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ABSTRACT OF DISSERTATION 

FRACTIONAL TRANSPORT OF BED-MATERIAL LOAD 

IN SAND-BED CHANNELS 

This dissertation presents a new method for predicting fractional transport rates of bed-

material load in sand-bed channels. The proposed method is developed based on the concept 

of the transport capacity fraction (TCF) approach. The bed-material concentration for a given 

size fraction is obtained by weighting the bed-material concentration, C,, with a transport 

capacity distribution function, Pei· The procedure and a detailed example problem showing 

the use of the proposed method are provided. 

Two transport capacity distribution functions are developed. The first function is in 

terms of relative fall velocity. This function is derived from the unit stream power theory and 

the concepts of the TCF approach and the bed material fraction (BMF) approach. The 

second function is in terms of relative diameter. It is derived from the Engelund and Hansen's 

transport relations and the concepts of the TCF approach and the BMF approach. The 

sheltering and exposure effects are considered in both functions. The coefficients in both 

functions were calibrated using 118 sets of flume and field data (891 data points) falling in 

sand sizes. The formulations using relative diameter is suggested for practical applications 

because of its simplicity (no need for relative fall velocity computations). 

For the computation of bed-material concentrations, the effect of size gradations on 

l1l 



the transport of sediment mixtures is investigated in detail. First, a new relationship is 

proposed for predicting the median diameter, D5oi, of bed-material load. This equation is 

developed based on the 118 sets of data used for the development of transport capacity 

distribution functions plus 280 sets of CSU flume data. Then, the effect of size gradation on 

the transport of sediment mixtures is demonstrated by the use of Engelund and Hansen's 

transport function and Yang's unit stream power function . To account for size gradation 

effects, the newly developed expression for the median diameter, Ds0t, is proposed for use as 

the representative size in bed-material load computations. For the existing bed-material load 

equations, an equivalent diameter, De, is proposed. This equivalent diameter, which is related 

to Ds0t, is incorporated into the Engelund and Hansen, Ackers and White, and Yang formulas 

for the computation of bed-material concentrations. 

The proposed method is compared with various existing fractional transport methods 

using 118 sets of measurements (891 data points) and verified using 48 sets of independent 

data (327 data points). Comparison and verification indicate that the proposed method 

provides better predictions for fractional bed-material concentrations and size fractions of 

sediment in transport. 

IV 

Baosheng Wu 
Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 80523 
Spring, 1999 



ACKNOWLEDGEMENTS 

The author wishes to express his sincere gratitude and appreciation to his major 

advisor, Dr. Albert Molinas, for his inspiration, guidance, and encouragement he provided 

throughout the course of this work. 

The author also wishes to express his appreciation to the members of his committee, 

Dr. P. Y. Julien, Dr. T. K. Gates, and Dr. F. M. Smith, for their valuable comments and 

review of the dissertation. 

Special appreciation is extended to Mr. Yuqian Long for his help and encouragement. 

Also, a great deal of thanks is due to Dr. Junke Guo for his useful discussion, 

encouragement, and friendship . 

Finally, my deepest gratitude goes to my wife, Chunying, and my son, Tuo, for their 

patience, sacrifice, understanding, and continual support and encouragement throughout this 

research. All this has made my goal possible and worthwhile. 

V 



TABLE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lll 

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v1 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1x 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xt 

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.3 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2.3 Direct Computation by the Size Fraction Approach . . . . . . . . . . . . . . . . . . . 12 

2.4 Shear Stress Correction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.5 Bed Material Fraction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

2.6 Transport Capacity Fraction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

VI 



3. TRANSPORT CAPACITY DISTRIBUTION FUNCTION .............. 33 

3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

3.2 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

3.3 Transport Capacity Distribution Function Based on Relative Fall Velocity . . 52 

3 .4 Transport Capacity Distribution Function Based on Relative Diameter . . . . . 62 

3.5 Evaluation of the New Transport Capacity Distribution Functions . . . . . . . . 67 

4. BED-MATERIAL TRANSPORT RA TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

4. 1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

4.2 Median Diameter of Sediment in Transport . . . . . . . . . . . . . . . . . . . . . . . . . 76 

4.3 Effect of Size Gradation on Transport of Sediment Mixtures . . . . . . . . . . . . 83 

4.4 Bed-Material Transport Rate Computation . . . . . . . . . . . . . . . . . . . . . . . . . 92 

4.5 Verification of the Use of Equivalent Diameter, De . . . . . . . . . . . . . . . . . . 98 

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

5. APPLICATION OF THE PROPOSED METHOD .................... 106 

5. 1 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

5.2 Example Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

6. COMPARISON AND EVALUATION .............................. 116 

6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

6.2 Fractional Load Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

6.2.1 Fractional Load Using the Direct Computation by Size 
Fraction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

6.2.2 Fractional Load Using the Bed Material Fraction Approach . . . . . . 117 

6.2.3 Fractional Load Using the Transport Capacity 
Fraction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

VII 



6.3 Comparison of Computed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 

6.3.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

6.3 .2 Graphical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

6.4 Verification of the Proposed Transport Capacity Distribution Functions . . . 167 

7. SUMMARY AND CONCLUSIONS ............................... 178 

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

7.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 

Vlll 



LIST OF TABLES 

3.1 Summary of Laboratory and River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.2 Laboratory Data of Einstein (IRTCES, 1978) . . . . . . . . . . . . . . . . . . . . . . . 37 

3.3 Laboratory Data of Einstein and Chien (1953) . . . . . . . . . . . . . . . . . . . . . . . 40 

3.4 Laboratory Data of Samaga et al. (1986a, b) . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.5 Niobrara River Data of Colby and Hembree (1955) . . . . . . . . . . . . . . . . . . . 46 

3.6 Middle Loup River Data of Hubbell and Matejka (1959) . . . . . . . . . . . . . . . 49 

4.1 Summary of Comparison between Computed and Measured 
Bed-Material Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

4.2 Summary of Comparison between Computed and Measured 
Bed-Material Concentrations for the CSU Flume Data with Particle 
Size of0.33mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 

5. 1 Adjusted Size Distributions of Bed Material and the Sediment 
in Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 IO 

5 .2 Computations of Size Fractions of the Bed-Material Transport 
Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

6.1 Comparison between Computed and Measured Fractional 
Bed-Material Concentrations for the 118 Sets of Flume and Field 
Data Given in Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

6.2 Comparison between Computed and Measured Size Fractions of 
Sediment in Transport (Bed-Material Load) for the 118 Sets 

6.3 

of Flume and Field Data Given in Table 3.1 

Laboratory Data of White and Day (1982) 

IX 

127 

169 



6.4 Rio Grande Conveyance Channel Data of Culbertson, Scott, and 
Bennett (1972) ......... .. ................. . ... . ..... . . ... ... 172 

6.5 Yellow River Data at Tuchengzi of Long and Liang (1994) . . . . . . . . . . . . . 173 

6.6 Comparison between Computed and Measured Size Fractions of 
Sediment in Transport (Bed-Material Load) for the 20 Sets 
of Flume Data from White and Day (I 982) . . . . . . . . . . . . . . . . . . . . . . . . . 176 

6. 7 Comparison between Computed and Measured Size Fractions of 
Sediment in Transport (Bed-Material Load) for the 28 Sets 
of Data from the Rio Grande Conveyance Canal and the Yell ow River 
at Tuchengzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 

X 



Figure 

1.1 

LIST OF FIGURES 

Classification of Sediment Transport in Open Channels 

2.1 Relationship between <I>. and 'P. for Einstein's Bed-Load Function 

3 

(Einstein, 1950) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.2 Hiding Factor in Einstein's Bed-Load Function (Einstein, 1950) . . . . . . . . . 15 

2.3 Lifting Correction Factor (Einstein, 1950) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

2.4 Correction Factor in the Logarithmic Velocity Profile (Einstein, 1950) . . . . 16 

2.5 The Sheltering Function~ according to Misri et al. (1984) . . . . . . . . . . . . . . 17 

2.6 Laursen's Sediment Transport Function (Laursen, 1958) . . . . . . . . . . . . . . . 18 

2. 7 Toffaleti ' s Velocity, Concentration, and Sediment Discharge Relations 
(Toffaleti, 1969) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.8 Proffitt and Sutherland's Scaling Size (Proffitt and Sutherland, 1983) . . . . . 23 

3.1 Variation of Pcmi / Pbi with Di/ D50 : (a) Einstein Data; (b) Einstein and 
Chien Data; (c) Samaga et al. Data; (d) Niobrara River and Middle 
Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

3.2 Variation of Pcmi / Pbi with wi / w50 : (a) Einstein Data; (b) Einstein and 
Chien Data; ( c) Samaga et al. Data; ( d) Niobrara River and Middle 
Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

3.3 Variations of the Coefficients Used in Eq. (3 .9) : (a) a from Eq. (3 .12); 
(b) f3 from Eq. (3 .13); and (c) (; from Eq. (3 .14) . . . . . . . . . . . . . . . . . . . . . 60 

3.4 Variability of the Coefficients Used in Eq. (3 .9) : (a) Variations of the 
Variables Used in the Computation of a, f3, and (;; (b) Variations of 
a, f3, and(; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

XI 



Figure 

3.5 Variations of the Coefficients Used in Eq. (3 .24): (a) a from Eq. (3 .25); 
(b) J3 from Eq. (3 .26); and (c) C: from Eq. (3 .27) . . . . . . . . . . . . . . . . . . . . . 65 

3.6 Variability of the Coefficients Used in Eq. (3 .24): (a) Variations of the 
Variables Used in the Computation of a, P, and C:; (b) Variations of 
a, P, and C: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

3. 7 Variation of P cci / Pcmi with Di/ D50 by the Use of the Transport Capacity 
Distribution Function ofEq. (3 .9) Derived from the TCF Concept: 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
( d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 68 

3.8 Variation of P cci / Pcmi with D; / D50 by the Use of the Transport Capacity 
Distribution Function ofEq. (3 .24) Derived from the TCF Concept: 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
( d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 69 

3. 9 Comparison between Percentages of Computed and Measured Bed-
Material Concentrations for Individual Size Fractions in Sediment 
Mixtures by the Use of the Transport Capacity Distribution Function 
of Eq . (3 . 9) Derived from the TCF Concept . . . . . . . . . . . . . . . . . . . . . . . . . 70 

3 .10 Comparison between Percentages of Computed and Measured Bed-
Material Concentrations for Individual Size Fractions in Sediment 
Mixtures by the Use of the Transport Capacity Distribution Function 
ofEq. (3 .24) Derived from the TCF Concept . . . . . . . . . . . . . . . . . . . . . . . . 71 

4.1 Representative Particle Diameter of Suspended Sediment 
(after van Rijn, 1984) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

4.2 Relationship between the Median Diameter of Bed-Material Load Sediment 
in Transport, D50t, and the Median Diameter of Bed Material, D 50 . . . . . . . . 77 

4.3 Comparison between the Computed and Measured Median Diameter of 
Bed-Material Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.4 Relationship between Relative Diameter, D501 I D50, and Geometric 
Standard Deviation, og, for the 85 Sets of Flume and Field Data Derived 
from Table 3.1 and the 280 Sets of Data from Guy et al. (1966) . . . . . . . . . 81 

Xll 



Figure 

4.5 Relationship between Relative Diameter, D5011 D50 , and Geometric 
Standard Deviation, og, for Another 124 Sets of Flume and Field Data 
(Independent Verification Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

4. 6 Relationship between f 1 <I> 1 and 0 Sorted by Bed Material Size . . . . . . . . . . . 84 

4.7 Relationship between/1<1>1and 0 Sorted by Size Gradation (og values) . . . . 85 

4. 8 Relationship between f 1 <I> e and 0 c Using the Equivalent Representative 
Diameter, De . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

4.9 Relationship between the Bed-Material Concentration, C" and the 
Dimensionless Unit Stream Power, VS/w50, Sorted by Bed Material Size . . . 89 

4.10 Relationship between the Bed-Material Concentration, C" and the 
Dimensionless Unit Stream Power, VS/w50, Sorted by Size 
Gradation (og values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

4.11 Relationship between the Bed-Material Concentration, C1, and the 
Dimensionless Unit Stream Power, VS/w0 , Using the Equivalent 
Representative Diameter, Dc 91 

4.12 Comparison between Computed and Measured Bed-Material 
Concentrations for the Engelund and Hansen Formula: (a) Using D50 as 
Representative Size; (b) Using Dc as Representative Size . . . . . . . . . . . . . . . 95 

4.13 Comparison between Computed and Measured Bed-Material 
Concentrations for the Akers and White Formula: (a) Using D35 as 
Representative Size; (b) Using Dc as Representative Size . . . . . . . . . . . . . . . 96 

4. 14 Comparison between Computed and Measured Bed-Material 
Concentrations for the Yang Formula: (a) Using D50 as Representative 
Size; (b) Using Dc as Representative Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

4.15 Comparison between Computed and Measured Bed-Material 
Concentrations for the CSU Data with Particle Size of 0.33mm by the 
Engelund and Hansen Formula: (a) Using D50 as Representative Size; 
(b) Using Dc as Representative Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

4.16 Comparison between Computed and Measured Bed-Material 
Concentrations for the CSU Data with Particle Size of0.33mm by 
the Ackers and White Formula: (a) Using D50 as Representative Size; 
(b) Using Dc as Representative Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

XIII 



Figure Page 

4.17 Comparison between Computed and Measured Bed-Material 
Concentrations for the CSU Data with Particle Size of 0.33mm by the 
Yang Formula: (a) Using D50 as Representative Size; (b) Using Dc as 
Representative Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

6.1 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the Einstein Equation (1950) . . . . . . . . . . . . . . . . . . . . . 132 

6.2 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the Laursen Equation (1958) . . . . . . . . . . . . . . . . . . . . . 133 

6.3 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the Toffaleti Equation (1968) . . . . . . . . . . . . . . . . . . . . . 134 

6.4 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the BMF Approach Using the Engelund and Hansen 
Transport Equation (1967) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

6.5 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the BMF Approach Using the Ackers and White 
Transport Equation (1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

6.6 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the BMF Approach Using the Yang Transport 
Equation (1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

6. 7 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for Karim's Modified BMF Approach (1998) . . . . . . . . . . . 138 

6.8 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the TCF Approach Using the Yang Equation (1973) 
with Dc and the Transport Capacity Distribution Function of Karim and 
Kennedy (1981) . ......... . ... ................. .. ....... . . .... 139 

6.9 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the TCF Approach Using the Yang Equation (1973) 
with Dc and the Transport Capacity Distribution Function of Li (1988) . . . . 140 

6.10 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the TCF Approach Using the Yang Equation (1973) 
with Dc and the Proposed Transport Capacity Distribution Function 
ofEq. (3 .9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

XIV 



Figure Page 

6.11 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the TCF Approach Using the Yang Equation (1973) 
with Dc and the Proposed Transport Capacity Distribution Function of 
Eq. (3.24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

6.12 Comparison between Computed and Measured Fractional Bed-Material 
Concentrations for the Einstein Equation (1950) . . . . . . . . . . . . . . . . . . . . . 143 

6.13 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the Laursen Equation (1958) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

6.14 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the Toffaleti Equation (1968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

6.15 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the BMF Approach Using the Engelund and Hansen Transport 
Equation(1967) .... .. ........... . ............. . ..... . ....... 144 

6.16 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the BMF Approach Using the Ackers and White Transport 
Equation (1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

6.17 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the BMF Approach Using the Yang Transport Equation (1973) . . . . . . . 145 

6.18 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for Karim's Modified BMF Method (1998) . . . . . . . . . . . . . . . . . . . . . . . . . 146 

6.19 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the TCF Approach Using the Yang Equation (1973) with De and the 
Transport Capacity Distribution Function of Karim and Kennedy ( 1981) . . . 146 

6.20 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the TCF Approach Using the Yang Equation (1973) with Dc and the 
Transport Capacity Distribution Function of Li (1988) . . . . . . . . . . . . . . . . . 147 

6.21 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the TCF Approach Using the Yang Equation (1973) with Dc and the 
Proposed Transport Capacity Distribution Function ofEq. (3.9) . . . . . . . . . 147 

6.22 Discrepancy Ratio Distribution of Fractional Bed-Material Concentrations 
for the TCF Approach Using the Yang Equation (1973) with Dc and the 
Proposed Transport Capacity Distribution Function ofEq. (3 .24) 148 

xv 



Figure Page 

6.23 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the Einstein Equation (1950) . . . . 149 

6.24 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the Laursen Equation ( 1958) . . . . 150 

6.25 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the Toffaleti Equation ( 1968) . . . . 151 

6.26 Comparison between Computed and Measured Size Fractions of Bed-
Material Load Sediment in Transport for the BMF Approach Using 
the Engelund and Hansen Transport Equation (1967) . . . . . . . . . . . . . . . . . 152 

6.27 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the BMF Approach Using 
the Ackers and White Transport Equation (1973) ... .. . .............. 153 

6.28 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the BMF Approach Using 
the Yang Transport Equation ( 1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 

6.29 Comparison between Computed and Measured Size Fractions of Bed-
Material Load Sediment in Transport for Karim ' s Modified BMF 
Approach (1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

6.30 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the TCF Approach Using the 
Transport Capacity Distribution Function of Karim and Kennedy (1981) . . . 156 

6.31 Comparison between Computed and Measured Size Fractions ofBed-
Material Load Sediment in Transport for the TCF Approach Using the 
Transport Capacity Distribution Function of Li (1988) .. . . . . . . . . . . . . . . . 157 

6.32 Variation of P cci / Pcmi versus Di / D50 for the Einstein Equation (1950): 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
( d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 158 

6.33 Variation of P cci / Pcmi versus Di / D50 for the Laursen Equation (1958): 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
(d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 159 

XVI 



Figure Page 

6.34 Variation of P cci / Pcmi versus Di/ D50 for the Toffaleti Equation (1968): 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
( d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 160 

6.35 Variation of P cci / Pcmi versus Di/ D50 for the BMF Approach Using 
Engelund and Hansen Transport Equation (1967): (a) Einstein Data; 
(b) Einstein and Chien Data; ( c) Samaga et al. Data; ( d) Niobrara River 
and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

6.36 Variation of P cci / Pcmi versus Di / D50 for the BMF Approach Using the 
Ackers and White Transport Equation (1973): (a) Einstein Data; 
(b) Einstein and Chien Data; ( c) Samaga et al. Data; ( d) Niobrara River 
and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

6.37 Variation of Pcci / Pcmi versus Di I D50 for the BMF Approach Using the 
Yang Transport Equation (1973) : (a) Einstein Data; (b) Einstein and 
Chien Data; ( c) Samaga et al. Data; ( d) Niobrara River and Middle 
Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 

6.38 Variation of P cci / Pcmi versus Di / D50 for Karim's Modified BMF Approach 
(1998) : (a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. 
Data; ( d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . 164 

6.39 Variation of P cci / Pcmi versus Di / D50 for the TCF Approach Using the 
Transport Capacity Distribution Function of Karim and Kennedy (1981): 
(a) Einstein Data; (b) Einstein and Chien Data; (c) Samaga et al. Data; 
(d) Niobrara River and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . 165 

6.40 Variation of P cci / Pcmi versus Di/ D50 for the TCF Approach Using the 
Transport Capacity Distribution Function of Li (1988): (a) Einstein Data; 
(b) Einstein and Chien Data; ( c) Samaga et al. Data; ( d) Niobrara River 
and Middle Loup River Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 

XVII 



LIST OF SYMBOLS 

The following symbols are used in the text : 

A = coefficient; 

AGD = average geometric deviation between computed and measured values; 

B = 

C, C1, C2 = 

CT = 

c, = 

cti = 

cpi = 

c,c, elm = 

c,ci, ctmi = 

D = 

DA 

Da = 

Dw = 

DC = 

Dgr = 

Dgri = 

Di = 

coefficient; 

coefficients; 

concentration of total sediment load; 

concentration of bed-material load; 

concentration of bed-material load corresponding to the size fraction i; 

potential concentration of bed-material load corresponding to the size 
fraction i, using Di as if it exists alone; 

computed and measured bed-material concentrations, respectively; 

computed and measured bed-material concentrations, respectively, 
corresponding to the size fraction i; 

diameter of bed material; 

scaling size defined by White and Day; 

arithmetic mean diameter of sediment mixtures; 

wash load limit diameter; 

equivalent diameter defined by Eq. (4.6); 

dimensionless grain diameter defined by Ackers and White; 

dimensionless grain diameter corresponding the size fraction i; 

representative diameter (geometric mean) of bed material corresponding to 
the size fraction i; 

XVlll 



Dm = mean diameter of bed material; 

Dn = scaling size; 

DP = particle sizes for which p percent of bed material is finer by dry weight; 

D, = representative diameter for suspended load computations; 

Ds0t = median diameter of bed-material load; 

d = average flow depth; 

Fgri = mobility number corresponding to the size fraction i; 

Fr = Froude number; 

f = general function; 

f' = friction factor defined by Engelund and Hansen; 

G = size gradation coefficient of bed material= (D84 I D50 + D50 I D 16) I 2; 

g = gravitational acceleration; 

I = coefficient; 

l1, l2 = integrals of Einstein's form of the suspended sediment equation; 

= size fraction number or data point number in a data set; 

J = coefficient; 

JN = total number of data points; 

Kd = coefficient; 

Ke coefficient; 

M = Kramer's uniformity coefficient for sediment mixtures; 

MNE = mean normalized error; 

m = coefficient; 

N = number of size fractions present in a sediment mixture; 

n = coefficient; 

Pai = areal function of bed material defined by Karim; 

Pbi = fraction of bed material, by dry weight, corresponding to the size 
fraction i; 

XIX 



p ci = fraction of bed-material transport capacity, by dry weight, corresponding 
to the size fraction i; 

p cci = percentage of computed bed-material load, by dry weight, corresponding 
to the size fraction i; 

pcmi = percentage of measured bed-material load, by dry weight, corresponding 
to the size fraction i; 

P. = fraction of suspended load, by dry weight, corresponding to the size 
fraction i; 

q, = bed-material load per unit width by dry weight; 

qti, qbi, qsi = bed-material load, bedload, and suspended load, respectively, per unit 
width by dry weight corresponding to the size fraction i; 

R, R' = hydraulic radius and hydraulic radius associated with grain roughness, 
respectively; 

R = discrepancy ratio between computed and measured bed-material 
concentrations; 

= discrepancy ratio between computed and measured fractional bed-material 
concentrations corresponding to the size fraction i; 

s = energy slope; 

Sg = specific gravity = y s I y; 

T = transport stage parameter; 

V = flow velocity; 

Ver = critical velocity at incipient motion; 

v. = shear velocity = fc7p = J gRS; 

wi = hiding factor introduced by Karim and Kennedy; 

ex, p = coefficients; 

y, Y, = specific weight of water and sediment, respectively; 

= apparent roughness of the bed surface; 

6' = laminar sublayer thickness due to grain roughness; 

xx 



£ti, £bi, £Ii = correction factors for critical shear stresses to account for the sheltering 
and exposure effect for bed-material load, bedload, and suspended load, 
respectively; 

C = coefficient; 

11 = sheltering parameter; 

0 = dimensionless shear parameter= t / [(y s -y)D]; 

0c = 

0ci = 

0c = 

0i = 

critical dimensionless shear parameter= tc / [(y s - y)D]; 

critical dimensionless shear parameter corresponding to the size fraction i 
= tJ[(ys-y)DJ; 

dimensionless shear parameter using equivalent diameter, Dc; 

dimensionless shear parameter corresponding to the size fraction i 
= t/[(ys-y)DJ; 

K = von Karman constant; 

v = kinematic viscosity; 

~i = Einstein's sheltering parameter; 

~ti, ~bi• ~si = correction factors for effective shear stresses to account for the sheltering 
and exposure effect for bed-material load, bedload, and suspended load, 
respectively; 

0 8 = geometric standard deviation of bed material= JD84 / D16 ; 

t, t 0 = shear stress along the bed = y RS :== y dS; 

tc = critical shear stress; 

tci = critical shear stress corresponding to the size fraction i; 

t' = grain shear stress = y R IS; 

<I>, = dimensionless sediment transport function; 

<I> c = dimensionless sediment transport function using equivalent 
diameter, Dc. 

<I> ti• <I>bi, <I> si = dimensionless sediment transport function corresponding to the 
size fraction i for bed-material load, bedload, and suspended load, 
respectively; 

XXI 



<Pi = weighting function for ith fraction of a sediment mixture; 

X = scaling size of the sediment mixture defined by Einstein; 

WC = equivalent fall velocity corresponding to the equivalent diameter of De; 

wn = scaling fall velocity corresponding to the scaling size ofDn; 

wi = fall velocity of sediment corresponding to the particle size of Di; and 

Wso = fall velocity of sediment corresponding to the particle size ofD50; 

XXII 



1.1 BACKGROUND 

CHAPTER 1 

INTRODUCTION 

The transport of nonuniform sediment mixtures is more complicated than the transport of 

uniform sediment because both the condition for initiation of motion of a given size of 

sediment and its transport rate are affected by the presence of other sizes in the mixtures. The 

coarser particles on the bed are exposed more to the action of flow past them and act like 

isolated roughness elements. On the other hand, the finer fractions are sheltered in the wakes 

of the coarser fractions. These mechanisms cause the entrainment and transport of different 

size fractions, in the case of nonuniform mixtures, to deviate from the behavior of uniform 

sediments. Generally the finer fractions are transported at a relatively lower rate than if they 

were in a uniform sediment bed, and the coarser particles consequently are transported at a 

higher rate. 

Transport of uniform sediments in open channels has been extensively investigated for 

decades and is reasonably well understood at present. However, the subject of fractional 

transport of nonuniform sediment mixtures is still very challenging because ofits complexity. 

Starting from Einstein (1950), many attempts including field measurements, laboratory 

studies, empirical and theoretical analysis, and numerical simulations have been made in the 

past to understand the mechanisms of nonuniform sediment transport and to predict the bed-
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material transport rates by size fractions. However, prediction of sediment transport rates 

by size fractions has not been accomplished following a purely analytical method. All existing 

fractional sediment transport methods have been established relying on calibration using 

limited flume and field data collected under so-called steady uniform flow conditions. When 

different methods were applied to a given river, computed results of fractional transport rates 

could vary drastically from each other and from actual measurements. 

In alluvial river simulation models, computation of sediment transport rates for 

individual size fractions is one of the key elements in the case of nonuniform sediment 

mixtures (Wu and Molinas, 1996). Especially for those models involved in the simulation of 

the change of bed material composition, sediment sorting processes, and bed armoring, 

accurate prediction of fractional transport rates is essential for their successful implementation 

in natural rivers. Unfortunately, none of the existing methods satisfactorily predicts fractional 

transport rates of nonuniform sediment mixtures in open channels. It is of practical 

importance to develop a reliable prediction method of fractional transport rate for the 

implementation of numerical models in more sophisticated problems encountered in natural 

nvers. 

1.2 OBJECTIVES 

The primary objective of this study is to investigate the mechanics of fractional transport and 

to present a procedure for predicting the fractional transport rate of bed-material sediments 

in sand-bed channels. The proposed methodology should be theoretically sound and 

practically applicable. The study also includes a comprehensive analysis of the differences and 

relationships between the transported sediment size composition and the bed material size 
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composition, and an intensive investigation of the effect of size gradations on the bed-material 

transport of sediment mixtures. 

1.3 SCOPE OF WORK 

Bed-Material Load Concept 

There are two common classifications of total sediment load in a stream, as shown in Fig. 1.1. 

By the type of movement, the total sediment load can be divided into bedload and suspended 

load; by the source of sediment, the total sediment load is separated into the supply-limited 

wash load and the capacity-limited bed-material load (Julien, 1995). Bedload refers to the 

transport of sediment particles that frequently maintain contact with the bed. Suspended load, 

by definition, moves in suspension. Wash load refers to the finest portion of sediment not 

found with a significant amount in the bed, for which sediment transport is limited by the 

upstream supply of fine particles and is generally not correlated with the hydraulic 

>i~ __ B_ed_lo_a_d_~ 
Total Sediment Load 

Suspended Load 

Wash Load 

Total Sediment Load 

Bed-Material Load 

Bedload 

Suspended 
Bed-Material Load 

Fig. 1.1. Classification of Sediment Transport in Open Channels. 
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characteristics of a river. The bed-material load consists of particles generally found in the 

bed and can be predicted by the transport capacity of the stream. Bed-material load can also 

be defined as the sum ofbedload and suspended bed-material load. 

In flume experiments (except in special cases), wash load is almost invariably absent, 

and total sediment load would be the bed-material load. On the other hand, in natural rivers, 

wash load is invariably present, and the total sediment load is the summation of the bed-

material load and the wash load. In these cases, wash load should be subtracted from the 

measurements for the analysis and comparison of bed-material load. 

A sediment particle may be transported as bedload at one time and as suspended load 

at another time or location. Considering the dynamics of sediment movement, the process 

of suspension may be visualized as an advanced stage of traction along the bed; therefore the 

total sediment transport rate should be related primarily to the shear parameter, and no 

distinction needs to be made between bedload and suspended load (Garde and Ranga Raju, 

1985). Raudkivi (1990) argued that once the suspension phase of transport has developed, 

the distinction is less meaningful, although there would still be particles which roll and slide 

on the bed as bed load. In the case of nonuniform sediments, the finer sizes of the bed material 

may move predominantly in suspension, while the coarser fractions of the bed material may 

move mostly as bedload. Distinction between bedload and suspended load becomes more 

difficult and unnecessary for nonuniform sediment mixtures. In practice, we are interested 

in the bd-material load, not in how much is transported in which mode. Therefore, the bed-

material load, without dividing it into bedload and suspended bed-material load, will be 

considered for the determination of sediment transport capacity in natural rivers. 
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Sediment Size 

The size of sediment particles is one of the most important physical properties m 

transportation. Sediment sizes, along with the flow conditions, determine the manner of 

sediment movement (such as the fall velocity, cohesion, initiation of motion of particles, mode 

of sediment movement, and so on) in a stream. Generally in mountain streams with gravel-

bed, sediments are mostly transported as bedload, while in alluvial rivers with sand-bed, 

sediments are mainly transported as suspended load. This study focuses on the fractional 

transport of sediment mixtures in the sand range without cohesive effect. Most of the 

nonuniform sediment transport experiments which included the measurement of both bed 

material size distribution and bed-material load size distribution were conducted in sand-bed 

flumes . These experimental data are necessary for the analysis and development of a 

transport equation in the sand range. 

Transport capacity 

The sediment transport capacity is defined as the amount of sediment that is transported by 

a stream in equilibrium conditions for given conditions of flow and sediment. Equilibrium 

conditions refer to a flow for which neither erosion nor deposition occurs along the channel. 

Equilibrium of sediment transport is a result of the balance between the transport capacity of 

a flow and the sediment load carried by the flow, which can be only achieved under constant 

sediment supply and uniform flow or gradually-varied flow conditions. Sediment transport 

rate in a river is not necessarily equal to the transport capacity of the flow. If the supply of 

sediment is larger than the transport capacity, aggradation occurs. Conversely, ifin a sand-bed 

river the supply of sediment is less than the transport capacity, degradation and associated 
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fluvial processes will alter the channel until a new equilibrium condition is achieved. 

Throughout this study, we will consider the sediment transport capacity or sediment transport 

rate in equilibrium conditions, not the sediment transport during the processes of aggradation 

or degradation. 

1.4 DISSERTATION OUTLINE 

This dissertation includes six chapters. Chapter 1 presents an introduction to the dissertation, 

including the background, objectives, and scope of work. Chapter 2 comprises a 

comprehensive review of the available literature addressing the problem and theories under 

investigation. 

Chapter 3 presents the development of new transport capacity distribution functions, 

including their theoretical derivation, physical consideration, and calibration. 

Chapter 4 discusses the variation of sediment sizes in transport, the effect of size 

gradation on the transport of sediment mixtures, and the use of a representative diameter in 

bed-material load predictions. 

Chapter 5 tests the proposed fractional bed-material load computation methodology 

through comparison with other fractional load computation methods based on flume and field 

data. 

Finally, Chapter 6 summarizes the main results and conclusions drawn out of the study 

coupled with recommendations. 
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2.1 GENERAL 

CHAPTER2 

LITERATURE REVIEW 

In order to predict the response of mixed-size sediment to flow (initiation of motion, hydraulic 

sorting, bed armoring, evolution of stream bed), it is necessary to predict the transport rates 

of the individual size fractions in the mixture, which is essential in numerical models such as 

HEC-6 (U.S . Corps of Engineers, 1977; Thomas, 1982), GSTARS (Molinas and Yang, 

1986), BRI-STARS (Molinas, 1990, Molinas and Trent, 1991), !ALLUVIAL (Karim and 

Kennedy, 1982; Dorough, Holly, and Wei, 1988), CHARIMA and SEDICOUP (Holly, 1988), 

and other sediment transport models (Han, 1973, 1980; Ribberink, 1987; Wu, 1992b; Zhang 

and Wu, 1993; and Qu et al. , 1994). Recently, research on the fractional transport of 

sediment mixtures has become very active due to its practical significance in numerical models 

to simulate the change of bed composition, hydraulic sorting, and bed armoring of rivers with 

nonuniform sediment mixtures. In 1991, a seminar on grain sorting was held at the Center 

Stefano Franscini on Monte Verita in Ascona, Switzerland (Vischer, 1992), which presented 

the progress and further needs in research concerning transport process of individual size 

fractions and the hiding and exposure effect between different sizes. 

Fractional transport of nonuniform sediment mixtures has intrigued scientists for 

decades. Einstein ( 1950) and Einstein and Chien (1953) started the study of fractional 
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transport of nonuniform sediment mixture in the early fifties. Following Einstein, many 

attempts including field observations, laboratory studies, empirical and theoretical analysis, 

and numerical simulations have been made to attempt to understand the mechanisms of 

transport process for sediment mixtures and to predict the transport rates for individual size 

fractions . The research has covered the fractional transport processes of both sand- and 

gravel-bed materials. Even though the current research of fractional load transport 

concentrates on the sand-bed materials, relevant works on gravel-bed materials will be also 

discussed in this literature review. 

2.2 CLASSIFICATION 

From the theoretical point of view, and based on the treatment in formulations and the 

physical considerations in the development, the extensive literature on fractional sediment 

transport can be classified into four categories (Wu and Molinas, 1996): 

• Direct computation by the size fraction approach; 

• Shear stress correction approach; 

• Bed Material Fraction approach (BMF); and 

• Transport Capacity Fraction approach (TCF). 

Direct computation by the size fraction approach 

Direct computation by the size fraction approach aims at computing sediment transport rates 

for each size fraction present in nonuniform mixtures. After the computation of transport 

capacities corresponding to each size group, the bed-material load is calculated by the 

summation of fractional sediment transport rates from 
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N 
or c, = I: cti 

i=l 
(2.1) 

in which q, = bed-material load per unit width by dry weight; C1 = concentration of bed-

material load; N = number of size fractions present in the sediment mixture; and subscript 

i denotes the size fraction number in a mixture. 

Shear stress correction approach 

The shear stress correction approach focuses on extending a uniform sediment transport 

formula or a bed-material transport rate formula to fractional transport rate for nonuniform 

sediment mixtures. In doing so, the actual shear stresses acting on each size fraction or the 

critical shear stresses for each size fraction are corrected by introducing a correction factor. 

This approach may be written as 

(2.2) 

or 

(2.3) 

in which f = general functional relationship; Pbi = fraction of bed material by dry weight 

corresponding to size fraction i; <l>ti = dimensionless sediment transport function 

corresponding to size fraction i; 0i = dimensionless shear stress corresponding to size 

fraction i; 0ci = critical dimensionless shear stress corresponding to size fraction i; and ~ti, 

eti = correction factors accounting for the sheltering and exposure effect. Parameters of <l>ti, 
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0i, and 0ci are expressed as follows, respectively 

% 
<I>ti=-~-

Ys y 

0; 't = 
(ys-y)D; 

eci 
'tci 

= 
(Ys -y)D; 

(2.4) 

(2.5) 

(2.6) 

in which Di = the representative diameter of bed material corresponding to size fraction i; 

g = gravitational acceleration; y, Ys = specific weight of water and sediment, respectively; 

't = shear stress along the bed; and 'tci = critical shear stress along the bed corresponding to 

size fraction i. Note that the dimensionless sediment transport functions for bedload, <I>bi, and 

suspended load, <I>1i, are obtained by replacing qti in Eq. (2.4) with qbi or qsi, respectively. The 

corresponding correction factors for bedload and suspended load are referred to as ~bi and ~si 

in Eq. (2.2) and ebi and esi in Eq. (2.3), respectively. 

The product ~tiei in Eq. (2.2) is believed to be the actual or effective dimensionless 

shear stress acting on the particles of size fraction i in a mixture, while eti0ci in Eq. (2.3) may 

be regarded as the effective critical shear parameter. Correction with ~ti is to reduce the value 

of shear stress for the finer fractions and to increase the value for the coarse fractions. 

Conversely, correction with eti is to increase the value of critical shear stress for the finer 

fractions and to reduce the value for the coarse fractions. These corrections result in a similar 

effect, viz. a reduction of the transport rate of the smaller sizes and increase of the transport 

rate of the larger sizes. There is no reason to suppose ~ti= eti. 
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The EMF approach 

The BMF approach relates the fractional transport rates directly to the size distribution of bed 

material. It assumes that a channel bed can be considered as a hypothetical mixture of 

sediment particles; the mixture can be formed into class intervals by size, and a potential 

transport capacity can be calculated for each class interval, whether or not particles are 

physically present. Subsequently, particle availability can be evaluated and expressed as Pbi. 

Availability and potential transport capacity can then be combined to give transport capacity 

as follows 

N 

c,i = Pbicpi, c, = E cti 
i =I 

(2.7) 

in which Cpi = potential concentration for size fraction i in the case of uniform sediment in 

identical hydraulic conditions. In using the BMF approach, the potential concentration, Cpi, 

for a given size fraction i, is computed with a bed-material load formula by replacing the 

representative size with the average (or geometric mean) diameter, Di , of the corresponding 

size fraction of the bed material. Conceptually, a stream bed can be considered as a 

hypothetical mixture of sediment particles, and the mixture can be formed into size groups. 

Ifit is assumed that individual size fractions have no influence on each other, then a potential 

transport rate can be computed for each size fraction whether or not particles are physically 

present on the bed surface. Consequently, Pbi can be visualized as the availability of sediment 

particles on the bed surface. 

The TCF approach 

The TCF approach relates the fractional transport rate to the bed-material transport rate and 
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the transport capacity distribution function. First, the bed-material sediment concentration 

is computed by the use of a bed-material load equation. Then, the computed bed-material 

concentration is broken into fractional concentrations by a transport capacity distribution 

function. This concept is expressed as 

N 

Cu= pciC,, LPci = l (2.8) 
i = I 

in which Pc; = transport capacity distribution function corresponding to size fraction i. The 

TCF approach comprises two components: the computation of bed-material transport 

capacity, C1, and the computation of its fraction, Pei. The bed-material sediment 

concentration C1 can be determined by using any appropriate bed-material transport 

relationships available in the literature. In essence, the transport capacity distribution function 

P ci is the size distribution of the transported sediments and does not necessarily resemble the 

size distribution of bed material. The availability concept and the sheltering and exposure 

effect are included in the consideration of P ci by relating it to both hydraulic conditions and 

sediment properties. 

2.3 DIRECT COMPUTATION BY THE SIZE FRACTION APPROACH 

Direct computation by the size fraction approach includes methods of Einstein (1950), 

Laursen (1958), and Toffaleti (1968, 1969), which were originally developed to compute the 

sediment transport rates by size fractions for nonuniform sediment mixtures. Einstein (1950) 

presented the most extensive analysis on sediment transport of nonuniform mixtures based 

on fluid mechanics and probability. The sediment transport computations were made for the 

individual size fraction that has a representative grain size equal to the geometric mean grain 
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diameter of each fraction . Einstein recognized the effect of the presence of one size on the 

transport rate of another in case of nonuniform sediment, and he proposed to account for this 

effect by introducing a hiding factor. Some fundamental concepts in sediment transport 

introduced by Einstein were later modified or simplified by others for the computation of 

sediment transport rate. 

In Einstein's approach, the unit bed-material discharge for a given size fraction, qti, 

was expressed as the summation of unit bedload discharge, qbi, and unit suspended load 

discharge, qsi, that is, 

(2.9) 

in which PE = 2.303log(30.2d I~) is the transport parameter; and 11 and 12 = integrals of 

Einstein's form of the suspended sediment equation. 

This equation relates the bedload transport to suspended load transport for all size 

fractions. The effects of other size fractions on the transport rate of a given size are 

accounted for through the treatments in bedload computation. Einstein' s bedload function 

relates the dimensionless transport function, ~.i, to the flow intensity function, W•i, by the 

following relationship (Fig. 2.1) 

1 1 fon)lj!,,-2 _,2d 43 .5~ .; - - e t = -----
.fii. - on)lj!,; - 2 1 + 43 .5 .; 

(2.10) 

where 

(2.11) 
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(2.12) 

and 

(2.13) 

in which D65 = the bed material size by which 65 percent is finer; R 1= the hydraulic radius 

associated with grain roughness; S = channel slope; ~i = correction factor defined by Einstein 

and given as a function of Di IX (Fig. 2.2); Y = the correction factor for the lift coefficient 

given as a function of D 6/ 01 (Fig. 2. 3 ); X = the characteristic grain size of the mixture, 

which is given by 

_ { 0.771:l X = 
1.3901 

when l:l/o1 > 1.8 

when l:llo' <1.8 
(2.14) 

in which /1 = the apparent roughness of the bed surface, which equals to D6sfX ; o' = the 

laminar sublayer thickness due to grain roughness; and X = a correction factor that accounts 

for the variation in flow regime in the logarithmic velocity distribution (Fig. 2.4) . 

Most of the concern has centered around the sheltering function or hiding factor. 

In principle, it is intended to account for the difference in mobility of the various grain sizes 

in the mixture compared to their mobility in beds of respective uniform sized grains. Fig. 2.5 

shows a comparison by Misri at al. of the Einstein and Hayashi et al. ( 1980) functions, and 

the function proposed by Pemberton (1972), where D. is the average grain size of mixture. 

Misri ' s experiments on coarse sediments highlighted several important limitations of 

Einstein' s method, including the inadequacy of his ~ i ~ Di IX . In general, Einstein's method 

overpredicts the transport rates of finer sizes and underpredicts the transport rates of coarser 
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fractions. Misri et al. also found that there was a very poor agreement with the relation for 

an additional correction factor, 0, introduced by Einstein and Chien (1953). These 

conclusions were confirmed later by the experiments and verification of Samaga el al. 

(1986a, b). 

Laursen (1958) proposed a bed-material sediment transport formula based on his 

flume experimental data. His bed-material sediment concentration formula for a given size 

fraction may be expressed as (ASCE Task Committee, 1971) 

C, = 0 Oly P., (; r [ :~, -}( :J (2.15) 

in which Cti = bed-material sediment concentration by weight of size fraction i; V. = shear 

velocity; 1:~ = bed shear stress due to grain resistance; 1: ci = critical shear stress for grain 

size of Di as given by the Shields diagram; Ci.\ = fall velocity of particle of size Di ; and 
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Fig. 2.6. Laursen' s Sediment Transport Function (Laursen, 1958). 

f(V.lwJ = functional relation given in graphical form (Fig. 2.6). Laursen' s shear stress due 

to grain resistance resulting from the use of Manning-Strickler equations is 

21 D ]
1

'

3 

t~ = pV 
58 d 

(2.16) 

Toffaleti (1968, 1969) developed a procedure for the computation of sediment 

transport discharge based on the concept ofEinstein (1950) and Einstein and Chien (1953). 

In his method, the total depth of flow is divided into four zones (Fig. 2. 7), and the unit 

sediment discharge for each size fraction in each zone is determined individually. Then the 

unit bed-material load discharge for a sediment of size Di is given by 

(2.17) 

in which qsui, qsmi, and qsli = suspended load discharges per unit width in upper, middle, and 
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Relations (Toffaleti, 1969). 

lower zones, respectively, for sediment of size Di. 

Generally speaking, this group of approaches was found unsatisfactory in predicting 

transport rate by size fractions (Misri et al., 1984; Samaga et al. , 1986b). This is due to the 

complexity of transport of sediment mixtures and the lack of knowledge concerning the 

motion of individual size and its effect on other sizes. 

2.4 SHEAR STRESS CORRECTION APPROACH 

Relevant contributions following the shear stress correction approach include those of the 

Ashida and Michiue (1973), Parker et al. (1982), White and Day (1982), Profitt and 

Sutherland (1983), Misri et al. (1984), Samaga et al. (1986a, 1986b ), Diplas (1987), Bridge 

and Bennett (1992), Patel and Ranga Raju (1996), Wilcock and McArdell (1997), and 

Wilcock (1997). 

Ashida and Michiue (1973) developed a bedload transport equation for nonuniform 

sediment mixtures by applying their bedload transport equation for uniform sediment. In 
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doing so, the critical shear stress for uniform sediment was replaced by the critical shear stress 

for each size fraction . Ashida and Michiue found that the physical meaning for the hiding and 

the exposure effects of the nonuniform sediment transportation is due to the discrepancy 

between the critical shear stress for uniform sediment and that for nonuniform sediments. 

They adopted Egiazaroff' s ( 1965) expression for critical shear stress of each individual size 

fraction in their bedload transport equation for nonuniform sediment mixtures. Based on a 

number oflaboratory experiments, they also presented an empirical correction to Egiazaroff' s 

expression in the range D/ Dm < 0.4. The correction can be translated to a correction factor 

ebi for the critical shear stress as follows 

[ ]

2 log(l 9) 
;I D,,,) 

( 
D 1-1 

0.85 D~, 

in which Dm = mean diameter of bed material. 

D . 
for-' 0.4 

D,,, 

D . 
for-' <0.4 

Dm 

(2.18) 

Parker et al. (1982) and Parker (1990) developed an empirical gravel transport 

relationship based on the equal mobility concept and the similarity transformation concept. 

Parker et al.' s equal mobility hypothesis states that the existence of a bed pavement regulates 

the entrainment of particles by stream, resulting in their mobility being approximately equal. 

That is, all grain sizes are entrained at about the same flow discharge and are transported at 

rates in proportion to their presence in the bed material. The similarity hypothesis 

transformation concept assumes that by choosing the proper parameter, different curves 

pertaining to different size fractions collapse into a single universal curve. Based on the 
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analysis of field data from Oak Creek, the relationships between dimensionless bedload 

transport function W/ and dimensionless shear stress parameter -i:;; were given in a graphic 

form. These parameters are defined as 

w.· = 
I 

Ys - y qbi 

y pbi (gdS)l /2dS 

dS <P; = ------
(y s / y - l)D/t;; 

(2.19) 

(2.20) 

(2.21) 

Because of the approximate equal mobility of all sizes, only one grain size, namely the 

subpavement size D50, is used to characterize bedload discharge as a function of the 

dimensionless shear stress 

w· = 

0.0025exp[14.2 (cp50 - 1) - 9.28 (<P50 - >2] 

11.2(1 - 0.822)4.5 
<Pso 

for 0.95 < <f>50 < 1.65 

for 1.65 < <f>50 
(2.22) 

in which <Pso = -c;0 / -i:;50 ; -c;0 = Shields stress for median diameter of subpavement; -C:50 = 

reference value of -c;0 = 0.0876. 

Noting that Parker et al. ' s approach constitutes only a first-order approximation of 

reality, Diplas (1987) analyzed the same data used by Parker et al. and indicated that the 

hiding function dependent on the average shear stress in addition to its dependence on grain 

size, Di I D50. An empirical expression for reduced hiding function based on Oak Creek data 

was proposed as follows 
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. = f (D/ Dy,}°·3412 - 1] [( !!.!_) -0.0S?l(Di IDy:}°·3214 
~b, l<Pso D 

.50 

(2.23) 

White and Day (1982) investigated threshold conditions for individual grain sizes in 

a mixture in a recirculating flume. The prediction of transport rates was made by using 

Ackers and White's (1973) formulations by determining the initial motion parameter for each 

size fraction. The results led to a hiding function which is related to D/D A• where DA is the 

scaling size in a mixture defined by White and Day. White and Day's correction factor for 

mobility number can be transformed into a correction factor for effective shear stress 

= ( 0.4 + 0 6] 2 
bi (Di ID A)l /2 . 

(2 .24) 

and 

~=16 D ( D i -o.2s 
Dso . D16 

(2.25) 

Proffitt and Sutherland (1983) studied the effect of sediment nonuniformity by 

comparing the transport rate of individual fractions in a mixture with that of uniform material 

of the same size. In the analysis they considered Paintal's (1971) and Ackers and White's 

(1973) transport functions as the basis for studying the effect ofnonuniformity and suggested 

corrections to be applied to these two functions . By analyzing experimental data, they 

defined the following expression of ~bi for Paintal' s function 

( DJ" D . 
1.0 -' for 0.60 <-' < 10.0 

~bi 
DII DII 

(2.26) = ( DJ" D . 
1.16 -' for -

1 <0.60 
Du Du 
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Fig. 2.8 . Proffitt and Sutherland' s Scaling Size (Proffitt and Sutherland, 1983). 

in which Du= scaling size which determines the roughness of the bed (Fig. 2.8). 

A similar expression of ~bi was proposed by Proffitt and Sutherland for the correction 

of Ackers and White's function 

~bi = 

1.30 

0.53 log(~:) + LO 
0.40 

D . 
for 3.70<-' 

Du 
D . 

f or 0.075 < -' < 3.70 
Du 

for 
D 

-
1 < 0.075 

Du 

(2.27) 

Proffitt and Sutherland's correction factor does not take into account all the relevant 

parameters, and the data used in the development of their relation for ~bi covers a relatively 

narrow range of flow conditions. 

Misri et al. (1984) modified the Einstein type transport relationships and obtained a 

function for uniform sediment as follows by fi tting experimental data 
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<l>b = 

where 

4.6x107 ( 01}
8 for 0' 0.065 

s.5 (0' )1.s ----~~--- for 0 1>0.065 
[1 + 5.95 x1Q-6 / ( 01)4.7)1-43 

-r ' 0' = ----

in which D = sediment size; -r' = grain shear stress. 

(2.28) 

(2.29) 

For nonuniform sediment, Misri et al. introduced a factor ~ bi into Eq. (2.28) to account 

for the sheltering and exposure effect. Similar to Proffitt and Sutherland's method, Misri et 

al. conceptually related the coefficient ~bi to D; / Da. Then, based on dimensionless analysis, 

they defined the following functional relationship for ~ bi 

where 

e' = I 

-r ' 

(2.30) 

(2.31) 

in which -re = effective shear stress for transport of size fraction D; as bedload; -re = critical 

shear stress for size Da based on Shields' criterion; Da = arithmetic mean diameter of sediment 

mixtures; M = the Kramer's uniformity coefficient for the mixture, which was defined as 

so 
LD/1Pbi 

M = _o _ _ _ _ 
100 

LD;~pbi 
so 
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in which Di = geometric mean of size group i; and ~pi = percentage weight corresponding 

to size group i. 

Through extensive analysis of their experimental data, the correction factor was given 

as 

0 038 K ft ' It }0·75 
C . 2\ c 
'-ob; = -----~-~--

(0) 1.2 [(I + o.0031 ( 01) - 2.1] 113 
(2.33) 

in which K2 = coefficient. 

Samaga et al. ( 1986a, 1986b) proposed a correction factor ~bi through modifying 

Misri' s model to calculate bedload transport rate of individual fractions for sediment 

mixtures. Following a line ofanalysis similar to that for bedload transport, Samaga et al. also 

defined a coefficient ~ si for suspended load. The functional relationship for ~si was expressed 

as 

t e ( , t ' l c _= - =/0 -M 
'-os, I " ' t t c 

(2.34) 

The coefficients ~ bi and ~.i were expressed in graphical forms. Samaga et al. referred to ~bi and 

~si as the sheltering-cum-exposure coefficient and sheltering-cum-exposure-cum-interference 

coefficient, respectively. 

Samaga et al. used the coefficients defined by 

(2.35) 

(2.36) 
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and 

(2.37) 

The relationship between½} and M is given in a table . The coefficients Kt, and (KJ-i, ~J are 

given in graphical forms. With known ~b; e ;the value of dimensionless bedload <l>b;can be 

read from a graphical relation. Following the same procedure, <l>s; can be obtained. 

Bridge and Bennett (1992) developed a model for the bedload transport of sediment 

grains of different sizes, in which the shape and density were also considered. 

Recently, Patel and Ranga Raju (1996) checked the performance of the relationships 

for the methods of Ashida and Michiue(1973), Proffitt and Sutherland (1983), and Bridge and 

Bennett (1992) based on a large number ofbedload data from flume and fields, and indicated 

that none of these methods give satisfactory results. Patel and Ranga Raju (1996) thus 

proposed an empirical relationship for fractional bedload transport which they calibrated using 

both flume and field data. The exposure-cum-sheltering correction factor proposed by Patel 

and Ranga Raju was as follows 

i: . = o 0113 (c 0')-0·
15144 1 c .._b, · s I m (2.38) 

where 

log(C) = -0.1957 

(2.39) 

and 
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0. 7092 log(M) + 1.293 
= { LO 

for 0.05 <M < 0.38 

for M>0.38 

This new method is only applicable for fractional bed-material load. 

(2.40) 

More recently, Wilcock and McArdell (I 997) and Wilcock (I 997) studied partial 

transport and fractional transport. They expressed the fractional transport rate as the product 

of the spatial entrainment, displacement frequency, and displacement length. In their 

fractional transport expression, the partial transport of individual size fractions was 

emphasized. But this common feature in gravel-bed rivers is not a major concern in sand-bed 

nvers. 

The shear stress correction approach is most commonly used for the computation of 

fractional bedload transport in nonuniform mixtures. Some of the concepts used in this 

approach, which relate the shear stress correction factor to relative diameter (D/D50, DJD A, 

D/Du, D/Da, etc.), bed material size gradation (uniformity coefficient, M), and flow intensity 

( average shear stress), can be expanded to the study of the transport of sediment mixtures. 

2.5 BED MATERIAL FRACTION APPROACH 

Among the four categories of fractional sediment transport rate computation methods, the 

BMF approach is the most commonly used method in numerical models, even though the 

shortcomings of using this approach in nonuniform sediment transport models have been 

pointed out in the literature (Hsu and Holly 1992). The BMF approach does not account for 

the interactions between different size particles present in sediment mixtures. Hsu and Holly 

(1992) point out that one important disadvantage of this approach is the difficulty in obtaining 
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the correct gradation and total transport amount, and another minor disadvantage is its 

sensitivity to the number and distribution of class intervals. However, due to its simplicity and 

the fact that it may be acceptable under certain transport conditions, the BMF approach is still 

widely in use in numerical models such as HEC-6 (U. S. Corps of Engineers 1977; Thomas, 

1982), GSTARS (Molinas and Yang, 1986), CARICHAR (Rahuel et al., 1989), and BRI-

STARS (Molinas, 1990; Molinas and Trent, 1991; Molinas 1993). 

Karim (1985) introduced a so-called hiding factor, Wi, into the BMF approach to 

reflect the influence of other sediment particles in the mixture on the transport of given size 

fraction i 

(2.41) 

Eq. (2.41) can be visualized as a modified BMF method. They expressed Wi as a simple 

power function ofDJD50 

( 
D . l C2 W =C - ' 

/ I D so 
(2.42) 

in which C1 and C2 = coefficients, which were determined to be 1.0 and 0.8, respectively, 

using typical Missouri River bed material size distributions and flow data and a trial and error 

procedure. 

Following the same procedure, Karim (1998) developed new relations for predicting 

sediment discharge for each size fraction 

(2.43) 

in which <Pi = weighing function for ith fraction : 

(2.44) 
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in which Pai= areal function of bed material in ith size fraction; and fJ = sheltering factor. 

The areal function and sheltering factor proposed by Karim are 

(2.45) 

(2.46) 

in which C1, C2 = coefficients determined based on experimental data from Einstein and 

Chien (1953) : 

(2.47) 

Similar to Karim and Kennedy's modification [Eq. (2.41)] , Wang and Zhang (1990), 

Wang et al. (1995), and Wang et al. (1998) introduced a modifying coefficient K0 into the 

B:MF concept for fractional load computation 

Based on data analysis and heuristic reasoning, they expressed K0 as follows 

in which 

D . 
D = -' 

k D 
p 
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(2.49) 

(2.50) 



and 

2 3 4 m = 0.06 + 2 .55Dk - 0.863Dk + 0.1088Dk - 0.0046DK (2.51) 

It needs to be pointed out that all modification factors (Y-/i, <Pi, and K0 ) in the use of 

the BMF concept were calibrated along with a specific transport equation used to compute 

the potential transport rate in their development. Therefore, these modification factors may 

not be used in conjunction with other transport equations to predict fractional transport rate. 

2.6 TRANSPORT CAPACITY FRACTION APPROACH 

The TCF approach comprises two components, the computation of bed-material transport 

capacity, C,, and the computation of its fraction, Pei · It is assumed that these two 

components can be treated separately in the development and application of the TCF concept. 

The bed-material sediment concentration, C,, can be determined by using the available bed-

material transport formulas in the literature. The key problem in the application of the TCF 

approach is the proper determination of the sediment transport capacity distribution function, 

For suspended load, a simple method was suggested by Dou et al. (1987) by relating 

(PsJw;r· 
N 

L (PsJw;)a. 
(2.52) 

i = I 

where Pcsi = the fraction of suspended sediment transport capacity, by dry weight, 

corresponding to size fraction i; Psi = the fraction of suspended load, by dry weight, 
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corresponding to size fraction i, and wi = the fall velocity of sediment corresponding to 

particle size Di . The deficiency of this method is that it is basically developed for suspended 

load and it does not take into account the influence of the bed material size and the hydraulic 

conditions. 

From statistical theory, Li (1988) derived a method which related to Pbi, wi, and V. 

Pb . _I _-A_i (I - e -6w/J:.V,} 
I (.0 . 

pcsi = ____ , ------t pbi I -Ai (1 - e -6w/,:.V,} 
i =l Cui 

(2.53) 

where 

(2.54) 

where K = the universal constant of von Karman; av = the turbulence coefficient, and it was 

assumed that av= V*; V. is the shear velocity; and cf>= the standardized normal distribution 

frequency function . Li's method was basically developed for the computation of fractions of 

suspended bed-material sediment transport capacity. 

where 

Karim and Kennedy ( 198 I) proposed an equation for P ci as follows 

Dso x 
Pb . -

I D. 

Pei= -~--'--(-~5,_0l-x 
Lpbi -
i =l Di 

( 
d ) o.s 

X = 0.0316 -
Dso 
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As indicated by Holly and Karim (1986), this method has no theoretical basis, and it was 

developed through heuristic reasoning supported by data analysis of measured suspended 

sediment size distribution of the Missouri, the Niobrara, and the Middle Loup Rivers. Karim 

and Kennedy's conceptual model was also used by Holly and Rahuel (1990) for the fractional 

bedload transport computation in their general framework for mobile-bed modeling. 

Based on observation of sediment-mixture experiments, Hsu and Holly (1992) 

postulated that the fraction of each size class in transported material is proportional to the 

joint probability of the relative mobility (PmoJ of each particle size and the availability (P.J 

of each size class on the bed surface. Therefore, they expressed the transported distribution 

as 

where 

Pei= _N_P_m_o,_P_b_;_ 

L (Pmo;Pbi) 
i =l 

= _I_ f 00 ex/-~] dx 
a..fiii J cvc/V) - I l 20 

(2.57) 

(2.58) 

in which efr(z) = the error function; Vci = the incipient velocity for a particular size class i 

in a mixture; V' = the absolute fluctuations of velocity; and o = the standard deviation of 

V'/Vdistribution. Unfortunately, Hsu and Holly's method is limited to the transport of 

bedload and has not been verified with direct measurements of fractional transport data. 
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CHAPTERJ 

TRANSPORT CAPACITY DISTRIBUTION FUNCTION 

3.1 GENERAL 

Presently, none of the four groups of approaches gives a satisfactory prediction of 

fractional transport rates of nonuniform sediment mixtures in open channels. The 

approach using direct computation by size fractions results in the worst prediction of 

fractional transport rates and is rarely used in numerical models . The shear stress 

correction approach is commonly used for the computation offractional bedload transport. 

This approach is more suitable for flows with gravel-bed materials since the sheltering and 

exposure effects are more pronounced in these cases. The physical considerations and the 

parameters used in the shear correction approach can be incorporated into research on 

fractional transport of sand-bed materials. The BMF approach is widely used in numerical 

models due to its simplicity. But both the shear stress correction approach and the BMF 

concept fail to estimate the correct gradation and total amount of bed-material transport 

rate . The TCF concept has its advantages in avoiding additional errors in estimating the 

bed-material concentration by the summation of transport capacities of individual size 

fractions and may limit the discrepancies in computing concentrations for individual size 

fractions . The sheltering and exposure effect considered in the shear stress correction 

approach for nonuniform mixtures can be incorporated in the determination of the 
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transport capacity distribution function, Pei· Currently, most research utilizing the TCF 

concept is limited to fractional load transport of suspended sediments. It is desirable to 

develop a new method for the computation of bed-material load transport capacity by size 

fractions based on the TCF approach and using the concept of sheltering and exposure 

corrections. 

The TCF approach comprises two components, the computation of bed-material 

transport capacity, C,, and the computation of transport capacity distribution function, Pei· 

It is assumed in the present study that these two components can be treated separately in 

development and application of the TCF concept. In this section, we focus on the 

computation of Pei, which is the crucial component in the successful implementation of 

the TCF concept. 

3.2 DATA SOURCES 

The processes and mechanisms of nonuniform sediment transport are still not well 

understood in our knowledge due to their complexity. Prediction of sediment transport 

rates by size fractions has not been accomplished following a purely analytical method. 

It is a common practice to develop a fractional sediment transport procedure following 

semi-empirical derivation and relying on calibration using flume and field data. Therefore 

it is very important to collect a complete and reliable set of sediment transport data for the 

analysis, development, calibration, and comparison of fractional sediment transport 

methods. It is required that the data include measurements of size distribution for both 

bed material and the sediments in transport. 

The flume data ofEinstein (1978), Einstein and Chien (1953), and Samaga et al. 
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(1986a, 1986b), and field data from the Niobrara River near Cody, Nebraska (Colby and 

Hembree, 1955), and the Middle Loup River at Dunning, Nebraska (Hubbell and Matejka, 

1959) were used to analyze the fractional transport rate of sediment mixtures. A summary 

of this data base is given in Table 3 .1. It incorporates 118 dat sets containing a total of 

891 data points. These data are limited to sand sizes with median diameter in the range 

of 0 . 10 to 0.90 mm, geometric standard deviation in the range of 1.30 to 3.0, flow 

discharge in the range of 0.0056 to 16.06 m3/s, velocity in the range of0.49 to 1.41 m/s, 

flow depth in the range of0.056 to 0.58 m, and slope in the range of 0.00093 to 0.013 . 

For the laboratory data, the bed-material concentrations were measured directly to 

eliminate the uncertainty of unmeasured load near the bed surface. The bed-material 

concentrations for the Niobrara River near Cody, Nebraska are measured as suspended 

bed-material concentrations at a contracted section and are based on depth integrated 

samples. The bed-material concentrations reported for the Middle Loup River at Dunning, 

Nebraska are measured suspended bed-material concentrations with a turbulence flume 

and are also based on depth integrated samples. Data with unmeasured load near the bed 

surface determined by the use of indirect methods are not included in this study. 

Detailed sediment transport data are given in Tables 3 .2 - 3 .6. The sediment 

transport data contains a complete record for flow and sediment information pertaining 

to each measurement. This information for each record includes : 

• Flow properties, 

• Bed material properties, 

• Transported sediment properties, and 

• Size distributions of bed material and transported sediments. 
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Table 3.1. Summary of Laboratory and River Data 

Geometric Bed- No. No. No. 
Average Average Average Tempera- Median Standard Material of of of 

Data Discharge Velocity Depth Slope ture Diameter Deviation of Cone. Data Size Data 
Source (m3/s) (m/s) (m) (m/m) (OC) (mm) Bed Size (PPM) Sets Groups Points 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(a) Laboratory Data 

Einstein 0.019 0.54 0.099 0.00262 16.0 0.108 1.245 1325 29 13 289 
(IRTCES, 1978) -0.042 -1.41 -0.139 -0.0127 -27.2 -0.903 -2.158 -39560 

Einstein and 0.043 0.73 0.177 0.00157 8.9 0.104 l.414 2115 22 15 218 
Chien (1953) -0.066 -1.12 -0.237 -0.00489 -27.8 -0.381 -2.968 -57970 

Samaga et al. 0.0056 0.49 0.056 0.00449 14.0 0.212 l.480 3392 33 10 258 
(1986a, b) -0.015 -0.78 -0.101 -0.00693 -26.5 -0.404 -2.460 -10260 

(b) River Data 

Colby and 5.86 0.62 0.421 0.00114 0.56 0.215 l.514 257 19 8 59 
Hembree (1955) -16.06 -1.27 -0.576 -0.00180 -28.3 -0.349 -2.345 -1600 

Hubell and 9.34 0.63 0.250 0.000928 1.10 0.219 1.651 41 l 15 8 67 
Matejka ( 1959) -12.54 -I.I l -0.370 -0.00146 -3 l.l -0.424 -2.403 -183 l 

(c) Total of Laboratory and River Data 

Total 0.0056 0.49 0.056 0.000928 0.56 0.104 l .245 257 118 891 
-16.06 -1.41 -0.576 -0.0127 -31.1 -0.903 -2.968 -57970 



Table 3.2. Laboratory Data of Einstein (IRTCES, 1978) 

Flow Properties Bed Material Transported Sediment 
Data Run Q w d s T D.io" D6s

0 . Cr Cr D.io/ 
. 

Og Sg Og1 
No. ID (m3/s) (m) (m) (m/m) (OC) (mm) (mm) (kg/mJ) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1 10 0.0329 0.2667 0.1049 0.010330 21.0 0.150 0.173 1.529 2.65 41.33 40290.77 0.122 1.510 
2 11 0.0260 0.2667 0.1390 0.002622 20. l 0.150 0.173 1.529 2.65 2.00 2001.52 0.161 1.586 
3 12 0.0300 0.2667 0.1356 0.003867 21.8 0.150 0.173 1.529 2.65 3.86 3854.92 0.162 1.595 
4 13 0.0343 0.2667 0.1329 0.005542 22. l 0.150 0.173 1.529 2.65 8.26 8216.38 0.148 1.637 
5 14 0.0385 0.2667 0.1289 0.008750 22.7 0.150 0.173 1.529 2.65 21.84 21542.65 0.123 1.510 
6 15 0.0425 0.2667 0.1277 0.011789 23 .6 0.150 0.173 1.529 2.65 43 .79 42623.29 0.121 1.450 
7 16 0.0306 0.2667 0.0994 0.008988 25.6 0.223 0.247 1.367 2.65 16.81 16631.27 0.212 1.352 
8 17 0.0271 0.2667 0.1003 0 .006411 26.0 0.223 0.247 1.367 2.65 8.61 8560.20 0.219 1.406 
9 18 0.0239 0.2667 0.1058 0.003975 25.9 0.223 0.247 1.367 2.65 3.55 3544.13 0.232 1.350 

10 19 0.0203 0.2667 0.1052 0.002840 23 .4 0.223 0.247 1.367 2.65 1.92 1916.13 0.231 1.385 
11 20 0.0269 0.2667 0.1273 0.006373 20.0 0.595 0.658 1.245 2.65 3.16 3149.08 0.604 1.241 
12 21 0.0220 0.2667 0.1148 0.005493 19. l 0.595 0.658 1.245 2.65 2.31 2311.38 0.593 1.229 
13 22 0.0345 0.2667 0.1134 0.007631 17.4 0.595 0.658 1.245 2.65 5.65 5633.37 0.589 1.229 
14 23 0.0233 0.2667 0.1350 0.003318 16.0 0.595 0.658 1.245 2.65 1.46 1456.70 0.580 1.208 
15 24 0.0230 0.2667 0.1332 0.003510 18.9 0.903 1.037 1.383 2.65 1.33 1327.94 0.879 1.372 
16 25 0.0226 0.2667 0.1274 0.004820 18.5 0.903 1.037 1.383 2.65 1.57 1567.34 0.891 1.379 
17 26 0.0326 0.2667 0.1204 0.009433 16.4 0.903 1.037 1.383 2.65 6.01 5990.52 0.871 1.399 
18 27 0.0404 0.2667 0.1075 0.012380 19.5 0.609 0.845 2.158 2.65 11.14 11058.46 0.692 1.995 
19 28 0.0357 0.2667 0.1029 0.010460 21.0 0.609 0.845 2.158 2.65 9.31 9257.81 0.749 1.792 
20 29 0.0357 0.2667 0.1036 0.010630 21.3 0.609 0.845 2.158 2.65 7.12 7092.39 0.756 1.775 
21 31 0.0389 0.2667 0.1043 0.012720 19.2 0.609 0.845 2.158 2.65 9.72 9657.18 0.647 1.743 
22 32 0.0308 0.2667 0.1014 0.008709 24.8 0.609 0.845 2.158 2.65 6.47 6444.42 0.714 1.977 
23 33 0.0189 0.2667 0.1317 0.002846 26.5 0.121 0.135 1.329 2.65 2.42 2420.98 0.101 1.290 
24 34 0.0227 0.2667 0.1302 0.003087 27.2 0.119 0.131 1.307 2.65 2.12 2114.97 0.109 1.326 
25 35 0.0262 0.2667 0.1298 0.004418 26.3 0.119 0.131 1.320 2.65 3.91 3902.89 0.116 1.327 
26 35 0.0261 0.2667 0.1307 0.004544 25.0 0.110 0.119 1.308 2.65 5.36 5338.11 0.109 1.317 
27 35 0.0260 0.2667 0.1308 0.004447 22.5 0.108 0.117 1.306 2.65 5.98 5961.74 0.110 1.314 
28 36 0.0299 0.2667 0.1298 0.006282 26.1 0.116 0.128 1.340 2.65 7.15 7114.17 0.120 1.311 
29 37 0.0333 0.2667 0.1309 0.008513 25.5 0.114 0.123 1.323 2.65 15.94 15787.15 0.111 1.312 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 
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ID 
(2) 

10 
11 
12 
l3 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
31 
32 

33 
34 
35 
35 
35 
36 
37 

De Grpl 
(mm) (%) 
(16) (17) 

0.061 
0.061 3.49 
0.061 3.49 
0.061 3.49 
0.061 3.49 
0.061 3.49 
0.061 3.49 
0.061 0.03 
0.061 0.03 
0.061 0.03 
0.061 0.03 

0.246 
0.417 0.01 
0.417 0.01 
0.417 0.01 
0.417 0.01 
0.417 0.08 
0.417 0.08 
0.417 0.08 

0.089 
0.175 1.08 
0.175 1.08 
0.175 1.08 
0.175 1.08 
0.175 1.08 

0.061 
0.061 3.36 
0.061 2.94 
0.061 1.65 
0.061 2.80 
0.061 3.44 
0.061 1.80 
0.061 2.08 

Table 3.2. Laboratory Data of Einstein (IRTCES, 1978) (continued) 
Size distribution of bed material, finer than indicated diameters 

Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 GrplO 
(%) (%) (%) (%) (%) (%) (%) (%) (%) 
(18) (19) (20) (21) (22) (23) (24) (25) (26) 

0.074 0.088 0.104 0.124 0.147 0.175 0.208 0.246 0.295 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
6.33 13.78 20.66 35.99 49.94 67.69 77.18 88.04 94.17 
0.04 0.08 0.14 0.75 4.13 21.56 39.79 64.72 81.27 
0.04 0.08 0.14 0.75 4.13 21.56 39.79 64.72 81.27 
0.04 0.08 0.14 0.75 4.13 21.56 39.79 64.72 81.27 
0.04 0.08 0.14 0.75 4.13 21.56 39.79 64.72 81.27 

0.295 0.351 0.417 0.489 0.589 0.701 0.833 0.991 1.168 
0.09 0.71 4.29 16.63 50.61 75.68 92.15 98.30 99.80 
0.09 0.71 4.29 16.63 50.61 75.68 92.15 98.30 99.80 
0.09 0.71 4.29 16.63 50.61 75.68 92.15 98.30 99.80 
0.09 0.71 4.29 16.63 50.61 75.68 92.15 98.30 99.80 
0.13 0.25 0.46 1.34 7.19 22.30 41.40 60.37 77.75 
0.13 0.25 0.46 1.34 7.19 22.30 41.40 60.37 77.75 
0.13 0.25 0.46 1.34 7.19 22.30 41.40 60.37 77.75 

0.125 0.175 0.246 0.350 0.495 0.700 0.991 1.397 1.981 
2.16 5.22 12.29 25.52 42.86 59.22 73.27 84.47 91.95 
2.16 5.22 12.29 25.52 42.86 59.22 73.27 84.47 91.95 
2.16 5.22 12.29 25.52 42.86 59.22 73.27 84.47 91.95 
2.16 5.22 12.29 25.52 42.86 59.22 73.27 84.47 91.95 
2.16 5.22 12.29 25.52 42.86 59.22 73.27 84.47 91.97 

0.074 0.088 0.104 0.124 0.147 0.175 0.208 0.246 0.351 
5.48 18.28 30.27 55.17 78.21 95.80 98.74 99.40 99.88 
5.15 17.61 29.89 58.16 81.38 %.93 98.83 99.45 99.91 
5.00 17.28 28.39 58.20 80.24 % .00 98.66 99.42 99.92 
8.30 27.62 40.30 73.00 90.51 98.50 99.70 99.91 99.99 
9.93 31.36 44.68 76.40 91.68 98.75 99.75 99.91 99.99 
6.35 21.09 31.13 62.04 81.93 95.85 98.75 99.45 99.93 
6.91 23.64 34.67 66.65 85.95 97.20 99.20 99.67 99.96 

Grpll Grpl2 Grpl3 
(%) (%) (%) 
(27) (28) (29) 

0.351 0.417 0.589mm 
97.60 98.87 100.00 
97.60 98.87 100.00 
97.60 98.87 100.00 
97.60 98.87 100.00 
97.60 98.87 100.00 
97.60 98.87 100.00 
91.13 95.51 100.00 
91.13 95.51 100.00 
91.13 95.51 100.00 
91.13 95.51 100.00 
1.397 1.981mm 

100.00 100.00 
100.00 100.00 
100.00 100.00 
100.00 100.00 
93 .92 100.00 
93 .92 100.00 
93 .92 100.00 
2.790 3.100mm 
98.87 100.00 
98.87 100.00 
98.87 100.00 
98.87 100.00 
98.87 100.00 
0.495 0.701 0.991mm 
99.96 99.98 100.00 
99.97 99.98 100.00 
99.98 99.99 100.00 

100.00 100.00 100.00 
100.00 100.00 100.00 
99.99 100.00 100.00 
99.99 100.00 100.00 



Table 3.2. Laboratory Data of Einstein (IRTCES, 1978) (continued) 
Size distribution of sediment load, finer than indicated diameters 

Data Run Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 GrplO Grpll Grpl2 Grpl3 
No. ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) 

0.061 0.074 0.088 0.104 0.124 0.147 0.175 0.208 0.246 0.295 0.351 0.417 0.589mm 
1 10 8.49 14.38 27.21 37.33 56.01 69.21 82.54 88.53 93 .90 97.14 98.85 99.45 100.00 
2 11 2.71 5.70 11.41 18.07 31.39 43 .39 58.77 68.84 81.49 89.79 96.05 97.82 100.00 
3 12 3.05 5.34 10.64 17.88 31.21 43 .03 57.93 68.03 80.36 89.46 95.98 97.99 100.00 
4 13 4.40 8.09 15.76 25.06 40.18 51.81 65 .49 73.90 83 .51 91.05 96.11 98.02 100.00 
5 14 7.37 12.77 25.57 36.07 54.92 69.44 82.16 87.86 93 .40 96.64 98.55 99.31 100.00 
6 15 7.37 13.41 20.77 37.47 56.61 69.89 82.91 88.57 93.98 97.20 98.89 99.50 100.00 
7 16 0.50 0.70 0.90 1.20 2.60 8.00 28.10 47.40 72.10 85.60 93.40 96.60 100.00 
8 17 1.00 1.20 1.50 l.80 3.10 7.80 26.70 43 .70 65.50 80.40 90.00 94.40 100.00 
9 18 0.17 0.17 0.23 0.40 0.68 2.55 16.55 33.73 58.50 78.74 91.27 95.52 100.00 

10 19 0.20 0.30 0.70 1.10 2.00 4.40 19.50 36.40 58.40 77.40 90.20 95.10 100.00 
0.246 0.295 0.351 0.417 0.489 0.589 0.701 0.833 0.991 1.168 1.397 1.981mm 

11 20 0.06 0.24 0.93 3.30 14.87 47.83 74.83 92.77 98.83 99.88 100.00 100.00 
12 21 0.00 0.16 1.12 4.14 16.87 51.02 78.74 94.27 99.17 99.96 100.00 100.00 
13 22 0.07 0.12 0.54 2.74 15.54 51.38 78.18 94.28 99.08 99.95 100.00 100.00 
14 23 0.07 0.20 0.93 3.93 18.85 55.05 83. 15 96.20 99.53 100.00 100.00 100.00 
15 24 0.00 0.10 0.20 0.30 1.10 7.30 22.90 44.10 63.80 80.00 95.00 100.00 
16 25 0.00 0.20 0.50 0.90 l.80 8.60 22.70 42.80 62.40 78.80 95.20 100.00 
17 26 0.00 0.40 1.10 l.80 3.40 11.60 26.80 46.30 64.40 79.60 95.00 100.00 

0.089 0.125 0.175 0.246 0.350 0.495 0.700 0.991 1.397 1.981 2.790 3.100mm 
18 27 0.24 0.29 0.46 l.63 9.09 27.39 50.97 70.63 76.37 96.28 100.00 100.00 
19 28 0.06 0.11 0.21 0.90 6.40 23 .78 45.93 67.33 85.21 96.76 100.00 100.00 
20 29 0.05 0.07 0.18 0.95 6.77 22.56 44.91 68.19 85.59 97.19 100.00 100.00 
21 31 0.02 0.04 0.10 1.01 8.75 29.64 56.09 76.41 89.97 97.76 100.00 100.00 
22 32 0.30 0.74 2.14 6.45 16.55 31.85 49.99 68.45 84.12 94.83 100.00 100.00 

0.061 0.074 0.088 0.104 0.124 0.147 0.175 0.208 0.246 0.351 0.495 0.701 0.991mm 
23 33 16.72 20.36 44.81 61.15 82.39 94.10 98.93 99.65 99.83 99.95 99.98 100.00 100.00 
24 34 7.81 11 .76 32.10 46.79 72.05 88.05 97.97 99.09 99.49 99.94 99.97 99.99 100.00 
25 35 2.17 6.46 21.33 31.62 62.58 83 .49 96.62 98.91 99.49 99.92 99.98 99.99 100.00 
26 35 3.64 9.44 30.48 43 .24 73 .08 90.39 98.29 99.61 99.84 99.98 100.00 100.00 100.00 
27 35 3.35 8.63 30.02 41.48 73.00 90.51 98.57 99.63 99.83 99.98 100.00 100.00 100.00 
28 36 1.48 4.66 17.04 26.23 56.93 81.37 96.68 98.92 99.47 99.91 99.98 99.99 100.00 
29 37 3.06 8.01 29.23 40.21 71.13 91.23 98.74 99.69 99.88 99.98 100.00 100.00 100.00 



Table 3.3. Laboratory Data of Einstein and Chien (1953) 

Flow Properties Bed Material Transported Sediment 
Data Run Q w d s T D.50. D6/ 

. c,. c,. D.ioi° 
. 

Og Sg Ogt 

No. ID (m3/s) (m) (m) (m/m) ( OC) (mm) (mm) (kg/m3) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1 A-1 0.0623 0.3048 0.1981 0.003752 18.3 0.193 0.271 2.065 2.65 19.51 19277.42 0.096 1.431 
2 A-2 0.0628 0.3048 0.2003 0.004894 24.4 0.366 0.412 1.413 2.65 2.14 2136.61 0.328 1.417 
3 A-3 0.0627 0.3048 0.1996 0.003520 22 .2 0.187 0.254 2.071 2.65 17.86 17664.50 0.096 1.411 
4 A-4 0.0629 0.3048 0.1966 0.003760 16.7 0.279 0.371 2.191 2.65 15.87 15717.37 0.095 1.462 
5 B-1 0.0629 0.3048 0.1878 0.003948 12.8 0.218 0.315 2.138 2.65 12.91 12811.59 0.103 1.574 
6 B-2 0.0629 0.3048 0.2009 0.004 188 14.4 0.173 0.243 2.090 2.65 13.56 13450.35 0.096 1.449 
7 B-3 0.0626 0.3048 0.1996 0.003328 8.9 0.145 0.197 2.030 2.65 16.38 16214.02 0.096 1.442 
8 B-4 0.0629 0.3048 0.1984 0.003578 11.l 0.141 0.195 2.094 2.65 17.24 17060.36 0.093 1.420 
9 B-5 0.0629 0.3048 0.1996 0.003661 10.6 0.129 0.174 2.100 2.65 18.76 18542.08 0.092 1.406 

10 C-1 0.0629 0.3048 0.1932 0.003050 16.1 0.158 0.228 2.417 2.65 80.08 76281.29 0.054 1.597 
11 C-2 0.0623 0.3048 0.2030 0.003931 20.6 0.151 0.218 2.491 2.65 117.94 109874.57 0.050 1.564 
12 C-3 0.0623 0.3048 0.1954 0.003680 14.4 0.145 0.208 2.479 2.65 148.67 136071.28 0.048 1.572 
13 C-4 0.0623 0.3048 0.1945 0.003460 15.6 0.189 0.265 2.293 2.65 35.31 34550.59 0.059 1.782 
14 C-5 0.0623 0.3048 0. 1942 0.003945 13.9 0.233 0.313 2.071 2.65 12.52 12425.50 0.109 1.782 
15 D-1 0.0629 0.3048 0.2140 0.004448 17.8 0.161 0.217 2.163 2.65 36.15 35350.86 0.057 1.636 
16 D-4 0.0430 0.3048 0.1774 0.003063 17.8 0.140 0.211 2.658 2.65 79.77 75994.43 0.045 1.445 
17 D-5 0.0439 0.3048 0.1978 0.003015 22.8 0.270 0.357 2.952 2.65 78.53 74873.71 0.045 1.335 
18 D-6 0.0657 0.3048 0.1945 0.003865 26.1 0.351 0.490 2.324 2.65 28.03 27548.95 0.094 1.609 
19 D-7 0.0430 0.3048 0.1850 0.003000 20.0 0.307 0.438 2.573 2.65 19.71 19466.29 0.054 1.607 
20 D-8 0.0620 0.3048 0.1847 0.003655 26.l 0.135 0.174 1.971 2.65 42.05 40980.71 0.060 1.850 
21 D-9 0.0428 0.3048 0.1871 0.001570 27.8 0.104 0.136 2.001 2.65 30.02 29467.84 0.046 1.550 
22 E-1 0.0629 0.3048 0.1847 0.003485 21.1 0.203 0.278 2.420 2.65 52.49 50327.05 0.054 1.696 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



Table 3.3. Laboratory Data of Einstein and Chien (1953) (continued) 

Size distribution of bed material, finer than indicated diameters 
Data Run De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 Grp10 Grpll Grpl2 Grpl3 Grpl4 Grpl5 
No. ID (mm) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) 

0.061 0.074 0.104 0.147 0.208 0.295 0.417 0.589 0.833 1.168mm 
l A-1 0.061 2.51 8.28 18.45 38.30 54.82 69.22 82.43 95.15 99.34 99.80 
2 A-2 0.061 0.00 0.04 0.14 0.25 2.30 23.31 66.14 93.45 99.38 99.65 
3 A-3 0.061 3.11 9.64 21.14 40.66 56.00 73.08 84.44 94.45 99.06 99.58 
4 A-4 0.061 1.69 5.33 11.75 23.60 36.31 52.90 71.00 83 .52 93.42 98.89 
5 B-1 0.061 0.00 5.07 14.44 31.69 47.92 61.74 78.00 90.21 97.31 99.66 
6 B-2 0.061 0.00 6.17 21.04 41.88 59.08 71.86 84.95 93 .56 98.11 99.73 
7 B-3 0.061 0.00 9.55 28.04 51 .01 67.44 78.99 89.89 95.86 98.73 99.71 
8 B-4 0.061 0.00 10.67 30.68 52.41 67.59 78.25 88.66 95.43 98.90 99.79 
9 B-5 0.061 0.00 12.22 35.17 58.81 71.36 79.84 88.71 94.85 98.59 99.83 

0.008 0.013 0.02 0.03 0.045 0.061 0.074 0.104 0.147 0.208 0.295 0.417 0.589 0.833 1.168mm 
10 C-1 0.03 0.46 1.17 2.60 5.30 11.00 18.00 23 .60 36.00 49.50 63 .00 76.00 86.70 93.40 97.50 99.40 
11 C-2 0.03 0.52 1.32 3.00 6.70 13.40 21.00 26.50 38.20 52.00 65.20 77.00 86.60 93 .20 97.20 99.20 
12 C-3 0.03 0.87 2.40 5.10 10.00 17.00 24.00 30.00 42.00 55.00 68.00 78.40 87.50 93 .50 97.20 99.20 
13 C-4 0.03 0.10 0.4 1 1.25 3.05 7.00 11.00 15.20 25.50 39.00 56.00 70.00 83 .00 92.00 97.10 99.42 
14 C-5 0.061 0.00 0.00 0.00 0.55 2.00 4.80 7.70 16.00 29.00 46.00 63.00 78.00 89.00 95.30 98.30 
15 D-1 0.03 0.13 0.40 1.00 2.60 6.20 12.00 17.00 30.00 46.50 64.00 78.50 89.00 95.70 98.75 99.82 
16 D-4 0.03 0.62 1.50 3.50 7.80 16.00 24.50 30.50 42.50 55.00 66.50 77.00 85.20 91.50 96.20 98.70 
17 D-5 0.03 0.30 0.90 2.50 6.30 14.00 22.00 26.00 31.50 35.50 43 .00 56.00 75.50 90.00 96.70 99.22 
18 D-Q 0.061 0.00 0.00 0.03 0.18 0.90 2.50 4.40 10.00 19.00 29.00 42.00 54.50 70.50 84.00 94.00 
19 D-7 0.03 0.40 0.80 1.58 3.00 5.50 8.50 11.00 17.00 25.00 35.00 46.00 59.00 72.00 84.00 92.00 
20 D-8 0.03 0.13 0.56 1.80 4.70 10.50 18.00 24.00 38.50 57.00 76.70 91.30 97.70 99.60 100.00 100.00 
21 D-9 0.03 0.83 2.60 6.10 12.20 22.00 33.00 40.50 56.00 73.00 87.00 95.50 98.90 99.81 100.00 100.00 
22 E-1 0.03 0.00 0.90 2.20 4.60 8.70 13.40 17.20 26.00 38.00 52.40 68.00 79.50 89.00 94.80 98.00 



Table 3.3. Laboratory Data of Einstein and Chien (1953) (continued) 

Size distribution of transported sediment, finer than indicated diameters 
Data Run Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 Grpl0 Grpll Grpl2 Grpl3 Grpl4 Grpl5 
No. ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) 

0.061 0.074 0.104 0.147 0.208 0.295 0.417 0.589 0.833 1.168mm 
l A-1 17.21 34.81 65 .81 87.78 93 .91 96.28 97.99 99.09 99.77 99.93 
2 A-2 0.91 1.45 2.40 3.04 7.30 38.25 78.29 96.65 99.69 99.85 
3 A-3 15.25 33 .42 65.43 89.66 95.63 97.40 98.45 99.17 99.81 99.92 
4 A-4 22.60 39.44 69.10 87.21 92.83 95.45 97.33 98.58 99.50 99.93 
5 B-1 8.91 25 .55 54.87 80.17 89.25 92.96 95.85 97.71 99.13 99.86 
6 B-2 17.26 35.04 66.37 86.55 92.84 95 .29 97.00 98.35 99.33 99.86 
7 B-3 13.95 32.42 64.95 86.36 93 .38 96.06 97.83 98.89 99.58 99.93 
8 B-4 14.62 34.23 68.77 88.78 94.49 96.68 98.13 99.06 99.63 99.90 
9 B-5 15.54 35.54 70.78 90.17 95.05 96.80 98.05 98.95 99.58 99.92 

0.008 0.01 3 0.02 0.03 0.045 0.061 0.074 0.104 0.147 0.208 0.295 0.417 0.589 0.833 1.168mm 
10 C-1 17.40 26.00 37.50 51.70 68.00 81.00 87.60 94.60 97.70 99.10 99.60 99.80 99.89 99.94 99.97 
11 C-2 21.00 32.00 45.00 60.00 76.50 87.00 91.50 96.20 98.20 99.15 99.50 99.65 99.78 99.87 99.94 
12 C-3 18.80 29.00 43 .00 59.50 77.70 87.50 91.50 96.10 98.40 99.26 99.61 99.73 99.82 99.90 99.95 
13 C-4 13.00 20.00 29.20 42.00 58.50 72.50 79.50 88.50 93 .50 96.45 97.60 98.45 99.04 99.46 99.76 
14 C-5 1.80 4.70 10.00 19.00 35.00 50.00 58.50 73.50 84.00 90.50 94.20 96.50 98.10 99.05 99.59 
15 D-1 15.00 25.00 37.00 50.80 66.00 78.50 85.00 93 .30 97.10 98.70 99.30 99.55 99.75 99.91 99.97 
16 D-4 23 .50 40.00 56.00 72.50 86.50 93.80 96.00 98.15 99.25 99.56 99.72 99.80 99.86 99.91 99.95 
17 D-5 17.00 29.00 44.00 61.00 80.00 93 .70 97.40 99.00 99.38 99.49 99.54 99.63 99.75 99.87 99.95 
18 D-6 0.00 8.49 20.60 32.00 48.00 64.00 73 .20 85.20 91.90 95.10 96.60 97.35 98.05 98.72 99.30 
19 D-7 13.00 22.00 33.60 48.00 66.20 79.20 86.50 94.00 97.50 98.60 99.10 99.40 99.60 99.78 99.90 
20 D-8 16.50 28.00 40.20 53 .00 67.00 11.00 82.50 89.70 94.40 97.00 98.55 99.36 99.73 100.00 100.00 
21 D-9 20.40 34.50 50.60 69.00 84.00 91.00 94.00 97.30 98.80 99.44 99.74 99.87 99.93 100.00 100.00 
22 E-1 16.50 28.00 42.00 56.50 72.00 82.00 87.00 93 .00 96.20 98.10 98.92 99.32 99.56 99.74 99.85 



Table 3.4. Laborator, Data of Samaga et al. (1986a, b) 
Flow Properties Bed Material Transported Sediment 

Data Run Q w d s T D50. D6~· . c,. c,. 0 50!· . 
08 Sg Ogi 

No. ID (m3/s) (m) (m) (m/m) (°C) (mm) (mm) (kg/m3) (PPM) (mm) 
(I) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1 Ml-I 0.0068 0.200 0.057 0.005760 24.5 0.403 0.639 2.458 2.65 4.6321 4618.81 0.659 2.511 
2 Ml-2 0.0104 0.200 0.077 0.005760 23 .0 0.403 0.639 2.458 2.65 4.9910 4975.52 0.489 2.843 
3 Ml-3 0.0133 0.200 0.092 0.005760 22.0 0.403 0.639 2.458 2.65 5.7284 5708.03 0.639 2.559 
4 Ml-4 0.0081 0.200 0.064 0.006870 18.5 0.403 0.639 2.458 2.65 6.7757 6747.28 0.649 2.457 
5 Ml-5 0.0109 0.200 0.080 0.006870 19.5 0.403 0.639 2.458 2.65 6.9021 6872.53 0.655 2.446 
6 Ml-6 0.0133 0.200 0.091 0.006870 20.2 0.403 0.639 2.458 2.65 7.0541 7023 .30 0.709 2.386 
7 Ml-7 0.0056 0.200 0.057 0.005047 20.5 0.403 0.639 2.458 2.65 3.4479 3440.48 0.551 2.443 
8 Ml-8 0.0114 0.200 0.089 0.005047 17.5 0.403 0.639 2.458 2.65 6.4285 6402.85 0.629 2.551 
9 Ml-9 0.0146 0.200 0.101 0.005047 17.0 0.403 0.639 2.458 2.65 6.1268 6103.51 0.745 2.263 

10 M2-l 0.0075 0.200 0.072 0.004960 16.0 0.316 0.514 2.373 2.65 3.7577 3748.93 0.315 2.301 
11 M2-2 0.0108 0.200 0.080 0.004960 16.0 0.316 0.514 2.373 2.65 5.0442 5028.39 0.552 2.830 
12 M2-3 0.0124 0.200 0.092 0.004960 14.5 0.316 0.514 2.373 2.65 6.0750 6052.15 0.606 2.752 
13 M2-4 0.0083 0.200 0.069 0.006048 14.5 0.316 0.514 2.373 2.65 7.2608 7228.17 0.596 2.652 
14 M2-5 0.0116 0.200 0.083 0.006048 14.5 0.316 0.514 2.373 2.65 7.4719 7437.30 0.552 2.826 
15 M2-6 0.0144 0.200 0.100 0.006048 15.3 0.316 0.514 2.373 2.65 8.3955 8351.81 0.654 2.747 
16 M2-7 0.0091 0.200 0.070 0.006926 14.0 0.316 0.514 2.373 2.65 7.4258 7391.61 0.692 2.454 
17 M2-8 0.0118 0.200 0.084 0.006926 16.3 0.316 0.514 2.373 2.65 9.2762 9222.98 0.722 2.433 
18 M2-9 0.0143 0.200 0.093 0.006926 16.5 0.316 0.514 2.373 2.65 9.1903 9138.02 0.659 2.709 
19 M3-l 0.0109 0.200 0.078 0.006926 18.5 0.281 0.439 2.196 2.65 10.3286 10262.65 0.597 2.266 
20 M3-2 0.0129 0.200 0.087 0.006926 23 .0 0.281 0.439 2.196 2.65 9.0970 9045.75 0.591 2.260 
21 M3-3 0.0088 0.200 0.068 0.006926 23 .5 0.281 0.439 2.196 2.65 8.3844 8340.87 0.605 2.197 
22 M3-4 0.0075 0.200 0.066 0.005415 24.5 0.281 0.439 2.196 2.65 7.3982 7364.32 0.409 2.310 
23 M3-5 0.0101 0.200 0.077 0.005415 22.1 0.281 0.439 2.196 2.65 7.1173 7085.94 0.568 2.245 
24 M3-6 0.0134 0.200 0.091 0.005415 25.0 0.281 0.439 2.196 2.65 5.8694 5847.99 0.598 2.203 
25 M3-7 0.0081 0.200 0.064 0.006097 23.5 0.281 0.439 2.196 2.65 7.5946 7558.90 0.560 2.239 
26 M3-8 0.0063 0.200 0.056 0.006097 25.0 0.281 0.439 2.196 2.65 6.1781 6154.41 0.373 2.212 
27 M3-9 0.0129 0.200 0.086 0.006097 24.5 0.281 0.439 2.196 2.65 7.7749 7737.44 0.566 2.201 
28 M4-l 0.0081 0.200 0.062 0.006097 24.5 0.212 0.249 1.481 2.65 5.8615 5840.15 0.301 1.771 
29 M4-2 0.0121 0.200 0.080 0.006097 25.5 0.212 0.249 1.481 2.65 7.5698 7534.28 0.320 1.772 
30 M4-3 0.0083 0.200 0.068 0.005268 26.0 0.212 0.249 1.481 2.65 5.6843 5664.25 0.304 1.983 
31 M4-4 0.0132 0.200 0.087 0.005268 26.0 0.212 0.249 1.481 2.65 6.4086 6383 .09 0.296 1.950 
32 M4-5 0.0085 0.200 0.068 0.004487 26.0 0.212 0.249 1.481 2.65 4.3627 4350.91 0.304 1.888 
33 M4-6 0.0135 0.200 0.091 0.004487 26.5 0.212 0.249 1.481 2.65 4.5958 4582.71 0.298 1.902 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



Table 3.4. Laboratory Data of Samaga et al. (1986a, b) (continued) 
Size distribution of bed material, finer than indicated diameters 

Data Run De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 GrplO 
No. ID (mm) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) 

0.0849 0.158 0.170 0.265 0.329 0.539 0.927 1.502 1.856 3.000 mm 
1 Ml-l 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
2 Ml-2 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
3 Ml-3 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
4 Ml-4 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
5 Ml-5 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
6 Ml-6 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
7 Ml-7 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 
8 Ml-8 0.158 1.00 6.20 10.80 39.20 47.2 1 61.45 79.58 89.38 94.76 100.00 
9 Ml-9 0.158 1.00 6.20 10.80 39.20 47.21 61.45 79.58 89.38 94.76 100.00 

lO M2-l 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
11 M2-2 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
12 M2-3 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
13 M2-4 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
14 M2-5 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
15 M2-6 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
16 M2-7 0.158 0.50 6.30 14.60 45 .34 54.90 68.51 82.48 91.86 96.00 100.00 
17 M2-8 0.158 0.50 6.30 14.60 45.34 54.90 68.51 82.48 91.86 96.00 100.00 
18 M2-9 0.158 0.50 6.30 14.60 45 .34 54.90 68.51 82.48 91.86 96.00 100.00 
19 M3-l 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
20 M3-2 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
21 M3-3 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.3 1 100.00 100.00 
22 M3-4 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
23 M3-5 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
24 M3-6 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
25 M3-7 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
26 M3-8 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
27 M3-9 0.0849 2.60 12.40 19.30 48.66 58.20 71.42 88.70 99.31 100.00 100.00 
28 M4-l 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 
29 M4-2 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 
30 M4-3 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 
31 M4-4 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 
32 M4-5 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 
33 M4-6 0.0849 4.80 20.50 32.90 72.37 84.02 95.50 99.89 100.00 100.00 100.00 



Table 3.4. Laboratory Data of Samaga et al. (1986a, b) ( continued) 
Size distribution of sediment load, finer than indicated diameters 

Data Run Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 Grpl0 
No. ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) 

0.0849 0.158 0.170 0.265 0.329 0.539 0.927 1.502 1.856 3.000 mm 
1 Ml-1 0.95 3.69 8.60 20. 17 30.90 39.79 72.31 78.93 97.57 100.00 
2 Ml-2 1.34 2.25 13.46 32.61 44.87 52.70 78.37 83.45 98.23 100.00 
3 Ml-3 1.12 2.27 8.34 20.09 30.86 41.81 71.58 78.42 98.43 100.00 
4 Ml-4 0.89 1.91 3.61 18.24 28.79 39.36 73.22 80.50 98.57 100.00 
5 Ml-5 0.93 2.49 7.87 17.92 31.23 40.57 70.32 80.26 95.45 100.00 
6 Ml-6 0.82 1.45 5.46 14.44 22.56 33.66 67.32 75.98 98.33 100.00 
7 Ml-7 1.14 1.40 4.24 19.17 33.75 49.48 79.87 84.27 98.04 100.00 
8 Ml-8 0.92 1.64 7.03 20.13 32.30 41 .97 73.04 80.25 98.97 100.00 
9 Ml-9 0.71 1.4 l 5.70 9.44 18.42 29.88 64.70 75 .59 96.89 100.00 

10 M2-l 0.72 3.01 13.31 40.38 54.20 62.04 83.89 88.85 98.29 100.00 
ll M2-2 0.91 3.97 12.74 32.63 46.32 51.03 74.56 80.64 97.59 100.00 
12 M2-3 0.62 2.73 10. 18 26.64 37.75 45.82 71.42 78.98 96.81 100.00 
13 M2-4 0.31 2.15 7.71 25.88 37.07 45.07 77.35 83 .24 97.05 100.00 
14 M2-5 0.49 2.32 ll.40 30.85 42.09 50.11 74.12 80.85 96.33 100.00 
15 M2-6 0.37 1.90 9.31 24.37 32. l l 40.73 69.52 76.42 95.84 100.00 
16 M2-7 0.21 1.47 5.35 15.93 26.04 35.87 68.13 76.34 95.07 100.00 
17 M2-8 0.20 0.91 5.34 15.47 24.25 32.69 65.57 76.66 97.79 100.00 
18 M2-9 0.70 1.86 11.38 23 .34 31.64 39.45 70.50 80.64 97.71 100.00 
19 M3-l 2.44 5.84 13.70 25.38 35.27 44.54 80.08 100.00 100.00 100.00 
20 M3-2 3.33 6.39 13 .74 26.25 37.31 45 .91 79.70 100.00 100.00 100.00 
21 M3-3 2.65 5.08 12.68 23 .62 34.55 43 .57 80.08 100.00 100.00 100.00 
22 M3-4 3.63 6.71 19.88 37.48 48.07 56.53 86.03 100.00 100.00 100.00 
23 M3-5 3.58 6.41 14.16 27.71 38.99 48.55 81.47 100.00 100.00 100.00 
24 M3-6 2.90 5.60 13.54 24.76 34.81 44.27 81.54 100.00 100.00 100.00 
25 M3-7 3.32 6.06 16.55 28.67 39.76 49.07 84.61 100.00 100.00 100.00 
26 M3-8 1.99 3.80 15.42 34.69 48.49 58.37 87.35 100.00 100.00 100.00 
27 M3-9 3.45 6.63 14.46 26.61 38.23 48.61 82.99 100.00 100.00 100.00 
28 M4-l 3.44 9.4 1 18.11 38.58 60.76 84.39 100.00 100.00 100.00 100.00 
29 M4-2 3.15 9.09 12.71 31.87 54.55 79.71 100.00 100.00 100.00 100.00 
30 M4-3 2.47 6.34 19.55 38.68 58.72 74.83 100.00 100.00 100.00 100.00 
31 M4-4 3.55 8.77 21.45 42.27 60.89 77.68 100.00 100.00 100.00 100.00 
32 M4-5 3.55 8.32 17.93 36.70 60.20 79.07 100.00 100.00 100.00 100.00 
33 M4-6 3.7 1 8.67 17.76 39.31 62.50 78.16 100.00 100.00 100.00 100.00 



Table 3.5. Niobrara River Data of Colby and Hembree (1955) 

Survey Flow Properties Bed Material Transported Sediment 
Data Date Q w d s T D.50. D6l. . Cr Cr D.501. . 

Og 5s Og1 
No. (yymmdd) (m3/s) (m) (m) (m/m) (OC) (mm) (mm) (kg/mJ) (PPM) (mm) 
(l) (2) (3) (4) (5) (6) (7) (8) (9) (10) (l l) (12) (13) (14) (15) 

l 490713 7.56 21.49 0.47 0.001345 23 .9 0.304 0.363 l.619 2.65 0.9706 970.00 0.248 l .679 
2 500303 l l.35 21.34 0.49 0.001705 5.0 0.307 0.411 2.345 2.65 l.8922 1890.00 0.209 l.618 
3 500414 l l.72 21.64 0.49 0.001705 6.7 0.286 0.348 l.643 2.65 2.0025 2000.00 0.242 l.645 
4 500511 16.05 21.95 0.58 0.001799 l l.7 0.215 0.256 l.573 2.65 2.2231 2220.00 0.227 l.650 
5 500607 7.64 21.34 0.48 0.001269 18.3 0.286 0.355 l.687 2.65 0.7804 780.00 0.237 l.649 
6 500613 6.65 21.49 0.44 0.001288 23.3 0.292 0.347 l.594 2.65 0.7904 790.00 0.240 l.647 
7 500709 7.16 2l.l8 0.46 0.001288 22.2 0.337 0.403 l.660 2.65 0.9105 910.00 0.237 l.652 
8 500802 7.22 21.34 0.44 0.00ll74 17.2 0.306 0.366 l.625 2.65 l.0006 1000.00 0.230 l.646 
9 500830 9.74 21.34 0.47 0.001420 15.6 0.262 0.327 l.653 2.65 l.7820 1780.00 0.263 l.657 

IO 500920 9.42 21.03 0.48 0.001402 16. l 0.327 0.380 l.514 2.65 l.4914 1490.00 0.223 l.655 
II 510427 12.88 21.64 0.53 0.00 1686 14.4 0.314 0.382 l.669 2.65 l.9023 1900.00 0.236 l .670 
12 520619 6.62 21.34 0.47 0.001250 20.6 0.285 0.350 1.663 2.65 0.7544 754.00 0.223 l.625 
l3 520704 7.78 21.34 0.49 0.001288 22.8 0.314 0.374 l.609 2.65 0.9345 934.00 0.268 l.650 
14 520720 6.57 21.34 0.43 0.001136 24.4 0.280 0.341 l.638 2.65 0.5032 503.00 0.230 l.632 
15 520731 5.91 21.03 0.42 0.001250 28.3 0.320 0.384 l.63 l 2.65 0.392 l 392.00 0.235 l .636 
16 520816 7.53 21.34 0.49 0.001155 22.2 0.299 0.378 l.824 2.65 0.8204 820.00 0.238 l.625 
17 520829 5.86 21.34 0.44 0.001212 22.8 0.349 0.428 l.956 2.65 0.4291 429.00 0.219 l.596 
18 520926 6.65 2l.l8 0.47 0.00ll36 16. l 0.300 0.362 l.638 2.65 0.7363 736.00 0.218 l.603 
19 521211 9.40 21.34 0.43 0.001610 0.6 0.334 0.395 l.575 2.65 l.2209 1220.00 0.223 l.61 l 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



Table 3.5. Niobrara River Data of Colby and Hembree (1955) (continued) 

Survey Size distribution of bed material, finer than indicated diameters 
Data Date De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 
No. (yymmdd) (mm) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) 

0.062 0.125 0.25 0.5 1 2 4 8 mm 
1 490713 0.125 0.0 2.0 35.0 92.0 98.0 99.0 100.0 100.0 
2 500303 0.125 0.0 4.0 42.0 76.0 86.0 92.0 98.0 100.0 
3 500414 0.125 0.0 4.0 42.0 93 .0 99.0 100.0 100.0 100.0 
4 5005 11 0.125 0.0 6.0 66.0 100.0 100.0 100.0 100.0 100.0 
5 500607 0.125 0.0 2.0 42 .0 89.0 95 .0 98.0 100.0 100.0 
6 500613 0.125 0.0 1.0 37.0 97.0 99.0 100.0 100.0 100.0 
7 500709 0.125 0.0 1.0 26.0 83 .0 95 .0 98.0 99.0 100.0 
8 500802 0.125 0.0 1.0 34.0 91.0 97.0 99.0 100.0 100.0 
9 500830 0.125 0.0 4.0 49.0 94.0 99.0 100.0 100.0 100.0 

10 500920 0.125 0.0 23 .0 41.0 94.0 98.0 99.0 100.0 100.0 
11 510427 0.125 0.0 2.0 34.0 86.0 96.0 99.0 100.0 100.0 
12 520619 0.125 0.0 1.0 41.0 91.0 99.0 100.0 100.0 100.0 
13 520704 0.125 0.0 1.0 31.0 90.0 97.0 99.0 100.0 100.0 
14 520720 0.125 0.0 1.0 42.0 94.0 98.0 99.0 100.0 100.0 
15 520731 0.125 0.0 2.0 31.0 87.0 97.0 99.0 100.0 100.0 
16 520816 0.125 0.0 2.0 40.0 83 .0 92.0 95.0 99.0 100.0 
17 520829 0.125 1.0 2.0 27.0 77.0 90.0 96.0 99.0 100.0 
18 520926 0.125 0.0 1.0 36.0 91.0 99.0 100.0 100.0 100.0 
19 521211 0.125 0.0 1.0 25.0 86.0 96.0 98.0 99.0 100.0 



Table 3.5. Niobrara River Data of Colby and Hembree (1955) (continued) 

Survey Size distribution of sediment load, finer than indicated diameters 
Data Date Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 
No. (yymmdd) (%) (%) (%) (%) (%) (%) (%) (%) 
(1) (2) (25) (26) (27) (28) (29) (30) (31) (32) 

0.062 0.125 0.25 0.5 1 2 4 8 mm 
l 490713 7.0 15.0 58.0 93 .0 99.0 100.0 100.0 100.0 
2 500303 13 .0 33.0 78.0 96.0 97.0 100.0 100.0 100.0 
3 500414 7.0 20.0 62.0 96.0 100.0 100.0 100.0 100.0 
4 500511 15.0 33.0 72.0 96.0 100.0 100.0 100.0 100.0 
5 500607 10.0 26.0 66.0 96.0 100.0 100.0 100.0 100.0 
6 500613 8.0 23.0 64.0 96.0 100.0 100.0 100.0 100.0 
7 500709 14.0 30.0 68.0 96.0 100.0 100.0 100.0 100.0 
8 500802 10.0 26.0 68.0 96.0 100.0 100.0 100.0 100.0 
9 500830 27.0 40.0 68.0 96.0 100.0 100.0 100.0 100.0 

10 500920 9.0 25 .0 70.0 95.0 100.0 100.0 100.0 100.0 
11 510427 12.0 32.0 69.0 95.0 100.0 100.0 100.0 100.0 
12 520619 11.0 25.0 70.0 97.0 100.0 100.0 100.0 100.0 
13 520704 9.0 20.0 56.0 95.0 100.0 100.0 100.0 100.0 
14 520720 12.0 26.0 68.0 97.0 100.0 100.0 100.0 100.0 
15 520731 13.0 29.0 68.0 97.0 100.0 100.0 100.0 100.0 
16 520816 14.0 33 .0 69.0 98.0 100.0 100.0 100.0 100.0 
17 520829 23 .0 40.0 77.0 99.0 100.0 100.0 100.0 100.0 
18 520926 9.0 23.0 71.0 98.0 100.0 100.0 100.0 100.0 
19 521211 9.0 23 .0 69.0 98.0 100.0 100.0 100.0 100.0 



Table 3.6. Middle Loup River Data of Hubbell and Matejka (1959) 

Survey Flow Properties Bed Material Transported Sediment 
Data Date Q w d s T D~· D6s

0 . c,. c,. DS(/ 
. 

Og 5s Og1 
No. (yymmdd) (m3/s) (m) (m) (m/m) (OC) (mm) (mm) (kg/mJ) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

l 500301 12.23 43 .89 0.30 0.000928 3.9 0.278 0.347 1.684 2.65 2.3133 2310.00 0.241 1.769 
2 500321 11.61 42.98 0.29 0.001439 4.4 0.292 0.364 l .707 2.65 2.4437 2440.00 0.248 1.709 
3 500425 11.72 44.20 0.30 0.001023 10.6 0.335 0.420 1.976 2.65 l.4814 1480.00 0.223 1.691 
4 500509 11.30 44.20 0.34 0.001250 16. l 0.382 0.471 1.926 2.65 l.3411 1340.00 0.223 1.772 
5 500606 10.31 43.89 0.32 0.001458 24.4 0.317 0.399 1.980 2.65 0.6322 632.00 0.245 1.698 
6 500706 10.45 43 .28 0.36 0.001250 21.7 0.424 0.586 2.403 2.65 0.6873 687.00 0.250 1.862 
7 501108 12.54 45 . l l 0.25 0.001345 2.8 0.219 0.268 1.651 2.65 1.4213 1420.00 0.230 1.721 
8 510330 10.22 44.20 0.33 0.001345 10.0 0.339 0.416 1.849 2.65 l.4112 1410.00 0.237 l.758 
9 510726 10.39 44.81 0.37 0.001 288 31.l 0.383 0.476 2.301 2.65 0.5482 548.00 0.259 1.721 

IO 511031 12.09 46.33 0.31 0.001307 3.9 0.351 0.428 1.877 2.65 1.6417 1640.00 0.272 2.176 
11 511205 11.30 37.49 0.33 0.001174 l.l 0.351 0.435 1.952 2.65 2.0225 2020.00 0.240 l.805 
12 520718 9.34 44.81 0.33 0.001420 30.6 0.282 0.365 1.808 2.65 0.8525 852.00 0.278 2.048 
13 520813 10.93 45 . l l 0.33 0.001326 26. l 0.334 0.424 2.095 2.65 0.6863 686.00 0.277 1.869 
14 520911 9.46 45.42 0.31 0.001288 20.0 0.351 0.440 2.153 2.65 1.0407 1040.00 0.350 2.237 
15 520924 10.36 45 . l l 0.33 0.001307 18.3 0.274 0.344 l.687 2.65 l.0206 1020.00 0.302 l.961 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



V, 
0 

Data 
No. 
(I) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Survey 
Date 

(yymmdd) 
(2) 

500301 
500321 
500425 
500509 
500606 
500706 
501108 
510330 
510726 
511031 
51 1205 
520718 
520813 
520911 
520924 

Table 3.6. Middle Loup River Data of Hubbell and Matejka (1959) (continued) 

Size distribution of bed material, finer than indicated diameters 

De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 
(mm) (%) (%) (%) (%) (%) (%) (%) (%) 
(16) (17) (18) (19) (20) (21) (22) (23) (24) 

0.062 0.125 0.25 0.5 1 2 4 8 mm 
0.125 0.0 2.0 44.0 90.0 97.0 99.0 99.0 100.0 
0.125 0.0 4.0 42.0 87.0 96.0 98.0 99.0 100.0 
0.125 0.0 2.0 32.0 77.0 92.0 96.0 98.0 100.0 
0.125 0.0 2.0 21.0 70.0 90.0 94.0 96.0 100.0 
0.125 0.0 2.0 36.0 80.0 90.0 95.0 99.0 100.0 
0.125 0.0 1.0 17.0 61.0 80.0 88.0 94.0 100.0 
0.125 1.0 11.0 66.0 94.0 97.0 98.0 100.0 100.0 
0.125 0.0 2.0 29.0 79.0 94.0 98.0 99.0 100.0 
0.125 1.0 2.0 22.0 69.0 83.0 90.0 96.0 100.0 
0.125 0.0 1.0 25.0 77.0 92.0 96.0 99.0 100.0 
0.125 0.0 1.0 27.0 75.0 92.0 97.0 99.0 100.0 
0.125 0.0 5.0 46.0 84.0 94.0 97.0 98.0 100.0 
0.125 0.0 2.0 33.0 76.0 89.0 94.0 97.0 100.0 
0.125 0.0 2.0 29.0 74.0 87.0 94.0 98.0 100.0 
0.125 0.0 2.0 45.0 90.0 96.0 98.0 100.0 100.0 



Table 3.6. Middle Loup River Data of Hubbell and Matejka (1959) (continued) 

Survey Size distribution of sediment load, finer than indicated diameters 
Data Date Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 
No. (yymmdd) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (25) (26) (27) (28) (29) (30) (31) (32) 

0.062 0.125 0.25 0.5 1 2 4 8mm 
l 500301 14.0 30.0 67.0 90.0 96.0 99.0 100.0 100.0 
2 500321 7.0 25.0 63 .0 92.0 98.0 100.0 100.0 100.0 

V, ..... 3 500425 7.0 25.0 70.0 93 .0 98.0 100.0 100.0 100.0 
4 500509 9.0 35.0 74.0 91.0 98.0 100.0 100.0 100.0 
5 500606 10.0 28.0 65.0 93 .0 98.0 100.0 100.0 100.0 
6 500706 10.0 30.0 65.0 88.0 95.0 98.0 100.0 100.0 
7 501108 8.0 28.0 69.0 92.0 99.0 100.0 100.0 100.0 
8 510330 9.0 26.0 66.0 90.0 97.0 100.0 100.0 100.0 
9 510726 12.0 25.0 61.0 91.0 98.0 100.0 100.0 100.0 

IO 511031 4.0 18.0 56.0 81.0 91.0 97.0 100.0 100.0 
11 511205 4.0 19.0 62.0 87.0 95.0 99.0 100.0 100.0 
12 520718 10.0 24.0 58.0 84.0 93 .0 98.0 100.0 100.0 
13 520813 12.0 28.0 60.0 87.0 96.0 100.0 100.0 100.0 
14 520911 5.0 15.0 40.0 76.0 88.0 97.0 100.0 100.0 
15 520924 6 .0 20.0 51.0 84.0 93 .0 98.0 100.0 100.0 



Flow properties for each record include the measurements of flow discharge, channel 

width, flow depth, water surface/energy slope, and water temperature. Bed material 

properties include the measured value of median diameter and D65, size gradation coefficient, 

and specific gravity of sediment particles. Transported sediment properties include measured 

values of sediment concentration, median diameter, and size gradation coefficient of sediment 

in transport. Size distribution data include both the bed material size distribution and the 

transported sediment size distribution. 

3.3 TRANSPORT CAPACITY DISTRIBUTION FUNCTION BASED ON 

RELATIVE FALL VELOCITY 

The fraction of sediment transport capacity, P ci, is analogous to the bed material size fraction, 

Pbi · However, rather than the size distribution of bed material it denotes the size distribution 

of transported material. The fraction, Pbi, of bed material may be visualized as the availability 

of size class i on the bed surface. It is implied in the BMF concept that the fractional 

transport rates are directly proportional to the availability of sediment particles on the bed 

surface. This is also the case for the shear stress correction approach given by Eqs. (2.2) and 

(2.3). The critical shear stress for incipient motion, the particle entrainment, and transport 

mechanism for a single size fraction are all affected by the other sizes existing in a sediment 

mixture. The effective shear stress acting on a particle or the unit stream power expenditure 

for the entrainment of a given size particle is different for a nonuniform sediment mixture than 

for uniform material. The resulting fractional transport rates are greatly affected by the so-

called sheltering and exposure effect. 

Since the fractional transport rates are directly proportional to the availability of 
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sediment particles on the bed surface, the concept of the BMF approach may be adopted as 

a first approximation in the development of a method to predict the transport capacity 

distribution function. Further development may introduce appropriate modification factors 

or terms accounting for the sheltering and exposure effects. In doing so, Yang's 

dimensionless unit stream power equation may be simplified into (Yang and Molinas 1982) 

C1 =I -( 
vs )J 

W5Q 
(3 .1) 

in which I, J = coefficients, which are related to flow and sediment properties, and w50= fall 

velocity of sediment corresponding to particle size D50 . Applying the BMF concept 

[Eq. (2.6)], the bed-material concentration of size fraction i can be expressed as 

(3 .2) 

Using the conceptual equation of the TCF approach [ Eq. (2 . 7)], the bed-material 

concentration, Cti, can be also expressed as 

(3.3) 

From Eqs. (3 .2) and (3 .3), the following relation is obtained 

(3.4) 
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This equation is similar to Dou et al.' s equation (1987) for suspended load transport 

capacity. It is a first approximation for the transport capacity fraction in the case of 

nonuniform sediment mixtures. Figs. 3.1 and 3.2 show the variation of Pcmi/Pbi with DJD50 

and the variation of Pcmi/Pbi with wJw50, respectively, where Pcmi is the measured size fraction 

of bed-material load for size group i. The data shown in Figs. 3 .1 and 3. 2 include the 118 sets 

of measurements (891 points) given in Table 3 .1. Except for the Samaga et al. data which 

approximated the surface layer composition with the original mixture composition, it can be 

seen that a trend exists between P cmi /Pbi and DJD50 or between Pcmi/Pbi and wJw50 . It should 

be noted that the relationship between Pcmi/Pbi and DJD50 or between Pcmi/ Pbi and wJw50 is 

not a simple power relationship. The smaller particles are sheltered by the larger ones and are 

therefore transported at a relatively smaller rate. On the other hand, the larger particles 

experience larger fluid dynamic forces then they would if they were in a uniform sediment bed 

and are consequently transported at a higher rate. At low stream powers and low shear 

stresses the coarse fractions may not move at all , resulting in a state of partial transport. 

The theoretical analysis presented earlier in this study indicates that the effect of 

sheltering on smaller sizes and the effect of exposure on coarse sizes are primarily dependent 

on the relative diameters (Einstein, 1950; Karim and Kennedy, 1981; White and Day, 1982; 

Proffitt and Sutherland, 1983; Misri et al., 1984; Wang and Zhang, 1990; Wang et al. 1995; 

Karim, 1998), such as DJX, DJD50, DJDA> D/Du, DJDa, and DJDp, of the bed material. 

Instead of using relative diameters, it is assumed that the ratio wJw50 can also be used to 

express the sheltering and exposure effect on a size fraction due to the presence of other 

fractions in sediment mixtures. Retaining the basic form ofEq. (3 . 4) but introducing a second 

term to accommodate the sheltering and exposure effect results in 
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Fig. 3.1 Variation of Pcmi / Pbi with Di/ D 50 : (a) Einstein Data; (b) Einstein and Chien 
Data; ( c) Samaga et al. Data; ( d) Niobrara River and Middle Loup River Data. 
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(3 .5) 

in which Ci, C2, a, P = coefficients which will be analyzed in the following. 

In Eq. (3 .5), the fall velocity w50 may be regarded as a scaling or normalizing factor. 

Particles having a fall velocity smaller than this scaling factor (size) experience sheltering 

effects, and those particles having a fall velocity larger than this size experience exposure 

effects. In more general terms, Eq. (3 .5) may be expressed as 

(3 .6) 

or 

(3 .7) 

in which wn = fall velocity corresponding to a scaling size of bed material. According to Eq. 

(2 .7), the summation of Pei should be equal to 1. Applying this as a constraint for Eq. (3 .7) 

gives the following relation 

(3 .8) 

Dividing Eq. (3 .7) by Eq. (3 .8) results in the following basic form of equation for the 

determination of Pei 
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I w.' Cl ( (a) , ' p 
P-'+(-' 

b1 W W 
P n n ci = __ .......... _.___ __ ,___._ __ 

tP., [( :J + c( ::r] (3 .9) 

in which ( = C/C1. In this study, D50 is taken as the scaling size of bed material. 

Correspondingly, the scaling fall velocity is expressed as 

(3 .10) 

The sheltering and exposure effect experienced by the particles on the bed is 

dependent upon the amplitude and speed of bed form, and on the different size ranges present 

on the bed. As the strength of the flow increases, the sheltering and exposure effect becomes 

secondary since the intensity of turbulence becomes more dominant. This indicates that the 

coefficients in Eq. (3 .9) are not constant but are related to flow and sediment properties and 

can be defined by the following general function 

(3 .11) 

in which f= general function; d = average flow depth; V = average flow velocity; and Fr= 

Froude number. Detailed procedure to determine the three coefficients in Eq. (3.9) is given 

in the following: 

Step 1. Analyze qualitatively the variability of each coefficient in Eq. (3 .9) from its 

theoretical derivation and physical considerations. For example, a is mainly a 

representative of(-J) appeared in Eq. (3 .4) by comparing Eq. (3 .5) with Eq. (3 .4). 
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Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Therefore, a must be a negative value since J is always a positive value. The 

order of magnitude of a should be roughly between 0-3 because J has a value 

between 0.5-2.0 for bed-material transport in sand-bed channels. 

Choose relevant flow and sediment parameters based on previous studies, data 

analysis, and general understanding of the problem. 

Choose a functional relationship for each coefficient, including linear and 

nonlinear relations based on previous studies and use parsimony. 

Determine the constant values contained in the functional relationship chosen for 

each coefficient based on the data analysis. 

Optimize the constant values in the functional relationship for each coefficient by 

comparing the goodness-of-fit between the computed and measured size fractions 

of bed-material load. 

Repeat the trial and error process from step 2 to step 5 until a satisfactory set of 

coefficients is obtained. 

Following the procedure outlined above and through linear and nonlinear analysis of 

118 sets of data given in Table 3. 1, the expressions of a , p, and ( are determined as 

a = -22e+IOOO( ; )'( D~Jl (3 .12) 

(3 .13) 

(3 .14) 
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Corresponding to the above set of coefficients for Eq. (3 . 9), the fall velocities of the 

sediment particles are determined from Fig. 2 presented in the U. S. Inter-Agency Committee 

on Water Resources, Subcommittee on Sedimentation (1957). 

Variations of the coefficients of ex, p, and ( expressed by Eqs. (3 .12)-(3 .14) are 

plotted in Figs. 3.3 and 3.4. Fig .3.3 shows the variation of the coefficients with 

corresponding parameters, while Fig. 3 .4 shows the variation with data number or data 

sources. Values of ex, p, and ( for the 118 sets of data given in Table 3 .1 are in the ranges 

of ex = - 2.153 ~ - 0.008 , p = 0.249 ~ 0.590 , and ( = 0.189 ~ 2.926 . 

3.4 TRANSPORT CAPACITY DISTRIBUTION FUNCTION BASED ON 

RELATIVE DIAMETER 

Following the same procedure, Pc; can be expressed in terms of Di /D50 starting from 

Engelund and Hansen's function (1967). An energy approach was used by Engelund and 

Hansen for bed-material load over a dune bed. The moving sediment particle is lifted over 

the height of the dune; thus, energy is required. The relationship obtained is 

J'<Pt = 0.1 02,5 (3 .15) 

where 

(3 .16) 

t 0 = ----
(y s - y)Dso (3 .17) 
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f' = 2 g S d v2 (3 .18) 

Applying the conceptual equation of BMF and TCF approaches, the unit bed-material load 

of size fraction i can be expressed as 

(3 .19) 

and 

02,5 
qa = pc; --;._-_-_-_-_-_---

(3 .20) 

Eqs. (3 .19) and (3 .20) yields 

0 2.5 
I 

P . 
Cl 

Y,~ =(::J (3 .21) 

Similar to Eq. (3 . 5), introducing a second term to accommodate the sheltering and exposure 

effect results in 

(3 .22) 

Eq. (3 .22) can be written as the following general form of equation 
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(3 .23) 

As indicated earlier, the scaling size Dn is chosen to D50 of the bed material in this study. 

Repeating the procedure outlined by Eqs. (3 .6)-(3.9) results in 

I D . \ (I / D . ' p 
P I +l'_I 

bi lo 
Dso Dso 

Pei = --"'""::---'------'---.___1 '-= t p bi [r !i] (I + ,r !i) p] 
i=I l Dso l Dso 

(3.24) 

Using the data sets given in Table 3.1, the coefficients in Eq. (3 .24) are determined as 

(3 .27) 

(3 .25) 

( = 2.8 F,-1.2 a/ (3 .26) 

Variations of the coefficients of a, p, and ( expressed by Eqs. (3 .25)-(3 .27) are 

plotted in Figs. 3.5 and 3.6. Fig .3.5 shows the variation of the coefficients with 

corresponding parameters, while Fig. 3.6 shows the variation with data number or data 

sources. Values of a, p, and ( for the 118 sets of data given in Table 3 .1 are in the ranges 

of a = -2.839 ~ -0.011 , p = 0.249 ~ 0.590, and ( = 0.189 ~ 2.926 . 
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3.5 EVALUATION OF THE NEW TRANSPORT CAPACITY DISTRIBUTION 

FUNCTIONS 

The size fractions of bed-material transport capacity are computed by using both Eqs. (3 .9) 

and (3 .24) with the 118 sets of data. The correlation coefficients between the computed and 

measured size fractions is 0.856 for Eq. (3 .9), and 0.852 for Eq. (3 .24). In Figs. 3.7 and 3.8, 

the ratio of computed size fractions to the measured size fractions of bed-material load are 

plotted against DJD50 for Eqs. (3.9) and (3 .24), respectively. In these figures, values of 

P cci/P cmi equal to 1 indicate the perfect agreement of computed fractions to measured transport 

capacity fractions. It is seen that most of the points fall near the perfect agreement line of 

P cc/Pcmi equal to 1, especially for data points around DJD50 equal to 1. However, some 

scatter can be observed for both finer and coarser fractions (data points with smaller and 

larger values ofDJD50) . This is understandable because the movement of finer and coarser 

particles in a sediment mixture has higher uncertainty, and is greatly affected by the sheltering 

and exposure effects. 

Figs. 3. 9 and 3 .10 show comparisons between computed and measured size fractions 

of bed-material load for Eqs. (3 .9) and (2.24), respectively. A close agreement is obtained 

at the whole range of Pcmi, especially at larger values, by the use ofEqs. (3 .9) and (3 .24). 

A earlier version ofEq. (3 .24) was presented by Wu and Molinas (1996) and Molinas 

and Wu (1997). Chapter 5 presents more detailed comparison and an independent test of the 

transport capacity distribution functions proposed in this Chapter [ Eqs. (3 .9) and (3.24)]. 

The fractional bed-material load predictions using different methods will be conducted, and 

the computed results will be evaluated. 
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CHAPTER4 

BED-MATERIAL TRANSPORT RA TE 

4.1 GENERAL 

According to the concept of the TCF approach, C, can be determined using any appropriate 

bed-material load equations available in the literature. However, the performance of a 

particular equation selected for the computation of C, affects the absolute magnitude of 

fractional transport rates. One should be aware of the limitations and the applicability of those 

equations developed based on uniform sediments, and choose reliable equations, possibly 

those considering the effects of the size gradation. 

Of the commonly used sediment transport relations, only Einstein (1950), Laursen 

(1958), and Toffaleti (1969) seek to take the grading of sediment into account by directly 

computing sediment transport rates for each size fraction. The bed-material load is obtained 

from the summation of transport rates for each size fraction. Other relations use an 

"equivalent, effective, or significant" particle size which may be D35, D50, or another 

characteristic size. It is assumed that the chosen equivalent size will produce the correct 

sediment transport rate for the whole mixture when used with the equations derived from 

uniform sediments. 

In principle, those relations which directly compute transport rate for each size 

fraction are supposed to produce a more reliable and accurate prediction of total sediment 
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transport rate for sediment mixtures. Unfortunately, it is not the case in practice. Even 

though the bed-material load formulas ofEngelund and Hansen (1967), Ackers and White 

(1973), and Yang (I 973) were developed based on a single fixed representative bed material 

size (D35 or D50), they have gained increasing acceptance. However, even when they are 

applied to nonuniform sediment mixtures, these methods yield a relatively large scatter of 

computed results. 

Various representative sizes of bed material have been used for the computation of 

transport rate for sediment mixtures. Einstein (1944) proposed D35 as the representative 

diameter in transport computations. Meyer-Peter and Millier (1948) suggested that the 

weighted mean diameter of bed material should be used as the representative size for 

nonuniform sediment mixtures. For graded sediment mixtures, Ackers and White (1973) 

suggested the use of D35 in their equation. Han (1973) proposed a weighted average fall 

velocity for nonuniform sediment mixtures. In additional to D50, a size distribution parameter, 

D9(/'030, was used by Smart and Jaeggi (1983) to develop their sediment transport equation 

for steep-slope rivers. Smart and Jaeggi compensated the effect due to sediment gradation 

by a weak power function of D9(/'030 . In applying the Engelund and Hansen equation to 

sediment mixtures, Nordin (1989) stated that a weighted representative diameter of bed 

material should be used. The gradation coefficient, G, defined as the arithmetic mean of 

D8/D50 and D5c/D16, was used by Shen and Rao (1991) to compute transport rate in sediment 

mixtures. In their regression equation for sediment transport, Shen and Rao showed the 

improvement due to the inclusion of G. 

Different investigators suggesting different representative sizes of bed material for 

nonuniform sediment mixtures points out the fact that a single fixed size, such as D50, is 
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inadequate in representing the various sizes present in sediment mixtures. In computing the 

transport rate for mixtures, the representative sediment size should reflect the different bed 

material size distributions. This is clearly of significance since grading curves with differing 

shapes will have different effects on the transport process. Considering the physical processes 

affecting the sediment transport in the flow, Dcx/I)30, G, or other factors representing the 

gradation of mixtures are all believed to be significant in the transport of sediment mixtures. 

These parameters aim to represent the range of particle sizes which are significantly present 

in the bed material. For a given flow condition, even ifD50 of bed material remains the same, 

the resistance to flow, incipient motion, sand wave movement, and transport of sediment 

mixtures are different for different size distributions. 

Instead of using a single fixed size or a single fixed size with a size gradation 

parameter as the representative property of bed material, van Rijn (1984) and Hsu and Holly 

(1992) suggested the use of variable representative sizes for the computation of sediment 

transport rate for nonuniform mixtures. The variable representative size is analogous to the 

median or mean size of sediments in transport. It is believed that the variable representative 

size is a better representation of the sediment load than a fixed particle diameter such as D35, 

D50, or D65 of the bed material. 

In the development of the suspended load transport equation, van Rijn (1984) 

proposed an empirical equation to estimate the representative diameter, D1 , for suspended 

sediment load. The equation that gave the same value for the suspended load as that 

computed with Einstein's method was determined by trial and error. This equation was 

expressed as 
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= 1 + 0.011 (G - l)(T - 25) (4.1) 

in which T = transport stage parameter. van Rijn stated that the D, is a better representation 

of the suspended load than a fixed particle diameter such as D35, D 50, or D65 of the bed 

material. Fig. 4.1 is a plot showing a comparison ofEq. (4.1) with some experiment data 

given by Guy et al. (1966). 
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Fig. 4.1. Representative Particle Diameter of Suspended Sediment (after van Rijn, 1984). 

Hsu and Holly (1992) suggested the use of a mean size of transported material 

(bedload), Dm1, as the representative diameter in their bedlaod computations. First they 

proposed a method to compute the size distribution of the transport material [ see Eqs. (2 . 57)-

(2. 58)]. Then they determined the mean size, Dm1, from the computed size distribution. Hsu 

and Holly argued that if Dm1 was visualized as the representative property of a uniform 

sediment, the bedload discharge could be evaluated using any appropriate bedload equations. 

The use of a variable representative size is an interesting attempt for the prediction of 

sediment transport rate. Unfortunately, the representative size ofEq. ( 4 .1) is developed based 

75 



on the results computed with Einstein' s method; and it is limited to suspended load. The 

representative size proposed by Hsu and Holly is limited to bedload; and it is not verified 

with measurements. In this chapter, the variation of median diameter, D 501, of bed-material 

sediments in transport is studied. An equation for the prediction ofD501 is proposed. The use 

ofD501 as representative size for the computation of bed-material load is presented. 

4.2 MEDIAN DIAMETER OF SEDIMENT IN TRANSPORT 

The size distribution of sediment in transport is directly related to the size distribution of bed 

material and to the effective shear stress acting on each size group and does not necessarily 

resemble the gradation of bed material. Hsu and Holly ( 1992) pointed out that one must 

distinguish not only between parent-bed material composition and bed-surface material 

composition ( or active-layer material) but also between bed-surface material composition and 

transported-material composition. The size gradation of transported material is generally 

different from the gradation of bed-surface material and should be treated as a new unknown 

variable. 

Fig. 4.2 shows the relationship between the median diameter of transported material 

(bed-material load), D 501, and the median diameter of bed material, D50. The data shown in 

Fig. 4.2 include 85 sets of flume and field data given in Table 3.1 and 280 sets of Colorado 

State University flume data (Guy, Simons, and Richardson, 1966). Those 33 sets of flume 

data from Samaga et al. (1986a, b) listed in Table 3.1 are not plotted in Fig. 4 .2 because the 

bed material composition data reported by Samaga et al. are composition of parent-bed 

material. As indicated earlier, the composition of bed-surface layer is different from the 

composition of parent-bed material. The composition of sediment in transport is directly 
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related to the composition of bed-surface layer, not the parent-bed material. From Fig. 4 .2 

it can be seen that, for the majority of the data, the D50t corresponding to the sediment in 

transport is finer than the D50 corresponding to the bed material. This is due to the fact that 

the finer sizes in sediment mixtures are more readily transported by flow, which is commonly 

referred as the selective transport of grains by flow or hydraulic sorting. It can also be seen 

that for a given bed material size, for larger gradations the size of sediment in transport is 

finer (i .e., the larger the 0 8, the finer the sediment in transport). 

The median diameter of bed-material load sediment in transport, D50t, may be related 

to bed (bed-surface) material composition through a functional relationship of the form 

(4.2) 

In order to reflect the physical processes related to the variation of sediment size in 

transport, as 0 8 increases, D501 should decrease. Following extensive comparisons oflinear 

and nonlinear functional relationships, the following expression was determined for D50t 

D50 Dso, = --------- (4 .3) 

in which B, m, and n = coefficients, which are equal to 0.8, 0.1, and 2.2, respectively. 

Fig. 4.3 shows a comparison between the computed median diameter, D 501, ofbed-

material load sediment in transport using Eq. (4 .3) and the measured values. It is seen that 

the computed median diameters, D501, are in good agreement with the measured values. 

Sincethevalueof exponentminEq. (4.3)isverysmall(0. l), the resulting value of (V * I w5o)O. I 

is close to unity. Therefore, the flow intensity term, V./w50, may be neglected. This results 
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in the following simplified equation 

D501 1 =------ (4.4) 

which represents the variation of relative size of sediment in transport with bed size gradation. 

The value of relative median diameter, D5o/Dso, is plotted against the geometric 

standard deviation, a8, of bed material in Fig. 4.4 for the same data shown in Fig. 4.2. It is 

clearly demonstrated that as a8 increases, the value of D50/ D 50 decreases, and it generally 

follows the equation line given by Eq. (4.4). The variation ofD5o/I)50 versus a8 results from 

the selective transport of nonuniform sediment mixtures, which is a significant phenomenon 

in the transport process of nonuniform sediments. 

Fig. 4 .5 shows the variation ofD50JD50 versus a8 for another 124 sets of flume and 

field data, including flume data ofNonicos (Vanoni and Brooks, 1957; 12 sets), Taylor and 

Vanoni (1972, 6 sets), Vanoni and Brooks (1957, 15 sets), Vanoni and Huang (1967, 16 

sets), and Wang and Zhang (1990, 27 sets), field data from the Platte River (Kircher, 1983, 

20 sets), Rio Grande Conveyance Canal (Culbertson, Scott, and Bennett, 1972; 9 sets), and 

Yellow River at Tuchengzi (Long and Liang, 1994; 19 sets) . These data cover wider ranges 

of variations of flow and sediment conditions with median diameter of 0.055-2.10 mm, 

geometric standard deviation of 1.25-4.06, discharge of0.0037-3980, velocity of0.19-2.81, 

depth of O. 062-1 . 91 , and slope of O. 000078-0. 003 9. Since these 124 sets of data were not 

used in the development ofEq. (4.3) and its simplified relationship ofEq. (4.4), Fig. 4.5 is an 

independent test for the relationship given by Eq. ( 4.4). 
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4.3 EFFECT OF SIZE GRADATION ON TRANSPORT OF SEDIMENT MIXTURES 

The function ofEngelund and Hansen (1967) can be used to demonstrate the effect 

of size gradation on the transport of sediment mixtures. This equation is given as 

(4.5) 

in which <I>, = dimensionless sediment transport function; and 0 = dimensionless shear 

parameter. Their definitions are given by Eqs. (3 .16) and (3 .17), respectively. 

For the 118 sets of data given in Table 3.1, J1 <I> 1 versus 0 is plotted in Fig. 4.6. The 

Engelund and Hansen equation given by Eq. (4.5) is shown by a solid line, and the 

experimental data are sorted by sediment size ranges. Engelund and Hansen's function 

represents the transport phenomenon adequately, on the average, and <I>, is inversely 

proportional to D50 . However, for a given flow condition and sediment size, a considerable 

scatter exists around the equation line. 

The functional relationship ofEngelund and Hansen given by Eq. ( 4.5) is replotted in 

Fig. 4. 7 for three ranges of ag values using the same data. This shows that sediment transport 

is significantly affected by ag. For a given D50, the dimensionless sediment transport function, 

<I>,, is larger for larger ag values. This indicates that the combination ofD50 and ag is a more 

effective measure for quantifying the effect of bed material size on the transport of sediment 

mixtures than D50 alone. From Fig. 4. 7 it can be seen that the scatter in the relation is also 

related to the 0 value. This implies that the adjustment is not fixed but varies with the flow 

conditions as well as with ag. 

Similar to those representative diameters of sediment in transport used by van Rijn 

(1984) and Hsu and Holly (1992), the median diameter estimated by Eq. (4.3) can be used 
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as representative size in estimating the transport discharge for nonuniform sediment mixtures. 

It is assumed that this representative diameter will produce the correct sediment transport rate 

for the whole mixture when used with the equations derived from uniform sediments. As 

discussed earlier, D50t decreases as ag increases. A smaller representative diameter is thus 

corresponding to a larger computed transport rate. This is consistent with previous results 

(e.g., Einstein, 1944; Ackers and White, 1973). 

Considering that the existing transport equations were calibrated with data including 

nonuniform sediment mixtures, the coefficients in these equations implicitly include certain 

gradation effects. As a result, they overestimate sediment loads for uniform material and 

underestimate the transport rate for highly graded mixtures. To apply the representative 

diameter defined by Eq. (4.3), an equivalent diameter, De, is defined as follows 

(4.6) 

in which Ke = a coefficient to compensate the bias in the existing transport equations, which 

is determined to be 1.8 in this study. The use of De to compensate the nonuniformity effect 

was recently pre~ented in a study by Molinas and Wu (1998). 

By replacing the representative size, D50, in Eq . ( 4.5) with De, Engelund and Hansen's 

function can be transformed into 

f '<I> = 0 1 02
·
5 

e · e (4.7) 

where 

(4.8) 
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(4.9) 

The use of an equivalent diameter determined from Eq. ( 4. 6) is to compensate for size 

gradation in existing formulas . It should not be confused with a representative size for the 

transported sediments even though the two are related. For example, for uniform mixtures 

(a8 equal to 1), the De obtained from Eq. (4.6) is equal to 1.8D50, which results in smaller 

transport values than the values obtained using D50. On the other hand, for highly graded 

sediment mixtures, the value of De is smaller than the D50 size of the mixture (e.g., for 0 = 3.0 

and a8 = 3, De= 0.35D50) . The effect is to increase the computed sediment transport rate. 

The data shown in Fig. 4. 7 are replotted in Fig. 4.8 utilizing the functional relationship 

give by Eq.( 4. 7). The relationship between / 1 <I> e and 0 e shows a definite improvement; the 

use of De reduces scatters. The largest effects of the correction are observed on larger 

concentration values for high gradation factors. At small concentrations, and therefore lower 

flow intensities, the correction effects are minor. 

Similar to Engelund and Hansen's function, the dimensionless unit stream power 

(VS/w50) relationship for bed-material concentration developed by Yang (1973), and Yang 

and Molinas ( 1982) may also be used to demonstrate the effect of size gradation on the 

transport of sediment mixtures. Yang's dimensionless unit stream power relationship can be 

simply expressed as 

c, = i( vs)J 
W50 

(4.10) 

in which I and J are coefficients which are related to flow and sediment properties. 

C, versus the dimensionless unit stream power is plotted in Fig. 4.9. It can be seen 
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that on the average C, is correlated with VS/w50 and the size gradation effect on the transport 

cannot be observed. When the same data are replotted in Fig. 10 for three ranges of og 

values, it indicates that the transport relationship is clearly a function of size gradation. 

Using the equivalent diameter, De, defined by Eq. ( 4.6), the corresponding fall velocity 

can be expressed as 

Replacing w50 in Eq. ( 4.10) with we given by Eq. ( 4.11) results in 

c =1( vs)1 
t we 

(4.11) 

(4.12) 

Fig. 4 .11 shows the functional relationship given Eq. (4 .12) using De (we) as the 

representative size. It demonstrates that using De, the series of curves (for different og values) 

are reduced to a single relationship. 

4.4 BED-MATERIAL TRANSPORT RA TE COMPUTATION 

The equivalent diameter, De, defined in Eq. ( 4.6) is introduced into the Engelund and Hansen, 

Ackers and White, and Yang formulas to account for the effects of nonuniformity of bed 

material size in sediment mixtures. First, the bed-material concentrations for the 118 sets of 

laboratory and river data given in Table 3 .1 are computed in the normal manner. Then, the 

representative size is replaced by the equivalent diameter defined in Eq. ( 4 .6) . In the Ackers 

and White formula, the term D used to define the dimensionless grain diameter, Dgr, is not 

replaced by De, because Dw was specifically defined for sediment mixtures. All other 

occurrences of the sediment size are replaced to be De. 

The comparison between computed bed-material concentrations using the Engelund 
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and Hansen, Ackers and White, and Yang formulas and the measured values is summarized 

in Table 4.1 and in Figs.4.12-14. In Table 4.1, three different statistical methods are used to 

indicate the goodness of fit between the computed and measured results: 

(i) the discrepancy ratio 

R = 
c,c 
elm (4.13) 

in which C1c, Cbn = computed and measured bed-material concentrations, respectively. For 

a perfect fit , R = 1. 

(ii) the Average Geometric Deviation between computed and measured bed material 

concentrations 

- ( J . ) ' IJ AGD - IIRR1 , 
j =I 

RR . = {C,cl elm for CIC~ elm 
J c,m I c,c for CIC < elm 

(4.14) 

in which j =dataset number, j = 1, 2, . .. , J; and J = total number of data sets. For a perfect 

fit, AGD =1. 

(iii) the Mean Normalized Error 

MNE = 100 t CIC -ccm 
j j =I Ccm 

(4.15) 

for a perfect fit, MNE = 0. 

Table 4.1 and Figs. 4.12-14 show that, on the average, selected formulas predict the 

sediment transport adequately. However, without using De, considerable scatter between 

computed and measured sediment concentrations exists. 

Use ofDc reduced the average geometric deviation between computed and measured 
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Table 4.1. Summary of Comparison between Computed and Measured Total Bed-Material Concentrations 

Data in Range of Average Mean Number 
Author Representative Discrepancy Ratio, R (%) Geometric Normalized of 

of Size of Deviation, Error, MNE Data 
Formula Bed Material 0.75-1.25 0.5-1.5 0.25-1.75 0.5-2.0 AGD (%) Sets 

(1) (3) (4) (5) (6) (7) (8) (9) (10) 

Engelund and Dso 22 57 73 74 1.74 59.6 118 

Hansen (1967) DC 37 77 89 86 1.47 40.4 118 

Ackers and D3s 34 64 74 80 1.61 59.9 118 

White (1973) DC 44 71 82 87 1.45 43 .8 118 

Dso (Wso) 29 64 83 72 1.68 51.0 118 
Yang (1973) 

Dc (we) 48 84 98 94 1.37 29.7 118 
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bed-material concentrations for the Engelund and Hansen, Ackers and White, and Yang 

formulas significantly from 1.74, 1.61 , and 1.68 to 1.47, 1.45, and 1.37, respectively. The 

mean normalized error was also significantly reduced from 59.6%, 59.9%, and 51.0% to 

40.4%, 43 .8%, and 29.7%, respectively. The discrepancy ratios given in Table 4.1 also 

reflect these findings. The improvement in the range ±50% was from 57% to 77% for the 

Engelund and Hansen formula, from 64 % to 71 % for the Ackers and White formula, and from 

64% to 84% for the Yang formula. Through the use of De, 89% of the data could be 

accounted for within the range ±75% (up from 73%) for the Engelund and Hansen formula, 

82% (up from 74%) for the Ackers and White formula, and 98% (up from 83%) for the Yang 

formula. 

For the Ackers and White formula, since the D35 of bed material was already used by 

the authors to accommodate the effects of size gradation on the transport of sediment 

mixtures, the additional improvement made by using De is not as significant as the 

improvement in the other two formulas. 

4.5 VERIFICATION OF THE USE OF EQUIVALENT DIAMETER, D. 

A group of 54 sets of flume data from Colorado State University (Guy et al. , 1966) was 

chosen to verify the use ofDc for computing bed-material load. These data were chosen since 

they specifically include three different gradations (08 = 1.25, 1.57, and 2.07) for the same 

median sediment size of0.33 mm. 

The statistical results for the computed sediment concentrations using D50 and De as 

representative size are given in Table 4.2. The comparisons between computed and measured 

bed-material concentrations are also shown in Figs. 4.15-4.17 for the Engelund and Hansen, 
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Table 4.2. Summary of Comparison between Computed and Measured Total Bed-Material Concentrations 
for the CSU Flume Data with Particle Size of0.33mm 

Data in Range of Average Mean Number 
Author Representative Discrepancy Ratio, R (%) Geometric Normalized of 

of Size of Deviation, Error, MNE Data 
Formula Bed Material 0. 75-1.25 0.5-1.5 0.25-1 . 75 0.5-2.0 AGD (%) Sets 

(1) (3) (4) (5) (6) (7) (8) (9) (10) 

Engelund and Dso 18.5 44.4 57.4 64.8 1.92 136.8 54 

Hansen (1967) 
DC 29.6 61.1 81.5 74.1 1.65 88.1 54 

Ackers and D3s 22.2 46.3 61.1 79.6 1.64 70.7 54 

White (1973) 
De 40.7 68.5 83.3 85 .2 1.49 43 .1 54 

D so ( W so) 33 .3 63 .0 77.8 81.5 1.58 61.2 54 
Yang (1973) 

DC (we) 48 .2 66.7 92.6 79.6 1.51 48 .8 54 
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Ackers and White, and Yang formulas, respectively. The Engelund and Hansen formula 

predicts the transport rate adequately on the average. By using De, even though the range of 

os variation is small, the scatter around the mean is reduced. Similar results were obtained 

also for the Ackers and White formula and Yang formula. The improvement in the range 

±50% was from 44.4% to 61.1% for the Engelund and Hansen formula, from 46.3% to 

68. 5 7% for the Ackers and White formula, and from 63. 0% to 66. 7% for the Yang formula. 

Also 81.5% of data fell in the range ±75% (up from 57.4%) for the Engelund and Hansen 

formula, 83.3% (up from 61.1%) for the Ackers and White formula, and 92.6% (up from 

77. 8%) for the Yang formula. The average geometric deviation was reduced from 1. 92 to 

1.65 for the Engelund and Hansen formula, from 1.64 to 1.49 for the Ackers and White 

formula, and from 1.58 to 1.51 for the Yang formula . The mean normalized error also 

reduced from 136.8% to 88.8% for the Engelund and Hansen formula, from 70. 7% to 43.1 % 

for the Ackers and White formula, and from 61.2% to 48.8% for the Yang formula. 

4.6 SUMMARY 

The variation of sediment sizes in transport and the effect of size gradation on the transport 

of sediment mixtures were studied extensively. The data used are limited to the sand size 

range, and to standard deviations, og, in the range of 1.30 to 3.0. The findings in this chapter 

can be summarized as follows 

1. The size composition of sediment in transport is different from the size composition 

of bed-surface material. The median diameter of sediment in transport is generally 

finer than the median diameter of bed material, which is resulting from selective 

transport of grains by flow. Eq. (4 .3) is developed to estimate the median size of 
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bed-material load. This equation relates D50t to median size of bed material, the size 

gradation of bed material, and flow intensity. The relative median size of sediment in 

transport, D5o/1)50, decreases as size gradation increases, and the relationship 

between them can be presented by Eq. (4.4). 

2. The effects of bed material size gradation on transport of sediment mixtures cannot 

be reflected appropriately by a single fixed size, such as D35 or D50. Bed-material load 

formulas such as those developed by Engelund and Hansen, Ackers and White, and 

Yang are based on a single representative size of bed material and may generate 

considerable scatter when applied to nonuniform sediment mixtures. 

3. Considering the physical processes governing the transport of sediment mixtures, the 

geometric standard deviation, og, which represents the range of particle sizes present 

in the bed material, is found to be a significant additional parameter. For the same 

flow condition and the same D50, the sediment size in transport and the transport rate 

of sediment mixtures are different for different sediment size gradations. For a given 

flow condition and median bed-material size, as the size gradation increases, the size 

of sediment in transport decreases resulting in higher sediment transport rates. 

4. The median diameter, D501, predicted using Eq. (4.3) (equivalent diameter, De, for the 

existing bed-material load formulas), is a better indicator for nonuniform bed material. 

The median diameter, D5oi, is a function of the geometric standard deviation, og, of the 

bed material and the flow conditions, in conjunction with the D50 of the bed material. 

Using D5oi Coe) will produce a more accurate prediction of bed-material sediment 

transport discharge for nonuniform sediment mixtures. 

5. By incorporating De in the Engelund and Hansen, Ackers and White, and Yang 
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formulas, the accuracy of these functions is improved significantly. The equivalent 

diameter, De, does not change the overall functional behavior of the existing sediment 

transport functions, but it reduces the scatter due to the secondary effects of size 

gradations. 
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CHAPTERS 

APPLICATION OF THE PROPOSED METHOD 

In this chapter, a general procedure for the computation of fractional bed-material 

concentrations using the proposed method is given. This procedure is illustrated through a 

detailed example problem. 

5.1 GENERAL PROCEDURE 

The general procedure for the computation of fractional be-material concentrations using the 

proposed method can be summarized as: 

a) Adjustment of the size distributions of the bed material and the sediment in 

transport 

Measured Sediment concentrations are the total sediment concentrations and may include the 

wash load. As pointed out earlier in Chapter 1, for the analysis and comparison of bed-

material load, the wash load portion of total load should be excluded from the measurements. 

Correspondingly, the size distributions of the bed material and the sediment in transport need 

to be adjusted. 

b) Computation of bed-material concentration, Ct 

For the computation of bed-material concentration, an appropriate bed-material transport 
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equation should be selected for the problem. The Engelund and Hansen, Ackers and White, 

and Yang formulas are commonly used for sand-bed channels. In using these equations, the 

equivalent diameter, De, proposed in Chapter 4 should be used for nonuniform sediment 

mixtures to compensate for the nonuniformity effect. First, the median diameter, D50t, ofbed-

material sediment in transport is computed by 

in which B, m, and n = 0.8, 0.1, and 2.2, respectively. 

Then, the equivalent diameter is determined by 

in which Ke= 1.8. 

c) Computation of transport capacity distribution function, Pc1 

(4.3) 

(4.6) 

The transport capacity distribution function, Pei, can be computed by either Eq . (3 .9) or 

Eq. (3 .24) which were derived in Chapter 3. From practical consideration, the use of 

Eq. (3.24) is suggested since it dose not require the computation of relative fall velocity, and 

since it provides the same accuracy as Eq. (3 .9). This equation is expressed as follows 

(3.24) 

The coefficients are given by 
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a = -2 9e+IO•O( ;.)'( :,J-'] (3.25) 

p = 0.2ag (3.26) 

( = 2.8 F,-1.2 a/ (3.27) 

d) Computation of fractional bed-material concentrations, CtJ 

After the bed-material concentration, C1, and the transport capacity distribution function, Pa, 

are determined, the fractional bed-material concentrations, C,i> can be computed according 

to the TCF concept, i.e. 

(2.8) 

5.2 EXAMPLE PROBLEM 

An example problem showing the detailed steps in using the proposed method for the 

computation of fractional bed-material concentrations is presented. This example problem 

is derived from the measurements on July 7, 1949 at the Niobrara River (see Table 3.5). The 

measured flow and sediment properties are as follows: 

Q = 7.56 m3/s s = 0.001345 

V = 0.7485 mis T = 23 .9 °C (v = 9.28 x 10·1 m2/s) 

w = 21.49 m Sg = 2.65 

d = 0.47 m CT = 970.0 PPM 

The detailed size distribution of bed material (including the sizes corresponding to 

wash load) and the size distribution of sediment in transport (total sediment load) are given 
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in the following tabulation: 

k 1 2 3 4 5 6 7 8 
I Dk(mm) 0.062 0.125 0.25 0.5 1 2 4 8 

p:k (%) 0.0 2.0 35.0 92.0 98 .0 99.0 100.0 100.0 

P,~ (%) 7.0 15.0 58.0 93 .0 99.0 100.0 100.0 100.0 

In the above tabulation for size distributions, k is the size fraction number; n; is the 

upper bound diameter; P ;k is the percentage of bed material finer than the indicated sizes by 

weight; and P,~ is the percentage of total sediment load finer than the indicated sizes by 

weight. 

The detailed steps for the computation offractional bed-material concentration for the 

given problem are as follows: 

a) Adjustment of bed material size distribution 

Step I. Wash load limit diameter, D,.. 

There are various methods to determine the wash load limit diameter in the literature. 

For simplicity, the wash load limit diameter for the given problem is determined to be 

Dw = 0.125 (mm) (5 .1) 

since there is no significant quantity (2%) of bed material finer than this size. The 

corresponding size fraction number, ~ , is 

k = 2 w (5 .2) 

The corresponding percentages of the bed material and the total sediment load finer than Dw 

are 

(5 .3) 
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and 

(5.4) 

Step 2. Adjusted size distributions 

The size distributions of bed material and the sediment in transport are adjusted by 

subtracting sizes corresponding to the wash load. The computed results are given in 

Table 5.1 Adjusted Size Distributions of Bed Material and the Sediment in Transport 

1 1 2 3 4 5 6 7 

D/'(mm) 0.125 0.25 0.5 1 2 4 8 

Di (mm) 0.177 0.354 0.707 1.414 2.828 5.657 

p:: (%) 0 33 .67 91 .84 97.96 98.98 100.0 100.0 

p bi 0.3367 0.5817 0.0612 0.0102 0.0102 0 

P/ (%) 0 50.59 91.97 98.82 100.0 100.0 100.0 

pti 0.5059 0.4117 0.0706 0.0118 0 0 

Table 5 .2 Computations of Size Fractions of the Bed-Material Transport Capacity 

1 I 2 3 4 5 6 L 
D; (mm) 0.177 0.354 0.707 1.414 2.828 5.657 

ptempi 2.336 1.797 0.193 0.039 0.049 0 4.4152 

Pei 0.529 0.407 0.044 0.009 0.011 0 1.000 

Cti (PPM) 493 .0 379.3 40.7 8.3 10.4 0 931 .7 

Ctmi (PPM) 417.1 339.4 58.2 9.7 0 0 824.4 
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Table 5.1. The variables used in this table are determined by the following relations 

II I 
D ; = D; +k - 1 (i = 1, 2, .. . , 7) .. 

D = n." n." c · 1 2 6) j I 1+! 1 : , , . .. , 

I I 

P
l/= pti+k - l - P,(Dw) 

ti ,. X 100 (i = 1, 2, ... , 7) 
100 - P/(Dw) 

p bi = 

II II 
pbi+I - Pb; 

100 

II II 
pti +l - pli 

pti = ----
100 

Step 3. Characteristic sizes of bed material 

(i = 1, 2, ... , 6) 

(i = 1, 2, ... , 6) 

(5.5) 

(5 .6) 

(5 .7) 

(5.8) 

(5 .9) 

(5.10) 

Assuming that the adjusted bed material size follows a logarithmic normal distribution, 

the characteristic diameters can be interpolated as follows 

(
log0.l2S + log0.2S - /og0. 125 (16.0 - 0.0)) 

= 10 33.67 - o.o = 0.1738 (mm) (5 .11) 

(
log0.25 + logO.S - log0.2S (S0.0 - 33.67)) 

= 10 91.84 - 33.67 = 0.3037 (mm) (5 .12) 
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( log0.25 + logO.S - /og0.2S (84.0 - 33.67)) 
Dg4 = 10 91.84 - 33.67 = 0.4554 (mm) (5.13) 

and 

ag = JDs4IDl6 = = 1.619 (5 .14) 

b) Computation of bed-material concentration, Ct 

Step 4. Shear velocity and fall velocity of D50 

Assuming R d: 

V. = = = 0.0787 (mis) (5.15) 

The fall velocity is determined using the method presented by the U. S. Inter-Agency 

Committee on Water Resources, Subcommittee on Sedimentation (1957), which gives 

w50 = 0.0432 (mis) (5 .16) 

Step 5. D501 from Eq. (4.3) and De from Eq. (4.6) 

0.3037 (5 .17) 
= -------------

1 + 0.8(0.078710.0432)0·1(1.619-1 )2·2 

= 0.2344 (mm) 

De = KeD501 = l.S x0.2344 = 0.4219 (mm) (5.18) 
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Step 6. Bed-material concentration by Engelund and Hansen formula 

The Engelund and Hansen (1967) formula for bed-material concentration can be 

expressed as 

C = 0.05 V d 112 S312 

v (sg - 1)2 g112 Dso (5 .19) 

in which Cv = concentration of bed-material load by volume. Using De as the representative 

diameter gives 

C = 0.05 V d 112 S 312 

V (sg- 1)2gl/2De 

= 0.05 X 0.7485 X 0.47 112 
X 0.001345312 = 3.5179 x lQ-4 

(2 .65 - 1)2 X 9.81 l /2 X 0.0004219 

(5 .20) 

The concentration by volume can be transferred into concentration in the unit of PPM through 

C 
__ 106 sg Cv __ 106 x 2.65 x Cv 

--- - - - = 931.7(PPM) 1 1 + (sg - 1) Cv 1 + (2 .65 - 1) x Cv 
(5 .21) 

c) Computation of transport capacity distribution function, Pc1 

Step 7. Coefficients in Eq. (3.24) 

tt = -29exp[-1000( ;,)'( :,J] 
= - 2.9ex [- 1000( 0.7485)2( 0.47 i -21 

p 0.0787 0.0003037 

(5.22) 

= - 2.7925 
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p = 0.2CJg = 0.2 X J.619 = 0.3238 (5.23) 

( = 2.8 F,-1.2 a;3 

( l-1 2 
= 2.8 X 0.7485 . X J.619-3 

J9.81 x0.47 
(5 .24) 

= 2.3369 

Step 8. Size fractions of the bed-material transport capacity 

The computed size fractions of the bed-material transport capacity are given in 

Table 5.2, which are computed using Eq. (3 .24), i.e. 

(5 .25) 

( 
D. i -2.7925 ( D. l 0.3238 

p . I + 2.3369 I 

b, 0.3037 0.3037 
= --~----'---------'------'--------

6 [( D. i -2.7925 ( D. l 0.3238] L pbi 
1 

+ 2.3369 1 

i=I 0.3037 0.3037 

in which Di is expressed in mm; and Pbi is given in Table 5.1 . The numerator in Eq. (5.25) is 

denoted as P,empi, i.e. 

[( 
D . i -2.7925 ( D . l 0.3238] 

P . : P . I + 2.3369 I 
temp, bi 0.3037 0.3037 

(5 .26) 
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First, the values of P,empi corresponding to each size fraction are computed for various 

size groups, and the summation of P,empi are obtained. Then, the capacity fractions for each 

size group are obtained by dividing P,empi with I,P,empi according to Eq. (5 .25). 

d) Computation of fractional bed-material concentrations, Cu 

Step 9. Fractional bed-material concentrations 

The computed fractional bed-material concentrations are given in Table 5.2. The 

value of Cti is computed according to the TCF concept, i.e. 

c,; = Pei ct = Pei x 931 . 7 (PPM) 

Step 10. Measured fractional bed-material co11ce11tratio11s 

C,m; = P,;C,m (PPM) 

(5.27) 

(5.28) 

in which P ti= given in Table 5 .1; and Cbn = the measured bed-material concentration, which 

is computed by 

c,m = [100 -P/(Dw)l x CT = (100-15) I l00 x970.0 = 824.0 (PPM) (5 .29) 

The measured fractional bed-material concentrations presented in Table 5.2 can be used for 

comparison with computed results. 
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6.1 GENERAL 

CHAPTER6 

COMPARISON AND EVALUATION 

Comparison and evaluation of existing transport functions generally limit the analyses to 

comparisons of bed-material sediment transport rate in the literature (American Society of 

Civil Engineering, 1982; White et al. , 1975; Alonso, 1980; Brownlie, 1981 ; Yang and 

Molinas, 1982; Vetter, 1989; Yang and Wan, 1991 ; Wu, 1992a; and Wu and Long, 1992, 

1993). Along with the application of the transport capacity distribution functions proposed 

in Chapter 3, an extensive evaluation on the fractional load computations is conducted using 

flume and field data. This evaluation is necessary to qualitatively and quantitatively 

demonstrate the performance of the newly developed fractional load computation method, 

and to show the limitations and variations of different methods. 

In the four groups of fractional load computation methods, those of direct 

computation by the size fraction approach, the BMF approach, and the TCF approach will 

be evaluated in this chapter. Since most of the methods derived following the shear stress 

correction approach are only applicable for the predictions of fractional transport rates of 

gravel bed materials, methods in this group are excluded from this comparison. 

For the computation of fractional load using different methods, Hydrau-Tech, Inc. 's 

SedWin (Visually Interactive Sediment Transport Computation Model for Windows 95/98) 
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(Wu and Molinas, 1998) is applied in this study. This program is developed for the 

computations of sediment transport rate by selected transport equations. Both bed-material 

transport rate and fractional bed-material transport rate can be computed. The new transport 

capacity distribution functions, Pei, developed in Chapter 3 and the use of the equivalent 

diameter, De, proposed in Chapter 4 for the computation of bed-material load are 

incorporated in the program. 

6.2 FRACTIONAL LOAD COMPUTATIONS 

6.2.1 Fractional Load Using the Direct Computation by Size Fraction Approach 

Even though the equations of Einstein (1950), Laursen (1958), and Toffaleti (1968, 1969) 

were developed based on the computations of sediment transport rates for each individual size 

fraction of sediment mixtures, accuracy of their predictions as to the distribution by different 

sediment size fractions is not known. 

The bed-material concentrations of individual size fractions are computed for these 

three methods using the SedWin program. Eqs. (2 .9), (2 .15), and (2.17) are the basic 

transport relations of Einstein, Laursen, and Toffaleti, respectively. Detailed computation 

procedures for these methods can be found in Stevens and Yang (1989), Raudkivi (1990), 

Simons and Senti.irk (1992), Julien (1995), and Yang (1996). 

6.2.2. Fractional Load Using the Bed Material Fraction Approach 

In the four groups of methods for the computation of fractional sediment transport rates, the 

BMF approach is still the most commonly used one in numerical models, even though the 
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shortcomings of using this approach in nonunifonn sediment transport models have been 

recognized in the literature (Karim and Kennedy, 1982; Hsu and Holly, 1992). This fact 

indicates that the basic concept of the BMF approach may be acceptable to some extent. 

According to the concept of the BMF approach, the potential concentration, Cpi, for a given 

size fraction, i, is computed by replacing the representative size used in an equation with the 

average diameter, Di. Then the fractional transport rates are ready to be detennined as the 

product of Pbi and Cpi. In the present study, the potential concentration is obtained by 

applying the transport formulas developed by Engelund and Hansen (1967), Ackers and 

White (1973), and Yang (1973) to laboratory and river data. 

Engelu11d and Ha11se11 's Method. Engelund and Hansen (1967) used the similarity principle 

to obtain the sediment transport function [ see Eq . (3 .15)] . In using the BMF approach to 

compute the bed-material concentrations of individual size fractions for sediment mixtures, 

the Engelund and Hansen fonnula can be transferred into 

(6.1) 

in which Cpi = potential concentration of bed-material load by volume corresponding to the 

size fraction i. 

Ackers and White's Method. Ackers and White (1973) developed their transport functions 

based on the mobility theory. In using the BMF approach, their transport function can be 

transferred into 
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L_ 

C . = C Y s Di ( £) n ( Fgri _ 1] m 
P' y d V. A 

(6.2) 

where 

vn • 
Fgri = ------

V 1- n 

(6.3) 

(6.4) 

in which A, C, m, and n = parameters as function ofDsn; Dsn = dimensionless grain diameter 

corresponding to the size fraction, i; F &ri = mobility number for sediment corresponding to 

the size fraction, i; a = coefficient; and v = kinematic viscosity. In the use of Ackers and 

White equation, the modified coefficients of m and CA (White and Wang1
) are used: 

m = 6.38 I Dgr + 1.67 (6.5) 

(6.6) 

Yang's Method. Yang (1973) sediment transport formula is based on unit stream power 

theory. In using the Bl\1F approach, his dimensionless unit stream power formula can be 

transferred into 

1> Private communication. 
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_( w D) j V) Iog(Cp;) = 5.435 - 0.28610~ - 0.45710\ w: 

+ [ 1799 - 0409lo~ "\D'] - 011410{ :J] 10{ :~ - v:,s] 
(6.7) 

where 

2.05 VD . 

lo~ V : ,) 

for 1.2 <-· -' < 70 
V 

Ver 
- 0.06 

= (6.8) 
(i) i 

V D. 
2.05 for 70 _ . -' 

V 

in which Cp; = potential concentration ofbed-material load in PPM, by weight, corresponding 

to the size fraction i; and Ver= critical velocity at incipient motion. 

Karim 's Modified BMF Method. Recently, Karim (1998) developed a new method for the 

prediction of fractional loads, which can be classified as the modified BMF method. This 

relation is proposed for sand-bed flows and can be expressed as 

(6.9) 

in which qti = volumetric sediment discharge per unit width for ith fraction; and <Pi = weighing 

function for ith fraction, which is the function of an areal function (P J and a sheltering factor 

(ri). Formulations for the weighing function were given in Chapter 2 [Eqs. (2.44)-(2.47)]. 
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6.2.3 Fractional Load Using the Transport Capacity Fraction Approach 

To obtain transport capacities for individual size fractions based on the TCF approach, both 

the bed-material concentration, C1, and the fractions of bed-material transport capacity, Pei, 

are needed. As pointed out earlier, C1 can be determined using any appropriate bed-material 

load equations. For this purpose, the Yang (1973) formula, along with the equivalent 

diameter, De, proposed in Chapter 4, can be used to determine the bed-material transport rate. 

For the computation of P ci> both Karim and Kennedy's ( 1981) method and the new transport 

capacity distribution functions proposed in Chapter 3 can be used. 

Karim and Kennedy's Function. The transport capacity distribution function proposed by 

Karim and Kennedy ( 1981) is applicable to flows in which total sediment discharge mainly 

consists of suspended load. This function was used in their numerical river simulation model 

!ALLUVIAL (Karim and Kennedy, I 982; and Karim, 1985). Formulations for this method 

are given by Eqs. (2 .55) and (2.56) in Chapter 2. 

Li's Function. The transport capacity distribution function proposed by Li (1988) was 

developed for suspended load. Thus, it is applicable to flows in which total sediment 

discharges are composed mainly of suspended load. Formulations for Li's method are given 

by Eqs. (2 .53) and (2.54) in Chapter 2. 

Proposed Functions. The transport capacity distribution functions proposed in Chapter 3 

were derived from the basic concept of the BMF approach in conjunction with the 

consideration of the sheltering and exposure effect introduced in the shear stress correction 
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approach. The formulation of Eq. (3.9) is a function of relative fall velocity, while the 

formulation of Eq. (3 .24) is a function of relative diameter. Both equations are used as 

weighting functions to calculate fractional load for sediment mixtures, and their performance 

will be compared with other fractional load methods. The general procedure and a detailed 

example problem showing how to use the proposed method are given in Chapter 5. 

6.3 COMPARISON OF COMPUTED RESULTS 

The fractional bed-material concentrations computed using various methods are compared 

in this section. Sediment transport data used in this comparison are those 112 sets of flume 

and field data given in Table 3.1, which contain a total of 891 data points. Methods used in 

comparisons, and their classifications are summarized as follows : 

a) Direct computation by size fraction approach 

1) Einstein's equation (1950); 

2) Laursen's equation (1958); 

3) Toffaleti's equation (1968); 

b) BMF approach using: 

4) Engelund and Hansen's equation (1967); 

5) Ackers and White's equation (1973); 

6) Yang's equation (1973); 

7) Karim's modified BMF method (1998); 

c) TCF approach using the Yang (1973) equation with De and 

8) Transport capacity distribution function of Karim and Kennedy ( 1981 ); 

9) Transport capacity distribution function of Li (1988); 
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10) Proposed transport capacity distribution function ofEq. (3.9); and 

11) Proposed transport capacity distribution function ofEq. (3.24). 

For fractional transport of sediment mixtures, not only the absolute values of transport 

sediment concentration need to be predicted accurately, but also the size compositions need 

to be estimated correctly. From computed fractional bed-material concentrations, the size 

fraction of bed-material transport capacity (in percent) for a given size group can be obtained 

by 

C . ctci 
pcci = 100~ = 100 

etc 
N (6.10) 
I:c,ci i=l 

6.3.1 Statistical Analysis 

In the statistical analysis, three different statistical methods are adopted to indicate the 

goodness of fit between the computed and measured results. These statistical methods are 

similar to those used in Chapter 4. However, the statistics conducted in this section are for 

the fractional bed-material concentrations in a sediment mixture, rather than the bed-material 

concentrations. These statistical methods are as follows: 

1) the discrepancy ratio, R; 

ctci 

ctmi 
(6.11) 

m which C,ci, Ctmi = computed and measured bed-material concentrations 

corresponding to size fraction i, respectively; and i = size fraction number or data 

point number in a data set. For a perfect fit, R; = 1. 
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2) the Average Geometric Deviation between computed and measured fractional bed-

material concentrations, AGD 

= { Ctci I Ctmi 
RR; C C 

tmi / tci 

(6.12) 

in which j = data set number, j = 1, 2, . .. , J; J = total number of data sets; Nj = 

number of points in a given data set; and JN = the total number of data points. For 

a perfect fit , AGD = 1. 

3) the Mean Normalized Error, MNE 

J NJ C -c 
MN£= 22.Q. LL lei !mi 

JN 1-1 i • I ctmi (6.13) 

for a perfect fit, MNE = 0. 

Detailed statistical results for the comparison between the computed and measured 

bed-material concentrations of individual size fractions are given in Table 6.1. It can be seen 

that the mean normalized errors for the direct computation by size fraction approach of 

Einstein, Laursen, and Toffaleti were in the range of 84.0-156.1 %; for the BMF approach 

using Engelund and Hansen, Ackers and White, and Yang were in the range ofl 10.3-222.9%; 

and for the TCF approach using the Yang equation with De and the transport distribution 

functions of Karim and Kennedy, and Li were in the range of 89.9-135 .0%. 

By using the Yang equation with D. and the newly proposed transport capacity 

distribution functions ofEqs. (3.9) and (3 .24), the mean normalized errors were significantly 

reduced to 65 .6% and 68.5% (up from range of 84.0-222.9% for other methods), 

respectively. The average geometric deviations were also considerably reduced to 1.80 and 
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1.81 (down from 2.15-8.76 for other methods) by Eqs. (3 .9) and (3 .24), respectively. 

The percentages of data falling within the range of discrepancy ratios between 0.25 

and 1. 75 were in the range of 36.0-62.2% for the direct computation by the size fraction 

approach of Einstein, Laursen, and Toffaleti. They were in the range of 44.2-57.8% for the 

BMF approach using Engelund and Hansen, Ackers and White, and Yang. Also they were 

in the range of 44.7-68.5% by using the Yang equation with Dc and the transport capacity 

distribution functions of Karim and Kennedy and Li. By using the Yang equation with Dc and 

the newly proposed transport capacity distribution functions of Eqs. (3.9) and (3 .24), the 

percentages of data falling within the range of discrepancy ratios between 0.25 and 1. 75 were 

increased to 77.7% and 77.0% (up from the range of 36.0-68 .5% for other methods), 

respectively. 

Statistical results for the comparison between the computed and measured size 

fractions of bed-material load sediment in transport are given in Table 6.2. The mean 

normalized errors were reduced significantly to 60. 8% and 61 . 8% ( down from the range of 

96.1-252. 0% for other methods) by using the newly proposed transport capacity distribution 

functions ofEqs. (3 .9) and (3 .24), respectively. The average geometric deviations were also 

considerably reduced to 1.64 and 1.65 ( down from the range of2.04-8 .26 for other methods) 

by Eqs. (3.9) and (3 .24), respectively. The percentage of data falling within the range of 

discrepancy ratios between 0.25 and 1.75 were improved to 78 .7% and 78.7% (up from the 

range of 46.1-70.2% for other methods) by Eqs. (3 .9) and (3 .24), respectively. 
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a) 

-N 
0\ 

b) 

c) 

Table 6.1 Comparison between Computed and Measured Fractional Bed-Material Concentrations 
for the 118 Sets of Flume and Field Data Given in Table 3.1 

Data in Range of Mean Average 
Discrepancy Ratio, R; (%) Normalized Geometric 

Fractional Bed-Material Load Error, MNE Deviation, 
Computation Method 0.75-1.25 0.5-1.5 0.25-1.75 0.5-2.0 (%) AGD 

(I) (2) (3) (4) (5) (6) (7) 

Direct computation by size fraction approach 

Einstein's equation (1950) 19.4 43 .3 62.2 55.3 84.0 2.71 

Laursen' s equation (1958) 14.6 30.2 52.9 36.8 156.l 4.01 

Toffaleti' s equation ( 1968) 13 .9 23 .2 36.0 30.8 120.7 5.59 

BMF a1>proach using 

Engelund and Hansen's equation (1967) 19.0 38.2 55.9 48.4 111.8 2.45 

Ackers and White's equation (1973) 20.0 39.8 57.8 51.9 222.9 2.69 

Yang 's equation (1973) 19.3 40.6 57.7 52.8 138.8 2.41 

Karim's modified BMF method (1998) 12.1 24.8 44.2 29.1 110.3 6.07 

TCF a1>proach using Yang eq. (1973) with D. and 

Function of Karim and Kennedy (1981) 24.1 49.5 68.5 58.5 89.9 2.15 

Function of Li (1988) 14.4 27.8 44.7 35. l 135.0 8.76 

Proposed function ofEq. (3 .9) 31.3 59.2 77.7 68.4 65.6 1.80 

Proposed function ofEq. (3 .24) 29.7 58.6 77.0 68.5 66.2 l.81 

No. 
of 

Data 
Points 

(8) 

891 

891 

891 

891 

891 

891 

891 

891 

891 

891 

891 
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N 
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a) 

b) 

c) 

Table 6.2 Comparison between Computed and Measured Size Fractions of Sediment in Transport (Bed-Material Load) 
for the 118 Sets of Flume and Field Data Given in Table 3 .1 

Data in Range of Mean Average No. 
Discrepancy Ratio, R; (%) Nonnalized Geometric of 

Fractional Bed-Material Load Error, MNE Deviation, Data 
Computation Method 0.75-1.25 0.5-1 .5 0.25-1.75 0.5-2.0 (%) AGD Points 

(1) (2) (3) (4) (5) (6) (7) (8) 

Direct computation by size fraction ap1>roach 

Einstein 's equation (1950) 29.9 46. I 59.7 55.2 252.0 2.55 891 

Laursen' s equation (1958) 22.2 39.0 55 .2 43.2 123.0 3.75 891 

Toffaleti ' s equation (1968) 18.6 33.1 49.7 40.4 134.1 4.19 891 

BMF approach using 

Engelund and Hansen's equation (1967) 28.5 48.0 65. l 55.2 117.8 2.27 891 

Ackers and White's equation (1973) 21.7 39.3 58.8 44. l 99.2 2.88 891 

Yang's equation (1973) 32.7 53.1 70.2 58.4 96.1 2.19 891 

Karim's modified BMF method (1998) 17.0 33.3 48.5 39.1 131.2 4.68 891 

TCF approach using 

Function of Karim and Kennedy ( 1981) 32.3 52.5 70.2 60.6 105.3 2.04 891 

Function of Li (1988) 16.5 30.3 46.1 37.3 139.5 8.26 891 

Proposed function ofEq. (3 .9) 42.3 65.1 78.8 74.2 60.8 1.64 891 

Proposed function ofEq. (3 .24) 41.1 64.5 78.7 73.7 61.8 1.65 891 



6.3.2 Graphical Comparison 

Comparisons between computed and measured fractional bed-material concentrations 

and size fractions are graphically displayed in four different types of plots for the fractional 

transport methods discussed above. These plots are intended to show the agreement between 

predicted and measured values. 

1) Plots showing the comparison between computed and measured fractional bed-

material concentrations 

Figs. 6.1-6. 9 show the comparisons between computed and measured fractional bed-

material concentrations for various fractional load methods. A large scatter of computed 

results from the measured values can be noticed for the direct computation by size fraction 

approach of Einstein, Laursen, and Toffaleti; the Bl\1F approach using the Engelund and 

Hansen, Ackers and White, and Yang equations; and the TCF approach using the Yang 

equation with Dc and the transport distribution functions of Karim and Kennedy, and Li. The 

scatter is mostly in the range of two logarithmic scales for these 9 methods. 

It can also be seen that the Einstein method predicts his own data very well, but it fails 

to predict the fractional transport rate for data from other sources. The TCF approach using 

the Yang equation with Dc and the transport distribution functions of Karim and Kennedy 

gives slightly better results, even though Karim and Kennedy treated their transport capacity 

distribution function in a very simple manner. 

Figs. 6.10-6.11 show the results computed from the TCF approach using the Yang 

equation with Dc and the newly proposed transport distribution functions ofEqs. (3.9) and 

(3 .24), respectively. A close agreement between the computed fractional bed-material 
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concentrations and measured values can be observed. 

2) Plots showing discrepancy ratio distribution 

The discrepancy ratio distributions of computed fractional bed-material concentrations 

are plotted in Figure 6.12-6.22. It can be seen that there are 32.8% of data with discrepancy 

ratio~< 1/7.5 for Toffaleti, 30.8% for the Karim method, and 30.1 % for the Li method, 

respectively. This indicates that these three methods greatly underestimate the fractional 

transport rates. There are also large percentages (11 % and 17%) of data with a discrepancy 

ratio~< 1/7.5 for Einstein and Laursen methods. 

The discrepancy ratio distributions are close to normal for the BMF approach using 

the Engelund and Hansen, Ackers and White, and Yang equations, even though the 

predictions are not highly concentrated around perfect agreement (C,c/Ctmi=l). Overall, the 

discrepancy ratios resulting from the Karim and Kennedy method are normally distributed and 

are more concentrated around the perfect agreement. 

The discrepancy ratios for the predictions using the newly developed transport 

capacity distribution functions of Eqs. (3 .9) and (3 .24) are normally distributed and have 

higher density close to the perfect agreement than all other methods. Predictions with 

extreme discrepancy ratios(~< 1/7.5 or ~> 7.5) are very limited. 

3) Plots showing the comparison between computed and measured size fractions of bed-

material load 

Figs. 6.23-6.31 and Figs. 3.9-3 .10 show the comparison between computed and 

measured size fractions of bed-material load. In general, Figs. 6.23-6.31 show that the 
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computed size fractions of bed-material load sediment in transport deviate significantly from 

actual measurements for the direct computation by the size fraction approach of Einstein, 

Laursen, and Toffaleti; the BMF approach using the Engelund and Hansen, Ackers and 

White, and Yang equations; and the TCF approach using the Yang equation with De and the 

transport distribution functions of Karim and Kennedy, and Li. As a contrast, Figs. 3. 9-3 .10 

show that a close agreement between computed and measured values is obtained at the whole 

range of P cmi and especially at larger values of P cmi by the use of the proposed transport 

capacity distribution functions ofEqs. (3.9) and (3 .24). 

4) Plots showing variations of the ratio of computed to measured size fractions of bed-

material load with relative diameter of bed material size 

The ratio of computed size fractions of bed-material load to the measured fraction of 

bed-material load against the relative diameter of the bed material are shown in Fig. 6.32-

6.40 and Figs. 3.7-3 .8. Values ofPcci/Pcmi equal to 1 indicate perfect agreement. It can be seen 

from Figs. 3. 7-3 .8. that most of the points fall near the perfect agreement line ofP cc/Pcmi equal 

to I for the newly developed transport capacity distribution functions . The plots shown in 

Fig. 6.32-6.40 for other methods indicate that the values ofP cci/Pcmi are generally near perfect 

agreement at values ofD/D50 around 1; and the values of P cci/Pcmi diverge from the perfect 

agreement at smallest and largest values of D; /D50 . Overall, the Einstein method 

underpredicts the transport rate for finer sizes and overpredicts for the coarser sizes, while 

the other methods overestimate the finer fractions and underestimate the coarser fractions. 

In the modified BMF method, the weighting function ofEq. (2.44) proposed by Karim 

(I 998) may be expressed as 
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= c,(tr [~] 
N p D I-C2 I:~ i 
i• l D. 

(6.14) 

I 

It can be seen that the first term in Eq. (6.14) is a constant value for a given data set, and 

the weighting function varies only with Pbi and Di for different size fractions. In general, due 

to the sheltering and exposure effect in a sediment mixture, the finer fractions are transported 

at a relatively lower rate than they would be if they were in a uniform sediment bed. The 

coarser particles consequently are transported faster. To reflect this phenomenon, the 

exponent (l-C2) in Eq. (6.14) should be a negative value. A positive value of (l-C2) will 

result in unrealistic results by increasing the transport rate for finer fractions and decreasing 

the transport rate for coarser sizes. 

As an example, the flume data of Einstein and Chien (1953) can be used to evaluate 

the variation ofC2. Since the values of w50 I V. are in the range of0.13-0.61 for Einstein and 

Chien's data, the value of exponent C2 [Eq. (2.47)]will vary as 

C, = 0.60 ( : ~ ) = 0.60 (0.13 - 0.61) = 0.Q78 - 0.366 (6.15) 

and the value of exponent (l-C2) will be 0.634-0.922. As a result, this produced the 

unreasonable results for the data ofEinstein and Chien shown in Fig. 6. 3 8. Similar results can 

be seen for data derived from other sources. 
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6.4 VERIFICATION OF THE PROPOSED SEDIMENT TRANSPORT 

CAPACITY DISTRIBUTION FUNCTIONS 

To verify the validity of sediment transport capacity distribution functions developed in 

Chapter 3, an independent data base with 48 sets of sediment transport data from flume and 

rivers are compiled. These data are given in Tables 6.3-6.5 . The 20 sets of flume data given 

in Table 6.3 are derived from the laboratory experiments of White and Day (1982). It needs 

to be pointed out that the bed material size distribution information reported in White and 

Day's flume experiments are those of parent-bed material, which are generally different from 

the bed-surface materials. The 28 sets of river data given in Tables 6.4-6.5 include those 

measurements from the Rio Grande Conveyance Canal (Culbertson et al., 1972) and the 

Yellow River at Tuchengzi (Long and Liang, 1994). These field data contain complete flow 

and sediment information for each record, including the compositions for both bed material 

and sediment in transport. 

Table 6.6 presents the statistical results for computed size fractions of bed-material 

load sediment in transport for the flume data of White and Day. The statistical results of 

mean normalized error, average geometric deviation, and discrepancy ratio indicate that the 

newly proposed transport distribution functions of Eq. (3 .9) and (3 .24) along with the 

function of Karim and Kennedy ( 1981) give the best prediction amongst all methods. It 

should be pointed out that the use of the size distribution from parent-bed material (instead 

of surface-bed material) may be favorable to the performance of Karim and Kennedy's 

function. 

Table 6. 7 gives the statistical results for computed size fractions of bed-material load 

sediment in transport for data of the Rio Grande Conveyance Canal and the Yellow River at 
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Tuchengzi. It can be seen that the mean normalized error was 51. 0% and 78 . 7% for the 

newly proposed transport capacity distribution functions of Eqs. (3 .9) and (3.24), 

respectively, while it was 65 .7-183.6% for other methods. The average geometric deviation 

was 1.58 and 1.93 for Eqs. (3 .9) and (3 .24), respectively, while it was 2. 75-39.6 for other 

methods. The percentage of data falling within the range of discrepancy ratios between 0.25 

and 1.75 was 81.7% and 76.5% for Eq. (3 .9) and (3 .24), respectively, while it was 30.4-

67.0% for other methods. 
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Table 6.3 . Laboratory Data of White and Day (1982) 

Flow Properties Bed Material Transported Sediment 
Data Run Q w d s T o.lO· D6/ 

. c,. c,. o.lOI· . 
Og Sg Og1 

No. ID (m3/s) (m) (m) (m/m) (OC) (mm) (mm) (kg/ml) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (IO) (11) (12) (13) (14) (15) 

1 1 0.1990 2.46 0.1660 0.000680 12.0 2.065 3.470 3.887 2.65 0.0143 14.27 0 .439 1.605 
2 2 0.1990 2.46 0.1590 0.000770 12.0 2.065 3.470 3.887 2.65 0.0194 19.35 0.425 1.631 
3 3 0.1990 2.46 0.1450 0.000790 12.0 2.065 3.470 3.887 2.65 0.0178 17.79 0.452 2.106 
4 4 0.1970 2.46 0.1690 0.000660 12.0 2.065 3.470 3.887 2.65 0.0089 8.88 0.494 1.915 
5 5 0.1960 2.46 0.1470 0.000890 12.0 2.065 3.470 3.887 2.65 0.0247 24.69 0.488 2.484 
6 6 0.1970 2.46 0.1330 0.001090 12.0 2.065 3.470 3.887 2.65 0 .0300 30.00 0 .509 2.833 
7 7 0.1970 2.46 0.1230 0.001700 12.0 2.065 3.470 3.887 2.65 0.0976 97.56 0 .801 3.301 
8 8 0.1970 2.46 0.1310 0.001530 12.0 2.065 3.470 3.887 2.65 0.0833 83 .27 0 .942 3.125 
9 9 0.1960 2.46 0.1210 0.002490 12.0 2.065 3.470 3.887 2.65 0.1565 156.53 1.282 3.429 

10 10 0.1980 2.46 0.1120 0.002890 12.0 2.065 3.470 3.887 2.65 0 .4362 436.06 1.836 3.334 
11 11 0.1930 2.46 0.1070 0.003660 12.0 2.065 3.470 3.887 2.65 0.8353 834.85 2.060 3.586 
12 l 0.2030 2.46 0.1890 0.000445 12.0 1.745 2.273 2.983 2.65 0.0016 1.62 1.168 2.391 
13 2 0.2100 2.46 0.1840 0.000446 12.0 1.745 2.273 2.983 2.65 0.0030 2.98 0.728 2.553 
14 3 0.2020 2.46 0.1620 0.000722 12.5 1.745 2.273 2.983 2.65 0 .0196 19.63 0.813 2.473 
15 4 0.2020 2.46 0.1540 0.001616 12.0 1.745 2.273 2.983 2.65 0.0308 30.75 0.905 2.595 
16 5 0.2000 2.46 0.1450 0.001769 12.0 1.745 2.273 2.983 2.65 0.0754 75.40 1.097 2.832 
17 6 0.2020 2.46 0.1190 0.002262 12.0 1.745 2.273 2.983 2.65 0.7500 749.65 1.454 2.760 
18 7 0.2040 2.46 0.1240 0.002188 12.0 1.745 2.273 2.983 2.65 0.6739 673 .63 1.640 2.551 
19 8 0.2000 2.46 0.1170 0 .002614 13.0 1.745 2.273 2.983 2.65 0.8363 835.86 1.680 2.589 
20 9 0.2010 2.46 0.1150 0.002987 12.0 1.745 2.273 2.983 2.65 1.0907 1089.95 1.691 2.550 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



Table 6.3. Laboratory Data of White and Day (I 982) ( continued) 

Size distribution of bed materiaf, finer than indicated diameters 
Data Run De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 GrplO Grpll Grpl2 Grpl3 Grpl4 Grpl5 
No. ID (mm) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (3 l) 

0.18 0.25 0.355 0.5 0.71 1 1.4 1.7 2.36 3.35 4.76 6.35 7.85 9.52 15.6 mm 
l l 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
2 2 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
3 3 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
4 4 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
5 5 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 --.J 

0 
6 6 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85 .43 92.3 95 .65 98.28 
7 7 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
8 8 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
9 9 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85 .43 92.3 95.65 98.28 

10 10 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
ll 11 0.25 l.3 5.46 16.46 27.89 34.89 39.66 44.64 47.74 54.7 64.8 74.68 85.43 92.3 95.65 98.28 
12 I 0.25 2.13 6.83 18.6 27.9 33 39.14 46.ll 51.0l 67.94 81.41 96.41 97.88 
13 2 0.25 2.13 6.83 18.6 27.9 33 39.14 46.ll 51.0l 67.94 81.4 1 96.41 97.88 
14 3 0.25 2.13 6.83 18.6 27.9 33 39.14 46.1 l 51.0l 67.94 81.41 96.41 97.88 
15 4 0.25 2.13 6.83 18.6 27.9 33 39.14 46.11 51.01 67.94 81.41 96.41 97.88 
16 5 0.25 2.13 6.83 18.6 27.9 33 39.14 46.1 l 51.0l 67.94 81.41 96.41 97.88 
17 6 0.25 2.13 6.83 18.6 27.9 33 39.14 46.ll 51.0l 67.94 81.41 96.41 97.88 
18 7 0.25 2.13 6.83 18.6 27.9 33 39.14 46.ll 51.0l 67.94 81.41 96.41 97.88 
19 8 0.25 2.13 6.83 18.6 27.9 33 39.14 46.ll 51.01 67.94 81.41 96.41 97.88 
20 9 0.25 2.13 6.83 18.6 27.9 33 39.14 46.11 51.0l 67.94 81.41 96.4 1 97.88 

Note: • - Parent-bed material. 



Table 6.3. Laboratory Data of White and Day (1982) (continued) 

Size distribution of transported sediment, finer than indicated diameters 
Data Run Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 GrplO Grpll Grpl2 Grpl3 Grpl4 Grpl5 
No. ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) 

0.18 0.25 0.355 0.5 0.71 1.0 1.4 1.7 2.36 3.35 4.76 6.35 7.85 9.52 15.6 mm 
l l 0.67 6.28 32.72 65.84 82.56 90.81 94.60 96.08 97.90 99.13 99.92 100.00 100.00 100.00 100.00 
2 2 1.00 8.58 37.73 69.09 83.21 89.91 93.25 94.58 96.57 98.26 99.73 100.00 100.00 100.00 100.00 
3 3 1.33 9.97 37.33 62.37 75.12 82.01 86.21 88.26 92.42 96.90 100.01 100.01 100.01 100.01 100.01 
4 4 0.61 5.33 27.19 53.67 70.53 81.71 88.66 91.65 95.80 98.43 100.10 100.10 100.10 100.10 100.10 
5 5 0.99 8.34 32.83 56.02 68.33 76.03 81.29 83.94 89.06 94.96 100.45 100.45 100.45 100.45 100.45 --..J - 6 6 0.93 8.11 32.06 53.50 64.57 71.53 76.51 79.06 84.25 91.29 96.63 99.36 99.91 100.03 100.03 
7 7 1.02 7.28 25.53 41.65 51.21 58.49 64.35 67.53 73 .96 83.36 92.27 97.98 99.83 100.18 100.24 
8 8 0.72 5.55 20.12 35.72 46.05 54.06 60.73 64.49 72.75 83.45 93 .09 97.99 99.53 99.75 99.78 
9 9 0.65 4.83 17.48 31.16 40.21 47.59 54.21 58.00 66.53 76.64 86.79 94.97 98.78 99.82 100. 12 

10 10 0.47 3.76 13.66 23 .96 31.37 38.08 45.17 49.60 59.41 72.ll 84.80 94.34 98.70 99.79 100.03 
11 11 0.56 3.90 14.32 24.81 31.06 37.06 43 .09 46.96 55.50 67.22 79.90 91 .28 97.69 99.59 100.0 1 
12 l 1.01 4.13 13 .57 25.76 35.57 46.53 58.55 66.29 84.20 95.06 99.09 100.00 
13 2 1.37 7.57 25.80 42.88 53.10 62.38 70.93 76.40 88.35 95.85 99.52 100.00 
14 3 0.60 4.07 18.44 35.22 47.85 58.78 67.81 73 .53 87.54 97.17 100.27 100.27 
15 4 l.77 7.86 23 .56 37.88 47.30 56.65 65.83 71 .73 85.62 96.23 100.00 100.00 
16 5 l.77 7.71 23 .07 35.85 43 .81 51.61 60.05 65 .27 79.42 91.37 99.64 100.17 
17 6 l.61 6.35 17.63 27.87 35.01 43.31 52.17 58.16 73 .76 89.17 99.45 100.3 1 
18 7 0.70 3.28 10.83 19.73 27.18 36.22 46.09 52.89 70.21 87.89 99.09 99.97 
19 8 1.16 3.77 11 .55 20.38 27.67 36.32 46.02 52.48 69.04 87.22 99.28 100.40 . 
20 9 0.50 2.43 9.51 18.40 25.90 34.83 44.70 51.40 68.27 86.69 98.99 100.00 



Table 6.4. Rio Grande Conveyance Channel Data of Culbertson, Scott, and Bennett (1972) 

Survey Flow Properties Bed Material Transported Sediment 
Data Date Q w d s T D50 D6s Og Sg c,. c,. D.soi O g1 

No. (yymmdd) (m3/s) (m) (m) (m/m) (OC) (mm) (mm) (kg/mJ) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) ( 11) (12) (13) (14) (15) 

1 650512 25.753 21.336 1.298 0.000650 15.0 0.270 -1 1.62 2.65 3.4200 3412.73 0.12 1.71 
2 650512 25.753 22.860 1.374 0.000650 15.0 0.280 -1 1.75 2.65 3.4200 3412.73 0.12 1.71 
3 650513 25.187 22.860 1.496 0.000650 15.0 0.210 -l 1.42 2.65 3.0200 3014.33 0.11 1.63 
4 650513 25.187 20.117 1.247 0.000650 15.0 0.230 -l 1.42 2.65 3.0200 3014.33 0.11 l.63 
5 650602 33.677 22.555 0.894 0.000730 17.0 0.200 -l l.3 2.65 2.8100 2805.09 0.13 l.67 
6 650603 36.507 27.432 0.887 0.000520 17.0 0.180 -l l.34 2.65 2.9000 2894.77 0.11 1.46 
7 651129 35.375 22.555 1.096 0.000660 4.0 0.180 -l l.4 2.65 4.2200 4208.94 0.13 l.61 
8 651130 35.375 22.555 1.108 0.000590 3.0 0.180 -1 1.42 2.65 4.5600 4547.09 0.16 l.63 
9 660504 36.224 2 l.336 1.023 0.001110 18.0 0.210 -l 1.46 2.65 3.3500 3343.03 0.16 l.64 

--.J 
N Table 6.4. Rio Grande Conveyance Channel Data of Culbertson, Scott, and Bennett (1 972) (continued) 

Size distribution of bed material, Size distribution of sediment load, 
Survey finer than indicated diameters finer than indicated diameters 

Data Date De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grpl Grp2 Grp3 Grp4 Grp5 Grp6 
No. (yymmdd) (mm) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) 

0.062 0.125 0.25 0.5 1 2mm 0.062 0.125 0.25 0.5 1 2mm 
l 650512 0.062 0.0 4.0 43.0 87.0 98.0 100.0 70.0 86.0 97.0 100.0 100.0 100.0 
2 650512 0.062 0.0 3.0 42.0 82.0 99.0 100.0 70.0 86.0 97.0 100.0 100.0 100.0 
3 650513 0.062 0.0 10.0 71.0 98.0 100.0 100.0 70.0 87.0 97.0 100.0 100.0 100.0 
4 650513 0.062 0.0 9.0 61.0 97.0 100.0 100.0 70.0 87.0 97.0 100.0 100.0 100.0 
5 650602 0.062 0.0 4.0 75 .0 98.0 100.0 100.0 52.0 75.0 94.0 99.0 100.0 100.0 
6 650603 0.062 0.0 11.0 85.0 99.0 100.0 100.0 66.0 87.0 99.0 100.0 100.0 100.0 
7 651129 0.062 0.0 12.0 82.0 99.0 100.0 100.0 41.0 68.0 93 .0 100.0 100.0 100.0 
8 651130 0.062 0.0 12.0 84.0 99.0 100.0 100.0 33.0 53 .0 87.0 100.0 100.0 100.0 
9 660504 0.062 l.O 8.0 66.0 98.0 100.0 100.0 26.0 48.0 86.0 99.0 100.0 100.0 



Table 6.5. Yellow River Data at Tuchengzi of Long and Liang (1994) 

Flow Properties Bed Material Transported Sediment 
Data Run Q w D s T D50. D6s

0 . c,. c,. o.lOI· . 
Og Sg Og1 

No. ID (m3/s) (m) (m) (m/m) ( OC) (mm) (mm) (kg/m3) (PPM) (mm) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (IO) (ll) (12) (13) (14) (15) 

l 570828 1173.33 572.67 1.447 0 .0000940 28.4 0 .056 0 .071 l.812 2.65 14.94 14800.97 0.042 2.301 
2 570918 1316.67 578.00 1.420 0 .0000840 21.2 0.058 0 .071 1.787 2.65 22.49 22183 .81 0.050 2.073 
3 570926 1273.33 539.67 l.437 0.0000900 18.6 0.064 0 .078 l.709 2.65 26.57 26141.63 0.046 2.057 
4 571008 1486.67 581.33 l.427 0.0000780 15.4 0.060 0 .072 1.685 2.65 25.22 24831.72 0.037 2.121 
5 571018 1233.33 566.00 l.417 0.0001000 15.2 0.065 0.077 l.620 2.65 23.26 22930.04 0 .054 l.966 
6 571027 848.00 607.53 l.443 0 .0000920 14.1 0.070 0 .083 1.707 2.65 20.40 20142 .26 0 .064 1.831 
7 571104 1180.00 545.23 l.447 0.0001000 12.2 0.064 0 .076 1.669 2.65 25.96 25545 .09 0.058 l.8ll 
8 580319 480.00 298.00 1.750 0.0000960 7.6 0.055 0.068 1.813 2.65 12.05 11956.98 0.052 1.949 
9 580328 432.00 292.00 1.740 0 .0000920 6.6 0.055 0.068 1.688 2.65 10.16 10099.79 0 .062 1.842 

IO 580410 964.00 282.00 1.910 0 .0000970 12.4 0.061 0 .073 1.607 2.65 20.68 20417.87 0.054 1.784 
11 580427 446.00 279.00 1.650 0 .0000940 16.4 0.055 0.066 1.670 2.65 15.06 14921.68 0.065 1.673 
12 580520 996.00 429.00 1.320 0.0001000 20.3 0.057 0.069 1.692 2.65 3l.17 30574.14 0.062 1.816 
13 580527 293 .00 410.00 0 .960 0.0001400 22 .3 0.069 0 .080 1.403 2.65 7.31 7274.65 0.066 1.599 
14 580604 88.80 333.00 0 .590 0.0001600 22.8 0.069 0.079 1.331 2.65 14.42 14290.44 0.075 1.496 
15 580613 252.00 431.00 1.030 0.000ll00 22.8 0.062 0 .075 1.759 2.65 20.44 20182.67 0 .070 1.375 
16 580624 161.00 352.00 0 .870 0 .0001200 26.2 0 .068 0.079 l.521 2.65 18.38 18174.34 0 .074 1.682 
17 580705 392.00 398.00 1.070 0 .0000800 28.0 0.058 0 .072 1.725 2.65 12.98 12877.14 0.066 1.584 
18 580716 3880.00 794.00 1.740 0.0001000 26.9 0.064 0.074 l.595 2.65 101.61 95561.53 0 .035 2.206 
19 580814 3980.00 807.00 1.820 0.0001000 22.0 0.068 0 .081 1.648 2.65 59.02 56926.68 0.038 2.179 

Note: • - Values computed from adjusted bed material size distribution (wash load materials excluded). 



Table 6.5. Yellow River Data at Tuchengzi ofLong and Liang (1994) (continued) 

Size distribution of bed material, finer than indicated diameters 
Data Run De Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 
No. ID (mm) (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) 

0.005 0.01 0.025 0.05 0.1 0.25 0.5 1 2mm 
l 570828 0.01 0.13 1.13 10.35 42.78 87.83 99.77 100.00 100.00 100.00 
2 570918 0.01 0.00 1.07 10.58 39.63 89.57 99.87 100.00 100.00 100.00 
3 570926 0.01 0.10 0.77 6.54 30.12 85 .50 100.00 100.00 100.00 100.00 
4 571008 0.01 0.13 0.60 6.59 35.47 92.80 99.87 100.00 100.00 100.00 
5 571018 0.01 0.00 0.27 4.99 25.98 88.60 100.00 100.00 100.00 100.00 
6 571027 0.01 0.00 0.17 4.03 21.57 81.23 97.03 100.00 100.00 100.00 
7 571 104 0.01 0.00 0.00 5.64 28.82 88.47 99.93 100.00 100.00 100.00 
8 580319 0.01 0.00 2.80 14.50 45.50 91.80 99.90 100.00 100.00 100.00 
9 580328 0.01 1.50 l.80 5.00 44.00 92.50 99.90 100.00 100.00 100.00 

IO 580410 0.01 0.00 0.00 1.00 32.00 93 .00 99.90 100.00 100.00 100.00 
11 580427 0.01 4.70 6.30 12.00 46.00 97.80 99.90 100.00 100.00 100.00 
12 580520 0.01 0.00 0.00 7.50 38.50 96.00 99.90 100.00 100.00 100.00 
13 580527 0.01 0.00 0.00 1.00 16.50 88.00 99.90 100.00 100.00 100.00 
14 580604 0.01 0.00 0.00 0.00 11.00 93 .50 99.90 100.00 100.00 100.00 
15 580613 0.01 0.00 1.00 9.60 33.00 87.50 99.90 100.00 100.00 100.00 
16 580624 0.01 0.00 0.00 2.00 21.00 87.50 99.90 100.00 100.00 100.00 
17 580705 0.01 0.00 1.00 4.00 40.00 87.50 99.90 100.00 100.00 100.00 
18 580716 0.01 0.00 1.20 5.50 28.00 93 .50 99.90 100.00 100.00 100.00 
19 580814 0.01 4.50 8.00 12.50 30.00 85.00 99.90 100.00 100.00 100.00 



Table 6.5. Yellow River Data at Tuchengzi of Long and Liang (1994) (continued) 

Size distribution of transported sediment, finer than indicated diameters 
Data Run Grpl Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 
No. ID (%) (%) (%) (%) (%) (%) (%) (%) (%) 
(l) (2) (26) (27) (28) (29) (30) (3 l) (32) (33) (34) 

0.005 0.01 0.025 0.05 0.1 0.25 0.5 1 2mm 
l 570828 24.5 34.0 53 .9 71.4 94.4 100.0 100.0 100.0 100.0 
2 570918 20.9 28.5 42.7 64. l 93.0 100.0 100.0 100.0 100.0 
3 570926 21.2 28.2 43 .7 67.0 96. l 100.0 100.0 100.0 100.0 
4 571008 17.0 25.0 46.4 74.8 97.2 100.0 100.0 100.0 100.0 
5 571018 15.5 22.7 36.3 56.9 93 .9 100.0 100.0 100.0 100.0 ---..J 

Vt 

6 571027 l l.4 16.5 25 .8 42. l 86.9 100.0 100.0 100.0 100.0 
7 571104 7.8 l l.9 22.9 46. l 93 . l 100.0 100.0 100.0 100.0 
8 580319 5.8 11.3 27.9 53 .2 97.6 99.9 100.0 100.0 100.0 
9 580328 6.5 13.6 24.5 42 .2 89.6 99.9 100.0 100.0 100.0 

10 580410 4.9 8.3 19.8 49.6 95.6 99.9 100.0 100.0 100.0 
11 580427 4.0 6.7 11.8 32.5 87.3 99.9 100.0 100.0 100.0 
12 580520 14.2 19.7 28. l 46.9 88.9 99.9 100.0 100.0 100.0 
13 580527 21.0 27.8 31.3 45.5 92.l 100.0 100.0 100.0 100.0 
14 580604 1.5 2.0 2.4 9.9 80.3 99.8 100.0 100.0 100.0 
15 580613 22.4 26. l 28.9 36.8 91.5 99.9 100.0 100.0 100.0 
16 580624 24.6 27.4 29.5 39.3 82 .0 99.9 100.0 100.0 100.0 
17 580705 7.5 ll.0 16.4 31.5 91.0 99.9 100.0 100.0 100.0 
18 580716 22.7 33.2 55.6 78.2 97.0 99.9 100.0 100.0 100.0 
19 580814 33.2 43 .6 60.9 79.1 98.4 100.0 100.0 100.0 100.0 



a) 

b) 

c) 

Table 6.6 Comparison between Computed and Measured Size Fractions of Sediment in Transport (Bed-Material Load) 
for the 20 Sets of Flume Data from White and Day (1982) 

Data in Range of Mean Average No. 
Discrepancy Ratio, R; (%) Normalized Geometric of 

Fractional Bed-Material Load Error, MNE Deviation, Data 
Computation Method 0.75-1.25 0.5-1.5 0.25-1.75 0.5-2.0 (%) AGD Points 

(1) (2) (3) (4) (5) (6) (7) (8) 

Direct computation by size fraction approach 

Einstein's equation (1950) 4.7 8.0 14.6 12.7 187.3 4083 .0 212 

Laursen's equation (1958) 25.5 39.2 46.7 45.8 76.7 8.09 212 

Toffaleti ' s equation (1968) 

BMF approach using 

Engelund and Hansen' s equation (1967) 20.8 49.1 78.3 57.1 75.8 l.99 212 

Ackers and White' s equation (1973) 27.8 43.4 60.8 49.5 76.3 2.85 212 

Yang's equation (1973) 30.2 56.6 64.2 62.7 60.1 4.03 212 

Karim's modified BMF method (1998) 17.5 42.9 51.9 47.6 648.2 7.21 212 

TCF approach using 

Function of Karim and Kennedy ( 1981) 50.5 78.3 82. l 83.0 162.4 l.62 212 

Function of Li ( 1988) 2.0 5.2 9.9 7.1 130.1 117.1 212 

Proposed function ofEq. (3 .9) 34.0 64.2 78.8 73 .6 66.4 1.89 212 

Proposed function ofEq. (3.24) 32.1 63 .7 77.8 69.8 86.1 1.92 212 



a) 

b) 

c) 

Table 6. 7. Comparison between Computed and Measured Size Fractions of Sediment in Transport (Bed-Material Load) 
for the 28 Sets of Data from Rio Grande Conveyance Canal and Yellow River at Tuchengzi. 

Data in Range of Mean Average No. 
Discrepancy Ratio, R; (%) Normalized Geometric of 

Fractional Bed-Material Load Error, MNE Deviation, Data 
Computation Method 0.75-1.25 0.5-1.5 0.25-1.75 0.5-2.0 (%) AGD Points 

(1) (2) (3) (4) (5) (6) (7) (8) 

Direct computation by size fraction a1>1>roach 

Einstein' s equation (1950) 9.6 25 .2 41.7 37.4 593.0 14.64 115 

Laursen' s equation (1958) 25.4 35.7 52.2 47.8 78.0 4.30 115 

Toffaleti's equation (1968) 14.8 22 .6 41.7 32.2 108.3 5.49 115 

BMF a1>proach using 

Engelund and Hansen' s equation (1967) 22.6 45 .2 67.0 54.8 66.7 2.28 115 

Ackers and White' s equation (1973) 9.6 19.1 35.7 27.0 179.3 8.39 115 

Yang's equation (1973) 20.0 37.4 60.9 49.6 84.1 2.75 115 

Karim 's modified BMF method (1998) 17.4 27.0 42.6 34.8 115.7 6.62 115 

TCF a1>proach using 

Function of Karim and Kennedy ( 1981) 8.7 17.4 30.4 23 .5 183.6 39.60 115 

Function of Li ( 1988) 22.6 43 .5 57.4 54.8 65.7 3.81 115 

Proposed function ofEq. (3 .9) 45 .2 67.0 81.7 79.1 51.0 1.58 115 

Proposed function ofEq. (3 .24) 27.0 52.2 76.5 64.4 78.7 1.93 115 



7.1 SUMMARY 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In this dissertation, a new method for predicting fractional transport rates of bed-material 

load in sand-bed channels is presented. The proposed method is developed based on the 

concept of the transport capacity fraction (TCF) approach expressed by Eq. (2.8). The bed-

material concentration for a given size fraction is obtained by weighting the bed-material 

concentration, C1, with the newly developed transport capacity distribution function, Pa, from 

Eqs. (3.9) or (3 .24). The first transport capacity distribution function given by Eq. (3 .9) 

depends on relative fall velocity. The associated coefficients are given by Eqs. (3.12)-(3 .14). 

The second transport capacity distribution function given by Eq. (3.24) depends on relative 

diameters. The associated coefficients are given by Eqs. (3 .25)-(3 .27). The procedure and 

a detailed example problem showing the use of the proposed method are provided. 

For the computation of bed-material concentrations, the effect of size gradations on 

the transport of sediment mixtures is investigated in detail. First, Eq. ( 4. 3) is proposed for 

predicting the median diameter, Ds0t, of bed-material load. Then, the effect of size gradations 

on the transport of sediment mixtures is demonstrated by the use ofEngelund and Hansen's 

transport function and Yang's unit stream power function . To compensate for the size 

gradation effect, the median diameter, Ds0t, is proposed for use as the representative size for 
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bed-material load computations. For the existing bed-material load equations, an equivalent 

diameter, De, expressed by Eq. (4.6), is proposed. This equivalent diameter, which is related 

to D50!, is incorporated into the Engelund and Hansen, Ackers and White, and Yang formulas 

for the computation of bed-material concentrations. 

A comprehensive comparison and evaluation of the proposed fractional load 

computation method with various existing fractional transport methods is conducted based 

on the available flume and field data. Statistical analysis and graphical comparisons are 

utilized to qualitatively and quantitatively demonstrate the performance and variations in 

different methods. 

Sources of data and their flow and sediment properties used in the analysis are 

summarized as follows: 

J) Data for the development and verification of fractional bed-material load 

computation method 

For the development of new transport capacity distribution functions ofEqs. (3 . 9) and 

(3 .24), a data base with 118 sets of flume and field data containing a total of 891 points is 

collected from different sources available in the literature. Each set of data contains a 

complete record for flow and sediment information, including the size distributions of bed 

material and transported sediments, pertaining to each measurement. This data base is limited 

to sand sizes with median diameter in the range of 0.10 to 0.90 mm, geometric standard 

deviation of bed material in the range of 1.30 to 3.0, flow discharge in the range of 0.0056 

to 16.06 m3/s, flow velocity in the range of0.49 to 1.41 mis, flow depth in the range of0.056 

to 0.58 m, and slope in the range of 0.00093 to 0.013. A summary of these data is given in 

Table 3.1, and detailed information for each data set are provided in Tables 3.2-3 .6. 
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In the verification of the proposed transport capacity distribution functions, an 

independent data base with 48 sets of flume and field data, which contain a total of327 data 

points, was compiled. This independent data base covers flow and sediment conditions with 

median diameter of 0.055-2.06 mm, geometric standard deviation of 1.30-3.89, flow 

discharge of0.19 - 3980.0 m3/s, flow velocity of0.44 - 2.81 mis, flow depth of0.11-1.91 m, 

and slope of 0.000078-0.0037. Detailed data information are provided in Tables 6.3-6.5. 

2) Data for the analysis and verification of median diameters of sediment in transport 

and the effect of size gradations on the transport of sediment mixtures 

In the development of a prediction equation for median diameters ofbed-material load 

and the analysis of the effect of size gradations on the transport of sediment mixtures, the 118 

sets of data collected for the development of transport capacity distribution functions plus 

another 280 sets of flume data from CSU were used. For verifying the variation of median 

diameters of sediment in transport with size gradations, an independent database with 124 sets 

of flume and field data were compiled. These independent data cover flow and sediment 

conditions with median diameter of 0.055-2.10 mm, geometric standard deviation of 1.25-

4.06, flow discharge of0.0037-3980, flow velocity of0.19-2.81, flow depth of0.062-1.91, 

and slope of 0.000078-0.0039. 

7.2 CONCLUSIONS 

The following conclusions are drawn from this study: 

1. Research on fractional sediment transport of nonuniform sediment mixtures can be 

classified into four categories: direct computation by size fraction approach; shear 

stress correction approach; the BMF approach; and the TCF approach. This 
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classification is very useful for the analysis and understanding of the problem. The 

TCF approach relates the fractional transport rate to the bed-material transport 

capacity and to the transport capacity distribution function. It computes sediment 

transport rate corresponding to each size group by weighting the bed-material 

concentration with the transport capacity distribution function. Through the use of 

the TCF formulations given by Eq. (2.8), discrepancies in computing bed-material 

load due to the distribution and number of class intervals can be avoided. Also due 

to the form of Eq. (2.8), errors made in fractional transport computations (e.g., 

extremely high transport rate for finest fractions) are limited. 

2. The transport capacity distribution function, Pei, in the TCF approach can be related 

to both hydraulic conditions and sediment properties. By introducing proper 

parameters in the determination of Pei, the effects due to the presence of other size 

fractions in sediment mixtures on the transport of a given size fraction can be 

reflected. The literature review shows that the sheltering and exposure correction 

factor is mainly related to relative sediment sizes (DJD50, D/Da, DJD A, D/Du, DJD0 , 

etc.), size gradation (M, og), and flow intensity (VN., d/D50, etc.). This 

understanding is essential for incorporating the sheltering and exposure effects in the 

formulations of transport capacity distribution function, Pei· 

3. The proposed transport capacity distribution functions are derived from combinations 

of theoretical derivation and physical considerations. The first function ofEq. (3.9) 

depends on fall velocity, which is derived from the unit stream power theory and the 

concepts of the TCF approach and the bed material fraction (BMF) approach. The 

second function of Eq. (3.24) depends on relative diameter, which is derived from 
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Engelund and Hansen's transport relations and the concepts of the TCF approach 

and the BMF approach. The sheltering and exposure effects are considered in both 

functions by including a second term in their derivations. 

4. Fractional bed-material concentration (CJ comparisons indicate that the proposed 

method gives the best predictions for the 118 sets of flume and field data ( containing 

891 points) used in the comparison. By using the Yang equation with De and the 

newly proposed transport capacity distribution functions of Eqs. (3. 9) and (3 .24), 

78% and 77% of data can be accounted for within the range of discrepancy ratios 

between 0.25 and 1.75 (up from 36.0-68 .5% for other methods), respectively. The 

discrepancy ratios for the proposed method are normally distributed and concentrated 

around the perfect agreement. 

5. Transport capacity fraction (P ci) comparisons using the 118 sets of flume and field data 

indicate that the proposed method gives the best predictions for the data used in the 

comparison. 79% of data can be accounted for within the range of discrepancy ratios 

between 0.25 and 1.75 (compared to 46-70% for other methods) by the use of the 

proposed transport capacity distribution functions ofEqs. (3 .9) and (3 .24). A close 

agreement between computed and measured values is obtained for all ranges of Pcmi 

values using both Eqs. (3 .9) and (3.24). Overall, the Einstein method underpredicts 

the transport rate for finer sizes and overpredicts for the coarser size fractions, while 

the other methods overestimate the finer fractions and underestimate the coarser 

fractions. An independent test using another 48 sets of flume and filed data (327 data 

points) shows that the proposed method ranks at the top among all the methods 

compared. 
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6. The size composition of sediment in transport is different from the size composition 

of bed-surface material. The median diameter of sediment in transport is generally 

finer than the median diameter of bed material, which results from selective transport 

of grains by flow. The median size of bed-material load, D5oi, can be predicted by 

Eq. (4 .3), which is a function of not only median size of bed material, but also the 

size gradation of bed material and flow intensity. The relative median size of sediment 

in transport, D5o/D50, decreases as size gradation increases, and the relationship 

between them can be represented by Eq. (4.4). 

7. Considering the physical processes governing the transport of sediment mixtures, the 

geometric standard deviation, og, which represents the range of particle sizes present 

in the bed material, is found to be a significant additional parameter. For the same 

flow condition and the same D50, the sediment size in transport and the transport rate 

of sediment mixtures are different for different sediment size gradations. For a given 

flow condition and median bed-material size, as the size gradation increases, the size 

of sediment in transport decreases, resulting in higher sediment transport rates. 

8. The median diameter D50i (equivalent diameter, De, for the existing bed-material load 

formulas) is a better indicator for nonuniform bed material. Using D 5oi Coe) will 

produce a more accurate prediction of bed-material discharge for nonuniform 

sediment mixtures. 

9. The effects of bed material size gradations on transport of sediment mixtures cannot 

be reflected appropriately by a single fixed size, such as D35 or D50 . Bed-material load 

formulas such as those developed by Engelund and Hansen, Ackers and White, and 

Yang are based on a single representative size of bed material and may generate 

183 



considerable scatter when applied to nonuniform sediment mixtures. By introducing 

De, which is related to D5oi, into bed-material load computations for the 118 data sets, 

the improvement in the range of discrepancy ratios between 0.25 and 1. 75 was from 

73% to 89% for the Engelund and Hansen formula, from 74% to 82% for the Ackers 

and White formula, and from 83% to 98% for the Yang formula. Independent 

verification using 54 sets of CSU flume data also shows significant improvement in 

bed-material load computations by the use of De. 

7.3 RECOMMEND A TIO NS 

Among the numerous research topics which are recommended for future studies, the author 

would like to concentrate on the following subjects: 

1. Applicability of the transport capacity distribution functions proposed in the present 

study should be tested for a wider range of flow and sediment conditions, including 

highly graded bed material and large natural rivers. 

2. The conceptual model and formulations proposed in this study should be extended to 

studies on the fractional transport of gravel bed material, where the sheltering and 

exposure effect are more pronounced. If necessary, the effective shear stress concept 

should be included. 

3. Partial transport processes should be taken into account in the formulations of 

transport capacity distribution function in cases where the sediment particles are not 

fully mobilized. 

4. The proposed method for fractional bed-material load computation should be 

incorporated into numerical models to simulate the change of bed composition and 
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hydraulic sorting for sand-bed materials. 

5. Research for predicting bed-material transport rate for sand-bed materials by the use 

of predicted median diameters of sediment in transport as representative size should 

be conducted. 
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