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ABSTRACT

SLICED INVERSE APPROACH AND DOMAIN RECOVERY FOR STOCHASTIC INVERSE

PROBLEMS

This dissertation tackles several critical challenges related to the Stochastic Inverse Problem

(SIP) to perform scientific inference and prediction for complex physical systems which are char-

acterized by mathematical models, e.g. differential equations. We treat both discrete and contin-

uous cases. The SIP concerns inferring the values and quantifying the uncertainty of the inputs

of a model, which are considered as random and unobservable quantities governing system be-

havior, by using observational data on the model outputs. Uncertainty of the inputs is quantified

through probability distributions on the input domain which induce the probability distribution on

the outputs realized by the observational data. The formulation of the SIP is based on rigorous

measure-theoretic probability theory that uses all the information encapsulated in both the model

and data. We introduce a problem in which a portion of the inputs can be observed and varied to

study the hidden inputs, and we employ a formulation of the problem that uses all the knowledge

in multiple experiments by varying the observable inputs.

Since the map that the model induces is typically not 1-1, an ansatz, i.e. an assumption of

some prior information, is necessary to be imposed in order to determine a specific solution of the

SIP. The resulting solution is heavily conditioned on the observable inputs and we seek to com-

bine solutions from different values of the observable inputs in order to reduce that dependence.

We propose an approach of combining the individual solutions based on the framework of the

Dempster-Shafer theory, which removes the dependency on the experiments as well as the ansatz

and provides useful distributional information about the unobservable inputs, more specifically,

about the ansatz. We develop an iterative algorithm that updates the ansatz information in order to

obtain a best form of the solution for all experiments. The philosophy of Bayesian approaches is
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similar to that of the SIP in the sense that they both consider random variables as the model inputs

and they seek to update the unobservable solution using information obtained from observations.

We extend the classical Bayesian in the context of the SIP by incorporating the knowledge of the

model.

The input domain is a pre-specified condition for the SIP given by the knowledge from scien-

tists and is often assumed to be a compact metric space. The supports of the probability distribu-

tions computed in the SIP are restricted to the domain, and thus an inappropriate choice of domain

might cause a massive loss of information in the solutions. Similarly, we combine the individual

solutions from multiple experiments to recover a unique domain among many choices of domain

induced by the distribution of the inputs in general cases. In particular, results on the convergence

of the domain recovery in linear models are investigated.
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Chapter 1

Introduction

One of the important mathematical problems in science and engineering is the inverse problem

(Tarantola, 2005; De Vito et al., 2005; Kaipio and Somersalo, 2006; Breidt et al., 2011; Butler

et al., 2012, 2014, 2015). It is the process of studying the causal factors in a mathematical model,

which is used to characterize a physical system of certain scientific and engineering discipline,

from observed data on the model outputs. An inverse problem is the direct inverse of a forward

problem that is the process of studying the behavior of the output from the causal factors in a

physical system. For instance, we can observe data describing the flow of fluid through the ground

and we seek to determine material properties from the data. Here, we commonly use a system of

differential equations (porous media equations) to model the flow.

To be concrete, we consider a general model

y = Q(a), (1.1)

where Q is a map from the input domain Λ to the output range D. In general, Q is a mathematical

description of the behavior of a physical system, e.g. given by solving a system of differential

equations that defines a dynamic system. Typically, Q is onto but not 1-1. Applications of (1.1)

to practical problems involve the study of (1.1) as the input a varies over the domain Λ. Both the

deterministic and stochastic cases are important. In this dissertation, we consider the stochastic

case. Given (1.1), the deterministic forward problem refers to the process of computing the output

y for a given a, while the deterministic inverse problem is the process of determining a such

that Q(a) = y for a given y. Stochastic versions of the problems are commonly considered

for different purposes in practice, e.g. sensitivity analysis and uncertainty quantification. In the

stochastic forward problem (SFP), a is considered as a random variable such that data of y can be

observed through Q, which propagates stochastically. In other words, the uncertainty on the range

1



of the map is induced by the uncertainty on the input domain. Such computation is referred to as the

“forward computation”. The stochastic inverse problem (SIP) is the process of finding a probability

distribution of a from the data given x, i.e. the inverse process of the forward computation. The

forward computation and its inverse can be explained by a simple example. The computation of

probability of two sixes out of two rolls of a fair die is exactly the forward computation, and the

inverse is computing the probability of a die being fair given that the two rolls are two sixes. They

are also referred to as two types of probabilities: direct and inverse (Fisher, 1930; Aldrich et al.,

1997; Senn et al., 2011). With a probability distribution on Λ, we can quantify the uncertainty of

the input, determine regions of the input associated with probabilities that satisfy some threshold

conditions, and make predictions about the output. To actually solve the SIP and find a distribution

of the input, an approximate probability distribution of the output from the observational data is

often used in practice. In the dissertation, we consider the SIP for a given probability distribution

of the output.

As the inverse of the forward computation, solving the SIP involves a process of inverting the

map Q. A significant complication is that Q is a “many-to-one” map. Rather than determining a

single value for the input that reproduces the output, we consider all the values in the following

inverse image of a value y0 ∈ D.

Q−1({y0}) = {λ ∈ Λ : Q(λ) = y0}.

Generally, Q−1({y0}) is not a singleton. All points in Q−1({y0}) are equivalent in the sense that

they reproduce the same output value y0. Thus, Q−1({y0}) is an equivalence class, and the SIP

has set-valued inverse solutions defined on the space of these equivalence classes. An analogous

example to Q−1({y0}) is the curve associated with a constant value in a contour map. Measure

theory is often implemented to handle these set-valued inverse solutions, which also considers all

the information in the model. However, the challenge is to extend the solutions to the physically

meaningful domain Λ, since there is no information, additional to what given by the model, to

distinguish points within an equivalence class. One approach, common in mathematics, is regu-
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larization, which roughly speaking involves altering the map Q to get a 1-1 map Q̂ and solving an

altered inverse problem. That approach is inconsistent with probability theory. Alternatively, we

can specify some “prior information” to obtain a unique solution. Such technique is referred to as

the disintegration. A theoretical framework in recent years has been established through a series of

papers (Butler et al., 2012, 2014, 2015) among which Butler et al. (2014) presents the most com-

prehensive work about extending the solutions to Λ by using the disintegration. They proposed an

ansatz as an assumption of the distributions on the equivalence classes, which can be interpreted as

an unbiased Bayesian prior. In particular, the uniform ansatz, under which the distribution on each

equivalence class is uniform, is a “non-preferential” weighting determined by the underlying mea-

sure on the equivalence classes. In addition, it uses the least information and induces the largest

support of the solution. Any other preferences could lead to inappropriate support of the solution.

In the dissertation, we further show that the uniform ansatz induces the maximum entropy solution

of the SIP.

The ansatz can be pre-specified according to one’s belief. However, the resulting solution is

heavily conditioned on the ansatz, opening the possibility of significant bias arising from the prior

information. In the dissertation, we launch an observable input in the model (1.1) that can help

mitigate the impact from the choice of ansatz. We consider a new model formulated as

y = Q(a,x), (1.2)

where a is an unobservable input, x is an observable input, and Q is onto but not 1-1. This model

in the context of an inverse problem describes the behavior of a physical system for different ex-

periments. The role of x is analogous to that of a control variable by which the experiment can be

governed to produce the corresponding output in the SFP. For multiple experiments, Butler et al.

(2014) suggests an approach of solving the SIP measured on the product space of the collection

of experiments. It is conducted by obtaining observational data from multiple experiments simul-

taneously, which means the data originate from the same realization of the unobservable input.
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However, they are not feasible to obtain in many cases, such as time-to-event data. As a result of

their approach, no additional ansatz information can be gained from adding up the experiments,

and the solution is heavily conditioned on the experiments indexed by x. Thus, we propose an

approach that solves the SIP under the uniform ansatz for given observational data of the output in

each individual experiment indexed by x. The form of the SIP is now

Q−1({y1},x) = {λ ∈ Λ : Q(λ,x) = y1},

where y1 ∈ Q(Λ,x) and x is varied in X . Solutions from different experiments in which we

constantly change the spaces of equivalence classes provide different “aspects” of the ansatz infor-

mation. With respect to the geometry of the spaces of different equivalence classes, the solutions

are considered to be “sliced” by x.

In the dissertation, one of the two focuses is to reduce or remove the dependency of the SIP

solution on the ansatz and the experiments indexed by x. We provide a complete analysis in the

discrete and continuous cases, i.e. regarding discrete and continuous domains of the inputs. We

propose an approach that aggregates solutions from individual experiments using an “experimental

average” to remove the dependency on x. At the same time, the average reduces the effect of the

ansatz in the solutions in some sense. We show that the average can be viewed as an extension

of the Dempster-Shafer functions based on their framework (Yager and Liu, 2008; Zhang and Liu,

2011) for quantifying the uncertainty of the unobservable input. Most importantly, the average

provides useful information about the generating distribution, essentially, about the ansatz on the

equivalence classes. Thus, it can be used to update the ansatz iteratively in the solutions towards

the “correct” one. We build a measure-theoretic algorithm and show convergence results under

mild conditions.

In addition to the ansatz, the input domain Λ is also pre-specified by scientists given their re-

lated experience or knowledge and is commonly assumed to be contained in a compact metric

space. In many cases, prior knowledge gives a domain that is much larger than the actual support

of the distribution. All the computation are performed on Λ, and an inappropriate choice leads to a
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high bias in the solution of which the support is restricted to Λ. Thus, determining a good approx-

imation of the support is crucial to delivering an accurate result on the solution and interpreting

it in the context of an application. For instance, by knowing the actual domain of the transmis-

sion rate of a disease studied in a region, we can directly identify the low-risk fractional parts

where no transmission is ongoing. In the dissertation, we propose a general approach that defines

a unique domain using the supports of the SIP solutions under the uniform ansatz from all possible

experiments and we show the convergence results on the domain recovery in linear models.

Our approach used in solving the SIP can be viewed as an extension of the Bayesian paradigm

to an inverse problem with random inputs. We also introduce several advantages by using a dif-

ferent methodology. Standard Bayesian approaches are based on Bayes’ rule which is exploited

to compute a posterior distribution that is given by a prior updated by the observational data. In

contrast, we exploit disintegration of the observed distribution of the output to handle the inver-

sion using all the information in Q. The ansatz is a non-biased prior that is used to construct the

solution of the SIP, i.e. a posteriori conditioned on the observed distribution. Hence, the ansatz is

a better form of prior, and in particular, the ansatz is objectively determined by the inverse images

of Q and thus is “non-informative” about the inputs. Our approach to computing the posteriori

by updating from the observed distribution is an extension of Bayesian method to the problem

with random parameters. But using disintegration instead of Bayes’ rule allows a truly nonpara-

metric formulation and avoids non-computable scaling factors. Finally, our solution produces the

observed distribution of the output, which is the metric we use to evaluate the solutions.

A related inverse problem in the field of statistics is Bayesian calibration (Sacks et al., 1989;

Kennedy and O’Hagan, 2001) in which they treat the inputs of a deterministic model as random

variables. Mathematical models are often used to describe physical processes and are typically im-

plemented in computer models (or codes). To make predictions in a specific context by a computer

model, it may be necessary to calibrate the model by adjusting the unknown inputs such that the

outputs of the model fit the observed data of the physical process. Bayesian calibration considers

the unknown inputs as parameters in calibration models which often adopt Gaussian processes to
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represent the true process and the computer model, and uses the observed data to derive a posterior

distribution of the parameters to quantify the uncertainty, as well as to find the best-fitting value

of the parameters. However, this Bayesian approach completely treats the model as a “black box”

(Kennedy and O’Hagan, 2001) and ignores the information about the mathematical model, i.e. Q

in our context, for the benefit of a low computational complexity. Our approach exploits the struc-

ture of the model Q to its full potential such that we have better predictions for the future behavior

of the process.

In a regression problem in which a model is adopted to study the relationship between the out-

put responses and the input factors, implementing our approach needs additional treatment to the

model. More specifically, Q in the SIP is a theoretically defined map that is often approximated

by the established system of differential equations and solved by numerical methods in practice

such that the approximation error from selecting a predictive model is minimized up to certain

pre-specified threshold. A general regression problem often induces an unknown and abstract map

that describes a relationship. It may be necessary to use a good approximation of Q such that the

error of discovering the distribution of the parameters as well as the prediction error of the out-

put can be controlled. For uncertainty in the parameters, Bayesian approaches to meta-analysis

(Smith et al., 1995; Senn, 2000; Higgins et al., 2009) have provided a reasonable interpretation.

In a random-effects meta-analysis, since the true effects in each clinical trial are not necessarily

equal, they assume that the true effects are random observations from a common population distri-

bution, and the random observations of the outcome deviate from the true effects due to the noise.

Uncertainty of the observations of the outcome are truly propagated from uncertainty of the true

effects, which coincides with the philosophy of the SIP. Thus, in the dissertation, we adapt this

Bayesian methodology, in which they essentially use a family of distributions (e.g. Gaussian) to

approximate the population distribution, to solve the SIP by incorporating the given map Q.

The remainder of the dissertation is organized as follows. In Chapter 2, we introduce the

SIP in discrete domains and we propose a novel approach that uses all possible experiments in

solving the SIP to find the best approximation of the distribution of unobservable inputs of a model.
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In addition, we extend the a Bayesian approach and the DS theory in the context of the SIP. In

Chapter 3, we switch the results in discrete domains to those in continuous domains for more

practical methodologies. In Chapter 4, we devise an approach to recover the actual domain of the

unobservable inputs by finding a unique domain that has some “mini-max” property, and we show

results on rates of convergence of the domain recovery. Summary and future work are given in

Chapter 6.
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Chapter 2

Sliced Inverse Approach for Stochastic Inverse

Problems: Discrete Distributions

2.1 Stochastic Inverse Problems in Discrete Domains

For illustration purpose, we consider two unobservable random variables a and b on the finite

domain

Λ = {(a, b) : a ∈ {1, 2, 3}, b ∈ {1, 2, 3}} =




(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)



, (2.1)

and (a, b) is distributed according to

PΛ = {pi,j : i ∈ {1, 2, 3}, j ∈ {1, 2, 3}} =




p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3



=




1/32 1/12 1/8

1/24 1/2 1/12

1/32 1/24 1/16




(2.2)

The distribution PΛ is defined on (Λ,PΛ) where PΛ is the power set of Λ. Define

f(n) =





1 n is even,

0 otherwise,

and further define

Qx(a, b) = f(ax+ b), (2.3)
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where x is an observable deterministic input taking values in X = {1, 2}. Specifically,

Q1(a, b) = f(a+ b),

Q2(a, b) = f(2a+ b) = f(b).

Then, the output range of the map Qx is D = {0, 1}.

In the statistical literature, this model can be viewed as a generalized linear mixed model

(GLMM), in which a is a random slope and b is the quantity representing the intercept as well

as the confounder and measurement error. This can also be interpreted as a generalized factor

model in which a and b are two unknown factors. In another viewpoint, the model (2.3) charac-

terizes a data generating process in the sense that, given x and a probability distribution of (a, b),

a probability distribution of the output Qx can be uniquely determined. This is referred to as the

stochastic forward problem (SFP; Butler et al. (2014), Butler et al. (2015)). Complementing the

SFP, the stochastic inverse problem (SIP;Butler et al. (2014), Butler et al. (2015)) is the problem

of recovering a probability distribution of (a, b) from the observed probability distribution of Qx

given x. In the following, we show theoretic results of solutions of the SIP and explicit examples

according to the distribution (2.2) and the model (2.3).

2.1.1 Established Solutions of SIPs

In this section, we first describe the SIP in a general situation. Let Q(x,a) be a general system

where Q is a measurable map, a is defined on a finite probability space (Λ,PΛ, PΛ), and x is

defined on a finite space X . In particular, Λ and X are finite metric spaces.

For a given x ∈ X , Qx(·) ≡ Q(x, ·) denotes a measurable map, indexed by x. For any x, if

we denote the range of Qx by Dx = Qx(Λ), then Qx is a map from Λ to Dx. In this paper, we

assume that Qx is not one-to-one and the inverses of Qx of two distinct points in Dx are disjoint,

i.e. Q−1
x
(y1) ∩ Q−1

x
(y2) = ∅ where y1 6= y2 and y1, y2 ∈ Dx. Here, the inverse map Q−1

x
can be

defined as

Q−1
x
(C) = {λ ∈ Λ : Qx(λ) ∈ C},
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where Q−1
x

maps into PΛ and C is any event in the power set PDx
of Dx. This characterizes a

geometrical property of Λ which will be explained later in this section.

Probabilistically speaking, a stochastic forward problem involves finding a probability distribu-

tion of the outputQx for a given PΛ through the following “forward computation”. The probability

distribution PΛ on the domain Λ induces a probability distribution PDx
on the range Dx through

PDx
(C) = PΛ(Q

−1
x
(C)). (2.4)

In this paper, PΛ is referred to as the generating distribution and PDx
is referred to as the output

distribution.

Thus, given the distribution (2.2) and the model (2.3), we can obtain the probability distribution

PDx of the output Qx as follows. For x = 1,



PD1(0)

PD1(1)


 =



PΛ(Q

−1
1 (0))

PΛ(Q
−1
1 (1))


 =




p1,2 + p2,1 + p2,3 + p3,2

p1,1 + p1,3 + p2,2 + p3,1 + p3,3


 =



1/4

3/4


 ,

and for x = 2,



PD2(0)

PD2(1)


 =



PΛ(Q

−1
2 (0))

PΛ(Q
−1
2 (1))


 =



p1,1 + p1,3 + p2,1 + p2,3 + p3,1 + p3,3

p1,2 + p2,2 + p3,2


 =



3/8

5/8


 ,

where Q−1
x (y) = {(a, b) : Qx(a, b) = y}.

Then, a stochastic inverse problem is to find the probability distribution PΛ from PDx
, through

inverting the measurable map Qx. Two distinct values of a, say λ1, λ2 ∈ Λ, are equivalently

relative to x, denoted by λ1 ∼ λ2, if there exists a y ∈ Dx such that λ1, λ2 ∈ Q−1
x
(y). In addition,

for y1, y2 ∈ Dx and y1 6= y2, we have Q−1
x
(y1) ∩ Q−1

x
(y2) = ∅. Thus, Q−1

x
(y) can be viewed as

an equivalence class indexed by y ∈ Dx, which contains all values of a corresponding to the same

value of y. An equivalence class can also be depicted as a manifold in Λ, which is referred to as a

generalized contour (Butler et al., 2014). Consequently, the domain Λ can be decomposed as the
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union of equivalence classes

Λ =
⋃

y∈Dx

Q−1
x
(y).

If Lx denotes the quotient space Λ/∼, then each point in Lx represents a generalized contour in Λ.

More specifically, for any λ ∈ Λ, Q−1
x
(Qx(λ)) ∈ Λ is a generalized contour in Λ, and corresponds

to a point in Lx, denoted by Eλ. Furthermore, for any A ∈ PΛ, let EA be a collection of generalized

contours in Λ, i.e.

EA = {Eλ : λ ∈ A}.

Then the inverse map Q−1
x

is a one-to-one and onto map from Dx to Lx. In the SIP, for a known

probability space (Dx,PDx
, PDx

),Qx uniquely induces a probability distribution PLx
on (Lx,PLx

)

through

PLx
(EA) = PDx

(Qx(A)), A ∈ PΛ.

Thus, we obtain a solution of the SIP specifically on (Lx,PLx
). This solution is uniquely deter-

mined by the map Q−1
x

: Dx → Lx and induces PDx
in the SFP through the map.

In the previous example, the domain Λ in (2.1) can be decomposed according to the values in

Dx as

Λ = Q−1
x (0) ∪Q−1

x (1),

where the generalized contours Q−1
x (0) and Q−1

x (1) are two disjoint subsets of Λ. Specifically, we

have

Q−1
1 (0) = {(1, 2), (2, 1), (2, 3), (3, 2)},

Q−1
1 (1) = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)},
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and

Q−1
2 (0) = {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 3)},

Q−1
2 (1) = {(1, 2), (2, 2), (3, 2)}.

In this case, eachQ−1
x (·) is an equivalence class in the sense thatQx(λ1) = Qx(λ2) for any λ1, λ2 ∈

Λ. Let Lx denote the set of generalized contours, i.e. Lx = {ℓodd, ℓeven} where ℓodd represents

Q−1
x (0) and ℓeven represents Q−1

x (1). Since Lx is isomorphic to D, the probability distribution PLx

on (Lx,PLx) is the same as PDx , i.e. PLx(ℓodd) = PDx(0) and PLx(ℓeven) = PDx(1) where x ∈ X .

The remaining problem, however, is that a probability distribution of a on Λ is of particular

interest since each point in the domain Λ is physically and scientifically meaningful, not in the

quotient space Lx. We seek solutions of the SIP on Λ.

Note that, for A ∈ PΛ, we have EA ∈ PLx
. The correspondence between λ and Eλ is defined

as the equivalence map πLx
: Λ → Lx; i.e., for any λ ∈ Λ, πLx

(λ) = Eλ. Consequently, we

have πLx
(A) = EA. In this case, we can embed (Lx,PLx

) into (Λ,PΛ). The issue is thus relating

distributions on Λ to distributions on Lx. Since Qx is not 1-1, we use the following decomposition

of the generating distribution to extend the solution on (Lx,BLx
) to (Λ,BΛ).

Theorem 2.1.1.

PΛ(A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

Pℓ(λ), ∀A ∈ PΛ, (2.5)

where x ∈ X . The conditional probability Pℓ(λ) is computed as

Pℓ(λ) =
PΛ(λ)

PLx
(ℓ)

,
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where PLx
(ℓ) > 0 and ℓ = πLx

(λ), and Pℓ(λ) ≡ 0 where PLx
(ℓ) = 0 and ℓ = πLx

(λ). In addition,

the conditional probabilities satisfy

∑

λ∈π−1
Lx

(ℓ)

Pℓ(λ) = 1, (2.6)

for ℓ ∈ Lx and PLx
(ℓ) > 0.

Proof. Any event A ∈ PΛ can be disjointly decomposed as

A =
⋃

ℓ∈EA

(A ∩ π−1
Lx

(ℓ)).

Hence, we have

∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

Pℓ(λ) =
∑

ℓ∈EA−NA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

Pℓ(λ)

=
∑

ℓ∈EA−NA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

PΛ(λ)

PLx
(ℓ)

=
∑

ℓ∈EA−NA

∑

λ∈A∩π−1
Lx

(ℓ)

PΛ(λ)

=
∑

ℓ∈EA−NA

∑

λ∈A∩π−1
Lx

(ℓ)

PΛ(λ) +
∑

ℓ∈NA

∑

λ∈A∩π−1
Lx

(ℓ)

PΛ(λ)

=
∑

λ∈A

PΛ(λ),

where NA = {ℓ ∈ Lx : PLx
(ℓ) = 0} and PΛ(π

−1
Lx

(ℓ)) = PLx
(ℓ) = 0 for ℓ ∈ NA. In addition, for

ℓ ∈ Lx and PLx
(ℓ) > 0, PΛ(π

−1
Lx

(ℓ)) = PLx
(ℓ) > 0 and thus

∑
λ∈π−1

Lx

(ℓ) Pℓ(λ) = 1.

In the continuous probability case, such decomposition is known as the disintegration; see

Butler et al. (2014) for more details. This result shows that the generating distribution PΛ can

be computed by iterated sums of a conditional probability Pℓ on each generalized contour and a

marginal probability PLx
on the set of generalized contours.
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Returning to the example, we let πLx(i, j) = ℓodd if {i, j} ∈ Q−1
x (0) and πLx(i, j) = ℓeven

otherwise. Consequently, π−1
Lx
(ℓodd) = Q−1

x (0) and π−1
Lx
(ℓeven) = Q−1

x (1). Then, any event A in PΛ

can be decomposed as

A = (A ∩ π−1
Lx
(ℓodd)) ∪ (A ∩ π−1

Lx
(ℓeven)) = (A ∩Q−1

x (0)) ∪ (A ∩Q−1
x (1)),

where x ∈ X . In this case, to compute the probability of any event A, we should first compute

the probabilities of π−1
Lx
(·) according to PLx

, and then compute the conditional probabilities of

A ∩ π−1
Lx
(·) in π−1

Lx
(·), before summation of all probabilities. Thus, we have

PΛ(A) = PLx(ℓodd)
∑

(i,j)∈A∩π−1
Lx

(ℓodd)

Pℓodd
(i, j) + PLx(ℓeven)

∑

(i,j)∈A∩π−1
Lx

(ℓeven)

Pℓeven
(i, j), ∀A ∈ PΛ.

where the conditional probabilities {Pℓ(i, j), i, j = 1, 2, 3} along the generalized contours are

computed as

x = 1:




1/24 1/3 1/6

1/6 2/3 1/3

1/24 1/6 1/12



, x = 2:




1/12 2/15 1/3

1/9 4/5 2/9

1/12 1/15 1/6



. (2.7)

In fact, (2.5) provides a way to obtain PΛ given {Pℓ} and PLx
in the SIP. We know the prob-

ability distribution for the set of generalized contours, PLx
, but we have no information about the

conditional probabilities {Pℓ} since we have no information about PΛ. In this case, we can specify

any probability distribution for points in π−1
Lx
(·). Such distributional assumption is referred to as

the ansatz; see Butler et al. (2014). Then, any ansatz should satisfy (2.6), and different choices

yield different solutions of PΛ. This is a fundamental characteristic of the SIP and reflects the

physical properties of the system being modeled by the map Qx.

Note that if we make an azsatz for the conditional probabilities {Pℓ}, we have a solution of

the SIP of PΛ, called an (sliced) inverse distribution, where the term “sliced” refers to the fact that

the solution is conditioned on the specific x and thus on the generalized contours {Q−1
x
(y)}y∈Dx

.

Such approach from the SIP solutions is called the sliced inverse approach. There is no guarantee
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that PΛ and an inverse distribution are close for any x. Butler et al. (2014) makes a probability

argument to choose the uniform ansatz, that is,

Uniform ansatz: P u
ℓ (λ) =

1

Card(π−1
Lx
(ℓ))

,

where λ ∈ π−1
Lx
(ℓ) and Card(·) is the cardinality of a finite set. Essentially, in the absence of any

information, each point in an equivalence class π−1
Lx
(ℓ) is equally likely. Then, we have

Theorem 2.1.2. For each x ∈ X ,

PΛ,x(A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P u
ℓ (λ), ∀A ∈ PΛ, (2.8)

is a probability distribution on (Λ,PΛ) and induces PDx
through (2.4).

Proof. We first have

PΛ,x(Λ) =
∑

ℓ∈EΛ

PLx
(ℓ)

∑

λ∈π−1
Lx

(ℓ)

P u
ℓ (λ) = PLx

(EΛ) = PΛ(Λ) = 1,

and we have 0 ≤ PΛ,x(A) ≤ 1 for any A ∈ PΛ. Then we have, for any countable collection of

pairwise disjoint subsets {Ai} of Λ,

PΛ,x

(
⋃

i

Ai

)
=

∑

ℓ∈∪iEAi

PLx
(ℓ)

∑

λ∈∪i(Ai∩π
−1
Lx

(ℓ))

P u
ℓ (λ)

=
∑

i



∑

ℓ∈EAi

PLx
(ℓ)

∑

λ∈∪i(Ai∩π
−1
Lx

(ℓ))

P u
ℓ (λ)




=
∑

i



∑

ℓ∈EAi

PLx
(ℓ)

∑

λ∈Ai∩π
−1
Lx

(ℓ)

P u
ℓ (λ)




=
⋃

i

PΛ,x(Ai),
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since Aj ∩ π−1
Lx

(ℓ) = ∅ when ℓ ∈ EAi
and i 6= j. Finally, for any C ∈ PDx

, we have

PΛ,x(Q
−1
x
(C)) =

∑

ℓ∈E
Q−1
x

(C)

PLx
(ℓ)

∑

λ∈Q−1
x (C)∩π−1

Lx

(ℓ)

P u
ℓ (λ) =

∑

ℓ∈E
Q−1
x

(C)

PLx
(ℓ)

∑

λ∈π−1
Lx

(ℓ)

P u
ℓ (λ)

= PLx
(EQ−1

x (C)) = PΛ(Q
−1
x
(C)) = PDx

(C).

This implies the inverse distribution induces the output distribution for the specific x ∈ X .

This result shows that the inverse distribution for each x ∈ X exactly reproduces the output

distribution.

In the simple example, the uniform ansatz {P u
ℓ (i, j), i, j = 1, 2, 3} is formulated as

x = 1:




1/5 1/4 1/5

1/4 1/5 1/4

1/5 1/4 1/5



, x = 2:




1/6 1/3 1/6

1/6 1/3 1/6

1/6 1/3 1/6



.

In this case, we can obtain a solution to this SIP, that is a probability distribution of (a, b), as

PΛ,x(A) = PLx(ℓodd)
∑

(i,j)∈A∩π−1
Lx

(ℓodd)

P u
ℓodd

(i, j) + PLx(ℓeven)
∑

(i,j)∈A∩π−1
Lx

(ℓeven)

P u
ℓeven

(i, j), ∀A ∈ PΛ

(2.9)

under {P u
ℓ (i, j), i, j = 1, 2, 3}. Specifically,

PΛ,1 =




3/20 1/16 3/20

1/16 3/20 1/16

3/20 1/16 3/20



,



P̂D1(0)

P̂D1(1)


 =



PΛ,1(Q

−1
1 (0))

PΛ,1(Q
−1
1 (1))


 =



1/4

3/4


 =



PD1(0)

PD1(1)


 ,



P ′
D2
(0)

P ′
D2
(1)


 =



PΛ,1(Q

−1
2 (0))

PΛ,1(Q
−1
2 (1))


 =



29/40

11/40


 6=



PD2(0)

PD2(1)


 ,
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PΛ,2 =




1/16 5/24 1/16

1/16 5/24 1/16

1/16 5/24 1/16



,



P̂D2(0)

P̂D2(1)


 =



PΛ,2(Q

−1
2 (0))

PΛ,2(Q
−1
2 (1))


 =



3/8

5/8


 =



PD2(0)

PD2(1)


 ,



P ′
D1
(0)

P ′
D1
(1)


 =



PΛ,2(Q

−1
1 (0))

PΛ,2(Q
−1
1 (1))


 =



13/24

11/24


 6=



PD1(0)

PD1(1)


 .

In general, the inverse distribution PΛ,x induces PDx
through the map Qx for x, but not for any

other value in X . For instance, PΛ,1 induces PD1 through the inverse of Q1 but does not induces

PD2 through the inverse ofQ2. Thus, the inverse distribution is heavily conditioned on x in general.

Figure 2.1 shows the plots of PΛ, PΛ,1, and PΛ,2 in panels (a)-(c), respectively. In panels (b)-(c),

the yellow lines indicate the points in generalized contours Q−1
x (1) where x ∈ X , and the blue

lines indicate the points in generalized contours Q−1
x (0) where x ∈ X .

Figure 2.1: A graphical display of PΛ, PΛ,1, and PΛ,2 in panels (a)-(c), respectively. In panels (b)-(c),

the points in generalized contours Q−1
x (1) where x ∈ X are shown as yellow lines, while the points in

generalized contours Q−1
x (0) where x ∈ X are shown as blue lines.

It is important to note that PΛ,x in the sliced inverse approach is specifically constructed for a

value of x, which is not a desirable solution since the generating distribution of a does not depend

on x in the SFP. In fact, this is due to the assumption of the uniform ansatz {P u
ℓ (i, j), i, j = 1, 2, 3},

17



which is clearly different from the “true” conditional distributions {Pℓ(i, j), i, j = 1, 2, 3}. Bias

from the choice of the ansatz leads to the dependency of inverse distributions on x.

2.1.2 Uniform Ansatz and Maximum Entropy Solution

In this section, we explore the role of ansatz in the sliced inverse approach, namely, the distribu-

tions along the generalized contours defined by the map Qx. Recall that Qx is a not 1-1, and thus,

by Theorem 2.1.1, we have multiple solutions depending on the choice of the ansatz. Explicitly,

given a value of x in the model and the domain Λ, an ansatz is a choice of

ALx
= {P̃ℓ : ℓ ∈ Lx},

where a point ℓ in Lx represents the generalized contour π−1
Lx

(ℓ) in Λ and P̃ℓ can be any probability

distribution along π−1
Lx

(ℓ).

Under the uniform ansatz, for each ℓ ∈ Lx, P̃ℓ is distributed according to the uniform distribu-

tion on the generalized contour π−1
Lx

(ℓ). Hence, the uniform ansatz can be written as

Au
Lx

:= {P̃ℓ : ℓ ∈ Lx, P̃ℓ is uniform on π−1
Lx

(ℓ)},

which is a set of conditional uniform distributions on generalized contours. Another choice of ALx

is given by the binomial ansatz, which can be written as

Abin
Lx

:= {P̃ℓ : ℓ ∈ Lx, P̃ℓ is binomial on π−1
Lx

(ℓ) with pre-specified success probability}.

Similarly, we can obtain an inverse distribution under the binomial ansatz,

P bin
Λ,x(A) =

∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P bin
ℓ (λ), ∀A ∈ PΛ,
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where P bin
ℓ ∈ Abin

Lx

for ℓ ∈ Lx. Two inverse distributions, PΛ,x and P bin
Λ,x, are both considered as

solutions to the SIP in the sense that they induce the same output PDx
through (2.4) as PΛ does in

the SFP.

For instance, if we take the following binomial ansatz {P bin
ℓ (i, j), i, j = 1, 2, 3} with success

probability 0.5 for each generalized contour in the previous example as

x = 1:




3/8 3/8 1/4

3/8 1/16 1/8

1/16 1/8 1/4



, x = 2:




5/16 1/4 1/32

5/32 1/4 1/32

5/16 1/2 5/32



.

Then, the corresponding inverse distributions P bin
Λ,1 and P bin

Λ,2 are

P bin
Λ,1 =




9/32 3/32 3/16

3/32 3/64 1/32

3/64 1/32 3/16



,



P̂ bin
D1

(0)

P̂ bin
D1

(1)


 =



P bin
Λ|1(Q

−1
1 (0))

P bin
Λ|1(Q

−1
1 (1))


 =



1/4

3/4


 =



PD1(0)

PD1(1)


 .

P bin
Λ,2 =




15/128 5/32 3/256

15/256 5/32 3/256

15/128 5/16 15/256



,



P̂ bin
D2

(0)

P̂ bin
D2

(1)


 =



P bin
Λ|2(Q

−1
2 (0))

P bin
Λ|2(Q

−1
2 (1))


 =



3/8

5/8


 =



PD2(0)

PD2(1)


 .

It can been seen that P bin
Λ,1 and P bin

Λ,2 are valid solutions to the SIP since they reproduce the output

distributions PD1 and PD2 , respectively. However, for example, PΛ,1 and P bin
Λ,1 provide distinct

information about the location of the maximum probability, i.e. PΛ,1 at {2, 2} and P bin
Λ,1 at {1, 1},

since the choices of the ansatz provide distinct distributional information along the generalized

contours. Among many choices of the ansatz, the uniform ansatz is commonly used in practice

when we have no distributional information for ALx
, and in fact, it is one of the most important and

useful choices suggested by the principle of maximum entropy in the information theory. We show

that the inverse distribution under the uniform ansatz is a solution to the SIP chosen by maximum

entropy principle.
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Theorem 2.1.3. PΛ,x under the uniform ansatz Au
Lx

has the maximum entropy compared to any

other inverse distributions under different choices of ansatz in the finite domain Λ.

Proof. We use the notion of the entropy as

h(P ) = −
∑

λ∈Λ

P (λ) logP (λ),

where P is any distribution on (Λ,PΛ). In addition, we use the relative entropy defined as

D(P ||P̃ ) =
∑

λ∈Λ

P (λ) log
P (λ)

P̃ (λ)
,

where P, P̃ are distributions on (Λ,PΛ) and 0 log 0
0
= 0 log 0

P̃
= 0 and P log 1

0
= ∞. In this case,

the relative entropy, also known as the Kullback-Leibler divergence, is always non-negative. We

denote the inverse distribution under any choice of the ansatz Aa
Lx

= {P a
ℓ : ℓ ∈ Lx} as P a

Λ,x.

Hence, we have

D(P a
Λ,x||PΛ,x) =

∑

λ∈Λ



∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P a
ℓ (λ̃) log

∑
ℓ∈Eλ

PLx
(ℓ)
∑

λ̃∈λ∩π−1
Lx

(ℓ) P
a
ℓ (λ̃)

∑
ℓ∈Eλ

PLx
(ℓ)
∑

λ̃∈λ∩π−1
Lx

(ℓ) P
u
ℓ (λ̃)




= −
∑

λ∈Λ



∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P a
ℓ (λ̃) log

∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P u
ℓ (λ̃)




− h(P a
Λ,x) ≥ 0.
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Let h0 := −∑λ∈Λ

(∑
ℓ∈Eλ

PLx
(ℓ)
∑

λ̃∈λ∩π−1
Lx

(ℓ) P
a
ℓ (λ̃) log

∑
ℓ∈Eλ

PLx
(ℓ)
∑

λ̃∈λ∩π−1
Lx

(ℓ) P
u
ℓ (λ̃)

)
.

Since Λ = ∪ℓ∈EΛπ
−1
Lx

(ℓ), we have

h0 = −
∑

λ∈Λ

∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P a
ℓ (λ̃) logPLx

(Eλ)

−
∑

λ∈Λ

∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P a
ℓ (λ̃) log

1

Card(π−1
Lx

(ℓ))

= −
∑

ℓ∈EΛ

(
PLx

(ℓ) logPLx
(ℓ) + PLx

(ℓ) log
1

Card(π−1
Lx

(ℓ))

)

= −
∑

ℓ∈EΛ

(
PLx

(ℓ) log
PLx

(ℓ)

Card(π−1
Lx

(ℓ))

)
.

On the other hand, the entropy of the inverse distribution under the uniform ansatz is

h(PΛ,x) = −
∑

λ∈Λ



∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P u
ℓ (λ̃) log

∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P u
ℓ (λ̃)




= −
∑

ℓ∈EΛ

(
PLx

(ℓ) logPLx
(ℓ) + PLx

(ℓ) log
1

Card(π−1
Lx

(ℓ))

)
= h0.

Hence, h(PΛ,x) >= h(P a
Λ,x) implies the inverse distribution under the uniform ansatz along gen-

eralized contours has the maximum entropy.

While any inverse distribution under an appropriate chosen ansatz is a solution, we call the

unique solution PΛ,x, the maximum entropy inverse distribution (MEID). The MEID is a specific

representor we select based on the maximum entropy principle (Guiasu and Shenitzer, 1985). An

advantage gained from using the uniform ansatz is that it uses the least information or assumptions

about the model without any prior information about conditional distributions along the generalized

contours. In the rest of the paper, the MEID is used for any implementation.
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2.2 Feasible Generating Distributions

2.2.1 Equivalent Distributions

In Section 2.1, we introduce multiple solutions to the SIP for a single experiment indexed by

a specific x under different choices of the ansatz, and the solutions are heavily depending on the

specific experiment. Consequently, the solutions induce the output distribution PDx
through (2.4)

for this specific experiment indexed by x, but generally not for any other experiments. In this

section, we consider making use of a collection of experiments, i.e. a collection of values in X to

tackle PΛ, to find a “global” solution to the SIP that is independent of x and induces distributions

{PDx
}x∈X of all outputs {Qx}x∈X through (2.4).

One of the important difficulties in the SIP lies on the fact that various choices, alternative to

the generating distribution PΛ, may induce the same PDx
, and in general, an SIP yields multiple

solutions in the sense that they induce the same PDx
, which in fact can be viewed as an equivalence

class of distributions indexed by each given x ∈ X and PDx
. We consider probability distribu-

tions on Λ such that they can be decomposed into distributions along the contours, {P̃ℓ}, and the

distribution on the quotient space, PLx
. Then we have the following equivalence class

PΛ,x := {P̃Λ : P̃Λ(A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P̃ℓ(λ), ∀A ∈ PΛ},

where each distribution in this class induces the same output distribution PDx
through the map

Qx. Each element in PΛ,x is called a locally feasible distribution since distributions in PΛ,x are

generally conditioned on the experiment x. Note that the generating distribution PΛ is also an

element of PΛ,x, and thus this equivalence class is non-empty. Clearly, the MEID is also contained

in PΛ,x.

For each x ∈ X , there exists PΛ,x indexed by x, and the generating distribution PΛ is contained

in PΛ,x since PΛ generates all the output distributions {PDx
}x∈X . In the absence of assumption

of dependencies of the collection of these equivalence classes {PΛ,x}x∈X , a natural approach to

tackle PΛ is to remove the effect of experiments by considering the intersection of PΛ,x over all
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possible x. Let

PΛ,X :=
⋂

x∈X

PΛ,x,

which is nonempty since it contains the generating distribution PΛ. All elements in PΛ,X are

equivalent in the sense that they induce the same collection of output distributions {PDx
}x∈X .

In the rest of this paper, any element in PΛ,X is referred to as the globally feasible generating

distribution (GFGD).

In general, PΛ,X has uncountably many elements. More specifically, PΛ,X is a convex set.

Theorem 2.2.1. PΛ,X is convex: Any mixture defined as

PMix(A) = wP1(A) + (1− w)P2(A), ∀A ∈ PΛ,

where P1, P2 ∈ PΛ,X and 0 ≤ w ≤ 1, is contained in PΛ,X .

Proof. Since P1, P2 ∈ PΛ,X , we have

P1(A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P 1
ℓ (λ), P2(A) =

∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P 2
ℓ (λ), ∀A ∈ PΛ.

Hence, we have

PMix(A) = wP1(A) + (1− w)P2(A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

(wP 1
ℓ (λ) + (1− w)P 2

ℓ (λ)).

Similarly, we can show that PMix is a probability distribution on (Λ,PΛ) following the proof of

Theorem 2.1.2. Thus, any mixture is contained in PΛ,X . In addition, for any x ∈ X and C ∈ PDx
,

we can verify that PMix(Q
−1
x
(C)) = wP1(Q

−1
x
(C)) + (1− w)P2(Q

−1
x
(C)) = PDx

(C).
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Alternative to the generating distribution PΛ in (2.2), we show a GFGD as follows.

P 1
Λ =




524/6077 591/5375 524/6077

165/10966 2243/5537 165/10966

524/6077 591/5375 524/6077



≈




0.0862 0.1100 0.0862

0.0150 0.4051 0.0150

0.0862 0.1100 0.0862




(2.10)

Here, P 1
Λ is found by an iterative approach in Section 2.3.2. Any mixture of PΛ and P 1

Λ is also a

viable GFGD that induces {PDx
}x∈X . For instance, with weight w = 0.5, we have another GFGD

as

P 2
Λ = wPΛ + (1− w)P 1

Λ =




284/4835 596/6167 254/2405

132/4655 391/864 252/5123

284/4835 372/4907 219/2945



≈




0.0587 0.0966 0.1056

0.0284 0.4525 0.0492

0.0587 0.0758 0.0744



.

In these three distinct distributions, the conditional distributions, {P̃ℓ}ℓ∈Lx
, along the contours are

distinct and informative, which implies the choice of the ansatz plays an important role of finding a

GFGD. In other words, we can find a GFGD by correcting the pre-specified ansatz. In subsequent

discussions, we first propose an approach that removes the dependency of the x on the inverse

distributions, and further develop an iterative approach that corrects the pre-specified ansatz to

obtain a GFGD.

2.2.2 Degree of Beliefs and High-probability Regions in the SIP

The degree of beliefs is a concept widely used in Bayesian statistics to quantify the probabilities

of events of a. For instance, the degree of belief of event A ∈ PΛ of a is defined as P (A) where

P is a probability distribution of a. In the SIP, there are multiple solutions either for a specific

experiment x or for a collection of experiments in X . Thus, the degree of belief of event A that

depends on the probability distribution of a varies. In Dempster (2008), the degree of belief can

be defined on a convex set C of probability measures and the author suggests quantify the degree
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of belief by considering the lower and upper probabilities over C as

P ∗(A; C) = sup
P∈C

P (A),

P∗(A; C) = inf
P∈C

P (A).

In particular, we specify C = PΛ,X to obtain the lower and upper probabilities for the degree of

belief under the SIP framework as P∗(A;PΛ,X ) and P ∗(A;PΛ,X ), respectively. Since the equiva-

lence class is convex, we have the following corollary as a direct consequence of Theorem 2.2.1.

Corollary 2.2.1.1. For any A ∈ PΛ, the set {P (A) : P ∈ PΛ,X} indexed by the elements in PΛ,X

is convex.

In this case, the lower and upper probabilities P∗(A;PΛ,X ) and P ∗(A;PΛ,X ) can be naturally

built into the following bound as

(P∗(A;PΛ,X ), P
∗(A;PΛ,X )) ,

where each value can be found according to a distribution in PΛ,X due to the convexity. This bound

considers all possible values among distributions in the class PΛ,X and characterizes the true range

of the degree of belief of event A. Any value in this bound is of great importance to study the

properties of a.

To illustrate, we investigate three equivalent distributions P 1
Λ, P

2
Λ and PΛ by considering an

event A = {(1, 2), (1, 3), (2, 2), (2, 3)} of (a, b) in the simple example in Section 2.1. In this case,

these three equivalent distributions yield the following degree of beliefs of event A: P 1
Λ(A) =

355/576 ≈ 0.6163, P 2
Λ(A) = 811/1152 ≈ 0.7040 and PΛ(A) = 19/24 ≈ 0.7917. These num-

bers are clearly different, which implies that the established identifiability in traditional statistical

approaches is not reliable when we acutally consider the data-generating process, i.e. the SFP.

Another interesting fact can be observed that wPΛ(A) + (1 − w)P 1
Λ(A) = P 2

Λ(A) with w = 0.5,
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since P 2
Λ is constructed by the weighted sum of PΛ and P 1

Λ with equal weights. This verifies the

convexity of the set stated in Corollary 2.2.1.1.

The equivalent class PΛ,X is also crucial to finding a high-probability region in the SIP. The

input a is generally a “physical” input in the SIP Butler et al. (2014) since it has physical meanings

in the real-world problems, e.g. thermal conductivity of copper alloys. Thus, the region of a with

high probability of occurrence is of particular interest in the SIP. The high-probability δ-region can

be defined as

Aδ,P := {λ ∈ Λ : P (λ) ≥ δ > 0},

where P is any discrete probability distribution on the finite domain Λ. Consequently, each dis-

tribution in PΛ,X yields a valid δ-region and Aδ,P is not unique. A better way of quantifying the

high-probability δ-region in this case is through considering the minimum and maximum δ-regions

as

A∗ =
⋂

P∈PΛ,X

Aδ,P ,

A∗ =
⋃

P∈PΛ,X

Aδ,P .

Note that these two optimal regions rely on the choice of δ and characterize the high-probability

regions in the extreme cases, and each region A∗ ⊂ Aδ,P ⊂ A∗ for any P ∈ PΛ,X .

Continuing to consider the GFGDs P 1
Λ, P

2
Λ and PΛ, we explore the high-probability δ-regions

of the three distributions when δ = 0.1. Then the 0.1-regions for these GFGDs are: A0.1,P 1
Λ
=

{(2, 2)}, A0.1,P 2
Λ
= {(1, 3), (2, 2)} and A0.1,PΛ

= {(1, 3), (2, 2)}. It can be seen that point (2, 2) is

in each of the regions.

All these bounds defined by the equivalence class PΛ,X characterize the actual domains of the

quantities of interest and any value in the bounds is informative. Thus, in the next section, we

provide a way of finding a GFGD in the equivalence class.
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2.3 Methodology and Example of Iterative Sliced Inverse Ap-

proach

2.3.1 Experimental Expectation of Inverse Distributions

In section 2.1, we find a unique representor in PΛ,x, i.e. the MEID. However, the MEID is

a “local” solution for the SIP, that is, conditioned on specific experiment indexed by x. In this

section, we seek to find a solution that is not associated with any experiment x. A probabilistic ap-

proach is to take the expectation of the MEID over x to remove the dependency. The experimental

expectation of inverses (EEI) is defined as

P̄ (A) :=
∑

x∈X

PΛ,x(A)PX (x), ∀A ∈ PΛ, (2.11)

where PX > 0 is the probability distribution on (X ,BX ). In fact, the EEI is a probability distribu-

tion of a.

Theorem 2.3.1. P̄ is a probability distribution on (Λ,PΛ).

Proof. Since PΛ,x is a probability distribution on (Λ,PΛ), we can simply have 0 ≤ P̄ ≤ 1. On the

other hand, we have

P̄

(
⋃

i

Ai

)
=
∑

x∈X

∑

i

PΛ,x(Ai)PX (x) =
∑

i

∑

x∈X

PΛ,x(Ai)PX (x) =
∑

i

P̄ (Ai),

since all components in the summation are non-negative.

By removing the dependency of X on the inverse distributions using the information from all

possible experiments, the EEI generally provides a less biased result on a than an individual inverse

distribution. More importantly, the EEI provides information about the generating distribution PΛ,

specifically, about the ansatz along generalized contours.
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Returning to the simple example in Section 2.1, we obtain the EEI explicitly as

P̄ (A) =
∑

x∈X

PΛ,x(A)PX (x) (2.12)

=
∑

x∈X

PLx(ℓodd)
∑

(i,j)∈A∩π−1
Lx

(ℓodd)

P u
ℓodd

(i, j)PX (x)

+
∑

x∈X

PLx(ℓeven)
∑

(i,j)∈A∩π−1
Lx

(ℓeven)

P u
ℓeven

(i, j)PX (x),

for PX (1) = 2/3, PX (2) = 1/3 and A ∈ PΛ; see Figure 2.2. Specifically,

P̄ =




29/240 1/9 29/240

1/16 61/360 1/16

29/240 1/9 29/240



,



P̄D,1(0)

P̄D,1(1)


 =



P̄ (Q−1

1 (0))

P̄ (Q−1
1 (1))


 =



25/72

47/72


 6=



PD,1(0)

PD,1(1)


 ,



P̄D,2(0)

P̄D,2(1)


 =



P̄ (Q−1

2 (0))

P̄ (Q−1
2 (1))


 =



73/120

47/120


 6=



PD,2(0)

PD,2(1)




Here, P̄ provides more accurate distributional information about the generating distribution in

Figure 2.2: A graphical display of P̄ in the simple example (2.3) according to the distribution (2.2).

panel (a) of Figure 2.1 than any other inverse distributions. Moreover, even though P̄ is not equal
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to the generating distribution PΛ or a GFGD, P̄ is closer to the generating distribution compared to

any other individual inverse distributions, by showing the following distances of these probability

distributions under L1 metric,

|PΛ,1 − PΛ|1 = 47/60, |PΛ,2 − PΛ|1 = 3/4, |P̄ − PΛ|1 = 32/45. (2.13)

Most importantly, the EEI provides more useful distributional information about the conditional

probabilities {Pℓ(i, j), i, j = 1, 2, 3} along the generalized contours in (2.7) than the uniform

ansatz. This procedure essentially provides a way of removing the effect of x and simultaneously

updates the ansatz information.

2.3.2 Iterative Approach to Finding GFGDs

In this section, we find a GFGD in PΛ,X through iteratively updating the ansatz information

given by the ansatz information extracted from the EEI.

This iterative approach involves two main processes. Since the class PΛ,X is uniquely deter-

mined by the collection of probability distributions {PLx
}x∈X on the quotient spaces {Lx}x∈X ,

the collection {PLx
}x∈X is crucial in this iterative approach. In each iteration, we first extract the

new ansatz from the last EEI, and we use {PLx
}x∈X and the new ansatz to compute the next batch

of inverse distributions and the EEI. We describe the approach in detail in the following.

In the initial step, we choose the uniform ansatz {P 0
ℓ }ℓ∈Lx

as an initial ansatz to compute

inverse distributions for x ∈ X

∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P 0
ℓ (λ) = P 0

Λ,x(A), ∀A ∈ PΛ,

and the EEI

P̄ 0(A) =
∑

x∈X

P 0
Λ,x(A)PX (x), ∀A ∈ PΛ.
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Starting the first iteration, we vary the choice of the ansatz based on the extracted distributions

along the generalized contours from P̄ 0, which are obtained by the following decomposition of

P̄ 0. For each x ∈ X ,

P̄ 0(A) =
∑

ℓ∈EA

PLx,P̄ 0(ℓ)
∑

λ∈π−1
Lx

(ℓ)∩A

P 1
ℓ (λ), ∀A ∈ PΛ,

where PLx,P̄ 0 is the unique probability distribution on the quotient space Lx calculated through

P 0
Dx

(C) = P̄ 0(Q−1
x
(C)), C ∈ PDx

,

PLx,P̄ 0(EA) = P 0
Dx

(Qx(A)), A ∈ PΛ,

and P 1
ℓ is the (unique) conditional probability distribution along the generalized contour π−1

Lx

(ℓ).

Specifically, P 1
ℓ is computed as

P 1
ℓ (λ) =

P̄ 0(λ)

PLx,P̄ 0(ℓ)
, ∀λ ∈ Λ,

where PLx,P̄ 0(ℓ) > 0 and ℓ = πLx
(λ), and P 1

ℓ (λ) ≡ 0 where PLx,P̄ 0(ℓ) = 0 and ℓ = πLx
(λ).

Then we use {P 1
ℓ }ℓ∈Lx

as the new ansatz to update inverse distributions for x ∈ X as

∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P 1
ℓ (λ) = P 1

Λ,x(A), ∀A ∈ PΛ,

and the updated EEI after the first iteration is

P̄ 1(A) =
∑

x∈X

P 1
Λ,x(A)PX (x), ∀A ∈ PΛ.
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Iteratively, for any A ∈ PΛ and x ∈ X , we have

Decomposition of the EEI: P̄ i(A) =
∑

ℓ∈EA

PLx,P̄ i(ℓ)
∑

λ∈π−1
Lx

(ℓ)∩A

P i+1
ℓ (λ), (2.14)

Update inverse distributions:
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P i+1
ℓ (λ) = P i+1

Λ,x (A), (2.15)

Update the EEI: P̄ i+1(A) =
∑

x∈X

P i+1
Λ,x (A)PX (x), (2.16)

where i ≥ 0. The iteration proceeds under the hope {P̄ i}i≥0 converges. Note that in each iteration

we update the ansatz {P i
ℓ}ℓ∈Lx

, i ≥ 0, and embed {PLx
}x∈X , more specifically, the data on the

output, {PDx
}x∈X , to adjust the results.

In general, the sequence {P̄ i}i≥0 may not have a convergence. In the following, we explore

one particular case in which the sequence has a convergence.

Theorem 2.3.2. For each i ≥ 0 and x ∈ X , the inverse distribution has a density function

P i
Λ,x(λ) = PLx

(πLx
(λ))P i

πLx
(λ)(λ) where λ ∈ Λ.

Proof. For any λ ∈ Λ, we simply have

P i
Λ,x(λ) =

∑

ℓ∈Eλ

PLx
(ℓ)

∑

λ̃∈λ∩π−1
Lx

(ℓ)

P i
ℓ (λ̃) =

∑

ℓ∈Eλ

PLx
(ℓ)P i

ℓ (λ)

= PLx
(Eλ)P i

Eλ
(λ) = PLx

(πLx
(λ))P i

πLx
(λ)(λ),

where i ≥ 0 and x ∈ X .

Theorem 2.3.3. If for every real number ǫ > 0 there exists an positive integer N ∈ N such that

for all positive integers i, j > N , we have |P i
πLx

(λ)(λ)− P j
πLx

(λ)(λ)| < ǫP 0
πLx

(λ)(λ) where λ ∈ Λ,

then P̄ i converges to a probability distribution P̄∞ on Λ under the L1 metric.

Proof. We first obtain the density function of P̄ i as

P̄ i(λ) =
∑

x∈X

PLx
(πLx

(λ))P i
πLx

(λ)(λ)PX (x),
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where λ ∈ Λ and i ≥ 0. Then we consider the complete metric space (L1
D, d) where the space L1

D

contains probability distributions (i.e. density functions) on Λ and d is the L1 metric defined as

d(P, P̃ ) =
∑

λ∈Λ

|P (λ)− P̃ (λ)|.

Then, for any real number ǫ > 0 and i, j > N ,

d(P̄ i, P̄ j) =
∑

λ∈Λ

∣∣∣∣∣
∑

x∈X

PLx
(πLx

(λ))P i
πLx

(λ)(λ)PX (x)−
∑

x∈X

PLx
(πLx

(λ))P j
πLx

(λ)(λ)PX (x)

∣∣∣∣∣

≤
∑

λ∈Λ

∑

x∈X

∣∣∣P i
πLx

(λ)(λ)− P j
πLx

(λ)(λ)
∣∣∣PLx

(πLx
(λ))PX (x)

< ǫ
∑

λ∈Λ

∑

x∈X

P 0
πLx

(λ)(λ)PLx
(πLx

(λ))PX (x) = ǫ
∑

λ∈Λ

P̄ i(λ) = ǫ.

Hence, the sequence {P̄ i}i≥0 is Cauchy in (L1
D, d), and P̄ i converges to a density function in

(L1
D, d) as i→ ∞.

This result shows that {P̄ i}i≥0 has a convergence if the iterated ansatz can be controlled. We

denote the limit of convergence of the EEIs by P̄∞. In general, P̄∞ is not contained in PΛ,X . Note

that each iteration in this approach can be characterized as a map G such that P̄ i+1 = G(P̄ i). In the

following, we show a sufficient and necessary condition for PΛ,X regarding the iteration map G.

Theorem 2.3.4. A sufficient and necessary condition for P̃ in PΛ,X is state as follows:

1. P̃ is a fixed point of map G, i.e. P̃ = G(P̃ );

2. the inverse distribution P̃Λ,x computed from P̃ in the iterative approach in (2.14) and (2.15)

by

Decomposition of a distribution: P̃ (A) =
∑

ℓ∈EA

PLx,P̃
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P̃ℓ(λ), ∀A ∈ PΛ,

Compute inverse distributions:
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈π−1
Lx

(ℓ)∩A

P̃ℓ(λ) = P̃Λ,x(A), ∀A ∈ PΛ,

32



is not conditioned on x, i.e. P̃Λ,x = P̃Λ,x′ if x 6= x
′.

Proof. We start with the proof of the first direction. Since P̃ ∈ PΛ,X , it can be decomposed as

P̃ (A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈π−1
Lx

(ℓ)∩A

P̃ℓ(λ) = P̃Λ,x(A), ∀A ∈ PΛ,

for x ∈ X . It implies that the inverse distributions are the same as P̃ and thus they are not

conditioned on x. Moreover,

P̄ (A) =
∑

x∈X

P̃Λ,x(A)PX (x) =
∑

x∈X

P̃ (A)PX (x) = P̃ (A), ∀A ∈ PΛ,

which concludes P̃ = G(P̃ ).

Conversely, since P̃ is a fixed point of G, we have

P̃ (A) =
∑

x∈X

P̃Λ,x(A)PX (x), ∀A ∈ PΛ.

In addition, since the inverse distributions are not conditioned on x, we have P̃ = P̃Λ,x for any

x ∈ X . It implies

P̃ (A) =
∑

ℓ∈EA

PLx
(ℓ)

∑

λ∈A∩π−1
Lx

(ℓ)

P̃ℓ(λ), ∀A ∈ PΛ.

Hence, for any x ∈ X ,

P̃ (Q−1
x
(C)) =

∑

ℓ∈E
Q−1
x

(C)

PLx
(ℓ)

∑

λ∈Q−1
x (C)∩π−1

Lx

(ℓ)

P̃ℓ(λ) =
∑

ℓ∈E
Q−1
x

(C)

PLx
(ℓ)

∑

λ∈π−1
Lx

(ℓ)

P̃ℓ(λ)

= PLx
(EQ−1

x (C)) = PΛ(Q
−1
x
(C)) = PDx

(C), ∀C ∈ PDx
,

which concludes P̃ ∈ PΛ,X .

The result shows that, if the limiting distribution P̄∞ is a fixed point of G and inverse distribu-

tions computed from P̄∞ are not conditioned on x, then P̄∞ is a GFGD in PΛ,X .
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2.3.3 Example of the Iterative Sliced Inverse Approach

In this section, we show the results of some steps in this iteration approach with the example

in Section 2.1.

We first choose the EEI in (2.12) as the initial EEI P̄ 0. Then, we compute the output distribu-

tions that are induced by P̄ 0 as follows. For each x ∈ X ,

PLx,P̄ 0(ℓodd) = P 0
Dx
(0) = P̄ 0(Q−1

x (0)),

PLx,P̄ 0(ℓeven) = P̄ 0
Dx
(1) = P̄ 0(Q−1

x (1)).

Then, by Theorem 2.1.1, we decompose the EEI as

P̄ 0(A) = PLx,P̄ 0(ℓodd)
∑

{i,j}∈A∩π−1
Lx

(ℓodd)

P 1
ℓodd

(i, j) + PLx,P̄ 0(ℓeven)
∑

{i,j}∈A∩π−1
Lx

(ℓeven)

P 1
ℓeven

(i, j),

for any A ∈ PΛ, to obtain the new ansatz {P 1
ℓ (i, j), i, j = 1, 2, 3}

x = 1:




87/470 8/25 87/470

9/50 61/235 9/50

87/470 8/25 87/470



, x = 2:




29/146 40/141 29/146

15/146 61/141 15/146

29/146 40/141 29/146



.

Then, we replace the uniform ansatz with the new ansatz {P 1
ℓ (i, j), i, j = 1, 2, 3} to obtain the

updated inverse distributions as

PLx
(ℓodd)

∑

{i,j}∈A∩π−1
Lx

(ℓodd)

P 1
ℓodd

(i, j)+PLx
(ℓeven)

∑

{i,j}∈A∩π−1
Lx

(ℓeven)

P 1
ℓeven

(i, j) = P 1
Λ,x(A), ∀A ∈ PΛ,

for each x ∈ X , and we update the EEI as

P̄ 1(A) =
∑

x∈X

P 1
Λ,x(A)PX (x),
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Figure 2.3: A graphical display of P i
Λ,1, P i

Λ,2 and P̄ i in columns 1-3, respectively, where each row indicates

the number of iterations i. In the colored panels, the points in generalized contours Q−1
x (1) where x ∈ X

are shown as yellow lines, while the points in generalized contours Q−1
x (0) where x ∈ X are shown as blue

lines.
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where A ∈ PΛ. Similarly, we decompose P̄ 1 to obtain the new ansatz {P 1
ℓ (i, j), i, j = 1, 2, 3}

for the computation in the next iteration. In the following, we show the convergence results on the

sequence {P̄ i}i≥0.

In the simulation runs, the convergence results on P i
Λ,1, P

i
Λ,2 and P̄ i are shown in Figure 2.3

after i = 1, 2, 3, 30 iterations, in columns 1-3, respectively. Then, we have a convergence P̄∞ after

30 iterations as

P̄∞ =




524/6077 591/5375 524/6077

165/10966 2243/5537 165/10966

524/6077 591/5375 524/6077



≈




0.0862 0.1100 0.0862

0.0150 0.4051 0.0150

0.0862 0.1100 0.0862



.

One can verify that P̄∞ induces the given output distribution PDx for each x ∈ X , and thus P̄∞

is a GFGD that is equivalent to the generating distribution. In addition, we observe that the L1

distance of the limiting EEI and the generating distribution is

|P̄∞ − PΛ|1 = 411/899,

which is much smaller than that of the original EEI, P̄ 0, and the generating distribution in (2.13).

This implies the iterative approach is essentially a process of reducing the distance of the EEI and

the equivalence class of GFGDs.

2.4 Other Approaches under the SIP Setting

2.4.1 An Extension of the Classical Bayesian Approach

In the simple discrete example defined in Section 2.1, we focus on finding a probability dis-

tribution of (a, b) that can reproduce the output distributions, i.e. a GFGD. In this section, we

introduce an alternative Bayesian approach specifically designed for random parameters in the do-

main. Suppose the generating distribution of (a, b) is a product of two independent distributions
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as

PΛ =




1/3

1/2

1/6



×
[
1/4 1/2 1/4

]
=




1/12 1/6 1/12

1/8 1/4 1/8

1/24 1/12 1/24



≈




0.0833 0.1667 0.0833

0.1250 0.2500 0.1250

0.0417 0.0833 0.0417



,

and the sampling distribution on (X ,PX ) is {PX (1), PX (2)} = {1/2, 1/2}. The corresponding

output distributions, that are induced by the map Qx where x ∈ X , are



PD1(0)

PD1(1)


 =



0.5

0.5


 ,



PD2(0)

PD2(1)


 =



0.5

0.5


 . (2.17)

We first assume that a and b are independently distributed according to two beta-binomial

distributions with the following density functions,

d(a, 2;α1, β1) =

(
2

a− 1

)
B(2− α1, 2− (a− 1) + β1)

B(α2, β2)
,

d(b, 2;α2, β2) =

(
2

b− 1

)
B(2− α2, 2− (b− 1) + β2)

B(α2, β2)
,

respectively, where B(·, ·) is the density function of a beta distribution and ω = (α1, β1, α2, β2)
⊤

is a vector of unknown hyperparameters. Then, the assumed joint distribution of (a, b) is

PB
Λ (a, b|ω) = d(a, 2;α1, β1)d(b, 2;α2, β2).

The goal is to use PB
Λ (a, b|ω) to approximate the generating distribution PΛ or to find an equivalent

GFGD by implementing the Bayesian technique to find an appropriate estimate of ω.

Conditional on ω, we obtain the likelihood functions of Q1|ω and Q2|ω, denoted by L(Q1|ω)

and L(Q2|ω), respectively. Note that L(Qx|ω) is induced by the map Qx and is computed by the

forward computation using PB
Λ (a, b|ω). Then, we obtain the likelihood function of the output of
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QX as

L(QX |ω) = g1L(Q1|ω) + g2L(Q2|ω).

We further specify the following prior for ω as

pr(ω) = λ1λ2λ3λ4 exp(−λ
⊤
ω),

where λ = [λ1, λ2, λ3, λ4]
⊤ = [1/2, 1/2, 1/2, 1/2]⊤ containing rates of exponential distributions.

Consequently, the posterior of ω can be computed as

P (ω|{Qi
X}ni=1) ∝ Πn

i=1L(Q
i
X |ω)pr(ω),

where {Qi
X}ni=1 are identically independent samples of QX with n = 20. Since L(QX |ω) has

no closed form in general, we use its empirical estimates to implement the Metropolis-Hastings

algorithm for approximating the mean of the posterior.

The resulting mean of P (ω|{Qi
X}ni=1) is Ê(ω) = [1.7532, 1.7803, 2.2680, 2.2793]⊤, and the

resulting estimated probability distribution of (a, b) is

P̂B
Λ = PB

Λ (a, b|Ê(ω)) =




0.0916 0.1266 0.0908

0.1155 0.1597 0.1145

0.0893 0.1235 0.0885



.

The corresponding output distributions induced by PB
Λ (a, b|Ê(ω)) are



PB
D1
(0)

PB
D1
(1)


 =



0.4801

0.5199


 ,



PB
D2
(0)

PB
D2
(1)


 =



0.5901

0.4099


 . (2.18)

Even though PB
Λ (a, b|Ê(ω)) is not a GFGD, the results on the induced output distributions in (2.18)

are close to the given output distributions in (2.17), and PB
Λ (a, b|Ê(ω)) provides distributional

information about PΛ, e.g. the mode at (2, 2).
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This particular Bayesian approach essentially uses a family of probability distributions to ap-

proximate the class of GFGDs. In general, there is no guarantee that this approach can have a

good approximation to the GFGD. In this example, an assumption of independence of (a, b) is rea-

sonable and feasible since the generating distribution is formed by two independent distributions.

However, when a and b are dependent, the assumption of independence might be not feasible. In

fact, no good Bayesian approximation has been found in this case, while the results in the iterative

sliced inverse approach are still satisfying since the assumption of independence is not necessary.

In addition, there is also an underlying ansatz assumption in this example which is induced by

the assumption of beta-binomial distributions. The results from this Bayesian approach are highly

dependent on the induced ansatz, while the iterative sliced inverse approach can reduce such bias

introduced by the uniform ansatz.

2.4.2 Extension of the Dempster-Shafer Theory

The Dempster-Shafer (DS) theory introduced in Dempster (2008); Yager and Liu (2008);

Zhang and Liu (2011) characterizes an upper bound and a lower bound for the probability of an

event of random inputs. We compare the DS theory and the sliced inverse approach in the example

in Section 2.1.

We first introduce the notion of the DS theory. Suppose there is a multivalued mapping Γ

which assigns a subset Γx ⊂ Λ to each x ∈ X , and there is a probability distribution γΓx defined

on (Γx,PΓx) such that

PDS(A) =

∫

X

γΓx(A ∩ Γx)dPX (x) =
1∑

x=0

gxγΓx(A ∩ Γx),
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where A ∈ PΛ, is a probability distribution defined on (Λ,PΛ). Then, it has been shown that the

following two functions,

P ∗(A) =
PX ({x ∈ X : Γx ∩ A 6= ∅})
PX ({x ∈ X : Γx 6= ∅}) ,

P∗(A) =
PX ({x ∈ X : ∅ 6= Γx ⊂ A})
PX ({x ∈ X : Γx 6= ∅}) ,

are the upper and lower bounds for PDS(A), respectively. In the following, we show some explicit

results to explain PDS, P
∗, and P∗, and illustrate the connection between the SIP solutions and the

DS functions.

By first specifying Γx = Q−1
x (D) = Λ and γΓx = PΛ in (2.2), we have PDS = PΛ, and

specifically,

True probability: PDS({(1, 1), (2, 2)}) = PΛ({(1, 1), (2, 2)}) = 17/32,

Upper bound: P ∗({(1, 1), (2, 2)}) = 1,

Lower bound: P∗({(1, 1), (2, 2)}) = 0.

The DS functions give a crude bound for the probability of the event {(1, 1), (2, 2)} in Λ. Further-

more, since the generating distribution PΛ is unknown in the SIP, we have the following result by

specifying γΓx = PΛ,x in (2.9),

Approximated probability by inverse distributions:

P̂DS({(1, 1), (2, 2)}) =
1∑

x=0

gxPΛ,x({(1, 1), (2, 2)} ∩ Γx) = 113/240. (2.19)

Even though the probability of any event in Λ that is approximated by plugging in inverse distri-

butions in (2.19) might not be any close to the true probability, it is still better than a crude bound

(0, 1). Interestingly, the approximation P̂DS is exactly the EEI P̄ in (2.11), and thus (2.19) essen-

tially uses the EEI to approximate PΛ. In this case, the sliced inverse approach can be viewed as
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an extension of the DS theory by decomposition of a probability distribution (i.e. by using inverse

distributions).

Similarly, we investigate a more practical case in which the output data is observed. We specify

Γx = Q−1
x (0) and

γΓx(A ∩ Γx) =

∑1
x=0 PΛ(A ∩Q−1

x (0))PX (x)∑1
x=0 PΛ(Q−1

x (0))PX (x)
, (2.20)

where A ∈ PΛ. Note that γΓx(A ∩ Γx) in (2.20) is actually the conditional probability given the

Borel sigma algebra of (a, b)|Qx = 0. Then, we have

True conditional probability: PDS({(1, 1), (2, 2)}) = 1/28,

Upper bound: P ∗({(1, 1), (2, 2)}) = 1/3,

Lower bound: P∗({(1, 1), (2, 2)}) = 0,

and by plugging in the SIP solutions {PΛ,x}1x=0 in (2.20) as

γΓx(A ∩ Γx) =

∑1
x=0 PΛ,x(A ∩Q−1

x (0))PX (x)∑1
x=0 PΛ,x(Q−1

x (0))PX (x)
, (2.21)

we have the following approximation of the true conditional probability as

Approximated conditional probability by inverse distributions:

P̂DS({(1, 1), (2, 2)}) =
∑1

x=0 PΛ,x({(1, 1), (2, 2)} ∩Q−1
x (0))PX (x)∑1

x=0 PΛ,x(Q−1
x (0))PX (x)

= 1/14.

(2.22)

In this way, we extend the DS probabilities to the SIP solutions by decomposition of a proba-

bility distribution to have a concrete approximation of the true probability of any event (i.e. the

probability computed from the generating distribution).

There is a case in which we do seek to find an upper and lower bound for the true probability of

any event. The DS probabilities P∗ and P ∗ might not be satisfying, as was shown in these examples,
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is because they lose the information of the probability distribution of (a, b) and only focus on the

information that comes from x. Thus, a better way of defining the upper and lower bounds for

the true probability of an event A ∈ PΛ is by P∗(A;PΛ,X ) and P ∗(A;PΛ,X ) in Section 2.2.2.

This bound gives accurate information about the true probability which is always contained in the

bound.
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Chapter 3

Sliced Inverse Approach for Stochastic Inverse

Problems: Continuum Distributions

3.1 Stochastic Inverse Problems in Continuous Domains

3.1.1 A Simple Linear Example

To illustrate the ideas, we consider a simple linear model

y = a1x+ a2, (3.1)

where a = (a1, a2)
⊤ is a vector of unobservable random inputs of the model on the continuous

domain Λ, a compact set in R
2, x is an observable deterministic input in R

1, and y is the scalar

output in R
1 whose range depends on x. We assume that a has a probability distribution on

(Λ,BΛ) where BΛ is the Borel sigma algebra of Λ. This distribution is of interest in this paper

and is referred to as the generating distribution of a. In the statistical literature, this model can be

viewed as a random effect model, in which a1 is a random slope and a2 is the quantity representing

the intercept as well as the confounder. This can also be interpreted as a factor model in which y is

a linear combination of two unknown factors a1 and a2. The goal of the stochastic inverse problem

is to recover the distribution of a from the observed distribution on y given x.

Before illustrating the concept of the stochastic inverse problem by concrete examples of a, we

introduce the concept of the stochastic forward problem which in turn defines the inverse problem.

In (3.1), for a fixed x and a realization of a, a value of y can be uniquely determined. The “forward

computation” here is a simple example of stochastic forward problem (SFP; Butler et al. (2014),

Butler et al. (2015)), which is exactly a data-generating process. For illustration purpose, we

consider the following three examples:
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(I) a has a uniform distribution on the unit square [0, 1]× [0, 1] = [0, 1]2;

(II) a has a normal distribution truncated on the unit square [0, 1]2, with mean (0.5, 0.5)⊤ and

covariance matrix [0.1, 0.75
√
0.005; 0.75

√
0.005, 0.05].

(III) a has a uniform distribution on the marginals, a1 or a2, with a dependence structure charac-

terized by an Archimedean copula,

C(u1, u2; θ) = ψ[−1](ψ(u1; θ) + ψ(u2; θ); θ),

where ψ is the Frank copula with θ = 1, and ψ[−1] is the pseudo-inverse of ψ; see Nelsen

(2007) for more details.

The density functions of a are depicted in panels (a)-(c) of Figure 3.1.

In the SFP, for a value of x, the distribution of y induced by the distribution of a is referred

to as the output (probability) distribution. For instance, in panels (d)-(f) of Figure 3.1, the output

density functions for x = 1 are depicted for each example. Complementing the SFP, the stochastic

inverse problem (SIP; Butler et al. (2014), Butler et al. (2015)) is the problem of recovering a

distribution of a given the distribution of y and a value of x. The recovered distribution and the

generating distribution both induce the same distribution of the output y, for a specific x, through

the forward computation in the SFP. Panels (g)-(i) of Figure 3.1 show the recovered distributions

for Example I, II and III, respectively, given the output distributions of y|x = 1 in panels (d)-(f).

The procedure of solving the SIP requires inverting (3.1). We emphasize that there are multiple

solutions in general since the map from a to y is not one to one.

An important fact in the solutions is that, in each row of Figure 3.1, the recovered distribution

and the generating distribution induce the same output distribution for x = 1, however, not for any

other x ∈ R
1 in general. This implies that the recovered distribution is a “local and conditioned”

solution to the SIP with respect to the specific x. An interesting question arises, besides the gener-

ating distribution, can we find a distribution that generates the same output distribution for all x?
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Figure 3.1: A graphical display of generating density functions of a (left), output probability density func-

tions (middle) resulting from the SFP examples (I), (II) and (III), and inverse density functions solved for the

SIP regarding the examples (I), (II) and (III). Panels (a)-(c) show generating distributions of a for examples

(I), (II) and (III), respectively. The output probability distributions of y for x = 1 induced by the generating

distributions in panels (a)-(c) are shown in panels (d)-(f), respectively. The results of solving the SIP given

the output probability distributions of y|x = 1 in panels (d)-(f) are shown in panels (g)-(i), respectively. In

particular, the generating distribution of a (left) and the inverse distribution (right) induce the same output

probability distribution (middle) for x = 1 in each example.

45



Figure 3.2: A graphical display of two distributions P 1
Λ and P 2

Λ in panels (a)-(b), respectively, alternative to

the uniform generating distribution in Example I that induce the same output distribution for all x ∈ (0, 1).

In this paper, the ultimate goal is to find a “global” solution, i.e., a distribution that induces the

output distribution for all x ∈ R
1 as the generating distribution does. In Figure 3.2, we show two

alternative distributions P 1
Λ and P 2

Λ in panels (a)-(b), respectively, to the generating distribution in

Example I such that all induce the output distribution for all x ∈ (0, 1); see Section 3.2 for detailed

formulation. Clearly, the distributions in Figure 3.2 are different from the uniform generating dis-

tribution. In fact, all three distributions are equivalent in the sense that they provide the exact same

information of the output for all x ∈ (0, 1). Any equivalent distributions of a are not identifiable

in the SIP, and the distributional information they deliver are equally important.

In the next section, we provide a brief introduction to the stochastic inverse problem from a

mathematical and probabilistic viewpoint to explain how we obtain the solutions in Figure 3.1 and

the non-uniqueness issue in solving the SIP.

3.1.2 Background of the SIP

We describe the SIP in a model y = Q(a,x) characterized by a general measurable map Q.

Here, a is the unobservable random input of interest in the domain Λ, and x ∈ X is the observable

deterministic input that governs the (scalar) output y of the model. Let Λ and X be metric spaces,

and further let Λ be compact. For any given x ∈ X , Qx(·) ≡ Q(x, ·) denotes a measurable map

from Λ to Dx which is the range of y given x. In this paper, we assume that Qx is not 1-1 and
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continuously differentiable with respect to a, and the Jacobian of Qx has full rank except for a

(Lebesgue) zero-measure set, see Section 3 of Butler et al. (2014) for details.

Then the SFP can be described by the following process: Any probability measure PΛ on

(Λ,BΛ) induces a probability measure PDx
on (Dx,BDx

) through

PDx
(C) = PΛ(Q

−1
x
(C)) (3.2)

for any event C in the Borel sigma algebra BDx
generated by Dx. The inverse map Q−1

x
is defined

as

Q−1
x
(C) = {λ ∈ Λ : Qx(λ) ∈ C}.

We find PDx
for a given PΛ through the “forward computation” (3.2) in the SFP, while we find a

distribution of a that satisfies (3.2) given the observed PDx
in the SIP.

Because Qx, Λ, Dx and PDx
are the only information we have in the SIP, we decompose Λ and

PΛ according to Dx and PDx
through the inverse ofQx, respectively. Essentially, it is to decompose

PΛ based on the decomposition of Λ such that PDx
is embedded in the decomposition of PΛ. Note

that any points λ1, λ2 in Q−1
x
(y) are equivalent in the sense that Qx(λ1) = Qx(λ2) = y, which is

exactly an equivalence relation. Hence, Q−1
x
(·) is an equivalence class indexed by the point in the

output. In Butler et al. (2014), Q−1
x
(·) is considered as a manifold in Λ and thus is referred to as a

generalized contour. Generalized contours indexed by distinct points in the output are disjoint due

to the fact that the Jacobian of Qx has full rank at every point in Λ. Then it is a straightforward

result that Λ can be decomposed as a collection of generalized contours

Λ =
⋃

y∈Dx

Q−1
x
(y).

Let Lx be the quotient space of Λ under the equivalence relation, where each point in Lx

represents a generalized contour in Λ. Further let Eλ denote the point in Lx that corresponds to the
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generalized contour Q−1
x
(Qx(λ)) for λ ∈ Λ. We have

EA = {Eλ : λ ∈ A}

for any A ∈ BΛ, which contains a collection of points in Lx corresponding to generalized contours

that intersect A. Consequently, Λ is decomposed by Lx as

Λ =
⋃

λ∈Λ

Eλ.

In practice, Lx can be any indexing manifold in Λ, e.g. a line in Λ that intersects each of the

generalized contours once and only once. In this case, we switch the decomposition from Dx to a

manifold in Λ, where we can obtain a unique solution.

Since Qx is a 1-1 and onto map from Lx to Dx, Qx uniquely induces a probability measure

PLx
on (Lx,BLx

) through

PLx
(EA) = PDx

(Qx(A)), A ∈ BΛ.

This is a solution to the SIP which is specifically defined on (Lx,BLx
). Then we seek to extend

PLx
to (Λ,BΛ).

The disintegration theorem is one of the approaches suggested by Butler et al. (2014). Under

general assumptions, for any x, any distribution PΛ can be disintegrated as

PΛ(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dPℓ(λ)dPLx
(ℓ), ∀A ∈ BΛ, (3.3)

where Px = {Pℓ : ℓ ∈ Lx} is a family of conditional probability measures on (Λ,BΛ). In the

disintegration of PΛ, Px and PLx
are uniquely determined; see Chang and Pollard (1997); Butler

et al. (2014) for more details. The theorem essentially describes a process that any d-dimensional

probability measure PΛ can be computed by iterated integrals of a (d− 1)-dimensional conditional

measure Pℓ along each generalized contour and a one-dimensional marginal measure PLx
on the
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set of generalized contours. It is important to note that the disintegration of PΛ is performed by a

choice of x; In other words, PΛ is “sliced” into sub-dimensions of Λ according to x.

In turn, we can use the disintegration (3.3) to determine PΛ given PLx
. One may notice that

there is no way to determine Px given the information in the SIP. One possible approach suggested

by Butler et al. (2014) is to specify a probability measure on each of the generalized contours. Such

distributional assumption is referred to as an ansatz by those authors. By specifying an azsatz of Px

in (3.3), we have an approximation of PΛ, denoted by PΛ,x. This approximation PΛ,x is considered

as a solution to the SIP for the given x, because PΛ,x satisfies (3.2) and induces PDx
through the

inverse map Q−1
x

. In this paper, PΛ,x is referred to as a (sliced) inverse distribution of the SIP. The

notion of “sliced” means PΛ,x is constructed by “slicing” the domain Λ according to the given x.

Note that there is no guarantee that PΛ and PΛ,x are close for a given x. Those authors also suggest

the uniform ansatz under which each Pℓ is a uniform distribution and points along a generalized

contour are equally likely. In the next section, we provide information theoretic justification for

the uniform ansatz.

We once again consider Examples I, II and III in (3.1) with Qx(a) = x
⊤
a for a = (a1, a2)

⊤

and a given x = (1/2, 1)⊤. It can be seen that

Q−1
x
(A) = {a ∈ Λ : x⊤

a ∈ A}, A ∈ BDx
,

which is a collection of parallel lines (or segments) with a common normal vector x; see panel

(a) of Figure 3.3. In panels (b), (c) and (d) of Figure 3.3, the quotient spaces Lx are depicted in

blue lines and the unique marginal measures PLx
are depicted in red lines for Examples I, II and

III, respectively. Then the inverse distributions under the uniform ansatz are simply computed by

“stretching out” the unique measures PLx
along the generalized contours (i.e. lines segments) by

disintegration.

It is important to note that PΛ,x is generally conditioned on x due to the pre-specified ansatz.

For illustration purpose, we consider three values of x = −1, 1, 2 in Example II and show the

inverse distributions under the uniform ansatz in panels (a)-(c) of Figure 3.4. All the inverse dis-
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Figure 3.3: A graphical display of the generalized contours (dashed) on the domain of a in (3.1) for a

specified x = 1/2 is shown in panel (a). Panels (b)-(d) show the unique probability measures PLx
on the

quotient space Lx for Example I, II and III, respectively.
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tributions are highly dependent on x, which is not intuitive given that the generating distribution

does not depend on x. The “true” conditional measure of a along each generalized contour dis-

integrated from the generating distribution is not equal to the pre-specified ansatz. Bias from the

choice of the ansatz leads to the dependency of inverse distributions on x.

Figure 3.4: A graphical display of inverse distributions under the uniform ansatz for three different values

of x, (a) x = −1, (b) x = 1 and (c) x = 2, in the simple linear model for Example II.

3.1.3 Uniform Ansatz and Maximum Entropy Solution

In this section, we explore the role of the ansatz. The ansatz refers to the assumption of a family

of conditional probability measures assigned to a along the generalized contours, i.e. a choice of

Px. Hence, by the disintegration theorem, we have multiple solutions depending on the choice of

the ansatz.

For instance, under the uniform ansatz, for each ℓ ∈ Lx, Pℓ is distributed according to the

uniform distribution on the generalized contour π−1
Lx

(ℓ). The uniform ansatz can be formally written

as

Pu
x
:= {Pℓ : ℓ ∈ Lx, Pℓ is uniform on π−1

Lx

(ℓ)},
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i.e. a set of conditional uniform distributions. Replacing Px in (3.3) with Pu
x

, we obtain an inverse

distribution PΛ,x as

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP u
ℓ (λ)dPLx

(ℓ) = PΛ,x(A), ∀A ∈ BΛ. (3.4)

where P u
ℓ ∈ Pu

x
for ℓ ∈ Lx. Another choice of Px is given by the truncated normal ansatz, which

can be written as

P tn
x

:= {Pℓ : ℓ ∈ Lx, Pℓ is truncated normal on π−1
Lx

(ℓ) with pre-specified mean and variance}.

Similarly, we can obtain an inverse distribution

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP tn
ℓ (λ)dPLx

(ℓ) = P tn
Λ|x(A), ∀A ∈ BΛ,

where P tn
ℓ ∈ P tn

x
for ℓ ∈ Lx. These two inverse distributions, PΛ|x and P tn

Λ|x, are both considered

as solutions to the SIP for the given x in the sense that they induce the same output PDx
through

the forward computation (3.2) as PΛ does.

We explore the above uniform and truncated normal ansatz in Example I in the simple linear

example. The generalized contours corresponding to x = 1/2 are shown as dashed lines in panel

(a) of Figure 3.5. Three viable choices of ansatz along the contours are considered, including the

uniform ansatz and two versions of truncated normal ansatz, namely P tn1
x

and P tn2
x

. Each truncated

normal distribution in P tn1
x

has a mean in Λ, and the means of all distributions in P tn1
x

are located

on an arc of circle, {a ∈ Λ : (a1 − 1)2 + a22 = 1}, which is depicted as a dotted line in panel

(c) of Figure 3.5. All distributions in P tn1
x

have a common variance 0.01. Similarly, the dotted

line {a ∈ Λ : a21 + (a2 − 1)2 = 1} in panel (d) of Figure 3.5 shows the location of means of all

truncated normal distributions, with common variance 0.01, in P tn2
x

.

For illustration purpose, we show all the ansatz along a specific contour {a ∈ Λ : y = a1x+a2}

with y = 0.4 in Figure 3.5. The contour is depicted as a thick dashed-line in panel (a). On the
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Figure 3.5: A graphical display of the generalized contours of Example I in panel (a) and three represen-

tative distributions in three choices of ansatz, including the uniform ansatz and two versions of truncated

normal ansatz Ptn1
x ,Ptn2

x , in panels (b)-(d), respectively. Distributions in Ptn1
x and Ptn2

x have means on

the dotted lines in panels (c) and (d), respectively, with a common variance 0.01. The three representative

distributions in panels (b)-(d) are investigated along a specific contour shown as a solid thick line in panel

(a).

Figure 3.6: A graphical display of three inverse distributions in panels (b), (c) and (d) computed by the

ansatz information provided in panels (b), (c) and (d) of Figure 3.5, respectively. Panel (a) shows the

induced distribution PDx
of the output y|x = 0.5 from these three inverse distribution.
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contour, the distribution in the uniform ansatz is shown in panel (b), the distribution in P tn1
x

with

a mean of (0.069, 0.365)⊤ ∈ Λ and a variance of 0.01 is depicted in panel (c), and the distribution

in P tn2
x

with a mean of (0.515, 0.143)⊤ and a variance of 0.01 is depicted in panel (d).

Figure 3.6 shows the given output distribution for x = 1/2 in panel (a), and the inverse distribu-

tions under certain ansatz in panels (c)-(d). Panel (b) depicts PΛ,x under the uniform ansatz, while

P tn1
Λ,x and P tn2

Λ,x under P tn1
x

and P tn2
x

are depicted in panels (c) and (d), respectively. The inverse

distributions PΛ|x, P
tn1
Λ|x and P tn2

Λ|x yield the same prediction for the output for the given x = 1/2;

in other words, they induce the same output distribution through the forward computation (3.2).

Hence, any distribution of PΛ|x, P
tn1
Λ|x and P tn2

Λ|x can be chosen as a solution to this SIP. With differ-

ent means in these solutions, the uniform ansatz is commonly used in practice and suggested by

the maximum entropy principle when we have no preference over Px.

We consider a general family of ansatzes, a family of absolutely continuous ansatzes, that

contains both the uniform ansatz and the truncated normal ansatz. In probability theory, a natural

choice of the dominating measure is the Lebesgue measure. In the SIP, the disintegrated measure

µℓ plays the role of a dominating measure along each generalized contour, which is defined in the

following disintegration of the Lebesgue measure µΛ on Λ,

µΛ(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dµℓ(λ)dµLx
(ℓ), ∀A ∈ BΛ,

where µLx
is a measure on Lx induced by µΛ through the following computation

µDx
(C) = µΛ(Q

−1
x
(C)), C ∈ BDx

,

µLx
(EA) = µDx

(Qx(A)), A ∈ BΛ.

The Lebesgue measure µΛ induces µDx
on the output range Dx, and µDx

induces µLx
on Lx.

Given µΛ and µLx
, the disintegrated measures {µℓ}ℓ∈Lx

are uniquely determined. Then the family
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of absolutely continuous ansatzes can be defined as

Pc
x
:= {Px : Pℓ ∈ Px is absolutely continuous with respect to µℓ on π−1

Lx

(ℓ) for each ℓ ∈ Lx},

where any ansatz in Pc
x

consists of absolutely continuous distributions along generalized contours.

Among choices in Pc
x

, we choose the uniform ansatz because the maximum entropy principle

implies it is least-informative among all choices when there is no information about Px. This

idea can be expressed and constructed in the following. Suppose the generating distribution PΛ is

absolutely continuous with respect to µΛ. Then we have

Theorem 3.1.1. PΛ,x under the uniform ansatz Pu
x

is the maximum entropy solution among all

possible P c
Λ|x under the ansatz in Pc

x
.

Proof. This result is proved in Chapter 5.1.1.

An advantage gained from using the uniform ansatz is that it uses the least information or

assumptions about the model, i.e. without any prior information about conditional distributions

along generalized contours. While any inverse distribution under an appropriate chosen ansatz is a

solution, we call the unique solution PΛ,x, the maximum entropy inverse distribution (MEID). The

MEID is a specific representor we select by using the ansatz in Pc
x

based on the maximum entropy

principle. A key difference of PΛ,x and PΛ is that the former is generally conditioned on the given

x, while the latter is not. In Section 3.2, we construct a family of solutions that are not conditioned

on a specific x, and in Section 3.4, we use the MEID to initiate an iterative procedure to determine

a candidate of such solutions.

3.2 Feasible Generating Distributions

3.2.1 Equivalent Distributions

In Section 3.1, we introduce a solution, MEID, to the SIP for a single experiment indexed by

x. In this section, we employ a collection of experiments indexed by values in X where X ⊂ R
d
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is the domain for x such that y = Qx(a) is well-defined. Let the generating distribution PΛ be

absolutely continuous with respect to µΛ where Λ ⊂ R
d is compact and simply connected. In this

case, PΛ induces a probability distribution PDx
on the output y for any x ∈ X through (3.2). Then

we seek to tackle PΛ by considering the given collections, {PDx
}x∈X and {Qx}x∈X .

By varying the ansatz in the disintegration of PΛ, we obtain multiple distributions on Λ that

induce the same PDx
through the inverse map Q−1

x
. We denote the collection of such distributions

by

PΛ,x := {P̃Λ ≪ µΛ : P̃Λ(A) =∫

ℓ∈πLx
(A)

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx
(ℓ), PLx

(EA) = PDx
(Qx(A)), ∀A ∈ BΛ, P̃ℓ ≪ µℓ, ∀ℓ ∈ Lx},

where each distribution in this class is absolutely continuous with respect to µΛ and induces PDx

through Q−1
x

. In this sense, PΛ,x is an equivalence class indexed by PDx
or x, and each distribution

in PΛ,x is called a locally feasible generating distribution. In addition, PΛ,x is not empty and

contains PΛ,x and PΛ.

Then PΛ is contained in any equivalence class in {PΛ,x}x∈X since PΛ induces all the output

distributions {PDx
}x∈X . By considering the intersection of {PΛ,x}x∈X as

PΛ,X :=
⋂

x∈X

PΛ,x,

we obtain a non-empty equivalence class in which each distribution induces {PDx
}x∈X . Any

element in this family is referred to as a globally feasible generating distribution (GFGD).

Theorem 3.2.1. PΛ,X is convex: Any mixture defined as

PMix(A) = wP1(A) + (1− w)P2(A), ∀A ∈ BΛ,

where P1, P2 ∈ PΛ,X and 1 ≥ w ≥ 0, is contained in PΛ,X .

Proof. See Chapter 5.1.2.
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The theorem shows that PΛ,X is convex and has uncountably many elements in general. In

Figure 3.2 of Section 3.1.1, we show two equivalent distributions P 1
Λ and P 2

Λ belonging to PΛ,X

in Example I of the simple linear model in which a have a uniform generating distribution PΛ

on the unit square. Specifically, P 1
Λ is computed by integrating out the inverse distributions PΛ,x

over x ∈ X under a truncated normal ansatz in which the distributions have means located on the

centers of the generalized contours and have standard deviation 1. Then P 2
Λ is a mixture of PΛ and

P 1
Λ with equal weights. Any mixture of P 1

Λ, P 2
Λ and PΛ is also a viable GFGD that induces the

distributions of the output, {PDx
}x∈X . In the distributions in PΛ,X , the ansatzes are distinct and

informative, which implies the choice of the ansatz plays an important role of finding a GFGD; in

other words, we can find a GFGD by correcting the pre-specified ansatz.

3.2.2 Degree of Beliefs and High-probability Regions in the SIP

In this section, we propose an approach to quantify the degree of belief of any event of a

given the non-identifiable distributions in PΛ,X , which is also suggested by Dempster (2008). We

quantify the degree of belief by considering the lower and upper probabilities over PΛ,X as

P ∗(A;PΛ,X ) = sup
P∈PΛ,X

P (A),

P∗(A;PΛ,X ) = inf
P∈PΛ,X

P (A).

Since PΛ,X is convex, we have the following corollary as a direct consequence of Theorem 3.2.1.

Corollary 3.2.1.1. For any A ∈ BΛ, the set {P (A) : P ∈ PΛ,X} is convex.

The corollary shows that the degree of belief of A computed by any P ∈ PΛ,X is contained in

the bound

(P∗(A;PΛ,X ), P
∗(A;PΛ,X )) .

This bound gives the actual range of the degree of belief in which any value is informative about

a.
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Returning to P 1
Λ, P 2

Λ and PΛ in Example I in the simple linear model, we consider an event

A = {a ∈ Λ : (a1 − 0.5)2/0.22 + (a2 − 0.5)2/0.12 <= 1}, which has an elliptical shape. Then

we have the following degrees of belief.

PΛ(A) = 0.0629, P 1
Λ(A) = 0.0659, P 2

Λ(A) = 0.0644.

These numbers show that the probability distribution P 1
Λ is more concentrated around the mode,

i.e. the mean, than any other two.

Similarly, the equivalent class PΛ,X can be used to find a high-probability region in the SIP.

The high-probability δ-region is defined as

Aδ,P := {λ ∈ Λ : P ′(λ) ≥ δ > 0},

where P is an absolutely continuous probability measure with respect to µΛ and P ′ = dP/dµΛ

is the Radon-Nikodym derivative. Then we consider the minimum and maximum δ-regions over

PΛ,X as

A∗ =
⋂

P∈PΛ,X

Aδ,P ,

A∗ =
⋃

P∈PΛ,X

Aδ,P .

Consequently, each high-probability δ-region contains A∗ and is contained in A∗. In this case, A∗

and A∗ provide extremal information about the region of a with a high probability.

Continuing to consider PΛ, P
1
Λ, P

2
Λ, we explore the high-probability δ-regions of the three dis-

tributions when δ = 1.02. Note that PΛ is the uniform distribution on a unit square, and thus

Aδ,PΛ
= ∅. Then the δ-regions for P 1

Λ and P 2
Λ are shown in panels (a) and (b) of Figure 3.2,

respectively. The regions have a similar shape around the center (i.e. the mean).
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Figure 3.7: The display of two δ-regions when δ = 1.02 for two equivalent distributions shown in panels

(a)-(b) of Figure 3.2, respectively.

Due to the fact that the GFGDs in PΛ,X are equivalent and non-identifiable in the SIP, it is not

sufficient to only consider one specific GFGD to make inference.

3.3 Dempster-Shafer Probabilities and Inverse Distributions

The DS theory, as a generalization of Bayesian inference, considers quantifying the degree of

beliefs of a by varying x, in a similar way to the SIP approach. In the theory, x is considered as an

observable random input, and only its distributional information is considered to approximate the

probability distribution of a. This is a simplistic approach to quantifying the degree of beliefs when

no information is given about a. In this section, we find an approach that aggregates the inverse

distributions from different experiments by varying x and we explore the connection between

the DS theory and the SIP. In particular, we extend the simplistic approach in the DS theory by

disintegration.

Consider a general model y = Q(X,a) where X is random on (X ,BX , PX ) with a sam-

pling distribution PX that is absolutely continuous with respect to the Lebesgue measure µX on X

and has a positive density. For each X = x ∈ X , the conditioned model Qx(a) is defined in Sec-

tion 3.2. In addition, the mapQx(A) as a function of x is measurable for anyA ∈ BΛ, andQ−1
x
(C)

as a function of x is measurable for any set C in the Borel sigma algebra BD of D = ∪x∈XDx.

Furthermore, the inverse distribution PΛ,x(A) is a measurable function of x for any A ∈ BΛ.
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In the DS theory, the degree of beliefs are characterized by the belief and plausibility functions.

To illustrate, we introduce an important type of functions in the DS theory: the posterior belief

function (3.5) and the posterior plausibility function (3.6)

BelC(A) =

∫
x∈X

I{Q−1
x (C)⊂A}(x)dPX∫

x∈X
I{Q−1

x (C) 6=∅}(x)dPX
, (3.5)

PlC(A) =

∫
x∈X

I{Q−1
x (C)∩A 6=∅}(x)dPX∫

x∈X
I{Q−1

x (C) 6=∅}(x)dPX
, (3.6)

where A ∈ BΛ, C ∈ BD and IE(x) := I(x ∈ X : x ∈ E ⊂ X ) is an indicator function. The DS

functions BelC and PlC have often been called, respectively, the lower and upper probabilities of

A given C, since the functions provides lower and upper bounds for the degree of belief of event

A when the collection of generalized contours Q−1
x
(C) is contained in or intersects A. In particu-

lar, the functions are lower and upper bounds for the following quantity of interest introduced in

Dempster (2008)

PDS(A) =

∫
γQ−1

x (C)(A ∩Q−1
x
(C))dPX ,

where γQ−1
x (C) is a general member of certain class of probability measures of a given X = x and

y ∈ C.

In the following, we investigate the behavior of PDS when we connect the SIP approach to

the DS theory in two extreme cases of C. Consider an event C = (y0 − ǫ, y0 + ǫ) with y0 ∈ D

and a sufficiently small ǫ > 0 such that PΛ,x(Q
−1
x
(C)) is small and PΛ,x(Q

−1
x
(C)) 6= 0 . With

the specified probability measure γQ−1
x (C)(A∩Q−1

x
(C)) = PΛ,x(A∩Q−1

x
(C))/PΛ,x(Q

−1
x
(C)), we

have

PDS(A) =

∫
γQ−1

x (C)(A ∩Q−1
x
(C))dPX ≈

∫
PLx

(EA∩Q−1
x (C))P

u
ℓ (π

−1
Lx

(ℓ) ∩ A)
PLx

(EQ−1
x (C))P

u
ℓ (π

−1
Lx

(ℓ))
dPX ,

where ℓ ∈ EQ−1
x (C). Note that the approximate equality here requires the continuity of P u

ℓ in terms

of ℓ for each A ∈ BΛ. This PDS over a small C implies the following computation:
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1. First compute the ratio of probabilities of event A mapped onto the quotient space Lx, i.e.

PLx
(EA∩Q−1

x (C))/PLx
(EQ−1

x (C)). In fact, this computes the weight of EA∩Q−1
x (C) over the en-

tire EQ−1
x (C);

2. Then compute the ratio of probabilities of event A along the generalized contour, i.e. the

weight of π−1
Lx

(ℓ) ∩ A over the entire generalized contour π−1
Lx

(ℓ), which is referred to as the

ansatz;

3. Finally, integrate out the probabilities over all the experiments (indexed by x).

Note that the first two steps are exactly the steps of numerically computing an inverse distribution,

specifically by disintegration, described in Butler et al. (2014). The last step is of particular inter-

est in this paper, since it provides an approach that aggregates the probabilities over a collection

of experiments when multiple experiments are considered in the SIP. Thus, following the same

procedure, we consider C = D and γQ−1
x (D) = PΛ,x such that the DS quantity PDS is conditioned

on all the information of the output, and we have

PDS(A) =

∫

x∈X

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP u
ℓ (λ)dPLx

(ℓ)dPX , ∀A ∈ BΛ. (3.7)

Theorem 3.3.1. PDS is a probability measure on (Λ,BΛ).

Proof. See Chapter 5.1.3.

In this case, we can use this DS quantity, which incorporates the local solutions in the SIP, to

compute a distribution of a that is not conditioned on any experiment x. This DS quantity gives

an exact approximation to the degree of belief of an event A ∈ BΛ by disintegration rather than a

crude bound from the DS functions. We call this particular quantity PDS in (3.7) the experimental

expectation of inverses (EEI) and denote it by P̄ in the rest of this paper.

Returning to Example II in (3.1), Figure 3.8 shows the density functions of the EEI, P̄ , over

X = R in panel (a) and the truncated normal generating distribution PΛ in panel (b). In this

example, the EEI and the generating distribution are both unimodal and have similar shape around
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the mean. The EEI is very informative and useful to approximate a high-probability δ-region of

a. In addition, the ansatz along the contours in the EEI consists convex functions, similar to the

shape of PΛ, rather than constant functions in the uniform ansatz. Thus, the EEI in this example

provides a better ansatz than the uniform ansatz. In panel (c), the given density function of the

output y|x = −1 in the SIP is depicted in blue, and the predicted density function of the output

y|x = −1 is depicted in red. The prediction is performed by the following forward computation

P̂Dx
(A) = P̄ (Q−1

x
(A)), (3.8)

where A ∈ BΛ, x = (−1, 1)⊤, and P̂Dx
is the prediction of the output by using P̄ . As depicted,

these two distributions PDx
, P̂Dx

are distinct, which means the EEI is not equivalent to the generat-

ing distribution in the sense that they induce different distributions of the output y|x = −1 through

Q−1
x

. In general, the EEI is not contained in PΛ,x or PΛ,X .

Figure 3.8: A graphical display of the EEI P̄ in panel (a), the generating distribution in panel (b), and

the output distributions at x = −1 of the observed and the predicted regarding Example II in the simple

linear model, which implies the EEI provides information of the generating distribution but the EEI is not

an element in PΛ,x=−1 or PΛ,X .

The EEI actually provides a way of removing the effect of x and simultaneously updates the

ansatz information. In particular, it reduces the bias introduced by the assumption of the uniform

ansatz in each individual inverse distribution PΛ,x, and provides distributional information about

a, e.g. high, low and zero probability occurrence regions. We can also use the EEI to initiate an
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approach to finding a GFGD in the equivalence class PΛ,X , since the EEI provides information

about the generating distribution PΛ, specifically, about the ansatz along generalized contours; see

Section 3.4 for more details.

Similarly, if we extend the DS functions BelC and PlC by disintegration, i.e. inverse distribu-

tions, we have

Theorem 3.3.2. The SIP posterior belief function is

B̃elC(A) =

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)
I{Q−1

x (C)⊂A}(x)dP
u
ℓ (λ)dPLx

(ℓ)dPX

∫
x∈X

∫
y∈C

dPDx
(y)dPX

,

and the SIP posterior plausibility function is

P̃ lC(A) =

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)∩A

∫
λ∈π−1

Lx

(ℓ)∩A
I{Q−1

x (C)∩A 6=∅}(x)dP
u
ℓ (λ)dPLx

(ℓ)dPX

∫
x∈X

∫
y∈C

dPDx
(y)dPX

,

where P̃ lC(A) ≤ 1− B̃elC(A
c), P̃ lC(A) ≥ B̃elC(A) for any A ∈ BΛ, A

c = Λ− A.

The formulation of the SIP functions is given in Chapter 5.1.4. In fact, the SIP plausibility

function is a posterior distribution computed by Bayes’ theorem under the SIP framework.

Theorem 3.3.3. For A ∈ BΛ and C ∈ BD, P̃ lC(A) = P (a ∈ A|y ∈ C).

The proof is given in Chapter 5.1.5. This result shows that BelC and PlC actually approximate

the posterior of a givenCss, and the generalized plausibility P̃ lC is exactly the posterior of a given

C. In this case, we only need the generalized plausibility, i.e. the SIP posterior, for inferences in

practice. In conclusion, the SIP approach provides a concrete formula of computing the probability

distribution of a by incorporating disintegration based on the framework of the DS theory, and

thus the SIP approach can be viewed as an extension of the DS probabilities for approximating the

probability distribution of unobservable inputs in a model.
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3.4 Approximation of GFGDs

3.4.1 Iterative Approach to Updating Inverse Distributions

In section 3.3, the EEI gives information about the generating distribution of a, more specifi-

cally, the ansatz information of a along generalized contours. However, the EEI is not an element

in PΛ,X in general, and thus the EEI is not a solution to the SIP that induces the output. In this sec-

tion, we propose an iterative approach to update the EEI through updating the ansatz information

in inverse distributions to find a GFGD.

The iterative approach is described in the following. For any A ∈ BΛ and x ∈ X ,

Disintegration of the EEI: P̄ i(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP i+1
ℓ (λ)dPLx,P̄ i(ℓ), (3.9)

Update inverse distributions:

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP i+1
ℓ (λ)dPLx

(ℓ) = P i+1
Λ,x (A), (3.10)

Compute the next EEI: P̄ i+1(A) =

∫

x∈X

P i+1
Λ,x (A)dPX , (3.11)

where i ≥ 0. In the initial step i = 0, we choose the uniform ansatz {P 0
ℓ }ℓ∈Lx

as an initial

ansatz to compute inverse distributions {P 0
Λ,x} and the EEI P̄ 0. Essentially, we first disintegrate

P̄ i according to PLx,P̄ i which is the unique probability measure on the quotient space Lx calculated

through

P i
Dx

(C) = P̄ i(Q−1
x
(C)), C ∈ BDx

,

PLx,P̄ i(EA) = P i
Dx

(Qx(A)), A ∈ BΛ,

to obtain the new ansatz {P i+1
ℓ }. Then we use {P 1

ℓ }ℓ∈Lx
to update the old ansatz and compute the

updated inverse distributions and the EEI.

In the following, we show a general results on the convergence of {P̄ i}i≥0.

Theorem 3.4.1. The sequence {P̄ i}i≥0 has a subsequence converging weakly.

Proof. This result is proved in Appendx 5.1.6.
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Furthermore, the sequence has a convergence under mild conditions on the iterated ansatzes.

We show this result in terms of densities. Note that each GFGD in PΛ,X is absolutely continuous

with respect to µΛ and thus has a density, i.e. the Radon-Nikodym derivative. We assume the

conditional probability measures {P i
ℓ}i≥1 are absolutely continuous with respect to µℓ for each

ℓ ∈ Lx, and each density function is denoted by ρiℓ = dP i
ℓ/µℓ. In addition, in an experiment

indexed by x, an element ℓ in Lx can be expressed as ℓ = πLx
(λ) indexed by λ ∈ Λ. Then we

have

Theorem 3.4.2. For each i ≥ 0 and x ∈ X , the inverse distribution has a density function

ρiΛ|x = dP i
Λ,x/dµΛ = ρiπLx

(λ)(λ)ρLx
(πLx

(λ)) almost everywhere in Λ, where ρLx
= dPLx

/dµLx
is

the Radon-Nikodym derivative.

Proof. The result is proved in Chapter 5.1.7.

We further denote the density function of X by ρX = dPX/µX and assume that ρiΛ|x(λ)ρX(x)

is a measurable function on the product probability space (Λ×X ,BΛ × BX ) for i ≥ 0.

Theorem 3.4.3. The EEI has a density function with respect to µΛ for i ≥ 0, denoted by ρ̄i =

dP̄ i/dµΛ. If for every real number ǫ > 0 there exists an positive integer N ∈ N such that for all

positive integers i, j > N , we have |ρiπLx
(λ)(λ)− ρjπLx

(λ)(λ)| < ǫρ0πLx
(λ)(λ) almost everywhere in

Λ and X where ρ0πLx
(λ)(λ) is the density of the initial uniform ansatz with respect to µΛ, then ρ̄i

converges to a density function ρ̄∞ on Λ under the L1 metric.

Proof. The result is proved in Chapter 5.1.8.

This theorem shows that the sequence of probability measures has a convergence if the iterated

ansatzes are Cauchy.

Let P̄∞(A) =
∫
ρ̄∞dµΛ for A ∈ BΛ. The limiting EEI P̄∞ is generally not guaranteed to be

a GFGD. We show a sufficient and necessary condition for P̄∞ ∈ PΛ,X in this iteration. Let G

denote the map that characterizes the iteration P̄ i+1 = G(P̄ i).

Theorem 3.4.4. A sufficient and necessary condition for P̃ ∈ PΛ,X is stated as follows:
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1. P̃ is absolutely continuous with respect to µΛ on (Λ,BΛ);

2. P̃ is a fixed point of map G, i.e. P̃ = G(P̃ );

3. The inverse distribution P̃Λ,x computed in the iterative approach in (3.9) and (3.10) as

Disintegration of a measure: P̃ (A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx,P̃
(ℓ), ∀A ∈ BΛ,

Compute inverse distributions:

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx
(ℓ) = P̃Λ,x(A), ∀A ∈ BΛ,

is not conditioned on x, i.e. P̃Λ,x = P̃Λ,x′ if x 6= x
′.

4. P̃ is absolutely continuous with respect to µℓ for ℓ ∈ Lx and x ∈ X .

The proof is given in Chapter 3.4.4. This result shows that, for P̄∞ to be a GFGD in PΛ,X , the

limiting EEI P̄∞ should be a fixed point of the iteration and the limiting inverse distributions for

individual x should be the same.

In the next section, we show the intermediate steps of this iteration approach with a detailed

example.

3.4.2 Intermediate Results by Monte Carlo Sampling

In the previous section, we propose an approach to approximate GFGDs via iteratively updating

the inverse distributions and the EEIs. In this section, Monte Carlo is implemented to estimate the

EEI in each iteration. We display some intermediate results in (3.1) with the generating distribution

of a from Example II. All the results in this section are shown in Figure 3.9.

In (3.1), x is the slope of a generalized contour {a ∈ Λ : a2 = y − a1x} given y. In this

case, the slope can be written as x = tan(θ) where θ is the angle between the contour and the

horizontal axis. Suppose there is a collection of i.i.d. random samples {Θj}nj=1 drawn from

((−π/2, π/2),B(−π/2,π/2), PΘ) where B(−π/2,π/2) is the Borel sigma algebra of (−π/2, π/2) and

PΘ is the uniform distribution on (−π/2, π/2). Clearly, the distribution PΘ induces a probability
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distribution of samples {Xj}nj=1 on (X ,BX , PX). In the following, we use {Xj}nj=1 and PX in the

iterative approach for illustration.

Recall that in the initial step we compute a collection of inverse distributions {P 0
Λ,Xj

}nj=1 using

the initial uniform ansatz. Then, we compute the EEI, now using Monte Carlo,

P̂ 0(A) =
1

n

n∑

j=1

P 0
Λ,Xj

(A).

Panels (a) and (b) are the results of two inverse distributions P 0
Λ,X1=−1.66 and P 0

Λ,X2=0.56 using the

initial uniform ansatz, respectively, and panel (c) is the result of the computed EEI P̂ 0. It can be

seen that the distributions along the generalized contours are uniform in P 0
Λ,X1=−1.66 and P 0

Λ,X2=0.56,

and the inverse distributions using the uniform ansatz strongly depend on different samples of

X . The EEI P̂ 0 is closer to the generating distribution PΛ (i.e. a truncated normal distribution),

compared to P 0
Λ,X1=−1.66 and P 0

Λ,X2=0.56. The step of computing the EEI removes the dependence

from X . In addition, the EEI computation reduces the effect of the uniform ansatz on individual

inverse distributions in some sense, which is illustrated later in the two inverse distributions in

panels (d) and (e).

Next, for each Xj (j = 1, . . . , n), we compute the distributions {P 1
ℓ } along the generalized

contours disintegrated from P̂ 0 as

P̂ 0(A) =

∫

ℓ∈πLXj
(A)

∫

λ∈π−1
LXj

(ℓ)∩A

dP 1
ℓ (λ)dPLXj

,P̂ 0(ℓ), ∀A ∈ BΛ,

where LXj
is the quotient space indexed by Xj . The distributions {P 1

ℓ } are used to define the

ansatz for the first iteration. The inverse distributions using the updated ansatz {P 1
ℓ } are in the

form of

P 1
Λ,Xj

(A) =

∫

ℓ∈πLXj
(A)

∫

λ∈π−1
LXj

(ℓ)∩A

dP 1
ℓ (λ)dPLXj

(ℓ),
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for j = 1, . . . , n, and we have the first updated EEI as

P̂ 1(A) =
1

n

n∑

j=1

P 1
Λ,Xj

(A), ∀A ∈ BΛ.

Panels (d) and (e) show the updated inverse distributions P 1
Λ|X1=−1.66 and P 1

Λ|X2=0.56 using the

updated ansatz from the last EEI P̂ 0, respectively. The step of computing the EEI reduces the effect

of the uniform ansatz on inverse distributions P 0
Λ|X1=−1.66 and P 0

Λ|X2=0.56 since the distributions

along the generalized contours in panels (d) and (e) are more curved towards truncated normal

distributions. Furthermore, the updated EEI P̂ 1 in panel (f) is closer to the generating distribution

PΛ than P̂ 0. Note that in general we do not expect the updated EEI to become closer to the

generating distribution.

Likewise, for i ≥ 0, j = 1 . . . , n, and any A ∈ BΛ,

Disintegration of the EEI: P̂ i(A) =

∫

ℓ∈πLXj
(A)

∫

λ∈π−1
LXj

(ℓ)∩A

dP i+1
ℓ (λ)dPLXj

,P̂ i(ℓ),

Update inverse distributions:

∫

ℓ∈πLXj
(A)

∫

λ∈π−1
LXj

(ℓ)∩A

dP i+1
ℓ (λ)dPLXj

(ℓ) = P i+1
Λ,Xj

(A),

Compute the next EEI: P̂ i+1(A) =
1

n

n∑

j=1

P i+1
Λ,Xj

(A).

Panels (g), (h) and (i) show the inverse distributions P 2
Λ,X1=−1.66, P

2
Λ,X2=0.56 and the EEI P̂ 2 after

2 iterations. Panels (j), (k) and (d) show the inverse distributions P 10
Λ,X1=−1.66, P

10
Λ,X2=0.56 and the

EEI P̂ 10 after 10 iterations. It can be seen that the ansatz is updated towards the distributions along

the generalized contours disitegrated according to the generating distribution after more iterations.

In Iteration 10, the fact that the two inverse distributions are almost the same as their EEI suggests

the convergence of the ansatz and the EEI iteration.
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Figure 3.9: The intermediate results in the iterations of the EEI and individual inverse distributions in

Example II of the simple linear model. Panels in each row display the results for two inverse distributions

P i
Λ,X1=−1.66 and P i

Λ,X2=0.56, and the EEI P̄ i after i = 0, 1, 2, 10 iterations. In each row, P i
Λ,X1=−1.66 and

P i
Λ,X2=0.56 are shown in the first and second columns, respectively, and P̄ i is shown in the last column.
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3.5 Examples of Linear and Nonlinear Models

The following linear model is considered

Model I : y = Qx(a) := a1x+ a2. (3.12)

This simple linear model is the same as (3.1) stated in Section 3.1.1, and we continue to explore

the converging results on Example I, II and III where a = [a1, a2]
⊤ ∈ Λ = [0, 1]2 is distributed, in

the data generating process, according to a uniform distribution, a truncated normal distribution,

and a distribution characterized by an Archimedean copula, respectively. Let n be the number of

generated samples of a, K be the number of generated samples of x, N2 be the number of grid

cells that partition the two dimensional domain Λ, N0 be the number of bins that partition the one

dimensional range of y, and S be the steps of iteration.

The density functions of the resulting EEIs after S iterations for Example I, II and III are shown

in Figure 3.10. The density functions of the predictions of the output distributions of y given

two different values of x are also displayed. The predictions are computed through the forward

computation (3.8) by using the EEIs after S iterations. The results on Example I are displayed

in panels (a)-(c) where panel (a) shows the EEI computed under the setting n = 10000, K =

1000, N2 = 1002, N0 = 50, S = 0, and panels (b)-(c) show the predictions of distributions of

y|x = ±10. The predictions are marked in red, and the observed distributions of y|x = ±10, i.e.

the distributions induced by the data generating distribution (uniform on Λ), are marked in blue.

An interesting result is that the EEI without any iteration is exactly the data generating distribution

since the uniform ansatz is the correct ansatz information. However, the EEI of Example II took

S = 40 iterations to converge under the setting n = 15000, K = 1000, N2 = 1002, N0 = 50, see

panel (d). Panels (e) and (f) depict the predictions of y|x = ±10 and the observed distributions.

The resulting EEI of Example III is shown in panel (g) computed under the setting n = 10000, K =

1000, N2 = 502, N0 = 25, S = 30. The predictions of y|x = ±2 are compared with the observed

distributions in panels (h) and (i). It can be seen that all the resulting EEIs in Example I, II and III
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are close to the corresponding generating distributions, and all predictions are almost the same to

the observed distributions. This suggests the EEIs converge and their limits are contained in PΛ,X .

One of the sources of the approximation error in the predictions is the error of approximating

each probability distribution in the algorithm by an empirical distribution of the data. Thus, better

results on the predictions can be obtained by increasing n.

Then, we consider a nonlinear model that consists of the following ordinary differential equa-

tions

Model II :
dS

dt
= −βS I

Ne

+ γI,

dI

dt
= βS

I

Ne

− γI.

This model is referred to as the Susceptible-Infectious-Susceptible (SIS) model in the field of

the epidemiology of infectious diseases, e.g. the common cold and influenza. In this model,

S(t) + I(t) = Ne is a constant at any time t ≥ 0 where S(t) is the number of the susceptible at

time t and I(t) is the number of the infectious at time t given the total size of a population Ne. The

transmission variable is a = [β, γ]⊤ where β is the average number of contacts that are sufficient

for disease transmission of a person per unit time and γ is the fraction of infected individuals who

recover and return to the susceptible class per unit time. Note that there is no entry or departure

including deaths in this population.

This model is equivalent to the following equation

dI

dt
= (β − γ)I − βI2/Ne.

Given I(0) = I0 > 0, the solution is a logistic function

I(t) =
(1− γ/β)Ne

1 + ((1− γ/β)Ne/I0 − 1)e−(β−γ)t
, (3.13)
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Figure 3.10: The resulting EEIs and predictions of distributions of y|x in Example I, II and III in Model I.

Panel (a) shows the resulting EEI of a in Example I. In panels (b) and (c), the predictions of distributions of

y|x = ±10 computed by using the EEI in panel (a) are depicted in red color, and the observed distributions

induced by the generating distribution are marked in blue. The same results on Example II are displayed in

panels (d)-(f) when x = ±10, and the same results on Example III are shown in panels (g)-(i) when x = ±2.
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when β 6= γ, and it is

I(t) =
1

1/I0 + βt/Ne

, (3.14)

when β = γ. Note that the function I(t) is continuous with respect to β, γ since the limit of (3.13)

as β → γ is the exact (3.14). Then, the solution of this model can be written as

I(a; t) =
(1− γ/β)Ne

1 + ((1− γ/β)Ne/I0 − 1)e−(β−γ)t
, (3.15)

for β, γ > 0. In this case, the SIP can be set up as y = Qt(a) = I(a; t) where a is random. In

this model, we let Ne = 1000, I0 = 1, and we investigate Example I, II and III in Section 3.1.1

with Λ = [0.01, 1]2. Samples of t are randomly drawn according to the uniform distribution on

t ∈ [0, 1]. It is important to note that the solution (3.15) is approximately a constant when t > 1,

and thus it provides little information to the SIP. This is not true in the simple linear model in

which each choice of x is equally likely important. In addition, due to the smoothness of the

solution (3.15) with respect to t, we can predict distributions of the output y for t > 1 by using the

resulting EEI computed under t ∈ [0, 1].

Figure 3.11 shows the resulting EEIs after S steps of iteration and two predictions of the output

distribution given two values t = 0.5 and t = 2. Panels (a)-(c) show the results on Example I under

the setting n = 10000, K = 1000, N2 = 1002, N0 = 25, S = 1. Similar to the results in the simple

linear model, the result after one step of iteration and the result after S = 20 iterations have no

noticeable difference, since the uniform ansatz is the true ansatz along the generalized contours.

The results on Example II under the setting n = 15000, K = 1000, N2 = 1002, N0 = 50, S = 5

are shown in panels (d)-(f). Panel (d) shows the resulting EEI after S=5 iterations, which is clearly

different from a truncated normal distribution. The predictions of the output in panels (e)-(f)

suggests that the resulting EEI is a GFGD. Similar results on Example III are shown on the last

row of Figure 3.11 under the setting n = 10000, K = 1000, N2 = 502, N0 = 25, S = 4.
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Figure 3.11: The resulting EEIs and predictions of the distributions of y|t = 0.5 and y|t = 2 in Example I,

II and III in Model II on Λ = [0.01, 1]2. Panel (a) shows the resulting EEI of a in Example I. In panels (b)

and (c), the predictions of distributions of y|t computed by using the EEI in panel (a) are depicted in red

color, and the observed distributions induced by the generating distribution are marked in blue. The same

results on Example II and Example III are displayed in panels (d)-(f) and panels (g)-(i), respectively.
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Chapter 4

Domain Recovery for Stochastic Inverse Problems

4.1 Stochastic Inverse Problems

4.1.1 A Simple Linear Example in Different Domains

Consider a simple linear model

y = a1x+ a2, (4.1)

where a = (a1, a2)
⊤ is a vector of unobservable random inputs on Λ, a compact set in R

2, x

is an observable deterministic input in R
1, and y is the scalar output in the solution space Y in

R
1. We assume that a has a probability distribution PΛ on (Λ,BΛ) where BΛ is the Borel sigma

algebra and PΛ is absolutely continuous with respect to the Lebesgue measure µΛ on (Λ,BΛ). In

this paper, PΛ is referred to as the generating (probability) distribution. The set Λ is referred to

as the domain of a, which is generally pre-specified by scientists and contains the support of the

generating distribution. The support of a probability distribution is defined topologically as the set

of all points λ in Λ for which every open neighborhood Nλ of λ has positive probability measure:

supp(PΛ) = {λ ∈ Λ : PΛ(Nλ) > 0 for every open neighborhood Nλ ∈ BΛ of λ}.

Note that this support is compact in Λ and can be used to the define the support of the Radon-

Nikodym density of PΛ with respect to µΛ. Given the generating distribution of a, we can obtain

a probability distribution of the output y for a given x through (4.1). In this case, the model (4.1)

characterizes a data-generating process, which is a simple example of stochastic forward problem

for a random input (SFP; Butler et al. (2014, 2015)). For illustration purpose, we consider the

following two examples:

(I) a has a uniform distribution supported on the unit square Λ = [0, 1]× [0, 1] = [0, 1]2;
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(II) a has a uniform distribution supported on a disk, with center at (0.5, 0.5) and radius 0.2.

The density functions of a in Example I and II are depicted in panels (a)-(b) of Figure 4.1, re-

spectively. For different values of x, the generating distribution of a induces different probability

Figure 4.1: A graphical display of the density functions of a (left) and induced probability density functions

(right) resulting from the stochastic forward problem examples (I) and (II). In panel (c)-(d), two induced

probability density functions for x = −1 (solid) and x = 1 (dashed) are shown for each example. Panel

(a) shows that a has a uniform distribution on the unit square and panel (c) shows two different induced

density functions of y according to the uniform distribution of a for two values of x. Panel (b) shows a has

a uniform distribution supported on a disk and its corresponding induced density functions of y are shown

in panel (d).

distributions of y, which is referred to as the output (probability) distribution. For instance, in

panels (c)-(d), the output probability density functions for x = −1 and x = 1 are depicted for

each example. While clearly different, the two output distributions in each panel share similarities

such as the shape-symmetry and the convexity of the support of the generating distribution of a.

Note that the output probability distributions are different between panels (c) and (d) because the

support of a in its domain in Example II is different from the support [0, 1]2 in Example I. In addi-

tion, the supports of the output distributions in each panel are uniquely determined by the support

of a. This characterizes an interesting case in practice. The set Λ represents the domain of all
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physically meaningful input values. However, often the values in a given situation are restricted to

a proper subset of Λ. For example, in an electron diffraction problem, Λ might consist of the set of

all apertures with Lipschitz continuous boundaries, while an experiment might limit to the set of

apertures that are ellipses. Thus, the observations of light are limited to the elliptical apertures.

The stochastic inverse problem (SIP; Butler et al. (2014, 2015)), as the inverse of the SFP, is the

problem of recovering a distribution of a given a probability distribution of the output y and a value

of x. A solution to the SIP is referred to as an inverse distribution of a, and it should induce the

output distribution of y for a given x in the SFP process. In general, there are multiple solutions to

an SIP since the map from the model inputs to the model output is not 1-1. In the previous work of

the SIP, their inverse distributions are computed on a pre-specified domain Λ and the support issue

of inverse distributions is not addressed. However, figuring out a proper domain of a is crucial to

characterizing the support of an inverse distribution, and more importantly, an improper domain

might result in a wrong solution. To illustrate, we consider the two examples depicted in panels

(a)-(b) of Figure 4.1. In Figure 4.2, panels (a) and (c) show two functions of a recovered from

Example I on two different domains given the output distribution for x = 1. The function in panel

(a) is recovered on the domain [0, 1]2 of a that is exactly the support of a, and thus it is a density

function of a solution to the SIP. However, the function in panel (c) is recovered on an improper

domain, i.e. a disk with center at (0.5, 0.5) and radius 0.2. In this case, the recovered function is

not a density of a or a solution to the SIP, since its support restricted to this domain is improper.

In later sections, we show feasible supports for computing inverse distributions. Panels (b) and (d)

show the density functions of inverse distribution recovered on Λ = [0, 1]2 and a disk with center

at (0.5, 0.5) and radius 0.4, respectively, which contain the actual support of a in Example II. Both

of the density functions are solutions to this SIP. Furthermore, as the domain grows, the distance

(e.g. the L1 distance) of the corresponding inverse distribution and the generating distribution of a

increases. Such “bias” is caused by the choice of domain, and the goal in this chapter is to find a

good domain of the unobservable inputs, by determining the support of the generating distribution,
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so that the “bias” can be reduced. In addition, these examples also demonstrate the non-uniqueness

of the SIP solution from the viewpoint of domains.

Figure 4.2: Plots of two inverse distributions computed on two different input domains from a distribution

of y|x = 1 in Examples I and II. In Example I, panel (a) shows the first inverse distribution recovered on

the exact domain of a which is equal to Λ = [0, 1]2, and panel (c) shows a function recovered on a disk

with center at (0.5, 0.5) and radius 0.2. The function in panel (c) is not a valid density since its domain is

improper. In Example II, panel (b) shows an inverse distribution recovered on Λ = [0, 1]2 and panel (d)

shows an inverse distribution recovered on a disk with center at (0.5, 0.5) and radius 0.4.

In the next section, we introduce the mathematical background of the SIP and its theoretical

solution with emphasis on the domain.

4.1.2 Solution of the SIP

Let Q be the measurable map induced by a mathematical model characterizing a physical

system, y = Q(x,a). In the SFP process, we observe the behavior of the output y of the model

for a given observable input x as unobservable input a is varied over its domain. In this case, the

model for a given x is denoted by the measurable mapQx(·) ≡ Q(x, ·) indexed by x. We consider
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a compact metric space Λ as the domain of a, and an absolutely continuous generating distribution

PΛ of a with respect to the “volume” (Lebesgue) measure µΛ on (Λ,BΛ). The support K0 of PΛ

is contained in Λ. The set of values of x is denoted by X in which each Qx is well-defined. For a

specific x, if we denote the range of y by Dx = Qx(Λ), then Qx is a measurable map from Λ to

Dx. In this paper, we assume that Qx is differentiable with respect to a, and the Jacobian of Qx

has full rank at every point in Λ. Then, the generating distribution PΛ on the domain Λ induces a

probability measure PDx
on the compact space Dx through the following forward computation

PDx
(C) = PΛ(Q

−1
x
(C)), (4.2)

for any event C in the Borel sigma algebra BDx
of Dx. Since the map Qx is not 1-1 in general, the

inverse map Q−1
x

is defined as

Q−1
x
(C) = {a ∈ Λ : Qx(a) ∈ C},

where Q−1
x

maps to a subset in BΛ. Note that PDx
is absolutely continuous with respect to the

following dominating measure

µDx
(C) = µΛ(Q

−1
x
(C)), ∀C ∈ BDx

,

which is induced by µΛ through the same forward computation. Similarly, the support of PDx
is

also propagated through (4.2). Suppose the map Qx for x ∈ X is a closed map in the sense that it

maps closed subsets of Λ to closed subsets of Dx, and Qx for x ∈ X is an open map in the sense

that it map open subsets of Λ to open subsets of Dx.

Theorem 4.1.1. The support of PDx
is Qx(K0).

Proof. This result is proved in Chapter 5.2.1.

The process of computing PDx
in (4.2) given PΛ characterizes an SFP, and an SIP is to find

the probability measure PΛ from the given PDx
. In solving an SIP, the decomposition of Λ and
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the disintegration of PΛ are involved. We first decompose the domain Λ based on the equivalence

relation defined by Q−1
x

. Let λ1, λ2 be two distinct points in Λ. For a specific x, λ1 and λ2 are

equivalent relative to x, denoted by λ1 ∼ λ2, in the sense that Qx(λ1) = Qx(λ2). In other

words, Q−1
x
(y) where y ∈ Dx represents an equivalence class of points in Λ indexed by y, that

is, Qx(λ) = y for any λ ∈ Q−1
x
(y). The set Q−1

x
(y) is called a generalized contour (Butler et al.,

2014, 2015), since it represents a locally smooth manifold in Λ. In addition, for y1, y2 ∈ Dx and

y1 6= y2, we have Q−1
x
(y1) ∩ Q−1

x
(y2) = ∅, by the assumption that Qx has full rank at every point

in Λ. Then, the domain Λ can be decomposed into a union of equivalence classes

Λ =
⋃

y∈Dx

Q−1
x
(y).

We denote the space of generalized contours in Λ by Lx, and each point in Lx corresponds to a

generalized contour in Λ. Specifically, for a point λ ∈ Λ, the generalized contour Q−1
x
(Qx(λ))

corresponds to a point in Lx, denoted by Eλ. Then, we further define a measurable map from Λ

to Lx as πLx
: Λ → Lx such that πLx

(λ) = Eλ for any λ ∈ Λ. In this case, the inverse of Qx

defines a one-to-one and onto map between Lx and Dx, and we obtain the probability measure on

Lx induced by the PDx
through

PLx
(EA) = PDx

(Qx(A)), ∀A ∈ BΛ,

where EA = πLx
(A) = {Eλ : λ ∈ A} denotes the event in the Borel sigma algebra BLx

of Lx.

Similarly, we can obtain a dominating measure µLx
of PLx

by

µLx
(EA) = µDx

(Qx(A)), ∀A ∈ BΛ.

In addition, the support of PLx
can also be uniquely determined by the support of PΛ through the

map πLx
under proper assumptions that are consistent with the map Qx. Supposing πLx

is a closed

and open map from Λ to Lx and πLx
is continuous on Λ, we have
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Corollary 4.1.1.1. The support of PLx
is πLx

(K0).

This result is a direct consequence of Theorem 4.1.1. In Butler et al. (2014), a manifold in Λ

indexing generalized contours is used to represent Lx, which is called a transverse parameteri-

zation. In the following, we use Lx to denote any such transverse parameterization in Λ. With a

proper transverse parameterization, the assumptions that πLx
is both closed and continuous can be

satisfied. In this case, the probability measure PLx
on (Lx,BLx

) is uniquely determined by PDx

and thus by PΛ, and any Borel set of generalized contours is distributed according to PLx
. Then,

the remaining problem is to describe how a is distributed along each generalized contour. Since

Qx is not 1-1 and yields multiple inverse probability measures on (Λ,BΛ), the disintegration theo-

rem is used to extend the solution on (Lx,BLx
) to (Λ,BΛ); see Butler et al. (2014). For any x, the

generating distribution PΛ on Λ can be disintegrated as

PΛ(A) =

∫

EA

∫

λ∈π−1
Lx

(ℓ)∩A

dPℓ(λ)dPLx
(ℓ), ∀A ∈ BΛ, (4.3)

where PLx
is the probability measure on (Lx,BLx

) determined by PDx
and {Pℓ}ℓ∈Lx

is a family

of conditional probability measures along generalized contours {π−1
Lx

(ℓ)}ℓ∈Lx
in Λ. Given PΛ, PLx

can be determined by PDx
through (4.2), and then {Pℓ}ℓ∈Lx

can be (uniquely) determined through

(4.3) µLx
-almost everywhere; see Chang and Pollard (1997).

The Disintegration Theorem (4.3) provides a way to obtain PΛ given {Pℓ}ℓ∈Lx
and PLx

. In

the SIP, the probability measure PDx
is given for a specific x, and thus the probability measure

PLx
can be obtained by PDx

. However, we have no information about {Pℓ}ℓ∈Lx
in general. One

possible approach, suggested by Butler et al. (2014), is to assume a specified measure along each

generalized contour, which is referred to as an ansatz. Specifically, the uniform ansatz is suggested

by those authors, which is defined as, for ℓ ∈ Lx,

P u
ℓ (·) =

1

µℓ(π
−1
Lx

(ℓ))
µℓ(·),
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where µℓ is an underlying measure along the generalized contour and it is computed by the disin-

tegration of µΛ as

µΛ(A) =

∫

EA

∫

λ∈π−1
Lx

(ℓ)∩A

dµℓ(λ)dµLx
(ℓ), ∀A ∈ BΛ.

By plugging in the uniform ansatz, we obtain an inverse distribution of a, denoted by PΛ,x. In

fact, different choices of {Pℓ}ℓ∈Lx
yield different inverse distributions of PΛ, and any inverse dis-

tribution is considered as a solution of the SIP in the sense that it induces the same PDx
through

the forward computation (4.2) as PΛ does. Among many choices of the ansatz, the uniform ansatz

is used since it is considered as a “non-preferential” choice determined by µΛ and the resulting

inverse distribution PΛ,x has the maximum entropy.

Depending on different choices of the ansatz, inverse distributions might have different sup-

ports. We first show that the support of the inverse distribution under any ansatz is determined by

Qx(K0).

Corollary 4.1.1.2. Let S denote the support of an inverse distribution under certain ansatz. Then,

we have Qx(C) = Qx(K0).

This is a direct result of Theorem 4.1.1, since any inverse distribution induces PDx
through

(4.2). This result also defines a feasible support for computing an inverse distribution. In particular,

we show that the inverse distribution PΛ,x using the uniform ansatz has a support in the following

forms.

Theorem 4.1.2. The support of PΛ,x is π−1
Lx

(πLx
(K0)). Furthermore, since the map between Lx

and Dx is one-to-one and onto, the support of PΛ,x is Q−1
x
(Qx(K0)).

Proof. This result is proved in Chapter 5.2.2.

Then, we have the following direct result on the support of any inverse distribution by combin-

ing Corollary 4.1.1.2 and Theorem 4.1.2.

Corollary 4.1.2.1. The support of any inverse distribution is a subset of Q−1
x
(Qx(K0)).
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This result shows that the support of PΛ,x is the maximum among all possible supports of

inverse distributions, including the generating distribution PΛ. We call this particular support the

inverse support of the SIP. In this paper, we use the inverse support to recover K0 in the absence of

information about distributions along generalized contours.

Figure 4.3: A graphical display of the equivalence classes, i.e., generalized contours (dashed), on the space

of a with uniform distribution when x = 1. Panel (a) shows the generalized contours on Λ1 = [0, 1]2 and

panel (b) shows them on Λ2 = {(a1, a2)⊤ : (a1 − 0.5)2 + (a2 − 0.5)2 ≤ 0.22}. Panel (c) shows the

generalized contours on Λ1 when the domain of a actually lies inside the disk.

We continue to consider Examples I and II in Section 4.1.1 for the simple linear model in

which we make explicit argument about the domain and support of a. The generalized contours

in each example are parallel lines (or segments) with a common x = 1, which are shown as

dashed lines in each panel of Figure 4.3. In Example I, a is uniformly distributed and supported

on the domain Λ = [0, 1]2. For a fixed x = 1, the generalized contour is a line segment in R
2

confined to the unit square; see the dashed lines in panel (a). In Example II, we consider the

domain Λ̃ = {(a1, a2)⊤ : (a1 − 0.5)2 + (a2 − 0.5)2 ≤ 0.22}, which is the exact support of a.

Then, the generalized contour is a line segment confined to the disk; see panel (b). Panels (a)

and (b) of Figure 4.4 show the unique probability distributions PLx
for Examples I and II when

x = 1, respectively. In addition, the corresponding inverse distributions under the uniform ansatz

are shown in panels (a) and (b) of Figure 4.5. It can be seen that the support of PLx
is determined

by the support of the generating distribution and the domain, and the inverse distributions under the
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uniform ansatz exactly recovers the generating distributions when the domain is chosen according

to the support of the generating distribution.

Furthermore, we consider an interesting scenario, namely Example IIa. Unlike Example II,

even though a lies uniformly inside the disk, we choose a more conservative choice of domain, i.e.

Λ. Here, Λ is considered as the space of scientifically admissible values of a, and the support Λ̃ is

an unknown subset of Λ in the SIP. As depicted in panel (c) of Figure 4.3, the generalized contours

are similar to those in Example I. However, the probability distribution PLx
shown in panel (c) of

Figure 4.4 is identical to the one in Example II. This is due to the fact that the output distribution

of y|x = 1 and its support remain the same in both Examples II and IIa. The corresponding inverse

distribution under the uniform ansatz is shown in panel (c) of Figure 4.5, and it is quite different

from the inverse distribution in Example II. The domain of the inverse distribution in Example IIa

is much larger than that of the inverse distribution in Example II. This suggests that the choice of

domain is crucial to solving the SIP, which leads to the discussion of domain recovery in the next

section.

Figure 4.4: A graphical display of the density functions of PLx
(red) induced by PDx

on the set of the

equivalence classes Lx (blue) when x = 1. Panels (a) and (b) show the unique PLx
for Examples I and II,

respectively. Panel (c) shows PLx
in Example IIa on the unit square [0, 1]2 with the actual domain of a, a

yellow colored area.
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Figure 4.5: A graphical display of the inverse distributions PΛ,x computed through (4.3) on the domain of

a under the uniform ansatz for Examples I, II and IIa. Panels (a) and (b) show the inverse distributions for

Examples I and II, respectively. Panel (c) shows the inverse distribution for Example IIa computed on [0, 1]2

whose domain contains the actual support of a, i.e. the region inside the blue colored circle.

4.2 Feasible Supports in the SIP

In the previous work of the SIP (Butler et al., 2015), the domain Λ is given by the prior knowl-

edge which is suggested by scientists in solving the inverse problems. However, this might cause

bias and give misleading information because the domain might be much larger than the actual

support of PΛ.

In this section, we introduce some interesting aspects regarding the support in SIPs and propose

an approach to recover the actual support. Consider a general physical system described by a map,

y = Qx(a), where a = (a1, a2, . . . , ad)
⊤ ∈ Λ ⊂ R

d is an unobservable random input reflecting the

physical state of the system and x = (x1, x2, . . . , xd)
⊤ ∈ X ⊂ R

d is an observable deterministic

input. In addition, Λ is assumed to be compact and simply connected. In order to obtain the

continuity of inverse distributions, we further assume that Q−1
x

is differentiable and that Qx and

the boundary of Λ, denoted by ∂Λ, satisfy certain smoothness assumptions; see Yang (2018) for

more details. These assumptions are also satisfied in Section 4.3 for linear models. We provide

more details when theoretical properties are established.

4.2.1 Feasible Generating Distributions

Recall that, a SFP describes a data-generating process; that is, given a probability distribution

PΛ, dominated by the Lebesgue measure µΛ in R
d, of a ∈ Λ and a map Qx, a unique probability
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distribution PDx
is induced. However, for any x ∈ X , various choices of PΛ may induce the same

PDx
which means a SIP may yield multiple solutions, e.g. of (4.2). In Chapter 3, an equivalence

class of locally feasible solutions indexed by each given x ∈ X and PDx
is defined as

PΛ,x := {P̃Λ ≪ µΛ : P̃Λ(A) =

∫

πLx
(A)

∫

λ∈π−1
Lx

(ℓ)∩A

dPℓ(λ)dPLx
(ℓ),

PLx
(EA) = PDx

(Qx(A)), ∀A ∈ BΛ},

where µΛ is the Lebesgue measure. Clearly, each inverse distribution PΛ,x is contained in PΛ,x and

the generating distribution PΛ is contained in PΛ,x for any x ∈ X . Then, a solution for all x ∈ X

simultaneously is to consider the intersection of PΛ,x over all possible x. Then we have

PΛ,X =
⋂

x∈X

PΛ,x, (4.4)

which is nonempty since it contains the generating distribution PΛ. All elements in PΛ,X are

equivalent distributions of a in the sense that they induce the same family of output distributions

{PDx
}x∈X as PΛ does. The family PΛ,X is a convex set.

The supports of distributions in this family are of concern in this paper. Note that distributions

in PΛ,X may have different supports. We propose a maximal feasible support that contains all

possible feasible supports in PΛ,X .

4.2.2 Feasible Support and Inverse Support

In this section, we focus on the support of inverse distributions and address the recoverability

issue of the supports in PΛ,X . For any P̃Λ ∈ PΛ,X , the support of P̃Λ is denoted by

K0(P̃Λ) = {λ ∈ Λ : P̃Λ(Nλ) > 0 for every open neighborhood Nλ ∈ BΛ of λ}.

In the rest of this paper, K0(P̃Λ) is referred to as the feasible forward support for P̃Λ. Note that, for

a given x, the image Qx(K0(P̃Λ)) of K0(P̃Λ), is unique for any P̃Λ ∈ PΛ,X because Qx(K0(P̃Λ))
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is the support of PDx
by (4.2) and Theorem 4.1.1. Unless it is important to note P̃Λ, we use K0 for

simplicity. Back to PΛ,X , we can discuss practically those P̃Λ ∈ PΛ,X in SFPs where the support

boundary has measure zero µΛ(∂K0(P̃Λ)) = 0.

Let Bx = Qx(K0), which is an element in BDx
. Then, for any x ∈ X , the collection of

pre-images can be expressed as

B
−1
x

:= {C ∈ BΛ : Qx(C) = Bx},

which is well defined for any given P̃Λ ∈ PΛ,X from the definition of K0 and Bx. B−1
x

is referred to

as the locally feasible support family for a given Bx and it is also the set that contains all possible

supports of locally feasible distributions in PΛ,x.

Next, we adopt a similar approach as (4.4) by considering the intersection of B
−1
x

over all

x ∈ X . Define

B
−1
X :=

⋂

x∈X

B
−1
x
. (4.5)

Any element (i.e., a set) in B
−1
X supports all GFGDs in PΛ,X , and hence is referred to as the globally

feasible support. In addition, B−1
X is called the globally feasible support family. It can be seen that,

for any P̃Λ ∈ PΛ,X , K0(P̃Λ) belongs to B
−1
X .

Let Λx be the support of PΛ,x under the uniform ansatz, and specifically, Λx = Q−1
x
(Qx(K0)).

It is a direct consequence from Corollary 4.1.2.1 that K0 ⊂ Λx, and the inverse support is essen-

tially the maximal element in B
−1
x

.

Theorem 4.2.1. For any C ∈ B
−1
x

, we have C ⊂ Λx ∈ B
−1
x

.

Since Λx is the maximal in the equivalence class, it is independent of the choice of P̃Λ and

unique. When we have no a priori knowledge regarding the inverse support, we choose the maxi-

mal element Λx in B
−1
x

to prevent potential information loss, i.e. to avoid assigning zero probability

to events with nonzero probability. This is fairly important in some cases, e.g. when we try to lo-

cate certain region in which a hurricane occurs. Regions have the chance to encounter the hurricane

should not be avoided and clear regions should not be counted in the forecast. Any other choices
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in B
−1
x

require additional assumptions about the geometry that is not only determined by Qx, Λ, or

PDx
.

Returning to Example IIa as depicted in the panel (c) of Figure 4.5, a feasible forward support

K0 in the SFP is shown as the disk, and the corresponding inverse support Λx, i.e., the maximal

element, is shown as a band or parallel slab. Figure 4.6 shows two elements in B
−1
x

, different from

K0 and Λx, that yield the same range Qx(K0) of y.

Figure 4.6: Two different elements C1, C2 in B
−1
x are shown, where C1 is a disk different from K0 and C2

is a much smaller non-convex domain that does not preserve the shape of K0. These two elements are both

contained in Λx.

4.2.3 Recoverable Support

Since K0 ⊂ Λx for any x ∈ X , we consider the intersection of the collection of all maximal

elements, i.e. {Λx : x ∈ X}, denoted by

KX :=
⋂

x∈X

Λx,

when X is countable or KX is equal to the intersection under a countable subsequence. We further

denote the collection of all intersections of the maximal supports {Λx}x∈X by RX and it is referred

to as the family of recoverable supports in the SIP algorithm. In the next theorem, we first show

KX is the maximal element in B
−1
X .

Theorem 4.2.2. For any P̃Λ ∈ PΛ,X and any C ∈ B
−1
X , we have C ⊂ KX ∈ B

−1
X .
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Proof. See Chapter 5.2.3.

It can be further seen that, for a given SFP or, more generally, for any GFGD, KX is unique

and independent of P̃Λ, same to Λx. In practice, it is also attainable by intersecting all Λx for all

x ∈ X . In addition, KX is also a minimax in the sense that it is the smallest recoverable support

among all recoverable supports in RX and thus KX is referred to as the minimax support in the

SIP. Our research goal focuses on recovering KX instead of K0 which depends on the choice of the

GFGD.

Continue to consider Example IIa in panel (c) of Figure 4.5. The feasible forward support is

K0 = {(a1, a2)⊤ ∈ Λ : (a1 − 0.5)2 + (a2 − 0.5)2 ≤ 0.22},

where a has a uniform distribution on the disk; see panel (a) of Figure 4.7. When x = (1, 1)⊤,

the corresponding inverse support Λx is a band as shown in panel (b) of Figure 4.7. In panel (c),

we show the the intersection of inverse supports from three different values of x. The shape of

the intersection is a circumscribed polygon of K0. As the number of values of x increases and the

collection of those values is dense in X , the resulting intersection of inverse supports will converge

to the exact K0. That is KX is the same as K0. Next, we consider a new example, namely Example

Figure 4.7: A graphical display of the feasible forward support and an inverse support in Example IIa. (a)

The feasible forward support K0, (b) the inverse inverse support when x = (1, 1)⊤, and (c) an intersection

of three different inverse supports corresponding to three distinct values of x. Note that, all inverse supports

(the yellow bands) contain the feasible original support K0, and so is their intersection.
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Figure 4.8: A graphical display of the feasible forward support and an inverse support in Example III. (a)

The feasible forward support K0, (b) the inverse inverse support when x = (1, 1)⊤, and (c) an intersection

of three different inverse supports corresponding to three distinct values of x.

Figure 4.9: A graphical display of the feasible forward support and an inverse support in Example IV. (a)

A U-shaped feasible forward support K0, (b) Kconv, the convex hull of K0, (c) the inverse inverse support

when x = (1, 1)⊤, (d) an intersection of three different inverse supports corresponding to three distinct

values of x.
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III, in which a has a uniform distribution on an annulus

K0 = {(a1, a2)⊤ ∈ Λ : 0.12 ≤ (a1 − 0.5)2 + (a2 − 0.5)2 ≤ 0.22}

where Λ = [0, 1]2. In addition, Qx is the same simple linear model (4.1). In Figure 4.8, the

feasible forward support is shown in panel (a). Interestingly, when x = (1, 1)⊤, the inverse support

Λx remains the same compared to that of Example IIa. In addition, as shown in panel (c), the

intersection of three supports remains the shape of a polygon, which is circumscribed around the

outer disk of K0. However, different lesson is learned here. As the number of x-values increases,

the intersection, always containing K0, will no longer converge to K0. Consequently, the smallest

recoverable support KX is different from K0.

Finally, we consider a more challenging example, Example IV, in which a has a uniform dis-

tribution on a U-shaped K0 inside Λ = [0, 1]2; see panel (a) of Figure 4.9. Again, we consider the

simple linear model as described in (4.1). Similar figures, showing the inverse support Λx for a

given x = (1, 1)⊤ and the intersection of supports corresponding to three x-values, are displayed

in panels (c) and (d), respectively. The shape of the intersection is also a circumscribed polygon;

in fact, as the number of x-values increases, the intersection converges to the convex hull of K0,

denoted by Kconv; see panel (b) of Figure 4.9. In fact, for general linear models, the smallest re-

coverable support KX is exactly the convex hull of any feasible forward support of P̃Λ ∈ PΛ,X . We

prove this result in Section 4.3.

In summary, the importance of recovering KX is that Λx may be much larger than the minimax

support KX ⊃ K0 and thus having several negative consequences including assigning nonzero

probability to events outside the feasible forward support which should have zero probability. A

larger support might contain events with zero probability in the real problem which can be mis-

leading and means we spend effort to discover useless information in the sense of probabilities,

see Figure 4.5 panel (b) and (c). However, we observe that Λx always contains any K0 ∈ B
−1
X for

any value of x and describes some different geometry of the feasible forward support for different

x. Then it is natural to use the intersection of inverse supports to find the minimax support.

91



4.2.4 Recoverable Support in Nonlinear Examples

In the previous examples, we consider a simple linear model with various choices of feasible

forward support K0. In this section, some examples are shown to describe KX in nonlinear models.

We consider two examples, namely, Example V and Example Va. In both examples, a =

(a1, a2)
⊤ ∈ Λ = [0, 1]2 is uniformly distributed on

K0 = {(a1, a2)⊤ : (a1 − 0.5)2 + (a2 − 0.5)2 ≤ 0.22}.

Two different nonlinear models are considered

Example V : y = Qx(a) := (a1 − 0.5)2x+ (a2 − 0.5)2, (4.6)

Example Va : y = Qx(a) := (a1 − 0.3)2x+ (a2 − 0.5)2, (4.7)

where x ∈ R. A small change of the center is made in Example V to obtain the new Example

Va. The nonlinear equations of them are similar but not the results of their inverse supports.

In Figure 4.10, panel (a) shows the intersection of inverse supports Λx for three values of x in

Example V and panel (b) shows the limiting intersection of inverse supports for many x. Even

though each inverse support might not be a convex support, KX is still a convex set. However,

in Figure 4.11, some inverse supports Λx for different values of x in Example Va are shown in

panel (a) and the limiting intersection of inverse supports is shown in panel (b), where KX is

approximately two disks containing K0. This is an interesting scenario that shows a convex K0

might no longer be identifiable in nonlinear models.

In nonlinear models, the minimax support might not be a straightforward support that can

identify the feasible forward support K0 in a region and can be rather complicated, e.g. Example

Va, but it is still useful in the sense that it significantly reduces the size of the domain and thus has

a better approximation of the inverse distributions as in linear models. In this paper, we focus on

the linear models and show some properties of the inverse distributions computed on the recovered
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Figure 4.10: With regard to Example V, three different inverse supports indexed by three different values

of x are displayed in panel (a) in different shading and panel (b) shows the limiting intersection, KX , of

inverse supports.

Figure 4.11: With regard to Example Va, three different inverse supports indexed by three different values

of x are displayed in panel (a) in different shading and panel (b) shows the limiting intersection, KX , of

inverse supports.

support in the following section. Some of the properties can actually be generalized to nonlinear

models.

4.3 Linear Models

4.3.1 Geometry of Inverse Supports in General Linear Models

In this section, we explore some properties of the inverse support and inverse distributions

computed on the recoverable support and we show some results on the convergence of inverse

supports in linear models. The main result is that the intersection of supports, Λx, over x ∈ X , i.e.
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KX , is the convex hull of the support K0(P̃Λ) for any P̃Λ ∈ PΛ,X when X = R
d, see Theorem 4.3.4.

In particular, the intersection is denoted by Kconv in this case.

We first review some examples of the inverse support in the previous discussion. In Examples

I and II, Λ = K0 for all x and the shape of the inverse support Λx is the same as K0; see panels

(a)-(b) of Figure 4.5. However, in Example IIa, when Λ ⊃ K0, an interesting result is observed.

Here, Λx is a parallel slab, restricted to Λ = [0, 1]2; see panel (c) of Figure 4.5. In the following

theorem, we establish that Λx can be written as an intersection of a parallel slab and the domain Λ.

Consider a general linear model expressed as

y = Qx(a) = a · x = a1x1 + a2x2 + · · ·+ adxd, (4.8)

where a = (a1, a2, . . . , ad)
⊤ ∈ Λ ⊂ R

d is the unobservable input with a generating distribution

in PΛ,X and x = (x1, x2, . . . , xd)
⊤ ∈ X ⊂ R

d is the observable deterministic input. We use the

inverse support Λx under the uniform ansatz for the rest of the paper.

Theorem 4.3.1. Consider the general linear model in (4.8), Λx can be uniquely expressed as

Λx = Λ ∩ Sc1,c2 ,

where c1, c2 are some constants, and Sc1,c2 = {a ∈ R
d : a · x ∈ [c1, c2]} is a parallel slab in R

d.

Proof. See Chapter 5.2.4.

The shape of Λx is referred to as a generalized parallel slab. Here, a · x = c1 or a · x = c2

characterize the boundary of the support K0, and are referred to as the supporting hyperplanes.

Note that each hyperplane yields two open half-spaces. Except for the boundary, the support K0

lies in exactly one half-space. In addition, K0 has some boundary points on the hyperplane.

It is shown in Section 4.2 that K0 is a subset of Λx and thus

K0 ⊂ KX =
⋂

x∈X

Λx.
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Returning to Example IIa in Figure 4.12, three generalized parallel slabs, corresponding to x =

tan(π
4
), tan(−π

6
), tan(5π

12
), are depicted. It can be seen that K0 lies inside the intersection, and is

tangent to all supporting hyperplanes. It can be seen that the intersection provides a reasonable

approximation to the support K0. As shown in Theorem 4.3.4, such intersection converges Kconv

and in this particular case K0 = Kconv. The main reason is that the underlying support K0 is convex

and compact, and has smooth boundary.

Figure 4.12: Three different density functions of PΛ,x indexed by three different values of x displayed in

different shading. The support Λx of all three inverses contain the support K0. The impact of the uniform

ansatz on the inverse distribution is different in three different geometries.

In summary, when K0 is convex, it is recovered as the limit of the intersection of generalized

parallel slabs corresponding to different x ∈ R
d values because K0 = Kconv is recoverable. How-

ever, when K0 is non-convex, it is no longer recoverable; instead, the convex hull of K0, i.e. Kconv,

is recoverable that is of interest.

4.3.2 Inverse Distribution Computed on the Recoverable Support

We show that the inverse distribution computed on the convex hull Kconv in linear models is,

in some sense, a “minimax” solution. To formulate this problem, let gconv denote the density

function of the inverse distribution computed on Kconv and gc denote the density function of the

inverse distribution on any convex support that contains K0 and Hc denote the class of such gc.

g0 refers to the density function of the GFGDs in Section 4.2. Suppose we compute the inverse
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distribution based on the observed value of x and the corresponding map Qx. If g0 is unimodal,

by the disintegration theorem on the domain Λ ⊃ Kconv, we have

gconv = arg inf
gc∈Hc

∫

Lx

sup
π−1
Lx

(ℓ)∩Λ

(gc − g0)dµLx
(ℓ),

since gconv on each equivalence class ℓ ∈ Lx is the minimum of

sup
π−1
Lx

(ℓ)∩Λ

(gc − g0)

of all gc ∈ Hc in the disintegration. This is because gc is uniform on each π−1
Lx

(ℓ) ∩ Λ while g0 is

unimodal.

If g0 is a general density function, then we have

gconv = arg inf
gc∈Hc

∫

Lx

∫

λ∈π−1
Lx

(ℓ)∩Kconv

(gc(λ)− g0(λ))dµℓ(λ)dµLx
(ℓ)

since ∫

λ∈π−1
Lx

(ℓ)∩Λ

(gc(λ)− g0(λ))dµℓ(λ) = 0

for each ℓ and gc by the disintegration.

This shows the inverse distribution on the convex hull is the most “concentrated” distribution

in the class. In the next section, we show each individual inverse distribution on the convex hull

along with the the experimental expectation of all inverse distributions can provide a fairly adequate

approximation to the region of high probability of the SIP due to the “concentration” property here.

4.3.3 Experimental Expectation of Inverse Distributions on the Recoverable

Support

The experimental expectation is defined as the expectation of inverse distributions over x, see

Section 3.3 of Chapter 3. In particular, when X is random on (X ,BDX
, PX ), the experimental
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expectation is defined as

P̄ (A) =

∫

x∈X

PΛ,x(A)fX (x)dµX (x), ∀A ∈ BΛ,

where PΛ,x is an inverse distribution computed on Λ, fX is the density function of PX with respect

to the Lebesgue measure µX on X . Supposing there is a collection of identical and independent

samples of X , denoted by {Xi}∞i=1, the intersection of inverse supports is defined as

Λn :=
n⋂

i=1

ΛXi
,

where ΛXi
is the inverse support of the inverse distribution PΛ,Xi

, and the experimental expectation

is defined as

P̄ (A; Λn) :=

∫

x∈X

PΛn,x(A)fX (x)dµX (x),

where PΛn,x is the inverse distribution computed on the domain Λn.

Now we investigate the convergence of inverse distributions and the experimental expectation

assuming the convergence of inverse support (see Theorem 4.3.4), i.e. Λn → Kconv pointwisely

as n → ∞ with probability 1. We show the individual inverse distributions converge almost

surely, PΛn,x → PKconv ,x with probability 1, where x ∈ X = R
d. In addition, the convergence of

P̄ (A; Λn) is implied by the convergence of inverse distributions.

Theorem 4.3.2. Supposing Λn → Kconv almost surely in the generalized linear model (4.8) with

a generating distribution in PΛ,X , we have PΛn,x → PKconv ,x with probability 1.

Proof. See Chapter 5.2.5.

Theorem 4.3.3. Following Theorem 4.3.2, P̄ (·; Λn) → P̄ (·;Kconv) almost surely. Equivalently,

with probability 1, P̄ (A; Λn) → P̄ (A;Kconv) for any A ∈ BKconv .

Proof. See Chapter 5.2.6.
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We continue to explore Example IV about Kconv and the experimental expectation in this case,

see Figure 4.13. Panel (a) shows the experimental expectation of inverses P̄ (·; Λ) without recov-

ering the domain, that is, on the pre-specified domain Λ, and panel (b) shows the the experimental

expectation of inverses P̄ (·;Kconv) after recovering the domain Kconv.

Figure 4.13: A graphical display of P̄ (·; Λ) and P̄ (·;Kconv) of Example IV in panels (a)-(b), respectively.

4.3.4 General Results of Convergence

In this section, we discuss the convergence of the intersection of the inverse support given a

family of x values. We assume the domain Λ is a simply connected convex compact set with

non-empty interior and µΛ(∂Λ) = 0. In the model (4.8), we assume a is on the probability space

(Λ,BΛ, PΛ) with the support K0 of PΛ and y in (Dx,BDx
, PDx

). Let {Xi}∞i=1 be a collection of

independent random points distributed according to PX and let ΛXi
denote the inverse support

computed according to the point Xi.

ΛXi
describes the following procedure: once Xi = xi is sampled, we observeQxi

and compute

the inverse support ΛXi=xi
. Therefore, ΛXi

is also a random variable only due to the randomness

when we sample Xi. Since we are interested in a good approximation of K0 by the sequence

{
n⋂

i=1

ΛXi
}∞n=1, we first show that the geometry of the limit is the convex hull of K0, namely Kconv.

Note that it is equivalent to compute
⋂

x∈X

Λx because the geometry only depends on the values as

we discuss earlier.
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Theorem 4.3.4. Suppose there is a collection {xi}∞i=1 which is a dense subset of X = R
d. Then,

∞⋂
i=1

Λxi
is the convex hull of K0.

Proof. See Chapter 5.2.7.

Since the support of a GFGD is unknown, we replace it by its convex hull in practice. Accord-

ingly, we assume the support K0 is a convex compact set with non-empty interior for the rest of the

paper unless otherwise specified. As for the case of generalized parallel slabs {
n⋂

i=1

ΛXi
}∞n=1, we use

the Nikodym metric to measure the distance between two sets, defined as dN(U, V ) = µΛ(U △V )

where U, V ∈ Cd := {the set of convex bodies (i.e., of compact convex subsets with nonempty

interior) in R
d}. In general measure spaces, dN is a pseudometric and it becomes a metric in Cd

under the Lebesgue measure.

Note that Theorem 4.3.4 yields the following consequence when a sequence of samples is

drawn and ∂Λ is of some general boundary class.

Corollary 4.3.4.1. Suppose a collection {xi}∞i=1 is drawn from a dense subset of X = Rd such

that Fn = 1
n

∑n
i=1 I(xi ≤ x) → F (x) where I is the indicator function and F has a positive

continuous density w.r.t µX . Then dN

(
n⋂

i=1

Λxi
,K0

)
→ 0 as n→ ∞.

4.3.5 Convergence Rate of Inverse Supports in the Plane

For future work, we rewrite the model in 4.1 as

y = Qθ(a) = a1 tan θ + a2,

where Θ is a random variable on the probability space (I0 = (−π
2
, π
2
),BI0 , PΘ). Here, PΘ has

a positive continuous density f with respect to the Lebesgue measure on (I0,BI0) and θ is a

realization of Θ. Let Θ1,Θ2, . . . , be a sequence of independent random points distributed ac-

cording to PΘ and let ΛΘi
denote the inverse support computed according to the point Θi. Then,

Λθ := {λ ∈ K0 : Qθ(λ) ∈ Qθ(Λ)} where K0 is the support of a with non-empty interior which is
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contained in Λ. Λθ is essentially a shape of generalized parallel slabs and θ is the angle of slope

characterized by the horizontal axis.

Corollary 4.3.4.2. Suppose there is a collection {θi}∞i=1 which is a dense subset of I0 = (−π
2
, π
2
).

Then,
∞⋂
i=1

Λθi is the convex hull of K0.

Proof. This is equivalent to {tan(θi)}∞i=1 being a dense subset in the image space since it is a

continuous mapping.

We measure the distance under some boundary conditions in this section and explore the con-

vergence rate under specific conditions.

Condition (PL). ∂(K0) of K0 is a (δ,m0)-Lipschitz domain if for each z ∈ ∂(K0)\m0 there

exist a neighborhood (open ball) B(z, r) where r > 0 and a Lipschitz function Az : R → R with

slope ||A′
z||∞ ≤ δ and A′′

z continuous and bounded from below by τ > 0 such that, after a suitable

rotation, K0 ∩B(z, r) = {(x, y) ∈ B(z, r) : y ≥ Az(x)}. δ > 0 and m0 is a countable measurable

set w.r.t µΛ.

Condition (S2). The boundary curve ∂(K0) of K0 is of class C2 and has positive curvature

everywhere.

Lipschitz boundary basically means that it is locally some sub-graph of a Lipschitz function

w.r.t some choice of orthogonal coordinates. Specifically, for each z ∈ ∂(K0), there exists a r > 0

and certain rotation O such that K0∩B(z, r) is the same as z+O(P ) where P = {(x, y) ∈ B(z, r) :

y ≥ Az(x)} for some Lipschitz functionAz. Condition (PL) describes piecewise Lipschitz smooth

curves with a countable set of discontinuities in the first and second derivatives (nowhere dense).

In condition (S2), let rK0(η) denote the radius curvature (reciprocal curvature) of ∂K0 at point

x(η) with the angle η ∈ [0, 2π) which is characterized by the outward unit normal vector from

the positive direction of horizontal axis. For convenience, we extend Θ and the its density f

periodically by f(θ + π) = f(θ) and Λ(⊃ K0) is sufficiently large.

SCHNEIDER Schneider (1988) shows the convergence of random inscribed polygons to the

compact convex set under (S2). Basically, random parallel slabs have the same behavior under this
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condition. Thus, some of the theorems and proofs are useful to our application. Before the main

theorem, we introduce a lemma which is presented in Schneider (1988) and Drobot et al. (1982).

Lemma 4.3.5. Let {Yi}∞i=1 be a sequence of i.i.d. random variables, uniformly distributed in [0, 1].

For each n, let Y1(n), Y2(n), . . . , Yn(n) be the non-decreasing order statistics of Y1, Y2, . . . , Yn.

Define Uj(n) = Yj+i(n) − Yj(n) j = 1, 2, . . . , n, where Yn+1(n) = 1 + Y1(n). Let g be a

continuous real valued function on [0, 1] and let p > 1. Then with probability 1

lim
n→∞

np−1

n∑

j=1

g(Yj(n))(Uj(n))
p = Γ(p+ 1)

∫ 1

0

g(x)dx.

Note that Yn+1(n) = 1 + Y1(n) is defined since we are dealing with closed curves.

Theorem 4.3.6. Suppose the sequence of i.i.d. random points {Θi}∞i=1 in statements 1-3 is dis-

tributed according to uniform distribution and f in statement 4 is positive continuous on [−π
2
, π
2
],

1. dN

(
n⋂

i=1

ΛΘi
,K0

)
→ 0 a.s. in general;

2. dN

(
n⋂

i=1

ΛΘi
,K0

)
= o(1/nβ), β < 2 a.s. under (PL);

3. dN

(
n⋂

i=1

ΛΘi
,K0

)
= op((log(n))

γ/n2), γ ≥ 3 and dN(
n⋂

i=1

ΛΘi
= o((log(n))γ/n2), γ > 3

a.s. under (PL);

4. lim
n→∞

n2dN

(
n⋂

i=1

ΛΘi
,K0

)
=

1

4

∫

(−π
2
,π
2
)

r2K0
(θ + π

2
) + r2K0

(θ + 3π
2
)

f 2(θ)
dθ a.s. under (S2).

Proof. See Chapter 5.2.8.

This theorem shows that the intersection always converges to the convex support in any general

boundary condition. Under condition (PL) the convergence rate is exactly slower than o(1/n2) and

it can be rewritten as the form o((log(n))3/n2). The parameters β and γ depend on the geometry

and the set of discontinuities. The consequence rate reaches o(1/n2) when the boundary is of class

C2 (S2).
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Chapter 5

Technical Details

5.1 Proofs of Lemmas and Theorems in Chapter 3

5.1.1 Proof of Theorem 3.1.1

In this proof, we use the definition of differential entropy,

h = −
∫

S

f log(f)dµ,

for a density f and the corresponding support is S = supp(f) as the closure of the set of points in

the domain of f where f is positive. Note that the relative entropy defined as

D(f ||g) :=
∫

S

f log

(
f

g

)
dµ,

is always non-negative where f, g are densities of continuous distributions (≪ µ) and S =

supp(f) ⊂ supp(g). Let uℓ denote the uniform ansatz on the generalized contour π−1
Lx

(ℓ), and

according to the definition of the uniform ansatz,

uℓ =
1

µℓ(π
−1
Lx

(ℓ))
,

for ℓ ∈ Lx.

Lemma 5.1.1. The absolute continuity of PΛ with respect to µΛ induces the absolute continuity of

PDx
with respect to µDx

. In addition, the absolute continuity of PDx
with respect to µDx

induces

the absolute continuity of PLx
with respect to µLx

.

Proof. This result has been proved by Butler et al. (2014).
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PLx
is absolutely continuous to with respect to µLx

, and it has a Radon-Nikodym density

ρLx
= dPLx

/dµLx
. Since each P c

ℓ in Pc
x

is absolutely continuous with respect to µℓ, it has a

Radon-Nikodym density ρcℓ = dP c
ℓ /dµℓ. Then the inverse distribution can be calculated as

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

ρcℓ(λ)ρLx
(ℓ)dµℓ(λ)dµLx

(ℓ) = P c
Λ|x(A), A ∈ BΛ, (5.1)

using the densities, and we only need to show the following

Pu
x
= argmax

Px∈Pc
x

−
∫

ℓ∈EΛ

∫

λ∈π−1
Lx

(ℓ)

dP c
ℓ

dµℓ

(λ)ρLx
(ℓ) log

(
dP c

ℓ

dµℓ

(λ)ρLx
(ℓ)

)
dµℓ(λ)dµLx

(ℓ).

By incorporating the non-negative property of the relative entropy and the disintegration in

(5.1), we have

D(ρℓρLx
||uℓρLx

) =

∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(l) log

(
ρℓ(λ)ρLx

(ℓ)

uℓ(λ)ρLx
(ℓ)

)
dµℓ(λ)dµLx

(ℓ),

=

∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log(ρℓ(λ)ρLx

(ℓ))dµℓ(λ)dµLx
(ℓ)

−
∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log(uℓ(λ)ρLx

(ℓ))dµℓ(λ)dµLx
(ℓ).

Let

h := −
∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log(ρℓ(λ)ρLx

(ℓ))dµℓ(λ)dµLx
(ℓ).

Then h is the entropy of the inverse distribution given any continuous distribution in the disinte-

gration.
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Let

h0 := −
∫

EΛ

(∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log(uℓ(λ)ρLx

(ℓ))dµℓ(λ)

)
dµLx

(ℓ),

= −
∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log uℓ(λ)dµℓ(λ)dµLx

(ℓ)

−
∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

ρℓ(λ)ρLx
(ℓ) log ρLx

(ℓ)dµℓ(λ)dµLx
(ℓ),

= −
∫

EΛ

(
ρLx

(ℓ) log

(
1

µℓ(π
−1
Lx

(ℓ))

)
+ ρLx

(ℓ) log ρLx
(ℓ)

)
dµLx

(ℓ).

The last equation is proved by the fact that EΛ = Lx.

We show that h0 is the entropy of the MEID, i.e. the inverse distribution under the uniform

ansatz, denoted by hu in the following.

hu = −
∫

EΛ

∫

λ∈π−1
Lx

(ℓ)

uℓ(λ)ρLx
(ℓ) log

(
uℓ(λ)ρLx

(ℓ)
)
dµℓ(λ)dµLx

(ℓ),

= −
∫

EΛ

(∫

λ∈π−1
Lx

(ℓ)

uℓ(λ)ρLx
(ℓ) log uℓ(λ)dµℓ(λ) + uℓ(λ)ρLx

(ℓ) log ρLx
(ℓ)dµℓ(λ)

)
dµLx

(ℓ),

= −
∫

EΛ

(
ρLx

(ℓ) log
1

µℓ(π
−1
Lx

(ℓ))
+ ρLx

(ℓ) log ρLx
(ℓ)

)
dµLx

(ℓ) = h0.

Thus, D(ρℓρLx
||uℓρLx

) = −h+ hu ≥ 0 implies hu ≥ h for any given continuous distributions

as the ansatz in the inverse distribution.

5.1.2 Proof of Theorem 3.2.1

We first investigate the absolute continuities among measures in the following equations of

disintegration

PΛ(A) =

∫

ℓ∈EA

Pℓ(π
−1
Lx

(ℓ) ∩ A)dPLx
(ℓ), ∀A ∈ BΛ,

µΛ(A) =

∫

ℓ∈EA

µℓ(π
−1
Lx

(ℓ) ∩ A)dµLx
(ℓ), ∀A ∈ BΛ.
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Lemma 5.1.2. The absolute continuity of PLx
with respect to µLx

and the absolute continuity of

Pℓ with respect to µℓ for µLx
-almost everywhere imply the absolute continuity of PΛ with respect

to µΛ.

Proof. If µΛ(A) = 0 for A ∈ BΛ, then either µℓ(π
−1
Lx

(ℓ) ∩ A) = 0 for µLx
-almost everywhere or

µLx
(EA) = 0, which can be shown by contradiction. Since Pℓ and PLx

are absolutely continuous,

Pℓ(π
−1
Lx

(ℓ) ∩ A) = 0 for µLx
-almost everywhere or PLx

(EA) = 0. In either case, this implies

PΛ(A) = 0.

Proof of Theorem 3.2.1. Since P1, P2 ∈ PΛ,X , for any x ∈ X and A ∈ BΛ we have

Pi(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP i
ℓ (λ)dPLx

(ℓ),

where conditional probability measures P i
ℓ , i = 1, 2 exist PLx

-almost everywhere. Any ℓ → P i
ℓ

is a measurable function in the sense that ℓ → P i
ℓ (B) is a measurable function for each Borel-

measurable set B in the Borel sigma algebra of π−1
Lx

(ℓ), see Chang and Pollard (1997) for details.

This implies ℓ → (ωP 1
ℓ + (1 − ω)P 2

ℓ ) is a measurable function for ω ≥ 0. Note that PLx
is

absolutely continuous with respect to µLx
since PDx

is absolutely continuous with respect to µDx
,

see Butler et al. (2014) Theorem 4.2.

Thus, for any A ∈ BΛ and ω ≥ 0,

PMix(A) =

∫

ℓ∈EA

(ω

∫

λ∈π−1
Lx

(ℓ)∩A

dP 1
ℓ (λ) + (1− ω)

∫

λ∈π−1
Lx

(ℓ)∩A

dP 2
ℓ (λ))dPLx

(ℓ),

=

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

d(ωP 1
ℓ + (1− ω)P 2

ℓ )(λ)dPLx
(ℓ).

Then by Lemma 5.1.2, PMix is absolutely continuous with respect to µΛ since ωP 1
ℓ +(1−ω)P 2

ℓ is

absolutely continuous with respect to µℓ for ℓ ∈ Lx, and PLx
is absolutely continuous with respect

to µLx
for any x ∈ X . Then, the result follows the fact that ωP 1

ℓ + (1 − ω)P 2
ℓ is a probability

measure when P i
ℓ , i = 1, 2 are probability measures defined on π−1

Lx

(ℓ).
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5.1.3 Proof of Theorem 3.3.1

The first result is implied by the fact that Q−1
x
(D) contains the support of the probability mea-

sure PΛ,x for each x ∈ X for each x ∈ X , which is defined as supp(PΛ,x) := {λ ∈ Λ :

for λ ∈ Nλ ∈ BΛ,we have PΛ,x(Nλ) > 0} where Nλ is any open neighborhood of λ. Thus,

PΛ,x(A ∩Q−1
x
(D)) = PΛ,x(A ∩ supp(PΛ,x)) = PΛ,x(A) for A ∈ BΛ and x ∈ X .

Then we show the second result in the following. We observe that P̄ (∅) = 0 and P̄ (Λ) = 1

and P̄ (A) ∈ [0, 1] for any A ∈ BΛ, since PΛ,x and PX are probability measures on (Λ,BΛ) and

(X ,BX ), respectively.

For all countable collections {Ai}∞i=1 of pairwise disjoint sets,

P̄

(
⋃

i

Ai

)
=

∫

x∈X

PΛ,x

(
⋃

i

Ai

)
dPX (x),

=
∑

i

∫

x∈X

PΛ,x(Ai)dPX (x),

=
∑

i

P̄ (Ai),

since each PΛ,x(Ai) is integrable and finite with respect to x. This shows that P̄ is a probability

measure.

5.1.4 Proof of Theorem 3.3.2

Considering the probability distribution of a, we have

B̃elC(A) =

∫
x∈X

P (a ∈ Q−1
x
(C))I{Q−1

x (C)⊂A}(x)dPX∫
x∈X

P (a ∈ Q−1
x
(C))I{Q−1

x (C) 6=∅}(x)dPX
,

where P is a probability measure of a on (Λ,BΛ) that can be disintegrated along generalized

contours and B̃elC ∈ [0, 1]. We choose P to be any choice in the equivalence class of GFGDs

or any absolutely continuous inverse distributions in PΛ,x for each x ∈ X . Note that P (a ∈

Q−1
x
(C))I{Q−1

x (C) 6=∅}(x) = P (a ∈ Q−1
x
(C)) as a measurable function of x. Then, by the disinte-
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gration of P as

P (A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dPℓ(λ)dPLx
(ℓ), ∀A ∈ BΛ,

we have

B̃elC(A) =

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)
I{Q−1

x (C)⊂A}(x)dPℓ(λ)dPLx
(ℓ)dPX

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)
dPℓ(λ)dPLx

(ℓ)dPX
,

=

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)
I{Q−1

x (C)⊂A}(x)dPℓ(λ)dPLx
(ℓ)dPX

∫
x∈X

∫
y∈C

dPDx
(y)dPX

,

since P (Q−1
x
(C)) = PDx

(C). Similarly, we have

P̃ lC(A) =

∫
x∈X

P (a ∈ Q−1
x
(C))I{Q−1

x (C)∩A}(x)dPX∫
x∈X

P (a ∈ Q−1
x
(C))I{Q−1

x (C) 6=∅}(x)dPX
,

=

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)∩A

∫
λ∈π−1

Lx

(ℓ)∩A
I{Q−1

x (C)∩A 6=∅}(x)dPℓ(λ)dPLx
(ℓ)dPX

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)
I{Q−1

x (C)∩Λ 6=∅}(x)dPℓ(λ)dPLx
(ℓ)dPX

,

=

∫
x∈X

∫
ℓ∈E

Q−1
x

(C)∩A

∫
λ∈π−1

Lx

(ℓ)∩A
I{Q−1

x (C)∩A 6=∅}(x)dPℓ(λ)dPLx
(ℓ)dPX

∫
x∈X

∫
y∈C

dPDx
(y)dPX

.

Note that I{Q−1
x (C)∩A 6=∅}(x) is ignorable since EQ−1

x (C)∩A is an empty set when Q−1
x
(C) ∩ A = ∅.

Then, the result follows by replacing {Pℓ} with the uniform ansatz {P u
ℓ } in the MEIDs.

5.1.5 Proof of Theorem 3.3.3

When a and X are considered independent in the SIP model, the SIP posterior by using the

Bayes’ theorem is computed as follows

P (a ∈ A|y ∈ C) =
P (a ∈ A, y ∈ C)

P (y ∈ C)
=

∫
x∈X

P (a ∈ A, y ∈ C|X = x)dPX∫
x∈X

P (y ∈ C|X = x)dPX

=

∫
x∈X

P (a ∈ A,Qx(a) ∈ C|X = x)dPX∫
x∈X

P (Qx(a) ∈ C|X = x)dPX
=

∫
x∈X

P (a ∈ A,Qx(a) ∈ C)dPX∫
x∈X

P (Qx(a) ∈ C)dPX
.

The event {a ∈ A,Qx(a) ∈ C} is equivalent to the intersection of A and the contour event

Q−1
x
(C), i.e. {a ∈ A ∩ Q−1

x
(C)}. Now, the result depends on the choice of the probability distri-
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bution of a. In this case, we choose the generating distribution PΛ such that Qx(a) is distributed

according to PDx
induced through

PDx
(C) = PΛ(Q

−1
x
(C)),

where C ∈ Dx. Thus,

P (a ∈ A|y ∈ C) =

∫
x∈X

PΛ(a ∈ A ∩Q−1
x
(C))dPX∫

x∈X
PDx

(C)dPX
.

By the disintegration theorem in (3.3), PΛ(a ∈ A ∩Q−1
x
(C)) can be further disintegrated, and

thus we have

P (a ∈ A|y ∈ C) =

∫
x∈X

∫
ℓ∈E

A∩Q−1
x

(C)

∫
λ∈π−1

Lx

(ℓ)∩A
dPℓ(λ)dPLx

(ℓ)dPX

∫
x∈X

PDx
(C)dPX

.

Since PΛ is unknown, we can replace the conditional probability measures {Pℓ} by the uniform

ansatz Pu
x

in practice for the approximation given the measurability of the map x → PΛ,x(A) for

any A ∈ BΛ.

The result also applies for the case in which a and X are dependent. In this case,

P (a ∈ A|y ∈ C) =

∫
x∈X

P (a ∈ A, y ∈ C|X = x)dPX∫
x∈X

P (y ∈ C|X = x)dPX

=

∫
x∈X

P (a ∈ A,Qx(a) ∈ C|X = x)dPX∫
x∈X

P (Qx(a) ∈ C|X = x)dPX

=

∫
x∈X

P (a ∈ A,Qx(a) ∈ C|X = x)dPX∫
x∈X

PDx
(C)dPX

,

where P (a ∈ A,Qx(a) ∈ C|X = x) is the conditional probability following the argument

of (Kolmogorov and Bharucha-Reid, 2018). In fact, the output is generated by the conditional

probabilities in the SFP. To obtain the result, we further disintegrate P (a ∈ A,Qx(a) ∈ C|X =

x) and replace {Pℓ} with the uniform ansatz.
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5.1.6 Proof of Theorem 3.4.1

We start with the following definitions and lemmas for the domain Λ and the probability mea-

sures on (Λ,BΛ).

Definition 5.1.6.1. A topological space is separable if it contains a countable dense subset.

Definition 5.1.6.2. A complete metric space is a metric space in which every Cauchy sequence is

convergent.

Definition 5.1.6.3. A metric space (Λ, d) is totally bounded if and only if for every real number

ǫ > 0, there exists a finite collection of open ǫ-balls in Λ whose union contains Λ.

Definition 5.1.6.4. A family of probability measures P on (Λ,BΛ) is tight if for every real number

ǫ > 0 there exists a compact set K ⊂ Λ such that P (K) > 1− ǫ for all P ∈ P.

Lemma 5.1.3. Any countable collection of probability measures on (Λ,BΛ) is tight.

Proof. Let P = {Pi}∞i=1 be any countable collection of probability measures on (Λ,BΛ). Since

Λ is a compact metric space, it is separable and complete. Since Λ is separable, for each k there

exists a sequence {Akj}∞j=1 of open 1/k-balls covering Λ. For any real number ǫ > 0, we choose ki

and large enough nki such that ki ≥ ki−1 and Pi(Bki) > 1− ǫ2−ki where Bki = Aki1∪· · ·∪Akinki
.

Let B = ∩∞
i=1Bki . Since B is totally bounded and Λ is complete, the set B has a compact closure

K. Thus Pi(K) ≤∑∞
i=1 Pi(B

c
ki
) < ǫ for any i ≥ 1.

Lemma 5.1.4 (Theorem 5.1, Billingsley (2013)). If P is tight, then every sequence of probability

measures in P has a subsequence converging weakly to a probability measure in the closure of P.

proof of Theorem 3.4.1. The result follows by the fact that each P̄i for i ≥ 0 is a probability

measure on (Λ,BΛ), and by Lemma 5.1.3 and Lemma 5.1.4.

5.1.7 Proof of Theorem 3.4.2

By combining the disintegration of µΛ as

µΛ(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dµℓ(λ)dµLx
(ℓ), ∀A ∈ BΛ,
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we have, for each i ≥ 0 and A ∈ BΛ,

P i
Λ,x(A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

ρiℓ(λ)ρLx
(ℓ)dµℓ(λ)dµLx

(ℓ),

=

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

ρiπLx
(λ)(λ)ρLx

(πLx
(λ))dµℓ(λ)dµLx

(ℓ),

=

∫

A

ρiπLx
(λ)(λ)ρLx

(πLx
(λ))dµΛ.

The density ρiπLx
(λ)(λ)ρLx

(πLx
(λ)) is unique almost everywhere in Λ. In Butler et al. (2014), the

space Lx can characterized as a transverse parameterization in Λ indexing the generalized contours.

For instance, a line segment in Λ that crosses all generalized contours once and only once. In this

case, the density function can be computed by using the transverse parameterization in Λ, since the

map between the transverse parameterization and the range of the output Dx is bijective.

5.1.8 Proof of Theorem 3.4.3

We first compute the density function for each EEI. By Fubini-Tonelli theorem, we have

P̄ i(A) =

∫

x∈X

∫

λ∈A

ρiπLx
(λ)(λ)ρLx

(πLx
(λ))ρX(x)dµΛdµX ,

=

∫

λ∈A

∫

x∈X

ρiπLx
(λ)(λ)ρLx

(πLx
(λ))ρX(x)dµXdµΛ,

for any A ∈ BΛ and i ≥ 0, since each ρiπLx
(λ)(λ)ρLx

(πLx
(λ))ρX(x) is a measurable function on

the product of σ finite measure spaces. Thus, we have the unique density function

ρ̄i = dP̄ i/dµΛ =

∫

x∈X

ρiπLx
(λ)(λ)ρLx

(πLx
(λ))ρX(x)dµX ,

almost everywhere in Λ for each i ≥ 0. Consider the complete metric space (L1
D, d) where the

space L1
D contains density functions on Λ and d is the L1 metric defined as

d(f, g) =

∫
|f − g|dµΛ.
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Then, for any real number ǫ > 0 and i, j > N ,

d(ρ̄i, ρ̄j) ≤
∫ ∫

x∈X

∣∣∣ρiπLx
(λ)(λ)− ρjπLx

(λ)(λ)
∣∣∣ ρLx

(πLx
(λ))ρX(x)dµXdµΛ,

< ǫ

∫ ∫

x∈X

ρ0πLx
(λ)(λ)ρLx

(πLx
(λ))ρX(x)dµXdµΛ,

= ǫ

∫
ρ̄0dµΛ = ǫ.

Thus, the sequence {ρ̄i}i≥0 is Cauchy in (L1
D, d), and ρ̄i converges to a density function in (L1

D, d)

as i→ ∞.

5.1.9 Proof of Theorem 3.4.4

We start with the proof of the first direction. Since P̃ ∈ PΛ,X , it can be disintegrated as

P̃ (A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx
(ℓ), ∀A ∈ BΛ, (5.2)

for x ∈ X . Thus, the inverse distribution P̃Λ,x using the ansatz {P̃ℓ} in (5.2) is the exact distribu-

tion P̃ . Then, we have

P̄ (A) =

∫

x∈X

P̃Λ,x(A)dPX =

∫

x∈X

P̃ (A)dPX = P̃ (A),

for any A ∈ BΛ. This concludes P̃ = G(P̃ ).

Conversely, for a fixed point P̃ of G that is absolutely continuous with respect to µΛ, we have

Disintegration of a measure: P̃ (A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx,P̃
(ℓ), (5.3)

Compute inverse distributions:

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx
(ℓ) = P̃Λ,x(A), (5.4)

Compute the next EEI: P̃ (A) =

∫

x∈X

P̃Λ,x(A)dPX , (5.5)
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for any x ∈ X and A ∈ BΛ. Equation (5.5) implies P̃ = P̃Λ,x since P̃Λ,x is not conditioned on x.

Thus, by combining (5.4) and (5.5), we have

P̃ (A) =

∫

ℓ∈EA

∫

λ∈π−1
Lx

(ℓ)∩A

dP̃ℓ(λ)dPLx
(ℓ), (5.6)

for any A ∈ BΛ, and P̃ ∈ PΛ,X since P̃ℓ is absolutely continuous with respect to µℓ for ℓ ∈ Lx and

x ∈ X . Now, we compare the results in equations (5.3) and (5.6). In fact, equation (5.6) implies

that P̃ induces PLx
through

PLx
(E) = P̃ (π−1

Lx

(E)),

for E ∈ BLx
. Recall that the definition of PLx,P̃

in (5.3) is defined as

P̃Dx
(C) = P̃ (Q−1

x
(C)), C ∈ BDx

,

PLx,P̃
(EA) = P̃Dx

(Qx(A)), A ∈ BΛ.

This is equivalent to the following computation

PLx,P̃
(E) = P̃ (π−1

Lx

(E)),

for any E ∈ BLx
. Thus, PLx,P̃

= PLx
for x ∈ X .

5.2 Proofs of Lemmas and Theorems in Chapter 4

5.2.1 Proof of Theorem 4.1.1

Let the domain of PDx
be

Sx = {q ∈ Dx : PDx
(Nq) > 0 for any open neighborhood Nq ∈ BDx

of q}.
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For q ∈ Sx, we have PDx
(Nq) > 0 for any open neighborhood Nq ∈ BDx

. Thus, PΛ(Q
−1
x
(Nq)) =

PDx
(Nq) > 0. If q ∈ (Qx(K0))

c where (Qx(K0))
c is the complement of the closed set Qx(K0),

then there exists an open neighborhood Nq of q in BDx
such that Q−1

x
(Nq) ∩K0 = ∅. This implies

PΛ(Q
−1
x
(Nq)) = PDx

(Nq) = 0, which is a contradiction. Thus, we have Sx ⊂ Qx(K0).

On the other hand, for q ∈ Qx(K0), we have Q−1
x
(Nq) ∩ K0 6= ∅ for any open neighborhood

Nq of q in BDx
. Note that each Q−1

x
(Nq) is an open set in Λ. Then, by the definition of K0, there

exists an open neighborhood Ñλ ∈ BΛ of a point λ ∈ Q−1
x
(Nq) ∩ K0 and Ñλ ⊂ Q−1

x
(Nq) such

that PΛ(Ñλ) > 0. This implies PDx
(Nq) = PΛ(Q

−1
x
(Nq)) ≥ PΛ(Ñλ) > 0. Thus, we conclude

Sx ⊃ Qx(K0).

5.2.2 Proof of Theorem 4.1.2

Let the support of PΛ,x be S̃x = {λ ∈ Λ : λ ∈ Nλ ∈ BΛ s.t. PΛ,x(Nλ) > 0}. For λ ∈ S̃x, we

have PΛ,x(Nλ) > 0 for any open neighborhood Nλ of λ. However, if λ ∈ (π−1
Lx

(πLx
(K0)))

c, then

there exists an open neighborhood Ñ ∈ BΛ of λ such that Ñ ∩ K0 = ∅ and PΛ,x(Ñ) = 0. This

contradiction implies that λ ∈ π−1
Lx

(πLx
(K0)) for λ ∈ S̃x. Note that this proof is independent of

the choice of the ansatz, which shows the result of Corollary 4.1.2.1.

Then, for λ ∈ π−1
Lx

(πLx
(K0)) and any open neighborhood Nλ ∈ BΛ, we have πLx

(Nλ) ∩

πLx
(K0) 6= ∅. Take ℓ̃ ∈ πLx

(Nλ) ∩ πLx
(K0). There exists an open neighborhood Nℓ̃ ∈ BLx

such

thatNℓ̃ ⊂ πLx
(Nλ), and PLx

(πLx
(Nℓ̃)) > 0 by the definition of πLx

(K0). Since µℓ(π
−1
Lx

(ℓ)∩S) > 0

in a µLx
-almost everywhere sense where S ∈ BΛ is any open subset of Λ, we have πLx

(Nℓ̃) ⊃

∪n≥1En where En = {ℓ ∈ πLx
(Nℓ̃) : µℓ(π

−1
Lx

(ℓ) ∩Nλ) > 0}. Then there exists some n for which

PLx
(En) > 0. Hence,

PΛ,x(Nλ) ≥
∫

πLx
(Nℓ̃)

µℓ(π
−1
Lx

(ℓ) ∩Nλ)dPLx
(ℓ) ≥

∫

En

µℓ(π
−1
Lx

(ℓ) ∩Nλ)dPLx
(ℓ) >

PLx
(En)

n
> 0.

Consequently, λ ∈ S̃x. Then, π−1
Lx

(πLx
(K0)) = Q−1

x
(Qx(K0)) is true simply because the map

between Lx and Dx is one-to-one and onto.
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5.2.3 Proof of Theorem 4.2.2

We conclude KX ∈ B
−1
X from Qx(K0) ⊂ Qx(KX ) ⊂ Qx(Λx) = Bx for any x ∈ X . Since

C ⊂ Λx for any C ∈ B
−1
X and x ∈ X , we conclude KX is the maximal element in B

−1
X .

5.2.4 Proof of Theorem 4.3.1

Because K0 ⊂ Λ is compact, there exists c1, c2 ∈ R
1 such that Λx = {λ ∈ R

d : Qx(λ) ∈

Qx(K0) = [c1, c2]} ∩ Λ = Sc1,c2 ∩ Λ. Sc1,c2 is a parallel slab when Qx is linear since

Sc1,c2 =
⋃

c∈[c1,c2]

{λ ∈ R
d : Qx(λ) = c}

is a union of a family of hyperplanes in R
d. The half space S1 = {λ ∈ R

d : Qx(λ) ≥ c1} contains

the support K0 and S1 ∩ K0 6= ∅, and same for S2 = {λ ∈ R
d : Qx(λ) ≤ c2}. This coincides with

the supporting hyperplanes of the support K0, namely, H1 := ∂S1 = {λ ∈ R
d : Qx(λ) = c1} and

H2 := ∂S2 = {λ ∈ R
d : Qx(λ) = c2}.

5.2.5 Proof of Theorem 4.3.2

By the disintegration theorem, it is equivalent to show

∫

πLx,Λn (A)

∫

λ∈π−1
Lx,Λn

(ℓ)∩A

dPℓ|Λn(λ)dPLx|Λn(ℓ) →
∫

πLx,Kconv (A)

∫

λ∈π−1
Lx,Kconv

(ℓ)∩A

dPℓ|Kconv(λ)dPLx|Kconv(ℓ),

where Pℓ|Λn , PLx|Λn are the distributions computed by using the domain Λn and Pℓ|Kconv , PLx|Kconv

are the distributions computed by using the domain Kconv. Note that πLx,Λn : Λn → Lx is the

equivalence map on domain Λn, πLx,Kconv : Kconv → Lx is the equivalence map on domain Kconv,

and A ∈ BKconv implies that πLx,Λn(A) = πLx,Kconv(A) and π−1
Lx,Λn

(ℓ) ∩ A = π−1
Lx,Kconv

(ℓ) ∩ A for

ℓ ∈ πLx,Λn(A). Also note that PLx|Λn(πLx,Λn(A)) = PDx
(Qx(A)) for A ∈ BKconv , which implies

PLx|Λn = PLx|Kconv for A ∈ BKconv . Then it is sufficient to show that the following converges to
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zero,

Res =

∫

πLx,Kconv (A)

(Pℓ|Λn(Rℓ)− Pℓ|Kconv(Rℓ))dPLx|Kconv(ℓ),

where Rℓ = π−1
Lx,Kconv

(ℓ) ∩ A and Pℓ|· is uniform distribution defined on (·) almost everywhere

except on some zero-measure boundary points on (·) by disintegration theorem, namely, PLx|Kconv -

null set I0. Then,

Res =

∫

πLx,Kconv (A)(\I0)

(Pℓ|Λn(Rℓ)− Pℓ|Kconv(Rℓ))
dPLx|Kconv

dµLx

(ℓ)dµLx
(ℓ),

=

∫

πLx,Kconv (A)

(fn(ℓ)− f(ℓ))dµLx
(ℓ),

where fn(ℓ) = Pℓ|Λn(Rℓ)
dPLx|Kconv

dµLx

(ℓ) and f(ℓ) = Pℓ|Kconv(Rℓ)
dPLx|Kconv

dµLx

(ℓ). Note that fn ≤ f and

fn → f pointwisely with f integrable. Then, by the dominated convergence theorem, PΛn,x(A) →

PKconv ,x(A).

5.2.6 Proof of Theorem 4.3.3

For any A ∈ BΛ, we have

P̄ (A; Λn)− P̄ (A;Kconv) =

∫
(PΛn,x(A)− PKconv ,x(A))fX (x)dµX (x),

=

∫
(gn(x)− g(x))dµX (x),

where gn(x) = PΛn,x(A)fX (x) and g(x) = PKconv ,x(A)fX (x). We know that gn ≤ g and gn → g

pointwisely where g is integrable by Theorem 4.3.2. Thus, the result is implied by the dominated

convergence theorem.

5.2.7 Proof of Theorem 4.3.4

We know that
∞⋂
i=1

Λxi
⊃ Kconv since each Λθ is a generalized parallel slab and is convex.

If there exists a point p ∈
∞⋂
i=1

Λxi
such that p /∈ Kconv, the hyperplane separation theorem

implies that p can be separated from Kconv by a half-space. Let the half-space correspond to x.
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If x ∈ {xi}∞i=1, then
∞⋂
i=1

Λxi
⊂ Kconv. Otherwise, the Euclidean distance of point p and Kconv is

not zero and there exists a small neighborhood of p that is not contained in Kconv because R
d is a

metric space that satisfies separation axioms in topology. Thus, there exists some xi in the dense

subset that is arbitrarily close to x such that Λxi
separates them and

∞⋂
i=1

Λxi
⊂ Kconv.

5.2.8 Proof of Theorem 4.3.6

As for the first statement, it is easy to see that K0 ⊂
n⋂

i=1

ΛΘi
. For each λ ∈

n⋂
i=1

ΛΘi
given

Θ1,Θ2, . . . ,Θn, QΘi
(λ) ∈ QΘi

(K0) holds for i = 1, . . . , n by the construction of the sup-

port of inverse measure. Therefore, we rewrite it as
n⋂

i=1

ΛΘi
△ K0 =

n⋂
i=1

ΛΘi
\K0. Then let

Θi : (Ω,F , P ) → (I,BI , PΘ) and Zn = µΛ(
n⋂

i=1

ΛΘi
△ K0), which is a monotone sequence.

Let Dn be the length (Lebesgue measure) of the largest interval from I = (−π
2
, π
2
) not containing

any of the points when first n choices. Then we can show that

{ω ∈ Ω : Dn(ω) → 0 as n→ ∞} ⊂ {ω ∈ Ω : Zn(ω) → 0 as n→ ∞}

by the geometry and hyperplane separation theorem. This is shown in the proof of Theorem 4.3.4:

Generally, each boundary point z of a convex set in R
n has a supporting hyperplane containing

z. For a convex domain K0 ⊂ R
n, this means that K0 is contained in some half-plane H with

z ∈ ∂H . This H naturally separates K0 and
n⋂

i=1

ΛΘi
and it is characterized by a point Θ in the

interval I .

Therefore, we only need to show the convergence of Dn → 0 as n → ∞. Let ǫ > 0 be given.

We have

P ([Dn > ǫ] i.o.) = P (lim sup
n→∞

[Dn > ǫ]) = lim
N→∞

P (
⋃

n≥N

[Dn > ǫ]) = lim
n→∞

P (Dn > ǫ)

by monotonicity of the Dn. We can bound this probability by breaking the interval (−π
2
, π
2
) into

2π
ǫ

disjoint intervals of length ǫ
2
. Then, P (Dn > ǫ) is no larger than the probability of no points in
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one of the 2π
ǫ

disjoint intervals. Thus,

P ([Dn > ǫ] i.o.) = lim
n→∞

P (Dn > ǫ) ≤ lim
n→∞

2π

ǫ
(1− ǫ

2π
)n = 0.

Statements 2-3 naturally follow the first statement. Under condition (PL), each supporting

hyperplane has a unique point on the boundary either tangent to the point or not. As for those

tangent points, they have tangent hyperplanes. In this case, each generalized parallel slab has two

points on the boundary. Thus, we have a partition G1, G2, . . . , G2n of
n⋂

i=1

ΛΘi
△K0 =

n⋂
i=1

ΛΘi
\K0

based on these 2n points. Each Gi is the area of an triangle minus the area of the lune bounded by

the boundary arc, thus is bounded above from the area of the triangle. Let Gi denote the area of

the triangle. Then

dN

(
n⋂

i=1

ΛΘi
,K0

)
=

2n∑

i=1

Gi.

See Figure 5.1a. G is bounded by the area of an isosceles triangle with angle ∆γ > 0 and the

opposite side. Thus,

G ≤ 1

4
∆l2 cot

∆γ

2
=

1

4
∆l2 tan

∆φ

2
,

where ∆l is the boundary arc length for G, ∆γ = π − ∆φ, and ∆φ > 0 denotes the difference

of angles of slopes of supporting hyperplanes of two adjacent points, which means the distance

between two θi which form the area G, where {θi}∞i=1 is some realization of {Θi}∞i=1.

There exists a countable collection of points {zi}∞i=1 in R
1 on the boundary such that the union

of neighborhoods {B(zi, ri) ∩ ∂Λ}∞i=1 covers the arc segment ∆l except two endpoints. The cor-

responding map of arc segment in each neighborhood is denoted {Ai}∞i=1. We partition the line

segment ∆l as follows: If discontinuities of the curvature exist in this arc segment ∆l, we parti-

tion the segment by the set of discontinuities and the set of points choosing from each intersection

(overlap) of two neighborhoods B(zi, ri) ∩ B(zi+1, ri+1) and the set of two endpoints. This parti-
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(a) This is one part of the partition. (b) Partition of the arc segment

(c) Partition of the curve by two parts

Figure 5.1: Partitions in Theorem 4.3.6.
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tion is denoted as points {pi}∞i=1 satisfying

∆l =
∞∑

i=1

∫ pi+1

pi

ds,

where ds is the arc length measure, so the arc from pi to pi+1 has the map Ai defined in Condition

(PL), see Figure 5.1b. We know that there exist orthogonal coordinate systems for the maps Ai

which are some rotations of the original coordinate system such that Ai(x
i) = yi where the super-

script denotes the corresponding coordinate system ofAi. MapAi defines points p ∈ B(zi, ri)∩∂Λ

after some rotation and A′
i(x

i) = tan(φi) where φi is the angle of slope in the coordinate system

of Ai. Then we have

∆l =
∞∑

i=1

∫ pi+1

pi

ds =
∞∑

i=1

∫ xi
i+1

xi
i

√
1 + A′2

i (x
i)dxi (5.7)

=
∞∑

i=1

∫ φi
i+1

φi
i

√
1 + tan2(φi)

1 + tan2(φi)

A′′
i (A

′−1
i ◦ tan2(φi))

dφi (5.8)

≤ (1 + δ)3/2

τ

∞∑

i=1

∆φi
i =

(1 + δ)3/2

τ

∞∑

i=1

∆φi ≤
(1 + δ)3/2

τ
∆φ (5.9)

= c∆φ, (5.10)

where ∆φi = φi+1 − φi in the original coordinate system in contrast to ∆φi
i = φi

i+1 − φi
i in the ith

coordinate system and c = (1+δ)3/2

τ
is some positive constant. ∆φi and ∆φi

i are equal because of

the invariance property. The last equality in (5.9) holds only if the supporting hyperplanes of the

intersection of inverse supports at the two endpoints are tangent to these two points. Thus, for any
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ǫ > 0,

P (nβdN

(
n⋂

i=1

ΛΘi
,K0

)
> ǫ) ≤ P (nβ2nmaxG > ǫ)

≤ P (
1

2
nβ+1c2(max∆φ)2 tan

max∆φ

2
> ǫ)

≤ P (2nβ+1c2 tan3 max∆φ

2
> ǫ)

= P (max∆φ > C(ǫ) arctan1/3(n−β−1))

≤ P (max∆φ > C(ǫ)n−β+1
3 ).

Note that max∆φ is exactly Dn as we defined in the first part of the proof since Θi’s are uniformly

distribution so that only the length of the arcs matters not the location. Hence,

P (nβdN

(
n⋂

i=1

ΛΘi
,K0

)
> ǫ) ≤ c1n

β+1
3 (1− c2n

−β+1
3 )n = c1n

β+1
3 e−c2n

2−β
3 −o(n

2−β
3 ),

where c1, c2 are positive constants. In this case, we only need to prove that

∞∑

i=1

n
β+1
3 e−c2n

2−β
3 <∞

when β < 2 and the result follows by Borel-Cantelli lemma. It can be proved that n
β+1
3 e−c2

2−β
3 is

positive monotone non-increasing after some large N . Then it is equivalent to prove

∞∑

i=1

2n
β+1
3 e−c22n

2−β
3

<∞

by Cauchy condensation test since its ratio limit is zero.
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Similarly, statement 3 follows by

P (nβ/ logγ(n)dN

(
n⋂

i=1

ΛΘi
,K0

)
> ǫ) ≤ c1

n(β+1)/3

logγ/3(n)
(1− c2n

−(β+1)/3 logγ/3(n))n

= c1
n(β+1)/3

logγ/3(n)
e−c2n

2−β
3 logγ/3(n)−o(n

2−β
3 logγ/3(n)).

In this case, dN

(
n⋂

i=1

ΛΘi
,K0

)
= op((log(n))

γ/n2) given γ ≥ 3. This means β = 2 when

γ ≥ 3. Likewise, when γ > 3, we have

∞∑

i=1

n

logγ/3(n)
e− logγ/3(n) <∞

since n

logγ/3(n)
e− logγ/3(n) is a non-increasing sequence after some large n > N and it is convergent

by Cauchy condensation test since its ratio limit is zero. Note that In comparing the ratio, we can

use the fact that

0 ≤ 2e(log 2)
γ/3(kγ/3−(k+1)γ/3) ≤ 2e(log 2)

γ/3(−γ/3kγ/3−1) → 0.

Before turning to statement 4, we need a partition for the boundary ∂K0 such that on each

part of the curve it is one-to-one and onto from θ to the tangent point. We choose the rightmost

and leftmost points such that they partition the boundary ∂K0 into the upper curve and the lower

curve. The rightmost and leftmost points are exactly the tangent points from the parallel slabs

when θ = π/2. On the upper curve, the angle that denotes the direction of the unit normal vector

can be characterized by η = Θ + π/2, while on the lower curve it is η = Θ + 3π/2 where Θ is

defined above as the angle of slopes of tangent lines of parallel slabs. Define a map

ψ : x→
∫ x

−π/2

f(t)dt.

Then Yi = ψ(Θi) is uniformly distributed on (0, 1) and are independent. We also define Θj(n)

by ψ(Θj(n)) = Yj(n) for j = 1, 2, . . . , n + 1 on both partitioned curves, which defines ηj(n) =
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Θj(n) + π/2, j = 1, 2 . . . , n on the upper curve and η′j(n) = Θj(n) + 3π/2, j = 1, 2 . . . , n on

the lower curve. Since it is a closed curve as a boundary, ηn+1(n) = η′1(n) = η1(n) + π and

η′n+1(n) = η1(n) + 2π which equivalently means Θn+1(n) = Θ1(n) + π. Note that Yj(n), j =

1, 2 . . . , n characterize unique points on each partitioned curve. On the upper curve, we can let

Yn+1(n) = 1 + Y1(n) since

Yn+1(n)− Yn(n) =

∫ Θn+1(n)

Θn(n)

f(t)dt =

∫ Θn(n)

Θ1(n)+π

f(t)dt =

(∫ π/2

Θn(n)

+

∫ Θ1(n)+π

π/2

)
f(t)dt

= 1− Yn(n) + Y1(n).

See Figure 5.1c.

Then we use the same partition as in statement 2 (Figure 5.1a) to calculate dN

(
n⋂

i=1

ΛΘi
,K0

)

but indexed by the angles of normal vectors η. Let ∆(ηj(n), ηj+1(n)) denote the Nikodym metric

of the (ηj(n), ηj+1(n)) component of the partition. Then on the upper curve,

∆(ηj(n), ηj+1(n)) =
1

24
r2K0

(ηj(n))(ηj+1(n)− ηj(n))(1 + o(1))

with o(1) → 0 for |ηj+1(n)− ηj(n)| → 0, uniformly in ηj(n). Similarly on the lower curve,

∆(η′j(n), η
′
j+1(n)) =

1

24
r2K0

(η′j(n))(η
′
j+1(n)− η′j(n))(1 + o(1))

with o(1) → 0 for |η′j+1(n) − η′j(n)| → 0, uniformly in η′j(n), see [formulate 5.15] in McClure

and Vitale (1975). By the uniform continuity of the function f , we have

Yj+1(n)− Yj(n) = f [Θj(n)](Θj+1(n)−Θj(n))[1 + o(1)]
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with o(1) → 0 for |Θj+1(n)−Θj(n)| → 0, uniformly in Θj(n). Hence, we have

dN

(
n⋂

i=1

ΛΘi
,K0

)
=

n∑

j=1

1

24
r2K0

(ηj(n))(ηj+1(n)− ηj(n))(1 + o(1))

+
n∑

j=1

1

24
r2K0

(η′j(n))(η
′
j+1(n)− η′j(n))(1 + o(1))

=
n∑

j=1

1

24
r2K0

(Θj(n) + π/2)(Θj+1(n)−Θj(n))(1 + o(1))

+
n∑

j=1

1

24
r2K0

(Θj(n) + 3π/2)(Θj+1(n)−Θj(n))(1 + o(1))

=
n∑

j=1

1

24

r2K0
[ψ−1(Yj(n)) + π/2] + r2K0

[ψ−1(Yj(n)) + 3π/2]

f 3[ψ−1(Yj(n))]
U3
j (n)(1 + o(1))

with o(1) → 0 for max1≤j≤n Uj(n) → 0.

Now from Lemma 1, we have with probability 1

lim
n→∞

n2dN

(
n⋂

i=1

ΛΘi
,K0

)
=

1

4

∫

(−π
2
,π
2
)

r2K0
(θ + π

2
) + r2K0

(θ + 3π
2
)

f 2(θ)
dθ.
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Chapter 6

Summary and Future Work

In the dissertation, we study the aspects of both distributions and domains in the solution of

the SIP. In Chapter 2, we introduce the established solution of the SIP in the discrete setting, with

an extension by employing observable inputs in a model. In the SIP, it is crucial to consider the

SFP, a data-generating process, in which the uncertainty in the output is propagated by a convolu-

tion of the uncertainty of all the inputs. We propose an approach that solves the SIP individually

indexed by the observable inputs, which can be viewed as control variables that govern the exper-

iments. This is especially advantageous to time-dependent problems in which the covariance of

sequential experiments is hard to capture. We focus on finding a global solution, GFGD, that is

not conditioned on any experiment in contrast to the established solution that is conditioned on an

experiment due to the pre-specified ansatz. To obtain a GFGD, we propose an iterative approach

that updates the ansatz information based on the solutions from each individual experiment. A

GFGD is not associated with the observable inputs in its domain, which otherwise could cause

bias in scientific inference, and reproduces all the output distributions. In addition, we connect the

DS theory and the SIP approach by employing the technique of decomposition of a distribution.

The DS functions give a bound for the degree of belief of the unobserved inputs through the in-

formation from the observable inputs only and ignore the information from the unobserved inputs

themselves, while the SIP approach gives an exact approximation by integrating all the informa-

tion. We also propose an extension of the classical Bayesian approach under the SIP setting for the

case with limited sample sizes in practice, which can also be viewed as an extension of Bayesian

meta-analysis.

In Chapter 3, we introduce the established solution of the SIP and the same iterative approach

in the continuous setting, which can be applied in practice. We establish the equivalence class

of GFGDs with absolute continuity dominated by the “volume” measure on the domain. This

smoothness property helps to regularize the smoothness of the resulting distributions in the iterative
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approach. In the discrete case, the property is automatic due to the fact that each finite distribution

is absolutely continuous with respect to the counting measure on the domain. We show an example

of three equivalent smooth GFGDs for the purposes of quantifying the uncertainty of an event and

targeting a high-probability region. The distinct information they provide suggests that it is not

appropriate to use a single distribution of the unobserved inputs to make inference, and thus we

propose a bound among all possible equivalent solutions to for scientific inference. We demonstrate

that our SIP approach is exactly an extension of the DS approach by disintegration, because the

technique we employ, i.e. “averaging” the solutions from each individual experiment over the

observable inputs, to initiate an iteration, is adopted from the DS framework.

The previous chapters highly rely on the input domain of the model which is often given as a

compact space containing the “true” support of the inputs by scientists. The domain has a signifi-

cant impact on the accuracy of the established solution because the solution is “spread out” on the

domain according to the pre-specified ansatz along the contours that are determined by the domain.

In addition, there might be multiple equivalent GFGDs that have different supports, and thus there

is no one “true” support. We propose one unique support that is the minimal support containing all

the supports of GFGDs. Thus, if we set the domain to be this unique support, the resulting solution

of the SIP will have the least bias with respect to domains. We propose an approach that finds this

unique support in linear models under some smoothness constraints of the support boundary.

Our methodologies in the dissertation are based on the physical processes modeled by Q and

distributions of the output. In many problems in which the data-generating process is unknown, it

is possible to approximate Q by setting up an appropriate expansion of Q, e.g. a Fourier series, to

reduce the approximation error from using inappropriate models. It is of interest to explore a data

version of the our methodology in which we observe data of the output according the distribution.

In this case, we simply use data to approximate the output distribution, e.g. by a histogram or a

Bayesian model, and thus the approximation error in the output propagates through to a potentially

large error in the approximation of GFGDs. Similar version of the established solution of the SIP

has been proposed in Butler et al. (2012, 2014). One of the important facts we have observed
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in examples is that there might be multiple equivalent GFGDs that share some common features

and also provide distinct information. In particular, the high-probability region might provide key

information of the common mode of all possible GFGDs. However, there is no identifiability with

which we can easily make inference. It is of interest to employ the possible GFGDs to find use-

ful information and make appropriate inference in a similar way to fiducial inference and the DS

theory in which the uncertainty of the unobservable inputs is considered. Furthermore, the com-

putational cost enormously increases as the dimension of unobservable inputs increases. Adopting

an approach in Bayesian updating, it is possible to consider experiments arriving sequentially. In

this case, we can update the ansatz sequentially in the iteration and thus decrease the time com-

plexity. In the discrete cases, the inverse distributions are essentially conditional distributions that

are conditional on the Borel sigma algebra of the output distributions. It may be necessary to have

smoothness and regularity on both the map Q and the domain Λ in the continuous cases. It is also

of interest to explore how to sample the observable input efficiently and sufficiently when it is time

or location. A dense sample in the space, e.g. some space-filling curve, is sufficient to provide all

the information, or sometimes a smaller subset is useful enough to provide concentrated informa-

tion. Different sampling methods might induce different results. We leave these topics for future

research.
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Appendix A

Supplementary Material

% Sample code f o r r e s u l t s i n C h a p t e r 4

% L o c a t i o n p a r a m e t e r s f o r Ushape

x1 = 0 . 5 ; x2 = 0 . 7 ; r = 0 . 1 ;

y1 = 0 . 2 ; y2 = y1 + 2∗ r ; y3 = y2 + 2∗ r ; y4 = y3+ 2∗ r ;

% P l o t Ushape s u p p o r t

imageSizeX = 1 ;

imageSizeY = 1 ;

x = 0 : 0 . 0 0 0 1 : 1 ;

y = 0 : 0 . 0 0 0 1 : 1 ;

c i r c l e P i x e l s = ones ( l e n g t h ( x ) , l e n g t h ( y ) ) ;

f o r i = 1 : l e n g t h ( x )

f o r j = 1 : l e n g t h ( y )

i f x ( i ) >= x1 && x ( i ) <=x2 && y ( j ) >= y1 && y ( j ) <= y2

| | . . .

x ( i ) >= x1 && x ( i ) <=x2 && y ( j ) >= y3 && y ( j ) <=

y4 | | . . .

x ( i ) >= x1−3∗ r && x ( i ) <=x1 && ( x ( i )−x1 ) ^2+( y ( j )

−(y2+y3 ) / 2 ) ^2 >= r ^2 && ( x ( i )−x1 ) ^2+( y ( j )−(y2+

y3 ) / 2 ) ^2 <= (3∗ r ) ^2 | | . . .

x ( i ) >= x2 && x ( i ) <=x2+ r && y ( j ) >= y1 && y ( j )

<= y2 && ( x ( i )−x2 ) ^2+( y ( j )−(y1+y2 ) / 2 ) ^2 <= r ^2

| | . . .

x ( i ) >= x2 && x ( i ) <=x2+ r && y ( j ) >= y3 && y ( j )

<= y4 && ( x ( i )−x2 ) ^2+( y ( j )−(y3+y4 ) / 2 ) ^2 <= r ^2
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c i r c l e P i x e l s ( j , i ) = 0 ;

end

end

end

imagesc ( 0 : 1 , 0 : 1 , c i r c l e P i x e l s ) ;

s e t ( gca , ’ YDir ’ , ’ normal ’ , ’ F o n t S i z e ’ , 1 6 )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% G e n e r a t e sample on t h e Ushape

n = 1000000;

AB = rand ( n , 2 ) ;

Ind = AB( : , 1 ) >= x1 & AB( : , 1 ) <=x2 & AB( : , 2 ) >= y1 & AB( : , 2 ) <=

y2 | . . .

AB( : , 1 ) >= x1 & AB( : , 1 ) <=x2 & AB( : , 2 ) >= y3 & AB

( : , 2 ) <= y4 | . . .

AB( : , 1 ) >= x1−3∗ r & AB( : , 1 ) <=x1 & (AB( : , 1 )−x1 ) . ^ 2 + (

AB( : , 2 ) −(y2+y3 ) / 2 ) . ^ 2 >= r ^2 & (AB( : , 1 )−x1 ) . ^ 2 + (AB

( : , 2 ) −(y2+y3 ) / 2 ) . ^ 2 <= (3∗ r ) ^2 | . . .

AB( : , 1 ) >= x2 & AB( : , 1 ) <=x2+ r & AB( : , 2 ) >= y1 & AB

( : , 2 ) <= y2 & (AB( : , 1 )−x2 ) . ^ 2 + (AB( : , 2 ) −(y1+y2 ) / 2 )

. ^ 2 <= r ^2 | . . .

AB( : , 1 ) >= x2 & AB( : , 1 ) <=x2+ r & AB( : , 2 ) >= y3 & AB

( : , 2 ) <= y4 & (AB( : , 1 )−x2 ) . ^ 2 + (AB( : , 2 ) −(y3+y4 ) / 2 )

. ^ 2 <= r ^ 2 ;

p o i n t s = AB( Ind , : ) ;

[ t r a c k , ~ ] = s i z e ( p o i n t s ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Recover t h e convex h u l l o f t h e Ushape
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N = 500 ; K = 100 ;

% N: num of g r i d c e l l s on one d imens ion

% K: num of e x p e r i m e n t s

x = l i n s p a c e ( 0 , 1 ,N+1) ;

x ( 1 ) = [ ] ;

x = x−1/N / 2 ;

y = l i n s p a c e ( 0 , 1 ,N+1) ;

y ( 1 ) = [ ] ;

y = y−1/N / 2 ;

t h e t a = −p i / 2 + 2∗ ( p i / 2 ) ∗ r and ( 1 ,K) ;

ze roLab = ones (N) ;

[ Xcol , Ycol ] = meshgr id ( y , x ) ;

f o r k =1:K

X = t a n ( t h e t a ( k ) ) ;

Y = p o i n t s ( : , 1 ) ∗X+ p o i n t s ( : , 2 ) ; %% ax+b

Ymin = min (Y) ;

Ymax = max (Y) ;

Y t r i a l = Xcol∗X+Ycol ;

ze roLab = zeroLab . ∗ ( Y t r i a l >=Ymin & Y t r i a l <=Ymax) ;

end

imagesc ( x , y , ze roLab )

co lormap ( ’ summer ’ )

c o l o r b a r

s e t ( gca , ’ YDir ’ , ’ normal ’ , ’ F o n t S i z e ’ , 1 6 )

% P l o t t h e Ushape boundary

ho ld on

x_1 = x1 : 0 . 0 0 1 : x2 ; y_1 = y1∗ ones ( 1 , l e n g t h ( x_1 ) ) ;
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x_2 = x1 : 0 . 0 0 1 : x2 ; y_2 = y2∗ ones ( 1 , l e n g t h ( x_2 ) ) ;

x_3 = x1 : 0 . 0 0 1 : x2 ; y_3 = y3∗ ones ( 1 , l e n g t h ( x_3 ) ) ;

x_4 = x1 : 0 . 0 0 1 : x2 ; y_4 = y4∗ ones ( 1 , l e n g t h ( x_4 ) ) ;

t h_5 = p i / 2 : p i / 5 0 : 3∗ p i / 2 ;

x_5 = 3 ∗ r ∗ cos ( th_5 ) + x1 ;

y_5 = 3 ∗ r ∗ s i n ( t h_5 ) + ( y2+y3 ) / 2 ;

t h_6 = p i / 2 : p i / 5 0 : 3∗ p i / 2 ;

x_6 = r ∗ cos ( th_6 ) + x1 ;

y_6 = r ∗ s i n ( t h_6 ) + ( y2+y3 ) / 2 ;

t h_7 = −p i / 2 : p i / 5 0 : p i / 2 ;

x_7 = r ∗ cos ( th_7 ) + x2 ;

y_7 = r ∗ s i n ( t h_7 ) + ( y4+y3 ) / 2 ;

t h_8 = −p i / 2 : p i / 5 0 : p i / 2 ;

x_8 = r ∗ cos ( th_8 ) + x2 ;

y_8 = r ∗ s i n ( t h_8 ) + ( y1+y2 ) / 2 ;

xx = [ x_1 x_8 f l i p l r ( x_2 ) f l i p l r ( x_6 ) x_3 x_7 f l i p l r ( x_4 ) x_5 ] ’ ;

yy = [ y_1 y_8 f l i p l r ( y_2 ) f l i p l r ( y_6 ) y_3 y_7 f l i p l r ( y_4 ) y_5 ] ’ ;

p l o t ( xx , yy )

ho ld o f f

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% P l o t t h e EEI computed on t h e convex h u l l

N0 = 100 ;

AddLab = z e r o s (N) ;

I n t L a b e l = z e r o s (N) ;

c o u n t = z e r o s (K, 1 ) ;

[ i0 , j 0 ] = f i n d ( ze roLab ) ;

f o r k = 1 :K
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Lab = z e r o s (N) ;

X = t a n ( t h e t a ( k ) ) ;

Y = p o i n t s ( : , 1 ) ∗X+ p o i n t s ( : , 2 ) ;

Ymax = max (Y) ;

Ymin = min (Y) ;

edges = l i n s p a c e ( Ymin , Ymax , N0+1) ;

[PY , ~ ] = h i s t c o u n t s (Y, edges ) ;

Y t r i a l = Xcol∗X+Ycol ;

f o r i = 1 : l e n g t h ( i 0 )

I n t L a b e l ( i 0 ( i ) , j 0 ( i ) ) = f i n d I n t e r v a l ( edges , Y t r i a l ( i 0 ( i ) ,

j 0 ( i ) ) ) ;

end

[ i1 , j 1 ] = f i n d ( I n t L a b e l ) ;

f o r i = 1 : N0

c o u n t ( i ) = sum ( r e s h a p e ( I n t L a b e l == i , [ ] , 1 ) ) ;

end

f o r i = 1 : l e n g t h ( i 1 )

Lab ( i 1 ( i ) , j 1 ( i ) ) = PY( I n t L a b e l ( i 1 ( i ) , j 1 ( i ) ) ) / t r a c k / c o u n t (

I n t L a b e l ( i 1 ( i ) , j 1 ( i ) ) ) ;

end

AddLab = AddLab+Lab ;

end

AddLab = AddLab /K;

s = s u r f ( AddLab∗N^ 2) ;

s . EdgeColor = ’ none ’ ;

co lormap ( ’ summer ’ ) ;

s e t ( gca , ’ XTick ’ , 0 :N / 2 : N)

134



s e t ( gca , ’ XTickLabel ’ , 0 : 0 . 5 : 1 )

s e t ( gca , ’ YTick ’ , 0 :N / 2 : N)

s e t ( gca , ’ YTickLabel ’ , 0 : 0 . 5 : 1 )

s e t ( gca , ’ F o n t S i z e ’ , 1 2 ) ;
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