 ft), with an 

average of 5 m (16ft) in decline, accounting for 9% of the area-weighted average saturated 

thickness (McGuire, 2014). Declines have taken place mainly in Eastern Colorado, Southwest 

Kansas, the Panhandle of Oklahoma, and Northwest Texas. Increases have occurred in Central 

Nebraska due to higher precipitation rates, composition of soil layer (e.g., the sandy soils that 

allow more infiltration and percolation) and the presence of streams for surface water irrigation. 

Finney County (Fig. 3-1) (105,218 ha; 260,000 ac), located in Southwestern Kansas, was chosen 

as the study region for this research due to a strong dependence on groundwater pumping (1,629 

wells) for irrigation resulting in water table elevation declines up to 15 m since 1950. Main crop 

types cultivated in this region are corn (maize), winter wheat, soybeans, sorghum, and triticale. 

Fig. 3-1 shows the location of Finney County within Southwest Kansas and the broader High 

Plains Aquifer (Fig. 3-1A), the crop type in 2006 and the location of pumping wells (Fig. 3-1B), 

the well capacity (i.e., available pumping rate) during 1975-178 (Fig. 3-1C), and the point-

calculated saturated thickness of the aquifer at pumping well locations in 1975-1878 (Fig. 3-1D). 
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3.2.2 DSSAT-MODFLOW LINKED MODEL 

The Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003) 

is a computer program that can used on over 40 crops to simulate growth, development, and 

yield on the basis of the dynamics among the soil-plant-atmosphere system. The DSSAT 

cropping modeling system model requires input information (e.g., weather, soil, crop 

management, cultivar genetic coefficient data, etc.) to perform agronomic simulations. The 

model is designed for single field applications. MODFLOW (Harbaugh, 2005) is a 3D 

groundwater flow model widely used to simulate groundwater head, groundwater storage, and 

groundwater flow rates in both confined and unconfined aquifers. The aquifer domain is 

discretized into grid cells horizontally and vertically, with each cell representing a volume of 

aquifer and provided values of hydraulic conductivity, specific yield, and specific storage, in 

addition to a suite of groundwater sources and sinks (e.g., recharge, pumping, groundwater 

discharge to streams, stream seepage to groundwater, groundwater ET). The finite difference 

method is used to solve for groundwater head for each grid cell, for each time step of a specified 

simulation period. The span of the simulation period is first divided into stress periods (i.e., a 

simulation time that groundwater stresses stay constant), and then into time steps. 

The linked DSSAT-MODFLOW modeling system (shown in Fig. 3-2) was developed 

(Xiang et al., 2020) to exchange information between the groundwater system (i.e., water table 

elevation, saturated thickness, and well capacity) and the agronomic system (i.e., irrigation 

depth, and volume of drained water from the soil profile that recharges the aquifer) on an annual 

basis, so that each system can be impacted by the other. The data flow within the linked DSSAT-

MODFLOW system is shown in Fig. 3-2. The simulation of the whole linked hydro-agronomic 

system contains four steps. Step 1 is an ensemble of DSSAT simulations, with a  
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 Fig. 3-2 The DSSAT-MODFLOW framework showing the linkage between DSSAT and MODFLOW simulations.  

single DSSAT simulation for each cultivated field in the study region, with a spatial module 

mode through a batch file. Input information includes soil type, weather data, and cultivar 

genetic information in input files .SOL, .WTH., .CUL, respectively to trigger agronomic 

simulations through spatial-input files of .GSX for each crop type. Step 2 is the conversion of 

DSSAT outputs to inputs for MODFLOW. Python programming language is used as the linkage 

script (Python phase 1) to convert daily field-based irrigation depth and recharge depth simulated 

by DSSAT to daily grid cell-based pumping rates and recharge rates for MODFLOW 

simulations (Xiang et al., 2020). Python phase 1 is also used for preparing MODFLOW input 

files. Step 3 is the MODFLOW simulation. MODFLOW simulates groundwater hydraulic head 

(i.e., water table elevation for unconfined aquifers) for each gird cell, with daily stress periods to 

be consistent with daily outputs by DSSAT for daily pumping and recharge rates. The hydraulic 

head in the last day of year is saved as initial head for the subsequent year. Step 4 is to i) 

calculate well capacity for each irrigation well in terms of saturated thickness (i.e., water table 
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elevation – bedrock elevation); ii) update irrigation frequency (i.e., irrigation parameter for 

DSSAT simulation) based on well capacity in i); and iii) create input files for DSSAT 

simulations of the following year (i.e., .CUL, .ECO, and .GSX). All detailed information about 

MODFLOW, DSSAT, and the linkage procedure is demonstrated in Xiang et al. (2020).  

3.2.3 DSSAT-MODFLOW APPLICATION TO FINNEY COUNTY, KANSAS 

For Finney County, DSSAT was previously calibrated for corn, wheat, sorghum, and 

soybean (Araya et al., 2017). For application with the DSSAT-MODFLOW framework, each of 

the 1,332 cultivated fields are included 564, 484, 28, 206, and 50 fields for corn, winter wheat, 

soybean, sorghum, and triticale, respectively, Fig. 3-1B), with a single DSSAT simulation for 

each field. The MODFLOW model for Groundwater Management District No.3 (GMD3) (see 

gray shaded area Fig. 3-1A), developed by the Kansas Geological Survey (KGS) (Liu et al., 

2011), was used to link with DSSAT. The MODFLOW model includes a steady-state simulation 

and transient simulation in the period of 1944 – 1946 and 1947 – 2007, respectively. The domain 

area of KGS model is 161 km by 241 km (100 miles by 150 miles shown in grey area in Fig. 3-

1A), and each grid cell is 1.61 km by 1.61 km (1 mile by 1 mile). To be consistent with daily 

irrigation and recharge depths from DSSAT for daily pumping and recharge rates, the 

MODFLOW model was converted to daily stress periods, requiring files to be updated (e.g., 

Discretization file (.DIS), Recharge Package file (.RCH), and Time-Variant Specified-Head 

Package file (.CHD), and Stream Package file (.STR)). As described in Xiang et al. (2020), the 

DSSAT-MODFLOW model was run for the 2000-2007 time period and tested against measured 

groundwater levels and county-wide crop yield. 
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3.2.4 FRAMEWORK FOR SENSITIVITY ANALYSIS 

Sensitivity analysis (SA) was applied to the DSSAT-MODFLOW model provided in 

Xiang et al. (2020) to qualitatively (Morris screening method) and quantitatively (Sobol’ 

method) evaluate the factors governing groundwater storage and crop yield in Finney County, 

Kansas. In so doing, we attempt to provide general insights and conclusions for groundwater-

irrigated regions that are experiencing groundwater overdraft. In total, 57 parameters were 

included in the SA. 

Based on Saltelli et al. (2004), SA explores how variation in model input factors 

influence uncertainty related to the model outputs. Sensitivity analysis is generally classified into 

two groups: 1) local sensitivity analysis (LSA), and 2) global sensitivity analysis (GSA). LSA 

assesses the local impact of the variation in inputs on model response through evaluating the 

gradient or partial derivative of model outputs in vicinity of nominal values of the input factors, 

while GSA apportions the uncertainty of model outputs to the variation of each input parameter 

in their entire range of interest. LSA is implemented by altering one value of an input with other 

values of input factors remaining constant, whereas in GSA all input factors are changed 

simultaneously over the entire range of each input factor (Zhou and Lin, 2017). The limitations 

of LSA are: 1) not applicable for nonlinear models (Frey and Patil, 2002) and 2) interactions 

between parameters are not considered (Saltelli et al., 2008). Therefore, GSA was applied in this 

study to quantitatively evaluate factors governing the hydro-agronomic system.  

3.2.4.1 MORRIS SCREENING METHOD 

The Morris SA is a GSA method developed by Morris (1991) to reduce the model 

complexity through identifying the non-influential input factors using ‘One at A Time’ (OAT) 

design, with several incremental ratios called elementary effects (EE). The distribution of EE 
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that is related to each input parameter is acquired by randomly sampling the space of model input 

parameters. Two sensitivity measurements obtained by the Morris screening method are µ, 

measuring the primary effect of an input factor on model response and σ, describing interaction 

effects of a parameter with other parameters, with nonlinear effects. The potential results that can 

be determined by the Morris method are negligible, linear, nonlinear, or involved in interactions 

with other parameters in terms of µ and σ. To estimate two measurements, Morris (1991) 

suggested that the number of executions is determined by the following relationship (Equ. 3-1): 𝑁 = 𝑟 × (𝑘 + 1)                                                           (3 − 1) 

where N is the number of executable model runs, r is the number of trajectories (usually 4 to 10), 

and k is the number of input factors of a model. (see Fig. 3-S1 in Supplementary Information for 

one year example) 

3.2.4.3 SOBOL’ VARIANCE-BASED METHOD 

The Sobol’ variance-based SA offers quantitative measurements (e.g., first-order, second-

order, total-order sensitivity indices, etc.) to obtain the percentage of each input parameters’ 

contribution to the distribution of uncertainty of model responses. Compared with the first-order 

index, the total-order index is a more relatively reliable measurement of the effect of an input 

factor on model output due to the consideration of interactions of a parameter with other 

parameters. To implement Sobol’ sensitivity analysis for obtaining first-order and total-order 

indices, the number of simulation runs needed is determined by: 𝑁 = 𝑛 × (2𝑘 + 2)                                                         (3 − 2) 

where n is the sample size for estimation of one individual effect and k is the number of input 

parameters.   
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3.2.4.3 OVERALL SENSITIVITY ANALYSIS FRAMEWORK 

Since DSSAT integrates genotype, environmental, experimental data, and management 

data, it is considerably driven by cultivar genetic, climate-related, and soil-related parameters 

(Jones et al., 2015; Li et al., 2018; Mourice et al., 2014; Rezzoug et al., 2008). In addition, 

movement of groundwater in confined and unconfined aquifers exceptionally depends on 

property of geologic formations of soil, sand, and rock, with relation to hydrogeologic 

parameters of specific yield (Xiao et al., 2021) and hydraulic conductivity (Gómez-Hernández 

and Gorelick, 1989). Furthermore, to quantify interactions between groundwater and surface 

water, riverbed conductance (Wei and Bailey, 2019) is also another significant factor for the 

hydro-agronomic system. Therefore, 57 parameters (Tab. 3-1), including 44 cultivar parameters 

(DSSAT model), 10 soil parameters (DSSAT model), and 3 hydrogeologic parameters 

(MODFLOW model), are selected for the Morris screening method. Based on Equ. 3-1, 580 

model simulations were run for the Morris method calculations. The Sobol’ method was then 

applied only to the most influential parameters as identified by the Morris screening method, in 

addition to four climate-related parameters (i.e., maximum temperature, minimum temperature, 

solar radiation, and precipitation). The climate parameters were not screened by the Morris 

method due to their importance in the hydro-agronomic system (Jones et al., 2003; Kour et al., 

2016). As described in Section 3.3, 24 parameters of the 57 initial parameters were identified in 

the Morris screening method as being influential. With the additional four climate parameters, 

and according to Equ. 3-2, the number of DSSAT-MODFLOW model simulations run in the 

Sobol’ method was 14,848. Model results were processed using SimLab (SIMLAB, Version 2.2 

Simulation Environment for Uncertainty and Sensitivity Analysis, 2004). 
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Tab. 3-1 Parameters from the hydro-agronomic system selected for the Morris screening method 

Parameter 

Name 

File 

Name 

Definition Unit Range 

Cultivar Genetic Parameters 

P1a  MZCER04
7.CUL 

Thermal time from seedling emergence to 
the end of the juvenile phase (expressed in 
degree days above a base temperature of 8 
deg. C) during which the plant is not 
responsive to changes in photoperiod 

degre
e-day 

100 - 450 (Kisekka et 
al., 2017) 

P2a  MZCER04
7.CUL 

Extent to which development (expressed as 
days) is delayed for each hour increase in 
photoperiod above the longest photoperiod 
at which development proceeds at a 
maximum rate (which is considered to be 
12.5 hours). 

day 0.01 - 2.0 (Kisekka et 
al., 2017) 

P5a  MZCER04
7.CUL 

Thermal time from silking to physiological 
maturity (expressed in degree days above a 
base temperature of 8 deg.C). 

degre
e-day 

600 - 1000 (Kisekka 
et al., 2017) 

G2a  MZCER04
7.CUL 

Maximum possible number of kernels per 
plant. 

Kerne
l 

440 - 1000 (Kisekka 
et al., 2017) 

G3a  MZCER04
7.CUL 

Kernel filling rate during the linear grain 
filling stage and under optimum conditions. 

mg-
day-1 

5- 16 (Kisekka et al., 
2017) 

PHINTa  MZCER04
7.CUL 

Phylochron interval; the interval in thermal 
time (degree days) between successive leaf 
tip appearances. 

degre
e-day 

25 - 75 (DeJonge et 
al., 2012; Kisekka et 
al., 2017) 

RUEa  MZCER04
7.ECO 

Radiation use efficiency g-MJ-1 2 - 5 (DeJonge et al., 
2012) 

P1b SGCER047
.CUL 

Thermal time from seedling emergence to 
the end of the juvenile phase (expressed in 
degree days above TBASE during which the 
plant is not responsive to changes in 
photoperiod 

degre
e-day 

150 - 500(Lamsal, 
2017) 

P2b  SGCER047
.CUL 

Thermal time from the end of the juvenile 
stage to tassel initiation under short days 
(degree days above TBASE) 

degre
e-day 

90 - 110 (Lamsal, 
2017) 

P2Ob  SGCER047
.CUL 

Critical photoperiod or the longest day 
length (in hours) at which development 
occurs at a maximum rate. At values higher 
than P2O, the rate of development is 
reduced 

hour 11 - 16 (Lamsal, 
2017) 

P2Rb  SGCER047
.CUL 

Extent to which phasic development leading 
to panicle initiation (expressed in degree 
days) is delayed for each hour increase in 
photoperiod above P2O 

degre
e-day 

0 - 300 (Araya et al., 
2017) 

PANTHb  SGCER047
.CUL 

Thermal time from the end of tassel 
initiation to anthesis (degree days above 
TBASE) 

degre
e-day 

500 - 700 (Araya et 
al., 2017) 

P3b  SGCER047
.CUL 

Thermal time from to end of flag leaf 
expansion to anthesis (degree days above 
TBASE) 

degre
e-day 

0 - 200 (Araya et al., 
2017) 

P4b  SGCER047
.CUL 

Thermal time from anthesis to beginning 
grain filling (degree days above TBASE) 

degre
e-day 

50 - 100 (Araya et al., 
2017) 

P5b  SGCER047
.CUL 

Thermal time from beginning of grain filling 
to physiological maturity (degree days 
above TBASE) 

degre
e-day 

400 - 700 (Lamsal, 
2017) 
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PHINTb  SGCER047
.CUL 

Phylochron interval; the interval in thermal 
time between successive leaf tip appearances 
(degree days) 

degre
e-day 

30 - 90 (Lamsal, 
2017) 

G1b  SGCER047
.CUL 

Scaler for relative leaf size - 0 - 30 (Lamsal, 2017) 

G2b  SGCER047
.CUL 

Scaler for partitioning of assimilates to the 
panicle (head). 

- 4 - 10 (Lamsal, 2017) 

TBASEb  SGCER047
.ECO 

Base temperature oC 4 - 9 (Lamsal, 2017) 

RUEb  SGCER047
.ECO 

Radiation use efficiency g-MJ-1 3 - 6 (Lamsal, 2017) 

P1Vc  WHCER04
7.CUL 

Days, optimum vernalizing temperature, 
required for vernalization 

day 25 - 100 (Li et al., 
2018) 

P1Dc WHCER04
7.CUL 

Photoperiod response (% reduction in 
rate/10 h drop in pp) 

% 35 - 200 (Li et al., 
2018) 

P5c WHCER04
7.CUL 

Grain filling (excluding lag) phase duration 
(oC.d) 

degre
e-day 

500 - 1000 (Li et al., 
2018) 

G1c  WHCER04
7.CUL 

Kernel number per unit canopy weight at 
anthesis (#/g) 

Numb
er/gra
m 

15 - 60 (Li et al., 
2018) 

G2c  WHCER04
7.CUL 

Standard kernel size under optimum 
conditions (mg) 

mg 20 - 90 (Li et al., 
2018) 

G3c  WHCER04
7.CUL 

Standard,non-stressed mature tiller wt (incl 
grain) (g dwt) 

g-dwt 0.5 - 10 (Li et al., 
2018) 

PHINTc  WHCER04
7.CUL 

Interval between successive leaf tip 
appearances (oC.d) 

deg.C
-days 

0 - 200 (Araya et al., 
2017) 

CSDLd  SBGRO047
.CUL 

Critical Short Day Length below which 
reproductive development progresses with 
no daylength effect (for short-day plants) 
(hour) 

hour 11 - 15 (Boote et al., 
2003) 

PPSENd  SBGRO047
.CUL 

Slope of the relative response of 
development to photoperiod with time 
(positive for shortday plants) 

hour-1 0.1 - 0.4 (Boote et al., 
2003) 

EM-FLd  SBGRO047
.CUL 

Time between plant emergence and flower 
appearance (R1) (photothermal days) 

days 10 - 35 (Boote et al., 
2003) 

FL-SHd  SBGRO047
.CUL 

Time between first flower and first pod (R3) 
(photothermal days) 

days 3 - 12 (Boote et al., 
2003) 

FL-SDd  SBGRO047
.CUL 

Time between first flower and first seed 
(R5) (photothermal days) 

days 10 - 20 (Boote et al., 
2003) 

SD-PMd  SBGRO047
.CUL 

Time between first seed (R5) and 
physiological maturity (R7) (photothermal 
days) 

days 25 - 40 (Boote et al., 
2003) 

FL-LFd  SBGRO047
.CUL 

Time between first flower (R1) and end of 
leaf expansion (photothermal days) 

days 10 - 30 (Boote et al., 
2003) 

LFMAXd  SBGRO047
.CUL 

Maximum leaf photosynthesis rate at 30 C, 
350 vpm CO2, and high light (mg CO2/m2-
s) 

mg-
CO2/
m2-s 

0.9 - 1.3 (Boote et al., 
2003) 

SLAVRd  SBGRO047
.CUL 

Specific leaf area of cultivar under standard 
growth conditions (cm2/g) 

cm2/g 280 - 410 (Boote et 
al., 2003) 

SIZLFd  SBGRO047
.CUL 

Maximum size of full leaf (three leaflets) 
(cm2) 

cm2 140 - 210 (Boote et 
al., 2003) 

WTPSDd  SBGRO047
.CUL 

Maximum weight per seed (g) g 0.15 - 0.22 (Boote et 
al., 2003) 

SFDURd  SBGRO047
.CUL 

Seed filling duration for pod cohort at 
standard growth conditions (photothermal 
days) 

days 15 - 27 (Boote et al., 
2003) 
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SDPDVd  SBGRO047
.CUL 

Average seed per pod under standard 
growing conditions (#/pod) 

numb
er/pod 

1.5 - 2.5 (Boote et al., 
2003) 

PODURd  SBGRO047
.CUL 

Time required for cultivar to reach final pod 
load under optimal conditions (photothermal 
days) 

day 7 - 17 (Boote et al., 
2003) 

THRSHd  SBGRO047
.CUL 

Threshing percentage. The maximum ratio 
of (seed/(seed+shell)) at maturity. Causes 
seeds to stop growing as their dry weight 
increases until shells are filled in a cohort. 

- 75 - 80 (Boote et al., 
2003) 

SDPROd  SBGRO047
.CUL 

Fraction protein in seeds (g(protein)/g(seed)) - 0.37 - 0.43 (Boote et 
al., 2003) 

SDLIPd  SBGRO047
.CUL 

Fraction oil in seeds (g(oil)/g(seed)) - 0.18 - 0.22 (Boote et 
al., 2003) 

Hydrogeologic Parameters 
K Kst6.DAT Hydraulic Conductivity ft-

day-1 
0.9-1.1 

Sy Sys6.DAT Specific Yield - 0.7-1.3 
Cond .str Riverbed/streambed hydraulic conductance ft2-

day-1 
0.7-1.3 

Soil-related Parameters 
SLPF  SOIL.SOL Soil fertility factor/Photosynthesis factor - 0.7 - 1.0 (Lamsal, 

2017) 
SLU1  SOIL.SOL Evaporation limit cm 3 - 12 (Lamsal, 2017; 

Corbeels et al., 2016) 
SLDR  SOIL.SOL Drainage rate day-1 0 - 1 (Lamsal, 2017) 
SLRO  SOIL.SOL Runoff curve number - 60 - 95 (Lamsal, 

2017) 
SLLL  SOIL.SOL Drained lower limit cm3 

cm-3 
0.02 - 0.25 (Lamsal, 
2017; Corbeels et al., 
2016) 

SDUL  SOIL.SOL Drained upper limit cm3 
cm-3 

0.25 - 0.42 (Lamsal, 
2017) 

SSAT  SOIL.SOL Saturated water limit cm3 
cm-3 

0.3 - 0.6(Lamsal, 
2017; Corbeels et al., 
2016) 

SSKS  SOIL.SOL Saturated hydraulic conductivity cmh-1 0.2 - 2.5 (Lamsal, 
2017) 

SBDM  SOIL.SOL Bulk density gcm3 1.1 - 1.6 (Lamsal, 
2017) 

SLOC  SOIL.SOL Soil organic carbon % 0.3 - 2.5 (Lamsal, 
2017) 

a Maize genetic parameter; b Sorghum genetic parameter; c Wheat genetic parameter; d Soybean genetic parameter. 

The framework for implementing SA with the DSSAT-MODFLOW linked system is 

described in Fig. 3-3. The major task of prior-processing is to create sample files for the Morris 

screening and Sobol’ sensitivity analysis, respectively, based on identified parameters, with prior 

distribution and range of parameters, using the random sampling method. Python phase 1 (see 

Fig. 3-3) is used to update input files (i.e., .CUL, .ECO, .SOL, and .WTH for DSSAT and 
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Kst.DAT, Sys.DAT, and .str for MODFLOW) for the hydro-agronomic modeling system in 

terms of values of parameters in the DSSAT experiments in the sample file. To reduce 

computation cost, parallel simulations through batch files are introduced for all model runs on 

computing servers. The post-processing procedure has two main tasks: 1) organize outputs of 

model responses fitting them to the format of input files for SimLab to obtain qualitative and 

quantitative measurements; and 2) visualize the evaluations of SA (Fig. 3-3). 

Fig. 3-3 Schematic showing the entire system of assemble with prior-processing, model simulation, and post-processing for 
sensitivity analysis of the linked DSSAT-MODFLOW system. 

3.3 RESULTS AND DISCUSSION 

3.3.1 SCREENING PARAMETER USING THE MORRIS METHOD 

The results of qualitative measurements using the Morris screening sensitivity analysis 

are shown in Figs. 3-4A, B, C, D, and E for maize yield, soybean yield, wheat yield, sorghum 

yield, and water table elevation, respectively. As shown in Fig. 3-4A, most parameters are 

located within µ- σ plane below the 1:1 diagonal line, showing the parameters’ primarily 

influence on maize yield, with little interactions with other parameters. The larger the value of µ 

is, the more the effect a parameter has on maize yield; therefore, RUE, G3, P5, P1, SLPF, and 

G2, with large µ, indicates maize yield is relatively more sensitive to these parameters (i.e., those  
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parameters considerably affect uncertainty of maize yield). The parameters are further analyzed 

quantitatively using the Sobol’ variance-based method. For soybean yield (shown in Fig. 3-4B), 

there are more interactions among soybean-related genetic and soil-related parameters, and the 

parameters with high µ and σ are selected for later quantitative analysis. In addition, since the 

entire hydro-agronomic system is focused on a system instead of a single hydrological, 

agronomic system or one crop type, parameters from the other system or crop model routines 

affect other model responses. PHINT is one of the maize-related genetic parameters, but it 

increases the uncertainty of wheat yield (Fig. 3-4C); in general, interactions with other 

Fig. 3-4 Parameters (within the purple box) selected for the Sobol’ sensitivity analysis after the Morris screening method 
(totally fifty-seven parameters for the Morris screening). The letter of a indicates maize genetic parameter; the letter of b 
indicates sorghum genetic parameters; the letter c indicates wheat genetic parameters; the letter d indicates soybean genetic 
parameters. A) Qualitative measurements of parameters for maize yield; B) Qualitative measurements of parameters for 
soybean yield; C) Qualitative measurements of parameters for wheat yield; D) Qualitative measurements of parameters for 
sorghum yield; E) Qualitative measurements of parameters for water table elevation.  
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parameters are important in understanding the factors that govern the entire system. Results for 

sorghum yield are shown in Fig. 3-4D, indicating that the genetic parameters mainly influence 

the uncertainty in simulated sorghum yield, with strong interaction with other parameters. Water 

table elevation (Fig. 3-4E) is significantly driven by soil-related parameters, especially SDUL 

and SLLL, with relation to soil water capacity, soil specific yield, and overall drainage of soil 

water to the underlying aquifer. Overall, soil parameters have a strong influence on both crop 

yield and groundwater levels. The most influential twenty-four parameters (see Tab. 3-2) were 

selected to use in the Sobol’ SA method. 

Tab. 3-2 Parameters from the hydro-agronomic system selected for the Sobol’ quantitative method after the Morris screening 
method 

Parameter 

Name 

File 

Name 

Definition Unit Range 

Cultivar Genetic Parameters 

P1a  MZCER04
7.CUL 

Thermal time from seedling emergence to 
the end of the juvenile phase (expressed in 
degree days above a base temperature of 8 
deg. C) during which the plant is not 
responsive to changes in photoperiod 

degre
e-day 

100 - 450 (Kisekka et 
al., 2017) 

P5a  MZCER04
7.CUL 

Thermal time from silking to physiological 
maturity (expressed in degree days above a 
base temperature of 8 deg.C). 

degre
e-day 

600 - 1000 (Kisekka 
et al., 2017) 

G2a  MZCER04
7.CUL 

Maximum possible number of kernels per 
plant. 

Kerne
l 

440 - 1000 (Kisekka 
et al., 2017) 

G3a  MZCER04
7.CUL 

Kernel filling rate during the linear grain 
filling stage and under optimum conditions. 

mg-
day-1 

5- 16 (Kisekka et al., 
2017) 

PHINTa  MZCER04
7.CUL 

Phylochron interval; the interval in thermal 
time (degree days) between successive leaf 
tip appearances. 

degre
e-day 

25 - 75 (DeJonge et 
al., 2012; Kisekka et 
al., 2017) 

RUEa  MZCER04
7.ECO 

Radiation use efficiency g-MJ-1 2 - 5 (DeJonge et al., 
2012) 

P2Ob  SGCER047
.CUL 

Critical photoperiod or the longest day 
length (in hours) at which development 
occurs at a maximum rate. At values higher 
than P2O, the rate of development is 
reduced 

hour 11 - 16 (Lamsal, 
2017) 

P2Rb  SGCER047
.CUL 

Extent to which phasic development leading 
to panicle initiation (expressed in degree 
days) is delayed for each hour increase in 
photoperiod above P2O 

degre
e-day 

0 - 300 (Araya et al., 
2017) 

P5b  SGCER047
.CUL 

Thermal time from beginning of grain filling 
to physiological maturity (degree days 
above TBASE) 

degre
e-day 

400 - 700 (Lamsal, 
2017) 

G2b  SGCER047
.CUL 

Scaler for partitioning of assimilates to the 
panicle (head). 

- 4 - 10 (Lamsal, 2017) 
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P1Dc WHCER04
7.CUL 

Photoperiod response (% reduction in 
rate/10 h drop in pp) 

% 35 - 200 (Li et al., 
2018) 

G1c  WHCER04
7.CUL 

Kernel number per unit canopy weight at 
anthesis (#/g) 

Numb
er/gra
m 

15 - 60 (Li et al., 
2018) 

G2c  WHCER04
7.CUL 

Standard kernel size under optimum 
conditions (mg) 

mg 20 - 90 (Li et al., 
2018) 

CSDLd  SBGRO047
.CUL 

Critical Short Day Length below which 
reproductive development progresses with 
no daylength effect (for short-day plants) 
(hour) 

hour 11 - 15 (Boote et al., 
2003) 

PPSENd  SBGRO047
.CUL 

Slope of the relative response of 
development to photoperiod with time 
(positive for shortday plants) 

hour-1 0.1 - 0.4 (Boote et al., 
2003) 

EM-FLd  SBGRO047
.CUL 

Time between plant emergence and flower 
appearance (R1) (photothermal days) 

days 10 - 35 (Boote et al., 
2003) 

LFMAXd  SBGRO047
.CUL 

Maximum leaf photosynthesis rate at 30 C, 
350 vpm CO2, and high light (mg CO2/m2-s) 

mg-
CO2/
m2-s 

0.9 - 1.3 (Boote et al., 
2003) 

Hydrogeologic Parameters 
K Kst6.DAT Hydraulic Conductivity - 0.9-1.1 
Sy Sys6.DAT Specific Yield - 0.7-1.3 
Cond .str Riverbed/streambed hydraulic conductance - 0.7-1.3 

Soil-related Parameters 
SLPF  SOIL.SOL Soil fertility factor/Photosynthesis factor - 0.7 - 1.0 (Lamsal, 

2017) 
SLDR  SOIL.SOL Drainage rate day-1 0 - 1 (Lamsal, 2017) 
SLLL  SOIL.SOL Drained lower limit cm3 

cm-3 
0.02 - 0.25 (Lamsal, 
2017; Corbeels et al., 
2016) 

SDUL  SOIL.SOL Drained upper limit cm3 
cm-3 

0.25 - 0.42 (Lamsal, 
2017) 

Climate-related Parameters 

SRAD .WTH Solar radiation MJ-
m-2-
day-1 

0.6-1.4 (Tyagi et al., 
2018) 

TMAX .WTH Temperature Maximum oC 0.6-1.4 (Tyagi et al., 
2018) 

TMIN .WTH Temperature Minimum oC 0.6-1.4 (Tyagi et al., 
2018) 

RAIN .WTH Rainfall (including snow) mm-
day-1 

0.6-1.4 (Tyagi et al., 
2018) 

a Maize genetic parameter; b Sorghum genetic parameter; c Wheat genetic parameter; d Soybean genetic parameter. 

3.3.2 QUANTITATIVE RANKING PARAMETERS USING THE SOBOL’ METHOD 

Results of the Sobol’ method are shown in Figs. 3-5 and 3-6, and first- and total-order 

indices of 28 (24 identified from the Morris method + 4 climate parameters) parameters for both 

agronomic and hydrological responses are shown in Tabs. 3-3 and 3-4. Figure 3-5 summarizes  
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Fig. 3-5 Sobol’ sensitivity indices of twenty-eight parameters from the DSSAT-MODFLOW framework system for agronomic 
responses (i.e., Fig. 3-5A maize yield; Fig. 3-5B soybean yield; Fig. 3-5C wheat yield; Fig. 3-5D sorghum yield) are shown 
above. First-order sensitivity indices (grey bar) and total-order sensitivity indices (black bar) are shown, respectively.   
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the sensitivity indices for crop yield, and Fig. 3-6 summarizes indices for hydrologic system 

responses (water table elevation, groundwater ET, recharge, irrigation pumping, river leakage, 

groundwater discharge). Based on results shown in Fig. 3-5, climate parameters contribute 

strongly to crop yield, and they also highly interact with other parameters in terms of the 

difference of first- and total-order indices. For quantitative measurements for maize yield shown 

in Fig. 3-5A, TMAX has the greatest control on model simulations due to its high first-order and 

total-order indices, and sorghum-related genetic and hydrological parameters are negligible due 

to low indices (close to 0). As shown in Fig. 3-5B, both soybean-related genetic, climate 

parameters, and soil parameters dominate the model response (i.e., soybean yield), and similarly, 

there is almost no impact of hydrological parameters on soybean yield, which is same for wheat 

and sorghum yields. Sorghum yield (Fig. 3-5D) is strongly influenced by climate-related 

parameters and sorghum genetic parameters, and by more parameters than those of winter wheat 

yield (Fig. 3-5C), indicating that uncertainty of sorghum yield is harder to control compared with 

winter wheat yield. Winter wheat is mainly driven by climate, soil-related parameters, and winter 

wheat genetic parameters (Fig. 3-5C). From a systems point of view, for those four major crop 

types, crop yields are not controlled by their own cultivar genetic parameters alone, but also by 

other cultivar genetic parameters. For example, besides maize genetic parameters, several winter 

wheat, and soybean cultivar genetic parameters are interactively sensitive to maize yield. 

Similarly, this situation occurs in other crop types; therefore, to have accurate simulations of 

crop yields, the different cultivar genetic parameters for the crops within the simulated system 

should be included in calibration. 

Fig. 3-6 shows quantitative results of parameters for hydrologic responses (i.e., water 

table elevation, ET, recharge, irrigation pumping, river leakage, and aquifer seepage). As we can  



62 

 

Fig. 3-6 Sobol’ sensitivity indices of twenty-eight parameters from the DSSAT-MODFLOW framework system for hydrologic 
responses (i.e., Fig.6A water table elevation; Fig.6B ET; Fig.6C recharge; Fig.6D irrigation pumping; Fig.6E river leakage; 
Fig.6F groundwater discharge) are shown above. First-order sensitivity indices (grey bar) and total-order sensitivity indices 
(black bar) are shown, respectively.   
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see in Fig. 3-6A, few cultivar genetic parameters appreciably affect water table elevation, and 

specific yield, soil-related, and climate parameters contribute to the variation of water table 

elevation, especially soil parameters. In comparison with Fig. 3-6B, all parameters are related to 

the uncertainty of ET, and except for riverbed conductance, other parameters with very low first-

order indices and high total-order indices indicate the system intensively interact among 

parameters, causing the high degree of uncertainty of ET. Compared with the uncertainty of 

water table elevation, the uncertainty of recharge (Fig. 3-6C) is caused by similar parameters, 

since recharge has a positive relationship with water table elevation. In Fig. 3-6D, soil-related 

and climate-related parameters influence the variability of irrigation pumping, because crop 

growth is driven by climate-related parameters, and then impact on water productivity; in 

addition, climate-related parameters can change water content in soil layer, which triggers 

irrigation. The interaction between river and groundwater (Fig. 3-6E and Fig. 3-6F) is principally 

controlled by riverbed conductance, and climate, sorghum and soybean genetic parameters are 

slightly sensitive to river leakage and aquifer discharge, respectively. These results indicate a 

complex system of interacting environmental factors. Of note is that, except for groundwater-

surface water interactions (Fig. 3-6E, 3-6F), climate variables and soil properties have a stronger 

influence on hydrologic fluxes (recharge, ET, pumping) than hydrogeologic factors (K hydraulic 

conductivity, Sy specific yield). Climate impacts crop germination, growth, and irrigation needs, 

and therefore controls the overall response of crop yield and pumping in the region. 

Tab. 3-3 First order and Total sensitivity indices of 28 parameters for agronomic responses. 

Si Parameters Sobol’ 
value 

for 

maize 

yield 

Sobol’ 
value 

for 

soybean 

yield 

Sobol’ 
value for 

wheat 

yield 

Sobol’ 
value 

for 

sorghum 

yield 

STi Parameters Sobol’ 
value 

for 

maize 

yield 

Sobol’ 
value 

for 

soybean 

yield 

Sobol’ 
value 

for 

wheat 

yield 

Sobol’ 
value for 

sorghum 

yield 

1 P1a 0.02970 0.00000e 0.00034 0.00025 1 P1a 0.11826 0.00001 0.00057 0.00032 
2 P5a 0.00779 0.00133 0.00054 0.00036 2 P5a 0.01170 0.00761 0.00409 0.00091 
3 G2a 0.01936 0.00045 0.00049 0.00102 3 G2a 0.05416 0.00087 0.00083 0.04586 
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4 G3a 0.09471 0.00017 0.00000e 0.00021 4 G3a 0.17286 0.00255 0.00070 0.00784 
5 PHINTa 0.00396 0.00000e 0.00071 0.00156 5 PHINTa 0.06033 0.00002 0.00542 0.00180 
6 RUEa 0.12132 0.00012 0.00219 0.00083 6 RUEa 0.14555 0.00055 0.00773 0.00089 
7 P2Ob 0.00006 0.00129 0.00252 0.13837 7 P2Ob 0.00059 0.00201 0.00463 0.32304 
8 P2Rb 0.00055 0.00133 0.00041 0.06774 8 P2Rb 0.00183 0.00237 0.00087 0.19326 
9 P5b 0.00067 0.00421 0.00211 0.03273 9 P5b 0.00331 0.01079 0.00578 0.03718 
10 G2b 0.01450 0.00818 0.02010 0.04758 10 G2b 0.07263 0.06845 0.05648 0.11172 
11 P1Dc 0.00556 0.03000 0.06780 0.00224 11 P1Dc 0.10316 0.12050 0.16472 0.09949 
12 G1c 0.00447 0.00817 0.04653 0.01143 12 G1c 0.11517 0.108107 0.21783 0.12710 
13 G2c 0.01930 0.01640 0.08067 0.03280 13 G2c 0.12812 0.11478 0.23919 0.14696 
14 CSDLd 0.02494 0.13676 0.01620 0.03030 14 CSDLd 0.11494 0.55306 0.09503 0.15773 
15 PPSENd 0.00000e 0.06757 0.00075 0.00049 15 PPSENd 0.00005 0.23995 0.00097 0.00027 
16 EM-FLd 0.01050 0.03640 0.01367 0.00163 16 EM-FLd 0.05223 0.21110 0.06970 0.10673 
17 LFMAXd 0.00308 0.01535 0.01860 0.00421 17 LFMAXd 0.03275 0.03498 0.04723 0.03532 
18 K 0.00027 0.00119 0.00075 0.00145 18 K 0.00111 0.00639 0.00133 0.00191 
19 Sy 0.00188 0.00109 0.00046 0.00103 19 Sy 0.00729 0.00598 0.00419 0.00315 
20 Cond 0.00007 0.00051 0.00116 0.00012 20 Cond 0.00018 0.00081 0.00188 0.00059 
21 SLPF  0.01756 0.04909 0.10584 0.06805 21 SLPF  0.03854 0.08031 0.14438 0.06987 
22 SLDR  0.00447 0.00761 0.00111 0.00379 22 SLDR  0.03617 0.06922 0.03534 0.02664 
23 SLLL  0.02804 0.18279 0.16301 0.10945 23 SLLL  0.11528 0.31228 0.31770 0.20096 
24 SDUL  0.02240 0.09291 0.01940 0.01461 24 SDUL  0.17009 0.19009 0.20318 0.20303 
25 SRAD 0.00126 0.02920 0.23446 0.09498 25 SRAD 0.16316 0.10774 0.36615 0.18345 
26 TMAX 0.17644 0.07029 0.12633 0.14219 26 TMAX 0.65724 0.41471 0.42629 0.54271 
27 TMIN 0.02741 0.01989 0.00778 0.01907 27 TMIN 0.26287 0.24095 0.15070 0.21435 
28 RAIN 0.01640 0.00343 0.00388 0.01396 28 RAIN 0.14798 0.16435 0.12799 0.14571 
 SUM 0.65659 0.78574 0.93780 0.84244  SUM 2.78755 3.07141 2.70090 2.98877 

a Maize genetic parameter; b Sorghum genetic parameter; c Wheat genetic parameter; d Soybean genetic parameter; e The value of 
Si for 4 parameters were slightly smaller than 0, due to numerical integration, and then the values were set to be 0. 

Tab. 3-4 First order and Total sensitivity indices of 28 parameters for hydrologic responses. 
Si Parameters Sobol’ value for Water 

Table Elevation 

Sobol’ value 
for ET 

Sobol’ value 
for 

Recharge 

Sobol’ value for 
Irrigation 

Pumping 

Sobol’ value 
for River 

Leakage 

Sobol’ value for 
Aquifer 

Seepage 

1 P1a 0.00712 0.03150 0.02382 0.00859 0.00543 0.01212 
2 P5a 0.00446 0.03590 0.00460 0.00034 0.00211 0.00122 
3 G2a 0.00334 0.02510 0.00173 0.00202 0.00354 0.00247 
4 G3a 0.00142 0.03420 0.00086 0.02210 0.00142 0.00394 
5 PHINTa 0.00286 0.03560 0.01105 0.00990 0.00223 0.00101 
6 RUEa 0.01508 0.03250 0.00844 0.01055 0.00717 0.01476 
7 P2Ob 0.00138 0.02490 0.00349 0.00488 0.00444 0.00224 
8 P2Rb 0.00648 0.02540 0.00470 0.00583 0.00417 0.00207 
9 P5b 0.00243 0.02840 0.00223 0.00080 0.01223 0.00578 
10 G2b 0.02647 0.03180 0.01230 0.00913 0.00888 0.00137 
11 P1Dc 0.00303 0.03182 0.01275 0.02398 0.00562 0.01120 
12 G1c 0.01650 0.02440 0.01598 0.01921 0.00891 0.00797 
13 G2c 0.01653 0.05680 0.00133 0.01072 0.02458 0.01951 
14 CSDLd 0.01764 0.02860 0.01504 0.00406 0.00035 0.02712 
15 PPSENd 0.00682 0.02290 0.00135 0.00093 0.00532 0.00212 
16 EM-FLd 0.00199 0.04440 0.00706 0.01780 0.00341 0.00990 
17 LFMAXd 0.00372 0.00058 0.00830 0.01547 0.00841 0.00289 
18 K 0.00205 0.00920 0.00514 0.04750 0.01472 0.12060 
19 Sy 0.08279 0.01100 0.00126 0.04450 0.00279 0.00632 
20 Cond 0.01240 0.33739 0.00479 0.03850 0.94473 0.53243 
21 SLPF  0.01180 0.03130 0.00305 0.01530 0.00251 0.00498 
22 SLDR  0.06984 0.01280 0.14486  0.12418 0.00587 0.00957 
23 SLLL  0.11154 0.05400 0.15053 0.00126 0.01194 0.03665 
24 SDUL  0.17573 0.05330 0.30284 0.02813 0.01880 0.03274 
25 SRAD 0.02190 0.02720 0.05960 0.01810 0.03447 0.02910 
26 TMAX 0.00238 0.01041 0.04100 0.08462 0.00231 0.02288 
27 TMIN 0.00636 0.02570 0.01856 0.05012 0.00930 0.00906 
28 RAIN 0.00883 0.01281 0.02228 0.06465 0.00057 0.00297 
 SUM 0.64289 

 
1.09991 
 

0.88894 
 

0.68317 
 

1.15623 
 

0.93499 
 

STi Parameters Sobol’ value for Water 
Table Elevation 

Sobol’ value 
for ET 

Sobol’ value 
for 

Recharge 

Sobol’ value for 
Irrigation 

Pumping 

Sobol’ value 
for River 

Leakage 

Sobol’ value for 
Aquifer 

Seepage 
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1 P1a 0.19557 0.33438 0.07428 0.06795 0.04225 0.16258 
2 P5a 0.01417 0.19827 0.04099 0.04256 0.02245 0.02055 
3 G2a 0.04331 0.22789 0.00301 0.03448 0.03228 0.03906 
4 G3a 0.00445 0.18589 0.00468  0.06048 0.03058 0.02277 
5 PHINTa 0.01858 0.20483 0.01731 0.09080 0.03202 0.02261 
6 RUEa 0.06531 0.31828 0.04018 0.04923 0.03501 0.04075 
7 P2Ob 0.00624 0.21469 0.00589 0.03930 0.03061 0.01025 
8 P2Rb 0.01175 0.22895 0.02282 0.05348 0.03621 0.03605 
9 P5b 0.02570 0.22508 0.00978 0.07449 0.03523 0.02207 
10 G2b 0.05776 0.23874 0.04783 0.09432 0.10714 0.08644 
11 P1Dc 0.13903 0.29249 0.16550 0.16757 0.11354 0.12679 
12 G1c 0.14398 0.31210 0.10071 0.14546 0.18961 0.15944 
13 G2c 0.17098 0.35393 0.17455 0.15411 0.14667 0.15205 
14 CSDLd 0.14540 0.34475 0.04536 0.06718 0.27358 0.21894 
15 PPSENd 0.01546 0.21213 0.00396 0.05118 0.04487 0.03177 
16 EM-FLd 0.06457 0.24193 0.08136 0.08886 0.12172 0.12729 
17 LFMAXd 0.05378 0.22009 0.04187 0.14849 0.08603 0.06834 
18 K 0.01157 0.25759 0.00813 0.20400 0.05592 0.14741 
19 Sy 0.14408 0.27624 0.01246 0.24200 0.03809 0.05090 
20 Cond 0.02520 0.57992 0.01173 0.24500 0.98057 0.57723 
21 SLPF  0.17447 0.22519 0.03079 0.05200 0.03834 0.04010 
22 SLDR  0.38021 0.39229 0.42547 0.77019 0.05021 0.10043 
23 SLLL  0.55292 0.55542 0.40689 0.96535 0.05428 0.30001 
24 SDUL  0.65232 0.52115 0.62618 0.86728 0.11475 0.38296 
25 SRAD 0.09775 0.25840 0.13483 0.71359 0.13514 0.13494 
26 TMAX 0.38574 0.43237 0.17710 0.92156 0.30957 0.35008 
27 TMIN 0.09876 0.24876 0.18147 0.69244 0.14758 0.12203 
28 RAIN 0.29872 0.37421 0.16863 0.77064 0.18430 0.29862 
 SUM 3.99778 

 
8.47596 
 

3.06376 
 

7.87399 
 

3.48855 
 

3.85246 
 

a Maize genetic parameter; b Sorghum genetic parameter; c Wheat genetic parameter; d Soybean genetic parameter; e The value of 
Si for 4 parameters were slightly smaller than 0, due to numerical integration, and then the values were set to be 0. 

3.3.3 PARAMETERS QUANTITIVELY CONTRIBUTING TO UNCERTAINITY OF MODEL 

RESPONSE 

The contribution of each model parameter to model output (crop yield, hydrologic fluxes) 

is quantified further using frequency distribution plots and pie charts, shown in Fig. 3-7 (crop 

yield) and Fig. 3-8 (hydrologic fluxes). The left side of each subplot in Fig. 3-7 and Fig. 3-8 

shows the distribution of uncertainty of model responses. Compared with uncertainties of 

hydrological responses (Fig. 3-8), uncertainties of agronomic response (Fig. 3-7) generally have 

wider dispersions. For maize yield (Fig. 3-7A), over 55% of the uncertainty is due to climate-

related (44.2%) and soil-related (13.5%) parameters. Climate and soil parameters account for 

34%, 73%, and 50% of yield uncertainty for soybeans (Fig. 3-7B), wheat (Fig. 3-7C), and 

sorghum (Fig. 3-7D).  
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Hydrological responses have less uncertainty in terms of shape and range of distributions, 

with narrow and peaked distributions. Results are summarized in Fig. 3-8. Note that the scales of  

 

 

Fig.3-7 Percentage of parameters in terms of total-order indices contributing to uncertainty of agronomic responses (maize yield, 

soybean, wheat, and sorghum in Fig. 3-7A, Fig. 3-7B, Fig. 3-7C, and Fig. 3-7D, respectively)    
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hydrologic fluxes on the x axis of each chart in Fig. 3-8 vary in magnitude, to provide more 

accurate visualization. Recharge (Fig. 3-8C) and pumping (Fig. 3-8D) have much larger  

Fig.3-8 Percentage of parameters in terms of total-order indices contributing to uncertainty of hydrological 
responses (water table elevation, ET, recharge, irrigation pumping, river leakage, and aquifer discharge in Fig.8A, 

Fig.8B, Fig.8C, Fig.8D, Fig.8E, and Fig.8F, respectively) 
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magnitudes than ET (Fig. 3-8B), stream seepage (Fig. 3-8E), and groundwater discharge (Fig. 3-

8F). Soil-related parameters considerably affect water table elevation (44% of uncertainty) and 

recharge (53% of uncertainty), with relation to interaction between soil properties and the 

amount of water that passes from the soil profile to the water table (Fig. 3-8A, C). As shown in 

Fig. 3-8B, uncertainty of ET is caused by all parameters, with almost even uncertainty in input 

factors to ET. Over 80% of uncertainty in irrigation pumping can be attributed to soil-related, 

climate-related, and hydrogeological parameters (Fig. 3-8D) mainly due to the control of these 

parameters on rainfall and crop growth, which triggers irrigation events and associated pumping. 

Stream seepage to the aquifer (Fig. 3-8E) and groundwater discharge to streams (Fig. 3-8F) are 

controlled by riverbed conductance, climate parameters, and, to a lesser degree, crop genetic 

parameters.  

3.3.4 COMPARISON OF MODEL RESPONSES UNDER EXTREME CONDITIONS 

To quantitatively identify the influence of sensitive parameters on model responses, the 

most sensitive parameter for each model response is selected to implement a case study. Fig. 3-9 

shows comparisons of model responses under scenarios with minimum and maximum values of 

the corresponding most sensitive parameters. The most influential parameters for each model 

response are shown in Figs. 3-6 and 3-7. For example, TMAX is the most influential parameter 

for maize yield (Fig. 3-6A), CDSLd is the most influential parameter for soybean yield (Fig. 3-

6B), and SDUL is the most influential parameter for water table elevation (Fig. 3-7A). ET, with 

riverbed conductance as the most influential parameter (see Figure 3-6B), is increased only by 

3% (Fig. 3-9A), demonstrating that although parameters may have a relatively high sensitivity 

index for a given system response, the magnitude of response change can be quite minimal. 

Similar to groundwater ET, river leakage (lkg) and groundwater discharge (spg) are  
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Fig. 3-9 Comparison of responses of the hydro-agronomic system under scenarios with minimum and maximum 
values of the corresponding most sensitive parameters. Fig.9A shows the influence of the most sensitive parameter 
on each hydrological model response; Fig.9B shows the influence of the most sensitive parameter on each 
agronomic model response; Fig.9C shows the spatial influence of the most sensitive parameter on water table 
elevation. 

increased by 38% and 29% when applying the values of their respective influential parameters. 

However, the overall volume of water attributed to these two fluxes is very small compared to 

the change in recharge and groundwater pumping. For example, the volume of pumping is 18 

times than that of the volume of groundwater discharge. This is due to the small spatial area in 

which the Arkansas River is in connection with the aquifer, as compared to the area over which 

recharge and pumping occur. Regardless, the flux values shown in Figure 3-9A are important 

regarding the overall influence of system parameters on the hydrologic balance in the system. 

With comparison to original volumes of the baseline simulation (i.e., 16,313,840 m3 for ET, 

159,131,449 m3 for groundwater discharge, 72,440,221 m3 for river leakage, 877,641,153 m3 for 

recharge, and 2,651,042,093 m3 for groundwater pumping), the relative percentage change in 
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hydrologic fluxes are 4% to 7%, -8% to 20%, 60% to 120%, -31% to 111%, and 13% to 15% for 

ET, groundwater discharge, river leakage, recharge, and groundwater pumping, respectively, 

under scenarios with minimum and maximum values of the corresponding most sensitive 

parameters.  The large change in groundwater pumping volume is demonstrated by the change in 

water table elevation, shown in Figure 3-9C for each MODFLOW grid cell in the Finney County 

area. Some locations have a difference of up to 14 m, which is severe compared to observed 

decadal changes in the region. The largest changes in water table elevation occur in areas of 

maize (compared with crop type distribution in Fig. 3-1B). 

Similarly, Figure 3-9B shows the change in crop yield when the values of the respective 

influential parameters are implemented in the simulations. Maximum temperature is the most 

sensitive parameter for maize, sorghum, and wheat yield, but higher maximum temperature for 

maize and wheat has negatively impact on crop yields, indicating maximum temperature should 

be in a reasonable range (Kassie et al., 2016). The soybean yield is mostly driven by a cultivar 

genetic parameter of CSDL, and the difference between the two scenarios is 2670 kg/ha. For 

each crop, the yield values shown in Fig. 9B represent a change of 29%, 2,567%, 13%, and 20%, 

respectively, for maize, soybean, sorghum, and wheat. Compared to crop yields of the baseline 

simulation (i.e., 12,356 kg/ha for maize, 2,436 kg/ha for soybean, 11,244 kg/ha for sorghum, and 

10,561 kg/ha for wheat), the relative percentage change in crop yields is  

-71% to -62%, -96% to 10%, -79% to -76%, and -32% to -18% for maize, soybean, sorghum, 

and wheat, respectively, under scenarios with minimum and maximum values of the 

corresponding most sensitive parameters. 
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3.4 SUMMARY AND CONCLUSION 

Two sensitivity analyses (i.e., Morris screening method and Sobol’ variance-based 

method) were applied to a groundwater-irrigated hydro-agronomic system to assess the 

governing system factors on crop yield and groundwater storage. The DSSAT-MODFLOW 

linked modeling system was used as the simulator. A combination of Python scripts and SimLab 

pre- and post-processing were used to generate parameter values, update model files for DSSAT 

and MODFLOW, run the model simulations, and calculate sensitivity indices for both the Morris 

method and the Sobol’ method. Fifty-seven parameters were reduced to 24 parameters after the 

Morris screening method, and the sensitivity of 28 parameters (including 4 climate-related 

parameters) were analyzed on 10 model responses (i.e., maize yield, soybean yield, winter wheat 

yield, sorghum yield, water table elevation, ET, recharge, irrigation pumping, river leakage, and 

aquifer seepage) using Sobol’ variance-based sensitivity analysis.  

From the results we conclude that climate-related parameters significantly affect crop 

yields, especially for maize and sorghum, and soybean and winter wheat yields are sensitive to a 

combination of cultivar genetic parameters, soil-related parameters, and climate-related 

parameters. Climatic parameters account for 44%, 29%, 40%, and 36% variation in yield of 

maize, soybean, winter wheat, and sorghum. Hydrogeologic parameters (aquifer hydraulic 

conductivity, aquifer specific yield, and riverbed conductance) have a relatively low influence on 

crop yields. Hydrological responses show variations in influential parameters. Water table 

elevation, recharge, and irrigation pumping are considerably sensitive to soil- and climate-related 

parameters, while ET, river leakage, and aquifer seepage are highly influenced by 

hydrogeological parameter (e.g., riverbed conductance, and specific yield) (shown in Fig. 6). Soil 
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parameters accounted for 44%, 20%, 50%, and 34% variation in water table elevation, ET, 

recharge, and irrigation pumping. 

These results point to the general importance of soil water management and climatic 

patterns in groundwater-irrigated regions. They can be helpful from the perspective of 

understanding what might increase crop yield and conserve groundwater, and also what 

parameters should receive more attention in field sampling and monitoring. Although the study 

area is in a region with sparse rainfall and hence the need for ongoing pumping, climate plays an 

important role in crop yield, principally through maximum daily temperature and solar radiation. 

Therefore, future climate change will have an ever-increasing impact on crop production and 

associated groundwater conservation, even without accounting for future changing rainfall 

patterns. Climate cannot be controlled by local water managers and growers; however, they 

should be made aware of the implications of increasing temperatures on crop yields and 

hydrologic fluxes in these systems. For hydrologic fluxes, climate and soil parameters have 

approximately the same influence, pointing to the need for advanced irrigation systems that 

increase irrigation efficiency. Also, since the influence of maximum temperature on crop growth 

is exacerbated by water deficits (Hatfield and Prueger, 2015), a minimum level of soil water 

content should be maintained throughout the growing season. These general results are 

applicable to other regions within the High Plains Aquifer and similar groundwater-irrigated 

systems, and the methods presented herein can serve as a guide for identifying controlling factors 

in other hydro-agronomic systems. 
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CHAPTER 4 – QUANTIFYING THE IMPACT OF CLIMATE AND MANAGEMENT 
STRATEGIES ON GROUNDWATER CONSERVATION IN THE HIGH PLAINS AQUIFER3 
 
 
 

4.1 INTRODUCTION 

Groundwater is significant for domestic use, agricultural irrigation, industrial processes, 

etc. Groundwater provides 50% of all drinking water (Lall et al., 2020) for 35% of the world’s 

population (Grönwall & Danert, 2020). Of the groundwater used globally, 43% (Siebert et al., 

2010) is for crop irrigation and 33% is for industrial applications (Lall et al., 2020). In semi-arid 

and arid regions, agricultural irrigation is highly dependent on groundwater (Foster et al., 2014), 

which often leads to groundwater depletion in aquifer systems and associated impacts such as 

land subsidence, wetland degradation, lowering of well pumping capacity, increase in pumping 

costs, and reduction or cessation of groundwater discharge (i.e. baseflow) to streams (Konikow 

and Kendy, 2005; Motagh et al., 2008; Werner 2010; Varela-Ortega et al., 2011; Aeschbach-

Hertig and Gleeson, 2012; Zhang et al., 2014). In the past century, global groundwater storage 

lost approximately 3,400 km3 (Konikow, 2011), with depletion rates of 126 km3 yr-1 in 1960 to 

283 km3 yr-1 in 2000 (Wada et al., 2010), while more than 1,100 km3 was depleted merely in the 

first 8 years of the 21st century (Konikow, 2011), with an average deplete rate of 138 km3 yr-1. 

Regionally, groundwater depletions are 1000 km3 in the United States during the years of 1900 

to 2008 (Konikow, 2015), with depletion rates of 12.5 km3 yr-1 (27.6 mm yr-1) and 3.1 km3  yr-1 

(20.4 mm yr-1) for the High Plains and California’s Central Valley (Famiglietti, 2014); 170.3 km3 

in North China Plain throughout 1900 to 2008 (Feng et al., 2013), with an 8.3 km3 yr-1 (22 mm 

yr-1) depletion rate (Famiglietti, 2014); and 91.3 km3 in north-central Middle East from 2003 to 

 

3
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2009 (Voss et al., 2013), with a rate of 13 km3 yr-1 (17.3 mm yr-1) (Famiglietti, 2014). These 

depletions are caused principally by over-extraction for crop irrigation. Future changes in rainfall 

patterns and temperature may also exacerbate the issue of depletion in certain regions. Without 

management of groundwater resources, many aquifer systems may experience a complete 

depletion of groundwater in the coming decades (Haacker et al., 2016).  

To assist with groundwater management in irrigated regions, many modeling frameworks 

have been proposed and used to explore the impact of future climate conditions (McCallum et 

al., 2010; Holman et al., 2012; Masciopinto & Liso, 2016; Deng & Bailey, 2017; Cuthbert et al., 

2019) and the impact of potential management strategies (Manghi et al., 2012; Singh, 2013; 

Foster et al., 2014; Klaas et al., 2020). These frameworks use single application or combinations 

of hydrologic, hydrogeologic, agronomic, and economic modeling tools. Some studies use only 

hydrologic models such as MODFLOW ( Harbaugh, 2005) or the Soil and Water Assessment 

Tool (SWAT) (Arnold et al., 1998) to explore future groundwater resources under management 

scenarios (Jha et al., 2007; Carter & Parker, 2009; Candela et al., 2012; Kumar, 2012; Huang et 

al., 2013; Sekhar et al., 2013; Klove et al., 2014; Mishra et al., 2014; Gorelick and Zheng, 2015; 

Farhadi et al., 2016; Ni and Parajuli, 2018), whereas others use only agronomic models such as 

EPIC (Williams et al., 1989) or DSSAT ( Jones et al., 2003) to explore future crop yield under 

management scenarios ( Parry et al., 2004; Ewert et al., 2005; Wei et al., 2009; Audsley et al., 

2006; Deryng et al., 2011; Ventrella et al., 2012; Kadiyala et al., 2015; Kihara et al., 2015; 

Christian et al., 2016; Grundy et al., 2016).  

Several studies have used combinations of models such as MPM-WEAP (Varela-Ortega 

et al., 2011), MODFLOW-SWAP (Xu et al., 2012), MODFLOW-WEAP (Hadded et al., 2013), 

SWAT-MODFLOW (Bailey et al., 2016), AquaCrop-Economic model with SPIDERR (Foster et 
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al., 2017), or APSIM-Potato model with a simplistic lumped estimation of groundwater depletion 

(Tang et al., 2019). For example, Aliyari et al. (2021) used SWAT-MODFLOW to quantify the 

impact of climate change on groundwater storage and crop yield during the 21st century but did 

not include effects of management strategies. In general, studies have not yet assessed crop yield 

and groundwater storage conjunctively under scenarios of climate change and management 

practices in a physical based, spatially distributed manner. There is a need for a physically based 

modeling approach that can assist with identifying optimal conservation strategies (i.e., minimize 

groundwater depletion and maximize crop yield) for future climate patterns in groundwater-

depleted regions.  

The objective of this chapter is to quantify the impact of climate change and potential 

management strategies on hydro-agronomic state variables (groundwater storage, crop yield) in a 

semi-arid region that has experienced significant groundwater depletion in recent decades. The 

area of interest is southwest Kansas, a region of the High Plains Aquifer, USA, with the linked 

DSSAT-MODFLOW (Xiang et al., 2020) model applied to Finney County, Kansas (3,370 km2) 

to simulate the interactions between the agronomic (soil-plan system) and groundwater systems. 

Interactions include recharge from the soil profile to the water table, and groundwater pumping 

from the aquifer to the land surface as irrigation. Irrigation is limited based on available 

groundwater storage in localized sections of the aquifer. Once the best set of model parameters is 

identified, the DSSAT-MODFLOW model is run for the years 2021-2050 under scenarios of 

climate patterns, irrigation systems, and planting levels. The result of the modeling scenarios is 

the identification of management strategies that provide the lowest groundwater depletion and 

the highest crop yield under varying future climate trends (wet, dry). As the conditions of 
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southwest Kansas are similar to other regions worldwide in patterns of crop production and 

groundwater irrigation, results from this study can be applied elsewhere. 

4.2 MATERIALS AND METHODS 

This section discusses the DSSAT-MODFLOW linked model and its application to the 

study region in Finney County, in southwest Kansas, USA to quantify the impact of future 

downscaled climate scenarios and management strategies on groundwater storage and crop yield 

during the 2021-2050 period. Characteristics of the study region will be presented first, followed 

by a method to identify the best set of model parameters for a historical period, and then the use 

of the calibrated model for the future climate and management scenarios. 

4.2.1 STUDY REGION: FINNEY COUNTY, KANSAS, HIGH PLAINS AQUIFER 

The study region is Finney County (38.0625° N latitude and 100.8903° W longitude), 

with a total area of 3,370 km2 (1,302 mi2), in southwest Kansas, within the High Plains Aquifer 

(HPA), also referred to as the Ogallala Aquifer. The HPA (Fig. 4-1) is one of the largest 

freshwater aquifers in the world and resides in portions of eight states: South Dakota, Wyoming, 

Nebraska, Colorado, Kansas, Oklahoma, New Mexico, and Texas, with a total area of 450,000 

km2 (174,000 mi2). Approximately 88% of pumped groundwater from the HPA is used for 

irrigated croplands (41% of total land area) (Gollehon and Winston, 2013; Scanlon et al., 2012), 

accounting for 20% of irrigated croplands in the U.S. and 30% of total crop and animal 

production in the U.S. (Guru and Horne, 2001; Rosenberg et al., 1999), with an annual output 

value of over $35 billion (Basso et al., 2013). The agricultural area in the HPA contains 53% row 

crops, 33% small grains, and 14% pasture, etc. In addition, it provides 18% production of cattle 

and swine (USGS High Plain Aquifer WLMS: Physical/Cultural Setting, 2019). The composition 

of aquifer material and the bedrock unit are poorly sorted clay, silt, sand, gravel and siltstone, 
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shale, loosely to moderately cemented clay and silt, chalk, limestone, dolomite, conglomerate, 

claystone, gypsum, anhydrite, bedded salt, respectively. 

Fig. 4-1 Map of study region and related information. Fig. 4-1A shows map of study region of Finney County, southwest of 
Kansas, in the Ogallala Aquifer. The Finney County area is encompassed within the red contour line. The blue region enclosed 
with light brown line is the Ogallala Aquifer, and the states are divided with black lines; Fig.1B shows map of irrigation well and 
crop types (Finney County mainly contains five crops, including corn, winter wheat, soybeans, sorghum, and triticale). 
 

Excessive pumping in the HPA since the 1950s has led to extensive groundwater 

depletion. For example, the rate of groundwater depletion increased by about 10 km3 yr-1 on 

average throughout 2003 to 2013 compared with that during the 20th century (Famiglietti, 2014), 

and the quantity of groundwater storage decreased by approximately 400 km3 during 1900 – 

2008, which accounts for 40% of overall depletion in the U.S. However, the change of water 

table elevation varies spatially, with some areas (central Nebraska) experiencing an increase in 

groundwater storage due to higher precipitation rates and less dependence on groundwater for 

irrigation. In other areas, such as eastern Colorado, southwest Kansas, the panhandle of 

Oklahoma, and the panhandle of Texas, declines have been up to 78 m.  
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Finney County, in the southwest Kansas, is selected in this study to identify optimal 

management strategies under the effect of climate change, due to a high dependence on 

groundwater irrigation (over 95% pumped groundwater for crop irrigation) and an excessive 

drawdown of water table elevation (i.e., approximately 15 m (50 ft) decline in water head since 

1950). There are approximately 1,630 irrigation wells in the county, providing water for a total 

cropland of 105,218 ha (260,000 ac). The main crops grown in Finney County include corn 

(corn), winter wheat, soybeans, and sorghum.  

4.2.2 DSSAT-MODFLOW: DETAILS AND APPLICATION TO FINNEY COUNTY, KANSAS 

This study uses the coupled DSSAT-MODFLOW model of Xiang et al. (2020). This 

model simulates jointly agronomic processes and state variables (crop yield, soil hydrologic and 

nutrient dynamics) and hydrogeologic processes and state variables (groundwater storage, 

groundwater head, groundwater pumping, groundwater-surface water interactions), with deep 

percolation (i.e. recharge) and applied irrigation (i.e. groundwater pumping volumes) passed 

from DSSAT to MODFLOW, and resulting simulated groundwater storage from MODFLOW 

providing a constraint on allowed irrigation application during the following growing season for 

DSSAT. A separate DSSAT model is prepared for each cultivated field. 

DSSAT (Jones et al., 2003), Decision Support System for Agrotechnology Transfer, is an 

assembly of programming codes to simulate crop growth, development, and production in terms 

of dynamics among cycles of soil-plant-atmosphere for over 40 possible crop types in a one-

dimensional soil profile setting. It is often applied for policy decision-making, management 

strategies and yield prediction under different scales (i.e., on-farm or regional assessment). 

DSSAT needs input information to make simulations, including weather data, soil profile, crop 
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management, cultivar genetic parameters, etc., and it contains multiple modules of simulations 

(i.e., seasonal, spatial, sequential simulations) specified by users.  

MODFLOW (Harbaugh, 2005) is a 3D physically based groundwater flow model that 

simulates groundwater head, groundwater budget (e.g., groundwater storage, groundwater 

recharge and discharge, etc.), and groundwater flow rates using the finite difference method. 

MODFLOW requires aquifer properties (hydraulic conductivity, specific yield, and specific 

storage) be specified for each finite difference cell in the model domain. The simulation period is 

divided into stress period (i.e., a groundwater stress remains constant), and then into time steps. 

Fig. 4-2 The DSSAT-MODFLOW framework showing the linkage between DSSAT and MODFLOW simulation. 

The linkage framework of DSSAT-MODFLOW is described in Fig. 4-2. The major task 

for the linked DSSAT-MODFLOW is to make a connection between the agronomic and 

hydrological systems through exchanging information (i.e., depths of irrigation and drainage for 

the agronomic system and water table elevation, saturated thickness, and well capacity for the 

hydrogeologic system). The overall linkage procedure, which occurs on an annual basis, is 

summarized by the following steps:  
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1. Run ensemble of DSSAT simulations. Since DSSAT is a 1D model, a separate 

DSSAT model must be set up and run for each cultivated field in the model domain. The 

ensemble is prepared using the spatial module mode through a batch file with all input 

information assembling into the .GSX input file. The ensemble of simulations is run for 

an entire growing season. 

2. Convert DSSAT outputs to MODFLOW inputs. Daily depths of applied irrigation 

are converted to groundwater pumping volumes to be used in MODFLOW’s Well 

package, and daily soil drainage depths are converted to recharge volumes to be used in 

MODFLOW’s Recharge package. Python scripts are used to read DSSAT outputs and 

prepare MODFLOW input files.  

3. Run MODFLOW. MODFLOW is run for the growing season, simulated daily 

groundwater head and groundwater storage for each finite difference cell. The 

groundwater head at the final day of the simulation period will be used as initial 

conditions for the following year. 

4. Prepare DSSAT inputs using MODFLOW outputs. The final step in the linkage 

process prepares input variables for the ensemble of DSSAT simulations, to be run the 

following growing season. The DSSAT input variable IFREQ, which controls the 

irrigation frequency during the growing season, is constrained by the available 

groundwater storage in corresponding MODFLOW grid cells. 

DSSAT and MODFLOW models for Finney County were constructed and calibrated 

separately by Araya et al. (2017) and Liu et al. (2011), respectively. The domain of DSSAT 

simulations contains corn, winter wheat, sorghum, soybean, and triticale (regarded same as 

winter wheat in our study), with a total of 1,332 cultivated fields: 564 for corn, 484 for winter 
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wheat, 28 for soybean, 206 for sorghum, and 50 for triticale. For each field, DSSAT simulates 

crop yield and water budgets (i.e., irrigation and drainage depths). The MODFLOW model has a 

simulation period of 1944 to 2007. The domain area of the MODFLOW model is 161 km by 241 

km (100 miles by 150 miles, shown in grey area in Fig.1A), with each grid cell 1.61 km by 1.61 

km (1 mile by 1 mile). The stress period of the MODFLOW model is changed to daily stress 

period to be consistent with daily outputs of DSSAT simulation (Xiang et al., 2020).   

4.2.3 PARAMETER ESTIMATION FOR DSSAT-MODFLOW 

Xiang et al. (2020) introduced the DSSAT-MODFLOW modeling framework. However, 

they used model parameters from the separate modeling studies in southwest Kansas of DSSAT 

(Araya et al., 2017) and MODFLOW (Liu et al., 2011) which, while providing good results for 

groundwater head in comparison to observed head at monitoring wells, provided poor results for 

yield of sorghum, winter wheat, and soybean. Therefore, before applying the model to 

investigate effects of future climate and management strategies on system variables, we estimate 

the values of major parameters of the coupled DSSAT-MODFLOW model. The years 2000-2003 

are used as the calibration period, and the 2004-2007 years are used as the testing period.  

The parameter estimation process is based on a sensitivity analysis of model parameters 

using the Sobol’ method. This method was used by Xiang et al. (2022) in their study of hydro-

agronomic controls on groundwater storage and crop yield in Finney County, and results from 

these simulations are used here. From the ensemble of simulations, the parameter values that 

provide the best fit between the simulated and observed state variables are selected. Model 

results are tested against annual-based measurements of crop yield (i.e., corn, soybean, sorghum, 

and winter wheat), derived from the NASS official website (https://quickstats.nass.usda.gov/), 

and groundwater head measurements from USGS monitoring wells. A description of the 28 

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fquickstats.nass.usda.gov%2F&data=04%7C01%7CZaichen.Xiang%40colostate.edu%7C44d5b39a06fe4ed79c9708d975a15983%7Cafb58802ff7a4bb1ab21367ff2ecfc8b%7C0%7C0%7C637670158123363340%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=rwINgUT8zDp%2FKZ7jkuLcF4KbIN%2FuYMW1WYF2aea9DuQ%3D&reserved=0
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parameters included in model parameter estimation are listed in Tab. 4-1. The method uses 

14,848 simulations of DSSAT-MODFLOW for the 2000-2003 calibration period (Xiang. et al., 

2022). From the results of these simulations, the top 1% of simulations with the highest Kling-

Gupta Efficiency (KGE for hydrologic response) and Index of Agreement (d for agronomic 

response) based on fits between simulated and observed state variables (groundwater head, crop 

yield) are selected from which posterior distributions of model results are generated (Fig. 4-3). 

Due to a group of 28 parameters that can individually have effect on each of the 5 state variables 

(groundwater head, corn yield, soybean yield, winter wheat yield, sorghum yield), the best set of 

parameters for all state variables (the values in the 9th column summarized in Tab. 1) is estimated 

in terms of the best set of parameters for each of state variables (the mean value of each 

parameter’s cumulative distribution function (CDF)) through weights of percentage of total 

Sobol’ indices for each state variable.  

Tab. 4-1. Best sets of estimation of parameters for individual model responses and the overall model responses with definitions 
and units of parameters.  

Parameters Description Unit 

Estimated 

parameters 

for water 

table 

elevation1 

Estimated 

parameters 

for maize 

yield2 

Estimated 

parameters 

for sorghum 

yield2 

Estimated 

parameters 

for soybean 

yield2 

Estimated 

parameters 

for winter 

wheat yield2 

Estimated 

parameters 

for all 

model 

responses 

P1a 

Thermal time 
from seedling 
emergence to 
the end of the 
juvenile phase 
(expressed in 
degree days 
above a base 

temperature of 
8 deg. C) 

during which 
the plant is not 
responsive to 

changes in 
photoperiod 

degre
e-day 

264.3 ± 52.3 286.6 ± 55.2 
279.0 ± 

31.4 
292.2 ± 31.0 

204.6 ± 
43.3 

274.5 ± 
53.6 

P5a 

Thermal time 
from silking to 
physiological 

maturity 
(expressed in 
degree days 
above a base 

temperature of 
8 deg.C). 

degre
e-day 

888.3 ± 68.1 785.2 ± 72.3 
793.8 ± 

46.3 
818.3 ± 46.3 

784.7 ± 
41.6 

822.5 ± 
61.2 
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G2a 

Maximum 
possible 

number of 
kernels per 

plant. 

Kerne
l 

679.5 ± 
116.0 

721.1 ± 90.9 
792.2 ± 

89.8 
704.7 ± 75.1 

707.3 ± 
63.5 

734.8 ± 
96.1 

G3a 

Kernel filling 
rate during the 

linear grain 
filling stage 
and under 
optimum 

conditions. 

mg-
day-1 

10.36 ± 1.87 10.28 ± 1.58 
11.23 ± 

1.49 
10.97 ± 0.85 

10.17 ± 
1.20 

10.33 ± 
1.57 

PHINTa 

Phylochron 
interval; the 
interval in 

thermal time 
(degree days) 

between 
successive 

leaf tip 
appearances. 

degre
e-day 

64.12 ± 
10.25 

48.44 ± 5.89 
42.51 ± 

7.52 
48.55 ± 3.58 

47.00 ± 
5.46 

50.74 ± 
6.59 

RUEa 
Radiation use 

efficiency 
g-MJ-

1 
3.0± 0.5 4.0 ± 0.5 

3.2 ± 
0.3 

3.3 ± 0.2 3.3 ± 0.2 3.7 ± 0.5 

P2Ob 

Critical 
photoperiod or 

the longest 
day length (in 

hours) at 
which 

development 
occurs at a 
maximum 

rate. At values 
higher than 

P2O, the rate 
of 

development 
is reduced 

hour 14.98 ± 0.80 14.15 ± 0.54 
13.03 ± 

0.65 
13.23 ± 0.54 

13.42 ± 
0.43 

13.07 ± 
0.65 

P2Rb 

Extent to 
which phasic 
development 

leading to 
panicle 

initiation 
(expressed in 
degree days) 
is delayed for 

each hour 
increase in 

photoperiod 
above P2O 

degre
e-day 

220.3 ± 49.1 155.5 ± 47.3 
175.5 ± 

43.8 
100.2± 44.2 

141.2 ± 
22.9 

176.2 ± 
44.0 

P5b 

Thermal time 
from 

beginning of 
grain filling to 
physiological 

maturity 
(degree days 

above 
TBASE) 

degre
e-day 

614.5 ± 48.8 596.7 ± 53.3 
552.5 ± 

33.3 
549.4 ± 29.9 

531.5 ± 
25.5 

567.9 ± 
37.0 

G2b 

Scaler for 
partitioning of 
assimilates to 

the panicle 
(head). 

- 7.9 ± 1.0 5.9 ± 0.9 
7.4 ± 
0.7 

8.0 ± 0.7 7.0 ± 0.6 7.2 ± 0.8 

P1Dc 
Photoperiod 
response (% 
reduction in 

% 98 ± 33 123 ± 28 
129 ± 

15 
106 ± 11 134 ± 31 120 ± 24 
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rate/10 h drop 
in pp) 

G1c 

Kernel 
number per 
unit canopy 

weight at 
anthesis (#/g) 

NO./g
ram 

32 ± 7 21 ± 6 31 ± 6 47 ± 6 38 ± 4 34 ± 5 

G2c 

Standard 
kernel size 

under 
optimum 

conditions 
(mg) 

mg 59 ± 12 50 ± 9 60 ± 10 54 ± 7 56 ± 7 56 ± 9 

CSDLd 

Critical Short 
Day Length 
below which 
reproductive 
development 
progresses 

with no 
daylength 
effect (for 
short-day 

plants) (hour) 

hour 13.44 ± 0.89 12.40 ± 0.49 
13.25 ± 

0.59 
13.13 ± 0.54 

13.53 ± 
0.37 

13.13 ± 
0.56 

PPSENd 

Slope of the 
relative 

response of 
development 

to photoperiod 
with time 

(positive for 
shortday 
plants) 

hour-1 
0.255 ± 
0.049 

0.220 ± 0.046 
0.174 ± 
0.038 

0.239 ± 0.034 
0.201 ± 
0.029 

0.240 ± 
0.035 

EM-FLd 

Time between 
plant 

emergence 
and flower 
appearance 

(R1) 
(photothermal 

days) 

days 13.8 ± 3.7 21.6 ± 3.5 
21.04 ± 

3.55 
23.22 ± 2.87 

18.44 ± 
1.38 

20.90 ± 
2.94 

LFMAXd 

Maximum leaf 
photosynthesis 

rate at 30 C, 
350 vpm CO2, 
and high light 
(mg CO2/m2-

s) 

mg-
CO2/
m2-s 

1.117 ± 
0.060 

1.127 ± 0.029 
1.163 ± 
0.067 

1.127 ± 0.049 
1.078 ± 
0.031 

1.118 ± 
0.046 

K 
Hydraulic 

Conductivity 
-3 

1.011 ± 
0.047 

0.988 ± 0.021 
0.992 ± 
0.023 

0.981 ± 0.021 
1.003 ± 
0.025 

0.998 ± 
0.033 

Sy 
Specific Yield 

-3 
0.869 ± 
0.106 

0.974 ± 0.049 
1.033 ± 
0.078 

1.004 ± 0.056 
0.979 ± 
0.047 

0.889 ± 
0.097 

Cond 

Riverbed/strea
mbed 

hydraulic 
conductance 

-3 
0.999 ± 
0.118 

0.948 ± 0.063 
1.025 ± 
0.079 

0.988 ± 0.070 
1.000 ± 
0.045 

0.999 ± 
0.108 

SLPF 
Soil fertility 

factor/Photosy
nthesis factor 

- 0.9 ± 0.1 0.9 ± 0.0 
0.8 ± 
0.1 

0.8 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 

SLDR 
Drainage rate 

day-1 0.7 ± 0.2 0.5 ± 0.1 
0.5 ± 
0.1 

0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 

SLLL 
Drained lower 

limit 
cm3 
cm-3 

0.153 ± 
0.041 

0.162 ± 0.011 
0.111 ± 
0.023 

0.140 ± 0.030 
0.147 ± 
0.024 

0.143 ± 
0.029 

SDUL 
Drained upper 

limit 
cm3 
cm-3 

0.358 ± 
0.028 

0.341 ± 0.029 
0.338 ± 
0.023 

0.345 ± 0.029 
0.340 ± 
0.016 

0.347 ± 
0.025 

SRAD 
Solar radiation 

-3 
1.077 ± 
0.135 

1.037 ± 0.062 
1.040 ± 
0.079 

0.978 ± 0.053 
1.035 ± 
0.054 

1.033 ± 
0.067 

TMAX 
Temperature 
Maximum 

-3 
1.110 ± 
0.112 

0.951 ± 0.103 
1.003 ± 
0.085 

1.004 ± 0.053 
0.999 ± 
0.059 

1.000 ± 
0.083 
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TMIN 
Temperature 

Minimum 
-3 

0.884 ± 
0.086 

1.030 ± 0.133 
0.984 ± 
0.065 

1.037 ± 0.075 
0.965 ± 
0.044 

0.999 ± 
0.085 

RAIN 
Rainfall 

(including 
snow) 

-3 
1.019 ± 
0.079 

1.082 ± 0.065 
0.945 ± 
0.056 

0.987 ± 0.060 
0.969 ± 
0.048 

1.003 ± 
0.063 

1  Model KGE (Kling-Gupta Efficiency) Threshold for water table elevation is from 0.999852 to 0.999894. 

2  Model d (Index of Agreement) Thresholds for yields of maize, sorghum, soybean, and winter wheat are 0.82 to 0.96, 0.69 to 
0.88, 0.92 to 0.95, and 0.56 to 0.91, respectively. 

3 The sign of ‘-’ does not indicate those parameters are dimensionless, and multiplier factors are used for those parameters. The 
units are L/T, %, L2/T, MJ/m2-day, oC, oC, and mm/day for hydraulic conductivity, specific yield, riverbed conductance, solar 
radiation, temperature maximum, temperature minimum, and rainfall, respectively. 

Notation for genetic parameters: a for maize genetic parameter; b for sorghum genetic parameter; c for winter wheat genetic 
parameter; d for soybean genetic parameter. 

Fig. 4-3 Posterior distributions of PDFs and CDFs for 10 parameters, for the top 10% of the 14,848 simulations.  
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4.2.4 CLIMATE DATA FOR 2021 - 2050  

Statistically downscaled global circulation model (GCM) data from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (see Figure 4-S1&S2 in Appendices) is used for this 

study. Daily downscaled meteorological projection data is created at a 1/24-degree (~4km) 

resolution using the Multivariate Adapted Constructed Analogs (MACA) method (Abatzoglou 

and Brown, 2012; Abatzoglou, 2013). MACA uses bias correction and spatial patterns to achieve 

spatial and temporal downscaling, matching large-scale patterns (e.g., simulations of GCMs) to 

local, observed patterns. In this study we use available daily downscaled results (minimum and 

maximum temperature, precipitation, relative humidity, solar radiation) from 20 GCMs for 

Representative Concentration Pathways (RCP) 4.5 and 8.5. Due to the focus on identifying the 

most effective irrigation and crop management strategies under various possible future climates, 

we filter the 20 GCMs to three: one each that represents the wettest, driest, and average 

conditions. This is performed for both RCP 4.5 and RCP 8.5, resulting in 6 climate scenarios. 

The following three steps are used to identify these scenarios, which are used as input for the 

2020-2050 DSSAT-MODFLOW scenario simulations: 

1. GCMs are ranked according to average annual precipitation; 

2. Based on the ranking from 1., climate scenarios are divided into four quartiles; 

3. The temporal trend of annual precipitation during 2021-2050 is assessed using the 

Theil-Sen slope, i.e., the median value of all slopes between all pairs of points in the time 

series. It is due to its robustness to outliers. The most positive slope represents the wet 

climate trend in the first quartile, the most negative slope represents the dry climate trend 

in the fourth quartile, and the slope closest to 0 represents the average trends from the 

second and third quartiles.  
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Once the 6 climate scenarios are selected, the downscaled daily precipitation and 

temperature values are written into the DSSAT input files. 

4.2.5 ASSESSMENT OF MANAGEMENT STRATEGIES UNDER A CHANGING CLIMATE 

Effective irrigation and crop management strategies that limit groundwater use but 

maintain crop yield are now assessed for the various climate scenarios identified using the 

method described in Section 4.2.4. The following strategies are assessed:  

• Irrigation type: surface irrigation (SI) with an irrigation efficiency of 60%; drip 

irrigation (DI) with an efficiency of 90%; sprinkler irrigation (SPI) with an efficiency of 

80%; and center pivot (CP) irrigation with an efficiency of 85%. 

• Planting levels: full field (level 1), half field (level 2), and quarter field (level 3). 

  Each of the 4 irrigation types and 3 planting levels are evaluated for each of the 6 future 

climate patterns, resulting in 72 scenarios. The MODFLOW model is extended to the year 2050, 

with all hydrogeologic parameters (aquifer hydraulic conductivity, aquifer specific storage, 

aquifer specific yield, riverbed conductance) held constant.  

Results of each of the 72 scenarios are compared according to annual average total crop 

yield (kg) and average annual groundwater drawdown (m) (i.e., the difference between the initial 

and final groundwater head values during the year) in the study region. For scenarios that meet a 

threshold of crop production (based on historical annual average of yield and cultivated areas for 

each crop type), the ratio of crop yield (kg) to drawdown (m), termed water use efficiency WUE 

(kg/m), is used to identify the most effective management strategies, with strategies being ranked 

highest for the highest value of We. Another term (i.e., Water Use Profit (WUP, U.S. dollar per 

m)) is introduced to identify the management strategies that provide the highest gross revenue of 

crop yield per unit of groundwater depletion.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 PARAMETER ESTIMATION AND MODEL TESTING  

The PDFs and CDFs of the 28 targeted model parameters are shown in Figs. 4-S3, S4, S5, 

S6, S7 in Appendices. Graphical representation of only 4 parameters (i.e., P1a, P5a, G2a, and 

G3a) are shown here (Fig. 4-3) for water table elevation (i.e., one of the system responses), with 

distribution trendlines of parameters. The shape of each PDF indicates the degree of parameter 

uncertainty, for example the flat posterior distributions indicate greater uncertainty of parameters 

in comparison with those with peaked and shaped distributions. In addition, the shape of each 

CDF demonstrates the type of distribution. For instance, the linear shape of a CDF indicates the 

uniform distributions of probabilities of parameters. The best values of parameters are derived at 

the means of CDFs (i.e., when the value of a CDF is equal to 0.5), which are values along the x 

axis that intersects the CDF trendlines (see Fig. 4-3). The best values for each of the 28 

parameters are summarized in Tab. 4-1, with standard deviations.    

Fig. 4-4 shows the comparison between simulated and observed water table elevation 

(i.e., groundwater head) during the 2004-2007 period (Fig. 4-4A), and time-series plots of 

simulated water table elevation and observed measurements for two monitoring wells (Fig. 4-4B, 

C). The coefficient of Root Mean Square Deviation (RMSE), scaled RMSE, and Nash-Sutcliffe 

Efficiency Coefficient (NSCE) are 7.22 m, 0.07, and 0.83, respectively, for simulated and 

observed water table elevation for the calibrated DSSAT-MODFLOW model, compared to 12.1 

m, 0.11, and 0.59, respectively, for the original model presented in Xiang et al. (2020), a 

reduction of 40% in RMSE and an increase of 41% in the NSCE.  

Fig. 4-5 shows simulated crop yields for corn, soybean, winter wheat, and sorghum for 

2004, 2005, 2006, and 2007. The model performs well for most crops and most years. For  
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Fig. 4-4 Model validation. Fig.4A shows the comparison between observed water table elevation and simulated water table 
elevation. Fig.4B & C represent time series plots for simulated water table elevation, in comparison with measured values, in the 
locations of grid cell with row 17 and column 70 (Fig.4B) and gride cell with row 20 column 80 (Fig.4C).  

example, reported crop yields are 13,983 kg/ha, 4,864 kg/ha, 3,195 kg/ha, and 3,121 kg/ha for 

corn, sorghum, winter wheat, and soybean, respectively, in 2007. Simulated crop yields for the 

same year using the initial parameter set of DSSAT-MODFLOW (Xiang et al., 2020) are 13,540 

kg/ha for corn (3% difference with reported), 10,863 kg/ha for sorghum (123% difference), 

10,830 kg/ha for winter wheat (239% difference), and 4,084 kg/ha for soybean (31% difference). 

Simulated crop yields using the calibrated parameter values in this study are 13,613 kg/ha for 

corn (3% difference), 5,316 kg/ha for sorghum (9% difference), 3,464 kg/ha for winter wheat 

(8% difference), and 2,881 kg/ha for soybean (8% difference). Results are similar for years 2004, 

2005, and 2006, with the main deviations in simulated values from reported values occurring for 

corn (Fig. 4-5A), soybean (Fig. 4-5B), winter wheat (Fig. 4-5C), and sorghum (Fig. 4-5D). 
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Fig. 4-5 Comparison of simulated crop yields and measured crop yields during 2004 to 2007. Fig.5A, 5B, 5C, and 
5D show the simulated yields of corn, soybean, winter wheat, and sorghum, respectively, compared to measured 
crop yields in 2004, 2005, 2006, and 2007. 

With these results for both groundwater head and crop yield, we conclude that the model 

can be used to estimate the impact of climate scenarios and irrigation strategies on groundwater 

storage, water table elevation, groundwater drawdown, and crop yield during the years 2020-

2050. 

4.3.2 MODEL RESPONSE DRIVEN BY CLIMATE PATTERNS 

The impact of climate without management strategies is presented first to provide context 

for the management strategy results shown in Section 4.3.3. Fig. 4-6 shows annual average water 

table elevation and crop yield (corn, soybean, winter wheat, sorghum) for the 2021-2050 period, 

for each of the 40 climate scenarios. From these results we conclude that climate has a  
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Fig. 4-6 Model responses (i.e., water table elevation in Fig. 4-6A, yields of corn in Fig. 4-6B, soybean in Fig. 4-6C, 
winter wheat in Fig. 4-6D, and sorghum in Fig. 4-6E) driven by long-term downscaled climate patterns. 

significant effect on groundwater storage and crop yield in the study region. The water table 

elevation (Fig. 4-6A) decreases 8 m over 30 years (0.3 m/yr) under the best (wettest) scenario of 

climate patterns but decreases 32 m (1.1 m/yr) under the worst (driest) scenario. As seen in Fig. 

4-6A, which shows the elevation of the bedrock (dashed black line; 800 m), by 2050 the water 

table elevation in the driest climate condition is within a few meters of the bedrock, indicating 

near depletion of all groundwater in the region. However, for most climate scenarios (gray lines), 

groundwater storage does not decline nearly as much, but still 20% to 50% of the original 

saturated thickness. In addition, crop yields are greatly influenced by future climate patterns. The 

average difference in corn yield over 30 years with the best and worst climate conditions is 8,779 

kg/ha; similarly, the average differences in yields of soybean, winter wheat, and sorghum are 

2,953 kg/ha, 10,323 kg/ha, and 8,902kg/ha, respectively.  
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4.3.3 IDENTIFYING EFFECTIVE MANAGEMENT STRATEGIES 

The relationships between annual crop yield (kg/yr), annual gross revenue (dollars/yr), 

and annual average groundwater drawdown (m) are shown for the 24 management scenarios 

under wet climate conditions (Fig. 4-7), average climate conditions (Fig. 4-8), and dry climate 

conditions (Fig. 4-9), for Finney County. Annual gross revenue is based on data from 

https://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/.  Results are shown for 

maize, soybean, winter wheat, and sorghum. Each point in the plots represents a different 

climate-management combination. The color represents the management practices, whereas the 

symbol (dot, cross) represents the RCP level (4.5 vs. 8.5). Each figure plot shows a black dashed 

line that indicates the minimum allowed total crop yield, based on historical production. 

Therefore, each scenario that plots above this line represents a combination of climate and 

management that maintains adequate crop yield into future decades.  

Based on results shown in Fig. 4-7, management scenarios under the RCP8.5 wet period 

for maize are rejected, while management scenarios under the RCP4.5 wet period for maize are 

accepted for the applications of WUE and WUP, with most gross revenue of 9.834 x 107 U.S. 

Dollars under the combination of drip irrigation system and quarter plant level (Fig. 4-7A). This 

indicates that if future climate conditions are wet but conform to the assumptions of the RCP8.5 

carbon emission scenario, then likely no viable management practice will be able to maintain 

adequate maize yield. The situation is not so dire for the other three crop types (Fig. 4-7B, C, D), 

with management scenarios in both the RCP4.5 and RCP8.5 conditions providing many 

acceptable crop yields, although soybean has the fewest (Fig. 4-7B), with only four scenarios 

under RCP8.5 wet condition recognized as acceptable. For each crop type, the crop yield for the 

RCP8.5 conditions are always lower than for the RCP4.5 conditions. For winter wheat and  

https://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/
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Fig. 4-7 Screening of the alternatives of BMPs under the wet climate condition (for both RCP4.5 and RCP8.5). Fig.7A, B, C, and 
D show annual average total crop yields vs. annual average drawdown for corn, soybean, winter wheat, and sorghum, 
respectively, during 2021 – 2050 in Finney County. Irrigation systems include center pivot irrigation (cp), drip irrigation (di), 

surface irrigation (si) and sprinkler irrigation (spi). Plant levels include full field (full), half field (half), and quarter field (qur).  

sorghum, only four management scenarios under RCP8.5 wet condition are rejected; the 

eliminated management scenarios are involved in plant level 1 (full field planting), which use the 

most groundwater. If groundwater conservation is a constraint, and an annual drawdown of less 

than acceptable drawdown (i.e., the average of 24 management practice-based annual average 

drawdowns for crops in 3 climate conditions) is desired (see vertical red dashed line in Fig. 4-7), 

then only a few scenarios will yield adequate crop yield. See upper-left region in each plot in 

Fig. 4-7. The average gross revenue for maize, soybean, winter wheat, and sorghum that meet 

both acceptable drawdown and crop yield are 9.67x107 U.S. Dollars-yr-1, 3.13x106 U.S. Dollars-

yr-1, 0.76 x108 U.S. Dollars-yr-1, and 2.02 x107 U.S. Dollars-yr-1, respectively.   

  



105 

 

Tab. 4-2. Water Use Efficiency (WUE) (x109 kg of crop yield per m of groundwater drawdown) for maize, soybean, winter 
wheat, and sorghum under future wet climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 
both. 

The WUE and WUP for each of the scenarios shown in Fig. 4-7 is summarized in Tab. 2 

and Tab. 4-S1 (in the Appendices), respectively. Higher values indicate more crop yield and 

gross revenue per groundwater used, which correspond to symbols in the upper-left regions of 

Fig. 4-7 plots. WUE and WUP values for scenarios that provide crop yield above the minimum 

threshold are colored in light blue, while values that limit drawdown to less than acceptable 

drawdown are colored in light red. Scenarios that meet both crop yield and groundwater 

constraints are colored in light purple. As expected, higher WUE values correspond to scenarios 

with higher irrigation efficiency and smaller plant level. For example, for corn under the wet 

climate condition with RCP4.5, drip irrigation for quarter plots (#12) has a WUE of 1.3764 x 

109kg/m, with an increase of 2 times compared to drip irrigation for full plots (#10), which has as 

WUE of 0.434 x 109kg/m. Similar results occur for the other three crop types, and for the other 

irrigation types (surface, sprinkler, center pivot). The drip-quarter plot scenario (#12) is 

Crop Type 
and Climate 
Conditions 

Water Use Efficiency for 12 combinations of management scenarios (x109 kg/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_wet_RCP4.
5 

0.41
72 

0.72
27 

1.03
97 

0.40
44 

0.72
29 

1.27
5 

0.42
13 

0.75
12 

1.32
91 

0.43
4 

0.77
49 

1.37
64 

Corn_wet_RCP8.
5 

0.17
36 

0.32
76 

0.61
83 

0.21
3 

0.39
75 

0.76
12 

0.22
5 

0.41
63 

0.80
26 

0.23
47 

0.43
84 

0.85
26 

Soybean_wet_R
CP4.5 

0.00
86 

0.01
44 

0.01
96 

0.00
82 

0.01
39 

0.02
34 

0.00
85 

0.01
44 

0.02
42 

0.00
87 

0.01
48 

0.02
49 

Soybean_wet_R
CP8.5 

0.00
55 

0.01
01 

0.01
84 

0.00
66 

0.01
22 

0.02
27 

0.00
68 

0.01
27 

0.02
37 

0.00
71 

0.01
33 

0.02
5 

Winter 
Wheat_wet_RCP

4.5 

0.13
99 

0.42
29 

0.58
3 

0.16
55 

0.42
85 

0.65
82 

0.18
63 

0.44
43 

0.67
37 

0.19
97 

0.46
81 

0.68
78 

Winter 
Wheat_wet_RCP

8.5 

0.02
5 

0.18
1 

0.40
89 

0.06
56 

0.26
63 

0.49
49 

0.07
56 

0.28
23 

0.52
42 

0.09
17 

0.29
72 

0.54
34 

Sorghum_wet_R
CP4.5 

0.05
68 

0.13
35 

0.26
97 

0.05
8 

0.14
67 

0.35
75 

0.06
17 

0.15
7 

0.37
92 

0.06
86 

0.16
45 

0.40
39 

Sorghum_wet_R
CP8.5 

0.01
82 

0.08
49 

0.25
32 

0.03
37 

0.12
31 

0.32
98 

0.03
87 

0.13
04 

0.35
83 

0.04
41 

0.13
8 

0.39
19 
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represented by the pink dot in Fig. 4-7A, which is the farthest left on the plot. Only several 

scenarios (light purple color) meet both criteria. These are: #2, #3, #5, #6, #8, #9, #11, #12 for 

maize under the wet climate condition. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-8 Screening of the alternatives of BMPs under the average climate condition (for both RCP4.5 and RCP8.5). Fig.8A, B, C, 
and D show annual average total crop yields vs. annual average drawdown for corn, soybean, winter wheat, and sorghum, 
respectively, during 2021 – 2050 in Finney County. Irrigation systems include center pivot irrigation (cp), drip irrigation (di), 
surface irrigation (si) and sprinkler irrigation (spi). Plant levels include full field (full), half field (half), and quarter field (qur). 

Similar patterns occur for average (Fig. 4-8) and dry (Fig. 4-9) climate conditions. None 

of the management strategies under the dry RCP8.5 climate scenario will provide adequate crop 

yield (Fig. 4-9A); similarly, only a few management strategies under average RCP8.5 climate 

condition are conducive to maize growth (Fig. 4-8A), but there are multiple strategies under the 

RCP8.5 scenario that will be sufficient for soybean (Figs. 4-8 & 9B), winter wheat (Figs. 4-8 & 

9C), and sorghum (Figs. 4-8 & 9D). For soybean under an average climate, 5 and 7 management 

scenarios under the average climate conditions of RCP8.5 and RCP4.5, respectively, provide  
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Fig. 4-9 Screening of the alternatives of BMPs under the dry climate condition (for both RCP4.5 and RCP8.5). 
Fig.9A, B, C, and D show annual average total crop yields vs. annual average drawdown for corn, soybean, winter 

wheat, and sorghum, respectively, during 2021 – 2050 in Finney County. Irrigation systems include center pivot 
irrigation (cp), drip irrigation (di), surface irrigation (si) and sprinkler irrigation (spi). Plant levels include full field 

(full), half field (half), and quarter field (qur). 

adequate crop yield, with an average gross revenue of 2.99x106 U.S. Dollars-yr-1. For winter 

wheat and sorghum under average climate conditions, only several management scenarios 

provide inadequate crop yield, with average gross revenues of 0.64 x108 U.S. Dollars-yr-1 and 

2.15 x107 U.S. Dollars-yr-1for winter wheat and sorghum, respectively, for providing adequate 

crop yield. The same trend occurs for the dry conditions (Fig. 4-9), although there are several 

more scenarios under the dry condition that do not provide adequate yield of winter wheat (Fig. 

4-9C) and sorghum (Fig. 4-9D), with dry conditions overall providing lower crop yield. If 

groundwater conservation is considered, and an annual drawdown of acceptable drawdown is 

defined as the maximum allowed amount, then only 7, 12, 14, and 12 scenarios are adequate for 
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yield of maize (Fig. 4-8A), soybean (Fig. 4-8B), winter wheat (Fig. 4-8C), and sorghum (Fig. 4-

8D), respectively, under the average climate conditions.. Similar results occur for dry conditions 

(Fig. 4-9). 

Tab. 4-3. Water Use Efficiency (WUE) (x109 kg of crop yield per m of groundwater drawdown) for maize, soybean, winter 
wheat, and sorghum under future average climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 

both. 

The results for the average and dry conditions are summarized in Tab. 3 and Tab. 4-S2 

(see in the Appendices), and Tab. 4 and Tab. 4-S3 (see in the Appendices), respectively. Similar 

to the wet conditions, much higher WUE and WUP values occur for higher irrigation efficiency 

practices and less land irrigated. For average conditions, 57 scenarios satisfy the crop yield 

requirement, 56 scenarios satisfy the groundwater drawdown requirement, and only 45 scenarios 

satisfy both conditions. These scenarios are: #3, #5, #6, #8, #9, #11, #12 under RCP8.5 for 

maize; #3. #5, #6, #8, #9, #11, #12 under RCP4.5 and #3, #6, #9, #11, #12 under RCP8.5 for 

soybean; #3, #5, #6, #8, #9, #11, #12 under RCP4.5 and #3, #5, #6, #8, #9, #11, #12 under 

Crop Type 
and Climate 
Conditions 

Water Use Efficiency for 12 combinations of management scenarios (x109 kg/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_avg_RCP4.
5 

0.19
21 

0.37
91 

0.83
2 

0.25
72 

0.45
82 

1.03
7 

0.26
84 

0.58
46 

0.85
45 

0.27
86 

0.49
76 

0.88
66 

Corn_avg_RCP8.
5 

0.22
97 

0.42
39 

0.74
98 

0.28
48 

0.51
1 

0.92
14 

0.30
51 

0.53 
0.96
49 

0.30
94 

0.56
26 

0.91
79 

Soybean_avg_R
CP4.5 

0.00
57 

0.01 
0.02
19 

0.00
68 

0.01
2 

0.02
69 

0.00
7 

0.01
54 

0.02
16 

0.00
73 

0.01
28 

0.02
22 

Soybean_avg_R
CP8.5 

0.00
52 

0.00
94 

0.01
63 

0.00
63 

0.01
1 

0.01
98 

0.00
67 

0.01
15 

0.02
06 

0.00
68 

0.01
22 

0.01
94 

Winter 
Wheat_avg_RCP

4.5 

0.03
66 

0.19
61 

0.48
29 

0.08
05 

0.28
32 

0.54
56 

0.09
57 

0.39
59 

0.53
74 

0.11
12 

0.31
38 

0.56
19 

Winter 
Wheat_avg_RCP

8.5 

0.07
99 

0.24
91 

0.52
54 

0.12
82 

0.32
47 

0.59
39 

0.13
82 

0.37
51 

0.59
77 

0.14
95 

0.37
98 

0.61 

Sorghum_avg_R
CP4.5 

0.01
57 

0.05
28 

0.27
99 

0.02
56 

0.08
04 

0.28
69 

0.02
8 

0.09
84 

0.28
94 

0.03
16 

0.09
09 

0.30
96 

Sorghum_avg_R
CP8.5 

0.03
31 

0.12
57 

0.26
33 

0.06
79 

0.15
97 

0.33
77 

0.07
77 

0.17
13 

0.35
96 

0.08
16 

0.18
33 

0.34
2 
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RCP8.5 for winter wheat; #3, #6, #9, #11, #12 under RCP4.5 and #3, #5, #6, #8, #9, #11, #12 

under RCP8.5 for sorghum. For dry conditions, 58 scenarios satisfy the crop yield requirement, 

53 scenarios satisfy the groundwater drawdown requirement, and only 43 scenarios satisfy both 

conditions. These scenarios are: #3, #5, #6, #8, #9, #11, #12 under RCP4.5 for maize; #3, #5, #6, 

#8, #9, #11, #12 under both RCP4.5 and RCP8.5 for soybean; #3, #5, #6, #8, #9, #11, #12 under 

RCP4.5 and #3, #6, #9, #12 under RCP8.5 for winter wheat; #3, #6, #9, #12 under RCP4.5 and 

#3, #5, #6, #8, #9, #11, #12 under RCP8.5 for sorghum. 

Tab. 4-4. Water Use Efficiency (WUE) (x109 kg of crop yield per m of groundwater drawdown) for maize, soybean, winter 
wheat, and sorghum under future dry climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 

both. 

4.3.4 FIELD-BASED ANALYSIS OF EFFECTIVE MANAGEMENT STRATEGIES 

Fig. 4-10, 11, &12 show field-scale results of average maize yield (kg/ha) and average 

annual drawdown (m) during 2021 - 2050 in different locations within the Finney County (maize 

is selected for case study). 4 spots/fields are selected for this study, including the field of NO.199 

Crop Type 
And Climate 
Conditions 

Water Use Efficiency for 12 combinations of management scenarios (x109 kg/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_dry_RCP4.
5 

0.25
57 

0.46
71 

0.79
98 

0.31
59 

0.55
69 

0.97
5 

0.32
93 

0.67
64 

1.01
47 

0.34
11 

0.59
97 

1.05
22 

Corn_dry_RCP8.
5 

0.19
48 

0.34
22 

0.53
91 

0.24
92 

0.37
84 

0.66
03 

0.26
67 

0.39
29 

0.68
85 

0.27
63 

0.37
98 

0.71
73 

Soybean_dry_R
CP4.5 

0.00
56 

0.00
95 

0.01
6 

0.00
66 

0.01
13 

0.01
92 

0.00
68 

0.01
38 

0.01
99 

0.00
7 

0.01
21 

0.02
06 

Soybean_dry_R
CP8.5 

0.00
64 

0.00
91 

0.01
51 

0.00
75 

0.01
08 

0.01
84 

0.00
77 

0.01
11 

0.01
9 

0.00
8 

0.01
14 

0.01
97 

Winter 
Wheat_dry_RCP

4.5 

0.02
65 

0.19
72 

0.44
7 

0.07
35 

0.27
95 

0.53
6 

0.09
61 

0.37
9 

0.55
05 

0.11
08 

0.30
98 

0.56
87 

Winter 
Wheat_dry_RCP

8.5 

0.00
17 

0.10
66 

0.32
2 

0.03
72 

0.18
51 

0.40
05 

0.05
01 

0.20
52 

0.41
25 

0.05
98 

0.22
23 

0.42
57 

Sorghum_dry_R
CP4.5 

0.01
37 

0.04
04 

0.12
07 

0.02
07 

0.05
69 

0.17
69 

0.02
26 

0.07
56 

0.19
23 

0.02
48 

0.06
92 

0.21
54 

Sorghum_dry_R
CP8.5 

0.02
93 

0.08
43 

0.11
6 

0.04
67 

0.11
81 

0.17
12 

0.05
18 

0.12
4 

0.19
31 

0.06
02 

0.12
43 

0.22
34 
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(top-middle related to results shown in Fig. 4-10A, 11A, &12A) with low saturated thickness and 

no surface-water interaction, the field of NO. 766 (bottom-middle related to results shown in 

Fig.4-10B, 11B, &12B) with high saturated thickness and no surface-water interaction, the field 

of NO.2142 (middle-left related to results shown in Fig. 4-10C, 11C, &12C) with high saturated 

thickness and surface-water interaction, and the field of NO. 4663 (middle-right related to results 

shown in Fig. 4-10D, 11D, &12D with low saturated thickness and surface-water interaction, to 

identify effective management strategies spatially. 

 

 

 

 

 

 

 

 

 

Fig. 4-10 Field-based analysis of the relationship between maize yield (kg/ha) and average annual drawdown (m) in 
different locations (Fig.10A, B, C, D in the field of NO.199, NO. 766, NO. 2142, NO. 4663 shown in the central 

map) with 24 BMPs under the wet climate condition (for both RCP4.5 and RCP8.5) during 2021 – 2050 in Finney 
County. Irrigation systems include center pivot irrigation (cp), drip irrigation (di), surface irrigation (si) and 
sprinkler irrigation (spi). Plant levels include full field (full), half field (half), and quarter field (qur). 

Based on plots in Fig. 4-10, 11, &12, the management strategies do not significantly 

affect maize yield (see values of maize yield around a horizontal line under different climate 

conditions with RCP4.5 and RCP.8.5); however, they considerably have influence on 

groundwater depletion, which indicates the reasonable application of management strategies is 

conducive to local groundwater conservation. The yield of maize is mainly controlled by climate  
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Fig. 4-11 Field-based analysis of the relationship between maize yield (kg/ha) and average annual drawdown (m) in 
different locations (Fig.10A, B, C, D in the field of NO.199, NO. 766, NO. 2142, NO. 4663 shown in the central 

map) with 24 BMPs under the average climate condition (for both RCP4.5 and RCP8.5) during 2021 – 2050 in 
Finney County. Irrigation systems include center pivot irrigation (cp), drip irrigation (di), surface irrigation (si) and 

sprinkler irrigation (spi). Plant levels include full field (full), half field (half), and quarter field (qur). 

conditions (i.e., wet, average, dry) RCP emission conditions. Groundwater drawdown is greatly 

affected by management strategies applied in the field with low saturated thickness under 3 

climate conditions (see changes in drawdown by management strategies in Fig. 4-10A, 11A, 

12A), while it is less impacted by management strategies in the field with high saturated 

thickness (Fig.4-10B, 11B, 12B); in other words, the field in the areas with low groundwater 

availability requires more management strategies to conserve groundwater. Management 

strategies do not extremely influence groundwater depletion with areas of low saturated 

thickness when areas have interactions with surface-water (Fig. 4-10D); however, these areas 

could have less drawdowns due to recharge of surface-water into groundwater. The field 

interacting with groundwater, but with high saturated thickness, has a wide range of changes in 
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groundwater drawdown by management strategies; however, more groundwater depletion occurs 

to the field, with comparison with the field with both surface-water interaction and low saturated 

thickness, due to discharge from groundwater to surface-water in terms of high saturated 

thickness (Fig. 4-10C).  
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Fig. 4-12 Field-based analysis of the relationship between maize yield (kg/ha) and average annual drawdown (m) in 

different locations (Fig.10A, B, C, D in the field of NO.199, NO. 766, NO. 2142, NO. 4663 shown in the central 
map) with 24 BMPs under the dry climate condition (for both RCP4.5 and RCP8.5) during 2021 – 2050 in Finney 

County. Irrigation systems include center pivot irrigation (cp), drip irrigation (di), surface irrigation (si) and 
sprinkler irrigation (spi). Plant levels include full field (full), half field (half), and quarter field (qur). 

4.3.5 EFFECT OF BEST MANAGEMENT STRATEGIES THROUGH TIME 

The management strategies identified in Section 4.3.3 as providing the highest crop yield 

for the lowest groundwater drawdown (i.e., best strategies) are now shown in terms of annual 

water table elevation and crop yield. The strategies providing the lowest crop yield for the high 

groundwater drawdown (i.e., worst strategies) are shown alongside for comparison. The four 

scenarios therefore are 1) best strategy during dry conditions (BSD), 2) worst strategy during dry 
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conditions (WSD), 3) best strategy during wet conditions (BSW), and 4) worst strategy during 

wet conditions (WSW). Results of water table elevation are averaged according to the crop type 

associated with the groundwater, e.g., all MODFLOW grid cells that underly corn-cultivated 

fields are grouped together for averaging water table elevation.  

 

 

 

 

 

 

 

 

 

 

Fig. 4-13 Comparison of model responses under BMPs in the temporal mode. Fig.13A, B, C, and D represent corn-
related, soybean-related, winter wheat-relate, and sorghum-related responses, respectively, under BMPs during years 
of 2021 to 2050. 

Fig. 4-13 shows changes of water table elevation and crop yield over 30 years (i.e., years 

of 2021 to 2050) under the 4 management scenarios of BSD, WSD, BSW, and WSW. For corn 

(shown in Fig. 4-13A), management strategies can be conducive to corn production and 

groundwater conservation under both dry and wet climate conditions. For example, the best 

strategy can produce 449 kg/ha yield more on average under the dry condition than the corn yield 

produced by the worst strategy, and the best strategy causes an extra yield of 319 kg/ha for corn 

compared to corn yield with the worst strategy under the wet condition. In addition, the best 

management strategy saves 11.8 m (38.7 ft) in depth of groundwater on average over 30 years in 
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comparison with the water table elevation applied by the worst management strategy under the 

dry climate condition, with a maximum difference of 21.9 m (71.9 ft) in depletion in 2050, while 

the water table elevation has an extra depletion of 9.3 m (30.5 ft) caused by the worst 

management strategy compared to it with the best management strategy under the wet climate 

condition, with a maximum difference of 18.9 m (62 ft) in depletion in 2050. Climate conditions 

(i.e., dry and wet condition) also influence on crop yield and water table elevation when 

management strategies are applied. For example, corn yield increases by 871 kg/ha due to the 

wet condition under the best management practice applied, and the corn yield of 1,000 kg/ha 

under the wet condition can be produced more than the yield under the dry condition when the 

worst management practice is conducted. Also, the water table depletes 3.1 m (10.2 ft) more 

under the dry condition than that under the wet condition, with the best management strategy; the 

water table can be saved 5.6 m (18.4) in depth more under the wet condition than it is under the 

dry condition, when the worst management strategy is applied. It is worth noting that the water 

table has extra depletions of 14.9 m (48.9 ft) on average over 30 years and 29.3 m (96.1 ft) in 

2050 under the dry condition with the worst strategy in comparison with those under the wet 

condition with the best strategy. After 30-year pumping, there is no available groundwater 

resources can be used for irrigation on condition that the worst management scenario is applied 

under the dry climate condition.    

 For soybean and soybean-related water table elevation shown in Fig. 4-13B, the 

temporal changes of crop yield and water table elevation are affected by both management 

strategies and climate conditions. Soybean yield increases by 217 kg/ha with the best strategy 

compared to soybean cultivated with the worst strategy in the dry condition, while the yield of 

soybean has 62 kg/ha for the best management strategy more than that planted through the worst 
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management strategy under the wet climate condition. In addition, soybean-related water table 

elevation depletes 2.4 m (7.9 ft) on average over 30 years for the best strategy more than that for 

the worst strategy in the dry condition, with a range of difference from 0.2 m (0.7 ft) to 4.5 m 

(14.8 ft), and a 6.1 m (20 ft) of groundwater in depth can be saved due to the best strategy during 

30 years in comparison to the water table due to the application of the worst strategy under the 

wet condition, with a range of difference from 0.4 m (1.3 ft) to 10.8 m (35.4 ft). Furthermore, 

climate conditions also have significant impacts on soybean yield and water table elevation. For 

example, the best management strategy gives rise to a difference of 91.6 kg/ha on average for 

soybean yield between the dry and wet climate conditions, while the worst management strategy 

can make a difference of 187.7 kg/ha between the dry and wet conditions. An extra depletion of 

0.3 m (1 ft) takes place in water table elevation on average over 30 years for the dry condition in 

comparison to water table elevation for the wet condition under the best management strategy, 

with a range of difference from -1.2 m (3.9 ft) to 2.4 m (7.9 ft). For the worst management 

strategy, the wet climate condition is conducive to save 3.4 m (11.2 ft) of groundwater resources 

in depth on average during 30 years more than water table elevation under the dry climate 

condition, with a range of difference from 0.2 m (0.7 ft) to 4.6 m (15.1 ft). 

For winter wheat (Fig. 4-13C), the best management strategy produces 1,954 kg/ha more 

in yield of and consumes 5.8 m (19 ft) of groundwater less on average over 30 years than by the 

worst management strategy under the dry climate condition, while under the wet climate 

condition, the best strategy produces 1358 kg/ha more and avoids extra groundwater depletion of 

11.1 m (36.4 ft) on average during the 30 years. 207 kg/ha more is produced for winter wheat 

under the wet condition than under the dry condition with the application of the best strategy; 

similarly, an average extra groundwater depletion of 1.8 m (5.9 ft) is taken place under the dry 
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climate condition in comparison with the water level under the wet climate condition, under the 

best management strategy. Under the application of the worst management strategies, the wet 

climate condition provides 804 kg/ha more and 3.6 m less in groundwater decline compared to 

those under the dry climate condition. Similar patterns occur for Sorghum (Fig. 4-13D). The best 

management strategy, as compared to the worst strategy, produces 114 kg/ha more for the dry 

climate condition and 323 kg/ha for the wet climate condition, and 7.1 m and 8.0 m less in 

groundwater decline.  

4.4 SUMMARY AND CONCLUSIONS 

This chapter uses a calibrated linked DSSAT-MODFLOW hydro-agronomic model to 

identify effective management strategies under future climate conditions in Finney County, 

Kansas, a semi-arid, groundwater-irrigated region of the High Plains Aquifer, USA. The 

DSSAT-MODFLOW model simulates crop growth, soil dynamics, and groundwater processes, 

with targeted state variables of crop yield (corn, soybean, winter wheat, sorghum) and 

groundwater drawdown. Strategies include irrigation type (surface, drip, sprinkler, center pivot) 

and planting level (full field, half field, quarter field). Climate conditions include wet, average, 

and dry trends, filtered from a set of 20 GCMs temporally downscaled to daily precipitation and 

temperature using the MACA dataset for both RCP 4.5 and RCP 8.5. Effective management 

strategies maximize crop yield while minimizing groundwater drawdown.   

 Conclusions from this chapter are: 

• If current (“as-is”) management strategies are used in future decades (i.e., years of 

2021 to 2050), climate impacts include: i) the wettest predicted future climate results in a 

water table drawdown of 8 m over 30 years (0.3 m/yr), equal to approximately 20% of 

the current groundwater storage in the regional aquifer, whereas the driest climate results 
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in drawdowns of 32 m (1.1 m/yr), equal to approximately 80% of the current 

groundwater storage. Average conditions results in saturated thickness declines of 20% to 

50% over the 30-year period. ii) average crop yields are maintained to near current 

production, but with a high degree of uncertainty.  

• To maintain adequate crop yields (i.e., current production), groundwater levels 

will decline no matter the type of irrigation system (sprinkler, drip, center pivot) and no 

matter the cultivation level (quarter-plot, half-plot, full-plot). 

• If future climate conditions are wet but conform to the assumptions of the RCP8.5 

carbon emission scenario, then likely there are no viable management practices that can 

maintain adequate corn yield. However, there are multiple irrigation/planting 

combinations that will suffice for soybean, sorghum, and winter wheat. Therefore, under 

a future of high carbon emissions, corn cultivation may transfer to other crop types.  

• For both dry and wet future climates, the best strategy is a combination of drip 

irrigation systems (i.e., high efficiency irrigation system) and quarter-cultivated plots. 

These strategies maintain adequate crop yield and conserve groundwater (< 0.5 m 

drawdown per year).  

• In general, the best strategies under a dry climate and wet climate yield the same 

temporal pattern in water table elevation, but for corn, winter wheat, and sorghum, higher 

crop yields for the wet climate; for soybean, the trendline of yield fluctuates between the 

dry and wet climate conditions. In addition, for average crop yields over 30 years, yields 

of corn, soybean, winter wheat, and sorghum can be produced more 871 kg/ha, 92 kg/ha, 

207 kg/ha, and 272 kg/ha, respectively, under the wet climate. The best strategy during a 

wet future climate, i.e., the scenario that provides the lowest use of groundwater for the 
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highest crop yield, still results in drawdowns of approximately 9.2 m (30.2 ft), 14.9 m 

(48.9 ft), 7.3 m (23.9 ft), and 8.2 m (26.9 ft) for areas of corn-related, soybean-related, 

winter wheat-related, and sorghum-related, respectively, during 2021-2050. Therefore, if 

crop yields are to be maintained in Finney County and similar regions in the High Plains 

Aquifer, groundwater storage can only be conserved, not sustained. 

• Identifying management strategies should be focused on local (field-scale) 

conditions.         

Climate change is markedly affecting the hydro-agronomic system (e.g., crop yields, 

water table elevation, groundwater storage, etc.), and this chapter implies that smaller crop 

areas/fields and higher irrigation efficiency is a useful combination to resist climate change, 

especially for future dry climate trends, and to have more crop yield and consume less 

groundwater regionally. Further, this chapter provides another implication that is a trade-off 

between plant levels (i.e., plant area) and irrigation system under different future climate 

patterns, which is conducive to solve the real-world issues since the ideal scenario cannot be 

achieved everywhere. Growers could refer to results of this chapter for their own troubleshooting 

through having a matchup of issues. This chapter could be used for other groundwater-based 

irrigated regions, and on condition that it is not available due to the limitations of model 

framework, researchers could re-build their own framework on a basis of the linked DSSAT-

MODFLOW model.  
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CHAPTER 5 – SUMMARY AND CONCLUSIONS 
 

 
 

5.1 SUMMARY 

This dissertation first presents a linked DSSAT-MODFLOW modeling framework and 

applied it to the Ogallala aquifer within Finney County, Kansas, a region experiencing 

significant groundwater depletion due to irrigation practices. The linkage between the models 

occurs on an annual time step, with irrigation depths from an ensemble of field-scale DSSAT 

simulations (DSSAT version 4.7) converted to pumping rates for the MODFLOW simulation 

(MODFLOW 2000). The MODFLOW simulates groundwater head, which can be used to update 

saturated thickness and thereby well capacities for each pumping well in the model domain. Well 

capacities are then used to constrain irrigation application in the DSSAT simulations during the 

following growing season. Python scripts are used to pass information between the two models 

and prepare input files. Batch files for DSSAT are used to run the ensemble of simulations for 

each year. Model results are tested against water table elevation and crop yield.  

After the development of the linked hydro-agronomic modeling system, two sensitivity 

analyses (i.e., Morris screening method and Sobol’ variance-based method) were applied to the 

groundwater-irrigated hydro-agronomic system to assess the governing system factors on crop 

yield and groundwater storage. The DSSAT-MODFLOW linked modeling system was used as 

the simulator. A combination of Python scripts and SimLab pre- and post-processing were used 

to generate parameter values, update model files for DSSAT and MODFLOW, run the model 

simulations, and calculate sensitivity indices for both the Morris method and the Sobol’ method. 

57 parameters were reduced to 24 parameters after the Morris screening method, and the 

sensitivity of 28 parameters (including 4 climate-related parameters) were analyzed on 10 model 
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responses (i.e., maize yield, soybean yield, winter wheat yield, sorghum yield, water table 

elevation, ET, recharge, irrigation pumping, river leakage, and aquifer seepage) using Sobol’ 

variance-based sensitivity analysis.  

Last, this dissertation uses a calibrated linked DSSAT-MODFLOW hydro-agronomic 

model to identify effective management strategies under future climate conditions in Finney 

County, Kansas, a semi-arid, groundwater-irrigated region of the High Plains Aquifer, USA. The 

DSSAT-MODFLOW model simulates crop growth, soil dynamics, and groundwater processes, 

with targeted state variables of crop yield (corn, soybean, winter wheat, sorghum) and 

groundwater drawdown. Strategies include irrigation type (surface, drip, sprinkler, center pivot) 

and planting level (full field, half field, quarter field). Climate conditions include wet, average, 

and dry trends, filtered from a set of 20 GCMs temporally downscaled to daily precipitation and 

temperature using the MACA dataset for both RCP 4.5 and RCP 8.5. Effective management 

strategies maximize crop yield while minimizing groundwater drawdown.   

5.2 MAJOR FINDINGS 

 Major findings from this dissertation, as summarized in the last section of Chapters 2, 3, 

and 4, are: 

1) climate-related parameters significantly affect crop yields, especially for maize and sorghum, 

and soybean and winter wheat yields are sensitive to a combination of cultivar genetic 

parameters, soil-related parameters, and climate-related parameters;  

2) Climatic parameters account for 44%, 29%, 40%, and 36% variation in yield of maize, 

soybean, winter wheat, and sorghum;  

3) Hydrogeologic parameters (aquifer hydraulic conductivity, aquifer specific yield, and riverbed 

conductance) have a relatively low influence on crop yields;  
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4) Water table elevation, recharge, and irrigation pumping are considerably sensitive to soil- and 

climate-related parameters, while ET, river leakage, and aquifer seepage are highly influenced by 

hydrogeological parameter (e.g., riverbed conductance, and specific yield);  

5) Soil parameters accounted for 44%, 20%, 50%, and 34% variation in water table elevation, 

ET, recharge, and irrigation pumping;  

6) For the dry and wet future climate conditions, the best management practice is the 

combination of the drip irrigation system (i.e., high efficiency irrigation system) and the plant 

level 3 (i.e., quarter-plots);  

7) crop yields are to be maintained in Finney County and similar regions in the High Plains 

Aquifer, but groundwater storage can only be conserved, not sustained. 

5.3 FUTURE RESEARCH 

Currently, the linked model does not simulate water movement in the vadose zone, i.e., 

between the bottom of the soil layer and the top of water table. In the current system, deep 

percolation from the bottom of the soil profile, as simulated by DSSAT, and precipitation-based 

recharge, as simulated by a power function, are assumed to reach the water table instantaneously. 

Future versions of the modeling system could use the UZF (Unsaturated Zone Flow) package of 

MODFLOW to route the near-surface percolation water to the water table. 

The linked hydro-agronomic modeling system can be applied to other groundwater-based 

irrigation regions to evaluate management practices under different climate conditions. In 

addition, the modeling framework can be linked with other models to create a novel tool to 

improve model performance and solve real-world issue, with comprehensive consideration of 

factor within a system. For example, the DSSAT-MODFLOW model can be linked with an 
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economic model that would simulate human planting decisions, considering available 

groundwater storage, weather patterns, and maximizing profit.  
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APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-S1 The structure of a batch file to run DSSAT model using .GSX input file. 
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Fig. 2-S2 The structure of the .GSX input file, including soil type, cultivar type, planting schedule, and irrigation method. 

 



131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-S3 The soil water daily output file of DSSAT, which contains the column named as ‘DRNC’ and ‘IRRC’ used for linkage 

phase 1. 
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Fig. 2-S4 A batch file to simulate multiple-year linked modeling system (DSSAT-MODFLOW). 
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Fig. 2-S5 Definition, Units of weather-related parameters. 
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Fig. 3-S1 An example of a sample file for Morris screening method. 
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The primary MACA statistically downscaled variable outputs directly obtained by University of 
Idaho for each model are described below: 

• tasmax (daily near-surface maximum temperature in Kelvin) 

• tasmin (daily near-surface minimum temperature in Kelvin) 

• prec (daily accumulated precipitation in millimeters) 

• uas (daily mean 10m eastward wind in meters per second) 

• vas (daily mean 10m northward wind in meters per second) 

• rhsmax (daily near-surface maximum relative humidity (%)) 

• rhsmin (daily near-surface minimum relative humidity (%)) 

• rsds (daily mean surface downwelling shortwave radiation flux in Watts per meter 
squared) 

Fig. 4-S1 The definition and unit of variables derived by MACA.  

 

Calculation for primary variables: 

• Wind speed (m/s): to derive daily wind speed, the square root of the added values of the 
squares of uas and vas was calculated (e.g. sqrt (uas2 + vas2). Wind speed was estimated 
at 2 meters using FAO wind profile relationship approximation (Allen et al., 1998). 

• Wind run (km/day): wind speed was multiplied by a factor of 86.4 

• Solar radiation (mJ/m2-day): to derive daily solar radiation in mJ per meters squared per 
day, daily rsds was multiplied by a factor of 0.0864. 

• Elevation (m): the elevation raster was used from the METDATA climatology lab 
(http://www.climatologylab.org/gridmet.html). METDATA elevation coordinates were 

linearly interpolated to the MACA grid coordinates. 

• Relative humidity (fraction or %) and dewpoint temperature (deg. C): to derive daily 
relative humidity and dew point temperature, the average of the daily minimum and 
maximum humidity were calculated, and then daily average dew point temperature was 
computed using the daily average temperature and relative humidity. 

• Potential Evapotranspiration (PET in mm): the Penman-Monteith methodology was used 
in the manual “The ASCE Standardized Reference Evapotranspiration Equation”. The 
short crop reference equation and the ET-methodology which uses the maximum and 
minimum relative humidities since these variables were downscaled. 

Fig. 4-S2 Details of computation of downscaled variables. 
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Fig. 4-S3 Posterior distributions of PDFs and CDFs for 28 parameters for water table elevation for the top 1% of the 
14,848 simulations. 
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Fig. 4-S4 Posterior distributions of PDFs and CDFs for 28 parameters for maize for the top 1% of the 14,848 

simulations. 
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Fig. 4-S5 Posterior distributions of PDFs and CDFs for 28 parameters for sorghum for the top 1% of the 14,848 
simulations. 
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Fig. 4-S6 Posterior distributions of PDFs and CDFs for 28 parameters for soybean for the top 1% of the 14,848 
simulations. 
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Fig. 4-S7 Posterior distributions of PDFs and CDFs for 28 parameters for winter wheat for the top 1% of the 14,848 
simulations. 
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Tab. 4-S1 Water Use Profit (WUP) (x108 U.S. Dollars of crop yield per m of groundwater drawdown) for maize, 
soybean, winter wheat, and sorghum under future wet climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 

both. 

 

 

 

 

 

 

 

 

 

Crop Type 

and Climate 

Conditions 

Water Use Profit for 12 combinations of management scenarios (x108 U.S. Dollar/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_wet_RCP4.
5 

0.97
89 

1.69
58 

2.43
96 

0.94
89 

1.69
63 

2.99
17 

0.98
86 

1.76
27 

3.11
87 

1.01
84 

1.81
83 

3.22
97 

Corn_wet_RCP8.
5 

0.40
73 

0.76
87 

1.45
08 

0.49
98 

0.93
27 

1.78
61 

0.52
8 

0.97
68 

1.88
33 

0.55
07 

1.02
87 

2.00
06 

Soybean_wet_R
CP4.5 

0.04
2 

0.07
04 

0.09
58 

0.04
01 

0.06
79 

0.11
44 

0.04
15 

0.07
04 

0.11
83 

0.04
25 

0.07
23 

0.12
17 

Soybean_wet_R
CP8.5 

0.02
69 

0.04
94 

0.08
99 

0.03
23 

0.05
96 

0.11
09 

0.03
32 

0.06
21 

0.11
58 

0.03
47 

0.06
5 

0.12
22 

Winter 
Wheat_wet_RCP

4.5 

0.38
19 

1.15
45 

1.59
16 

0.45
18 

1.16
98 

1.79
69 

0.50
86 

1.21
29 

1.83
92 

0.54
52 

1.27
79 

1.87
77 

Winter 
Wheat_wet_RCP

8.5 

0.06
83 

0.49
41 

1.11
63 

0.17
91 

0.72
7 

1.35
11 

0.20
64 

0.77
07 

1.43
11 

0.25
03 

0.81
14 

1.48
35 

Sorghum_wet_R
CP4.5 

0.13
65 

0.32
08 

0.64
81 

0.13
94 

0.35
25 

0.85
91 

0.14
83 

0.37
73 

0.91
12 

0.16
48 

0.39
53 

0.97
06 

Sorghum_wet_R
CP8.5 

0.04
37 

0.20
4 

0.60
85 

0.08
1 

0.29
58 

0.79
25 

0.09
3 

0.31
34 

0.86
1 

0.10
6 

0.33
16 

0.94
18 
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Tab. 4-S2 Water Use Profit (WUP) (x108 U.S. Dollars of crop yield per m of groundwater drawdown) for maize, 
soybean, winter wheat, and sorghum under future average climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 

both. 

 

 

 

 

 

 

 

 

 

Crop Type 

and Climate 

Conditions 

Water Use Profit for 12 combinations of management scenarios (x108 U.S. Dollar/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_avg._RCP4
.5 

0.45
08 

0.88
95 

1.95
23 

0.60
35 

1.07
51 

2.43
33 

0.62
98 

1.37
17 

2.00
5 

0.65
37 

1.16
76 

2.08
04 

Corn_avg._RCP8
.5 

0.53
9 

0.99
47 

1.75
94 

0.66
83 

1.19
9 

2.16
2 

0.71
59 

1.24
36 

2.26
41 

0.72
6 

1.32
01 

2.15
38 

Soybean_avg._R
CP4.5 

0.02
79 

0.04
89 

0.10
7 

0.03
32 

0.05
86 

0.13
15 

0.03
42 

0.07
53 

0.10
56 

0.03
57 

0.06
26 

0.10
85 

Soybean_avg._R
CP8.5 

0.02
54 

0.04
59 

0.07
97 

0.03
08 

0.05
38 

0.09
68 

0.03
27 

0.05
62 

0.10
07 

0.03
32 

0.05
96 

0.09
48 

Winter 
Wheat_avg._RCP

4.5 
0.09
99 

0.53
54 

1.31
83 

0.21
98 

0.77
31 

1.48
95 

0.26
13 

1.08
08 

1.46
71 

0.30
36 

0.85
67 

1.53
4 

Winter 
Wheat_avg._RCP

8.5 
0.21
81 0.68 

1.43
43 0.35 

0.88
64 

1.62
14 

0.37
73 

1.02
4 

1.63
17 

0.40
81 

1.03
69 

1.66
53 

Sorghum_avg._R
CP4.5 

0.03
77 

0.12
69 

0.67
26 

0.06
15 

0.19
32 

0.68
94 

0.06
73 

0.23
65 

0.69
54 

0.07
59 

0.21
84 

0.74
4 

Sorghum_avg._R
CP8.5 

0.07
95 

0.30
21 

0.63
27 

0.16
32 

0.38
38 

0.81
15 

0.18
67 

0.41
16 

0.86
41 

0.19
61 

0.44
05 

0.82
18 
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Tab. 4-S3 Water Use Profit (WUP) (x108 U.S. Dollars of crop yield per m of groundwater drawdown) for maize, 
soybean, winter wheat, and sorghum under future dry climate conditions. 

1- surface, full; 2 – surface, half; 3 – surface, quarter; 4 – sprinkler, full; 5 – sprinkler, half; 6 – sprinkler, quarter; 7 – center 
pivot, full; 8 – center pivot, half; 9 – center pivot, quarter; 10 – drip, full; 11 – drip, half; 12 – drip, quarter. Light blue means 
only acceptable for crop yield; light red means only acceptable for groundwater drawdown; light purple means acceptable for 

both. 

 

 

 

 

 

 

 

 

 

 

 

Crop Type 

and Climate 

Conditions 

Water Use Profit for 12 combinations of management scenarios (x108 U.S. Dollar/m) 

1 2 3 4 5 6 7 8 9 10 11 12 

Corn_dry_RCP4.
5 0.6 

1.09
6 

1.87
67 

0.74
12 

1.30
67 

2.28
78 

0.77
27 

1.58
71 

2.38
09 

0.80
04 

1.40
72 

2.46
89 

Corn_dry_RCP8.
5 

0.45
71 

0.80
3 

1.26
5 

0.58
47 

0.88
79 

1.54
94 

0.62
58 

0.92
19 

1.61
55 

0.64
83 

0.89
12 

1.68
31 

Soybean_dry_R
CP4.5 

0.02
74 

0.04
64 

0.07
82 

0.03
23 

0.05
52 

0.09
38 

0.03
32 

0.06
74 

0.09
72 

0.03
42 

0.05
91 

0.10
07 

Soybean_dry_R
CP8.5 

0.03
13 

0.04
45 

0.07
38 

0.03
67 

0.05
28 

0.08
99 

0.03
76 

0.05
42 

0.09
28 

0.03
91 

0.05
57 

0.09
63 

Winter 
Wheat_dry_RCP

4.5 
0.07
23 

0.53
84 

1.22
03 

0.20
07 

0.76
3 

1.46
33 

0.26
24 

1.03
47 

1.50
29 

0.30
25 

0.84
58 

1.55
26 

Winter 
Wheat_dry_RCP

8.5 
0.00
46 

0.29
1 

0.87
91 

0.10
16 

0.50
53 

1.09
34 

0.13
68 

0.56
02 

1.12
61 

0.16
33 

0.60
69 

1.16
22 

Sorghum_dry_R
CP4.5 

0.03
29 

0.09
71 0.29 

0.04
97 

0.13
67 

0.42
51 

0.05
43 

0.18
17 

0.46
21 

0.05
96 

0.16
63 

0.51
76 

Sorghum_dry_R
CP8.5 

0.07
04 

0.20
26 

0.27
88 

0.11
22 

0.28
38 

0.41
14 

0.12
45 

0.29
8 

0.46
4 

0.14
47 

0.29
87 

0.53
68 


