
DISSERTATION

AN ASPECT-BASED APPROACH TO MODELING ACCESS CONTROL POLICIES

Submitted by

Eunjee Song

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2007

COLORADO STATE UNIVERSITY

August 10, 2006

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER

OUR SUPERVISION BY EUNJEE SONG ENTITLED AN ASPECT-BASED AP-

PROACH TO MODELING ACCESS CONTROL POLICIES BE ACCEPTED AS FUL-

FILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOS-

OPHY.

Committee on Graduate Work

Committee Member: Dr. James M. Bieman

Committee Member: Dr. Sudipto Ghosh

Committee Member: Dr. Joon K. Kim

Adviser: Dr. Robert B. France

Co-Adviser: Dr. Indrakshi Ray

Department Head: Dr. L. Darrell Whitley

ii

ABSTRACT OF DISSERTATION

AN ASPECT-BASED APPROACH TO MODELING ACCESS CONTROL POLICIES

Access control policies determine how sensitive information and computing resources are

to be protected. Enforcing these policies in a system design typically results in access

control features that crosscut the dominant structure of the design (that is, features that

are spread across and intertwined with other features in the design). The spreading and

intertwining of access control features make it difficult to understand, analyze, and change

them and thus complicate the task of ensuring that an evolving design continues to enforce

access control policies.

Researchers have advocated the use of aspect-oriented modeling (AOM) techniques

for addressing the problem of evolving crosscutting features. This dissertation proposes an

approach to modeling and analyzing crosscutting access control features. The approach uti-

lizes AOM techniques to isolate crosscutting access control features as patterns described

by aspect models. Incorporating an access control feature into a design involves embedding

instantiated forms of the access control pattern into the design model. When composing

instantiated access control patterns with a design model, one needs to ensure that the result-

ing composed model enforces access control policies. The approach includes a technique

to verify that specified policies are enforced in the composed model.

The approach is illustrated using two well-known access control models: the Role-

Based Access Control (RBAC) model and the Bell-LaPadula (BLP) model. Features that

enforce RBAC and BLP models are described by aspect models. We show how the aspect

iii

models can be composed to create a new hybrid access control aspect model. We also show

how one can verify that composition of a base (primary) design model and an aspect model

that enforces specified policies produces a composed model in which the policies are still

enforced.

Eunjee Song
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Spring 2007

iv

ACKNOWLEDGEMENTS

I am greatly indebted to many people for this dissertation. It would not have been

possible to complete without their support, help, and patience. I would like to express my

gratitude to them for their part in completion of the dissertation.

First, I would like to thank my adviser, Dr. Robert France, for his continued guidance

and encouragement, for sharing many of his insights, and for uncountable discussions and

revisions of this dissertation. He has shown to me tireless patience and helping so that I

may develop my confidence even when I got lost. Second, I want to thank my co-adviser,

Dr. Indrakshi Ray for her insightful comments on my work and her help she provided

while I was struggling to grab new concepts in software security. She also has been a great

counselor for my career as well.

I would like to extend my sincere thanks to Dr. Bieman for his help in my research and

his continuous encouragement on my teaching as well. I know it was not possible for me

to instruct a distance learning course for three consecutive semesters and to have the honor

of Anita Reed Award later without his solid support on my teaching. I am also grateful

to other members in my committee; Dr. Sudipto Ghosh for his insightful comments on

writing my past publications as well as the crafting of this dissertation; Dr. Joon Kim for

his unique comments from non-computer scientist’s viewpoint. I would like to offer special

thanks to Dr. Carolyn Schauble for providing an understanding ear every time I needed it

most. She has been a wonderful mentor and a good friend for my family since we first

came to the department.

v

Thanks to all friendly Computer Science department staffs, especially Wayne Trzyna,

Sharon Van Gorder, Carol Calliham, and a former staff Susan Short, for granting me a

favor all the time. Thanks to all my colleagues in the Computer Science department, in

the past and at present, Dr. Kyungim Baek, Dr. Dae-kyoo Kim, Dr. Raghu Reddy, Devon

Simmonds, Dinh Trung, Dr. Emanuel Grant, Eunjong Kim, and Yingchun Cai, for all their

support and encouragement that kept me going. I would like to express a special gratitude

to Dae-gon Kim who generously agreed to help with my final submission of dissertation.

I thank members in the First Korean Church of Fort Collins for all their prayers. My

special thanks go to Dr. Sohyun Kwon, Elizabeth Kim, Heekyeong Jung and all other choir

members for their continuous support with prayers. And also thank you to all my friends

whose names are too numerous to mention.

To my parents, I thank you for your immeasurable support and encouragement. I could

not have made this accomplishment done without your support with prayer. I miss you

Dad and wish you could be here with us at this time. Another special thanks to my parents-

in-law; I know you keep praying for us although I cannot talk with you any more. To all

my sisters and brothers, Hongji, Soojee, Sangheon and Bangheon, I thank you all for your

cheering me up and giving continuous cares for mom and dad while I have been staying far

from them for years. I also thank my sisters-in-law, Youngin and Wonsun, who also have

prayed for my family.

My deepest gratitude is saved for my family. I cannot find words to express the depth

of my gratitude to my daughter, Seoyoung, and my husband, Hanil, for putting their work

and lives on hold while I pursued my goal of earning a Ph.D. Without your love, sacrifice,

and endurance, this work would not have been possible to finish. I love you so much.

Finally, I praise my Lord who always sustains me and walks with me every time I am

in trouble. I know you have always guided me to this accomplishment and will also show

where I will have to go.

vi

DEDICATION

This dissertation is dedicated

to my daughter Seoyoung,

to my husband Hanil,

and to my parents.

vii

TABLE OF CONTENTS

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Overview . 3

1.2.1 Verifying Policy Enforcement in an Access Control Aspect Model . 4

1.2.2 Composing Access Control Aspect Models 5

1.2.3 Composing an Access Control Aspect Model and a Primary Model

in a Verifiable Manner . 6

1.3 Research Scope and Significance . 7

1.4 Dissertation Structure Overview . 9

2 Related Work 10

2.1 Aspect-Oriented Software Development (AOSD) 10

2.2 Security Policies and Access Control Models 12

2.3 Modeling Access Control Features in UML 16

2.4 Model-based Verification . 18

3 Background 19

3.1 Access Control Systems . 19

3.2 Access Control Policies . 20

3.3 Access Control Models . 21

3.3.1 Bell-LaPadula (BLP) Model . 22

3.3.2 Role-Based Access Control (RBAC) 23

3.4 Unified Modeling Language . 25

viii

3.5 Aspect-Oriented Modeling (AOM) . 30

3.5.1 An Overview of the AOM Approach 30

3.5.2 Representing Aspect Models . 31

4 Enforcing an Access Control Policy in an Aspect Model 37

4.1 Formulating Access Control Policies . 37

4.2 Formulating Access Control Models As Aspect Models 41

4.3 Verifying Policy Enforcement . 46

4.4 Summary . 52

5 Composing Access Control Aspect Models: An Example 54

5.1 Overview . 56

5.2 Aspect Compositions . 58

5.2.1 The Basic Merging Procedure . 58

5.2.2 Composition Directives . 60

5.3 An Example of Composing RBAC and BLP Aspect Models 62

5.4 Summary . 70

6 A Verifiable Model Composition Approach 71

6.1 Overview . 71

6.2 A Composition Example . 75

6.3 A Pilot Study: Composing an RBAC Aspect with a Banking Application . . 87

6.3.1 A Banking Application Primary Model 88

6.3.2 The RBAC Aspect Model . 90

6.3.3 Instantiating the RBAC Aspect Model for a Banking Application . . 93

6.3.4 Merging a Context-specific RBAC Aspect Model with a Primary

Model . 95

6.3.5 Specifying the Property to Verify 97

ix

6.3.6 Generating the Proof Obligation 99

6.4 Summary . 104

7 Conclusion and Future Work 105

7.1 Lessons Learned . 106

7.2 Future Work . 107

A An RBAC Aspect Model 109

A.1 Operation specifications for generic RBAC aspect model 109

A.2 Operation specifications for Context-specific RBAC aspect model 112

B A BLP Aspect Model 117

B.1 Operation/Invariant templates for BLP . 117

References 118

x

LIST OF FIGURES

1.1 Checking policy enforcement in an aspect model 4

1.2 Integrating two aspect models to create a composed aspect model that enforces

an integrated policy . 5

1.3 Composing an access control aspect model with a primary model 6

3.1 Hierarchical SSD Role-Based Access Control (taken from [27]) 24

3.2 Class diagram and sequence diagram examples 26

3.3 Another class diagram example . 27

3.4 UML four layer metamodel architecture . 29

3.5 An overview of composition in the AOM approach [84, 31] 31

3.6 An Authorization-based Access Control Aspect Model (taken from [31] and

modified) . 33

4.1 Obtaining a policy model from requirements 38

4.2 An RBAC policy model . 38

4.3 A BLP policy model . 40

4.4 The class model template view of the RBAC aspect model 41

4.5 The class model template view of the BLP aspect model 45

4.6 Verifying a design aspect model against its policy model. 47

4.7 The most general context-specific RBAC aspect model 50

5.1 Two approaches to incorporating access control aspects into a primary model . 55

5.2 An aspect composition approach . 57

xi

5.3 Class Model Template View of the Hybrid Access Control Aspect Model . . . 66

5.4 Overview of RBAC and BLP Composition . 69

6.1 An overview of verifiable composition in the AOM approach 72

6.2 partial class/sequence diagrams for example models 76

6.3 A class diagram obtained by merging the two class diagrams in Fig. 6.2(a) and

Fig. 6.2(b) . 77

6.4 An activity diagram showing the verifiable composition approach 77

6.5 An activity diagram showing the process of generating proof obligation from

the merged class diagram . 79

6.6 Generating the proof obligation while identifying which message invocation

will follow in a sequence diagram . 82

6.7 A partial class diagram for a banking application (a primary model) 88

6.8 Sequence diagram for the trans f er operation in a banking application (a pri-

mary model) . 89

6.9 The class model template view of the hierarchical SSD RBAC aspect model . . 90

6.10 SDAOperation sequence diagram template . 92

6.11 A context-specific core RBAC class diagram 93

6.12 SDAtransfer: Context-specific sequence diagram for the trans f er operation in

BankSession . 95

6.13 SDAwithdraw: Context-specific sequence diagram for the withdraw operation

in BankSession . 95

6.14 SDAdeposit: Context-specific sequence diagram for the deposit operation in

BankSession . 96

6.15 Class diagram of the composed model . 96

6.16 Overview of generating and evaluating the proof obligation 99

xii

6.17 Generating the proof obligation while identifying which message invocation

will follow in a sequence diagram . 101

xiii

Chapter 1

Introduction

Organizations specify and enforce access control policies to protect their valuable infor-

mation and resources from malicious attacks. These access control policies determine,

for example, (1) what programs or persons can access protected resources, (2) under what

circumstances these access rights are granted, and (3) what information items and services

are made available to authorized users. Developers of applications that must enforce access

control policies have to answer the following questions:

� How can one check that an access control feature adequately enforces the policies as

intended?

� How can one check that an access control feature interacts with other features to

produce behaviors that satisfy specified properties?

The research in this dissertation provides answers to the above questions.

1.1 Research Motivation

Modularization of design in terms of key functional features1 results in the intertwining

of access control features with other features. For example, a decision to modularize the

1In this dissertation, a feature is a logical unit of behavior.

1

design of a banking system in terms of modules that encapsulate banking services (e.g.,

withdraw and deposit services) results in the scattering of access control design elements

across the modules containing resources that are to be protected from unauthorized ac-

cesses. In general, crosscutting access control features are problematic for the following

reasons:

� Understanding a crosscutting feature is difficult because its description is scattered

across a design.

� Changing the crosscutting feature requires making consistent changes in a number

of places in the design.

� Evaluating alternative forms of the feature is challenging because it is difficult to

replace the feature with an alternative.

The above problems complicate the following tasks:

� Verifying policy enforcement: Rigorously establishing that a design enforces spec-

ified access control policies requires checking that the design elements describing

the access control feature enforce the policies. If the elements are scattered across

a design and tangled with other design elements then verification of the policy en-

forcement becomes difficult.

� Integrating policies: Organizations may need to share their access controlled re-

sources with other organizations. This can occur when the organizations need to

collaborate on a project or when one organization is acquired by another. In these

cases the issue of composing independently developed policies needs to be addressed.

However, determining how the features are to be integrated so that they may enforce

target policies is difficult when they are intertwined with other application features.

Aspect-oriented modeling (AOM) techniques have been advocated as solutions for

making the above tasks easier by isolating crosscutting access control features from other

2

features in the design. However, when isolated access control features are composed with

a design, one needs to ensure that the result of composition still enforces the target policy.

The goal of this research is to provide a technique for verifying that a design produced by

composing access control features and other design features enforces specified policies and

has other stated properties.

1.2 Research Overview

We utilize AOM techniques proposed by France et al. [31] to localize descriptions of

crosscutting access control features in aspect models. In the AOM approach, a design

consists of aspect models and a primary model. Each aspect model describes a crosscutting

design feature that addresses a single concern [69]. The primary model describes the core

functionality that determines the dominant design structure. An application design in which

the concerns are addressed is created by composing the aspect models with the primary

model. Composition directives are used to help ensure that the composition produces a

desired model.

In this work, access control features that are to be incorporated into a software design

(the primary model) are described by aspect models. We use Unified Modeling Language

(UML) model template notation that is a specialization of the Role-Based Modeling Lan-

guage (RBML)2[30] to express aspect models. The techniques described in this dissertation

are specifically targeted to designs expressed using the UML, a popular, standard modeling

language.

The following techniques are developed in this dissertation: (1) A technique for veri-

fying that an aspect model enforces the given policy, (2) a technique for integrating aspect

models to describe different access control mechanisms, and (3) a technique for composing

2RBML is a subset of the UML [90] with semantics that support rigorous analysis of policy models

3

an aspect model and a primary model in a verifiable manner.

1.2.1 Verifying Policy Enforcement in an Access Control Aspect
Model

Fig. 1.1 shows our approach to verifying that an access control aspect enforces target ac-

cess control policies. A policy model is a UML description of an access control policy.

Figure 1.1: Checking policy enforcement in an aspect model

An aspect model describes an access control feature. Realization mappings describe how

elements in the policy model are realized in the aspect model3. Using these mappings we

transform the policy constraints defined in a policy model into constraints expressed in

terms of concepts in an aspect model. An access control aspect model enforces policies in

a policy model if transformed policy constraints hold in an aspect model.

3Realization in our work is an abstraction relationship between two sets of model elements, one repre-
senting a policy model (policy requirements) and the other represents an aspect model (a set of designs that
enforce the given policy model)

4

1.2.2 Composing Access Control Aspect Models

Complex applications are typically required to enforce multiple access control policies.

Instead of composing the aspects one at a time with a primary model, the aspects can be

composed a priori to create a composed aspect. One advantage of doing this is that it

provides a view in which the interactions across the aspects can be understood in isolation.

A second advantage is that it reduces the number of times the composition process must be

applied, especially when the composed aspect is used in several applications.

In this work, we provide a method for using composition directives to obtain an inte-

grated access control aspect. Fig. 1.2 shows our approach to using composition directives

Figure 1.2: Integrating two aspect models to create a composed aspect model that enforces
an integrated policy

for integrating two access control aspects to produce an aspect model that enforces a pol-

icy (Policy Model 3) that is an integration of the access control policies (Policy Model 1

& 2) enforced by the two access control aspects. Composition directives are used to help

5

one create a composed aspect model that enforces the integrated policy. The developer uses

his/her knowledge of how the policies are to be integrated to select appropriate composition

directives that will be used to compose the aspect models. The developer is responsible for

ensuring that the result enforces the integrated policies. The enforcement technique pro-

posed in this dissertation can be used for this purpose. The approach will be demonstrated

using an example from the military domain which requires applications that enforce the in-

tegration of two well-known access control policies; Role-Based Access Control (RBAC)

and Bell-LaPadula (BLP) policies.

1.2.3 Composing an Access Control Aspect Model and a Primary
Model in a Verifiable Manner

Composing an aspect model with a primary model can result in conflicts or compromised

behaviors. Therefore, a key issue in applying the AOM approach is determining whether

composition of an aspect model and a primary model produces a composed model that has

desired properties. To address this issue we provide an approach that allows one to check

that the result of a composition is correct with respect to formally stated properties.

Figure 1.3: Composing an access control aspect model with a primary model

6

Fig. 1.3 shows how an access control aspect model can be incorporated into an applica-

tion design in a verifiable manner. When we use the AOM techniques proposed by France

et al. [31], composition is performed as follows: (1) an access control aspect is instanti-

ated in the context of the application to produce a context-specific access control aspect that

presents an application-specific view of the crosscutting feature (2) this context-specific ac-

cess control aspect is composed with the primary model.

We extend the previous model composition approach by France et al. [31] to support the

generation of proof obligations that must be discharged in order to establish that a desired

property holds in the composed class model. In our composition approach, class diagrams

are merged first, but the entire composition does not end until after the proof obligation

is generated and evaluated. When generating the proof obligations, we use the property to

verify (shown in Fig. 1.3). Verifying that a composed model has the stated property requires

one to discharge the generated proof obligation.

If the property does not hold then one can attempt to use composition directives to alter

the manner in which the composition is done to help rectify the problem. The properties

that are targeted by the technique are those that constrain the effects of sequences of oper-

ations on the system state as represented by object structures. To facilitate automation we

restrict the forms of operation specifications and target properties.

1.3 Research Scope and Significance

In this research, designs are described using only UML class models and thus the tech-

niques are specific to class model composition. Aspect models in this research consist only

of class diagram templates which can be instantiated to produce class diagrams. However,

we provide a technique to derive partial sequence diagrams from the class model compo-

sition when all message invocations by an operation are stated in the postcondition of its

operation specification.

7

We use a name-based composition approach [31, 86] for composing two aspect models

and for composing context-specific aspect models and a primary model. The default proce-

dure in the name-based composition merges model elements that have the same name and

syntactic type to produce a single model element in the composed model [86]. This pro-

cedure assumes that elements with the same name represent consistent views of the same

concept [73]. We use the composition approach to compose an RBAC aspect model with a

banking primary model, and to compose RBAC and BLP aspect models to create a hybrid

access control aspect model.

The research provides an approach to verifying the enforcement of access control aspect

models against the given requirements described in policy models, where policy models are

policy specifications represented using the same notation used for specifying access control

aspect models. We assume that valid policy models are provided by a developer.

This research is significant in that it provides a methodical approach to verifying com-

posed models. Separating crosscutting access control features as aspect models eases the

tasks of analyzing access control features during design. When composing access con-

trol aspect models with a primary design model, the verification technique provided in this

research allows one to systematically verify that the resulting composed model satisfies

specified properties that constrain the effects of operations on system state.

In this research, the verification technique is used to uncover problems and composition

directives are used to fix known problems. For example, when an integrated access control

policy is required, it may be known that the default merging procedure will not produce the

desired result. Composition directives can be used to help ensure that the composition pro-

duces the desired result. The result of the composition can be verified using the technique

proposed in this dissertation.

8

1.4 Dissertation Structure Overview

Chapter 2 summarizes the state of the research related to modeling access control policies.

Chapter 3 gives the background needed to understand the concepts introduced in this dis-

sertation. Chapter 4 describes how access control features can be modeled as aspect models

that enforce the given policy requirements. Chapter 5 shows how two access control poli-

cies can be integrated with each other using the AOM composition. Chapter 6 illustrates

a verifiable composition approach by showing how an access control aspect model can be

incorporated into application features in an automatable and verifiable manner. Chapter 7

concludes the dissertation and outlines directions for future work.

9

Chapter 2

Related Work

Our work is related to two distinct research areas: aspect-oriented software development

(AOSD) and security policy. This chapter gives an overview of relevant work in these two

areas and presents related work in the area of specifying access control models using UML.

2.1 Aspect-Oriented Software Development (AOSD)

Aspect-Oriented Software Development (AOSD) supports the separation of concerns prin-

ciple that has proven to be effective at handling complexity [14]. AOSD methods allow

developers to represent pervasive design and implementation concerns as aspects. In an

AOD approach, a design consists of (1) a primary design or implementation artifact (e.g.,

a UML model or code) in which the pervasive concerns are not included, (2) a set of

aspects, each representing a pervasive design concern that impacts the elements of the

primary design artifact, and (3) a composing mechanism that composes aspects with the

primary artifact to obtain a view of the design that integrate the primary and aspect model

views. Examples of AOSD approaches are (1) aspect-oriented programming (e.g., see

[10, 45, 46, 61, 62, 82, 87]) in which the primary design artifacts are code, and aspects are

concerns that cross-cut code modules, and (2)aspect-oriented modeling (or design) (e.g.

see [20, 21, 28, 38, 88]) in which aspects are design realizations of requirements, and a

design is created by composing aspects.

10

Suzuki et al. [88] extend the UML so that it can be used to model code level as-

pects. Their approach is restricted to secondary system characteristics that can be repre-

sented as aspects in an aspect-oriented program. Our approach differs since we do not

require aspect-oriented programming techniques. Gray et al. [38] use aspects to repre-

sent secondary system characteristics in domain-specific models. Their research is part of

the Model-Integrated Computing (MIC) initiative that targets embedded software systems

specifically. MIC extends the scope and usage of models such that they form the back-

bone of a development process for building embedded software systems. Requirements,

architecture, and the environment of a system are captured in the form of formal high-level

models that allow the representation of concerns. Our work can complement their research

by providing a UML-based approach for describing aspects.

The Theme/UML approach 1 proposed by Clarke et al. [18, 19, 21] and Baniassad et

al. [5] is a UML-based approach that is closest to the AOM method we use. In their work, a

design, called a theme, is created for each system requirement. These themes, like context-

specific aspect models and primary models, are design views. A comprehensive design is

obtained by composing themes. Composition relationships specify how models are to be

composed by identifying overlapping concepts in the themes and specifying how models

are integrated. Two types of integration strategies are used: override and merge. Override

integration is used when existing behavior in a theme needs to be updated to reflect new

requirements. Merge integration is used when subjects for different requirements are to

be integrated. A theme which has behaviors triggered by other themes is called as an

aspect (or a crosscutting theme) in the Theme/UML approach. This type of theme can be

parameterized to handle the triggers for its behavior using UML templates.

As part of the early aspects initiative, Rashid et. al have targeted multi-dimensional

1referred to as subject-oriented design approach with composition patterns in their earlier work

11

separation beginning early in the software cycle [65, 66, 67, 68]. Their work supports

modularization of broadly scoped properties at the requirements level to establish early

trade-offs, provide decision support and promote traceability to artifacts at later develop-

ment stages. Our AOM method compliments this work by supporting aspect specification,

composition, and analysis of successively more detailed levels of abstraction needed during

system design.

2.2 Security Policies and Access Control Models

In this section we briefly describe some work on security policies and access control

models. Damianou’s thesis [22] provides a comprehensive survey of important work

in this area. A large volume of research exists in the area of access control poli-

cies. In this section we describe related work in the area of specifying security policies

[6, 7, 12, 16, 23, 39, 41, 42, 43, 49, 57, 59, 74, 92], the area of specifying access control

models [1, 4, 8, 9, 11, 17, 35, 55, 75, 78].

Formal logic-based approaches [6, 7, 12, 16, 39, 43, 59] are often used to specify se-

curity policies. Jajodia et al. [43] propose an authorization specification language (ASL)

based on stratified clause form logic. Both negative and positive authorizations can be

expressed using this logic. The language also includes integrity rules that can be used to

specify application-dependent conditions that limit the range of acceptable access control

policies. This language provides support for role based access control but no direct support

for delegations or obligations. Barker [6] also uses stratified clause form logic to express

access control policies with special attention to RBAC. These approaches assume a strong

mathematical background which makes one use and understand the specified policies dif-

ficult.

In a subsequent work [7], Barker et al. show how policies specified in stratified logic

can be translated into SQL to protect a relational database from unauthorized read and up-

12

date requests. Ortalo [59] describes a language for specifying security policies based on

deontic logic. Researchers [39] at the Cambridge University have defined a language called

Role Definition Language (RDL) based on Horn clauses. RDL is based on a set of rules

that indicate the conditions under which a client may obtain a name or role. The conditions

for obtaining a role depend on the credentials of the client. The notion of delegation in

RDL is different in the sense that roles and not access rights are delegated. A client may

delegate a role that he himself does not possess. Chen et al. [16] propose a language based

on set theory for specifying RBAC state related constraints. Bertino et al. [12] extends the

RBAC model with a temporal model called a Temporal Role-Based Access Control (TR-

BAC) model. The language proposed by Bertino can specify periodic activation and deac-

tivation of roles using periodic expressions. They can also specify temporal dependencies

among role activation and deactivation using role triggers. Formal logic-based approaches,

although, useful for analyzing security policies, are relatively difficult to implement.

Other researchers have used high-level languages to specify policies [41, 42, 57, 74].

Although high-level languages are easier to understand than formal logic-based ap-

proaches, they are not analyzable. Ribeiro et al. [74] propose a Security Policy Language

(SPL) for specifying authorization and obligation policies. Policies are specified using

constraint rules. Tower [41] is a language for specifying RBAC policies. The policies

are specified using objects, privileges, permissions, users, and roles. Privileges define a

specific access type on an object, permissions are composed of privileges, and roles con-

tain a set of permissions. In addition privileges can also be associated with conditions and

actions. Conditions limit the applicability of the privilege. Actions are executed when

methods associated with the privileges are invoked. The Organization for the Advance-

ment of Structured Information Standards (OASIS) technical committee advocates the use

of XML for expressing access control policies [57]. They proposed XACML which is an

XML specification for expressing policies for information access over the Internet. The

policy specification in XACML is very verbose and not aimed for human interpretation.

13

LaSCO [42] is a graphical approach for specifying policies. The graphical format of

LaSCO helps in human interpretation but is not very expressive. Ponder [23] is a speci-

fication language that allows various kinds of policies, such as, authorization, obligation,

and delegation policies to be specified. Policies are specified in terms of subject-domain,

target-domain, and access-lists. The subject-domain specifies the set of subjects that can

perform the operations specified in the access-lists on the objects in the target-domain. The

authors have also developed a toolkit for policy specification and deployment [24].

The area of conflict analysis of security policy has also received some attention. Lupu

and Sloman [52] elaborate on policy conflicts that may occur in large-scale distributed sys-

tems and describe a conflict analysis tool that is a part of a Role Based Management Frame-

work. The authors investigate conflicts in authorization and obligation policies. Sibleyet

al. [81, 80] have identified the need for automated tools to specify and analyze policies.

They have used both first order logic and an object-oriented approach to represent policy.

The policies considered are not limited to access control policies but general rules about

the system. Policies are formalized in predicate calculus with the help of enhanced entity

relationship diagrams. A theorem prover is used to detect inconsistencies in the specifi-

cation [53]. Minsky [54] proposes the notion of “law governed systems”. These systems

implement a common global set of constraints by using filters in every node that ensure

that all interactions are consistent with the global law.

Tidswell and Jaeger [92] propose an approach to visualizing access control constraints.

They point out the need for visualizing constraints and the limitations of previous work

(e.g., [2, 56, 60]) on expressing constraints. Another effort to graphical specification of

RBAC is proposed by Koch et al. [49]. In their approach, RBAC policies are represented by

graph transformations. A graph consists of nodes and edges. Nodes represent notions such

as users and roles. Edges represent relationships between notions. Transformation rules

are defined for administration activities such as adding a user to a role and removing a user

from a role. Consistency properties such as DSD constraints are also specified graphically.

14

Verification of RBAC policies is carried out by showing that graphical constraints do not

occur in the graph specifying RBAC policies. The drawback of these two approaches

is that they created a new notation for specifying constraints and it is not clear how the

new notation can be integrated with other widely-used design notations. The approach

described in this research utilizes notations from a standardized modeling language and

also integrates the policy specification activity with design modeling activities.

Abadi et al. [1] presents a calculus for access control which enables one to formally

reason about whether access requests should be granted or not. The calculus uses a notion

of principals as the sources of requests; a principal can be simple or composite (groups

of principals). The model supports delegation of access rights but does not allow one to

specify the conditions under which delegation can take place. The proposed calculus is not

able to support temporal constraints on authorizations or delegations. Bertino et al. [11]

propose a formal model for extending authorizations with temporal constraints. They allow

the specification of periodic authorizations and authorizations that are valid over specific

time periods. The model also allows runtime derivation of new authorizations based on the

presence or absence of existing authorizations. Samarati et al. [75] suggests adding more

general conditions to authorization rules, such as, conditions involving the system state, the

state of the object that is being accessed, and on the object’s access history. This work also

recognizes the need for both positive and negative authorizations. Negative authorizations

specify the accesses that should not be granted. The presence of both positive and negative

authorizations often lead to inconsistencies which must be detected and resolved.

In our approach, access control policies and access control models are expressed using

UML-based notations. Therefore, UML tools can be used to specify them.

15

2.3 Modeling Access Control Features in UML

Approaches to specifying and analyzing access control features that are based on sophis-

ticated mathematical concepts, formally stated, allow one to check that developed access

control features enforce required polices. In practice, however, applying mathematically-

based formal specification techniques can be difficult because of the high degree of math-

ematical skill needed. Therefore, a representation that can be analyzed without sacrificing

understandability and usability is desirable.

In this regard, there has been some work on using the UML to model security features

(e.g., see [3, 15, 44, 50]. Chan and Kwok [15] model a design pattern for security that

addresses asset and functional distribution, vulnerability, threat, and impact of loss. UML

stereotypes identify classes that have particular security needs due to their vulnerability

either as assets or as a result of functional distribution. Lodderstedt et al. [50] propose

SecureUML and define a vocabulary for annotating UML-based models with information

relevant to access control. It is based on the model for basic RBAC with support for role

hierarchies. The concepts of RBAC such as User, Role, and Permission are represented

as metamodel types. An access control policy is realized mainly by using declarative ac-

cess control. This means that the access control policy is configured in the deployment

descriptors of an EJB component.

Steen et al. [85] propose a new language for expressing policies that can be applied

over an enterprise that is modeled using UML. The language contains embedded OCL

constraints. The constraints cannot specify activation/deactivation of roles or assignment

of users or permissions to roles. It also does not allow for the composition of policies.

Jürjens [44] models security mechanisms based on the multi-level classification of data

in a system using an extended form of the UML called UMLsec. The UML tag extension

mechanism is used to denote sensitive data. Statechart diagrams model the dynamic behav-

ior of objects, and sequence diagrams are used to model protocols. Deployment diagrams

16

are also used to model links between components across servers. UMLsec is fully de-

scribed in a UML profile. These approaches mainly focus on extending the UML notation

to better reflect security concerns. The approach described in this research complements the

UMLsec by capturing access control policies in patterns that can be reused by developers

of secure systems.

France et al. [29] and Georg et al. [34] have shown how concerns can be modeled as

aspects, expressed as structural and behavioral patterns specifications, and composed with

designs expressed in the UML (e.g., security concerns [32, 34], and authentication and

auditing [33]). The above works have also shown that the order in which the aspects are

composed is important.

The aspect composition approach in this research builds upon the techniques described

in earlier works (e.g., see [29, 31, 32, 34, 48, 69, 70, 84]). France et al. [29] and Georg et

al. [32, 34] show how security concerns can be localized and then composed with models

of system functionality. Kim et al. [48] and Ray et al. [70] present how invalid structures

can be captured and expressed using object diagram templates suggested in the work by

France et al. [30]. France et al. [31] extends the earlier works by George et al. [32, 34] by

refining the aspect modeling notation and instantiation process, and providing the notion of

composition directives to compose a context-specific aspect with a primary model. Ray et

al. [69] use the AOM based approach for describing access control schemes (e.g., RBAC)

and incorporating it into a primary model to produce a composed model and the composed

model are analyzed to identify undesirable emergent behaviors. The above earlier works

focused on modeling access control features as aspects and incorporating an aspect model

into a primary model. Whereas, in the work by Ray et al. [71] two access control aspects

are integrated, but the composition was not systematic.

This dissertation extends the work by Ray et al. [71] by providing a systematic ap-

proach to composing aspect models and is also an extension of works by Kim et al. [48]

and Ray et al. [69, 70] in that it illustrates how composition can be carried out in a verifiable

17

manner.

2.4 Model-based Verification

Model-based verification is another area that is close to our approach. As summarized

in [93], model-based verification is a process for identifying and correcting errors, which

requires integrating established modeling techniques, formal specification methods, and

model checking approaches into a systematic software engineering practice. Gluch et al.

[36, 37] and Engels et al. [25] present a model-based verification techniques for software

engineering practices. Most of model-based verification work [25, 36, 37, 93] use a model

checking tool (e.g., PVS [93] or FDR [51]) for analysis part. Our approach is also in along

the same lines in that models are verified at the model level before they are implemented.

However, none of the above mentioned approaches addresses identifying problematic com-

positions during the composition as done in our work.

18

Chapter 3

Background

This chapter presents background information needed to understand the concepts and no-

tations used in this dissertation.

3.1 Access Control Systems

Access control is the process of ensuring that accesses to protected resources adhere to a set

of predefined policies. Access control mechanisms are used to help meet confidentiality1,

integrity2 and availability3 goals in software systems [26].

An access control system is typically described in three ways: access control policies,

mechanisms, and models [75]. Access control policies are security requirements that de-

scribe how access is managed, what information can be accessed and by whom, and under

what conditions that information can be accessed [26]. The access control mechanism

defines the low-level functions that implement the controls imposed by the policies [75].

1Confidentiality refers to the need to keep information secure and private. The condition of confidentiality
requires that only authorized users can read information.

2The condition of integrity requires that unauthorized persons, processes or devices cannot modify infor-
mation.

3Availability refers to the notion that information is available for use when needed.

19

These policies are enforced via mechanisms that mediate access requests and grant or deny

requested accesses. An access control model specifies an access control system. Access

control models must provide ways to reason about the policies they support and prove the

security properties of the access control system [40].

3.2 Access Control Policies

There are several well-known access control policies, which can be categorized as discre-

tionary or non-discretionary. Typically, discretionary access control (DAC) policies are

associated with identity-based access control and non-discretionary access controls are as-

sociated with rule-based controls (for example, mandatory access control (MAC) policy).

DAC policies restrict accesses to targets based on the identity of the individual user or

group. DAC uses an access matrix model to reason about which subjects can perform

which operations on which objects. The rows in an access matrix A correspond to the sub-

jects S, the columns correspond to the objects O, and the entry A
�
s � o � corresponds to the

actions that subject s can perform on the object o. MAC policies enforce access controls

on the basis of fixed regulations mandated by a centralized authority, not by the individual

owner of an object. For example, MAC occurs in military security, where an individual

data owner does not decide who has a Top Secret clearance, nor can the owner change the

classification of an object from Top Secret to Secret [63].

Role-based Access Control (RBAC) that was introduced in the late nineties is another

well-known type of access control policy. Although RBAC is technically a form of non-

discretionary access control [64], RBAC is often considered as one of three primary access

control policies together with DAC and MAC. RBAC is an approach to restricting system

access to authorized users based on the roles that users play in the organization. In this dis-

sertation, we model access control models that enforce MAC policies and RBAC policies

respectively.

20

Policies can be classified as generic policies and context-specific policies. A generic

policy is a statement that can be applied to a set of applications. An example of a generic

policy is given below:

Example 1 “Information items classified as secret can be viewed only by users having a

security clearance of secret or higher.”

The above statement is generic in that it implicitly defines the specific information items

and users impacted in terms of a property (the “secret” property). Specifically, the policy

refers to a category of information items that have the characteristic of being “secret” and

it requires a pattern of behavior in which request to view a secret item results in a check of

the user’s security clearance level.

A context-specific policy is a statement that explicitly identifies the constrained entities

and processes. Unlike generic policies, a context-specific policy is specific to an applica-

tion. A context-specific version of the policy given in Example 1 is given below:

Example 2 “Project Gemini files classified as secret can be viewed only by Project Gemini

Supervisors with a security clearance of secret or higher.”

3.3 Access Control Models

The most cited MAC model is the Bell-LaPadula (BLP) model [9] in which the subjects

are cleared at different security levels and the objects are also classified at different secu-

rity levels. The access privileges that a subject has on an object depends on the security

clearance of the subject and the security classification of the object. In the BLP model, the

rules under which the subjects can read or write objects are defined in terms of the security

levels of subjects and objects. The BLP is aimed at providing confidentiality. A similar

model called the Biba model was proposed for integrity [13]. In RBAC models, accesses

to protected information is determined by the operations that users playing roles execute in

21

a session. A role is defined as the set of access rights associated with a particular position

in the organization. Access rights are not specified with respect to users, but with respect

to roles.

In the following subsections, we describe BLP and RBAC models in more details.

3.3.1 Bell-LaPadula (BLP) Model

The BLP model [9] is defined in terms of a security structure
�
L ����� , where L is a set of

security levels (e.g., Top Secret, Secret) and � is a dominance relation between these levels.

The main components of this model are objects, users, and subjects. Objects contain or

receive information. Each object in the Bell-LaPadula model is associated with a security

level which is called the classification of the object. Each user is associated with a security

level that is referred to as the clearance of the user. Each user is also associated with one

or more subjects. Subjects are processes that are executed on behalf of some user logged

in at a specific security level. The security level associated with a subject is the same as the

level at which the user has logged in.

The access control policies enforced in the Bell-LaPadula model are specified in terms

of subjects and objects. The policies for reading and writing objects are given by two

properties stated below:

� Simple Security Property: A subject S may have read access to an object O only if

the security level of the subject L
�
S � dominates the security level of the object L

�
O � ,

that is, L
�
S ��� L

�
O � .

�	� Property: A subject S may have write access to an object O only if the security

level of the subject L
�
S � is dominated by the security level of the object L

�
O � , that

is, L
�
O �
� L

�
S � .

The restricted star property given below provides integrity as well as confidentiality:

22

� restricted- � Property: A subject S may have write access to an object O only if the

security level of the object L
�
O � is the same as the security level of the subject L

�
S � ,

that is, L
�
O ��� L

�
S � .

3.3.2 Role-Based Access Control (RBAC)

RBAC [27] is used to protect information targets (henceforth referred to simply as targets)

from unauthorized users. To achieve this goal, RBAC specifies and enforces different kinds

of constraints. Core RBAC defines the properties that must be present in any RBAC ap-

plication. Core RBAC requires that users be assigned to roles, roles be associated with

permissions (approval to perform an operation on a target), and that users acquire permis-

sions through their associated roles. For example, in a banking application, users can be

assigned to roles such as loan officer and teller, where a loan officer has permission to issue

loans to customers.

Sandhu et al. [77] have specified four conceptual RBAC models. Core RBAC (RBAC0)

is the most basic model. In core RBAC, a user can establish a session to activate a subset

of roles to which the user is assigned. Hierarchical RBAC (RBAC1) includes RBAC0 and

introduces role hierarchies. Hierarchies structure roles to reflect an organization’s lines of

authority and responsibility and they are specified using inheritance of roles. RBAC2 in-

cludes RBAC0 and introduces constraints to restrict the assignment of users or permissions

to roles, or the activation of roles in sessions. Constraints are used to specify application

dependent conditions, such as, separation of duties. RBAC3 combines both RBAC1 and

RBAC2, thus providing role hierarchies as well as constraints.

Core RBAC does not place any constraint on the cardinalities of the user-role assign-

ment relation or the permission-role association. In core RBAC each user can activate

multiple sessions; however, each session is associated with only one user. The operations

that a user can perform in a session depend on the roles activated in that session and the

permissions associated with those roles.

23

Hierarchical RBAC adds role hierarchies to Core RBAC. Role hierarchies define inher-

itance relation among the roles in terms of permissions and user assignments. If role r1

inherits role r2 then all permissions of r2 are also permissions of r1 and all users of r1 are

also users of r2. There are no cardinality constraints on the inheritance relationship. The

inheritance relationship is reflexive, transitive and anti-symmetric.

Static Separation of Duty (SSD) relations are used to define conflicting roles: If a user is

assigned to roles that conflict then there is a conflict of interest with respect to permissions

assigned to the user via the roles. SSD relations between roles constrain how users are

assigned to roles: Membership in one role that takes part in an SSD relation prevents the

user from being a member of the other role. The SSD relationship is symmetric, but it is

neither reflexive nor transitive. SSD relations may exist in the absence of role hierarchies

(referred to as SSD RBAC or RBAC2), or in the presence of role hierarchies (referred to

as hierarchical SSD RBAC or RBAC3). The presence of role hierarchies complicates the

enforcement of the SSD relations: Before assigning users to roles not only should one

check the direct user assignments but also the indirect user assignments that occur due to

the presence of the role hierarchies.

Permission Assignment

session_roles
SSD

(RH)
Role Hierarchy

ROLES TGTS

PRMS

OPS

user_sessions

SESSIONS

User Assignment
(UA) (PA)

USERS

Figure 3.1: Hierarchical SSD Role-Based Access Control (taken from [27])

Fig. 3.1 shows a model of hierarchical SSD RBAC that consists of: (1) a set of users

(USERS) where a user is an intelligent autonomous agent , (2) a set of roles (ROLES)

where a role is a job function , (3) a set of sessions (SESSIONS) where a user establishes

24

a session during which he/she activates a subset of the roles assigned to him/her, (4) a set

of targets (T GT S), where a target is an entity that contains or receives information, (5)

a set of operations types (OPS) where an operation describes a service provided by the

application, and (6) a set of permissions (PRMS) where a permission is an approval to

perform an operation on targets. The cardinalities of the relationships are indicated by the

absence (denoting one) or presence of arrow heads (denoting many) on the corresponding

associations. For example, the association of user to session is one-to-many. All other

associations shown in the figure are many-to-many. The association labeled Role Hierarchy

defines the inheritance relationship among roles. The association labeled SSD specifies

conflicting roles.

3.4 Unified Modeling Language

The UML [90] is a widely-used standard modeling language for object-oriented systems

maintained by the Object Management Group (OMG) (see www.omg.org), a standards

body for the object-oriented community. The UML prescribes a standard set of diagrams

and notations for modeling object-oriented systems, and describes the underlying semantics

of what these diagrams and symbols mean. It began as a consolidation of the work of Grady

Booch, James Rumbaugh, and Ivar Jacobson, creators of the most popular object-oriented

methodologies. UML 1.0 was proposed by the UML Partners, a consortium of several

organizations, in 1997 in response to an OMG’s request for proposals for a standard object-

oriented analysis notation and semantic metamodel. Several revisions have been produced

since the UML 1.0, and the most recent work, version 2.0, was approved by the OMG in

2005 (refer to [90]).

UML 2.0 offers thirteen types of diagrams to model systems, including use case, activ-

ity, class, sequence, and statechart diagrams [90]. Each diagram describes a different view

of the system being modeled. Constraints on structure and behavior are stated using the

25

Object Constraint Language (OCL) [91]. In this dissertation we use the following three

UML diagram types:

� Class Diagram: A diagram that describes classifiers and their relationships. Prop-

erties are specified in the form of invariants and operation pre- and postconditions

using the OCL [91].

� Sequence Diagram: A diagram that describes how instances interact to accomplish a

task.

� Activity Diagram: A diagram that describes the flow of control (and optionally data)

through steps of a computation.

C

association

message

lifelinesd SDExample

b:Ba:ABA

class

generalization

operation

attribute
attr

op()

name of Interaction

(a) A class diagram example (b) A sequence diagram example

op()

Figure 3.2: Class diagram and sequence diagram examples

Fig. 3.2 shows examples of a class diagram and a sequence diagram. A class diagram

describes classifiers (e.g., classes, interfaces, types) and their relationships. A class is a

classifier that characterizes a family of objects in terms of attributes and operations that

are common to the objects. An operation can be specified using pre- and postconditions

expressed in the OCL. Links between class objects are specified by associations between

classes. The ends of associations, referred to as association-ends in UML metamodel,

26

have properties such as multiplicity and navigability. The class diagram in Fig. 3.2(a)

shows three classes A, B, and C, and their relationships. A class B has a generaliza-

tion/specialization relationship with a class C, which specifies that C inherits the features of

B. The association between A and B declares that there can be links between the instances

of A and B.

A sequence diagram describes how objects interact to accomplish a task [47]. An in-

teraction is expressed in terms of lifelines and messages. A lifeline is a participant in an

interaction. In this dissertation, messages represent operation calls. For example, the se-

quence diagram in Fig. 3.2(b) shows that a:A, a lifeline of a class A object, sends a message

to b:B, a lifeline of a class B object, to carry out a specific goal. The sequence diagram no-

tation can be used to specify alternative sets of interactions and iterations over interactions.

OCL expressions are used to formalize invariants for classes, preconditions and post-

conditions for operations. For example, we can add the following OCL expression to the

class Company shown in Fig. 3.3:

age: Integer

Person

income(Date): Integer

name: String
numberOfEmployee: Integer

isCurrentEmployee(p:Person): Boolean

Company

* employer

employee 1

Figure 3.3: Another class diagram example

context Company inv:

self.numberOfEmployees
 50

The above constraint defines an invariant of the class Company stating that the value of

an attribute numberOfEmployees must be greater than 50 in all consistent states of the

27

system4. Each OCL expression is evaluated in the context of an instance of a specific type

and the reserved keyword self is used to refer to the instance. For example, self represents

an instance of the type Company in the above invariant. The attributes, association ends

and operations of an instance can be accessed using “.” (dot). In the above example,

self.numberOfEmployees denotes the attribute numberOfEmployees of the company.

Preconditions and postconditions are constraints that specify applicability and effect of

an operation without stating an algorithm or implementation [94]. The following constraint

can be added to the class Company shown in Fig. 3.3 as well:

context Company::isCurrentEmployee(p:Person):Boolean

pre: true

post: result = self.employee � includes(p)

In the above example, there is no precondition for this operation, so the constrain

always holds. For the postcondition, the object that is returned by the operation can be

referred to by the reserved keyword result. When the multiplicity of an association end is

grater than 1, a navigation results in a collection of objects. In our example expression, the

navigation from a company to associated employees results in a set of employee objects.

OCL has some built-in primitive types (e.g., Boolean, String, Integer) and collection types

(e.g., Set, Bag). Collections have many predefined operations on them (e.g., includes,

excludes, includesAll, excludesAll, isEmpty). To access this type of operations, an arrow

symbol is used in OCL instead of dot symbol. For example, the OCL type Set has the

operation includes of type Boolean that tests whether the object passed as a parameter is

an element of the collection. In our example expression, the operation isCurrentEmployee

4While the system is, for instance, executing an operation, it is not in a consistent state, and the invariant
need not be true. Of course, when the execution has finished, the invariant must again be true [91].

28

checks whether the set of persons referenced by the association end employee contains a

Person object p given as a parameter or not. Refer to [94] for more detail.

defines

is_instance_of

defines

is_instance_of

defines

is_instance_of

M3

M2

M1

UML Metamodel

UML models

Object models

Meta−Object Facility

M0

Figure 3.4: UML four layer metamodel architecture

The UML infrastructure is defined as a four-layer architecture (see Figure 3.4).

� Level M3 (meta-metamodel layer) defines a language for specifying metamodels.

The Meta Object Facility (MOF) [58] is an example of meta-metamodel.

� Level M2 (metamodel layer) contains models that specify modeling languages. The

UML metamodel and the Common Warehouse Metamodel (CWM) [89] are exam-

ples of metamodels.

� Level M1 (model layer) contains models that describe semantic domains. The model

layer consists of models expressed in languages specified by the metamodel at level

M2 .

� Level M0 (instance layer) consists of actual instances (objects) of the running system

specified by the models at level M1.

29

3.5 Aspect-Oriented Modeling (AOM)

In this section we give an overview of the AOM approach [31, 69] on which our work is

based. Aspect models in the AOM approach describe crosscutting features. A crosscutting

feature can be isolated if its distributed elements have common structural and behavioral

characteristics. A generalized form of the solution can then be represented as a pattern,

where the pattern describes common characteristics of the distributed solution parts. A

pattern view of crosscutting solutions screens out context-specific details and makes it pos-

sible to conceive, describe, and understand the solutions in isolation. In our AOM approach

an aspect model is a pattern that characterizes a family of features. The patterns are de-

scribed using UML model templates. UML model template notation is an adaptation of

a UML-based pattern language, called the Role-Based Metamodeling Language (RBML)

[30].

3.5.1 An Overview of the AOM Approach

The AOM approach utilizes the following items [31]:

1. A primary (base) model: The primary model describes the core functionality that

determines the dominant design structure. It is described using the Unified Modeling

Language (UML) [90].

2. A set of aspect models: Each aspect model describes a feature that crosscuts the

dominant structure described in the primary model. The crosscutting features are

described as patterns in aspect models.

3. A set of bindings: A binding associates an application-specific value to a template

parameter. Applying the bindings to an aspect model produces a context-specific

aspect model that describes how the feature is to be realized in the primary model.

4. A basic model merging procedure: A name-based procedure is used to merge a

30

context-specific aspect and a primary model. Elements with the same name are

merged in the composed model.

5. A set of composition directives: Composition directives are used to help ensure that

composition produces desired models.

composed model

composition directives

model element names

primary model

values used in bindings compose

aspect model instantiate

application domain
namespace

context−specific
aspect model

Figure 3.5: An overview of composition in the AOM approach [84, 31]

Fig. 3.5 gives an overview of composition in the AOM approach [31, 84]. The first

step is to identify the bindings needed to generate a context-specific aspect. The context-

specific aspect model is then composed with the primary model to produce a composed

model. Composition directives are often needed to ensure that composition produces re-

quired results [73, 86]. They can be used to (1) determine the order in which multiple

aspects are composed with the primary model, (2) modify models before they are merged,

(3) override specific parts of the basic merge procedure, and (4) modify the model produced

by the basic merge procedure.

3.5.2 Representing Aspect Models

Aspect models can be represented as UML diagram templates representing patterns of fea-

tures. The diagram templates used in this dissertation produce UML design diagrams when

instantiated. In the UML, template models are described by parameterized packages that

explicitly list the parameters in the package header. However, this notation is unwieldy

31

when a large number of parameters are involved. France et al. [30] and Kim [47] devel-

oped a specialized form of the Role-Based MetaModeling Language (RBML) to describe

aspect models. RBML is a UML based language that supports rigorous specification of pat-

tern solutions. The specialized RBML is used to create RBML models consisting of a set of

diagram templates and OCL templates. Aspect models consist of class diagram templates

and sequence diagram templates. Since RBML uses UML syntax, UML tools can be used

to create RBML models. The aspect model consists of two diagram templates: A class di-

agram template that describes structural properties of the features and a sequence diagram

template that describes interactions among feature elements. Class diagram templates and

sequence diagram templates have template model elements that are explicitly marked us-

ing the “ � ” symbol. A class template consists of two parts: one part consists of attribute

templates that produce attributes when instantiated, and the other part consists of operation

templates that produce operations when instantiated. Operation templates may be associ-

ated with template forms of pre- and postconditions, referred to as operation specification

templates, that produce OCL specifications when instantiated. These operation specifica-

tion templates are presented separately from the diagrams to reduce diagram clutter. For

example, Fig. 3.6 shows an aspect model, Authorization, characterizing features in which

access to a service is restricted to authorized clients.

Instantiating the class diagram template shown in Fig. 3.6(a) results in a class dia-

gram that consists of composite classes representing logical architectural views of clients,

servers with services under access control, and authorization repositories. The class tem-

plate Server contains an attribute template with a name parameter (i.e., name) and two

operation templates (i.e., operationi and doOperation). A service under access control is

represented by these two operations in a server class:

� An operation that checks whether a client that requests the service is authorized to

execute the service. The operation signature is obtained by instantiating the opera-

tion template � operation. The operation takes in as arguments the client’s identifier

32

|doOperation(|params*)

|operation(id:|id,|params*)

indicates a set of 0 or more

parameters

indicates that values bound to this
must be exactly the values
bound to params1* in |operationoperation template

|q

(a) Class Diagram Template for an Authorization Aspect Model

(b) Sequence Diagram Template for an Authorization Aspect Model

|Client |Server

|AuthorizationRepository

|checkAuth(q:|id,op:|OpType,|params*):{|valid,|invalid}

class template association template

|accesses
|m |n

|accessAuthRep

multiplicity parameter

alt [result = true]

return result

return result
[result = false]

|operation(id:|id, |params*)

:|Server

sd |SDOperation

:|AuthorizationRepository:|Client

|doOperation(|params*)

result = |checkAuth(q:|id, op:|OpType, |params*)

|p

|name: String

Figure 3.6: An Authorization-based Access Control Aspect Model (taken from [31] and
modified)

33

(represented by the operation argument template id : � id) and zero or more values

needed by the service (represented by the argument template � params �). The tem-

plate parameter params � is referred to as a collection parameter indicating that it

must be bound to a collection of values.

� An operation that performs the required service. This operation is obtained by in-

stantiating the operation template � doOperation. The use of the � params � collection

parameter in both the operation and doOperation templates indicates that the same

value (i.e., the same set of arguments) must be used to instantiate the collection pa-

rameter in both of the templates.

The class template �AuthorizationRepository contains the operation template � checkAuth

that produces an operation that performs authorization checks when instantiated. A

� checkAuth operation uses the client identifier (represented by q : � id), an operation

identifier (represented by op : �OpType), and possibly other information passed in as

arguments (represented by the collection parameter � params �), to determine whether the

client is authorized to access the operation or not. If the client is authorized the operation

returns a value that is an instantiation of � valid, otherwise it returns a value that is an

instantiation of � invalid. The following is the annotated operation specification template

associated with the � operation template:

context �Server:: � operation(id: � id, � params*)

pre: true

��� This operation can be invoked at any time.

post:

��� The service is carried out if and only if the client is

��� authorized to invoke the service.

let authmessage : OclMessage =

34

�AuthorizationRepositoryˆ � checkAuth(q: � id,op: � opType, � params*)

in

(authmessage.hasReturned() and authmessage.result() = true

implies � Serverˆ � doOperation(params*)) and

(�Serverˆ � doOperation(params*) implies

authmessage.hasReturned() and authmessage.result() = true)

An association template consists of multiplicity parameters (one at each end) that yield

association multiplicities (integer ranges) when instantiated. The multiplicity in an alpha-

bet letter (e.g., “a” on the Session end of the UserSessions template) is an unconstrained

multiplicity parameter, that is, any integer range of multiplicity (e.g., “1..*”, “*”, “1..4”)

can be instantiated from it.

The sequence diagram template shown in Fig. 3.6(b) consists of template forms of

participants (i.e., : �Client, : � Server, and : �AuthorizationRepository) and messages (e.g.,

� operation
� � id ��� params ���). Instantiating a participant template produces either a named

or anonymous participant, for example, binding UserMgmt to the parameter Server in

the : � Server participant template produces the anonymous participant : UserMgmt. In a

participant template, the type parameter (e.g., � Server in : � Server) must be a classifier

template in a corresponding classifier diagram template. Participant type parameters and

the corresponding classifier templates must be instantiated with the same value.

Message templates consist of parameterized message expressions. For example, a mes-

sage template result := � checkAuth(q: � id,op: � opType, � params*) is a parameterized message

expression that includes three mandatory parameters checkAuth, id, and opType, and an

optional set of arguments indicated by the collection parameter params � . The message

expression result : � IDcheck
�
q : Userid � op : U pdateOp � userstatus : Status � usersession :

Session � can be obtained from this template using the following bindings: IDcheck

�� checkAuth, Userid �� id, U pdateOp �� opType, and � (userstatus �� params),

35

(usersession �� params)
 .

For readability, we do not show the template parameter indicator symbol “ � ” in the

following chapters of this dissertation. In such cases, all the user-defined names in the di-

agram are template parameters that must be bound to values when instantiating the aspect

model. For example, the following values are examples of ones that are not template pa-

rameters: UML keywords such as Boolean and enumeration, UML stereo-typed name such

as prohibited, OCL keywords such as self and includesAll, and all variable names.

In this dissertation aspect models specified using UML diagram template notation are

defined at the M2 (matemodel layer) level since aspect models are generic descriptions of

model families. The context-specific aspect models and primary model are defined at the

M1 (model layer) level.

36

Chapter 4

Enforcing an Access Control Policy in an
Aspect Model

From a software design perspective, access control policies are requirements that must be

addressed in a design. For example, access control policies are constraints that determine

the type of access authorized users have on information resources. In this chapter, we

show how one can formulate access control policies as a policy model, formulate an access

control aspect model that enforces policies as an aspect, and verify whether the aspect

model enforces the given policies or not. We show two access control policy examples,

RBAC and BLP.

4.1 Formulating Access Control Policies

Policies are expressed in terms of UML class diagrams with OCL constraints. We define

this form of diagrams with constraints as a policy model. A policy model is obtained by

analyzing the given policy statement as illustrated in Fig. 4.1. For example, the following

shows how the Role-Based Access Control (RBAC) policy can be expressed in a policy

model. We use the Proposed NIST standard for role-based access control [27] as RBAC

requirements. The access control policy statement must describe under what condition

a user does or does not have permission to access a target to perform a certain type of

operations in a session. The RBAC policy is stated as follows:

37

policy statement

requirements

Policy Statement
Analysis

policy model

Figure 4.1: Obtaining a policy model from requirements

PRBAC � 1: If a user u has permission to access a target t to perform operations of type op in

a session s, then there exists a role r with the following properties:

� r has permission to access t to perform operations of type op,

� r is an authorized role for u, and

� r is currently activated in s.

PRBAC � 2: Roles activated in a session must be a subset of the roles assigned to the user of

the session.

A class model that is required to describe the RBAC policy is shown in Fig. 4.2. The

User

Role

Target OperationType

*

*
*

*

*

*

*

*

authorizedRole

Session Permission

allowedPermission

allowedTarget allowedOp

RBAC_policy

* *userSession

sessionUser

activatedRole *

1

*
* /hasPermission

Figure 4.2: An RBAC policy model

User class and Session class in the policy model represent a set of users and a set of sessions

respectively. The Role class in the policy model represents a set of roles that a user can play.

38

The Permission class in the policy model represents pairs of sets where one part of a pair is

a set of Target instances and the other is a set of OperationType instances.

To formally specify the first part of the policy statement, PRBAC � 1, we define the derived

hasPermission relationship between Session and Permission that links sessions with their

permissions as stated in the RBAC policy PRBAC � 1. The OCL statements that define the

RBAC policy PRBAC � 1 are given below:

PRBAC � 1:
context Session inv:
hasPermission � forAll(p:Permission �

activatedRole � exists(r � r.allowedPermission � includes(p)) and
sessionUser.authorizedRole � exists(r � r.allowedPermission � includes(p)))

where a derived association hasPermission is defined as follows:

context Session:: hasPermission : Set(Permission)
derive: activatedRole.allowedPermission

The policy statement PRBAC � 2 is expressed in the OCL as follows:

PRBAC � 2:
context Session inv:
sessionUser.authorizedRole � includesAll(self.activatedRole)

These two policy properties must be true in the model that enforces the RBAC policy.

The policy model described above is used for showing the policy enforcement that will be

described later in Section 4.3.

As another example, we show the case of BLP model. The BLP policy can be expressed

as follows:

PBLP � 1: If a user u has permission to read from or write to a target t in a subject s by

performing an operation of type op, then all of the following are satisfied:

� op is a read type and the security level of s dominates the security level of t, or

op is a write type and the security level of s is equal to the security level of t,

� s is a subject for u and the security level of u dominates the security level of s

39

PBLP � 2: the security level of a BLP subject must be dominated by the security level of its

user

Fig. 4.3 shows a class model of the BLP policy as stated above.

TargetSubject

User SecurityLevel
*

1

*dominatees

OperationType

<<enumeration>>

READ
WRITEType:TypeEnum

BLP_policy

userSubject **

targetSecurityLevel * targetOperation1
subject

SecurityLevel1
1

userSecurityLevel

target **

subjectUser

/hasPermission* *

TypeEnum

Figure 4.3: A BLP policy model

The following OCL statements expresses the BLP policies PBLP � 1 and PBLP � 2:

PBLP � 1:
context Subject inv:
hasPermission � forAll(t:Target �

t.targetOperation � forAll(op:OperationType �
((op.Type = TypeEnum::READ and

subjectSecurityLevel.dominatees � includes(t.targetSecurityLevel))
or
(op.Type = TypeEnum::WRITE and
subjectSecurityLevel = t.targetSecurityLevel))

and
subjectUser.userSecurityLevel.dominatees � includes(subjectSecurityLevel)))

PBLP � 2:
context Subject inv:
self.subjectUser.userSecurityLevel.dominatees � includes(self.subjectSecurityLevel)

These two BLP policy properties must be satisfied in the aspect model that enforces

the BLP policy.

40

4.2 Formulating Access Control Models As Aspect Mod-
els

Fig. 4.4 shows the class diagram template of the hierarchical SSD RBAC aspect model

that was illustrated in Fig. 3.1. The class diagram template of the hierarchical SSD RBAC

−>includesAll(self.GetAllActiveRoles())
self.UserSession.GetAuthorizedRoles()

CreateSession(roles:Set(Role)):Session
DeleteSession(s : Session):Boolean
AssignRole (r: Role):Boolean
DeassignRole (r: Role):Boolean

AddActiveRole(r : Role):Boolean

CheckAccess(t:Target,
DropActiveRole(r : Role):Boolean

op:OperationType):Boolean
Operation(t:Target 1..*,

params*): ReturnType 0..1
GetAllActiveRoles(): Set(Role)

AddInheritance(seniorRole:Role):Boolean
DeleteInheritance(seniorRole:Role):Boolean

GetAuthorizedUsers(): Set(User)
GetAllSeniors() : Set(Role)
GetAllJuniors() : Set(Role)

AddSSDRole(r:Role):Boolean
DeleteSSDRole(r:Role):Boolean

j

UserAssignment

r
junior

RevokePermission (p : Permission):Boolean
GrantPermission (p : Permission):Boolean

RoleHierarchy SSD

o

d

a

RBAC

User

1

GetAuthorizedRoles(): Set(Role)
GetAssignedRoles(): Set(Role)

b c

UserSession

if

PermAssignment

k

Session

Permission

seniors n

Role

Name: String

Type:OpTypeEnum

OpType 1..*

OperationType

<<enumeration>>

g h

OpTypeEnum

Target
e

SessionRole

Figure 4.4: The class model template view of the RBAC aspect model

aspect model consists of a set of users, a set of roles, a set of user sessions, a set of targets,

a set of operation types, and a set of permissions as described earlier in Section 3.3. Users

are assigned to roles, roles are associated with permissions, and users acquire permissions

by being members of roles. Association templates, such as UserAssignment and User-

Sessions produce associations between instantiations of the class templates they connect.

The multiplicity “1” on the User end of the UserSessions template is strict: a session can

only be associated with one user. Only roles that are assigned to the user of a session can

be activated for that user in the same session. The following invariant shown in Fig. 4.4

specifies the above constraint:

41

context Session inv:

self.UserSession.GetAuthorizedRoles() � includesAll(self.GetAllActiveRoles())

The operations that a user can perform in a session depend on the roles activated in that

session and the permissions associated with those roles. The operation template Operation

in the Session template represents operations under access control. Instantiating Operation

produces an operation that describes a behavior that is performed on target elements (e.g.,

a withdraw operation on an account element in a banking system). The class template

OperationType contains an attribute template with a type parameter (Type). Instances

of Type may be any of the user-defined enumeration literals instantiated from OpType

which is an attribute template of the enumeration template OpTypeEnum. Table 4.1 gives

an overview of operation templates in each class template shown in Fig. 4.4.

All the user-defined names1 in the diagram are template parameters that must be bound

to values when instantiating the aspect model. Note that we used the symbol “ � ” to indi-

cate template parameters in Section 3.5. From this chapter, however, we do not show the

template parameter indicator symbol “ � ” for the readability. For example, the parameter

template params in the Operation template shown in Session of Fig. 4.4 must be bound to

a list of zero or more operation arguments as indicated by the “ � ” following the parameter

name.

An instantiation of Operation can have one or more arguments representing target ele-

ments (t:Target 1..*) and zero or more other arguments (params *). For example, the opera-

tion transfer (from:Account, to:Account, amount:Integer) can be obtained from Operation

using the following bindings for template parameters: � trans f er �� Operation, Account

�� Target, amount : Integer �� params
 , where (value �� parameter) represents a binding

1In Fig. 4.4, for example, the following values are examples of ones that are not template parameters:
UML keywords such as Boolean, String, Set, and enumeration, OCL keywords such as self and includesAll ,
and all variable names such as s for a Session object, t for a Target object.

42

that is done by providing a value for a parameter. More detailed specification of Operation

and its instantiation examples will be described later in Chapter 6. Table 4.1 gives an

overview of operation templates in each class template.

The CheckAccess operation template in Session is intended to enforce the RBAC policy

PRBAC. The OCL specification associated with CheckAccess is given below:

context Session::CheckAccess(t:Target, op:OperationType):Boolean

pre: true

post: result =

self.GetAllActiveRoles().Permission � exists (p �
p.Target � includes(t) and p.OperationType � includes(op))

The postcondition of CheckAccess states the following: If there exists an activated role

with the required permission, the CheckAccess operation returns true, otherwise it returns

false.

The behavior described by CheckAccess is called whenever an operation under access

control (represented by Operation) is invoked. When the behavior described by Operation

is invoked it first checks whether the caller has permission to perform the operation on the

target objects (the set of targets represented by the parameter t in the Operation template)

by invoking the behavior described by CheckAccess for each target object. Invariants and

operation specifications associated with other elements in the RBAC aspect model are given

in the Appendix A.

Fig. 4.5 shows the class diagram template of the BLP aspect model. Access control

policies in BLP are specified in terms of dominance relation between security levels of

a subject and an object. The dominance relation between security levels in BLP (e.g.,

L
�
S � dominates L

�
O �) is expressed in terms of the query operations GetAllDominatees

and GetAllDominators. AddDominatee in SecurityLevel adds a link between the current

43

Table 4.1: The list of operation templates defined in RBAC.

Operation Template Description
User Class Template
CreateSession creates a new session and activates a default role set; creates a

UserSession link between the user and the session
DeleteSession deactivates roles that are activated in the given session and deletes

that session; deletes a UserSession link
AssignRole creates a UserAssignment link between the user and the given role
DeassignRole deletes a UserAssignment link
GetAssignedRoles returns the set of roles directly assigned to the user as well as those

roles that are inherited by the directly assigned roles
GetAuthorizedRoles returns the set of roles directly assigned to the user as well as those

roles that are inherited by the directly assigned roles (junior roles)
Session Class Template
AddActiveRole creates a new SessionRole link between the session and the role that

is one of roles in the authorized role set.
DropActivatedRole deletes a SessionRole link between the session and the given role.
GetAllActiveRoles returns a set of all roles which are activated for that session and all

their junior roles
CheckAccess determines whether an access should be granted or not
Operation invokes the operation under access control if the caller has

permission to each target
Role Class Template
GrantPemission creates a new PermAssignment link between the role and the given
RevokePemission permission deletes a new PermAssignment link
AddInheritance adds a link RoleHierarchy to a senior role
DeleteInheritance deletes a link RoleHierarchy to a senior role
AddSSDRole creates a new SSD link between roles
DeleteSSDRole deletes an SSD link
GetAllJuniors returns a set of roles which consists of direct junior roles and all

other junior roles acquired by the transitive closure relation in a
role hierarchy

GetAllSeniors returns a set of roles which consists of direct senior roles and all
other senior roles acquired by the transitive closure relation in a
role hierarchy

GetAuthorizedUsers returns the set of users that are assigned to the role and its senior
CheckAccess roles determines whether an access should be granted or not
Permission Class Template
CheckAccess determines whether an access should be granted or not

44

Dominates

g

h SecurityLevel

SubjectSecurityLevel

Subject

:ReturnType 0..1
Operation(t:Target 1..*, params *)

op: OperationType):Boolean
CheckAccess(t:Target,

−> includes(self.SecurityLevel)
self.User.SecurityLevel.GetAllDominatees()

UserSubject

dominatee

ObjectClassification

ObjectOperation
c

Target a

d

1

e

f

1

1

DeleteSubject(sb:Subject): Boolean
CreateSubject(sl:SecurityLevel): Subject

1

User

UserClearance

dominator

Type: OperationTypeEnum

b

WRITE
READ

<<enumeration>>
OperationTypeEnum

GetAllDominatees(): Set(SecurityLevel)

AddDominator(sl:SecurityLevel): Boolean
AddDominatee(sl:SecurityLevel):Boolean

BLP

OperationType

Figure 4.5: The class model template view of the BLP aspect model

security level (dominator) and the given security level (indicated by the operation parameter

sl), and CreateSub ject in User creates a subject with a given security level sl. According to

the invariant associated with Sub ject (see Fig. 4.5), a new subject can be created when the

security of the user dominates the security level of the subject to be created. This constraint

is checked in the precondition of CreateSub ject.

The access control privileges are enforced by making all operations under access con-

trol invoke the CheckAccess operation in a session. If the operation is a write operation and

the security level of the target is equal to the security level of the subject, the CheckAccess

operation returns true; if the operation is a read operation and the security level of the target

is equal to or dominated by the security level of the subject, the CheckAccess operation also

returns true; otherwise the CheckAccess operation returns false. The specification template

associated with CheckAccess is given below:

context Subject::CheckAccess(t:Target, op:OperationType):Boolean

45

pre: true

post: result =

t.OperationType � includes (op)

and

((op.Type = OperationType::READ and

self.SecurityLevel.GetAllDominatees() � includes (t.SecurityLevel))

or

(op.Type = OperationType::WRITE and

self.SecurityLevel = t.SecurityLevel))

Specification templates for the other operations and specification templates describing other

invariant properties of BLP elements are given in the appendix B Appendix B.

4.3 Verifying Policy Enforcement

In this section, we illustrate how one can apply our approach to verifying the policy en-

forcement of an aspect model using RBAC and BLP aspect model examples. Fig. 4.6

shows the policy enforcement verification process we developed.

policy model and aspect model : These models are two inputs to the verification process.

Note that an aspect model is a generic description of model families and it is specified

using UML diagram template notation while a policy model is stated in terms of

UML class diagram concepts with constraints that express restrictions given in a

policy statement. 2

realization mapping rules : To verify that an aspect model describing an access control

2In other words, an aspect model in this dissertation is defined at the M2 (metamodel) level of the four
UML layers while a policy model is defined at the M1 (model) level.

46

context−specific model
the most general

policy model invariants
expressed in aspect model concepts

Verify Aspect Model

aspect model

policy model

realization
mapping rules

Define
Realization Mappings

Obtain the most general
context−specific model

invariants
Transform policy model

Figure 4.6: Verifying a design aspect model against its policy model.

feature enforces targeted access control policies, we define realization mapping rules.

A realization mapping in our approach is a set of pairs that defines how elements in

the policy model are realized in the generalized aspect model. These mapping rules

are used to transform the OCL invariants in the policy model into invariants expressed

in terms of aspect model concepts.

the most general context-specific aspect model : We obtain a context-specific aspect

model that is described at the M1 level so that OCL transformations can be per-

formed between two M1-level models (i.e., one is a policy model and the other is a

context-specific aspect model). Note that a context-specific aspect model is obtained

by providing one or more domain-specific parameter values for each parameter in

an aspect model (refer to Fig. 3.5). For example, for a banking application domain,

BankSession and BankRole can be provided for the class templates Session and Role

in Fig. 4.4 respectively. Since no domain-specific value set is available yet, we ob-

tain the most general context-specific aspect model of an aspect model by providing

47

a general set of parameter values for its template parameters as described below:

� provide a current parameter name as a parameter value for each template (e.g.,

class, attribute, operation, association templates) except multiplicity parameters

on ends of association templates.

� provide a multiplicity indicator “ � ” that represents “zero or more” for each

multiplicity template in an alphabet letter (i.e., the weakest form of multiplicity

for an unconstrained multiplicity parameter).

transformed policy model invariants : Using realization mapping rules, invariants of an

policy model are transformed into invariants expressed in terms of aspect model con-

cepts.

enforcement verification : Verifying that the aspect model enforces the policy model in-

volves establishing that transformed invariants hold in the aspect model.

When an RBAC policy model in Fig. 4.2 and an RBAC aspect model in Fig. 4.4, for

example, are given as inputs to our verification procedure, realization mapping rules are

defined in the form of set of realization pairs. A realization pair can be defined explicitly

or implicitly. An explicit pair has the form � policyElem, aspectElem � , indicating that

the policy model element policyElem is realized by an element aspectElem in the aspect

model. The explicit realization pairs used in the verification of the RBAC aspect model

reflect the simple one-to-one relationship between the major concepts shown in the policy

model and the aspect model.

The following shows explicitly defined in realization pairs in the RBAC realization

mapping:

� Session, Session � , � User, User � , � Role, Role � , � Permission, Permission � ,
� Target, Target � , � OperationType, OperationType � .

48

In the implicit form, one or both items in the pair are expressions that are evaluated.

For example, the following is the realization pair that describes how the UserSession

association in the RBAC policy model is realized in the aspect model:

� u:User.userSession, u:User.UserSession � .

In the above u:User.userSession represents the set of session objects associated with a

user u in the policy model, and u:User.UserSession represents the set of sessions associated

with the realization of u in the RBAC aspect model.

The following are implicitly defined in realization pairs in the RBAC realization map-

ping:

� u:User.authorizedRole, u:User.GetAuthorizedRoles() � ,
� r:Role.allowedPermission, r:Role.Permission � ,
� s:Session.sessionUser, s:Session.UserSession � ,
� s:Session.activatedRole, s:Session.GetAllActivatedRoles() � ,
� p:Permission.allowedTarget, p:Permission.Target � ,
� p:Permission.allowedOp, p:Permission.OperationType � .

The permissions associated with a session via the hasPermision association end in

the policy model, is realized by the set of permissions associated with roles activated in

a session. If we model the relationship between permissions and sessions in the RBAC

aspect model as a derived association between Session and Permission that is named

SPermission, then the following realization pair maps hasPermission links to SPermission

links: � s:Session.hasPermission, s:Session.SPermission � .
Fig. 4.7 shows the most general context-specific RBAC class model that is obtained

from the RBAC aspect model given in Fig. 4.4. Session and Role, for example, are pro-

vided as parameter values to instantiate the class templates Session and Role respectively

and CheckAccess is provided as a parameter value for an operation template CheckAccess.

49

CreateSession(roles:Set(Role)):Session
DeleteSession(s : Session):Boolean
AssignRole (r: Role):Boolean
DeassignRole (r: Role):Boolean

AddActiveRole(r : Role):Boolean

CheckAccess(t:Target,
DropActiveRole(r : Role):Boolean

op:OperationType):Boolean
Operation(t:Target,

params): ReturnType
GetAllActiveRoles(): Set(Role) −>includesAll(self.GetAllActiveRoles())

self.UserSession.GetAuthorizedRoles()

AddInheritance(seniorRole:Role):Boolean
DeleteInheritance(seniorRole:Role):Boolean

GetAuthorizedUsers(): Set(User)
GetAllSeniors() : Set(Role)
GetAllJuniors() : Set(Role)

AddSSDRole(r:Role):Boolean
DeleteSSDRole(r:Role):Boolean

RevokePermission (p : Permission):Boolean
GrantPermission (p : Permission):BooleanUserAssignment

senior

junior

RoleHierarchy SSD

*

RBAC

User

1

GetAuthorizedRoles(): Set(Role)
GetAssignedRoles(): Set(Role)

UserSession

Target

PermAssignment

Role

Session

Permission

*
* *

*

**

* *

* *

Name: String

*

*

SessionRole

<<enumeration>>
OpTypeEnum

OpType

Type:OpTypeEnum

OperationType

* *

Figure 4.7: The most general context-specific RBAC aspect model

Therefore, the most general context-specific RBAC aspect model has an operation named

CheckAccess in a class Session. For each multiplicity parameter expressed in an alpha-

bet letter (e.g., the multiplicity parameter a on Session end of UserSession association of

Fig. 4.4), we provide the multiplicity indicator “ � ”.

Using realization mappings shown above, the RBAC policy constraints PRBAC � 1 and

PRBAC � 2 are transformed to the following:

PRBAC � 1 � trans f ormed:

context Session inv:

SPermission � forAll(p:Permission �
GetAllActiveRoles() � exists(r � r.Permission � includes(p)) and

UserSession.GetAuthorizedRoles() � exists(r � r.Permission � includes(p)))

where a derived association SPermission is defined as follows:

context Session:: SPermission : Set(Permission)

50

derive: self.GetAllActiveRoles().Permission

PRBAC � 2 � trans f ormed:

context Session inv:

UserSession.GetAuthorizedRoles() � includesAll(GetAllActivatedRoles())

The behavior described by the CheckAccess template must enforce the transformed

RBAC policy properties, PRBAC � 1 � trans f ormed and PRBAC � 2 � trans f ormed . We show the policy

enforcement below:

� From the definition of SPermission, if there is a permission in the set of permissions

represented by SPermission that grants the access, an invocation of a CheckAccess

operation with an argument t representing the target operation and an argument op

representing the operation type, must return true; otherwise it returns false.

� Note that s �CheckAccess
�
t � op ��� true when the following expression in the postcon-

dition of CheckAccess is true:

self.GetAllActiveRoles().Permission � exists (p �
p.Target � includes(t) and p.OperationType � includes(op))

� PRBAC � 2 � trans f ormed holds because of the invariant shown in Fig. 4.7.

� Showing that PRBAC � 2 � trans f ormed holds in the RBAC aspect model requires one to

show that the following expression is true for all permissions in the set of permissions

represented by SPermission (i.e., permissions that grant the access):

GetAllActiveRoles() � exists(r � r.Permission � includes(p)) ��� � 1 �
and

UserSession.GetAuthorizedRoles() � exists(r � r.Permission � includes(p)) ��� � 2 �
The postcondition of CheckAccess must return true for each permission p that grants

51

the access. Therefore, the following expression holds:

GetAllActiveRoles().Permission � exists(p) ��� � 3 �
which is equivalent to

GetAllActiveRoles().exists(r � r.Permission � includes(p))

Therefore,
�
1 � holds.

From the expression
�
3 � and PRBAC � 2 � trans f ormed , we know the following expression

holds:

UserSession.GetAuthorizedRoles().Permission � exists(p)

which is equivalent to

UserSession.GetAuthorizedRoles() � exists(r � r.Permission � includes(p))

Therefore,
�
2 � holds.

� Therefore, two transformed RBAC policy properties, PRBAC � 1 � trans f ormed and

PRBAC � 2 � trans f ormed , holds in RBAC aspect model.

Verifying the BLP aspect model against its policy model proceeds as described for

RBAC. We do not show the details of this verification because it uses techniques already

covered in our discussion on verifying the RBAC aspect model.

4.4 Summary

In this chapter, we have given an AOM approach to modeling access control features that

enforce access control policies separately as aspects and checking whether modeled aspects

enforces given policies. To check that an aspect model enforces expected access control

policies, access control policies need to be translated into the forms that access control

aspects are specified in. In our approach, we propose to create a policy model that is

a set of policies stated in terms of UML class diagram concepts with constraints and to

obtain a context-specific aspect model that is the most general form of instantiation from

the aspect model. The realization relationships between an aspect model and a policy model

52

are described in the form of realization mapping rules. Using these rules, we transform the

OCL invariants in the policy model to invariants expressed in terms of concepts in a general

context-specific aspect model and verify the required policy enforcement by establishing

that transformed invariants hold in the given aspect model.

As examples of access control policies, RBAC and BLP policy requirements were rep-

resented by RBAC policy model and BLP policy model respectively and an RBAC aspect

model and a BLP aspect model were formulated. As a verification example, the RBAC

aspect model was verified against RBAC policies given in [27].

53

Chapter 5

Composing Access Control Aspect
Models: An Example

Complex applications typically must enforce more than on access control policies. In AOM

approach, each aspect model is typically applied to a primary model sequentially, that is,

one at a time. Another approach is to compose multiple aspect models with a primary

model that addresses the drawbacks of the sequential approach. In the approach the aspect

models are composed to produce a single hybrid aspect model. This hybrid aspect model

can then be composed with a primary model to produce a design that enforces the integrated

set of policies. Fig. 5.1, for example, illustrates two approaches to composing multiple

aspect models with a primary model.

In the approach illustrated in Fig. 5.1(a) each aspect model is instantiated to obtain a

corresponding context-specific aspect model. The context-specific models are composed

one at a time with the primary model. This approach has the following drawbacks:

� It is difficult to understand and analyze the interactions between the aspects indepen-

dently of the primary model.
� The approach does not allow one to leverage commonalities in how aspects are com-

posed when the same set of aspects are composed with more than one primary model.

In the approach shown in Fig. 5.1(b) two aspect models are first composed to obtain

a composed aspect model, which is a hybrid access control (HAC) aspect model that de-

54

policy 1 policy 2 policy 1 policy 2

aspect model 1 aspect model 2aspect model 2

specific level

level
generic

aspect model 1 aspect model 2 aspect model

aspect model 1

primary model composed model

aspect composition
directives

composed model

primary model

composition directives

compose
models

enforce enforce enforce enforce

instantiate instantiate

instantiate
(HAC) aspect model

hybrid access control

compose
compose

composed model
intermediate

compose aspects
enforce

(b) Applying aspect with aspect composition(a) Applying aspects without aspect composition

directives 2
compositiondirectives 1

composition

application−

context−specific context−specificcontext−specific

Figure 5.1: Two approaches to incorporating access control aspects into a primary model

scribes the integration of two access control features. The HAC aspect model is then in-

stantiated, and the resulting context-specific aspect model is composed with the primary

model. The approach illustrated in Fig. 5.1(b) has the following advantages over the ap-

proach shown in Fig. 5.1(a):

� The HAC aspect is specified separately from the application which makes under-

standing and analyzing the HAC easier.
� The HAC aspect can be reused across a number of different applications reducing

the time and effort needed to perform the composition. If two aspects are to be

composed with n primary models, then the approach shown in Fig. 5.1(a) requires

the composition process to be applied 2 � n times. The approach shown in Fig. 5.1(b)

55

requires the composition process to be applied n � 1 times: one for the composition

of the aspect models and n for compositions of the composed aspect model and the

primary models.

The aspect composition approach illustrated in Fig. 5.1(b) supports understanding and

analyzing the aspects in isolation. Such analysis can help determine whether the right

combination of aspects was selected before the aspects are composed with a primary model.

For example, consider a situation in which a software design that addresses auditing and

access control concerns is needed. There are a number of alternative features that address

these concerns and a pairing of an auditing feature with an access control feature may

produce undesirable emergent behavior (e.g., auditing may provide access to information

that is under access control). It helps if the interactions across the access control and

auditing features can be analyzed and understood before the features are composed with

the primary model.

The approach also leverages commonalities to reduce the number of composition steps

needed to compose the aspects with multiple primary models: Instead of carrying out mul-

tiple sequential compositions one only has to compose the composed aspect with a primary

model (the composition of aspects is done only once, and the result is used across multiple

primary models). The reduction in time and effort is significant when the composed aspect

is used in many different applications. We illustrate our approach by composing two access

control features: a feature that realizes the Bell-LaPadula (BLP) model [79] and a feature

that realizes the Role-Based Access Control (RBAC) model [27]. The composed aspect can

be used to develop designs that must enforce both BLP and RBAC policies (e.g., designs

of applications in the military domain).

5.1 Overview

Fig. 5.2 gives an overview of our policy-based aspect composition approach. The aspect

56

directives
composition

aspect model 1

aspect model 2

Compose Aspect Models

policy model 1

policy statement for

policy model 2

enforces composed aspect model

enforces

Select Composition Directives

composed aspect model (P3)

Figure 5.2: An aspect composition approach

composition approach proceeds as follows:

1. Verify enforcement of policies in aspect models (refer to Chapter 4) : The first step

is to verify that each individual aspect models to be composed enforces the given pol-

icy. We use refinement techniques that are adapted to the UML class model for this

purpose. From the verification, a modeler obtains the knowledge of the relationships

between original policies and the integrated policy that the composed aspect model

must enforce.

2. Select composition directives : The composition directives are selected by a modeler

using the knowledge of how the policies enforced by the aspect models can be com-

bined to obtain policies that must be enforced by the composed aspect model. A

model specify and use composition directives to ensure that composition produces

required results. We do not discuss how such knowledge is obtained (it can be based

on human expertise); we show only how the knowledge is utilized to select appropri-

ate composition directives.

3. Compose aspect models : The aspect models are composed using the composition di-

rectives selected in the previous step. A more detailed view of the composition pro-

57

cess is presented in the next section.

5.2 Aspect Compositions

Our aspect composition approach is based on the procedure that we described earlier for

composing UML models [31, 72]. The composition procedure consists of a basic merging

procedure that implements default rules for merging model elements and the use of com-

position directives. The composition directives are used for overriding the default rules and

modifying models before and after basic model merging. In order to use the composition

procedure we treat aspect models as UML models. This is done by syntactically treating

the parameters in the aspect models as model element names. From a semantic viewpoint,

the result of composing two aspect models is not a UML model but an aspect model that

must be instantiated before it can be merged with a UML model.

We first present the basic merging procedure used to merge aspect models and give

examples of composition directives that can be used in conjunction with the basic procedure

to vary how models are composed.

5.2.1 The Basic Merging Procedure

The aspect composition approach uses a name-based matching procedure in which ele-

ments with the same name are merged in the composed model [31, 72] One model is con-

sidered to be the dominant model for the purpose of resolving problems that can arise

when merging matching model elements with conflicting properties. Model elements in

the dominant model are referred to as dominant model elements. In the cases where name-

based merging of property values leads to conflicts the default is to have the properties of

the dominant model element override the properties of the matching model element in the

non-dominant model. For example, if the isAbstract property of a class named C in the

dominant model has the value true and the property has the value f alse for a similarly

named class in the non-dominant model, then the composed model will contain the class C

58

with the value true. Composition directives can be used to change the results produced by

the default name-based merge procedure.

The basic merging procedure and examples of default merging rules associated with

model element types are given below (aspect models are simply referred to as models in

the following).

Algorithm 1 Basic Model Merging Procedure

Step 1 For each model element in the dominant model, search for a model element in

the non-dominant model with the same name. Elements with matching names are

assumed to represent different views of the same concept and thus are intended to be

merged.

Step 2a If a matching element is found then it is merged according to default merging rules

associated with the model element type.

Step 2b If a matching element is not found then the dominant model element is included

in the composed model.

Step 3 Elements in the non-dominant model that are not matched with elements in the

dominant model are included in the composed model.

In the following we outline some of the rules for merging class model elements.

Algorithm 2 Default Rules for Merging Matching Classes

Rule 1 If the values associated with Class attributes (i.e., attributes of Class in the UML

metamodel, for example, isAbstract) are different then the default rule is to use the

value in the dominant model. This rule can be overridden by composition directives.

Rule 2 Attributes of matching classes with identical names and data types are merged. If

the matching attributes are associated with OCL invariants, the conjunction of the

invariants is associated with the merged attribute in the composed model. This rule

can be changed using composition directives.

59

Rule 3 Operations with identical names are merged. If matching operations have different

argument lists, the merged operation in the composed model will have a list of argu-

ments formed by appending the list of arguments in the non-dominant model to the

list of arguments in the dominant model. If the matching operations are associated

with OCL specifications, then the specification associated with the merged operation

in the composed model is formed as follows: the precondition is the disjunction of

the preconditions associated with the matching operations, and the postcondition is

the conjunction of the postconditions associated with the matching operations.

Algorithm 3 Default Rules for Merging Associations

Rule 1 Association ends match when they have the same role end name. Alternatively,

two associations match when they have the same name (we require that associations

have either association names or role names at each end - if they have both, the role

names are used to determine matches).

Rule 2 If matching association ends have different multiplicities, then the multiplicity in

the dominant model is used.

These rules can be overridden by composition directives.

5.2.2 Composition Directives

Use of the basic name-based merging procedure is not likely to produce desired results in

all cases. Composition directives can be used in conjunction with the merging procedure

to ensure that desired models are produced [86]. Composition directives can be broadly

classified as follows:

Pre-Merge Directives: These directives are used to modify models before they are merged

by the basic merging procedure. These directives define transformations on the mod-

els that are to be composed.

60

Merge Override Directives: These directives are used to override the default merging

rules.

Post-Merge Directives : These directives are used to modify the model that is produced by

the basic merge procedure. These directives define transformations on the composed

model.

Below we summarize the directives used in this work:

Table 5.1: A partial list of composition directives

Name Description Syntactic Form
(Directive Type)
rename A model element is renamed rename owner::targetElement
(Pre-Merge) to the given new name and to newName

all occurrences of the old name
are changed to the new name.

strengthenPreSpec The default rule for merging strengthenPreSpec in merging
(Merge Override) preconditions of operations, Aspect1::Class1::Operation1

disjunction of preconditions, and Aspect2::Class1::Operation1
is overridden by conjunction
of preconditions.

CreateAssociation An association is created newAssociation = CreateAssociation �
(Post-Merge) between two existing classes. name = “newAssociation”,

Note that each isDerived = true � false,
association end must be created memberEnd =
prior to creating an association. [newAssocEnd1, newAssocEnd2] �
The created association is not
a member of any namespace yet.

CreateProperty An association end is newAssocEnd1 = CreateProperty �
(Post-Merge) created. isComposite = true � false,

The created association end is not aggregation = none � composite,
a member of any namespace yet. type = aspect1::class1,

opposite = newAssocEnd2,
lower = non negative integer,
upper = non negative integer � ’*’ �

add The given model element is added add owner::elem
(Post-Merge) to the specified owner namespace.
replacePreSpec The precondition of operation replacePreSpec
(Post-Merge) is replaced by the given Class1::Operation1

OCL expression. with � ocl expression �
Continued on next page

61

Table 5.1 – continued from previous page
Name Description Syntactic Form
replacePostSpec The postcondition of operation replacePostSpec
(Post-Merge) is replaced by the given Class1::Operation1

OCL expression. with � ocl expression �
addPreSpec The given OCL expression is addPreSpec � ocl expression �
(Post-Merge) added to the operation to Class1::Operation1

precondition by conjunction.
addPostSpec The given OCL expression is addPostSpec � ocl expression �
(Post-Merge) added to the operation to Class1::Operation1

postcondition by conjunction.

In the following section, we present the HAC policies and show how they are used to

determine the composition directives that are needed to ensure that composition produces

a HAC model that enforces the policies.

5.3 An Example of Composing RBAC and BLP Aspect
Models

To compose the RBAC model and the BLP model, one first determines the model elements

that represent the same concepts across the two models. These model elements must have

the same name in both models if they are to be merged using the basic merging procedure.

If model elements representing the same concept have different names then the rename

directive is used to rename one or both of the model elements so that they have the same

name. The rename directive is also used to change the name of a model element that has

the same name as another model element that represents a different concept. In the BLP

and RBAC aspect models, Sub ject and Session represent the same concept [76]. The

rename directive is used to rename Sub ject to Session and to change all occurrences of the

name Sub ject to Session in the BLP model. Also, the CreateSub ject and DeleteSub ject

operations in User and the UserSub ject association are renamed to CreateSession,

DeleteSession, and UserSession respectively. The following rename directives rename

62

identified model elements accordingly:

rename BLP::Subject to Session
rename BLP::User::CreateSubject to CreateSession
rename BLP::User::DeleteSubject to DeleteSession
rename BLP::UserSubject to UserSession

These rename directives are pre-merge directives and thus are applied before applying the

basic merge procedure.

In the HAC aspect model the CreateSession precondition must be the conjunction of

the preconditions associated with CreateSession in both the RBAC and renamed BLP

models. The default rule is to form the disjunction and thus a composition directive is

needed to override the rule. The merge override directive strengthenPreSpec is used for

this purpose, as shown below:

strengthenPreSpec in merging RBAC::User::CreateSession
and BLP::User::CreateSession

The other composition directives needed to produce the required HAC aspect model are

identified by examining the policies that must be enforced by the HAC aspect model. These

directives are applied after the RBAC and renamed BLP aspect models are merged using

the basic merging procedure (i.e., they are post-merge directives). We refer to the model

produced using the basic merge procedure as the preliminary HAC aspect model. The post-

merge directives add an association to the composed aspect model and replace operation

specifications in the preliminary HAC aspect model with specifications that enforce the

required HAC policies.

The HAC policies given below are obtained from the RBAC and BLP policies:

PHAC :

PRBAC � 1 : If a user u has permission to access a target t to perform an operation

63

with an operation type op in a session s, then there exists a role r such that r

has permission to access t to perform an operation with a type of op, r is an

authorized role for u, and r is currently activated in s (a property enforced by

CheckAccess of RBAC).

PRBAC � 2 : Roles activated in a session s must be a subset of the roles assigned to the

user u of s.

PBLP � 1 � Read : If a user u has permission to read from a target t in a subject sb, then

the type of an operation op is a read type and the security level of sb dominates

the security level of t (a property enforced by CheckAccess of BLP).

PBLP � 1 � Write : If a user u has permission to write to a target t in a subject sb, then

the type of an operation op is a write type and the security level of sb is equal

to the security level of t (a property enforced by CheckAccess of BLP).

PBLP � 2 : If a user u has permission to access a target t to perform an operation

with an operation type op in a subject sb, then sb is a subject for u and the

security level of u dominates the security level of sb (a property enforced by

CheckAccess of BLP).

PRole � User : The security level of u must dominate the security level of the role that

was assigned to u (role assignment is handled by AssignRole of RBAC).

PRole � Session : The security level of s must be equal to the security level of the

role that was activated for s (role activation is handled by CreateSession and

AddActiveRole of RBAC).

The first five policies given above, PRBAC � 1, PRBAC � 2, PBLP � 1 � Read , PBLP � 1 � W rite, and

PBLP � 2, are enforced by the CheckAccess operations in RBAC and BLP. The HAC will

also have a CheckAccess operation that enforces its policies. This operation can be ob-

tained by merging the CheckAccess operations of both RBAC and BLP such that the de-

sired policies are enforced. Applying the default operation merge rules results in the de-

sired argument list and thus a composition directive is not needed to modify the argument

64

list. The default operation rules though do not provide the needed operation specifica-

tion for HAC’s CheckAccess. The postcondition of RBAC’s CheckAccess has the form
�
result � PRBAC � 1andPRBAC � 2 � and the postcondition of BLP’s CheckAccess has the form
�
result � PBLP � 1 � Read and PBLP � 1 � W rite and PBLP � 2 � . The HAC’s CheckAccess must have

the form
�
result � PRBAC � 1andPRBAC � 2 and PBLP � 1 � Read and PBLP � 1 � W rite and PBLP � 2 � ,

but the preliminary HAC model has the following postcondition instead:
�
result �

PRBAC � 1andPRBAC � 2 � and
�
result � PBLP � 1 � Read and PBLP � 1 � Write and PBLP � 2 � . A com-

position directive is needed to change this specification.

The post-merge composition directive that replaces the specification of CheckAccess in

the preliminary HAC model is given below:

replacePostSpec Session::CheckAccess
with � result = self.GetAllActiveRoles().Permission � exists (p �

p.Target � includes(tar) and p.OperationType � includes(op)))
and
(op.Type = Read and

self.SecurityLevel.GetAllDominatees() � includes (t.SecurityLevel))
or (op.Type = Write and self.SecurityLevel = t.SecurityLevel) �

Enforcing the policies PRole � User and PRole � Session in PHAC can be accomplished by

defining an appropriate relationship between Role and SecurityLevel. The policies can

then be expressed in terms of this relationship. The post-merge directives create and add

shown in Table 5.1 can be used to add an association between Role and SecurityLevel in

the prelimnary HAC aspect model. The association is shown as a dark line in Fig. 5.3.

The following directives create an association named RoleSecurityLevel between Role and

SecurityLevel with two associstion ends, RoleSecLevelEnd and SecLevelRoleEnd:

65

RoleSecLevelEnd = createProperty � isComposite = false, aggregation = none,
type = HAC::Role, opposite = SecLevelRoleEnd, lower = x1, upper = x2 �

SecLevelRoleEnd = createProperty � isComposite = false, aggregation = none,
type = HAC::SecurityLevel, opposite = RoleSecLevelEnd, lower = 1, upper = 1 �

RoleSecurityLevel = createAssociation � name = “RoleSecurityLevel”,
isDerived = false, memberEnd = [RoleSecLevelEnd, SecLevelRoleEnd] �

Both association ends are non-composite and non-aggregation ends. The multiplicity in

RoleSecLevelEnd is parameterized (i.e. x1 .. x2), but the multiplicity in SecLevelRoleEnd

is ‘1’ because a role must be associated with only one security level. These three model

elements are added to the HAC by the following directives:

add RoleSecurityLevel
add Role::RoleSecLevelEnd
add SecurityLevel::SecLevelRoleEnd

CreateSession(roles:Set(Role),

DeleteSession(s : Session):Boolean
AssignRole (r: Role):Boole
DeassignRole (r: Role):Boolean

AddActiveRole(r: Role)

CheckAccess(t:Target,
DropActiveRole(r: Role)

Operation(t:Target 1..*,
params *): ReturnType 0..1

op: OperationType) : Boolean

a

s

s

Session

RoleHierarchy

seniorjunior
−> includes(self.SecurityLevel)

self.User.SecurityLevel.GetAllDominatees()

Target

a

f

w

AddDominator(sl:SecurityLevel): Boolean

AddDominatee(sl:SecurityLevel): Boolean
GetAllDominatees(): Set(SecurityLevel)

User

p

Role

h

g

|c

SessionRole

1

UserSession

j

r

n

o

SSD

sl:SecurityLevel):Session
b

op : OperationType): Boolean

DeleteInheritance(seniorRole : Role):Boolean
AddInheritance(seniorRole : Role):Boolean

CheckAccess (t: Target,
RevokePermission (p : Permission):Boolean

GrantPermission (p : Permission):Boolean

GetAllJuniors() : Set(Role)
GetAllSeniors() : Set(Role)

UserClearance
UserAssignment

i

Type: OperationTypeEnum

OperationType
PermAssignment

k

op : OperationType) : Boolean
CheckAccess(t: Target,

Permission

ObjectBinding

OperationBinding

RoleSecurityLevel

HAC

cx1..x2

Dominates

1

vdominatee

1

SecurityLevel

1SubjectSecurityLevel

u

dominator

ObjectClassification

1

ObjectOperation

READ
WRITE

OperationTypeEnum
<<enumeration>>

Figure 5.3: Class Model Template View of the Hybrid Access Control Aspect Model

66

The existence of the new association allows one to state the policies PRole � User,

PRole � Session, and PRole � Target in PHAC property as follows:

� PRole � User: A user’s security level must dominate the security level of the role that

was assigned to that user.

context Session

inv: self.User.Role � forAll(r � self.User.SecurityLevel.GetAllDominatees()

� includes(r.SecurityLevel))

� PRole � Session: A session’s security level must be equal to the security level of the role

that was activated for that session.

context Session

inv: self.Role � forAll(r � self.SecurityLevel = r.SecurityLevel)

HAC operations that create or destroy links between (1) users and security lev-

els, (2) users and roles, (3) sessions and roles, and (4) sessions and security levels

must ensure that the above policies are enforced. Therefore, the specifications as-

sociated with the following HAC operations must be changed: User::AssignRole,

Session::AddActiveRole, User::CreateSession. The property stated in PRole � User should be

checked before an AssignRole operation is invoked, and PSession � User should be checked

before AddActiveRole or CreateSession operations are invoked. The addPreSpec directive

is used to modify the preconditions of these operations accordingly:

addPreSpec � PRole � User � to User::AssignRole
addPreSpec � PRole � Session � to Session::AddActiveRole
addPreSpec � PRole � Session � to User::CreateSession

Applying these post-merge directives results in the following specifications:

67

context Session::CheckAccess(t:Target, op:OperationType):Boolean

pre: true

post: result =

self.GetAllActiveRoles().Permission � exists (p �
p.Target � includes(tar) and p.OperationType � includes(op)))

and

(op.Type = Read and

self.SecurityLevel.GetAllDominatees() � includes (t.SecurityLevel))

or (op.Type = Write and self.SecurityLevel = t.SecurityLevel)

The new specifications associated with AssignRole, AddActiveRole, and CreateSession

operations are given below (added OCL expressions are shown in bold):

context User :: AssignRole (r : Role) : Boolean

pre: self.Role � excludes (r)

and self.GetAuthorizedRoles() � forAll(r1 � r1.SSD � excludes (r))

and

self.Role � forAll(r � self.SecurityLevel.GetAllDominatees() � includes(r.SecurityLevel)

post: self.Role=self@pre.Role � including(r)

context Session :: AddActiveRole (r : Role) : Boolean

pre: self.Role � excludes (r)

and self.User.GetAuthorizedRoles() � includes(r)

and

self.Role � forAll(r � self.SecurityLevel = r.SecurityLevel

post: self.Role=self@pre.Role � including (r)

68

context User::CreateSession(roles:Set(Role), sl:SecurityLevel):Session

pre:

self.SecurityLevel.GetAllDominatees() � includes(sl)

and

self.GetAuthorizedRoles() � includesAll(roles)

and

self.Role � forAll(r � self.SecurityLevel = r.SecurityLevel

post: result.oclIsNew()

and self.Session=self@pre.Session � including(result)

and result.Role= roles

and

result.oclIsNew()

and self.Session=self@pre.Session � including(result)

and result.SecurityLevel = sl

aspect model
RBAC

aspect model
BLP

rename
directives

replace &
add association

directives

aspect model
final HAC preliminary HAC

aspect model

Apply Basic
Merging Procedure

(default rules)

renamed BLP
aspect model

Apply Pre−Merge Directives

Apply Post−Merge Directives

Compose Aspect Models

Figure 5.4: Overview of RBAC and BLP Composition

Fig. 5.4 is an expansion of the Compose Aspect Models activity shown in Fig. 5.2 that

69

summarizes the activities involved in composing the RBAC and BLP aspect models. The

pre- and post-merge composition directives and the RBAC and BLP aspect models are the

inputs to the composition activity. The pre-merge directives are used to rename elements

in the BLP aspect model as described in this section. The renamed BLP aspect model

is then merged with the RBAC aspect model to produce a preliminary HAC model. The

post-merge directives are then applied to the preliminary HAC aspect model. These direc-

tives change the operation specifications and add an association to ensure that the required

policies are enforced in the composed aspect model.

5.4 Summary

In this chapter, we have demonstrated an approach to using composition directives to inte-

grate two aspect models with an example from the military domain which requires appli-

cations that enforce integrated RBAC and BLP policies. The composed aspect describes

the integration of RBAC feature and BLP features independently of the primary model.

One advantage is that the interactions of the aspects can be understood in isolation without

requiring the comprehension of the application. The second advantage is that it reduces

the number of times the composition process must be applied – this is significant when the

composed aspect is used in several applications.

70

Chapter 6

A Verifiable Model Composition
Approach

In this chapter, we illustrate how the composition of the aspect models and a primary model

can be carried out in a verifiable manner. A key issue in applying the AOM approach has

been determining whether composition of aspect models and a primary model produces a

composed model that has specified properties. In the previous AOM composition approach

[31, 69], the composed model is analyzed after the composition of context-specific aspect

models and the primary model in order to uncover emergent behaviors that result in viola-

tions to desired properties or identify undesirable interactions between aspect functionality

and other behaviors described in the primary model. However the problem with this post-

composition analysis is that it is difficult to identify which part of composition caused the

problem because the composition is already completed.

We extend the previous model composition approach to support the generation of proof

obligations that must be discharged in order to establish that a desired property holds in the

composed model. In our composition approach, class diagrams are merged first, but the

entire composition does not end until after the proof obligation is generated and evaluated.

6.1 Overview

Fig. 6.1 shows a high level overview of our verifiable model composition approach. The

71

primary model

composition directives

proof obligation

composition
verifiable

property statement

composed model

context−specific aspect model

Figure 6.1: An overview of verifiable composition in the AOM approach

verifiable model composition in our approach is accomplished in the following two steps1:

1. merging class diagrams : Composition of an aspect and a primary model involves

merging a context-specific aspect model2 and a primary model. We use the name-

base class model composition technique by France et al. [31] to match model ele-

ments and bring matched elements together to have the merged class diagram. Un-

matched model elements shown in one model are added to the merged class dia-

gram as well unless it is differently directed by any of composition directives. Other

changes to default merging process can be indicated by composition directives.

2. generating and evaluating proof obligation : From the property to verify that is spec-

ified in OCL and the specification of an operation in the merged class diagram, the

proof obligation is generated and evaluated. Discharging the proof obligation can

help one identify the sources of problems when the obligations do not hold.

1Note that the composition in our approach is a black-box composition in that users don’t see any other
intermediate composition steps except the merged class model and generated proof obligation.

2A context-specific aspect model is obtained by instantiating aspect model using application specific
values. For details on aspect instantiation, refer to Section 3.5.

72

The types of correctness checks that can be carried out on a model are determined by

the types of formally stated properties in the model and the types of derivations that can be

supported by the properties. The properties targeted by our approach are concerned with the

effects of operations. Operation specifications in UML models contain preconditions3 and

postconditions4 expressed in the Object Constraint Language (OCL) and thus can support

checking of behavioral properties that can be stated in terms of the effects of operations in

object states, which are specified in terms of preconditions and postconditions.

To specify that a message invocation event has taken place, the messaging expression

that includes the isSent operator (denoted as ˆ)is used in postconditions. This operator

takes a target object o and a message as Opr as operands. This is shown below:

context ClassName::Op()
pre: Ppre
post:

oˆOpr().hasReturned() and oˆOpr().result() = true

The above postcondition specifies a message event in an interaction diagram, which

states that a message event Opr has been sent to an object o and the postcondition be-

comes true if the message event has already finished executing and has returned a true

boolean value. When all message invocations between objects are explicitly specified in

the postconditions of the operation as shown above, interaction diagrams, such as sequence

diagrams, can be derived from those operation specifications.

Therefore, our verifiable composition technique requires the operation specification

specified in one of the following format, where Op is a triggering operation of a sequence

3A precondition is a boolean expression that must be true at the moment that the operation starts its
execution [91].

4A postcondition is a boolean expression that must be true at the moment that the operation ends its
execution [91].

73

diagram in the merged class model and Opri represents a set of sub-operations that are

invoked by Op:

� For an operation Op that returns a value,
context ClassName::Op(p1:T1,...,pn:Tn):T

pre: Ppre
post:

result =
oiˆOpri(pi).hasReturned() and oiˆOpri(pi).result() = Val � � Exprmsg � i
and
Q ��� Exprnon � msg

� For an operation Op that returns no value,
context ClassName::Op(p1:T1,...,pn:Tn)

pre: Ppre
post:

oiˆOpri(pi).hasReturned() ��� Exprmsg � i
and
Q ��� Exprnon � msg

In either specification format shown above, the part denoted by Exprmsg � i states condi-

tions under which messages are sent by the sub-operations Opri, and the part denoted by

Exprnon � msg represents the remainder part of expression that does not have any message

invocation. Exprmsg � i can be simply represented by “xi.hasReturned()” if a sub-operation

Opri has no return value.

The property to verify is written based on a triggering operation of which behavior

affects the property. A sequence diagram is going to describe the sequence of messages

that will be invoked by a triggering operation under our interest. Therefore, this style

of writing operation pre- and postconditions makes it possible for one to generate proof

obligations as a sequence diagram is obtained.

In our approach, an operation specification Pbeh and the proof obligation PO are

defined as follows:

74

Definition 1 An operation specification Pbeh is a condition that must be satisfied immedi-

ately after execution of an operation. Formally,

Pbeh = Ppre@pre and Ppost

where Ppre@pre denotes the expression obtained from Ppre by replacing each property

name p occurring in Ppre by p@pre.

For example, consider the following specification for the operation LowerByOne in an ob-

ject of the class A that has an attribute named attr:

context A::LowerByOne()
pre: attr
 0
post: attr = attr@pre - 1

attr in the precondition is replaces by attr@pre and thus the operation behavior speci-

fication (Pbeh) is defined as follows :

Pbeh = attr@pre
 0 and attr = attr@pre - 1

Definition 2 The proof obligation PO is defined as Pbeh implies Pprop, where Pbeh is an

operation specification in an merged class model and Pprop is the property to be verified.

Verification of the property requires discharging this implication obtained as a PO.

6.2 A Composition Example

In this section we illustrate how the composition of two models can be verified using

our composition approach. Consider the following example models given in Fig. 6.2.

Fig. 6.2(a) shows a simple primary model that has two operations op1 and op2. The class

model shown in Fig. 6.2(a) will be merged with an aspect class model given in Fig. 6.2(b)

according to the class diagram composition approach proposed by Straw et al. [86]. A

composition directive replacePostSpec will be applied to replace the postcondition that has

75

pre: true
post: result = v1

pre: true
post:
(b^op2().hasReturned()

and
(v1 > 0 and attr1 = v1+2)

and b^op2().result()=v1)

pre: true
post:
(c^op3().hasReturned()

implies
result = v2

and c^op3().result()=v2)

:A :B

op1()

op2()

:B :C

op2()
op3()

op1()

attr1

A
C

attr3

op3()

implies
result = v2}

and c^op3().result()=v2)
{(c^op3().hasReturned()replacePostSpec B::op2 with

(c) Composition directives

pre: true
post:
attr3 >= 0 implies

attr3 < 0 implies result = 1
and

 result = attr3+1

sd SDAop2sd SDPop1

(a) Primary model (b) Aspect model

1* * 1

B

attr2

op2()

B

attr2

op2()

Figure 6.2: partial class/sequence diagrams for example models

been obtained by merging two matching operations in the class B. Fig. 6.3 is obtained as a

merged class diagram.

Fig. 6.4 shows an overview of our verifiable composition approach. The composition

of the primary model class diagram and the aspect model class diagram are accomplished

through the named activity Merge Class Diagrams ((1) in Fig. 6.4) according to the class

diagram composition algorithm proposed by [86]. In Fig. 6.4, specifying the given property

statement in OCL provides the property to be verified denoted as Pprop (refer to the action

(1) in Fig. 6.4). The operation behavior in the composed model needs to be verified against

76

pre: true
post:
(b^op2().hasReturned()

and
(v1 > 0 and attr1 = v1+2)

and b^op2().result()=v1)

op1()

attr1

A

C

attr3

op3()

pre: true
post:
(c^op3().hasReturned()

implies
result = v2

and c^op3().result()=v2)

pre: true
post:
attr3 >= 0 implies

attr3 < 0 implies result = 1
and

 result = attr3+1

1*

1

B

attr2

*

op2()
<<merged>>

Figure 6.3: A class diagram obtained by merging the two class diagrams in Fig. 6.2(a) and
Fig. 6.2(b)

class diagram
composed(1) Merge Class Diagrams

statement
property

composition
directives

context−specific
aspect model

proof obligation

Verifiable Composition

prop
property to verify

P(2) Specify Property in OCL

primary
model

(3) Generate Proof Obligation

Figure 6.4: An activity diagram showing the verifiable composition approach

this property when a primary model and context-specific aspect model are composed. In

our approach, all message invocations in the composed model are explicitly specified when

the operation specifications of the class diagrams are composed under effects of relevant

composition directives. Therefore a composed sequence diagram is derived from those

operation specifications in the composed class diagram as illustrated in Fig. 6.4(refer to

77

(3)). While a sequence diagram is incrementally derived from the operation specifications,

a proof obligation is generated, evolves, and is evaluated. If any faulty composition is

notified during the evaluation, the current sequence diagram, which is partially derived at

that point, and the current proof obligation may be used to determine at which part of the

composition the property fails to hold. Otherwise, a sequence diagram is obtained.

Fig. 6.5 illustrates the detailed steps showing how proof obligation can be generated

in our approach. The first sequence diagram increment is created, which has a triggering

operation event with a lifeline of an object of the context class in which the property to be

verified Pprop is specified (action (3a) in Fig. 6.5). By tracing this partial sequence diagram

back to the relevant operation in the composed class diagram, the proof obligation, PFi

where i is 1, is obtained (action (3b)). As defined earlier, the implication Pbeh implies Pprop

forms the proof obligation. Discharging a proof obligation, PF1, requires the information

under which condition PF1 holds. When an expression in the proof obligation includes

any message invocations, discharging requires to know the condition under which its sub-

messages hold, which may require to increment the next message events to the sequence

diagram. Therefore, we propose to identify a part of expression (denoted as Exprmsg) that

includes invoking sub-messages (action (3c)) and verify other parts of expression first by

assuming Exprmsg returns true (action (3d) in Fig. 6.5). The proof obligation obtained from

this step is referred as PFi’ in Fig. 6.5. PFi’ is evaluated (action (3e) in Fig. 6.5). Any

contradiction found from evaluating PFi’ uncovers a faulty composition and the current

sequence diagram and proof obligation can be used to guide which point of the composition

results in the failure (action (3f) in Fig. 6.5). On the other hand, if no contradiction is

found from evaluating PFi’, now one needs to increment the current sequence diagram

(action (3g) in Fig. 6.5). Selecting a further message invocation, op, is derived from the

postcondition of operation in the composed class diagram. Exprmsg of the PFi is replaced

by the postcondition of the operation to be invoked (action (3h) in Fig. 6.5). At this step, a

proof obligation PFi evolves to PFi ! 1 and the existence of Exprmsg is checked again (action

78

class diagram
composed

property to verify
propP

[Exp_msg

B

i == 1

proof obligation PF i’

increment: SD i
i−th sequence diagram

proof obligation PF i

i ++

A

A

found][contradiction

to sequence diagramop(3g) Add

Exp_msg(3d) Replace

in PF i

with "true"

SDi

B

and display SD i and PFi

 and PFiSD i

in PF i

(3e) Evaluate proof obligation PF i’

identified]

[else]

i−th sequence diagram
increment: SD

(3a) Create 1st sequence
diagram increment

(3b) Generate proof obligation

[else]

(3f) Notify of faulty composition

that includes invocation of op
(3c) Identify an expression, Exp_msg,

(3h) Replace Exp_msg
with postcondition of op

 and PFand display i’

i

iin PF

Generate Proof Obligation

[contradiction found] (3j) Notify of faulty composition

[else]

(3k) Display

(3i) Evaluate proof obligation PFi

proof obligation: PF or PFi i’

Figure 6.5: An activity diagram showing the process of generating proof obligation from
the merged class diagram

(3c)). When no further message invocation (Exprmsg) is included in the proof obligation,

the current proof obligation is evaluated (action (3i)). If any contradiction is found from

the evaluation, the faulty composition is notified with information about current status of

79

composition, that is, the current sequence diagram and proof obligation expression (action

(3j)).

This approach allows composers to determine the point in the composition at which the

property fails to hold. The information that is available when the composition is stopped

can be used by a developer to determine what needs to be done to correct the situation.

We demonstrate the steps that one needs to follow for the use of our verifiable compo-

sition approach to compose the two models shown in Fig. 6.2(a) and Fig. 6.2(b).

(1) Merge class diagrams. The two class diagrams shown in Fig. 6.2(a) and Fig. 6.2(b)

are merged to create the model shown in Fig. 6.3.

� The class B in the primary model and the class B in the aspect model are

matched when we use model element names to identify the elements that are to

be merged.

– The two attributes with the name of attr2 are merged to form a single

attribute in the merged class model (see Fig. 6.3).

– The operation op2 in the class B of the primary model is merged with the

operation op2 in class B of the context-specific model using the composi-

tion directive replacePostSpec. The operation op2 in the composed model

thus has the postcondition that came from the op2 in the aspect model. The

stereotype ��� merged
�
 is used to denote that the operation behavior has

been changed by the merge.

� All other model elements (i.e., the class A with its attribute attr1 and operation

op1, another class C with its attribute attr3 and operation op3, and two associ-

ations) are included in the composed class diagram with no modifications.

(2) Specify the property to be verified, PProp, using OCL. In this example, the property,

PProp, is the condition that must be established by an operation op1 and is stated as

80

follows:

If the operation op1 is completed, then attr1 in the object a of A must be greater

than attr3 in the object c of C.

The above statement can be specified, using the OCL, as follows:
context A

inv: attr1
 self.B.C.attr3

In the above, the property to be verified is specified in the context of the op1

operation in the class A.

(3) Generating the proof obligation. The proof obligation is generated from the opera-

tion specification Pbeh and the property to verify Pprop and a partial sequence diagram

will be obtained while the proof obligation is generated.

(3a) Create the first sequence diagram increment SD1. In this example, the com-

position starts with an event of operation op1 in an object of the class A and

further operation events are identified as the composition follows. Therefore, a

partial sequence diagram that shows only one operation op1 sent to a lifeline of

an object of A is created (refer to Fig. 6.6(a)).

(3b) Generate a proof obligation PF1. The operation behavior specification Pbeh

for the composed sequence diagram SDCOp1 is obtained from the operation

specification of op1 in Fig. 6.3 and is given below:

Pbeh
= Ppre@pre and Ppost
= true and

(bˆop2().hasReturned() and bˆop2().result() = v1)
and
(v1
 0 and attr1 = v1 + 2)

= (bˆop2().hasReturned() and bˆop2().result() = v1)
and
(v1
 0 and attr1 = v1 + 2)

81

((b^op2().hasReturned() and b^op2().result()=v1)

and (v1>0 and attr1 = v1+2))

context A
PF1:

implies
attr1 > self.B.C.attr3

Pbeh

Pprop

: ((b^op2().hasReturned() and b^op2().result()=v1)
and (v1>0 and attr1 = v1+2))

: attr1 > self.B.C.attr3

imples
result = v2)
and (v1 = v2)
and (v1>0 and attr1 = v1+2))
implies
attr1 > self.B.C.attr3

and (v1>0 and attr1 = v1+2))
implies
attr1 > self.B.C.attr3

imples
result = v2)
and (v1 = v2)

context A
PF2:

(((c^op3().hasReturned() and c^op3().result()=v2)

sd SDCop1

sd SDCop1

sd SDCop1

:A

op1()

:A :B

op1()

op2()

:A :B

op1()

op2()

:C

op3()

(a) SD is created1

(c) SD is obtained2

(e) SD is obtained3

(b) PF1 is generated.

(d) PF1 evolves to PF2.

(f) PF2 evolves to PF3.

replaced by

context A
PF3:

((attr3 >= 0 implies result = attr3+1 and v2=attr3+1
and
attr3 < 0 implies result = 1 and v2 = 1)

replaced by

<<merged>>

<<merged>>

Figure 6.6: Generating the proof obligation while identifying which message invocation
will follow in a sequence diagram

Therefore, the proof obligation PF1 is generated from Pbeh and Pprop at the

time of composition shown in Fig. 6.6(a) and is shown in Fig. 6.6(b).

(3c) Identify an expression, Exprmsg, that includes the invocation of op in PF1.

Identified part of expression is denoted by Exprmsg as shown below.

82

Proof Obligation 1: PF1

context A
((bˆop2().hasReturned() and bˆop2().result() = v1) � � (P1 � 1): Exprmsg
and
(v1
 0 and attr1 = v1 + 2)) ��� (P1 � 2): Exprnon � msg
implies
attr1
 self.B.C.attr3 ��� (PProp)

(3d) Replace Exprmsg with “true”. Discharging a proof obligation requires the

information about the conditions under which the condition labeled in either

P1 � 1 or P1 � 2 in PF1 holds. However, one does not have the information

on invoking operation op2 until the operation event is actually added to the

sequence diagram. Therefore, we assume P1 � 1 is true for now in order to verify

other parts of the expression. The following proof obligation PF1’ is obtained

at this step (not shown in Fig. 6.6):

Proof Obligation 1’: PF1’

context A
(true ��� P1 � 1
and
(v1
 0 and attr1 = v1 + 2)) ��� (P1 � 2)
implies
attr1
 self.B.C.attr3 ��� (PProp)

and it is reduced into the following:

Proof Obligation 1’: PF1’

context A
(v1
 0 and attr1 = v1 + 2) � � (P1 � 2)
implies
attr1
 self.B.C.attr3 ��� (PProp)

(3e) Evaluate a proof obligation PF1’. In this step, we have the expression with re-

83

spect to v1, attr1, and attr3. If any contradiction is found, discharge fails and

the composition must stop (refer to action (3f)). In this example, no contradic-

tion is found based on the given information .Therefore, now we go back to our

first assumption that P1 � 1 is true and it requires to add the next increment to the

current sequence diagram (refer to the increment of an index i in Fig. 6.6.

(3g) Add the next message event op2 to the sequence diagram. To evaluate

P1 � 1, one needs to know about the conditions under which the op2 operation

sent to an object b returns true in the composed model. Therefore the message

event op2 is added to the current sequence diagram (refer to Fig. 6.6(c)).

(3h) Replace Exprmsg in PF1 by the post condition of the op2 operation. This

observation leads that the condition labeled in P1 � 1 in PF1 is replaced by the

the postcondition that determines when the op2 operation in b object of the

composed model returns true. Note that v1 = v2 is added into the replaced part

as well to ensure that those two return values, v1 and v2, are same.

The postcondition of op2 operation of b in the composed model (see Fig. 6.3)

is given below:

context B::op2()
(cˆop3().hasReturned() and cˆop3().result() = v2)
implies result = v2

Therefore, the resulting proof obligation PF2 is as follows (also shown in

Fig. 6.6(d)):

84

Proof Obligation 2: PF2

context A
(((cˆop3().hasReturned() and cˆop3().result() = v2) � � (P2 � 1)
implies
result = v2) ��� (P2 � 2)
and
v1 = v2 ��� (P2 � 3)
and
(v1
 0 and attr1 = v1 + 2) � �) (P1 � 2)
implies
attr1
 self.B.C.attr3 ��� (PProp)

The current proof obligation PF2 still includes an expression that requires the

result of invoked sub-operation op3 (refer to P2 � 1).

(3d) Replace Exprmsg with “true”. Assuming that “ (P2 � 1) implies (P2 � 2)” is true

for now gives us the following:

Proof Obligation 1’: PF2’

context A
(v1 = v2 ��� (P2 � 3)
and
(v1
 0 and attr1 = v1 + 2)) ��� (P1 � 2)
implies
attr1
 self.B.C.attr3 ��� (PProp)

By v1 = v2 given in (P2 � 3, all occurrences of v1 in (P1 � 2) are replaced with v2

and the changed (P1 � 2) is now labeled with (P2 � 4).

context A
(v2
 0 and attr1 = v2 + 2) � � (P2 � 4)
implies
attr1
 self.B.C.attr3 ��� (PProp)

(3e) Evaluate a proof obligation PF2’. Again, no contradiction is found based on

the given information. Therefore, discharging proof obligation PF2 requires

85

determining the conditions under which the implication of (P2 � 1) and (P2 � 2) is

true. The next message event needs to be added to the current sequence diagram

(refer to the increment of an index i in Fig. 6.6.

(3g) Add the next message event op3 to the sequence diagram. The message

event op3 is added to the current sequence diagram (refer to Fig. 6.6(e)).

(3h) Replace Exprmsg in PF2 by the post condition of the op3 operation. This

step requires us to evaluate whether the implication with (P2 � 1) and (P2 � 2)

holds or not. Again, we must know about the conditions under which the op3

operation in the c object returns true. This observation leads to a modified

proof obligation in which the condition labeled in (P2 � 1) is replaced by the

postcondition that determines when the op3 operation in c object returns true.

That is, (P2 � 1) is replaced by the postcondition of op3 operation in c.

The postcondition of op3 operation in c is repeated below:

context C::op3()
attr3 � 0 implies result = attr3 + 1
and
attr3 � 0 implies result = 1

Therefore, the resulting proof obligation PF3 (also shown in Fig. 6.6(f))

is as follows:

86

Proof Obligation 3: PF3

context A
((attr3 � 0 implies result = attr3 + 1 and v2 = attr3 + 1 ��� (P3 � 1)
and
attr3 � 0 implies result = 1 and v2 = 1) ��� (P3 � 2)
and
result = v2) ��� (P2 � 2)
and
v1 = v2 ��� (P2 � 3)
and
(v1
 0 and attr1 = v1 + 2) � � (P1 � 2)
implies
attr1
 self.B.C.attr3 ��� (Prop)

Note that v2 = attr3 + 1 and v2 = 1 are added to (P3 � 1) and (P3 � 2) respectively

as done in the previous step.

At this point, no further message invocation is included in the current proof

obligation PF3 shown above. Therefore it can be evaluated. Any failure to

discharge it may reveal the problem in the composition.

(3i) Evaluate a proof obligation PF3. In this example, no contradiction is found

based on the given information.

(3k) Display the composed sequence diagram SDi and the generated proof obligation.

6.3 A Pilot Study: Composing an RBAC Aspect with a
Banking Application

In this section, we present a context-specific RBAC aspect model for banking applications

and outline how the RBAC aspect model is composed with a banking application primary

model using our verifiable composition technique described in previous sections.

87

1

*

deposit(amount:Money)
withdraw(amount:Money)

Account
* 1

Controller

BankUser

amount:Money)

amount:Money)

amount:Money)
withdraw(fromAccount:Account,

transfer(fromAccount:Account,

deposit(toAccount:Account,

toAccount:Account,

Figure 6.7: A partial class diagram for a banking application (a primary model)

6.3.1 A Banking Application Primary Model

Fig. 6.7 shows a partial class diagram in the banking application primary model. The

application allows users to carry out trans f er, withdraw, and deposit transactions on ac-

counts. The class BankUser describes bank users, Account describes bank accounts, and

Controller describes objects that coordinate transactions on bank entities (in this applica-

tion, Controller has only one instance - the OCL constraint expressing this multiplicity

restriction is not shown).

The dynamic view of the primary model consists of a set of interaction diagrams.

In this section we show the sequence diagram and OCL specification for the trans f er

operation only. As shown in Fig. 6.8, a trans f er operation results in the invocation of two

other operations (withdraw and deposit). Operation specifications for trans f er, withdraw

and deposit operations are given below:

88

:Controller

alt

alt

[q = false]

p := withdraw(amount) : Boolean

[p = false]

fromAccount:Account
sd SDPtransfer

t := transfer(fromAccount:Account,
toAccount:Account,amount:Money):Boolean toAccount:Account

:BankUser

q := deposit(amount) : Boolean
[p = true]

return false

return false

[q = true]
return true

Figure 6.8: Sequence diagram for the trans f er operation in a banking application (a pri-
mary model)

P-SPEC-1

context Controller::transfer(fromAccount:Account,
toAccount:Account, amount:Money):Boolean

pre: true
post:
��� The message withdraw sent to fromAccount and
��� the message deposit sent to toAccount have
��� returned and their return values are true
result =

(fromAccountˆwithdraw(amount).hasReturned() and
fromAccountˆwithdraw(amount).result() = true) and
(toAccountˆdeposit(amount).hasReturned() and
toAccountˆdeposit(amount).result() = true)

P-SPEC-2

context Account::withdraw(amount:Money):Boolean
pre: true
post:
��� If the value of balance before the execution
��� is less than the value of amount, the operation returns false,
��� otherwise, a new balance is obtained
��� by subtracting the amount from the old balance
if balance@pre
 = amount
then balance = balance@pre-amount and result = true
else result = false

89

P-SPEC-3

context Account::deposit(amount:Money):Boolean
pre: true
post:
��� the value of balance after execution is
��� equal to the sum of amount
��� and the value of balance before execution
balance = balance@pre + amount and result = true

6.3.2 The RBAC Aspect Model

As described in the previous chapters, RBAC is used to protect information resources

(referred to as targets) from unauthorized access. There are many variations of RBAC,

each specifying and enforcing a set of access control constraints. In this chapter we focus

only on constraints in the hierarchical SSD RBAC aspect model that was described in

Section 4.2. The class diagram template of the hierarchical SSD RBAC is repeated in

Fig. 6.9 for the readability. Annotated operation specification templates for Operation

−>includesAll(self.GetAllActiveRoles())
self.UserSession.GetAuthorizedRoles()

CreateSession(roles:Set(Role)):Session
DeleteSession(s : Session):Boolean
AssignRole (r: Role):Boolean
DeassignRole (r: Role):Boolean

AddActiveRole(r : Role):Boolean

CheckAccess(t:Target,
DropActiveRole(r : Role):Boolean

op:OperationType):Boolean
Operation(t:Target 1..*,

params*): ReturnType 0..1
GetAllActiveRoles(): Set(Role)

AddInheritance(seniorRole:Role):Boolean
DeleteInheritance(seniorRole:Role):Boolean

GetAuthorizedUsers(): Set(User)
GetAllSeniors() : Set(Role)
GetAllJuniors() : Set(Role)

AddSSDRole(r:Role):Boolean
DeleteSSDRole(r:Role):Boolean

j

UserAssignment

r
junior

RevokePermission (p : Permission):Boolean
GrantPermission (p : Permission):Boolean

RoleHierarchy SSD

o

d

a

RBAC

User

1

GetAuthorizedRoles(): Set(Role)
GetAssignedRoles(): Set(Role)

b c

UserSession

if

PermAssignment

k

Session

Permission

seniors n

Role

Name: String

Type:OpTypeEnum

OpType 1..*

OperationType

<<enumeration>>

g h

OpTypeEnum

Target
e

SessionRole

Figure 6.9: The class model template view of the hierarchical SSD RBAC aspect model

and CheckAccess in the Session template are given below. As shown in the operation

90

specification templates for Operation, operation specification templates can include

binding directives that determine how context-specific aspect models are produced from

templates when simple instantiation is not sufficient.

context Session::Operation(tar:Target 1..*, params *):Boolean
��� Operation takes 1 or more tar arguments and 0 or more params arguments
pre: true
��� This operation can be invoked in any state
post:
��� The operation returns true if each call to CheckAccess returns true
��� (indicating that the session has permission to perform the operation
��� on the target), and the DoOperation has returned successfully,
��� otherwise it returns false.
��� Start of constraint in postcondition:

Repeat for i = 1 to N; N = " tar �
��� Repeat is a binding directive that causes elements within its scope
��� to be repeated N times when instantiated. " tar returns
��� the number of tar arguments.

(self ˆ CheckAccess(tar-i: Target, op: OperationType).hasReturned() and
self ˆ CheckAccess(tar-i: Target, op: OperationType).result() = true) and �
��� represents the sending of the i-th CheckAccess message to
��� itself (the session object). Each CheckAccess message invokes an operation
��� that checks whether the session has permission to perform the operation
��� on each target, tar.

��� End of Repeat block
(? ˆ DoOperation(tar:Target *, params *).hasReturned() and

? ˆ DoOperation(tar:Target *, params *).result() = true)
��� represents the sending of the DoOperation message to an
��� unknown object (the object is provided when the template is instantiated
��� and an instantiated template is incorporated into a primary model).

��� End of Operation specification

context Session::CheckAccess(tar:Target, op:OperationType) : Boolean
pre: true
post:
��� The operation returns true if there exists an assigned role that
��� is associated with at least one permission that grants the operation, op,
��� access to the target, tar, Otherwise, it returns false.
result = self.GetAllActiveRoles().Permission

� exists(p � p.Target � includes(tar) and p.OperationType � includes(op))
��� End of CheckAccess specification

91

return ack

sd |RBACOperation

indicates that values bound to this must be exactly
the values bound to params* in |Operation

:|Session

indicates a set of 0 or more parameters

indicates a set of 1 or more targets

Repeat for i = 1 to N, N = #|tar

[ack=false] return false

instantiated N times

binding directive:
indicates enclosed area is

ack := |DoOperation(|tar1..*,|params*):ReturnType 0..1
[ack = true

|Operation(|tar:|Target 1..*, |params*):|ReturnType 0..1

ack:= CheckAccess(|tar:|Target, |op:|OperationType):Boolean

Figure 6.10: SDAOperation sequence diagram template

The sequence diagram template SDAOperation shown in Fig. 6.10 describes the fol-

lowing pattern of behavior:

(1) A sender sends an operation call message (Operation
� �#�$�%�) to a session object.

(2) The session object checks whether the user is authorized to invoke the requested oper-

ation on each target. This check is described by the referenced sequence diagram shown in

Fig. 6.10 (indicated by the ref fragment) and is performed for each target passed in as an

argument to Operation. If the access is not authorized for a target (i.e., ack � f alse) then

the Session object returns f alse to the sender, indicating that access is not granted. The

sequence diagram fragment enclosed by the Repeat box describes this pattern of behavior.

The Repeat is a binding directive indicating that the enclosed fragment is repeated N times,

where N is the number of targets given as arguments (indicated by #tar).

(3) If the access is authorized, then the Session object requests that the operation be per-

formed, that is, it sends a DoOperation message to the target object that performs the

operation.

92

addActiveRole(r: BankRole)
dropActiveRole(r: BankRole)
checkAccess(tar:Account,

op:TransactionType): Boolean

AddInheritance(seniorRole:BankRole):Boolean
DeleteInheritance(seniorRole:BankRole):Boolean

GetAuthorizedUsers(): Set(BankUser)
GetAllSeniors() : Set(BankRole)
GetAllJuniors() : Set(BankRole)

AddSSDRole(r:BankRole):Boolean
DeleteSSDRole(r:BankRole):Boolean

−>includesAll(self.GetAllActiveRoles())
self.Initiates.GetAuthorizedRoles()

name: String

BankRole Permission

1..*1..*

1..*1..*

Account

EnforcedOn BasedUpon

type:TransactionTypeEnum

TransactionType

TransactionTypeEnum

TRANSFER
WITHDRAW
DEPOSIT

<<enumeration>>

1..*
Has

instantiations of |OpType

: BankSession
CreateSession(roles:Set(BankRole))

DeassignRole(r: BankRole)
AssignRole(r: BankRole)
DeleteSession(s: BankSession)

GetAssignedRoles():Set(BankRole)
GetAuthorizedRoles():Set(BankRole)

1..*

AssignTo

BankUser

instantiations of |Operation

transfer(fromTarget:Account,
 toTarget:Account, amount:Money)

deposit(toTarget:Account, amount:Money)
withdraw(fromTarget:Account, amount:Money)

BankSession

GetAllActiveRoles():Set(BankRole)

1..*

Initiates

1

1..*

RoleHierarchy SSD

senior

1..*

junior
* *

**

RevokePermission (p : Permission):Boolean
GrantPermission (p : Permission):Boolean

1..*

1..*

SessionRole

Figure 6.11: A context-specific core RBAC class diagram

6.3.3 Instantiating the RBAC Aspect Model for a Banking Application

Composing the RBAC aspect model’s class diagram and the banking application’s class di-

agram involves instantiating the RBAC model and composing the resulting context-specific

class diagram with the banking application’s class diagram.

An instantiation of the class diagram template of the RBAC aspect model is shown in

Fig. 6.11. The bindings used to instantiate the aspect model indicate where in the primary

model the context-specific aspect model elements will be incorporated. For example,

the bindings, (BankUser, User), (Account, Target), indicate that the instantiated User

template class in the aspect model is to be merged with the BankUser class in the primary

model, and the instantiated Target template class in the aspect model is to be merged

with the Account class in the primary model. The instantiations of class templates Role

(BankRole), and Session (BankSession) are new model elements that are to be included in

the composed model. The Operation template in the Session class template is instantiated

three times to produce the trans f er, withdraw and deposit operations in BankSession.

93

The enumeration values in TransactionTypeEnum (T RANSFER, WITHDRAW , and

DEPOSIT) are instantiations of an attribute template OpType. The operation specification

template associated with the Operation template is also instantiated for each of these

operations. For example, the trans f er operation in BankSession class of the aspect model

is associated with the following instantiation of the Operation specification template:
context BankSession::transfer(fromAccount:Account,

toAccount:Account,amount:Money):Boolean
pre: true
post:
result =
��� Statement in Repeat block of template is instantiated
��� twice because there are two targets
��� in the argument: fromAccount and toAccount.

(selfˆcheckAccess(fromAccount, TRANSFER).hasReturned()
and
selfˆcheckAccess(fromAccount, TRANSFER).result()=true)
and
(selfˆcheckAccess(toAccount, TRANSFER).hasReturned()
and
selfˆcheckAccess(toAccount, TRANSFER).result()=true)
and
(?ˆtransfer(fromAccount, ...).hasReturned()
and
?ˆtransfer(fromAccount, ...).result() = true)

Instantiation of the CheckAccess specification template produces the following specifi-

cation for checkAccess operation in BankSession:
context BankSession::checkAccess(tar:Account,

op:TransactionType):Boolean
pre: true
post: result =

self.GetAllActiveRoles().Permission
� exists(p � p.Account � includes(tar)
and p.TransactionType � includes(op))

The SDAOperation sequence diagram template is instantiated three times to produce

94

context-specific sequence diagrams corresponding to the BankSession operations trans f er,

withdraw and deposit. The three sequence diagrams produced from the template are named

SDAtrans f er, SDAwithdraw, and SDAdeposit (see Fig. 6.12, Fig. 6.13, and Fig. 6.14).

sd SDAtransfer

ack:Boolean

local attribute

ack:= checkAccess(fromAccount:Account, TRANSFER:TransactionType):Boolean

ack:= SDAcheckAccess:Boolean
ref

:BankSession

transfer(fromAccount:Account,toAccount:Account,amount:Money):Boolean

return false[ack = false]

[ack=true]ack:= checkAccess(toAccount:Account, TRANSFER:TransactionType):Boolean

[ack = true]
ack := transfer(fromAccount:Account,toAccount:Account,amount:Money) : Boolean

return ack

return false[ack = false]

ack:= SDAcheckAccess:Boolean
ref

Figure 6.12: SDAtransfer: Context-specific sequence diagram for the trans f er operation
in BankSession

6.3.4 Merging a Context-specific RBAC Aspect Model with a Primary
Model

The basic class diagram composition procedure merges classes with the same name and

includes elements that appear in primary or aspect class diagram but not in the other (For a

detailed description of class diagram composition, refer to more complex examples given

ack:= checkAccess(fromAccount:Account, WITHDRAW:TransactionType):Boolean

return false[ack = false]

[ack=trua] ack := withdraw(amount:Money) : Boolean

return ack

withdraw(fromAccount:Account,amount:Money):Boolean

:BankSession

local attribute
sd SDAwithdraw

ack:Boolean

ref
ack:= SDAcheckAccess:Boolean

Figure 6.13: SDAwithdraw: Context-specific sequence diagram for the withdraw operation
in BankSession

95

[ack = false] return false

[ack=true] ack := deposit(amount:Money) : Boolean

return ack

:BankSessionack:Boolean

local attribute
sd SDAdeposit

deposit(toAccount:Account,amount:Money):Boolean

ref
ack:= SDACheckAccess:Boolean

ack:= checkAccess(toAccount:Account, DEPOSIT:TransactionType):Boolean

Figure 6.14: SDAdeposit: Context-specific sequence diagram for the deposit operation in
BankSession

in France et al. [31] and Reddy et al. [73]. The result of merging the aspect model’s class

diagram and the primary model’s class diagram is shown in Fig. 6.15. [31].

Account

withdraw(amount:Money)
deposit(amount:Money)

TransactionTypeEnum
<<enumeration>>

TRANSFER
WITHDRAW
DEPOSIT

name: String

BankRole

deassignRole(r: BankRole)
assignRole(r: BankRole)
deleteSession(s: BankSession)
createSession(): BankSession

BankUser

1..*
1..*

BankSession

transfer(fromTarget:Account,

deposit(toTarget:Account, amount:Money)

 toTarget:Account, amount:Money)
withdraw(fromTarget:Account, amount:Money)

addActiveRole(r: BankRole)
dropActiveRole(r: BankRole)
checkAccess(tar:Account,

op:TransactionType): Boolean

Controller

transfer(fromTarget:Account,

withdraw(fromTarget:Account, amount:Money)
 toTarget:Account, amount:Money)

deposit(toTarget:Account, amount:Money)
1

* 1

1..*

1..*

1

Initiates

AssignTo

1..*

SessionRole

Permission

1..*

1..*

TransactionType

BasedUpon

1..*

1..*

type:TransactionTypeEnum

Has

EnforcedOn

1..* 1..*

1..*

1

grantPermission (p: Permission)
revokePermission (p: Permission)

1..*

Figure 6.15: Class diagram of the composed model

Incorporating the access control behavior into the banking application requires that the

transfer operation specification in the primary model’s Controller class (see P-SPEC-1)

be modified so that the calls to the withdraw and deposit operations are authorized before

being sent to the target accounts. The needed modifications are defined by a composition

directive, replacePostSpec, that replaces calls to the operations in target accounts by

calls to the withdraw and deposit operations in BankSession. The result is the following

operation specification that is associated with the operation in the composed model:

96

context Controller::transfer(fromAccount:Account,
toAccount:Account, amount:Money):Boolean

pre: true
post:
result =

(bankSessionˆwithdraw(fromAccount,amount).hasReturned() and
bankSessionˆwithdraw(fromAccount,amount).result()=true and
bankSessionˆdeposit(toAccount,amount).hasReturned() and
bankSessionˆdeposit(toAccount,amount).result()=true)

The unknown object (represented by “?”) shown in the trans f er operation in

BankSession class of the composed model is now associated with the Controller and the

following shows its completed operation specification:
context BankSession::transfer(fromAccount:Account,

toAccount:Account,amount:Money):Boolean
pre: true
post:
result =

(selfˆcheckAccess(fromAccount, TRANSFER).hasReturned()
and
selfˆcheckAccess(fromAccount, TRANSFER).result()=true)
and
(selfˆcheckAccess(toAccount, TRANSFER).hasReturned()
and
selfˆcheckAccess(toAccount, TRANSFER).result()=true)
and
(Controllerˆtransfer(fromAccount, toAccount, amount).hasReturned()
and
Controllerˆtransfer(fromAccount, toAccount, amount).result() = true)

6.3.5 Specifying the Property to Verify

A desired property of the trans f er behavior in the composed model is specified and proof

obligations are generated as the SDPtrans f er sequence diagram in the primary model

(Fig. 6.8) is composed with the SDAtrans f er, SDAwithdraw, SDAdeposit sequence dia-

97

grams in the context-specific aspect model (Fig. 6.12, Fig. 6.13, Fig. 6.14). The approach

requires that operation specifications reference the interactions that take place in corre-

sponding interaction diagrams, that is, they must state the conditions under which messages

are sent by the operations.

The property to verify during the trans f er can be stated as follows: If the transfer

operation is authorized on the specified accounts, then, if the source account has enough

funds to cover the transfer amount then the funds will have been transferred by the time the

transfer operation terminates.

We express the above, using an extended form of the OCL, as follows:
contextBankSession::transfer(fromTarget:Account,

toTarget:Account, amount:Money):Boolean
verify TransferProp:
let

successful-transfer =
(if fromAccount.balance@pre
 = amount
then (fromAccount.balance =

fromAccount.balance@pre-amount
and toAccount.balance =

toAccount.balance@pre + amount)))
in

if (selfˆcheckAccess(fromAccount, TRANSFER).hasReturned()
and selfˆcheckAccess(fromAccount, TRANSFER).result()=true
and selfˆcheckAccess(toAccount, TRANSFER).hasReturned()
and selfˆcheckAccess(toAccount, TRANSFER).result()=true)

then successful-transfer

In the above, the property to be verified is specified in the context of the trans f er

operation in the BankSession class. We introduce the veri f y construct to the OCL syntax

to support the specification of properties to be verified. The OCL statement in the veri f y

section states the property to be verified. The property is named TransferProp.

98

ref

ref

local attribute

toAccount,
t := transfer(fromAccount,

:Controller

[p = true]

alt [q = true]

return true

return false
[q = false]

return false
[p = false]

amount): Boolean
SDAtransfer

sd SDtransfer

(3)

(5)

[ack = true]

amount): Boolean

t := transfer(fromAccount,
toAccount,

(1) (2)

p := withdraw(fromAccount,amount) : Boolean

toAccount:Account

fromAccount:Account

p := withdraw(amount) : Boolean
[ack = true]
(4)

SDAwithdraw

q := deposit(amount) : Boolean
[ack = true]
(6)

q := deposit(toAccount,amount) : Boolean

alt

SDAdeposit
ref

ack:Boolean

Figure 6.16: Overview of generating and evaluating the proof obligation

6.3.6 Generating the Proof Obligation

We use Fig. 6.16 to illustrate how a proof obligation evolves while the sequence diagram

describing the trans f er operation in the composed model is derived from the class diagram

composition. Composition should result in a behavior in which calls to trans f er withdraw

and deposit operations are carried out only if the BankSession object is permitted to carry

out the requested operations on the target accounts. The composition procedure that ac-

complishes this performs the following steps (the numbers shown in Fig. 6.16 correspond

to the steps given below):

(1) The initiating trans f er message in the primary model sequence diagram is rerouted

to the BankSession object and the access control behavior described by the SDAtrans f er

sequence diagram is inserted.

(2) If access is granted as a result of carrying out the behavior described by SDAtrans f er,

the trans f er operation in the Controller can be invoked. To reflect this, a composition

directive is used to add a trans f er operation call message directed to the Controller. The

result of steps (1) and (2) describes a situation in which the trans f er operation call is in-

99

tercepted by SDAtrans f er and passed on to the Controller object only if access is granted.

(3) The call to the withdraw operation made by the Controller during the invocation of the

trans f er operation is intercepted by the SDAwithdraw sequence diagram.

(4) If access is granted then a withdraw operation call is sent to the account, f romAccount.

(5) The call to the deposit operation made by the Controller during the invocation of the

trans f er operation is intercepted by the SDAdeposit sequence diagram.

(6) If access is granted then a depsoit operation call is sent to toAccount.

In what follows we illustrate how a proof obligation for the TransferProp property evolves

during composition. The property does not hold for the composed model and we will show

how this can be revealed during composition.

The proof obligation and a sequence diagram is obtained as illustrated in Fig. 6.17. In

steps (1) and (2) of the sequence diagram composition described earlier with Fig. 6.16,

the SDAtrans f er sequence diagram is incorporated into the primary model’s trans f er

sequence diagram. The initial sequence diagram is derived from the current composition

(refer to Fig. 6.17(a)). At this point, the proof obligation can be expressed as an implication

P1 implies TransferProp, where P1 specifies the condition under which the trans f er

operation in the BankSession object returns true. The postcondition for trans f er is

repeated below:

Proof Obligation 1: PF1

context BankSession
result =

((selfˆcheckAccess(fromAccount, TRANSFER).hasReturned() and
selfˆcheckAccess(fromAccount, TRANSFER).result()=true)
and (selfˆcheckAccess(toAccount, TRANSFER).hasReturned() and
selfˆcheckAccess(toAccount, TRANSFER).result()=true)
and (Controllerˆtransfer(fromAccount, ...).hasReturned() and
Controllerˆtransfer(fromAccount, ...).result() = true))

The following proof obligation (obtained after simplification) is generated as shown

100

(a) SD is created1

(c) SD is obtained2

sd SDCTransfer

sd SDCTransfer

sd SDCTransfer

(e) SD is obtained3

Controller from:Account:BankSession

transfer()
<<merged>>
transfer()

withdraw()

to:Account

implies
successful−transfer

bankSession^deposit(to,amount).hasReturned() and
bankSession^deposit(to,amount).result() = true

(if from.balance@pre >= amount
then from.balance = from.balance@pre−amount)

bankSession^checkAccess(from,withdarw).hasReturned() and
bankSession^checkAccess(from,withdarw).result() = true and

implies
successful−transfer

implies
successful−transfer

(b) PF1 is generated.

(d) PF1 evolves to PF2.

:BankSession

:BankSession Controller

transfer()
<<merged>>
transfer()

transfer()

(f) PF2 evolves to PF3.

context BankSession
PF1:

PF3:
context BankSession

PF2:
context BankSession

result =
(Controller^transfer(from...).hasReturned() and

Controller^transfer(from...).result() = true)

result =

replaced by

result =

and

bankSession^deposit(to,amount).result() = true
bankSession^deposit(to,amount).hasReturned() and

and

bankSession^withdraw(from,amount).result() = true
bankSession^withdraw(from,amount).hasReturned() and replaced by

Figure 6.17: Generating the proof obligation while identifying which message invocation
will follow in a sequence diagram

in Fig. 6.17(b):

101

Proof Obligation 1: PF1

context BankSession
result =

(Controllerˆtransfer(fromAccount, ...).hasReturned() and
Controllerˆtransfer(fromAccount, ...).result() = true) ��� (DP)

implies successful-transfer

Discharging PF1 requires information about the conditions under which the condition

labeled (DP) in PF1 holds, that is, the conditions under which the trans f er operation in the

Controller object (called by the doOpMsg message) returns true. This observation leads

to adding the invocation of the trans f er operation in the Controller object to the sequence

diagram (refer to Fig. 6.17(c)) and modifying the proof obligation in which the condition

labeled (DP) is replaced by the part of the postcondition that determines when the trans f er

operation in Controller returns true (refer to Fig. 6.17(d)). The resulting proof obligation

is given below:

Proof Obligation 2: PF2

context BankSession
(bankSessionˆwithdraw(fromAccount,amount).hasReturned() and

bankSessionˆwithdraw(fromAccount,amount).result()=true and ��� (WD)
bankSessionˆdeposit(toAccount,amount).hasReturned() and
bankSessionˆdeposit(toAccount,amount).result()=true) ��� (DP)

implies successful-transfer

Discharging proof obligation PF2 requires determining the conditions under which

the condition labeled by (WD) holds, that is, the conditions under which the withdraw

operation in BankSession returns true. As was done in the previous steps, invoking the

withdraw operation in the Controller is added to the current sequence diagram (refer to

Fig. 6.17(e)) and the proof obligation evolves again by replacing (WD) by the relevant

part of the withdraw postcondition (refer to Fig. 6.17(f)). This process is continued until a

proof obligation that does not hold is produced or until the sequence diagram composition

102

is completed.

In this case, a proof obligation that does not hold is obtained after incorporating the

SDAwithdraw sequence diagram into the primary model’s sequence diagram. The proof

obligation is given below:
Proof Obligation 3: PF3

context BankSession
selfˆcheckAccess(fromAccount, withdraw).hasReturned() and

selfˆcheckAccess(fromAccount, withdraw).result()= true and
(if fromAccount.balance@pre
 = amount
then fromAccount.balance =

fromAccount.balance@pre-amount) and
bankSessionˆdeposit(toAccount,amount).hasReturned() and
bankSessionˆdeposit(toAccount,amount).result()=true ��� (DP)

implies successful-transfer

At this point an inspection of PF3 would reveal that the condition does not hold be-

cause of the presence of the access control behavior that checks whether access to the

withdraw operation is granted. If access to the withdraw operation is not granted, then the

obligation does not hold. There is no guarantee that this case will never happen (i.e., there

are no constraints in the model that preclude this case). At this point the composition can

be stopped knowing that it will produce a model that does not have the required property.

This problem can be fixed by incorporating only the SDAtransfer (i.e., steps (1) and (2))

sequence diagram during the composition. The result is that the check access operation is

only carried out on the trans f er operation, not on the withdraw and deposit operations.

Another solution is to guarantee access to the withdraw and deposit operations whenever

access is granted to a trans f er operation by including an invariant on permission objects

that precludes the above situation in which the obligation failed to hold.

103

6.4 Summary

In this chapter, we present an AOM approach that supports verifiable composition of be-

haviors described in access control aspect models and primary models. Given an aspect

model, a primary model, and a specified property, the composition technique produces

proof obligations as the behavioral descriptions in the aspect and primary models are com-

posed. One has to discharge the proof obligations to establish that the composed model has

the specified property. Given an initial proof obligation, its evolution during the process of

establishing sequence diagrams can be mechanized since it essentially involves replacing

specified parts of the proof obligations with parts of operation specifications.

104

Chapter 7

Conclusion and Future Work

In this dissertation, we described an AOM approach to isolating features that enforce access

control policies as aspects. To illustrate the approach, RBAC and BLP were modeled as

aspects and they were individually verified against given policy requirements represented

by policy models.

There are cases in which the applications in an organization must enforce more than one

access control policy. In such cases, one needs to integrate multiple access control aspects

and the resulting aspect must enforce the integrated policies. This dissertation shows how

aspects can be composed to produce integrated access control features. One advantage of

integrating aspects instead of composing the aspects one at a time with a primary model,

is that one gets a view of the relationships between concepts in the aspect models that is

not cluttered with concepts from a primary model. The second advantage is that it reduces

the number of times the composition process must be applied – this is significant when the

composed aspect is used in several applications or in multiple places in an application.

It is often necessary to establish that composition yields a model that is correct with

respect to specified properties. In this dissertation we illustrated an approach that supports

generation of proof obligations during the composition of aspects and a primary model.

The approach is used to generate proof obligations that must be discharged in order to

verify properties that constrain the effects of sequences of operations on system states. A

105

proof obligation can be discharged manually or with the help of automated tools. If it is

determined that the proof obligation obtained at a point during the composition does not

hold, then the composition can be stopped at that point. The information that is available

when the composition is stopped can be used by a developer to determine what needs to be

done to correct the situation. Composition directives can be used when it is determined that

the problems can be solved by refactoring the models or by overriding default composition

rules. In order to facilitate automation we restrict the form of properties. Given an initial

proof obligation, its modification during the composition essentially involves replacing

specified parts of the proof obligations with parts of operation specifications.

7.1 Lessons Learned

In our approach, access control features are modeled as aspect models using the RBML

template notation. Access control policies are expressed in terms of UML class diagrams

with OCL constraints. Verifying access control aspect models against given policy require-

ments required us to define realization mapping pairs to show the relationship of concepts

in two models. These mapping rules were used to transform the OCL invariants in the pol-

icy model into invariants expressed in terms of aspect model concepts. A difficulty arose

when relating generic and domain-specific concepts: An aspect model describes generic

concepts while a policy model expresses domain-specific concepts. To tackle this problem

we obtained a prototypical UML model from the generic aspect model. The prototypical

model is one of the most-general context-specific models that can be instantiated from the

aspect model. It is obtained by simply replacing parameters with the parameter names. The

multiplicity parameters are replaced with the weakest form of multiplicities allowed by the

aspect model. This prototypical model is used to establish that an aspect model enforces

access control policies expressed as UML class models.

One can claim that directives can be determined only after two models are composed

106

once and problems are discovered by evaluating the composed result. However we have

discovered that there are cases that can be anticipated even before the composition. For

example, in case of a postcondition that describes what should be the result of the oper-

ation using result keyword, the default merge rules produce the conjunction of two OCL

expressions that has two result keywords. This is not the desired result (refer to an example

composition for CheckAccess operation shown in Section 5.3). Knowledge of the default

merge rules can also be used to predict composition problems. It is true that selecting

the right composition directives is heavily dependent upon human knowledge. More work

needs to be done on providing support for selecting composition directives.

Our verifiable composition approach allows the policy aspect to be methodically inte-

grated with the application, and the process can also be used to incorporate multiple policies

when it is applied to compose the integrated aspect model with the application. Key chal-

lenges were (1) to determine what types of property to verify and (2) to make the process

of generating and evaluating the proof obligation automatable. In the current approach, we

target properties that constrain the effects of sequences of operations on system states. Op-

eration specifications are written based on a triggering operation of which behavior affects

the property. The verifiable composition in our work is accomplished in two steps. First,

two class diagrams are composed using composition directives to fix any known problems

during the composition. Second, the proof obligation is generated from the property to

verify and the operation specifications in the composed class model.

7.2 Future Work

Selecting composition directives in our aspect composition approach is currently based on

a modeler’s knowledge of the policies. We plan to extend the current approach by treat-

ing the composition directives as transformations and develop a more systematic approach

to selecting composition directives based on pre- and postconditions associated with the

107

transformation.

We plan to develop tool support for composition that will include support for generating

proof obligations and also investigating ways of integrating existing proof tools that can be

used to assist in generating and discharging proof obligations during composition of aspect

and a primary model.

Security policies including access control policies may change during a mission and

evolving systems must keep pace with those changes. Our approach can be extended to

evolving security policies. By encapsulating security concerns (in aspects), changes can be

made in the aspect, and the effects can be incorporated into the models through composi-

tion. We will investigate how aspects can be extracted from the composed model, how they

can be modified, and the modified aspect once again woven with the application.

We also plan to explore an approach to the composition with traceable properties that do

not require a post-composition verification. An initial idea is to make properties in aspects

traceable throughout the composition so that the composition may be accomplished in a

manner that the result must have the desired properties. Some kind of treatment of the

traces obtained in the verification when the property is not satisfied would seem to be of

great interest. More precisely, that the representation of the traces should be visual by using

some animated representation of the UML diagrams which could help the user to locate the

error source very quickly. Chapter 5 in this dissertation shows preliminary work in this

direction.

We are also currently investigating techniques for transforming aspect models to pro-

gramming aspects and considering using either the mapping from Themes to implementa-

tion suggested by Clarke et. al [5, 19] or the aspect-based model transformation techniques

suggested by Simmonds et al. [83] as a framework for our extension.

108

Appendix A

An RBAC Aspect Model

A.1 Operation specifications for generic RBAC aspect
model

context �User:: �CreateSession(roles:Set(�Role)): �Session

pre: self. �AssignedRoles � includesAll(roles)

post: result.oclIsNew()

and self. �Session=self@pre. � Session � including(result)

and result. �Role= roles

context �User :: �AssignRole (r : �Role) : Boolean

pre: self. �Role � excludes (r)

post: self. �Role=self@pre. �Role � including(r)

context �Session :: �AddActiveRole (r : �Role) : Boolean

pre: self. �Role � excludes (r)

and self. �User. �AssignedRoles() � includes(r)

post: self. �Role=self@pre. �Role � including (r)

context �Role:: �GrantPemission(p: � Permission)

109

pre: self. �Permission � excludes(p)

post: self. �Permission=self@pre. �Permission � including(p)

context �User :: �DeassignRole (r : �Role) : Boolean

pre: self. �Role � includes (r)

post: self. �Role=self@pre. �Role � excluding(r)

and self. �Session. �Role � excludes (r))

context �Session :: �DropActiveRole (r : �Role) : Boolean

pre: self. �Role � includes (r)

post: self. �Role=self@pre. �Role � excluding (r)

context �User :: �DeleteSession (s : � Session) : Boolean

pre: self. �Session � includes (s)

post: self. �Session=self@pre. �Session � excluding (s)

context �Session:: �Operation(� tar: �Target 1..*, � params *):Boolean

��� Operation takes 1 or more tar arguments and

��� 0 or more params arguments

pre: true

��� This operation can be invoked in any state

post:

��� The operation returns true if each call to CheckAccess

��� returns true (indicating that the session has permission

��� to perform the operation on the target), and the DoOperation

��� has returned successfully, otherwise it returns false.

110

let Repeat for i = 1 to N; N = "&� tar �
��� Repeat is a binding directive that causes elements within

��� its scope to be repeated N times when instantiated.

��� "'� tar returns the number of tar arguments.

chkAccMsg-i:OclMessage =

self ˆ �CheckAccess(� tar-i: �Target, � op: �OperationType),

��� chkAccMsg-i represents the sending of the i-th

��� CheckAccess message to itself (the session object).

��� Each CheckAccess message invokes an operation

��� that checks whether the session has permission

��� to perform the operation on each target, tar.

�
��� End of Repeat block

doOpMsg:OclMessage =

� ? ˆ �DoOperation(� tar: �Target *, � params *)

��� doOpMsg represents the sending of the DoOperation

��� message to an unknown object (the object is provided

��� when the template is instantiated).

in

��� Start of constraint in postcondition:

Repeat for i = 1 to N; N = "'� tar �
(chkAccMsg-i.hasReturned() and

chkAccMsg-i.result() = true) and �
��� End of Repeat block

(doOpMsg.hasReturned() and doOpMsg.result() = true)

��� End of Operation specification

111

context �Session:: �CheckAccess(tar: �Target,

op: �OperationType) : Boolean

pre: true

post:

��� The operation returns true if there exists an assigned

��� role that is associated with at least one permission

��� that grants the operation, op, access to the target, tar,

��� Otherwise, it returns false.

result =

self. �GetAllActiveRoles. � Permission

� exists(p � p. �Target � includes(tar)

and p. �OperationType � includes(op)))

��� End of CheckAccess specification

A.2 Operation specifications for Context-specific RBAC
aspect model

context BankUser::CreateSession(roles:Set(BankRole)):BankSession

pre: self.BankRole � includesAll(roles)

post: result.oclIsNew()

and self.BankSession=self@pre.BankSession � including(result)

and result.BankRole= roles

context BankUser :: AssignRole (r : BankRole) : Boolean

pre: self.BankRole � excludes (r)

post: self.BankRole=self@pre.BankRole � including(r)

112

context BankSession :: AddActiveRole (r : BankRole) : Boolean

pre: self.BankRole � excludes(r)

and self.User.BankRole � includes(r)

post: self.BankRole=self@pre.BankRole � including(r)

context BankSession::CheckAccess(a:Account, op:TransactionType):Boolean

pre: true

post: result =

self.BankRole.Permission � exists (p �
p.Account � includes(a) and p.TransactionType � exists(tr � tr.Type=op.Type))

context Account::withdraw(amount:Money):Boolean

pre: balance
 = amount

post: (balance = balance@pre-amount and result = true)

or result = false

context Account::deposit(amount:Money):Boolean

pre: true

post:

��� the value of balance after execution is

��� equal to the sum of amount

��� and the value of balance before execution

(balance = balance@pre + amount and result = true)

or result = false

context BankSession::withdraw(a:Account, amount:Integer):Boolean

pre: true

113

post:

let

chkAccMsg:OclMessage =

selfˆcheckAccess(a, WITHDRAW),

doOpMsg:OclMessage =

?ˆwithdraw(a, amount)

in

if chkAccMsg.hasReturned()

then if chkAccMsg.result()=true

then if doOpMsg.hasReturned()

then result = doOpMsg.result()

else result = false

endif

else result = false

endif

else result = false

endif

context BankSession::deposit(a:Account, amount:Integer):Boolean

pre: true

post:

let

chkAccMsg:OclMessage =

selfˆcheckAccess(a, DEPOSIT),

doOpMsg:OclMessage =

?ˆdeposit(a, amount)

in

114

if chkAccMsg.hasReturned()

then if chkAccMsg.result()=true

then if doOpMsg.hasReturned()

then result = doOpMsg.result()

else result = false

endif

else result = false

endif

else result = false

endif

context BankSession::transfer(a1:Account, a2, Account, amount:Integer):Boolean

pre: true

post:

let

chkAccMsg1:OclMessage =

selfˆcheckAccess(a1, TRANSFER),

chkAccMsg2:OclMessage =

selfˆcheckAccess(a2, TRANSFER),

doOpMsg:OclMessage =

?ˆtransfer(a1, a2, amount)

in

if chkAccMsg1.hasReturned() and chkAccMsg2.hasReturned()

then if chkAccMsg1.result()=true and chkAccMsg2.result()=true

then if doOpMsg.hasReturned()

then result = doOpMsg.result()

115

else result = false

endif

else result = false

endif

else result = false

endif

116

Appendix B

A BLP Aspect Model

B.1 Operation/Invariant templates for BLP

context SecurityLevel::GetAllDominatees(): Set(SecurityLevel)

body: self.dominatee � union(self.dominatee � collect(sl � sl.dominatee) � asSet())

� union(self)

context SecurityLevel::GetAllDominators(): Set(SecurityLevel)

body: self.dominator � union(self.dominator � collect(sl � sl.dominator) � asSet())

� union(self)

context SecurityLevel::GetAllDominatees(): Set(SecurityLevel)

body: self.dominatee � union(self.dominatee � collect(sl � sl.dominatee) � asSet())

� union(self)

context SecurityLevel::AddDominatee (sl:SecurityLevel):Boolean

pre: self ��
 sl

and self.dominatee � excludes(sl)

and self.GetAllDominators() � excludes(sl)

post: self.dominatee=self@pre.dominatee � including(sl)

117

context User::CreateSubject(sl:SecurityLevel):Subject

pre: self.SecurityLevel.GetAllDominatees() � includes(sl)

post: result.oclIsNew()

and self.Subject=self@pre.Subject � including(result)

and result.SecurityLevel=sl

context User :: DeleteSubject (sb : Subject) : Boolean

pre: self.Subject � includes (sb)

post: self.Subject=self@pre.Subject � excluding (sb)

context Subject::CheckAccess(t:Target, op:OperationType):Boolean

pre: true

post: result =

t.OperationType � includes (op)

and

((op.Type = OperationType::READ and

self.SecurityLevel.GetAllDominatees() � includes (t.SecurityLevel))

or

(op.Type = OperationType::WRITE and

self.SecurityLevel = t.SecurityLevel))

118

REFERENCES

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A Calculus for Access Control
in Distributed Systems. ACM Transactions on Programming Languages and Systems,
4(15):706–734, 1993.

[2] G. J. Ahn and R. Sandhu. The RSL99 Language for Role-Based Separation of Duty.
In Proceedings of the 4th ACM Workshop on Role-Based Access Control, pages 43–
54, Fairfax, VA, 1999.

[3] G. J. Ahn and M. E. Shin. Role-based authorization constraints specification using
object constraint language. In WETICE ’01: Proceedings of the 10th IEEE Interna-
tional Workshops on Enabling Technologies, pages 157–162, Washington, DC, USA,
2001. IEEE Computer Society.

[4] R. J. Anderson. A Security Policy Model for Clinical Information Systems. In IEEE
Symposium on Security and Privacy, pages 30–43, Oakland, CA, May 1996.

[5] E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis and
design. In Proceedings of the International Conference on Software Engineering,
pages 158–167, 2004.

[6] S. Barker. Security Policy Specification in Logic. In Proceedings of the International
Conference on Artificial Intelligence, pages 143–148, Las Vegas, NV, 2000.

[7] S. Barker and A. Rosenthal. Flexible Security Policies in SQL. In Proceedings of the
15th Annual IFIP WG 11.3 Working Conference on Data and Applications Security,
Niagara-on-the-Lake, Canada, 2001.

[8] J. F. Barkley, K. Beznosov, and J. Uppal. Supporting Relationships in Access Control
Using Role Based Access Control. In Proceedings of the 4th ACM Workshop on
Role-Based Access Control, pages 55–65, Fairfax, VA, October 1999.

[9] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and
multics interpretation. Technical Report MTR-2997, MITRE Corporation, Bedford,
MA, July 1975.

[10] L. Bergmans and M. Aksit. Composing multiple concerns using composition filters.
Communications of the ACM, 44(10):51–57, Oct 2001.

119

[11] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An Access Control Model Support-
ing Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database
Systems, 23(3):231–285, 1998.

[12] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access Con-
trol Model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control,
pages 21–30, Berlin, Germany, 2000.

[13] K.J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA, 1977.

[14] M. Jazayeri C. Ghezzi and D. Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, 1991.

[15] M. T. Chan and L. F. Kwok. Integrating Security Design into the Software Devel-
opment Process for E-commerce Systems. Information Management and Computer
Security, 9(2-3):112–122, 2001.

[16] F. Chen and R. Sandhu. Constraints for Role-Based Access Control. In Proceedings
of the 1st ACM Workshop on Role-Based Access Control, Gaithersburg, MD, 1995.

[17] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer
Security Policies. In IEEE Symposium on Security and Privacy, Oakland, CA, May
1987.

[18] S. Clarke. “Extending Standard UML with Model Composition Semantics”. Science
of Computer Programming, 44(1):71–100, July 2002.

[19] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design. Addison-Wesley
Professional, 2005.

[20] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separating concerns throughout the
development lifecycle. In Proceedings of the 3rd ECOOP Aspect-Oriented Program-
ming Workshop, Lisbon, Portugal, June 1999.

[21] S. Clarke and J. Murphy. Developing a tool to support the application of aspect-
oriented programming principles to the design phase. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE ’98), Kyoto, Japan, April 1998.

[22] N. Damianou. A Policy Framework for Management of Distributed Systems. PhD
thesis, University of London, London, U.K., 2002.

[23] N. Damianou and N. Dulay. The Ponder Policy Specification Language. In Proceed-
ings of the Policy Workshop, Bristol, U.K., 2001.

[24] N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi. Tools for Domain-
based Policy Management of Distributed Systems. In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium, Florence, Italy, April 2002.

120

[25] G. Engels, J. M. Küster, R. Heckel, and M. Lohmann. Model-based verification and
validation of properties. Electr. Notes Theor. Comput. Sci., 82(7), 2003.

[26] D.F. Ferraiolo, D.R. Kuhn, and R. Chandramouli. Role-Based Access Control. Artech
House computer security series. 2003.

[27] D.F. Ferraiolo, R. Sandhu, S. Gavrila, and D. R. Kuhn an d R. Chandramouli. Pro-
posed NIST Standard for Role-Based Access Control. ACM Transactions on Infor-
mation and Systems Security, 4(3):224–274, August 2001.

[28] J. L. Fiadeiro and A. Lopes. Algebraic Semantics of Coordination or What Is in a
Signature. In A. Haeberer, editor, Proceedings of the 7th International Conference
on Algebraic Methodology and Software Technology (AMAST’98), volume 1548 of
Lecture Notes in Computer Science, pages 293–307, Amazonia, Brasil, January 1998.
Springer-Verlag.

[29] R. B. France and G. Georg. Modeling fault tolerant concerns using aspects. Technical
Report 02-102, Computer Science Department, Colorado State University, 2002.

[30] R. B. France, D.K. Kim, S. Ghosh, and E. Song. A UML-based pattern specification
technique. IEEE Transactions on Software Engineering, 30(3):193–206, March 2004.

[31] R. B. France, I. Ray, G. Georg, and S. Ghosh. An aspect-oriented approach to de-
sign modeling. IEE Proceedings - Software, Special Issue on Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture Design, 151(4):173–185, Au-
gust 2004.

[32] G. Georg, R. B. France, and I. Ray. An Aspect-Based Approach to Modeling Security
Concerns. In Proceedings of the Workshop on Critical Systems Development with
UML, Dresden, Germany, 2002.

[33] G. Georg, R. B. France, and I. Ray. Designing High Integrity Systems using Aspects.
In Proceedings of the Fifth IFIP TC-11 WG 11.5 Working Conference on Integrity and
Internal Control in Information Systems (IICIS 2002), Bonn, Germany, November
2002.

[34] G. Georg, I. Ray, and R. B. France. Using Aspects to Design a Secure System. In
Proceedings of the Interational Conference on Engineering Complex Computing Sys-
tems (ICECCS 2002), pages 117–126, Greenbelt, MD, December 2002. ACM Press.

[35] V. Gligor. Characteristics of Role Based Access Control. In Proceedings of the 1st
ACM/NIST on Role-Based Access Control Workshop, Gaithersburg, MD, November
1995.

[36] D. Gluch and J. Brockway. An introduction to software engineering practices using
model-based verification, 1999.

121

[37] D. Gluch and C. Weinstock. Model-based verification: A technology for dependable
system upgrade. Technical Report CMU/SEI-98-TR-009, ADA354756, Pittsburgh,
PA.: Software Engineering Institute, Carnegie Mellon University, 1998.

[38] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling Crosscutting Constraints in
Domain-Specific Modeling. Communications of the ACM, 44(10):87–93, October
2002.

[39] R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in Open Distributed En-
vironment. In IEEE Symposium on Security and Privacy, pages 3–14, Oakland, CA,
May 1998.

[40] Q. He. Requirements-Based Access Control Analysis and Policy Specification. PhD
thesis, North Carolina State University, Raleigh, NC, 2004.

[41] M. Hitchens and V. Varadarajan. Tower: A Language for Role-Based Access Control.
In Proceedings of the Policy Workshop, Bristol, U.K., 2001.

[42] J. A. Hoagland, R. Pandey, and K. N. Levitt. Security Policy Specification Using
a Graphical Approach. Technical Report CSE-98-3, Computer Science Department,
University of California Davis, July 1998.

[43] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Expressing
Authorizations. In IEEE Symposium on Security and Privacy, pages 31–42, Oakland,
CA, May 1997.

[44] J. Jurjens. Towards development of secure sytems using umlsec. In Proc. of the 4th
Int’l. Conf. on Fundamental Approaches to Software Engineering, pages 187–200,
Genova, Italy.

[45] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Get-
ting started with AspectJ. Communications of the ACM, 44(10):59–65, October 2001.

[46] K. Kieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming with adap-
tive methods. Communications of the ACM, 44(10):39–41, October 2001.

[47] D. K. Kim. A Meta-Modeling Approach to Specifying Patterns. PhD thesis, Colorado
State University, Fort Collins, CO, 2004.

[48] D. K. Kim, I. Ray, R. B. France, and N. Li. Modeling role-based access control using
parameterized uml models. In FASE, pages 180–193, 2004.

[49] M. Koch, L. V. Mancini, and F. Parisi-Presicce. A graph-based formalism for RBAC.
ACM Trans. Inf. Syst. Secur., 5(3):332–365, 2002.

[50] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A uml-based modeling language
for model-driven security. In 5th Int’l. Conf. on the Unified Modeling Language,
2002, pages 426–441, 2002.

122

[51] Formal Systems (Europe) Ltd. Failures-divergence refinement: Fdr2 user manual,
1997.

[52] E. Lupu and M. Sloman. Conflict Analysis for Management Policies. In Proceedings
of the 5th IFIP/IEEE International Symposium on Integrated Network Management,
pages 430–443, San Diego, California, May 1997. Chapman & Hall.

[53] J. Michael. A Formal Process for Testing Consistency of Composed Security Policy.
PhD thesis, George Mason University, Fairfax, Virginia, 1993.

[54] N. Minsky, V. Ungureanu, W. Wang, and J. Zhang. Building Reconfiguration Prim-
itives into the Law of a System. In Proceedings of the International Conference on
Configurable Distributed Systems, pages 89–97, Annapolis, MD, May 1996.

[55] J. D. Moffett. Control Principles and Role Hierarchies. In Proceedings of the 3rd
ACM/NIST on Role-Based Access Control Workshop, Fairfax, VA, October 1998.

[56] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of Interest. ACM
Transactions on Information Systems Security, 2:3–33, 1999.

[57] OASIS. XACML Language Proposal, Version 0.8. Technical report, Organization
for the Advancement of Structured Information Standards, January 2002. Available
electronically from http://www.oasis-open.org/committees/xacml.

[58] OMG Adopted Specification ptc/03-10-04. The Meta Object Facility (MOF) Core
Specification. Version 2.0, OMG, http://www.omg.org.

[59] R. Ortalo. A Flexible Method for Information Systems Security Policy Specification.
In Proceedings of the 5th European Symposium on Research in Computer Security,
Louvain-la-Neuve, Belgium, 1998. Springer-Verlag.

[60] S. Osborn and Y. Guo. Modelling Users in Role-Based Access Control. In Proceed-
ings of the 5th ACM Workshop on Role-Based Access Control, pages 31–37, Berlin,
Germany, July 2000.

[61] H. Ossher and P. Tarr. Using multidimensional separation of concerns to (re)shape
evolving software. Communications of the ACM, 44(10):43–50, October 2001.

[62] J. A. D. Pace and M. R. Campo. Analyzing the role of aspects in software design.
Communications of the ACM, 44(10):66–73, Oct. 2001.

[63] C. Pfleeger and S. Pfleeger. Security in Computing, Third Edition. Prentice Hall,
2003.

[64] J. Ramachandran. Designing Security Architecture Solutions. John Wiley & Sons,
2002.

123

[65] A. Rashid. A Hybrid Approach to Separation of Concerns: The Story of SADES.
In 3rd International Conference on Meta-Level Architectures and Separation of Con-
cerns (Reflection), Springer-Verlag Lecture Notes in Computer Science 2192, pages
231–249, Kyoto, Japan, September 25–28 2001.

[66] A. Rashid and R. Chitchyan. Persistence as an Aspect. In 2nd International Con-
ference on Aspect-Oriented Software Development, ACM, pages 120–129, Boston,
March 2003.

[67] A. Rashid, A. Moreira, and J. Araujo. Modularization and Composition of Aspectual
Requirements. In 2nd International Conference on Aspect-Oriented Software Devel-
opment, ACM, pages 11–20, Boston, March 2003.

[68] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early Aspects: A Model for Aspect-
Oriented Requirements Engineering. In IEEE Joint International Conference on Re-
quirements Engineering, IEEE Computer Society Press, pages 199–202, Essen, Ger-
many, September 9–13 2002.

[69] I. Ray, R. B. France, N. Li, and G. Georg. An aspect-based approach to modeling
access control concerns. Information and Software Technology, 40(9):557–633, 2004.

[70] I. Ray, N. Li, R. B. France, and D. K. Kim. Using UML to visualize role-based access
control constraints. In Proceedings of the Symposium on Access Control Models and
Technologies (SACMAT), pages 31–40, 2004.

[71] I. Ray, N. Li, D. K. Kim, and R. France. Using parameterized UML to specify and
compose access control models. In Proceedings of Sixth IFIP TC-11 WG 11.5 Work-
ing Conference on Integrity and Internal Control in Information Systems (IICIS 2003),
2003.

[72] R. Reddy, R. B. France, S. Ghosh, F. Fleury, and B. Baudry. Model composition - a
signature based approach. In Proceedings Aspect Oriented Modeling workshop held
with MODELS/UML 2005, Montego Bay, Jamaica, October 2005.

[73] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. Bieman, N. McEachen, E. Song,
and G. Georg. Directives for composing aspect-oriented design class models. in The
Transactions on Aspect-Oriented Software Development, 2006.

[74] C. Ribeiro, A. Zuquete, and P. Ferreira. SPL: An Access Control Language for Se-
curity Policies with Complex Constraints. In Proceedings of the Network and Dis-
tributed System Security Symposium, San Diego, CA, February 2001.

[75] P. Samarati and S. Vimercati. Access Control: Policies, Models and Mechanisms.
In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design
(Tutorial Lectures), pages 137–196, September 2000.

124

[76] R. Sandhu. Role-Based Access Control. In Advances in Computers, volume 46.
Academic Press, 1998.

[77] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role Based Access
Control Models. IEEE Computer, 29(2):38–47, 1996.

[78] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST Model for Role-Based Access
Control: Towards a Unified Standard. In Proceedings of the 5th ACM Workshop on
Role-Based Access Control, pages 47–61, Berlin, Germany, July 2000.

[79] R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE Commu-
nications, 32(9):40–48, September 1994.

[80] E. Sibley. Experiments in Organizational Policy Representation: Results to Date. In
Proceedings of the IEEE International Conference on Systems Man and Cybernetics,
pages 337–342, Los Alamitos, CA, 1993. IEEE Computer Society Press.

[81] E. Sibley, J. Michael, and R. Wexelblat. Use of an Experimental Policy Work-
bench: Description and Preliminary Results. In C. Landwehr and S. Jajodia, editors,
Database Security V: Status and Prospects, pages 47–76. Elsevier Science Publishers,
1992.

[82] A. R. Silva. Separation and composition of overlapping and interacting concerns.
In OOPSLA ’99 First Workshop on Multi-Dimensional separation of Concerns in
Object-Oriented Systems, Denver, Colorado, November 1999.

[83] D. Simmonds. transforming Aspect-Oriented Design Models. PhD thesis, Colorado
State University, Fort Collins, CO, 2006.

[84] E. Song, Y. R. Reddy, R. B. France, I. Ray, G. Georg, and Roger Alexander. Verifiable
composition of access control and application features. In SACMAT ’05: Proceedings
of the tenth ACM symposium on Access control models and technologies, pages 120–
129, New York, NY, USA, 2005. ACM Press.

[85] M. W. A. Steen and J. Derrick. Formalizing ODP Enterprise Policies. In Proceed-
ings of the 3rd International Enterprise Distributed Object Computing Conference,
Mannheim, Germany, September 1999.

[86] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. M. Bieman. Model composi-
tion directives. In Proceedings of the International Conference on the UML, October
2004, pages 84–97. Springer, 2004.

[87] G. T. Sullivan. Aspect-oriented programming using reflection and metaobject proto-
cols. Communications of the ACM, 44(10):95–97, October 2001.

125

[88] J. Suzuki and Y. Yamamoto. Extending UML with Aspects: Aspect Support in the
Design Phase. In Proceedings of the 3rd ECOOP Aspect-Oriented Programming
Workshop, Lisbon, Portugal, June 1999.

[89] The Object Management Group. The Common Warehouse Metamodel (CWM) Spec-
ification. Version 1.0, OMG, http://www.omg.org, 2001.

[90] The Object Management Group. UML 2.0: Superstructure Specification. Version
2.0, OMG, formal/05-07-04, 2005.

[91] The Object Management Group. OCL Specification, v2.0. Version 2.0, OMG,
formal/06-05-01, May 2006.

[92] J. E. Tidswell and T. Jaeger. An Access Control Model for Simplifying Constraint
Expression. In Proceedings of the 7th ACM conference on Computer and communi-
cations security, pages 154–163, Athens, Greese, November 2000.

[93] I. Traore and D. B. Aredo. Enhancing structured review with model-based verifica-
tion. IEEE Trans. Softw. Eng., 30(11):736–753, 2004.

[94] J. Warmer and A. Kleppe. The Object Constraint Language, Second Edition.
Addison-Wesley, 2003.

126

