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Underwater Target Classification in Changing
Environments Using an Adaptive Feature Mapping
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Abstract—A new adaptive underwater target classification the effects of competing clutter caused by surface and volume
system to cope with environmental changes in acoustic backscat-reverberation, create a very difficult and challenging signal pro-
tered data from targets and nontargets is introduced in this paper. cessing problem.

The core of the system is the adaptive feature mapping that

minimizes the class)i/ﬁcation error rate I:c))f the classifier. T%F:a g%al is . There are ggnerally two classes of approaches that can be de-
to map the feature vector in such a way that the mapped version Vised depending on the nature and extent of the feature space
remains invariant to the environmental changes. AK-nearest changes. In the first class, a flexible neural-network structure
neighbor (K-NN) system is used as a memory to provide the such as adaptive resonance theory (ART) [2]-[4] can be used
closest matches of an unknown pattem in the feature space. y 5ccommodate the changes in the feature space. As far as the

The classification decision is done by a backpropagation neural - - .
network (BPNN). Two different cost functions for adaptation are ART network is concerned, the variations in the feature space

defined. These two cost functions are then combined together C&n be handled by a proper selection of the vigilance parameter
to improve the classification performance. The test results on a which determines the degree of coarseness or fineness of the
40-kHz linear FM acoustic backscattered data set collected from categories. This network can provide stability of the established
six different objects are presented. These results demonstrate the .41eq0ries while offering flexibility needed in these situations.
effectlvenegs of the adaptlve. system versus nonadappve systerr]_| if the ch in the feat d by th )
when the signal-to-reverberation ratio (SRR) in the environment ' OWEVEr, I the changes In the fealure space caused by the en
is varying. vironmental, operational, and target conditions are substantial,
this network fails to form proper categories and accommodate
the changes in a more adaptive fashion. The second class of
approaches involves using a bank of classifiers each trained to
handle a specific environmental condition. The main problem,
. INTRODUCTION however, is the decision on how and when to switch between the

ETECTION and classification of underwater targets frorflassifiers depending on the changes. This problem makes this
D the acoustic backscattered signals pose several technffgproach impractical for real-life applications.
problems (see [1] for a good literature review). These prob_AIIthe drawbacks listed above gave birth to the adaptive fea-
lems are mainly attributed to factors such as nonrepeatabilfff€ mapping idea in order to accommodate the environmental
and variations of the target signature, environmental chang¥ariations in a more effective way. The principal idea behind this
presence of new nontargets, competing clutter caused by reytProach is to provide the neural-network classifier with a set
beration and biologics, and lack of aaypriori knowledge about of features that are invariant or insensitive to the changes in the
the shape and geometry of the nontargets. original feature space hence maintaining the performance. This
Owing to the variations in the target signature and the efD-line adaptive feature mapping is done without the need to
vironmental conditions, the feature space will clearly undergBodify the neural-network classifier. This is an important ben-
some variations. The variations in the feature space to soffé Of this scheme since on-line modification of the neural-net-
extent can be tolerated by the neural-network classifier. HoWork classifier could, over time, affect the previous training and
ever, if these changes become substantial, the classifier mayefese the established categories. The study presented here can be
longer be able to capture the temporal and spectral propertieggplicable to a multitude of other classification problems that in-
the varying signals, thus causing misclassifications and false Yglve variations in the feature space.
ports. In addition, new threats and nontargets that were not in thdn this paper, a new biologically inspired adaptive underwater
original training environments may enter the field of view of thérget classification system based on the idea of feature map-
sensor. As a result, a fixed classification system cannot hanBIB9 iS proposed and studied in order to provide robust and ef-

such drastic changes in the feature space. These, coupled Wai§Nt in situ classification under the above-mentioned condi-
tions. The feature extraction scheme in [1] that uses wavelet
packet subband decomposition in conjunction with linear pre-
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Fig. 1. Feature extraction and reduction processes.

such that the new feature vector remains invariant to the environdnspired from these models, a wavelet packet-based scheme
mental conditions. The main goal is to minimize the classificf11] is used to decompose the frequency spectra of the backscat-
tion error of the neural-network classifier on the changing datared signals into several subbands that contain useful target in-
[6]. A backpropagation neural network (BPNN) is used as tHermation. The wavelet packet (WP) decomposition provides an
nonadaptive (fixed) classifier. The feedback to the adaptatioptimal multiresolution decomposition of the signal spectrum in
mechanism is provided by &-NN, which is primarily used as a manner very similar to the biological systems. The multireso-
a memory system to identify thi€ closest stored prototypes forlution property allows for capturing fine details or subtleties in
an unknown pattern. In order to alleviate the problems caustb@ signals the same way as the zooming-in ability in the bio-
by poorly scaled features and improve the overall performandegical visual system in order to observe the small details in the
a scaled Euclidean distanéé-NN [7] is used. Two different detected objects. In WP decomposition, each subband extracts
cost criteria are considered in the adaptive system. The first aregtain tonal features of the acoustic backscattered signals. In-
is based upon the least-squares (LS) error criterion, whereasgtead of the simple peak detection or threshold crossing in the
other one is a two-dimensional (2-D) sigmoidal cost functiol®CAT model [8], the LPC method is employed in our model.
These two criteria are then combined together to improve th€C is widely used [12] for speech recognition applications as
overall performance. The performance of the proposed systémrovides an effective way of capturing the spectral peaks and
is examined on the 40 kHz acoustic backscattered data set dahavior of these signals.
lected from six different objects [1]. To test the robustness andThe feature extraction is then followed by a feature reduction
ability of the system to adapt to new environmental conditionprocess that reduces the dimensionality of the feature space ac-
the signal-to-reverberation ratio (SRR) was varied from 0 to 2@rding to the discriminatory ability of each selected feature.
dB. The test results are then benchmarked against those of Theselect an appropriate set of features, a criterion function can
nonadaptive fixed classification system. These results revealeriused to evaluate the discriminatory power of the individual
that the performance of this adaptive classification systemfeatures. In this study, the Fisher discriminant function [13] was
much better than that of the nonadaptive classifier, especialiyed to evaluate the distance between the two classes for each
at low SRR conditions. feature, i.e.,

The organization of this paper is as follows. Section Il briefly 5
describes the feature extraction and selection processes used Dp(i,j) = % (1)
in this study. In Section lII, the description of the proposed o; +oj
a_dapnve target cla§S|f|cat_|on system and Its components is p\yvq{ereui ando? represent the mean and variance of the features
vided. Section IV is dedicated to the derivations of the gra- : v . :

. . ; in classi, respectively. The features are sorted in a decreasing
dient descent-based updating equations for the two cost cri-

teria. Section V will demonstrate and analyze the performan%(reder of importance and the ones with higher discriminatory

of the pronosed adantive classification svstem on the 4O_kﬁower were then selected to form the reduced feature vector.
prop P y ote that the reduction of the subband features also removes

acoustic backscattered data set. Finally, Section VI gives someé . . .
: noise to some extent. Fig. 1 depicts the overall block diagram
concluding remarks. ; : ; .
of this feature extraction/selection system. For more detailed
description, the reader is referred to [1].
Il. FEATURE EXTRACTION AND REDUCTION

The studies in [8]-[10] point to the interesting fact that the lll. ADAPTIVE TARGET CLASSIFICATION SYSTEM

preprocessing and encoding of information in the cochlearLet us begin by posing two important questions. How do
of bats can be modeled relatively accurately by a filter banke perform information retrieval and association when we en-
consisting of several band-pass filters each tuned to pick apunter an unknown or distorted pattern of an object? How does
certain frequency information. This filter bank splits the freeur memory get updated after this pattern is correctly recog-
guency spectra for resolving different subtle spectral featuneized? When we encounter an unknown pattern our brain goes
while localizing the temporal information. In the spectrograrthrough cycles of information retrieval and association in order
correlation and transformation (SCAT) model [8], the cochleao recall and identify the corresponding pattern(s) already stored
block operates in a spectrogram-like manner. Peak detectinrthe memory. It can be argued that the information retrieval
or threshold crossing afferents can then be applied in egmtocess takes the form of an adaptive mapping of the unknown
filter channel prior to the spectrogram correlation process pattern to a pattern that is most familiar to the system hence re-
determine the presence or absence of an event. calling the closest match. The important point is that during this
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Fig. 2. Block diagram of proposed adaptive feature mapping system.

retrieval cycle the memory does not get modified or updateithdeed corresponds to the minimum of the classification error
rather it is the unknown pattern that gets manipulated in an given the memory. Several possible scenarios are discussed in
erative fashion until the “right” match is found. Updating theSection IV-D. In what follows, the functions of each branch of
memory during this cycle would have had detrimental effects #is system are described in more detail.
it could cause loss of old information. Once the final decision is
made and the pattern is gssocigted and recognizgd, the MemOrYjpper Branch: Memory and Matching Processes
can then be updated by including the “mapped” input pattern.
This “soft updating” is performed without erasing or altering As mentioned before, the upper branch of the proposed
the previously established internal representation in the brairsystem identifies the possible matches in the feature space
The adaptive classification system in Fig. 2 is designed €g¢pending on the distance metric utilized by thieNN and
work in a somewhat similar fashion. Upon the application ¢hen determines the associated decisions or labels using a copy
an unknown pattern (e.g., target/nontarget pattern at differ@itthe BPNN.
aspect/range or in different environmental condition), the For an applied unknown pattesn the K-NN is used as a
system attempts to map the unknown pattern to a patténgmory to identify a set ok’ nearest neighbor patterss for
already familiar to the neural-network decision making system.€ [1, K] as possible matches in the original training space.
This mapping takes place iteratively and with the aid of thEhe training data set for thi&'-NN consists of a set of pairs
K -NN system, which plays the role of the memory to identifyx;, ;) fori € [1, N]with x; andl; being theith training pattern
the potential matches from the memorized set of patterns. Taed the corresponding class label, respectively. The closeness
matching operation in thé&-NN is performed in the feature is determined based upon a certain distance meak%urg. In
space and based upon some distance metric. The retrievalhis particular application’s’ does not have to be an odd number
recall process involves an iterative search or adaptation, and tie situations are allowed. T#&-NN operates based on an
order to minimize the probability of error associated with thassumption that most of the nearby (training) patterns of an un-
unknown pattern in presence of the memory by satisfyingk&aown pattern are likely to be given the same classification label
certain performance criterion. This process in turn guarantébgn the distant ones. Cases in which this assumption does not
that the optimum match is reached. hold present difficulties for & -NN [14]. In addition, when the
The lower branch in this system performs feature mapumber of training vectors is very large, i.e., the feature space
ping/manipulation using the mapping matix and decision is filled densely with samples, the empirical conditional class
making using a fixed BPNN classifier; whereas the functioprobabilities will be close to the true probabilities, and the per-
of the upper branch is to provide a set of possible matches gagmance of thek-NN asymptotically approaches the optimal
their corresponding decisions using a copy of the BPNN Bayes classifier.
the lower branch. Each pattern in the memory of flieNN A useful feature of the&(-NN that is very important for our
provides an item of “evidence” for possible class membershipplication is that new patterns can be incorporated into the
of the unknown pattern. However, since the distance in theemory of the system and into the formed classes. This im-
feature space is not necessarily an effective measure fpdies that an updated set of comparison pattern vectors is al-
determining the class membership, the decision about tvays available for the updating of the feature mapping ma-
class membership of the unknown pattern is determined basexl Consequently, the changes in the environment, target sig-
upon the outputs of the BPNN for the$€ nearest neighbor nature and sensory system behavior can be incorporated into
patterns. More specifically, using the matrix mappig we the K-NN as well as the adaptive feature mapping subsystem
choose to move the output of the BPNN in the lower branch without the need to change the neural-network classifier respon-
a location in the output space that maximizes the classifiesile for final decision making. The incorporation of those new
decision confidence according to the chosen cost criterion. Fdassified patterns that have high confidence will make the fea-
instance, one of the cost criteria chosen in Section IV movtige space denser hence improving the overall performance.
the output of the BPNN to the centroid of all the outputs (i.e., Several variants of(-NN with different distance mea-
average of all the labeled evidence) provided by the uppmires have been suggested [7]. The stand&iN uses the
branch. In Section Ill-A, we shall show that this centroiEuclidean distance measuifx;,x) between the training
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patterns{x; |x; € R"}Y, and the applied patters i.e., {x;}/_,, we assume that the influence of evidemgeonx and
d(x;,x) = (x; —x)T(x; — x), which defines a hyper-sphericalthat of x; for & # [ onx are mutually exclusive. Using this
region in the feature space. Clearly, this region does rassumption, we can write

take into account the statistical distribution of the data. Two I

generalization of this distance measure are the “scaled” and Ple|x, M,) = Ej:l Ple|x,x;)p(x; |X). )
“Mahalanobis” distance measures [7] given, respectively, by T Zi"zl p(xp | %)

d(x;,x) = (x; — x)7 (diag(Z)) 7 (x; — x) ) Note that the memorw/.., is defined for every unknown pat-
tern. Without loss of generality we can assume gfat; | x) =
1, since once an unknown pattetris applied, the memory/,.,
and all its constituent patterns become known. This gives

and
d(x;,%) = (x; — %) (2) " (xi — x) 3)

where X is the covariance matrix of all the patterns in the 1 X

training data. The shape of the neighborhoods for both distance ~ P(¢|x, M,) = % Z (1-djp)=1-p"p (6

measures is hyper-ellipsoidal. The axes of the ellipses for the j=1

scaled Euclidean distance are parallel to the coordinate axes X ) ) ) )

while for the generalized Mahalanobis Euclidean distance th&{perep := 1/K 3 .~ , d; is the centroid of all the evidential

are also rotated according to the distribution of the patterf€cisions. Sincg andp are outputs of the BPNN with values

Our experimental studies indicated that for this applicatidh the range of0, 1], P(e¢|x, M) is minimized wherp = p.

the scaled Euclidean distance is the better choice. Thus, in H#s means that the minimum of the probability of error occurs

sequel distance refers to the scaled Euclidean distance. ~ When the output of lower BPNN is moved to this centroid.
Once the possible candidate patterns have been selected, thdfemarks:

corresponding decisiond,, = F(x;), are determined by the 1) It must be pointed out that in a more general memory

BPNN in the upper branch (het€(-) represents the nonlinear system, computing the density functipfx; | x) requires
function implemented by the BPNN). This BPNN classifier, generating the statistics of the error vector for every new
which is a copy of the original BPNN classifier in the lower unknown patternx. We may approximate this density
branch, is trained based on the same training data set used to function by a Gaussian, using the scaled distance measure
train the X -NN. As mentioned before, the corresponding deci-  in (2), i.e.,p(x; | x) = e~ (/24(:%) With this approxi-

siond; for eachx; provides an item of evidence about the class ~ mation, (5) becomes

membership of the unknown pattexrgiven by thek'-NN. The K (1 qfp) e bdte

main BPNN classifier in the lower branch also provides its de:p(e 1%, M,) = 2j=1 ( _ p)c? —1-pTp (7)
cision,p = F'(x), on this unknown pattern. If the confidence in ’ i‘:l e zdxn.%)

the “collective evidence” provided by the upper branch is very a

strong, no updating is needed. Otherwise feature updating will ~where in this casgp = Ef:l w;d; is the weighted

take place. centroid of all the evidential decisions with weights that
A measure of confidence about each individual evidenge are w; = ((¢~ /22y /(S8 o 1/Ddexex)yy,
can be defined in terms of the probability that this evidence  In a similar fashion as before, one can deduce that
leads to the correct decision about the class membership of P(e|x, M,) takes its minimum whep = p.
i.e., P(l = C;,l; = C;|x,x;), wherel andl; are the class Itis interesting to note that this weighted measure is de-
labels ofx andx;, respectively, and’;, i = 1,2, represents pendent on the distribution and distance of the evidence
the two possible classes for targets and nontargets. Sinie (neighboring pattern) from the unknown pattern both in
one of the training patterns and its state is independent from the  the feature space througte; | x) and in the output space
state of the environment whenwas drawn during the classifi- via the term(1 — d} p). Clearly, a wrong evidence (i.e.,
cation process, we havé(l = C;,l; = C;|x,x;) = P(l = d¥'p ~ 0) that is close to the unknown pattern in the fea-
C;|x)P(l; = C;|x;) fori = 1,2. However, the conditional ture space (i.ed(x;, x) ~ 0) produces a large contribu-
probabilitesP(l; = C;|x;) andP(l = C;|x) are generated tion in this error measure.
by the BPNNs in the upper and lower branches, respectively.2) Using either (6) or (7) the probability of error can be esti-
Thus, the probability of error associated with wrong item of ev-  mated and used as a measure of confidence of the collec-
idence is tive evidence. If the confidence in the collective evidence

y is strong the probability of errd? (e | x, M) will be very
p R Pl=Cil =, N—1_dT sma}ll. Thus a threshold?ry,, sho_uld.be chosen_m ordertoi
(e]3%;) ; ( " |%%5) i P decide when the feature updating is needed, i.e., updating
o @) will take place only ifP(e|x, M) > Pry,.
where[d;]. = P(I; = C;|x;) and[p], = P(l = C;|x) for B. Lower Branch: Feature Mapping and Classification
Jli = g el Ry i = Y
=12 The adaptive feature mapping subsystem plays the central
Thus far, we have defined a confidence measure for only orgde in the whole system. Its main task is to ensure that the clas-
neighbor or one item of evidence. To extend this measure fification decision of the BPNN classifier remains invariant or
multiple evidence defined in thi€-NN memoryM,, with M, = insensitive to the changes that may have occurred in the original
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feature space. This is accomplished on the basis of the evidel 4
on those candidate patterns that are determined by the up,,,
branch. The main goal is to prevent the occurrence of misclé
sifications and false reports under changes in the environmer,__,
condition by minimizing the probability of error associated Witko_52
input pattern in the presence of the memory. As shown in Fig.

the unknown pattern is mapped by the mapping mdirixefore o
is passed on to the main classifier. This mapping matrix is in**
tially identity (i.e., H = I) in order to determine whether or **
not feature updating is needed. If the collective evidence poir®*
to the conclusion that the feature updating can indeed lead®*
high confidence decision, this mapping matrix then transform o4
the input pattern in an attempt to minimize the error criterion ¢~ =
maximize the classifier's decision confidence. The direction ar
magnitude of this updating is determined in conjunction wit|
the upper branch, which provides the evidential feedback sigr

to the feature adaptation process. The updating mechanism ror
the elements of the mapping matik is discussed in the nextig. 3. 2-b sigmoid cost function.

100*p1 100*p2

section.

The main classifier in the lower branch is responsible for
making target versus nontarget discrimination. This is a twe X s H y N BPNN p
layer BPNN classifier with two output cells corresponding t

targets and nontargets. During training, the desired responses
these classes ate = [1 0]°, andt; = [0 1]*, respectively. Once
the network is trained, its function during the cycle of search ar
adaptation is to provide the decisigh~= F(y) on the mapped =~
feature vectory = Hx. As mentioned before, the error sig-
nalse; = d; — p,j = 1,..., K between the outputs of the »
two BPNNSs for the applied pattegnand the candidate patterns
x; selected by thé{-NN, are then used to drive the adaptatior
process. As will be shown in the next section, this error is miny,
mized in the mean squared (or the weighted mean square set
by adjusting the mapping matrix elements.

X,

IV. ADAPTATION MECHANISMS

Two different adaptation mechanisms are derived in this se H=lie  T=ltdwe ™ WelWaloo
tion, using two different cost criteria. The first mechanism in bt=[b2, ]y, bw=[bw,],,,
volves changing the elements of the mapping mdifjxn order
to drive the output of the main BPNN to the centroid (or th
weighted centroid) of the collective evidence to minimize the
probability of error for the unknown pattern given the memoryvith linear activation cells represents the adaptive mapping
This is accomplished by minimizing the sum squared errosgstem with weight matrixd. The two subsequent layers
{e; f‘;l iteratively using a gradient descent algorithm. As deepresent the two layers of the main BPNN with nonlinear
scribed in the previous section, the updating is only performedtivation functions at cells. Let us define the input feature
if the probability of error is larger than the threshdbg, . vector, the mapped feature vector, and the output vector by

There is yet another approach for updating in which no fee- = [z122... 2]y = [miy2...yc]', andp = [pip2]’,
back signal fromthe upperbranchis provided. Inthis mechanisraspectively. Since the BPNN is trained, the layer weight ma-
a2-Dsigmoid function (see Fig. 3) isused as the costfunction. Bices 7" and W and the bias vectorbt and bw are already
minimizing this cost function the outputs of the BPNN for the agknown. Thus, the goal is to find the optimal mapping matrix
plied pattern are pushed toward one of the minima points of the = [hy], 1,7 € [0,L — 1] for the feature mapping system
2-D sigmoidal surface, which are located at (0, 1) and (1, 0). Comhich would minimize the average squared error over all the
sequently, minimization of this cost function via the adaptiveandidate patterns id/,. This is done iteratively using the
mapping matrix will increase the gap between the outputs gfadient descent algorithm and the chain rule which relates the
the BPNN. Combining the two criteria can improve the overafjradients of the error criterion to the weiglitg’s.
confidence of the classification decision further. In the following sections, two different adaptation mecha-

Fig. 4 shows the block diagram of the lower branch of theisms are derived based upon two different error criteria and
adaptive feature mapping system in Fig. 2. The first layé¢neir combination.

Eig. 4. Adaptive feature mapping system diagram.
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A. Least Squares Error Criterion wherek is the iteration indexy is the step size an&=(k)
As described in Section III-AP(e|x, M,,) is minimized is the gradient ofe in (8) wi_th respect to the weights, i.e.,

when the output of the BPNN in the lower branch is moveff’=(F))/(9hui(k)). It can easily be shown that

to the centroidp. It is easy to show that the appropriate cost

. . ) . LT 1 e (k:
function that achieves this upon its minimization is the average Ve(k) = e;(k) (11)

squared error over the evidential patterfig;}X ;. This K — Fhui(k)
average squared error is given by de; (k) a
j . . i pl(k)
e K Ihai (k) B 2(djl pi(k) < th(k)>
1 > Ipa(k)
lesI = 5 - 14, ~ ol +2(dsz = ) (- g (12
= Ohy;i (k)

1 &
£ = E Z
j=1
1 K 2 ]
=2 2D (din —pn)? (8) with
j=1ln=1
Ipn (k)
wherep is the decision of the main BPNN for the mapped pal‘?hli(k)
terny, i.e.,p = F(y) with y = Hx. By minimizing this error M
with respect to the mapping matrix or its elements, the input Z Wam[Zm (1 = zm)tauzi] n=1,2 (13)
pattern would be mapped toward a direction that minimizes this m=t

cost fuhction over all the candidate patterns. A_s described %ﬁeretml andw,.,., are the weights in the first and second layers
fore, this LS solution corresponds to the centroid of the outpy$ine trained BPNN and,, represent the outputs of the hidden
d;, i.e_., the avera_lge_of all thg decisions. This is easy to Sh%er neurons for input vectayr. Thus, using (10), (11), and
by taking the derivative Off with respect top and setting the (13)  the mapping matrix elements can be updated iteratively.
result to zero, which givep = (1/K) 3 ;_, d;. However, our 1 reach the LS solution that minimizes the index in (8), these

goal is to find the corresponding feature vecgousing an it- ,hqating equations are implemented in several iterations over
erative search process and through the trained weights of {48 antire set of the evidential patterns.

BPNN. This, effectively corresponds to inverse mapping from

the output space to the feature space. It must be pointed out Ba2-D Sigmoid Cost Function

although the forward mapping using the BPNN is unique, i.€., 1pig st function is defined in terms of the decisiprof the

one input pattern leads to one output vector, the inverse mappiigin BPNN only, i.e

is not unique and one output could correspond to several points

in the feature space. Nevertheless, if the confidence about the 1

outputp is high, it is insured that the inverse mapping selects a 5= 14+ e @1-03)(p2-05)"

point in the feature space that corresponds to a pattern with the

right class label. Clearly, the selection of the candidate patters a result, if this cost function is chosen there is no need to

using theK-NN has a major impact on the result of this mapuse thei(-NN since there is no need for a feedback signal in the

ping. However, at present this is the simplest memory syst@#laptation process. In this case, the goal of adaptation is to min-

that is available. imize this cost function by pushing the decision of the BPNN to
Remark: It must be pointed out that in the more general cas#e closest minimum point of this surface thatis located at (0, 1)

we may approximate the conditional density function using t1 (1, 0) (see Fig. 3). This, obviously, increases the gap between
scaled distance measure in (2) ijgx; |x) = ¢~ (1/2d0x; ) the outputs of the BPNN. The inverse mapping, using the adap-

The expression for will then be modified to tation mechanism, then finds the corresponding feature vector
for this output.
K Using a similar procedure as in the previous section, it can
e=> wjlld; —p| (9) easily be shown that the updating equation for this cost function
= is given by

J

= pn(k)(1 = pn(K))

(14)

Wherewj — ((@*(1/2)d(xj:x))/(2£;1 @*(1/2)d(xk:x))) is the hli(k + 1) = hh(/%) — %MS(/%)(]. — S(k))

associated weight. AL (k) Apa (k)
Having defined the error criterion, we can use the gradient X |(p2(k) —0.5) 77 ) +(p(k) = 0.5) 5 ik (15)

descent adaptation rule to update the elemkptor each can- b b

didate pattern iteratively.

The updating rule using the gradient descent scheme is given Combined Criterion

by The two cost functions in the previous sections can be com-
1 bined together to offer a tradeoff between minimizing the sum
hai(k +1) = hai(k) = Suve(k) (10)  squared error in (8) and maximizing the BPNN output gap using
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Fig. 5. Case 1: High confidence target scenario—all classifiers make right decisions (no updating). (a) Location of the outputs. (b) Errorthartadetit

space.

(14). This multicriteria [15] problem can be posed in terms ofahere ((9¢;(k))/(8hi(k))) and ((35(k))/(8hii(k))) can be

single cost function given by

C=(1-XNe+ S — Sumin)

where is the weighting coefficient anf,,;, is the minimum
value of S in (14) atpy = 0,po = 1 0orp; = 1,po = 0. The

gradient of this combined cost function is

9e; (k)
Olk) = J
Vo) Zahh 5 A ohuth)

found as above. Having computed this gradient, the gradient
descent algorithm may then be applied.

In this multicriteria problem, changing the value bffrom
zero to one provides classification “diversity.” That is, when
A = 1 the first term in the cost function (16) associated with
the collective evidence provided bHy-NN is removed and the
decision is solely determined by the fixed BPNN. On the other
hand, whem\ = 0 the decision of the main BPNN is ignored and
the result is decided solely based upon the collective evidence
of the K-NN. Thus, for every value oA a different classifier
is implemented. This is a very useful feature of the proposed
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Fig. 6. Case 2: Low confidence nontarget scenario—false report of the BPNN is corrected by the adaptive system. (a) Location of the outputsir{adérror s
in the output space.

method. The case studies in the following section reveal somieLS alone(A = 0), initial BPNN, 2-D sigmoid function alone
important properties of the adaptive feature mapping system(A = 1), and the combined criteriofh = 0.8), respectively.
1) Case 1:This case corresponds to a strong target case
D. Case Studies where all the _neighboring patterns identified by theNN
memory are given the same class label by the BPNN as the

In this section, different possible scenarios are considereduioknown input pattern and the decisions are strong. Fig. 5(a)
demonstrate the behavior of the adaptation mechanisms in shews the locations of the outputs of the upper bramgrs,
output space of the main BPNN. Moreover, for each case taed the initial output of the main BPNN, i.»,= F(x). Typi-
shape of the cost function in (16) is provided in order to shexdlly, this scenario corresponds to the case where the unknown
light on the goal of the adaptation process. pattern is far from the decision surfacH (< d(x,,x) < 42.5

In the following figures dots and pluses represent the outputsthe present example) and all the candidate neighboring pat-
for the targetp; > p2) and nontargefp, > p;) patterns, re- terns are of the same class. Clearly, in this case no adaptation
spectively; while square, circle, star, and triangle are the resuisieeded owing to the strong initial response of the BPNN and
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the tightness of the evidence clustét(e¢|x,M,) = 0.156). adequate for this target classification problem. This implies
However, in order to show the shape of the surfagg) for that sinceP(e|x,M.) < 0.2, no updating is needed as far

A = 0.8 in the output spacép;, p2), Fig. 5(b) is generated. As as this particular case is concerned. In this case the tightness
can be seen from both Fig. 5(a) and (b), in this case the firalthe cluster in the output space explains the reasons for low
decision of the BPNN is moved to a point very close to (1, Oprobability of error.

The LS part of the cost functios{p) moves the output of the  2) Case 2: In this nontarget case, the majority of the neigh-
main BPNN toward the centroid of all the decisions for thboring patterns selected by ti€-NN memory are assigned
candidate patterns selected by #ieNN, while the sigmoidal class labels by the BPNN in the upper branch that are opposite to
part tries to push that value toward (1, 0) output. Since thikose of the output of the main BPNN. The confidence measure
initial output (with initial H = I) of the BPNN is already very in this case is low, even though the output cluster is somewhat
close to the final location, then obviously the mapping matritight! This is due to the fact that the BPNN initially classifies
will remain close taH = I, even if the updating is performed.this nontarget as a target with a relatively strong response. In
Our test results indicated that a threshold/tf,, = 0.2 is addition, the distances of the evidence from the unknown pat-
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surface in the output space.

tern in the feature space are much smaller than the previous dagedecision after the mapping will also remain incorrect. An
(0.64 < d(x;,x) < 1.27), hence giving rise to a rather largeexample for such a scenario for a nontarget pattern is provided
P(e|x, M,) = 0.63. Clearly, the adaptation (combined or LS)n Fig. 7(a) and (b). As can be seen, in this case the BPNN
changes the final decision of the BPNN by moving the outpuetassifier gives strong target indication and at the same time the
close to the centroid of the output cluster. In this particular casmllective evidence provided by the upper branch also points to
the adaptive feature mapping corrects for the false report of théarget pattern. Thus, the wrong decision of the main classifier
original BPNN. Fig. 6(a) and (b) show the corresponding plotsill not be corrected in such scenarios. In this particular case,
of the output locations and the error surface, respectively. Sirtbe probability of error isP(¢ | x, M.,.) = 0.46, and the distance
P(e|x, M,) > 0.2, updating is performed. varies in the range af.97 < d(x;,x) < 2.88.

3) Case 3: There are some cases that the decisions provided4) Case 4: Finally, there can be some cases where the cor-
by both branches are wrong, i.e., not only the BPNN makesct decision of the main BPNN will be impacted by the wrong
a wrong decision but also the majority of the KNN candidateollective evidence provided by the upper branch. An example
patterns give wrong decisions in the output space. As a restdit, such a case is given in Fig. 8(a) and (b) for a nontarget pat-
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tern. Although, the initial decision of the BPNN was correct andere used as features for classification. This leads to a total of
strong, since the collective evidence strongly points to the op®8 features out of which 22 features with high discriminatory
site decision (target), the adaptive mapping reverses this cornesiver were selected according to the criterion in (1). These
decision. In this casel’(e|x, M,) = 0.52 and the distances were then used as feature vector for classification of the data.
are not very largg6.1 < d(x;,x) < 9.2). Obviously, two fac- A two-layer 22-42-2 BPNN was trained to discriminate tar-
tors control the occurrence of this decision reversal, namely thets from nontargets. The BPNN was trained using an adap-
choices of the parametarand the thresholdr,, for the confi-  tive learning rate and momentum factor of 0.9 [16]. The sum
dence measure. However, such cases do occur, even though §agiared error goal was ten and the maximum number of epochs
may be rare. was chosen to be 4000. Several training trials with different ini-
Inthe next section, we will present and analyze the test resuitg weights were tried and the network that had the best perfor-
of the adaptive feature mapping system for underwater targghnce on the validation data set was chosen. The validation data

classification in a changing environment. set contained one noisy realization of odd-aspect data set with
SRR = 12 dB. The K-NN classifier was also trained with the
V. TESTRESULTS same training samples and f&r = 15. In the adaptive feature

To test the effectiveness of the adaptive classification systmpp_"?g system, the step si_ze was ghosen o beO'OQ‘S and
e initial value of the mapping matrix wd$(0) = I, i.e., an

developed in this paper, the 40 kHz data set [1] provided 15 . . ! L / . .
Coastal Systems Station (CSS) in Panama City, FL, was Ldggntity matrix. The stopping criterion for the iterative learning
o 1s|e(k) — e(k — 1)| < 0.0002, wherek is the iteration index.

in this study. This data set contains backscattered signals Y vl ofinth £10.1 tried and the best
responding to six different objects—two mine-like, namely §evera values ok in the range of [0, 1] were tried and the bes

bullet-shaped metallic object and a truncated-cone-shape pla\éﬂléje for th|§ parameter was determlngd empirically. In a‘?'d"
, the confidence threshold for updating was also determined

object; and four nonmine-like, namely a water-filled drum, afion .
irregular shape limestone rock, a smooth granite rock, anae%[:]egr::jzr;tigy;gnﬁigra:teo?ﬁe effectiveness of the adaptive
water-saturated _wooden log. The transmit signal was a Iin%?/rstem in a changing environment, the testing data setspwith
s Wrent SRR were apied 10 he ystom tat s e
separation. This resulted in 72 aspect angles out of which P the 12 dB SRR data. Fig. 9 S.hOWS th_e_ OV?ra” classifica-
i . S . él n error rate plots for the adaptive classification system for
even-angles were used in the training data set while the o ferent values of(0 < A < 1). Note that the performance
angle samples were used as the testing samples. As a result We adaptive syste% usﬁg t'he 2-D sigmoidal cost function
each object there are 36 patterns (at different aspect angles Ii&ne()\ — 1) corresponds to that of the fixed (nonadaptive)
the training or testing data sets. The training data set contal NN classifier with hard-limiter threshold decision (see the
the feature vectors of backscattered data with synthesized reveliad plot in Fig. 9). On the other hand, using the LS error
beration effects with SRR= 12 dB that corresponds to nom- ... i alone(\ = 0) the performance is mainly depen-
inal operating conditions. The procedure for generating syntl*a;e—nt on that of thei-NN (see the fine solid plot in Fig. 9).

sized reverberation involves convolving the transmit signal Wi@onsequently using the combined criterion and changing

arandom sequence and scaling the resultant signal accordingd@, s giversity in configuring different classifiers. Moreover,
the specified SRR [1]. This reverberation signal is then addggl, length of the locus of classification error Aschanges

to the backscattered signal to generate one “noisy realizatiop," e range of [0, 1] presents an indication for ambiguity
The process is repeated for every aspect angle multiple timeg{ithe decision making of the extreme classifiers. As can be
order to generate a statistically rich data set for determining gen, in these plots, the fixed BPNN classifier gives its best
generalization ability of the classifier. In order to study the eferformance at the 12 dB SRR, which is the training condi-
fectiveness of the adaptive feature mapping system in envirqgm The performance of BPNN degrades severely when the
ments that differ from the training environment, a rich testingrr decreases, i.e., with increasing reverberation. The per-
data set containing several sets of ten noisy realizations Wifimance degradation for higher SRR is not that severe. This
varying SRR conditions (0 to 20 dB) was generated. Note thatdt attributed to the fact that the training data set included
is assumed that the environmental changes primarily cause vgfity SRR= 12 dB cases. The best overall performance for
ations in the SRR. the combined criterion was obtained far= 0.8, which re-

A five-level WP decomposition was applied to the noisyains the good performance of the system using the LS error
backscattered signals and six subbands that reside in #fgerion at lower SRR values. For this choice Xfthe per-
bandwidth of the transmit signal were selected. To avoid phag@mance remains somewhat invariant to the changes in the
distortion and at the same time ensure the orthogonality of th&erberation fo8 dB < SRR< 12 dB. Additionally, as can
representation, Symlet 4 wavelet [11] was used. The transié observed at low SRR values (SRR10 dB), the perfor-
signal was decomposed in the same way. Then, the cross-e¢nance of all the combined criterion classifiers are substantially
relation of the subband signals of the backscattered and Hetter than the fixed BPNN. It is also interesting to note that
corresponding subband signals of the transmit was performatd SRR= 12 dB, the combined criterion system with= 0.8
A fourth-order autoregressive (AR) model [12] was then usexthieves an error rate of 8.1% compared to 7.7% for the fixed
to represent the resultant signal and the model coefficie®NN (A = 1) and 9.6% for the system using the LS error
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criterion. Fig. 10 shows the bounds on the variations of the VI. CONCLUSION
classification error rates for different SRR values and ten noisyIn this paper, a new adaptive classification system is pre-

realizations(A = 0.8). The dotted plot corresponds to the avgented which consists of two main branches, namely the upper
erage over all the ten noisy realizations. Overall, the proposgqy |ower branches. The upper branch works as a memory
system is very promising as it shows that the adaptive mappiggstem to identify the closest matches of an unknown pattern
is indeed effective in maintaining the feature space invariaj the feature space and provide their corresponding decisions
to the environmental changes. Note that the improvement (&sbels). The lower branch performs feature mapping and clas-
well as the degradation are mostly attributed to #ieNN sification. Based upon the collective evidence provided by the
memory which provides the evidence patterns to the systempper branch, the decision about the direction and magnitude of
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