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ABSTRACT

A MULTI CRITERIA DECISION SUPPORT SYSTEM FOR WATERSHED

MANAGEMENT UNDER UNCERTAIN CONDITIONS

Nonpoint source (NPS) pollution is the primary cause of impaired water bodies in

the United States and around the world. Elevated nutrient, sediment, and pesticide

loads to waterways may negatively impact human health and aquatic ecosystems,

increasing costs of pollutant mitigation and water treatment. Control of nonpoint

source pollution is achievable through implementation of conservation practices,

also known as Best Management Practices (BMPs). Watershed–scale NPS pollution

control plans aim at minimizing the potential for water pollution and environmental

degradation at minimum cost. Simulation models of the environment play a central

role in successful implementation of watershed management programs by providing

the means to assess the relative contribution of different sources to the impairment

and water quality impact of conservation practices.

While significant shifts in climatic patterns are evident worldwide, many natu-

ral processes, including precipitation and temperature, are affected. With projected

changes in climatic conditions, significant changes in diffusive transport of nonpoint

source pollutants, assimilative capacity of water bodies, and landscape positions of

critical areas that should be targeted for implementation of conservation practices

are also expected. The amount of investment on NPS pollution control programs

makes it all but vital to assure the conservation benefits of practices will be sus-

tained under the shifting climatic paradigms and challenges for adoption of the

plans. Coupling of watershed models with regional climate projections can poten-

tially provide answers to a variety of questions on the dynamic linkage between

climate and ecologic health of water resources.
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The overarching goal of this dissertation is to develop a new analysis framework

for the development of optimal NPS pollution control strategy at the regional scale

under projected future climate conditions. Proposed frameworks were applied to a

24,800 ha watershed in the Eagle Creek Watershed in central Indiana. First, a com-

putational framework was developed for incorporation of disparate information from

observed hydrologic responses at multiple locations into the calibration of watershed

models. This study highlighted the use of multiobjective approaches for proper cal-

ibration of watershed models that are used for pollutant source identification and

watershed management. Second, an integrated simulation–optimization approach

for targeted implementation of agricultural conservation practices was presented.

A multiobjective genetic algorithm (NSGA-II) with mixed discrete–continuous de-

cision variables was used to identify optimal types and locations of conservation

practices for nutrient and pesticide control. This study showed that mixed discrete–

continuous optimization method identifies better solutions than commonly used bi-

nary optimization methods. Third, the conclusion from application of NSGA-II

optimization followed by development of a multi criteria decision analysis frame-

work to identify near–optimal NPS pollution control plan using a priori knowledge

about the system. The results suggested that the multi criteria decision analysis

framework can be an effective and efficient substitute for optimization frameworks.

Fourth, the hydrologic and water quality simulations driven by an extensive en-

semble of climate projections were analyzed for their respective changes in basin

average temperature and precipitation. The results revealed that the water yield

and pollutants transport are likely to change substantially under different climatic

paradigms. And finally, impact of projected climate change on performance of con-

servation practice and shifts in their optimal types and locations were analyzed.

The results showed that performance of NPS control plans under different climatic

projections will alter substantially; however, the optimal types and locations of

conservation practices remained relatively unchanged.
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Chapter 1

INTRODUCTION

1.1 Problem Statement and Research Goals

Managing water quality and quantity is essential for socioeconomic develop-

ment and critical for a long-term commitment to environmental viability. Popula-

tion and industrial growth intensifies competition for freshwater resources. More-

over, increasing demands from agricultural, energy, and environmental uses together

with projected climate change and interaction between physical drivers exacerbate

the conflicts and complexity of the problem. On the other hand, limited budget

necessitates identifying a compromise solution between development and resource

protection. Achieving such a solution requires the best efforts of scientists, engi-

neers, economists, and policymakers together with the public to implement adap-

tive management strategies. When more than one decision criterion comes to play a

role, decision making essentially becomes a multi criteria decision making (MCDM)

problem. In particular, control of water resources pollution at the watershed scale

is inherently a multiobjective problem.

In the United States, destructive land use is the major cause of environmental

and water quality problems [Horowitz et al., 2007]. Diffusive nature of the nonpoint

sources (NPS) of pollutants from agricultural areas is the leading source of impair-

ment in the nation’s rivers, lakes, wetlands, and a major source of impairment in

bays and estuaries [US EPA, 2009]. Agriculture’s contribution has remained rela-

tively unchanged over the past decade [Ribaudo and Johansson, 2006]. By growing
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the national awareness of the increasingly dominant influence of nonpoint source

pollutants on water quality, U.S. Congress amended the Clean Water Act in 1987 to

focus greater national efforts on nonpoint sources. The goal of this amendment was

to expedite control of nonpoint sources of pollution [US Congress , 2002]. Section

319 of the Clean Water Act encourages states to address water pollutions by as-

sessing nonpoint source pollution causes and problems and support nonpoint source

pollution control programs within the state [US EPA, 1993]. Control of agricul-

tural nonpoint source pollution is achievable through implementation of conserva-

tion practices, commonly known as Best Management Practices (BMPs). The Total

Daily Maximum Load (TMDL) program administered by the EPA attempts to bal-

ance the fluxes of pollutants from a contributing watershed to assimilative capacity

of receiving water bodies without violating water quality standard.

While significant shifts in climatic patterns are evident worldwide, many natu-

ral processes, including precipitation and temperature and therefore frequency and

magnitude of extreme hydrologic events will also alter. With projected changes

in climatic conditions, significant changes in diffusive transport of nonpoint source

pollutants, assimilative capacities of water bodies, and landscape position of critical

areas that should be targeted for implementation of conservation practices are also

expected [Parker et al., 2008; Jennings et al., 2009; Kaini et al., 2010]. The amount

of investment on nonpoint source pollution control programs makes it all but vital

to assure the conservation benefits of practices will be sustained under the shifting

climatic paradigms and challenges for adoption of the plans.

Watershed–scale conservation planning aims at minimizing the potential for

water pollution and environmental degradation at minimum cost. An effective non-

point source pollution control strategy should identify optimal type, location, and

timing of the practices and provide information on effectiveness of the plan. How-

ever, it cannot be tested for all potential cases in a watershed scale. Thus, watershed

2



planners need to consult with engineers and professional resource managers to en-

sure that the actions being considered are realistic and capable of meeting water

quality objectives [US EPA, 2008]. Engineers rely on computer models to provide

an estimate of adaptation practices impacts on improving water quality. Watershed

models are increasingly embedded in the decision making process to address a wide

range of hydrologic and water quality issues. Simulation models of the environment

play a central role in successful implementation of watershed management programs

by providing the means to assess the relative contribution of different sources (i.e.,

stressors) to the impairment. Therefore, it is of keen interest to evaluate the perfor-

mance validity of watershed models according to the past observations of fluxes of

water and contaminants at multiple locations on the stream network. Coupling of

watershed models with regional climate projections can potentially provide answers

to a variety of questions on the dynamic linkage between climate and ecologic health

of water resources.

The main goal of this dissertation is to present a new integrated simulation–

optimization framework for identifying optimal conservation plans at the watershed

scale under projected climatic condition. The results of this dissertation are sig-

nificant in several aspects of the watershed management, including calibration and

sensitivity analysis of watershed models, hybrid optimization of targeted conserva-

tion plans, impact analysis of climate change on hydrologic and contaminants fluxes,

and performance of conservation plans under changing climate.

1.2 Background and Specific Objectives

Nonpoint source pollution is the primary cause of impaired water bodies in

the United States and around the world US EPA [2008]. Elevated nutrient, sedi-

ment and pesticide loads to waterways may negatively impact human health and

aquatic ecosystems, increasing costs of pollutant mitigation and water treatment

3



[Novotny , 1993]. Agricultural conservation practices are widely accepted control

measures of nonpoint source pollutants [Novotny , 1993; Ritter , 2001; Mostaghimi

et al., 1997].The primary goal of watershed scale conservation plans is minimizing

pollutants movement from landscapes to water bodies at minimum cost. Watershed

plans for nonpoint source pollution control are developed using several approaches.

Government agencies promote implementation of NPS pollution control practices

by recommending cost-share program that is a field-by-field approach [Veith et al.,

2003]. While this approach might be effective in a field or farm level, maximum

water quality benefits at the watershed scale is not guaranteed [Arabi et al., 2006].

Thus, NPS pollution control can be enhanced through development of the watershed

scale conservation plans [Maringanti et al., 2011]. The critical source area target-

ing method is a watershed scale planning approach that suggests implementation

of conservation practices in critical source areas within the watershed, which con-

tribute larger amounts of NPS pollutants. A major drawback with critical source

area approach is that it does not incorporate all important watershed processes and

interactions, and therefore, does not guarantee the cost-effectiveness of the devel-

oped conservation plan. In addition, monitoring long-term impact of implemented

conservation practices on water quality via field-studies is infeasible mainly because

of the complexity of hydrologic and water quality processes and changes in annual

weather pattern [Arabi et al., 2007; Veith, 2002]. Moreover, impact of conserva-

tion practices can be delayed for several years [Veith, 2002]. Hence, estimation of

the water quality benefits of NPS pollution control strategies necessitate the use of

appropriate hydrologic and water quality models. Watershed models can simulate

hydrologic and water quality responses within a watershed system of interest and

can help to identify water quality impact of conservation practices.

Hydrologic and water quality processes are highly complex and comprise a net-

work of nonlinear dynamics [US EPA, 2008; Arnold et al., 1998]. Distributed wa-

tershed models are commonly used to simulate natural processes and the response
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of the watershed to changes in land use, climate, and land and water management.

The number of possible NPS pollution control scenarios within a watershed increases

exponentially with the number of fields. Thus, it is not possible to evaluate per-

formance of all possible scenarios at all fields within the watershed. Furthermore,

incorporation of socioeconomic factors in the watershed planning process increases

complexity of the procedure for identification of cost-effective nonpoint source pollu-

tion control plan. Recent studies have shown that optimization methods hold great

promise for optimal allocation of NPS pollution control measures at the watershed

scale [Arabi et al., 2006; Veith, 2002; Jha et al., 2009]. In this approach, a proper

representation of conservation practices is required to predict water quality changes

arising from adoption of conservation plans [Easton et al., 2008].

1.2.1 Objectives

The objectives of the study were to:

O1. Present a framework for parameter estimation of the watershed models for

multisite and many objective. The framework will include several single and

multiobjective optimization methods, flexible and statistically correct formu-

lation of likelihood function, and appropriate data transformations methods.

O2. Identify a set of optimal conservation plans for reducing pollutant loads at

minimum cost for a range of feasible budget and predict the effectiveness of

the plans with an improved formulation of the environmental and economic

objectives and decision variables.

O3. Present a multi criteria decision analysis framework to identify near–optimal

nonpoint source pollution control strategies for a range of feasible budget based

on a priori knowledge about the system.
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O4. Predict the changes in fluxes of water, sediment, nitrogen, phosphorus, and

pesticide over the course of the next several decades in response to the pro-

jected climate conditions.

O5. Assess the effectiveness of watershed-scale agricultural conservation strategies

for minimizing vulnerability under uncertain climatic conditions.

1.2.2 Proposition

The objectives will be achieved by means of a careful examination of the fol-

lowing propositions:

P1. Calibration of watershed models for many hydrologic and water quality re-

sponses at multiple locations requires a framework that can find solutions with

minimum weighted errors, but more importantly, can adequately mimic the

observed behavior of the system at all locations for all objectives. This needs

a multiobjective optimization framework with a statistically correct likelihood

function.

P2. Coupled simulation–optimization frameworks can effectively identify optimal

type and placement of the conservation practices for a given amount of avail-

able budget (“pollutant load–cost” Pareto-optimal fronts).

(a) Multiobjective optimization methods can explicitly identify the optimal

siting of the conservation practices and identify the best solutions for a

range of feasible budget.

(b) Nonpoint source pollution planning does not necessarily include binary

decision variables (0’s and 1’s), as commonly used in the literature. Defi-

nition of decision variables is substantially important in identifying more

realistic, flexible, and more efficient conservation plans.
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P3. Identifying near-optimal conservation plans is efficiently possible with aggre-

gating the prior knowledge about the system and performance of the conser-

vation practices in a multi criteria decision analysis framework.

P4. Changes in seasonal and long-term pattern of precipitation and temperature

will be translated into substantial changes in hydrologic and water quality

fluxes.

P5. Performance of conservation practices will be substantially different under the

different projected climate scenarios. Thus, the optimal solutions of nonpoint

source pollution control will be different, too.

1.2.3 Study Area: Eagle Creek Watershed, Indiana

The Eagle Creek Watershed (ECW) lies within the Upper White River Water-

shed of central Indiana, and drains into Eagle Creek Reservoir (Figure 1.1), which

supplies drinking water to the City of Indianapolis. Much of ECW is poorly drained

and the majority of the watershed likely contains tile-drain systems, which have been

shown to be a significant pathway for pollutant loading to waterways in central In-

diana [Tedesco et al., 2005]. Elevated atrazine concentrations in ECW have resulted

in atrazine levels in Eagle Creek Reservoir in excess of the EPA drinking water

standard of 3 µg/L, and high sediment and nutrient loads have potential to degrade

aquatic habitat [Tedesco et al., 2005]. The importance of ECW for metropolitan

water supplies and an extensive historic dataset make the basin well suited for ex-

amining watershed-scale effects of climate change on water quality fluxes.

Moreover, spatial scale of conservation planning depends upon numerous fac-

tors, including management objectives, available data resolution, dominant ecologi-

cal processes, and potential sociopolitical constraints [Walter et al., 2007; Garen and

Moore, 2005]. To achieve the specific goals of water quality control, conservation

practices targeting should be performed within a smaller geographic unit (12-digit

7



Figure 1.1: Location and landuse maps of the Eagle Creek Watershed

Hydrologic Unit Codes per se) which ultimately allows us to better evaluate targeted

management plan.

1.3 Research Approach

Schematic of the proposed conservation plans analysis framework is presented in

Figure 1.2. The framework consists of six main modules which are linked with a non-

point source pollution modeling tool (Simulation): (i) a global sensitivity analysis

tool; (ii) a parameter estimation tool (Calibration); (iii) an optimization framework

for identifying optimal type and placement of conservation practices (Optimization);

(iv) a conservation practices implementation tool (BMP Tool) including economic

and environmental analysis component; and (v) a climate downscaling module; (vi) a

multi criteria decision analysis framework (MCDA). The modules were developed

and tested with MATLAB 2009b, 2010a, and 2011b and are expected to work with

newer versions.
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Figure 1.2: Schematic of the integrated simulation-optimization-MCDA framework

1.3.1 Hydrologic and Water Quality Modeling

Hydrologic and water quality modeling module consists of following three com-

ponents:

1.3.1.1 Nonpoint Source Pollution Model

In order to fulfill the objectives of the study, the Soil and Water Assessment

Tool (SWAT) [Arnold et al., 1998] was used to represent hydrologic and water quality

processes, analyze performance of nonpoint source pollution control plans, and assess

hydrologic and water quality responses under climate projections. SWAT is a process

based, distributed parameter, continuous time, and long-term watershed model that

runs on a daily time step. It subdivides a watershed into subbasins connected by a

stream network, and further delineates hydrologic response units (HRUs) consisting

of unique combination of land cover and soils in each subbasin. SWAT can simulate
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major nutrient processes and a selected pesticide, in addition to the hydrologic

fluxes, within a watershed [Neitsch et al., 2005].

1.3.1.2 Sensitivity Analysis

A global sensitivity analysis toolbox (GSATool) is developed for MATLAB with

the support of commonly used global sensitivity analysismethods and factors prob-

ability distribution functions. The GSATool is an open source tool and can be

modified for additional sensitivity analysis methods and factors pdf. The tool is

tested and validated for several examples.

1.3.1.3 Parameter Estimation

Selected parameters from sensitivity analysis was used in a computational

framework for incorporation of disparate information from observed hydrologic re-

sponses at multiple locations into the calibration of watershed models. The frame-

work consists of four components: (i) an a priori characterization of system be-

havior; (ii) a formal and statistically correct formulation of objective function(s)

of model errors; (iii) an optimization engine to determine the Pareto-optimal front

for the selected objectives; and (iv) a multi criteria decision analysis tool to select

optimal solutions from the Pareto-optimal front that are most consistent with the

goals of the modeling study.

1.3.2 Conservation Practices Optimization Framework

To optimally locate conservation practices within the watershed a simulation–

optimization framework was established. This framework consists of an (i) opti-

mization method, (ii) a conservation practices implementation tool, and (iii) an

economic/environmental component to calculated the objective function values.
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1.3.2.1 Optimization Method

Global search methods are robust in finding optimal solutions by searching

over the larger subset of the search space, and thereby escape being trapped in

local optima. Nondominated Sorted Genetic Algorithm II (NSGA-II) was used as

the primary search method in identifying optimal nonpoint source pollution con-

trol. A typical genetic algorithm starts with an initial population of solutions and

then implements probabilistic and parallel exploration in the search space using

the domain-independent genetic operators (i.e. chromosome reproduction) to find

optimal solutions.

1.3.2.2 BMP Tool

A novelty of the proposed framework is, unlike the optimization-based conser-

vation planning tools developed in other studies, its capability to operate on both

binary-discrete and continuous decision variables (known as “mixed-chromosome”

or “mixed-variable”). This will likely identify more realistic alternatives and higher

flexibility in addition to exploring overall better fitness. It is also expected to achieve

more diverse Pareto-optimal solutions through application of the mixed continuous-

discrete optimization.

1.3.2.3 Decision Variables

A novelty of the proposed simulation–optimization framework is that, unlike

the commonly used conservation practices targeting tools developed in other studies,

it is capable of coping with both binary/discrete and continuous-decision variables.

1.3.3 Multi Criteria Decision Analysis

A multi criteria decision analysis (MCDA) framework is proposed, as a robust

substitute for multiobjective optimization methods, in identifying optimal nonpoint

source pollution control strategies at the watershed scale.
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1.3.4 Climate Downscaling

The climate module is a statistical downscaling procedure to create projected

regional climate scenarios (including minimum and maximum temperature and pre-

cipitation) at the meteorological stations and daily time intervals over the 2010-2099

period. The climate inputs were used as climate forcings to drive hydrologic response

of the system.

1.4 Significance of this dissertation

This dissertation is significant in several aspects of the watershed management:

(i) it presents a computational framework for incorporation of disparate informa-

tion from observed hydrologic responses at multiple locations into the calibration

of watershed models that are used for pollutant source identification and watershed

management; (ii) it demonstrates importance of the availability of hydrologic and

water quality data at multiple locations and highlights the use of multiple objective

functions in identifying the most sensitive parameters of watershed models; (iii) it

provides more realistic watershed scale conservation solutions with higher flexibility

to decision makers by improving the commonly used simulation–optimization frame-

work of conservation planning via reformulating the objective functions, upgrading

the decision variables, and hybridizing optimization methods; (iv) it demonstrates

a MCDA framework to identify cost-effective alternatives for nonpoint source pollu-

tion control in a watershed scale without any need for computationally intensive and

iterative search algorithms; (v) it analyzes the hydrologic and water quality simu-

lations under extensive ensemble of climate projections for their respective changes

in basin average temperature and precipitation; (vi) it studies impact of climate

change on performance of nonpoint source pollution control plans and shifts in their

optimal type and placement in a watershed scale under different climate projections;

and (vii) it presents a set of watershed modeling and management tools to facilitate

decision making process for watershed scale conservation planning.
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1.5 Organization of the Dissertation

This dissertation is organized into six chapters. The current chapter provides

an introduction to the study problem. The second chapter presents a framework

for multisite, many objective calibration of watershed models. The third chap-

ter presents a modified simulation-optimization framework for optimal placement

of conservation practices within a watershed. The fourth chapter demonstrates a

MCDA framework for identifying near-optimal solutions for conservation planning.

The fifth chapter assesses the impact of climate change on hydrologic and water

quality fluxes within a watershed and analyzes the changes in performance of non-

point source pollution control plans under projected climate. The sixth chapter

provides a summary, conclusions, and recommendations for future work.
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Chapter 2

TOWARD IMPROVED CALIBRATION OF WATERSHED MODELS:

MULTISITE MANY OBJECTIVE MEASURES OF INFORMATION

Highlights

This paper presents a computational framework for incorporation of disparate

information from observed hydrologic responses at multiple locations into the cal-

ibration of watershed models. The framework consists of four components: (i) an

a-priori characterization of system behavior; (ii) a formal and statistically correct

formulation of objective function(s) of model errors; (iii) an optimization engine to

determine the Pareto-optimal front for the selected objectives; and (iv) a multi cri-

teria decision analysis tool to select optimal solutions from the Pareto-optimal front

that are most consistent with the goals of the modeling study. Application of the

proposed framework for calibration of the Soil and Water Assessment Tool (SWAT)

in the Eagle Creek watershed, Indiana, revealed that aggregation of streamflow and

nitrate information measured at multiple locations within the watershed into a sin-

gle measure of weighted errors would result in faster convergence to a solution with

a lower overall objective function value than using multiple measures of informa-

tion. However, none of the solutions from the single objective approach satisfied

the conditions defined for characterizing the system behavior. In particular, aggre-

gation of streamflow and nitrate responses undermined finding behavioral solutions

for nitrate, primarily because of the substantially larger number of observations for

streamflow. Aggregation of only nitrate responses into a single measure expedited
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finding better solutions, although aggregation of data from nested sites appeared in-

appropriate because of correlated errors. This study demonstrates the importance of

the availability of hydrologic and water quality data at multiple locations, and also

highlights the use of multiobjective approaches for proper calibration of watershed

models that are used for pollutant source identification and watershed management.

Keywords: Parameter estimation, hydrologic modeling, optimization, SWAT, water

quality
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2.1 Introduction

Watershed models are increasingly embedded in the decision making process to

address a wide range of hydrologic and water quality issues. In the United States,

federal law requires states to develop total maximum daily loads (TMDLs) for im-

paired water bodies to attain ambient water quality standards through the control

of point and nonpoint sources [National Research Council , 2001]. Similarly, the Eu-

ropean Water Framework Directive aims to enhance the water quality status of all

water bodies within its jurisdiction [Kaika, 2003]. Simulation models of the envi-

ronment play a central role in successful implementation of watershed management

programs by providing the means to assess the relative contribution of different

sources (i.e., stressors) to the impairment. Therefore, it is of keen interest to evalu-

ate the performance validity of watershed models according to the past observations

of fluxes of water and contaminants at multiple locations on the stream network.

Application of models that credibly represent important processes of the nat-

ural system presents a challenge [Hantush et al., 2005; Konikow and Bredehoeft ,

1992]. With the temptation to incorporate more parameters in models to represent

a broader range of hydrologic and water quality processes has come an insidious

effect: the ever-increasing complexity of model structures, which in turn gives rise

to issues of lack of identifiability [Beck , 1987], lack of uniqueness [Spear , 1997], and

equifinality [Beven and Binley , 1992]. Therefore, efficient and effective use of ob-

served data is vital for calibration of complex spatially distributed process-based

models. In the United States, daily or more frequent discharge measurements at the

watershed outlets on many rivers and streams are available from the United States

Geological Survey (USGS). On the other hand, nutrient concentrations are often

measured by local watershed groups on less frequent (e.g., weekly or monthly) time-

steps at the smaller subwatershed level. This is also the case for many other regions

in the world. These hydrologic and water quality observations are characterized
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by varying measurement errors/uncertainties, varying sample size, and are typically

noncommensurable. These considerations must be taken into account when using

the data in construction of the objective function(s) for calibration purposes.

The effectiveness of parameter estimation techniques depends greatly on the

selection of a proper likelihood function [Beven and Binley , 1992; Beven and Freer ,

2001; Box and Tiao, 1992; Mantovan and Todini , 2006; Sorooshian and Dracup,

1980; van Griensven et al., 2008]. Stedinger et al. [2008] showed how the use of

a formal Bayesian-based likelihood function can provide more acceptable and sta-

tistically valid prediction intervals for future observations. Similarly, Vrugt et al.

[2009a] demonstrated that better coverage of observed data and more acceptable

posterior distribution of parameters can be achieved when a formal likelihood func-

tion is used. McMillan and Clark [2009] also found that using formal likelihood

measures provides a more complete exploration of the parameter space, a more

accurate estimation of parametric uncertainty, and a better representation of the

observed behavior of the system under study. However, in the context of water-

shed management, a statistically correct likelihood function may not exist [Gupta

et al., 1998], and subsequently, identification of a single set of model parameters

that is optimal for all of the hydrologic and water quality variables of interest may

be infeasible.

Model calibration at multiple sites and for many variables is inherently a mul-

tiobjective problem [Gupta et al., 1998; Madsen, 2003; Madsen et al., 2002]. Mul-

tiobjective optimization approaches enable the analyst to assess trade-offs associ-

ated with conflicting objectives. They determine a set of nondominated solutions

that comprise the Pareto-optimal front. Any improvement in one objective among

Pareto-optimal solutions will necessarily result in the degradation of at least one

other objective [Pareto, 1971]. Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[Zitzler et al., 2001] and Nondominated Sorted Genetic Algorithm II (NSGA-II)
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[Deb, 2001] are among the most commonly used multiobjective approaches [Bekele,

2005]. Multi-algorithm methods, such as A Multi-ALgorithm Genetically Adaptive

Multiobjective (AMALGAM), have also shown fast convergence to the Pareto front

by combining attributes of the best available optimization algorithms [Vrugt and

Robinson, 2007].

The complexity of multiobjective methods increases substantially with the

increasing number of objectives in the optimization problem [Brockhoff and Zit-

zler , 2007]. Typically, these methods require more model simulations than single-

objective techniques for convergence and are more difficult to implement [Kollat

and Reed , 2007]. Therefore, an analyst may opt to use a single aggregated objec-

tive function of weighted errors [Madsen, 2000; Seibert , 2000; van Griensven and

Bauwens , 2003], though this can lead to the loss of important information from ob-

servations [Fenicia et al., 2008; van Griensven and Bauwens , 2003]. In doing so, the

analyst may also relinquish the flexibility to identify Pareto-optimal solutions most

consistent with his/her preferences. The Shuffled Complex Evolutionary (SCE) al-

gorithm [Duan et al., 1992] and its modifications such as the SCEM [Vrugt , 2003]

and DREAM [Vrugt et al., 2009a], Bayesian-based approaches [Marshall , 2004],

Dynamically Dimensioned Search (DDS) algorithm [Tolson and Shoemaker , 2007],

and Genetic Algorithms (GA) [Holland , 1975] are among the most popular single

optimization methods for calibration of hydrological models. Nicklow et al. [2010]

provided a comprehensive review of state-of-the-art evolutionary algorithms in water

resources management.

An important and often neglected issue in calibration of complex models of

the environment is that while optimization techniques facilitate the search for so-

lutions with minimum errors, they do not necessarily ascertain model adequacy for

mimicking the observed behavior of the system. When multiple hydrologic and

water quality responses are involved, system behavior is defined according to the
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model application goals [Moriasi et al., 2007]. Literature is replete with studies that

provide noncommensurable measures of performance for classification of model pa-

rameter sets to behavioral (i.e., good or acceptable) or non-behavioral (i.e., bad or

unacceptable) solutions [Beven and Binley , 1992; Blazkova and Beven, 2009; Gupta

et al., 1998; Klepper et al., 1991; McMillan and Clark , 2009; Moriasi et al., 2007;

Nash and Sutcliffe, 1970; Spear and Hornberger , 1980]. However, it is still unclear

how these measures can be used in conjunction with Pareto-optimal solutions for

selecting the optimal choice for the model parameters.

The primary goal of this study is to present a computational framework for

multisite many objectives calibration of watershed models that can incorporate the

priorities considered for model application. Two specific objectives are examined en-

route to the overall goal of the study: (i) to examine the efficiency of single-objective

and multiobjective approaches in finding optimal solutions while minimizing proper

objective functions of hydrologic responses; and (ii) to evaluate the effectiveness of

these methods in generating optimal solutions that are consistent with model appli-

cation purposes. The paper also presents a discussion of benefits and limitations of

procedures for aggregation of hydrologic and water quality objectives corresponding

to different observation sites within the watersheds.

2.2 Methods and materials

A computational framework was utilized to reconcile the strengths of opti-

mization algorithms with the flexibility provided by multi criteria decision analy-

sis (MCDA) for multisite many-objectives calibration of watershed models. The

framework encompasses four major components: (1) a quantitative definition of the

system behavior that captures the priorities of the analyst according to the explicit

modeling purpose, (2) a proper formulation of objective functions that reflects the

model error structure for all objectives considered in the study, (3) an efficient multi-

objective optimization algorithm to expose trade-offs amongst conflicting hydrologic
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objectives, and (4) a multi criteria decision analysis (MCDA) to select alternative

parameter sets consistent with the model application purposes reflected in the defini-

tion of system behavior. A case study is presented to demonstrate the application of

the proposed computational framework for calibration of the Soil and Water Assess-

ment Tool (SWAT) [Neitsch et al., 2005] for hydrologic and water quality modeling

in the Eagle Creek Watershed, Indiana, USA.

2.2.1 Behavioral solutions

Application of behavior/non-behavior classification in environmental modeling

was first examined by Spear and Hornberger [1980]. Behavioral solutions of a model

comprise a subset of conceptually plausible responses that are judged by the analyst

to be satisfactory according to past observations of the system under study [Schaefli

et al., 2011]. This requires selection of performance criteria and behavioral thresh-

olds such that the solution is rejected when model responses fall outside acceptable

ranges or thresholds. Acceptance thresholds are subjectively chosen based on the ex-

perts’ judgment according to model application goals and objectives. Moriasi et al.

[2007] and Rossi et al. [2008] established guidelines for evaluating the performance

of watershed models. Thresholds were defined based on dimensionless model eval-

uation statistics including Nash-Sutcliffe model efficiency coefficient (NSE) [Nash

and Sutcliffe, 1970] and percent bias (PBIAS). The NSE measure determines the

relative magnitude of the residual variance compared to the observed data variance.

It indicates how well the plot of observed versus simulated values fits the 1:1 line.

The coefficient can range from −∞ to a perfect match of +1:

NSE = 1−
∑n

i=1 (ŷi − yi)2∑n
i=1 (yi − ȳ)2

(2.1)

where ŷi and yi denote, respectively, the simulated and observed responses for time-

step i, n is the number of observations, and ȳ denotes the mean of observed re-

sponses. NSE has been recommended for use by the American Society of Civil
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Engineers (ASCE) [ASCE , 1993] and is a commonly used statistical measure for

calibration of watershed models. Servat and Dezetter [1991] also found NSE to be

the best objective function for reflecting the overall fit of a hydrograph.

PBIAS is a measure of the average tendency of simulated values to be larger

or smaller than corresponding observed values and is obtained by summation of the

ratios of absolute error to observed value at each time-step:

PBIAS = 100
n∑
i=1

|ŷi − yi|
yi

(2.2)

PBIAS is also recommended by ASCE and has the ability to clearly indicate

poor model performance [Gupta et al., 1999]. PBIAS is a particularly useful mea-

sure for evaluation of model performance for nutrients, pesticides, and other con-

taminants that are addressed in watershed management programs such as TMDLs

based on the average annual response [Moriasi et al., 2007].

2.2.2 Likelihood function derivation

Let’s consider a watershed model M with a vector of p parameters (θ) within

the feasible parameter space (Θ) that simulates the response vector of the watershed

(ŷ) as follows:

ŷ = M(θ), θ ∈ Θ ⊂ Rn (2.3)

The discrete stochastic time-series vector of model residuals is:

E(θ) = ŷ − yi = M(θ)− y (2.4)

where y is the vector of observed (measured) output response. The goal of calibration

procedures is to estimate θ such that the residuals are as close to zero as possible.

Bayesian methods are commonly used for parameter estimation and uncertainty

analysis of hydrological and water quality models [Stedinger et al., 2008; Vrugt et al.,
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2006, 2009b]. Bayesian statistics consider model parameters as stochastic compo-

nents, and the joint posterior probability distribution of the parameters conditioned

on the observed response is expressed as [Box and Tiao, 1992]:

P (θ|y) = c·P (θ) · `(E|θ) (2.5)

where c is a normalization constant, ` is called the likelihood function and represents

the likelihood of producing model residuals (E) for a given set of model parameters

(θ), while θ denotes the prior probability density function of θ that is assigned

before assimilation of any observed data. Assuming that residuals are normally

and independently distributed (NID) with mean equal to zero and unknown but

constant standard deviation σe, the likelihood function l will then take the following

form [Box and Tiao, 1992]:

`(E|θ) =
n∏
i=1

1√
2πσ2

e

exp

[
−(ŷi(θ)− yi)2

2σ2
e

]
(2.6)

where n is the number of observations. Since monotone transformations do not

affect maxima, the same parameter values that maximize the likelihood function

also maximize the logarithm of likelihood function, referred to as log-likelihood

function (`∗):

`∗(E|θ) = −n
2
ln(2π)− 1

2
lnσ2n

e −
1

2
σ−2
e ·

n∑
i=1

[ŷi(θ)− yi]2 (2.7)

Since in most cases the errors in hydrological and water quality modeling are

not normally distributed, independent, and homoscedastic, suitable transformations

must be applied to account for error characteristics that are not consistent with

assumptions made for deriving Eq. (2.7). The first-order autoregressive (AR-1)

transformation of the residuals can be used to account for correlated errors:

Ei = ρEi−1 + νi, i = 1, ..., n (2.8)
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where ρ is the lag-1 serial correlation coefficient for the residuals E , and ν ∼ N(0, σ2
ν)

is the innovation term with zero mean and constant variance ν2. Consequently,

the corrected time series of residuals after the AR-1 transformation will take the

following form:

δ(θ, ρ|y) = Ei(θ)− ρEi−1(θ) (2.9)

Sorooshian and Dracup [1980] showed that substituting the AR-1 transforma-

tion into the log-likelihood function of Eq. (2.7) yields:

`∗(E|θ) =− n

2
ln(2π)− 1

2
ln

σ2n
ν

1− ρ2
− 1

2
(1− ρ2) · σ−2

ν [ŷ1(θ)− y1]2

− 1

2
σ−2
ν ·

n∑
i=2

{(yi − ρyi−1)− (ŷi(θ)− ŷi−1(θ))}2

(2.10)

The terms σ2
ν and ρ can be estimated using the Bayesian approach [Vrugt et al.,

2009a] or can be assigned based on prior knowledge.

In the case that residuals do not have a stable variance, one can use a suit-

able transformation of the residuals [Box et al., 2008; Kuczera and Mroczkowski ,

1998; Stedinger et al., 2008] or different objective functions for different portions of

the hydrologic record. The transformation proposed by Box and Cox [1964] and

alternate power transformations have been commonly used in hydrologic modeling.

The extended form of the Box-Cox transformation of the simulated and observed

hydrologic fluxes takes the following form [Yeo and Johnson, 2000]:

τ(y) =

{
(y+λ2)λ1−1

λ1
, if λ1 6= 0

log(y + λ2), if λ1 = 0
(2.11)

where λ1 and λ2 are transformation parameters. λ2 should be chosen such that

y + λ2 > 0 (or λ2 > −y ) and λ1 can be estimated using maximum likelihood

function. The likelihood function is constructed based on the assumption that the

transformed data, τ(y), are normally distributed and then this function is maximized

with respect to the unknown value (λ1).
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2.2.3 Multisite many objective optimization algorithms

The multisite many objectives calibration problem can be stated as an opti-

mization problem as follows [Gupta et al., 1998]:

minimize F (θ) = {F1(θ), ..., Fm(θ)}, θ ∈ Θ ⊂ Rn (2.12)

where m is total number of objective functions considering all hydrologic and wa-

ter quality variables of interest at all sampling sites. Each of the objectives in Eq.

(2.12) can be formulated using the negative of the log-likelihood function of Eq.

(2.10) after applying proper transformations of responses. Two general approaches

can be taken to search for the choice of optimal parameter values: a single objec-

tive approach or a truly multiobjective search method. Single-objective parameter

estimation techniques require fewer model evaluations to find the minimum value

of the aggregated objective function of the weighted errors. The efficiency of these

approaches is an important consideration, particularly for complex watershed mod-

els with long computational time for each model evaluation. However, they require

aggregation of the objectives using a statistically coherent scheme. Several methods

are available in the literature for aggregating objective functions, including mini-

mization of the total sum of squared residuals [Madsen, 2003; van Griensven and

Bauwens , 2003]. Other methods use statistically-coherent aggregation techniques

such as Bayesian statistics [Ajami et al., 2007; Stedinger et al., 2008; van Griensven

and Meixner , 2007].

Assuming the NID residuals for all variables at all observation sites, van Griensven

and Meixner [2007] showed that the likelihood function 2.6 can be stated as:

`(E|θ) =
m∏
j=1

nj∏
i=1

1√
2πσ2

e,j

exp

[
−(ŷi,j(θ)− yi,j)2

2σ2
e,j

]
(2.13)

where nj denotes the length of observed data for output variable j. The variance

of residuals for the objectives may be obtained from previous experience or a close
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investigation of the residuals. Taking the logarithms of Eq. (2.13) and applying the

AR-1 transformation scheme of Eq. (2.9), a proper likelihood function for multiple

outputs similar to the single output case of Eq. (2.10) can be derived as follows:

`∗(E|θ) =
m∑
j=1

{
−nj

2
ln(2π)− 1

2
ln

σ
2nj
ν,j

1− ρ2
j

− 1

2
(1− ρ2

j) · σ−2
ν,j [ŷ1,j(θ)− y1,j]

2

−1

2
σ−2
ν,j ·

nj∑
i=2

{(yi,j − ρyi−1,j)− (ŷi,j(θ)− ŷi−1,j(θ))2

} (2.14)

On the other hand, a truly multiobjective search algorithm does not require

aggregation of objectives [Deb et al., 2002; Zitzler and Thiele, 1999]. They can

be used to simultaneously minimize two or more conflicting objectives, resulting in

determination of a set of nondominated solutions that comprise the Pareto-optimal

front. Consequently, the analyst is faced with choosing the best alternative from a

set of nondominated solutions [Khu and Madsen, 2005]. MCDA methods provide

a computational framework to rank or group alternatives that are most consistent

with model application purposes.

2.2.4 Multi Criteria Decision Analysis

Multi criteria decision analysis (MCDA) is a numerical procedure to compare

or score alternatives on a comparable scale [Figueira et al., 2004; Jacquet-Lagrèze,

2001]. Typically, a MCDA method aims at one of the following goals: (i) choice:

to find the best alternative, (ii) sorting: to group the alternatives into well-defined

categories, (iii) ranking: to rank the alternatives in order of total preference, and

(iv) description: to describe alternatives in terms of their performance on meet-

ing the predefined criteria [Jacquet-Lagrèze, 2001; Triantaphyllou and Baig , 2005].

Combination of a MCDA method and behavioral thresholds can be employed to

sort the optimization solutions in groups based on the well-defined criteria. For

example, suggested error statistics and thresholds from Moriasi et al. [2007] can be

used to classify model simulations into “satisfactory”, “good”, and “very good” for

each objective included in the Pareto optimal surface.
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2.3 Case Study

The proposed computational framework was used for calibration of the Soil and

Water Assessment Tool (SWAT) in the Eagle Creek Watershed, Indiana (Figure 2.1).

Two single objective methods (SCE and DDS) and one multiobjective optimization

method (NSGA-II) were employed to determine optimal choices of SWAT parameter

values for modeling fluxes of water and nitrate at five locations within the watershed.

The SCE algorithm was selected because of its numerous successful applications for

parameter estimation of complex watershed models such as SWAT (e.g. Gassman

et al. [2007]; Sharma et al. [2006]; Zhang et al. [2009]). The performance of the DDS

algorithm was also evaluated for its demonstrated efficiency and fast convergence

for calibration purposes [Tolson and Shoemaker , 2007]. Moreover, the NSGA-II was

used as a truly multiobjective approach.

2.3.1 Study area and data availability

The Eagle Creek Watershed (ECW), located in central Indiana, has a drainage

area of 248.1 km2 and lies within the Upper White River Watershed, extending from

40◦01’24” to 40◦04’16” north latitudes and 86◦15’43” to 86◦16’45” west longitudes.

The watershed consists of 52% croplands, 27% pasture, 12% low and high density

urban areas, and 9% forest. The predominant crops are corn and soybeans. ECW

drains into Eagle Creek Reservoir, which supplies drinking water for the city of

Indianapolis. Figure 2.1 presents the location and land cover for the watershed. The

soils are generally poorly draining and developed from glacial materials with thin

loess over loamy glacial till and alluvial materials depositions. The dominant soils

are the Crosby-Treaty-Miami in the headwaters and Miami-Crosby-Treaty along the

downstream areas. The mean annual precipitation for the Eagle Creek Watershed

area is 1052 mm. Monthly mean temperatures for this area from 1971-2000 show
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Figure 2.1: Eagle Creek Watershed Map
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Table 2.1: Performance measure of model evaluation (adopted from Moriasi et al.
[2007]

Performance Rating
Percent Bias
(PBIAS-%)

Nash-Sutcliffe
Efficiency (NSE)

Daily
Streamflow

Monthly
NOx

Daily
Streamflow

Monthly
NOx

Satisfactory < 20 < 25 > 0.60 > 0.45
Good < 15 < 20 > 0.65 > 0.50
Very Good < 10 < 15 > 0.70 > 0.55

January as having the lowest average temperature of -3.3◦C and July as the being

the warmest month with an average temperature of 23.7◦C [Tedesco et al., 2005].

Daily streamflow data was available at the watershed outlet (outlet 35 in Figure

2.1, USGS Gauge # 03353200) from a USGS gauging station. Instantaneous samples

of nitrate (NO3) and nitrite (NO2) were available at multiple sites on bi-weekly and

monthly basis from Indiana Department of Environmental Management (IDEM).

NO2 and NO3 (NO2+NO3, referred to as NOx hereafter) data from four sites (outlets

20, 22, 27, and 32 as shown in Figure 2.1) were used in this study. Monthly NOx

loads were estimated from concentration data using the LOADEST program [Runkel

et al., 2004]. Behavioral classifications of “satisfactory”, “good”, and “very good”

are identified by a range of values for statistical measures of PBIAS and NSE in

Table 2.1, having stricter values for “very good” ratings.

2.3.2 Watershed model description: SWAT

The Soil and Water Assessment Tool (SWAT) [Arnold et al., 1998] was used

to represent hydrologic and water quality processes in the Eagle Creek watershed.

SWAT is a process based, distributed parameter, continuous time, and long-term

watershed model that runs on a daily time step. It subdivides a watershed into

subbasins connected by a stream network, and further delineates hydrologic re-

sponse units (HRUs) consisting of unique combinations of land cover and soils in
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each subbasin. Watershed processes simulated by SWAT include snow accumula-

tion and melt, evapotranspiration, infiltration, percolation losses, surface run-off,

and groundwater flows [Neitsch et al., 2005]. SWAT can simulate major nutrient

processes within a watershed. The nitrogen (N) cycle is simulated in five pools:

inorganic (including ammonium and nitrate) and organic (including fresh, stable,

and active). The main N processes are mineralization, decomposition, and immo-

bilization. Nutrients are introduced into the main channel through surface runoff

and lateral flow and transported downstream with channel flow. Plant uptake, den-

itrification, volatilization, leaching, and soil erosion are the major mechanisms of N

removal from a field. The transport rate of organic N with sediment is calculated

with a loading function developed by McElroy et al. [1976] and modified by Williams

and Hann [1978] for application to individual runoff events. The loading function

estimates daily organic N runoff loss based on the concentrations of constituents in

the topsoil layer, sediment yield, and an enrichment ratio. Nutrient transformations

in the stream are controlled by the in-stream water quality component of the model

that is adapted from the QUAL2E in-stream water quality model [Brown and Barn-

well , 1987]. More detailed description of the nutrient components of SWAT can be

found in Neitsch et al. [2005].

A 30-m resolution DEM from USGS National Elevation Dataset [USGS NED ,

2010], National Land Cover Dataset (NLCD) 1992 and 2001 [USGS NLCD , 2001] for

urban areas, National Agriculture Statistics Service (NASS) Cropland Data Layer

2000-2003 [USDA NASS , 2003] for croplands, and SSURGO data from national

resources conservation service (NRCS) [USDA NRCS , 2010] were used for watershed

subdivision and delineating HRUs in the SWAT model. The ECW was subdivided

into 35 subwatersheds and a total of 446 hydrologic HRUs.

SWAT has many input parameters used for predicting water quality and quan-

tity output responses. While automatic optimization techniques can construct pre-
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Table 2.2: Selected SWAT parameters for streamflow and nitrogen processes

Symbol Description Min Max
ALPHA BF Base flow recession coefficient, days 0 1
CANMX Maximum canopy storage, mm 0 10
CDN Denitrification exponential rate coefficient 0 0.3
CH K(1) Tributary effective hydraulic conductivity, mm/hr 0 300
CH K(2) Channel Effective hydraulic conductivity, mm/hr -0.01 500
CH N(1) Tributary channels’ Manning’s “n” 0.008 0.3
CH N(2) Main channel’s Manning’s “n” 0.01 0.3
CMN Mineralization rate of organic nutrients 0.001 0.003
CN F Curve number, % -10 10
ESCO Soil Evaporation Coefficient 0.01 1
ORGN Initial organic N concentration, kg-N/ha 1 10000
SFTMP Snowfall temperature, ◦C -5 5
SMFMN Snow melt factor, mm/◦C-day 0 10
SMTMP Snow melt base temperature, ◦C -5 5
SNO50COV Snow volume fraction for 50% snow cover, mm 0 0.9
SNOCOVMX Snow water content for 100% snow cover, mm H2O 0 650
SOL AWC Available water capacity, % -10 20
SURLAG Surface lag, day 1 12

dictive models with high accuracy by searching within the high-dimensional param-

eters space, it is still of interest in many applications to reduce the dimension of

the parameters prior to optimization [Fodor , 2002]. A two-step sensitivity analysis

(SA) was used to select the most important input parameters. First, a local screen-

ing SA method was employed on 118 SWAT input parameters affecting hydrology

and nitrogen processes to eliminate parameters with no influence on the selected

responses (stream discharge and nitrate). As a result, 34 parameters were selected.

Then, the more computationally expensive global SA method of Sobol’ [Saltelli and

Sobol’ , 1993] was used to select influential model parameters listed in Table 2.2.

Selected important parameters are in accordance with results of other studies (e.g.

Ullrich and Volk [2010]; Zhang et al. [2009]).

34



2.3.3 Available data and computational setup

Daily streamflow data at the watershed outlet (site 35) and monthly Nitrate and

Nitrite loads at four sites (sites 20, 22, 27 and 32) within the watershed were used

in this study. The sample size was 2922 for daily stream discharge in cubic meter

per second at the USGS site (site 35) and 45 for monthly NOx loads in tons/ha at

each of the other sites. The SCE and DDS techniques were implemented using the

single aggregated objective function of Eq. (2.14) according to streamflow response

at site 35 and NOx responses at sites 20, 22, 27 and 32. The NSGA-II method

was implemented using two strategies: (1) five independent objectives, including

one streamflow objective at site 35 and four NOx objectives at sites 20, 22, 27, and

32; and (2) two objectives, including one streamflow objective at site 35 and one

aggregated NOx responses for sites 20, 22, 27, and 32 using the likelihood function of

Eq. (2.14). Simulations were performed for a period of 11 years from 1993 through

2003, including three years as the warm-up period. For consistency, the maximum

number of function evaluations for all optimization methods were set to 5,000 as

one of the termination conditions. Population size for NSGA-II was set to 50.

2.3.4 Results and discussion

Overall, the results of this study suggest that single objective approaches (SCE

and DDS) are more efficient in finding a lower value for the aggregated single ob-

jective function of weighted errors than the multiobjective approach (NSGA-II).

However, multiobjective approaches are more likely to find solutions that are con-

sistent with the observed behavior of the system for all objectives of interest at all

sites within the watershed. In particular, the results indicated that the use of mul-

tiobjective optimization methods in conjunctions with a proper MCDA procedure

is favorable when stricter definition of system behavior is considered.
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Figure 2.2: Optimal solution from different optimization techniques in a two-
dimensional response space

Figure 2.2 depicts the final optimal solutions from all optimization techniques

mapped into a two-dimensional space. The x-axis shows the global objective func-

tion for NOx (Eq. 2.14) for four outlets and the y-axis shows the streamflow objec-

tive function. The results demonstrated that the single-objective optimization tech-

niques outperform the multiobjective techniques in finding solutions that have lower

overall objective functions values. Furthermore, DDS exhibits greater efficiency and

faster convergence to the optimal solution than the multiobjective NSGA-II method.

Figure 2.3 illustrates the efficiency and convergence of optimization techniques to

the aggregated objective function. It shows that the fewer the number of objective

functions, the faster the convergence to the optimal solution for the aggregated ob-

jective function, this is more clear from the first 2,000 model simulations. DDS has

the fastest convergence rate with five-objective NSGAII (5OF NSGA-II) converging

with the slowest rate. This is in agreement with other studies (e.g. [Chen et al.,

2002]) that found the “curse of dimensionality” may decrease the convergence rate

of the optimization algorithms.
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Figure 2.3: Efficiency and Convergence rate of different optimization techniques.
The y-axis is the aggregated objective function of weighted errors of Eq. (2.14)

Efficiency is an important consideration for parameter estimation of complex

environmental models. However, effectiveness in finding solutions that provide an

acceptable representation of natural systems for all objectives and sites is of keen

interest. Here, we used the performance measures presented in Table 2.1 to classify

optimal solutions from all methods (including Pareto-optimal parameter sets) to

satisfactory, good, and very good solutions (Figure 2.4). None of the single objec-

tive optimal solutions were behavior-giving (i.e. behavioral), while all of the Pareto

solutions from two-objective NSGA-II (2OF NSGA-II) and 33% of the Pareto solu-

tions from 5OF NSGA-II were within the “satisfactory” behavioral region (Figure

2.4-a).

The 5OF NSGA-II was the only method that included behavioral solutions

when stricter behavior definitions were used. For the “good” behavior definitions for

all output variables at all sites, no solutions were obtained from the single-objective

methods (Figure 2.4-b). With “very good” behavioral thresholds for streamflow
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Figure 2.4: Behavioral Pareto solutions for different performance levels: (a) both
streamflow and nitrate satisfactory; (b) both streamflow and nitrate good; and (c)
very good streamflow and satisfactory nitrate. Non-behavior Pareto solutions are
depicted in light gray

and “satisfactory” behavioral thresholds for NOx, the 5OF NSGA-II was the only

method that included a behavioral Pareto-optimal solution (Figure 2.4-c).

The results of this study indicate that a low fraction of the behavioral solu-

tions from multiobjective methods belong to the Pareto-optimal front. Therefore,

it may be necessary to examine dominated (i.e., sub-optimal) solutions to identify

solutions that are consistent with the observed responses at multiple sites. Table 2.3

presents the percentage of solutions that were classified as behavioral according to

the performance measures in Table 2.1. Figure 2.5 depicts the regions encompass-

ing streamflow and NOx objective functions corresponding to the ”satisfactory”

performance level. In this case, the size of behavioral response region decreased

as the number of objective functions decreased, with SCE having the smallest re-

gion. 2OF NSGA-II encompassed the highest number of satisfactory simulations

(i.e. 80%) while other algorithms produced less than 15% satisfactory simulations.

This can be explained by the fact that a trade-off exists between number of ob-

jectives in the optimization problem and convergence rate of the algorithms. 5OF

NSGA-II had fewer “satisfactory” solutions than the 2OF NSGA-II because of the
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Table 2.3: Percentage (%) of behavioral solutions obtained for each algorithm

Method
Performance Level

Satisfactory Good Very Good
DDS 12.6 0.02 0
SCE 12 0 0
2OF NSGA-II 80 6.3 0
5OF NSGA-II 10.5 1.3 0.1

slower convergence rate towards the final optimal solutions. 2OF NSGA-II found

the Parteo-optimal front in a fewer number of model evaluations, and thus more

satisfactory solutions were identified. However, 5OF NSGA-II was the only method

that identified “very good” behavioral solutions (Table 2.3). On the other hand, ag-

gregation of the objective function values in single objective optimization methods

resulted in domination of the streamflow objective due to its substantially higher

number of observations and failure to meet the satisfactory thresholds of NOx re-

sponses. This can be also noticed from clustering of behavioral simulations around

the minimum of objective function 2 (corresponding to the streamflow objective)

and extension of the behavioral response region box along the objective function 1

in Figure 2.5.

The Pareto-optimal front from NSGA-II provided several nondominated param-

eter sets that can be selected as the choice of optimal solution. Gupta et al. [1998]

suggested that Pareto-optimal solutions can be used to investigate the uncertainty

of model parameters. Figure 2.6 shows the uncertainty in parameter values from

Pareto front solutions. The y-axis reflects parameter values normalized to the initial

parameter ranges listed in Table 2.2, i.e., θNORM = (θ−θL)/(θU −θL). In the case

of 2OF NSGA-II, the parameter values exhibit negligible uncertainties except for

two parameters: main channels Mannings roughness coefficient (CH-N2) and min-

eralization rate of organic nutrients (CMN). This indicates that the variations in

the two objective functions examined in this case could be primarily apportioned to
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Figure 2.5: The range of objective function values corresponding to behavioral solu-
tions based on the ”satisfactory” performance level for both streamflow and nitrate.
Percentages in the parenthesis are the percentage of behavioral solutions obtained
from each algorithm

the uncertainty in the values of these two parameters. On the other hand, a larger

number of parameters influenced the uncertainties in the five objectives examined

in the 5OF NSGA-II case. Clearly, aggregating information from multiple stations

into one objective underestimates the uncertainty in the parameters.

It should be also noted that given current developments of parallel and dis-

tributed computing technologies, overall runtime can be reduced substantially for

optimization methods that can utilize individual parallel processing units. For ex-

ample, NSGA-II is inherently well suited for parallelization within each generation

to accelerate the convergence to the Pareto-optimal front. In addition, simulations

using the SCE optimization method can be parallelized for each individual complex

at a time. Unfortunately, similar to Markov Chain Monte Carlo methods, a new

DDS run in a chain cannot be initiated before completion of the previous simulation.

For this reason NSGA-II and SCE optimization runs were 6-7 times faster than DDS

for an 8-core CPU.
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Figure 2.6: Uncertainty of model parameters obtained from solutions on the Pareto-
optimal front

Table 2.4: Transformation parameter values

Variable Outlet Correlation
Coefficient (ρ)

σν Box-Cox transforma-
tion parameter (λ1)

Streamflow 35 0.89 0.48 (m3/s) 0.06
20 0.35 0.98 (kg/ha-month)

0.12
Total Nitrate 22 0.14 0.87 (kg/ha-month)
(NO2+NO3) 27 0.26 0.87 (kg/ha-month)

32 0.26 0.82 (kg/ha-month)

A careful analysis of the transformed residuals showed that the consecutive em-

ployment of the Box-Cox transformation and the AR-1 model was useful for satisfy-

ing the assumptions made for the derivation of Eq. (2.14). The Box-Cox transforma-

tion stabilized the variance of the residuals and reduced the heteroscedasticity, while

the AR-1 transformation removed the autocorrelation in the model errors. Figure

2.7 shows the residual analysis results for all output variables of interest and Table

2.4 summarizes parameter values of the transformations used for proper application

of Eq. (2.14) in the ECW. Interestingly, the standard deviation of innovations (σν)

and the Box-Cox transformation parameter for NOx at all sites were within the

same range, while the correlation coefficients (ρν) were slightly different.
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Figure 2.7: Analysis of residual for individual outputs after Box-Cox and AR-1
transformations: (a) lag-1 correlation of residuals, (b) residuals versus simulated
values fordepiction of heteroscedasticity, (c) actual (bars) and fitted (solid line) fre-
quency of residuals, and (d) partial auto-correlation coefficients (stems) of residuals
with 95% significance levels (solid horizontal lines)
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Figure 2.8: Scatter plot matrix of transformed residual errors (kg/ha-month) at four
NO2+NO3 observation sites within the ECW

Although the above-mentioned transformations effectively removed the auto-

correlation among residuals for an output variable at a given site, they did not

address potential cross-correlation between model errors at different sites. This is-

sue is particularly important in the context of watershed management where water

quality data are typically collected at nested observation sites. Indeed, our analysis

revealed the presence of strong correlation between model errors at various sites

within the ECW, with coefficients of correlation ranging from 0.56 to 0.94 (Figure

2.8). The correlation was stronger for nested sites (e.g., sites 20 and 27). This high-

lights the necessity of using multiobjective approaches for calibration of watershed

models at multiple sites within a given watershed system. Figure 2.8 summarizes

the cross-correlation analysis of residuals for NOx data. To use Eq. (2.14) for ag-

gregation of likelihood function from multiple sites, additional statistical methods

should be employed to remove the cross-correlation between residuals.
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2.4 Summary and Conclusions

The application of watershed models for pollutant source identification, non-

point source pollution control, and watershed management requires assimilation of

observed hydrologic and water quality responses with varying characteristics (i.e.,

quality and frequency) collected at different locations along the stream network. Of-

ten, observed data are reconciled using an aggregated objective function of weighted

errors, and a single objective automatic calibration algorithm is used to identify the

set of parameter values that minimizes the objective function. Recent studies have

demonstrated that the selected objective function must be statistically correct to

effectively determine optimal parameter values [Mantovan and Todini , 2006; van

Griensven et al., 2008]. However, calibration of a watershed model for many output

variables at multiple sites is a multi criteria decision process. The analyst must

choose a solution that not only minimizes errors, but more importantly, results in

model simulations that adequately simulate the system behavior.

To this end, a computational framework was suggested to facilitate multisite

many objectives calibration of watershed models, which includes: (i) an a-priori

characterization of system behavior; (ii) a formal and statistically correct formula-

tion of objective function(s) of model errors; (iii) an optimization engine to deter-

mine the Pareto-optimal front for the selected objectives; and (iv) a multi criteria

decision analysis tool to select optimal solutions from the Pareto-optimal front that

are most consistent with the goals of the modeling study. The framework was

demonstrated for calibration of the SWAT model for streamflow response at one

site and nitrate response at four locations within the Eagle Creek Watershed in

Indiana. Both single objective (SCE and DDS) and multiobjective (NSGA-II) al-

gorithms were examined to estimate 18 important model parameters important for

estimating streamflow and nutrients.
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This study revealed that for multisite many objective automatic calibration

of a watershed model, both a formal likelihood function considering the structure

of residuals and a multiobjective optimization approach are essential, particularly

when a strict definition of system behavior is considered. A proper likelihood func-

tion was derived using Bayesian statistics that can be used to reconcile observed

hydrologic time series for disparate objectives at multiple stream locations. The

Box-Cox transformation and first-order autoregressive model were employed in se-

quence to reduce heteroscedasticity and eliminate correlation between residuals. It

became evident that single objective calibration methods (SCE and DDS) find a

lower (better) value for the aggregated objective function of weighted errors while

requiring fewer model evaluations. However, the use of the solutions from single ob-

jective techniques was limited because the simulations did not mimic the observed

behavior of the system for all objectives at all sites. Based on a satisfactory, good,

or very good classification of model simulations, multiobjective methods were the

only methods that yielded behavioral solutions. Satisfying a stricter definition of

the system behavior required incorporation of a separate objective function for each

response at each location within the multiobjective optimization framework.

It was evident that as the number of objectives in the calibration procedure

increases, the convergence to the Pareto-optimal front becomes slower. The ag-

gregation of information for the same response variable (nitrate in this study) at

different observational sites using the proposed likelihood function appeared as a

pragmatic approach for enhancing the speed of convergence to the Pareto-optimal

front. However, residuals for nested sites tended to be highly correlated. Therefore,

aggregation of information even for the same response should be conducted with a

careful examine of residuals.
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Chapter 3

A MIXED DISCRETE-CONTINUOUS VARIABLE

MULTIOBJECTIVE GENETIC ALGORITHM FOR TARGETED

IMPLEMENTATION OF NONPOINT SOURCE POLLUTION

CONTROL PRACTICES

Highlights

Planning for the implementation of nonpoint source pollution control strategies

at the watershed scale hinges on abating pollutant movement from the landscape

to water bodies at minimum cost. This paper presents an integrated simulation-

optimization approach for targeted implementation of agricultural conservation prac-

tices at the watershed scale. A multiobjective genetic algorithm (NSGA-II) with

mixed discrete-continuous decision variables was coupled with a distributed water-

shed model, Soil and Water Assessment Tool (SWAT), to identify optimal types

and locations of conservation practices for nutrient and pesticide control at the

watershed scale. While management options for NPS pollution control could be

characterized as discrete or continuous decision variables, pervious optimization

studies have only used binary representation of these choices. In this study, a novel

discrete-continuous decision variable representation was used to find more realistic

solutions for nonpoint source pollution control planning. Application of the pro-

posed framework in the Eagle Creek Watershed, Indiana, indicated that while the

types and locations of conservation practices from the mixed-variable NSGA-II were

more effective in meeting water quality targets at lower costs than binary-variable
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optimization, the procedure was considerably slower in finding the Pareto-optimal

solutions and the tradeoffs between environmental and economic factors. A method

for hybridization of binary- and mixed-variable NSGA-II methods in the context of

NPS pollution control practices was developed to enhance the computational effi-

ciency of the optimization procedure. As a result, the number of model simulation

required for convergence to the Pareto-optimal solutions was reduced by 96 percent.

The conceptual complexity and computational requirements of optimization-based

approaches are impediments to their wider application for targeted implementation

of NPS pollution control strategies. The methods and finding of this study address

these issues and could result in a more effective implementation of management

strategies at the watershed scale.

Keywords: Nonpoint source pollutions, soil and water conservation, mixed discrete-

continuous multiobjective optimization, atrazine, nitrate, SWAT
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3.1 Introduction

Nonpoint source (NPS) pollution control practices, also known as Best Manage-

ment Practices (BMPs), are widely accepted control measures of nonpoint sources

of pollutants from agricultural landscapes [Novotny , 1993; Ritter and Shirmoham-

madi., 2001; Mostaghimi et al., 1997]. The primary goal of watershed scale con-

servation plans is minimizing pollutants movement from fields to water bodies at

minimum cost. Thus, watershed planning is inherently a multiobjective problem.

Watershed plans for nonpoint source pollution control are developed using several

approaches. Government agencies promote implementation of NPS pollution con-

trol practices by recommending cost-share program that is a field-by-field approach

[Veith et al., 2003]. While this approach might be effective in a field or farm level,

maximum water quality benefits at the watershed scale is not guaranteed [Arabi

et al., 2006]. Thus, NPS pollution control can be enhanced through development of

the watershed scale conservation plans [Maringanti et al., 2011]. The critical source

area targeting method is a watershed scale planning approach that suggests imple-

mentation of conservation practices in critical source areas within the watershed,

which contribute larger amounts of NPS pollutants. Targeted implementation of

conservation practices in this approach is often subjective and based on the experts

recommendations [Veith et al., 2004].

Another drawback with critical source area approach is that it does not in-

corporate all important watershed processes and interactions, and therefore, does

not guarantee the cost-effectiveness of the developed conservation plan. In addi-

tion, monitoring long-term impact of implemented conservation practices on water

quality via field-studies is infeasible mainly because of the complexity of hydrologic

and water quality processes and changes in annual weather pattern [Arabi et al.,

2007; Veith, 2002]. Moreover, impact of conservation practices can be delayed for

several years [Veith, 2002]. Hence, estimation of the water quality benefits of NPS
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pollution control strategies necessitate the use of appropriate hydrologic and water

quality models. Watershed models can simulate hydrologic and water quality re-

sponses within a watershed system of interest and can help to identify water quality

impact of conservation practices.

Hydrologic and water quality processes are highly complex and comprise a

network of nonlinear dynamics. Distributed watershed models are commonly used to

simulate natural processes and the response of the watershed to changes in land use,

climate, and land and water management. The number of possible NPS pollution

control scenarios within a watershed increases exponentially with the number of

fields. Thus, it is not possible to evaluate performance of all possible scenarios

at all fields within the watershed. Furthermore, incorporation of socioeconomic

factors in the watershed planning process increases complexity of the procedure for

identification of cost-effective nonpoint source pollution control plan. Recent studies

have shown that optimization methods hold great promise for optimal allocation of

NPS pollution control measures at the watershed scale [Arabi et al., 2006; Veith,

2002; Maringanti et al., 2011; Jha et al., 2009; Rabotyagov et al., 2010].

The watershed planning process involves many objectives. Optimal allocation

of conservation practices requires incorporation of water quality criteria as well as

socioeconomic factors in the planning process. However, aggregation of disparate

and often conflicting environmental and socioeconomic criteria into a single objec-

tive is a pragmatic approach for the evaluation of proposed management actions and

comparisons amongst them. When a single objective function is used, the objec-

tive function must reflect the compromise between often conflicting environmental,

economic, and social objectives [Ngatchou et al., 2005]. However, finding a satisfac-

tory compromise solution that satisfy all stakeholders’ preferences is difficult if not

impossible [Srinivas and Deb, 1994]. Multiobjective optimization methods present

an alternative approach that can effectively explore the tradeoffs between socioe-

conomic and environmental factors. While earlier studies utilized single-objective
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optimization approach for optimal allocation of conservation practices [Veith et al.,

2003; Arabi et al., 2006], more recent efforts have focused on the development and

application of multiobjective approaches [Jha et al., 2009; Maringanti et al., 2008].

The type, size, and capacity of conservation practices are usually defined explic-

itly as binary options and optimization algorithms are operated to find the optimal

combination of decision variables. However, many real world decisions problems

consist of continuous decision variables. While, most of the conservation practice

optimization studies considered binary decision variables, recent studies have dealt

with discrete (integer) decision variables [Maringanti et al., 2011]. However, in-

clusion of continuous decision variables may lead to the selection of more realistic

and better solutions in terms of the final “optimal” set of type and placement con-

servation practices, also known as “Pareto-optimal front” solutions. It must be

noted that representation of decision variables in continuous form is not always a

practical choice. For example, length of stabilized river bank, size of ponds and

wetlands, and percentage decrease in application of chemicals can be considered as

the continuous decision variables, although discrete decision variable might be more

preferable for width of grassed waterways and height of grade stabilization struc-

tures. Discrete-continuous optimization, also referred to as “mixed-chromosome”

or “mixed-variable” optimization in evolutionary algorithms, is an active research

topic with applications in a variety of engineering and scientific disciplines [Gan-

tovnik et al., 2003]. Several studies have shown that implementation of evolutionary

algorithms with binary decision variables is more efficient than implementation with

continuous variables by virtue of its reduced objective space to finite sets of points

[Gantovnik et al., 2003; Brockhoff and Zitzler , 2007; Andriyenko et al., 2012]. How-

ever, the choices of types and location of nonpoint source pollution control strategies

include both discrete and continuous options. Hence, implementation of evolution-

ary algorithms using continuous variables will likely result in identifying solutions

with overall better fitness.
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Genetic algorithm (GA) and its extensions have been used as efficient and

effective tools for optimal placement of conservation practices because, among other

pragmatic considerations, they do not require differentiability and continuity for

the objective and constraint functions. GA, originally proposed by Holland [1975],

mimics the process of natural evolution such as selection, crossover, and mutation,

referred to as genetic operators. The GA optimization and its extensions have

shown to be particularly suited for optimization problems consisting several, often

conflicting objectives [Goldberg , 1989; Zitzler and Thiele, 1999]. GAs perform well

in finding optimal solutions within large search spaces and, if properly implemented,

can efficiently explore (broad search) and exploit (local search) the search space [El-

Mihoub et al., 2006]. The GA-based optimization methods guarantee “convergence”

but not “optimality” [Ingber and Rosen, 1992]. In other words, although it is not

possible to guarantee that the global optimal solution is found, identifying regions

that encompass some good solutions can be ascertained [Muleta and Nicklow , 2005;

Vecchietti et al., 2003].

The computational requirements and technical complexity of optimization ap-

proaches are barriers to adoption of GA for cost-effective implementation of NPS

pollutions control practices [Vecchietti et al., 2003]. Several methods have been pro-

posed to facilitate faster convergence of evolutionary algorithm optimization meth-

ods by hybridizing search algorithms [Renders and Flasse, 1996; Joines et al., 1997;

Durand and Alliot , 1999; Sotiropoulos et al., 1997] and/or decision variables [Lem-

pitsky et al., 2008]. Hybridization of GAs with a local search method have shown

to enhance the computational efficiency and the overall performance of evolution-

ary algorithms [Sinha and Goldberg , 2003; van Hentenryck and Milano, 2011]. Local

search methods are employed to search for a better set of solutions within a marginal

proximity of the results obtained from the global method. Hybridization of decision

variables has also shown successful application in optimizing complex problems by

reducing the computational time [Lempitsky et al., 2008].
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The primary goal of this study is to present an integrated simulation-optimization

framework to identify the set of optimal types and locations of NPS pollution con-

trol practices at the watershed scale. Two specific objectives are defined: (1) to

develop a novel genetic algorithm-based multiobjective optimization method, which

will focus on improved selection of decision variables and versatile formulation of

environmental and economic objectives; (2) to determine if mixed-variable optimiza-

tion method can identify more cost-effective NPS pollution control plans than binary

optimization method; and (3) to examine hybridization of GA for faster convergence

to optimal solutions. The proposed framework is demonstrated for optimal alloca-

tion of agricultural conservation practices that minimize nutrient and pesticide loads

at minimum cost in the Eagle Creek Watershed, Indiana, USA.

3.2 Methods and Materials

The proposed simulation-optimization framework for optimal allocation of NPS

pollution control practices include three main component: (1) watershed model for

simulation of hydrologic and water quality processes under scenarios with and with-

out NPS pollution control measures; (2) an optimization engine for reconciliation

of environmental and socioeconomic factors; and (3) an economic module for cost-

benefit analysis of the implemented conservation plans. The framework was tested

for optimization of conservation plans using binary- and mixed discrete-continuous

variables for minimizing atrazine and nitrated loads at minimum cost in the Eagle

Creek Watershed, Indiana, USA. Hybridization of search algorithms and decision

variables were also examined to enhance the computational efficiency of the opti-

mization procedure.

3.2.1 Multiobjective Optimization Framework

The framework developed in this study incorporates water quality benefits ex-

pressed in terms of the reduction of sediment, nutrient, and pesticide fluxes, on-
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site and offsite costs and benefits, and water quality vulnerability. The proposed

optimization approach for targeting NPS pollution control practices includes the

following objective functions and constraint functions:
minimize y = f(x|θ, I, cs, td, T ) pollutant load(s)

minimize C = g(x|θ, I, p, cs, td, T ) cost(s)

maximize π = h(x|θ, I, r, cs, td, T ) profit(s)

(3.1)

subject to: 
y ≤ yallowable water quality targets

C ≤ Cmax economic constraints

N(x|m, s) ≥ 0 management and social constraints

where x denotes discrete-continuous decision variables reflecting the type and lo-

cation of practices, y represents pollutant load(s) over the assessment period T

estimated by the watershed model f , θ is the vector of calibrated watershed model

parameters, I represents input forcing, td is the design lifetime of conservation prac-

tices, C represents the total on-site and off-site cost of implementation of nonpoint

source pollution control practices over the assessment period T , p is the unit cost

of conservation practices, π is the total on-site and off-site profit computed for the

conservation strategy over the assessment period T , r is the unit price of beneficial

products of conservation strategy. The term yallowable indicates water quality stan-

dard, Cmax is the maximum available budget for implementation of the nonpoint

source pollution control strategy x The term N represents management preferences

(m) and social values (s), and.

The objective functions in Eq. (3.1) are often conflicting and incommensu-

rable. For example, implementation of a larger number of conservation practices

would likely result in lower pollutant loads, but the cost for implementation and

maintenance of practices would increase. Hence, the optimal solution(s) for each

objective could substantially differ from the optimal solution(s) for the other objec-

tives. Multiobjective optimization approaches can determine a set of nondominated
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solutions that comprise the “Pareto-optimal front”. Nondominated solutions are set

of solutions in the search space that are better than any other solution in space in

one or more objective [Srinivas and Deb, 1994]. Any improvement in one objec-

tive among Pareto-optimal solutions will essentially result in the degradation of at

least one other objective [Pareto, 1971]. Nondominated Sorted Genetic Algorithm II

(NSGA-II) [Deb, 2001] is among the most commonly used multiobjective global op-

timization methods with numerous successful application in watershed management

[Bekele, 2005; Nicklow et al., 2010]. Hence, the NSGA-II was used as the search

method in identifying optimal solutions for allocation of conservation practices.

3.2.1.1 Environmental Criteria

Water quality and environmental impacts of NPS pollution control practices

are evaluated by means of an appropriate distributed watershed model. Minimizing

pollutant loads, or alternatively maximizing reduction of pollutant loads, is a key

objective in nonpoint source pollution control planning. The reduction of pollutant

load z can be calculated as:

∆Lz =
Lz,base − Lz,BMP

Lz,base
×%100 (3.2)

where ∆Lz is the estimated percent reduction of pollutant load z, while Lz,base

and Lz,BMP represent the pollutant loads before and after implementation of NPS

pollutions control practices, respectively. Water quality standards (yallowable in Eq.

(3.1) are expressed differently depending on whether the transport of the pollutant

of concern would cause chronic or acute contamination. Nutrient and pesticide load

(or concentration) reduction targets are typically stated on an average annual basis

[US EPA, 2008]. U. S. Environmental Protection Agency (EPA) has set maximum

contaminant level of 3 ppb and 10 mgN/L for atrazine and nitrate in drinking water,

respectively [US EPA, 1988].
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3.2.1.2 Economic objective

Nonpoint source pollution control plans yield benefits in water quality and

wildlife habitats, but their implementation and maintenance come at a cost to stake-

holders that should be considered in decision making process. Several graphical and

mathematical methods have been used for economic evaluation of agricultural tech-

nology and conservation practices [World Bank , 2001; FAO , 2001; Whittaker , 2003;

Arabi et al., 2006]. In particular, Data Envelopment Analysis (DEA) [Charnes

et al., 1978; Xu and Prato, 1995] provides a methodology for economic analysis of

the agricultural technology and conservation practices. In this approach, each of

the K decision making units uses a set of M inputs x = (x1, · · · , xM) ∈ RM
+ (e.g.,

conservation practices and chemicals application) to produce a set of N outputs

u = (u1, · · · , uN) ∈ RN
+ (e.g., environmental benefits and crop yield). Representing

input unit prices by p ∈ RM
+ and output unit prices by r ∈ RN

+ , the profit (net

return) throughout the study area is computed as [Whittaker , 2003]:

π(x, u) =
K∑
k=1

{
N∑
n=1

[(rn,k + αn,kr )(un,k + βn,ku )]−
M∑
m=1

[(pm,k + αm,kp )(xm,k + βm,kx )]

}
(3.3)

where αr and αp represent changes in the unit prices of outputs and inputs, respec-

tively. The terms βu and βx denote, respectively, changes in magnitude of outputs

and inputs due to the application of conservation plan.

Equation (3.3) can be simplified using a partial budgeting approach, which is

suited for evaluation of the economic effects of adjustments in some portion of the

business [Roth and Hyde, 2002]. The method only considers the costs and returns

that will be changed by implementation of technology or management practices.

For example, to study economic impacts of the nutrient reduction in an agricultural

field, only the “changes” in crop production and chemical application are considered.

Thus, assuming constant input and output prices, Eq. (3.3) simplifies to[Whittaker ,
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2003]:

π(x, u) =

benefit︷ ︸︸ ︷
K∑
k=1

N∑
n=1

rn,kβn,ku −

cost︷ ︸︸ ︷
K∑
k=1

M∑
m=1

pm,kβm,kx (3.4)

Cost of conservation practices consists of (i) implementation (or establishment),

(ii) maintenance, (iii) damage, and (iv) opportunity costs. Implementation cost in-

cludes cost of installation of conservation practice and technical and field assistance.

Maintenance cost is usually evaluated as a percentage of the establishment cost, rM

[Arabi et al., 2006]. Damage cost may include off-site damages, such as pollutants

delivered to streams, and on-site damage. Opportunity costs account for any gain

or loss from crop production foregone where conservation practices are established.

For individual conservation practices, the cost (C) is evaluated by:

C = C0 + rM × C0

(
1− (1− i)−td

i

)
+ CD + CO (3.5)

where C0 is the implementation cost and rM is the maintenance cost as a percentage

of C0, which is capitalized to be consistent with present value of implementation.

The term i denotes interest rate and td is the design lifetime of the conservation

practice in years. Damage cost, CD, and opportunity cost, CO, are included for

completeness, however set to zero hereafter. Total watershed cost of a nonpoint

source pollution control plan is computed by summing the costs of individual con-

servation practices implemented throughout the watershed.

A objective of NPS pollution control policy instruments is to maximize the ex-

pected net economic benefits to the society from pollution control [Ribaudo et al.,

1999]. The damage cost of nonpoint source pollutions is difficult to measure, largely

because of the unknown relationship between the transport of NPS pollutant loads

and the corresponding economic damage, and considerable time lags between causes

and effects of NPS pollution [Ribaudo et al., 1999; USDA NRCS , 2011]. Moreover,

site-specific estimation of offsite damage from nonpoint source pollution is data in-

tensive and cost prohibitive [Piper and Martin, 2001]. The benefit transfer method
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Table 3.1: Summary of offsite damage cost of environmental pollutants

Pollutant Cost (2012$/metric ton) Reference
Erosion 10.0 Hansen and Ribaudo [2008]
Total Nitrogen 6,000 Ribaudo et al. [1999]
Total Phosphorus 3,650 Fang and Easter [2003]
Pesticide 16,000 Pretty et al. [2001]

provides a fairly inexpensive approach for estimating the damage cost of NPS pol-

lution [Brookshire and Neill , 1992], where economic values of damage/benefit from

a “study area” are extended to a “policy area” in another time and location [Walsh

et al., 1992; Desvousges et al., 1992]. Previous studies have used the benefit transfer

approach to estimate offsite cost of soil erosion and the cost associated with the

transport of nitrogen, phosphorus, and pesticides at different geographical scales

[Hansen and Ribaudo, 2008; Ribaudo et al., 1999]. Table 3.1 summarizes the exter-

nal costs of major environmental pollutants from other studies [Hansen and Ribaudo,

2008; Ribaudo et al., 1999; Fang and Easter , 2003; Pretty et al., 2001]. All values

are adjusted using 4 percent average annual inflation rate to year 2012 dollars.

While offsite benefit of conservation practices are determined based on cost of

offsite damage, onsite benefits are estimated based on the direct benefits of imple-

mentation of conservation practices in the field. Onsite benefits could be negative

(e.g. due to the reduced crop yield) or positive (e.g. through increased unit price

of crops). Thus, the economic benefits of implementing pollution control strategies

include: (1) offsite benefits, equivalent to the monetary values of the water qual-

ity improvement benefits; and (2) onsite benefits to agricultural production as a

results of implementing conservation practices. Monetary values of water quality

improvement are estimated based on the predicted sediment, nitrogen, phosphorus,

and pesticide loads reduction (a direct output of watershed model) and associated

onsite and offsite benefits, and can be expressed as:
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Figure 3.1: Flowchart of a typical genetic algorithm optimization method

B = MVz ×∆Lz +
K∑
k=1

N∑
n=1

rn,kβn,ku (3.6)

where MVz is monetary value of water quality improvement for pollutant z (refer

to Table 3.1 for NPS pollutants considered in this study).

3.2.1.3 Nondominated Sorted Genetic Algorithm II (NSGA-II)

The Nondominated Sorted Genetic Algorithm II (NSGA-II) is a heuristic mul-

tiobjective genetic algorithm developed by Deb et al. [2002]. The NSGA-II starts

with an initial population of solutions and then implements probabilistic and paral-

lel exploration in the search space using the domain-independent genetic operators

(i.e. chromosome reproduction) to find optimal solutions [Arabi et al., 2006]. Figure

3.1 illustrates the flowchart for implementation of a typical genetic algorithm. The

procedure starts with an initial population of solutions that are typically generated

randomly. The fitness of individual solutions in successive generations increases

through selection, crossover, and mutation [Goldberg , 1989]. The procedure stops

when a set of pre-defined termination conditions is met. Similar to other heuristic

optimization algorithms, satisfying the optimality conditions cannot be guaranteed

[Lakshmanan, 2000]. Therefore, defining termination criteria for NSGA-II is a hard

and subjective task. The commonly used termination criteria are based on the

maximum number of function evaluations and the number of successive generations

without a significant improvement in the objective function values.
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Planning of conservation practices at the watershed scale always consists of

large number of decision variables. The computational time required to find the

optimal solution(s) increases as the number and complexity of the decision variables

and objectives increase [Brockhoff and Zitzler , 2007]. In particular, a larger number

of decision variables would require a larger population size, which in turn would

necessitate a larger number of function evaluations.

3.2.1.4 Selection of Decision Variables for Representation of NPS pol-
lution Control options

While many options in NPS pollution control problem are discrete or continuous

decision variables, most of the conservation practice optimization studies considered

binary decision variables (1’s and 0’s respectively indicating that the corresponding

conservation practice “be” or “not be” implemented). Incorporating continuous de-

cision variables in NPS pollution control plan optimization may lead to the selection

of more realistic and overall better fitness. A novelty of the proposed framework

in this study is its capability to operate on both binary-discrete and continuous

decision variables (known as “mixed-chromosome” or “mixed-variable”). It is also

expected to achieve more diverse Pareto-optimal solutions through application of

mixed-variable optimization. Figure 3.2 demonstrates the mixed-variable structure

for placement of conservation practices in the optimization method. The length of

each decision variable set (chromosome, n) corresponds to the total number of genes,

i.e., combination of conservation practice types and locations that are considered in

the optimization problem.

3.2.2 Hybridization of NSGA-II

The slow convergence to the optimal-front solution(s) is the biggest drawback

with genetic algorithms in complex problems [Vecchietti et al., 2003], especially

when continuous decision variables are included. The computational requirements
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Figure 3.2: Schematic of a mixed discrete-continuous decision variable (also referred
to as “mixed-chromosome”). n is the length of chromosome

and technical complexity of optimization approaches are barriers to adoption of

NSGA-II for cost-effective implementation of NPS pollutions control practices [Vec-

chietti et al., 2003]. However, the NSGA-II algorithm can be implemented using

parallel computing procedures to address the increasing computational demand for

complex environmental problems. In addition, several methods have been proposed

to facilitate faster convergence of evolutionary algorithm optimization methods by

hybridizing decision variables [Brockhoff and Zitzler , 2007] and/or search algorithms

[Renders and Flasse, 1996; Joines et al., 1997; Durand and Alliot , 1999; Sotiropoulos

et al., 1997]. In hybridization of decision variables, following termination of binary

optimization, binary decision variables will evolve to a mixed decision variables to

search for a better set of solutions. Therefore, a proper mechanism for translating

binary decision variable to mixed discrete-continuous decision variables was used.

Hybridization of search algorithm, on the other hand, is based on the well-known

characteristics of the genetic algorithm guarantees convergence but not optimality.

Given GA solutions as an initial guess, a local search method can be used to search a

smaller region for further improvement in optimal solutions. NSGA-II method was

hybridized with two multiobjective local optimization methods of goal programming

and minimax to fine-tune the solutions obtained by the evolutionary algorithm in

search for better local solutions.
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Figure 3.3: Schematic of a Lebesgue measure for a two-objective minimization prob-
lem. Area of the shaded space is the Lebesgue measure of the Pareto-optimal solu-
tions with respect to the reference point

3.2.3 Comparison of Search Algorithms

Pareto-front solutions of mixed-variable and binary-variable optimization algo-

rithms will be compared by means of hypervolume values estimated based on the

Lebesgue measure of the nondominated solutions. Lebesgue measure, also called

n-dimensional volume (Euclidean space), is the standard way of mapping a set of

Pareto optimal points to a scalar [Solovay , 1970; Fleischer , 2003]. For n= 1, 2, or 3,

it coincides with the standard measure of length, area, or volume. Lebesgue can be

measured with respect to a lower or upper bound reference point for maximization

or minimization problems. For a minimization problem with upper bound refer-

ence point, a better optimal front will have higher Lebesgue measure. Lebesgue

measure has also the advantage of taking diversity of the solutions into account

[Fleischer , 2003]. Figure 3.3 shows schematic of a Lebesgue measure calculated for

a two-objective minimization problem.
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3.3 Application of the Optimization Approach for Targeted implemen-
tation of Agricultural Conservation Practices

The proposed optimization framework was applied for the targeted implemen-

tation of agricultural conservation practices for nutrient and pesticide control in

the Eagle Creek Watershed, Indiana, USA. The Soil and Water Assessment Tool

(SWAT) was used to simulate hydrologic and water quality processes. The model

was first calibrated and tested for a nine year period from 1995 to 2003 for daily

streamflow, monthly nitrate loads and monthly atrazine loads at multiple loca-

tions within the watershed. Then, the calibrated model was used to evaluate water

quality benefits of conservation scenarios examined during the optimization proce-

dures. Since water quality standards are typically expressed in terms of average

annual loads (or concentrations) for nutrients and pesticides, water quality bene-

fits of management actions were calculates as the average annual reduction of loads

during the simulation period. Specific objectives of the optimization approach were

to simultaneously (i) minimize nitrate loads, (ii) minimize atrazine loads, and (ii)

minimize cost of implementation. The optimization procedures were implemented

using a population size of 108, a crossover probability of 0.5, and a mutation rate

of 0.005.

3.3.1 Study Area

The Eagle Creek Watershed (ECW), located in central Indiana, has a drainage

area of 248.1 km2 and lies within the Upper White River Watershed, extending

from 40◦01’24” to 40◦04’16” north latitudes and 86◦15’43” to 86◦16’45” west longi-

tudes.. According to the 2001 national Land Cover Dataset [USGS NLCD , 2001],

the watershed consists of 52% croplands, 27% pasture, 12% low and high density

urban areas, and 9% forest. The predominant crops are corn and soybeans. ECW

drains into Eagle Creek Reservoir, which supplies drinking water for the city of In-

dianapolis. Figure 3.4 presents the location and land cover for the watershed. The
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Figure 3.4: Location and landuse maps of the HUC 051202011102

soils are generally poorly draining and developed from glacial materials with thin

loess over loamy glacial till and alluvial materials depositions. The dominant soils

are the Crosby-Treaty-Miami in the headwaters and Miami-Crosby-Treaty along the

downstream areas. The mean annual precipitation for the Eagle Creek Watershed

area is 1052 mm. Monthly mean temperatures for this area from 1971-2000 shows

January as having the lowest average temperature of -3.3◦C and July as the being

the warmest month with an average temperature of 23.7◦C [Tedesco et al., 2005].

Spatial scale of conservation planning depends upon numerous factors, includ-

ing management objectives, available data resolution, dominant ecological processes,

and potential sociopolitical constraints [Walter et al., 2007; Garen and Moore, 2005].

To achieve the specific goals of water quality control, conservation practices target-

ing should be performed within a smaller geographic unit which ultimately allows

us to better evaluate targeted management plan. Using 12-digit Hydrologic Unit

Codes (HUCs) is recommended for the watershed-scale evaluation and planning of

conservation practices to encourage participation of stakeholders in implementing

conservation practices and enable monitoring water quality changes within subwa-

tershed [Haggard et al., 2010]. The ECW encompasses five 12-digit HUCs. The
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HUC 051202011102 subwatershed with a drainage area of 41.2 km2 was selected for

the application of the integrated simulation-optimization framework in this study.

The subwatershed consists of predominantly cropland (88%), and also contributes

the largest amounts of non-point source nitrate and atrazine loads from agricultural

lands to the Eagle Creek Reservoir (approximately 23% of nitrate loads and 28% of

the atrazine loads).

Similar to many other agricultural watersheds in the Midwestern U.S., an ex-

tensive network of subsurface drainage systems (also known as tile drains) has been

installed in the Eagle Creek watershed in areas with poor drainage capacity. Nearly

80 percent of agricultural fields in the watershed have tile drains, which substan-

tially alter movement of water and chemicals in the watershed [Tedesco et al., 2005].

Although tile drainage systems have many benefits, they increase the potential for

loss of chemicals by short circuiting the natural flow of water. Thus, tile drains

contributed to elevated nitrate and atrazine concentration and loss of natural wet-

lands in Indiana watersheds. Tedesco et al. [2005] have developed pollutants load

reduction targets in Eagle Creek watershed that consists of 40% and 36% reduction

in atrazine and nitrate loads, respectively.

3.3.2 Watershed Model Description

The Soil and Water Assessment Tool (SWAT; Arnold et al. [1998]) was used to

represent hydrologic and water quality processes in the ECW. Hydrologic processes

simulated by SWAT include snow accumulation and melt, evapotranspiration, in-

filtration, percolation losses, surface runoff, and groundwater flows [Neitsch et al.,

2005]. SWAT is a physically-based watershed-scale, distributed-parameter, contin-

uous time, and long-term, model that runs on a daily time step. It subdivides a

watershed into subbasins connected by a stream network, and further delineates

hydrologic response units (HRUs) consisting of unique combinations of land cover

and soils in each subbasin.
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SWAT can simulate major nutrient processes within a watershed. The nitrogen

(N) cycle is simulated in five pools: inorganic (including ammonium and nitrate)

and organic (including fresh, stable, and active). The main N processes are mineral-

ization, decomposition, and immobilization. Nutrients are introduced into the main

channel through surface runoff and lateral flow and transported downstream with

channel flow. Plant uptake, denitrification, volatilization, leaching, and soil erosion

are the major mechanisms of N removal from a field. The transport rate of organic

N with sediment is calculated with a loading function developed by McElroy et al.

[1976] and modified by Williams and Hann [Williams and Hann, 1978] for appli-

cation to individual runoff events. The loading function estimates daily organic N

runoff loss based on the concentrations of constituents in the top soil layer, sedi-

ment yield, and an enrichment ratio. Nutrient transformations in the stream are

controlled by the in-stream water quality component of the model that is adapted

from QUAL2E in-stream water quality model [Brown and Barnwell , 1987]. More de-

tailed description of the nutrient components of SWAT can be found in Neitsch et al.

[2005]. SWAT uses algorithms from GLEAMS (Ground Water Loading Effects on

Agricultural Management Systems) [Leonard et al., 1987] and EPIC (Erosion Pro-

ductivity Impact Calculator) [Williams., 1990] to model pesticide’s overland fate

and transport and movement from land to streams. It also incorporates a simple

mass-balance method developed by Chapra [2008] to model the transformation and

transport of pesticides in streams.

A 30-m resolution DEM from USGS National Elevation Dataset [USGS NED ,

2010], National Land Cover Dataset (NLCD) 1992 and 2001 [USGS NLCD , 2001] for

urban areas, National Agriculture Statistics Service (NASS) Cropland Data Layer

2000-2003 [USDA NASS , 2003] for croplands, and SSURGO data from national

resources conservation service (NRCS) [USDA NRCS , 2010] were used for watershed

subdivision and delineating HRUs in the SWAT model. The ECW was subdivided
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Table 3.2: SWAT performance indices for daily streamflow, monthly nitrate, and
monthly total pesticide simulation during 1993-2004 including 2 years of warmup pe-
riod. PBIAS and NSE indicate percent bias and Nash-Sutcliff Efficiency coefficient,
respectively.

Constituent
Calibration Period Validation Period

Gauging Criteria (1995-1999) Criteria (2000-2003)
Station PBIAS (%) R2 NSE PBIAS (%) R2 NSE

20 Nitrate 7.9 0.94 0.83 16.9 0.85 0.67
Atrazine -6 0.81 0.34 -14 0.7 0.41

22 Nitrate -22.3 0.89 0.78 1.24 0.74 0.36
Atrazine 42 0.69 0.44 -0.1 0.5 0.28

27 Nitrate 0.59 0.93 0.85 18.3 0.78 0.59
Atrazine 13 0.66 0.35 -30 0.51 0.19

32 Nitrate -7.9 0.92 0.84 8.4 0.76 0.55
Atrazine 42.3 0.75 0.52 33.1 0.51 0.14

35 Streamflow -12.2 0.78 0.61 4.3 0.78 0.56

into 35 subwatersheds and a total of 446 hydrologic HRUs. HUC 051202011102

includes 4 subwatersheds and 40 HRUs (Figure 5.1. Watershed model is calibrated

and validated for entire ECW model for predicting streamflow at watershed outlet,

and nitrate and Atrazine at gauging stations 20, 22, 27, and 32. Table 5.2 presents

performance indices of the SWAT model in predicting daily streamflow and monthly

nitrate, and Atrazine.

3.3.3 Representation of conservation practices

In this study, water quality impacts of fertilizer management, grassed water-

ways, grade stabilization structures, and tillage/residue management were evalu-

ated. Only row crops, including corn and soybean, were considered for implemen-

tation of the nonpoint source pollution control plan. Conservation practices were

represented using numerical procedures from the published studies [Arabi et al.,

2004; Arnold et al., 2011; White et al., 2010]. SWAT includes explicit functions for

representation of fertilizer management and tillage/residue management, grassed

water ways [Arnold et al., 2011]. Table 3.3 summarizes the relevant SWAT manage-

ment operations and parameters and their corresponding values for representation
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Table 3.3: SWAT parameter values for representation of conservation practices
Practice Representation Parameters Unit Value
Fertilizer management Fertilizer application rate reduction, FRT KG (*.mgt) % 20
Grassed Waterways Manning’s n, GWATN (*.ops) 0.35

Width, GWATW (*.ops) m 15
Length, GWATL (*.ops) km -(A)

Grade Stabilization Reduce slope steepness, CH S1 (*.sub) m -(B)

Tillage/Residue Mgt. Reduce curve number, CN2 (*.mgt) 2
Harvest Efficiency, HARVEFF (*.mgt) 1 (C)

Overland Manning’s number, OV N (*.hru) 0.1 (D)

(A) Estimated using equation 0.5× (area)1/2
(B) Estimated based on the height of structure (default is GSSH = 1.2 meters) with the minimum

of 0
(C) Estimated based on the percent cover for different types of tillage. HARVEFF for conven-

tional, conservation, and no-till is assumed to be 1, 01, and 0.5, respectively
(D) For conventional, conservation, and no-till is assumed to be assumed to be 0.1, 0.2, and 0.3

respectively

of BMPs. Implementation of grade stabilization structures are only considered in

combination with grassed waterways. Conservation practices in the binary optimiza-

tion approach were represented by default values presented in Table 3.3. Detailed

description of the conservation practices representation methods can be found in

Arabi et al. [2004], Arnold et al. [2011], and White et al. [2010]. In the mixed-

variable genetic algorithm, continuous decision variables for fertilizer management

and discrete decision variables for grassed waterways, grade stabilization structure,

and tillage/residue management were considered and represented as shown in Table

3.4. Implementation cost, operation & maintenance rate, and design life for conser-

vation practices are also summarized in Table 3.4. Interest rate of 4 percent was

also used in calculation of total cost of nonpoint source pollution control plan.

3.3.4 Results and Discussion

Overall, results of optimizing conservation practices type and placement us-

ing binary- and mixed-variable NSGA-II suggest that the mixed-variable NSGA-II

method was able to find Pareto-optimal solutions with better fitness than the com-

monly used binary optimization method, but it was computationally more demand-

ing.
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Figure 3.5: Initial population (top) and Pareto-front solutions (bottom) from binary-
and mixed- variable optimization methods for Atrazine and nitrate load reduction

First the SWAT model was calibrated and tested for daily stream discharge,

monthly nitrate loads, and monthly atrazine loads over a nine year period from

1995 to 2003. The calibrated SWAT model for the ECW was linked with both

the binary-variable and mixed discrete-continuous NSGA-II optimization methods

to expose the tradeoffs between water quality and economic criteria to meet the

targets. Figure 3.5 shows the initial population and optimal front solutions for

both binary and mixed-variable multiobjective optimization methods. The mixed-

variable NSGA-II method finally converged to a better set of alternatives. At the

same cost, mixed-variable NSGA-II results were up to 5% and 3% more effective

than binary optimization in reducing atrazine and nitrate loads, respectively. Inter-

estingly, the Pareto-optimal solutions were similar at lower costs. At higher costs

(nearly $50,000), the optimal solutions diverged.
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Lebesgue measures of Pareto-front solutions from binary- and mixed-variable

NSGA-II mehods, measured with a reference to cost=$600,000, Atrazine load re-

duction= 0%, and nitrate load reduction= -30%, were respectively $4.54× 108 and

$5.71× 108. In a minimization problem, Pareto-optimal front with larger Lebesgue

measures indicates better fitness function values and/or diverse optimal solutions

(refer to Figure 3.3). So, larger Lebesgue measure of Pareto-optimal front obtained

from mixed-variable NSGA-II implies that for the same cost higher pollutant reduc-

tions are achievable.

In addition to tradeoff between implementation cost and pollutant load reduc-

tion, there was a tradeoff between atrazine and nitrate loads, too. The tradeoff was

seen when tillage/residue management were implemented at the fields. This can be

explained by the well-known impact of tillage practices on increased drainage and

subsequently elevated nitrate leaching into the shallow groundwater that eventually

flows into surface waters [Kanwar , 2006; Malone et al., 2007]. In particular, this

was highly expected in Eagle Creek Watershed that extensive network of tile drains

has been installed. However, both optimization methods demonstrated successful

performance in identifying a set of solutions without negative impacts on nitrate

load.

In addition to the efficiency in converging to the Pareto-optimal front, the diver-

sity of solutions on the optimal front is an important consideration in characterizing

the tradeoffs between objectives [Deb, 2001]. The mixed-variable NSGA-II outper-

formed the binary NSGA-II in finding diversity of the solutions on Pareto-optimal

front. This was evident with wider extension of the Pareto-optimal front (shown

in Figure 3.5), larger Lebesgue measure ($5.71× 108 versus $4.54× 108), and lager

number of Pareto-optimal solutions (46 versus 38 ). Higher diversity indicates that

solutions are more likely on global optima rather than local optima.
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While mixed-variable NSGA-II showed more effectiveness in finding optimal

solutions, it was less efficient in converging to Pareto-optimal solutions. Mixed-

variable NSGA-II methods are efficient in exploring a wide search space and de-

tecting promising areas that optimal solution can be found (also called “valley” or

“near optimal region”), but it needs more computational time to search for the bot-

tom of this valley [Chelouah and Siarry , 2000; Vecchietti et al., 2003]. Figure 3.6

shows the progress of the Pareto-optimal fronts during the optimization for both

binary- and mixed-variable NSGA-II methods. In both cases as optimization pro-

ceeded, a larger number of non-dominated solutions on the Pareto-optimal front

were found. However, termination conditions for binary- and mixed-variable meth-

ods were satisfied in 116 and 6,380 generations, respectively. The application of

the mixed-variable NSGA-II for optimal allocation of NPS pollution control prac-

tices in the ECW is highly complex, resulting in a slow to the Pareto-optimal front.

The full enumeration of the three practice types in all fields comprising the twenty

three hydrologic response units in the study watershed using the binary-variable

approach would require 23×23 scenario evaluations. Mixed-variable NSGA-II, on the

other hand, involves continuous decision variables and therefore had infinite number

of scenarios.

To improve convergence of optimization methods toward optimal solutions, two

hybridization methods were examined: hybridizing decision variables and search al-

gorithms. In hybridization of decision variables, following termination of binary-

variable optimization, binary decision variables was evolved to a mixed decision

variables. Therefore, a proper mechanism for translating binary-variable to mixed-

variable was used. This type of hybridization demonstrated substantial improve-

ment in finding diverse of solutions, extended Pareto-front, and convergence to the

Pareto-optimal front. Hybrid NSGA-II method terminated in 66 generations, that

was more than 60 time faster than the mixed-variable NSGA-II method by itself.
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Figure 3.6: Progress of the optimal fronts during the optimization for binary- and
mixed- variable optimization
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Figure 3.7: Comparison of Pareto-fronts from three different optimization settings

Results from mixed-variable and hybrid NSGA-II methods closely match regarding

the objective functions values, and type and placement of conservation practices.

Lebesgue measure was $5.78 × 108 that suggests slight improvement in the results

in considerably lower model runs. Figure 3.7 compares Pareto-front from three

optimization settings for atrazine removal.

Hybridization of search algorithm was based on the well-known characteristics

of the genetic algorithm guarantees convergence but not optimality. Given GA so-

lutions as an initial guess, a local search method can be used to search a smaller

region for further improvement in optimal solutions. Multiobjective local optimiza-

tion methods are gradient-based search methods that require an increase or decrease

in the slopes of sigmoids, but gradient procedures are not stable during abrupt tran-

sitions in objective function shape [Duch et al., 1999]. In our case study, inclusion

of the discrete decision variables created step-like behavior in the objective function

shape and therefore local optimization methods could not be improve the solutions.

This was confirmed by hybridized of genetic algorithm with two multiobjective local

optimization methods of goal programming and minimax, in which results were not

improved any of the solutions from genetic algorithm method.
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The shape of the tradeoff curve shifted from relatively smooth curves corre-

sponding to the initial population and early generations to a Pareto-optimal curve

with sharp edges in the final generation (shown in Figure 3.6). An obvious break-

point in the Pareto-optimal curve is often considered a good compromise between

objectives [Madsen, 2003]. In this study, sharp front reflects the fact that greatest

degree of pollutant load reduction is achievable through the application of limited

number of conservation practices with lower costs. For example on mixed-variable

optimal front, the first 14 percent reduction in atrazine loads was possible with ap-

proximately $100,000, while to increase atrazine load reduction from 14 percent to

17 percent additional $100,000 was required. The breakpoint solution on mixed-

variable Pareto-optimal front, that is considered the compromise solution, resulted

in 14 and 20 percent reduction in atrazine and nitrate loads, respectively, with

approximately $100,000 investment.

Each solution on the Pareto-optimal front explicitly corresponds to a specific

optimal allocation of NPS pollution control practices in the study watershed. In-

vestigation of the spatial distribution of the optimal conservation practices revealed

that successive solutions on Pareto-optimal front have many solutions in common.

Figure 3.8 demonstrates the type and location of the conservation practices associ-

ated with several scenarios on Pareto-optimal solutions from binary optimization.

Grassed waterways received the highest priorities for both pesticide and nitrate load

control. As expected, residue/tillage practices did not appeared in solutions at lower

costs, mainly because of their adverse impact on nitrate loads. With the incremen-

tal increase in the conservation expenditure, most of the conservation practices and

their locations from solutions with lower costs on the Pareto-optimal front remained

unchanged. This observation confirms the need for targeting conservation practices

to portions of the watershed that are more vulnerable to NPS pollution and there-

fore more suitable for mitigating the inverse impacts of human activities with less
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Figure 3.8: Spatial distribution of conservation practices for selected solutions on
Pareto-optimal front. Numbers in boxes are present value of implementing cost ($),
atrazine load reduction (%), and nitrate load reduction (%)
, respectively

expenditure [Walter et al., 2007]. This also provides an opportunity for modular

planning of watershed scale conservation practices, while giving higher priorities to

more effective and less expensive alternativ‘1es.

3.4 Summary and Conclusions

An integrated simulation-optimization framework for optimal placement of agri-

cultural conservation practices is presented. A novel mixed-variable multiobjective

genetic algorithm based on the commonly-used NSGA-II method was coupled with

a spatially distributed watershed model, Soil and Water Assessment Tool (SWAT),

and was used to realize the Pareto-optimal sets of conservation practices at the

watershed scale. A case study is presented to demonstrate the application of the

proposed framework in realizing optimal suite of conservation practices in the Eagle

Creek Watershed, Indiana, USA.
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Nondominated Sorted Genetic Algorithm II (NSGA-II) is used to find optimal

suite of conservation practices type, size, and location with both binary and mixed

decision variables. We also analyzed efficiency and effectiveness of the optimiza-

tions in terms of convergence rate, diversity, and optimality of the solutions. Two

approaches were also taken to improve efficiency of GA algorithm by (i) updating

binary to mixed-variable during the optimization, and (ii) hybridizing GA with a

local search algorithm. Spatial distribution of the conservation practices type and

location were also studied. Soil and Water Assessment Tool (SWAT) was used to

simulate runoff and water quality and assess performance of the nonpoint source

pollution control strategies. Objectives were to simultaneously minimize nitrate

load, atrazine load, and cost of implementation of nonpoint source pollution plan.

Results from implementing different optimization setting showed that

1. For an optimal placement of conservation practices in a watershed-scale, discrete-

continuous decision variable, referred to as “mixed-variable”, optimization

method identified a set of solutions which is more effective than solutions ob-

tained from commonly used binary optimization method for the same amount

of cost

2. Mixed-variable optimization provided more realistic alternatives and higher

flexibility to the decision makers

3. Using mixed-variable optimization increased complexity of the optimization

problem that increases computational time by several orders of magnitude.

Using hybrid optimization algorithms substantially improved the efficiency of

mixed-variable optimization methods

Investigating spatial distribution of the optimal conservation practices showed

that there is an obvious overlay of the conservation practices type and location

within consecutive solutions on Pareto-front. This overlay provides an opportunity
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for modular planning of watershed scale conservation strategies, while giving higher

priorities to more effective and less expensive alternatives.
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Chapter 4

HOW A PRIORI KNOWLEDGE CAN HELP US IN IDENTIFYING

OPTIMAL TYPE AND PLACEMENT OF CONSERVATION

PRACTICES? APPLICATION OF MULTI CRITERIA DECISION

MAKING

4.1 Highlights

Control of agricultural non-point sources of pollution is achievable through im-

plementation of conservation practices at the farm or field level. There are several

approaches to achieve a targeted implementation of conservation practices at the

watershed scale. Recent studies have shown that optimization methods hold great

promise for optimal allocation of non-point source pollution control measures at the

watershed scale. However, the use optimization is a computationally intensive task

and ultimately depends upon availability of automated optimization tools and exper-

tise to analyze the results. In this study, a multi criteria decision analysis (MCDA)

framework is proposed to identify near-optimal type and location of conservation

practices at the watershed scale using a priori knowledge about the system. The

proposed framework requires: (i) selecting a set of criteria that should be considered

in ranking the alternative(s), which depends upon the objectives of the study; (ii)

constructing an evaluation matrix; and (iii) a computational MCDA to aggregate

the criteria and rank the alternatives. The framework was used to identify optimal

placement of four types of conservation practices for nutrient and pesticide load

control at minimum cost in the Eagle Creek Watershed, Indiana, USA. Results were
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compared with optimal solutions obtained from an optimization framework coupled

with the Soil and Water Assessment Tool (SWAT). The results of this study showed

that the proposed framework can be an effective and efficient substitute for the

optimization frameworks in identifying near-optimal solutions for nonpoint source

pollution control. The MCDA framework outperformed the optimization method by

identifying the similar solutions with more diversity without any need for iterative

search algorithms. For complex problems or poorly established evaluation matrix,

the MCDA framework may fail to identify near-optimal solutions; however, it can

effectively serve as an ideal initial population in a hybrid MCDA and optimization

framework. A hybrid framework substantially improved efficiency of the search al-

gorithm, optimality of the front, and diversity of the solutions. This study also

highlighted the importance of the defining proper decision variables and accurate

scoring of the conservation practices for a successful watershed planning.

Keywords: Multi criteria decision analysis, nonpoint source pollutions, BMPs, mul-

tiobjective optimization, SWAT
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4.2 Introduction

Nonpoint source pollution is the primary cause of impaired water bodies in the

United States today [Horowitz et al., 2007]. Elevated nutrient, sediment, and pes-

ticide loads to waterways may negatively impact human health and aquatic ecosys-

tems [Novotny , 2003]. Control of agricultural non-point sources (NPS) of pollution

is achievable through implementation of conservation practices, commonly known

as Best Management Practices (BMPs), at farm or field level. In practice, sev-

eral approaches have been taken to develop proper watershed scale nonpoint source

pollution control strategies at minimum cost. Government agencies promote imple-

mentation of NPS pollution control practices by recommending cost-share program

that is a field-by-field approach [Veith et al., 2003]. Most of the early applications

used cost-share or critical source area (CSA) targeting approaches [Sullivan and Bat-

ten, 2007; Ripa et al., 2006]; however, more recent studies have utilized optimization

methods to identify optimal type and placement of the conservation practices [Arabi

et al., 2006; Maringanti et al., 2011]. Cost sharing with landowners is promoted by

government agencies for implementation of conservation practices through site inves-

tigation, monitoring, and field-scale modeling [Arabi et al., 2006]. The critical source

area targeting method, on the other hand, suggests implementation of the conserva-

tion practices in critical source areas, which contribute higher amounts of nonpoint

source pollutants. The major disadvantages of cost-share and critical source area ap-

proaches is their unknown impact on water quality at the watershed scale, primarily

because of the site-specific performance of conservation practices. Moreover, they

don’t consider duplicative impacts of conservation practices on water quality that

reduces the potential benefit for nonpoint source pollution control at the watershed

scale [Arabi et al., 2006]. Research to date shows that an optimization approach

has better performance than other approaches by identifying more cost-effective so-

lutions [Arabi et al., 2006; Veith, 2002; Jha et al., 2009; Rabotyagov et al., 2010].
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Optimization algorithms should be coupled with a spatially distributed watershed

model and use a proper representation of conservation practices to predict water

quality changes due to the adoption of conservation plans [Easton et al., 2008].

The primary goal of watershed scale conservation plans is minimizing pollutants

movement from landscapes to water bodies at minimum cost. Implementation of

conservation practices is technically possible and economically profitable; however,

noneconomic factors, such as psychological motivations and social norms, should also

be taken into account [Cary and Wilkinson, 1997]. Thus, conservation planning is

inherently a multiobjective problem. While most of the earlier studies focused on

development and application of single-objective optimization methods [Veith et al.,

2003; Arabi et al., 2006], more recent efforts have utilized multiobjective approaches

[Jha et al., 2009; Maringanti et al., 2008]. Multiobjective optimization algorithms

attempt to explore the tradeoffs between incommensurable and often conflicting

socioeconomic and environmental factors by finding the optimal type, size, and

location of conservation practices within the watershed, resulting in a set of non-

dominated (also referred to as “Pareto-optimal”) solutions. Although, optimization

is an effective tool in identifying optimal set of solutions, it ultimately depends upon

availability of the automated optimization tools and expertise on analyzing the re-

sults. Moreover, optimization is a computationally intensive task and, depending

on the complexity of the problem, may need thousands to millions of model runs.

While optimization algorithms demonstrated successful application in optimal

conservation planning, they have mostly ignored the fact that certain portions of

the watersheds are more vulnerable to human activities [Walter et al., 2007]. Unlike

the optimization approaches, critical source area targeting method received maxi-

mum benefit from this fact. Chapter 3 showed that spatial distribution of optimized

conservation practices explicitly supports this concept. Furthermore, I showed that

in a set of Pareto-optimal solutions obtained from a multiobjective optimization al-

gorithm, moving in the direction of increasing cost, each of the solutions contained
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most of the conservation practices from previous solutions. Considering the cur-

vature of the Pareto-solutions, it can be concluded that higher priorities are given

to more effective and less expensive conservation practices. Analyzing the type and

distribution of several optimized nonpoint source pollution control strategies implied

that identifying a set of effective and near-optimal conservation plans is achievable

by considering concept of critical source area along with the other information on

effectiveness of the conservation practices in the context of multi criteria decision

making (MCDM) process. Using a priori knowledge of the system and experts rec-

ommendation may provide worthwhile information for near-optimal placement of

conservation practices [Srivastava, 2002].

Decision making in environmental management typically receives information

from several sources in different forms. Therefore, a computational scheme is re-

quired to aggregate the information to identify the most preferred alternative. Mul-

ticriteria decision analysis (MCDA) provides such a framework by reflecting the

complexity and dynamics of the conflicting criteria and sorting the alternatives from

the most to the least preferred [Brown et al., 2010]. The following steps should be

taken to rank alternatives in the MCDA approach: (i) selecting appropriate eval-

uation criteria; (ii) assigning values to criteria based on the relative importance

in the alternatives; and (iii) ranking the options after aggregating criteria using a

mathematical MCDA. Ranks of the alternatives describe how well each alternative

meets all the criteria. MCDA is extensively utilized in different aspects of the en-

vironmental decision making process [Hajkowicz and Collins , 2007; Mirchi et al.,

2010]. Hajkowicz and Collins [2007] have reviewed the most commonly used MCDA

methods water resources management.

In this study, we propose a MCDA framework to identify near-optimal solu-

tions for nonpoint source pollution control at the watershed scale, based on the

prior knowledge of the system and effectiveness of conservation practices. Specific
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objectives of this paper are (1) to present a computational framework to rank con-

servation practices type and placement alternatives at the watershed scale based on

the socioeconomic and environmental objectives; and (2) to determine how results

from MCDA framework compares to the results from application of multiobjective

optimization methods for the given problem.

4.3 Methods and Materials

The proposed MCDA framework for near-optimal allocation of NPS pollution

control practices include three main component: (1) watershed model for simulation

of hydrologic and water quality processes under scenarios with and without NPS pol-

lution control measures; (2) a computational MCDA method to aggregate environ-

mental and socioeconomic factors and rank alternatives from the most to the least

favorable; and (3) an economic module for cost-benefit analysis of the implemented

conservation plans. The framework was tested for identifying near-optimal conserva-

tion plans for minimizing atrazine and nitrated loads at minimum cost in the Eagle

Creek Watershed, Indiana, USA. Optimality of the solutions will be tested using op-

timal conservation practices obtained from application of a simulation-optimization

approach proposed in Chapter 3.

4.3.1 Multi Criteria Decision Analysis (MCDA) Framework

Decision making in watershed and water resources management typically re-

ceives technical inputs from four types of sources: modeling and monitoring studies,

risk assessment, economic analysis, and stakeholders preferences [Kiker et al., 2005].

This information comes in different forms (quantitative or qualitative) and various

units (monetary, load/concentration, volume, or dimensionless). MCDA provides a

framework to aggregate the information from different sources and rank alternatives

from the most to the least favorable [Brown et al., 2010]. In addition to defining
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a set of available alternatives, ranking in MCDA method requires: (i) a set of cri-

teria that should be considered in choosing the best alternative(s), which depends

on objectives of the study (e.g. implementation cost, environmental benefits, ef-

fectiveness, adoptability, and etc); (ii) constructing evaluation matrix, that assigns

“scores” for the criteria based on the relative importance of each criterion for each

alternative; and (iii) ranking the alternatives after aggregating the criteria using a

mathematical MCDA. Pareto-front will then be constructed based on the ranks of

alternatives.

4.3.1.1 Conservation Practices Scoring Criteria

Selection of type and placement of conservation practices depends upon several

biophysical, agro-environmental, socioeconomic, political, educational, and ethical

factors. Different goals and objectives, ownership status, landscape characteristics,

and dynamics of the weather conditions can also form a site-specific feature for the

cases under study [Tomer , 2010; Kiker et al., 2005; Hansen et al., 1987]. Table

4.1 summarizes the important criteria that should be considered for developing

conservation plans. A successful nonpoint source pollution control strategy should

address these criteria in selection of the proper type and location of conservation

practices. Depending on the specific objectives of the study and data availability,

analysts may neglect some of them or add new criteria.

4.3.1.2 Constructing An Evaluation Matrix

A MCDA problem with m alternatives and n criteria can be defined by a generic

evaluation matrix (EM), P , as [Hipel , 1992; Madani and Lund , 2011]

Pm×n =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
. . .

...
pm1 pm2 . . . pmn

 (4.1)
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where pij is the value or “score” of alternative i under criterion j. The evaluation

matrix may contain a mix of ordinal and cardinal data [Hajkowicz and Higgins ,

2008]. In the nonpoint source pollution control planning, alternatives are combina-

tion of “type” and “location” of conservation practices. For example, in a problem

with a fields and b conservation practices, there would be m = a × b alternatives

available for decision makers. The importance of each criterion should also be given

in a one-dimensional weights vector, W :

Wn×1 = [w1, · · · , wn]T (4.2)

where
∑n

j=1 wj = 1, 0 ≤ wj ≤ 1, and wj denotes the weight assigned to the jth

criterion. Ranking of the alternatives is highly sensitive to the weights assigned to

the criteria and should be assigned precisely according to the specific objectives of

the study. For example if criterion i is 3 times more important than criterion j, then

wi = 3wj.

4.3.1.3 Mathematical MCDA Techniques

The ultimate goal of MCDA methods is to identify the rank order of the alter-

natives, R,

R = f(P,W ) = [r1, · · · rn] (4.3)

where rj is the rank of the jth alternative [Hajkowicz and Higgins , 2008]. Several

MCDA techniques are available to perform mathematical MCDA computations.

Weighted Summation (WS) is the most simple and widely applied technique of

MCDA [Howard , 1991]. The Weighted Summation ranks alternatives on the basis

of utility score uk determined by

uk =
n∑
j=1

pkjwj (4.4)
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where k = 1, · · · ,m and Pkj = [pk1, pk2, · · · , pkn]. Alternatives with higher utility

scores rank higher, and vice versa. Simplifying assumptions in the Weighted Summa-

tion method can potentially lead to inaccurate results [Rowe and Pierce, 1982]; how-

ever, Hajkowicz and Higgins [Hajkowicz and Higgins , 2008] reported strong agree-

ment between results of Weighted Summation and other MCDA methods. Study of

different MCDA methods is beyond the scope of this study and may require further

investigation. Furthermore, when more than one decision maker is involved in de-

cision making, a group MCDA method could be utilized that is a general form of

generic MCDA methods.

After ranking the n alternatives (from r1 to rn), the near-optimal front for

multiple objectives can then be constructed by a successive addition of alternatives

starting from the higher ranks. Figure 4.1 depicts schematic of the near-optimal

front constructed after ranking the alternatives using a MCDA framework. In this

figure, objective functions are subsets or functions of the selected criteria. If scores

are assigned properly, MCDA may guarantee near-optimality of the solutions by

assigning higher ranks to more favorable conservation plans. Several environmental

and economic objectives should be considered in targeting of nonpoint source pollu-

tion control practices. Water quality impacts of the conservation practices could be

evaluated using a distributed watershed models, such as Soil and Water Assessment

Tool (SWAT).

4.3.2 Optimization of Conservation Plans

Identifying the best compromise solution between multiple incommensurable

and often conflicting objectives in nonpoint source pollution control strategy is nat-

urally a multiobjective problem. To verify optimality of the results from the MCDA

framework, a Nondominated Sorted Genetic Algorithm II (NSGA-II) was used to

identify a set of optimal type and placement of conservation practices for the given
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Figure 4.1: Schematic of Pareto-front constructed using MCDA framework. rj is
the conservation practice ranked jth

problem. Detailed description of the optimization framework, objective functions,

and selection of the decision variables are presented in Chapter 3. The framework

developed in Chapter 3 incorporates water quality benefits expressed in terms of

the reduction of sediment, nutrient, and pesticide fluxes, onsite and offsite costs and

benefits, and water quality vulnerability. The proposed optimization approach for

targeting NPS pollution control practices includes the following objective functions

and constraint functions:
minimize y = f(x|θ, I, cs, td, T ) pollutant load(s)

minimize C = g(x|θ, I, p, cs, td, T ) cost(s)

maximize π = h(x|θ, I, r, cs, td, T ) profit(s)

(4.5)

subject to: 
y ≤ yallowable water quality targets

C ≤ Cmax economic constraints

N(x|m, s) ≥ 0 management and social constraints

where x denotes discrete-continuous decision variables reflecting the type and lo-

cation of practices, y represents pollutant load(s) over the assessment period T

estimated by the watershed model f , θ is the vector of calibrated watershed model
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parameters, I represents input forcing, td is the design lifetime of conservation prac-

tices, C represents the total on-site and off-site cost of implementation of nonpoint

source pollution control practices over the assessment period T , p is the unit cost

of conservation practices, π is the total on-site and off-site profit computed for the

conservation strategy over the assessment period T , r is the unit price of beneficial

products of conservation strategy. The term yallowable indicates water quality stan-

dard, Cmax is the maximum available budget for implementation of the nonpoint

source pollution control strategy x The term N represents management preferences

(m) and social values (s), and.

Pareto-front solutions of mixed-variable and binary-variable optimization algo-

rithms will be compared by means of hypervolume values estimated based on the

Lebesgue measure of the nondominated solutions. The Lebesgue measure, also called

n-dimensional volume (Euclidean space), is the standard way of mapping a set of

Pareto optimal points to a scalar [Solovay , 1970; Fleischer , 2003]. For n= 1, 2, or 3,

it coincides with the standard measure of length, area, or volume. Lebesgue can be

measured with respect to a lower or upper bound reference point for maximization

or minimization problems. For a minimization problem with upper bound refer-

ence point, a better optimal front have higher Lebesgue measure. The Lebesgue

measure has also the advantage of taking diversity of the solutions into account

[Fleischer , 2003]. Figure 3.3 shows schematic of a Lebesgue measure calculated for

a two-objective minimization problem.

4.4 Application of the MCDA Approach for Targeted Implementation
of Agricultural Conservation Practices

The proposed MCDA framework was applied for the targeted implementation

of agricultural conservation practices for nutrient and pesticide control in the Ea-

gle Creek Watershed, Indiana, USA. The Soil and Water Assessment Tool (SWAT)

was used to simulate hydrologic and water quality processes. The model was first
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calibrated and tested for a 10-year period from 1994 to 2003 for daily streamflow,

monthly nitrate loads and monthly atrazine loads at multiple locations within the

watershed. Then, the calibrated model was used to evaluate water quality bene-

fits of conservation scenarios obtained from MCDA procedures. Since water quality

standards are typically expressed in terms of average annual loads (or concentra-

tions) for nutrients and pesticides, water quality benefits of management actions

were calculated as the average annual reduction of loads. Results from the cou-

pled simulation-optimization approach were also used to verify optimality of the

results from the MCDA approach. Both binary and discrete-continuous decision

variables (as described in Chapter 3) were examined. The optimization procedures

were implemented using a population size of 108, a crossover probability of 0.5, and

a mutation rate of 0.005. Objectives of the MCDA and optimization approaches

were to simultaneously (i) minimize nitrate loads, (ii) minimize atrazine loads, and

(ii) minimize cost of implementation. The results from the MCDA approach were

compared with results from the optimization approach.

4.4.1 Study Area

The Eagle Creek Watershed (ECW), located in central Indiana, has a drainage

area of 248.1 km2 and lies within the Upper White River Watershed, extending

from 40◦01’24” to 40◦04’16” north latitudes and 86◦15’43” to 86◦16’45” west longi-

tudes. According to the 2001 national Land Cover Dataset [USGS NLCD , 2001],

the watershed consists of 52% croplands, 27% pasture, 12% low and high density

urban areas, and 9% forest. The predominant crops are corn and soybeans. ECW

drains into Eagle Creek Reservoir, which supplies drinking water for the city of In-

dianapolis. Figure 4.2 presents the location and land cover for the watershed. The

soils are generally poorly draining and developed from glacial materials with thin

loess over loamy glacial till and alluvial materials depositions. The dominant soils
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are the Crosby-Treaty-Miami in the headwaters and Miami-Crosby-Treaty along the

downstream areas. The mean annual precipitation for the Eagle Creek Watershed

area is 1052 mm. Monthly mean temperatures for this area from 1971-2000 shows

January as having the lowest average temperature of -3.3◦C and July as the being

the warmest month with an average temperature of 23.7◦C [Tedesco et al., 2005].

Spatial scale of conservation planning depends upon numerous factors, includ-

ing management objectives, available data resolution, dominant ecological processes,

and potential sociopolitical constraints [Walter et al., 2007; Garen and Moore, 2005].

To achieve the specific goals of water quality control, conservation practices target-

ing should be performed within a smaller geographic unit which ultimately allows

better evaluation of the targeted management plan. Using 12-digit Hydrologic Unit

Codes (HUCs) is recommended for the watershed-scale evaluation and planning of

conservation practices to encourage participation of stakeholders in implementing

conservation practices and enable monitoring water quality changes within subwa-

tershed [Haggard et al., 2010]. The ECW (shown in Figure 4.2) encompasses five

12-digit HUCs. The HUC 051202011102 subwatershed with a drainage area of 41.2

km2 was selected for the application of the integrated simulation-optimization frame-

work in this study. The subwatershed consists of predominantly cropland (88%),

and also contributes the largest amounts of non-point source nitrate and atrazine

loads from agricultural lands to the Eagle Creek Reservoir (more than 23% and 28%

of the total watershed nitrate and atrazine loads, respectively).

4.4.2 Watershed Simulation Model Description

The Soil and Water Assessment Tool (SWAT) [Arnold et al., 1998] was used

to represent H/WQ processes in the Eagle Creek watershed. Hydrologic processes

simulated by SWAT include snow accumulation and melt, evapotranspiration, in-

filtration, percolation losses, surface runoff, and groundwater flows [Neitsch et al.,
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Figure 4.2: Location and landuse maps of the Eagle Creek Watershed, HUC
051202011102
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2005]. SWAT is a physically-based watershed-scale, distributed-parameter, contin-

uous time, and long-term, model that runs on a daily time step. It subdivides a

watershed into subbasins connected by a stream network, and further delineates

hydrologic response units (HRUs) consisting of unique combinations of land cover

and soils in each subbasin.

SWAT can simulate major nutrient processes within a watershed. The nitrogen

(N) cycle is simulated in five pools: inorganic (including ammonium and nitrate)

and organic (including fresh, stable, and active). The main N processes are min-

eralization, decomposition, and immobilization. Nutrients are introduced into the

main channel through surface runoff and lateral flow and transported downstream

with channel flow. Plant uptake, denitrification, volatilization, leaching, and soil

erosion are the major mechanisms of N removal from a field. The transport rate of

organic N with sediment is calculated with a loading function developed by McElroy

et al. [1976] and modified by Williams and Hann [1978] for application to individual

runoff events. The loading function estimates daily organic N runoff loss based on

the concentrations of constituents in the top soil layer, sediment yield, and an en-

richment ratio. Nutrient transformations in the stream are controlled by in-stream

water quality component of the model that is adapted from the QUAL2E in-stream

water quality model [Brown and Barnwell , 1987]. More detailed description of the

nutrient components of SWAT can be found in [Neitsch et al., 2005]. SWAT uses

algorithms from GLEAMS (Ground Water Loading Effects on Agricultural Man-

agement Systems) [Leonard et al., 1987] and EPIC (Erosion Productivity Impact

Calculator) [Williams., 1990], to model pesticide’s overland fate and transport and

movement from land to streams. It also incorporates a simple mass-balance method

developed by Chapra [2008] to model the transformation and transport of pesticides

in streams.

A 30-m resolution DEM from USGS National Elevation Dataset [USGS NED ,

2010], National Land Cover Dataset (NLCD) 1992 and 2001 [USGS NLCD , 2001] for
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Table 4.2: SWAT performance criteria for daily streamflow, monthly nitrate, and
monthly total pesticide simulation during 1993-2004 including 2 years of warmup pe-
riod. PBIAS and NSE indicate percent bias and Nash-Sutcliff Efficiency coefficient,
respectively.

Constituent
Calibration Period Validation Period

Gauging Criteria (1995-1999) Criteria (2000-2003)
Station PBIAS (%) R2 NSE PBIAS (%) R2 NSE

20 Nitrate 7.9 0.94 0.83 16.9 0.85 0.67
Atrazine -6 0.81 0.34 -14 0.7 0.41

22 Nitrate -22.3 0.89 0.78 1.24 0.74 0.36
Atrazine 42 0.69 0.44 -0.1 0.5 0.28

27 Nitrate 0.59 0.93 0.85 18.3 0.78 0.59
Atrazine 13 0.66 0.35 -30 0.51 0.19

32 Nitrate -7.9 0.92 0.84 8.4 0.76 0.55
Atrazine 42.3 0.75 0.52 33.1 0.51 0.14

35 Streamflow -12.2 0.78 0.61 4.3 0.78 0.56

urban areas, National Agriculture Statistics Service (NASS) Cropland Data Layer

2000-2003 [USDA NASS , 2003] for croplands, and SSURGO data from national

resources conservation service (NRCS) [USDA NRCS , 2010] were used for watershed

subdivision and delineating HRUs in the SWAT model. The ECW was subdivided

into 35 subwatersheds and a total of 446 hydrologic HRUs. HUC 051202011102 has

4 subwatersheds and 40 HRUs that encompasses 23 raw crop (corn and soybean in

this case) HRUs. Watershed model was calibrated and validated for streamflow at

watershed outlet (outlet 35), and nitrate and Atrazine at gauging stations 20, 22,

27, and 32 to create a plausible model for the study (Chapter 2). Table 4.2 presents

performance indices of the SWAT model in predicting daily streamflow and monthly

nitrate, and Atrazine.

4.4.3 Representation of Conservation Practices

In this study, water quality impacts of fertilizer management, grassed water-

ways, grade stabilization structures, and tillage/residue management were evalu-

ated. Only row crops, including corn and soybean, were considered for implemen-

tation of the nonpoint source pollution control plan. Conservation practices were
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represented using numerical procedures from the published studies [Arabi et al.,

2004; Arnold et al., 2011; White et al., 2010]. SWAT includes explicit functions for

representation of fertilizer management and tillage/residue management, grassed

water ways [Arnold et al., 2011]. Table 4.3 summarizes the relevant SWAT manage-

ment operations and parameters and their corresponding values for representation

of BMPs. Implementation of grade stabilization structures are only considered in

combination with grassed waterways. Conservation practices in the binary optimiza-

tion approach were represented by default values presented in Table 4.3. Detailed

description of the conservation practices representation methods can be found in

Arabi et al. [2004], Arnold et al. [2011], and White et al. [2010]. In the mixed-

variable genetic algorithm, continuous decision variables for fertilizer management

and discrete decision variables for grassed waterways, grade stabilization structure,

and tillage/residue management were considered and represented as shown in Table

4.4. Implementation cost, operation & maintenance rate, and design life for conser-

vation practices are also summarized in Table 4.4. The interest rate of 4 percent

was also used in calculation of total cost of the nonpoint source pollution control

plan. It was assumed that more than one conservation practice can be applied in the

same field; and therefore, considering 23 raw crop HRUs were obtained 23× 3 = 69

alternatives in this study.

4.4.4 Decision making Criteria and Evaluation Matrix

To reflect specific objectives of the study in reducing atrazine and nitrate loads

at minimum cost, three environmental and economic criteria were selected accord-

ingly: (1) effectiveness of conservation practices on atrazine loads, (2) effectiveness of

conservation practices on nitrate loads, and (3) implementation cost of conservation

practices. We assigned performance scores for conservation practices in reduction of

atrazine and nitrate loads in the range of 1-5, based on our prior knowledge, as shown
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Table 4.3: SWAT parameter values for representation of conservation practices
Practice Representation Parameters Unit Value
Fertilizer management Fertilizer application rate reduction, FRT KG (*.mgt) % 20
Grassed Waterways Manning’s n, GWATN (*.ops) 0.35

Width, GWATW (*.ops) m 15
Length, GWATL (*.ops) km -(A)

Grade Stabilization Reduce slope steepness, CH S1 (*.sub) m -(B)

Tillage/Residue Mgt. Reduce curve number, CN2 (*.mgt) 2
Harvest Efficiency, HARVEFF (*.mgt) 1 (C)

Overland Manning’s number, OV N (*.hru) 0.1 (D)

(A) Estimated using equation 0.5× (area)1/2
(B) Estimated based on the height of structure (default is GSSH = 1.2 meters) with the minimum

of 0
(C) Estimated based on the percent cover for different types of tillage. HARVEFF for conven-

tional, conservation, and no-till is assumed to be 1, 01, and 0.5, respectively
(D) For conventional, conservation, and no-till is assumed to be assumed to be 0.1, 0.2, and 0.3

respectively

in Table 4.5. Conservation practices were assumed to be insensitive to landuse, soil

types, and climatic conditions and therefore the same type of conservation prac-

tices received the similar score regardless of the biophysical conditions. However, if

enough information was available, different scores would be preferred. For economic

criteria, implementation cost of conservation practices for each alternative was es-

timated and then normalized in a way that the least and the most expensive ones

were respectively scored 5 and 1 and other alternatives received decimal scores in

the range of 1-5. All three criteria were given equal weights, i.e. W = [1/3, 1/3, 1/3],

to emphasis equal importance of the criteria in decision making process.

4.4.5 Results and Discussion

Overall, the results of this study suggest that a MCDA framework in nonpoint

source pollution control planning, if implemented properly, can effectively and effi-

ciently identify Pareto-optimal front (or near-optimal front) for multiple objectives.

Success of the MCDA framework was demonstrated using both binary and mixed

decision variables. Both MCDA and optimization approaches were used to identify

the optimal nonpoint source pollution control plans within the watershed. Fig-

ure 4.3 compares the solutions obtained from proposed MCDA approach and the
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Table 4.5: Performance matrix of BMPs in pollutants load reduction

BMP Atrazine load reduction Nitrate load reduction
Fertilizer management 1 5
Grassed waterways 4 4
Residue/tillage management 5 2

multiobjective genetic algorithm framework with binary decision variables. While

the MCDA approach identified near-optimal front in 69 SWAT model runs, binary

NSGA-II terminated at 116 generations that is equivalent to 12,528 SWAT model

runs. Thus, MCDA framework used 99.5 percent less SWAT runs to identify the

near-optimal front for the given problem. The MCDA and optimization approaches

identified very similar front in reduction of atrazine loads and comparable solutions

in removal of nitrate loads. In particular, MCDA resulted in more diverse solutions

in the “Cost-Atrazine Load reduction” plane with a higher number of solutions on its

breakpoints (Figure 4.3-b). For nitrate load reduction, however, both methods iden-

tified several solutions with negative impact on nitrate load. This can be described

by the well-known impact of tillage practices on increased drainage and subsequently

elevated nitrate leaching into the shallow aquifers and tile drain systems that even-

tually flows into the surface waters [Kanwar , 2006; Malone et al., 2007]. While the

optimization framework automatically searched to eliminate some of the solutions

with negative impact on nitrate loads, there was not such a mechanism with the

MCDA framework.

Lebesgue measures of the Pareto-fronts from the MCDA and optimization ap-

proaches, measured with a reference to $600,000 cost, 0% atrazine load reduction,

and 30% nitrate load reduction, was respectively $3.86× 108 and $4.54× 108 mean-

ing that for the same amount of money spent on conservation plan, solutions from

optimization framework were more effective as compared to the solutions from the

MCDA approach. The lower Lebesgue measure of the MCDA results is mainly
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Figure 4.3: Comparison of solutions of MCDA approach and Pareto-optimal front
of a binary NSGA-II (BCO) algorithm

because of the poor performance of the MCDA approach in identifying diverse so-

lutions for nitrate load reduction. On the other hand, the MCDA framework is a

more appropriate method, since it was based on our prior knowledge of the system

and did not use iterative search algorithm to identify the solutions.

Hybridized MCDA and the genetic algorithm, on the other hand, resulted

in more promising solutions. In this approach, the genetic algorithm initialized

using results from the MCDA approach and terminated at the 37th generation,

which means 3 times faster convergence than the standalone genetic algorithm. The

Pareto-optimal fronts from the standalone and hybrid genetic algorithm are shown

in Figure 4.4. Fast convergence of the hybrid approach was mainly because of diver-

sity in its initial population. In spite of having less coverage of the objective space,

the solution from hybrid approach had a larger Lebesgue measure, $4.67 × 108,

which demonstrates the improved performance of the optimization framework. In

addition, the standalone optimization method had no solution that dominates any

of the solutions from the hybrid framework.

Investigating spatial distribution of the conservation practices associated with

results from the hybrid framework disclosed another advantage of using this ap-

proach. Figure 4.5 demonstrates the type and location of the conservation practices
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Figure 4.4: Comparison of Pareto-optimal solutions of a binary-variable NSGA-II
(BCO) with random and MCDA-based initialization

associated with several scenarios on Pareto-front. Comparing spatial distribution

of the results from the hybrid framework and standalone optimization framework

(shown in Figure 3.8), demonstrated more uniformly distributed conservation prac-

tices regarding the type and geographical location of the conservation. This provides

an opportunity for modular implementation of the watershed scale conservation

plans, as discussed in chapter 3. Results also show that optimal plans only con-

tained a few residue management practices, which is mostly because of their inverse

impact on nitrate loads emerging to the streams.

While binary NSGA-II demonstrated successful performance in optimizing con-

servation plans, many real world decision making problems consist of continuous and

discrete decision variables. For example, length of stabilized river bank, size of ponds

and wetlands, and percentage decrease in application of chemicals can be considered

as continuous decision variables, although discrete decision variable might be more

preferable for width of grassed waterways and height of grade stabilization struc-

tures. Further improvement in the initial and Pareto-optimal solutions was achieved

by employing discrete-continuous variable (also referred to as “mixed-chromosome”

decision variables). Initial population and Pareto-optimal solutions from the genetic

algorithm and hybrid frameworks with mixed-variables are presented in Figure 4.6.
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Figure 4.5: Spatial distribution of conservation practices selected for different costs
for MCDA-based initialization scheme

Initial population of the hybrid framework, in addition to better fitness values and

higher diversity, contains considerably higher number of nondominated solutions

than the standalone genetic algorithm (67% versus 9%). Moreover, the standalone

genetic algorithm and hybrid frameworks terminated in 6,380 and 44 generations,

respectively, that means 145 times faster convergence of the hybrid framework. For

an 8-core CPU, the difference was overall runtime of 28 days versus 4.5 hours. Per-

formance of the hybrid framework can be actually seen as a fine tuning of the MCDA

results.

Another interesting observation in optimization convergence, that is theoret-

ically expected, was the changes in Pareto-front shape from a relatively smooth

curve to a sharp curve as the optimization proceeds. In sharp Pareto fronts, break-

point(s) are often considered as a good compromise between objectives [Madsen,

2003]. The hybrid framework outperformed the standalone genetic algorithm in

identifying breakpoint solutions. In this study, a sharp Pareto-optimal front reflects
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Figure 4.6: Comparison of initial population (top) and Pareto-front solutions (bot-
tom) from a mixed-variable optimization frameworks with random initial population
(MCO-Random) and MCDA-based initial population (MCO-MCDA)

the fact that the greatest degree of pollutant load reduction is achievable through

the application of limited number of conservation practices with lower costs.

It should also be noted that success of the MCDA framework, however, depends

on the relative importance scores assigned to the alternatives in the evaluation ma-

trix. Figure 4.7 compares initial population generated using three different scoring

methods: (i) “good scoring” that was based on the proper knowledge of the system

as presented in Table 5; (ii) “equal scoring” in which all conservation practices re-

ceived the same score; and (iii) “inverse scores” that was the opposite of the “good

scoring” (i.e. the conservation practices scored 5 and 4 in a 1-5 scale in “good scor-

ing” scored 1 and 2 in “inverse scoring”, respectively). Inverse scoring resulted in a

set of initial population far away from the Pareto-front and did not provide a good

estimate of the nondominated front. The initial population from equal weighting
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Figure 4.7: Comparison of initial population using three different weighting schemes

was also far from optimality; although, it provided better initial solutions than the

random population in terms of the diversity of solutions.

4.5 Summary and Conclusions

Control of agricultural non-point sources of pollution is achievable through

implementation of conservation practices, commonly known as Best Management

Practices (BMPs), at farm or field level. In practice, watershed plans for non-

point source pollution control can be achieved using several approaches. Research

to date showed that optimization approach outperforms other strategies regarding

the both environmental and socioeconomic factors. Optimization of the nonpoint

source pollution control strategy at the watershed scale aims at prevention of water

quality degradation at the minimum cost. Although, optimization is an effective

computational tool, it ultimately depends upon the availability of the automated
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optimization tools and expertise on analyzing the results and is a computationally

intensive task.

In this paper, a multi criteria decision analysis (MCDA) framework was pro-

posed to identify a set of near-optimal solutions for nonpoint source pollution control

planning at the watershed scale. The framework was established based on a priori

knowledge about the system and effectiveness of the conservation practices on re-

ducing pollutants load. Selection of the type and location of conservation practices

depends upon several socioeconomic and environmental criteria. MCDA provided

a framework to aggregate these incommensurable and often conflicting criteria and

rank the alternatives from the most to the least preferred. Ranking the alterna-

tives in MCDA framework requires: (i) selecting a set of criteria that should be

considered in ranking the alternative(s), which depends on objectives of the study

(e.g. cost, effectiveness, adoptability, and etc); (ii) constructing an evaluation ma-

trix, that assigns “scores” for the criteria based on the relative importance of each

criterion for each alternative; and (iii) ranking the alternatives after aggregating the

criteria using a mathematical MCDA.

The framework was demonstrated for identifying optimal types and locations of

conservation practices in the Eagle Creek Watershed, Indiana. The goal was to find

a set of optimal type and location of four types of conservation practices, including

grassed waterways, grade stabilization, fertilizer management, and tillage/residue

management, to minimize nitrate and atrazine loads at minimum cost. Thus, three

criteria were selected according to the objectives of the study that include: (1) ef-

fectiveness of conservation practices on nitrate load reduction, (2) effectiveness of

conservation practices on atrazine load reduction, and (3) implementation cost of

conservation practices. Appropriate scores were assigned to the alternatives based

on the performance of conservation practices in reducing pollutants load. The re-

sults from the proposed framework were compared with results of an optimization
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framework for the given problem. The hybridization of the methods was also exam-

ined to further improve the results. Both MCDA and optimization frameworks were

coupled with the Soil and Water Assessment Tool (SWAT) to simulate the impact

of conservation plans on water quality.

The study revealed that the proposed MCDA framework can be an effective

and efficient alternative for optimization frameworks in identifying near-optimal

solutions for nonpoint source pollution control plans. The MCDA framework out-

performed the optimization framework by identifying more diverse solutions within

a marginal proximity of the Pareto-optimal front without any need for iterative and

computationally intensive search algorithms. For complex problems or in the case

of a poorly established evaluation matrix, the MCDA framework may fail to identify

near-optimal solutions; however, it can effectively serve as ideal initial population

in a hybrid framework. The hybrid framework outperformed the standalone opti-

mization framework in terms of convergence (i.e. efficiency), optimality (i.e. effec-

tiveness), and diversity of the solutions. In addition, results from different scorings

of conservation practices highlighted the importance of using credible information

in establishing the evaluation matrix.
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Chapter 5

ASSESSMENT OF OPTIMAL AGRICULTURAL CONSERVATION

PLANS UNDER UNCERTAIN CONDITIONS: IMPACT OF

CLIMATE CHANGE

Highlights

The amount of investment on nonpoint source pollution control programs makes

it all but vital to assure the conservation benefits of practices will be sustained un-

der the shifting climatic paradigms and challenges for adoption of the plans. In this

paper, hydrologic and water quality simulations driven by an extensive ensemble

of climate projections were analyzed for their respective changes in basin average

temperature and precipitation in the Eagle Creek Watershed, Indiana. Impact of

climate change on performance of conservation practice and shifts in their optimal

type and placement were also assessed. Nondominated Sorted Genetic Algorithm II

(NSGA-II) was used to identify a set of optimal conservation practices in minimizing

atrazine and nitrate loads at minimum cost. The results of this study revealed that

substantial changes in water yield and pollutants transport are expected under dif-

ferent climate projections. Streamflow, sediment, total nitrogen, total phosphorus,

and Atrazine loads respectively showed 15%, 40%, 20%, 32%, and 50% net increase

at the end of 21st century with considerably high peaks (up to 250% higher than

historical observations) and low fluxes (up to 40% lower than historical observation).

In addition, performance of nonpoint source pollution control plans under different

climatic projections were altered substantially from what they have designed for.
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Optimization of conservation practices type and placement under several climatic

projections also indicated considerable shift in Pareto-optimal front shape and po-

sition. However, the Pareto-front obtained for historic climate data represented

the average performance of the optimal conservation plans for future climate pro-

jections. Analysis of the spatial distribution of optimal conservation plans showed

that despite altered Pareto-optimal front position, spatial pattern and type of the

selected conservation practices remained relatively the same. Performance of the

nonpoint source pollution control plans in the course of their lifetime, considering

lower changes in the climate conditions, was expected to be sustained.

Keywords: Climate change, hydrologic and water quality modeling, multiobjective

optimization, nonpoint source pollution, conservation practices, SWAT
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5.1 Introduction

The global atmospheric concentration of carbon dioxide and other greenhouse

gases (GHGs) has changed throughout the history; although based on the growing

evidence, scientists are becoming confident that the current global warming trend

is very likely induced by anthropogenic activities [IPCC , 2007]. Thus, many natu-

ral processes, including precipitation and temperature and therefore frequency and

magnitude of extreme hydrologic events, are affected. Climate change can also sig-

nificantly change diffusive nonpoint source pollution (NPS) transport and nutrients

cycles through changes in physical, chemical, and biological responses [Jennings

et al., 2009]. Altered precipitation and temperature patterns, which in turn have

implications on water quality and quantity, have been particularly compelling to

trigger several interdisciplinary climate change research [Brekke et al., 2009; Chang ,

2004].

Climate change studies typically aim at (i) developing tools and methods to

improve understanding of the human-environment interactions, (ii) supporting ef-

fective adaptation strategies to cope with the uncertain conditions, and (iii) devel-

oping decision support systems to mitigate policies and facilitate long-range decision

making process [National Research Council , 2010a; Antle, 2009]. Existing studies

concerning the impacts of climate change on the hydrology and water resources

have typically been undertaken at coarse spatial scales. General circulation models

(GCMs) are the basic tools to provide information regarding the response of the

global climate system to increasing GHG emission path scenarios [Rummukainen

et al., 2001]. Emissions scenarios are described by the Intergovernmental Panel

on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) [Naki-

cenovic et al., 2000]. However, application of GCM outputs in regional hydrologic

modeling bear several key challenges because of inadequate accuracy and coarse

spatial and temporal resolutions [Fowler et al., 2007]. Thus, considerable effort has
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focused on development of the ”downscaling” techniques. Downscaled outputs of

GCMs have widely used to study hydrologic and water quality impacts of climate

change around the world [Lettenmaier et al., 1999; Bouraoui et al., 2002; Abbaspour

et al., 2009; Brekke, 2011]. Vulnerability to climate change impacts is shown to exist

across the world [National Research Council , 2010b]. While direction and magni-

tude of the future impacts can not be determined precisely, adaptation strategies

can be taken to reduce vulnerability of the certain socioeconomic and environmen-

tal systems [National Research Council , 2010c]. Watershed management decisions

play a key role in climate change adaptation [Lal et al., 2011] in which conserva-

tion practices, commonly known as Best Management Practices (BMPs), are widely

accepted control measures of nonpoint sources of pollutants [Novotny , 1993; Ritter

and Shirmohammadi., 2001].

With projected changes in climatic conditions, significant changes in assimila-

tive capacities of water bodies and landscape position of critical areas that should

be targeted for implementation of conservation practices are also expected [Parker

et al., 2008; Kaini et al., 2010]. The magnitude of money spent on nonpoint source

pollution control programs makes it all but vital to assure the conservation benefits

of practices will be sustained under the shifting climatic paradigms and challenges

for adoption of the plans. In practice, several approaches have been taken to ac-

complish proper watershed scale conservation plans. Research to date shows that

optimization approach outperforms other strategies regarding the both environmen-

tal and socioeconomic factors [Arabi et al., 2006; Jha et al., 2009; Rabotyagov et al.,

2010; Maringanti et al., 2011].

Optimization algorithms should be coupled with a spatially distributed water-

shed model and use a proper representation of conservation practices to predict

water quality changes arising from adoption of conservation practices [Easton et al.,

2008]. Watershed models have increasingly been recognized as an important tool for
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improved understanding of the environmental processes [Singh and Frevert , 2005].

The primary goal of conservation practices optimization is to identify a set of opti-

mal type and placement of conservation practices by minimizing pollutant movement

from landscapes to water bodies at minimum cost. Thus, conservation practices tar-

geting is inherently a multiobjective problem. Multiobjective optimization methods

attempt to explore the tradeoffs between incommensurable and often conflicting so-

cioeconomic and environmental factors by identifying the optimal type, size, and

location of conservation practices within the watershed, resulting in a set of non-

dominated (also referred to as Pareto-optimal) solutions. Although, optimization is

an effective tool in finding optimal set of solutions, it ultimately depends upon avail-

ability of the automated optimization tools and expertise on developing and utilizing

them and analyzing the results. Moreover, optimization is a computationally inten-

sive task and, depending on the complexity of the problem, may need thousands

to millions of model runs. In Chapter 4 a computational framework based on the

multicriteria decision analysis (MCDA) was presented to effectively identify a set of

optimal type and placement of conservation practices within a watershed. Solutions

from MCDA approach can further be improved by using optimization methods in

substantially less runs than standalone optimization methods.

The primary goal of this study is to evaluate the impact of climate change

and variability on performance of agricultural nonpoint source pollution control

practices in reducing NPS pollutants. Three specific objectives are (i) to identify

the direction and degree of potential impact of climate change on hydrologic and

water quality responses of the watersheds, (ii) to analyze vulnerability of optimal

conservation plans to changes in climatic conditions in a watershed scale, and (iii) to

address optimal placement of nonpoint source pollution control plans for uncertain

future climate projections with low, moderate, and high emission scenarios. A broad

Bias-Correction Spatial Disaggregation (BCSD) climate projections composed of 16
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GCMs covering 3 emissions path scenarios [Maurer et al., 2007] from the World

Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project

phase 3 (CMIP3) multi-model dataset [WCRP , 2012] were used in the study. Each

scenario was temporally downscaled to a daily time step using a resampling and

scaling/incrementing technique [Wood et al., 2002, 2004]. An extensive discussion

of impact of climate change on sediment, nutrients, and Atrazine loads and alteration

of conservation practices performance is also provided.

5.2 Methods and materials

Hydrologic and water quality simulations driven by several climate projections

were analyzed for their respective changes in basin average temperature and pre-

cipitation in the Eagle Creek Watershed, Indiana, USA. An extensive ensemble of

future climate datasets from 1950-2099 were obtained and temporally and spatially

downscaled. Performance of conservation practices that were optimized for histori-

cal data in Chapter 4 were also analyzed under different climate projections. Impact

of several selected projections on identifying a set of optimal type and location of

conservation practices were also assessed. Nondominated Sorted Genetic Algorithm

II (NSGA-II) in combination with binary decision variables were used.

5.2.1 Study area

The Eagle Creek Watershed (ECW), located in central Indiana, has a drainage

area of 248.1 km2 and lies within the Upper White River Watershed, extending

from 40◦01’24” to 40◦04’16” north latitudes and 86◦15’43” to 86◦16’45” west longi-

tudes.. According to the 2001 national Land Cover Dataset [USGS NLCD , 2001],

the watershed consists of 52% croplands, 27% pasture, 12% low and high density

urban areas, and 9% forest. The predominant crops are corn and soybeans. ECW

drains into Eagle Creek Reservoir, which supplies drinking water for the city of In-

dianapolis. Figure 5.1 presents the location and land cover for the watershed. The
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Figure 5.1: Eagle Creek Watershed Map- HUC 051202011102

soils are generally poorly draining and developed from glacial materials with thin

loess over loamy glacial till and alluvial materials depositions. The dominant soils

are the Crosby-Treaty-Miami in the headwaters and Miami-Crosby-Treaty along the

downstream areas. The mean annual precipitation for the Eagle Creek Watershed

area is 1052 mm. Monthly mean temperatures for this area from 1971-2000 shows

January as having the lowest average temperature of -3.3◦C and July as the being

the warmest month with an average temperature of 23.7◦C [Tedesco et al., 2005].

Spatial scale of conservation planning depends upon numerous factors, includ-

ing management objectives, available data resolution, dominant ecological processes,

and potential sociopolitical constraints [Walter et al., 2007; Garen and Moore, 2005].

To achieve the specific goals of water quality control, conservation practices target-

ing should be performed within a smaller geographic unit which ultimately allows

us to better evaluate targeted management plan. Using 12-digit Hydrologic Unit

Codes (HUCs) is recommended for the watershed-scale evaluation and planning of

conservation practices to encourage participation of stakeholders in implementing

conservation practices and enable monitoring water quality changes within subwa-

tershed [Haggard et al., 2010]. The ECW encompasses five 12-digit HUCs. The
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HUC 051202011102 subwatershed with a drainage area of 41.2 km2 was selected for

the application of the integrated simulation-optimization framework in this study.

The subwatershed consists of predominantly cropland (88%), and also contributes

the largest amounts of non-point source nitrate and atrazine loads from agricultural

lands to the Eagle Creek Reservoir (approximately 23% of nitrate loads and 28% of

the atrazine loads).

5.2.2 Climate data

Ensemble of 112 Bias-Correction Spatial Disaggregation (BCSD) climate pro-

jections composed of 16 GCMs covering 3 emissions path scenarios [Maurer et al.,

2007], were used in this study. Monthly climate projections from 1950-2099 were

obtained from WCRP [2012] in 1/8◦ spatial resolution. Three different emissions

scenarios are named A2, A1B, and B1, which respectively correspond to the high,

balanced (or moderate), and low GHG emissions. Table 5.1 summarises the infor-

mation of the GCMs utilized in this study. Each of the GCMs have one or more runs

for each emission scenario depending upon the 20th century “control” simulations

[WCRP , 2012].

Coarse temporal resolutions of GCM outputs is not adequate for regional wa-

tershed modeling [Fowler et al., 2007]. Moreover, SWAT setup requires use of point

data at meteorological stations, whereas GCMs data are served as monthly data on

1/8◦ grids. Therefore, each scenario in this study was corrected from areal average

to point bias (spatial correction) and then downscaled to a daily time step using a

resampling and scaling/incrementing technique (temporal downscaling; [Wood et al.,

2002, 2004]).

To correct bias between grid average and point location, monthly precipitation

and temperature data from NOAA Whitestown, Indiana station and GCM outputs

(for a single grid cell encompassing the station) for 1950-2010 period were used. As
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described by Wood et al. [2002] a quantile map was created from the probability

thresholds between cumulative distribution functions of GCM and observed grids

(on a monthly basis) for both precipitation and temperature during the overlapping

period (1950-2010). Bias-correction was then completed by adjusting each climate

projection (both past and future simulations) using the previously defined quantile

maps (a single scale for precipitation and a single increment for temperature were

used). This step ensured that adjusted GCM datasets were statistically consistent

with the observed datasets during the overlapping period.

Likewise, a resampling method proposed by Wood et al. [2002] was utilized

to downscale monthly total precipitation and average temperature data into daily

values of precipitation, maximum temperature, and minimum temperature. In this

method precipitation values are generated randomly for each future month within

each year in each ensemble and then scaled so that the sum of daily precipitation data

for each month is equal to the future monthly forecast. The same way, Tmax and Tmin

for each month were generated and shifted such that their average, (Tmin+Tmax)/2,

resembles the future monthly forecast projection. This method created daily values

of climatic variables that both preserve observed spatial and temporal correlations

and aggregated to future monthly projections. In order to avoid resampling a “wet-

cool” historical month to generate a daily series of climatic variables in a “dry-

warm” projected month, or vice-versa, a wetness and warmth classification scheme

was used. Detailed description of the temporal downscaling method can be found

in Wood et al. [2002] and Bureau of Reclamation [2009].

5.2.3 Watershed model description: SWAT

The Soil and Water Assessment Tool (SWAT; Arnold et al. [1998]) was used to

represent hydrologic and water quality processes in the ECW. Hydrologic processes

simulated by SWAT include snow accumulation and melt, evapotranspiration, in-

filtration, percolation losses, surface runoff, and groundwater flows [Neitsch et al.,
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2005]. SWAT is a physically-based watershed-scale, distributed-parameter, contin-

uous time, and long-term, model that runs on a daily time step. It subdivides a

watershed into subbasins connected by a stream network, and further delineates

hydrologic response units (HRUs) consisting of unique combinations of land cover

and soils in each subbasin.

SWAT can simulate major nutrient processes within a watershed. The nitrogen

(N) cycle is simulated in five pools: inorganic (including ammonium and nitrate)

and organic (including fresh, stable, and active). The main N processes are mineral-

ization, decomposition, and immobilization. Nutrients are introduced into the main

channel through surface runoff and lateral flow and transported downstream with

channel flow. Plant uptake, denitrification, volatilization, leaching, and soil erosion

are the major mechanisms of N removal from a field. The transport rate of organic

N with sediment is calculated with a loading function developed by McElroy et al.

[1976] and modified by Williams and Hann [Williams and Hann, 1978] for appli-

cation to individual runoff events. The loading function estimates daily organic N

runoff loss based on the concentrations of constituents in the top soil layer, sedi-

ment yield, and an enrichment ratio. Nutrient transformations in the stream are

controlled by the in-stream water quality component of the model that is adapted

from QUAL2E in-stream water quality model [Brown and Barnwell , 1987]. More de-

tailed description of the nutrient components of SWAT can be found in Neitsch et al.

[2005]. SWAT uses algorithms from GLEAMS (Ground Water Loading Effects on

Agricultural Management Systems) [Leonard et al., 1987] and EPIC (Erosion Pro-

ductivity Impact Calculator) [Williams., 1990] to model pesticide’s overland fate

and transport and movement from land to streams. It also incorporates a simple

mass-balance method developed by Chapra [2008] to model the transformation and

transport of pesticides in streams.

A 30-m resolution DEM from USGS National Elevation Dataset [USGS NED ,

2010], National Land Cover Dataset (NLCD) 1992 and 2001 [USGS NLCD , 2001] for
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Table 5.2: SWAT performance indices for daily streamflow, monthly nitrate, and
monthly total pesticide simulation during 1993-2004 including 2 years of warmup pe-
riod. PBIAS and NSE indicate percent bias and Nash-Sutcliff Efficiency coefficient,
respectively.

Constituent
Calibration Period Validation Period

Gauging Criteria (1995-1999) Criteria (2000-2003)
Station PBIAS (%) R2 NSE PBIAS (%) R2 NSE

20 Nitrate 7.9 0.94 0.83 16.9 0.85 0.67
Atrazine -6 0.81 0.34 -14 0.7 0.41

22 Nitrate -22.3 0.89 0.78 1.24 0.74 0.36
Atrazine 42 0.69 0.44 -0.1 0.5 0.28

27 Nitrate 0.59 0.93 0.85 18.3 0.78 0.59
Atrazine 13 0.66 0.35 -30 0.51 0.19

32 Nitrate -7.9 0.92 0.84 8.4 0.76 0.55
Atrazine 42.3 0.75 0.52 33.1 0.51 0.14

35 Streamflow -12.2 0.78 0.61 4.3 0.78 0.56

urban areas, National Agriculture Statistics Service (NASS) Cropland Data Layer

2000-2003 [USDA NASS , 2003] for croplands, and SSURGO data from national

resources conservation service (NRCS) [USDA NRCS , 2010] were used for watershed

subdivision and delineating HRUs in the SWAT model. The ECW was subdivided

into 35 subwatersheds and a total of 446 hydrologic HRUs. HUC 051202011102

includes 4 subwatersheds and 40 HRUs (Figure 5.1. Watershed model is calibrated

and validated for entire ECW model for predicting streamflow at watershed outlet,

and nitrate and Atrazine at gauging stations 20, 22, 27, and 32. Table 5.2 presents

performance indices of the SWAT model in predicting daily streamflow and monthly

nitrate, and Atrazine.

5.2.4 Representation of Conservation Practices

IIn this study, water quality impacts of fertilizer management, grassed water-

ways, grade stabilization structures, and tillage/residue management were evalu-

ated. Only row crops, including corn and soybean, were considered for implemen-

tation of the nonpoint source pollution control plan. Conservation practices were
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represented using numerical procedures from the published studies [Arabi et al.,

2004; Arnold et al., 2011; White et al., 2010]. SWAT includes explicit functions for

representation of fertilizer management and tillage/residue management, grassed

water ways [Arnold et al., 2011]. Table 5.3 summarizes the relevant SWAT manage-

ment operations and parameters and their corresponding values for representation

of conservation practices. Implementation of grade stabilization structures are only

considered in combination with grassed waterways. Conservation practices in the

binary optimization approach were represented by default values presented in Table

5.3. Detailed description of the conservation practices representation methods can

be found in Arabi et al. [2004]; Arnold et al. [2011], and White et al. [2010]. We

assumed selected conservation practices can coexist in the same field; and there-

fore, there exist 23 × 3 = 69 alternatives for this study that makes 269 possible

combination of conservation practices type and location.

5.2.5 Multiobjective Optimization

Watershed scale nonpoint source pollution control planning aims at minimizing

the potential for water pollution and environmental degradation at minimum cost.

Hence, selection of type and placement of the conservation practices is inherently

a multiobjective problem. A multiobjective optimization problem can be stated in

the following mathematical form:

minimize F (θ) = {F1(θ), ..., Fm(θ)}, θ ∈ Θ ⊂ Rn (5.1)

where m is total number of objective functions and θ denotes a decision variable

vector within the feasible decision space of Θ. Multiobjective search algorithms

can simultaneously optimize two or more conflicting objectives, resulting in a set of

nondominated (also referred to as ”Pareto-optimal front”) solutions. Global search

methods are robust in finding optimal solutions by searching over the larger subset

of the search space, and thereby escape being trapped in local optima [Gitau et al.,
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2004]. Nondominated Sorted Genetic Algorithm II (NSGA-II) was used as the

primary search method in identifying optimal solutions. A typical GA starts with

an initial population of solutions and then implements probabilistic and parallel

exploration in the search space using the domain-independent genetic operators (i.e.

chromosome reproduction) to find optimal solutions [Arabi et al., 2006; Perez-Pedini

et al., 2005].

The initial population of individuals is typically generated randomly. A GA

does its tuning in stages called generations. GA’s chromosome reproduction stops if

any of the pre-defined termination conditions are met. Unlike most of the optimiza-

tion algorithms, GA promises convergence but not optimality [Lakshmanan, 2000].

Therefore, defining termination criteria for GA is a hard and subjective task. The

commonly used GA termination criteria are maximum number of function evalua-

tions and number of successive generations without considerable improvement. The

first criterion needs a prior knowledge about the problem to allow the estimation of

a reasonable maximum search length. On the other hand, the second criterion has

an adaptive nature and does not require such knowledge [Safe et al., 2004], how-

ever needs definition of substantial improvement. In multiobjective optimization

problems the computational time required to find the optimal solution(s) increases

as the number and complexity of the decision variables and objectives increase. In

particular, larger number of decision variables requires larger population size that

implies larger number of function evaluation. Parallel computing was adopted in

NSGA-II algorithm to reduce the overall computational time.

In this study, decision variables are defined as a binary chromosome consisting

of 1’s and 0’s respectively indicating that the corresponding conservation practice

“be” or “not be” implemented. Similar to any GA algorithm, the algorithm con-

siders different candidate solution sets as the individuals within a population. Each
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individual consists of genes coded within a chromosome that defines the correspond-

ing fitness. Optimization initializes using a MCDA-based scheme (as proposed in

Chapter 4) and then reproduces the chromosomes to find optimal solutions.

Minimizing pollutants load, or alternatively maximizing pollutants load reduc-

tion, is the key objective in nonpoint source pollution control planning. The load

reduction of pollutant z can be calculated as:

∆Lz =
Lz,base − Lz,BMP

Lz,base
×%100 (5.2)

where ∆Lz is the estimated percent reduction of pollutant load z, while Lz,base and

Lz,BMP represent the pollutant loads before and after implementation of NPS pol-

lutions control practices, respectively. Both Lz,base and Lz,BMP would be estimated

from hydrologic and/or water quality responses of the watershed model. Depend-

ing on the chronic or acute nature of the pollutant z, different approached can be

taken to calculate pollutant load Lz. For pollutants with chronic impacts (such as

sediments and nutrients) long-term loading (e.g. monthly, annual) are appropriate

in nonpoint source pollution control strategies [US EPA, 2008].

Nonpoint source pollution control plans yield benefits in water quality and

wildlife habitats, but impose costs on stakeholders as well, that should be considered

in decision making process. Data Envelopment Analysis (DEA) [Charnes et al.,

1978] provides a methodology for economic analysis of the agricultural technology

and conservation practices. In a basic DEA, there are k = 1, , K decision making unit

(DMUs). Each DMU uses x = (x1, , xM) ∈ RM
+ inputs to produce u = (u1, , uN) ∈

RN
+ outputs. Hence profit (net return) within the entire study area can be computed

as:

π(x, u) =

benefit︷ ︸︸ ︷
K∑
k=1

N∑
n=1

rn,kβn,ku −

cost︷ ︸︸ ︷
K∑
k=1

M∑
m=1

rm,kβm,kx (5.3)
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αr and αp are changes in the unit prices of outputs and inputs, respectively. Cost

of conservation plans consists of implementation, maintenance, damage, and oppor-

tunity costs. Economic benefit also includes monetary values of the water quality

improvement benefits (off-site benefits), and benefits from changes in agricultural

production as a results of the implementing new conservation practices. In this

study three objective functions were selected as follows: (1) minimize conservation

practices implementation cost including implementation, management, and damage

costs, (2) maximize Atrazine load reduction, and (3) maximize nitrate load reduc-

tion. Benefit was con considered in this study, because it is a direct function of the

pollutants load reduction.

Performance of the optimal conservation plans were analyzed for an extensive

112 projections. With projected changes in climatic conditions and subsequently

altered hydrologic regimes, assimilative capacities of water bodies and landscape

position of critical areas were also expected to alter. Thus, impact of projected

climatic conditions on optimal placement of conservation practices were also ana-

lyzed in this study. Baseline scenario solutions were obtained from optimizing type

and placement of conservation practices for historical climate conditions (from 1994-

2003). In addition to the shift in Pareto-optimal front shape, degree of similarity in

type and spatial distribution of the conservation practices were also analyzed. Two

pairwise distance measures of Jaccard and Spearman were used for test of similarity.

The “Jaccard index”, also known as the “Jaccard similarity coefficient” [Jaccard ,

1908; McCormick et al., 1992] expresses the similarity, or dissimilarity, of nonzero

datasets X and Y as

J(X, Y ) =
|X ∩ Y |
|X ∪ Y |

(5.4)

where J(X, Y ) is the Jaccard similarity coefficient between datasets X and Y , |X ∩

Y | is size of the intersection between dataset X and dataset Y , |X ∪Y | is size of the
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union between the two datasets. For binary datasets, Jaccard index simplifies to

J(X, Y ) =
p

p+ q + d
(5.5)

where, p is number of attributes that are 1 for both, q is number of attributes that

are 1 in X but not in Y , and d represents number of attributes that are 1 in Y but

not in X. Jaccard index of 1 indicates the perfect matching similarity.

Likewise, Spearman’s rank correlation coefficient is a measure of statistical de-

pendence between two variables Lehmann [1975]

ρ = 1− 6
∑n

i=1 (xi − yi)2

n(n2 − 1)
(5.6)

where xi and yi are rank of ith attribute 1 in X and Y , respectively and n represents

number of attributes in X and Y . A perfect Spearman correlation coefficient of +1

or −1 occurs when each of the variables in X is a perfect monotone function of Y .

5.3 Results and discussion

Overall, the results of this study showed that water yield and pollutant trans-

port substantially changed under different climatic paradigms. The direction, mag-

nitude, and variability of the climate and its impacts were analyzed by combining

SRES emissions scenarios and computing ensemble means, medians, and quartiles.

In addition, conservation practices showed variable performance under different cli-

matic projection. Figure 5.2 shows the annual basin averaged temperature and

precipitation from 2010-2099. Each individual projected ensemble shows consider-

ably variable minimum and maximum temperature over the nine decade, although

follow a general pattern when grouped by SRES emissions scenario. The ensemble

averaged minimum and maximum temperature for each of the emission scenarios

appears to increase at approximately the same rate until 2040. From 2040-2070 the

increase in temperature in B1 is substantially lower than that of A1B and A2 that
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Figure 5.2: Basin averaged annual precipitation, minimum temperature and max-
imum temperature. The grey lines represent annual values from each of the 112
projections and the colored lines represent the ensemble averaged annual values
from SRES emissions scenarios A2, A1B, and B1.
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continue increasing with higher rates. After 2070, temperature in A2 increased with

higher rate than A1B and continued by the end of the century.

Precipitation projections, on the other hand, showed more steady and gradu-

ally increasing throughout the century. Averaged ensemble for each of the scenarios

showed approximately 15 percent increase over the century. However, precipitation

fluctuation shows slight increase as it gets closer to the end of century which means

intense flood and drought conditions should be expected. Figure 5.3 depicts the vari-

ability in projected temperature and precipitation within different emission scenarios

at three time periods, including near-future (2010–2019), mid-century (2050–2059),

and late-century (2090–2099). Box plot with whiskers extends from minimum to

maximum of values and bottom and top of the box shows lower and upper quartiles,

respectively. Increased median and wider ranges indicate higher variability over the

time. Higher variability is always associated with higher uncertainty. Thus, higher

variability in hydrologic regimes and pollutants fluxes and consequently higher pre-

diction uncertainty is also expected as the simulations progresses into the future.

Analysis of monthly averaged temperature and precipitation also showed sea-

sonal variability in the time-series (Figure 5.4) which increases the uncertainty.

Precipitation projections showed minimum increase from June-August and higher

in January and March-May of each year with higher variations for A2 emission sce-

nario. Near future (i.e. 2010s) precipitation showed slight decrease than historic

data in June for SRES A2. Likewise, seasonal temperature showed systematic in-

crease with the highest increase of 14 percent during spring (i.e. March, April, and

May) followed by a 10 percent increase in winter (December, January, and February)

and negligible net increase during warmer seasons of summer and fall .

As expected, variability in climatic conditions were translated into a range

of watershed responses via SWAT simulations. Figure 5.5 shows the variability

in resulting streamflow, sediment load, major nitrogen and phosphorus pools, and
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Figure 5.4: Seasonal variability in monthly average temperature and precipitation
in the Eagle Creek watershed from SRES B1, A1B, and A2 emissions scenarios over
the three near-, mid-, and late century.
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Atrazine at the watershed outlet. Streamflow showed similar pattern and ranges

as the precipitation, that is consistent with results of other studies (e.g. Stonefelt

et al. [2000]). Each of the three emission scenarios showed 25 percent increase in

streamflow generation with the higher increase rate in the near-century (2010s).

Increased precipitation in the winter in the form of snow is also expected to increase

early snowmelt with higher rates in spring as the temperature starts to increase.

Hence, naturally, higher and more frequent storms are also expected. Each of the

projected scenarios have demonstrated several higher peaks (up to 2 times higher

than historical peaks) by the end of the century. On the other hand, extreme drought

are also expected. Each of the emission scenarios indicated several extremely low

flow conditions which are up to 45 percent lower than that of historical observations

with greatest variations for A2 emission scenario.

A detailed analysis of water quality constituents variation under climate pro-

jections were also performed. Water quality responses were highly variable with a

consistent net increase throughout the century. SRES averaged data for sediment,

total phosphorus, total nitrogen, and total pesticide follow an increasing pattern

with respectively up to 40%, 20%, 32%, and 50% net increase at the end of century.

Peak values are expected to be up to 180% higher for sediment and total nitrogen

and less than 250% higher for phosphorus and Atrazine constituents than historical

high observations. While total nitrogen and total phosphorus loads demonstrated

gradually increasing trend, organic phosphorus and organic nitrogen are substan-

tially decreasing (40% decrease by the end of century). Thus, net increase in total

nitrogen loads is mainly due to the increase in nitrate load. This can be explained

by increased rates of organic-N decomposition, ammonification, and nitrification

due to the increased projected temperature and more moisture available. Increased

sediment and total Atrazine loads was also a direct consequence of the increased

runoff that led to the elevated wash-out potential.
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Figure 5.5: Variability in SWAT major outputs from 112 projections in the Eagle
Creek watershed
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Figure 5.6: Pareto-optimal front solutions for maximizing pollutants load reduction
and minimizing implementation cost of conservation practices.

Analysis of the results made me confident that climate change and variability

can substantially change the nutrients, sediment, and Atrazine fluxes within the

watershed. Accordingly, efficiency of nonpoint source pollution control plans in re-

ducing pollutant loads was expected to alter. To study impact of climate projections

on performance of conservation plans, Pareto-optimal front solutions were identified

for historical climatic data (1994-2003) for maximizing nitrate and Atrazine loads

reduction and minimizing implementation cost of conservation plans in Chapter 4.

Figure 5.6 depicts the Pareto-optimal front solutions for the problem that consists

of 38 nondominated solutions. Each one of the solutions were then tested under

112 climate projections and the results are presented in Figure 5.7 in which x-axis

presents implementation cost of conservation plans associated with the optimal so-

lutions. Conservation plans showed highly variable performance in reducing the

pollutants load under different projections. While the average performance was de-

graded for Atrazine load reduction, several expensive solutions were improved in

reducing nitrate load. Uncertainty in performance of the conservation practices,

which is represented by the difference between top and bottom whiskers, increased

as more money was spent.

Knowing the impact of climate change on efficiency of conservation plans, it is

natural to take the next step by considering climate change projections in identi-
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fying optimal type and placement of conservation practices within the watershed.

For this purpose, 2 climate projections with minimum and maximum precipitation

were selected for each of the SRES emission scenarios. Optimization was ran for 90

years for minimizing Atrazine and nitrate load reductions at minimum cost. Figure

5.8 depicts how optimal solutions may change under different climate projections.

Depending upon the selected climate projections, optimal solutions might be more

effective (solutions below baseline Pareto-front in Figure 5.8) or less effective (above

the baseline Pareto-front) in reducing pollutant loads. Interestingly, for all selected

emission scenarios, projections with low precipitation identified less efficient con-

servation plans in reducing both Atrazine and nitrate loads than projections with

high precipitation. In the case of Atrazine load reduction, Pareto-front solutions

associated with low precipitation scenario settled above baseline solutions (i.e. was

less effective) and vice versa. On the other hand, for nitrate load reduction, both

optimal sets in SRES B2 (low emission scenario) were less effective and both op-

timal sets in SRES A1 (high emission scenario) were more effective than baseline

solutions. Solutions in the selected SRES A1B scenarios showed lower efficiency for

low precipitation and higher efficiency for higher precipitation.

Analysis of the optimal solutions also showed that despite substantially differ-

ent efficiency of the Pareto-optimal solutions in pollutant load reduction, optimized

conservation plans and their spatial locations are highly correlated regardless of the

selected climate projection. For this purpose optimal solutions were grouped in 5

groups based on their associated costs from $0 to $250,000. Then their “type and

placements” (binary datasets) were tested for similarity using pairwise Jaccard co-

efficient. Similarity of the selected conservation practices’ “type” was also tested by

means of pairwise Spearman’s rank coefficient. In total, 594 pairwise comparison

between future scenarios and baseline solutions were performed. Figure 5.9 depicts
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Figure 5.8: Impact of climate change on identifying optimal conservation plans in
reducing Atrazine and nitrate loads. Circles (�) represent Pareto-optimal front
solutions for baseline (1994-2003). Gray area determines objective space in which
optimal solutionsor projections from SRES A1B, A2, and B1 are distributed.
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summary of the results obtained from similarity tests. Line plots show SRES aver-

aged similarity index and boxplots depict the median, range and quintile of Jaccard

indices.

Jaccard test suggested that similarity between solutions for future and baseline

scenarios increases as nonpoint source pollution control plan gets more effective.

Higher dissimilarity in lower costs was mostly due to the diversity of the solutions

obtained for all scenarios, whereas we saw several high Jaccard’s index within 0-0.05

and 0.05-0.1 scales. In addition, dissimilarity between scenarios reveals the fact that

critical areas that were targeted for implementation of conservation practices were

slightly shifted under different climate projections. Results from Spearman’s rank

correlation also strongly supports the results from Jaccard test. higher Spearman’s

coefficient suggested that, regardless of the selected climate projection, selected

conservation practices types within optimal solutions are highly correlated.

5.4 Summary and conclusion

With projected changes in climatic conditions, considerable changes in assim-

ilative capacities of water bodies and landscape position of critical areas that should

be targeted for implementation of conservation practices are also expected. The

magnitude of money spent on conservation programs makes it all but vital to assure

the conservation benefits of practices will be sustained under the shifting climatic

paradigms and challenges for adoption of the plans. Hydrologic and water quality

simulations driven by an extensive ensemble of climate projections were analyzed for

their respective changes in basin average temperature and precipitation in the Eagle

Creek Watershed, Indiana, USA. Impact of climate change on performance of con-

servation practices and their optimal placement were also assessed. Nondominated

Sorted Genetic Algorithm II (NSGA-II) coupled with the Soil and Water Assess-

ment Tool (SWAT) was used for optimizing type and placement of conservation

plans with the goal of reducing Atrazine and nitrate load with minimum cost.
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Figure 5.9: Similarity Index of optimal placement (left) and type (right) of conser-
vation practices for different climate projection and five cost scale. The placement
similarity was tested using Jaccard coefficient on pairwise comparison of binary
sets. Spearman’s rank coefficient was used to test correlation between number of
conservation practices with the same type for each cost scale. Line plots show
SRES averaged similarity index and boxplots show the median, range and quintile
of Jaccard indices.
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The results of this study showed that water yield and pollutants transport

changes substantially under different climatic paradigms. The direction, magni-

tude, and variability of the climate and its impacts were analyzed by combining

SRES emissions scenarios and computing ensemble means, medians, and quartiles.

Streamflow, sediment, total nitrogen, total phosphorus, and Atrazine loads respec-

tively showed 15%, 40%, 20%, 32%, and 50% net increase at the end of 21st century

with peaks up to 250% higher than historical observations. In addition, performance

of conservation plans under different climatic projections altered greatly from what

they have designed for, based on the historic climate data. Optimization of type and

placement of conservation practices for several climatic projections also indicated

considerable shift in Pareto-optimal front from solutions optimized for historical

data. Although, investigating the type and spatial distribution of the selected con-

servation practices showed that despite altered Pareto-front for climate projections,

spatial pattern and type of the selected conservation practices remained relatively

the same. Jaccard’s and Spearman’s similarity tests showed that as conservation

plans became more effective (i.e. more money was spent), similarity of the type and

location of conservation plans under different climate projections increases. Exist-

ing slight difference can be explained by shifted critical areas as a result of climate

change.

Overall, the Pareto-front solutions obtained based on the historic data repre-

sented the average performance of the optimal nonpoint source pollution control

plans from different climate projections. Thus, watershed scale conservation plan-

ning based on the historic data can be asserted for the future by confidence. Perfor-

mance of the conservation practices in the course of their lifetime (that are between

10-30 years), considering lower changes in the climate conditions in near century,

was expected to be sustained. However, revision of the adaptation measures should

be considered on a regular basis to accordingly respond to the impacts of climate

change and the risks associated with these impacts.
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Chapter 6

SUMMARY AND CONCLUSION

Nonpoint source (NPS) pollution is the primary cause of impaired water bod-

ies in the United States today. Control of nonpoint source pollutions is achievable

through implementation of conservation practices, commonly known as Best Man-

agement Practices (BMPs). Implementation of nonpoint source pollution control

practices at the watershed scale hinges on abating pollutant movement from the

landscape to water bodies while minimizing cost. Thus, watershed management is

inherently a multiobjective problem. An effective conservation plan should iden-

tify optimal type, location, and timing of the practices and provide information on

effectiveness of the plan. However, it cannot be tested for all potential cases in a

watershed scale. Thus, engineers and decision makers rely on computer models to

provide an estimate of management practices impact on improving water quality.

Models need to be calibrated and tested to evaluate the performance validity of

watershed models according to the past observations of fluxes of water and contam-

inants at multiple locations on the stream network.

While significant shifts in climatic patterns are evident worldwide, many natu-

ral processes, including precipitation and temperature and therefore frequency and

magnitude of extreme hydrologic events will also alter. Thus, substantial changes

in diffusive transport of nonpoint source pollutants, assimilative capacities of water

bodies, and landscape position of critical areas that should be targeted for imple-

mentation of NPS pollution control practices are also expected. The amount of

174



money spent on conservation programs makes it all but vital to assure the conserva-

tion benefits of practices will be sustained under the shifting climatic paradigms and

challenges for adoption of the plans. Coupling of watershed models with regional

climate projections can potentially provide answers to a variety of questions on the

dynamic linkage between climate and ecologic health of water resources.

A decision support system was developed to present a computational framework

for multiobjective decision making in nonpoint source pollution control planning at

the watershed scale. The framework consists of six major modules that were linked

with a nonpoint source pollution modeling model, Soil and Water Assessment Tool

(SWAT): (i) a global sensitivity analysis tool to identify the most important model

parameters for simulation of streamflow and water quality; (ii) a parameter estima-

tion tool to calibrate and test performance of SWAT model in predicting the past

observations of hydrologic and water quality fluxes at multiple locations; (iii) an

optimization framework for identifying optimal type and placement of conservation

practices; (iv) a conservation practice implementation tool that was linked with opti-

mization engine and performed environmental and economic analysis; (v) a climate

downscaling module to spatially and temporally downscale the projected climate

data to study impact of climate projections on hydrologic and water quality fluxes

at the watershed scale; and (vi) a multi criteria decision analysis framework, as an

efficient alternative for time intensive optimization approach.

The primary objectives of the study, presented at the beginning of the Chap-

ter 1, were met by developing frameworks and applying to a 25,000 ha watershed

in the Eagle Creek Watershed (ECW) in central Indiana. Eagle Creek Watershed

drains into Eagle Creek Reservoir, which supplies drinking water to the City of Indi-

anapolis. Intense agricultural activities resulted in elevated nitrate and atrazine in

excess of the EPA drinking water standards. Having extensive historic streamflow

and water quality dataset makes the basin well suited for examining multisite many
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objective sensitivity analysis and calibration and assessing the watershed-scale non-

point source pollution control strategies under changing climate, including strategies

for decreasing annual loading of nitrate and atrazine at minimum cost. The objec-

tive of developing an improved framework for multisite, many objective calibration

of watershed models was met in Chapter 2. The SWAT model was calibrated and

tested for daily streamflow, and monthly nitrate and pesticide observations. The

calibrated SWAT model was then used for optimal placement of conservation prac-

tices. For this purpose, a multiobjective optimization framework for optimization

of nonpoint source pollution control strategies at the watershed scale was presented

in Chapter 3. Analyzing the results of optimization framework motivated for devel-

oping an efficient targeting framework for near-optimal placement of conservation

practices. Hence, a targeting framework was proposed in Chapter 4 using a priori

knowledge about the system. With projected changes in future climatic conditions,

impact assessment of climate change on hydrologic and water quality fluxes of wa-

tershed and performance of conservation practices were studied in Chapter 5. Key

findings are summarized, as follows.

6.1 Toward improved calibration of watershed models: Multisite many
objective measures of information

A computational framework was presented for incorporation of disparate in-

formation from observed hydrologic responses at multiple locations into the cali-

bration of watershed models. The framework consists of four components: (i) an

a-priori characterization of system behavior; (ii) a formal and statistically correct

formulation of objective function(s) of model errors; (iii) an optimization engine to

determine the Pareto-optimal front for the selected objectives; and (iv) a multi cri-

teria decision analysis tool to select optimal solutions from the Pareto-optimal front

that are most consistent with the goals of the modeling study. Two single objective

methods (Shuffled Complex Evolutionary and Dynamically Dimensioned Search)
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and one multiobjective optimization method (Nondominated Sorted Genetic Algo-

rithm II ) were employed to determine optimal choices of SWAT parameter values

for modeling fluxes of water and nitrate at five locations within the watershed. A

proper likelihood function was derived using Bayesian statistics that can be used to

reconcile observed hydrologic time series for disparate objectives at multiple stream

locations. The Box-Cox transformation and first-order autoregressive model were

employed in sequence to reduce heteroscedasticity and eliminate correlation between

residuals. Application of the proposed framework for calibration of the Soil and Wa-

ter Assessment Tool (SWAT) in the Eagle Creek watershed, Indiana, revealed that

• For a multisite many objective automatic calibration of a watershed model,

both a formal likelihood function considering the structure of residuals and a

multiobjective optimization approach are essential, particularly when a strict

definition of system behavior is considered.

• Single objective calibration methods find a lower (better) value for the aggre-

gated objective function of weighted errors while requiring fewer model evalu-

ations. However, the use of the solutions from single objective techniques was

limited because the simulations did not mimic the observed behavior of the

system for all objectives at all sites.

• Based on a satisfactory, good, or very good classification of model simula-

tions, multiobjective methods were the only methods that yielded behavioral

solutions. Satisfying a stricter definition of the system behavior required in-

corporation of a separate objective function for each response at each location

within the multiobjective optimization framework.

• Based on a satisfactory, good, or very good classification of model simula-

tions, multiobjective methods were the only methods that yielded behavioral
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solutions. Satisfying a stricter definition of the system behavior required in-

corporation of a separate objective function for each response at each location

within the multiobjective optimization framework.

• The aggregation of information for the same response variable (nitrate in this

study) at different observational sites using the proposed likelihood function

appeared as a pragmatic approach for enhancing the speed of convergence to

the Pareto-optimal front. However, residuals for nested sites tended to be

highly correlated. Therefore, aggregation of information even for the same

response should be conducted with a careful examine of residuals.

6.2 A mixed–chromosome genetic algorithm for optimal placement of
conservation practices

An integrated simulation-optimization framework for optimal placement of agri-

cultural conservation practices is presented. A novel mixed-variable multiobjective

genetic algorithm based on the commonly-used NSGA-II method was coupled with

a spatially distributed watershed model, Soil and Water Assessment Tool (SWAT),

and was used to realize the Pareto-optimal sets of conservation practices at the

watershed scale. Nondominated Sorted Genetic Algorithm II (NSGA-II) is used

to find optimal suite of conservation practices type, size, and location with both

binary and mixed decision variables. We also analyzed efficiency and effectiveness

of the optimizations in terms of convergence rate, diversity, and optimality of the

solutions. Two approaches were also taken to improve efficiency of GA algorithm by

(i) updating binary to mixed-variable during the optimization, and (ii) hybridizing

GA with a local search algorithm. Spatial distribution of the conservation practices

type and location were also studied. Soil and Water Assessment Tool (SWAT) was

used to simulate runoff and water quality and assess performance of the nonpoint
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source pollution control strategies. Objectives were to simultaneously minimize ni-

trate load, atrazine load, and cost of implementation of nonpoint source pollution

plan. Results from implementing different optimization setting showed that

1. For an optimal placement of conservation practices in a watershed-scale, discrete-

continuous decision variable, referred to as “mixed-variable”, optimization

method identified a set of solutions which is more effective than solutions ob-

tained from commonly used binary optimization method for the same amount

of cost

2. Mixed-variable optimization provided more realistic alternatives and higher

flexibility to the decision makers

3. Using mixed-variable optimization increased complexity of the optimization

problem that increases computational time by several orders of magnitude.

Using hybrid optimization algorithms substantially improved the efficiency of

mixed-variable optimization methods

Investigating spatial distribution of the optimal conservation practices showed

that there is an obvious overlay of the conservation practices type and location

within consecutive solutions on Pareto-front. This overlay provides an opportunity

for modular planning of watershed scale conservation strategies, while giving higher

priorities to more effective and less expensive alternatives.

6.3 How a priori knowledge can help us in identifying optimal type and
placement of conservation practices? Application of multi criteria
decision making

A multi criteria decision analysis (MCDA) framework was proposed to identify

a set of near-optimal solutions for nonpoint source pollution control planning at the

watershed scale. The framework was established based on a priori knowledge about

179



the system and effectiveness of the conservation practices on reducing pollutant

loads. The framework was demonstrated for identifying optimal type and location of

conservation practices in the Eagle Creek Watershed, Indiana. The goal was to find

a set of optimal type and location of four types of conservation practices, including

grassed waterways, grade stabilization, fertilizer management, and tillage/residue

management, to minimize nitrate and atrazine loads at minimum cost. Thus, three

criteria were selected according to the objectives of the study that include: (1)

effectiveness of conservation practices on nitrate load reduction, (2) effectiveness of

conservation practices on atrazine load reduction, and (3) implementation cost of

conservation practices. The study revealed that

• The proposed MCDA framework can be an effective and efficient substitute

for optimization frameworks in identifying near-optimal solutions for nonpoint

source pollution control plans.

• The MCDA framework outperformed optimization framework by identifying

more diverse solutions within a marginal proximity of the Pareto-optimal

front without any need for iterative and computationally intensive search al-

gorithms.

• For complex problems or poorly established evaluation matrix, MCDA frame-

work may fail to identify near-optimal solutions; however, it can effectively

serve as ideal initialize population in a hybrid framework. Hybridized MCDA

and NSGA-II framework outperformed the standalone optimization frame-

work in terms of convergence (i.e. efficiency), optimality (i.e. effectiveness),

and diversity of the solutions.
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6.4 Assessment of optimal agricultural conservation plans under uncer-
tain conditions: impact of climate change

Hydrologic and water quality simulations driven by an extensive ensemble of

climate projections were analyzed for their respective changes in basin average tem-

perature and precipitation in the Eagle Creek Watershed, Indiana, USA. Impact of

climate change on performance of conservation practices and their optimal place-

ment were also assessed. Nondominated Sorted Genetic Algorithm II (NSGA-II)

coupled with the Soil and Water Assessment Tool (SWAT) was used for optimizing

type and placement of conservation plans with the goal of reducing atrazine and

nitrate load at minimum cost. The results of this study showed that

• Water yield and pollutants transport changes substantially under different

climatic paradigms. Streamflow, sediment, total nitrogen, total phosphorus,

and atrazine loads respectively showed 15%, 40%, 20%, 32%, and 50% net

increase at the end of 21st century with peaks up to 250% higher than historical

observations.

• Performance of conservation plans under different climatic projections altered

considerably from what they have designed for.

• Optimization of the conservation plans for projected climatic conditions showed

that despite altered Pareto-optimal solutions, spatial pattern and type of the

selected conservation practices remained relatively the same.

• Similarity tests showed that as conservation plans became more effective (i.e.

more money was spent), the type and location of conservation practices opti-

mized under different climate projections became more an more similar. Ex-

isting slight difference can be explained by shifted critical areas as a result of

climate change. Overall, the Pareto-optimal solutions obtained based on the
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historic data, represented the average performance of the optimal nonpoint

source pollution control plans from different climate projections.

• Watershed scale conservation planning based on the historic data can be as-

serted for the future by confidence. Performance of the conservation practices

in the course of their lifetime (that are between 10-30 years) was expected to

be sustained

6.5 Future Work

The current study was based on a number of simplifying assumptions and lacks

several key analysis. Here are a few recommendations for future studies:

• This study addressed impact of climate change on performance of conservation

plans. However, uncertainty in nonpoint source pollution control planning for

current and future climatic and biophysical conditions could arise from sev-

eral other sources, including land use/ land cover change and uncertainty in

modeling. Modeling uncertainty itself includes uncertainty in model param-

eters, input data, and model structure. These uncertainty sources could be

assessed individually and in combination with each other to provide enough

information on likely effectiveness of conservation plans.

• Climate data downscaling is also associated with several types of uncertainty

that could be addressed in nonpoint source pollution control planning. Dif-

ferent statistical and dynamic downscaling methods could be used in assess-

ment of conservation plan’s performance under different climate projections.

Coupling SWAT model with regional climate models could also provide more

reliable prediction on a regional scale.
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• In the current study, it was assumed that representation of conservation prac-

tices in SWAT is sufficient . However, SWAT has several limitations in model-

ing impact of conservation practices. Some of them are due to the limitation

in simulating the routing between hydrologic response units. Improvement

in SWAT routing can considerably improve simulation of conservation prac-

tices which in turn can enhance the confidence on planning of nonpoint source

pollution control strategies.

• In application of multi criteria decision analysis framework I listed generic fac-

tors may impact placement of conservation practices at the watershed scale.

In the example presented for the Eagle Creek Watershed, I used my own judg-

ments on scoring the conservation practices based on the previous experiences.

An extensive importance scores of conservation practices on reducing pollu-

tant loads can be obtained by analyzing the impact of individual conservation

practices on reducing individual pollutants. This can also provide information

on impact of biophysical and agro-environmental factors on performance of

conservation plans.

• In this study, I assumed that all farmers will cooperate in implementing the

conservation practices. However, chance of adoption of different conservation

practices by farmers depends upon several factors, including age, income, edu-

cation, awareness of environmental degradation, previous experience, adoption

by neighbor farmers, and etc. Planning a nonpoint source pollution control

strategy should reflect adoption behavior of the different stakeholders. Im-

pact of financial incentives and providing educational programs should also be

assessed.

• In the current study, conservation planning was performed at the 12-digit

HUC that is highly recommended. To assess the cumulative impact of opti-

mal conservation plans in a watershed scale (for example an 8-digit HUC that
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encompasses several 12-digit sub-watersheds), optimization results for each

sub-watershed should be aggregated in a simulation framework that reflects

overall impact at the watershed scale. This may help analysts and decision

makers to prioritize sub-watersheds in addition to the placement of the con-

servation practices.
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