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ABSTRACT 

 

 

 

GEOMORPHIC EFFECTS OF INCREASED WOOD LOADING ON HYPORHEIC  

 

EXCHANGE FLOW 

 

 

 

 Much of the recent scientific literature in the field of fluvial geomorphology has 

documented the benefits of the presence of large wood in rivers. One of these benefits is 

enhanced hyporheic exchange flow (HEF). Enhanced HEF has numerous benefits and therefore 

plays an important role in stream health. While the science of hyporheic exchange has 

progressed over the past few decades, studies thus far have focused on single pieces of wood or 

single jams. There have not yet been studies that examine whether multiple consecutive jams 

have an additive or nonlinear effect on HEF. This study focuses on the impacts of increased 

wood loading on geomorphic complexity and HEF. We examined relations among wood load, 

geomorphic complexity, and HEF by studying four different reaches along Little Beaver Creek, a 

3rd order tributary to the Cache la Poudre River in the Colorado Front Range within the Arapaho 

and Roosevelt National Forest: 1) a single channel with no logjams, 2) a single channel with 

limited logjams, 3) an anabranching channel with limited logjams, and 4) an anabranching 

channel with abundant logjams. Pearson correlations were used to analyze the relationship 

between HEF, wood loading, and geomorphic complexity. We found that increased wood 

loading increases the volume of both pools and accumulated fine sediment at the reach level. 

Additionally, HEF positively correlates with geomorphic complexity and wood loading. The 

metrics that most strongly correlated with enhanced HEF all represent factors expected to 

increase connectivity from the channel to the hyporheic zone. These preliminary results suggest 
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that it is through this mechanism of increasing hyporheic zone connectivity that HEF is 

enhanced. 
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1 - Introduction 

 

  Large wood (>1 m long and >10 cm diameter; LW) is being implemented in river 

restoration projects at an increasing rate. This increase in usage is linked to the numerous 

benefits associated with the presence of LW (Wohl, 2017). One of these benefits is enhanced 

hyporheic exchange flow (HEF). HEF is the exchange of water between the channel and the 

shallow subsurface. This exchange occurs vertically into the bed of the channel and laterally into 

the banks. The shallow subsurface beneath a river corridor is known as the hyporheic zone, 

which can be defined as the region characterized by having flow paths that originate and 

terminate in the channel (Boulton et al. 1998; Tonina and Buffington, 2009). Enhanced HEF has 

numerous benefits and therefore plays an important role in stream health. 

 LW, which includes both individual pieces and jams, enhances HEF due to the ways in 

which LW physically alters both flow within channels and the channels themselves. The LW 

load (m3/m) affects the magnitude of these physical impacts. Furthermore, channels are altered 

more by jams than by individual pieces of LW (Wohl, 2017). A jam is defined as a grouping of 

three or more pieces of LW that touch. Additionally, channel-spanning features likely alter 

channels more than features that only partially span the channel (Keller and Swanson, 1979). 

Table 1 summarizes ways in which LW can physically alter channels. 
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Table 1 – Summary of the impacts of LW 

Potential impact of LW Citations 

Increases flow resistance Manga and Kirchner, 2000; Curran and 

Wohl, 2003; Daniels and Rhoads, 2003 

Deflects flow towards the bed/banks Beschta, 1983; Cherry and Beschta, 1989 

Increases local scour Beschta, 1983; Cherry and Beschta, 1989 

Increases local stage by increasing local 

roughness 

Beschta, 1983; Bocchiola, 2011 

Enhances deposition and accumulation of 

fine materials 

Keller and Swanson, 1979; Beschta, 1983; 

Montgomery and Buffington, 1997 

Alters cross sectional geometry Keller and Swanson, 1979; Wallerstein and 

Thorne, 2004; Gendaszek et al., 2012 

Alters bedforms and is associated with 

increased undulations of the bed elevation 

Montgomery and Buffington, 1997; Curran 

and Wohl, 2003; Faustini and Jones, 2003; 

MacFarlane and Wohl, 2003 

Creates pools and associated backwater 

effects, slowing velocities, increasing depth 

immediately upstream, and creating 

turbulence 

Beschta, 1983; Nakamura and Swanson, 

1993; Abbe and Montgomery, 2003; 

MacFarlane and Wohl, 2003; Gendaszek et 

al., 2012; Davidson and Eaton, 2013 

Increases spatial heterogeneity of sediment 

in the bed 

Buffington and Montgomery, 1999; 

Faustini and Jones, 2003; MacFarlane and 

Wohl, 2003 

Decreases grain size Faustini and Jones, 2003 

Facilitates channel avulsions and shifts 

channels towards a multithread planform 

Keller and Swanson, 1979; Abbe and 

Mongomery, 2003; O’Connor et al., 2003; 

Collins et al., 2012; Wohl, 2011b 

Stabilizes multithread channels Collins et al., 2012 

Promotes overbank flow and connectivity 

to the floodplain 

Jeffries et al., 2003; Sear et al., 2010 

 

The aforementioned ways in which LW alters channel morphology all individually have 

the potential to impact HEF (Figure 1). These impacts on HEF have been quantitatively assessed 

through the use of dye, temperature, and electrical resistivity (Westhoff et al., 2011; Fox et al., 

2016; Sparacino et al., 2019).  HEF is primarily driven by pressure gradients, hyporheic area, and 

hydraulic conductivity (Gooseff et al., 2006; Buffington and Tonina, 2009). As an obstacle itself, 

driving flow towards the bed and banks, LW increases pressure gradients (Sawyer et al., 2011). 

Channel-spanning features affect HEF more than partially spanning features (Hester and Doyle, 



3 

 

2008, Sawyer et al., 2011). Additionally, the increased scour, bed undulations, bedform 

complexity, and turbulence created by the presence of LW all increase pressure gradients that in 

turn enhance HEF (Sawyer et al., 2011). The pools and subsequent widening that occur upstream 

of LW increase the area of channel that is linked to the hyporheic zone. Additionally, if a 

channel shifts from a single channel to a multithread system, the potential area over which HEF 

can occur is further increased (Tonina and Buffington, 2009). Finally, the increased substrate 

heterogeneity has the potential to enhance HEF (Marion et al., 2009). 

The importance of enhanced HEF comes in the benefits to stream health. HEF transfers 

nutrients, solutes, and dissolved oxygen into the subsurface, improving habitat quality for 

bacteria, fungi, and micro/macro invertebrates (Boulton et al., 1998). HEF also results in an 

upwelling of nutrient-rich hyporheic water and increases overall nutrient retention (Lautz et al., 

2006; Fanelli and Lautz, 2008; Sawyer and Cardenas, 2012). HEF functions as the “liver of the 

river” in that it increases water-exposure time to microbial communities that degrade 

contaminants and improve stream health (Fanelli and Lautz, 2008). Both invertebrates and fish 

embryos are extremely sensitive to temperature and take refuge in the hyporheic zone, where 

daily temperature fluctuations are buffered (Sawyer and Cardenas, 2012; Sawyer et al., 2012a). 

Understanding the influence of wood on HEF is therefore necessary for effective stream 

restoration and management. 
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Figure 1 - Conceptual model displaying physical impacts of LW and potential influences on 

HEF 
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While the science of hyporheic exchange has progressed over the past few decades, 

studies thus far have focused on single pieces of wood or single jams (e.g., Lautz et al., 2006; 

Sawyer et al., 2011). There have not yet been studies that examine whether multiple consecutive 

jams have an additive or nonlinear effect on HEF. In natural streams, it is common to have not 

one but multiple jams (Wohl and Beckman, 2014). Because we do not know whether multiple 

consecutive jams have an additive or nonlinear effect on HEF, we do not fully understand how 

LW influences HEF in natural streams or how to estimate minimum wood loads to create a 

desired magnitude of HEF in restored streams. Filling this knowledge gap will answer an 

important question that is relevant to all natural, forested streams and to the increasing use of 

engineered logjams in river restoration. 

 

1.1 - Objectives and Hypotheses: 

This thesis has two objectives. 

Objective 1: Analyze the relationship between increased wood loading and geomorphic 

complexity. 

H1o: Increased wood loading does not correlate with geomorphic complexity. 

H1a: Increased wood loading correlates with geomorphic complexity. 

 

In this study, geomorphic complexity will be defined by specific metrics including standard 

deviation of the bed elevation, substrate gradation, total sinuosity, pool volume, accumulated fine 

sediment volume, slope, and cross-sectional shape. A complete list of parameters used can be 

found in Table 3. I expect wood loading to positively correlate with these complexity metrics. 
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However, geomorphic complexity is also related to other factors such as valley geometry, 

sediment supply, riparian vegetation, and flow regime. 

 

Objective 2: Analyze the relationship between HEF, wood loading, and geomorphic complexity. 

H2o: Increased wood loading and associated geomorphic complexity do not correlate 

with HEF. 

H2a: Increased wood loading and associated geomorphic complexity correlate with HEF. 

 

HEF can be defined numerically in several ways including, but not limited to, hyporheic area, 

proportion of surface flow involved in HEF, rate of HEF, and average residence time (e.g., 

Haggerty et al., 2002; Wörman et al., 2002). In this study, I use the metric of skewness to 

represent HEF. This metric is the statistical moment of skewness for the bulk conductivity vs. 

time: higher values of skewness represent greater HEF. I expect HEF to increase with increased 

wood loading and associated geomorphic complexity. Furthermore, I examine which variables 

feature the strongest correlations to HEF. 

 

2 - Methods 

 

2.1 - Study Area 

Field measurements were conducted on Little Beaver Creek (LBC), a 3rd order tributary 

to the Cache la Poudre River in the Colorado Front Range within the Arapaho and Roosevelt 

National Forest (Figure 2). LBC is located within the montane region at an elevation of ~2500 m. 

The predominant vegetation along the creek is old-growth riparian forest dominated by 
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ponderosa pine (Pinus ponderosa), aspen (Populus tremuloides), Engelmann spruce (Picea 

engelmannii), Douglas-fir (Pseudotsuga menziesii), and willows (Salix spp.). LW is prevalent 

throughout the entirety of LBC (Jackson and Wohl, 2015). LW is primarily recruited into the 

channels via bank erosion and individual tree fall, as there is no evidence of debris flows or 

landslides. This study site has evidence of past beaver presence, most notably in the form of an 

abandoned beaver pond formed from a dammed groundwater seep located ~20 m off channel. 

The hydrological regime consists of a snowmelt driven system with frequent convective summer 

storms. Peak bankfull flow is 0.04 m3/s and LBC has a drainage area of 37 km2 

(https://streamstats.usgs.gov/ss/). The mean annual rainfall of the montane region of the 

Colorado Front Range is 55 cm, with a mean annual temperature of 5.6° C (Barry, 1973). The 

underlying geology of the Colorado Front Range consists of Precambrian gneiss, granite and 

schist uplifted during the Laramide orogeny (Veblen and Donnegan, 2005). 
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Figure 2 - Map of Little Beaver Creek. Dots represent the upper and lower limit of the study 

area. 

2.2 - Reach Selection 

To examine relations among wood load, channel geometry, and HEF, I selected four 

reaches within 1 km on LBC: Reach 1, a single channel with no logjams, Reach 2, a single 

channel with limited logjams, Reach 3, an anabranching channel with limited logjams, and 

Reach 4, an anabranching channel with abundant logjams (Figure 3). I define “limited jams” as 

having downstream spacing between individual jams of greater than or equal to three times 

bankfull width apart and “abundant jams” as jams spaced closer than three times bankfull width.  
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Figure 3 - Planform schematic of four study reaches. Arrows signify flow direction, dashed lines 

signify side channels. Relative size of the brown bars indicates wood volume at each jam. See 

Figure 4 for location of all LW in the study area. 

The number of study reaches was limited by the integration of the field-based 

geomorphic data collection with field-based salt tracer tests and electrical resistivity 

instrumentation used to image HEF. The tracer tests are extremely labor-intensive and time-

consuming and hence constrained the number of study reaches that could be examined. 
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Figure 4 - Reach map of Little Beaver Creek with locations of all jams and individual pieces of 

LW 
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2.3 - Wood Variables 

A continuous survey of LW was recorded walking from the most downstream point of 

Reach 1 to the upstream most point of Reach 4. LW is defined as any piece of wood that has a 

diameter exceeding 10 cm and an in-channel length exceeding 1 m. The cumulative distance 

traveled upstream to each successive piece of LW was measured with either a 50 m tape 

measurer or a Laser Technology TruPulse 360° B laser rangefinder (± 0.10 m accuracy). The 

diameter and in-channel length were recorded for all pieces of LW using a hand tape and a 50 m 

tape measurer. The volume of each piece of LW was calculated using the formula for the volume 

of a cylinder. The stability, level of decay, and orientation of each piece of LW was recorded. 

Definitions of these categorical characteristics can be found in Table 2. The latitude and 

longitude of each piece of LW was recorded using a Garmin eTrex 10 GPS (± 3 m accuracy). 

LBC is located within a laterally confined valley and it was often difficult to get a signal. 

Scenarios where the GPS was unable to achieve 3 m accuracy were recorded with an asterisk. 

The cumulative distance traveled upstream was also recorded for jams. A jam is defined 

as a grouping of three or more pieces of LW that touch. A jam was classified as channel 

spanning if it completely spanned the bankfull channel and partially spanning if the jam only 

occupied a portion of the channel. All of the same measurements and classifications previously 

defined for LW were used for the key piece of each jam. The key piece is defined as the piece of 

LW that provides the most structural integrity to the jam. Each additional piece of LW in the jam 

was defined as Other 1, Other 2, etc. The diameter and in-channel length was recorded for each 

“Other” piece of wood. Jams commonly contained a considerable amount of wood and detritus 

that was too small to be considered LW. A rectangular prism that encompassed this remaining 

portion of the jam was visually estimated and the length, width, and height were measured using 
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a 50 m tape measure or a stadia rod. Furthermore, the porosity (p) of this rectangle was visually 

estimated because the degree of permeability could influence the magnitude of the pressure head. 

The volume of wood within this rectangle is therefore equal to: 𝑉 = 𝐿 × 𝑊 × 𝐻 × (1 − 𝑝) 

This volume, when combined with the volume of the key piece and other pieces yields the total 

volume of the jam. The total volume of each jam is a minimum estimate of the true volume as 

there are inevitably pieces that are buried and pieces that are too small to measure. 

The length, width, and depth of pools related to the jams were measured if present using a 

stadia rod. The pools were estimated to be rectangular prisms in which depth extended from the 

riverbed up to bankfull stage. The pools were classified as either backwater or plunge pools. 

Where present, sediment finer than the average channel substrate was measured upstream of the 

jam. The sediment accumulations were estimated to be rectangular prisms in all but one case 

where the sediment accumulation took the shape of a triangular prism. A stadia rod was used to 

measure the length and width of the sediment accumulation while a piece of rebar was probed 

into the accumulation to obtain the depth. 
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Table 2 - Categorical characteristics of LW 

Category Classification Description 

Stability Unattached The piece of LW lies loosely in the channel 

Bridge Both ends of LW rest upon opposing banks, propping 

piece above the channel 

Ramp Left/Right One end of LW sits on river left or river right bank, 

while the other end rests in the channel 

Pinned Piece of LW is held in place in at least one spot by 

boulders or another piece of wood 

Buried Part of LW piece is buried in the channel. Pieces can be 

both buried and a ramp left/right or pinned 

Root Wad Yes/No Does the piece of LW have a root wad attached 

Decay D1 Piece still has its bark, small branches, and needles 

D2 Piece has lost its needles and smaller branches 

D3 Piece has lost a significant portion of its bark 

D4 Piece is rotten to the point that pieces can be pulled 

back by hand 

Alive Piece is a part of a tree that is still alive 

Orientation Parallel Piece is oriented parallel to the flow direction 

Perpendicular Piece is oriented perpendicular to the flow direction 

Oblique The piece is oriented between parallel and 

perpendicular 
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2.4 - Geomorphic Variables 

 Five valley cross sections were taken in each reach. The selection of cross sections within 

each reach attempted to evenly space the cross sections while also minimizing the disturbance to 

local vegetation. Cross sectional distance from right valley-bottom edge was measured with a 

metric tape and elevation was measured using a laser rangefinder. Significant geomorphic 

features noted during the survey included, but were not limited to bankfull right, bankfull left, 

water’s edge, cut banks, and the thalweg. Bankfull was indicated by clear breaks in slope and 

occasionally by changes in vegetation. The locations of the start and end point of each cross 

section were recorded using a GPS. These valley cross sections were used to obtain the average 

valley width of each cross section. Additionally, the portions of the cross sections that 

encompassed the channel were used to determine average bankfull width, bankfull depth, and 

cross sectional area for each reach. All five cross sections were used in these averages in reaches 

1, 2, and 4. Only three valley cross sections were used in these calculations for reach 3, where 

the sinuosity of the valley caused two cross sections to diagonally cross the channel. While these 

two cross sections accurately represent the valley width, they cannot be used to accurately 

characterize bankfull width or cross sectional area. 

 A longitudinal thalweg profile was also created for the main channel of each reach and 

for side channels, where present. For each profile, a 100 m measuring tape, CST/Berger 24X 

automatic level, and stadia rod were used to survey each break in slope or every 2 m. The base of 

the stadia rod always stood on the bed in the thalweg except when major jams were present. 

Stadia rod readings were taken at the base of the jam, on top of the jam, and upstream of the jam. 

The readings taken on top of the jams were not used in calculating bed slope or the undulations 
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of the bed. The undulations of the bed were calculated from the standard deviation of the 

residuals of the longitudinal profile when regressed (Yochum et al., 2012).  

 GPS points were taken along bankfull right and left as well as along the extent of valley 

right and left. These points were used to obtain the total sinuosity of the channel using the 

distance function in ArcGIS ver 10.5. 

 A sediment distribution was created for the main channel of each reach and, where 

present, side channel. The sediment distributions were created by randomly selecting and 

measuring 100 clasts in a representative location within the channel. The grain size of each clast 

was determined by using a gravelometer. A classification of sand or silt was visually assigned to 

clasts smaller than 4 mm and a boulder was anything greater than 256 mm. These data were used 

to determine the d16, d50, d84, and gradation coefficient for each reach. Additionally, a 50 m 

measuring tape was laid in the middle of the channel. At each meter marking, a clast was 

measured from river right, the middle of the channel, and river left. 

2.5 - Subsurface Variables 

Daniel McGrath of the Department of Geosciences at Colorado State University oversaw 

two ground penetrating radar (GPR) transects using a pulseEKKO® PRO control unit with a 200 

MHz antenna. A cross-sectional transect was taken through both Reaches 1 and 4 with traces 

being taken every 10 cm. 

 HEF was measured using electrical resistivity (ER). These data were obtained under the 

supervision of Megan Doughty, Jackie Randall, and Kamini Singha from Colorado School of 

Mines (CSM). ER was collected using an IRIS Syscal Pro Resistivity Meter during constant-rate 

tracer injections of dissolved NaCl. Tracer was injected into the middle of the stream for four 
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hours for each measurement and ER was monitored for a minimum of 24 hours post injection. 

We assume that complete mixing of the tracer into the stream occurs.  

The ER data come from 4 tracer tests; one each on June 13th (reaches 1 and 2, 0.76 cms), 

July 10th (reaches 1 and 2, 0.17 cms), July 28th (reaches 1 and 2. 0.18 cms), and July 30th (reach 

4, 0.18 cms) (Doughty, 2019). I do not use the peak flow (June 13) data in this thesis because 

this test did not involve the reaches with multiple logjams. I use data from the tests on July 10th 

and July 30th to compare reaches 1, 2, and 4 because these tests have comparable discharges. I 

use the July 10th results in place of the July 28th tracer test because a thunderstorm disrupted the 

July 28th collection, altering the results. Megan Doughty and Sawyer McFadden at CSM inverted 

these data to obtain skewness values for reaches 1, 2, and 4.  

The statistical moment of skewness represents the symmetry of a distribution and is used 

in this study as a proxy for the rate of HEF. Skewness can be used to show relative increases in 

HEF i.e. twice as much skewness does not imply twice as much HEF. Figure 5a displays a 

scenario in which the tracer exits the system at the same rate as it entered. In this case, no HEF 

occurs and skewness is 0. In 5b, the tracer enters the hyporheic zone and is retained in the system 

for a longer period of time, skewing the distribution to the right. Distributions with higher values 

of skewness exhibit greater amounts of HEF. A model created to represent processes at Little 

Beaver Creek utilized a hydraulic conductivity value of 8 m/d (Doughty, 2019). 

2.6 - Statistical Methods 

 The intensive data collection and single field season limited the number of study reaches. 

With such a small sample size (n=4 for Objective 1, n=3 for Objective 2), most statistical 

methods including but not limited to a multiple linear regression model are inappropriate to use. 
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Simple linear correlations such as the Pearson correlation are the only appropriate statistical 

tools. Therefore, most relationships have been qualitatively assessed. 

 

 

Figure 5 - Conceptual drawing of HEF distributions when a) skewness is 0 and b) skewness is 

positive 
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Table 3 - Summary of all parameters used in statistical analysis 

Parameter (Units) Description 

d50 (mm) The median grain size 

Gradation coefficient 

(dimensionless) 
Gradation of the grain size distribution; 

12 (𝑑84𝑑50 +  𝑑50𝑑16) 

Average bankfull width 

(m) 

Reach averaged bankfull width 

Average bankfull depth 

(cm) 

Reach averaged bankfull depth 

Width to depth ratio 

(dimensionless) 

Ratio of average bankfull width to average bankfull depth 

Average cross sectional 

area (m2) 

Reach averaged cross sectional area 

Slope (dimensionless) Reach averaged bed slope 

Average Valley Width (m) Reach averaged valley width 

Yochum σz (m) Standard deviation of the residuals of a regressed 

longitudinal profile 

Total Sinuosity 

(dimensionless) 

Total channel length per reach, side channels included, 

normalized by valley length 

Normalized total pool 

volume (m2) 

Total volume of pools per reach normalized by valley length 

Normalized total fines 

volume (m2) 

Total volume of accumulated fine sediment per reach 

normalized by valley length 

Normalized total wood 

volume (m2) 

Total volume of both LW and jams per reach normalized by 

valley length 

Skewness   

(dimensionless) 

Proxy for rate of HEF. Statistical moment of skewness for 

the solute concentration vs. time 

 

3 - Results and Discussion  

 Preliminary GPR results suggest that the depth to bedrock is greater at reach 1 (~2-3 m) 

vs. reach 4 (~1 m). The June 13th tracer test shows that reach 2, a single channel with limited 

jams, yields a higher skewness than reach 1, a single channel with no jams (225 vs. 204). Table 4 

presents a basic summary of the sample size and mean or total values for field measured 

variables. 
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Table 4 - Summary of field data with sample size of collection. Skewness data for reaches 1 

and 2 come from the July 10th tracer test and skewness data for reach 4 come from the July 30th 

tracer test. 

Reach 1 2 3 4 

Geomorphic 
    

d50 (mm) 45 

n = 100 

60 

n = 100 

45 

n = 100 

60 

n = 100 

Gradation coefficient 2.41 

n = 100 

2.4 

n = 100 

2 

n = 100 

2.4 

n = 100 

Channel Length (m) 22 47 38.8 124.6 

Valley Length (m) 20 42 25.5 105 

Bankfull width (m) 4.7 

n = 5 

5.6 

n = 5 

7.5 

n = 3 

8.9 

n = 5 

Bankfull depth (cm) 50 

n = 5 

57 

n = 5 

53 

n = 5 

60 

n = 5 

Width to depth ratio 9.4 9.9 14.2 14.9 

Cross sectional area (m2) 1.67 

n = 5 

2.45 

n = 5 

2.48 

n = 3 

4.2 

n = 5 

Slope 0.022 0.022 0.029 0.034 

Valley Width (m) 55 

n = 5 

49 

n = 5 

27 

n = 5 

23 

n = 5 

Yochum σz (m) 0.12 0.08 0.19 0.16 

Total Sinuosity 1.1 1.1 1.65 1.81 

Wood 
    

LW volume (m3) 0 

n = 0 

0.03 

n = 1 

0.66 

n = 9 

1.15 

n = 21 

Jam volume (m3) 0 

n = 0 

3.21 

n = 2 

9.78 

n = 2 

11 

n = 13 

Total wood volume (m3) 0 3.23 10.45 12.51 

Total pool volume (m3) 0 

n = 0 

2.39 

n = 1 

32.49 

n = 2 

9.06 

n = 2 

Total fines volume (m3) 0 

n = 0 

0.61 

n = 1 

9.62 

n = 1 

2.52 

n = 3 

HEF 
    

Skewness 120 

n = 1 

185 

n = 1 

NA 

 

380 

n = 1 

 

3.1 – Hypothesis 1 

Observations in this section are drawn from a dataset with a sample size of four. 

Therefore, the discussion mainly consists of qualitative conclusions. Table 5 summarizes the 
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results of the Pearson correlations against normalized total wood volume. Meaningful 

relationships are displayed in Figure 6.  

Table 5 - r2 values from Pearson correlations between geomorphic parameters and wood 

volume. Bolded parameters are interpreted as physically meaningful. 

Response variable correlated vs. 

normalized total wood volume 

Pearson r2 Direction of 

Correlation 

Normalized total pool volume 0.92 + 

Normalized total fines volume 0.92 + 

Gradation coefficient 0.89 - 

Yochum σz 0.63 + 

Average valley width 0.52 - 

Width to depth ratio 0.50 + 

Total Sinuosity 0.41 + 

Average bankfull width 0.32 + 

Slope 0.29 + 

d50 0.07 + 

Average cross sectional area 0.04 + 

Average bankfull depth 0.00 NA 

 

 

Figure 6 - Plots of meaningful relationships between geomorphic parameters and wood volume 

Although the gradation coefficient features a strong correlation to normalized total wood 

volume, the values only range from 2.0 to 2.4. The grain size distributions for the four reaches, 
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which were collectively within a kilometer of one another, were extremely similar and will not 

be discussed further.  

The two parameters that have the strongest positive correlations to normalized total wood 

volume are the normalized total pool volume and the normalized total volume of fine sediments 

(r2 = 0.92). Reaches with more wood had both more pools and larger pools. The pools and 

associated fine sediments mainly occurred at the largest jam in each reach. No individual pieces 

of LW created any pools or accumulated fines within any of the four reaches. Reach 3 had the 

largest jam in the system and consequently a larger backwater effect. The scour and turbulence 

caused by the blockage of the jam increases pool volume while the decreased velocities 

immediately upstream of the jam lead to an accumulation of fine materials. Both of the largest 

jams in reaches 3 and 4 consisted of large trees that fell perpendicularly across the channel with 

root wads still embedded in the banks. Wood recruitment via undercutting of the banks seems to 

be the process that creates the largest jams. A large piece of LW with a decay classification of 

D1 lay parallel to the stream in the pool immediately upstream of the main jam in reach 3. This 

piece of LW helped retain sediment in the pool as the smaller branches and needles likely 

shielded the sediment from flow. 

The standard deviation of the bed elevation also shows a positive correlation to 

normalized total wood volume (r2 = 0.63). This relationship supports previous research (e.g., 

Keller and Swanson, 1979; Brummer et al., 2006) and also suggests a positive feedback loop. 

The presence of LW increases heterogeneity of entrainment and deposition, which increases the 

size and frequency of undulations in the bed surface. However, these breaks in slope also aid the 

retention and deposition of LW (Braudrick and Grant, 2001). 
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3.2 - Hypothesis 2 

Observations in this section are drawn from a sample size of three. Therefore, as in the previous 

section, this discussion consists of qualitative conclusions. Table 6 summarizes the results of the 

Pearson correlations against skewness. Meaningful relationships are displayed in Figure 7.  

Table 6 - r2 values from Pearson correlations between geomorphic parameters, wood 

loading, and skewness. Bolded parameters are interpreted as meaningful. The nature of the 

potential impact on HEF is represented by an x in the final three columns. 

Predictor variable correlated vs. 

skewness 

Pearson r2 Direction of 

Correlation 

PH1 HA1 HC1 

Average bankfull width 1.00 +  x  

Average cross sectional area 1.00 +  x  

Average valley width 0.99 -  x  

Width to depth ratio 0.98 +  x  

Slope 0.97 + x   

Total sinuosity 0.94 +  x  

Normalized total fines volume 0.81 +   x 

Normalized total wood volume 0.78 + x   

Normalized total pool volume 0.76 +  x  

Average bankfull depth 0.76 +    

Yochum σz 0.57 + x   

d50 0.48 +   x 

Gradation coefficient 0.48 -   x 
1 Pressure head (PH), hyporheic area (HA), hydraulic conductivity (HC) 

Although average valley width correlates strongly with skewness, the correlation is 

inverse. Reach 4, which yielded the highest skewness and therefore had the highest rate of HEF, 

was also the most confined reach with an average valley width of only 23 m versus 55 m and 49 

m for reaches 1 and 2, respectively. We expected less confined valley segments to equate to 

greater potential for HEF to penetrate laterally into the banks, but our results did not support this 

expectation. There is more than one potential explanation for the inverse correlation between 

valley width and HEF. Little Beaver Creek is snowmelt-dominated and unlikely to have extreme 
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floods that might include sufficient flow volume to create HEF across the entire width of a wider 

valley segment. I do not know the subsurface distribution of sediments with limited permeability, 

which might be present and limit the extent of HEF. Consequently, I posit that valley width may 

serve as a limiting factor rather than a predictor of HEF. The fact that reach 4 has the greatest 

HEF despite having the narrowest valley width and shallowest depth to bedrock could also 

reflect the strong influence of the jams and other wood-related geomorphic features on HEF. 

 

Figure 7 - Plots of meaningful relationships between geomorphic parameters, wood loading, and 

skewness 
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Average bankfull width, average cross sectional area, width to depth ratio, and total 

sinuosity all have very strong positive correlations to skewness (r2 ≥ 0.94). A greater bankfull 

width, average cross sectional area, width to depth ratio, and total sinuosity all increase the 

connectivity from the channel to the hyporheic zone. This increased access to the hyporheic zone 

increases the potential for a larger hyporheic area, and therefore increases rates of HEF. 

Increased connectivity to the hyporheic zone in reach 4 likely primarily reflects the multichannel 

planform. The multichannel planform also numerically manifests itself in the higher value of 

total sinuosity in reach 4. 

 Slope also has a strong positive correlation to skewness (r2 = 0.97). Having a greater bed 

slope amplifies the magnitude of the pressure gradients, which in turn increases the rate at which 

HEF can occur (Tonina, 2005). Normalized total wood volume shows a weaker positive 

correlation to skewness (r2 = 0.78). Increased wood loading also increases the pressure gradients 

by driving flow towards the bed and banks. Similar correlations exist for normalized total fines 

volume and normalized total pool volume (r2 = 0.81, 0.76). The analysis for Hypothesis 1 shows 

that volumes of wood, fine sediments, and pools are all very closely correlated. This explains 

why they all have a similar correlation to skewness. Because jams in reach 4 were taller than 

jams in reach 2, I would expect them to have a greater impact on pressure head and connectivity 

from the channel to the hyporheic zone. 

Having a greater volume of accumulated fines on the bed surface increases the vertical 

heterogeneity of sediment, which has the potential to increase HEF. Having a greater pool 

volume increases spatial connectivity to the hyporheic area (Buffington and Tonina, 2009). 
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4 - Conclusions 

 

 Although increased wood load does not strongly correlate with all metrics representing 

geomorphic complexity, it does increase the volume of both pools and accumulated fine 

sediment at the reach level. HEF did positively correlate with geomorphic complexity and wood 

loading. The metrics that most strongly correlated with enhanced HEF all represent factors 

expected to increase connectivity from the channel to the hyporheic zone. These preliminary 

results suggest that it is through this mechanism of increasing hyporheic zone connectivity that 

HEF is enhanced rather than through the mechanisms of increasing pressure head or altering 

hydraulic conductivity. Future work will increase the sample size, allowing for a linear 

regression analysis, which will provide a stronger answer to objective 2. Increased wood loading 

does enhance HEF, which in turn improves stream health. This provides another reason for 

managers to implement LW in river restoration designs. 

4.1 – Future Work 

 The work from this thesis has been the first of a three-year National Science Foundation-

funded project. Future work will involve two more seasons of field work, the first of which will 

more closely analyze HEF in the more complex reaches 3 and 4. A flume study will be carried 

out at Colorado State University and a numerical model will be developed at Ohio State 

University. These models, both physical and numerical, will help answer more specific questions 

about HEF such as: 

1) Which geomorphic features are the strongest predictors on HEF? 

1) Does increased wood loading have an additive or nonlinear effect on HEF? 
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Appendices 

Appendix A - Grain size data 

Table A1 - Grain size distributions for all four reaches and side channels 

Size 

(mm) 

Reach 1 

count 

Reach 2 

count 

Reach 3 

count 

Reach 

4 count 

Reach 3 

side 

channel 

count 

Reach 4 

upstream 

side 

channel 

count 

Reach 4 

downstream 

side channel 

count 

organic 0 0 0 0 0 0 1 

sand 3 6 2 6 0 23 0 

4 1 0 0 0 0 0 0 

5.7 1 0 0 0 0 0 0 

8 0 1 0 0 0 4 0 

11.3 4 2 3 0 0 9 0 

16 7 1 4 7 0 21 3 

22.5 9 9 12 7 6 19 2 

32 8 14 22 8 7 12 5 

45 19 11 19 18 17 3 21 

60 16 22 16 15 26 4 16 

90 17 11 8 15 24 0 12 

128 9 12 8 16 8 1 18 

180 4 3 2 6 7 0 12 

256 1 6 2 1 4 3 6 

362 1 0 1 0 0 1 0 

boulder 0 2 1 1 1 0 4 

 

Table A2 - Summary data for grain size distributions 

 
Reach 1 Reach 2 Reach 3 Reach 4 Reach 3 

side 

channel 

Reach 4 

upstream 

side 

channel 

Reach 4 

downstream 

side channel 

d16 

(mm) 

16 22.5 22.5 22.5 45 1 15 

d50 

(mm) 

45 60 45 60 60 16 90 

d84 

(mm) 

90 128 90 128 128 32 180 

Gr 2.41 2.4 2 2.4 1.73 9 2 
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Table A3 - Reach 1 patchiness. One clast was measured every meter walking upstream at river 

right, river left, and the center of the channel. All grain sizes are in mm.  

Station River left Center River right 

0 32 32 60 

1 32 45 45 

2 22.5 128 32 

3 32 60 16 

4 45 22.5 32 

5 45 45 22.5 

6 60 22.5 22.5 

7 22.5 60 90 

8 8 60 45 

9 128 32 45 

10 32 60 32 

11 45 256 32 

12 11.3 90 128 

13 16 180 90 

14 45 128 5.7 

15 60 60 60 

16 22.5 45 180 

17 1 16 128 

18 1 45 256 

19 60 60 180 

20 60 60 128 

21 90 90 128 

22 256 60 60 

23 128 60 90 

24 128 90 22.5 

25 90 128 90 
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Table A4 - Reach 2 patchiness. One clast was measured every meter walking upstream at river 

right, river left, and the center of the channel. All grain sizes are in mm.  

Station 
River 

left 
Center 

River 

right 
Station 

River 

left 
Center 

River 

right 

0 sand 60 16 27 128 90 128 

1 sand 45 180 28 128 256 60 

2 22.5 90 boulder 29 90 256 60 

3 90 45 22.5 30 90 60 32 

4 180 60 90 31 45 128 22.5 

5 45 60 60 32 45 60 sand 

6 sand 45 90 33 90 sand 90 

7 22.5 128 60 34 sand 90 90 

8 60 60 60 35 128 32 256 

9 256 128 32 36 boulder 60 45 

10 16 90 128 37 boulder 256 362 

11 90 90 60 38 90 180 128 

12 32 16 180 39 128 90 32 

13 60 60 90 40 128 90 60 

14 256 22.5 60 41 45 180 45 

15 32 60 22.5 42 60 180 32 

16 sand 128 sand 43 45 sand 8 

17 sand wood wood 44 128 60 90 

18 90 362 sand 45 90 sand sand 

19 256 90 sand 46 256 90 8 

20 sand 180 sand 47 45 28 128 

21 22.5 128 16 48 90 90 boulder 

22 sand 60 16 49 32 128 45 

23 256 180 60 50 60 90 32 

24 180 60 boulder 51 60 60 45 

25 180 45 90 52 60 32 60 

26 128 362 60     
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Table A5 - Reach 3 patchiness. One clast was measured every meter walking upstream at river 

right, river left, and the center of the channel. All grain sizes are in mm. 

Station River 

left 

Center River 

right 

Station River 

left 

Center River 

right 

0 128 60 256 25 org 60 organic 

1 45 60 128 26 90 90 sand 

2 60 256 90 27 90 sand sand 

3 90 90 90 28 60 sand sand 

4 16 45 22.5 29 45 sand sand 

5 16 90 boulder 30 90 sand organic 

6 sand 45 60 31 90 sand 11.3 

7 sand 45 90 32 60 90 45 

8 sand 90 128 33 45 16 22.5 

9 60 128 128 34 22.5 60 11.3 

10 22.5 256 180 35 32 sand 16 

11 45 90 45 36 45 60 sand 

12 90 60 sand 37 180 sand organic 

13 90 180 boulder 38 90 128 32 

14 128 128 90 39 22.5 boulder sand 

15 90 90 90 40 90 128 sand 

16 60 90 22.5 41 180 90 45 

17 90 128 boulder 42 45 22.5 45 

18 32 32 60 43 32 45 32 

19 16 90 60 44 362 90 32 

20 wood wood wood 45 11.3 45 32 

21 organic organic organic 46 16 90 32 

22 45 90 organic 47 32 22.5 90 

23 45 22.5 organic 48 organic 22.5 45 

24 90 60 organic 
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Table A6 - Reach 4 patchiness. One clast was measured every meter walking upstream at river 

right, river left, and the center of the channel. All grain sizes are in mm. 

Station River left Center River right Station River left Center River right 

0 256 60 60 50 sand 11.3 32 

1 60 90 256 51 sand 11.3 sand 

2 60 128 180 52 sand 22.5 11.3 

3 boulder 128 boulder 53 60 22.5 45 

4 60 180 180 54 22.5 32 sand 

5 60 128 boulder 55 90 16 sand 

6 90 60 128 56 60 11.3 sand 

7 45 362 180 57 60 16 sand 

8 32 boulder 128 58 45 32 sand 

9 32 60 128 59 22.5 45 22.5 

10 sand 32 90 60 sand 60 60 

11 sand 180 22.5 61 60 60 45 

12 22.5 60 60 62 45 60 22.5 

13 45 60 90 63 32 16 60 

14 45 90 60 64 32 60 11.3 

15 45 128 boulder 65 22.5 45 90 

16 90 90 45 66 45 22.5 32 

17 45 128 90 67 256 60 45 

18 60 180 60 68 60 32 90 

19 60 90 128 69 128 45 16 

20 256 45 60 70 60 60 60 

21 16 90 90 71 90 90 22.5 

22 60 60 32 72 90 90 60 

23 128 90 90 73 90 60 60 

24 180 60 60 74 90 90 60 

25 128 90 45 75 90 90 sand 

26 180 60 boulder 76 16 60 45 

27 16 256 90 77 11.3 60 180 

28 90 128 45 78 sand 45 180 

29 45 180 22.5 79 45 sand 256 

30 60 60 45 80 60 256 sand 

31 32 90 60 81 90 90 sand 

32 60 45 256 82 90 128 45 

33 45 180 60 83 32 128 60 

34 45 45 45 84 45 45 60 

35 45 45 60 85 45 32 90 

36 90 90 60 86 22.5 90 180 

37 90 128 60 87 45 128 90 

38 45 60 128 88 45 90 90 

39 45 32 32 89 90 60 128 

40 sand 32 180 90 45 60 22.5 

41 wood wood wood 91 180 90 60 

42 wood wood wood 92 128 22.5 90 

43 wood wood wood 93 60 60 128 

44 sand sand sand 94 32 90 180 

45 sand sand 90 95 45 sand 256 

46 sand sand 128 96 90 60 60 

47 sand sand 60 97 90 128 128 

48 sand 90 90 98 60 60 boulder 

49 11.3 60 60 99 128 22.5 128 
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Table A7 - Reach 4 side channel patchiness. One clast was measured every meter walking 

upstream at river right, river left, and the center of the channel. All grain sizes are in mm.  

Upstream 

Side 

Channel 

   Downstream 

Side Channel 
   

Station River left Center River right Station River left Center River right 

0 boulder organic organic 0 90 16 45 

1 organic 256 organic 1 32 22.5 90 

2 organic organic 180 2 22.5 45 22.5 

3 organic organic organic 3 sand 60 boulder 

4 boulder sand boulder 4 sand 45 128 

5 sand 180 organic 5 60 22.5 60 

6 60 sand sand 6 45 22.5 128 

7 8 180 sand 7 sand 90 45 

8 boulder 256 128 8 boulder 128 90 

9 boulder 362 90 9 128 90 32 

10 organic 128 128 10 180 45 45 

11 organic organic sand 11 128 sand 90 

12 organic sand 11.2 12 180 45 128 

13 organic 22.5 128 13 90 90 45 

14 32 32 45 14 128 60 60 

15 11.3 sand organic 15 90 32 90 

16 organic 11.3 8 16 60 60 128 

17 sand 16 16 17 60 60 256 

18 sand 22.5 16 18 128 sand 128 

19 11.3 32 22.5 19 45 boulder 128 

20 sand 22.5 32 20 90 128 180 

21 90 45 22.5 21 60 128 128 

22 wood wood wood 22 boulder 90 90 
    23 boulder boulder 60 
    24 60 boulder 128 
    25 128 boulder 180 
    26 180 256 180 
    27 128 180 boulder 
    28 boulder 180 90 
    29 256 180 90 
    30 128 90 180 
    31 22.5 60 128 
    32 32 128 180 
    33 90 128 90 
    34 32 128 128 
    35 45 wood organic 
    36 organic organic organic 
    37 organic organic organic 
    38 organic organic organic 
    39 organic organic organic 
    40 organic 362 organic 
    41 organic sand 180 
    42 wood boulder boulder 
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Appendix B - Geomorphic data 

Table B1 - Cross sectional data 

Cross Section Valley width (m) Bankfull width (m) Bankfull depth (cm) 

R1XS1 56 5.35 40 

R1XS2 56 5.1 40 

R1XS3 55.3 4.25 50 

R1XS4 55.2 4.9 55 

R1XS5 52.7 3.8 65 

R2XS0 50.8 5 55 

R2XS1 49.2 5.2 55 

R2XS2 50 5.7 65 

R2XS3 47.1 5.3 50 

R2XS4 50 7 60 

R3XS1 16.4 6.5 35 

R3XS2 23.5 8.5 75 

R3XS3 32 14.4 55 

R3XS4 32.4 16 60 

R3XS5 30.6 7.5 40 

R4XS1 26.5 4.4 45 

R4XS2 21.1 8.9 70 

R4XS3 24.6 18.1 85 

R4XS4 20.3 8.4 55 

R4XS5 24.3 4.8 45 

 

Table B2 - Reach 1 longitudinal profile of the thalweg 

Horizontal distance (m) Relative elevation (m) 

1.1 0 

3.5 0.12 

5.8 -0.04 

8.3 0.08 

11.6 0.11 

15.2 0 

18.2 0.01 

19.4 0.21 

20.8 0.29 

22 0.45 
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Table B3 - Reach 2 longitudinal profile of the thalweg 

Horizontal distance (m) Relative elevation (m) 

0 0 

2 0.01 

4.5 0.05 

6.8 0.02 

9.1 0.05 

10.7 0.18 

12.2 0.2 

12.41 0.81 

13.3 0.29 

14.1 0.2 

16.2 0.17 

18 0.24 

20.8 0.32 

22.3 0.44 

24 0.63 

26 0.61 

28 0.57 

30.2 0.62 

32.1 0.77 

34 0.89 

35.6 0.94 

37 0.92 

38.2 0.82 

40.3 0.81 

42.3 0.84 

44.4 1 

45.8 1.1 

47 1.05 
1 Measurement taken on top of key jam. Value was not used in calculation of σz. 
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Table B4 - Reach 3 longitudinal profile of the thalweg 

Horizontal distance (m) Relative Elevation (m) 

0 0 

2.3 0.02 

3.5 0.02 

5.7 0.08 

7.4 0.08 

8.6 0.29 

11 0.37 

12.5 0.53 

13.8 0.44 

14.41 1.781 

16.1 0.83 

18.6 0.93 

20.4 1.09 

23.2 1.03 

24.5 0.94 

26.8 1.03 

28.9 1 

31 0.97 

32.5 0.86 

33.4 0.85 

35 0.86 

37.6 0.96 

38.8 1.14 
1 Measurement taken on top of key jam. Value was not used in calculation of σz. 
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Table B5 - Reach 4 longitudinal profile of the thalweg 

Horizontal distance 

(m) 

Relative elevation 

(m) 

Horizontal distance 

(m) 

Relative elevation 

(m) 

0 0 65.8 2.18 

1.4 -0.01 67.8 2.38 

2.8 0.12 69.8 2.41 

4 0.11 71.9 2.48 

5.5 0.21 73.8 2.44 

6.9 0.16 75.9 2.49 

8.6 0.26 78 2.46 

10.5 0.33 79.8 2.63 

11.3 0.5 81.3 2.76 

13 0.55 82.3 2.75 

15 0.42 83.7 2.87 

17.5 0.31 85.3 2.98 

19.9 0.64 87.1 2.97 

22.2 0.72 88.8 3.07 

24.3 0.85 90.8 3.33 

26.3 0.99 92.9 3.63 

28.1 1.01 94.8 3.72 

30 0.86 96.7 3.76 

32 0.99 98.9 3.71 

34.2 1.14 100.9 3.8 

36 1.25 102.8 3.65 

38 1.4 104.1 3.82 

40.3 1.6 106 3.84 

42.5 1.24 107.9 3.8 

44.1 1.74 109.3 3.6 

46.4 1.58 111.2 3.76 

46.81 2.631 113.2 3.8 

48.7 1.95 114.8 3.92 

50.7 1.69 116.6 3.91 

52.2 1.79 117.9 3.87 

54.3 1.93 119.8 4.01 

56.8 2.13 120.2 4.11 

59.2 2.15 121.2 3.91 

61.5 2.18 122.2 3.96 

64.5 2.17 124.6 4.24 
1 Measurement taken on top of key jam. Value was not used in calculation of σz. 
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Table B6 - Reach 4 upstream side channel longitudinal profile of the thalweg 

Horizontal distance (m) Relative elevation (m) 

0 0 

2.2 0.11 

4 0 

5.2 0.01 

6 0.24 

7.9 0.36 

9.8 0.36 

11 0.45 

13 0.55 

15.4 0.64 

17 0.66 

19 0.7 

21 0.68 

21.21 1.261 

21.5 0.61 
1 Measurement taken on top of key jam 
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Table B7 - Reach 4 downstream side channel longitudinal profile of the thalweg 

Horizontal distance (m) Relative elevation (m) 

0 0 

2 -0.05 

4 0.04 

5 0.24 

7 0.44 

9 0.23 

10.4 0.2 

12.2 0.1 

13.5 0.39 

15.5 0.55 

17.7 0.55 

19.7 0.7 

21.5 0.83 

23.4 0.9 

25.6 0.99 

27.2 1.05 

25.8 0.89 

29.2 1.34 

31.4 1.43 

33.3 1.57 

34.7 1.66 

36.7 1.85 

38.5 2.18 

40.3 2.1 

41.7 1.97 

43.8 2.04 

45.2 1.96 

45.41 2.791 
1 Measurement taken on top of key jam 
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Appendix C - Wood Data 

Table C1 - LW survey 

Piece 

ID 
Reach 

Length 

(cm) 

Diameter 

(cm) 

Volume 

(m^3) 
Stab. Decay Orien. 

Root 

Wad 
Latitude Longitude 

LW1 N/A 320 11 0.030 UN D2 PA YES 40.62006 -105.53853 

LW2 N/A 140 13 0.019 P D2 PA NO 40.62012 -105.53851 

LW3 N/A 190 12 0.021 P D2 PA YES 40.62013 -105.53862 

LW4 N/A 280 18 0.071 B D4 PE NO 40.6201 -105.53867 

LW5 N/A 120 21 0.042 UN D4 PE NO 40.62008 -105.53876 

LW6 N/A 140 10 0.011 LIVE N/A PA NO 40.62006 -105.53878 

LW7 N/A 200 13 0.027 RR D3 OB NO 40.62006 -105.53878 

LW8 N/A 550 24 0.249 UN D4 PA NO 40.6199 -105.53904 

LW9 N/A 310 16 0.062 B D2 PA NO 40.6199 -105.53904 

LW10 N/A 660 15 0.117 UN D2 PA YES 40.6198 -105.53909 

LW113 N/A 480 18 0.122 RR-B D3 PE YES 40.61975 -105.5391 

LW123 N/A 420 22 0.160 RR-B D3 PE NO 40.61975 -105.5391 

LW13 N/A 160 65 0.531 RL-B D4 PE YES 40.61962 -105.5397 

LW14 N/A 670 18 0.170 RL D3 PA YES 40.61959 -105.53987 

LW15 N/A 170 13 0.023 RR D3 OB NO 40.61959 -105.53987 

LW16 N/A 170 12 0.019 P D2 PA NO 40.61942 -105.54015 

LW17 N/A 200 12 0.023 RR D3 PE NO 40.61942 -105.54015 

LW18 N/A 340 82 1.796 B D4 OB YES 40.61939 -105.54031 

LW19 2 250 12 0.028 UN D3 OB NO 40.61919 -105.54052 

LW20 N/A 330 38 0.374 RR D4 PE YES 40.61889 -105.54059 

LW21 N/A 350 28 0.216 RR D4 PE NO 40.61888 -105.54066 

LW22 N/A 170 12 0.019 UN D3 PA NO 40.61884 -105.5408 

LW23 N/A 295 11 0.028 B D4 PA NO 40.61884 -105.5408 

LW24 N/A 320 14 0.049 UN D4 PA NO 40.61854 -105.541 

LW25 N/A 230 12 0.026 P D3 PA NO 40.61844 -105.54105 

LW26 N/A 280 17 0.064 UN D2 OB NO 40.61841 -105.54104 

LW27 N/A 480 25 0.236 RR D3 OB NO 40.61841 -105.54104 

LW28 N/A 470 17 0.107 B D4 PA NO 40.61841 -105.54104 

LW29 N/A 170 13 0.023 RL D1 PA YES 40.61825 -105.54105 

LW30 N/A 480 20 0.151 UN D4 PA NO 40.61823 -105.54109 

LW31 N/A 170 11 0.016 UN D3 PA NO 40.61823 -105.54109 

LW32 N/A 670 35 0.645 UN D4 PA NO 40.61814 -105.5411 

LW33 N/A 1040 35 1.001 UN D4 PA NO 40.61808 -105.5411 

LW34 N/A 125 47 0.217 B D4 PA NO 40.61797 -105.54119 

LW35 N/A 770 29 0.509 BR D4 OB NO 40.61789 -105.54147 

LW36 N/A 400 21 0.139 B D4 PE NO 40.61784 -105.54151 

LW37 N/A 550 21 0.190 B D4 PA NO 40.61755 -105.54174 

LW38 N/A 245 12 0.028 B D4 OB NO 40.61755 -105.54174 
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Piece 

ID 
Reach 

Length 

(cm) 
Diameter 

(cm) 
Volume 

(m^3) 
Stab.1 Decay Orien.2 

Root 

Wad 
Latitude Longitude 

LW39 N/A 230 12 0.026 LIVE N/A PE NO 40.61755 -105.54714 

LW40 N/A 300 12 0.034 P D3 PA NO 40.61748 -105.54177 

LW414 N/A 550 29 0.363 B D4 PE NO 40.61738 -105.54192 

LW42 N/A 260 12 0.029 P D4 PA NO 40.61687 -105.54216 

LW43 N/A 410 11 0.039 UN D3 PA NO 40.61681 -105.54221 

LW44 N/A 230 12 0.026 B D4 PA NO 40.61681 -105.54221 

LW45 N/A 270 32 0.217 B D4 PA NO 40.61658 -105.45234 

LW46 N/A 300 18 0.076 B D4 PA NO 40.6164 -105.54276 

LW47 N/A 190 14 0.029 RR D3 OB NO 40.61628 -105.54297 

LW48 3 865 19 0.245 B D1 PA NO 40.61617 -105.54314 

LW49 3 110 14 0.017 B D4 OB NO 40.61617 -105.54318 

LW50 3 120 10 0.009 B D4 OB NO 40.61617 -105.54318 

LW51 3 130 11 0.012 RR D3 PE NO 40.61627 -105.54324 

LW52 3 130 22 0.049 UN D4 OB NO 40.61627 -105.54324 

LW53 3 450 16 0.090 RL D4 OB NO 40.61627 -105.54324 

LW54 3 250 18 0.064 B D4 PA NO 40.61628 -105.54328 

LW55 3 330 23 0.137 LIVE N/A PE NO 40.61628 -105.54328 

LW56 6 120 20 0.038 UN D4 PA NO 40.61628 -105.54328 

LW57 N/A 580 15 0.102 UN D1 OB NO 40.61629 -105.54338 

LW58 N/A 110 17 0.025 RR D4 PE NO 40.61629 -105.54371 

LW59 N/A 100 20 0.031 RR D4 OBL NO 40.61629 -105.54371 

LW60 N/A 320 18 0.081 B D4 PA NO 40.61626 -105.54399 

LW61 N/A 370 21 0.128 BR D4 PE NO 40.61629 -105.54395 

LW62 N/A 190 18 0.048 UN D4 OB NO 40.61633 -105.54414 

LW63 4 280 12 0.032 RL D4 PA NO 40.61649 -105.54469 

LW64 4 110 18 0.028 RL D2 OB YES 40.61652 -105.54478 

LW65 4 170 40 0.214 UN D4 PA NO 40.61654 -105.54485 

LW66 4 125 44 0.190 RL D4 OB NO 40.61656 -105.54488 

LW67 4 330 14 0.051 UN D4 PA NO 40.61657 -105.5449 

LW68 4 250 12 0.028 RR D4 OB NO 40.61657 -105.5449 

LW69 4 230 15 0.041 RR D4 OB NO 40.61659 -105.54496 

LW70 4 240 23 0.100 RR D3 PE YES 40.61671 -105.54509 

LW71 4 440 12 0.050 BR D4 PE NO 40.61691 -105.5455 

LW72 4 360 22 0.137 B D4 PE YES 40.61696 -105.54557 

LW73 4 330 18 0.084 RR D4 OB NO 40.61696 -105.54557 

LW74 4 100 16 0.020 RR D4 PE NO 40.61696 -105.54557 

LW75 4 140 13 0.019 B D4 PA NO 40.61653 -105.54462 

LW76 4 130 27 0.074 UN D4 PA NO 40.61657 -105.54465 

LW77 4 110 24 0.050 UN D4 PA NO 40.61657 -105.54465 

LW78 4 310 15 0.055 UN D4 PA NO 40.61666 -105.54471 

LW79 4 100 33 0.086 RL D4 OB NO 40.61666 -105.54475 
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Piece 

ID 
Reach 

Length 

(cm) 
Diameter 

(cm) 
Volume 

(m^3) 
Stab. Decay Orien. 

Root 

Wad 
Latitude Longitude 

LW80 4 100 27 0.057 RR D4 OB NO 40.61666 -105.54475 

LW81 4 300 22 0.114 P D4 OB NO 40.61677 -105.54499 

LW82 4 220 12 0.025 B D3 OB NO 40.61677 -105.54499 

LW83 4 340 15 0.060 RL D4 PA NO 40.61681 -105.54511 

1 Stability. LW can be characterized as live, unattached (UN), bridge (BR), ramp left/right 

(RL/R), pinned (P), or buried (B). Pieces can be both buried and another characteristic i.e. RR-B 

2 Orientation. LW is characterized as either parallel (PA), perpendicular (PE), or oblique (OB) 

3 LW 11/12 have a plunge pool with a volume of 1.84 m3 

4 LW 41 has a plunge pool with a volume of 5.71 m3 
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Table C2 - Jam survey. All jams are backwater pools unless noted otherwise 

Jam 

ID 
Reach 

Span.
1 

RL 

(cm) 

RW 

(cm) 

RH 

(cm) 

p 2 

(%) 

TV3 

(m3) 

PV4 

(m3) 

FV5 

(m3) 
Latitude Longitude 

J1 N/A P 410 140 80 45 3.46 2.98 --- 40.6201 -105.53881 

J2 N/A P 190 130 40 70 1.04 --- --- 40.62009 -105.53899 

J3 N/A P 380 190 90 75 2.42 3.5 --- 40.6199 -105.53904 

J4 2 F 350 80 40 60 0.62 2.39 0.61 40.6192 -105.5405 

J5 2 P 150 110 90 60 2.59 --- --- 40.61896 -105.54054 

J6 N/A P 670 60 65 20 2.89 --- 4.75 40.61886 -105.54062 

J7 N/A P 490 180 85 35 5.42 --- --- 40.61882 -105.54074 

J8 N/A C N/A N/A N/A N/A 0.31 --- 1.16 40.61887 -105.5407 

J9 N/A F 310 1430 45 45 21 2.7 5.51 40.61846 -105.54078 

J10 N/A P 190 55 20 20 0.48 --- --- 40.61854 -105.541 

J11 N/A P 160 45 40 40 0.17 --- --- 40.61823 -105.54109 

J12 N/A P 100 50 60 60 0.08 --- --- 40.61789 -105.5413 

J13 N/A P 130 230 25 25 2.12 2.28 --- 40.61784 -105.54146 

J14 N/A P 470 65 70 70 0.61 --- --- 40.61784 -105.54151 

J15 N/A P 240 45 30 30 0.41 --- --- 40.61699 -105.54209 

J16 N/A P 200 40 40 40 0.23 --- --- 40.61665 -105.54225 

J17 N/A P 200 40 45 50 0.44 --- --- 40.61652 -105.54248 

J18 3 F 810 165 100 40 9.71 30.566 9.62 40.61614 -105.54307 

J19 3 P 80 40 25 60 0.07 --- --- 40.6162 -105.54314 

J20 N/A P 140 50 35 35 0.63 --- --- 40.61629 -105.54371 

J21 N/A P 230 110 70 80 0.19 --- --- 40.61632 -105.54409 

J22 N/A P 500 80 60 60 1.02 --- --- 40.61646 -105.54446 

J23 4 P 140 30 35 70 0.08 --- --- 40.61649 -105.54469 

J24 4 P 30 60 25 60 0.04 --- --- 40.61659 -105.54496 

J25 4 P 60 35 35 40 0.08 --- --- 40.61659 -105.54496 

J26 4 F 480 160 90 40 4.97 7.31 2.04 40.61664 -105.54501 

J27 4 P 120 30 30 80 0.03 --- 0.06 40.61668 -105.54516 

J28 4 P 65 90 65 75 0.02 --- --- 40.61674 -105.54525 

J29 4 P N/A N/A N/A N/A 0.02 --- --- 40.61676 -105.54528 

J30 4 F 380 70 40 45 0.73 --- --- 40.61678 -105.54534 

J31 4 P 250 60 35 70 0.21 --- --- 40.61684 -105.54547 

J32 4 P 75 30 30 40 0.08 --- --- 40.6169 -105.5455 

J33 4 P 130 20 20 10 0.06 --- 0.045 40.61667 -105.54491 

J34 4 F 360 260 60 60 4.28 --- 0.375 40.61671 -105.54499 

J35 4 P 60 60 40 30 0.18 --- --- 40.61667 -105.54491 

J36 4 P 45 45 35 220 0.23 1.748 --- 40.61683 -105.54522 

1 Spanning. Jams are characterized as partially spanning (P) or fully spanning (F) 

2 Porosity 
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3 Total Volume of each jam 

4 Pool volume at each jam 

5 Volume of accumulated fine material at each jam 

6 J18 also has a plunge pool with a volume of 1.93 m3 

 


