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ABSTRACT 

 

 

 

WILDFIRE-WATER SUPPLY RISK IN MONTANE WATERSHEDS OF COLORADO: 

BASELINE ASSESSMENT AND EVALUATION OF MITIGATION STRATEGIES 

 

 

 

This is a multi-part dissertation examining wildfire-water supply risks and the mitigation 

effectiveness of land and fire management solutions. Chapters 2, 3, and 4 were prepared 

independently for publication elsewhere. Chapters 1 and 6 provide brief bookends to discuss the 

motivations for this research and conclusions drawn from the three independent but related 

research chapters. Chapter 5 discusses common limitations of the risk models used in the 

research chapters and opportunities for improvement. 

(CHAPTER 2) In fire-prone watersheds, concern over wildfire impacts to water supplies 

has motivated efforts to mitigate risk by reducing forest fuels. Methods to assess fuel treatment 

effects and prioritize their placement are needed to inform risk mitigation. We introduce a fuel 

treatment optimization model to minimize risk to multiple water supplies based on constraints 

for treatment feasibility and cost. We quantify risk as the expected sediment impact costs to 

water supplies by combining measures of fire likelihood and behavior, erosion, sediment 

transport, and water supply vulnerability. We demonstrate the prioritization framework on two 

watersheds in the Colorado Front Range. Our results suggest wildfire risk to water supplies can 

be meaningfully reduced by treating dense, fire-prone forests on steep slopes near water supplies. 

However, we found that the cost of fuel treatment outweighs the expected cost savings from 

reduced sediment by a considerable margin due to the high cost of thinning forests and the low 

expected fuel treatment-wildfire encounter rate. This highlights the importance of expanding the 
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use of more cost-effective treatments, like prescribed fire, and identifying fuel treatment projects 

that benefit multiple resources. 

(CHAPTER 3) Water supply impairment from increased contaminant mobilization and 

transport after wildfire is a major concern for communities that rely on surface water from fire 

prone watersheds. We introduce a Monte Carlo simulation method to quantify the likelihood of 

wildfire impairing water supplies beyond limits for treatment by combining stochastic 

representations of annual wildfire and rainfall activity. Water quality impairment is evaluated in 

terms of turbidity limits for treatment by modeling wildfire burn severity, post-fire erosion, 

sediment transport, and suspended sediment dilution in receiving waterbodies. Water supply 

disruption is analyzed at the system level based on the impairment status of water supply 

components and their contributions to system performance. We use this approach to assess 

wildfire-water supply impairment and disruption risks for a system of water supply reservoirs 

and diversions in the Front Range Mountains of Colorado, USA. Our results show that wildfire 

may impair water quality in a concerning 15.7-19.4% of years for diversions from large 

watersheds. Reservoir impairment should be extremely rare for large, off network reservoirs (at 

most 0.01% of years) but occur in as many as 2.8% of years for smaller, on network reservoirs. 

System redundancy meaningfully reduced disruption risk for alternative conveyance routes (4.3-

25.0% reduction) and almost eliminated disruption risk for a pair of substitutable terminal 

sources (99.9% reduction), whereas dependency among conveyance reservoirs nearly doubles 

risk of conveyance disruption. Our results highlight the importance of considering water system 

characteristics when evaluating wildfire-water supply risks. 

(CHAPTER 4) In many fire-prone watersheds, wildfire threatens surface water drinking 

supplies with post-fire contaminant mobilization and transport. We evaluated the potential to 
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mitigate this risk by limiting fire sizes and watershed effects with a containment network of 

manager-developed Potential fire Operational Delineations (PODs) using wildfire risk 

transmission methods to partition the effects of many stochastically simulated wildfires to within 

and out of POD burning. We assessed water supply impacts with two metrics – total sediment 

load and water quality impairment above suspended sediment concentrations for treatment – 

using a linked fire-erosion-sediment transport model. Our results suggest that improved fire 

containment could substantially reduce wildfire risk by 13.0 to 55.3% depending on impact 

measure and post-fire rainfall. Containment based on the manager-developed PODs had greater 

potential in our study system to reduce total sediment load than it did to avoid water quality 

impairment because fires within many of the larger PODs resulted in impairment even when 

contained. Much of the residual impairment risk after containment originated from less than 20% 

of the PODs, suggesting strategic investments to further compartmentalize these areas of the 

landscape could improve the effectiveness of the containment network. Similarly, risk 

transmission occurred most frequently across control features in certain parts of the network, 

indicating that efforts to increase containment probability with fuels reduction would have a 

disproportionate effect if prioritized in these areas.   
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CHAPTER 1 – PROBLEM STATEMENT AND FRAMING 

 

 

 

Growing awareness of wildfire threats to drinking water supplies (Bladon et al. 2014; 

Martin 2016; Hallema et al. 2019) has spurred efforts to quantify wildfire-water supply risks and 

evaluate the effectiveness of mitigating actions. At global and regional scales, coarse measures 

of wildfire activity, watershed response, and water utilization have been combined to map 

relative measures of risk (Thompson et al. 2013; Robinne et al. 2018, 2019) that are well-suited 

for high-level policy making and planning. To better quantify water supply risks for local 

decision-making, linked wildfire and watershed models are increasing used to characterize post-

fire hazards to water supplies such as sediment load from hillslope erosion or debris flow (Miller 

et al. 2011; Buckley et al. 2014; Tillery et al. 2014; Elliot et al. 2016; Sidman et al. 2016; Jones 

et al. 2017; Sankey et al. 2017). Much of this work has been motivated by payment for 

ecosystem service programs that seek to monetize the benefit of proactively mitigating risk by 

reducing fuels in source watersheds, and thus there has been a strong emphasis on modeling the 

easily valued impacts of reservoir sedimentation (Buckley et al. 2014; Elliot et al. 2016; Jones et 

al. 2017). Despite the considerable advancements in physical modeling, little is known about 

wildfire risk to whole source water collection systems, which may consist of multiple storage, 

conveyance, and diversion infrastructure that vary in their sensitivity to post-fire impacts and 

their contribution to system performance. Yet the details of how wildfire affects water supplies 

are critical to defining a community’s level of risk, identifying potential mitigation measures, 

and evaluating mitigation effects on source water reliability.  

Wildfire impacts to water supplies can include water quality impairment, reservoir 

sedimentation, sediment or debris blockage of conveyance or diversion structures, flooding, 
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restricted access to equipment, and lost power or communication for control systems (Sham et al. 

2013; Martin 2016; Hallema et al. 2019). Previous wildfires in Colorado suggest the major 

impacts in this region are reservoir sedimentation (Moody and Martin 2001) and water quality 

degradation for brief periods following intense rainfall (Oropeza and Heath 2013; Murphy et al. 

2015). Debris flow and channel erosion have also damaged diversion inlets and conveyance 

pipelines (Gibbens et al. 2013; Howell 2014). Hence, a major focus of pre- and post-fire hazard 

assessment is characterizing potential erosion magnitudes with models that incorporate 

environmental drivers like topography, soils, vegetation, and rainfall (Cannon et al. 2010; Miller 

et al. 2011, 2016; Tillery et al. 2014; Elliot et al. 2016; Sidman et al. 2016). Given the diversity 

of water supply assets and their varying level of susceptibility to post-fire watershed response, 

some assessments have focused only on characterizing hazards (Miller et al. 2011; Sankey et al. 

2017), while others have used coarse measures of water supply importance or population served 

to infer water supply exposure and impacts (Thompson et al. 2013; Robinne et al. 2019). Efforts 

to relate post-fire hazards to water management costs have focused primarily on reservoir 

sedimentation (Buckley et al. 2014; Elliot et al. 2016; Jones et al. 2017). Reservoir storage is 

important for source water reliability in variable precipitation systems, but reduced storage 

capacity from post-fire sedimentation does not typically threaten short-term water supply. There 

is recognized need to improve modeling of post-fire contaminant mobilization, transport, and 

impacts on water quality to better characterize the risk of source water impairment that threatens 

to disrupt drinking water supplies in the immediate aftermath and period of recovery from 

wildfire (Sham et al. 2013; Nunes et al. 2018).  

A variety of strategies have been proposed to mitigate wildfire risks to water supplies 

including reducing fuels in source watersheds, adding source redundancies, improving fire 



3 

 

containment, constructing sediment basins to protect sensitive infrastructure, improving the 

efficiency of post-fire rehabilitation, and optimizing operations with real-time water quality 

monitoring (Sham et al. 2013; Buckley et al. 2014; Martin 2016; Haas et al. 2017; Hallema et al. 

2019). Proactively reducing fuels has received the most quantitative evaluation; several studies 

have linked wildfire and watershed models to show that reducing fuels should meaningfully 

lower erosion when treated areas burn (Buckley et al. 2014; Sidman et al. 2016; Jones et al. 

2017). Source water redundancy has been advocated for as a means to mitigate the risk of water 

supply disruption (Sham et al. 2013; Martin 2016), but there has been limited exploration of how 

to assess risk to multi-source systems and value the benefits of redundancy. The recognition that 

most wildfire risk to water supplies is associated with rare but large wildfires implies that 

improved fire containment could reduce risks, but the effectiveness of this strategy has not been 

rigorously analyzed. Recent advances in Monte Carlo-based wildfire risk assessment (Thompson 

et al. 2016; Haas et al. 2017) provide a framework to characterize spatial and temporal variability 

in fire activity and watershed response that is needed to evaluate mitigation strategies that focus 

on fire extent and system redundancy. The remaining critical improvement in risk models to 

objectively evaluate green and grey infrastructure solutions is better characterization of 

infrastructure sensitivity to disturbance and importance for system function.  

The focus of this dissertation is advancing quantitative frameworks for assessing 

wildfire-water supply risks and risk mitigation strategies. Chapter 2 develops a wildfire-water 

supply risk assessment model based on sediment impacts and applies it to three interconnected 

community water systems in Northern Colorado to assess baseline risk. A linear optimization 

model is then introduced to prioritize treatment location and type to maximize risk reduction 

accounting for treatment feasibility and cost constraints. Chapter 3 adapts the effects model 
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introduced in the second chapter to examine water quality impairment and system disruption 

risks using Monte Carlo simulation of annual wildfire and rainfall activity. A systems framework 

is used to examine the effects of redundancy and dependency on source water reliability in a 

multi-source water system. Chapter 4 evaluates the potential for improved fire containment to 

mitigate water quality impairment risk for a drinking water diversion from a large watershed in 

Colorado using a risk transmission framework. Risk is characterized with two effects measures – 

total sediment mass and whether water quality thresholds for treatment are exceeded – to 

illustrate how considering scale dependent effects changes mitigation value and priorities. 

Chapters 2, 3, and 4 were written for publishing elsewhere, so they are presented as independent 

papers with their own introductions, methods, results, and discussions. The risk assessment 

models introduced in chapters 2 through 4 have data, model, and model linkage uncertainties that 

are important to consider when interpreting the results. Chapter 5 reviews the model 

assumptions, uncertainties, and limitations and suggests research directions that could improve 

future models. The final chapter offers concluding remarks about wildfire-water supply risks and 

mitigation strategies. 

 

  



5 

 

REFERENCES FOR CHAPTER 1 

 

 

 

Bladon KD, Emelko MB, Silins U, Stone M (2014) Wildfire and the future of water supply. 

Environmental Science & Technology 48, 8936-8943. doi:10.1021/es500130g 

Buckley M, Beck N, Bowden P, Miller ME, Hill B, Luce C, Elliot WJ, Enstice N, Podolak K, 

Winford E, Smith SL, Bokach M, Reichert M, Edelson D, Gaither J (2014) Mokelumne 

watershed avoided cost analysis: why Sierra fuel treatments make economic sense. A report 

prepared for the Sierra Nevada Conservancy, The Nature Conservancy, and USDA Forest 

Service. Sierra Nevada Conservancy. 294 p. (Auburn, CA, USA) 

Cannon SH, Gartner JE, Rupert MG, Michael JA, Rea AH, Parrett C (2010) Predicting the 

probability and volume of post-wildfire debris flows in the intermountain western United 

States. Geological Society of America Bulletin 122, 127-144. doi:10.1130/B26459.1 

Elliot WJ, Miller ME, Enstice N (2016) Targeting forest management through fire and erosion 

modelling. International Journal of Wildland Fire 25, 876-887. doi:10.1071/WF15007 

Gibbens G, Johnson A, Piehl B (2013) Wildfires and forest health – Colorado-Big Thompson 

Project. Northern Water Conservancy White Paper. 18 p. (Berthoud, CO, USA) 

Haas JR, Thompson M, Tillery A, Scott JH (2017) Capturing spatiotemporal variation in 

wildfires for improving post-wildfire debris-flow hazard assessments. In ‘Natural hazard 

uncertainty assessment: modeling and decision support, geophysical monograph 223’. (Eds K 
Riley, P Webley, M Thompson) pp. 301-317. (John Wiley & Sons: Hoboken, NJ, USA) 

Hallema DW, Kinoshita AM, Martin DA, Robinne F-N, Galleguillos M, McNulty SG, Sun G, 

Singh KK, Mordecai RS, Moore PF (2019) Fire, forests and city water supplies. Unasylva 

251 70, 58-66.  

Howell E (2014) Lessons from the Waldo Canyon Fire. Presentation to the Watershed Wildfire 

Protection Group. Available from https://csfs.colostate.edu/media/sites/22/2014/12/wwpg-

Howell-5-9-14.pdf 

Jones KW, Cannon JB, Saavedra FA, Kampf SK, Addington RN, Cheng AS, MacDonald LH, 

Wilson C, Wolk B (2017) Return on investment from fuel treatments to reduce severe 

wildfire and erosion in a watershed investment program in Colorado. Journal of 

Environmental Management 198, 66-77. doi:10.1016/j.jenvman.2017.05.023 

Martin DA (2016) At the nexus of fire, water and society. Philosophical Transactions of the 

Royal Society of London. Series B, Biological Sciences 371, 20150172. 

doi:10.1098/rstb.2015.0172 

Miller ME, MacDonald LH, Robichaud PR, Elliot WJ (2011) Predicting post-fire hillslope 

erosion in forest lands of the western United States. International Journal of Wildland Fire 

20, 982-999. doi:10.1071/WF09142 

Miller ME, Elliot WJ, Billmire M, Robichaud PR, Endsley KA (2016) Rapid-response tools and 

datasets for post-fire remediation: linking remote sensing and process-based hydrological 

models. International Journal of Wildland Fire 25, 1061-1073. doi:10.1071/WF15162 

Moody JA, Martin DA (2001) Initial hydrologic and geomorphic response following a wildfire 

in the Colorado Front Range. Earth Surface Processes and Landforms 26, 1049-1070. 

doi:10.1002/esp.253 



6 

 

Murphy SF, Writer JH, McCleskey RB, Martin DA (2015) The role of precipitation type, 

intensity, and spatial distribution in source water quality after wildfire. Environmental 

Research Letters 10, 084007. doi:10.1088/1748-9326/10/8/084007  

Nunes JP, Doerr SH, Sheridan G, Neris J, Santín C, Emelko MB, Silins U, Robichaud PR, Elliot 

WJ, Keizer J (2018) Assessing water contamination risk from vegetation fires: challenges, 

opportunities and a framework for progress. Hydrological Processes 32, 687-694. 

doi:10.1002/hyp.11434 

Oropeza J, Heath J (2013) Effects of the 2012 Hewlett and High Park Wildfires on water quality 

of the Poudre River and Seaman Reservoir. City of Fort Collins Utilities Report. 33 p. (Fort 

Collins, CO, USA) 

Robinne F-N, Bladon KD, Miller C, Parisien M-A, Mathieu J, Flannigan MD (2018) A spatial 

evaluation of global wildfire-water risks to human and natural systems. Science of the Total 

Environment 610-611, 1193-1206. doi:10.1016/j.scitotenv.2017.08.112 

Robinne F-N, Bladon KD, Silins U, Emelko MB, Flannigan MD, Parisien M-A, Wang X, 

Kienzle SW, Dupont DP (2019) A regional-scale index for assessing the exposure of 

drinking-water sources to wildfires. Forests 10, 384. doi:10.3390/f10050384 

Sankey JB, Kreitler J, Hawbaker TJ, McVay JL, Miller ME, Mueller ER, Vaillant NM, Lowe 

SE, Sankey TT (2017) Climate, wildfire, and erosion ensemble foretells more sediment in 

western USA watersheds. Geophysical Research Letters 44, 8884-8892. 

doi:10.1002/2017GL073979 

Sham CH, Tuccillo ME, Rooke J (2013) Effects of wildfire on drinking water utilities and best 

practices for wildfire risk reduction and mitigation. Water Research Foundation Report 4482. 

119 p. Available from www.waterrf.org 

Sidman G, Guertin DP, Goodrich DC, Thoma D, Falk D, Burns IS (2016) A coupled modelling 

approach to assess the effect of fuel treatments on post-wildfire runoff and erosion. 

International Journal of Wildland Fire 25, 351-362. doi:10.1071/WF14058 

Thompson MP, Scott J, Langowski PG, Gilbertson-Day JW, Haas JR, Bowne EM (2013) 

Assessing watershed -wildfire risks on national forest system lands in the Rocky Mountain 

region of the United States. Water 5, 945-971. doi:10.3390/w5030945 

Thompson MP, Gilbertson-Day JW, Scott JH (2016) Integrating pixel- and polygon-based 

approaches to wildfire risk assessment: applications to a high-value watershed on the Pike 

and San Isabel National Forests, Colorado, USA. Environmental Modeling and Assessment 

21, 1-15. doi:10.1007/s10666-015-9469-z 

Tillery AC, Haas JR, Miller LW, Scott JH, Thompson MP (2014) Potential post-wildfire debris-

flow hazards - a pre-wildfire evaluation for the Sandia and Manzano Mountains and 

surrounding areas, central New Mexico. US Geological Survey Scientific Investigations 

Report 2014-5161. 34 p. (Albuquerque, NM, USA) 

  

http://www.waterrf.org/


7 

 

CHAPTER 2 – PRIORITIZING FUELS REDUCTION FOR WATER SUPPLY PROTECTION 

 

 

 

2.1 INTRODUCTION 

 Communities that rely on surface water from fire-prone watersheds are at risk of wildfire-

related increases in sediment, debris, organic matter, other constituents, and peak flows that may 

damage water infrastructure, complicate water treatment, and reduce reservoir storage capacity 

(Moody and Martin 2001; Martin 2016; Nunes et al. 2018). In the western U.S., proactive fuels 

reduction has emerged as a popular strategy to mitigate wildfire risk to water supplies (Huber-

Stearns 2015; Ozment et al. 2016). Fuels reduction, such as forest thinning and prescribed fire, is 

expected to reduce fire severity (Graham et al. 2004; Agee and Skinner 2005; Reinhardt et al. 

2008; Martinson and Omi 2013) and therefore post-fire runoff, erosion, and debris flows 

(Benavides-Solorio and MacDonald 2001, 2005; Cannon et al. 2010). However, watershed 

investment programs have been challenged to quantify fuel treatment effects on water supply 

risk and to prioritize fuel treatment locations (Ozment et al. 2016). Understanding fuel treatment 

effects is fundamental to outcome-based investment strategies for land management that 

emphasize clearly articulated goals and spatial prioritization (USDA Forest Service 2018). 

Robust assessment and planning tools are needed to ensure large investments in watershed fuels 

reduction achieve desired risk mitigation to water supplies. 

In the western U.S., wildfire affects water supplies primarily by increasing sediment 

supply which harms infrastructure and impairs water quality. Exposure to post-fire sediment can 

therefore serve as a useful metric of water supply impact (Buckley et al. 2014; Elliot et al. 2016; 

Jones et al. 2017). High severity wildfire reduces surface cover and alters soil properties leading 

to substantial increases in runoff and erosion (DeBano et al. 2005; Shakesby and Doerr 2006; 
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Moody and Martin 2009). Burn severity and correlated metrics, like percent bare soil, are strong 

predictors of erosion at plot to hillslope scales (Benavides-Solorio and MacDonald 2001, 2005; 

Schmeer et al. 2018), and climate, topography, soils, and vegetation also influence erosion 

potential at landscape to regional scales (Shakesby and Doerr 2006; Moody and Martin 2009). 

Water supply consequences further depend on water supply connectivity to fire-prone uplands 

and vulnerability to sediment and other mobilized contaminants.  

Previous studies demonstrate that wildfire risk to water supplies varies across large 

landscapes due to the likelihood and intensity of fire, erosion potential, and connectivity to water 

supplies (Scott et al. 2012; Thompson et al. 2013a, 2013b, 2016). These studies quantify risk in 

relative terms by combining spatial predictions of fire likelihood and intensity with expert-

defined functions of relative water supply loss by watershed exposure to broad classes of fire 

intensity (Scott et al. 2013). This approach emphasizes fire intensity as the primary driver of 

water supply impact, but multivariate response functions have been used to account for variable 

erosion potential due to soils and slope steepness (Thompson et al. 2013a, 2013b, 2016). Relative 

measures of water supply risk can be useful for prioritizing fuels reduction at broad scales, but 

they do not communicate the potential magnitude of economic damages from reservoir 

sedimentation or water quality impairment. Without concrete metrics of water supply risk, it is 

difficult for water managers to justify the need for risk mitigation, set objective mitigation goals, 

and evaluate the effectiveness of different mitigation strategies.  

Spatially-explicit erosion and sediment transport models have been adapted to assess the 

potential consequences of future fires using modeled fire behavior metrics that approximate burn 

severity (Miller et al. 2011; Buckley et al. 2014; Tillery et al. 2014; Elliot et al. 2016; Sidman et 

al. 2016; Jones et al. 2017). Spatial watershed models improve upon multivariate response 
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functions (Thompson et al. 2013a, 2013b, 2016) by providing quantitative predictions of post-

fire erosion and sediment delivery that account for the influence of cover, soils, topography, and 

rainfall. Sediment yield is a useful metric to water managers because it can be translated into 

water supply consequences such as dredging or replacement costs for reservoirs, conveyance 

infrastructure maintenance, and water treatability (Oropeza and Heath 2013; Buckley et al. 2014; 

Elliot et al. 2016; Jones et al. 2017). Using this framework, fuel treatment effects can be 

quantified by differencing predicted post-fire sediment delivery to water supplies for current and 

simulated post-treatment fuel conditions (Buckley et al. 2014; Elliot et al. 2016; Sidman et al. 

2016; Jones et al. 2017). Fuel treatment targeting may be improved by considering not only 

baseline measures of risk but also variation in treatment effects due to starting fuel conditions, 

the intensity of treatment, topography, and fire weather (Graham 2004; Agee and Skinner 2005; 

Reinhardt et al. 2008; Martinson and Omi 2013). 

Fuels reduction must be prioritized because treating entire watersheds would be cost 

prohibitive and often in conflict with other land management objectives. It is therefore important 

to integrate factors relating to costs, legal and administrative restrictions, operational constraints, 

and social acceptance (North et al. 2015). For example, Buckley et al. (2014) convened a group 

of multi-resource stakeholders to prioritize one landscape-scale fuel treatment scenario informed 

by wildfire risk analysis and stakeholder local knowledge. In contrast, Jones et al. (2017) 

evaluated a range of treatment scenarios that varied in extent and placement criteria. They found 

greater benefit of treatments prioritized using a multi-resource risk assessment that included 

erosion potential compared to those prioritized based on accessibility. The mismatch between 

where it is best to reduce fuels and where it is easiest to reduce fuels highlights the importance of 

jointly considering benefits, costs, and constraints when prioritizing fuels reduction. 
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Furthermore, managers often consider multiple fuel treatment types that vary in effects, 

feasibility, and cost. Optimization approaches that explicitly consider the benefits, costs, and 

constraints of fuel treatments (e.g., Ager et al. 2013 and Thompson et al. 2017) are useful for 

identifying efficient solutions to these multi-dimensional problems. 

Our goal with this study is to leverage recent advances in watershed-wildfire risk 

modeling to prioritize fuels reduction for water supply protection. We introduce a linear program 

formulation to optimize decisions of fuel treatment type and location to maximize avoided 

sediment costs to water supplies subject to treatment feasibility and budget constraints. To 

demonstrate the utility of this approach, we parameterize and apply the model to allocate 

thinning, prescribed fire, and combined fuel treatments to planning units in two northern 

Colorado watersheds with highly valued water supplies. We also evaluate economic indicators of 

fuel treatment effectiveness across a wide range of budgets to show how the model can inform 

goals for a water supply protection program. 

 

2.2 METHODS 

2.2.1 General modeling framework 

We developed an optimization framework to prioritize fuel treatment types and locations 

to maximize wildfire risk reduction to water supplies. We measured risk as the expected fire-

related sediment impact costs to water supplies in US Dollars (USD) (Buckley et al. 2014; Elliot 

et al. 2016; Jones et al. 2017). A set of formal mathematical equations are presented to 

demonstrate the logic to prioritize fuel treatments to mitigate wildfire risk to water supplies in a 

large watershed. We focused on prioritizing treatment location and type because they are the 

primary decisions in near-term fuel treatment planning. Location is critical to water supply risk 
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because of spatial variability in fuel conditions, erosion potential, and connectivity to water 

supplies. We adopted the structure of the National Hydrography Dataset Plus (NHDPlus; 

USEPA and USGS 2012) to map the connectivity between sediment producing catchments and 

water supplies attached to the flowline network (see Figure 2.1 for spatial topology). NHDPlus 

catchments have sufficient resolution (mean size ~ 300 ha) to use as spatial units for large 

watershed (> 100 km2) fuel treatment planning. Treatment type is also important because 

thinning, prescribed fire, and other treatments vary in effects, feasibility, and cost. We provide 

methods to parameterize the model for our test case in northern Colorado, but our focus is on the 

general optimization approach and application, as different data sources and process models may 

be more appropriate to use in other watersheds. 

 

 

Figure 2.1. Watershed Topology 

An example of the NHDPlus (USEPA and USGS 2012) watershed network consists of catchments (indexed by i) 

and flowlines (indexed by j). Catchment i and the flowline j within it share matching identifiers, i.e. i=1 and j=1. 

Each water supply of concern is indexed by k and is mapped to the end of the jth flowline. Sediments produced in 

catchment i are routed to downstream water supply k (i.e. k=1, 2 or 3) accounting for the sediment transport 

efficiency of the flowlines connecting i and k. 
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2.2.2 General model formulations for fuel treatment prioritization 

We formulated a linear programming optimization model to maximize risk reduction 

(USD) to water supplies for decisions of how many hectares to treat in each catchment by 

treatment type during a single fuel treatment planning period subject to a set of feasibility and 

cost constraints. 

Objective function:  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑥𝑖,𝑡 ∗ 𝑅𝑅𝑖,𝑡𝑃𝑡=1𝑁𝑖=1        Equation 2.1 

Subject to: 𝑥𝑖,𝑡  ≤  𝐹𝐸𝑖,𝑡      ∀𝑖, 𝑡    Equation 2.2 ∑ 𝑥𝑖,𝑡  ≤  𝑇𝑜𝑡𝐹𝐸𝑖P𝑡=1        ∀𝑖    Equation 2.3 𝑥𝑖,𝑡  ≥  𝑀𝑖𝑛𝐴𝑟𝑒𝑎𝑖,𝑡    ∀𝑖, 𝑡    Equation 2.4 𝑥𝑖,𝑡  ≤  𝑀𝑎𝑥𝐴𝑟𝑒𝑎𝑖,𝑡      ∀𝑖, 𝑡    Equation 2.5 ∑ ∑ 𝑥𝑖,𝑡 ∗  𝑇𝐶𝑖,𝑡  ≤ 𝐵𝑢𝑑𝑔𝑒𝑡P𝑡=1N𝑖=1        Equation 2.6 𝑥𝑖,𝑡  ≥ 0       ∀𝑖, 𝑡     Equation 2.7 

Subscripts:  𝑖 is used to index catchments from 1 to N  𝑡 is used to index fuel treatment types from 1 to P 

Decision variables:  𝑥𝑖,𝑡 is the area (ha) of treatment type t scheduled in catchment i 

Parameters:  𝑁 is the total number of catchments 𝑃 is the total number of treatment types 𝑅𝑅𝑖,𝑡is the risk reduction (USD ha-1) from treatment type t in catchment 𝑖 
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 𝐹𝐸𝑖,𝑡 is the feasible and effective area (ha) for treatment type t in catchment 𝑖 𝑇𝑜𝑡𝐹𝐸𝑖 is the total feasible and effective area (ha) in catchment i for all treatment types 

combined 𝑇𝐶𝑖,𝑡 is the cost (USD ha-1) for treatment type t in catchment i 𝑀𝑖𝑛𝐴𝑟𝑒𝑎𝑖,𝑡 is the minimum project area (ha) for treatment type t in catchment 𝑖 𝑀𝑎𝑥𝐴𝑟𝑒𝑎𝑖,𝑡 is the maximum project area (ha) for treatment type t in catchment 𝑖 𝐵𝑢𝑑𝑔𝑒𝑡 is the total investment upper bound for the fuel treatment program in USD 

The objective function (Eqn 2.1) maximizes risk reduction to water supplies (measured in USD) 

from fuel treatment over the planning period. Eqn 2.2 constrains treatment to the feasible and 

effective area for each treatment type in each catchment. By “effective” we mean the treatment 

meaningfully lowers fire severity by producing a categorical change from high to moderate or 

moderate to low. The effectiveness criterion is meant to approximate fuels specialist judgement 

to restrict treatment within heterogeneous planning units from areas that do not need treatment 

and from areas where treatment is not expected to alter fire behavior and severity. Eqn 2.3 

prevents overlapping treatments by restricting treatment to the total feasible and effective area in 

catchment i. In Eqn 2.4, the MinAreai,t constraint is used to specify the minimum project size at 

the catchment-level for implementing each treatment type. We expect watershed protection is 

one of several management objectives, so the MaxAreai,t constraint (Eqn 2.5) is used to specify 

the maximum project size (ha). The minimum and maximum area constraints are imposed before 

model formulation by modifying the FEi,t and TotFEi parameters. The expected risk reduction to 

water supplies, RRi,t, is calculated as the mean risk reduction for the feasible and effective area 

for treatment type t in catchment i. Similarly, TCi,t in Eqn 2.6 is calculated as the mean treatment 

cost for the feasible and effective area for treatment type t in catchment i. Parameterizing RRi,t, 
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FEi,t, and TCi,t requires extensive data and modeling that we introduce through a test case. We 

emphasize that these methods are not universal and may require substantial modification for sites 

with different vegetation, fuel treatment methods, erosion processes, and water supply concerns.    

2.2.3 Test case and analysis 

We tested our fuel treatment planning approach on the mostly forested, 4809 km2 upper 

portions of the Cache la Poudre (CLP) and Big Thompson (BT) Watersheds in northern 

Colorado, USA (Figure 2.2). CLP and BT provide drinking water to over 600000 residents in 

Fort Collins, Greeley, Loveland, and neighboring communities. The BT also includes the east 

slope distribution system of the Colorado-Big Thompson Project (C-BT), which conveys 200000 

acre-feet of water annually to water users in the Northern Water Conservancy District. The BT 

and CLP watersheds range in elevation from 1500 to 4343 m above sea level (ASL). Mean 

annual temperature varies from 9.9° C in the plains to -4.6° C in the high alpine, and mean 

annual precipitation increases with elevation from 350 mm to 1300 mm (PRISM Climate Group 

2016). Grass and shrub ecosystems occupy the lowest elevations and montane valleys; the 

mountains are primarily woodlands and forests; and the highest elevations are alpine tundra or 

bare rock. There is considerable variation in forest composition and density due to elevational 

and topographic controls on moisture (Peet 1981). Like much of the western U.S., these 

watersheds have experienced a recent increase in fire activity; since 2000, seven large fires (> 

400 ha) burned nearly 49000 ha in the CLP and BT (MTBS 2015). Land ownership is 53.0% 

federal, 36.5% private, 7.5% state, 1.3% city, and 1.0% county. More than 20% of the study area 

has a protected status that limits active forest management including 50000 ha of wilderness in 

Rocky Mountain National Park and 48000 ha of wilderness and 10000 ha of upper tier roadless 

area on the Arapaho-Roosevelt National Forest. 
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Figure 2.2. Test case watersheds 

Test case location including the mainly forested upper portions of the Cache la Poudre and Big Thompson 

Watersheds in northern Colorado. Water supply points are sized based on sediment impact costs (described in the 

Sediment cost to water supplies section). Land cover from LANDFIRE (2016). 
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2.2.4 Water supply risk and fuel treatment effects 

We linked fire, erosion, and sediment transport models with sediment impact costs to 

calculate wildfire risk to water supplies from each unit of the landscape (USD ha-1) (Figure 2.3). 

We quantified risk reduction from fuel treatment (USD ha-1) by modeling fire behavior and 

effects on water supplies for baseline and simulated post-treatment fuel conditions. We did not 

account for fuel treatment effects on burn probability because the primary objective of fuels 

reduction is to mitigate fire severity (Graham et al. 2004; Reinhardt et al. 2008), and fuel 

treatment has limited effect on landscape-scale burn probability (Thompson et al. 2013c). 
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Figure 2.3. Risk assessment framework 

Fuel treatment effects on wildfire risk to water supplies were quantified by linking models for burn probability 

(FSim; Short et al. 2016), fire behavior (FlamMap 5.0; Finney et al. 2015), erosion (Revised Universal Soil Loss 

Equation [RUSLE]; Renard et al. 1997), and sediment transport (*adaptations of Wagenbrenner and Robichaud 

2014 and Frickel et al. 1975) with stakeholder-defined sediment impact costs to water supplies. The output 

quantifies the expected sediment impact costs to water supplies (i.e. risk) from each unit of the landscape.  

 

2.2.5 Sediment cost to water supplies 

We worked with water managers for Fort Collins, Greeley, Loveland, and Northern 

Water to map water supply infrastructure (hereafter “water supplies”), including 20 reservoirs 

and 11 diversions, to flowlines in the NHDPlus watershed network (Figure 2.1) and assigned 

them sediment impact costs (USD Mg-1). Sediment impact costs are used in our analysis to 

approximate the economic consequence of sediment delivered to a water supply, e.g. the cost to 

dredge a reservoir, build replacement storage, repair infrastructure, or treat impaired water. For 

this analysis, we separated sediment impact costs into two components: 1) a base cost by water 
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supply type (in USD Mg-1 of sediment: 16 for reservoirs, 8 for municipal diversions, and 4 for 

primarily agricultural diversions), and 2) a relative importance weight (0 to 1 for low to high 

importance) assigned by water managers. We based the cost of reservoir sedimentation on the 25 

USD m-3 (16 USD Mg-1 for a sediment bulk density of 1.6 Mg m-3) reported for dredging costs 

by Buckley et al. (2014), which is also close to the local cost of buying or developing 

replacement storage. Relative importance weights were assigned by managers to express the 

significance of water supplies for system function based on infrastructure characteristics and the 

volume, priority, and timing of water rights. We assigned sediment impact costs as the product of 

the base values and the sum of relative importance weights for Fort Collins, Greeley, and 

Loveland (which together can sum to greater than 1). The mean sediment impact cost was 18.1 

USD Mg-1 and the range was from 1.6 to 37.5 USD Mg-1. 

2.2.6 Burn probability 

We used a 270-m resolution national dataset of burn probability (Short et al. 2016) 

modeled with the Large Fire Simulator (FSim; Finney et al. 2011) to quantify fire likelihood. 

FSim predicts wildland fire occurrence, growth, and suppression in response to climate-

informed, stochastically generated weather streams for tens of thousands of fire seasons. We 

selected the national FSim burn probability over custom modeling because the FSim fire 

containment algorithm (Finney et al. 2009) produces more reasonable estimates of fire likelihood 

in the grass and shrub fuel types of our test watersheds. Burn probability was resampled to 30-m 

resolution using bilinear interpolation to match the fire and erosion modeling data used in the 

rest of the analysis. To simplify accounting of fuel treatment effects, we assume fuel treatments 

will be implemented immediately and remain at constant effectiveness for 25 years. The 

longevity of fuel treatments is not well-constrained, but a similar analysis assumed fuel 
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treatments remain effective for 20 years in the western U.S. (Rhodes and Baker 2008). We 

lengthened the effective longevity to 25 years for this study due to lower forest productivity in 

the study area (Peet 1981) and results of a stand dynamics modeling study, which suggest forest 

thinning should reduce torching for ~20 years and active crown fire for ~40 years (Tinkham et al. 

2016) at the locally-observed regeneration density following forest thinning (Francis et al. 2018). 

Therefore, we converted mean annual burn probability from FSim to 25-year burn probability 

(Eqn 2.8) and focus on metrics of risk and risk reduction over a 25-year fuel treatment planning 

period. 𝐵𝑃25 = 1 − (1 − 𝐵𝑃1)25       Equation 2.8 

  

2.2.7 Fuel treatment simulation 

We simulated fuel treatment effects by adjusting spatial fire modeling inputs, including 

the categorical fire behavior fuel model (FBFM; Scott and Burgan 2005), canopy base height, 

canopy height, canopy cover, and canopy bulk density. We acquired 30-m raster fuel data from 

LANDFIRE (2016). and modified them to represent current landscape fuel conditions. Based on 

our observations of recent fire behavior and effects in the study area (e.g., the 2012 High Park 

Fire), we shifted the FBFM for lodgepole pine (Pinus contorta subsp. latifolia) from moderate 

load conifer litter (TL3) to high load conifer litter (TL5) and we lowered the canopy base height 

20% to increase crown fire potential. Fuels data were also updated with past fuel treatments 

(Caggiano 2017). We included three common fuel treatment types in the analysis – thinning 

only, thinning followed by prescribed fire, and prescribed fire only – that differ in their effects on 

surface and canopy fuels (Graham et al. 2004; Agee and Skinner 2005; Reinhardt et al. 2008). 

The average proportional change in canopy fuels from hazardous fuel and restoration treatments 
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in dry forests of the western U.S. (Stephens and Moghaddas 2005; Stephens et al. 2009; Fulé et 

al. 2012; Ziegler et al. 2017) were applied as multiplication factors to current canopy fuels to 

estimate post-treatment conditions (Table 2.1). We simulated treatment effects on surface fuels 

by changing the FBFM for the timber-understory and timber-litter fuel models (Scott and Burgan 

2005) to reflect that thinning often increases surface fuel loads, while prescribed fire consistently 

removes fuel (Fulé et al. 2012, Stephens et al. 2009). We approximated these effects by changing 

the FBFM to increase surface fire intensity for the thinning only treatment, and to decrease 

surface fire intensity for the prescribed fire only treatment. We assumed that the combined 

thinning and prescribed fire treatment would not change the FBFM because the prescribed fire 

would consume thinning residues (e.g. branch and litter activity fuels). For grass, grass-shrub, 

and shrub fuel types, we conservatively assumed that treatments do not alter the FBFM. 

 

Table 2.1. Fuel treatment effects on forest structure 

Treatment effects adjustment factors used to simulate fuel treatments. Effects were applied as multipliers to the 

baseline fuel values to calculate the post-treatment conditions. 

 Treatment Effects 

 

 

Thinning Only Thinning & 

Prescribed Fire 

Prescribed Fire Only 

Canopy Base Height 1.20 1.20 1.09 

Canopy Height 1.20 1.20 1.13 

Canopy Cover 0.70 0.75 0.95 

Canopy Bulk Density 0.60 0.50 0.92 

 

2.2.8 Fuel condition impacts on fire behavior 

We used FlamMap 5.0 (Finney et al. 2015) to model crown fire activity (CFA; Scott and 

Reinhardt 2001) for baseline and post-treatment fuel conditions. CFA is a prediction of fire type 

in categories of unburned, surface fire, passive crown fire, and active crown fire, which has been 

used as a proxy for burn severity in previous watershed risk assessments (e.g., Tillery et al. 2014; 

Haas et al. 2017; Jones et al. 2017). Large fires driven by very dry and windy conditions are 
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responsible for most of the area burned in Colorado Front Range (Graham 2003; Sherriff et al. 

2014; Haas et al. 2015), so we assessed risk using fire behavior modeled under extreme fire 

conditions. We used FireFamilyPlus 4.1 (Bradshaw and McCormick 2000) to summarize fuel 

moisture, wind speed, and wind direction for the fire season (1 April to 31 October) for three 

Remote Automated Weather Stations (RAWS) in the study area - Redfeather, Estes Park, and 

Redstone. The mean 3rd percentile fuel moistures for the three stations (1-hr 2, 10-hr 3, 100-hr 6, 

Herb. 30, Woody 63) were used in FlamMap without conditioning. Due to considerable 

variability in wind direction, we used the wind blowing uphill option in FlamMap. Wind speed 

was set to the 97th percentile 1 min mean wind speed (Crosby and Chandler 1966) averaged 

across stations (38.6 kph at 6 m). 

2.2.9 Hillslope erosion 

We modeled annual soil loss using a GIS-based implementation (Theobald et al. 2010) of 

the Revised Universal Soil Loss Equation (RUSLE; Renard et al. 1997). This approach was 

previously used to estimate wildfire-related erosion in the Southern Rockies for individual 

wildfire events (Miller et al. 2003; Yochum and Norman 2014, 2015) and for future wildfire and 

climate scenarios (Litschert et al. 2014). We recognize the potential uncertainties associated with 

applying RUSLE, which was developed primarily for gently sloping agricultural lands, to predict 

post-fire erosion from steep wildlands. We chose RUSLE for this initial application because of 

its computational efficiency at modeling erosion for multiple treatment scenarios over large 

landscapes. Research in the region has also compared RUSLE to the more physically based 

WEPP model and developed parameters for RUSLE that are suitable for burned landscapes 

(Larsen and MacDonald 2007). Spatial data and analyses were used to estimate each subfactor at 

30-m resolution. 
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RUSLE estimates annual soil loss (A) in Mg ha-1 yr-1 as the product of five sub-factors: 

rainfall-runoff erosivity (R), soil erodibility (K), length and slope (LS), cover (C), and support 

practices (P) (Renard et al. 1997). Rainfall-runoff erosivity (R) is an annual metric of rainfall that 

combines total storm energy and maximum 30-minute intensity (MJ mm ha-1 hr-1). NOAA 15-

minute rainfall data (Perica et al. 2013) assembled for a separate study (Wilson et al. 2018) were 

processed with the Rainfall Intensity Summarization Tool (Dabney 2016) to calculate event-level 

rainfall erosivity. We summed the event values to calculate annual rainfall erosivity for the 11 

rainfall stations that best represent our regional climate. This data set spans the years 1971 to 

2010 and includes 403 station-years of annual erosivity observations. Annual rainfall erosivity is 

highly variable in space and time due to localized convective thunderstorms typical of the study 

area (Kampf et al. 2016). We therefore treat rainfall as a random variable described by the 

empirical distribution of the annual rainfall erosivity observations pooled across stations (Figure 

2.4). To simplify the analysis, we focus on metrics of risk and risk reduction for median rainfall 

erosivity (615 MJ mm ha-1 hr-1), but we also communicate uncertainty in these estimates by 

reporting risk reduction for 5th through 95th percentiles of rainfall erosivity. 
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Figure 2.4. Rainfall erosivity distribution 

Empirical cumulative distribution of Colorado Front Range annual erosivity from 403 station-years of annual 

erosivity observations from 11 NOAA 15-minute rainfall stations.  

 

Soil erodibility (K) was extracted from the Soil Survey Geographic Database (SSURGO), 

and where necessary the State Soil Geographic Database (STATSGO) (NRCS Soil Survey Staff 

2016). We followed the procedures of Yochum and Norman (2014) to calculate a weighted mean 

of whole soil K factor (Kwfact) for each map unit. First, we calculated the component depth-

weighted mean K for the top 15 cm of soil. We then computed the map unit area-weighted mean 

K based on the proportional coverage of components. SSURGO map units that were missing K 

values for more than 50% of their area were gap-filled with equivalent metrics from STATSGO. 

All K values were converted to metric units (Renard et al. 1997).  
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The combined length and slope (LS) factors were calculated using terrain analysis of a 

30-m DEM (USEPA and USGS 2012) following methods in Theobald et al. (2010). The slope 

portion (S) was calculated per Nearing (1997) where θ is slope steepness. We limited θ to 28.8 

degrees when calculating S (Eqn 2.9) to not extrapolate beyond the range of Nearing’s data 

(Theobald et al. 2010; Litschert et al. 2014).  𝑆 =  −1.5 +  171+ 𝑒(2.3−6.1∗sin 𝜃)      Equation 2.9 

We then calculated LS using the methods of Winchell et al. (2008) (Eqns 2.10-2.13) where A is 

the contributing area to the cell inlet in m2, D is the cell dimension in meters, m is slope-length 

exponent, and x is the shape factor calculated as a function of cell aspect (α) in radians. The 

slope-length exponent (m) is based on the ratio of rill to interrill erosion (β), which is estimated 

from slope steepness (θ) following McCool et al. (1989).  𝐿𝑆 = 𝑆 ∗  (𝐴+𝐷2)𝑚+1−𝐴𝑚+1𝐷𝑚+2∗ 𝑥𝑚∗ 22.13𝑚      Equation 2.10 

𝑚 =  𝛽1+ 𝛽         Equation 2.11 

𝛽 =  𝑠𝑖𝑛𝜃0.08963∗𝑠𝑖𝑛𝜃0.8+0.56        Equation 2.12 𝑥 = |𝑠𝑖𝑛𝛼| + |𝑐𝑜𝑠𝛼|       Equation 2.13 

We calculated slope steepness (θ), slope aspect (α), and contributing area (A) from a 30-m 

resolution filled DEM using standard slope, aspect, and D8 flow direction methods in ArcGIS 

10.3 (ESRI 2015). When calculating LS, we limited A to 0.9 ha to approximate the maximum 

hillslope length of 305 m suggested in Renard et al. (1997). We also limited LS values to the 

maximum of 72.15 from Renard et al. (1997). 

We assigned each Existing Vegetation Type (EVT) from LANDFIRE (2016) an 

undisturbed cover factor (C) based on previous studies (McQuen 1998; Toy and Foster 1998; 
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Miller et al. 2003; Yang et al. 2003; Breiby 2006). Baseline C factor values ranged from 0.001-

0.003 for forests, 0.025-0.029 for shrublands, 0.012-0.080 for grasslands, and up to 1.0 for 

barren areas associated with agriculture or mining. We assigned alpine barren areas (> 2,900 m 

ASL) a C of 0.002 due to high rock cover. Baseline estimates of C do not have to be precisely 

defined because they are small compared to post-wildfire C (Larsen and MacDonald 2007), 

especially for forests, which are the focus of our analysis. 

2.2.10 Predicting post-fire erosion 

We used crown fire activity (CFA; Scott and Reinhardt 2001) modeled with FlamMap 

5.0 (Finney et al. 2015) as a proxy for burn severity by mapping surface, passive crown, and 

active crown fire to low, moderate, and high burn severity, respectively. Characterizing fire 

effects by burn severity category is consistent with how field-based erosion studies stratified 

their sampling (e.g. Benavides-Solorio and MacDonald 2005; Larsen and MacDonald 2007) and 

it is similar to using remotely sensed burn severity to predict post-fire erosion (Miller et al. 

2016). Fire-related increases in erosion are primarily attributed to change in surface cover 

(Larsen et al. 2009) and altered soil properties (Shakesby and Doerr 2006). Therefore, we 

modeled fire effects on erosion by modifying the RUSLE C and K factors. For forests (≥ 10% 

canopy cover), we adopted the mean first year post-fire C from Larsen and MacDonald (2007) 

by fire severity (Table 2.2). Due to the diversity of non-forest vegetation types (< 10% canopy 

cover) and the more limited estimates of post-fire cover in these systems (Pierson and Williams 

2016), we used proportional adjustment factors to model fire effects on C (Table 2.2). Fire 

effects on soils are diverse, but generally lead to decreased infiltration and cohesion from a range 

of processes including deposition of hydrophobic compounds, soil sealing, and consumption of 

organic material (DeBano et al. 2005; Shakesby and Doerr 2006). Direct measures of post-fire K 
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are lacking, but Larsen and MacDonald (2007) back-calculated a 2.5-fold increase in K for high 

burn severity. Since they did not directly measure K, we estimated fire effects on K with more 

conservative adjustment factors (Table 2.2) like Schmeer (2014). 

 

Table 2.2. Fire effects on erosion 

Mean post-fire C factor values by burn severity from Larsen and MacDonald (2007) were used to assign post-fire C 

for forests (≥ 10% LANDFIRE canopy cover). Fire effects on C factor for non-forest (< 10% LANDFIRE canopy 

cover) were applied as proportional adjustment factors. Fire effects on K factor for all vegetation were applied as 

proportional adjustment factors. 

 Fire Effects 

Crown Fire 

Activity 

Burn 

Severity 

Forest C Non-forest C 

Adjustment Factor 

K Adjustment 

Factor 

Surface Low 0.01 1.2 1.5 

Passive Moderate 0.05 1.5 1.75 

Active High 0.20 2.0 2.0 

 

In the Colorado Front Range, post-fire hillslope erosion generally returns to pre-

disturbance levels within 2-5 years (Benavides-Solorio and MacDonald 2005; Wagenbrenner et 

al. 2006; Robichaud et al. 2013a). Based on the rate of surface cover recovery and its influence 

on erosion, we estimate that the total sediment yield from erosion over the multiple years of 

recovery is approximately 2.1 times the first-year sediment yield (Benavides-Solorio and 

MacDonald 2005; Pietraszek 2006). We used this empirical correction factor to estimate the 

multi-year sediment yield from post-fire erosion. 

2.2.11 Hillslope sediment transport 

We used an empirical model of post-fire hillslope sediment delivery ratio (hSDR) for the 

western U.S. (Wagenbrenner and Robichaud 2014) to estimate the proportion of gross erosion 

delivered to streams. When hillslope erosion is the primary source of sediment, unit area 

sediment yields normally decline with increasing watershed size (hSDR < 1) because of 

increasing opportunities for sediment storage (Walling 1983). We estimated post-fire hSDR with 
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the annual length ratio (LR) model from Wagenbrenner and Robichaud (2014) (Eqns 2.14 and 

2.15). We calculated the flow path length from each pixel to the nearest channel as the 

“catchment length” and the flow path length across the pixel as the “plot length” using a 30-m 

DEM (USEPA and USGS 2012) in ArcGIS 10.3 (ESRI 2015). log(ℎ𝑆𝐷𝑅) =  −0.56 − 0.0094 ∗ 𝐿𝑅     Equation 2.14 𝐿𝑅 =  𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑖𝑥𝑒𝑙      Equation 2.15 

The moderate-resolution NHDPlus flowline network does not include all channels and it 

especially underestimates the extent of the channel network after wildfire (Wohl 2013). We 

therefore extended the channel network using a 10.8 ha contributing area threshold (Henkle et al. 

2011) to define streams before calculating flow path length to nearest channel. The resulting 

hSDR values ranged between 0.05 and 0.27. The maximum hSDR for near stream environments 

is low compared to similar predictions of SDR based on travel time (Ferro and Porto 2000; 

Fernandez et al. 2003) and, as we show later in the results, the catchment and whole watershed 

sediment yields are much lower than field observations from the region. We therefore carried 

forward two scenarios through the subsequent analyses: a low SDR scenario using the base 

model predictions and a high SDR scenario with double the predicted SDR as an approximate 

calibration to the small catchment sediment yields from the Hayman Fire (Robichaud et al. 2008, 

2013b). Channel pixels for both scenarios were assigned hSDR of 1.  

2.2.12 Sediment delivery to infrastructure 

Sediment transport in streams depends on characteristics of the sediment and flow. 

Streamflow has high spatial and temporal variability in the local semi-arid climate. Sediment 

rating curves or bedload transport functions based on critical sheer stress or stream power rely on 

accurate flow characterization, so there is a high degree of uncertainty when using these 
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approaches to predict sediment transport under unknown future hydrologic conditions. We 

instead adapted a simple model of channel SDR (cSDR) based on Frickel et al. (1975) to 

estimate the proportion of sediment transported through a stream segment as a function of 

Strahler stream order. Since nearly all burned tributaries were highly connected to water supplies 

after the High Park Fire (Miller et al. 2017), we assumed transport of fine-grained hillslope 

sediments would be very efficient for the steep, gravel-to-cobble bed streams typical of the study 

area. Post-fire monitoring of a similar montane watershed showed that clay and silt are 

efficiently transported even during low flow conditions, while transport of sand and larger 

particles may depend on higher flows associated with annual snowmelt or intense rainstorms 

(Ryan et al. 2011). We assigned cSDRs per 10 km of stream length of 0.75, 0.80, 0.85, and 0.95 

to 1st, 2nd, 3rd, and 4th or higher order streams, respectively, to reflect that sediment transport may 

be less efficient in the lower order channels due to ephemeral or intermittent flow, and roughness 

from riparian vegetation and coarse woody debris. More sophisticated methods would be 

necessary for watersheds with low-gradient depositional reaches, routing large caliber sediments, 

or predicting storm-level sediment transport. We also assigned cSDR of 0.05 to all dammed 

flowlines to reflect that much of the sediment entering lakes or reservoirs should be trapped 

(Brune 1953). The proportion of sediment transported from a catchment to a downstream water 

supply was calculated as the product of the connecting flowline cSDRs. 

2.2.13 Water supply risk 

We combined estimates of burn probability and fire effects to calculate baseline wildfire 

risk in USD ha-1 to water supplies from pixels in catchment 𝑖 as: 𝑅𝑖𝑠𝑘 = 𝐵𝑃25 ∗  (𝐴𝑏,𝑛𝑡 − 𝐴𝑢𝑏) ∗ 2.1 ∗ ℎ𝑆𝐷𝑅 ∗  ∑ (𝐶𝑘 ∏ 𝑐𝑆𝐷𝑅𝑗𝑃j=1 )𝑁𝑘=1   Equation 2.16 
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where b and ub denote burned and unburned conditions; t and nt denote treatment and no 

treatment; A is annual soil loss (Mg ha-1); coefficient 2.1 is the empirical correction factor to 

account for multiple years of elevated erosion; hSDR is the hillslope sediment delivery ratio; Ck 

is the sediment impact cost for the kth connected downstream water supply (USD Mg-1); and 

cSDRj is the channel sediment delivery ratio for the jth flowline segment connecting the source 

catchment i to water supply k. The risk reduction (USD ha-1) from applying treatment t in 

catchment i is estimated by instead differencing the burned not treated conditions (Ab,nt) and the 

burned treated conditions (Ab,t): 𝑅𝑖𝑠𝑘 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐵𝑃25 ∗  (𝐴𝑏,𝑛𝑡 − 𝐴𝑏,𝑡) ∗ 2.1 ∗ ℎ𝑆𝐷𝑅 ∗ ∑ (𝐶𝑘 ∏ 𝑐𝑆𝐷𝑅𝑗)𝑃j=1𝑁𝑘=1
 Equation 2.17 

We framed risk reduction here as the positive benefit of treatment to be maximized in Eqn 2.1. 

The risk reduction rate parameter (RRi,t) in Eqn 2.1 is calculated as the mean risk reduction (USD 

ha-1) for feasible and effective pixels to treat with t in catchment i. 

2.2.14 Treatment constraints 

We evaluated the feasibility and cost of each treatment type with spatial data on land 

designations, roads, and topography. Thinning is only feasible where there are forested fuels to 

modify (≥ 10% canopy cover) and mechanized equipment is permitted (not in wilderness or 

upper tier roadless). We assume that any area is feasible for prescribed fire after thinning, but 

before thinning, it must meet fire effects and safety criteria. We modeled fire behavior with an 

additional FlamMap run under 30th percentile fuel moistures and 16.1 kph winds at 6 m to 

approximate prescribed fire conditions. We assumed that any pixels with > 30% crown fraction 

burned (Scott and Reinhardt 2001) would exceed the desired overstory tree mortality. We further 

excluded prescribed fire from within 250 m of structures (mapped by Caggiano et al. 2016) and 
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from forest types associated with infrequent, stand-replacing fire (i.e. “wet forests”). Many 

factors influence the cost of thinning including site access, equipment operability, forest 

composition and structure, and the market value of timber or non-timber products. There is 

potential for merchantable timber extraction to offset some of the thinning cost, but we chose not 

to account for it here due to local emphasis on fuel reduction prescriptions that retain larger trees 

of fire-resistant species (Agee and Skinner 2005; Reinhard et al. 2008). Based on input from 

local forestry and logging professionals (B. Lebeda and M. Morgan, pers. comm.), we 

approximated thinning costs for mechanical harvesting equipment as functions of accessibility 

and operability using Eqn 2.18. We assumed that anywhere within 800 m of road and below 40% 

slope would cost 6200 USD ha-1 to thin. We assumed thinning costs would increase linearly from 

6200 to 24700 USD ha-1 as distance from roads (D) increased from 800 to 6400 m and as slope 

(S) increased from 40 to 200 percent, up to a maximum of 24700 USD ha-1.  

𝑇ℎ𝑖𝑛 𝐶𝑜𝑠𝑡 =  { 6200  ;  𝐷 ≤ 800 𝑎𝑛𝑑 𝑆 ≤ 406200 + 3.3 ∗ (𝐷 − 800) + 115.8 ∗ (𝑆 − 40)  ;  𝐷 > 800 𝑎𝑛𝑑 𝑆 > 40 

Equation 2.18 

We estimated prescribed fire cost as 2500 USD ha-1 based on local manager experience (B. 

Karchut and J. White, pers. comm.). The thinning plus prescribed fire costs were calculated as 

the sum of thinning costs and prescribed fire costs. 

2.2.15 Model parameterization and testing 

For each catchment and treatment type we calculated the feasible and effective treatment 

area (FEi,t), mean treatment risk reduction (RRi,t), and mean treatment costs (TCi,t). We 

formulated and solved the optimization model using the lpSolve package (Berkelaar et al. 2015) 

in R (R Core Team 2019), which uses the revised simplex method for continuous decision 

variables. We generated solutions for a large range of budget levels (10 to 500 million USD) to 
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illustrate how metrics of risk reduction respond to increasing investment. In addition to percent 

and absolute risk reduction (USD) over the planning period, we present the treatment benefit:cost 

ratio (
𝑟𝑖𝑠𝑘 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡) and return on investment (

(𝑟𝑖𝑠𝑘 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡)𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 ∗ 100). 

 

2.3 RESULTS 

2.3.1 Model parameterization 

The study area-wide mean and maximum annual burn probabilities (Short et al. 2016) 

were 0.0028 and 0.0091, respectively. The 25-year planning period mean and maximum burn 

probabilities increase to 0.0659 and 0.2040, respectively, which corresponds to an expected area 

burned of 31702 ha over the planning period. Under extreme fuel and fire weather conditions, 

37.1% of the study area is predicted to burn as surface fire, 16.6% as passive crown fire, and 

36.5% as active crown fire, and the remaining 9.7% is non-burnable. Active crown fire was 

associated with dense forest conditions and steep slopes. For current conditions, the estimated 

increase in erosion during the first post-fire year was substantial (mean: 31 Mg ha-1; median: 4.1 

Mg ha-1), but also highly variable across the watersheds (sd: 61 Mg ha-1; range: 0-670 Mg ha-1) 

due to the combination of fire effects on cover and soil erodibility and the large underlying 

gradient in length-slope. Predicted unit area sediment yields decline when accounting for 

hillslope sediment transport to stream channels and channel sediment transport to water supplies, 

as illustrated for a subset of the study area in Figure 2.5. The landscape-wide mean hSDR was 

0.28 (range: 0.05-1) for the low scenario and 0.51 (range: 0.09-1) for the high scenario. The 

estimated mean increase in first-year post-fire sediment delivered to streams was 8.4 Mg ha-1 (sd: 

19 Mg ha-1) for the low SDR scenario and 15 Mg ha-1 (sd: 31 Mg ha-1) for the high SDR 

scenario. We emphasize the results for the high SDR scenario in subsequent analyses since they 
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align better with the small catchment and whole watershed field observations (Figure 2.5). The 

decline in unit area sediment delivered to the water supplies varied with flow path length and the 

presence of dams. Including both hillslope and channel sediment transport, a metric ton of 

sediment generated from the average pixel will result in 6.2 USD of water supply impact (range: 

0-37.5 USD) for the high SDR scenario. 
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Figure 2.5. Watershed effects results and validation 

Predicted 1st year post-fire sediment yields (Mg ha-1) for the 435 catchments that contribute to a drinking water 

pipeline (a subset of the study area) are presented for hillslope erosion (A), sediment delivered to streams for the 

high SDR scenario (B), and sediment delivered to the pipeline for the high SDR scenario (C). Catchment mean 

sediment yields decline from hillslope to whole watershed scales (D). Low and high refer to the low and high SDR 

scenarios. Measured 1st year post-fire sediment yields from regional field studies (red dots) are presented for 

comparison: hillslope (Moody and Martin 2001; Wagenbrenner et al. 2006; Larsen et al. 2009; Robichaud et al. 

2013a; Schmeer et al. 2018), small catchment for delivery to streams (Robichaud et al. 2008, 2013b), and whole 

watershed for delivery to pipeline (Martin and Moody 2001).   

 

Risk is concentrated in the densely forested, steep canyons of the lower Big Thompson 

and Cache la Poudre rivers and portions of high elevation forests with strong connections to 



34 

 

water supplies. Pixel-level estimates of wildfire risk to water supplies for the high SDR scenario 

(Figure 2.6) range from 0 to 3500 USD ha-1 over the 25-year planning period (mean: 24 USD ha-

1; median: 1.1 USD ha-1). Note that despite high connectivity to water supplies, the lower portion 

of the Cache la Poudre watershed is currently mapped as low risk due to recent fuels reduction 

from the 2012 High Park and Hewlett Gulch fires (Figure 2.6). The total risk to water supplies is 

estimated at 11.5 USD million over the 25-year planning period for median rainfall erosivity and 

the high SDR scenario.  
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Figure 2.6. Wildfire-water supply risk components 

Our integrated measure of water supply risk (D) describes the expected cost of wildfire impacts to water supplies 

over the planning period (USD ha-1) by combining planning period burn probability (A), post-fire increase in 

hillslope erosion over multiple years (B), and connectivity to downstream water supply impact costs for the high 

SDR scenario (combination of hillslope and channel transport and water supply impact costs) (C). 
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Fuels reduction is constrained in our model to locations that are feasible to treat, and 

treatment is effective at modifying crown fire activity. The presence of non-forest vegetation and 

land management designations limit the area feasible for thinning or combined thinning and 

prescribed fire treatments to 226000 ha of the study area (47%). Just over 68000 ha is feasible 

for prescribed fire as the first-entry treatment (14%) based on criteria for proximity to homes, 

crown fire behavior, and ecological setting. Fuel treatments must alter fire behavior as a 

precondition to reduce post-fire erosion. Under extreme fuel and fire weather conditions, the 

thinning only treatment is expected to reduce crown fire activity on 115000 ha of the feasible 

treatment area (51%) (Table 2.3). The thinning only treatment effectively lowered active crown 

fire to passive crown fire on 114000 ha of the feasible treatment area. Thinning alone was not 

effective at reducing active or passive crown fire to surface fire (< 1% of the feasible treatment 

area) due to a combination of low initial canopy base heights and the increase in surface fire 

intensity from fuels added by thinning. The thinning only treatment is expected to intensify 

surface fire to crown fire on approximately 6800 ha (3% of the feasible treatment area), due 

primarily to increased surface fuels and secondarily to reduced canopy wind sheltering. Thinning 

plus prescribed fire was slightly more effective than thinning alone; the combined treatment 

reduced crown fire activity on 119000 ha of the feasible treatment area (53%) (Table 2.3). Most 

change was from modifying active crown fire to passive crown fire (118000 ha), but a larger area 

was reduced to surface fire behavior (610 ha), and fire behavior was only intensified on a small 

area (230 ha). Prescribed fire was the least effective treatment for moderating crown fire activity 

(8300 ha or 12% of the feasible treatment area) (Table 2.3), but it was the most effective 

treatment at reducing active and passive crown fire to surface fire (2500 ha) because of the 

reduced surface fire intensity. 
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Table 2.3. Fuel treatment effects on fire behavior 

Effectiveness of fuel treatments at modifying crown fire activity (Scott and Reinhardt 2001) under extreme fuel and 

fire behavior for the feasible treatment areas. Passive and active refer to crown fire. Treatment is considered 

effective if it reduces crown fire activity. 

Area (ha) Thinning Only Thinning and Prescribed Fire Prescribed Fire Only 

Pre-treatment Surface Passive Active Surface Passive Active Surface Passive Active 

Surface 28539 6763 72 35142 232 1 20215 0 0 

Passive 46 66846 0 321 66571 0 2137 31471 0 

Active 44 114433 9352 291 118348 5190 322 5841 8548 

                    

Total Feasible     226096     226096     68534 

Total Feasible and Effective 114523     118960     8300 

 

Catchment-level mean risk reduction is highly variable across treatment type and location 

(Table 2.4; Figure 2.7) due to differences in treatment effects (Table 2.3), erosion potential, and 

connectivity to water supplies (Figure 2.6). More than 70% of the 1827 catchments in the study 

area have some feasible and effective area to thin. Over half of the catchments have area that 

prescribed fire can be used safely and effectively, but many catchments do not have enough area 

to plan a prescribed fire project (mean: 8.5 ha) (Table 2.4). For the high SDR scenario, the mean 

risk reduction for catchments with feasible and effective area to treat was similar for the thinning 

only and combined thinning and prescribed fire treatments (44.2-44.6 USD ha-1), but lower for 

the prescribed fire treatment (29.6 USD ha-1). Given that thinning is far more expensive than 

prescribed fire, prescribed fire is the most cost-effective treatment for these watersheds (Table 

2.4). Because the combined treatment option is more expensive, it is also less cost-effective than 

thinning only (Table 2.4). 
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Table 2.4. Optimization model parameters 

Mean and range (in parentheses) of model parameters for catchments with feasible and effective area to treat under 

the high SDR scenario. 

Treatment Type 

Catchments 

with Feasible 

and Effective 

Area 

Feasible and 

Effective Area 

Risk 

Reduction  Treatment Cost  

Benefit:Cost 

Ratio 

  (ha) (USD ha-1) (USD ha-1)  

Thinning Only 1334 
86.3 44.2 6851.6 0.0062 

(0.1 - 1070.9) (0 – 500.5) (6177.6 - 16865.8) (0.0000 - 0.0566) 

Thinning and 

Prescribed Fire 
1342 

89.2 44.6 9352.1 0.0046 

(0.1 - 1165.1) (0 – 582.6) (8648.7 - 19347.5) (0.0000 - 0.0435) 

Prescribed Fire 978 
8.5 29.6 2471.1 0.0120 

(0.1 - 182.4) (0 – 448.1) (2471.1 - 2471.1) (0.0000 - 0.1813) 

 

 

Figure 2.7. Spatial distribution of optimization model parameters 

Catchment-level statistics for the thinning only treatment used to parameterize the optimization model. Catchment 

mean risk reduction for the high SDR scenario (A) and treatment cost (C) are calculated for the feasible and 

effective area to treat in each catchment (B).   

 

2.3.2 Optimization model test case 

Our model suggests that water supply risk can be reduced in these watersheds by a 

maximum of 54% with fuels reduction without project size and budget limitations. However, in 

practice, there is often a minimum project size because of the significant cost to mobilize 
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equipment and staff to a project site. It is also rare that fuels are reduced uniformly over large 

areas due to other management objectives. Assuming minimum treatment areas of 10 ha for 

thinning and 20 ha for prescribed fire, and a maximum of 30% area treated in each catchment, 

we estimate that fuels reduction can reduce total water supply risk by approximately one third 

(Table 2.5). More than half of this risk reduction can be achieved by investing 100 million USD 

to treat 14400 ha, and 90% of this risk reduction can be addressed by spending 250 million USD 

to reduce fuels on 36000 ha. There is very low marginal benefit to investing more than 300 

million USD (Table 2.5). At lower budget levels, fuel treatments should be concentrated along 

the main stems of the Cache la Poudre and Big Thompson rivers and near C-BT reservoirs 

(Figure 2.8). As budget increases, fuels reduction could be allocated to areas that are less 

connected to water supplies (Figure 2.8). Despite the higher cost-effectiveness of prescribed fire 

(Table 2.4), it is not selected often because few catchments have > 20 ha of feasible and effective 

area to treat with prescribed fire (Table 2.5). The thinning only treatment is favored at lower 

budget levels (Table 2.5). The model prioritizes thinning on steep slopes despite the increased 

cost; the mean cost of thinning treatments selected for the 10 million USD budget was 8060 USD 

ha-1 (30% higher than the base cost). As budget increases beyond 250 million USD, much of the 

marginal gain in risk reduction is made by converting thinning or prescribed fire only treatments 

to the combined treatment type (Table 2.5). The estimated risk reduction from treatment is small 

compared to the cost of fuels reduction across all budget levels and percentiles of rainfall 

erosivity (Table 2.5). 
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Table 2.5. Optimization model performance metrics  

Performance metrics for optimal fuel treatment plans across a range of investment levels assuming 10 ha minimum 

area for thinning, 20 ha minimum area for prescribed fire, a maximum of 30% area treated in each catchment, and 

the high SDR scenario. 

Performance metric 

Budget (USD millions) 

50 100 150 200 250 300 350 400 450 500 

Risk Reduction (%) 12.3 19.6 24.9 28.7 31.2 32.7 33.6 34.2 34.5 34.6 

Risk Reduction (USD millions) 

for percentiles of post-fire 

rainfall erosivity 

5th 0.48 0.77 0.98 1.13 1.23 1.29 1.32 1.34 1.36 1.36 

25th 0.98 1.55 1.97 2.27 2.47 2.59 2.66 2.70 2.73 2.74 

50th 1.42 2.26 2.86 3.30 3.58 3.76 3.87 3.93 3.96 3.98 

75th 0.98 1.55 1.97 2.27 2.47 2.59 2.66 2.70 2.73 2.74 

95th 5.30 8.44 10.70 12.32 13.40 14.06 14.47 14.69 14.82 14.88 

Benefit:Cost Ratio 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

Return on Investment (%) -97.16 -97.74 -98.09 -98.35 -98.57 -98.75 -98.89 -99.02 -99.12 -99.20 

Catchments (#) 89 162 254 336 434 513 580 639 696 747 

Catchments x treatment type (#) 104 199 329 454 615 739 817 886 954 994 

Total Treatment (ha) 7,165 14,432 21,872 29,037 35,980 42,652 48,384 53,339 58,469 61,823 

Thinning only (ha) 6,649 13,256 20,090 26,657 32,492 37,372 39,131 38,320 37,230 30,427 

Thinning and prescribed fire (ha) 71 188 352 837 1,785 3,564 7,791 13,970 20,406 30,947 

Prescribed fire only (ha) 445 989 1,430 1,542 1,703 1,717 1,461 1,049 832 448 

 

 

Figure 2.8. Fuel treatment optimization results 

Example optimal landscape fuel treatment plans for 50 (A), 100 (B), and 200 (C) USD million budgets using 10 ha 

minimum area for thinning, 20 ha minimum area for prescribed fire, a maximum of 30% area treated in each 

catchment, and the high SDR scenario. Areas reported are for all treatment types combined. 
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2.4 DISCUSSION 

Combining quantitative measures of risk reduction with fuel treatment constraints 

facilitates fuel treatment targeting and realistic assessment of fuel treatment benefits. Our 

analysis extends common risk assessment methods (Scott et al. 2013) with a spatial topology and 

effects modeling framework (Figure 2.1 and Figure 2.3) that provides quantitative measures of 

risk for whole water systems (Figure 2.6). This risk assessment framework should be useful for 

communities with large source watersheds and multiple water supplies. Our fuel treatment 

assessment and optimization approach provides more information than a spatial risk assessment. 

By modeling fuel treatment effects on fire behavior and water supply consequences, 

accomplishments can be reported in terms of risk reduction (USD), rather than area treated 

(USDA Forest Service 2018). Our fuel treatment optimization model demonstrates the potential 

to meaningfully reduce wildfire risk to water supplies by treating a small portion of the forested 

area (Table 2.5; Figure 2.8). For example, in this study area, it was previously estimated that 

191145 ha of the CLP and BT require fuels reduction based on vegetation condition (Talberth et 

al. 2013), but we estimate that 90% of the achievable risk reduction (31% of total risk) with 

project size constraints can be accomplished with only 36000 ha of treatment. Greater risk 

reduction is possible if we assume that there are no minimum project area requirements and that 

entire catchments can be thinned for water supply protection (54%). Our analysis also 

demonstrates that it is more efficient to reduce fuels on erosion-prone steep slopes despite the 

higher cost of treatment. Fuel treatment targeting may be improved in similar landscapes by 

integrating fuel treatment feasibility and cost constraints into the prioritization process. The 

availability of tools to assess baseline risk and fuel treatment benefits (Figure 2.6; Table 2.5) 
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should help groups engaged in fuels reduction for water supply protection define clear risk 

reduction goals and treatment priorities (Ozment et al. 2016). 

We estimate wildfire risk to water supplies in the CLP and BT at 11.5 USD million over 

the next 25 years based on median rainfall erosivity and our high SDR scenario, which is about 

half the costs Denver Water incurred from the Buffalo Creek and Hayman fires (~ 26 USD 

million; Jones et al. 2017). This difference can be attributed to the much higher than median 

rainfall at Buffalo Creek that initiated massive hillslope and channel erosion (Moody and Martin 

2001) and the lower values assigned to sediment impacts in the CLP and BT. The mean value 

assigned to sediment impacts in this study was 18.1 USD Mg-1, which is much lower than the 

62.5 USD Mg-1 Denver Water paid to dredge Strontia Springs after the Buffalo Creek and 

Hayman Fires (Jones et al. 2017). The three municipal water providers we studied all have multi-

source systems, which provides flexibility to cope with wildfire impacts (Oropeza and Heath 

2013). Communities with single-source water systems would likely value wildfire-related 

sediment impacts higher than we do in our analysis. 

Our results suggest the avoided costs to water supplies from fuels reduction is less than 

the cost to treat fuels, which corroborates findings from a similar study of the Mokelumne 

Watershed in California (Buckley et al. 2014; Elliot et al. 2016). Our estimated rates of return for 

fuel treatment (Table 2.5) are similar in magnitude to the 1 million USD avoided sediment 

impacts to water supplies for 68 million USD of fuels reduction reported by Buckley et al. 

(2014). Fuel treatments are only predicted to avoid more impacts to water supplies than they cost 

given fuel treatments are exposed to both extreme wildfire and extreme rainfall (Jones et al. 

2017). Our measure of water supply risk incorporates the likelihood of fuel treatment 

encountering wildfire over 25 years using modeled burn probability (Short et al. 2016) calibrated 
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to historical rates of burning (Finney et al. 2011). Increasing fire frequency, however, has the 

potential to magnify wildfire risk to water supplies (Sankey et al. 2017) and therefore increase 

the value of proactive fuels reduction. Additionally, our narrow focus on sediment impacts likely 

underestimates risk to water supplies and undervalues the full suite of fuel treatment benefits. 

For example, we did not account for potential reductions in post-fire watershed rehabilitation 

spending, nor avoided home loss within the wildland-urban interface. We also did not account 

for fuel treatment effects on burn probability. A similar study in Oregon suggests a large fuel 

treatment program may reduce annual area burned by up to 36% within treated areas, but only 

11% across the full landscape. We chose not to quantify this additional benefit of fuel treatment 

due to the computational demands of burn probability modeling and uncertainty in how burn 

probability will change with potentially greater grass and shrub production in thinned forests 

(Reinhardt et al. 2008). 

In this study, we did not account for the sediment generated from the direct effects of the 

fuel treatments and any associated road building. The priority locations we identified for fuel 

treatments are erosion prone slopes close to main channels, so it is important that the fuel 

treatments themselves not accelerate erosion. A small increase in erosion over the no treatment 

scenario (~3%) was predicted from similar fuel treatments in California (Elliot et al. 2016). In 

Colorado, fuel treatments retain close to 80% surface cover (Libohova 2004), which should 

avoid large increases in erosion (Larsen et al. 2009). Prescribed fire has the potential to increase 

erosion but limiting the extent and patch size of high burn severity should minimize impacts 

(Benavides-Solorio and MacDonald 2005). Much larger increases in sediment production would 

be expected from expanding the unpaved road network (Libohova 2004). We did not account for 

new road construction here because we assumed thinning operations would use the existing road 
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network and costs would increase with skidding distance (Eqn 2.18). Treatment-related sediment 

may be important to consider if it has the potential to exacerbate chronic sediment issues, but it 

may not matter if acute sediment impacts following wildfire are the primary concern. 

The high cost of forest thinning is a substantial barrier to wildfire risk reduction and 

forest restoration in the western U.S. (North et al. 2015). This is especially true in our study 

watersheds due to challenging terrain and the limited market for small diameter materials. It may 

be possible to offset some cost of treatment by harvesting more large trees, but large (or old) tree 

harvesting is often controversial (e.g., Sánchez Meador et al. 2015) and sometimes counter to 

fuel treatment objectives (Agee and Skinner 2005; Reinhardt et al. 2008). Despite higher 

treatment costs, we found it is more efficient to thin forests on erosion-prone steep slopes. Our 

analysis also shows that prescribed fire is the most-cost effective and least-feasible treatment in 

these watersheds (Table 2.4). Due to a lack of local data, we based our prescribed fire effects 

(Table 2.1) on research from more productive forests with larger trees (Stephens and Moghaddas 

2005). This may underestimate prescribed fire effects on canopy fuels in the shorter-statured 

forests of the Colorado Front Range. Prescribed fire feasibility would increase if managers 

accept the potential for more extreme fire behavior in remote areas, or where there are barriers to 

fire spread protecting highly valued resources or assets. More accurate definition of prescribed 

fire constraints would help to identify where limited investments in thinning could expand the 

feasibility of prescribed fire. These same analyses could be useful for identifying appropriate 

conditions to manage wildfire for resource benefit.  
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2.4.1 Modeling caveats 

Linked fire-erosion and sediment transport models can provide quantitative effects 

measures, but it is important to recognize the uncertainties from linking models (Elliot et al. 

2016; Jones et al. 2017), the meager predictive performance of erosion models (Larsen and 

MacDonald 2007), and the high variability in sediment transport (Wagenbrenner and Robichaud 

2014). Our use of crown fire activity as a proxy for fire severity limited the resolution at which 

we could detect fuel treatment effects. More precise methods for simulating fuel treatments and 

measuring fire behavior could better differentiate treatment effects (e.g. the value of following 

thinning with prescribed fire; Martinson and Omi 2013). Previous studies accomplished the link 

between fire and erosion using predicted fire behavior (Elliot et al. 2016; Jones et al. 2017) or 

more-detailed ecological models (Miller et al. 2011; Sidman et al. 2016). Confidence in these 

methods would improve with more understanding of the first-order fire effects on soils in 

relation to fire intensity, heat per unit area, or residence time (Moody et al. 2013; Shakesby et al. 

2016).  

Our sediment yield estimates are close to regional field observations, except for possible 

overprediction of hillslope erosion on very steep slopes (Figure 2.5). This issue may be 

addressed by process-based erosion models, including WEPP and KINEROS, which are 

commonly used for post-fire erosion prediction (e.g., Miller et al. 2016; Elliot et al. 2016; 

Sidman et al. 2016; Jones et al. 2017). RUSLE may also be improved for erosion prediction in 

steep mountain topography with higher resolution elevation data and alternative flow routing 

algorithms to avoid the long flow paths mapped by D8 on near planar slopes. Current methods to 

calculate the LS factor (Winchell et al. 2008) also assign high erosion rates to areas of 

convergent flow, which aligns with local observations of high erosion in low-order drainages 
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(Moody and Martin 2001; Pietraszek 2006; Rengers et al. 2016) but also diverges from the 

original intent of RULSE for predicting erosion from near-planar hillslopes. It is also possible 

that RUSLE correctly predicts high erosion potential on steep slopes, but sediment yields should 

be adjusted to reflect sediment supply limitations due to the often poorly developed soils.  

Data to validate erosion and sediment transport models beyond the hillslope scale are 

needed to test the accuracy of these approaches and inform model improvements. Our estimates 

of sediment transport are coarse approximations of highly dynamic physical processes that we 

roughly calibrated to sparse regional observations of sediment yields at small catchment and 

whole watershed scales (Figure 2.5). We emphasized the high SDR scenario in the results, which 

doubled the predicted hSDR, because it better aligned our net sediment delivery to streams 

predictions with the small catchment sediment yields from the Hayman Fire (Robichaud et al. 

2008, 2013b). However, it is questionable if these limited observations apply to other watersheds 

and hydrologic conditions. It is also possible that the lack of declining per unit area sediment 

yield with increasing catchment area at the Hayman Fire (Wagenbrenner and Robichaud 2014) is 

the result of concentrated erosion in drainage bottoms adding to hillslope sources instead of 

hillslope sources being transported with high efficiency. The channel transport component of our 

model relies on coarse approximations of transport efficiency by channel order, which aligns 

with local observations of efficient sediment transport in high order channels (Moody and Martin 

2001; Miller et al. 2017), but ignore other important controls like channel slope, flow conditions, 

and floodplain connectivity. 

We provided only a cursory analysis of post-fire rainfall because of its high spatial and 

temporal variability and therefore low utility for spatially characterizing risk. Ideally, a full 

accounting of risk would consider joint probabilities of fire occurrence, severity, and post-fire 
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rainfall conditions over several years of recovery (e.g. Jones et al. 2014). We also did not 

discount avoided sediment impacts to net present value. Assuming equal probability of fire over 

the 25-year planning period and a 3% interest rate, our risk reduction estimates should be 

reduced approximately 30%. We used burn probability to represent the spatial and temporal 

variability in wildfire occurrence (Scott et al. 2013), which limits our ability to quantify wildfire 

consequences that are tied to fire and storm magnitudes, such as exceeding thresholds for water 

treatment (Oropeza and Heath 2013; Hohner et al. 2016). Simulation-based risk analysis methods 

(Thompson et al. 2016; Haas et al. 2017) could be used to better quantify the fuels reduction 

effects on fire event consequences and probabilities for exceeding thresholds of impact. 

2.4.2 Management implications and future directions 

Spatial fuel treatment optimization can improve the efficiency of fuels reduction for 

water supply protection. However, fuel treatment is not expected to produce a positive return on 

investment when only considering avoided sediment impacts to water supplies (this study; 

Buckley et al. 2014; Elliot et al. 2016). Wildfire risk assessment is an important first step to 

appraise risk and develop risk reduction goals. Evaluating fuel treatment effects can inform 

whether fuels reduction should be part of a risk mitigation strategy and where in the watershed it 

will be most effective. Previous assessments show that most of the economic benefit of fuel 

treatment is from reduced suppression costs and avoided damage to homes and infrastructure 

(Buckley et al. 2014; Talberth et al. 2013; Thompson et al. 2013c). Water providers are often 

interested in these and other co-benefits of fuels reduction (Jones et al. 2017). In many cases, 

public agencies support these benefits by matching water provider investments (Ozment et al. 

2016). Identifying where water supply protection goals align with other ecosystem restoration, 

risk reduction, and fire management objectives may provide opportunities to further leverage 
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funding. Ideally, fuel treatment contributes to landscape conditions that allow more natural or 

prescribed fires to maintain and expand the footprint of low fuel conditions. Efforts to identify 

where limited investments in forest thinning will support the use of prescribed or managed fire 

may be more cost-effective than using it alone as an area-wide treatment. Coordination among 

forest and fire managers is needed to understand how and where fuels reduction can facilitate 

more beneficial fire on the landscape.  

 

2.5 CONCLUSION 

Our study suggests that combining fuel treatment effectiveness measures and constraints 

in an optimization framework has potential to improve fuel treatment targeting for water supply 

protection. Moreover, the framework facilitates program-level assessment of potential risk 

reduction and fuel treatment costs, which can help interested stakeholders frame risk reduction 

goals and evaluate the efficacy of fuels reduction compared to alternative risk reduction 

strategies. There are many uncertainties in the data used to parameterize the models and to 

evaluate the risk reduction to water supplies from fuel treatments, but our estimate that risk 

reduction is much smaller than the cost of treatment closely matches results from a similar study 

in California (Buckley et al. 2014; Elliot et al. 2016). This raises questions about the economic 

efficiency of mitigating wildfire risk to water supplies with area-wide fuel treatment. It also 

highlights the needs to expand more cost-effective fuel treatment methods and identify where 

water supply protection priorities overlap with other wildfire risk reduction and ecological 

restoration objectives.  
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CHAPTER 3 – SYSTEM ANALYSIS OF WILDFIRE-WATER SUPPLY RISK WITH 

MONTE CARLO WILDFIRE AND RAINFALL SIMULATION 

 

 

3.1 INTRODUCTION 

Wildfire is a growing concern in source water management due to high profile incidents 

of infrastructure and water quality impairment (Smith et al. 2011; Martin 2016) and the potential 

for increasing wildfire activity to exacerbate the problem (Sankey et al. 2017). To improve 

awareness and inform broad mitigation strategies, factors controlling wildfire occurrence and 

intensity, watershed response, and water utilization have been combined to map relative 

measures of wildfire-water supply risk across large regions (Thompson et al. 2013b; Robinne et 

al. 2019). Wildfire-watershed simulation models have also been used to quantify the economic 

risk of reservoir sedimentation and the mitigation effectiveness of reducing fuels in source 

watersheds (Buckley et al. 2014; Elliot et al. 2016; Jones et al. 2017). In contrast, the risk of 

water quality impairment (hereafter “impairment risk”) remains poorly quantified despite 

recognition that water quality impairment is usually the most significant short-term water 

management challenge after wildfire (Sham et al. 2013). Most worrisome is the potential for 

wildfire to disrupt municipal water supply (hereafter “disruption risk”) by severely impairing one 

or more critical sources. Analyzing disruption risk requires improvements to physical modeling 

of contaminant mobilization, transport, and dilution to assess water supply impairment (Nunes et 

al. 2018) and a systems perspective to evaluate impairment consequences for communities with 

multiple sources. 

Impairment risk is a function of spatially and temporally variable wildfire and rainfall 

activity, which must overlap in space and time with sufficient magnitude to mobilize problematic 
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quantities of contaminants into source waterbodies. Jones et al. (2014) explored the frequency of 

this interaction for rainstorms above a typical threshold for debris flow occurrence in Australia 

using a germ-grain model. This is a convenient method to account for spatial and temporal 

variability in wildfire and rainfall, but their simplifying assumptions of uniform erosion potential 

and water supply exposure ignore the considerable spatial variability in erosion and sediment 

transport potential present in real watersheds (e.g., Elliot et al. 2016, Chapter 2). Water quality 

impacts also depend on the size of the receiving water body and its ability to dilute contaminants 

below thresholds of concern for water treatment (Smith et al. 2011; Nunes et al. 2018; Robinne 

et al. 2019); thus, the magnitude of problematic wildfire and rainfall activity should vary based 

on reservoir volume or stream flow. Furthermore, source water redundancy has been identified 

as a promising strategy to mitigate risk of water supply disruption (Smith et al. 2011; Sham et al. 

2013; Writer et al. 2014; Murphy et al. 2015; Martin 2016), highlighting the need for a systems 

perspective when assessing wildfire-water supply risks. Risk assessment should therefore 

account for the spatial and temporal occurrence of wildfire and rainfall and their joint effects on 

erosion and sediment transport, water supply exposure and susceptibility to water quality 

degradation, and the resulting consequences for system performance. 

Wildfire risk assessment methods developed for land and resource management (Finney 

2005, Scott et al. 2013) are ill-suited for quantifying impairment risk because fire exposure and 

consequences are evaluated independently for small units of the landscape. Fire likelihood is 

represented in this framework by flattening the stochastically simulated spatial and temporal 

occurrence of wildfire into an ensemble burn probability raster, thus precluding consideration of 

fire size, which is known to influence the magnitude of watershed response (Cannon et al. 2010). 

Despite these limitations, conventional wildfire risk assessment methods are still a viable option 
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to inform mitigation planning at broad spatial and temporal scales (e.g., Thompson et al. 2013b) 

and to assess risks, such as reservoir sedimentation, that are relatively insensitive to individual 

event magnitudes (Elliot et al. 2016; Jones et al. 2017). Monte Carlo simulation methods that 

focus instead on characterizing the frequency distribution of fire consequences for many discrete 

wildfire events are better suited for assessing risks that depend on fire size, and more generally, 

for characterizing the likelihood of rare but high consequence fires (Thompson et al. 2017). 

Stochastic simulation has been used to characterize the potential variability in area burned and 

watershed response magnitude due to biophysical drivers of fire occurrence and post-fire erosion 

(Thompson et al. 2013b, 2016; Tillery et al. 2014; Haas et al. 2017). Event-based Monte Carlo 

methods are particularly attractive for their ability to simulate frequency distributions of 

disturbance magnitudes that can be used for traditional engineering risk and reliability analyses 

(Singh et al. 2007). 

The primary stochastic drivers of impairment risk are wildfire and rainfall activity, but 

previous assessments have either ignored rainfall characteristics entirely (Thompson et al. 

2013b) or accounted for their influence by reporting variation in watershed response for several 

rainfall return intervals (Haas et al. 2017; Jones et al. 2017; Gannon et al. 2019). Empirical 

studies have found that rainfall metrics are often the second most important predictor of post-fire 

erosion after percent bare soil (Benavides-Solorio and MacDonald 2005; Schmeer et al. 2018) 

and rainfall frequency, depth, intensity, seasonality, and consistency are known to influence 

erosion mechanisms and magnitudes across broad regions (Moody and Martin 2009). In our 

study region – the U.S. Southern Rockies – most erosion is associated with summer convective 

thunderstorms (Benavides-Solorio and MacDonald 2005) that have high spatial and temporal 

variability in occurrence and magnitude (Wagenbrenner et al. 2006; Murphy et al. 2015; Kampf 
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et al. 2016). Incorporating rainfall uncertainty into impairment risk analyses is critical for 

accurate assessment of the potential variability in watershed response to wildfire. 

Wildfire impacts to water quality include increased sediment, carbon, nitrogen, heavy 

metals, and other contaminants of concern, which can render water expensive to treat or unusable 

when contaminant concentrations exceed thresholds for effective treatment (Smith et al. 2011; 

Abraham et al. 2017; Nunes et al. 2018). Water erosion is the dominant process mobilizing post-

fire contaminants, especially in montane watersheds (Smith et al. 2011; Abraham et al. 2017; 

Nunes et al. 2018); hence, spatially-explicit erosion models are commonly employed in pre- and 

post-fire contexts to characterize the potential contaminant sources and magnitudes across 

heterogenous watersheds (e.g. Elliot et al. 2016; Miller et al. 2016). In our study region, surface 

water treatment systems are poorly adapted to high concentrations of suspended sediment, which 

can interfere with conveyance, filtration, and treatment (Smith et al. 2011; Sham et al. 2013). 

Suspended sediment is also a reasonable proxy in our study region for other contaminants of 

concern because carbon and nitrogen concentrations tend to co-vary with suspended sediment in 

response to intense rainfall (Murphy et al. 2015). 

Quantifying impairment risk in terms of contaminant concentration exceedances provides 

a clear means to account for varying water supply susceptibility to post-fire impacts, because 

receiving water body size controls concentration. By including water yield in their source 

exposure index, Robinne et al. (2019) were able to represent the effect of waterbody size on 

contaminant dilution to show that small communities, which primarily source their water from 

small watersheds, are most exposed to wildfire hazards. Quantitative predictions of contaminant 

yield from post-fire erosion could be used for direct evaluation of water quality impairment by 

calculating contaminant concentration in the receiving waterbody and comparing it to common 
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water quality standards (Smith et al. 2011). This is similar to methods used to analyze the 

potential water treatment impacts of the Fourmile Canyon Fire based on post-fire water quality 

observations (Murphy et al. 2015). It is also consistent with the use of instream turbidity 

monitors to avoid the intake of impaired water after the High Park Fire (Oropeza and Heath 

2013). This evaluation framework could also incorporate different water quality thresholds 

owing to variation in other infrastructure characteristics or use (e.g., municipal, agricultural, or 

hydropower).  

Wildfire-water supply risk assessment has so far lacked a systems perspective for 

evaluating the consequences of water quality impairment despite the demonstrated utility of 

alternative sources for moderating wildfire impacts (Writer et al. 2014) and recommendations for 

this as an approach to engineer water system reliability (Sham et al. 2013; Murphy et al. 2015; 

Martin 2016). Due to the limitations with ensemble burn probability-based wildfire risk 

assessment discussed previously, it is difficult to incorporate water system characteristics into 

effects analyses beyond measures of infrastructure importance and sensitivity to post-fire 

contaminants (Chapter 2). Event-based simulation is better suited for systems risk analysis 

because wildfire exposure and post-fire water quality can be tracked across component water 

supplies to determine their impairment states, and the resulting consequence for system 

performance can be evaluated in light of the component states and functions (Haimes 2012). The 

critical contribution of event-based simulation is to define the joint probabilities of impairment 

across system components, which would take centuries to accurately define from observational 

data. This systems assessment framework can represent both redundancies, such as alternative 

water sources, and dependencies, such as conveyance paths with multiple impact points. Beyond 
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improved risk assessment for complex water systems, a systems assessment framework could be 

used to test the effects of operational or infrastructure changes on water supply reliability.  

Here we demonstrate an event-based Monte Carlo simulation risk analysis method to 

estimate the probability of water impairment and system supply disruption. We focus on a multi-

source water system in Colorado as a test case. To account for key uncertainties, we combine 

10000 years of stochastically simulated wildfire and rainfall activity to model post-storm 

turbidity for water supply streams and reservoirs with coupled burn severity, erosion and 

sediment transport models. We then assess impairment risk for individual water supplies as the 

annual probability of exceeding suspended sediment thresholds for water treatment. System 

supply disruption is assessed by evaluating whether water demands can be met based on water 

supply impairment states and contributions to system performance. We apply this framework to 

assess disruption risk for systems representing two common forms of connectivity – redundancy 

from alternative sources and conveyance paths and dependency along conveyance paths – to 

illustrate how wildfire risk may either be mitigated or magnified by the functional relationships 

between water system components. 

 

3.2 METHODS 

3.2.1. Water System 

The study water system is in the Front Range Mountains of Colorado, USA. The names 

of the communities, infrastructure, and other geographic features within the analysis area are 

withheld for security reasons. The water system consists of the primary diversion for a 

community and the conveyance system and terminal reservoirs for a regional water project that 

supplements the community’s primary source (Figure 3.1; Table 3.1). The total upland 
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contributing area to the system is 2127 km2. Elevation ranges from 1616 to 4343 m above sea 

level. The watersheds are steep; 68.5% of the area is greater than 20% slope and 29.2% is greater 

than 40% slope. The climate is continental with warm dry summers and cold winters. 

Thunderstorms between June and October provide the majority of erosive power (Benavides-

Solorio and MacDonald 2005). Forest is the dominant land cover (73.1%) followed by barren 

alpine (9.6%), grassland (7.8%), and shrubland (7.0%) (LANDFIRE 2016). The Colorado Front 

Range has a history of wind-driven fires that have burned large areas at moderate and high 

severity resulting in problematic erosion, reservoir sedimentation, and degraded water quality 

(Moody and Martin 2001; Graham 2003; Wagenbrenner et al. 2006; Oropeza and Heath 2013; 

Murphy et al. 2015). 
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Figure 3.1. Study water system  

The study water system consists of six conveyance reservoirs (CR), two terminal reservoirs (TR), one conveyance 

diversion (CD), and one terminal diversion (TD). The major conveyance paths and reservoirs are cyan. Burn 

probability (BP) depicts the predicted annual likelihood of wildfire activity across the water system. 
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Table 3.1. Water system characteristics 

Water system infrastructure characteristics including volume for reservoirs and discharge for diversions. Discharge 

is the mean annual discharge from May through October from NHDPlus (USEPA and USGS 2012). Burnable 

contributing area is defined based on fuel model mapping from LANDFIRE (2016). 

Code Name 

Network 

placement Volume Discharge 

Total 

contributing 

area 

Burnable 

contributing area 

      (ha-m) (cms) (ha) (ha) 

CR1 Conveyance reservoir 1 Off 6 NA 1,148 1,126 

CR2 Conveyance reservoir 2 Off 114 NA 101 81 

CR3 Conveyance reservoir 3 On 378 NA 39,031 29,088 

CR4 Conveyance reservoir 4 Off 12 NA 1 1 

CR5 Conveyance reservoir 5 Off 269 NA 795 757 

CR6 Conveyance reservoir 6 Off 94 NA 615 596 

CD Conveyance diversion On NA 5.5 77,810 66,100 

TD Terminal diversion On NA 17.1 126,739 108,606 

TR1 Terminal reservoir 1 Off 13,843 NA 979 510 

TR2 Terminal reservoir 2 Off 19,333 NA 4,443 3,567 

 

 

3.2.2 Monte Carlo Simulation  

Probability of exceeding water quality thresholds for treatment and conveyance was 

assessed with Monte Carlo simulation of post-storm suspended sediment concentrations over 

10000 years of stochastic wildfire and rainfall (Figure 3.2). Wildfire activity was modeled using 

a combination of stochastic wildfire perimeters from the Large Fire Simulator (FSim; Finney et 

al. 2011) to describe wildfire occurrence in space and time, and static predictions of crown fire 

activity from FlamMap 5 (Finney et al. 2015) to characterize the spatial variability in burn 

severity within fire perimeters. Interannual variability in rainfall erosivity and the number of 

sediment-generating storms was represented by randomly resampling historical rainfall records 

(Perica et al. 2013). Post-fire hillslope erosion was modeled at an annual time step with the 

Revised Universal Soil Loss Equation (RUSLE; Renard et al. 1997). Sediment transport to 

infrastructure was approximated with hillslope and channel sediment delivery ratio models 

(Wagenbrenner and Robichaud 2014; Frickel et al. 1975) adapted for the study watersheds 
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(Chapter 2). Average annual post-storm suspended sediment was calculated by dividing the 

annual sediment load by the number of sediment-generating storms and assuming this average 

storm sediment load is evenly mixed in the receiving water body volume. 

 

 

Figure 3.2. Monte Carlo simulation framework 

Stochastic components are bold with light grey fill. Annual average post-storm suspended sediment was simulated 

based on spatially and temporally varying wildfire activity with FSim, static estimates of crown fire activity to 

approximate burn severity with FlamMap 5, and temporally varying rainfall based on resampling historical records. 

Post-fire hillslope erosion was modeled with RUSLE and sediment transport to infrastructure was estimated with 

hillslope and channel sediment delivery ratio models. Average annual post-storm suspended sediment was 

calculated by dividing the annual sediment load by the number of sediment-generating storms and assuming this 

average storm sediment load is evenly mixed in the receiving water body volume.    

 

3.2.2.1 Fire Perimeters 

Fire occurrence was simulated with FSim (Finney et al. 2011), which models large fire 

occurrence, growth, and containment over many hypothetical fire seasons. Daily large fire 

occurrence is determined in the model as a function of an artificial time series of the National 

Fire Danger Rating System Energy Release Component (ERC) for fuel model G calibrated with 

time series analysis of historical weather data. FSim models fire growth using the minimum 

travel time algorithm (Finney 2002) based on current fuels and topography (LANDFIRE 2016), 

and daily fuel moisture, wind speed, and wind direction. Daily wind speed and direction are 

drawn randomly from their historical joint probability distribution by month. Fire containment is 
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modeled based on primary fuel type and daily fire growth metrics (Finney et al. 2009). We used 

fire perimeters simulated with FSim over 10000 hypothetical fire seasons from a separate effort 

to update the U.S. national probabilistic wildfire risk components (Short et al. 2016). For this 

application, FSim was calibrated to approximate the historical fire size distribution and rate of 

burning within biophysical regions, called “pyromes”, which have similar controls on wildfire 

activity. Wildfires from three pyromes intersected the study water system. FSim treats fuels as 

stationary, so modeled wildfire activity should be interpreted as representing 10000 possible 

realizations of the next fire season. The simulation year was used here only as a reference for 

tracking post-fire erosion over multiple years of watershed recovery. 

3.2.2.2 Rainfall 

Two annual rainfall metrics were employed to model average post-storm turbidities: 1) 

rainfall erosivity was used to predict annual sediment yield from hillslope erosion (Renard et al. 

1997), and 2) the number of storms exceeding intensity thresholds for erosion was used to 

distribute the annual sediment yield among storm events. Both metrics were represented in the 

analysis by randomly sampling historical rainfall records to generate 10000 years of 

representative rainfall activity. Stations were sampled randomly with replacement and their time-

ordered records were sequentially appended until reaching 10000 years. This approach is similar 

in principle to stochastic rainfall generation in the Watershed Erosion Prediction Project model 

that is commonly used for to estimate uncertainty in post-fire erosion (e.g., Miller et al. 2016, 

Elliot et al. 2016). The historical data came from eleven rainfall gages with 15 min resolution 

located in the Colorado Front Range (Perica et al. 2013) that were assembled for a separate study 

of storm-level thresholds for erosion (Wilson et al. 2018). Hillslope erosion has a strong positive 

relationship with rainfall erosivity (Renard et al. 1997; Benavides-Solorio and MacDonald 2005; 
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Schmeer et al. 2018). Rainfall erosivity, also called “rainfall-runoff erosivity”, is calculated as 

the product of storm maximum rainfall intensity and kinetic energy per unit area (Renard et al. 

1997), which represent the dual triggers of hillslope erosion: sediment detachment and transport 

via surface runoff. Rainfall erosivity is known to be highly variable in the Colorado Front Range 

due to the prevalence of locally powerful convective thunderstorms that are responsible for the 

majority of erosion (Wagenbrenner et al. 2006; Robichaud et al. 2013a; Murphy et al. 2015; 

Kampf et al. 2016). We focused on total annual rainfall erosivity for the period May through 

October because the majority of hillslope erosion in the region is associated with intense summer 

rainfall (Benavides-Solorio and MacDonald 2005) and much of the precipitation during the 

remaining months falls as snow. Annual rainfall erosivity time series for the stations used in our 

analysis are shown in Figure 3.3. The individual station records come from the period 1971 to 

2010. The mean and maximum of the pooled 403 station-years of observations are 684 and 

58468 MJ mm ha-1 h-1, respectively. The associated number of sediment-generating storms was 

estimated using the 7 mm h-1 rainfall intensity (60 min duration) threshold identified by Wilson 

et al. (2018) for erosion occurrence during the first two post-fire years. The mean and maximum 

of the pooled 403 station-years of observations were 4 and 18 sediment-generating storms per 

year respectively in the May through October period. 
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Figure 3.3. Rainfall erosivity variability 

Annual rainfall erosivity for the May through October period from eleven stations representative of the Colorado 

Front Range climate (Perica et al. 2013). 

 

3.2.2.3 Burn Severity 

Crown fire activity (CFA) (Scott and Reinhardt 2001) was modelled using FlamMap 5.0 

(Finney et al. 2015) as a proxy for soil burn severity similar to previous risk assessments (Tillery 

et al. 2014; Haas et al. 2017; Chapter 2) by mapping surface fire, passive crown fire, and active 

crown fire behavior to low, moderate, and high burn severity, respectively. Most area burns in 

the Colorado Front Range during dry and windy conditions (Graham 2003; Haas et al. 2015), so 

CFA was modeled for 3rd percentile (low) fuel moisture (1-h 2%, 10-h 3%, 100-h 6%, 

herbaceous 30%, woody 63%) and 97th percentile (high) mean 1-minute wind speed (39 km h-1 

at 6 m) for the core fire season (1 April to 31 October) from three Remote Automated Weather 

Stations located in the study area. Fuel moisture and wind speed percentiles were calculated with 

FireFamilyPlus 4.1 (Bradshaw and McCormick 2000) and wind speed was converted from a 10-

minute to 1-minute average based on Crosby and Chandler (1966). The wind blowing uphill 

option was used in FlamMap to represent a consistent worst-case scenario across aspects.  
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3.2.2.4 Watershed Modeling 

The mass of post-fire sediment delivered to water supplies was estimated with coupled 

hillslope erosion, hillslope sediment transport, and channel sediment transport models as 

described in Chapter 2 with minor modifications (Figure 3.2; Figure 3.4). Only a brief review of 

the methods is provided here. Model evaluation is reserved for the results section. Chapter 5 also 

reviews the limitations of the system of models and highlights potential future improvements. 

The NHDPlus watershed network was used to represent the spatial topology between sediment-

producing uplands and water supplies (USEPA and USGS 2012). NHDPlus consists of medium 

resolution flowlines and their associated upland contributing areas, or catchments, delineated 

from a 30-m resolution Digital Elevation Model (DEM). Gross hillslope erosion was modeled for 

each burned pixel with RUSLE (Renard et al. 1997). The proportion of sediment delivered from 

each pixel to the stream network was estimated with an empirical model of post-fire hillslope 

sediment delivery from the western U.S. (Wagenbrenner and Robichaud 2014). Sediment was 

then summed for each catchment and routed down the flowline network to water supply nodes 

based on a simple channel sediment delivery ratio model (Frickel et al. 1975) adapted to the 

channel types in the study area. 
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Figure 3.4. Watershed modeling example  

The watershed modeling workflow is demonstrated for a 5234 ha fire from year 1610 of the Monte Carlo simulation. 

Panel A shows the modeled burn severity. Panel B maps the first-year post-fire erosion of fine sediments for a 

rainfall erosivity of 735 MJ mm ha-1 h-1 from the resampled annual rainfall time series. Panel C shows the combined 

hillslope and channel sediment delivery ratio (SDR) for our high SDR scenario. Panel D depicts the annual sediment 

contributed from each pixel to the conveyance diversion. The total post-fire sediment delivered to the diversion in 

the first-year post-fire is 34689 Mg, which is distributed over six sediment producing storms in the season for an 

average storm yield of 5781 Mg. For a mean daily flow volume of 4.73 x 108 lpd, the average post-storm suspended 

sediment concentration is estimated at 12218 Mg l-1 with an associated turbidity of 10476 NTU. 

 

3.2.2.4.1 Hillslope Erosion 

Post-fire increase in hillslope erosion was modeled with a Geographic Information 

System implementation (Theobald et al. 2010) of RUSLE (Renard et al. 2019). RUSLE predicts 

gross erosion (Mg ha-1 yr-1) as the product of factors for rainfall erosivity (R), soil erodibility 

(K), length and slope (LS), cover (C), and support practices (P). Undisturbed erosion rates are 

generally not problematic in the study water system, so our assessment focused on the fire-

related increase in erosion. R came from the stochastic series of rainfall erosivity described 

previously. LS for both conditions was calculated using terrain analysis of a 30-m resolution 
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digital elevation model (USEPA and USGS 2012) per Winchell et al. (2008) with a maximum 

flow accumulation of 0.9 ha imposed to approximate the original hillslope length guidance of 

Renard et al. (1997). Pre-fire K was mapped using the Soil Survey Geographic Database 

(SSURGO) where available and the State Soil Geographic Database (STATSGO) to fill missing 

data (NRCS Soil Survey Staff 2016). K and C factors were varied based on wildfire extent and 

burn severity (Larsen and MacDonald 2007; Chapter 2) to represent the primary effects of fire on 

soils and surface cover (Shakesby and Doerr 2006; Larsen et al. 2009). No support practices 

were considered. 

For each fire, the increase in erosion was tracked over the first three post-fire years. 

Characterizing recovery directly from erosion observations is complicated by rainfall variability 

across years. We estimated that with constant rainfall, erosion in year two should be 15% lower 

than in year one and erosion in year three should be 75% less than year one, based on the rate of 

surface cover recovery and its influence on erosion (Pietraszek 2006; Benavides-Solorio and 

MacDonald 2005; Larsen et al. 2009). Therefore, annual fire-related erosion (𝐴𝑦) was calculated 

with a recovery adjustment factor, RAF, of 1, 0.85, and 0.25 for post-fire years one through three 

respectively (Eqn 3.1). 𝐴𝑦  = 𝑅𝑦 × 𝐿𝑆 × [(𝐾𝑏 × 𝐶𝑏) − (𝐾 × 𝐶)] × 𝑅𝐴𝐹𝑝𝑓𝑦   Equation 3.1 

The subscript y is the index for the common fire and rainfall simulation year, the subscript b 

indicates the burned condition for K and C factors, and pfy is the index for time since fire starting 

at one for the fire year. RUSLE can predict unrealistically high erosion rates on very steep 

slopes, so we limited pixel-scale erosion predictions to the maximum rate of 100 Mg ha-1 yr-1 

observed from hillslope plots in the study region (Moody and Martin 2009). 
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3.2.2.4.2 Hillslope Sediment Transport 

The proportion of eroded hillslope sediment delivered to streams was estimated with an 

empirical model of post-wildfire hillslope sediment delivery ratio (hSDR) from the western U.S. 

(Wagenbrenner and Robichaud 2014). First, the NHDPlus stream channel network was extended 

to include all pixels with a contributing area greater than 10.8 ha (Henkle et al. 2011) because the 

flowline network does not include many of the lowest order channels. The annual length ratio 

model from Wagenbrenner and Robichaud (2014) (Eqn 3.2) was then used to estimate post-fire 

hSDR based on the flow path length from each pixel to the nearest stream channel as the 

“catchment length” and the flow path length across the pixel as the “plot length” from terrain 

analysis of the NHDPlus 30-m resolution DEM in ArcGIS 10.3 (ESRI 2015). The maximum 

hSDR of 0.27 predicted by the model for near stream areas seemed unrealistically low for our 

study area based on observed catchment sediment yields in Colorado (Hayman Fire in 

Wagenbrenner and Robichaud 2014). We therefore explored an alternative high hSDR scenario 

in which we doubled the predicted hSDR. This increased the maximum hSDR from 0.27 to 0.54 

for areas near streams and it increased the minimum hSDR from 0.05 to 0.10 for locations 

furthest from streams. Channels pixels were assigned hSDR of 1. 𝑙𝑜𝑔(ℎ𝑆𝐷𝑅)  =  −0.56 −  0.0094 × (𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑖𝑥𝑒𝑙 ) Equation 3.2 

The annual mass of fire-related sediment (Mg) delivered from a catchment to the stream network 

(𝑇𝑆𝑦) was calculated as the sumproduct of the annual hillslope erosion rate (𝐴𝑦), the pixel area, 

and hSDR for all burned pixels (N) in the catchment (Eqn 3.3). 

𝑇𝑆𝑦 = ∑ 𝐴𝑦,𝑖 × 0.09 ℎ𝑎𝑝𝑖𝑥𝑒𝑙 × ℎ𝑆𝐷𝑅𝑖𝑁𝑖=1      Equation 3.3 
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3.2.2.4.3 Channel Sediment Transport 

A channel sediment delivery ratio (cSDR) model adapted from Frickel et al. (1975) was 

used to predict the proportional throughput of sediment for flowlines (channels) based on stream 

order (Chapter 2). Transport of sand and smaller sediments should be efficient based on post-fire 

observations in the study area (Miller et al. 2017) and a similar watershed in Wyoming (Ryan et 

al. 2011). Low order channels in the study area are characterized by ephemeral or intermittent 

flow and high roughness from coarse bed material and streamside vegetation. The highest order 

channels are still steep mountain streams with considerably greater transport capacity due to 

higher magnitude perennial flows. To approximate these trends, cSDRs of 0.75, 0.80, 0.85 and 

0.95 per 10 km of stream length were assigned to 1st, 2nd, 3rd, and 4th or higher-order streams, 

respectively. Flowlines intercepting lakes and reservoirs were assigned a cSDR of 0.05 to reflect 

that most sediment will be trapped. The annual mass of fire-related sediment (Mg) delivered to a 

water supply (𝑇𝑊𝑆𝑦) was calculated as the sum of sediment delivered to streams for all upstream 

catchments multiplied by the product of cSDRs for the intervening flowlines (Eqn 3.4). 𝑇𝑊𝑆𝑦 =  ∑ (𝑇𝑆𝑦,𝑗𝑂𝑗=1 × ∏ 𝑐𝑆𝐷𝑅𝑘)𝑃𝑘=1       Equation 3.4 

The subscript j is the index for the O upstream catchments and the subscript k is the index for the 

P intervening flowlines between catchment j and the water supply. 

3.2.2.4.4 Suspended Sediment 

In our study region, post-fire suspended sediment concentrations rise to concerning levels 

for short periods (hours to days) following rainstorms (Oropeza and Heath 2013; Sham et al. 

2013), so we estimated suspended sediment concentrations using standard daily load calculations 

for either the reservoir or stream daily flow volume (Table 3.1). Previous research in a similar 

watershed in Wyoming suggests the suspended sediment after summer thunderstorms is 
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primarily clay and silt (70-85%) and the remainder is mostly fine-grained organics (Ryan et al. 

2011). Monitoring of hillslope erosion after a large wildfire in the study region shows that clay 

and silt account for ~25% of eroded sediment mass (Schmeer 2014). Hence, we made the gross 

assumption that up to 35% of the hillslope erosion predicted by RUSLE is part of the fine-

grained inorganic and organic components that contribute to suspended sediment. Average post-

storm suspended sediment concentration (SSC) was estimated by first dividing 35% of 𝑇𝑊𝑆𝑦 

equally among the annual number of sediment-generating storms from the stochastic rainfall 

series to calculate the average storm load of fine sediment. Then, SSC was approximated by 

assuming the average storm load of fine sediment is perfectly mixed in the reservoir or stream 

daily flow volume. SSC is often monitored optically with a turbidity sensor, so treatment limits 

are commonly expressed in Nephelometric Turbidity Units (NTUs). Various turbidity limits for 

effective water treatment ranging from 20-100 NTU have been reported in the literature (Writer 

et al. 2014; Murphy et al. 2015). For this analysis, we use the 100 NTU limit for all water 

supplies to be conservative in our assessment of risk. Turbidity and suspended sediment 

concentration (SSC) are closely related, but the nature of the relationship can vary across sensors 

and watersheds due to varying sediment composition. A conversion equation developed from 

monitoring of the Fourmile Canyon Fire was used to estimate turbidity (NTU) from SSC (mg l-1) 

(Murphy et al. 2015; Eqn 3.5). 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 = 𝑆𝑆𝐶−2.841.166         Equation 3.5 

3.2.3. Risk Analysis 

For individual infrastructure components, probability of impairment was calculated as the 

frequency of annual turbidity exceedances over the total number of simulation years. Water 

quality was considered impaired when turbidity exceeded 100 NTU. The wildfire and watershed 
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components of the Monte Carlo simulation (Error! Reference source not found.) have been s

hown to make reasonable predictions of post-fire sediment yields in this region (Chapter 2), but 

the assumptions required to estimate suspended sediment concentrations add additional levels of 

uncertainty. To assess risk metric sensitivity to data and model uncertainties, we also calculated 

impairment probabilities for 10 NTU and 1000 NTU impact thresholds assuming the suspended 

sediment predictions are unlikely to be more than an order of magnitude off in either direction. 

  To examine system level risks from water quality impairment, we focused on four 

subsystems that represent examples of redundancy and dependency. For each subsystem, the 

number of impaired components was tracked on an annual basis and the consequences of 

impairment were interpreted in light of the subsystem function as follows: 

1. Redundant sources (TD and TR2) can meet the dependent community’s water 

demand if at least one source is operating at full capacity. Therefore, water 

shortage will only occur if both sources are impaired in the same year.  

2. Conveyance path 1 (CR1 -> CR2 -> CR3 -> CR4 -> CR5 -> CR6) is the 

primary conveyance path for a regional water project that distributes water to 

several terminal reservoirs including TR1 and TR2. The conveyance reservoirs 

are considered nodes at which impaired water may disrupt conveyance. 

3. Conveyance path 2 (CR1 -> CR2 -> CR3 -> CD) is an alternative conveyance 

path that bypasses CR4, CR5, and CR6.  

4. Redundant conveyance (paths 1 and 2) provides operational flexibility to 

deliver water to TR2. System performance was assessed on an annual basis using 

the least impaired path. 
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All data analysis and figure generation was completed with R version 3.5.3 (R Core 

Team 2019) using the following packages: raster version 2.8-19 (Hijmans 2019), rgdal version 

1.4-3 (Bivand et al. 2019), rgeos version 0.4-2 (Bivand and Rundel 2018), and plyr version 1.8.4 

(Wickham 2011). 

 

3.3 RESULTS 

3.3.1 Wildfire Occurrence 

A total of 5741 fire perimeters from FSim intersected the study area. Including area 

burned outside the study area, their sizes ranged from 2 to 131922 ha with a median of 59 ha and 

mean of 1758 ha. Simulated wildfire activity is strongly related to vegetation and fuel type; the 

dry forests and woodlands in the low mountains and foothills are expected to burn more 

frequently than the alpine tundra and high elevation forests (Figure 3.1). The area just upstream 

of TD has low predicted burn probability because fuels were recently reduced by wildfire. 

Wildfire is expected to occur most frequently and to impact the greatest area in watersheds 

associated with the on-network diversions – CD and TD (Figure 3.1; Table 3.2). Wildfires 

occurred in 19.4% of years in the CD watershed and 27.1% of years in the TD watershed. CD 

and TD have the greatest exposure to wildfire because they have the largest watersheds (Table 

3.1) and these watersheds extend into the lower elevation vegetation types predicted to have the 

greatest wildfire activity (Figure 3.1). The other on-network water supply, CR3, is expected to 

receive considerably less wildfire activity because of its smaller watershed and the lower 

frequency of burning at higher elevations (Figure 3.1; Table 3.2). Wildfire activity is predicted to 

be low in the local contributing areas to the off-network reservoirs (Table 3.2). TR2 is the most-
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frequently impacted off-network water supply (2.4% of years), because of its relatively large 

contributing area and lower elevation. 

The scale at which wildfire activity becomes problematic should vary by erosion 

potential, post-fire rainfall, proximity to water supplies, and receiving waterbody size, but area 

burned is often a reasonable indicator of impact magnitude. The most notable historical impacts 

from wildfires in this region are associated with a 4690 ha wildfire combined with exceptional 

post-fire rainfall (Moody and Martin 2001) and two fires larger than 35000 ha (Writer et al. 

2014; Martin 2016). More than 50% of years with fire activity did not exceed 100 ha watershed 

area burned, suggesting much of the simulated fire activity will not meaningfully impact water 

supplies (Table 3.2). More than 1000 and 10000 ha of a watershed burning in a single year is 

even more rare (Table 3.2). Only four water supplies – CR3, CD, TD, and TR2 – were exposed 

to more than 1000 ha of fire activity in a year. Greater than 10000 ha of annual fire activity was 

only observed for the three on-network water supplies – CR3, CD, and TD – and this level of fire 

activity was very rare (Table 3.2). Only CD and TD experienced greater than 30000 ha in a year. 

Although off network water supplies were rarely exposed to wildfire, it was common for more 

than 20% of their watersheds to burn in a single year (Table 3.2). 
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Table 3.2. Watershed exposure to wildfire  

Frequency of fire by watershed area burned and conditional statistics on annual area burned. * Of the burnable 

contributing area conditional on fire occurrence. 

Code Frequency by watershed area burned (% of years)  Conditional watershed area burned (ha) 

  > 0 ha > 100 ha > 1,000 ha > 10,000 ha > 20%* > 50%*   Median Mean Max St. Dev. Skew 

CR1 0.82 0.24 0.00 0.00 13.41 7.32  27 120 918 202 2.4 

CR2 0.33 0.06 0.00 0.00 60.61 54.55  57 48 101 39 0.1 

CR3 8.38 2.85 0.89 0.01 1.07 0.00  31 397 12,100 1,124 5.4 

CR4 0.94 0.00 0.00 0.00 100.00 100.00  1 1 1 0 NA 

CR5 1.92 1.22 0.00 0.00 58.85 39.06  214 327 795 303 0.5 

CR6 1.62 1.01 0.00 0.00 59.26 40.74  218 255 615 229 0.4 

CD 19.36 8.99 3.96 0.49 1.70 0.05  78 1,147 33,445 3,130 4.9 

TD 27.14 10.75 3.89 0.37 0.22 0.00  46 730 31,177 2,313 6.4 

TR1 1.21 0.67 0.00 0.00 55.37 30.58  154 227 979 262 1.8 

TR2 2.41 1.20 0.48 0.00 24.90 9.54   95 502 3,447 778 1.9 

 

3.3.2 Burn Severity and Suspended Sediment 

Potential post-fire contribution of suspended sediment to water supplies differs 

considerably across the study area due to variability in fuel conditions and topography that 

influence burn severity, soil conditions and topography that effect hillslope erosion, and 

proximity to water supplies that controls sediment transport efficiency (Figure 3.5). Low, 

moderate, and high severity burning is predicted to occur on 24.4%, 16.5%, and 44.4% of the 

study area, respectively. The remaining 14.7% of the study area is non-burnable cover (barren 

alpine, water, urban, etc.). Watershed area burned at moderate and high severity ranged between 

38.6% to 78.6% by water supply. Under median post-fire rainfall (403 MJ mm ha-1 h-1), erosion 

is predicted to increase after fire between 0 and 100 Mg ha-1 with a mean of 23.0 Mg ha-1 and a 

standard deviation of 32.0 Mg ha-1. The associated mean production of fine sediments is 8.1 Mg 

ha-1. A substantial portion of the eroded sediment is retained in the uplands, so the mean fine 

sediment delivery to streams is only 2.2 Mg ha-1 for the low SDR scenario and 4.0 Mg ha-1 for 

the high SDR scenario. Retention in the channel network further reduces the average 
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contribution to water supplies to a mean of 1.4 Mg ha-1 for the low SDR scenario and a mean of 

2.6 Mg ha-1 for the high SDR scenario. Much of the channel transport losses are from reservoirs 

and lakes that reduce downstream connectivity (Figure 3.5). 

 

 

 

Figure 3.5. Conditional water supply exposure to sediment 

Predicted contribution to water supply suspended sediment during the first-year post fire under median annual 

rainfall erosivity (403 MJ mm ha-1 h-1) and the high SDR scenario. The major conveyance paths and reservoirs are 

cyan. 
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The sediment yields from individual wildfires vary widely owing to differences in the 

erosion potential within their extents and the post-fire rainfall they are exposed to. For ease of 

comparison with field observations, Table 3.3 describes the distribution of first-year post-fire 

total sediment yields (including coarse and fine fractions) grouped into broad categories of 

rainfall erosivity. Gross erosion for the average fire is 18.1, 32.6, and 49.5 Mg ha-1 for the low, 

medium, and high rainfall erosivity categories, respectively. Net sediment delivery to streams is 

approximately one quarter of the gross erosion for the low SDR scenario and one half of the 

gross erosion for the high SDR scenario. Our fire-level predictions of first-year post-fire erosion 

and net sediment delivery to streams are close to the ranges reported for previous fires in the 

Colorado Front Range. At low rainfall erosivity, our simulated erosion rates (Table 3.3) are near 

the study-wide means of 9.5-22.2 Mg ha-1 and the range of individual hillslope observations of 

0.1-38.2 Mg ha-1 reported for most fires in the region (Wagenbrenner et al. 2006; Larsen et al. 

2009; Robichaud et al. 2013a; Schmeer et al. 2018). Approximately 25% of fires exposed to high 

rainfall erosivity (Table 3.3) meet or exceed the 72 Mg ha-1 of rill and interrill erosion observed 

in response to extreme rainfall after the Buffalo Creek Fire (Martin and Moody [2001]; volume 

estimates converted with bulk density of 1.6 Mg m-3). For the low SDR scenario, only the top 

decile of fires exposed to high rainfall erosivity are predicted to deliver sediment to streams at 

the rates approaching the low end of the 22.0-38.6 Mg ha-1 range observed from small 

catchments in the first two years after the Hayman Fire (Robichaud et al. 2008, 2013b) (Table 

3.3). For the high SDR scenario, approximately a quarter of the fires with moderate rainfall 

erosivity and the top half of fires with high rainfall erosivity meet or exceed the low end of the 

observed range. The channel transport losses with further lower sediment yields, so none of the 
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simulated fires at any rainfall level are expected to reach the normalized reservoir input of 52.5 

Mg ha-1 from the Buffalo Creek Fire (Moody and Martin 2001). 

Table 3.3. Fire-level erosion and net sediment to streams 

Summary statistics of first-year post fire erosion and sediment delivery to streams (Mg ha-1) for the portion of 

wildfires that burned the study watersheds in three categories rainfall erosivity. These are total sediment yields 

including the coarse and fine fractions. Low and high refer to the low and high hillslope SDR scenarios. 

Statistic 

<500 MJ mm ha-1 h-1 500-1,000 MJ mm ha-1 h-1 > 1,000 MJ mm ha-1 h-1 

n = 3,738 fires n = 1,496 fires n= 507 fires 

Erosion 

To streams 

Erosion 

To streams 

Erosion 

To streams 

Low High Low High Low High 

Lower decile 1.9 0.5 0.9 5.2 1.4 2.5 12.7 3.2 6.1 

Lower quartile 5.7 1.5 2.8 14.6 3.9 7.2 27.5 7.8 14.3 

Median 13.6 3.6 6.7 30.4 8.1 15.1 50.7 13.5 25.0 

Mean 18.1 4.9 9.0 32.6 8.9 16.3 49.5 13.3 24.5 

Upper quartile 26.3 7.0 13.1 48.0 13.0 24.0 70.1 18.6 34.3 

Upper decile 40.5 10.7 19.8 64.2 17.0 31.3 85.8 22.4 41.3 

 

3.3.2 Water Supply Exposure to Suspended Sediment 

The Monte Carlo simulation links time and location varying wildfire occurrence and time 

varying rainfall to predict the annual average post-storm suspended sediment from all wildfire 

activity accounting for recovery for the first three post-fire years (Figure 3.2). Figure 3.6 

illustrates a 500-year subset of the simulation for TD. Wildfire is frequent in the watershed due 

to its large size, but not all wildfire results in problematic suspended sediment concentrations, 

either because it does not affect enough area or because it does not combine with high rainfall 

erosivity. Within this subset of the simulation, 50 years had greater than 100 ha of wildfire 

activity resulting in 79 years that turbidity exceeded the 100 NTU impairment threshold. 

Impairment is more frequent than large fire occurrence because burned areas are susceptible to 

erosion for multiple years. Wildfire activity occasionally exceeds 100 NTU for a single year, but 

it is more common for two or more years of problematic water quality after fire because the first 

two years have similar erosion potential.  



83 

 

 

 

 

Figure 3.6. Monte Carlo simulation example 

An example 500-year subset of the Monte Carlo simulation results for the terminal diversion (TD) showing annual 

watershed area burned, rainfall erosivity, number of sediment-generating storms, and average post storm turbidity 

for the high SDR scenario. The dashed horizontal line marks the 100 NTU impairment threshold. The 100 NTU 

exceedance probability for this subset of the simulation is 0.158.  

 

Extending this analysis to the full 10000-year simulation period and all water supplies 

results in impairment probabilities of 0 to 0.1689 for the low SDR scenario and 0 to 0.1935 for 

the high SDR scenario (Table 3.4). Given the minor differences between the low and high SDR 

scenarios, we focus on the high SDR scenario for the remainder of our analyses. Cumulative 

frequency distributions of annual average post-storm turbidity for the full 10000-year simulation 
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period are shown for each of the water supplies in Figure 3.7. Mean post-storm turbidity, 

conditional on fire occurrence, varied from 2 to 2129 NTU for reservoirs and from 381 to 2943 

NTU for diversions. Turbidity only exceeded 1000 NTU in 5% or more of the fire-affected years 

at CR1, CD, and TD. The on-network water supplies – CR3, CD, and TD – were most likely to 

experience wildfire-related water quality impacts owing to their greater exposure to wildfire 

activity. CD is most vulnerable to impairment; its source water is predicted to exceed 100 NTU 

in 19.35% of years. Off-network reservoirs were rarely exposed to fire-related water quality 

impacts due to their limited exposure to wildfire and the small size of their local contributing 

areas compared to the receiving waterbody size (Figure 3.7). Off-network reservoirs exceeded 

100 NTU in at most 1.67% of simulation years. Two reservoirs – CR4 and TR1 – never 

exceeded 100 NTU during the 10000 simulation years. CR4 is at low risk because it has less than 

2 ha of burnable contributing area. TR1 has only 510 ha of burnable contributing area, which is 

unlikely to generate enough sediment to impair a 13843 ha-m reservoir. The other terminal 

reservoir – TR2 – exceeded 100 NTU only once in 10000 years. 

Table 3.4. Turbidity exceedance probabilities 

Turbidity exceedance probabilities by water system component for thresholds of 10, 100, and 1000 NTU and low 

and high SDR scenarios. 

Scenario NTU CR1 CR2 CR3 CR4 CR5 CR6 CD TD TR1 TR2 

Low SDR 10 0.0202 0.0041 0.0610 0.0001 0.0206 0.0278 0.2685 0.2607 0.0000 0.0002 

100 0.0137 0.0001 0.0177 0.0000 0.0007 0.0063 0.1689 0.1218 0.0000 0.0000 

1000 0.0057 0.0000 0.0008 0.0000 0.0000 0.0000 0.0809 0.0231 0.0000 0.0000 

High SDR 10 0.0209 0.0048 0.0769 0.0014 0.0292 0.0313 0.2977 0.3147 0.0000 0.0009 

100 0.0167 0.0008 0.0276 0.0000 0.0031 0.0142 0.1935 0.1574 0.0000 0.0001 

1000 0.0083 0.0000 0.0022 0.0000 0.0000 0.0001 0.1018 0.0423 0.0000 0.0000 
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Figure 3.7. Annual average post-storm turbidity distributions  

Cumulative frequency distributions of annual average post-storm turbidity by water supply with 10, 100, and 1000 

NTU exceedance probabilities (EP) for the high SDR scenario. 
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3.3.3 System-level Consequences 

The frequency of component impairment is presented by subsystem and turbidity 

impairment threshold in Table 3.5. The redundant sources subsystem experienced at least one 

component impairment in 15.74% of years, but co-impairment of the dual sources only occurred 

once in 10000 years. Accounting for this redundancy decreases the risk of water supply 

disruption by 99.9% compared to the naïve assumption of disruption whenever a single 

component is impaired. In contrast, dependency magnifies risk. CR3 is the most frequently 

impaired component on conveyance path 1 at 2.76% of years, but at least one component is 

impaired along the full path in 5.17% of years because the multiple nodes of impact increase 

exposure to wildfire. If two or more impaired components are required to substantially reduce 

annual water conveyance, conveyance route 1 is only expected to experience a shortage in 0.96% 

of years. Conveyance path 2 is much risker due to the frequent impairment of CD (Figure 3.7). 

One or more components of conveyance path 2 are expected to be impaired in 20.97% of years 

and two or more components should be impaired in 2.41% of years. Despite the low reliability of 

conveyance path 2, it provides some level of redundancy for path 1. The redundant conveyance 

scenario reduces the frequency of at least one impairment from 5.17% to 4.95% of years (a 4.3% 

reduction) and it reduces the frequency of at least two impairments from 0.96% to 0.72% of 

years (a 25.0% reduction). 
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Table 3.5. System-level accounting of impaired components  

Frequency of impaired components by subsystem and NTU impact threshold for the high SDR scenario. 

Scenario NTU Impaired components (% of years) 

    0 1 2 3 4 5 6   ≥ 1 ≥ 2 

Redundant 

sources 
10 68.50 31.44 0.06 NA NA NA NA  31.50 0.06 

100 84.26 15.73 0.01 NA NA NA NA  15.74 0.01 

1000 95.77 4.23 0.00 NA NA NA NA  4.23 0.00 

Conveyance 

path 1 
10 88.15 8.38 2.57 0.71 0.15 0.04 0.00  11.85 3.47 

100 94.83 4.21 0.86 0.09 0.01 0.00 0.00  5.17 0.96 

1000 99.05 0.84 0.11 0.00 0.00 0.00 0.00  0.95 0.11 

Conveyance 

path 2 
10 67.86 25.67 5.27 0.98 0.22 NA NA  32.14 6.47 

100 79.03 18.56 1.96 0.42 0.03 NA NA  20.97 2.41 

1000 89.17 10.52 0.22 0.09 0.00 NA NA  10.83 0.31 

Redundant 

conveyance 

  

10 88.84 9.23 1.52 0.37 0.04 0.00 0.00  11.16 1.93 

100 95.05 4.23 0.65 0.07 0.00 0.00 0.00  4.95 0.72 

1000 99.05 0.84 0.11 0.00 0.00 0.00 0.00   0.95 0.11 

 

 

3.4 DISCUSSION 

This work demonstrates that wildfire risk to water supplies is considerably more nuanced 

than indicated by coarse-scale analyses that consider few water system characteristics 

(Thompson et al. 2013b; Robinne et al. 2018). The Monte Carlo simulation included realistic 

representations of wildfire and rainfall activity, post-fire watershed response, and water supply 

sensitivity to sediment to estimate the probability of water impairment. Our results suggest that 

water supply infrastructure with large contributing areas are most at risk of impairment due to 

their frequent exposure to wildfires large enough to mobilize problematic sediment quantities. 

Off-network water supplies are at lower risk because wildfire is less likely to encounter small 

watersheds. Larger waterbodies are also more resistant to water quality impairment due their 

greater capacity to dilute contaminants. Hence, large off-network reservoirs are at very low risk 

of impairment. The results also demonstrate that risk of system disruption is reduced by 
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redundancy and magnified by dependency. Our test scenarios show how disruption risk can be 

lowered with both reliable off-network reservoirs and alternative conveyance routes. In contrast, 

conveyance systems with multiple nodes of impact may magnify risk because it is more likely 

that fire will encounter their collective watershed areas.  

This study built upon previous applications of Monte Carlo simulation to assess wildfire-

water supply risks. Thompson et al. (2013a) characterized water supply exposure to wildfire by 

intersecting wildfire perimeters from FSim with municipal watersheds. Similar to their results, 

we found wide variation in fire occurrence across watersheds and high conditional area burned in 

the smallest watersheds. Water managers should expect their largest watersheds to encounter 

large wildfires most frequently, all else being equal, but it is likely that a significant portion of 

their smallest watersheds will burn when they do encounter large wildfires. When the scale of 

problematic wildfire activity is known and landscape conditions are fairly uniform, an exposure 

analysis to characterize the frequency distribution of area burned may be all that is necessary to 

assess risks, similar to the germ-grain analysis from Jones et al. (2014). However, water 

managers are often seeking information on how wildfire effects may vary across large 

watersheds. Stochastically simulated wildfire events have also been linked to spatially explicit 

wildfire effects analysis in two previous studies, but the relative measures of conditional net 

value change used by Thompson et al. (2016) are difficult to translate into meaningful 

consequences for water management and the debris flow modeling in Haas et al. (2017) was not 

linked to water supply exposure. 

A novel contribution of this study is linking stochastic wildfire and rainfall activity with 

approximations of watershed response and water supply sensitivity to assess risk of water quality 

impairment. Beyond wildfire size and rainfall magnitude, the location and pattern of wildfire 
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activity relative to spatial variation in biophysical drivers of fire behavior, post-fire erosion, and 

sediment transport substantially modify watershed response and water supply impacts (Figure 

3.5). The rates of annual suspended sediment generation predicted by our watershed model with 

the high SDR scenario (0-35 Mg ha-1 yr-1) are reasonable compared to the range of 0.017 to 50 

Mg ha-1 yr-1 reported by previous studies (Smith et al. 2011) and most of the post-storm 

turbidities are in the common range of 100-1000 NTU observed after wildfires in the study 

region (Figure 3.7; Rhoades et al. 2011; Oropeza and Heath 2013; Murphy et al. 2015). The peak 

turbidities modeled for the on-network diversions – 34000 to 180000 NTU – are above the limits 

for most turbidity sensors but the corresponding suspended sediment concentrations of 39000 to 

210000 mg L-1 fall below the maximum of 500000 mg L-1 observed after fires worldwide (Smith 

et al. 2011). A key result of our analysis is that much of the wildfire and rainfall activity in the 

larger watersheds is not predicted to cause water impairment (Figure 3.7); for example, the 100 

NTU threshold was only exceeded at TD in 35.0% of the years that TD was exposed to wildfire-

related sediment. This result seems reasonable given that not every large fire in the region has 

significantly impaired water sources. It also highlights the benefit of pairing exposure and effects 

analysis to identify the subset of wildfire and rainfall conditions that lead to impairment. 

The annual impairment probabilities modeled in this study for individual water supplies 

span the range of 0 to 0.1935 for the 100 NTU threshold. The on-network diversions – CD and 

TD – had the highest probability of impairment at 0.1574 and 0.1935, respectively. Given that 

water quality is often impaired for two years, this corresponds to an impactful wildfire on 

average once every 10 to 13 years. If either of these were a community’s sole water source, they 

would not meet typical source water reliability standards (e.g., 0.98-0.99). Their high fire 

exposure is the result of their large watersheds with high proportional coverage of dry forests. In 
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particular, the CD watershed stands out as exceptionally risky due to the combination of high 

burn probability, dense forests prone to burning at high severity, and high erosion potential 

(Figure 3.5). It is possible that long-term risk to TD is underestimated in this study because the 

fuels data used for both the FSim and FlamMap modeling reflect recent wildfire activity.  

Previous work suggests small watersheds may be more prone to wildfire-related 

impairment due to the greater conditional probability of burning a high proportion of the 

watershed (Thompson et al. 2013a) and the smaller flows to dilute contaminants (Robinne et al. 

2019). The low predicted impairment probabilities for off-network reservoirs in this study 

diverge from previous findings because these reservoirs have unnaturally high volumes for the 

local contributing area size, which results in lower sensitivity to suspended sediment inputs. This 

is especially true for the high-volume terminal reservoirs; TR1 was never impaired at the 100 

NTU level and TR2 was impaired only once. The smaller reservoirs were more sensitive to 

wildfire impacts, but none had 100 NTU exceedance probabilities greater than 0.0167 because 

most rarely encountered large wildfires (Table 3.2). CR3 is the only on-network reservoir in the 

study system similar to Strontia Springs Reservoir, which was heavily impacted by the 1996 

Buffalo Creek and 2002 Hayman Fires (Moody and Martin 2001; Martin 2016), and motivates 

much of the regional concern about wildfire risk to water supplies (Jones et al. 2017). CR3 is at 

moderate risk of impairment (100 NTU exceedance probability = 0.0276) because it is located at 

higher elevation where burn probability is lower (Figure 3.1) and just over a quarter of the 

contributing area is mapped as non-burnable due to sparse vegetation in the alpine.  

Previous studies largely ignored the system context for water supplies, focusing on at 

most one or two reservoirs (Elliot et al. 2016; Thompson et al. 2016; Jones et al. 2017). 

Increasing source water redundancy is often advocated for as a means to mitigate wildfire-water 
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supply risks (Sham et al. 2013; Murphy et al. 2015; Martin 2016), but without quantitative 

estimates of the mitigation benefit. Considering covariance in fire exposure across a multi-source 

water system has been proposed as a means to optimize mitigation decisions using a portfolio 

investment framework (Warziniack and Thompson 2013). The Monte Carlo simulation methods 

used here allowed for meaningful characterization of the likelihood that multiple system 

components will be impaired at the same time (Table 3.5). Our results illustrate two forms of 

redundancy that are common in many water systems. The first is mitigating uncertainty with a 

high reliability water source, in this case, a large off network terminal reservoir. Assuming 100% 

substitutability, TR2 reduced the risk of water supply disruption to practically zero despite 

frequent impairment to TD (Table 3.5). The second form of redundancy reduces risk of water 

shortage through alternative conveyance paths. Despite the close proximity of the alternative 

conveyance paths and the low reliability of path 2, the paths were not always impaired by fire at 

the same time. The gain in system reliability from alternative sources and conveyance pathways 

should increase with geographic separation. 

Wildfire risk magnification from dependencies has not been widely discussed. For 

conveyance path 1, we found modest increase in risk from the dependent nature of conveyance 

infrastructure; the most frequently impacted component was impaired 2.76% of simulation years 

but at least one component on the conveyance path was impaired in 5.17% of years. This 

magnification is a result of the increasing watershed area exposed to wildfire. For this 

assessment, it was assumed the 100 NTU impairment threshold for water treatment also applies 

to conveyance due to the undesirable effects of sedimentation to intake structures, pipelines, and 

canals, but it is possible that these components are less sensitive to suspended sediment than 

treatment infrastructure and therefore the absolute risk is lower. Still, this magnification 
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approximately doubled the likelihood of a conveyance disruption, so it is important to consider 

the cumulative exposure for dependent systems. Our simple accounting of co-impairment 

frequency at the same turbidity threshold was necessary due to limited information on the precise 

operational constraints of the infrastructure. Assigning an operational performance measure to 

each component as a function of turbidity and infrastructure characteristics would provide a 

more accurate accounting of the conditions that would disrupt conveyance beyond a tolerable 

level. 

3.4.1 Analysis Limitations 

The limitations of linked fire and watershed modeling systems have been discussed 

extensively in prior publications (e.g., Elliot et al. 2016; Jones et al. 2017; Chapter 2), but it is 

worth reiterating that coupling diverse data sources and models has potential for error due to 

data, model, and model linkage uncertainties. A limitation of the Monte Carlo simulation 

presented here is the use of current fuel conditions to model both wildfire occurrence with FSim 

and fire severity with FlamMap. Modeling based on current fuel conditions may not accurately 

reflect long-term fire potential if recent disturbances have altered fuels from their modal state. 

These effects could be minimized by modeling fire occurrence and severity based on potential 

undisturbed fuel conditions instead of current conditions. No attempt was made to account for 

fire activity under future climates. Wildfire-water supply risks are expected to increase in the 

short-term in response to increased burning (Sankey et al. 2017), but long-term increases in fire 

activity may initiate negative fire feedbacks (Hurteau et al. 2019). Current source redundancies 

may not provide as much disruption protection in the future if population and water demand 

increase, or water supply decreases. 
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The watershed modeling in this study also has several limitations. RUSLE is meant for 

annual erosion prediction (Renard et al. 1997), so the analysis focused on average annual post-

storm suspended sediment concentrations. In reality, most erosion is associated with a small 

number of powerful storms (Wagenbrenner et al. 2006; Robichaud et al. 2013). By averaging the 

annual load across the number of sediment-generating storms, it is possible to classify a year as 

unimpaired despite the brief occurrence of impaired water quality after a powerful storm. We 

also did not account for the potential cumulative impact of storms on subsequent days to raise 

suspended sediment concentrations in reservoirs above the impairment threshold. The 

assumption that the sediment load is equally mixed in the average annual reservoir or daily flow 

volume is also an approximation. Water supply susceptibility to impairment should vary with 

water body volume due short and long-term trends in precipitation, which also influence fire 

activity. It is therefore possible that impairment risk is higher than estimated here because 

waterbody volumes are likely lower than average during periods of high fire activity. The 

empirical model of hillslope sediment delivery ratio (Wagenbrenner and Robichaud 2014) used 

to predict the proportion of erosion delivered to streams was developed from plots and 

catchments burned primarily at moderate and high severity, but many of the smaller fires 

simulated in this study did not burn entire catchments. Use of this model could overestimate the 

potential for sediment delivery to streams where wildfire burns only part of a catchment, 

especially if it is separated from the stream by unburned forest and intact riparian vegetation. As 

demonstrated by our low and high SDR scenarios, there is also uncertainty in impairment 

probability magnitude (Table 3.4) due to imperfect understanding of sediment transport 

processes. Rainfall was treated as a spatially uniform process, but highly localized and intense 

rainstorms are the norm in this region (Moody and Martin 2009; Murphy et al. 2015; Kampf et 
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al. 2016). Spatial variability in rainfall might have similar effects as spatial variability in wildfire 

activity; that is, the probability of intense rainfall encountering a small watershed is probably 

lower than the probability of intense rainfall encountering a large fire in a large watershed. 

Therefore, adding spatial variability in rainfall might further decrease risk to water supplies with 

small contributing areas. 

The use of turbidity modeled from suspended sediment as a single metric of water quality 

is a simplification that seems reasonable in our study region due to past reports of wildfire 

impacts to municipal water supplies (Sham et al. 2013), but elevated nutrients and heavy metals 

also impair water (Smith et al. 2011; Abraham et al. 2017). Concerning concentrations of carbon 

and nitrogen constituents have been detected after past wildfires in Colorado (Rhoades et al. 

2011; Murphy et al. 2015). Emelko et al. (2011) presents similar results for the Canadian 

Rockies and discusses the water treatment implications of elevated post-fire nutrient and metal 

concentrations. If mobilization and transport of these constituents are tied to surface erosion and 

storm flows, a similar analysis as presented here, may be possible to assess water supply 

impairment risk. 

3.4.2 Management Implications 

The results of this study suggest that, for this system, impairment risk is tolerable for 

many off-network reservoirs but concerning for on-network diversions and reservoirs with large 

watersheds. One might interpret these results as suggesting mitigation efforts should be 

prioritized in the large watersheds serving on-network water supplies to bring them and their 

parent systems up to desired reliability targets. However, the effectiveness of this strategy will be 

low if treatments are not well placed and well timed to interact with wildfires. It is possible that 

focusing instead on reducing fuels around off-network reservoirs would be a cheaper and more 
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effective means to increase system reliability. Watersheds serving off-network reservoirs are 

often small, so it may be economical to treat fuels on the majority of the area resulting in 

meaningful erosion reduction when fire does burn the watershed. Proactively reducing fuels in 

small watersheds should be straightforward owing to limited options for treatment placement. 

Spatially explicit hazard or risk measures (e.g., Elliot et al. 2016, Chapter 2) may help to 

prioritize mitigation in larger watersheds with diverse conditions. Haas et al. (2017) also 

suggests that fuel treatments aimed at interrupting fire spread paths or facilitating suppression 

could be designed to restrict fire sizes and subsequent watershed responses to tolerable levels. 

There is also considerable interest in the use of natural and prescribed fire to expand the pace and 

scale of fuels reduction. The Monte Carlo simulation system used in this study could be adapted 

to test the effectiveness of alternative fuel treatment strategies at reducing impairment and 

system disruption risks. If proactive mitigation is not practical, risk analyses with baseline 

conditions may help communities prepare for efficient post-fire rehabilitation with mulching 

(Wagenbrenner et al. 2006; Robichaud et al. 2013; Schmeer et al. 2018).  

Unlike sedimentation of on-network reservoirs, there is considerable potential to mitigate 

water quality impacts with minor infrastructure modifications. The low frequency of rainfall of 

sufficient intensity to generate sediment (4 to 18 times per year in this region) suggests water 

quality is likely to be impaired only a small fraction of the time, thus allowing many water 

sources to be utilized between storms. The actual frequency of impairment can be higher than the 

frequency of storms when changes in flow resuspend stored sediments (Oropeza and Heath 

2013; Miller et al. 2017). Real-time monitoring of stream turbidity can inform water intake 

closures (Oropeza and Heath 2013; Martin 2016). Pre-sedimentation basins are also an option to 

reduce sediment concentrations prior to treatment or conveyance (Writer et al. 2014; Martin 
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2016). Adding several days of raw or treated storage capacity could eliminate much of the 

hardship from short impairment events. This study also demonstrates that some water systems 

may already be at low risk of water shortage from wildfire due to existing source water 

redundancies. Multi-source water systems are common among larger municipalities in Colorado, 

but small communities often rely on a sole source. In some cases, regional water projects provide 

the necessary plumbing for inter-community water transfer agreements, which have been 

discussed as a promising solution to mitigate drought risks (Zeff et al. 2016) and might provide 

similar protection from wildfire-related water shortages. Communities looking to diversify 

sources may benefit from analysis of historical or modeled fire activity to identify new sources 

that are unlikely to be impacted at the same time as their current sources to maximize the benefit 

of their investments in redundancy.  
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CHAPTER 4 – EVALUATING THE POTENTIAL TO MITIGATE SOURCE WATER RISKS 

WITH IMPROVED CONTAINMENT 

 

 

 

4.1 INTRODUCTION 

Improved wildfire containment is an attractive strategy to mitigate risk of water supply 

impairment because of the potential to limit fire sizes and impacts to tolerable levels without 

completely excluding fire and its benefits from the landscape. Recent efforts to make 

containment planning more proactive focus on zoning the landscape into fire management units 

called Potential fire Operational Delineations (PODs) using existing high probability control 

features such as roads, rivers, and fuel transitions (O’Connor et al. 2016; Thompson et al. 

2016a). Beyond the inherent value of engaging managers in the process to identify and critique 

potential control features, the resulting POD areas become relevant spatial units for pre-fire 

analysis of endogenous and transmitted wildfire risk to inform response strategies that are 

appropriate for the predicted direction and magnitude of fire effects to water supplies and other 

values (Thompson et al. 2016a). While there has been substantial progress engaging managers in 

the bottom up approach to develop and employ PODs and their associated response strategies 

(Thompson et al. 2016a, 2018b; Caggiano 2019; Caggiano et al. 2020; Greiner et al. 2020; Dunn 

et al. 2020; Stratton 2020), less attention has been paid to evaluating the risk mitigation 

effectiveness of containing wildfire within these units and what functional improvements should 

be made to the container sizes and spatial arrangement to maximize their protection benefit for 

water supplies and other resources that depend on the scale of fire activity. 

Wildfire is often harmful to water quality because reductions in surface cover and 

infiltration cause increases in surface runoff and erosion that can mobilize and transport 
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contaminants into surface water supplies (DeBano et al. 2005; Shakesby and Doerr 2006; Larsen 

et al. 2009; Smith et al. 2011). While the specific contaminants and concentrations of concern 

may vary by watershed and water system (Emelko et al. 2011; Smith et al. 2011; Abraham et al. 

2017), water quality impairment generally occurs when large quantities of sediment are 

mobilized by intense rainfall causing contaminant concentrations to exceed thresholds for 

effective water treatment (e.g., Murphy et al. 2015). Post-fire sediment loads are influenced by 

fire size and burn severity, topography, soil properties, and rainfall intensity (Benavides-Solorio 

and MacDonald 2005; Shakesby and Doerr 2006; Schmeer et al. 2018). Previous efforts to 

account for fire effects on watershed response and water supply impacts account for some of 

these factors (Omi 1979; Thompson et al. 2013), but the use of relative fire effects measures 

makes it difficult to evaluate whether a given fire will impair water quality. This shortcoming has 

been addressed in recent years with increasing use of spatially explicit erosion and sediment 

transport models to make quantitative predictions of sediment yield from modeled wildfires (e.g., 

Cannon et al. 2010; Miller et al. 2011, 2016; Sidman et al. 2016). Sediment yield models have 

been widely used to examine the risk mitigation effectiveness of area-wide fuel treatments meant 

to reduce burn severity (Elliot et al. 2016; Sidman et al. 2016; Jones et al. 2017; Chapter 2) but 

they have not yet been used to evaluate the performance of fire containment strategies to reduce 

area burned. 

Some water systems have discrete features, such as terminal reservoirs, that could be 

targeted for protection within a single POD, but many municipal watersheds in the western U.S. 

are hundreds to thousands of square kilometers in size and therefore require some level of 

internal compartmentalization to protect water supplies. In theory, the size and spatial 

arrangement of PODs could be designed to mitigate the risk of water supply impairment by both 
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containing fires with potential for large growth and subsequent contaminant loads near their 

ignition sources and ensuring that within-POD burning does not result in adverse consequence. 

Managers consider both values at risk and presence of control features when delineating PODs, 

which often results in smaller PODs near developed areas and larger PODs in the backcountry 

(Thompson et al. 2016a; Caggiano 2019). It is currently unclear whether the size and 

configuration of manager-delineated PODs will reduce risk of wildfire-related water impairment. 

Several attempt have been made to automate the processes of identifying suitable control 

features and aggregating them into PODs (Thompson et al. 2018a; Wei et al. 2018) using roads, 

streams, watershed boundaries, and spatial models of suppression difficulty and potential for 

control (Rodríguez y Silva et al. 2014; O’Connor et al. 2017; Rodríguez y Silva et al. 2020), but 

data-driven approaches have yet to inform the desired size and spatial configuration of PODs to 

mitigate a particular risk. 

Recognizing the importance of fire size, location, and burn severity for watershed 

response, several previous studies have employed Monte Carlo wildfire simulation to 

characterize watershed exposure and water supply risk (Thompson et al. 2013, 2016b; Haas et al. 

2017; Chapter 3). Their results suggest that most risk to water supplies is associated with a small 

subset of total fire activity. Moreover, the source locations of damaging wildfires tend to cluster 

in certain parts of the landscape, which implies containment benefits will depend strongly on 

location. Simulated fire ignition locations and fire extents can be intersected with relevant 

management units to partition fire impacts from burning within the unit of origin and 

transmission to the surrounding landscape (Haas et al. 2015; Thompson et al. 2016a; Ager et al. 

2018). Analyzing risk transmission across a network of PODs could help to identify locations 

with high source risk that would benefit from increased investment in containment. For example, 
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fuels could be reduced along POD boundaries to increase containment probability. Areas with 

fuels conducive to fast fire spread tend to transmit the most fire (Ager et al. 2018), which will 

result in high water supply risk when adjacent areas have high erosion potential and/or short 

transport paths to water supplies. Analysis of water supply risk from self-burning could also 

identify high risk PODs that would benefit from further compartmentalization. 

The goal of this study is to provide a proof of concept model to evaluate the effectiveness 

of a containment network at mitigating risk of water supply impairment. The general approach 

should also be relevant for assessing risk to other resources that depend on disturbance size. We 

utilize Monte Carlo wildfire simulation, erosion, and sediment transport modeling to quantify the 

potential water supply impacts from a set of simulated wildfires with and without containment. 

We analyze risk and risk mitigation with two measures of water supply impact – total sediment 

exposure and frequency of exceeding turbidity limits for treatment – to highlight how 

considering the scale-dependent effects of wildfire changes the perceived mitigation value of fire 

containment. Risk transmission analysis is used to identify possible improvements to the 

containment network with measures of transmitted risk highlighting those PODs and POD 

boundaries that could benefit from activities to improve containment probability and measures of 

self-burning indicating areas in need of further compartmentalization. 

 

4.2 METHODS 

4.2.1 Evaluation framework 

 The evaluation framework was designed to contrast the water supply impacts of 

uncontained wildfires and wildfires contained within the POD of origin in terms of total 

sediment load and average post-storm suspended sediment (Figure 4.1). Total sediment load is 
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similar to the commonly used net value change measures in risk assessment (Finney 2005; Scott 

et al. 2013) insomuch as more is interpreted as bad and any marginal reduction decreases risk. 

However, using change in total sediment load as a measure of risk has the potential to falsely 

assign mitigation benefit to containment when either the load from the uncontained wildfire is 

already below a meaningful threshold of water quality impairment or containment reduces 

erosion but the resulting load is still above the threshold for water impairment. Average post-

storm suspended sediment concentration is used here to estimate whether fires will degrade 

water quality beyond limits for treatment and whether impairment outcomes change with 

containment. This measure of risk better approximates the threshold-dependent nature of water 

quality impairment owing to the size of the receiving waterbody and the water system sensitivity 

to contaminants.   

 Our evaluation framework focuses on the key uncertainties in wildfire-water impairment 

risk related to the extent of the watershed burned and post-fire rainfall (Figure 4.1). As further 

described in following sections, many plausible wildfire perimeters are simulated with the Monte 

Carlo ignition and spread model RANDIG (Haas et al. 2015), which are then clipped to the 

PODs of origin to approximate a strategy of improved containment. Post-fire erosion is then 

simulated for each perimeter using crown fire activity predicted with FlamMap 5.0 (Finney et al. 

2015) as a proxy for burn severity to modify the cover and soil variables in the Revised 

Universal Soil Loss Equation (RUSLE; Renard et al. 2015). We account for uncertainty in post-

fire rainfall by modeling erosion for three rainfall scenarios ranging from common to extreme. 

We estimate annual sediment loads to the water supply based on the predicted proportion of 

sediment transported off hillslopes and through channels using Sediment Delivery Ratio (SDR) 

models (Wagenbrenner and Robichaud 2014; Frickel et al. 1975) as described in Chapter 2. Post-
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storm suspended sediment concentrations are estimated by assuming average storm sediment 

loads are diluted in the mean daily flow volume of the river. All analyses were completed with R 

version 3.5.3 (R Core Team 2019) except where noted otherwise. 

 

 

Figure 4.1. Containment evaluation framework 

The evaluation framework focuses on total sediment yield and average post-storm suspended sediment as measures 

of water impairment risk. Variable inputs are in light grey. Stochastically simulated wildfire perimeters are 

combined with estimates of burn severity to model post-fire erosion and sediment transport to the water supply both 

with and without containment. Sediment yield is converted to average post-storm suspended sediment concentration 

using the receiving waterbody volume and the annual frequency of sediment generating storms. 
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4.2.2 Study area 

The study area encompasses 3021 km2 of the Front Range Mountains in Colorado, USA 

(Figure 4.2). The Front Range region has a history of large and severe fires that have caused 

extreme erosion, reservoir sedimentation, and water quality degradation (Moody and Martin 

2001; Graham 2003; Wagenbrenner et al. 2006; Oropeza and Heath 2013; Murphy et al. 2015). 

The names of the focal municipal water supply and other geographic features within the study 

area are withheld for security reasons. The extent of the study area was defined to include the 

contributing area to a municipal diversion (1254 km2) and a network of PODs developed by the 

local National Forest and their partnering state and local fire management agencies (an additional 

1767 km2). PODs that intersected a 5 km buffer around the watershed were included to analyze 

fires that spread into the watershed from nearby areas. Elevation ranges from 1559 to 4135 m 

above sea level across the study area. The climate is continental with warm dry summers and 

cold winters. Most erosion in this region results from intense convective rainstorms during the 

summer and early fall (Benavides-Solorio and MacDonald 2005; Moody and Martin 2009). The 

study area is primarily forest (71.7%) and the remainder is a mix of shrubland (9.0%), sparsely 

vegetated alpine (8.9%), and grassland (8.7%) (LANDFIRE 2016). Land ownership is split 

between USFS (55.3%), private (18.8%), NPS (18.1%), local government (6.4%), and state 

(1.4%). 
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Figure 4.2. Study area 

Map of the study area featuring the focal watershed and PODs that intersect a five km buffer around the watershed. 

Landcover is from LANDFIRE (2016). Barren is mostly sparsely vegetated areas of the alpine. 

 

4.2.3 Potential fire operational delineations 

PODs were developed by fire and resource management specialists from the local 

National Forest and external fire management partners from other federal, state, and local 

agencies. The PODs range in size from 502 to 23672 ha with a mean of 4316 ha and a median of 

3516 ha. The PODs tend to be smallest near human settlements due to both the increased 

presence of control features and greater need for fire containment around communities. PODs 
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larger than 10000 ha are clustered in the higher elevation, western portion of the of the study area 

where much of the land is publicly owned and the transportation network is sparse. PODs also 

tend to be large along the major river canyon that runs west to east across the study area (Figure 

4.2) due to limited presence of high probability control features other than the river and highway 

in the canyon bottom. 

The rugged topography, rocky soils, and dense forests of the study area are major 

constraints on firefighter and equipment accessibility and operability. Accordingly, managers 

preferentially chose roads as the control features to bound PODs; of the 1386 km of POD edge, 

985 km are roads (71.0%), 167 km are trails (12.0%), 150 km are ridges (10.8%), 46 km are 

streams (3.3%), and the remaining 40 km are fuel transitions, lakes/reservoirs, or lacking defined 

control features (2.9%). Many of the trails and ridges selected as control features are in barren or 

sparsely vegetated areas of the alpine, so roads make up an even larger proportion of POD edges 

in the fuel types where wildfire transmission is a concern. Numerous observational studies have 

documented that roads benefit fire control by serving as hard fire breaks that either stop fires 

passively or in combination with suppression firing or holding activities (Price and Bradstock 

2010; Narayanaraj and Wimberly 2011; O’Connor et al. 2017; Yocum et al. 2019; Kolden and 

Henson 2020). The frequent use of roads in this POD network suggests containment probability 

should be high along most boundaries under low to moderate fire weather and many boundaries 

have potential for containment under more extreme conditions with well-coordinated suppression 

tactics. 

4.2.4 Fire occurrence 

We used the Monte Carlo fire simulation program RANDIG, which is a command-line 

version of the FlamMap minimum travel time module (Finney 2006), to model a plausible set of 



111 

 

5000 large fire growth events across the study area. The inputs to RANDIG include raster 

surfaces of fuels, topography, and ignition density, and a set of fire scenarios describing the fuel 

moisture, wind speed, wind direction, spotting probability, and burn duration for the simulations 

and their probabilities of occurrence. The intent of our model parameterization is to approximate 

the distribution of potential area burned during the initial growth period of large fires owing to 

variation in wind direction and wind speed. We focused on the early growth period of fires to 

align with the desire to contain most fires before they leave the POD of origin. Modeling fire 

growth over longer periods would increase fire size and thus the avoided area burned and water 

supply impacts but would also introduce greater uncertainty about the final fire extent as more 

potential containment features are encountered and weather conditions are likely to moderate. 

Raster fuels and topography data representing landscape conditions circa 2014 were 

acquired from LANDFIRE (2016) including canopy cover, canopy bulk density, canopy base 

height, canopy height, surface fire behavior fuel model (Scott and Burgan 2005), elevation, 

slope, and aspect. Fuels were adjusted in lodgepole pine (Pinus contorta var. latifolia) forests by 

lowering the canopy base height by 20% and changing the fire behavior fuel model to high load 

conifer litter (TL5 from Scott and Burgan 2005) to better match recent observations of extreme 

fire behavior in these forests (Moriarty et al. 2019). The other spatial input is a raster surface of 

ignition density, which influences the relative probability of fire ignition across the modeling 

domain. Spatial point locations of historical fires from Short (2017) were generalized into a 

raster surface of ignition density using a kernel density function with a search distance of 10 km 

in ArcGIS 10.3 (ESRI 2015). 

Fuel moisture, wind speed, and wind direction for the fire scenarios (Table 4.1) were 

informed by data from a Remote Automated Weather Station (RAWS) located in the northern 
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half of the study area at 2500 m above sea level. Fuel moisture and wind speed percentiles were 

calculated with FireFamilyPlus 4.1 (Bradshaw and McCormick 2000) and wind speed was 

converted from a 10-minute to 1-minute average based on Crosby and Chandler (1966). Most 

large fires in this region occur in early summer during drought years or in late fall when fuel 

moisture is extremely low. These conditions were approximated using the historical 3rd 

percentile fire season (April 01-October 31) fuel moistures, which are 2, 3, 6, 30, and 60 percent 

for the 1-hr, 10-hr, 100-hr, herbaceous, and woody fuels, respectively. Fuel moisture was held 

constant across all wind scenarios because it exhibits little meaningful variation below the 10th 

percentile. Wind scenarios were designed to approximate the joint probability distribution of 

wind speeds and directions that are problematic for fire growth. The 50th, 90th, and 97th 

percentiles of 1-minute average wind speeds are 19.3, 33.8, and 43.5 kph. We generalized these 

into three levels of wind speed (16.1, 32.2, and 48.3 kph) and their associated spotting 

probabilities (0.02, 0.05, and 0.10) that we assigned relative probabilities of occurrence of 0.90, 

0.07, and 0.03. Previous large fires in this landscape are associated with strong westerly winds 

and our analysis of the historical record found that 74.1% of all winds greater than or equal to 

16.1 kph were from the northwest, west, or southwest, which have relative probabilities of 

occurrence equal to 0.29, 0.48, and 0.23. We combined the three levels of wind speed and 

spotting probabilities with the three variations of wind direction into a total of nine fire scenarios 

(Table 4.1). Burn duration was set to four hours for all scenarios, which was determined by 

incrementally adjusting burn duration in 30-minute time steps until the largest simulated fire was 

within +/- 5% of 20000 ha, which we judge as a reasonable upper bound for fire size during a 

single burn period in this landscape based on other fires in the region (Graham 2003). 
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Table 4.1. Fire simulation scenarios 

Fire scenarios used to simulate fires in RANDIG. Burn duration was set to 240 minutes and fuel moisture was held 

constant at the 3rd percentile of the historical record. 

Scenario Wind Speed (kph @ 6 m) Direction (deg) Spot Probability Scenario Probability 

1 16.1 225 0.02 0.259 

2 16.1 270 0.02 0.431 

3 16.1 315 0.02 0.210 

4 32.2 225 0.05 0.020 

5 32.2 270 0.05 0.034 

6 32.2 315 0.05 0.016 

7 48.3 225 0.1 0.009 

8 48.3 270 0.1 0.014 

9 48.3 315 0.1 0.007 

 

 

4.2.5 Fire behavior and severity 

Crown fire activity (Scott and Reinhardt 2001) was modeled as a proxy for burn severity 

with FlamMap 5.0 (Finney et al. 2015) by mapping surface fire, passive crown fire, and active 

crown fire to low, moderate, and high severity, respectively. Crown fire activity is commonly 

used to estimate burn severity for watershed modeling (Tillery et al. 2014; Haas et al. 2017; 

Chapter 2) because it captures the trend of increasing fire intensity along the gradient of surface 

to active crown fire behavior. Fuel moisture was set to the same 3rd percentile fuel moisture 

described in the fire occurrence section. The same topography and modified fuels rasters were 

also used as the landscape inputs to FlamMap. To simplify the analysis, we modeled burn 

severity for the middle wind speed scenario (32.2 kph @ 6 m) and used the wind blowing uphill 

option to represent a consistent worst-case scenario for all aspects. 

4.2.6 Post-fire watershed response 

Post-fire erosion and sediment transport to the water diversion point was predicted by a 

system of coupled hillslope erosion, hillslope sediment transport, and channel sediment transport 

models (Figure 4.1) calibrated for prediction in the study region as detailed in Chapters 2 and 3. 
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To be brief, only essential details of the methods are repeated here. Model evaluation is reserved 

for the discussion section of this chapter. Chapter 5 also reviews the limitations of the system of 

models and highlights potential future improvements. The NHDPlus raster and watershed 

network products (USEPA and USGS 2012) were used to represent the topological connections 

between upland sediment sources and the water diversion point via sub-catchment drainage paths 

to the flowline network and the series of intervening flowlines between each catchment and the 

diversion. First, gross hillslope erosion was modeled for each fire with a raster Geographic 

Information System implementation (Theobald et al. 2010) of RUSLE (Renard et al. 1997). 

Sediment transport to streams was predicted using an empirical model of post-fire hillslope 

sediment delivery ratio from the western U.S. (Wagenbrenner and Robichaud 2014) to estimate 

the proportion of sediment generated in each pixel that makes it to the flowline network. Third, 

the total sediment from each catchment was routed down the flowline network to the diversion 

point using a simple model of channel sediment delivery ratio (Frickel et al. 1975) adapted for 

the channel types in the study area. 

4.2.6.1 Hillslope Erosion 

The GIS implementation of RUSLE predicts gross erosion (Mg ha-1 yr-1) as the product 

of factors for rainfall erosivity (R), soil erodibility (K), length and slope (LS), cover (C), and 

support practices (P). Rainfall erosivity is calculated as the product of storm maximum rainfall 

intensity and kinetic energy per unit area (Renard et al. 1997). First year post-fire erosion was 

modeled at three levels of May to October rainfall erosivity – 403, 887, 5168 MJ mm ha-1 hr-1 – 

representing the 2, 10, and 100-year recurrence interval rainfall erosivity for the regional climate 

(Perica et al. 2013; Wilson et al. 2018; Chapter 2). The May through October period was selected 

because most post-fire erosion in this climate occurs in response to high intensity summer 
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rainfall (Benavides-Solorio and MacDonald 2005). LS was calculated from a 30 m resolution 

digital elevation model (USEPA and USGS 2012) following the methods of Winchell et al. 

(2008) with a maximum limit on flow accumulation imposed to approximate the original 

hillslope length guidance in Renard et al. (1997). Baseline K came from the Soil Survey 

Geographic Database (SSURGO) where available and the State Soil Geographic Database 

(STATSGO) to fill missing data (NRCS Soil Survey Staff 2016). Post-fire erosion was simulated 

by modifying the K and C factors based on wildfire extent and burn severity (Larsen and 

MacDonald 2007; Chapter 2). No support practices were considered to model the unmitigated 

erosion hazard. Baseline erosion is not a major concern for water quality, so we focused our 

assessment on the post-fire increase in erosion. First-year post-fire increase in erosion (A) was 

calculated with Eqn 4.1 for each rainfall recurrence interval. 𝐴 = 𝑅 × 𝐿𝑆 × [(𝐾𝑏 × 𝐶𝑏)  −  (𝐾 × 𝐶)]     Equation 4.1 

The subscript b indicates the burned condition for K and C factors. We limited hillslope erosion 

predictions to 100 Mg ha-1 yr-1 based on the maximum observed values reported in the study 

region (Moody and Martin 2001, 2009). 

4.2.6.2 Hillslope Sediment Transport 

An empirical model of post-wildfire hillslope sediment delivery ratio (hSDR) from the 

western U.S. (Wagenbrenner and Robichaud 2014) was used to estimate the proportion of 

sediment generated in each pixel that makes it to the stream network. The NHDPlus flowlines 

were first extended to include all pixels with a contributing area greater than 10.8 ha (Henkle et 

al. 2011) to better approximate the extent of the post-fire channel network. Post-fire hSDR was 

then estimated with the annual length ratio model from Wagenbrenner and Robichaud (2014). 

We applied this model to predict hSDR as a function of the flow path length from each pixel to 
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the nearest stream channel as the “catchment length” and the flow path length across the pixel as 

the “plot length” (Eqn 4.2). Flow path length to the nearest channel was calculated from a 30 m 

digital elevation model (USEPA and USGS 2012) in ArcGIS 10.3 (ESRI 2015). We doubled the 

predicted hSDR to both account for under-sampling of suspended sediment in the model training 

data and to roughly calibrate our net sediment yield predictions to the small catchment yields 

from the Hayman Fire in Colorado (Wagenbrenner and Robichaud 2014). This increased the 

maximum hSDR from 0.27 to 0.54 for areas near streams and it increased the minimum hSDR 

from 0.05 to 0.10 for locations furthest from streams. We later compare our modeled gross and 

net hillslope sediment yields to relevant field observations in the discussion to demonstrate that 

this assumption is reasonable. Channel pixels were assigned hSDR of 1. 𝑙𝑜𝑔(ℎ𝑆𝐷𝑅)  =  −0.56 −  0.0094 × (𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑖𝑥𝑒𝑙 ) Equation 4.2 

The first-year mass of sediment (Mg) delivered from a catchment to the stream network (𝑇𝑆) was 

calculated as the sumproduct of the post-fire hillslope erosion (𝐴), the pixel area, and hSDR for 

all burned pixels (N) in the catchment (Eqn 4.3). 

𝑇𝑆 = ∑ 𝐴𝑖 × 0.09 ℎ𝑎𝑝𝑖𝑥𝑒𝑙 × ℎ𝑆𝐷𝑅𝑖𝑁𝑖=1       Equation 4.3 

4.2.6.3 Channel Sediment Transport 

Sediment was routed through the NHDPlus flowline network to the diversion by adapting 

the channel sediment delivery ratio (cSDR) model of Frickel et al. (1975) to the channel types in 

the study watershed (Chapter 2). In montane streams of this region, sediment retention is 

generally highest in low order channels because of high roughness and limited transport capacity 

and very low in the high order channels with high transport capacity (Moody and Martin 2001). 

Observations of post-fire sediment transport in a similar watershed in Wyoming suggest 

transport of fine sediments in suspension should be very efficient in high order channels even 
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during base flow conditions (Ryan et al. 2011). These trends are approximated in our model by 

assigning cSDRs of 0.75, 0.80, 0.85 and 0.95 per 10 km of stream length to 1st, 2nd, 3rd, and 4th 

or higher-order streams, respectively. Sediment retention in lakes and reservoirs was accounted 

for by assigning as a cSDR of 0.05 to the terminal flowline in each waterbody. The annual mass 

of fire-related sediment (Mg) delivered to the water diversion (𝑇𝐷) was calculated as the sum of 

sediment delivered to streams for all upstream catchments multiplied by the product of cSDRs 

for the intervening flowlines (Eqn 4.4). 𝑇𝐷 =  ∑ (𝑇𝑆𝑗𝑂𝑗=1 × ∏ 𝑐𝑆𝐷𝑅𝑘)𝑃𝑘=1        Equation 4.4 

The subscript j is the index for the O upstream catchments and the subscript k is the index for the 

P intervening flowlines between catchment j and the water diversion. 

4.2.7 Water supply impacts 

 The first metric of water supply impact is the total wildfire related sediment delivered to 

the diversion (Mg). The second metric is the per-fire average post-storm suspended sediment 

concentration (SSC). Wilson et al. (2018) found that a threshold rainfall intensity of 7 mm h-1 

best predicts when hillslope erosion will occur in this region. This intensity is exceeded on 

average four times per year in the study watershed. We make the simplifying assumption the 

first-year post fire sediment load from the coupled erosion and sediment transport model is 

divided equally among four storms. Suspended sediment after summer thunderstorms is 

primarily clay and silt (70-85%) and the remainder is mostly fine-grained organics (Ryan et al. 

2011), which differs from the composition of soils mobilized from hillslope erosion. According 

to Schmeer (2014), clay and silt make up approximately 25% of post-fire sediment mass from 

hillslope erosion in the region. Combining these two observations, we make a liberal assumption 

that up to 35% of the hillslope erosion predicted by RUSLE is part of the fine-grained inorganic 
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and organic components that contribute to suspended sediment. Water quality is usually impaired 

for short periods (hours to days) following rainstorms in this region (Oropeza and Heath 2013; 

Sham et al. 2013), so we calculate post-storm suspended sediment concentrations using the 

average storm load of fine sediment and the daily flow volume past the diversion point, which 

averages 1.48 x 109 liters per day for the May to October period (gage-adjusted estimates from 

USEPA and USGS 2012). Suspended sediment concentration is rarely monitored directly, so 

limits for treatment are more commonly expressed in turbidity. For this analysis, we use the high 

end of 100 Nephelometric Turbidity Units (NTU) reported in the literature (Writer et al. 2014; 

Murphy et al. 2015) to be conservative in our judgement of impairment. A conversion equation 

developed from post-fire monitoring of the Fourmile Canyon Fire was used to predict turbidity 

(NTU) from SSC (mg l-1) (Murphy et al. 2015; Eqn 4.5).  𝑁𝑇𝑈 = 𝑆𝑆𝐶−2.841.166         Equation 4.5 

4.2.8 Containment effectiveness evaluation and prioritization 

 To quantify the effectiveness of containment, we focused on the difference between the 

total water supply impact measures with and without containment including watershed area 

burned, sediment delivered to the diversion, and number of water quality impairments. The 

difference between impact measures for the uncontained and contained scenarios is the avoided 

transmitted risk (Ager et al. 2018). Total sediment load is a continuous value whereas 

impairment is a binary outcome. Impairment was only considered transmitted when the outcome 

changes from unimpaired for within POD burning to impaired for the entire fire footprint. To 

prioritize improvements along the potential control lines that bound PODs, we calculated risk 

transmission across the POD edges based on their proportional engagement with the fires that 

originate in their respective PODs; that is, the outcomes associated with fire spreading to the 
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surrounding landscape were divided among the lines based on their intersected length. It is 

anticipated that the primary mitigation action would be fuels reduction along the control lines, so 

transmission risk was normalized by length to compare the relative benefit of hardening control 

lines. 

4.3 RESULTS 

4.3.1 Fire occurrence 

 Historical fire ignitions from the FOD (Short 2017) were concentrated in the lower and 

middle portions of focal watershed and along the southern boundary of the study area (Figure 

4.3a) reflecting both variation in fire season length and human use of the landscape. The 5000 

wildfires simulated with RANDIG ranged in size from 0.09 to 20868 ha with a mean of 1961 ha 

and a median of 1469 ha. We selected the 3040 fires that burned at least part of the focal 

watershed for futher analysis. Their size distribution did not vary substantially from that of the 

full simulation set. The excluded fires either did not grow large enough to intercept the focal 

watershed, or the predominant wind direction caused them to spread away from it. The middle 

and lower portions of the watershed are predicted to burn most frequently due to both the greater 

ignition density and the presence of fuel types that promote faster spread (Figure 4.3b). The high 

elevations in the western half of the study area are predicted to burn infrequently due to low 

ignition density and the sparse fuels. The southeast corner of the study area near the diversion 

has low burn probability because the fuels have not yet recovered from a recent wildfire. 
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Figure 4.3. Fire simulation results 

A) Fire Occurrence Database (FOD) records of historical ignitions and interpolated surface of relative ignition 

density used in the RANDIG simulations. B) Burn probability from the simulated fires that intercept the study 

watershed.  
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4.3.2 Fire behavior and severity 

 Crown fire activity is predicted to vary across the watershed due to differences in fuels 

and topography (Figure 4.4a). A notable portion of the alpine and some recently burned areas are 

mapped as a non-burnable cover type (13.7%). Surface, passive crown, and active crown fire are 

predicted on 25.9%, 39.3%, and 21.1% of the watershed area, which we use as proxies for low, 

moderate, and high burn severity. This translates to predictions of low severity effects in grass 

and shrub fuel types and moderate or high severity effects in most forests. High severity effects 

are most common in forests with high horizontal and vertical continuity on steep slopes. Our 

prediction that approximately 60% of the watershed should burn at moderate or high severity is 

in line with the observed severity of recent large wildfires in Colorado (Sherriff et al. 2014).  
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Figure 4.4. Conditional burn severity and watershed effects 

A) Predicted burn severity using crown fire activity categories of surface, passive crown, and active crown fire as 

proxies for low, moderate, and high severity fire. B) Predicted post-fire erosion under the 2-year recurrence interval 

rainfall erosivity. C) Combined Sediment Delivery Ratio (SDR) accounting for both hillslope and channel transport. 

D) Predicted sediment delivery to the water supply diversion under the 2-year recurrence interval rainfall erosivity. 

 

4.3.3 Watershed response 

 Like burn severity, the magnitudes of post-fire erosion and sediment transport vary 

widely across the watershed owing to variation in topography, soils, and proximity to the 

diversion. Figure 4.4 illustrates this for the 2-year recurrence interval rainfall erosivity. The 

greatest sediment hazard is associated with steep terrain near the major channels that is predicted 

to burn at moderate or high severity. Post-fire erosion and sediment transport potential is 

generally low in the flatter terrain in the northeast quadrant of the watershed, the high mountains 
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above major waterbodies, and the recently burned areas. Table 4.2 summarizes the distribution of 

predicted erosion, sediment delivery to streams, and sediment delivery to the diversion for the 

3040 simulated wildfires that burned in the watershed. The predicted mean post-fire gross 

erosion for the simulated wildfires is 12.3, 20.4, and 46.4 Mg ha-1 for the 2, 10, and 100-yr 

rainfall erosivity, respectively. Much of this sediment should be retained in the watershed, 

especially where waterbodies interrupt sediment transport (Figure 4c), so delivery to the 

diversion averages only 4.2, 7.0, and 15.9 Mg ha-1 for the 2, 10, and 100-yr rainfall erosivity, 

respectively. 

 

Table 4.2. Sediment yield across prediction scales 

Summary statistics of first-year post fire erosion, sediment delivery to streams, and sediment delivery to the water 

supply diversion (div.) in Mg ha-1 by rainfall erosivity for the simulated wildfires that burned into the watershed. 

These are total sediment yields including the coarse and fine fractions. 

 2-year rainfall erosivity 10-year rainfall erosivity 100-year rainfall erosivity 

Statistic Erosion To streams To div. Erosion To streams To div. Erosion To streams To div. 

Lower decile 2.0 1.0 0.4 4.3 2.1 0.9 18.5 9.1 4.3 

Lower quartile 5.0 2.6 1.6 9.8 5.0 3.2 32.3 16.5 11.0 

Median 9.0 4.7 3.3 16.5 8.6 6.2 45.2 23.4 16.8 

Mean 12.3 6.2 4.2 20.4 10.3 7.0 46.4 23.4 15.9 

Upper quartile 16.8 8.6 6.0 28.1 14.3 9.9 60.8 30.7 21.5 

Upper decile 27.7 13.7 8.7 42.9 20.9 13.6 75.3 36.8 24.7 

 

 

4.3.4 Avoided watershed area burned 

 For improved containment at POD boundaries to avoid water supply impacts, the target 

fires must leave the POD of origin under unmanaged conditions. Of the 3040 simulated wildfires 

that burned at least part of the focal watershed, 2351 of them (77.3%) burned at least some area 

outside the origin POD. The remaining 689 fires (22.7%) that did not burn beyond the origin 

POD have no mitigation benefit in this study. Fires occasionally burned more than ten PODs 

(Figure 4.5), but of the fires that burned more than one POD, most burned between two and five 
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PODs (77.9%). This suggests that most fire transmission potential during the initial burn period 

is between a POD and its adjacent neighbors, but some rare events may burn across multiple 

POD boundaries. 

 Containing all fires within their POD of origin would reduce the average watershed area 

burned from 1361 to 562 ha per fire, a 58.7% reduction (Table 4.3). Containing large fires has 

the greatest potential to avoid area burned in the watershed; the 1396 fires with more than 1000 

ha watershed area burned account for 93.8% of the avoided watershed area burned. The 

distributions of watershed area burned by fires for the contained and uncontained scenarios are 

shown in Figure 6a. Containment in the POD of origin would eliminate fires that burn more than 

10000 ha in the watershed, which numbered 26 (0.9%) in the uncontained scenario. The 

percentage of fires burning greater than 5000 ha would be reduced from 4.0 to 0.2. 

 Impacts from fires that start in PODs that are wholly or mostly outside the watershed 

should be reduced to negligible levels under the containment scenario, but these PODs account 

for only a small fraction of watershed area burned when fires are allowed to grow freely (Figure 

4.7a). Most fires start in the central and eastern portion of the watershed (Figure 4.3) and the 

predominant west winds means that PODs in the lower 2/3rds of the watershed are the source of 

fires that burn the greatest area (Figure 4.7a). All else equal, larger PODs are also a greater 

source of fire because they have more ignitions. Containment reduced watershed area burned 

from fires that ignited in 61 of the 70 PODs, but some of the largest PODs still have substantial 

watershed area burned with containment (Figure 4.7a) because fires have room to grow large 

before encountering a potential control feature.  
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Figure 4.5. PODs encountered by simulated fires 

Frequency distribution of PODs encountered by the simulation fires. Any PODs with area greater than 0 ha burned 

was considered encountered. 

 

Table 4.3. Water supply impacts  

Summary of water supply impacts across all fires by containment scenario and rainfall erosivity. A turbidity 

threshold of 100 NTU was used to compute the number of exceedances. 

Watershed area burned (mean ha per fire)   

 Self-burning Total Avoided Avoided (%) 

 562 1361 799 58.7 

Sediment to diversion (mean Mg per fire)   

Rainfall erosivity Self-burning Total Avoided Avoided (%) 

2-yr 3031 6115 3085 50.4 

10-yr 4904 10188 5284 51.9 

100-yr 10411 23273 12863 55.3 

Turbidity exceedances (count of fires)   

Rainfall erosivity Self-burning Total Avoided Avoided (%) 

2-yr 1110 1668 558 33.5 

10-yr 1503 1910 407 21.3 

100-yr 1922 2210 288 13.0 
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Figure 4.6. Containment effects on impact metric distributions 

Summary of containment effects on distribution of fire-level indicators of water supply risk including: A) watershed 

area burned, B) first-year post-fire sediment to the diversion, and C) first-year post-fire average post-storm turbidity 

(vertical line marks the 100 NTU standard for treatment).   
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Figure 4.7. Source risk by impact metric 

Summary of containment effects on distribution of POD-level indicators of water supply risk including: A) 

watershed area burned, B) first-year post-fire sediment to the diversion, and C) frequency of turbidity exceedances 

for fires that originate within each POD. The difference between uncontained and contained scenarios is the 

transmitted risk. 
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4.3.5 Avoided sediment 

 Containment reduced the total sediment load to the pipeline by 50.4-55.3% depending on 

rainfall erosivity from an average of 6.1-23.2 thousand Mg per fire to an average of 3.1-10.4 

thousand Mg per fire (Table 4.3). The fire-level cumulative distributions of sediment delivered to 

the pipeline for the contained and uncontained scenarios are shown in Figure 4.6b. Sediment 

loads vary across several orders of magnitude due to differences in fire size, the erosion and 

sediment transport potential of the burned area, and post-fire rainfall. The effect of containment 

on sediment load is roughly equivalent to reducing rainfall erosivity one level (Figure 4.6b). The 

spatial distribution of sediment source risk is similar to that of watershed area burned (Figure 

4.7b). PODs that are partially or wholly outside the watershed are a minimal risk to water 

supplies after containment, but fire activity in the larger PODs situated in the middle of the 

watershed is still expected to produce substantial sediment. 

4.3.6 Avoided water quality impairment 

 Containment effects on water quality impairment were less substantial than for watershed 

area burned and total sediment to the diversion (Table 4.3; Figure 4.6c); impairments were 

reduced by 33.5, 21.3, and 13.0 percent for the 2, 10, and 100-year recurrence interval rainfall 

erosivity, respectively. With containment, 36.5, 49.4, and 63.2 percent of fires are predicted to 

exceed the 100 NTU threshold for the 2, 10, and 100-yr rainfall erosivity, respectively. Most 

fires that caused turbidity to exceed limits for treatment originated in the large PODs in the 

middle of the watershed (Figure 4.7c). The three PODs with the most turbidity exceedances are 

all larger than 10000 ha. Containment only reduced the number of turbidity exceedances from 

these PODs from 640 to 568 (an 11.3% reduction) for the 2-yr rainfall erosivity, and containment 

offered almost no mitigation benefit (1.0% fewer exceedances) for these PODs under the most 
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extreme rainfall scenario. In contrast, containment reduced turbidity exceedances by more than 

50% in 33 of the 70 PODs under median rainfall conditions. These PODs range in size from 502 

to 14153 ha with a mean of 3548 ha. Many of these PODs are mostly or wholly outside the 

watershed, but some are smaller PODs inside the watershed.  

4.3.7 Prioritizing POD network improvements 

 The impairment analysis results highlight the need to break up the three large PODs with 

high source risk in the middle portion of the watershed (Figure 4.7c). These three PODs are also 

the top priorities for further compartmentalization based on watershed area burned and total 

sediment load from self-burning. With containment, an additional eight PODs were the source of 

20 or more impairments under median rainfall conditions. Cumulatively, these top 11 PODs 

account for 91.4% of all impairments in the contained scenario, so efforts to further reduce fire 

sizes in these PODs should have high benefit. 

 Prioritizing improvements along the potential control lines that bound PODs can be 

informed with measures of risk transmission (Figure 4.8). Total sediment to the diversion was 

transmitted at the highest rates along POD boundaries in the middle portion of the watershed 

(Figure 4.8a) where there is high potential for fires to spread into erosion prone terrain near the 

diversion (Figure 4.3b; Figure 4.4). In contrast, transmitted water impairment was more 

concentrated along the POD edges associated with the smaller PODs in the north central portion 

of the watershed (Figure 4.8a). Transmission risk was also high for several control lines in the 

eastern half of the watershed that are nearly perpendicular to the dominant wind direction. 

Mitigation priorities differed depending on which metric of transmission risk was used (Figure 

4.8; Figure 4.9). The two metrics both identify a similar order of priorities (Spearman’s ρ = 0.89) 

but they have moderate disagreement about the magnitudes of potential risk mitigation 
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(Pearson’s R = 0.71), especially for the highest-ranking boundaries (Figure 4.9). Most notably, 

few of the POD edges associated with the three large PODs that are the source of most 

impairments (Figure 4.7c) are high priorities for mitigating impairment because containment at 

these locations infrequently changes the impairment outcome despite the potential to avoid large 

quantities of sediment. 
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Figure 4.8. Edge risk transmission 

Transmitted risk from A) sediment to diversion and B) turbidity exceedances normalized to edge length in 

kilometers. 
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Figure 4.9. Edge risk transmission comparison 

Scatterplot of edge transmission metrics (unit is edge). Edges ranked in the top 20 using either metric are colored 

red. 

 

 

4.4 DISCUSSION 

 This proof of concept analysis demonstrates the potential for improved early containment 

of large fires to lower watershed area burned by 58.7% and to reduce risk to source water 

between 13.0 and 55.3% depending on impact metric considered. Proportional reductions in total 

sediment load to the diversion ranged between 50.4 and 55.3%, but the potential to avoid 

exceeding turbidity limits for treatment was notably lower – varying between 33.5 and 13.0% 

reduction for the 2- and 100-yr rainfall erosivity, respectively (Table 4.3). The contrasting 

response of our water impact metrics to increasing rainfall erosivity (Table 4.3) reveals that 

avoiding large quantities of sediment may not translate to avoiding water impairment if the 

residual sediment load is still large. The sources of water supply risk and potential mitigation 
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benefits of fire containment varied widely across the POD network (Figure 4.7) suggesting the 

potential to further improve mitigation effectiveness with targeted divisions to reduce the size of 

PODs with high risk from self-burning and fuels reduction to improve containment probability 

along high transmission boundaries (Figure 4.8). 

 Our analysis built on previous studies of wildfire-water supply risk and wildfire risk 

transmission to estimate the avoided water supply impacts from improved fire containment 

within pre-identified PODs. Omi (1979) approached this issue from the perspective of fuel break 

construction and maintenance in California using estimates of avoided area burned and a relative 

damage index to weigh fuel break benefits. Monte Carlo wildfire simulation and watershed 

effects analyses capture similar information on exposure and impacts with the added benefit of 

associating fire outcomes with their ignition locations and final extents (Thompson et al. 2016b; 

Haas et al. 2017). Both of these recent works suggest that improved containment could benefit 

water supply protection after showing that much of the risk to watershed values is associated 

with large but infrequent wildfires that would be difficult to mitigate with area-wide fuel 

treatments due to their rarity in space and time. A recent effort to zone this landscape into PODs 

(Thompson et al. 2016a) provided the operationally relevant fire containers used in this study to 

estimate avoided water supply impacts using risk transmission methods (Haas et al. 2015; Ager 

et al. 2018) like the earlier work of Davis (1965) to estimate the area saved from burning after 

encountering a control feature. The avoided area burned and sediment load measures we 

modeled are similar to the impact metrics used to value the benefit of containment in previous 

studies, but our evaluation of water quality impairment provided a unique opportunity to evaluate 

whether the sizes and spatial arrangements of the PODs are appropriate to mitigate a scale-

dependent risk. Our results suggest POD-based containment could meaningfully reduce risk of 
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exceeding turbidity limits for treatment (Table 4.3), but the large percentage of unmitigated risk 

implies that the containment network could be more effective with smaller PODs. 

Our estimates of avoided impacts are premised on the simplifying assumption that all 

fires are contained within their POD of origin and thus are optimistic given the reality that 

wildfire can breach roads and rivers under extreme weather conditions in this region. We chose 

not to address the probability of containment in this study because our current understanding of 

suppressing wildfire at linear control features has not advanced much beyond simple empirical or 

conceptual models (Wilson 1988; Mees et al. 1993; Agee et al. 2000). It is reasonable to assume 

that many of the fires we simulated could be contained at the roads that form most POD edges, 

but probability of success should be lowest under the weather conditions associated with the 

most damaging fires. Better models of containment probability that incorporate physical 

characteristics of the control feature, the surrounding fuels and topography, fire behavior, and 

suppression are critical to refining estimates containment mitigation benefits. We also did not 

account for suppression burning, which can sometimes substantially increase area burned 

(Ingalsbee 2015) and thus would dampen the contrast between our containment scenarios. 

 The post-fire erosion and sediment transport modeling used here has several limitations 

that are important to acknowledge. First, the linked fire and erosion model system (Figure 4.1) is 

subject to multiple data, model, and model linkage uncertainties that have potential for prediction 

error as discussed extensively in previous publications (Elliot et al. 2016; Gannon et al. 2019). 

Recent work has shown that water quality at the basin scale is sometimes minimally impacted 

despite modeled increases in hillslope erosion (Blake et al. 2020), emphasizing the need to test 

and refine erosion and sediment transport models with empirical observations at multiple scales 

(Moody et al. 2013). Most of our predicted first-year post-fire hillslope erosion yields for the 2-
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yr and 10-yr rainfall erosivity scenarios (Table 4.2) are close to the study-wide means of 9.5-22.2 

Mg ha-1 and range of individual hillslope observations of 0.1-38.2 Mg ha-1 from previous fires in 

the region exposed to moderate rainfall (Wagenbrenner et al. 2006; Larsen et al. 2009; 

Robichaud et al. 2013a; Schmeer et al. 2018). Many of these studies had hillslope sediment 

fences fill and overtop, so the reported yields are usually interpreted as a lower bound estimate of 

the true erosion rate. For the 100-yr rainfall erosivity, only the top decile of modeled fires exceed 

the 72 Mg ha-1 of rill and interrill erosion reported in the first year after the Buffalo Creek Fire in 

response to similarly extreme rainfall (converted from volume estimates of Moody and Martin 

[2001] using bulk density of 1.6 Mg m-3). Despite doubling the efficiency of hillslope transport 

in this study, only the net sediment delivery to streams for the upper decile of fires with 10-yr 

rainfall erosivity and the upper half of fires with 100-yr rainfall erosivity (Table 4.2) approach 

the small catchment sediment yields of 22.0-38.6 Mg ha-1 observed in the first two years after the 

Hayman Fire (Robichaud et al. 2008, 2013b). This seems reasonable given the larger size of 

most catchments in this study. After our rough calibration, our combined hillslope and channel 

SDR values (Figure 4.4c) are close to SDR values estimated with similar travel time methods 

(Ferro and Porto 2000; Fernandez et al. 2003). None of the simulated fires at any rainfall level 

(Table 4.2) are predicted to deliver sediment to the diversion at a rate close to the whole 

watershed sediment yield of 52.5 Mg ha-1 for the first year of the Buffalo Creek Fire (Moody and 

Martin 2001), likely because we did not account for channel erosion. 

 Our water quality impairment analysis also layers on additional assumptions that the 

annual suspended sediment load is evenly divided among the annual average of four sediment-

generating storms and the storm sediment load is evenly mixed in the average daily flow volume 

of the river during the thunderstorm season. Despite these approximations, the resulting 
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turbidities – which averaged 309, 516, and 1181 NTU for the 2, 10, and 100-yr rainfall erosivity, 

respectively – align well with common observations in the region of post-fire turbidities between 

100 and 1000 NTU and occasional observations >1000 NTU (Rhoades et al. 2011; Oropeza and 

Heath 2013; Murphy et al. 2015). The assumption that storm load is an equal division of annual 

load does not account for the substantial intra-annual variability in storm characteristics (Murphy 

et al. 2015; Kampf et al. 2016) nor the interannual variability in the frequency of storms with 

sufficient intensity to cause erosion (Wilson et al. 2018; Chapter 3). Similarly, unaccounted for 

variability in daily flow volume should influence the vulnerability of the water source. Given 

these simplifications, we have more confidence in our contrasts of containment protection 

benefits across scenarios than we do in our absolute estimates of impairment risk. Our analysis 

also focused exclusively on the acute periods of severe water quality degradation after rainstorms 

in the first year after fire, so it is unclear if containing fires to smaller sizes will avoid elevated 

carbon, nitrogen, phosphorus, manganese, and suspended solids concentrations that may persist 

for years after fires in Colorado (Rhoades et al. 2011; Murphy et al. 2015), increasing treatment 

complexity and cost and raising concerns about the formation of disinfection byproducts (Writer 

et al. 2014; Hohner et al. 2016). Similar water quality responses and treatment challenges have 

been observed after wildfires in Canada, Australia, and Europe (Emelko et al. 2011; Smith et al. 

2011). 

 Despite uncertainties in the precise magnitude of risk reduction, improved containment 

appears promising compared to other mitigation strategies. We found that limiting fires to their 

POD of origin should reduce the total sediment load from wildfire between 50.4 and 55.3% 

(Table 4.3). Previous assessments of landscape-scale fuel treatments predict long-term sediment 

reduction of 19% (Elliot et al. 2016) and up to 34% reduction in long-term sediment costs 
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(Chapter 2). Based on the narrowest contrast in these figures (34% for fuels reduction and 50.4% 

for containment), the containment failure rate would have to be greater than 32% for fuels 

reduction to match the mitigation effectiveness of POD-based containment. Furthermore, 

compartmentalizing fire in small units of the landscape has the potential to avoid disrupting 

multi-source water systems by limiting fire impacts to a single source (Chapter 3). The benefit of 

containing individual wildfires should vary widely (Figure 4.6), as fire encounters with control 

features and associated impacts beyond the POD of origin depend strongly on where the fire 

ignites, which is similar to what Buckley et al. (2014) report for fuels reduction effects on fire-

level sediment yields. The effect of fuels reduction on post-fire water quality has not been 

directly evaluated by other studies, but the sediment yields predicted for individual fires in 

Buckley et al. (2014) and Jones et al. (2017) suggest that fuels reduction may not meaningfully 

change the water quality outcomes of the largest fires, especially when they combine with 

extreme post-fire rainfall, despite substantial reductions in sediment loads. 

We also demonstrated how risk transmission metrics could inform improvements to the 

POD network. The small number of PODs with high risk from self-burning should be targeted 

for further compartmentalization. Fine scale analyses of risk factors within the PODs and 

containment opportunities would benefit these efforts. If further divisions are not feasible or 

practical (e.g., because of wilderness or wildlife habitat concerns), these PODs could be 

candidates for fuels reduction with prescribed fires or managed wildfires for resource benefit. 

However, the limited control opportunities in these PODs suggests that managed fires may also 

need to be large, which raises concerns about whether they would impair water quality. The 

analysis presented here for extreme wildfires could be adapted to evaluate the risk of impairment 

from fires under more favorable weather conditions. As previously discussed, we did not 
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estimate the probability of containing wildfire at POD boundaries and how containment 

probability would change with fuels reduction, but managers are interested in identifying POD 

boundaries in need of improvements to support safe and effective fire response. Measures of 

transmission risk across the POD edges (Figure 4.8) highlight where these efforts should be 

targeted to maximize risk reduction. However, priorities differed depending on the water supply 

effects measure used (Figure 4.9); most notably, there is greater potential to avoid impairment by 

improving containment probability around the smaller PODs. Further analyses are needed to 

evaluate if fuel conditions around these POD edges necessitate treatment for firefighting 

effectiveness and safety. 

 

4.5 CONCLUSION 

 Improved wildfire containment has potential to meaningfully reduce wildfire risk to 

water supplies, but these effects are scale dependent. In our test case, approximately 75% of fires 

intersected potential control features and, if these fires were contained within their POD of 

origin, watershed area burned would be reduced by 58.7%, total sediment load to the diversion 

would be reduced between 50.4 and 55.3%, and water quality impairment would be reduced 

between 13.0 and 33.5%. Risk mitigation was higher for total sediment load than impairments 

because containment did not always change water quality outcomes. Moreover, priorities to 

improve the network design by modifying the size of the PODs or improving containment 

probability along their edges differ depending on the effects measure used. This highlights the 

importance of properly defining water supply impacts for wildfire risk assessment and avoided 

impact analyses. Similar analyses could be applied to other scale-dependent resources at risk of 

wildfire to inform containment network design. 
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CHAPTER 5 – RISK MODEL LIMITATIONS AND POTENTIAL FOR IMPROVEMENT 

 

 

 

The risk models used in Chapters 2, 3, and 4 have data, model, and model linkage 

uncertainties that have potential for considerable prediction error. The models were roughly 

calibrated for use in the montane watersheds of the Colorado Front Range based on sometimes 

sparse local or regional observations. Future modelers are cautioned to carefully consider 

whether these assumptions are appropriate for other locations. Model limitations were only 

discussed briefly in each chapter, so they will be expanded on here with attention towards 

possible improvements. 

 

5.1 FIRE MODELING 

5.1.1 Fire likelihood and exposure 

All three of the research chapters rely on some form of fire ignition and spread modeling 

to estimate the likelihood of encountering wildfire. Chapters 2 and 3 both used probabilistic 

wildfire risk components modeled with FSim (Finney et al. 2011; Short et al. 2016). FSim was 

calibrated in these applications to approximate historical rates of burning and fire size 

distributions within fire modeling pyromes, which are regions with roughly similar biophysical 

controls on fire activity. This modeling did not account for spatial variation in ignition density 

and it did not carefully calibrate burn probability or fire size distributions across biophysical 

gradients or vegetation types within pyromes (Short et al. 2016). The FSim results suggest fire is 

far more likely in the lower elevation, warmer and drier forests than the higher elevation, cooler 

and wetter forests, except where fuels have been reduced by recent wildfire activity (Figure 2.6a; 

Figure 3.1). The pattern of higher burn probability in lower elevation forests is generally 
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consistent with the historical ecology of the region (Schoennagel et al. 2004; Sherriff et al. 

2014). The fire ignition and spread modeling in Chapter 4 produced similar patterns in burn 

probability despite adding spatial variation in ignitions and simplifying to a smaller set of 

problem weather scenarios (Figure 4.3b). Although there is reasonable alignment between 

modeled patterns of fire occurrence and historical fire regimes, FSim predicts some questionably 

low burn probabilities in lodgepole pine forests and the wildland urban interface, which could 

undervalue risk and risk mitigation in these areas. Future risk analyses at a similar sub-regional 

scale could benefit from calibrating burn probability and fire size distributions across biophysical 

gradients and vegetation types. 

  Chapter 2 and 3 both present absolute estimates of risk that depend on the FSim 

calibration to historical patterns of fire occurrence. As discussed previously, there is potential for 

error in the spatial distribution of risk if within pyrome variation in fire occurrence is not 

calibrated. Fire likelihood estimates are also premised on current fuel conditions, including 

recent fires, so they may not be accurate as landscape conditions change. A significant concern 

for long-range planning is the potential mismatch between historical and future rates of burning. 

Studies that project past fire-climate statistical relationships into the future suggest area burned 

could be approximately two to three times higher over the next half century in the Southern 

Rockies (Spracklen et al. 2009; Litschert et al. 2012). If these increases are uniform, the 

estimated risk and risk reduction from Chapters 2 and 3 could be adjusted with a simple scaling 

factor to account for climate change. An alternative is to run FSim for future climates, like Riley 

and Loehman (2016), to capture any spatial variability in fire increases. There is some reason to 

believe there may be larger increases in burning at higher elevations because fire activity is 

thought to be currently limited by the cooler, wetter climate (Schoennagel et al. 2004). Changes 
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in human ignitions could also affect the likelihood and patterns of future wildfire activity. If fire 

activity dramatically increases, there may also be need to better account for the influence of 

vegetation dynamics on both area burned and fire severity. A recent analysis suggests that fire-

fire feedbacks should dampen increases in area burned in the Sierra Nevada Mountains of 

California by approximately 15% (Hurteau et al. 2019). 

In Chapter 2, fire likelihood was represented using a modeled surface of annual burn 

probability (Short et al. 2016), which was scaled to the probability of encountering fire in each 

pixel over a 25-year period of fuel treatment effectiveness to estimate treatment-fire encounter 

rates. This allowed us to report on the change in expected wildfire damages by pixel as if they 

are certain quantities, yet the modeling presented in Chapters 3 and 4 suggests that there should 

be high spatial and temporal variability in wildfire occurrence. Hence, the actual treatment-fire 

encounter rate may be highly variable across multi-decade planning periods. Variability in 

treatment-fire encounter rates and avoided damages could be better communicated by reporting 

these measures for multi-decade subsets of perimeters from FSim. For example, Barros et al. 

(2018) used a similar technique to describe the potential benefits of managing wildfire for 

resource benefits by reporting managed fire-wildfire encounter rates and change in impacts over 

many 50-year simulation periods. 

In Chapter 2, no fuel treatment effects on burn probability were modeled. This 

simplification allowed us to estimate treatment benefits independently for each candidate fuel 

treatment location at the expense of representing neighborhood effects on fire likelihood. Change 

in burn probability is often quantified for a limited set of fuel treatment scenarios with Monte 

Carlo fire ignition and spread models (e.g., Thompson et al. 2013b; Scott et al. 2016), but it is 

not currently practical to run these analyses for many possible treatment unit combinations 
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across a large landscape. For now, it is probably best to ignore neighborhood effects for 

prioritization (e.g., Chapter 2) and to quantify them as needed with post-hoc analysis of several 

planned scenarios. Accounting for off-site reductions in burn probability would increase the risk 

mitigation value of fuel treatment compared to our estimates. 

5.1.2 Fire behavior and burn severity 

 In Chapters 2, 3, and 4, crown fire activity (CFA) categories of surface, passive crown, 

and active crown fire were used as proxies for low, moderate, and high burn severity, 

respectively. Fire severity often increases along the gradient from surface to active crown fire 

behavior because crown fire initiation depends on surface fire intensity (Scott and Reinhardt 

2001) and total fire intensity increases as more fuel is engaged in combustion. Fire intensity or 

related flame length measures are also commonly used to translate predicted fire behavior into 

burn severity for watershed effects analyses (Thompson et al. 2013a; Elliot et al. 2016). 

However, there is limited understanding of what fire behavior metrics best predict soil burn 

severity (Moody et al. 2013). Soils do not transmit heat efficiently, so intense but short duration 

surface or crown fire behavior may not always correspond to high soil heating or complete 

combustion of surface cover (DeBano and Neary 2005). Despite these uncertainties, our 

predictions of burn severity (Table 2.3; Figure 3.4; Figure 4.4) generally align with our 

expectations of high severity effects in areas with heavy forest fuels and steep slopes and 

primarily low severity effects in low density forest and non-forest fuel types. The proportion of 

area predicted to burn at moderate or high severity is also close to the proportion of area burned 

at these severity levels by previous large fires in the Colorado Front Range (Sherriff et al. 2014). 

 CFA will often detect improvements in fire behavior and effects associated with fuel 

treatments to increase canopy base height and reduce surface fuels (Agee and Skinner 2005; 
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Reinhardt et al. 2008), but its broad categories and abrupt transitions between classes limit its 

precision for quantifying fuel treatment effects. Changes to the fire behavior fuel model or 

canopy attributes will have different effects depending on how close the starting conditions are to 

a threshold in fire behavior. Assuming that surface fire equates to low burn severity likely 

underestimates the variability in fire intensity, soil heating, fuel consumption, and burn severity 

within this category. It also precludes prediction of moderate or high severity effects in non-

forest fuels. Our modeled fuel treatments in Chapter 2 were more successful at changing active 

crown fire to passive crown fire than they were at changing passive crown fire to surface fire 

because of the low starting canopy base heights and the relatively small proportional effect of 

treatment (Table 2.1). Canopy base height measurements should be prioritized in field 

monitoring to validate the baseline data and magnitude of treatment effects. Using CFA as the 

sole metric to judge fuel treatment effects may sometimes produce questionable results. For 

example, treatments that drastically raise canopy base height but add surface fuels may 

successfully avoid crown fire behavior at the expense of increasing the surface fire intensity and 

severity. It is tempting to instead use a continuous measure, like fire intensity or flame length, to 

evaluate treatment effects, but this approach will have similar limitations due to the reliance on 

categorical fire behavior fuel models (Anderson 1982; Scott and Burgan 2005) to represent pre- 

and post-treatment surface fuels. 

 Fire behavior and severity were predicted assuming that all areas of the landscape will 

burn under conditions with very dry fuels and winds blowing upslope at high speeds. The basic 

fire behavior module in FlamMap further assumes fire spread in the heading direction through 

each pixel (Finney et al. 2015). This near worst-case scenario is meant to approximate that most 

area burns in the Colorado Front Range during very dry and windy conditions (Graham 2003; 
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Haas et al. 2015). However, this scenario does not apply to all fires or burn periods within fires. 

Fire intensity distributions generated with FSim, which accounts for fire occurrence under a 

wider range of environmental conditions and tracks spread direction to account for lower 

intensities from backing and flanking, tend to be far lower than the worst case modeled with 

FlamMap (Thompson et al. 2016). Accounting for this variability would therefore lower the 

average fire behavior and associated severity and post-fire erosion. However, whether this is 

viewed as an improvement depends on whether the aim of the analysis is to characterize the 

mean effects of all fire or the potential effects of extreme events. From the perspective of 

quantifying fuel treatment effectiveness in Chapter 2, modeling fire behavior and effects for 

extreme fire weather conditions presents a conservative estimate of fuel treatment benefits as 

they are generally most effective under moderate conditions (Kalies and Yocom Kent 2016). 

 

5.2 WATERSHED MODELING 

Due to the forward-looking nature of wildfire risk assessment and the many uncertainties 

in both future fire and post-fire conditions, simple methods were used to model post-fire erosion 

and sediment transport. The goal for the watershed modeling was to estimate the magnitude of 

post-fire sediment delivery to water infrastructure in a spatially distributed manner to account for 

post-fire impacts independently for each unit of the landscape in Chapter 2. This necessarily 

involved approximations of the physical processes. The following sections discuss the limitations 

of the three components of the model – hillslope erosion, hillslope transport, and channel 

transport – and our application of the system in Chapters 3 and 4 to predict water quality 

impairment. 
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5.2.1 Hillslope Erosion 

Hillslope erosion was modeled with a gridded spatial implementation of the Revised 

Universal Soil Loss Equation (RUSLE) (Renard et al. 1997; Theobald et al. 2010). RUSLE was 

developed for agricultural use, so there are questions about how well it can predict post-fire 

erosion in wildland environments and steep terrain. It is also a gross erosion model meant for 

prediction in environments where erosion (versus deposition) is the primary process. These 

limitations warranted several adjustments to calibrate RUSLE for post-fire erosion prediction in 

montane watersheds of Colorado.  

The first modifications focused on the length and slope (LS) factor. Flow accumulation 

was limited to 0.9 ha when calculating the length and slope factor (LS) per Winchell et al. (2008) 

to approximate the hillslope length guidance from the original model (Renard et al. 1997). 

Without this adjustment, RUSLE would predict very high erosion rates where flow concentrates 

in drainages, which is far from the original intent of the model despite the general agreement of 

this trend with field observations (Desmet and Govers 1996; Moody and Martin 2001). The final 

LS value was also limited to the maximum of 72.15 provided in Renard et al. (1997) to control 

for excessive slope factor values. Similar methods of estimating LS based on stream power 

(Moore and Burch 1986) can produce lower values depending on how the analyst decides to set 

the length and slope exponent parameters (e.g., Blake et al. 2020). The LS factor tends to be very 

high for much of the study area due to the steep terrain. This is because slope contributes to the 

LS calculation twice: first in the slope factor (Equation 2.9) and second in the length factor 

exponent (Equations 2.10-2.12). The length factor exponent increases with slope steepness due 

the prediction that rill erosion becomes increasingly dominant (compared to interrill erosion) 

with increasing slope (McCool et al. 1989).  
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There is currently no empirical evaluation of the RUSLE LS factor for erosion prediction 

in montane watersheds of Colorado, but there are several studies that report on hillslope erosion 

mechanisms and topographic drivers. Moody and Martin (2001) estimated that interrill erosion 

was more than two times higher than rill erosion after the Buffalo Creek Fire. An important 

caveat to this finding is that there is some ambiguity in what constitutes rill, gully, and channel 

erosion and much of the channel erosion reported by Moody and Martin (2001) came from 

previously unchannelized low-order drainages that may overlap with some definitions of rilling. 

In contrast, Pietraszek (2006) found that 63-76% of the total sediment yield from small swales 

after the Hayman and Schoonover Fires came from rill erosion. Regardless of the precise 

mechanisms of erosion, it is reasonable to question whether erosion should increase dramatically 

with slope, as implied by RUSLE, given that slope has not been identified as an important 

predictor of hillslope erosion in two empirical studies from Colorado (Benavides-Solorio and 

MacDonald 2005; Schmeer et al. 2018). In contrast to RUSLE, Schmeer et al. (2018) found a 

negative relationship between hillslope length and sediment yield for plots ranging in length 

between 48 to 266 m. Hayman Fire results from Pietraszek (2006) instead show constant per unit 

area sediment yields across plot sizes ranging between 0.02 and 0.5 ha. Validating the LS factor 

for use in steep, complex terrain will likely continue to be a challenge given the difficulty of 

controlling for variability in other factors. Future field studies could improve understanding of 

length and slope influences on erosion by stratifying their sampling across a gradient in LS while 

keeping burn severity and soil properties as constant as possible. 

The cover (C) and soil erodibility (K) factors were both manipulated in our model to 

simulate post-fire increases in erosion by burn severity and vegetation type (Table 2.2). Fire 

effects on forests were mainly informed by Larsen and MacDonald (2007), who reported on both 
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the mean post-fire C factor by burn severity and the approximate proportional increase in K 

factor for high burn severity. We adopted the same approach used by Schmeer (2014) to 

generalize the Larsen and MacDonald (2007) result into K factor increases of 50, 75, and 100 

percent for low, moderate, and high burn severity, respectively. The C factor changes in non-

forest vegetation types were estimated using proportional adjustment factors given the limited 

information of how fire effects these vegetation types locally. Table 2.2 shows increases for 

these cover types for moderate and high severity burning, but they were generally not candidates 

to burn at these levels due to the lack of tree canopy to support passive or active crown fire 

activity. It is likely that the predictive performance of the model could be improved by 

representing fire effects on a continuous gradient instead of three levels of burn severity like the 

measures of percent surface cover or its inverse that are used in empirical models (Benavides-

Solorio and MacDonald 2005; Larsen et al. 2009; Schmeer et al. 2018). However, moving 

towards continuous measures of severity raises the need for equivalent improvements to the fire 

behavior and severity modeling and field research to characterize C and K factor responses at 

higher resolution.  

Numerous studies document that rainfall is an important and highly variable control on 

post-fire erosion in Colorado (Wagenbrenner et al. 2006; Larsen et al. 2009; Moody and Martin 

2009; Moody et al. 2013; Robichaud et al. 2013a, 2013b; Murphy et al. 2015; Kampf et al. 2016; 

Schmeer et al. 2018; Wilson et al. 2018). Different techniques were used to account for rainfall 

variability in each of the research chapters. The spatial risk assessment and fuel treatment 

planning in Chapter 2 was based on a median rainfall scenario. Uncertainty in avoided risk was 

communicated for a range of annual rainfall erosivity percentiles as a simple method to convey 

that the realized treatment effects could vary widely. The Monte Carlo analysis in Chapter 3 
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improved upon this by representing rainfall erosivity as a time varying factor that was combined 

with space and time varying wildfire occurrence to estimate their joint impacts on risk. Water 

supply impacts in Chapter 4 were reported for three percentiles of annual rainfall erosivity – 

ranging from common to extreme – to convey the approximate probabilities of experiencing the 

modeled impacts.  

All three research chapters relied on a historical rainfall data set (Perica et al. 2013) that 

was processed into rainfall erosivity for a later study of rainfall thresholds for erosion (Wilson et 

al. 2018). Historical records from 11 representative stations of the Colorado Front Range were 

combined as a means to represent the spatial and temporal variability in annual rainfall erosivity 

across the region (Figure 2.4). In practice, no spatial variability in rainfall erosivity was modeled 

within years. This approximation likely dampens the variability in risk estimates compared to the 

reality that rainfall meaningfully varies within years due to the highly localized nature of intense 

rainfall events in this region (Wagenbrenner et al. 2006; Moody and Martin 2009; Moody et al. 

2013; Murphy et al. 2015; Kampf et al. 2016). Rainfall erosivity is calculated as the product of 

total storm energy and maximum 30-minute intensity (MJ mm ha-1 hr-1). The rainfall data used 

for this analysis had 15-minute resolution, but some studies suggest that peak intensities 

measured over shorter durations (e.g., 10 minutes) are better predictors of erosion (Robichaud et 

al. 2013a, 2013b). Despite the potential to improve erosion prediction with higher resolution 

rainfall data, local studies have demonstrated that rainfall erosivity calculated with the maximum 

30-minute intensity is a strong predictor of post-fire hillslope erosion (Benavides-Solorio and 

MacDonald 2005; Schmeer et al. 2018). Therefore, this component of the model is likely 

sufficient but could be marginally improved by incorporating intra-annual spatial variability. 
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In general, the gridded spatial implementation of RUSLE predicts hillslope erosion rates 

that are similar to field observations when averaged across small watersheds (Figure 2.5), which 

is similar to the evaluation made by Larsen and MacDonald (2007). Pixel-level estimates do 

have the potential to exceed plausible erosion rates when extreme values of LS, C, and K overlap 

(Chapter 2). Unrealistic erosion rates were controlled for in Chapters 3 and 4 by limiting erosion 

to the approximate regional maximum of 100 Mg ha-1 yr-1 (Moody and Martin 2009). 

Functionally, this could represent sediment supply limitations on steep slopes. The resulting fire-

wide mean erosion predictions align reasonably well with regional field observations (Table 3.3 

and Table 4.2). Without adjustments to constrain our erosion values, RUSLE predictions can far 

exceed those made with alternative models like WEPP or KINEROS2 (Kampf et al. 2020). 

However, it should be noted that our net sediment delivery to streams predictions are closer to 

what these models predict. Using a more physically-based erosion model like WEPP or 

KINEROS2 will avoid extreme erosion predictions, but there is little evidence that these models 

are more accurate than RUSLE, especially if the goal is only to identify relative levels of erosion 

hazard across a watershed (Larsen and MacDonald 2007; Kampf et al. 2020). Meaningful 

improvements in post-fire erosion modeling are largely dependent on increased data collection to 

calibrate and evaluate models including field experiments or stratification of observational 

studies to better isolate topography, cover, and soil controls.  

5.2.2 Hillslope Transport 

Hillslope transport was represented using an empirical model of annual Sediment 

Delivery Ratio (SDR) developed from wildfires in the western U.S. (Wagenbrenner and 

Robichaud 2014) with a rough calibration to align predicted catchment net sediment yields with 

regional field observations. The model uses the length ratio of the nested sub-unit to the larger 
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catchment to represent how per-unit area sediment yields decline between the two scales of 

measurement (Eqns 2.14-15). This model was applied in a spatially distributed manner by 

treating each pixel as a smaller sub-unit and its flow path distance to the nearest stream as the 

length of the larger catchment. This represents the general tendency for the transport efficiency 

of upland sediment sources to decrease within increasing distance from streams (Walling 1983), 

but the model ignores other important factors that influence sediment transport like runoff depth, 

slope steepness, and surface roughness. 

The empirical SDR model has several limitations for estimating net sediment yield in 

Colorado. First, there is considerable variability in annual SDR not explained by the model 

(Wagenbrenner and Robichaud 2014 figure 7), which is based on limited data from only three 

wildfires in Washington, Utah, and Arizona. These sites were selected for model development 

because the nested sampling structure provides stronger evidence for scaling relationships than 

disjointed sampling. In a separate analysis, Wagenbrenner and Robichaud (2014) reported that 

sediment yield increased slightly with catchment area at the Hayman Fire, in contrast to all other 

sites where sediment yield declined with increasing catchment size. Sediment yields declined 

with increasing catchment size at the Bobcat Fire, also in Colorado, but the largest plots at 

Bobcat were smaller in size than at Hayman. SDR is normally interpreted as a tool to scale gross 

erosion to net sediment yield to account for transport and storage processes (Walling 1983; de 

Vente et al. 2007), but Wagenbrenner and Robichaud (2014) also observed increasing evidence 

of sediment generation from fluvial erosion processes with increasing catchment size, which is 

consistent with post-fire observations from the Buffalo Creek Fire in Colorado (Moody and 

Martin 2001). Their model is also presented as a bedload SDR model in acknowledgement that 

sediment fences do not capture suspended sediment with high efficiency, especially in storms 
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that cause flows to overtop fences. As implied by other SDR models (e.g., Lu et al. 2006), it is 

likely that the suspended fraction transports with higher efficiency than the bedload component, 

so the whole soil SDR should be higher than predicted by the empirical model. 

In Chapters 2 and 3, it was demonstrated that doubling the predicted SDR better aligned 

our net sediment yield predictions with the small catchment sediment yields from the Hayman 

Fire (Robichaud et al. 2008, 2013b). A higher precision adjustment was not pursued given the 

sparse observations and potential differences in watershed and rainfall characteristics. This 

approximate calibration increased the maximum SDR for near stream areas from 0.27 to 0.54, 

which is still low compared to the maximum SDR modeled by others in similar environments 

(Fernandez et al. 2003; Hamel et al. 2015). There is some uncertainty as to whether doubling the 

hillslope transport efficiency accurately represents the physical processes at play if gully and 

channel erosion add new sources of sediment with increasing catchment size. Sediment yields 

tend to peak in disturbed watersheds at the scales where the dominant erosion processes occur 

(Ostercamp and Toy 1997; de Vente et al. 2007), which may be small catchments in Colorado 

where concentrated flows after fires incise previously unchannelized drainages (Moody and 

Martin 2001, 2009). In some basins, SDR may peak at even larger scales due to changes in land 

use or geology, thus causing a reversal in the expected decline in sediment yield with basin area 

(de Vente et al. 2007). SDR models that account for travel time, peak discharge, particle size, 

upstream contributing area, and resisting factors along the downstream flow path (e.g., Ferro and 

Porto 2001; Lu et al. 2005; Borselli et al. 2008) might improve SDR estimates (Vigiak et al. 

2012) but generally require data to inform parameter adjustments. For example, the InVest 

sediment retention model (Hamel et al. 2015) uses the SDR model of Vigiak et al. (2012) with an 

assumed maximum SDR of 0.8 and the need to set a sigmoidal curve shape parameter to 
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determine how SDR scales with the connectivity index. Until more sediment yield observations 

are available from larger catchments to inform these calibrations, it is unlikely that these models 

will offer significant improvements.       

Increasing SDR to account for greater transport efficiency of fine sediments is also 

justified on the theoretical basis that these particles should transport more efficiently than the 

coarser particles that are preferentially trapped in sediment fences. Ryan et al. (2011) observed 

increased suspended sediment yields after a wildfire in Wyoming while bedload transport did not 

significantly increase. Rathburn et al. (2017) showed that more intense rainstorms tend to 

generate higher suspended sediment concentrations, but suspended sediment concentrations after 

most storms in the first year after the High Park Fire reached concerning levels for water 

treatment. This suggests that suspended sediment transport capacity is not likely to be a limiting 

factor for storms that generate surface runoff. Therefore, it is possible that the efficiency of 

suspended sediment transport is underestimated in Chapters 3 and 4 by assuming the bedload-

centric model of Wagenbrenner and Robichaud (2014) applies to the clay and silt fractions. Even 

after doubling the modeled SDR, our highest values are in the low end of the SDR ranges 

predicted by Lu et al. (2006) for clay and silt in the mountainous portion of their study watershed 

in Australia. Higher efficiency transport of fine sediment would increase the risk of water quality 

impairment compared to our estimates. Representing hillslope transport with an annual SDR 

model also ignores the considerable inter-storm variability in SDR owing to the pulsed nature of 

erosion and transport (Walling 1983; Wagenbrenner and Robichaud 2014). Obscuring inter-

storm SDR variability with the annual average is a minor concern for gaging the long-term 

impacts of reservoir sedimentation, but it could affect evaluations of water quality impairment if 

most sediment is transported during a small proportion of storms.  
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5.2.3 Channel Transport 

 Channel transport was modeled using is a very conceptual adaptation of the simple SDR 

model proposed by Frickel et al. (1975) for channel types in the Piceance Basin of western 

Colorado. The original model emphasizes stream order and the presence of raw gullies 

(channels) as evidence of high flow conditions that should efficiently transport sediment. 

Discontinuous gullies are expected to transport sediment less efficiently. Ungullied drainages 

with vegetation and evidence of deposition should retain the most sediment. In our model, we 

used Strahler stream order as a rough proxy for flow and channel conditions that influence 

sediment transport. We assigned channel SDRs per 10 km of stream length of 0.75, 0.80, 0.85, 

and 0.95 to 1st, 2nd, 3rd, and 4th or higher order streams, respectively. This captures the general 

tendency for sediment transport to be less efficient in the lower order channels due to smaller and 

often ephemeral or intermittent flows and the greater influence of riparian vegetation on 

roughness compared to higher order channels (e.g., Manning’s n values from Chow 1959). 

However, this simple approach ignores significant intra-order variation in factors such as channel 

slope, bed material, form, and floodplain connectivity that influence sediment storage 

opportunities and the potential for channel erosion to contribute new sources of sediment. 

 Stream order is not a perfect indicator of transport efficiency, but it likely captures the 

general trend in SDR across our study watersheds. Moody and Martin (2001) observed that 

Buffalo Creek, a third order stream with a slope of 1.6% and an estimated annual mean discharge 

of 42.3 cfs (USEPA and USGS 2012), was efficiently transporting post-fire sediment even 

during base flow conditions. In contrast, Spring Creek, a first order stream with a slope of 4.7% 

and an estimated annual mean discharge of 1.9 cfs (USEPA and USGS 2012), primarily 

transported sediment during storm flow conditions. The much higher proportion of sediment 
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transported in Buffalo Creek during base flow conditions (85%) than in Spring Creek (33%) 

suggests that the lower order streams are more limited by transport capacity than higher order 

streams. Rathburn et al. (2017) noted similar trends in low order channels monitored after the 

High Park Fire. Higher intensity storms caused sediment deposition in ephemeral channels, 

whereas lower intensity storms caused degradation. This suggests that large pulses of sediment 

from upland sources will often exceed the transport capacity of low order channels despite their 

association with increased flows. There is less definitive evidence of higher transport capacity in 

the major channels, but qualitative observations that the South Fork of the Poudre contributed 

more sediment than expected to downstream water supplies after the High Park Fire suggest that 

major channels are generally efficient transport pathways (Miller et al. 2017) 

 Channel transport could be modeled more accurately with process-based models that 

account for channel and flow characteristics. Empirical bedload sediment transport models based 

on excess shear stress or stream power (e.g., Meyer-Peter and Mueller 1948; Ashida and Michiue 

1972; Martin and Church 2000; Wong and Parker 2006) all predict increasing transport rates 

with increasing channel bed slope and flow depth. Slope does not vary consistently with stream 

order so it is possible that such an approach would alter our connectivity measures. Discharge 

increases consistently with stream order, so these models would still predict very efficient 

sediment transport in higher order channels. Bedload transport models would provide the ability 

to assess whether increased post-fire flows should cause channel erosion, assuming bedload 

composition and flow conditions can be appropriately characterized. Taking a sediment balance 

routing approach to account for upland and channel sources and storage could be accomplished 

for individual wildfires (e.g., Chapters 3 and 4) but this technique is not compatible with the 



162 

 

approach used in Chapter 2 to estimate water supply consequences independently for each unit of 

the landscape.  

Potential for sediment storage in lakes and reservoirs was represented in our model by 

assigning them low SDRs, but no effort was made to account for bank and floodplain storage. 

SDR should be very high for channels with limited storage opportunities, such as steep mountain 

streams in v-shaped valleys (de Vente et al. 2007), but it may be lower for channels that connect 

to floodplains during post-fire storm flows. Moody and Martin (2001) observed substantial 

sediment storage in floodplains after the Buffalo Creek Fire that is likely to have a long residence 

time. In the first year after the High Park Fire, sediment mobilized from early storms was 

deposited primarily on the channel banks, where it was later remobilized by higher flows 

(Oropeza and Heath 2013; Miller et al. 2017). This short duration bank storage could affect 

storm-level SDR estimates but it probably has negligible impacts on SDR at annual or longer 

time scales. Sediment can also be stored in alluvial fans at the base of steep drainages. The 

residence time for alluvial fan storage should be short when delivered to confined valleys, but it 

may have longer residence times when delivered to unconfined valleys far from the main channel 

(Rathburn et al. 2007). The current SDR model could be refined to using morphological 

indicators of storage potential such as valley confinement to reduce SDR in reaches with high 

storage potential. It would be difficult to accurately model storage processes without rainfall-

event level predictions of runoff and erosion to identify where excess supply will be stored in 

channels and to identify the reaches and flow conditions that are likely to deposit sediment in 

floodplains. 

The lack of post-fire sediment yield observations from larger watersheds remains a 

barrier to improving hillslope and channel transport modeling. Our predicted whole watershed 
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sediment yields for the first year after fire (Figure 2.5; Table 4.2) are mostly below the first year 

yield of 52.5 Mg ha-1 observed by Martin and Moody (2001) in response to extreme rainfall after 

the Buffalo Creek Fire (converted reservoir input volume using 1.6 Mg m-3 bulk density). The 

combined hillslope and channel SDR models represent the general trend for sediment yield to 

decline with increasing watershed size, but as discussed previously, it is questionable whether 

these scaling relationships accurately reflect transport efficiency given the likely sediment 

contributions from channel erosion. More accurate budgeting of sediment sources is needed to 

isolate the effects of transport and storage mechanisms.  

5.2.4 Water Impairment 

 The water quality impairment evaluation used in Chapters 3 and 4 is a first approximation 

of how annual sediment loads translate into storm-level water quality outcomes. The annual time 

scale of the erosion estimates and similar limitations with the sediment transport models preclude 

accurate predictions of individual storm outcomes. For this reason, we focused on the average 

annual post-storm suspended sediment concentrations and turbidities as indicators of whether 

sediment loads should be high enough in a given year to impair water quality. Several key 

assumptions needed to bridge the gap between annual sediment loads and storm-level suspended 

sediment concentrations and turbidities warrant further evaluation and improvement. 

 RUSLE is an annual erosion model, which required an assumption of how the annual 

load is distributed among storms. We made the simplifying assumption that the annual load is 

equally divided among the frequency of storms exceeding a threshold intensity for hillslope 

erosion (Wilson et al. 2018). There is some uncertainty associated with this threshold, which can 

affect the number of storms the load is divided among. A larger issue with this assumption is that 

it does not represent inter-storm variability in erosion. Previous studies from this region 
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demonstrate that most erosion occurs in response to a few powerful storms (Wagenbrenner et al. 

2006; Robichaud et al. 2013b). Impairment probabilities would be higher using the annual 

maximum storm loads. This component of the model could be improved by using an erosion 

model meant for storm level prediction, which would require equivalent revisions to how 

potential future rainfall conditions are represented. 

 We also made a gross approximation that 35% of the sediment generated by hillslope 

erosion should contribute to the suspended sediment load. This figure was arrived at by 

combining post-fire observations of suspended load particle sizes and composition from a similar 

watershed in Wyoming with observations of hillslope erosion sediment from one of the study 

watersheds. Ryan et al. (2011) observed that silt and clay accounted for 70-85% of post-fire 

suspended load during summer storm flows and the remainder was mostly fine organics. 

Schmeer (2014) reported that approximately 25% of the mineral component of hillslope 

sediment after the High Park Fire was in the clay and silt size classes but did not report on the 

organic component. Hence, we assumed that a similar proportion of fine organics observed by 

Ryan et al. (2011) could accompany the mineral sediment from our watersheds, boosting our 

estimate to a maximum of 35%. These assumptions could be improved in two ways. Spatial soils 

data from the Soil Survey Geographic Database (SSURGO) could be used to represent 

differences in hillslope sediment composition across the watershed instead of assuming it is 

constant. Second, estimates of ash load could be incorporated as models of ash production and 

transport improve. Ash production is highly variable and difficult to predict because it depends 

on space and time varying factors such as fuel composition and load and burning conditions 

(Bodí et al. 2014).  
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 Suspended sediment transport and mixing are also greatly simplified in our model. As 

discussed previously, it is likely that the suspended load transports more efficiently than bedload, 

which means suspended loads may be underestimated. To estimate suspended sediment 

concentrations, it was assumed that the average storm load was perfectly mixed in the receiving 

reservoir storage volume or stream mean daily flow volume. In reality, perfect mixing is not 

achieved in either waterbody type. In reservoirs, much of the sediment should settle out of 

suspension before mixing and thus will be a minor threat to water quality at the outlet unless the 

reservoir is small, or the input points are near the outlet. For streams, it was assumed that the 

storm load would be diluted in the mean daily flow volume, which may dampen peak storm 

suspended sediment concentrations that occur at finer time steps. Inspection of storm-level 

hyetographs, hydrographs, and turbidity time series could help refine the time frame used to 

define the dilution volume. This could also help to evaluate whether the mean seasonal discharge 

is a reasonable representation of post-storm flows, or if there is need to increase it for the 

concentration calculations.  

 Another limitation is our use of an empirical equation (Eqn 3.5) from a different 

watershed (Murphy et al. 2015) to convert from suspended sediment concentration to turbidity 

for ease of comparison with documented water quality thresholds for treatment (Writer et al. 

2014; Murphy et al. 2015). Suspended sediment-turbidity relationships can vary between 

watersheds and even between transport events within watersheds owing to differences in 

sediment composition. Ideally, water managers would express their treatment limits in the more 

fundamental metric – suspended sediment concentration – so this conversion step would be 

unnecessary. The potential error from this source is likely minor given that many of the years or 

fires with predicted water quality impairment far exceed the 100 NTU threshold used in Chapters 
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2 and 3. Decreasing or increasing the impairment threshold by a factor of ten to account for the 

many uncertainties in the analysis doesn’t radically alter the results (Table 3.4; Figure 3.7), 

especially the relative impairment risk among the water supplies. Similarly, our focus on the 

relative reduction in impairment risk in Chapter 4 should be robust to moderate changes in the 

absolute magnitude of risk. 

 

5.3 COMBINED RISK MODELING 

 The coupled design of our risk models has the potential to magnify uncertainties from the 

component models. It is difficult to precisely estimate how uncertainty propagates through the 

system without intensive simulation due to the spatial nature of the data and models. For this 

reason, intermediate results were featured in each chapter and compared to available field 

observations to evaluate system performance. As discussed in the previous sections, our 

estimates of burn severity, post-fire erosion, watershed sediment yields, and post-storm water 

quality measures were close to regional field observations with the exception of a few 

questionable departures that are highlighted again below. The implications of uncertainty differ 

for spatial prioritization and estimating risk magnitudes.  

For spatial prioritization, the greatest concern is whether the component models 

accurately reflect the spatial variation in wildfire and post-fire hazards across the landscape. 

Burn probability modeling is critical for wildfire risk assessment, but there is widely recognized 

need to evaluate the quality of predictions and a lack of consensus on how best to do so (Parisien 

et al. 2019). Similarly, pre-fire burn severity modeling is largely untested except in terms of the 

modeled proportions of burn severity compared to previous fires (Elliot et al. 2016; Chapter 4). 

Although there is some epistemic uncertainty with the wildfire hazard components, the aleatory 
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uncertainty is probably much greater owing to randomness in ignition locations and weather 

conditions. The greatest uncertainty with the post-fire watershed modeling is whether erosion 

and sediment transport mechanisms are properly represented. RUSLE erosion predictions were 

most sensitive to the LS factor, yet there is limited local evidence that hillslope erosion increases 

dramatically with slope length and steepness. If erosion rates are less sensitive to LS, risk may be 

more evenly distributed across the watershed. The spatial implementation of RUSLE likely 

captures some channel erosion (Desmet and Govers 1996), but it would be better to model 

channel erosion separately to understand if its magnitude and spatial distribution shifts risk to 

different parts of the landscape. Uncertainties with the hillslope and sediment transport 

components raise similar concerns. Risk would be more concentrated near water supplies with 

less efficient transport and more dispersed across large watersheds with more efficient transport.  

For estimating risk magnitudes, the biggest concern is whether the quantities of 

intermediate and final impact measures are reasonable. Modeled estimates of burn probability 

and severity aligned well with regional trends in fire activity from the recent past (Short et al. 

2016; Chapter 4). There is some potential for error in risk estimation from the fire hazard 

components if their spatial patterns are not calibrated within the study watersheds. Several 

adjustments were necessary to align the watershed model predictions with regional field 

observations. These calibration steps improve confidence that the sediment yield predictions are 

reasonable for the region (Figure 2.5), but it is possible that some of the regional observations are 

not representative of the study watersheds due to differences in soils, topography, climate, or 

erosion mechanisms. It is reassuring that the economic risk estimates from Chapter 2 were close 

to the results of a similar study in California (Elliot et al. 2016). The water quality impairment 

analyses in Chapters 3 and 4 employed coarse approximations of erosion, transport, and dilution 
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processes at finer time scales, which implies there is considerable uncertainty in the absolute 

impairment probabilities. However, varying the water quality impairment threshold by a factor of 

ten in either direction (Table 3.4) did not qualitatively change our conclusions about which water 

supplies were low or high risk.  

Resolving epistemic uncertainties with any of the model components could improve 

confidence in risk maps, fuel treatment priorities, and risk magnitudes. Yet, these improvements 

are unlikely to meaningfully improve our ability to forecast wildfire-water supply impacts given 

the high aleatory uncertainty from spatial and temporal variability in wildfire and rainfall (Jones 

et al. 2014; Chapter 3). Reducing uncertainty in the watershed model components would be more 

valuable in the context of post-fire hazard assessment where the watershed model components 

account for more of the total uncertainty after fire extent and severity are fixed.  
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CHAPTER 6 – SUMMARY AND CONCLUSIONS 

 

 

 

6.1 RESEARCH SUMMARY 

 This dissertation presented two models to assess wildfire-water supply risks. The first 

model, introduced in Chapter 2, built on the framework of earlier avoided cost assessments 

(Buckley et al. 2014; Elliot et al. 2016; Jones et al. 2017) to quantify and map sediment-related  

risks to three interconnected community water systems, each with multiple reservoirs and 

diversions that differ in their sensitivity to sediment and importance for system function. The 

second model, used in Chapters 3 and 4, quantified the risk of wildfire impairing water quality 

beyond turbidity limits for treatment by modeling average storm sediment loads from 

stochastically simulated wildfires. Chapter 3 further explored how impairment of individual 

water supplies influences the potential for disrupting raw water supply in multi-source water 

systems. Chapters 2 and 4 applied these risk models to estimate the potential effectiveness of 

mitigating water supply risks with proactive fuels reduction and improved fire containment. The 

results suggest efforts to limit fire severity and size should meaningfully reduce sediment loads, 

but mitigation may be less effective at reducing the frequency of water quality impairment 

because the residual sediment loads from many fires may still be high enough to degrade water 

quality. Chapter 3 examined the mitigation benefit of source redundancies. We found that 

redundancy increased system reliability, but gains depended on the impairment risk of the 

alternative water supplies and their geographic separation. The collective results suggest that 

water supplies have widely varying wildfire risk and associated opportunities for effective 

mitigation with fire management or engineering solutions. 
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6.2 WILDFIRE-WATER SUPPLY RISK ASSESSMENT  

The two risk models used in this dissertation have different strengths and limitations 

worth noting for their application in future studies. The sediment impact cost model proved 

useful for mapping the source of wildfire-water supply risk across broad landscapes, but valuing 

sediment impacts to non-reservoir infrastructure was difficult. Water managers did not have a 

clear means to translate a mass or volume of sediment into costs, so we resorted to estimating the 

base impact cost to diversions at half that of reservoirs because of the greater flexibility afforded 

by diversions and managers’ perception that water impairment is less costly due to existing 

source water redundancies. For example, Fort Collins and Greeley experienced degraded water 

quality in the Cache la Poudre River following the 2012 High Park Fire, but both communities 

were able to meet water demands with alternative sources (Oropeza and Heath 2013; Writer et al. 

2014). The most concerning scenario for these communities is wildfire(s) disrupting raw water 

supply by impairing multiple sources at the same time. This led us to develop an alternative 

model, used in Chapters 3 and 4, to evaluate whether discrete wildfire events will impair water 

supplies using the common risk and reliability framework (Singh et al. 2007) with turbidity as 

the environmental forcing and turbidity limits for treatment as the impairment threshold. The 

watershed modeling for this analysis required several approximations related to the frequency 

and duration of erosion and sediment transport events that warrant further refinement in future 

studies – ideally by using erosion and sediment transport models meant for storm-level 

prediction – but still managed to predict storm-level turbidities that are comparable to field 

observations. We also simplified the analysis by assuming all water supplies have the same 

impairment threshold, but it is more likely that conveyance infrastructure can tolerate higher 

turbidity than terminal reservoirs or diversions. The model could be improved with more detailed 
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accounting of water yield or other performance measures to accurately translate component 

impairments into system consequences (Haimes 2012). 

The two risk models used in this dissertation send mixed messages about the magnitude 

of risk and need for mitigation. In Chapter 1, we found that wildfire-related sediment costs 

should amount to only 11.5 million USD over a 25-year period assuming wildfires are followed 

my median rainfall conditions. The moderate economic risk of fire-generated sediment in our 

study is due to low to moderate burn probability and stakeholder-informed sediment impact 

costs. The modern fire regime of the Colorado Front Range is characterized by large, but still 

relatively infrequent wildfires (Graham 2003; Sherriff et al. 2014). Based on the National FSim 

results (Short et al. 2016), only 6.6% of the landscape (317 km2) is expected to burn over our 

assessment period. This level of fire activity and associated post-fire erosion does not translate to 

extreme economic risk given sediment impact costs ranging between 1.6 to 37.5 USD Mg-1. In 

contrast, the Monte Carlo wildfire and rainfall simulation presented in Chapter 3 indicates that 

water supplies with large watersheds, particularly on-network stream diversions, may experience 

water quality impairment in nearly 20% of years. Water utilities have very low tolerance for raw 

water supply disruption; for example, many communities in Colorado plan for firm water yield 

up to a 100-year recurrence interval drought. Assuming this common reliability standard 

represents water utility tolerance for supply disruption in 1% of years, risk of wildfire-related 

water quality impairment is unacceptably high for some water supplies. In some cases, source 

redundancies reduce the risk of water supply disruption to an acceptable level, but some water 

systems with no or few redundancies may be unacceptably vulnerable to wildfire-related water 

quality disruption under current conditions.  
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Neither of our risk models accounted for potential increases in fire activity due to 

changing climate and ignition sources, so our risk estimates are likely conservative. Studies that 

project current fire-climate relationships into the future suggest area burned in the Southern 

Rockies could increase as much as 50-175% in coming decades (Spracklen et al. 2009; Litschert 

et al. 2012). The growing influence of anthropogenic ignitions (Cattau et al. 2020) also suggests 

that area burned could increase due to the increasing population and recreational activity. Risk in 

the sediment cost model will increase linearly with area burned assuming the gains in fire 

activity are roughly uniform across the landscape. If large fires become more frequent, so should 

the risks of water quality impairment and system supply disruption. In Chapter 3, we made the 

simplifying assumptions that water yield and waterbody volume are constant, but like fire 

activity, they both respond to interannual precipitation variability. Considering the correlation 

among these factors would likely increase the risk of impairment because waterbody size should 

be lower than average during large wildfire years and the lower water yield from alternative 

sources during dry years will provide less ability to buffer system consequences. Increasing 

water demand from a growing population may also reduce the mitigation effectiveness of 

redundancies. Future risk assessments would improve their utility for long term planning by 

incorporating these factors. 

 

6.3 RISK MITIGATION EFFECTIVENESS  

Precise estimates of risk and risk mitigation are not required to identify areas of a 

landscape that would benefit from mitigation, but they are increasingly sought by watershed 

collaboratives and water utilities to make the financial case for proactive mitigation and to report 

transparent measures of program outcomes (Buckley et al. 2014; Ozment et al. 2016; Jones et al. 
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2017). The studies that established the avoided cost framework used in Chapter 2 (Buckley et al. 

2014; Elliot et al. 2014; Jones et al. 2017) all focused on avoiding reservoir sedimentation by 

proactively treating fuels to reduce burn severity and post-fire erosion. In Chapter 2, we found a 

highly negative return on investment from fuels reduction in our study watersheds to avoid 

sediment costs, which closely aligns with the estimate that 68 million USD of fuel treatment 

would avoid only 1 million USD of reservoir sedimentation costs in the Mokelumne Watershed 

in California (Buckley et al. 2014). The narrow accounting of wildfire-related sediment impacts 

in both our studies likely underestimate the true value of mitigation for water utilities, but other 

costs would have to be many times larger than we currently estimate in order to break even. The 

only study to suggest a positive return on investment from fuels reduction to avoid sediment 

(Jones et al. 2017) assumed that all fuel treatments will be burned by wildfire followed by 

extreme but rare rainfall (10 to 100-year recurrence intervals). Although this combination of 

wildfire and rainfall has occurred in Colorado (Moody and Martin 2001), the combined 

probability of extreme wildfire and extreme rainfall is very low, so avoided cost estimates for 

these extreme scenarios are probably not representative of the average fuel treatment effects.  

The risk mapping and fuel treatment optimization presented in Chapter 2 can help target 

fuels reduction towards the most cost-effective treatment types and locations, but we estimate 

that the maximum feasible risk reduction from proactively treating fuels is between one third and 

one half in this landscape with an unlimited budget. This is because treating fuels reduces but 

does not eliminate risk to water supplies and not all areas of the landscape can be managed with 

forest fuels treatments. It is unclear whether this level of risk reduction, whether expressed in 

absolute costs or percent reduction, meets water manager and stakeholder objectives. I suspect 

that the outcomes of landscape-scale fuel treatment are desirable to water stakeholders, but it will 
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be difficult to justify funding the majority of the work since their return on investment is low. 

Most avoided costs from fuels reduction in our study watersheds are projected to come from 

reduced damage to private property and reduced suppression costs (Talberth et al. 2013) like 

similar assessments from California and southwest Colorado (Buckley et al. 2014; Quantified 

Ventures 2019). Watershed investment programs may have better success engaging water-

focused funders with this framework if they can attract funds from other investors in proportion 

to their projected benefits. 

Our fuel treatment optimization model in Chapter 2 primarily selected a thinning only 

treatment despite the greater effectiveness of the combined thinning and prescribed fire treatment 

and the greater cost-effectiveness of using prescribed fire alone. This is partially the result of the 

fuel treatment and fire behavior modeling limitations that are discussed in Chapters 2 and 5, but 

it also reflects that we mapped only a small portion of the landscape as suitable for prescribed 

fire as a first entry treatment. Since our initial discussions with managers to define prescribed fire 

constraints in our model, the local National Forest has ramped up their prescribed fire program 

focusing on large broadcast burn units (USDA Forest Service 2020) and has plans to further 

expand the use of prescribed fire in many areas we currently map as infeasible (Arapahoe and 

Roosevelt National Forests 2019). These plans are currently still conceptual in nature and 

optimistic compared to a recent analysis of broadcast burning opportunity in the Colorado Front 

Range (Addington et al. 2020), but they suggest a commitment towards cost-effective treatment 

at scale on public lands. Monitoring from these efforts will also help to refine our understanding 

of local prescribed fire effects, which we suspect are more substantial than in the study we used 

to parameterize our model (Stephens and Moghaddas 2005). The cost-effectiveness of mitigating 



180 

 

risk with fuels reduction could dramatically improve compared to our estimates if prescribed fire 

is both more effective and more widely implemented.  

The water quality impairment risk model introduced in Chapter 3 facilitated our 

evaluation of the risk mitigation effectiveness of fire containment in Chapter 4. Proactive 

investments in fire containment have historically focused on constructed fuel breaks (Omi 1979), 

but modern efforts have shifted towards zoning the landscape into Potential fire Operational 

Delineations (PODs) based primarily on existing control features such as roads and rivers 

(O’Connor et al. 2016, 2017; Thompson et al. 2016). We estimated that containing all wildfires 

within their POD of origin would reduce area burned in the study watershed by 58.7% and total 

sediment load by 50.4-55.3%. These figures are conditional on successful fire containment, but 

high enough to suggest that containment will compare favorably to fuels reduction as long as the 

containment failure rate is less than 32%. However, we found that containment should only 

reduce the frequency of water quality impairment at the focal diversion by 33.5% if fires are 

followed by median rainfall and by 13.0% if fires are followed by extreme (100-year return 

interval) rainfall. This suggests that avoided area burned and sediment load do not translate 

directly into reduced incidents of water quality impairment. Much of the unmitigated risk under 

median rainfall conditions was concentrated in a few PODs, so there is potential to improve the 

effectiveness of the containment network by further compartmentalizing these areas of the 

watershed. The cost-effectiveness of improved fire containment depends on the actions taken to 

implement it. Most effort is currently focused on low-cost planning to identify candidate control 

features, aggregate them into PODs, and develop response strategies (Thompson et al. 2016). 

Fuels reduction along the POD boundaries to improving firefighter safety and probability of 

success would carry a higher price tag but the cost should still be far lower than the area-wide 
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fuels reduction evaluated in Chapter 2 because treatment would be concentrated in a smaller area 

along roads. Furthermore, our transmission risk analysis in Chapter 4 suggests that control 

feature hardening could be prioritized in a few high-risk areas of the network. Improved fire 

containment models are needed to rigorously evaluate the cost effectiveness of these actions. 

The primary focus of this dissertation was evaluating the mitigation effectiveness of land 

and fire management solutions, but our results from Chapter 3 validate that raw water supply 

reliability could substantially improve by adding or enhancing source water redundancies as 

advocated for by other researchers (Sham et al. 2013; Murphy et al. 2015; Martin 2016). Source 

redundancy is attractive for its ability to mitigate contamination impacts from wildfire and other 

disturbances and for providing additional drought protection, but it likely carries a steep price tag 

given that the most traded water rights in Northern Colorado are selling at close to 30000 USD 

per acre-foot (Runyon 2018). Although it may be costly and impractical for every community to 

acquire alternative sources, there could be opportunity for a regional water sharing agreement 

similar to that explored to mitigate drought impacts in North Carolina to make use of 

neighboring communities’ excess water supplies in time of need  (Zeff et al. 2016). There may 

also be potential for other low or moderate cost engineering solutions such as such as 

constructing sediment basins to protect vulnerable conveyance infrastructure (Martin 2016) or 

adding raw or treated water storage to weather the often brief periods of degraded water quality 

following storms (Oropeza and Heath 2013; Murphy et al. 2015). Source water protection plans 

in Colorado have started to consider engineering solutions alongside traditional watershed 

management approaches (RESPEC 2019). It will be interesting to see how different communities 

decide to invest in pre-fire mitigation and how it allocated among “green” and “grey” 

infrastructure solutions. 
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6.4 MANAGEMENT IMPLICATIONS  

 The discrepancy we found between sediment cost and water quality impairment risk 

models highlights the need for watershed and water managers to explicitly discuss water supply 

vulnerabilities and select appropriate tools to assess risk. Combining a solid baseline 

understanding of risk with clear water supply reliability goals will help communities evaluate if 

pre-fire mitigation is needed and what combination of actions should be part of their mitigation 

strategy. Of the mitigation strategies we examined, source water redundancy offered the greatest 

benefit, but it may not be practical for every community to develop a fully substitutable and 

high-reliability alternative water supply. Landscape-scale fuels reduction and improved fire 

containment are expected to lower wildfire risks between 13.0-55.3% depending on impact 

metric considered. It is likely that the residual risk after one or both of these pre-fire mitigation 

approaches is still high enough that some fires will require significant response and recovery 

actions to safeguard drinking water such as temporarily shutting down intakes, emergency 

rehabilitation, monitoring, maintenance, changes to treatment processes, and/or investments in 

new infrastructure (Martin 2016). To better prepare communities, source water protection 

planning should consider both watershed and infrastructure solutions at pre-fire, response, and 

recovery time scales.  

 Many of the results presented in this dissertation are highly context-dependent and may 

not translate well to different watersheds and water systems. Still, several general principles 

emerged from our research. A common theme is that wildfire-water supply risks are not uniform 

across large watersheds, so efforts should be made to characterize the spatial distribution of risk 

and exploit this information to prioritize mitigation. A simple checklist for prioritizing fuel 
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treatment is to aim for locations with high probability of burning at high severity, high erosion 

potential, and high connectivity to water supplies. Improved containment efforts should be 

prioritized in areas with high ignition density and potential for fires to spread into erosion prone 

terrain with high connectivity to water supplies. In our assessment of impairment risk, wildfire 

exposure was a key determinant of risk. Whenever possible, water supply exposure should be 

minimized with off-network storage and alternative sources should be geographically dispersed 

to avoid simultaneous exposure. Water quality impairment is a threshold dependent process, so 

accurate assessment of risk and mitigation effectiveness needs to consider not only what 

contaminant loads are avoided but also whether the residual loads are problematic. Fuels 

reduction or containment actions that only marginally reduce contaminant loads are unlikely to 

change the water quality outcomes of large fires, so mitigation should be designed explicitly to 

limit fire size and/or severity below critical thresholds for impairment for a given watershed and 

water supply. 

 

  



184 

 

REFERENCES FOR CHAPTER 6 

 

 

 

Addington RN, Tavernia BG, Caggiano MD, Thompson MP, Lawhon JD, Sanderson JS (2020) 

Identifying opportunities for the use of broadcast prescribed fire on Colorado’s Front Range. 
Forest Ecology and Management 458, 117655. doi:10.1016/j.foreco.2019.117655 

Arapaho and Roosevelt National Forests and Pawnee National Grassland (ARP) (2019) Northern 

Front Range Collaborative Watershed Resilience Project. USDA Joint Chiefs’ Award 
FY2019 Accomplishment Report. Available from 

www.fs.usda.gov/detail/arp/home/?cid=FSEPRD640139 4 p. (Fort Collins, CO, USA) 

Buckley M, Beck N, Bowden P, Miller ME, Hill B, Luce C, Elliot WJ, Enstice N, Podolak K, 

Winford E, Smith SL, Bokach M, Reichert M, Edelson D, Gaither J (2014) Mokelumne 

watershed avoided cost analysis: why Sierra fuel treatments make economic sense. A report 

prepared for the Sierra Nevada Conservancy, The Nature Conservancy, and USDA Forest 

Service. Sierra Nevada Conservancy. (Auburn, CA, USA) 

Cattau ME, Wessman C, Mahood A, Balch JK (2020) Anthropogenic and lightning-started fires 

are becoming larger and more frequent over a longer season length in the U.S.A. Global 

Ecology and Biogeography 29, 668-681. doi:10.1111/geb.13058 

Elliot WJ, Miller ME, Enstice N (2016) Targeting forest management through fire and erosion 

modelling. International Journal of Wildland Fire 25, 876-887. doi:10.1071/WF15007 

Graham RT (2003) Hayman Fire case study. USDA Forest Service, Rocky Mountain Research 

Station, General Technical Report RMRS-GTR-114. (Ogden, UT, USA) 

Haimes YY (2012) Systems-based guiding principles for risk modeling, planning, assessment, 

management, and communication. Risk Analysis 32(9), 1451-1467. doi:10.1111/j.1539-

6924.2012.01809.x 

Jones KW, Cannon JB, Saavedra FA, Kampf SK, Addington RN, Cheng AS, MacDonald LH, 

Wilson C, Wolk B (2017) Return on investment from fuel treatments to reduce severe 

wildfire and erosion in a watershed investment program in Colorado. Journal of 

Environmental Management 198, 66-77. doi:10.1016/j.jenvman.2017.05.023 

Runyon L (2018) Price of key Northern Colorado Water Supply reaches new peak. KUNC radio 

story. May 29, 2018. Available from https://www.kunc.org/post/price-key-northern-

colorado-water-supply-reaches-new-peak#stream/0 

Litschert SE, Brown TC, Theobald DM (2012) Historic and future extent of wildfires in the 

Southern Rockies Ecoregion, USA. Forest Ecology and Management 269, 124-133. 

doi:10.1016/j.foreco.2011.12.024 

Martin DA (2016) At the nexus of fire, water and society. Philosophical Transactions of the 

Royal Society of London. Series B, Biological Sciences 371, 20150172. 

doi:10.1098/rstb.2015.0172 

Moody JA, Martin DA (2001) Initial hydrologic and geomorphic response following a wildfire 

in the Colorado Front Range. Earth Surface Processes and Landforms 26, 1049-1070. 

doi:10.1002/esp.253 

Murphy SF, Writer JH, McCleskey RB, Martin DA (2015) The role of precipitation type, 

intensity, and spatial distribution in source water quality after wildfire. Environmental 

Research Letters 10, 084007. doi:10.1088/1748-9326/10/8/084007  



185 

 

O’Connor CD, Thompson MP, Rodríquez y Silva F (2016) Getting ahead of the wildfire 

problem: quantifying and mapping management challenges and opportunities. Geosciences 

6(3), 35. doi:10.3390/geosciences6030035 

O’Connor CD, Calkin DE, Thompson MP. 2017. An empirical machine learning method for 
predicting potential fire control locations for pre-fire planning and operational fire 

management. International Journal of Wildland Fire 26, 587-597. doi:10.1071/WF16135 

Omi PN (1979) Planning future fuelbreak strategies using mathematical modeling techniques. 

Environmental Management 3(1), 73-80. doi:10.1007/BF01867070 

Oropeza J, Heath J (2013) Effects of the 2012 Hewlett and High Park Wildfires on water quality 

of the Poudre River and Seaman Reservoir. City of Fort Collins Utilities Report. (Fort 

Collins, CO, USA) 

Ozment S, Gartner T, Huber-Stearns H, Difrancesco K, Lichten N, Tognetti S (2016) Protecting 

drinking water at the source: lessons learned from watershed investment programs in the 

United States. World Resources Institute Report. (Washington, DC, USA) 

Quantified Ventures (2019) The SW Colorado Wildfire Mitigation Environmental Impact Fund 

(EIF): an outcomes-based financing approach to scale forest health treatments in Southwest 

Colorado. Available from 

https://static1.squarespace.com/static/5d5b210885b4ce0001663c25/t/5d94e93fe6a11c31748b

b183/1570040136503/SW+Colorado+Wildfire+Mitigation+EIF+Feasibility+Assessment.pdf 

RESPEC (2019) Fish Creek critical community wildfire watershed protection plan (CWP)2. 

Report prepared for the City of Steamboat Springs and Mount Werner Water & Sanitation 

District. Available from http://co-

steamboatsprings.civicplus.com/DocumentCenter/View/20031/FishCreek_CWP2 92 p. 

(Steamboat Springs, CO, USA) 

Sham CH, Tuccillo ME, Rooke J (2013) Effects of wildfire on drinking water utilities and best 

practices for wildfire risk reduction and mitigation. Water Research Foundation Report 4482. 

119 p. Available from www.waterrf.org 

Sherriff RL, Platt RV, Veblen TT, Schoennagel TL, Gartner MH (2014) Historical, observed, 

and modeled wildfire severity in montane forests of the Colorado Front Range. PLoS One 9, 

e106971. doi:10.1371/journal.pone.0106971 

Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC (2016) Spatial dataset of 

probabilistic wildfire risk components for the conterminous United States. USDA Forest 

Service Research Data Archive. (Fort Collins, CO, USA) doi:10.2737/RDS-2016-0034.  

(Fort Collins, CO) 

Singh VP, Jain SK, Tyagi A (2007) Risk and reliability analysis: a handbook for civil and 

environmental engineers. American Society of Civil Engineers Press. 785 p. (Reston, VA, 

USA) doi:10.1061/9780784408919 

Spracklen DV, Mickley LJ, Logan JA, Hudman RC, Yevich R, Flannigan MD, Westerling AL 

(2009) Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous 

aerosol concentrations in the western United States. Journal of Geophysical Research 114, 

D20301. doi:10.1029/2008JD010966. 

Stephens SL, Moghaddas JJ (2005) Experimental fuel treatment impacts on forest structure, 

potential fire behavior, and predicted tree mortality in a California mixed- conifer forest. 

Forest Ecology and Management 215, 21-36. doi:10.1016/j.foreco.2005.03.070 

http://www.waterrf.org/


186 

 

Talberth J, Mulligan J, Bird B, Gartner T (2013) A preliminary green–-gray analysis for the 

Cache la Poudre and Big Thompson watersheds of Colorado’s Front Range. Center for 
Sustainable Economy and World Resource Institute Report. 21 p. 

Thompson MP, Bowden P, Brough A, Scott JH, Gilbertson-Day J, Taylor A, Anderson J, Haas 

JR (2016) Application of wildfire risk assessment results to wildfire response planning in the 

Southern Sierra Nevada, California, USA. Forests 7(3), 64. doi:10.3390/f7030064 

USDA Forest Service (2020) Hazardous fuel treatment polygons. Available from 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Writer JH, Hohner A, Oropeza J, Schmidt A, Cawley KM, Rosario-Ortiz FL (2014) Water 

treatment implications after the High Park Wildfire, Colorado. Journal of the American 

Water Works Association 106(4), 189-199. doi:10.5942/jawwa.2014.106.0055 

Zeff HB, Herman JD, Reed PM, Characklis GW (2016) Cooperative drought adaptation: 

integrating infrastructure development, conservation, and water transfers into adaptive policy 

pathways. Water Resources Research 52, 7327-7346. doi:10.1002/2016WR018771 

 

 

 

 


