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ABSTRACT 
 
 
 

STUDYING THE IMPACT OF AIR POLLUTION AND PESTICIDE MIXTURES ON 

RESPIRATORY HEALTH IN FRESNO AND TULARE COUNTIES OF CENTRAL 

CALIFORNIA 

 

Residents of California’s Central Valley are exposed to some of the worst air quality in 

the United States, as well as high levels of pesticides owing to the region’s large 

agricultural economy. There is ample evidence that exposure to air pollution is 

associated with adverse respiratory health outcomes, and some evidence from 

occupational and community-based studies that exposure to pesticides has negative 

impacts on respiratory health as well. Epidemiologic research on air pollution and 

pesticides often considers these exposures one at a time in relation to health outcomes, 

but humans are exposed to pollutants simultaneously in mixtures. In this study we used 

multiple linear regression models to look at linear relationships of three criteria air 

pollutants and biomarkers of organophosphates (dialkyl phosphates or DAPs) with 

urinary leukotriene E4 (LTE4), a biomarker of respiratory inflammation, in participants in 

four Central California communities (n=80). We then used Bayesian Kernel Machine 

Regression models to study these criteria air pollutants and DAPs as a mixture and 

determine if this mixture had a relationship with respiratory health in this population. We 

also studied these relationships at two different times of the year (January and June) to 

study whether and how this relationship between an air pollution-pesticide mixture and 

the respiratory health outcome changed seasonally. Our multiple linear regression 
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models revealed that dimethyl phosphates had a statistically significant association with 

respiratory health in January, which suggests that LTE4 can be used as a biomarker for 

respiratory inflammation in populations with low asthma prevalence. The results of our 

BKMR analysis were not statistically significant but did suggest interactions between the 

exposures in our air pollution-pesticide mixture. Despite a small sample size, this study 

adds to the limited research on environmental mixtures, and the effects of pesticide 

exposure on respiratory health.  
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CHAPTER 1: LITERATURE REVIEW 

 
 

In this chapter I will review the scientific literature on ambient air pollution, pesticides, 

multi-pollutant mixtures, and their associated effects on respiratory health. I will first 

describe the science of air pollution, the sources (both anthropogenic and biogenic), and 

the conditions that facilitate poorer air quality. This background is key to understanding 

the context of Central California’s pollution exposures. I will then highlight some of the 

events that led to recognition of air pollution as a health hazard, and some of the steps 

that have been taken to limit exposure. After this I will describe the science of synthetic 

pesticides, how they came into use, and the documented health impacts. Next, I will 

explain the tools epidemiologists and other environmental science researchers use to 

measure exposure to air pollution as well as pesticides, before concluding with a review 

of the small body of literature surrounding multi-pollutant mixtures, a research direction 

that is gaining more traction as scientists consider how people are exposed to 

environmental exposures simultaneously that widely differ in composition.  

Air Pollution 

Sources of Air Pollution 

Ambient air pollution is comprised of a mixture of different particles, gases, and vapors 

that result from both natural and anthropogenic activities.1 Some examples of natural 

sources of air pollution include dust and gases from volcanic eruptions, smoke from forest 

fires, and biological materials such as mold spores, pollen, and other organic materials 

from animals and plants.1 Chemical plants, incinerators, factories and manufacturing 

plants, oil refineries, and electric generating plants are stationary examples of 
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anthropogenic air pollution. A significant amount of anthropogenic air pollution is emitted 

from mobile sources such as motor vehicles, which contribute roughly half of volatile 

organic compounds and nitrous oxides (two large components of smog), nearly 75% of 

all manmade carbon monoxide, and more than 50% of emissions of toxic air pollutants in 

all air pollution.1,2 

Factors that Influence Air Pollution Severity 

There is an axiom in the environmental sciences that “the solution to pollution is dilution,” 

and many of the factors that influence air pollution severity are related to the ways in 

which air pollutants either disperse throughout the atmosphere or accumulate at higher 

concentrations. Below I will discuss several of the meteorological and topographic factors 

that influence the dispersion and accumulation of air pollution.  

Precipitation and Relative Humidity 

Precipitation has been shown to have a cleansing effect on air quality, by washing away 

particulate matter and dissolving other pollutants that are soluble.3 The raindrops attract 

aerosol particles as they fall through the atmosphere in a process known as coagulation.4 

Researchers at MIT observed that coagulation of rain drops and pollutants was most 

efficient when the rain drops were small and in relatively low humidity.4,5  

Despite the findings of the MIT researchers, studies from India and China have found the 

relationship between relative humidity and air pollution less conclusive. 6,7  

Inversions 

Temperature inversions are an atmospheric phenomenon that occur when warm air lies 

above cold air.1,8 In the context of air pollution, an inversion acts as a lid that prevents air 

pollutants from rising and dispersing into the atmosphere, because the cooler air is more 
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dense and heavy than the warm air, thereby trapping pollutants underneath the layer of 

warm air.8 This is the reverse of the more typical scenario in which solar radiation warms 

the earth’s surface and creates a convection current of warm air below dispersing air 

pollutants into a cooler atmosphere above, away from the breathing zones of people.1 

In an inversion the atmosphere is very stable, and this atmospheric stagnation contributes 

to poor air quality because the conditions are not conducive to the vertical mixing of air 

particles (including air pollutants) that helps to dilute them.8 However, the region of air 

below the inversion, known as the mixing layer, is relatively unstable and allows for 

vertical mixing. The depth of the mixing layer (mixing depth) influences how well air 

pollutants can disperse.8 The mixing depth becomes more shallow when the inversion 

lowers, and compresses the air pollutants into higher concentrations.8 Conversely, the 

mixing depth increases when the inversion rises, and allows air pollutants to be dispersed 

throughout a wider volume of air, and thereby decrease their concentration.8 

Radiation inversions (also called surface inversions) are typically short-lived inversions 

that form at night or in the early morning when the atmosphere is stable, wind is light and 

the sky is clear.8 As the sun rises, it warms the earth’s surface and leads to convection of 

warm air up into the atmosphere.8 This convection causes the atmosphere to become 

more unstable and weakens the inversion, allowing pollutants to disperse more easily by 

early afternoon.8 For these reasons, the levels of air pollution can fluctuate throughout 

the day in a single area.  

Subsidence inversions, which form as the air above a deep anticyclone sinks 

(subsides), can last for much longer than radiation inversions, sometimes for days on  
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end, and they form when high atmospheric pressure causes air to sink over a wide 

area, and to heat up as it compresses.8 

Wind 

Wind influences the concentrations of air pollution by acting as a diluter. Air pollutants are 

dispersed more quickly by strong winds that create swirling eddies, which mix air 

pollutants with surrounding cleaner air and thereby lower the overall concentration of 

pollutants.8 When winds are lighter, coupled with low vertical mixing, atmospheric 

stagnation can occur.8 

However, while higher winds are associated with higher dispersion of air pollutants, wind 

can also transport air pollution from its original source to other areas downwind, 

sometimes over great distances. In the United States, the term interstate air pollution 

transport is used to describe the movement of air pollution across state borders, and this 

can contribute to the failure of states downwind of pollution sources to meet air quality 

standards.9 

Heat and Sunlight 

Clear days with sunshine are associated with the formation of smog because smog 

forming chemical reactions occur in the presence of sunlight, and heat speeds up the rate 

of these reactions.3,8 For example, ground-level ozone (the main contributor to 

photochemical smog, sometimes known as Los Angeles-type smog), forms in the 

presence of sunlight when nitrogen oxides from industrial and vehicle emissions react 

with volatile organic compounds.1,3,8,10 

Summertime, which is typically the hotter, sunnier season in the northern hemisphere, 

can increase the levels of ground-level ozone related air pollution. This is the case in the 
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Colorado Northern Front Range, which often experiences high ozone levels above what 

is deemed healthy by the National Ambient Air Quality Standards (NAAQS) in the summer 

months.11 

Topography 

Topography has a significant impact on the air quality of a geographic region, in many 

ways because topography influences the meteorological influences mentioned above. Air 

pollution tends to settle in valleys where surrounding mountains and hills prevent wind 

from dispersing pollutants, as is the case in cities like Los Angeles, Fresno, Salt Lake 

City, and Denver.8,12,13  

Additionally, mountains and valleys collect cooler air and are often responsible for 

creating conditions ideal for the formation of temperature inversions, which occur when 

cool air is trapped under a layer of warmer air. Wintertime is often a season of temperature 

inversions in parts of the United States where mountains and valleys can collect cold air.14 

The Central Valley of California is prone to these winter temperature inversions, as is the 

Salt Lake Valley in Utah,14 the inland valleys of Alaska where Fairbanks is situated,15 and 

parts of the Mid-Atlantic Piedmont region in North Carolina and Virginia, where cold 

easterly winds are unable to disperse over the Appalachian mountains.14 

Outside the United States, topography influences air quality in Beijing, which also sees 

increases in temperature inversions in the winter. The Chinese city of more than 20 million 

people is located in a region where two mountain ranges come together, making it difficult 

for incoming weather to disperse the already high levels of air pollution, and providing the 

ideal conditions for trapped cold air to create deadly inversions.14 
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Historical Air Pollution Events 

Several historical environmental health crises led to the understanding of air pollution as 

a threat to human health. One of the notable 20th century cases occurred in the Meuse 

Valley of Belgium in 1930, near the city of Liѐge. This valley had a high concentration of 

smelters, foundries, coke ovens, and mills as part of the local steel industry operations, 

and levels of sulfur dioxide, sulfuric acid mists, and fluoride gases rose to unhealthy 

extremes that resulted in a mortality rate ten times that of what was normal.16 Steel mills, 

along with iron mills, coal fired home stoves, and coal burning factories were similarly 

responsible for a catastrophic smog event in Donora, Pennsylvania in 1948, where an air 

inversion caused high levels of air pollution to cause illness in the about half of Donora’s 

population.1,17 This air pollution event, which lasted from October 27th, to October 30th, 

resulted in 400 hospitalizations and 20 deaths.17 The London Fog of 1952, which resulted 

from coal and other fossil fuels being used to heat homes in London, England is the event 

that is thought to have catalyzed interest in air pollution research, after 3,000 excess 

deaths were reported from December 5th, to December 9th.1,16 

Health Effects of Air Pollution 

At present, the effects of air pollution on respiratory health are well documented. The 

landmark Harvard Six Cities study in 1993, documented an association between air 

pollution in the form of particulate matter, and increased risk of dying of all causes, 

including cardiovascular and respiratory health outcomes.18 Prior to the Harvard Six Cities 

study, particulate matter (PM2.5 and PM10) were not criteria air pollutants, but in 1987 PM10 

began to be regulated by the National Ambient Air Quality Standards (NAAQS) set by the 

EPA, and PM2.5 began to be regulated in 1997.1,19 The US Environmental Protection 
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Agency’s Integrated Science Assessment for Particulate Matter documents many of the 

known effects of inhaling particulate matter, which include decreased lung function and 

aggravated asthma.20 

Some symptoms and health effects of acute exposure to ambient air pollution include 

irritation of the eyes, nose, and throat, aching of the lungs, coughing, wheezing, 

bronchitis, pneumonia, nausea, headaches, and difficulty breathing.1,2,21 More chronic 

effects of exposure to air pollution include heart disease, chronic obstructive pulmonary 

disease (COPD), lung cancer, and death.1 

Disease Burden and Geographic Scope of Air Pollution 

Globally, air pollution is a leading contributor of disease burden and death, and levels of 

air pollution are high in many low and middle income countries.22 Deaths attributable to 

particulate matter are particularly high in countries such as Egypt, Iran, Pakistan, India, 

Bangladesh, and China.22 Despite positive air quality gains due to environmental 

regulations in many high income countries, air pollution remains a problem in the United 

States as well, with estimates from the American Lung Association that approximately 

half of Americans live in counties with unhealthy levels of particulate matter and ozone.23 

Levels of air pollution are especially high in California, with the Central Valley 

experiencing some of the United States’ worst air quality.24 

Regulation of Air Pollution 

The US Environmental Protection Agency regulates certain common air pollutants known 

as criteria air pollutants, which include ozone, nitrogen dioxide, carbon monoxide, 

particulate matter, sulfur dioxide, and lead.1,25,26 When present at high levels outdoors, 

these criteria pollutants have negative environmental impacts, particularly on vegetation 
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and waterways.26 These air pollutants also have significant impacts on human health, 

especially respiratory health.26 

In 1987, the World Health Organization set certain standards called the Air Quality 

Guidelines, for assessing air pollution exposure risk and mitigating health impacts of air 

pollution.27,28 The 1990 Clean Air Amendment was passed in the United States in 

response to growing air pollution threats such as acid rain and the depletion of the ozone 

layer,29 though the regulations set by the World Health Organization are more 

stringent.19,28 

In summary, air pollution comes from a wide variety of anthropogenic (e.g., powerplants, 

automobiles) and naturally occurring sources (e.g., volcanoes, forest fires, pollen). 

Meteorologic and topographic factors such as sunlight, heat, wind, precipitation, and 

presence of mountains and valleys, influence the severity of air pollution and how well it 

either accumulates in areas or disperses into the environment. Air pollution has well 

documented associations with health impacts that include asthma, chronic pulmonary 

lung disease, lung cancer, and death, and though the disease burden of air pollution is 

high in low-income countries, certain parts of the United States also suffer from severe 

air pollution. In response to the increased awareness of air pollution’s deleterious impact 

on human well-being, the US EPA and World Health Organization (among other 

organizations) now regulate criteria air pollutants and have established air quality 

guidelines. In the U.S. these regulatory programs and guidelines have seen success, as 

the total emissions of criteria pollutants have declined by 73% between 1980 and 2020, 

despite the U.S. experiencing an increase in population, GDP, energy consumption, and 

number of miles driven by vehicles in the same period.30 Unfortunately, these programs 
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cannot regulate or enforce ambient air pollution deriving from natural sources such as 

volcanic eruptions and wildfires. This is likely to become an increasingly pressing 

environmental health problem as a warming climate catalyzes increasing wildfires in the 

Western US; in 2021 Denver and Salt Lake City ranked among the worst major cities in 

the world for poor air quality due to air pollution from wildfires in California and Oregon.30,31 

Pesticides  

Uses and Taxonomy of Pesticides 

Pesticides are chemicals designed to deter or kill organismal pests, often to protect 

agricultural crops and control the spread of vector borne illnesses. For this purpose, 

pesticides have been highly effective, and it is estimated that agricultural pesticides have 

been responsible for 300 to 600% increases in yields for some food and fiber crops.32 

One of the world’s most famous pesticides, dichlorodiphenyltrichloroethane (DDT) has 

been instrumental in saving many lives worldwide by controlling anopheline mosquitos 

and malaria and yellow fever.32 

Pesticides have cytotoxic effects on the unwanted organisms they are designed to kill,33 

and are often classified and named after these organisms, such as herbicides (the most 

widely used pesticides globally), fungicides, rodenticides, insecticides, nematocides, 

acaricides, and molluscicides.32–34 Pesticides are also classified based on their chemical 

structures. Chemical classes of pesticides include inorganic and organic metals, 

organochlorines, organophosphorus compounds, carbamates, pyrethroids, substituted 

phenols, and many others.32–34 
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Environmental and Public Health Implications of Pesticide Use 

Despite the many advantages pesticides have conferred to modern civilization, there 

have been consequences to their widespread use, notably environmental 

contamination.32 Rachel Carson’s groundbreaking book Silent Spring sounded the alarm 

for the environmental effects of DDT on wildlife, agriculture, livestock, pets, and human 

health. DDT, an organochlorine, was banned in 1972 in the United States,32 and was 

banned worldwide at the Stockholm Convention, though in countries where malaria is 

endemic such as South Africa, it has been grandfathered in for use.35,36 Since then there 

has been more scrutiny on the toxicity of pesticides in use. Organochlorines have largely 

been phased out of agricultural and insect control operations, being replaced by 

organophosphates and carbamates, which have less persistence in the environment.32 

Generally, organophosphates, which are derived from phosphorus-containing acids,37 are 

characterized by being applied at a low vapor pressure, having slight to moderate water 

solubility, moderate to high soil binding, and varying degrees of soil leaching.38 

Organophosphates inhibit cholinesterase, an enzyme responsible for breaking down 

acetylcholine, a major neurotransmitter in the body 38,39 Humans generate two types of 

cholinesterase (RBC cholinesterase and plasma cholinesterase)39  in the liver. When 

these enzymes are inhibited, the result is an excess of acetylcholine in the central and 

peripheral nervous systems, eventually leading to neurologic dysfunction.38,40,41 In 

laboratory settings, a decrease in cholinesterase activity is used to confirm acute 

poisoning due to organophosphates.39 
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Due to acetylcholinesterase inhibition, organophosphates are considered more 

dangerous to human health than other pesticides, such as most herbicides, and a class 

of pesticides known as pyrethroids.32  

Although the Food Quality Protection Act of 1996 began phasing out the residential use 

of organophosphates, pesticides are still widely used in the United States in agriculture, 

to protect crops from various insect pests.38 Organophosphate insecticides are also still 

used in public health applications, for example making use of malathion and naled in 

mosquito control.38 The United States Environmental Protection Agency lists roughly 40 

different organophosphate pesticides for use.38 In the United States, acceptable levels of 

organophosphates in the workplace, home, and on food, have been established by 

several federal agencies including the FDA, USDA, EPA and OSHA.38 Routes of 

exposure to humans include ingestion (often on food or in drinking water),38 dermal 

absorption (a common occupational exposure route for agricultural workers),42 and 

inhalation.42  

Health Effects of Organophosphates 

Symptoms of moderate exposure to organophosphates include headache, dizziness, 

weakness, nausea, vomiting, fasciculations of the eyelids and skin, blurred vision, and 

sweating.39,40 

Literature documenting the respiratory health effects of exposure to agricultural pesticides 

typically falls into two major categories. The first category is occupational exposures to 

pesticides. The second is pesticide exposure in the general population, which often 

includes studies investigating health effects in children. In this section I will describe what  
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each of these two categories of research has revealed about the association between 

pesticide exposure and respiratory health.  

Occupational/Agricultural Exposures 

Occupational studies on pesticides primarily focus on agricultural workers, who often 

have chronic exposure at high doses over extended periods of time. Farmers as an 

occupational group are at especially high risk for asthma and other respiratory diseases 

due to their frequent exposure to bioaerosols, dust, and pesticides.43 

Understanding the role of pesticide exposures on respiratory health has been informed 

by the Agricultural Health Study, which is a cohort study of farmers and pesticide 

applicators in Iowa and North Carolina. Research from this cohort has suggested an 

association between pesticide application and self-reported wheezing symptoms.43 In 

particular, chlorpyrifos, malathion, and parathion, which are all organophosphate 

pesticides, showed a dose-dependent relationship with wheeze.43 

Using the same cohort data, researchers also discovered evidence of pesticide use in the 

Agricultural Health Study cohort, both on and off the farm, being associated with risk for 

chronic bronchitis.44 It is of course important to note here that a particular limitation of 

data from the Agricultural Health Study is that it is derived from self-reported accounts of 

exposure, which introduces the possibility of recall bias.  

Community Exposures  

There is a large gap in the literature between occupational exposures to pesticides, and 

low-dose exposures that the general population experiences through the environment.45 

Low doses of many pesticides are hard to detect, and organophosphates, pyrethroid 

insecticides, and phenoxyl herbicides all have short half-lives, making the time frame for 
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detecting them smaller.45 DDT, an organochlorine that is now banned in the USA, is an 

example of a pesticide that is easier to detect as it is slow to leave the body.45 

Exposure to organophosphate pesticides in utero has been associated with decreased 

lung function in children.46 A study based on a birth cohort of children born to women 

living in an agricultural study found that for every tenfold increase in organophosphate 

metabolites measured in urine, a 159 mL/second decrease in forced expiratory volume 

(FEV1) was observed, which is more than the decrease in FEV1 from passive pediatric 

exposure to maternal cigarette smoke.46 

There is also evidence of a relationship between prenatal pesticide exposure and poor 

respiratory health outcomes in the first year of life.47 This prospective birth cohort study 

of pregnant women and their children living near banana plantations in Costa Rica found 

that mancozeb measured by the urinary metabolite ethylenethiourea (ETU), was 

associated with lower respiratory tract infections in infants whose mothers were in the 

highest quartile of urinary ETU concentrations during the first half of pregnancy.47 

Little is known about the impacts of pesticide exposures on respiratory health in rural 

areas,33 despite the fact that people living close to agricultural fields where pesticides are 

sprayed are often in rural areas. A study in rural France sought to close this knowledge 

gap with a study on schoolchildren near vineyards that were sprayed with fungicides and 

insecticides.33 This study was conducted over two periods, once in the winter, when the 

fields and vineyards were not sprayed, and once during the summer when the fields were 

treated with pesticides. The researchers discovered that even during the winter when the 

fields weren’t sprayed, urinary levels of ETU, a biomarker of dithiocarbamates, was 

detected in a proportion of the children. Ultimately, results showed an association 
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between ETU and increased risk of asthma and rhinitis symptoms in the schoolchildren. 

Overall, children living near vineyards in rural areas were at a heightened risk for airborne 

dithiocarbamate exposure in the summer period.  

In summary, pesticides have been developed to control, deter, and kill unwanted pests to 

protect agricultural products and protect humans from vector-borne disease. Because 

pesticides are cytotoxic, they have not been without their drawbacks, especially regarding 

human and environmental health. Although some of the most toxic pesticides like DDT 

have now been banned, other types of pesticides including organophosphates are largely 

still in production for agricultural purposes. The limited research on pesticides and 

respiratory health has revealed associations between coughing, wheeze, and decreased 

lung function among other impacts, largely gleaned from occupational studies of pesticide 

use, and studies of community exposure to pesticides in agricultural areas.  

Air Pollution Exposure Assessment 

Typically, humans are exposed to air pollution through the route of inhalation. Quantifying 

inhalation exposure to air pollution requires information about the concentration of 

pollutants in the air being breathed, and the duration this air is breathed by individuals. 

There are different methods and tools used for assessing this exposure, and in this 

section I will describe their uses, as well as the benefits and limitations. First, I will 

describe some of the different types of sensors and instruments used, which provide 

direct measurements of air pollution. Sensors produce direct measurements of air 

pollution at a particular place in time and space, often as part of large monitoring 

networks, but also as personal monitoring devices. I will also describe how certain 

biological processes can be used to infer indirect measurements or exposures to air 
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pollutants. Next, I will discuss modeling, which is another method of assessing air 

pollution, especially in situations where the density and/or location of air pollution sensors 

and measurements is not sufficient to assess exposure. While models do not give precise 

measurements, they do provide air quality predictions in time and space where 

measurements don’t exist, which is particularly useful for assessing air pollution in regions 

without a lot of sensors, such as rural areas. Finally, I will discuss some of the methods 

of communicating air pollution and air quality data.  

Air Pollution Sensors and Instruments 

Measuring sensors and instruments often come from monitoring stations that are part of 

large monitoring networks, like the EPA Air Quality Monitoring Stations. The 

measurement instruments used by these air quality monitoring networks are usually in 

fixed locations with secure protections including air conditioning to prevent the sensors 

from overheating, but these monitoring stations are often not at densities sufficient for 

measuring personal air pollutant exposures, and they are often expensive.48 However, in 

recent decades, a number of low-cost sensors have become available.49 Some, like 

PurpleAir air quality monitoring sensors, have been installed worldwide and have 

provided data on ambient air quality that is more spatially-dense than regulatory 

monitoring networks.50 

Gravimetric Instruments 

Air quality instruments that utilize gravimetric methods, usually to measure particulate 

matter, involve the use of filters that are weighed before and after a given sampling 

period.51 Gravimetric methods can also involve the use of impactors, which measure the 

size distribution of particles by their mass.51 Impactors quantify particulate matter by 
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allowing aerosols to pass through a sequence of stages and at each stage particles larger 

than a certain diameter are collected, so that only the smallest particles remain by the 

final stages.51 

Microbalances are another instrument that utilize gravimetric methods. Tapered Element 

Oscillation Microbalances and Quartz Crystal Microbalances are two popular instruments 

for this task, and they operate by collecting particles over the oscillatory microbalance 

element’s surface and determine the particulate matter concentration from the alteration 

of the resonance frequency.51 

Instruments that Utilize Optical and Photometric Methods 

Many sensors and air quality instruments use optical methods such as dispersion 

photometers, which measure the intensity of scattered light due to suspended particles 

to estimate a measurement of concentration.51 For certain particulates such as black 

carbon, light absorption is sometimes measured instead to calculate particulate 

concentration, and can be done so using instruments such as spot meters, 

aethalometers, photoacoustic soot sensors, and laser induced incandescence.51 Opacity 

meters can be used to measure light extinction of particles.51 

Photometric methods are similar to these optical methods, and operate by measuring light 

intensity through various chemical compositions, such as ozone analyzers, which 

measure UV light absorption to determine concentration of ozone.48 The ozone analyzer 

works by using a pump on the top of a 10 meter tipping tower to draw air into a sampling 

inlet.10 From here the air is split into two paths: one path is a sample of the ambient air 

that includes the ozone, and the other path has all of its ozone removed using ozone 

scrubbers.10 Finally, the two samples of air including the ozone and the sample without 
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ozone are exposed to UV light and the intensity of the light that passes through the 

different air is measured.10 

Personal Air Pollution Monitors 

Personal air pollution monitors, which collect information on pollutant concentrations 

close to the breathing zones of study subjects, are considered one of the most accurate 

ways of measuring human exposure to air pollution.52 Many personal monitors are 

designed to be worn by study participants, which means that the changes in air quality 

experienced by the study participant going about their daily activities in different places 

are captured. The size and weight of these monitors has decreased in recent years, and 

accuracy and efficiency have greatly improved as well.27 

Personal air pollution monitors have been used in several studies of indoor air quality, 

particularly in low- and middle-income countries where wood, dung, and other biofuels 

are burned inside for cooking and heating. Researchers studying women’s exposure to 

fine particulate matter in rural Honduras used lightweight gravimetric monitors called Ultra 

Personal Aerosol Samplers (UPAS).53 Another study in Honduras assessed associations 

between biomass cookstove induced air pollution and blood pressure, by using exposure 

monitors clipped to the straps of bags they wore during the study, and also monitors 

installed in the kitchen near the stoves.54  

Some of the disadvantages of using personal exposure monitors is that they are labor 

intensive, time consuming, costly, and limit the size of a study population.27 
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Indirect Measurements of Air Pollution 

Biomarkers 

Biomarkers are a way to measure air pollution exposure because they reflect an 

interaction between an environmental agent (i.e., air pollution) and a biological system in 

the body. Numerous biomarkers have been used in studies. For example, volatile organic 

compounds (VOCs) were detected in condensation from exhaled breath to estimate 

personal exposure to ambient VOCs.27 Malondialdehyde in condensation from exhaled 

breath has been associated with air pollution concentration and changes in lung function 

in children living in Mexico City.55 

Some of the advantages of using biomarkers is that they are a safe and non-invasive 

technique for measuring exposure,55 and they measure internal dose of air pollution, 

which is a composite of different exposure routes and mixtures within the body.27 Some 

of the disadvantages of biomarkers are that the different pollutants and exposure 

pathways are difficult to differentiate and identify, since integrated exposure over time is 

what a biomarker measures.56 This can sometimes result in levels of air pollution 

exposure much higher than what the actual exposure is.56 Another disadvantage of using 

biomarkers in air pollution studies is that smoking is often a confounding factor.56 

Additionally, there are not biomarkers for every one of the criteria pollutants, so using 

biomarkers is not comprehensive. Lead is an example of a heavy metal that stays in the 

body for a long time and therefore acts as a reliable biomarker, both for assessing short 

term exposure (for example in the blood) and long-term exposure (for example lead 

deposits in bones and teeth). Air pollutants like PM2.5 and ozone cannot be detected this  
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same way in the body, so the effects of pollutants are measured rather than the direct 

exposure to them.  

Biomonitoring 

Not to be confused with biomarkers, biomonitors are organisms (usually animals or 

plants) or materials from these organisms that are used to obtain quantitative information 

on conditions in the biosphere, such as air pollution.57 Usually in studies utilizing 

biomonitoring, changes are observed, either in the organisms’ behavior, or in the 

concentration of chemicals in their tissues.57 Mosses and lichens are a widely used 

biomarker because they are thought to obtain minerals as well as pollutants through the 

air, since they lack root systems like vascular plants.57 Ozone damage to plants is being 

used by the City of Fort Collins, Colorado at the to demonstrate the negative impacts of 

ozone to visitors.58 Colorado State University and The Gardens on Spring Creek 

partnered with the city to install an ozone monitoring station that uses ultraviolet to 

measure ozone and display the levels to visitors.59 The monitoring station is surrounded 

by ozone-sensitive plants.58   

Air Pollution Modeling 

The different sensors mentioned above give specific measurements, either directly 

(mechanical sensors) or indirectly (measuring biomarkers and biomonitors). These 

measurements will typically come from stationary sources, or in the case of personal 

monitoring stations; the specific locations the individual wearing it moves through. 

However, there are often times when researchers are interested in air quality in rural 

areas, or areas that may not have many air pollution monitors or sensors. Modeling air 

pollution is a way to predict air pollution values at times and places where we don’t have 
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direct measurements. Models use measurements at other locations, chemical properties, 

meteorological conditions, and other factors as inputs to extrapolate air pollution data 

values where we do not have data.  

Proximity Models 

One of the most basic modeling techniques used for assessing air pollution exposure is 

proximity modeling, which relies on the assumption that the closer an individual is to a 

pollution source, the higher their exposure is going to be.27,60 Proximity to roads and 

highways is a common way to assess exposure to air pollution in urban settings, and has 

been demonstrated by several studies to be an accurate proxy for measuring exposure 

to traffic related air pollution.27 For example, a study in Ethiopia found a linear relationship 

between the risk of wheeze, and increased proximity to roads among individuals living 

within 150 meters of a road.61 This relationship was stronger (though not significantly so) 

for proximity to roads with above average traffic volume. 61 

The main advantages of proximity models are the low cost nature of their implementation, 

and their simple and straightforward assignment of exposure, which makes them ideal for 

exploratory analysis when the etiology of an exposure is not well understood.27,60 

Proximity models can also be used to estimate a dose-response relationship between 

pollutant sources and health outcomes of interest, and by observing distance decay and 

the health outcome of interest.60 For example, researchers in Hamilton, Canada observed 

declining risks of asthma with increased distance from roadways.60 However, an 

important disadvantage of proximity models is that they are prone to misclassification, 

especially since meteorological and topographical parameters that influence dispersion  
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of pollutants are not considered by these models, nor are human behavior parameters 

that influence exposure.27 

Interpolation Models 

Proximity models consider exposure to air pollution (or other pollutants of interest) by 

measuring an individual or population’s distance from the source, but interpolation models 

create pollution surfaces that can create predictions of pollution levels at specific points 

away from monitoring stations and measurement instruments. Interpolation surfaces are 

creating using deterministic and geostatistical techniques that take measurements from 

known monitoring stations in a study area as model inputs.60 Kriging is a popular method 

of interpolating exposure surfaces, and is considered optimal by researchers because the 

best linear unbiased estimate of the pollutant’s value at any point can be calculated.60 

Kriging was used to map a surface of outdoor sulfur dioxide (SO2) concentrations in 

Prague, Czech Republic and Poznan, Poland, where elevated SO2 levels were 

associated with wheeze and asthma in Czech and Polish schoolchildren.62 

A strong advantage of interpolation modeling is that the predicted values on the 

interpolated surface also come with standard errors that can be used to quantify 

uncertainty in the predictions, and identify regions of the surface where the interpolation 

may be less reliable.60 A disadvantage of interpolation models are that like proximity 

models, they do not take into account the topographic or meteorologic parameters that 

also influence values on the interpolated surface.60 

Land Use Regression Models  

Land use regression (LUR)  models predict pollution concentrations at points on a surface 

by treating pollution concentrations as the response, and the geographic characteristics 
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of the study area (traffic volume, topography, etc.), as well as local data on air pollution, 

as the predictors in the model.60 Least squares regression in combination with 

Geographic Information System (GIS) – based predictor data is used to create predictions 

of pollutants at areas that aren’t measured.63 A research team developed a LUR model 

to estimate the geographical distribution of NO2 in Montréal, Canada and found that NO2 

in the city was associated with the distance to the nearest highway, the traffic count on 

the nearest highway, length of highways and roads within 100 meters, and population 

density.64 

Advantages of LUR models are that they are cost effective, consider environmental 

factors beyond proximity to a source of pollution or a monitor, and are adaptable to local 

areas without having to acquire data or additional monitoring.60 One of the limitations of 

LUR models is that they require accurate monitoring data at a large number of sites, as 

they are dependent on the concentration of observations.60,65 Crucially, LUR models 

cannot be used for the design of this thesis, because they cannot address multi-pollutant 

mixtures; LUR models assess pollutants one at a time.65 

Dispersion Models and Chemical Transport Models 

Dispersion models are used to predict concentrations of air pollution over space and time 

by inputting emissions data (from stationary sources like homes, waste sites, and industry 

or from mobile sources such as vehicles and roadways) and meteorological data (from 

phenomena such as wind speed, ambient air temperature, etc.).27 As monitoring data 

becomes more widely available to researchers, dispersion models have become much 

more widely used in epidemiologic studies, and have also been integrated with GIS to 

more accurately assign air pollution exposure. The Near-Road Exposures to Urban Air 
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Pollutant Study (NEXUS) used dispersion models to assess pollutant levels at varying 

distances from roads in Detroit, Michigan in order to investigate the relationship between 

childhood asthma and proximity to roadways.66 

The main advantages of dispersion models are that they can provide more complete and 

high-resolution profiles of air pollution (and other environmental exposures).27 Some of 

the disadvantages include the inability to require extensive model inputs,27,60 are 

expensive to implement,27 and are hard to implement over large geographic areas.27 

Community Multiscale Air Quality Modeling System 

The Community Multiscale Air Quality Modeling System (CMAQ), is a project of the U.S. 

Environmental Protection Agency that creates models of air pollution to understand and 

predict concentrations of common air pollutants, taking into account different sources of 

air pollution, and meteorological conditions like wind and precipitation.67 Monitoring sites 

with air pollution monitors exist as point locations, but an advantage of the CMAQ models 

is that they create a smooth surface by estimating pollutant concentrations in places 

where there are not sensors or stations.  

Air quality models like the ones produced by CMAQ, can be used to simulate hypothetical 

scenarios in the future, which can be used to explore questions about the impact emission 

regulations would have on air quality.67 

Communicating Air Pollution Exposure 

Air Quality Index 

The Air Quality Index (AQI) is a way to categorize air quality on a scale from 0 to 500 

divided into six groups.68 When the AQI is between 0 and 50, air quality is considered 

good and is represented by the color green. Going down the scale, 51 to 100 is moderate 
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air quality represented by the color yellow, 101 to 150 is air quality that is unhealthy for 

sensitive groups (older adults and children) represented by the color orange, 151 to 200 

is air quality that is unhealthy to the general public represented by the color red, 201 to 

300 is very unhealthy air quality that poses increased risk for everyone represented by 

the color purple, and finally 301 to 500 is hazardous air quality represented by the color 

maroon.68 

Pesticide Exposure Assessment 

Humans are exposed to pesticides via inhalation, ingestion (food and water) , and dermal 

absorption (contact with skin, often an occupational exposure) exposure routes.69 Food, 

water, dust and air can all contain pesticides that humans are exposed to upon contact. 

There are a wide variety of methods for assessing exposure to pesticides, and each of 

them come with different sets of advantages and disadvantages for use. Like I did in the 

section about air pollution exposure assessment, I will use this section to describe the 

different methods for assessing exposure to pesticides. I will first describe direct methods 

of assessing exposures to pesticides (biomarkers in urine samples, and personal 

monitors), and then I will describe more indirect methods of assessing pesticide exposure 

(questionnaires, surveys, home dust samples). I will then discuss the benefits and 

limitations of each of these methods.  

Direct Measurements of Pesticide Exposure 

Using direct measurements of pesticide exposure are the best way to gauge an 

individual’s personal exposure to pesticides, which varies over time. Frequency and 

duration of exposure are used to determine cumulative dose over time.70 Personal  
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monitoring devices, and samples taken from individuals are some of the main ways to 

take direct exposure measurements from individuals.  

Personal Measuring Devices 

Personal devices for monitoring airborne pesticide concentrations can be used to 

estimate exposure. Pumps and filters that are worn by study participants near their 

breathing zones are used to measure a point of contact between a person and the 

environmental medium through which they are exposed to pesticides.70 To measure 

dermal exposure to pesticides, skin patch samples can be taken, but they operate using 

the same logic as the pump and filter personal samplers.70 The advantage of this method 

is that it directly measures exposure during a specific monitoring period at the temporal 

scale of minutes, hours, and days.70 However, there are several drawbacks to personal 

monitors, including the reality that they are often expensive and time consuming to use, 

burdensome to the study participants, and not always suitable for specific pesticides and 

routes of exposure.70 

Biomarkers 

Biomarkers and biological samples are a useful tool for assessing exposure to pesticides 

because they demonstrate that exposure and uptake of pesticides has indeed happened, 

and if information on intake, uptake, and metabolism are known for the individual being 

sampled, an exposure dose can be reconstructed.70 However, there are some important 

disadvantages of relying on biological samples and biomarkers as well, including that they 

generally can’t give information about the route of exposure, and often lack specificity for 

determining the type of pesticides the individual is exposed to.70 Below I will briefly  
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describe two biomarkers of importance in assessing organophosphate pesticide 

exposure: cholinesterase and urinary dialkyl phosphates.  

Cholinesterase Surveillance 

Because organophosphates inhibit cholinesterase, cholinesterase surveillance was once 

a mainstay method for accessing pesticide exposures in occupational settings. Plasma 

cholinesterase in particular has been shown to be a great biomarker for organophosphate 

exposure in the body.40 However, there are several limitations to this method including 

being generally inadequate, nonspecific, and unpredictable.71  

Dialkyl Phosphates (DAPs) 

Urinary metabolites are another method of detecting exposure to organophosphates that 

have been proven to be reliable for identifying subtle differences in occupational exposure 

to organophosphates, as well as detecting incidental exposures in the general 

population.71 Results from Canada indicated that urinary DAP levels are associated with 

reductions in two measures of lung function: forced vital capacity (total amount of air 

exhaled)(FVC) and forced expiratory volume (FEV1),72 which suggests that DAPs can be 

useful in studying the effects of organophosphate exposure on respiratory function. 

Dialkyl phosphates (DAPs) are urinary metabolites of organophosphates and are broken 

into six primary types: dimethyl phosphate (DMP), diethyl phosphate (DEP), dimethyl thio 

phosphate (DMTP), diethyl thio phosphate (DETP), dimethyl dithio phosphate (DMDTP), 

and diethyl dithio phosphate (DEDTP).71 

Due to a short half-life, urinary DAPs typically reflect recent exposure in the past several 

hours or days due to the rapid metabolization and excretion of organophosphates by the 

body.73 In general, detection of DAPs in the urine reflects exposure to organophosphates 
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within the previous two days.38 This means that acute exposures can be detected easily 

if urine samples are obtained shortly after exposures, and also that chronic exposures to 

organophosphates (such as in an occupational setting) will be detected with this method. 

It has also been shown that in the case of chronic exposure to organophosphates, urinary 

elimination can reach a steady state and will cause the metabolite concentration to remain 

constant, indicating average exposure.73 To rule out overdiluted or overconcentrated 

urine samples, creatinine or specific mass markers should be used, to normalize 

concentrations.73 

There are some limitations of using DAPs as biomarkers of organophosphate pesticide 

exposure. These include the short half-life, which make it difficult to assess exposure to 

pesticides that isn’t chronic or occurred more than several days prior to taking a urine 

sample.  

Another limitation of using DAPs as a proxy for organophosphate exposure is that DAPs 

are commonly found in the environment.74 A study looking at apple and orange fruit juices 

(both conventional and organic) found DAPs were present in both, with higher levels of 

DAPs observed in the conventional juice than the organic type.75 It is thought by the 

researchers that organophosphates present in the juice were likely hydrolyzed into DAPs, 

and though DAPs metabolites are not known to be toxic,38 it shows that urinary DAPs are 

not always an accurate way to measure direct exposure to organophosphates, since 

DAPs persist in the environment and humans can be exposed to the metabolites 

indirectly.75 

Another limitation of using DAPs is that single measures of urinary metabolites cannot be 

considered dependable indicators of exposure for an individual because there is so much 
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variability in detection for each metabolite within and across individuals.76 Additionally, 

relying on single measurements of DAPs is problematic because there is a lot of variability 

in DAPs excretion in a single day, and over several days.74 

A study in Canada investigated exposure to organophosphates in the general population, 

and found that over 90% of Canadians in the study, who were a representative population 

of the entire nation, had at least one dialkyl phosphate metabolite (a biomarker for 

organophosphate exposure) in their urine.72 Due to the short half-life of 

organophosphates in the environment, this suggests that Canadians are routinely 

exposed to pesticides.72 If pesticide exposure is common and ongoing in the United 

States as well as in Canada, then studying the effects of pesticide exposure in the general 

population take on even more precedence.  

Indirect Measurements of Pesticide Exposure 

While there are many advantages to taking direct exposure measurements from 

individuals to assess their pesticide exposure, these methods are often infeasible due to 

resource constraints, costs, and the burden on study participants. There are many indirect 

methods for assessing pesticide exposure that typically involve making inferences on 

exposure based on samples taken from areas where individuals are likely to be exposed 

or based on information in surveys and registries that can give estimates of exposures. 

Dust, air, and food samples, as well as registries and surveys can estimate exposure by 

extracting information on the environment and exposure pathways that individuals are 

proximate to. A disadvantage is that these indirect methods make it harder to accurately 

estimate frequency and duration of exposure.  
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Indoor Dust Samples 

Collecting dust samples from homes is another method of obtaining measurements to 

estimate pesticide exposure. This is called surface sampling, and has several different 

techniques including taking deposition pad samples, wipe sampling techniques (best for 

smooth surfaces such as windowsills, floors, and countertops), and vacuuming.70 The 

advantage of these types of methods is that they can provide information on what 

residents are exposed to in their homes, which is a location many people spend a lot of 

time in.70 Additionally, while pesticides often degrade quickly outside due to exposure to 

sunlight, precipitation, extreme temperatures, and microbial degradation, pesticides 

inside may persist longer, and so immediate exposure isn’t as necessary.70 Some 

disadvantages are that the dust samples don’t represent all sources of pesticide 

exposures, and don’t provide information on food related exposures or exposures related 

to direct pesticide application.70 

Air Samples 

Air samplers can be used to measure pesticides suspended in the air, both as particulates 

and as vapors. The state of matter of the pesticides in the air, as well as the particle size 

of the particulates are used to determine what kind of device is used for taking 

measurements; filter cassettes are usually used to collect pesticides that are solids or 

liquids, and solid sorbents are used for pesticides suspended as vapors.70 Using a high 

volume or low volume airflow capture is another consideration. Typically, high volume 

airflow air samplers are used to measure ambient air pesticide exposure, with the 

disadvantages of being large, noisy, non-portable, and dependent on large amounts of 

electricity.70 Low volume airflow samplers are a better choice for indoor air monitoring of 
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pesticides as they are quieter, smaller, portable, and can often be worn by study 

participants to measure personal pesticide exposures.70 

Food and Water Samples 

Because ingesting pesticide residues on food or drinking it in water is a common route of 

exposure to pesticides, numerous methods have been developed to assess exposure via 

food and water samples. Information on dietary habits and patterns of consumption 

coupled with measurements of pesticide residues in food and water can be used to 

construct mathematical models aimed at calculating exposure to pesticides via 

ingestion.70 A limitation of this method is that it depends on the accuracy of the residue 

measurements.70 Other limitations include the fact that collecting and storing food 

samples can be difficult, and that finding motivated participants for these types of studies 

is difficult.70 

Questionnaires and Surveys 

Because dermal exposure to pesticides is a common occupational health hazard, 

particularly for agricultural workers, questionnaires and surveys are often employed in 

occupational settings to ascertain frequency, duration, and intensity of exposure to 

pesticides. Researchers using data from the Agricultural Health Study rely on answers to 

questionnaires from farmers and pesticide applicators to assess exposure.43 The 

questionnaire asks information about the types of pesticides used, the total amount used, 

and the frequency of application measured in days.43  

Surveys and questionnaires are advantageous in that they can be cost-effective to 

implement.77 In recent years online and mailed surveys have also allowed for more 

privacy and confidentiality to ensure survey respondents feel more comfortable answering 
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questions truthfully.77 Certain limitations of relying on a questionnaire to assess exposure 

include recall bias (when participants don’t remember events accurately), and response 

bias (when participants with certain types of exposures are more likely to respond to 

surveys than others).77 For example, in a study by Hoppin et al., 2006, pesticide 

applicators from the Agricultural Health Study who handled pesticides were more likely to 

return the take home questionnaire than those that did not.78 Additionally, surveys that 

are not in person lack the ability to probe interviewees for better clarification, and accurate 

responses may also depend on how literate the interviewees are on the subject matter of 

the survey.77 

Pesticide Registries 

The state of California has a comprehensive database called the California Pesticide Use 

Registry, which is a unique resource for assessing pesticide exposures. The database 

has information on specific types of pesticides, the amount in kilograms applied, the date 

applied, and the location of application (one square mile sections) quarterly in the state.79 

A study investigating air pollution and pesticide mixtures on children estimated exposure 

using this database and geolocated residential address to assign pesticide exposure.79 

An advantage of using the pesticide registries to estimate exposure is that it is 

inexpensive, and reliable data. The disadvantage is that it does not take into account 

duration or frequency of exposure since it is far from a direct measure.  

Respiratory Outcome Assessment 

As mentioned previously, both air pollution and pesticides have documented effects on 

respiratory health including increased risk of bronchitis, chronic obstructive pulmonary 

disease, asthma, and lung cancer. There are multiple different methods of assessing 
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respiratory outcomes regarding respiratory inflammation and function, and in this section, 

I will briefly outline two methods: spirometry and a biomarker known as leukotriene E4.  

Spirometry 

A common way to measure pulmonary function is to use spirometry. Spirometry 

measures how much air an individual can breathe in and out of their lungs, and at what 

speed and efficiency they can expel the air from their lungs.80 There are several different 

measurements that can be used. Forced expiratory volume (FEV1) measures the amount 

of air that can be pushed out of the lungs in one second, and gives an indication of the 

health of the large bronchioles.79,81 Forced vital capacity (FVC) estimates how much air 

the lungs can hold by measuring the total amount of air breathed out after breathing as 

deeply as possible.79,81 The forced expiratory flow between 25% and 75% of vital capacity 

(FEF25-75) serves as a good marker of the health of the small airways.79 The FEV1/FVC 

ratio measures forced expiration in the first second.79  

The disadvantages of using spirometry to measure lung function is that it is difficult to 

quantify and standardize the effort undertaken by the individuals participating in the test. 

Because it requires that the participant expel air as forcefully as possible, differences will 

arise between individuals. However, the age, height, and gender of individuals 

participating in spirometry is taken into account.81 

Leukotriene E4 

Leukotrienes are biomarkers of inflammation that are detectable in urine samples. They 

are inflammatory molecules produced by mast cells and eosinophils that appear to have 

a key role in causing both acute asthma attacks and long-term hypersensitivity of the  
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airways in chronic asthma.82 They also represent a non-invasive method of assessing 

respiratory inflammation.79 

Urinary leukotriene E4 was used to assess levels of respiratory inflammation due to 

exposure, as a sign of asthma morbidity in asthmatic children living in the Yakima Valley 

of Washington State.79 The final concentrations used in analysis were adjusted using 

creatinine. 

Mixtures of Environmental Exposures 

Much has been studied on the effects of different pollutants one at a time, and this is 

partly because the Clean Air Act originally sought to regulate a certain number of criteria 

air pollutants.83 People are not exposed to air pollutants or pesticides one at a time, 

however, but instead are exposed to mixtures of these chemicals in the environment. It 

is important to study these mixtures because weather, sunlight, pollution sources, and 

other environmental factors impact the way that chemicals interact and affect the health 

of people exposed to these resulting mixtures.  

Epidemiologists studying environmental mixtures of chemical pollutants can address 

several different research questions such as what the health effects of individual 

chemicals in a mixture are, what interactions exist between the chemicals in a mixture, 

and what impact cumulative exposure to such mixtures will have on human health.84 

Some of the methodological challenges involved with studying these mixtures are that 

chemicals within them are often correlated and act as co-pollutants, which leads to 

confounding.84 Pollutants that are highly correlated will have to be analyzed in a way that 

elucidates the individual effects that they have on the outcome.84  

 



34 

 

Chemical mixtures result in different chemical exposure profiles that may have different 

effects on human health. A study in Colombia observing farmers’ exposure to pesticide 

mixtures with paraquat, showed an association between paraquat exposure and asthma, 

but also that different chemical mixtures were associated with different respiratory 

disorders respectively, such as the flu, thoracic pain, allergic rhinitis, and obstructed 

patterns in spirometry.85 Further, the previously cited study in Washington State that 

utilized urinary leukotriene E4 samples to assess asthma morbidity in asthmatic children 

found that simultaneous short term exposure to both criteria air pollutants and 

organophosphates elevated leukotriene E4, and presumably aggravated asthma 

morbidities and adversely impacted pediatric lung function.79 
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CHAPTER 2: MANUSCRIPT 
 
 
 

In this chapter I will describe the details of our environmental mixtures study. I will begin 

by providing background information on the high levels of pesticides and air pollution in 

Central California, and the need to study the health impacts of these pollutants as a 

mixture. I will then describe the research methods used to answer this objective, including 

the choice of location, study population, sampling methods, data collection, and data 

cleaning. After this I will describe the statistical analyses that were chosen, and our choice 

of statistical method for studying mixtures: Bayesian Kernel Machine Regression. Finally, 

I will explain the results of our data collection and analyses and conclude with some 

discussion on the interpretation of these results and the possible directions of future 

research.  

Introduction 

California’s Central Valley experiences some of the worst air quality in the United States.24 

Fresno County, which includes the City of Fresno, California’s 5th largest city and the 

largest city by population in the Central Valley, has an average of 132 days a year of 

ozone levels that are considered hazardous to the health of sensitive groups.86 

California’s Central Valley is also a critical agricultural region, domestically and globally, 

producing forty percent of the United States’ fruits and nuts.87 Extensive crop production 

contributes to comparatively high agricultural pesticide exposure for residents of Fresno 

County and the Central Valley.  

There is clear evidence that ambient air pollution is associated with negative respiratory 

health outcomes such as decreased lung function and asthma,20 as well as overall risk of 
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mortality, including from respiratory outcomes.18 Though pesticides are considered an 

inhalation hazard, there is limited information on the impacts of pesticide exposures on 

respiratory health outcomes. Occupational studies have shown an association between 

pesticide exposure, and wheeze and bronchitis.43,44 Recently, a number of analyses have 

been conducted on the effects of pesticide exposure on respiratory health outcomes in 

community-based studies and non-occupational populations. Previous work has linked 

pesticide exposure with decreased lung function in children with asthma in Fresno, 

California.46 Researchers in Canada also documented decreased lung function in the 

general Canadian adult population associated with pesticide metabolites detected in urine 

samples.45 

Traditionally, the effects of air pollutants and pesticides on respiratory health have been 

studied as distinct domains of exposure. However, humans are not exposed to pollutants 

and chemicals one at a time, but rather simultaneously as mixtures. Implementing 

statistical models to evaluate the health effects of environmental mixtures can elucidate 

both the individual effects of pollutants on the health outcome as well as the interactions 

that exist between chemicals in the mixture, with the overall goal of understanding 

cumulative impacts that environmental mixtures have on health endpoints.84 

The Central Valley of California provides an ideal study area to explore environmental 

mixtures as residents here are exposed to high levels of air pollution and high levels of 

pesticides. However, because pollution mixtures are influenced by the sources of 

pollution, topography, meteorology, sunlight, and other environmental factors, the 

exposure patterns of environmental mixtures are also constantly changing over time.1,8 

Therefore, this study has two aims. The first is to understand the relationship between the 
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ambient air pollution and agricultural pesticide mixture and respiratory health outcomes 

in a community-based study. The second aim is to see how this relationship changes 

seasonally, by taking measurements from two different times of the year when the 

pollution mixtures are likely to have different compositions and properties.  

Research Question 

This study seeks to understand the relationship between air pollution-pesticide mixtures 

and respiratory health. More specifically, what is the relationship between a mixture of 

criteria air pollutants and other airborne chemicals, specifically organophosphate 

pesticides, measured by urinary dialkyl phosphate (DAP) concentrations, which are 

metabolites of organophosphates? Second, how does this observed relationship differ 

between samples taken in January, which has low pesticide and ozone exposure and 

high particulate matter (PM), and samples taken in June, which has high pesticide and 

ozone exposure and relatively lower PM?  

Methods 

Study Location 

The Study of Environmental Mixtures in Periurban Respiratory Outcomes (SEMIPRO) 

seeks to understand the relation of ambient environmental and chemical pollutant (ECP) 

exposures on the respiratory health endpoints among residents of the Central Valley of 

California. Four agricultural communities were selected in Fresno and Tulare Counties in 

California for this study. Agriculture is a major economic sector in Fresno and Tulare 

counties. Fresno County ranks as number one in the state for production of fruits, tree 

nuts, and berries, and second for vegetables, melons, potatoes, and sweet potatoes, 

while Tulare County ranks as the third largest producer of fruits, tree nuts, and berries in 
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the state, according to the 2017 USDA Census of Agriculture.88 

We partnered with the Central California Environmental Justice Network (CCEJN) to 

identify the study communities and households that were eligible for enrollment. Eligible 

households were located approximately within 61 meters of cropland or orchards (i.e., 

agricultural fields). Residences were identified using Google Earth and data from the 

California Pesticide Use Registry was used to confirm that these communities were 

located near agricultural areas where large quantities of pesticides were applied.  

Study Population 

In the four communities selected for this study, CCEJN conducted a door knocking 

campaign to communicate face-to-face with eligible households and enroll participants in 

the study. Inclusion criteria included living in their residence for at least a year, English or 

Spanish speaking, and be older than 7 years of age. Consent of participants over 18 and 

assent of all participants under 18 were completed prior to participation in the study. Study 

visits were conducted in January 2019, considered to be the low pesticide application 

season, and again in June 2019, considered to be the high pesticide application season. 

All study procedures were approved by the Colorado State University Institutional Review 

Board. 

Survey and Sampling Methods 

Study participants were asked to respond to the SEMIPRO survey, administered by 

researchers in their home that gathered information on built environment features of the 

household (e.g,, ventilation, number of windows, number of doors), socioeconomic status 

(e.g., level of educational attainment), health status, and workplace exposures. 

Household features were only asked of the first participant interviewed in the household; 
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all subsequent participants only answered questions of individual factors. The responses 

to these surveys were entered into a REDCap database.  

Dust samples were collected for each household and urine samples were collected from 

each consenting and assenting participant in the household. Urine samples, the focus of 

this analysis, were collected in urine collection cups at the participants’ homes. 

Instructions were given for participants to wash their hands, use a sanitation wipe to clean 

the perineal area, attempt to fill the cup halfway, and return the sample to study staff in 

biohazard bags. After collection, the urine cups were stored at Fresno State University in 

freezers at -80 degrees Celsius. At the end of each campaign, samples were shipped 

overnight on dry ice to Colorado State University. The samples remained frozen until 

aliquoted for analysis.  

Variables of Interest 

Pesticide Exposure 

Dialkyl phosphate metabolites (DAPs), biomarkers for organophosphate exposure, were 

represented as concentrations (ng/mL) in urinary samples and were the primary pesticide 

exposure of interest. Though there are six DAPs metabolites, we investigated the total 

DAPs concentrations, as a continuous exposure variable in the model. We also evaluated 

two classes of DAPs, diethyl phosphates and dimethyl phosphates.  

The CSU Analytical Toxicology lab followed published methods and protocols for 

analysis. First, 3 mL of urine from each individual sample were lyophilized to remove 

water before extracting into 5 mL of acetonitrile and sonication for 30 minutes. After this, 

the acetonitrile extracts were put under nitrogen to dry to 500 µL and then water was 

added to reconstitute to 1 mL. After this, reverse phase liquid chromatography and 
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tandem mass spectrometry were used to analyze the urine extracts for DAPs. The 

retention time and product ion ratio correlation to DAPs standards were then used to 

identify analytes. Finally, the urinary concentrations of DAPs were quantified using 

isotope dilution and linear regression.  

Air Pollution Exposures 

The data used to analyze air pollution as a component of an air pollution-pesticide mixture 

were obtained from the Community Multiscale Air Quality Modeling System (CMAQ). 

CMAQ, a project of the U.S. Environmental Protection Agency, provides open source 

development of programs used to model air quality simulations.67 CMAQ models are 

numerical air quality models that predict estimates of ozone, particulate matter, and other 

pollution concentrations from simulations that use meteorological conditions and 

emission rates from known sources of pollution as the main inputs.67  

The CMAQ models consist of gridded data that identify pollutant concentrations at specific 

points in time and space using latitude, longitude, the hour of the day, and the date. The 

gridded location is used to assign air pollutant concentrations to participant residential 

addresses. Grids are 12x12 kilometer squares, four of which such squares correspond to 

the four different communities. Thus, each of the four communities will be assigned an air 

pollution exposure value for O3, NO2, and PM2.5.  Seasonal values for all pollutants were 

assigned by community, as each community was contained within the same 12x12 grid 

in the CMAQ dataset.  

The US EPA provided CMAQ data on air pollution concentrations via netCDF files, with 

the latitude and longitude coordinates corresponding to these home communities for the 

participants.  
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Response Variable 

Leukotriene E4 (LTE4) urinary concentration (pg/mg) is the outcome variable of interest 

in this study. LTE4 is a metabolite of cysteinyl leukotrienes, which are produced by 

eosinophils, mast cells, and basophils, cells associated with asthma and/or allergen 

induced respiratory inflammation.82,89 LTE4 has been well established as a biomarker for 

respiratory inflammation in asthmatic patients, but there is less known about its 

usefulness as a biomarker in studying acute respiratory inflammation in community 

settings among individuals without asthma.  

Using the urine samples collected in January and June of 2019, LTE4 concentrations 

were measured using ELISA kits from Cayman Chemical (Ann Arbor, MI) Kit #501060, 

and normalized with creatinine.  

Covariates 

Covariates for this analysis were selected via directed acyclic graphs (DAGs) and 

bivariate analyses between the potential covariate and the exposure, and the potential 

covariate and the outcome using Wilcoxon sign-rank test. To control for confounding we 

considered seven covariates: age (continuous), sex (categorical), whether the individual 

worked in agriculture (categorical), whether or not a person in the individual’s household 

worked in agriculture (categorical), whether or not the individual had an asthma diagnosis 

(categorical), ambient air temperature (continuous), and relative humidity (continuous). 

The data for the first four covariates were gathered from the SEMIPRO surveys 

administered in each household. The air temperature and relative humidity covariates 

came from weather data taken from the Automated Surface Observing Systems (ASOS) 

in California provided by the Iowa Environment Mesonet website.90 
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Data Cleaning 

All data cleaning and statistical analysis were performed in R version 3.6.3 (R Foundation 

for Statistical Computing, Vienna, Austria). The SEMIPRO dataset contained the urinary 

concentrations of DAPs, urinary concentration of LTE4, and the demographic data of 

each participant. This dataset was read into R and was joined with data frames describing 

air pollutant concentrations that were extracted from the netCDF files provided by the US 

EPA. These air pollutant data frames were joined to the SEMIPRO dataset to correspond 

with the latitude and longitude of the participant communities. Thus, air pollution values 

were assigned to the participants in the respective communities corresponding to each of 

four 12x12 kilometer grids that were used to calculate an air pollution concentration using 

the CMAQ models.  

To clean the air pollution data from the CMAQ models and create data frames that were 

compatible to join with the SEMIPRO dataset took several steps. First, the data on air 

pollutants came in netCDF files in the form of arrays and had to be converted into data 

frames. Data frames were created that contained latitudes, longitudes, pollutant 

concentration values, and time in hours for O3, NO2, and PM2.5 for January and also for 

June. The time in hours meant that a value was recorded for every hour in the entire 

month of January (744 hours), and June (720 hours). In order to match the correctly timed 

pollution concentration value with the closest period of time that samples were taken, 

these hours had to be converted into days of the month. NAAQS standards were used to 

pick times to extract pollution concentrations. For O3, this was the monthly average of the 

maximum daily 8-hour concentration (the average of the 8 hours in a day that provided 

the highest level of O3). For PM2.5 this was the mean of the hourly concentrations over the 
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month. For NO2, this was the one hour daily maximum value, averaged over the month. 

Once the correct times were specified to extract pollutant concentration values, these 

values were assigned to the entire community. So, for example, the January value of O3 

for community 1, was the same exposure that we considered everybody in community 1 

to have.  

Once the pollutant data frames were created, they were added to the SEMIPRO dataset, 

so that relationships between the air pollutants and our health outcome (urinary LTE4 

concentrations) and the other exposures (DAPs) could be assessed. This dataset was 

further divided into samples taken from January (80 samples) and June (77 samples).  

To assign air temperature and relative humidity values as covariates in the model, the 

riem package in R was used. First, Automated Surface Observing Systems (ASOS) were 

identified based on their closest proximity to the four communities being studied in Fresno 

and Tulare Counties. Because the closest stations lacked the data needed, several of 

these ASOS stations had to be excluded before finding the next closest stations that had 

data on air temperature and relative humidity. Air temperature and relative humidity was 

then averaged for each day of the month (January and June respectively), and then the 

monthly average of all the daily averages was taken and assigned to each community for 

month.  

Descriptive Analysis 

Wilcoxon (Paired) Signed-Rank tests were also performed on each of the exposure 

variables to assess differences in levels between January and June. The Wilcoxon 

signed-rank test is a nonparametric test that compares non-independent samples and 

gives an assessment of the difference between their population means. The null 
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hypothesis of a Wilcoxon signed-rank test is that true location shift (of the sample mean) 

is equal to zero, and consequently the alternative hypothesis of this test is that the true 

location shift is not equal to zero.  

Univariable Analysis 

O3, NO2, PM2.5, diethyl phosphates, and dimethyl phosphates were all analyzed 

individually as the main exposure variable in multiple linear regression models, with log-

transformed LTE4 as the response variable. For each pollutant, three models were run. 

The first model only included the main predictor variable, and the response variable. The 

second model added five covariate variables: age, sex, working in agriculture, being in a 

household with somebody who works in agriculture, and having asthma. The third model 

added temperature and relative humidity to these models as well.  

Bayesian Kernel Machine Regression 

Bayesian Kernel Machine Regression (BKMR) is the statistical method that we applied to 

our air pollution – pesticide mixture exposure and respiratory health outcome to estimate 

an association. BKMR is an advantageous method for analyzing mixtures because it 

estimates an exposure-response association by utilizing a flexible surface that allows for 

non-linear and non-additive interactions between mixture components.91 It also performs 

a hierarchical variable selection (HVS) using prior knowledge of the pollution mixture’s 

structure.79,91  

BKMR allows us to estimate the effects of individual pollutants in the mixture, as well as 

interactions between those pollutants in the mixture, which may or may not be linear. 

Thus, both individual and joint effects of pollutants in the mixture can be assessed. BKMR 

estimates the amount that each pollutant in the pollutant mixture contributes to the 
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outcome through variable selection. A partitioning of the exposures into groups is 

provided by the user in hierarchical variable selection. BKMR estimates both the group-

wise posterior inclusion probability and, conditional on group inclusion, the component-

wise posterior inclusion probability for exposure.  

Taking into account the possible correlations between exposure variables and the overall 

structure of a mixture, hierarchical variable selection estimates posterior inclusion 

probabilities (PIPs), which give the probability that exposure variables (in this case our 

different air pollutants and pesticides) are associated with the outcome (LTE4 

concentrations).79,91 This is done first by estimating the probability that a group (or 

domain) of pollutants should be included in the model, and then assessing how each 

component of that group/domain drives the association with the outcome.79 

A disadvantage of BKMR is that it is unable to accommodate a large number of variables, 

usually being an ineffective model. This shouldn’t be a problem with our analysis because 

only three air pollutants (O3, NO2, and PM2.5) and two DAPs categories (diethyl 

phosphates and dimethyl) are included as exposures.  

The BKMR model is represented by this function: 

yi = h(xi1,…,xiM) + zi
Tβ + εi 

where yi is the health outcome (LTE4 concentration), M is the number of components in 

the exposure mixture, xi represents components of the exposure mixture (air pollutants 

and/or pesticides), h() is a smooth exposure-response function allowing for non-linearity 

and/or interaction between mixture components,  zi are model covariates, and εi are 

normally distributed residuals.79  

The BKMR analysis was performed using the bkmr package in R version 3.6.3 (Bobb, 
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2017). The BKMR analysis was run for the air pollution concentrations, DAPs 

concentrations, and LTE4 concentrations once in January, and again separately for those 

in June.  

The BKMR model was fit using the kmbayes() function, which uses the Markov chain 

Monte Carlo algorithm92 in the bkmr R package, and running 10,000 iterations, which 

proved to be enough for the parameters to converge after inspecting trace plots. The 

model was fit with variable selection, and all the exposures were scaled. Posterior means 

were calculated for O3, NO2, PM2.5, and DAPs. Posterior means in BKMR analysis can be 

thought of as analogous to the beta coefficients in linear regression analysis. 

Posterior inclusion probabilities were extracted from the fitted BKMR model, and provide 

a measure of variable importance for each exposure, or in other words how much this 

variable contributes to the model.93  

After fitting the BKMR model, we wanted to visualize the smooth exposure-response 

function h() but we can’t view a high dimensional surface so we had to instead look at 

different cross sections of the surface by looking at the relationship between one or two 

exposures and the outcome, while holding the other exposures at a fixed percentile.92 

First, we looked at the univariate relationship between each exposure and the outcome, 

and held all the other exposures at percentiles of 0.25, 0.5, and 0.75. Then, we looked at 

the bivariate exposure-response relationship for two exposures, where all the other 

exposures were held at fixed percentiles.  

Results 

Descriptive Statistics  

Study population data are presented in Table 1. At the start of the study in January, 34 

households, with an average of 2.5 residents per household, were enrolled. This 
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encompassed a total of 80 participants recruited by the Central California Environmental 

Justice Network. Three were lost to follow up and did not participate in the June campaign. 

A combined total of 157 urine samples were salvaged from the participants in January 

and June. The majority of study participants were male (57.1%), and the mean age was 

42.4 years old. Prevalence of asthma was above average in this study population, with 

11 individuals reporting asthma (14.3% of the population). For context, the national 

incidence of asthma is about 8% for adults, and 7% for children.94 Almost a third of the 

study participants were directly employed in agriculture, with a total of 24 individuals 

working in this industry (31.2% of the study population). Furthermore, 63 of the 

participants (81.8% of the study population) live in a household where at least one person 

works in agriculture.  

Exposure Statistics 

Concentrations of air pollutant and pesticide exposures are summarized in Table 2. 

Among the air pollutants, particulate matter (PM2.5) and ozone (O3) had higher 

concentrations measured in June than in January. Nitrogen dioxide (NO2) was different 

from PM2.5 and O3 in that it had higher concentrations in January than in June.  

Urinary DAP concentrations were highly skewed, with the majority of the sample 

concentrations being so low that they registered as zero. Dialkyl phosphate (DAP) 

concentrations were higher in urine samples taken in January (maximum of 332.56 ng/mg 

of creatine) than in June (maximum of 106.02 ng/mg of creatine), mostly owing to dimethyl 

phosphates, which constituted the majority of the total dialkyl phosphates detected. 

Diethyl phosphates were detected at higher levels from urine samples collected in June 

(maximum of 29.47 ng/mg of creatine in June vs. a maximum of 23.07ng/mg of creatine 
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in January), while dimethyl phosphates were detected at higher levels from urine samples 

collected in January (maximum of 332.56 ng/mg of creatine in January vs. 106.02 ng/mg 

of creatine in June).  

The results of the Wilcoxon signed-rank paired tests showed significant seasonal 

differences in the concentrations of the air pollutants measured, and the results of these 

tests are summarized in Table 3. Wilcoxon signed-rank tests for particulate matter (PM2.5), 

ozone (O3) and nitrogen dioxide (NO2) all yielded p-values less than 0.05. This means 

there is a significant difference between the levels of these air pollutants in January and 

June. Wilcoxon signed-rank tests for concentrations of dialkyl phosphate concentrations 

in January and June did not reveal significant results, indicating that the different levels 

of pesticides observed in different seasons were not meaningful.  

Leukotriene E4 Statistics 

Table 4 summarizes the concentrations of Leukotriene E4 (LTE4) in January and June. 

January concentrations of LTE4 ranged from 175.69 pg/mg of creatinine to 10399.24 

pg/mg of creatinine and had a median concentration of 1006.25 pg/mg of creatinine. The 

June concentrations of LTE4 ranged from 313.11 pg/mg of creatinine to 11403.53 pg/mg 

of creatinine and had a median concentration of 1379.08 pg/mg of creatinine. The results 

of the Wilcoxon signed-rank test for LTE4 yielded a p-value of 0.10 indicating that these 

differences between seasons were not statistically significant.  

Multiple Linear Regression Analysis 

Multiple linear regression analysis was performed using each of the exposures of interest 

(particulate matter, nitrogen dioxide, ozone, and dialkyl phosphates) as the main predictor 

variables, and using log transformed leukotriene E4 concentration as the outcome 
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variable. The linear models examined each of these exposures one at a time, and 

adjusted for age, sex, asthma status, whether or not the individual worked in agriculture, 

and whether or not a person in the individual’s household worked in agriculture. Table 5 

provides the β1 values and 95% confidence intervals for each of the exposures and 

covariates.  

Results from the multiple linear regression analysis did not reveal any conclusive 

associations between any of the air pollutants and an elevated urinary concentration of 

leukotriene E4. However, dimethyl phosphate concentration in January showed a 

positive association and a β1 value of 0.01 (95% CI: 0.001, 0.010) in models 1, 2, and 

3. This means that for every one unit increase in the concentration of dimethyl 

phosphate, there is a 0.01 unit increase in log-transformed leukotriene E4 

concentration. We multiplied the β-coefficients of all the exposure variables by the 

interquartile range (IQR) to observe a larger change. The IQR represents the middle 

50% of the values in a distribution, in this case the distributions being the values of each 

exposure variable for January and June. With an IQR change of 0.06 for dimethyl 

phosphate, we say that for every one unit increase in the concentration of dimethyl 

phosphate, there is a 0.06 increase in the IQR of the log-transformed leukotriene E4 

concentration.  

Bayesian Kernel Machine Regression Analysis 

We fit the BKMR model and extracted the group and conditional PIPs for each exposure. 

Two groups were used for hierarchical variable selection: air pollutants (O3, PM2.5, and 

NO2) and pesticides (diethyl phosphates and dimethyl phosphates), as seen in Table 5.  

We observed differences in the group PIPs by season, with the pesticides group driving 
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the mixture the most in January (group PIP: 0.80), and air pollutants driving the mixture 

in June (group PIP: 0.73).  

Among the exposures in the air pollutant group, O3 and PM2.5 were the most important 

components in January (conditional PIP: 0.35 for both), and O3 was the most important 

component in June (conditional PIP: 0.36). In the pesticides group, dimethyl phosphates 

were the most important component in January (conditional PIP: 0.82), but in June diethyl 

phosphate was the component that contributed the most to the outcome (conditional PIP: 

0.54).  

Figures 1-6 display different plots of the predictor response functions. The function is a 

high dimensional surface, and because we can’t view this, we observe it as different cross 

sections.92 Each cross section explores the relationship between one two exposure 

variables with the outcome, while setting the other exposure variables to a particular 

percentile.92 

Figures 1 and 2 display the univariate relationship between each exposure variable and 

the outcome of urinary concentration of LTE4. In January, O3, PM2.5, NO2, have a slightly 

negative relationship with LTE4. Diethyl phosphates have a positive relationship with 

urinary LTE4. In other words, as the levels of these diethyl phosphates exposures 

increase, the LTE4 concentration also increases. Dimethyl phosphates in January show 

a non-linear relationship with LTE4 concentration. At first, LTE4 increases as dimethyl 

phosphates increase, but at about a dimethyl phosphate z-score of 5 this relationship 

peaks and becomes negative.  

In June, O3, exhibits a slightly negative relationship with LTE4. In other words, as O3 

increases, the concentration of LTE4 decreases. PM2.5 and NO2 don’t appear to have a 
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positive or negative relationship with LTE4. As concentrations of diethyl phosphates 

increase, the levels of LTE4 remain constant. And finally, dimethyl phosphates displayed 

a positive relationship with LTE4 in June, with LTE4 increasing as dimethyl phosphates 

increased. All these relationships are observed while holding the other exposure variables 

at their median values. 

In Figures 1 and 2, the shaded areas represent 95% confidence bands. The confidence 

bands for all exposures includes the null value, which indicates that none of the 

relationships with LTE4 are statistically significant.  

Figures 3 and 4 display the bivariate relationship between two exposures and the 

outcome of urinary concentration of LTE4. These plots are harder to interpret than the 

univariate exposure-response cross sections, and there are no parameters in the model 

that allow for statistical uncertainty (such as a confidence interval) to be displayed, since 

the h function is non-parametric. Dark red represents high levels of urinary LTE4, and 

blue represents low levels of LTE4. Gray is where the model is missing data. Each plot 

shows how LTE4 changes as one exposure increases at different levels of another 

exposure. For example, in June the levels of urinary LTE4 decrease as O3, PM2.5, and 

NO2 increase (which is consistent with the univariate relationships we observed in Figures 

1 and 2), but we see that this happens differently at different concentration levels of 

dimethyl phosphates.  

Figures 5 and 6 show the relationship of the exposure and outcome, given a quantile of 

another one of a second exposures When the quantile lines intersect each other or have 

different slopes, this indicates interaction between the two exposure variables. When the 

quantile lines are on top of each other, as in Figure 5 O3 and NO2, this indicates no 
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interaction, because the relationship between the exposure and outcome does not vary 

depending on the quantile of the other exposure. For example, we can see in January 

(Figure 5) that the response of LTE4 concentration to PM2.5 is different depending on the 

quantile of O3, with a different response being observed at the 75th percentile of O3 than 

at the 25th percentile. In June (Figure 6) we see LTE4 increasing in response to increasing 

dimethyl phosphate and NO2 exposure at all quantiles of every other exposure, while 

LTE4 decreases in response to increasing levels of O3, and PM2.5 at every quantile of 

every exposure. In June, diethyl phosphate is different from all these exposures, in that 

LTE4 decreases at a certain rate with increasing concentrations of diethyl phosphates at 

the 25th percentile of O3, NO2, and PM2.5, and at a different rate than at the 50th and 75th 

percentiles of O3, NO2, and PM2.5. 

Figures 7 and 8 display the change in risk of the outcome when the specific exposure on 

the y-axis moves from its 75th to 25th percentile, while the other exposures are held at 

either their 25th, 50th, or 75th percentiles. For example, in Figure 7 we see that in January 

when levels of dimethyl phosphate move from their 75th to 25th percentiles, there is a slight 

(but not significant) change in the risk. The values are to the right of the null when all other 

exposures are at their 25th, 50th, and 75th percentiles which is congruent with the 

previously mentioned plots that showed dimethyl phosphates to have a positive 

association with LTE4. However, the magnitude of the difference in risk when dimethyl 

phosphate levels move from their 75th to 25th percentiles does not change when all other 

exposures are at their 25th, 50th, and 75th percentiles. For all predictors, the values on 

these plots that overlap the null, indicating that none of the relationships between any of 

the predictors and the response are statistically significant.  
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Discussion 

Before discussing the results, I will reiterate the aims of this study. The first was to 

understand the relationship between the air pollution and pesticide mixture, and 

respiratory health outcomes. The second aim was to see how this relationship changes 

seasonally, by taking measurements from two different times of the year when the 

pollution mixtures are likely to have different compositions and properties.  

The results from analyses investigating the first aim were complicated. The relationship 

between the air pollutants and pesticide and the concentration of urinary LTE4 was 

different when we used multiple linear regression and BKMR analysis to assess this 

relationship. Multiple linear regression revealed little evidence of a relationship between 

the levels of criteria air pollutants (PM2.5, NO2, and O3) in both January and June. There 

was however a significant association between the levels of total DAPs and urinary LTE4 

in January, as well as dimethyl phosphates and urinary LTE4 in January. The Wilcoxon 

signed-rank tests did not suggest statistically different levels of DAPs in the two months, 

although June is the spraying season. 

One potential reason for the statistically significant relationship between urinary LTE4 

and total DAPs (and urinary LTE4 and dimethyl phosphates) is that the DAPs came 

from individual study participants, whereas a single air pollutant concentration was 

broadly assigned to each community, and so each person in that community was 

assigned the same exposure. In other words, we estimated exposure to pesticides 

using individual measurements, and thus had a higher number of measurements using 

a larger sample size (based off the study population), while we only had four air  
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pollutant measurements per month (one for each community). Finding statistical sample 

size from a smaller number of measurements is much harder.  

It is possible that the individual measurements of pesticides are subject to classical error, 

which occurs when individual measurements vary from the true value being measured.95 

In contrast, the measurements of air pollution could be subject to Berkson error, which 

occurs when an aggregate measure is assigned to a group of participants, who may vary 

in their exposure with respect to this value.95 

Regarding bias, we do not know if there is non-differential or differential misclassification, 

but it is possible that there could be differential misclassification occurring due to different 

exposure profiles for people who work inside or outside. Additionally, people who are 

more sensitive to respiratory irritants, such as people with asthma, may be more likely to 

adjust their behavior accordingly which could potentially change their exposure to air 

pollutants and pesticides relative to other members of the community.  

While the multiple linear regression did not reveal conclusive results for most of the 

exposures (except for total DAPs and dimethyl phosphates), the BKMR analyses did 

reveal interesting interactions between the different pollutants. While most of these 

relationships in January appeared to be somewhat linear, the relationship between 

dimethyl phosphates and LTE4 was not. Instead, dimethyl phosphates showed a positive 

association with LTE4 until about 5 standard deviations, whereby the relationship became 

negative.  

The univariate exposure-response function in June showed little to no relationship 

between air pollutants and LTE4 but showed more linear relationships between the DAPs 

and LTE4 (negative for diethyl phosphates and positive for dimethyl phosphates).  
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It should be noted that all the graphical displays of these relationships for both January 

and June showed very large confidence intervals. This is probably due to the relatively 

small concentrations of DAPs that were extracted from the urine samples, and the fact 

that all air pollutant exposures were assigned to every individual in the community. The 

strongest association between an exposure and urinary LTE4 in the univariate exposure-

response function was dimethyl phosphates in January, which is very similar to the results 

we saw from the multiple-linear regression. This is different from what we would otherwise 

expect given that June is the season when spraying occurs in California.  

Though harder to interpret, and though they don’t account for statistical uncertainty, these 

bivariate exposure response functions showed that there were interactions happening 

between the pollutants in the mixture. A lot of data is missing, but it is possible to see that 

urinary LTE4 increases or decreases as the various exposures decrease, but at different 

rates depending on the level of the other exposure.  

Figures 5 and 6 also show that interactions are occurring between the different exposures 

in the mixture. Figure 5, which shows the relationship between an exposure and urinary 

LTE4 given a second exposure in January, shows that urinary LTE4 increases as diethyl 

phosphates and dimethyl phosphates increase, but these increases don’t appear to 

depend much on quantiles of other exposures.  

In June, urinary LTE4 increases as NO2 and dimethyl phosphates increase, at all 

measured quantile levels of all exposures. Diethyl phosphates show a more complex 

interaction in June, because as diethyl phosphates increase at the 0.5 and 0.75 quantiles 

of O3, NO2 and PM2.5, urinary LTE4 decreases, but LTE4 decreases at a steeper rate at 

the 0.25 levels of O3, PM2.5, and NO2.  
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These different interactions between the components of the pollution mixture are not well 

understood and should be the subject of future research in this field. While none of the 

results of the BKMR analysis were statistically significant, they still pointed to complex 

interactions between the mixture components that the multiple linear regression could not 

detect. A similar study conducted in Washington State by Benka-Coker et al. observed 

that increasing total mixture levels of PM2.5, ozone, and organophosphates was 

associated with increased levels of urinary LTE4. (Benka-Coker et al. 2019) 

To wrap things up, I want to summarize the main findings of this study, and the 

limitations and strengths.  

First, there are several strengths to this study. One of them is that this study adds to the 

currently small volume of literature on environmental mixtures. Although the need to 

study environmental mixtures is becoming more acknowledged by the scientific 

community, little work has been done to date, particularly on mixtures between different 

environmental domains (e.g., air pollution and pesticides). Because the BKMR mixture 

analysis revealed associations that the linear regression models could not detect, this 

could be a sign for future research that linear models may not always be appropriate for 

studying joint environmental exposures.  

A particular strength of using BKMR is that it allows for non-linearity and more flexibility 

in the relationships between air pollutants, pesticides, and respiratory health outcomes.  

Another strength of this study is that we demonstrated a positive association between 

total urinary DAPs and urinary LTE4 in a population with relatively low asthma 

prevalence. There is limited research to date on the effectiveness of LTE4 as a marker 

for respiratory inflammation in populations that do not have asthma. This research also 
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builds on the literature establishing a link between exposure to pesticides and 

respiratory health.  

There are some important limitations to discuss in this study as well. One is that the 

sample size is very small; 80 participants in January gave samples, and this was 

reduced to 77 in June. Another limitation is that as mentioned before, we used an 

ecological measure for air pollution exposure, but an individual measurement for 

pesticide exposure. This had the potential to introduce Berkson error for the former. 

Classical error is also probable in our individual pesticide samples, because DAPs 

represent short term exposure. They also do not tell us the route of exposure, or the 

specific types of organophosphates that the individuals in the study were exposed to. 

In summary, in a community-based study of residents of communities where ambient air 

pollution and pesticide application was high, we found that urinary markers of 

organophosphate pesticides were positively associated with a urinary marker of 

respiratory inflammation. Since the prevalence of asthma was low in this population, we 

also recognized that LTE4 has the potential to be used as a biomarker for respiratory 

inflammation in individuals who do not have asthma.  We also discovered that 

interactions between different air pollution and pesticide exposures exist, at least one of 

which was non-linear, and that these mixtures had different relationships with the health 

outcome in January and June.  To effectively study an environmental mixture of air 

pollutants and pesticides, much larger sample sizes should be used in future research, 

and more individual air pollutant measurements should also be considered.  
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CHAPTER 3: CONCLUSION 
 
 
 

Study Findings 

The field of environmental mixtures is still very new, despite growing consensus among 

researchers that the complex interactions and exposure pathways of environmental 

exposures warrant the use of mixtures analysis.  

We conducted this study with an interest in several specific questions. First, we wanted 

to know if there were associations between the air pollution and pesticide mixtures and 

the respiratory health outcomes, and whether or not these associations were different 

seasonally. The mixture in question included air pollution and organophosphate 

pesticides, and while a lot is known about the respiratory health impacts of air pollution, 

much less is known about the relationship between pesticides and respiratory health. 

Since we ran multiple linear regression models on each exposure separately before 

running them all together in a mixture using BKMR, we were able to look at the effect of 

a pesticide biomarker and see if there was an association with a biomarker of 

respiratory inflammation. We also wanted to use the study population as an opportunity 

to investigate whether LTE4 could be used as a marker for respiratory inflammation in a 

population with a low prevalence of asthma.  

All these questions were answered to some extent in our study. First, BKMR analysis 

revealed that there were indeed associations between the different air pollutants and 

markers of pesticide exposure, although none of them were statistically significant. By 

running BKMR analysis separately in both January and June we were also able to see 

that these relationships changed from winter to summer.  Regarding our interest in 
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pesticide exposure and respiratory health, our multiple linear regression analysis 

revealed a small but statistically significant association between urinary dimethyl 

phosphates and urinary LTE4 (our respiratory health marker) in January. Though small, 

this points to a connection between pesticides and respiratory health that should be 

studied further. And finally, this association revealed that LTE4 has some utility as a 

marker for respiratory inflammation in populations that don’t have high prevalence of 

asthma. 

Future Research 

Future research on this topic is necessary. I think a similar study with the same main 

objectives (studying the impact of air pollution and pesticide mixtures on respiratory 

health, and in two different seasons) with a much larger sample size would be a logical 

next step. For the current study, 80 participants dropping to 77 participants in a study 

probably isn’t adequate to take full advantage of a BKMR analysis. I think that with a 

large sample size we could lower our credible intervals and understand more complexity 

in the associations. We could see more non-linear relationships between exposures and 

the outcome.  

Future studies on air pollution mixtures and pesticide mixtures should also attempt to 

gather more individual level measurements of air pollution exposure. In this study 

everybody in the same community had the same level of air pollution assigned to them 

as an exposure and this is a very big assumption to make. Most likely, the residents of a 

certain community had wildly different levels of exposure based on how much time they 

spent outside, and where outside they were. Installing more low-cost monitors at 

households or asking participants to wear personal air pollution monitors could be a way 
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to gather more individual air pollution data in the future, although this could be invasive 

and cumbersome to some participants and overall expensive to implement.  

Another direction of future research on environmental mixtures should also include 

different exposures to the mixture. Pesticides and air pollution are two very important 

health hazards that residents of the California Central Valley are routinely exposed to, 

but there are many other environmental risk factors in this area that could also be added 

to a mixture model. For example, with increasingly hot days in California, adding heat 

temperatures to a mixtures model (instead of something to control for as we did in our 

multiple linear regression analysis) would be useful to understand mixtures.  

Post Thesis Reflections 

I’ve mentioned this to my thesis advisor Dr. Sheryl Magzamen, and I want to make sure 

my other advisor Dr. Brooke Anderson knows as well, but I’ve gotten “the bug” so to 

speak, in terms of interest in air pollution, meteorology, weather, and the resulting public 

health implications. I had a brief career as a field ecologist before graduate school, and 

so I’ve always had a special love for the natural world, which is what helped lead me to 

this field. Yet writing this thesis, and also helping with research on tropical cyclones with 

Dr. Anderson, has made many environmental issues seem to me more consequential 

and urgent than ever before.  

While Covid-19 will probably always remain the most memorable and traumatizing 

public health issue of this current time period, for me the endless weeks of air pollution 

we experienced in 2020 and 2021 in Fort Collins were just as memorable and had a 

major impact on my environmental mindset. Living with the constant smell of smoke, 

cancelling outdoor plans because of poor air quality, and looking outside certain days to 
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see apocalyptic looking red skies brought the issue of my thesis into stark focus. It 

wasn’t theoretical or academic, it was right outside. I remember walking on campus one 

day, and seeing the sky look like something straight out of The Wump World, by Bill 

Peet. Aside from fires and smoke, the past summer was also full of extreme heat 

advisories, devastating hurricanes and flooding, and extreme drought. Like air pollution, 

climate change no longer seems like an abstract phenomenon that affects different 

people somewhere else, it is knocking on all of our doors right this moment.  

And this is where I want to take a hard turn. It is easy to panic and despair about the 

state of things. And to be clear, the prognosis for many environmental problems is not 

great. But what the headlines don’t do a good job of acknowledging is the many 

researchers, public health professionals, and environmental scientists who understand 

the concerns and pressing challenges but don’t shy away from the challenge of hunting 

for solutions. That is one of the things about environmental health that I think is so 

uplifting: we are actively working to find ways to live with our new paradigm. Though my 

thesis was a pilot study, I really hope that it can help to further the understanding of air 

pollution and pesticide mixtures. And hopefully that understanding can lead to better 

environmental and public health policies that protect people in an increasingly hotter 

world.  

Going forward in my career, there are many skills and important things I’ve learned as a 

student that I believe will serve me well. Though I have a lot of room for improvement, 

my ability to program in R and SAS would never have taken off without being a student 

here. And I have come to understand and appreciate a whole new way of writing and 

communicating. Where my career leads from here is still murky but I know that I want to 
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remain focused on environmental health, especially with a focus on climate change. 

Working at the CDC in the Arboviral Disease Branch is a good start since vector borne 

illnesses are certainly poised to expand with increasingly warm climates around the 

globe. I have recently gotten involved in the ISeeChange project, which is a citizen 

science community journal for reporting weather and climate change related events. I 

have been in contact with ISeeChange’s CEO and hope to contribute written pieces on 

climate change (either about air pollution, pesticides, or hurricanes) to the organization. 

Finishing this thesis and completing my degree at Colorado State University is hopefully 

the beginning of a long and varied career studying and writing about the health impacts 

of environmental exposure in response to climate change, extreme weather events, and 

exposures to pollution. By focusing on public health with insights from ecology and 

meteorology, I hope to also advance conservation of our planet’s natural resources, by 

facilitating understanding of practices that are good for the health of our communities 

but also the biodiversity with which we share our homes. 
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TABLES & FIGURES 
 

 

 
Table 1. Study Population & Demographics of Study Population in June 

 Community 1 

(N = 33) 

Community 2 

(N = 5) 

Community 3 

(N = 24) 

Community 4 

(N = 15) 

Total 

(N = 77) 

Sex      

Male 13.0 (39.4%) 3.00 (60.0%) 10.0 (41.7%) 7.0 (46.7%) 33.0 

(42.9%) 

Female 20.0 (60.6%) 2.00 (40.0%) 14.0 (58.3%)  8.0 (53.3%) 44.0 

(57.1%) 

Age (years)      

Mean (SD) 41.7 (23.4) 53.2 (19.7) 41.3 (19.1) 42.0 (19.9) 42.4 

(21.1) 

Median [Min, 

Max] 

36.1 [7.09, 

87.8] 

59.3 [18.9, 

68.2] 

47.2 [11.7, 

81.3] 

46.0 [13.7, 

71.7] 

46.3 [7.09, 

87.8] 

Asthma      

Yes 5.0 (15.2%) 0 (0%) 2.00 (8.3%) 4.00 (26.7%) 11.0 

(14.3%) 

No 28.0 (84.8%) 5.0 (100%)  22.0 (91.7%) 11.0 (73.3%) 66.0 

(85.7%) 

Don’t Know 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Individual 

Works in 

Agriculture 

     

Yes 8.0 (24.2%) 1.00 (20.0%) 10.0 (41.7%) 5.00 (33.3%) 24.0 

(31.2%) 

No 25.0 (75.8%) 3.00 (60.0%) 14.0 (58.3%) 9.0 (60.0%) 51 (66.2%) 

Don’t Know 0 (0%) 1.00 (20.0%) 0 (0%) 1.00 (6.7%) 2.00 

(2.6%) 

Somebody in 

Household 

Works in 

Agriculture 

     

Yes 31.0 (93.9%) 2.00 (40.0%) 16.0 (66.7%) 14.0 (93.3%) 63.0 

(81.8%) 

No 2.00 (6.1%) 0 (0%) 8.0 (33.3%) 1.00 (6.7%) 11.0 

(14.3%) 

Don’t Know 0 (0%) 3.00 (60%) 0 (0%) 0 (0%) 3.00 

(3.9%) 
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Table 2. Environmental exposure values per season based off SEMIPRO collection and CMAQ 
derived estimates.  

Month Exposure Std. 

Dev 

Minimum 1st 

Quartile 

Median 3rd 

Quartile 

Maximum 

January Particulate 

Matter < 2.5 µm 

(PM2.5)(µg/m3) 

1.01 3.33 3.33 3.80 5.63 5.63 

June Particulate 

Matter < 2.5 µm 

(PM2.5)(µg/m3) 

1.54 4.93 4.93 7.36 8.31 8.31 

January Ozone (O3)(ppb) 0.97 26.84 26.95 27.76 29.07 29.07 

June Ozone (O3)(ppb) 4.21 44.51 44.51 51.61 53.63 53.63 

January Nitrogen dioxide 

(NO2)(ppb) 

1.01 4.25 4.25 4.70 6.46 6.46 

June Nitrogen dioxide 

(NO2)(ppb) 

1.53 2.14 2.14 4.37 5.47 5.54 

January Diethyl (ng/mg of 

creatine) 

2.66 0 0 0 0 23.07 

June Diethyl (ng/mg of 

creatine) 

4.33 0 0 0 0 29.47 

January Dimethyl (ng/mg 

of creatine) 

39.47 0 0 0 5.58 332.56 

June Dimethyl (ng/mg 

of creatine) 

21.02 0 0 0 3.71 106.02 
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Table 3. Wilcoxon (Paired) Signed-Rank Test between January and June exposures 
Exposure p-value 

Nitrogen dioxide (NO2)  

 Winter – Summer 1.78e-08 

Ozone (O3)  

Winter – Summer 2.10e-14 

Particulate Matter (PM2.5)  

Winter – Summer 1.22e-13 

Total DAPs  

Winter – Summer 0.89 

Diethyl phosphate  

Winter – Summer 0.20 

Dimethyl phosphate  

Winter – Summer 0.57 

 

 
Table 4. Summary statistics of urinary dialkyl phosphate concentrations (pg/mg of creatinine) for 
January (n=80) and June (n=77).  

Month Std. 

Dev 

Minimum 1st 

Quartile 

Median 3rd 

Quartile 

Maximum 

January 1903.98 175.69 637.07 1006.25 1590.57 10399.24 

June 1484.39 313.10 943.55 1379.08 1906.65 11403.53 
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Tables 5 a.- d. Multiple Linear Regression β1 Coefficients and 95% Confidence intervals. Model 
1 is only the exposure and response, Model 2 is the exposure and response plus demographic 
covariates, and Model 3 is exposure and response plus demographic covariates, and 
meteorological covariates.  
 
Table 5 a. Model 1 

Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January NO2 -0.12 -0.27 [-0.302, 0.070] 

June NO2 -0.08 -0.27 [-0.179, 0.013] 

 

Table 5 a. Model 2 
Month  Exposure/Covariate β Coefficient IQR Change 95% CI  

January NO2 -0.01 -0.02 [-0.316, 0.118] 

 Age -0.01  [-0.019, <0.001] 

 Sex 0.04  [-0.364, 0.434] 

 Asthma -0.18  [-0.741, 0.374] 

 Agself -0.07  [-0.547, 0.404] 

 Agany  0.01  [-0.553, 0.571] 

June NO2 -0.07 -0.23 [-0.184, 0.034] 

 Age <0.01  [-0.005, 0.010] 

 Sex -0.13  [-0.439, 0.186] 

 Asthma -0.10  [-0.529, 0.336] 

 Agself -0.05  [-0.405, 0.308] 

 Agany -0.01  [-0.488, 0.460] 

 

Table 5 a. Model 3 
Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January NO2 -0.15 -0.33 [-0.692, 0.394] 

 Age -0.01  [-0.018, 0.001] 

 Sex <0.01  [-0.398, 0.407] 

 Asthma -0.22  [-0.790, 0.341] 

 Agself -0.05  [-0.533, 0.425] 

 Agany 0.07  [-0.516, 0.653] 

 Temperature -0.09  [-0.396, 0.211] 

 Relative Humidity -0.01  [-0.275, 0.261] 

June NO2 0.09 -0.30 [-0.789, 0.966] 

 Age <0.01  [-0.006, 0.010] 

 Sex -0.12  [-0.443, 0.201] 

 Asthma -0.11  [-0.559, 0.335] 

 Agself -0.05  [-0.411, 0.317] 

 Agany -0.02  [-0.517, 0.477] 

 Temperature 2.26  [-9.568, 14.096] 

 Relative Humidity -1.90  [-11.777, 7.967] 
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Table 5 b. Model 1 
Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January O3 0.15 0.32 [-0.042, 0.345] 

June O3 -0.03 -0.27 [-0.064, 0.006] 

 

Table 5 b. Model 2 
Month  Exposure/Covariate β Coefficient IQR Change 95% CI 

January O3 0.14 0.30 [-0.081, 0.364] 

 Age -0.01  [-0.019, <0.001] 

 Sex 0.02  [-0.374, 0.421] 

 Asthma -0.20  [-0.749, 0.354] 

 Agself -0.07  [-0.542, 0.398] 

 Agany 0.04  [-0.511, 0.591] 

June O3 -0.03 -0.27 [-0.067, 0.012] 

 Age <0.01   [-0.005, 0.010] 

 Sex -0.13  [-0.438, 0.186] 

 Asthma -0.10   [-0.534, 0.329] 

 Agself -0.05  [-0.405, 0.307] 

 Agany -0.02   [-0.487, 0.456] 

 

Table 5 b. Model 3 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January O3 0.29 0.62 [-0.754, 1.326] 

 Age -0.01  [-0.018, 0.001] 

 Sex <0.01  [-0.398, 0.407] 

 Asthma -0.22  [-0.790, 0.341] 

 Agself -0.05  [-0.533, 0.425] 

 Agany 0.07  [-0.516, 0.653] 

 Temperature 0.04  [-0.691, 0.767] 

 Relative Humidity -0.08  [-0.588, 0.434] 

June O3 0.10 0.91 [-0.870, 1.064] 

 Age  <0.01  [-0.006, 0.010] 

 Sex  -0.12  [-0.443, 0.201] 

 Asthma -0.11  [-0.559, 0.335] 

 Agself -0.05  [-0.411, 0.317] 

 Agany -0.02  [-0.516, 4.774] 

 Temperature 4.82  [-32.377, 42.023] 

 Relative Humidity -4.07  [-35.379, 27.244] 
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Table 5 c. Model 1 
Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January PM2.5 -0.10 -0.23 [-0.287, 0.088] 

June PM2.5 -0.08 -0.27 [-0.175, 0.015] 

 

Table 5 c. Model 2 
Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January PM2.5 -0.08 -0.18 [-0.296, 0.130] 

 Age -0.01  [-0.019, <0.001] 

 Sex 0.04  [-0.359, 0.439] 

 Asthma -0.19  [-0.746, 0.370] 

 Agself -0.07  [-0.542, 0.411] 

 Agany -0.02  [-0.570, 0.533] 

June PM2.5 -0.07 -0.24 [-0.182, 0.032] 

 Age <0.01  [-0.005, 0.010] 

 Sex -0.13  [-0.438, 0.186] 

 Asthma -0.10  [-0.532, 0.332] 

 Agself -0.05  [-0.406, 0.307] 

 Agany -0.01  [-0.486, 0.460] 

 

Table 5 c. Model 3 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January PM2.5 -0.22 -0.51 [-1.017, 0.579] 

 Age -0.01  [-0.018, 0.001] 

 Sex <0.01  [-0.398, 0.407] 

 Asthma -0.22  [-0.790, 0.341] 

 Agself -0.05  [-0.533, 0.425] 

 Agany 0.07  [-0.516, 0.653] 

 Temperature -0.07  [-0.437, 0.295] 

 Relative Humidity -0.04  [-0.434, 0.348] 

June PM2.5 0.16 0.54 [-1.387, 1.697] 

 Age <0.01  [-0.006, 0.010] 

 Sex -0.12  [-0.443, 0.201] 

 Asthma -0.11  [-0.559, 0.335] 

 Agself -0.05  [-0.411, 0.317] 

 Agany -0.02  [-0.516, 0.477] 

 Temperature 3.22  [-18.010, 24.546] 

 Relative Humidity -2.71  [-20.556, 15.134] 
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Table 5 d. Model 1 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January Diethyl phosphate <0.01 0 [-0.070, 0.072] 

June Diethyl phosphate -0.01  [-0.042, 0.028] 

 

Table 5 d. Model 2 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January Diethyl phosphate 0.01 0 [-0.065, 0.084] 

 Age -0.01  [-0.019, <0.001] 

 Sex 0.06  [-0.345, 0.458] 

 Asthma -0.21  [-0.769, 0.348] 

 Agself -0.03  [-0.504, 0.452] 

 Agany -0.10  [-0.611, 0.406] 

June Diethyl phosphate -0.01  [-0.048, 0.028] 

 Age <0.01  [-0.005, 0.010] 

 Sex -0.08  [-0.405, 0.242] 

 Asthma -0.12   [-0.561, 0.323] 

 Agself -0.03  [-0.405, 0.345] 

 Agany -0.12  [-0.576, 0.332] 

 

Table 5 d. Model 3 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January Diethyl phosphate 0.01 0 [-0.064, 17.473] 

 Age -0.01  [-0.019, <0.001] 

 Sex 0.02  [-0.384, 0.424] 

 Asthma -0.25  [-0.808, 0.317] 

 Agself -0.03  [-0.509, 0.452] 

 Agany 0.01  [-0.530, 0.552] 

 Temperature -0.16  [-0.360, 0.049] 

 Relative Humidity 0.06  [-0.050, 0.174] 

June Diethyl phosphate -0.02 0 [-0.057, 0.022] 

 Age <0.01  [-0.005, 0.010] 

 Sex -0.10  [-0.427, 0.224] 

 Asthma -0.11  [-0.561, 0.334] 

 Agself -0.11  [-0.510, 0.279] 

 Agany <0.01  [-0.499, 0.502] 

 Temperature 1.21  [-0.406, 2.834] 

 Relative Humidity -1.02  [-2.432, 0.385] 

 

 

 

 
 
 
 
 



70 

 

Table 5 e. Model 1 
Month Exposure/Covariate β Coefficient IQR Change 95% CI  

January Dimethyl phosphate 0.01 0.06 [0.001, 0.010] 

June Dimethyl phosphate <0.01 <0.04 [-0.001, 0.011] 

 

Table 5 e. Model 2 
Month  Exposure/Covariate β Coefficient IQR Change 95% CI 

January Dimethyl phosphate 0.01 0.06 [0.001, 0.011] 

 Age -0.01  [-0.019, <-0.001] 

 Sex -0.01  [-0.394, 0.377] 

 Asthma -0.21  [-0.742, 0.326] 

 Agself 0.05  [-0.406, 0.509] 

 Agany -0.12  [-0.596, 0.377] 

June Dimethyl phosphate <0.01 <0.04 [-0.005, 0.011] 

 Age <0.01  [-0.007, 0.009] 

 Sex -0.07  [-0.395, 0.254] 

 Asthma -0.08  [-0.532, 0.364] 

 Agself 0.01  [-0.346, 0.362] 

 Agany -0.14  [-0.597, 0.314] 

 

Table 5 e. Model 3 
Month Exposure/Covariate β Coefficient IQR Change 95% CI 

January Dimethyl phosphate 0.01 0.06 [0.001, 0.010] 

 Age -0.01  [-0.018, 0.001] 

 Sex -0.04  [-0.425, 0.353] 

 Asthma -0.24  [-0.785, 0.297] 

 Agself 0.05  [-0.412, 0.518] 

 Agany -0.03  [-0.553, 0.488] 

 Temperature -0.13  [-0.325, 0.071] 

 Relative Humidity 0.04  [-0.068, 0.148] 

June Dimethyl phosphate <0.01 <0.04 [-0.005, 0.012] 

 Age <0.01  [-0.007, 0.010] 

 Sex -0.10  [-0.427, 0.270] 

 Asthma -0.09  [-0.540, 0.366] 

 Agself -0.04  [-0.407, 0.327] 

 Agany -0.05  [-0.562, 0.453] 

 Temperature 1.07  [-0.520, 2.652] 

 Relative Humidity -0.92  [-2.305, 0.464] 
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Table 6. Group and conditional posterior inclusion probabilities (PIPs), with air pollutants and 
pesticides as separate groups. 

Exposure 

 

January June 

Group Conditional Group Conditional 

O3 0.61 0.35 0.73 0.36 

PM2.5 0.61 0.35 0.73 0.31 

NO2 0.61 0.30 0.73 0.33 

Diethyl 

phosphate 

0.80 0.18 0.54 0.54 

Dimethyl 

phosphate 

0.80 0.82 0.54 0.46 
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Figure 1.  Cross section of univariate relationship between each exposure and log-transformed 
LTE4, while holding all other exposures at their 50th percentile in January. 
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Figure 2. Cross section of univariate relationship between each exposure and log-transformed 
LTE4, while holding all other exposures at their 50th percentile in June.  
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Figure 3. Exposure response pattern between two air pollutant and/or DAP exposures at the 
same time, and log-transformed leukotriene E4 in January. Legend shows the change in 
concentration of log-transformed LTE4. Red=log-transformed LTE4 increasing. Blue=log-
transformed LTE4 decreasing. 
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Figure 4. Exposure response pattern between two air pollutant and/or DAP exposures at the 
same time, and log-transformed leukotriene E4 in June. Legend shows the change in 
concentration of log-transformed LTE4. Red=log-transformed LTE4 increasing. Blue=log-
transformed LTE4 decreasing. 
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Figure 5. Relationship between exposure 1 and the outcome of urinary LTE4 given quantiles of 
exposure 2 in January. 
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Figure 6. Relationship between exposure 1 and the outcome of urinary LTE4 given quantiles of 
exposure 2 in June. 
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Figure 7. The effect of each exposure on LTE4 when it is at its 75th percentile compared to its 
25th percentile when the other exposures are fixed at the 0.25th, 0.5th, 0.75th percentiles, in the 
month of January.  
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Figure 8. The effect of each exposure on LTE4 when it is at its 75th percentile compared to its 
25th percentile when the other exposures are fixed at the 0.25th, 0.5th, 0.75th percentiles, in the 
month of June.  
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Figure 9. Fresno and Tulare Counties in Central California. Yellow indicates Fresno County, and 
blue indicates Tulare County.  
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Figure 10. Poor air quality on Colorado State University campus on October 5, 2020 due to the 
Cameron Peak wildfire, and wildfires burning in the West Coast. An example of a naturally 
occurring source of air pollution.  
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