
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1099

Underwater Target Classification in Changing
Environments Using an Adaptive Feature Mapping

Mahmood R. Azimi-Sadjadi, Senior Member, IEEE, De Yao, Arta A. Jamshidi, and Gerry J. Dobeck

Abstract—A new adaptive underwater target classification
system to cope with environmental changes in acoustic backscat-
tered data from targets and nontargets is introduced in this paper.
The core of the system is the adaptive feature mapping that
minimizes the classification error rate of the classifier. The goal is
to map the feature vector in such a way that the mapped version
remains invariant to the environmental changes. A -nearest
neighbor ( -NN) system is used as a memory to provide the
closest matches of an unknown pattern in the feature space.
The classification decision is done by a backpropagation neural
network (BPNN). Two different cost functions for adaptation are
defined. These two cost functions are then combined together
to improve the classification performance. The test results on a
40-kHz linear FM acoustic backscattered data set collected from
six different objects are presented. These results demonstrate the
effectiveness of the adaptive system versus nonadaptive system
when the signal-to-reverberation ratio (SRR) in the environment
is varying.

Index Terms—Adaptive classification, feature mapping, in situ
learning, neural networks, underwater target classification.

I. INTRODUCTION

DETECTION and classification of underwater targets from
the acoustic backscattered signals pose several technical

problems (see [1] for a good literature review). These prob-
lems are mainly attributed to factors such as nonrepeatability
and variations of the target signature, environmental changes,
presence of new nontargets, competing clutter caused by rever-
beration and biologics, and lack of anya priori knowledge about
the shape and geometry of the nontargets.

Owing to the variations in the target signature and the en-
vironmental conditions, the feature space will clearly undergo
some variations. The variations in the feature space to some
extent can be tolerated by the neural-network classifier. How-
ever, if these changes become substantial, the classifier may no
longer be able to capture the temporal and spectral properties of
the varying signals, thus causing misclassifications and false re-
ports. In addition, new threats and nontargets that were not in the
original training environments may enter the field of view of the
sensor. As a result, a fixed classification system cannot handle
such drastic changes in the feature space. These, coupled with
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the effects of competing clutter caused by surface and volume
reverberation, create a very difficult and challenging signal pro-
cessing problem.

There are generally two classes of approaches that can be de-
vised depending on the nature and extent of the feature space
changes. In the first class, a flexible neural-network structure
such as adaptive resonance theory (ART) [2]–[4] can be used
to accommodate the changes in the feature space. As far as the
ART network is concerned, the variations in the feature space
can be handled by a proper selection of the vigilance parameter
which determines the degree of coarseness or fineness of the
categories. This network can provide stability of the established
categories while offering flexibility needed in these situations.
However, if the changes in the feature space caused by the en-
vironmental, operational, and target conditions are substantial,
this network fails to form proper categories and accommodate
the changes in a more adaptive fashion. The second class of
approaches involves using a bank of classifiers each trained to
handle a specific environmental condition. The main problem,
however, is the decision on how and when to switch between the
classifiers depending on the changes. This problem makes this
approach impractical for real-life applications.

All the drawbacks listed above gave birth to the adaptive fea-
ture mapping idea in order to accommodate the environmental
variations in a more effective way. The principal idea behind this
approach is to provide the neural-network classifier with a set
of features that are invariant or insensitive to the changes in the
original feature space hence maintaining the performance. This
on-line adaptive feature mapping is done without the need to
modify the neural-network classifier. This is an important ben-
efit of this scheme since on-line modification of the neural-net-
work classifier could, over time, affect the previous training and
erase the established categories. The study presented here can be
applicable to a multitude of other classification problems that in-
volve variations in the feature space.

In this paper, a new biologically inspired adaptive underwater
target classification system based on the idea of feature map-
ping is proposed and studied in order to provide robust and ef-
ficient in situ classification under the above-mentioned condi-
tions. The feature extraction scheme in [1] that uses wavelet
packet subband decomposition in conjunction with linear pre-
dictive coding (LPC) method is employed here. The LPC coeffi-
cients of each subband signal are then computed and used as fea-
tures to the classifier. To select those features with high discrim-
inatory ability and to reduce the dimensionality of the feature
space, the Fisher criterion for feature selection and reduction
[5] is applied. The heart of the adaptive system is the adaptive
feature mapping subsystem that maps the original feature space
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Fig. 1. Feature extraction and reduction processes.

such that the new feature vector remains invariant to the environ-
mental conditions. The main goal is to minimize the classifica-
tion error of the neural-network classifier on the changing data
[6]. A backpropagation neural network (BPNN) is used as the
nonadaptive (fixed) classifier. The feedback to the adaptation
mechanism is provided by a-NN, which is primarily used as
a memory system to identify the closest stored prototypes for
an unknown pattern. In order to alleviate the problems caused
by poorly scaled features and improve the overall performance,
a scaled Euclidean distance-NN [7] is used. Two different
cost criteria are considered in the adaptive system. The first one
is based upon the least-squares (LS) error criterion, whereas the
other one is a two-dimensional (2-D) sigmoidal cost function.
These two criteria are then combined together to improve the
overall performance. The performance of the proposed system
is examined on the 40 kHz acoustic backscattered data set col-
lected from six different objects [1]. To test the robustness and
ability of the system to adapt to new environmental conditions,
the signal-to-reverberation ratio (SRR) was varied from 0 to 20
dB. The test results are then benchmarked against those of the
nonadaptive fixed classification system. These results revealed
that the performance of this adaptive classification system is
much better than that of the nonadaptive classifier, especially
at low SRR conditions.

The organization of this paper is as follows. Section II briefly
describes the feature extraction and selection processes used
in this study. In Section III, the description of the proposed
adaptive target classification system and its components is pro-
vided. Section IV is dedicated to the derivations of the gra-
dient descent-based updating equations for the two cost cri-
teria. Section V will demonstrate and analyze the performance
of the proposed adaptive classification system on the 40-kHz
acoustic backscattered data set. Finally, Section VI gives some
concluding remarks.

II. FEATURE EXTRACTION AND REDUCTION

The studies in [8]–[10] point to the interesting fact that the
preprocessing and encoding of information in the cochlear
of bats can be modeled relatively accurately by a filter bank
consisting of several band-pass filters each tuned to pick up
certain frequency information. This filter bank splits the fre-
quency spectra for resolving different subtle spectral features
while localizing the temporal information. In the spectrogram
correlation and transformation (SCAT) model [8], the cochlear
block operates in a spectrogram-like manner. Peak detection
or threshold crossing afferents can then be applied in each
filter channel prior to the spectrogram correlation process to
determine the presence or absence of an event.

Inspired from these models, a wavelet packet-based scheme
[11] is used to decompose the frequency spectra of the backscat-
tered signals into several subbands that contain useful target in-
formation. The wavelet packet (WP) decomposition provides an
optimal multiresolution decomposition of the signal spectrum in
a manner very similar to the biological systems. The multireso-
lution property allows for capturing fine details or subtleties in
the signals the same way as the zooming-in ability in the bio-
logical visual system in order to observe the small details in the
detected objects. In WP decomposition, each subband extracts
certain tonal features of the acoustic backscattered signals. In-
stead of the simple peak detection or threshold crossing in the
SCAT model [8], the LPC method is employed in our model.
LPC is widely used [12] for speech recognition applications as
it provides an effective way of capturing the spectral peaks and
behavior of these signals.

The feature extraction is then followed by a feature reduction
process that reduces the dimensionality of the feature space ac-
cording to the discriminatory ability of each selected feature.
To select an appropriate set of features, a criterion function can
be used to evaluate the discriminatory power of the individual
features. In this study, the Fisher discriminant function [13] was
used to evaluate the distance between the two classes for each
feature, i.e.,

(1)

where and represent the mean and variance of the features
in class , respectively. The features are sorted in a decreasing
order of importance and the ones with higher discriminatory
power were then selected to form the reduced feature vector.
Note that the reduction of the subband features also removes
noise to some extent. Fig. 1 depicts the overall block diagram
of this feature extraction/selection system. For more detailed
description, the reader is referred to [1].

III. A DAPTIVE TARGET CLASSIFICATION SYSTEM

Let us begin by posing two important questions. How do
we perform information retrieval and association when we en-
counter an unknown or distorted pattern of an object? How does
our memory get updated after this pattern is correctly recog-
nized? When we encounter an unknown pattern our brain goes
through cycles of information retrieval and association in order
to recall and identify the corresponding pattern(s) already stored
in the memory. It can be argued that the information retrieval
process takes the form of an adaptive mapping of the unknown
pattern to a pattern that is most familiar to the system hence re-
calling the closest match. The important point is that during this
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Fig. 2. Block diagram of proposed adaptive feature mapping system.

retrieval cycle the memory does not get modified or updated;
rather it is the unknown pattern that gets manipulated in an it-
erative fashion until the “right” match is found. Updating the
memory during this cycle would have had detrimental effects as
it could cause loss of old information. Once the final decision is
made and the pattern is associated and recognized, the memory
can then be updated by including the “mapped” input pattern.
This “soft updating” is performed without erasing or altering
the previously established internal representation in the brain.

The adaptive classification system in Fig. 2 is designed to
work in a somewhat similar fashion. Upon the application of
an unknown pattern (e.g., target/nontarget pattern at different
aspect/range or in different environmental condition), the
system attempts to map the unknown pattern to a pattern
already familiar to the neural-network decision making system.
This mapping takes place iteratively and with the aid of the

-NN system, which plays the role of the memory to identify
the potential matches from the memorized set of patterns. The
matching operation in the -NN is performed in the feature
space and based upon some distance metric. The retrieval or
recall process involves an iterative search or adaptation, in
order to minimize the probability of error associated with the
unknown pattern in presence of the memory by satisfying a
certain performance criterion. This process in turn guarantees
that the optimum match is reached.

The lower branch in this system performs feature map-
ping/manipulation using the mapping matrix and decision
making using a fixed BPNN classifier; whereas the function
of the upper branch is to provide a set of possible matches and
their corresponding decisions using a copy of the BPNN in
the lower branch. Each pattern in the memory of the-NN
provides an item of “evidence” for possible class membership
of the unknown pattern. However, since the distance in the
feature space is not necessarily an effective measure for
determining the class membership, the decision about the
class membership of the unknown pattern is determined based
upon the outputs of the BPNN for these nearest neighbor
patterns. More specifically, using the matrix mapping, we
choose to move the output of the BPNN in the lower branch to
a location in the output space that maximizes the classifier’s
decision confidence according to the chosen cost criterion. For
instance, one of the cost criteria chosen in Section IV moves
the output of the BPNN to the centroid of all the outputs (i.e.,
average of all the labeled evidence) provided by the upper
branch. In Section III-A, we shall show that this centroid

indeed corresponds to the minimum of the classification error
given the memory. Several possible scenarios are discussed in
Section IV-D. In what follows, the functions of each branch of
this system are described in more detail.

A. Upper Branch: Memory and Matching Processes

As mentioned before, the upper branch of the proposed
system identifies the possible matches in the feature space
depending on the distance metric utilized by the-NN and
then determines the associated decisions or labels using a copy
of the BPNN.

For an applied unknown pattern, the -NN is used as a
memory to identify a set of nearest neighbor patterns for

as possible matches in the original training space.
The training data set for this -NN consists of a set of pairs

for with and being the th training pattern
and the corresponding class label, respectively. The closeness
is determined based upon a certain distance measure. In
this particular application, does not have to be an odd number
and tie situations are allowed. The-NN operates based on an
assumption that most of the nearby (training) patterns of an un-
known pattern are likely to be given the same classification label
than the distant ones. Cases in which this assumption does not
hold present difficulties for a -NN [14]. In addition, when the
number of training vectors is very large, i.e., the feature space
is filled densely with samples, the empirical conditional class
probabilities will be close to the true probabilities, and the per-
formance of the -NN asymptotically approaches the optimal
Bayes classifier.

A useful feature of the -NN that is very important for our
application is that new patterns can be incorporated into the
memory of the system and into the formed classes. This im-
plies that an updated set of comparison pattern vectors is al-
ways available for the updating of the feature mapping ma-
trix. Consequently, the changes in the environment, target sig-
nature and sensory system behavior can be incorporated into
the -NN as well as the adaptive feature mapping subsystem
without the need to change the neural-network classifier respon-
sible for final decision making. The incorporation of those new
classified patterns that have high confidence will make the fea-
ture space denser hence improving the overall performance.

Several variants of -NN with different distance mea-
sures have been suggested [7]. The standard-NN uses the
Euclidean distance measure between the training
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patterns and the applied pattern i.e.,
, which defines a hyper-spherical

region in the feature space. Clearly, this region does not
take into account the statistical distribution of the data. Two
generalization of this distance measure are the “scaled” and
“Mahalanobis” distance measures [7] given, respectively, by

(2)

and

(3)

where is the covariance matrix of all the patterns in the
training data. The shape of the neighborhoods for both distance
measures is hyper-ellipsoidal. The axes of the ellipses for the
scaled Euclidean distance are parallel to the coordinate axes
while for the generalized Mahalanobis Euclidean distance they
are also rotated according to the distribution of the patterns.
Our experimental studies indicated that for this application
the scaled Euclidean distance is the better choice. Thus, in the
sequel distance refers to the scaled Euclidean distance.

Once the possible candidate patterns have been selected, their
corresponding decisions, , are determined by the
BPNN in the upper branch (here represents the nonlinear
function implemented by the BPNN). This BPNN classifier,
which is a copy of the original BPNN classifier in the lower
branch, is trained based on the same training data set used to
train the -NN. As mentioned before, the corresponding deci-
sion for each provides an item of evidence about the class
membership of the unknown patterngiven by the -NN. The
main BPNN classifier in the lower branch also provides its de-
cision, , on this unknown pattern. If the confidence in
the “collective evidence” provided by the upper branch is very
strong, no updating is needed. Otherwise feature updating will
take place.

A measure of confidence about each individual evidence
can be defined in terms of the probability that this evidence
leads to the correct decision about the class membership of,
i.e., , where and are the class
labels of and , respectively, and , represents
the two possible classes for targets and nontargets. Sinceis
one of the training patterns and its state is independent from the
state of the environment whenwas drawn during the classifi-
cation process, we have

for . However, the conditional
probabilities and are generated
by the BPNNs in the upper and lower branches, respectively.
Thus, the probability of error associated with wrong item of ev-
idence is

(4)

where and for
.

Thus far, we have defined a confidence measure for only one
neighbor or one item of evidence. To extend this measure for
multiple evidence defined in the-NN memory with

, we assume that the influence of evidenceon and
that of for on are mutually exclusive. Using this
assumption, we can write

(5)

Note that the memory, , is defined for every unknown pat-
tern. Without loss of generality we can assume that
, since once an unknown patternis applied, the memory, ,

and all its constituent patterns become known. This gives

(6)

where is the centroid of all the evidential
decisions. Since and are outputs of the BPNN with values
in the range of is minimized when .
This means that the minimum of the probability of error occurs
when the output of lower BPNN is moved to this centroid.

Remarks:

1) It must be pointed out that in a more general memory
system, computing the density function requires
generating the statistics of the error vector for every new
unknown pattern . We may approximate this density
function by a Gaussian, using the scaled distance measure
in (2), i.e., . With this approxi-
mation, (5) becomes

(7)

where in this case is the weighted
centroid of all the evidential decisions with weights that
are .
In a similar fashion as before, one can deduce that

takes its minimum when .
It is interesting to note that this weighted measure is de-

pendent on the distribution and distance of the evidence
(neighboring pattern) from the unknown pattern both in
the feature space through and in the output space
via the term . Clearly, a wrong evidence (i.e.,

) that is close to the unknown pattern in the fea-
ture space (i.e., ) produces a large contribu-
tion in this error measure.

2) Using either (6) or (7) the probability of error can be esti-
mated and used as a measure of confidence of the collec-
tive evidence. If the confidence in the collective evidence
is strong the probability of error will be very
small. Thus a threshold, , should be chosen in order to
decide when the feature updating is needed, i.e., updating
will take place only if .

B. Lower Branch: Feature Mapping and Classification

The adaptive feature mapping subsystem plays the central
role in the whole system. Its main task is to ensure that the clas-
sification decision of the BPNN classifier remains invariant or
insensitive to the changes that may have occurred in the original
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feature space. This is accomplished on the basis of the evidence
on those candidate patterns that are determined by the upper
branch. The main goal is to prevent the occurrence of misclas-
sifications and false reports under changes in the environmental
condition by minimizing the probability of error associated with
input pattern in the presence of the memory. As shown in Fig. 2,
the unknown pattern is mapped by the mapping matrixbefore
is passed on to the main classifier. This mapping matrix is ini-
tially identity (i.e., ) in order to determine whether or
not feature updating is needed. If the collective evidence points
to the conclusion that the feature updating can indeed lead to
high confidence decision, this mapping matrix then transforms
the input pattern in an attempt to minimize the error criterion or
maximize the classifier’s decision confidence. The direction and
magnitude of this updating is determined in conjunction with
the upper branch, which provides the evidential feedback signal
to the feature adaptation process. The updating mechanism for
the elements of the mapping matrix is discussed in the next
section.

The main classifier in the lower branch is responsible for
making target versus nontarget discrimination. This is a two-
layer BPNN classifier with two output cells corresponding to
targets and nontargets. During training, the desired responses for
these classes are , and , respectively. Once
the network is trained, its function during the cycle of search and
adaptation is to provide the decision, on the mapped
feature vector, . As mentioned before, the error sig-
nals between the outputs of the
two BPNNs for the applied patternand the candidate patterns

selected by the -NN, are then used to drive the adaptation
process. As will be shown in the next section, this error is mini-
mized in the mean squared (or the weighted mean square sense)
by adjusting the mapping matrix elements.

IV. A DAPTATION MECHANISMS

Two different adaptation mechanisms are derived in this sec-
tion, using two different cost criteria. The first mechanism in-
volves changing the elements of the mapping matrix, in order
to drive the output of the main BPNN to the centroid (or the
weighted centroid) of the collective evidence to minimize the
probability of error for the unknown pattern given the memory.
This is accomplished by minimizing the sum squared errors

iteratively using a gradient descent algorithm. As de-
scribed in the previous section, the updating is only performed
if the probability of error is larger than the threshold .

There is yet another approach for updating in which no feed-
backsignal fromtheupperbranch isprovided. In thismechanism,
a2-Dsigmoid function (seeFig.3) isusedas thecost function.By
minimizing this cost function the outputs of the BPNN for the ap-
plied pattern are pushed toward one of the minima points of the
2-D sigmoidal surface, which are located at (0, 1) and (1, 0). Con-
sequently, minimization of this cost function via the adaptive
mapping matrix will increase the gap between the outputs of
the BPNN. Combining the two criteria can improve the overall
confidence of the classification decision further.

Fig. 4 shows the block diagram of the lower branch of the
adaptive feature mapping system in Fig. 2. The first layer

Fig. 3. 2-D sigmoid cost function.

Fig. 4. Adaptive feature mapping system diagram.

with linear activation cells represents the adaptive mapping
system with weight matrix . The two subsequent layers
represent the two layers of the main BPNN with nonlinear
activation functions at cells. Let us define the input feature
vector, the mapped feature vector, and the output vector by

, and ,
respectively. Since the BPNN is trained, the layer weight ma-
trices and and the bias vectors and are already
known. Thus, the goal is to find the optimal mapping matrix

for the feature mapping system
which would minimize the average squared error over all the
candidate patterns in . This is done iteratively using the
gradient descent algorithm and the chain rule which relates the
gradients of the error criterion to the weights’s.

In the following sections, two different adaptation mecha-
nisms are derived based upon two different error criteria and
their combination.
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A. Least Squares Error Criterion

As described in Section III-A, is minimized
when the output of the BPNN in the lower branch is moved
to the centroid . It is easy to show that the appropriate cost
function that achieves this upon its minimization is the average
squared error over the evidential patterns . This
average squared error is given by

(8)

where is the decision of the main BPNN for the mapped pat-
tern , i.e., with . By minimizing this error
with respect to the mapping matrix or its elements, the input
pattern would be mapped toward a direction that minimizes this
cost function over all the candidate patterns. As described be-
fore, this LS solution corresponds to the centroid of the outputs

, i.e., the average of all the decisions. This is easy to show
by taking the derivative of with respect to and setting the
result to zero, which gives . However, our
goal is to find the corresponding feature vectorusing an it-
erative search process and through the trained weights of the
BPNN. This, effectively corresponds to inverse mapping from
the output space to the feature space. It must be pointed out that
although the forward mapping using the BPNN is unique, i.e.,
one input pattern leads to one output vector, the inverse mapping
is not unique and one output could correspond to several points
in the feature space. Nevertheless, if the confidence about the
output is high, it is insured that the inverse mapping selects a
point in the feature space that corresponds to a pattern with the
right class label. Clearly, the selection of the candidate patterns
using the -NN has a major impact on the result of this map-
ping. However, at present this is the simplest memory system
that is available.

Remark: It must be pointed out that in the more general case,
we may approximate the conditional density function using the
scaled distance measure in (2) i.e., .
The expression for will then be modified to

(9)

where is the
associated weight.

Having defined the error criterion, we can use the gradient
descent adaptation rule to update the elementsfor each can-
didate pattern iteratively.

The updating rule using the gradient descent scheme is given
by

(10)

where is the iteration index, is the step size and
is the gradient of in (8) with respect to the weights, i.e.,

. It can easily be shown that

(11)

(12)

with

(13)

where and are the weights in the first and second layers
of the trained BPNN and represent the outputs of the hidden
layer neurons for input vector. Thus, using (10), (11), and
(13), the mapping matrix elements can be updated iteratively.
To reach the LS solution that minimizes the index in (8), these
updating equations are implemented in several iterations over
the entire set of the evidential patterns.

B. 2-D Sigmoid Cost Function

This cost function is defined in terms of the decision,of the
main BPNN only, i.e.,

(14)

As a result, if this cost function is chosen there is no need to
use the -NN since there is no need for a feedback signal in the
adaptation process. In this case, the goal of adaptation is to min-
imize this cost function by pushing the decision of the BPNN to
the closest minimum point of this surface that is located at (0, 1)
or (1, 0) (see Fig. 3). This, obviously, increases the gap between
the outputs of the BPNN. The inverse mapping, using the adap-
tation mechanism, then finds the corresponding feature vector
for this output.

Using a similar procedure as in the previous section, it can
easily be shown that the updating equation for this cost function
is given by

(15)

C. Combined Criterion

The two cost functions in the previous sections can be com-
bined together to offer a tradeoff between minimizing the sum
squared error in (8) and maximizing the BPNN output gap using
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(a)

(b)

Fig. 5. Case 1: High confidence target scenario—all classifiers make right decisions (no updating). (a) Location of the outputs. (b) Error surface inthe output
space.

(14). This multicriteria [15] problem can be posed in terms of a
single cost function given by

(16)

where is the weighting coefficient and is the minimum
value of in (14) at or . The
gradient of this combined cost function is

(17)

where and can be
found as above. Having computed this gradient, the gradient
descent algorithm may then be applied.

In this multicriteria problem, changing the value offrom
zero to one provides classification “diversity.” That is, when

the first term in the cost function (16) associated with
the collective evidence provided by-NN is removed and the
decision is solely determined by the fixed BPNN. On the other
hand, when the decision of the main BPNN is ignored and
the result is decided solely based upon the collective evidence
of the -NN. Thus, for every value of a different classifier
is implemented. This is a very useful feature of the proposed
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(a)

(b)

Fig. 6. Case 2: Low confidence nontarget scenario—false report of the BPNN is corrected by the adaptive system. (a) Location of the outputs. (b) Error surface
in the output space.

method. The case studies in the following section reveal some
important properties of the adaptive feature mapping system.

D. Case Studies

In this section, different possible scenarios are considered to
demonstrate the behavior of the adaptation mechanisms in the
output space of the main BPNN. Moreover, for each case the
shape of the cost function in (16) is provided in order to shed
light on the goal of the adaptation process.

In the following figures dots and pluses represent the outputs
for the target and nontarget patterns, re-
spectively; while square, circle, star, and triangle are the results

of LS alone , initial BPNN, 2-D sigmoid function alone
, and the combined criterion , respectively.

1) Case 1: This case corresponds to a strong target case
where all the neighboring patterns identified by the-NN
memory are given the same class label by the BPNN as the
unknown input pattern and the decisions are strong. Fig. 5(a)
shows the locations of the outputs of the upper branch,’s,
and the initial output of the main BPNN, i.e., . Typi-
cally, this scenario corresponds to the case where the unknown
pattern is far from the decision surface (
in the present example) and all the candidate neighboring pat-
terns are of the same class. Clearly, in this case no adaptation
is needed owing to the strong initial response of the BPNN and
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(a)

(b)

Fig. 7. Case 3: Low confidence nontarget scenario—false report of the BPNN cannot be corrected by feature updating. (a) Location of the outputs. (b) Error
surface in the output space.

the tightness of the evidence cluster .
However, in order to show the shape of the surface for

in the output space , Fig. 5(b) is generated. As
can be seen from both Fig. 5(a) and (b), in this case the final
decision of the BPNN is moved to a point very close to (1, 0).
The LS part of the cost function moves the output of the
main BPNN toward the centroid of all the decisions for the
candidate patterns selected by the-NN, while the sigmoidal
part tries to push that value toward (1, 0) output. Since the
initial output (with initial ) of the BPNN is already very
close to the final location, then obviously the mapping matrix
will remain close to , even if the updating is performed.
Our test results indicated that a threshold of is

adequate for this target classification problem. This implies
that since , no updating is needed as far
as this particular case is concerned. In this case the tightness
of the cluster in the output space explains the reasons for low
probability of error.

2) Case 2: In this nontarget case, the majority of the neigh-
boring patterns selected by the-NN memory are assigned
class labels by the BPNN in the upper branch that are opposite to
those of the output of the main BPNN. The confidence measure
in this case is low, even though the output cluster is somewhat
tight! This is due to the fact that the BPNN initially classifies
this nontarget as a target with a relatively strong response. In
addition, the distances of the evidence from the unknown pat-
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(a)

(b)

Fig. 8. Case 4: Low confidence nontarget scenario—correct decision of the BPNN is reversed by the adaptive system. (a) Location of the outputs. (b) Error
surface in the output space.

tern in the feature space are much smaller than the previous case
, hence giving rise to a rather large

. Clearly, the adaptation (combined or LS)
changes the final decision of the BPNN by moving the output
close to the centroid of the output cluster. In this particular case,
the adaptive feature mapping corrects for the false report of the
original BPNN. Fig. 6(a) and (b) show the corresponding plots
of the output locations and the error surface, respectively. Since

, updating is performed.
3) Case 3: There are some cases that the decisions provided

by both branches are wrong, i.e., not only the BPNN makes
a wrong decision but also the majority of the KNN candidate
patterns give wrong decisions in the output space. As a result,

the decision after the mapping will also remain incorrect. An
example for such a scenario for a nontarget pattern is provided
in Fig. 7(a) and (b). As can be seen, in this case the BPNN
classifier gives strong target indication and at the same time the
collective evidence provided by the upper branch also points to
a target pattern. Thus, the wrong decision of the main classifier
will not be corrected in such scenarios. In this particular case,
the probability of error is , and the distance
varies in the range of .

4) Case 4: Finally, there can be some cases where the cor-
rect decision of the main BPNN will be impacted by the wrong
collective evidence provided by the upper branch. An example
for such a case is given in Fig. 8(a) and (b) for a nontarget pat-
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tern. Although, the initial decision of the BPNN was correct and
strong, since the collective evidence strongly points to the oppo-
site decision (target), the adaptive mapping reverses this correct
decision. In this case, and the distances
are not very large . Obviously, two fac-
tors control the occurrence of this decision reversal, namely the
choices of the parameterand the threshold, , for the confi-
dence measure. However, such cases do occur, even though they
may be rare.

In the next section, we will present and analyze the test results
of the adaptive feature mapping system for underwater target
classification in a changing environment.

V. TEST RESULTS

To test the effectiveness of the adaptive classification system
developed in this paper, the 40 kHz data set [1] provided by
Coastal Systems Station (CSS) in Panama City, FL, was used
in this study. This data set contains backscattered signals cor-
responding to six different objects—two mine-like, namely a
bullet-shaped metallic object and a truncated-cone-shape plastic
object; and four nonmine-like, namely a water-filled drum, an
irregular shape limestone rock, a smooth granite rock, and a
water-saturated wooden log. The transmit signal was a linear
FM up-sweep with frequency range from 20 to 60 kHz. Each
object was insonified at aspect angles from 0 to 355with 5
separation. This resulted in 72 aspect angles out of which the
even-angles were used in the training data set while the odd-
angle samples were used as the testing samples. As a result, for
each object there are 36 patterns (at different aspect angles) in
the training or testing data sets. The training data set contained
the feature vectors of backscattered data with synthesized rever-
beration effects with SRR dB that corresponds to nom-
inal operating conditions. The procedure for generating synthe-
sized reverberation involves convolving the transmit signal with
a random sequence and scaling the resultant signal according to
the specified SRR [1]. This reverberation signal is then added
to the backscattered signal to generate one “noisy realization.”
The process is repeated for every aspect angle multiple times in
order to generate a statistically rich data set for determining the
generalization ability of the classifier. In order to study the ef-
fectiveness of the adaptive feature mapping system in environ-
ments that differ from the training environment, a rich testing
data set containing several sets of ten noisy realizations with
varying SRR conditions (0 to 20 dB) was generated. Note that it
is assumed that the environmental changes primarily cause vari-
ations in the SRR.

A five-level WP decomposition was applied to the noisy
backscattered signals and six subbands that reside in the
bandwidth of the transmit signal were selected. To avoid phase
distortion and at the same time ensure the orthogonality of the
representation, Symlet 4 wavelet [11] was used. The transmit
signal was decomposed in the same way. Then, the cross-cor-
relation of the subband signals of the backscattered and the
corresponding subband signals of the transmit was performed.
A fourth-order autoregressive (AR) model [12] was then used
to represent the resultant signal and the model coefficients

were used as features for classification. This leads to a total of
30 features out of which 22 features with high discriminatory
power were selected according to the criterion in (1). These
were then used as feature vector for classification of the data.

A two-layer 22-42-2 BPNN was trained to discriminate tar-
gets from nontargets. The BPNN was trained using an adap-
tive learning rate and momentum factor of 0.9 [16]. The sum
squared error goal was ten and the maximum number of epochs
was chosen to be 4000. Several training trials with different ini-
tial weights were tried and the network that had the best perfor-
mance on the validation data set was chosen. The validation data
set contained one noisy realization of odd-aspect data set with
SRR dB. The -NN classifier was also trained with the
same training samples and for . In the adaptive feature
mapping system, the step size was chosen to be and
the initial value of the mapping matrix was , i.e., an
identity matrix. The stopping criterion for the iterative learning
was , where is the iteration index.
Several values of in the range of [0, 1] were tried and the best
value for this parameter was determined empirically. In addi-
tion, the confidence threshold for updating was also determined
experimentally to be .

In order to demonstrate the effectiveness of the adaptive
system in a changing environment, the testing data sets with
different SRR were applied to the system that was trained
on the 12 dB SRR data. Fig. 9 shows the overall classifica-
tion error rate plots for the adaptive classification system for
different values of . Note that the performance
of the adaptive system using the 2-D sigmoidal cost function
alone corresponds to that of the fixed (nonadaptive)
BPNN classifier with hard-limiter threshold decision (see the
dotted plot in Fig. 9). On the other hand, using the LS error
criterion alone the performance is mainly depen-
dent on that of the -NN (see the fine solid plot in Fig. 9).
Consequently, using the combined criterion and changing
offers diversity in configuring different classifiers. Moreover,
the length of the locus of classification error aschanges
in the range of [0, 1] presents an indication for ambiguity
in the decision making of the extreme classifiers. As can be
seen in these plots, the fixed BPNN classifier gives its best
performance at the 12 dB SRR, which is the training condi-
tion. The performance of BPNN degrades severely when the
SRR decreases, i.e., with increasing reverberation. The per-
formance degradation for higher SRR is not that severe. This
is attributed to the fact that the training data set included
only SRR dB cases. The best overall performance for
the combined criterion was obtained for , which re-
tains the good performance of the system using the LS error
criterion at lower SRR values. For this choice of, the per-
formance remains somewhat invariant to the changes in the
reverberation for dB SRR dB. Additionally, as can
be observed at low SRR values (SRR dB), the perfor-
mance of all the combined criterion classifiers are substantially
better than the fixed BPNN. It is also interesting to note that
at SRR dB, the combined criterion system with
achieves an error rate of 8.1% compared to 7.7% for the fixed
BPNN and 9.6% for the system using the LS error
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Fig. 9. Error rate versus SRR for adaptive classification system and different�’s: Ten noisy realizations.

Fig. 10. Bounds on error rates for different SRR(� = 0:8): Ten noisy realizations.

criterion. Fig. 10 shows the bounds on the variations of the
classification error rates for different SRR values and ten noisy
realizations . The dotted plot corresponds to the av-
erage over all the ten noisy realizations. Overall, the proposed
system is very promising as it shows that the adaptive mapping
is indeed effective in maintaining the feature space invariant
to the environmental changes. Note that the improvement as
well as the degradation are mostly attributed to the-NN
memory which provides the evidence patterns to the system.

VI. CONCLUSION

In this paper, a new adaptive classification system is pre-
sented which consists of two main branches, namely the upper
and lower branches. The upper branch works as a memory
system to identify the closest matches of an unknown pattern
in the feature space and provide their corresponding decisions
(labels). The lower branch performs feature mapping and clas-
sification. Based upon the collective evidence provided by the
upper branch, the decision about the direction and magnitude of
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the feature mapping is made. A confidence measure based upon
the probability of error is introduced that provides a means to
determine when the feature mapping is needed and how should
be directed. Two adaptation mechanisms were developed that
use different error criteria or cost functions. Minimizing the
first criterion leads to the LS solution among all the decisions
provided by the upper branch and hence minimizing the
probability of error given the memory; while minimizing
the second criterion (2-D sigmoid function) maximizes the
gap between the outputs of the BPNN. The test results on
the acoustic backscattered data collected from six different
targets/nontargets showed that the adaptive system using the
combined error criterion offered very good performance in
situations where the SRR is changing. The improved perfor-
mance over the fixed classifier is particularly more prominent
at very low SRR conditions where reverberation is dominant.
Consequently, this scheme offers a very promising tool for
underwater target classification in shallow water and under
changing environmental conditions. It must be emphasized
that the -NN memory clearly has a significant impact on the
performance of the entire adaptive system. As a result, further
improvements in the overall performance are expected when
a better matching system is designed. This could be achieved
by either using more sophisticated nearest neighbor algorithms
[17], [18] or mapping of the feature vector to a higher order
space, prior to adaptive feature mapping, where the features
can be separated better.
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