
Measuring the Robustness of a
Resource Allocation

Shoukat Ali, Member, IEEE, Anthony A. Maciejewski, Senior Member, IEEE,

Howard Jay Siegel, Fellow, IEEE, and Jong-Kook Kim, Student Member, IEEE

Abstract—Parallel and distributed systems may operate in an environment that undergoes unpredictable changes causing certain

system performance features to degrade. Such systems need robustness to guarantee limited degradation despite fluctuations in the

behavior of its component parts or environment. This research investigates the robustness of an allocation of resources to tasks in

parallel and distributed systems. The main contributions of this paper are 1) a mathematical description of a metric for the robustness

of a resource allocation with respect to desired system performance features against multiple perturbations in multiple system and

environmental conditions, and 2) a procedure for deriving a robustness metric for an arbitrary system. For illustration, this procedure is

employed to derive robustness metrics for three example distributed systems. Such a metric can help researchers evaluate a given

resource allocation for robustness against uncertainties in specified perturbation parameters.

Index Terms—Robustness, robustness metric, resource allocation, resource management systems, parallel and distributed systems.

�

1 INTRODUCTION

PARALLEL and distributed systems may operate in an
environment where certain system performance fea-

tures degrade due to unpredictable circumstances, such as
sudden machine failures, higher than expected system load,
or inaccuracies in the estimation of system parameters (e.g.,
[3], [4], [13], [16], [17], [18], [20]). An important question
then arises: Given a system design, what extent of departure
from the assumed circumstances will cause a performance
feature to be unacceptably degraded? That is, how robust is
the system? Before answering this question, one needs to
clearly define robustness. Robustness has been defined in
different ways by different researchers. According to [17],
robustness is the degree to which a system can function
correctly in the presence of inputs different from those
assumed. In a more general sense, [13] states that a robust
system continues to operate correctly across a wide range of
operational conditions. Robustness, according to [16],
guarantees the maintenance of certain desired system
characteristics despite fluctuations in the behavior of its
component parts or its environment. The concept of
robustness, as used in this research, is similar to that in
[16]. Like [16], this work emphasizes that robustness should

be defined for a given set of system features, with a given
set of perturbations applied to the system. This research
investigates the robustness of resource allocation in parallel
and distributed systems and accordingly customizes the
definition of robustness.

Parallel and distributed computing is the coordinated
use of different types of machines, networks, and interfaces
to meet the requirements of widely varying application
mixtures and to maximize the system performance or cost-
effectiveness. An important research problem is how to
determine a resource allocation (which may involve the
matching of applications to resources and ordering their
execution) so as to maximize robustness of desired system
features against perturbations. This research addresses the
design of a robustness metric for resource allocations.

A resource allocation is defined to be robust with respect to
specified system performance features against perturbations in
specified system parameters if degradation in these features is
limited when the perturbations occur. For example, if a
resource allocation has been declared to be robust with
respect to satisfying a throughput requirement against
perturbations in the system load, then the system config-
ured under that allocation should continue to operate
without a throughput violation when the system load
increases. The immediate question is: What is the degree of
robustness? That is, for the example given above, how
much can the system load increase before a throughput
violation occurs? This research addresses this question and
others related to it by formulating the mathematical
description of a metric that evaluates the robustness of a
resource allocation with respect to certain system perfor-
mance features against multiple perturbations in multiple
system components and environmental conditions. In
addition, this work outlines a procedure called FePIA
(named after the four steps that constitute the procedure)
for deriving a robustness metric for an arbitrary system. For
illustration, the procedure is employed to derive robustness

630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

. S. Ali is with the Department of Electrical and Computer Engineering,
University of Missouri-Rolla, Rolla, MO 65409-0040.
E-mail: shoukat@umr.edu.

. A.A. Maciejewski is with the Department of Electrical and Computer
Engineering, Colorado State University, Fort Collins, CO 80523-1373.
E-mail: aam@colostate.edu.

. H.J. Siegel is with the Department of Electrical and Computer Engineering
and the Department of Computer Science, Colorado State University, Fort
Collins, CO 80523-1373. E-mail: hj@colostate.edu.

. J.-K. Kim is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285.
E-mail: jongkook@purdue.edu.

Manuscript received 23 Jan. 2003; revised 10 Sept. 2003; accepted 20 Oct.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118184.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

metrics for three example distributed systems. The robust-
ness metric and the FePIA procedure for its derivation are
the main contributions of this paper.

The rest of the paper is organized as follows: Section 2
describes the FePIA procedure mentioned above. It also
defines a generalized robustness metric. Derivations of this
metric for three example parallel and distributed systems
are given in Section 3. Section 4 extends the definition of the
robustness metric given in Section 2 to multiple specified
perturbation parameters. The computational complexity of
the robustness metric calculation is addressed in Section 5.
Section 6 presents some experiments that highlight the
usefulness of the robustness metric. A sampling of the
related work is given in Section 7. Section 8 concludes the
paper. A glossary of the notation used in this paper is given
in Table 1. Note that, throughout this paper, new symbols
are underlined when they are introduced. Such underlining
is not a part of the symbology.

2 GENERALIZED ROBUSTNESS METRIC

This section proposes a general procedure, called FePIA, for
deriving a general robustness metric for any desired
computing environment. The name for the above procedure
stands for identifying the performance features, the pertur-
bation parameters, the impact of perturbation parameters
on performance features, and the analysis to determine the
robustness. Specific examples illustrating the application of
the FePIA procedure to sample systems are given in the
next section. Each step of the FePIA procedure is now
described.

1. Describe quantitatively the requirement that makes
the system robust. Based on this robustness require-
ment, determine the QoS performance features that
should be limited in variation to ensure that the
robustness requirement is met. Identify the accep-
table variation for these feature values as a result of
uncertainties in system parameters. Consider an
example where

a. theQoSperformance feature ismakespan (the total
time it takes to complete the execution of a set of
applications) for a given resource allocation,

b. the acceptable variation is up to 30 percent of the
makespan that was calculated for the given
resource allocation using estimated execution
times of applications on the machines they are
assigned, and

c. the uncertainties in system parameters are
inaccuracies in the estimates of these execution
times.

Mathematically, let � be the set of system perfor-

mance features that should be limited in variation.

For each element �i 2 �, quantitatively describe the

tolerable variation in �i. Let �min
i ; �max

i

D E
be a tuple

that gives the bounds of the tolerable variation in the

system feature �i. For the makespan example, �i is

the time the ith machine finishes its assigned

applications, and its corresponding �min
i ; �max

i

� �
could be 0; 1:3� ðestimated makespan valueÞh i.

2. Identify all of the system and environment para-
meters whose values may impact the QoS perfor-
mance features selected in Step 1. These are called
the perturbation parameters (these are similar to
hazards in [4]), and the performance features are
required to be robust with respect to these perturba-
tion parameters. For the makespan example above,
the resource allocation (and its associated predicted
makespan) was based on the estimated application
execution times. It is desired that the makespan be
robust (stay within 130 percent of its estimated
value) with respect to uncertainties in these esti-
mated execution times.

Mathematically, let � be the set of perturbation

parameters. It is assumed that the elements of � are

vectors. Let ��j be the jth element of �. For the

makespan example, ��j could be the vector composed

of the actual application execution times, i.e., the ith

element of ��j is the actual execution time of the ith

application on the machine it was assigned. In

general, representation of the perturbation para-

meters as separate elements of � would be based on

their nature or kind (e.g., message length variables in

��1 and computation time variables in ��2).

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 631

TABLE 1
Glossary of Notation

3. Identify the impact of the perturbation parameters in
Step 2 on the system performance features in Step 1.
For the makespan example, the sum of the actual
execution times for all of the applications assigned a
given machine is the time when that machine
completes its applications. Note that Step 1b implies
that the actual time each machine finishes its
applications must be within the acceptable variation.

Mathematically, for every �i 2 �, determine the
relationship �i ¼ fijð��jÞ, if any, that relates �i to ��j. In
this expression, fij is a function that maps ��j to �i. For
the makespan example, �i is the finishing time for
machine mi, and fij would be the sum of execution
times for applications assigned to machine mi. The
rest of this discussion will be developed assuming
only one element in �. The case where multiple
perturbation parameters can affect a given �i simulta-
neously will be examined in Section 4.

4. The last step is to determine the smallest collective
variation in the values of perturbation parameters
identified in Step 2 that will cause any of the
performance features identified in Step 1 to violate
its acceptable variation. This will be the degree of
robustness of the given resource allocation. For the
makespan example, this will be some quantification
of the total amount of inaccuracy in the execution
times estimates allowable before the actual make-
span exceeds 130 percent of its estimated value.

Mathematically, for every �i 2 �, determine the
boundary values of ��j, i.e., the values satisfying the
boundary relationships fijð��jÞ ¼ �min

i and fijð��jÞ = �max
i .

(If ��j is a discrete variable, then the boundary values
correspond to the closest values that bracket each
boundary relationship. See Section 3.3 for an exam-
ple.) These relationships separate the region of robust
operation from that of nonrobust operation. Find the
smallest perturbation in ��j that causes any �i 2 � to
exceed the bounds �min

i ; �max
i

� �
imposed on it by the

robustness requirement.

Specifically, let ��origj be the value of ��j at which

the system is originally assumed to operate. How-

ever, due to inaccuracies in the estimated parameters

or changes in the environment, the value of the

variable ��j might differ from its assumed value. This

change in ��j can occur in different “directions”

depending on the relative differences in its indivi-

dual components. Assuming that no information is

available about the relative differences, all values of

��j are possible. Fig. 1 illustrates this concept for a

single feature, �i, and a two-element perturbation

vector ��j 2 R2. The curve shown in Fig. 1 plots the

set of boundary points f��jjfijð��jÞ ¼ �max
i g for a

resource allocation �. For this figure, the set of

boundary points f��jjfijð��jÞ ¼ �min
i g is given by the

points on the ��j1-axis and ��j2-axis.

The region enclosed by the axes and the curve

gives the values of ��j for which the system is robust

with respect to �i. For a vector x ¼ ½x1 x2 � � � xn�T,

let jjxjj2 be the ‘2-norm (Euclidean norm) of the

vector, defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

r¼1 x
2
r

p
. The point on the curve

marked as ���
j ð�iÞ has the property that the Euclidean

distance from ��orig
j to ���

j ð�iÞ, jj���
j ð�iÞ � ��orig

j jj2, is the

smallest over all such distances from ��orig
j to a point

on the curve. An important interpretation of ���j ð�iÞ is
that the value jj���

j ð�iÞ � ��orig
j jj2 gives the largest

Euclidean distance that the variable ��j can change

in any direction from the assumed value of ��orig
j

without the performance feature �i exceeding the

tolerable variation. Let the distance jj���
j ð�iÞ � ��orig

j jj2
be called the robustness radius, r�ð�i; ��jÞ, of �i against

��j. Mathematically,

r�ð�i; ��jÞ ¼ min
��j: ðfijð��jÞ¼�max

i Þ_ðfijð��jÞ¼�min
i Þ

jj��j � ��orig
j jj2:

ð1Þ

This work defines r�ð�i; ��jÞ to be the robustness of

resource allocation � with respect to performance feature

�i against the perturbation parameter ��j.
The robustness definition can be extended easily

for all �i 2 �. It is simply the minimum of all

robustness radii. Mathematically, let

��ð�; ��jÞ ¼ min
�i2 �

r�ð�i; ��jÞ
� �

: ð2Þ

Then, ��ð�; ��jÞ is the robustness metric of resource

allocation � with respect to the performance feature set �

against the perturbation parameter ��j.

Even though the ‘2-norm has been used for the

robustness radius in this general formulation, in practice,

the choice of a norm should depend on the particular

environment for which a robustness measure is being

sought. Section 3.3 gives an example situation where the

‘1-norm is preferred over the ‘2-norm.
In addition, in some situations, changes in some

elements of ��j may be more probable than changes in other

elements. In such cases, one may be able to modify the

distance calculation so that the contribution from an

element with a larger probability to change has a

proportionally larger weight. This is a subject for future

study.

632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 1. Some possible directions of increase of the perturbation

parameter ��j and the direction of the smallest increase. The curve

plots the set of points, f��jjfijð��jÞ ¼ �max
i g. The set of boundary points,

f��jjfijð��jÞ ¼ �min
i g is given by the points on the ��j1-axis and ��j2-axis.

3 DERIVATIONS OF ROBUSTNESS METRIC FOR

EXAMPLE SYSTEMS

3.1 Independent Application Allocation System

The first example derivation of the robustness metric is for a
system that allocates a set of independent applications to a
set of machines [6]. In this system, it is required that the
makespan (defined as the completion time for the entire set
of applications) be robust against errors in application
execution time estimates. Specifically, the actual makespan
under the perturbed execution times must be no more than
a certain factor times the predicted makespan calculated
using the assumed execution times. It is obvious that the
larger the “factor,” the larger the robustness. Assuming that
‘2-norm is used, one might also reason that as the number of
applications assigned to a given machine increases, the
change in the finishing time for that machine will increase
due to errors in the application computation times. As will
be seen shortly, the instantiation of the general framework
for this system does reflect this intuition.

A brief description of the system model is now given.
The applications are assumed to be independent, i.e., no
communications between the applications are needed. The
set A of applications is to be allocated to a set M of
machines so as to minimize the makespan (defined as the
finishing time of the machine that finishes last). Each
machine executes a single application at a time (i.e., no
multitasking), in the order in which the applications are
assigned. Let Cij be the estimated time to compute (ETC) for
application ai on machine mj. It is assumed that Cij values
are known for all i, j, and a resource allocation � is
determined using the ETC values. In addition, let Fj be the
time at which mj finishes executing all of the applications
allocated to it.

Assume that unknown inaccuracies in the ETC values
are expected, requiring that the resource allocation � be
robust against them. More specifically, it is required that,
for a given resource allocation, its actual makespan valueM
(calculated considering the effects of ETC errors) may be no
more than � times its nominal value, Morig. The nominal
value of the makespan is the value calculated assuming the
ETC values are accurate. Following Step 1 of the FePIA
procedure in Section 2, the system performance features
that should be limited in variation to ensure the makespan
robustness are the finishing times of the machines. That is,
� ¼ fFjj1 � j � jMjg.

According to Step 2 of the FePIA procedure, the

perturbation parameter needs to be defined. Let Corig
i be

the ETC value for application ai on the machine where it is

allocated. Let Ci be equal to the actual computation time

value (Corig
i plus the estimation error). In addition, let CC be

the vector of the Ci values such that CC ¼ ½C1 C2 � � � CjAj�.
Similarly, CCorig ¼ ½Corig

1 Corig
2 � � � Corig

jAj �. The vector CC is the

perturbation parameter for this analysis.
In accordance with Step 3 of the FePIA procedure, Fj has

to be expressed as a function of CC. To that end,

FjðCCÞ ¼
X

i: ai is allocated to mj

Ci: ð3Þ

Note that the finishing time of a given machine depends
only on the actual execution times of the applications
allocated to that machine and is independent of the
finishing times of the other machines. Following Step 4 of
the FePIA procedure, the set of boundary relationships
corresponding to the set of performance features is given by
fFjðCCÞ ¼ �Morigj1 � j � jMjg.

For a two-application system, CC corresponds to ��j in
Fig. 1. Similarly, C1 and C2 correspond to ��j1 and ��j2,
respectively. The terms CCorig, FjðCCÞ, and �Morig correspond
to ��orig

j , fijð��jÞ, and �max
i , respectively. The boundary

relationship “FjðCCÞ ¼ �Morig” corresponds to the boundary
relationship “fijð��jÞ ¼ �max

i .”
From (1), the robustness radius of Fj against CC is given by

r�ðFj; CCÞ ¼ min
CC: FjðCCÞ¼�Morig

jjCC � CCorigjj2: ð4Þ

That is, if the Euclidean distance between any vector of the
actual execution times and the vector of the estimated
execution times is no larger than r�ðFj; CCÞ, then the
finishing time of machine mj will be at most � times the
predicted makespan value.

Note that the right-hand side in (4) can be interpreted as
the perpendicular distance from the point CCorig to the
hyperplane described by the equation �Morig � FjðCCÞ ¼ 0.
Using the point-to-plane distance formula [21], (4) reduces to

r�ðFj; CCÞ ¼ �Morig � FjðCCorigÞffi
number of applications allocated to mj

p : ð5Þ

The robustness metric, from (2), is ��ð�; CCÞ = minFj 2 �

r�ðFj; CCÞ. That is, if the Euclidean distance between any
vector of the actual execution times and the vector of the
estimated execution times is no larger than ��ð�; CCÞ, then the
actual makespan will be at most � times the predicted
makespan value. The value of ��ð�;CCÞ has the units of CC,
namely, time.

3.2 The HiPer-D System

The second example derivation of the robustness metric is
for a HiPer-D [15] like system that allocates a set of
continuously executing, communicating applications to a
set of machines. It is required that the system be robust with
respect to certain QoS attributes against unforeseen in-
creases in the “system load.”

The HiPer-D system model used here was developed in
[1] and is summarized here for reference. The system
consists of heterogeneous sets of sensors, applications,
machines, and actuators. Each machine is capable of
multitasking, executing the applications allocated to it in a
round-robin fashion. Similarly, a given network link is
multitasked among all data transfers using that link. Each
sensor produces data periodically at a certain rate and the
resulting data streams are input into applications. The
applications process the data and send the output to other
applications or to actuators. The applications and the data
transfers between them are modeled with a directed acyclic
graph, shown in Fig. 2. The figure also shows a number of
paths (enclosed by dashed lines) formed by the applications.
A path is a chain of producer-consumer pairs that starts at a
sensor (the driving sensor) and ends at an actuator (if it is a

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 633

“trigger path”) or at a multiple-input application (if it is an
“update path”). In the context of Fig. 2, path 1 is a trigger
path and path 2 is an update path. In a real system,
application d could be a missile firing program that
produces an order to fire. It needs target coordinates from
application b in path 1 and an updated map of the terrain
from application c in path 2. Naturally, application d must
respond to any output from b, but must not issue fire orders
if it receives an output from c alone; such an output is used
only to update an internal database. So, while d is a multiple
input application, the rate at which it produces data is equal
to the rate at which the “trigger” application b produces
data (in the HiPer-D model). That rate, in turn, equals the
rate at which the driving sensor, S1, produces data. The
problem specification indicates the path to which each
application belongs, and the corresponding driving sensor.

Let P be the set of all paths, and Pk be the list of
applications that belong to the kth path. Note that an
application may be present in multiple paths. As in
Section 3.1, A is the set of applications.

The sensors constitute the interface of the system to the

external world. Let the maximum periodic data output rate

froma given sensor be called its output data rate. Theminimum

throughput constraint states that the computation or commu-

nication time of any application in Pk is required to be no

larger than the reciprocal of the outputdata rate of thedriving

sensor for Pk. For application ai 2 Pk, let RðaiÞ be set to the

output data rate of the driving sensor for Pk. In addition, let

Tc
ij be the computation time for application ai allocated to

machine mj. Also, let Tn
ip be the time to send data from

application ai to application ap. Because this analysis is being

carried out for a specific resource allocation, the machine

where a given application is allocated is known. It is assumed

that ai is allocated to mj and the machine subscript for Tc
ij is

omitted in the ensuing analysis for clarity unless the intent is

to show the relationship between execution times of ai at

various possible machines.
Themaximum end-to-end latency constraint states that, for a

given path Pk, the time taken between the instant the driving
sensor outputs a data set until the instant the actuator or the

multiple-input application fed by the path receives the result
of the computation on that data set must be no greater than a
given value, Lmax

k . Let Lk be the actual (as opposed to the
maximum allowed) value of the end-to-end latency for Pk.
The quantityLk can be found by adding the computation and
communication times for all applications inPk (includingany
sensor or actuator communications). Let DðaiÞ be the set of
successor applications of ai. Then,

Lk ¼
X

i: ai2Pk
p: ðap2PkÞ^ðap2DðaiÞÞ

Tc
i þ Tn

ip

h i
: ð6Þ

It is desired that a given resource allocation � of the
system be robust with respect to the satisfaction of two QoS
attributes: the latency and throughput constraints. Follow-
ing Step 1 of the FePIA procedure in Section 2, the system
performance features that should be limited in variation are
the latency values for the paths and the computation and
communication time values for the applications. The set � is
given by

� ¼fTc
i j1 � i � jAjg[
fTn

ipjð1 � i � jAgÞ ^ ðfor p where ap 2 DðaiÞÞg[
fLkj1 � k � jPjg:

ð7Þ

This system is expected to operate under uncertain
outputs from the sensors requiring that the resource
allocation � be robust against unpredictable increases in
the sensor outputs. Let ��z be the output from the zth sensor
in the set of sensors, and be defined as the number of objects
present in the most recent data set from that sensor. The
system workload, ��, is the vector composed of the load values
from all sensors. Let ��orig be the initial value of ��, and ��orig

i

be the initial value of the ith member of ��orig. Following
Step 2, the perturbation parameter ��j is identified to be ��.

Step 3 of the FePIA procedure requires that the impact of
�� on each of the system performance features be identified.
The computation times of different applications (and the
communication times of different data transfers) are likely
to be of different complexities with respect to ��. Assume
that the dependence of Tc

i and Tn
ip on �� is known (or can be

estimated) for all i; p. Given that, Tc
i and Tn

ip can be
reexpressed as functions of �� as Tc

i ð��Þ and Tn
ipð��Þ, respec-

tively. Even though d is triggered only by b, its computation
time depends on the outputs from both b and c. In general,
Tc
i ð��Þ and Tn

ipð��Þwill be functions of the loads from all those
sensors that can be traced back from ai. For example, the
computation time for application d in Fig. 2 is a function of
the loads from sensors S1 and S2, but that for application e

is a function of S2 and S3 loads (but each application has
just one driving sensor: S1 for d and S2 for e). Then, (6) can
be used to express Lk as a function of ��.

Following Step 4 of the FePIA procedure, the set of
boundary relationships corresponding to (7) is given by

fTc
i ð��Þ ¼ 1=RðaiÞj1 � i � jAjg

[
fTn

ipð��Þ ¼ 1=RðaiÞjð1 � i � jAjgÞ ^ ðfor p where ap 2 DðaiÞÞg[
fLkð��Þ ¼ Lmax

k j1 � k � jPjg:

634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 2. The DAG model for the applications (circles) and data transfers

(arrows). The diamonds and rectangles denote sensors and actuators,

respectively. The dashed lines enclose each path formed by the

applications.

Then, using (1), one can find, for each �i 2 �, the robustness
radius, r�ð�i; ��Þ. Specifically,

r�ð�i; ��Þ ¼

min
��: Tc

xð��Þ¼1=RðaxÞ
jj��� ��origjj2 if �i ¼ Tc

x ð8Þ

min
��: Tn

xyð��Þ¼1=RðaxÞ
jj��� ��origjj2 if �i ¼ Tn

xy ð9Þ

min
��: Lk¼Lmax

k

jj��� ��origjj2 if �i ¼ Lk: ð10Þ

8>>>><
>>>>:

The robustness radius in (8) is the largest increase
(Euclidean distance) in load in any direction (i.e., for any
combination of sensor load values) from the assumed value
that does not cause a throughput violation for the
computation of application ax. This is because it corre-
sponds to the value of �� for which the computation time of
ax will be at the allowed limit of 1=RðaxÞ. The robustness
radii in (9) and (10) are similar values for the communica-
tions of application ax and the latency of path Pk,
respectively. The robustness metric, from (2), is given by
��ð�; ��Þ ¼ min�i2 � r�ð�i; ��Þ

� �
. For this system, ��ð�; ��Þ is

the largest increase in load in any direction from the
assumed value that does not cause a latency or throughput
violation for any application or path. Note that ��ð�; ��Þ has
the units of ��, namely, objects per data set. In addition, note
that, although �� is a discrete variable, it has been treated as
a continuous variable in (8) for the purpose of simplifying
the illustration. A method for handling a discrete perturba-
tion parameter is discussed in Section 3.3.

3.3 A System in which Machine Failures Require
Reallocation

In many research efforts (e.g., [14], [17], [20]), the flexibility
of a resource allocation has been closely tied to its
robustness, and is described as the quality of the resource
allocation that can allow it to be changed easily into another
allocation of comparable performance when system failures
occur. This section briefly sketches the use of the FePIA
procedure to derive a robustness metric for systems where
resource reallocation becomes necessary due to dynamic
machine failures. In the example derivation analysis given
below, it is assumed that resource reallocation is invoked
because of permanent simultaneous failure of a number of
machines in the system (e.g., due to a power failure in a
section of a building).

For the system to be robust, it is required that 1) the total
number of applications that need to be reassigned, N re-asgn,
has to be less than �1 percent of the total number of
applications and 2) the value of a given objective function
(e.g., average application response time), J , should not be
any more than �2 times its value, Jorig, for the original
resource allocation. It is assumed that there is a specific
resource reallocation algorithm which may not be the same
as the original resource allocation algorithm. The resource
reallocation algorithm will reassign the applications origin-
ally allocated to the failed machines to other machines, as
well as reassign some other applications if necessary. As in
Section 3.1, A and M are the sets of applications and
machines, respectively.

FollowingStep1of theFePIAprocedure,� ¼ fN re-asgn; Jg.
Step 2 requires that the perturbation parameter ��j be
identified. Let FF be a vector that indicates the identities of

the machines that have failed. Specifically, FF = ½f1 f2
� � � fjMj�T such that fj is 1 if mj fails, and is 0 otherwise. The
vector FF orig corresponds to the original value of FF , which is
½0 0 � � � 0�T .

Step 3 asks for identifying the impact of FF on Nre-asgn and
J . The impact depends on the resource reallocation
algorithm, as well as FF , and can be determined from the
resource allocation produced by the resource reallocation
algorithm. Then, N re-asgn and J can be reexpressed as
functions of FF as Nre-asgnðFF Þ and JðFF Þ, respectively.

Following Step 4, the set of boundary values of FF needs
to be identified. However, FF is a discrete variable. The
boundary relationships developed for a continuous ��j, i.e.,
fijð��jÞ ¼ �min

i and fijð��jÞ ¼ �max
i , will not apply because it is

possible that no value of ��j will lie on the boundaries �min
i

and �max
i . Therefore, one needs to determine all those pairs

of the values of FF such that the values in a given pair
bracket a given boundary (�min

i or �max
i). For a given pair,

the “boundary value” is taken to be the value that falls in
the robust region. Let FF ðþ1Þ be a perturbation parameter
value such that the machines that fail in the scenario
represented by FF ðþ1Þ include the machines that fail in the
scenario represented by FF and exactly one other machine.
Then, for �1 ¼ N re-asgn, the set of “boundary values” for FF is
the set of all those “inner bracket” values of FF for which the
number of applications that need to be reassigned is less
than the maximum tolerable number. Mathematically,

FF j N re-asgnðFF Þ � �1jAjð Þ ^ 9FF ðþ1Þ N re-asgnðFF ðþ1ÞÞ > �1jAj
� �n o

:

For �2 ¼ J , the set of “boundary values” for FF can be
written as

FF j JðFF Þ � �2J
orig

� �
^ 9FF ðþ1Þ JðFF ðþ1ÞÞ > �2J

orig
� �n o

:

Then, using (1), one can find the robustness radii for the

set of constraints given above. However, for this system, it

is more intuitive to use the ‘1-norm (defined as
Pn

r¼1 jxrj for
a vector x ¼ ½x1 x2 � � � xn�T) for use in the robustness

metric. This is because, with the ‘2-norm, the term jjFF �
FF origjj2 equals the square root of the number of the machines

that fail, rather than the (more natural) number of machines

that fail. Specifically, using the ‘1-norm,

r�ðN re-asgn; FF Þ ¼
min

FF : ðNre-asgnðFF Þ���1jAjÞ^ð9FF ðþ1Þ Nre-asgnðFF ðþ1ÞÞ>�1jAjÞ
jjFF � FF origjj1 ð11Þ

and

r�ðJ; FF Þ ¼ min
FF : ðJðFF Þ���2JorigÞ^ð9FF ðþ1Þ JðFF ðþ1ÞÞ>�2JorigÞ

jjFF � FF origjj1:

ð12Þ

The robustness radius in (11) is the largest number of
machines that can fail in any combination without
causing the number of applications that have to be
reassigned to exceed �1jAj. Similarly, the robustness
radius in (12) is the largest number of machines that
can fail in any combination without causing the objective
function in the reallocated system to degrade beyond

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 635

�2JðFF Þ. The robustness metric, from (2), is given by
��ð�; FF Þ ¼ minðr�ðN re-asgn; FF Þ; r�ðJ; FF Þ. As in Section 3.2,
it is assumed here that the discrete optimization problems

posed in (11) and (12) can be solved for optimal or near-
optimal solutions using combinatorial optimization tech-

niques [19].
To determine if the robustness metric value is k, the

reallocation algorithm must be run for all combinations of
k machines failures out of a total of jMj machines.

Assuming that the robustness value is small enough, for
example, five machine failures in a set of 100 machines, then
the number of combinations would be small enough to be

computed off-line in a reasonable time. If one is using a fast
greedy heuristic for reallocation (e.g., those presented in
[1]), the complexity would be OðjAjjMjÞ for each combina-

tion of failures considered. For a Min-min-like greedy
heuristic (shown to be effective for many heterogeneous
computing systems, see [1] and the references provided at

the end of [1]), the complexity would be OðjAj2jMjÞ for
each combination of failures considered.

4 ROBUSTNESS AGAINST MULTIPLE

PERTURBATION PARAMETERS

Section 2 developed the analysis for determining the
robustness metric for a system with a single perturbation

parameter. In this section, that analysis is extended to
include multiple perturbation parameters.

Multiple perturbation parameters are considered by
concatenating them into one parameter, which is then used

as a single parameter as discussed in Section 2. Specifically,
this section develops an expression for the robustness

radius for a single performance feature, �i, and multiple
perturbation parameters. Then, the robustness metric is
determined by taking the minimum over the robustness

radii of all �i 2 �.
Let the vector ��j have n��j elements, and let ? be the vector

concatenation operator, so that ��1 ? ��2 ¼ ½��11��12 � � ���1n��1

��21 ��22 � � � ��2n��2
�T. Let P be a weighted concatenation of

thevectors��1; ��2; � � � ; ��j�j. That is,P ¼ ð�1 � ��1Þ ? ð�2 � ��2Þ ?
� � � ? ð�j�j � ��j�jÞ; where �j (1 � j � j�j) is a weighting
constant that may be assigned by a system administrator or

be based on the sensitivity of the system performance feature
�i toward ��j (explained in detail later).

The vector P is analogous to the vector ��j discussed in

Section 2. Parallel to the discussion in Section 2, one needs to
identify the set of boundary values of P. Let fi be a function
thatmapsP to �i. (Note that fi could be independent of some

��j.) For the single system feature �i being considered, such a
set is given by fPjðfiðPÞ ¼ �min

i Þ
W
ðfiðPÞ ¼ �max

i Þg.
LetPorig be the assumed value ofP. In addition, letP?ð�iÞ

be analogous to ���
j ð�iÞ, the element in the set of boundary

values such that the Euclidean distance from Porig to P?ð�iÞ,
jjP?ð�iÞ �Porigjj2, is the smallest over all such distances from
Porig to a point in the boundary set. Alternatively, the value

jjP?ð�iÞ �Porigjj2 gives the largest Euclideandistance that the
variableP can move in any direction from an assumed value

ofPorigwithout exceeding the tolerable limits on�i. Parallel to
the discussion in Section 2, let the distance jjP?ð�iÞ �Porigjj2

be called the robustness radius, r�ð�i;PÞ, of �i against P.
Mathematically,

r�ð�i;PÞ ¼ min
P: ðfiðPÞ¼�min

i Þ
W

ðfiðPÞ¼�max
i Þ

jjP�Porigjj2: ð13Þ

Extending for all �i 2 �, the robustness of resource
allocation � with respect to the performance feature set �
against the perturbation parameter set � is given by
��ð�;PÞ ¼ min�i2 �ðr�ð�i;PÞÞ.

The sensitivity-basedweighting procedure for the calcula-
tion of �js is now discussed. Typically, ��1; ��2; � � � ; ��j�j will
have different dimensions, i.e., will be measured in different
units, e.g., seconds, objects per data set, bytes, etc. Before the
concatenation of these vectors into P, they should be
converted into a single dimension. Additionally, for a given
�i, the magnitudes of �j should indicate the relative
sensitivities of �i to different ��js. One way to accomplish
the above goals is to set �j ¼ 1=r�ð�i; ��jÞ. With this definition
of �j,

P ¼ ��1

r�ð�i; ��1Þ
?

��2

r�ð�i; ��2Þ
? � � � ?

��j�j
r�ð�i; ��j�jÞ

: ð14Þ

Note that a smaller value of r�ð�i; ��jÞ makes �j larger. This
is desirable because a small value of the robustness against
��j indicates that �i has a big sensitivity to changes in ��j and,
therefore, the relative weight of ��j should be large. Also
note that the units of r�ð�i; ��jÞ are the units of ��j. This fact
renders P dimensionless.

5 COMPUTATIONAL COMPLEXITY

To calculate the robustness radius, one needs to solve the
optimization problem posed in (1). Such a computation
could potentially be very expensive. However, one can
exploit structure of this problem, along with some assump-
tions, to make this problem somewhat easier to solve. An
optimization problem of the form minlðxÞ¼0 fðxÞ or
mincðxÞ�0 fðxÞ could be solved very efficiently to find the
global minimum if fðxÞ, lðxÞ, and cðxÞ are convex, linear,
and concave functions, respectively. Some solution ap-
proaches, including the well-known interior-point methods,
for such convex optimization problems are presented in [5].

Because all norms are convex functions [5], the optimiza-
tion problem posed in (1) reduces to a convex optimization
problem if fijð��jÞ is linear. One interesting problem with
linear fijð��jÞ is given in Section 3.1.

If fijð��jÞ is concave and the constraint “fijð��jÞ ¼ �min
i ” is

irrelevant for some scenario (as it is for the system in

Section 3.2 where the latency of a path must be no larger

than a certain limit, but can be arbitrarily small), then once

again the problem reduces to a convex optimization

problem. Because the distance from a point to the boundary

of a region is the same as the distance from the point to the

region itself, min��j: ðfijð��jÞ¼�max
i Þ jj��j � ��orig

j jj2 is equivalent to

min��j: ðfijð��jÞ��max
i Þ jj��j � ��orig

j jj2. In such a case, the optimiza-

tion problem would still be convex (and efficiently solvable)

even if fijð��jÞ were concave [5].
Similarly, if fijð��jÞ is convex and the constraint

“fijð��jÞ ¼ �max
i ” is irrelevant for some scenario (e.g., for a

636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

network, the throughput must be no smaller than a certain

value, but can be arbitrarily large), then the optimization

problem reduces to a convex optimization problem.
However, if the above conditions are not met, the

optimization problem posed in (1) could still be solved for

near-optimal solutions using heuristic approaches (some

examples are given in [8]).

6 EXPERIMENTS

The experiments in this section seek to establish the utility

of the robustness metric in distinguishing between resource

allocations that perform similarly in terms of a commonly

used metric, such as makespan. Two different systems were

considered: the independent task allocation system dis-

cussed in Section 3.1 and the HiPer-D system outlined in

Section 3.2. Experiments were performed for a system with

five machines and 20 applications. A total of 1,000 resource

allocations were generated by assigning a randomly chosen

machine to each application and then each resource

allocation was evaluated with the robustness metric and

the commonly used metric.

6.1 Independent Application Allocation System

For the system in Section 3.1, the ETC values were

generated by sampling a Gamma distribution. The mean

was arbitrarily set to 10, the task heterogeneity was set to 0.7,

and the machine heterogeneity was also set to 0.7 (the

heterogeneity of a set of numbers is the standard deviation

divided by the mean). See [2] for a description of a method

for generating random numbers with given mean and

heterogeneity values.
The resource allocations were evaluated for robustness,

makespan, and load balance index (defined as the ratio of the

finishing time of the machine that finishes first to the

makespan). The larger the value of the load balance index,

the more balanced the load (the largest value being 1). The

tolerance, � , was set to 120 percent (i.e., the actual makespan

could be no more than 1.2 times the nominal value). In this

context, a robustness value of x for a given resource

allocation means that the resource allocation can endure

any combination of ETC errors without the makespan

increasing beyond 1.2 times its nominal value as long as the
Euclidean norm of the errors is no larger than x seconds.

Fig. 3a shows the “normalized robustness” of a resource
allocation against its makespan. The normalized robustness
equals the absolute robustness divided by the predicted
makespan. A similar graph for the normalized robustness
against the load balance index is shown in Fig. 3b. It can be
seen in Fig. 3 that some resource allocations are clustered
into groups such that, for all resource allocations within a
group, the normalized robustness remains constant as the
predicted makespan (or load balance index) increases.

The cluster of the resource allocations with the highest
robustness has the feature that the most loaded machine has
the smallest number of applications allocated to it (which is
two for the experiments in Fig. 3). The cluster with the
smallest robustness has the largest number, 11, of applica-
tions allocated to it. The intuitive explanation for this
behavior is that the larger the number of applications
allocated to a machine, the more degrees of freedom for the
finishing time of that machine. A larger degree of freedom
then results in a shorter path to constraint violation in the
parameter space. That is, the robustness is then smaller
(using the ‘2-norm).

If one agrees with the utility of the observations made
above, one can still question if the same information could
be gleaned from some traditional metrics (even if they are
not traditionally used to measure robustness). In an attempt
to answer that question, note that sharp differences exist in
the robustness of some resource allocations that have very
similar values of makespan. A similar observation could be
made from the robustness against load balance index plot
(Fig. 3b). In fact, it is possible to find a set of resource
allocations that have very similar values of makespan and
very similar values of load balance index, but with very
different values of robustness. These observations highlight
the fact that the information given by the robustness metric
could not be obtained from two popular performance
metrics.

The clustering seen in Fig. 3 can be explained using

(5). Let mðCCÞ be the machine that determines the

makespan at CC. Let nðmjÞ be the number of applications

allocated to machine mj. If mðCCorigÞ has the largest

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 637

Fig. 3. The plots of normalized robustness against (a) makespan and (b) load balance index for 1,000 randomly generated resource allocations.

number of applications allocated to it, then it is also the

machine that determines the robustness of the resource

allocation (because it has the smallest robustness radius,

(see (5)). Now, consider the set S1ðxÞ of resource

allocations such that x ¼ nðmðCCorigÞÞ ¼ maxj:mj2M nðmjÞ
for each resource allocation in the set. For resource

allocations in S1ðxÞ, the robustness is directly proportional

to Morig (see (5)) or, equivalently, the normalized

robustness is a constant as Morig changes. Each distinct

straight line in Fig. 3 corresponds to S1ðxÞ for some x 2
f1 � � � jAjg. The explanation for the outlying points is as

follows: Let S2ðxÞ be the union of S1ðxÞ and the set of

resource allocations for which x ¼ nðmðCCorigÞÞ 6¼maxj:mj2M
nðmjÞ. The outlying points belong to the latter set,

S2ðxÞ � S1ðxÞ. Note that all such outlying points lie

“below” the line specified by S1ðxÞ. For a resource

allocation that corresponds to an outlying point, the

machine that determines the robustness is not mðCCorigÞ; it
is some other machine for which the robustness radius is

smaller than the robustness radius for mðCCorigÞ.

6.2 The HiPer-D System

For the model in Section 3.2, the experiments were
performed for a system that consisted of 19 paths, where
the end-to-end latency constraints of the paths were
uniformly sampled from the range ½750; 1250�. The system
had three sensors (with rates 4� 10�5, 3� 10�5, and
8� 10�6) and three actuators. The experiments made the
following simplifying assumptions. The computation time
function, Tc

ijð��Þ, was assumed to be of the formP
1�z�3 bijz��z, where bijz ¼ 0 if there is no route from the

zth sensor to application ai. Otherwise, bijz was sampled
from a Gamma distribution with a mean of 10 and task and
machine heterogeneity values of 0.7 each. For simplicity in
the presentation of the results, the communication times
were all set to zero. These assumptions were made only to
simplify the experiments and are not a part of the
formulation of the robustness metric. The salient point in
this example is that the utility of the robustness metric can
be seen even when simple complexity functions are used.

The resource allocations were evaluated for robustness
and “slack.” In this context, a robustness value of x for a
given resource allocation means that the resource allocation
can endure any combination of sensor loads without a
latency or throughput violation as long as the Euclidean
norm of the increases in sensor loads (from the assumed
values) is no larger than x. Slack has been used in many
studies as a performance measure (e.g., [10], [17]) for
resource allocation in parallel and distributed systems,
where a resource allocation with a larger slack is considered
better. In this study, slack is defined mathematically as
follows: Let the fractional value of a given QoS attribute be
the value of the attribute as a percentage of the maximum
allowed value. Then, the percentage slack for a given QoS
attribute is the fractional value subtracted from 1. The
system-wide percentage slack is the minimum value of
percentage slack taken over all QoS constraints, and can
be expressed mathematically as

min

"
min

k: Pk2P

1� Lkð��Þ

Lmax
k

!
;

min
i: ai2A

1�

max
�
Tc
ijð��Þ; max

ap2DðaiÞ
Tn
ipð��Þ

�
1=RðaiÞ

!#
:

ð15Þ

Fig. 4 shows the normalized robustness of a resource
allocation against its slack. For this system, the normalized
robustness equals the absolute robustness divided by
jj��origjj2. It can be seen that the normalized robustness and
slack are not correlated. If, in some research study, the
purpose of using slack is to measure a system’s ability to
tolerate additional load, then our measure of robustness is a
better indicator of that ability than slack. This is because the
expression for slack, (15), does not directly take into account
how the sensor loads affect the computation and commu-
nication times. It could be conjectured that, for a system
where all sensors affected the computation and commu-
nication times of all applications in exactly the same way,
the slack and this research’s measure of robustness would
be tightly correlated. This, in fact, is true. Other experiments
performed in this study show that, for a system with small
heterogeneity, the robustness and slack are tightly corre-
lated, thereby suggesting that robustness measurements are
not needed if slack is known. As the system heterogeneity
increases, the robustness and slack become less correlated,
indicating that the robustness measurements can be used to
distinguish between mappings that are similar in terms of
the slack. As the system size increases, the correlation
between the slack and the robustness decreases even
further. In summary, for heterogeneous systems, using
slack as a measure of how much increase in sensor load a
system can tolerate may cause system designers to grossly
misjudge the system’s capability.

7 RELATED WORK

Although a number of robustness measures have been
studied in the literature (e.g., [4], [7], [9], [10], [11], [12], [17],
[18], [20], [22]), those measures were developed for specific
systems. The focus of the research in this paper is a general
mathematical formulation of a robustness metric that could
be applied to a variety of parallel and distributed systems
by following the FePIA procedure presented in this paper.

638 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 4. The plot of normalized robustness against slack for 1,000 randomly
generated resource allocations.

Given an allocation of a set of communicating applica-
tions to a set of machines, the work in [4] develops a metric
for the robustness of the makespan against uncertainties in
the estimated execution times of the applications. The paper
discusses, in detail, the effect of these uncertainties on the
value of makespan and how the robustness metric could be
used to find more robust resource allocations. Based on the
model and assumptions in [4], several theorems about the
properties of robustness are proven. The robustness metric
in [4] was formulated for errors in the estimation of
application execution times and was not intended for
general use (in contrast to our work). Additionally, the
formulation in [4] assumes that the execution time for any
application is at most k times the estimated value, where
k � 1 is the same for all applications. In our work, no such
bound is assumed.

In [7], the authors address the issue of probabilistic
guarantees for fault-tolerant real-time systems. As a first
step toward determining such a probabilistic guarantee, the
authors determine the maximum frequency of software or
hardware faults that the system can tolerate without
violating any hard real-time constraint. In the second step,
the authors derive a value for the probability that the
system will not experience faults at a frequency larger than
that determined in the first step. The output of the first step
is what our work would identify as the robustness of the
system, with the satisfaction of the real-time constraints
being the robustness requirement and the occurrence of
faults being the perturbation parameter.

The research in [9] considers a single-machine schedul-
ing environment where the processing times of individual
jobs are uncertain. The system performance is measured by
the total flow time (i.e., the sum of completion times of all
jobs). Given the probabilistic information about the proces-
sing time for each job, the authors determine the normal
distribution that approximates the flow time associated
with a given schedule. A given schedule’s robustness is
then given by 1 minus the risk of achieving substandard
flow time performance. The risk value is calculated by using
the approximate distribution of flow time.

The study in [10] explores slack-based techniques for
producing robust resource allocations in a job-shop envir-
onment. The central idea is to provide each task with extra
time (defined as slack) to execute so that some level of
uncertainty can be absorbed without having to reallocate.
The study uses slack as its measure of robustness.

The Ballista project [11] explores the robustness of
commercial off-the-shelf software against failures resulting
from invalid inputs to various software procedure calls. A
failure causes the software package to crash when un-
expected parameters are used for the procedure calls. The
research quantifies the robustness of a software procedure
in terms of its failure rate—the percentage of test input
cases that cause failures to occur. The Ballista project
extensively explores the robustness of different operating
systems (including experimental work with IBM, FreeBSD,
Linux, AT&T, and Cisco).

The research in [12] introduces techniques to incorporate
fault tolerance in scheduling approaches for real-time
systems by the use of additional time to perform the

system functions (e.g., to reexecute, or to execute a different
version of, a faulty task). Their method guarantees that the
real-time tasks will meet the deadlines under transient
faults by reserving sufficient additional time or slack. Given
a certain system slack and task model, the paper defines its
measure of robustness to be the “fault tolerance capability”
of a system (i.e., the number and frequency of faults it can
tolerate). This measure of robustness is similar, in principle,
to ours.

In [17], a “neighborhood-based” measure of robustness is
defined for a job-shop environment. Given a schedule s and
a performance metric P ðsÞ, the robustness of the schedule s
is defined to be a weighted sum of all P ðs0Þ values such that
s0 is in the set of schedules that can be obtained from s by
interchanging two consecutive operations on the same
machine.

The work in [18] develops a mathematical definition for
the robustness of makespan against machine breakdowns in
a job-shop environment. The authors assume a certain
random distribution of the machine breakdowns and a
certain rescheduling policy in the event of a breakdown.
Given these assumptions, the robustness of a schedule s is
defined to be a weighted sum of the expected value of the
makespan of the rescheduled system, M, and the expected
value of the schedule delay (the difference between M and
the original value of the makespan). Because the analytical
determination of the schedule delay becomes very hard
when more than one disruption is considered, the authors
propose surrogate measures of robustness that are claimed
to be strongly correlated with the expected value of M and
the expected schedule delay.

The research in [20] uses a genetic algorithm to produce
robust schedules in a job-shop environment. Given a
schedule s and a performance metric P ðsÞ, the “robust
fitness value” of the schedule s is a weighted average of all
P ðs0Þ values such that s0 is in a set of schedules obtained
from s by adding a small “noise” to it. The size of this set of
schedules is determined arbitrarily. The “noise” modifies s
by randomly changing the ready times of a fraction of the
tasks.

Our work is perhaps closest in philosophy to [22], which
attempts to calculate the stability radius of an optimal
schedule in a job-shop environment. The stability radius of
an optimal schedule, s, is defined to be the radius of a
closed ball in the space of the numerical input data such
that, within that ball, the schedule s remains optimal.
Outside this ball, which is centered at the assumed input,
some other schedule would outperform the schedule that is
optimal at the assumed input. From our viewpoint, for a
given optimal schedule, the robustness requirement could
be the persistence of optimality in the face of perturbations
in the input data. Our work differs and is more general
because we consider the given system requirements to
generate a robustness requirement and then determine the
robustness. In addition, our work considers the possibility
of multiple perturbations in different dimensions.

8 CONCLUSIONS

Thispaperhaspresentedamathematical descriptionof anew
metric for the robustness of a resource allocationwith respect

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 639

to desired system performance features against multiple

perturbations in various system and environmental condi-

tions. In addition, the research describes a procedure, called

FePIA, to methodically derive the robustness metric for a

variety of parallel and distributed resource allocation

systems. For illustration, the FePIA procedure is employed

to derive robustness metrics for three example distributed

systems. The experiments conducted in this research for two

example parallel and distributed systems illustrate the utility

of the robustness metric in distinguishing between the

resource allocations that perform similarly otherwise.

ACKNOWLEDGMENTS

The authors thank the IEEE Transactions on Parallel and

Distributed Systems reviewers, Professor Balakrishnan, Sahra
Sedigh-Ali, and Martin Nagel for their valuable comments
which improved the quality of this paper. A preliminary
version of portions of this paper was presented at the 17th
International Parallel and Distributed Processing Sympo-
sium, April 2003. This work was supported by the DARPA/
ITO Quorum Program through the Office of Naval Research
under Grant No. N00014-00-1-0599, and by the Colorado
State University George T. Abell Endowment. Some of the
equipment used was donated by Intel and Microsoft.

REFERENCES

[1] S. Ali, J.-K. Kim, Y. Yu, S.B. Gundala, S. Gertphol, H.J. Siegel, A.A.
Maciejewski, and V. Prasanna, “Greedy Heuristics for Resource
Allocation in Dynamic Distributed Real-Time Heterogeneous
Computing Systems,” Proc. 2002 Int’l Conf. Parallel and Distributed
Processing Techniques and Applications, vol. 2, pp. 519-530, June
2002.

[2] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, and S. Sedigh-Ali,
“Representing Task and Machine Heterogeneities for Heteroge-
neous Computing Systems,” Tamkang J. Science and Eng., vol. 3,
no. 3, pp. 195-207, Nov. 2000.

[3] P.M. Berry, “Uncertainty in Scheduling: Probability, Problem
Reduction, Abstractions and the User,” IEE Computing and Control
Division Colloquium on Advanced Software Technologies for Schedul-
ing, Digest No: 1993/163, Apr. 1993.

[4] L. Bölöni and D.C. Marinescu, “Robust Scheduling of Metapro-
grams,” J. Scheduling, vol. 5, no. 5, pp. 395-412, Sept. 2002.

[5] S. Boyd and L. Vandenberghe, “Convex Optimization,” http://
www.stanford.edu/class/ee364/index.html, 2003.

[6] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F.
Freund, “A Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems,” J. Parallel and Distributed Computing,
vol. 61, no. 6, pp. 810-837, June 2001.

[7] A. Burns, S. Punnekkat, B. Littlewood, and D. Wright, “Probabil-
istic Guarantees for Fault-Tolerant Real-Time Systems,” Technical
Report, Design for Validation (DeVa) TR No. 44, Esprit Long Term
Research Project No. 20072, Dept. of Computer Science, Univ. of
Newcastle upon Tyne, U.K., 1997.

[8] Y.X. Chen, “Optimal Anytime Search for Constrained Nonlinear
Programming,” master’s thesis, Dept. of Computer Science, Univ.
of Illinois, Urbana, May 2001.

[9] R.L. Daniels and J.E. Carrillo, “�-Robust Scheduling for Single-
Machine Systems with Uncertain Processing Times,” IIE Trans.,
vol. 29, no. 11, pp. 977-985, 1997.

[10] A.J. Davenport, C. Gefflot, and J.C. Beck, “Slack-Based Techniques
for Robust Schedules,” Proc. Sixth European Conf. Planning, pp. 7-
18, Sept. 2001.

[11] J. DeVale and P. Koopman, “Robust Software—No More
Excuses,” Proc. IEEE Int’l Conf. Dependable Systems and Networks,
pp. 145-154, June 2002.

[12] S. Ghosh, “Guaranteeing Fault Tolerance through Scheduling in
Real-Time Systems,” PhD thesis, Faculty of Arts and Sciences,
Univ. of Pittsburgh, 1996.

[13] S.D. Gribble, “Robustness in Complex Systems,” Proc. Eighth
Workshop Hot Topics in Operating Systems, pp. 21-26, May 2001.

[14] E. Hart, P.M. Ross, and J. Nelson, “Producing Robust Schedules
via an Artificial Immune System,” Proc. 1998 Int’l Conf. Evolu-
tionary Computing, pp. 464-469, May 1998.

[15] R. Harrison, L. Zitzman, and G. Yoritomo, “High Performance
Distributed Computing Program (HiPer-D)—Engineering Testbed
One (T1) Report,” technical report, Naval Surface Warfare Center,
Dahlgren, Va., Nov. 1995.

[16] E. Jen, “Stable or Robust? What is the Difference?” Complexity, to
appear.

[17] M. Jensen, “Improving Robustness and Flexibility of Tardiness
and Total Flowtime Job Shops Using Robustness Measures,”
J. Applied Soft Computing, vol. 1, no. 1, pp. 35-52, June 2001.

[18] V.J. Leon, S.D. Wu, and R.H. Storer, “Robustness Measures and
Robust Scheduling for Job Shops,” IEE Trans., vol. 26, no. 5, pp. 32-
43, Sept. 1994.

[19] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization. New York: John Wiley & Sons, 1988.

[20] M. Sevaux and K. Sörensen, “Genetic Algorithm for Robust
Schedules,” Proc. Eighth Int’l Workshop Project Management and
Scheduling, pp. 330-333, Apr. 2002.

[21] G.F. Simmons, Calculus With Analytic Geometry, second ed. New
York: McGraw-Hill, 1995.

[22] Y.N. Sotskov, V.S. Tanaev, and F. Werner, “Stability Radius of an
Optimal Schedule: A Survey and Recent Developments,” Indus-
trial Applications of Combinatorial Optimization, G. Yu, ed., Norwell,
Mass.: Kluwer Academic Publishers, pp. 72-108, 1998.

Shoukat Ali received the MSEE (1999) and
PhD (2003) degrees from the School of Elec-
trical and Computer Engineering at Purdue
University, West Lafayette. He received the BS
degree (1996) in electrical engineering from the
University of Engineering and Technology
(UET), Lahore, Pakistan. He is an assistant
professor in the Department of Electrical and
Computer Engineering at the University of
Missouri-Rolla. His research interests include

heterogeneous parallel and distributed computing and communication
systems. He has coauthored 12 published technical papers in this area.
He was the publicity cochair of the 11th IEEE Heterogeneous
Computing Workshop (2002), and is on the program committee for the
12th IEEE Heterogeneous Computing Workshop (2003). He is a
member of the IEEE, IEEE Computer Society, and ACM.

Anthony A. Maciejewski received the BSEE,
MS, and PhD degrees in electrical engineering in
1982, 1984, and 1987, respectively, all from The
Ohio State University. From 1985 to 1986, he
was an American Electronics Association Japan
Research Fellow at the Hitachi Central Research
Laboratory in Tokyo, Japan. From 1988 to 2001,
he was a professor of electrical and computer
engineering at Purdue University, West Lafay-
ette. In 2001, he joined Colorado State University

where he is currently the head of the Department of Electrical and
Computer Engineering. Professor Maciejewski’s research interests are in
robotics and high-performance computing. He is currently an associate
editor for the IEEE Transactions on Robotics and Automation, serves on
the Administrative Committee for the IEEE Robotics and Automation
Society, and was the technical program chair for the 2002 IEEE
International Conference on Robotics and Automation. An up-to-date
biography is available at http://www.engr.colostate.edu/~aam. He is a
senior member of the IEEE, IEEE Computer Society, and ACM.

640 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Howard Jay Siegel received two BS degrees
from the Massachusetts Institute of Technology
(MIT), and the MA, MSE, and PhD degrees from
Princeton University. He was appointed the
George T. Abell Endowed Chair Distinguished
Professor of electrical and computer engineering
at Colorado State University (CSU) in August
2001, where he is also a professor of computer
science. In December 2002, he became the first
director of the university-wide CSU Information

Science and Technology Center (ISTeC). From 1976 to 2001, he was a
professor at Purdue University. He has coauthored more than 300
published papers on parallel and distributed computing and commu-
nication, is a fellow of the IEEE and IEEE Computer Society, a fellow of
the ACM, was a coeditor-in-chief of the Journal of Parallel and
Distributed Computing, and was on the editorial boards of both the
IEEE Transactions on Parallel and Distributed Systems and the IEEE
Transactions on Computers. He was program chair/cochair of three
major international conferences, general chair/cochair of four interna-
tional conferences, and chair/cochair of five workshops. He has been an
international keynote speaker and tutorial lecturer, and has consulted for
industry and government.

Jong-Kook Kim received the MS degree in
electrical engineering from Purdue University in
May 2000. He received the BS degree in
electronic engineering from Korea University,
Seoul, Korea in 1998. He is pursuing the PhD
degree from the School of Electrical and
Computer Engineering at Purdue University,
where he is currently a research assistant (since
August 1998). He has presented his work at
several international conferences and has been

a reviewer for numerous conferences and journals. His research
interests include heterogeneous distributed computing, computer
architecture, performance measure, resource management, evolution-
ary heuristics, and power-aware computing. He is a student member of
the IEEE, IEEE Computer Society, and ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ALI ET AL.: MEASURING THE ROBUSTNESS OF A RESOURCE ALLOCATION 641

