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ABSTRACT 
 
 

EVALUATION OF PARATHYROID HORMONE AND ZOLEDRONIC ACID IN PROMOTING BONE 

HEALING AFTER STEREOTACTIC RADIATION THERAPY FOR LOCAL CONTROL OF OSTEOSARCOMA 

IN AN ORTHOTOPIC RAT MODEL 

 
Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local 

treatment of canine osteosarcoma (OSA) have achieved similar median survival times in 

patients as the current standard of care (amputation and adjuvant chemotherapy).  Despite 

this, there remains an unacceptably high risk of pathologic fracture following radiation 

treatment.  Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for 

decreasing this fracture risk post-irradiation.  Due to differing mechanisms, we hypothesized 

that the combined treatment with ZA and PTH would significantly improve bone healing more 

than ZA or PTH treatment alone.  Using an orthotopic model of canine osteosarcoma in athymic 

rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12Gy x 

3 fractions, 36 Gy total).  Groups included 36 Gy SRT only, 36 Gy SRT plus ZA , 36 Gy SRT plus ZA 

and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment.  Our study showed 

significant increases in bone volume and polar moments of inertia within the region of interest 

(distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group 

as compared to radiation treatment alone.  Histomorphometric analysis revealed evidence of 

active mineralization at study endpoint as well as successful tumor-cell kill across all treatment 

groups.  This work provides further evidence for the expanding potential indications for ZA and 

PTH therapy, including post-irradiated bone disease due to canine osteosarcoma.                
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Chapter 1 

Introduction 

1.1  Osteosarcoma 

Canine Osteosarcoma 

Canine osteosarcoma is the most prevalent primary bone tumor of dogs accounting for 

over 90% of malignancies of bone origin (Withrow and Khanna 2009).  It primarily affects the 

appendicular skeleton, with the axial skeleton and even soft tissues being implicated much less 

frequently as sites of primary tumor growth.  The metaphyseal regions of long bones at the 

proximal humerus, distal radius, and distal femur are most commonly affected (Gorman, Barger 

et al. 2006).  The tumor itself is locally aggressive, with a high rate of metastasis.  Metastasis 

occurs mainly to the lungs via hematogenous spread, but also to other bones, the brain, 

subcutaneous tissues, liver, spleen, and the skin (Lane, Black et al. 2012).  It is well established 

that osteosarcoma shows an increased prevalence among middle-aged to older, large or giant 

breed dogs.  Only 5% of osteosarcomas occur in dogs weighing less than fifteen kilograms 

(Gorman, Barger et al. 2006).  

 Clinical cases of osteosarcoma present with a varied degree of lameness and swelling at 

the primary site of the tumor (Morello, Martano et al. 2011).  The lameness may be mild at first 

but typically progresses over time.  The mass may also be palpably painful on manipulation.  In 

severe cases, a presentation of an acute, non-weight bearing lameness may be the result of a 

pathologic fracture due to the tumor.   Pathologic fractures account for less than 3% of all 

fractures (Gorman, Barger et al. 2006).  
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 A diagnosis of a primary bone tumor is often presumed from the collection of 

information gained from a complete history, clinical examination and radiographic findings.  

Many other diagnostic tools are available to confirm the diagnosis including fine needle 

aspiration and cytology as well as multiple bone biopsy techniques (Morello, Martano et al. 

2011).  Diagnostic imaging is used for complete staging and may include radiography, nuclear 

scintigraphy, computed tomography (CT), positron emission tomography (PET/CT), and 

magnetic resonance imaging (MRI).  At the time of presentation, less than 5% of patients show 

radiographic evidence of lung metastasis (Morello, Martano et al. 2011).  Despite this low 

number, approximately 90% of dogs with osteosarcoma are expected to have microscopic 

metastasis at the time of initial presentation (Withrow and Khanna 2009). 

 Treatment is dependent upon whether palliative or curative-intent therapy is initiated.  

Palliative-intent therapy aims solely at controlling pain.  Methods utilized include radiation, 

anti-inflammatory, and bisphosphonate medical therapy (Morello, Martano et al. 2011).  

Curative-intent therapy aims to control the local tumor through either amputation or limb-

sparing procedures, and metastasis is delayed through adjuvant chemotherapy.  Following this 

standard of care various protocols have produced median survival times between 235 and 413 

days.  Ongoing research aims to improve the outcome of current therapies as well as providing 

new treatment approaches.  Included in these approaches are stereotactic radiation therapy for 

local control, molecular targeting of metastasis, and immunostimulatory agents (Mueller, Fuchs 

et al. 2007; Withrow and Wilkins 2010).    
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Human Osteosarcoma 

Human osteosarcoma is the most frequently diagnosed primary cancer of bone (Bielack, 

Carrle et al. 2008).  Its incidence is most prevalent in the adolescent age group (15-19 yrs.) with 

8–11/1000 000/year (Bielack, Carrle et al. 2008).  This time period coincides with a period of 

rapid bone turnover suggesting a correlation with rapid bone proliferation.  Osteosarcoma is 

generally fatal, due to its ability to consistently metastasize to the lungs.  These traits, as well as 

many others, make it very similar to osteosarcoma in canine patients.  It is also similar in its 

presentation.  Human patients typically present with localized bone pain, swelling, and limited 

movement around the affected joint area.  The most common areas affected include the 

metaphyses of long bones with the most common sites being the distal femur, proximal tibia, 

and proximal humerus (Ritter and Bielack 2010).   

 A diagnostic work up for suspected cases of osteosarcoma begins with a full history, 

physical examination, and radiographs.  Advanced imaging techniques are also utilized to assess 

local tissue involvement and metastatic disease.  This would include magnetic resonance 

imaging for local tissue involvement and a CT scan of the thorax for lung metastasis.  Baseline 

assessments of heart, liver and kidney function are usually carried out as well due to the likely 

chemotherapeutic treatment plan.  These therapies can have a significant effect on other 

organs and it is important to assess these systems prior to initiation of any therapy.  Due to the 

broad spectrum of appearances histologically it is strongly recommended for biopsies to be 

collected and evaluated by an experienced pathologist.  The various tumor grades have shown 

some correlation to metastatic potential however the full prognostic significance has yet to be 

established.    
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 A multidisciplinary treatment approach is essential as 80-90% of all patients with 

seemingly localized disease will eventually develop metastasis (Ritter and Bielack 2010).  

Current standard of care treatment includes preoperative chemotherapy (neoadjuvant), limb 

salvage surgery and/or amputation, and post-operative (adjuvant) chemotherapy.  Doxorubicin, 

cisplatin, methotrexate and ifosfamide are the most active agents against osteosarcoma 

however ideal combinations utilized for treatment are yet to be defined (Ritter and Bielack 

2010).  Standard of care treatment strategy results in a 60% overall survival at 5 years (Mueller, 

Fuchs et al. 2007) 

 Despite improvements in surgical techniques, overall survival rates for osteosarcoma 

patients have largely unchanged in the last thirty years.  Due to this, a number of novel 

treatment modalities are being studied.    These aim to identify various molecular pathways 

which could help us find new targets for therapy.  Many of these are molecular targets for 

metastasis or chemoresistance markers and also immunomodulatory agents (Mueller, Fuchs et 

al. 2007).   

Research Models 

The complete pathogenesis of osteosarcoma remains to be discovered, however it is 

clear that a combination of genetic, environmental and other predisposing factors play a role.  

Due to this complexity, a priority has been to create reliable animal models to study various 

aspects of the disease.  Although a single model has not been recognized as the gold standard, 

the most revealing model would include a spontaneous primary bone tumor and pulmonary 

metastases in an immunocompetent host.    Current models include the use of mice, rats and 

dogs and each model has its own unique strengths depending on the aims of the study at hand.     
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Osteosarcoma models are either syngeneic or xenogeneic.  Syngeneic means genetically 

identical or immunologically compatible allowing for successful transplantation whereas 

xenogeneic allows for immunologically non-compatible but accepted transplantation.  An 

example of a xenogeneic model would involve the inoculation of human or canine 

osteosarcoma cells into immunodeficient murine models.  Xenogeneic models allow for the 

study of human or canine osteosarcoma biology but they fail to model important host cell 

interactions.  Many models of osteosarcoma rely on inoculation or transplantation of tumor 

cells or tissues directly into bone sites.  Although controlled as far as tumor burden and site 

location these models do not accurately simulate the true process of primary tumorigenesis.  

An alternative to this would be endogenous models whereby osteosarcoma originatesfrom 

resident mesenchymal cells.  Several murine knockout models have been established that 

generate spontaneous development of osteosarcoma with as high as 100% penetrance; 

however, anatomic location of tumor cannot be predicted.  This introduces the concept of 

orthotopic versus heterotopic animal models of osteosarcoma.  Orthotopic models study the 

growth and development of tumors within the bone environment whereas heterotopic models 

develop tumors at non-osseous sites.  Although convenient, heterotopic models fail to illustrate 

true phenotype outside of the normal bone matrix.  

A number of human, canine and rat xenogeneic models have been described.  The KRIB 

and 143B models are transformed human osteosarcoma cell lines that show great capacity for 

primary tumor formation and pulmonary metastases (Fan 2010) .  The SaOS-2 model originated 

from an 11-year-old Caucasian girl with primary osteosarcoma and has been used to study 

many chemotherapeutic agents (Fan 2010).  A canine xenogeneic model was recently described 
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in athymic rats using the Abrams osteosarcoma line to study the effects of stereotactic 

radiation therapy (SRT) on appendicular osteosarcoma (Schwartz, Custis et al. 2012).  The K7M2 

model is a mouse syngeneic model that has been thoroughly characterized to mimic a natural 

disease course in humans (Fan 2010).   The DLM8 luciferase transfected mouse syngeneic 

model was developed to study various treatment effects on metastasis in immunocompetent 

mice (Sottnik, Duval et al. 2010). 

Besides orthotopic osteosarcoma models, there are a number of genetically engineered 

mouse models that manipulate specific genes known to spontaneously generate osteosarcoma.  

Knowledge of these genetically associated cancers comes from a few rare hereditary human 

disorders including Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders.  

These disorders involve germ-line mutations of P53, RB, and RECQL4 respectively (Ng, Mutsaers 

et al. 2012).  A number of mouse models with genetically modified P53 and Rb have increased 

incidence of osteosarcoma.  One report described a 92% incidence of osteosarcoma in mice 

with a compound deletion of one Rb allele with homozygous p53 deletion (Ng, Mutsaers et al. 

2012).  There has been a number of other genes implicated in osteosarcoma pathogenesis.  

Examples of these include c-fos, p16INK4a, and WWOX (Ng, Mutsaers et al. 2012). 

Mice and rats provide substantial knowledge in understanding the pathogenesis, 

biology, and therapeutic potential against osteosarcoma, but the companion canine population 

provides another unique model for many reasons.  Both human and canine osteosarcoma share 

a number of similarities including clinical presentation, biology, treatment, complications and 

outcomes (Withrow and Wilkins 2010).  There is a tenfold increase in prevalence for canine 

osteosarcoma providing a large population of patients seeking treatment.  Other advantages of 
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studying osteosarcoma in the dog include the spontaneous nature of disease, larger animal size 

and concomitant weight bearing load, immunocompetency of the host, and similar genetic 

aberrations found in both dogs and humans (Withrow and Wilkins 2010).  The canine model will 

thus be crucial not only for translational research, but investigation of this system will result in 

the improved care of our canine patients as well.   

Biological Mechanisms of Disease 

The cell of origin for osteosarcoma has been widely researched.  At this time, there is 

evidence that the cell of origin is either a mesenchymal stem cell or an osteoprogenitor cell 

(Siclari and Qin 2010).  Data from a number of sources strongly suggests that the cell of origin is 

derived from a committed osteoblast lineage.  Osteosarcoma seems to be “differentiation 

defective” in that no terminally differentiated osteoblastic cells are found (Ng, Mutsaers et al. 

2012).  There are also biological similarities between osteosarcoma cells and osteoblasts in 

their ability to produce osteoid.  Deletion of p53 in pre-osteoblasts and osteoblasts progenitors 

resulted in a significantly higher incidence of osteosarcoma than cells with multi-lineage 

potential (Ng, Mutsaers et al. 2012).  There is also evidence that osteosarcomas, at least in part, 

are composed of more primitive cells capable of differentiating into all three dermal layers.  

One study showed that both a rat and human osteosarcoma cell line, cultured in conditions 

specific for multipotent stem cells, displayed markers indicative of mesodermal, endodermal, 

and ectodermal phenotypes (Russinoff, Miran et al. 2011). 

 Despite an incomplete understanding of the molecular pathogenesis of osteosarcoma 

there are a number of risk factors that have been identified.  Human osteosarcoma has an 

increased incidence of development during the rapid bone growth experienced during puberty 
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(Broadhead, Clark et al. 2011).  The male:female ratio of disease is 1.5 :1 for osteosarcoma and 

patients with the disease are taller compared to the age-matched normal population (Longhi, 

Pasini et al. 2005).  Fifty-six percent of all cases are located around the knee, in the region of 

the metaphysis of the femur or tibia (Vigorita 2008).  Human patients with Paget’s disease also 

have an increased predilection for osteosarcoma (Broadhead, Clark et al. 2011).  Canine 

osteosarcoma patients have similar predisposing features, however the canine disease tends to 

occur in middle-aged or older dogs (Mueller, Fuchs et al. 2007).  A number of environmental 

factors have been suggested as risk factors for osteosarcoma including physical trauma, 

chemical, and biological agents.  The most readily accepted of these is ionizing radiation, 

although this does not play a major role in pediatric disease, as it would take 10-20 years 

between exposures for observation of tumor (Broadhead, Clark et al. 2011).      

 There are a number of human genetic disorders that have been linked to the 

development of osteosarcoma including Li-Fraumeni syndrome, familial retinoblastoma and 

RecQ helicase disorders such as Rothmund-Thomson Syndrome.  These disorders involve germ-

line mutations of p53, RB, and RECQL4 respectively.  P53 and Rb are tumor suppressor genes 

that when mutated result in loss of their protective function.  This allows for accumulating 

mutations and ultimately cancer.  P53 is found to be mutated in 50% of all cancers and 22% of 

osteosarcomas (Broadhead, Clark et al. 2011).  Recent work showed that p53 expression 

correlated with lower grade tumors, improved survival and reduced metastatic disease (Hu, Yu 

et al. 2010).  The Rb gene is critical in coordinating the G1-S phase cell cycle progression and 

mutations of it result in osteosarcoma in nearly half of those affected (Ng, Mutsaers et al. 

2012).  RecQL4 is a DNA helicase that when mutated due to a familial disorders causes 
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osteosarcoma with a 30% frequency (Ng, Mutsaers et al. 2012).  This mutation has not been 

shown in sporadic osteosarcoma and its association with familial disease may separate it from 

the true disease course.  Further work is necessary to clarify its correlation to risk.   

 Many proto-oncogenes have been found to be overexpressed in both canine and human 

osteosarcoma.  In dogs, erB-2, which encodes for human epidermal growth factor receptor 2 

(HER-2) was overexpressed in 86% of cell lines and 40% of tissue samples  tested (Flint, U'Ren et 

al. 2004).  In human osteosarcomas, erB-2 expression profiles are varied.  Hepatocyte growth 

factor and its receptor, cMET, have been shown to be overexpressed in both canine and human 

cell lines and may indicate correlation with malignant phenotype of disease (MacEwen, Kutzke 

et al. 2003)  C-myc, c-fos, c-sis, and insulin-like growth factor-1 are other oncogenes that have 

demonstrated higher expression in canine and human osteosarcoma (Mueller, Fuchs et al. 

2007).     

1.2  Stereotactic Radiation Therapy 

Radiation Biology 

Radiobiology is the study of the action of ionizing radiation on living things.  Ionizing 

radiation has sufficient energy to eject one or more orbital elections from an atom or molecule.  

The importance of this process is the energy released can break chemical bonds leading to 

biological effects on tissue.  Three outcomes are cell killing, carcinogenesis, or mutation.  Our 

focus here will be on cell killing, and the benefits of using ionizing radiation in the treatment of 

cancer.   

 Ionizing radiation can be classified as either electromagnetic or particulate radiation.  

Electromagnetic radiation includes radio waves, microwaves, infrared, visible light, ultraviolet 
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light, x-rays, and ƴ-rays.  These types of radiation are indirectly ionizing.  This means that they 

do not produce damage themselves, but when absorbed, these forms of radiation transfer 

energy to other charged particles that ultimately produce damage.  Particulate radiation 

includes electrons, protons, neutrons, α-particles, and heavy charged ions.  These particles are 

directly ionizing in that they themselves can disrupt and damage atomic structure (Hall and 

Giaccia 2012).   

 The principle target for the biological effects of radiation is deoxyribonucleic acid (DNA).  

Once irradiated, the double-stranded molecule breaks in either a single or double stranded 

fashion.  Single-strand breaks are of little significance and can be readily repaired.  It is closely 

positioned double-strand breaks that can result in cell killing.  Cell death, in regard to radiation, 

is usually defined by loss of its reproductive integrity.  Most cells will undergo a mitotic cell 

death while trying to divide although other mechanisms can occur.  

 Long before mechanisms were understood, radiation was used to treat different 

diseases, including cancer.  Following the discovery of x-rays in 1895 by Rontgen, a case of 

breast cancer was treated a year later (Linz 2012).  The early lack of knowledge resulted in poor 

clinical outcomes and high morbidity due to exposure of normal tissues.  By 1922, Henri 

Coutard, a French radiologist, observed that the same radiation dose that would produce 

severe side effects could be fractionated over the course of days.  Given in fractions the dose 

would remain effective but limit the skin and tissue destruction.  This process of fractionation 

remains the basis of most current radiation techniques today. 

 A number of different radiation techniques are utilized today including conventional 

external beam radiation, stereotactic radiation, intensity-modulated radiation therapy, 
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brachytherapy, and particle therapy.  Each of these techniques is utilized for very specific 

treatment aims depending on the type, severity and location of a given cancer.  Ionizing 

radiation therapy, or radiotherapy, is used in approximately two-thirds of cancer patients today 

with solid malignancies (Chandra, Lan et al. 2013).  It is imperative to strive for the continued 

improvement of treatment techniques in tumor control as well as normal tissue sparing. 

Evolution/Applications of Stereotactic Radiation Therapy (SRT) 

Stereotactic Body Radiation Therapy (SBRT) is a novel radiation treatment technique 

where higher doses per fraction (10-20 Gy) are administered over a course of five or fewer 

fractions.  This is much different from the more conventional external beam radiation protocols 

by which a lower dose per fraction (typically around 2 Gy) is administered over many 

treatments ultimately providing a higher total dose of radiation.  In the past, these higher doses 

were largely dismissed due to limitations of providing the higher dose without being able to 

spare normal tissues to such doses.  Today, due to technological advances made in patient 

immobilization, image guidance, and treatment planning and delivery clinicians are able to 

provide a safe and effective delivery of this amount of radiation (Arcangeli, Scorsetti et al. 

2012).    

In the 1950’s, a Swedish neurosurgeon delivered a single ablative dose intra-cranially 

with the use of an external head frame used to fix the skull.  Using this technique, now known 

as stereotactic radiosurgery (SRS), he was able to accurately and effectively deliver a single high 

dose to brain tumors (Chang and Timmerman 2007).  Later on, there were a number of 

techniques developed for SBRT using rigid immobilization devices largely used for treatment of 

spinal lesions (Chang and Timmerman 2007).  Before applying this treatment to tumors of the 
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thoracic and abdominal cavity, a similar body immobilization device was developed to dampen 

the inherent movement of respiration.  This technology has mostly been utilized in the 

treatment of lung and liver tumors.  With the vast increase in technology over the past twenty 

years, systems capable of delivering SBRT now have advanced on-board imaging modalities.  

Some examples of these include near diagnostic quality, digital, x-ray systems and CT scanners 

which can be used to get real time image guidance to ensure proper positioning throughout the 

entire procedure.   

Much of the clinical experience with SBRT has been gained by treating either primary or 

metastatic disease of the liver and lungs.  Diseases of the pancreas, prostate, kidneys, and spine 

stand to gain from utilizing this new treatment modality.  The liver is a common site of 

metastasis and SBRT offers a noninvasive alternative to many treatments (surgery, 

chemotherapy, thermo-therapy).  In treating the lungs, SBRT seeks ultimately to prove 

equivalent to surgical resection which now has a 65% survival rate at 5 years (Chang and 

Timmerman 2007).  This is for Stage I lung cancers and pulmonary metastases. Currently, 

overall survival rates for pancreatic cancer have not shown improvements with SBRT but overall 

systemic treatments need to be improved for this local treatment to be more important.  Initial 

studies on SBRT for  metastatic renal cell carcinoma and for inoperable primary renal carcinoma 

appear promising; however, prospective work is needed to establish appropriate protocols.  

SBRT has been utilized to treat primary or metastatic spinal tumors since early in its 

development.  Doses utilized are limited due to sensitivity of the spinal cord but palliative 

treatments have been shown to drastically reduce pain without myelopathy or other major 

complications.   
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Risks of SBRT are similar to those apparent for all other types of radiation treatments.   

Side effects are typically divided into acute and late term effects.  Acute side effects occur 

during or right after treatment and typically resolve in a few weeks to months.  Late effects can 

occur months to years later.  Some of the most common acute effects of radiation include 

fatigue, skin swelling, mucositis, moist desquamation, erythema, dryness, diarrhea, nausea, 

vomiting, and headaches.  Late effects can include specific organ changes (lung, kidney, brain), 

colon/rectal toxicity, secondary cancer, as well as bone pathology and fracture.  Acute side 

effects are reversible while long term side effects are irreversible.  All of these effects vary 

depending on the treatment administered, location, dose, protocol, and disease status.   

SBRT allows for delivery of ablative doses of radiation to tumors for local control only 

due to a high degree of confidence in tumor location and treatment capability.  Further risks of 

delivering such doses is best illustrated by noting the risks associated with the two most 

frequently treated sites;  liver and lung.  In conventionally fractionated radiation therapy the 

predominant dose-limiting toxicity has been radiation pneumonitis.  Typical clinical signs 

include cough, fever, chest pain and shortness of breath that usually occurs weeks to months 

after treatment.  SBRT can result in this typical pneumonitis as well as an increase in bronchial 

injury.  Tumor location is an important factor in determining risk, as higher doses may affect 

normal surrounding tissue.  Besides the main-stem bronchi and bronchioles, the esophagus is 

also at risk for stricture as a late effect.  Precise knowledge and planning based on tumor 

location must take place and early recognition of toxicity is essential for proper management to 

take place and continued treatment to occur (Kavanagh and Timmerman 2005).   
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In the 1960’s, a syndrome was observed following whole liver irradiation that was 

described with symptoms including increased liver enzymes, hepatomegaly, and ascites.  It is 

now more commonly referred to as radiation induced liver disease (RILD).  Outcomes varied 

from asymptomatic to death.  Fortunately, RILD is a rare occurrence that strongly correlates to 

the volume of liver irradiated (Kavanagh and Timmerman 2005).  This allows for SBRT in that 

high doses can still be administered as long as areas of normal liver receive an acceptable low 

risk dose for RILD (Kavanagh and Timmerman 2005). 

In general, the largest benefit of SBRT comes from enhanced tumor control.  Large doses 

of radiation are able to be delivered while only exposing normal tissue to a steep dose 

reduction gradient outside of the tumor and target volume.  Another patient benefit of SBRT 

results from the reduction in number of treatments needed.  More conventional protocols 

require a number of treatments that typically result in stress to our patients.  This may be due 

to proximity to treatment centers, cost, and age-related factors (Arcangeli, Scorsetti et al. 

2012).  SBRT may provide a more beneficial treatment while not causing further stress or cost 

burdens to our patients.  Many studies are currently ongoing and planned for the continued 

study of SBRT for various tumors.  Retrospective studies performed at individual institutions 

inhibits comparisons between protocols and results in smaller numbers of patients enrolled, 

providing a strong rationale for development of multicenter clinical trials utilizing well defined 

radiation therapy protocols. 

Radiation Effect on Bone 

Acute radiation effects result from the loss of large numbers of cells in a relatively short 

amount of time.  Tissues that typically show acute effects are rapidly dividing tissues, including 
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the skin, gastrointestinal tract, and the hematopoietic system.   Radiation-induced DNA damage 

leads to cell death in the first cell division after irradiation or within the first few divisions.  

Reproductive cell death (mitotic death) is usually caused by unrepaired or improperly repaired 

chromosomal damage (Stone, Coleman et al. 2003).  Late radiation effects appear in tissues 

that are typically slowly proliferating or not proliferating at all.  Examples of these include the 

lung, kidney, liver, nervous system, and bone.  The biological mechanism for late effects is not 

yet well understood as a number of complex interacting processes are likely involved.  One of 

the major differences between early and late affected tissues is their ability to repair.  Much of 

the time acute damage is completely reversible, however late responding tissues may improve 

but rarely completely repair (Hall and Giaccia 2012).  

 Bone exposure to radiation most commonly occurs during treatment of nearby 

malignancies.  Irradiation of normal bone can lead to significant morbidities including fracture 

and loss of bone marrow function (Chandra, Lan et al. 2013).  One study revealed a three-fold 

increase in hip fractures following radiation for cervical, rectal and anal cancers (Baxter, 

Habermann et al. 2005).  A study of prostate cancer patients revealed an increased risk of 76% 

for hip fractures following radiation treatment (Elliott, Jarosek et al. 2011).  Bone is also 

exposed to significant radiation following metastasis typically for management of cancer 

related pain.  This occurs commonly with metastatic breast and prostate cancer and radiation is 

the treatment of choice (Hess, Barlev et al. 2012).   

 Various components of bone respond quite differently in their radio-sensitivity.  

Mineralized bone is considered the least sensitive part of bone to radiation.  According to one 

study, osteopenia occurs between 8% and 23% of the time following irradiation and changes in 
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bone mineral content were found after single doses of >20 Gy (Hopewell 2003).  Other work 

demonstrated alterations in the composition of apatite and that these changes may be 

correlated with changes in mechanical properties (Hubner, Blume et al. 2005).  Although some 

changes in mineralized bone have been observed, it is the non-mineralized elements of bone 

that are more radiosensitive (Jegoux, Malard et al. 2010).  This includes the growth plate, 

marrow cells, and osteogenic cells.  Bone marrow has been shown to tolerate fractionated 

doses of radiation more readily, however; a reduction in hematopoietic cells is observed and 

essentially the entire bone marrow can be destroyed at high doses (Jegoux, Malard et al. 2010).  

Osteoclasts and osteoblasts are reduced following radiation and differentiation of precursor 

cells is also inhibited (Jegoux, Malard et al. 2010).  Radiation results in reduced alkaline 

phosphatase (ALP) activity and expression of mRNA encoding ALP and collagen type 1 (Jegoux, 

Malard et al. 2010).  Another important impact of radiation on bone is the subsequent 

reduction of blood flow.  This effect appears to be dose related with doses up to 20 Gy (Jegoux, 

Malard et al. 2010).  The different components of bone are highly variable in their response to 

radiation and they continue to be studied. 

SRT for Bone Tumors/Osteosarcoma 

Stereotactic radiation therapy is not part of the current standard of care for human 

osteosarcoma patients.  It is mainly used for palliation for non-resectable or incompletely 

resected tumors (Morello, Martano et al. 2011).  With improved radiation capabilities, SRT may 

play a role in certain smaller non-resectable tumors and treatment regimens are tailored on a 

case by case basis (Federman, Bernthal et al. 2009).  Much more common than the treatment 

of primary bone tumors with radiation is the treatment of metastatic bone tumors from tissues 
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such as prostate, breast, lung and kidneys.  The most common sites of metastasis include the 

spine, pelvis and ribs due to their vast blood supply.  The advantages of stereotactic radiation 

for these tumors include a shortened treatment course, less exposure to normal tissue volume, 

longer duration of pain relief, and better local control (Jhaveri, Teh et al. 2008).  Disadvantages 

would include prolonged pre-treatment planning, the potential for high dose exposure to 

normal tissues, fracture, and severe skin and soft tissue reactions for bony lesions that lie close 

to adjacent skin (Jhaveri, Teh et al. 2008).  Stereotactic radiation therapy is a safe and effective 

treatment modality for the relief of bone pain due to metastatic lesions and continued work is 

underway to find the most effective treatment plans for various tumors.   

Curative intent therapy of canine appendicular osteosarcoma with fractionated external 

beam protocols has been attempted with limited success, and has not yet demonstrated 

significant improvement over palliative protocols (Coomer, Farese et al. 2009).  In vitro work 

has revealed a relative radioresistance of canine OSA cell lines with a high survival fraction at 2 

Gy (Coomer, Farese et al. 2009).  Work has shown that this is due to a low alpha:beta ratio, 

similar to late responding tissues.  It is reasonable to expect that larger doses per fraction are 

needed to increase cell killing.  Farese et al. described a curative intent SRT protocol for canine 

OSA combined with chemotherapy that resulted in a mean survival time of 363 days for 11 dogs 

(Farese, Milner et al. 2004).  Adverse effects included alopecia, desquamation, 

hyperpigmentation, and pathologic fracture in four of the eleven total dogs.  This protocol 

included 30-35 Gy to the periphery of the tumor with the central part receiving 40-50 Gy.  

Following this study, the technique was modified to cover the whole tumor with a 30-35 Gy 

isodose line.  This work has been promising for a nonsurgical limb-sparing treatment for canine 
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OSA.  Patients with metastatic disease, advanced osteolysis, and large tumor volumes are not 

considered good candidates for curative-intent SRT (Coomer, Farese et al. 2009). 

Work at Colorado State University’s Flint Animal Cancer Center has revealed another 

curative-intent SRT protocol as a nonsurgical limb-sparing technique for treatment of canine 

OSA.  This radiation protocol utilizes 12 Gy/fx for 3 consecutive days for a total dose of 36 Gy.  

Complete staging is carried out prior to radiation which includes bloodwork, biopsy, lesion 

radiographs, three-view chest radiographs, and CT scan.  Pamidronate, a bisphosphonate, is 

administered intravenously at 1mg/kg prior to the first radiation treatment.  Chemotherapy 

includes 4 cycles of Carboplatin given intravenously at 300 mg/m^2 every three weeks starting 

at the first or second day of radiation treatment.  Serial radiographs are taken to monitor for 

lesion progression and metastasis (Custis 2014). 

Complete analysis of the results from 75 canine OSA patients treated with this protocol 

is underway.  This treatment is able to achieve great local tumor with minimal acute radiation 

effects.  Overall survival was 30% at 365 days with a median survival time of 247 days (Custis 

2014).  The most common complication of the treatment was subsequent pathologic fracture 

which occurred in approximately one-third of those treated with this protocol.  Pathologic 

fracture ultimately led to either surgical repair or limb amputation.  It is the goal of those 

involved in this research to decrease this risk of pathologic fracture thereby improving the 

quality of life for these patients and increasing survival time.  The objective of the studies 

described here was thus to evaluate therapeutics that may reduce this risk and improve the 

mechanical strength of bone following bone cancer irradiation.  The rationale and proposed 

mechanism of action of these therapeutics is described below. 
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1.3  Parathyroid Hormone 

Endocrinology/Physiologic Effects of PTH 

Parathyroid hormone (PTH) is synthesized and secreted by the parathyroid gland in 

response to changes in serum calcium levels.  In its biologically active form it is an 84 amino 

acid sequence, although N-Terminal fragments (PTH 1-31 and 1-34) retain many of the 

biological functions of the intact peptide.  Regulation of PTH occurs when a calcium receptor 

within the parathyroid cell plasma membrane senses changes in the extracellular calcium 

concentrations.  Once secreted, PTH acts directly in bone tissue to stimulate calcium resorption 

and in the kidney to stimulate calcium reabsorption in the distal tubules.  In bone, PTH binds to 

preosteoblasts through its PTH receptor PTHr1 stimulating them to mature into bone-forming 

osteoblasts (Rosen 2013).  Stimulated osteoblasts increase their expression of RANKL and 

decrease their expression of Osteoprotegerin (OPG).  RANKL is then free to bind RANK, 

facilitated by the decrease in OPG, which also binds RANK.  This binding stimulates osteoclast 

precursors to fuse, forming new osteoclasts, ultimately enhancing bone resorption (Coetzee 

and Kruger 2004).  This indirect mechanism, causing increased resorption, occurs with chronic 

exposure to high PTH concentrations.  Intermittent exposure of PTH has been shown to result 

in relatively more bone formation than resorption (Rosen 2013).  There are a number of genes 

induced by intermittent PTH exposure including IGF-1, amphiregulin, Runx2, TGF-beta, RANKL, 

and M-CSF (Rosen 2013).  Work continues to fully elucidate the seemingly paradoxical 

mechanism by which PTH stimulates resorption in chronic exposure but bone formation with 

intermittent exposure.    
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 Primary hyperparathyroidism is defined by a loss of calcium homeostasis due to 

excessive PTH secretion resulting in hypercalcemia.  Approximately 85% of cases of this 

condition result from parathyroid chief cell adenomas.  Remaining cases are caused by 

hyperplasia (Pallan, Rahman et al. 2012).  Women seem to be twice as likely to be affected by 

the disease and it is typically diagnosed between 50 and 60 years of age.  The majority of 

patients are discovered with an asymptomatic hypercalcemia found at routine screening.  A 

minority present with clinical signs consistent with increased serum calcium levels including 

fragility fractures, nephrolithiasis, nephrocalcinosis, polyuria and renal insufficiency.  

Parathyroidectomy is the treatment of choice for symptomatic hyperparathyroidism.  Patients 

with hyperparathyroidism experience preferential bone loss at sites rich in cortical bone 

however the association between bone mineral density and fracture risk has not fully been 

defined in asymptomatic disease (Pallan, Rahman et al. 2012).  Secondary hyperparathyroidism 

is the overproduction of PTH secondary to chronic renal disease and vitamin D deficiency.  As 

opposed to primary hyperparathyroidism, it is usually managed medically with either vitamin D 

supplementation or various treatments for renal disease.   

 Hypoparathyroidism is a disorder defined by hypocalcemia with low or absent PTH.  It is 

most commonly seen following neck surgery with few much rarer genetic causes.  Regardless of 

etiology, the standard treatment is supplementation with oral calcium and vitamin D with the 

aim of maintaining low normal serum levels without hypercalciuria (Cusano, Rubin et al. 2012).  

This is the only endocrine disorder for which the missing hormone, PTH, is not yet an approved 

therapy.  A number of studies have shown promising results for both PTH 1-34 (teriparatide) 

and PTH 1-84 (the full-length molecule).  Results included a reduction or complete cessation of 
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supplemental treatment, stable serum calcium levels, and normal skeletal dynamics (Cusano, 

Rubin et al. 2012).  Long term studies are needed to more completely assess skeletal features 

including bone mineral density (BMD), bone quality, and quality of life measures.  This is 

essential as PTH therapy for this treatment would most likely become a long-term therapeutic 

option.  Most recently, a report of safe and effective treatment with PTH 1-84 was utilized for 

up to four years (Cusano, Rubin et al. 2013).     

Clinical Applications of PTH Administration 

Osteoporosis is characterized by a loss of bone mass and deterioration of bone tissue 

that results in increased bone fragility and susceptibility to fracture.  A mainstay for 

osteoporosis treatment includes antiresorptive agents such as bisphosphonates.  Although 

bisphosphonates have been shown to increase bone mineral density by 4-8%, patients typically 

suffer a 25% or greater loss of their skeletal mass (Cheng and Gupta 2012).  The so called 

“osteoanabolic” agents, which include PTH, have shown a more potent increase in bone 

mineral density.  Anabolic agents have enhanced our therapeutic potential against 

osteoporosis.  They act directly to stimulate bone formation, improve bone mass and quality, 

and reduce fracture risk.   

 PTH 1-34 (teriparatide) is currently approved in the United States for the treatment of 

severe osteoporosis in both men and women while PTH 1-84 is only approved in Europe (Rosen 

2013).  It is dosed daily, for up to two years,  leading to increases in osteoblastic activity, 

improved bone mass and skeletal architecture (Neuprez and Reginster 2008).  The limit of two 

years of use comes from the discovery in preclinical work indicating an increased incidence of 

bone tumors, including osteosarcoma, over a two year period of treatment (Vahle, Sato et al. 
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2002).  Also, there is a finite period of time where PTH promotes relatively more bone 

formation than resorption.  This period of time where the anabolic activity of PTH is maximized 

is referred to as the “anabolic window” (Rubin, Cosman et al. 2002).  Significant increases in 

bone mineral density and a reduction of fractures has been reported in numerous studies.  One 

large trial showed a 13% and 6% increase in BMD in the lumbar spine and femoral neck, 

respectively, following 18 months of PTH 1-34 treatment (Neer, Arnaud et al. 2001).  It also 

showed a significant fracture risk reduction of 65 to 75% for vertebral fractures following 8 

months of treatment (Neer, Arnaud et al. 2001).  PTH has proved effective as an anti-

osteoporosis drug but its high cost, route of injection, and safety concerns have hindered its use 

as a first-line treatment (Rosen 2013). 

 Given its proven success in anabolic bone therapy there have been a number of studies 

evaluating other applications of PTH, including its use as an adjunct therapy for fracture 

healing, hypoparathyroidism treatment, and periodontal disease.  Pre-clinical studies evaluating 

PTH’s impact in fracture healing and spinal fusion have indicated that therapy may result in 

increased fracture site strength, callus quality, and greater mineralization at the fracture site 

(O'Loughlin, Cunningham et al. 2009).  Many case reports have shown improved callus 

formation, union, and resolution of pain (Aspenberg and Johansson 2010; Rubery and Bukata 

2010; Schalin-Jantti, Mornet et al. 2010).   

Hypoparathyroidism can become difficult to treat with high doses of supplemented 

calcium and vitamin D.  One trial indicated a possible superiority of PTH to calcitriol (Winer, 

Yanovski et al. 1996).  Another showed twice daily dosing of PTH resulted in less fluctuation in 

serum calcium levels (Winer, Yanovski et al. 1998).  Periodontal disease is a major cause of 
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morbidity world-wide characterized by a loss of supportive tissues including alveolar bone.  One 

trial, following 40 patients after periodontal surgery, resulted in greater radiographic resolution 

and improved wound healing (Bashutski, Eber et al. 2010). 

Safety Concerns/Side Effects 

Both PTH 1-34 (teriparatide) and 1-84 are well tolerated at recommended doses.  The 

two most common short term adverse effects are hypercalcemia and hypercalciuria.  In one 

trial, only 11% of women receiving teriparatide at recommended doses had an elevated serum 

calcium and only 3% were persistent requiring a dose reduction (Neer, Arnaud et al. 2001).  In 

the same trial there were no reported cases of nephrocalcinosis.  Despite this, PTH is not 

recommended for those with a history of kidney stones or hypercaliuria.  PTH 1-84 has shown 

to cause hypercalcemia in approximately 10% of subjects after retesting (Hodsman, Hanley et 

al. 2003).  Nausea and headache were reported but were not significantly different from those 

who received placebo (Neer, Arnaud et al. 2001).   

PTH 1-34 and 1-84 are rarely associated with long-term side effects.  The most 

significant theoretical risk reported is an association between teriparatide and osteosarcoma 

formation in rats (Vahle, Sato et al. 2002).  A follow up study revealed a dose and time-

dependent relationship to risk that was highest in rats treated with high doses of PTH over the 

course of nearly 80% of their lifespan (Vahle, Long et al. 2004).  Jolette et al. worked on another 

long term rat study this time with PTH-184.  This work revealed a non-carcinogenic dose for 

PTH at 10ug/kg/day dosed over a 2 year period, a dose that is  4.6 times the recommended 

clinical dose for humans  (Jolette, Wilker et al. 2006).  The approval of PTH for treatment of 

osteoporosis came with an FDA mandated “black box” warning for the potential side effect of 
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osteosarcoma as well as a company sponsored surveillance program for osteosarcoma.  The 

Osteosarcoma Surveillance Study is ongoing, but a 2012 report indicates that no osteosarcoma 

patients included in this study had a history of teriparatide treatment (Andrews, Gilsenan et al. 

2012).  A causal association between osteosarcoma and teriparatide has not been detected in 

humans.   

Two additional published reports describe osteosarcoma patients with a history of PTH 

treatment. The first was a postmenopausal woman in her 70’s with a complicated medical 

background.  She was treated with PTH 1-34 at the recommended dose for osteoporosis and 

subsequently died during her second year of treatment due to metastatic cancer.   Although the 

primary cancer site was never identified, a bone pathologist was able to identify biopsy 

material as osteosarcoma.  Causality was never established for this particular case.  At the time 

over 250,000 people had been treated with PTH 1-34 in the US and this case posed no greater 

risk for osteosarcoma than in the general population (Harper, Krege et al. 2007).   A second case 

of potential teriparatide-induced osteosarcoma was reported by Subbiah et al.  Given this 

patient’s history of radiation exposure investigators reported it unlikely that PTH played a 

predominant role in the cause for the osteosarcoma for a number of reasons (Subbiah, Madsen 

et al. 2010).  They did recommend that certain contraindications should be considered prior to 

initiating therapy, including previous radiotherapy (Subbiah, Madsen et al. 2010).          

PTH and Radiation Therapy 

Bone is the most common normal tissue exposed to significant doses of radiation during 

the treatment of solid malignancies in nearby tissues (Chandra, Lan et al. 2013).  It is also 

exposed to radiation following primary bone irradiation in specific conditions previously 
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mentioned.  Although the benefits of radiation therapy typically outweigh the risks well 

documented effects of radiation on bone have been seen.  These include the potential for 

delayed healing, vascular depletion, osteonecrosis, increased fracture risk, and in rare 

circumstances neoplasia itself (Brown, Pelker et al. 1991; Mitchell and Logan 1998; Shaheen, 

Deheshi et al. 2006; Conill, Tomas et al. 2007; Kang, Deshpande et al. 2013).  Due to the 

anabolic effect of intermittent PTH therapy it has been studied recently with the goal of 

protecting bone from radiation induced damage.   

 One study utilized an orthotopic model of metastatic breast cancer in nude mice that 

received radiation therapy of 20 Gy.  Following radiation, the supplemental use of PTH 

increased bone mineral density and bone mass significantly in comparison to those groups with 

bisphosphonate therapy alone and untreated mice (Arrington, Fisher et al. 2010).  Focal 

radiation in the tibiae of rats with concomitant PTH administration resulted in increases in 

trabecular number, thickness, connectivity, structure model index and stiffness (Chandra, Lan 

et al. 2013).  A radioprotective effect of PTH was also shown in a murine model of distraction 

osteogenesis.  Kang et al.  demonstrated a reversal of radiation induced hypovascularity with 

increases in vessel volume fraction, vessel thickness, vessel number, and a decrease in vessel 

separation (Kang, Deshpande et al. 2013).  Koh et al. was able to show that an irradiated bone 

marrow microenvironment actually increased the anabolic capabilities of PTH in comparison to 

nonirradiated mice (Koh, Novince et al. 2011).  Despite these promising results, both PTH and 

radiation remain as independent risk factors for the development of osteosarcoma.  A clearer 

mechanistic understanding is necessary  for best determining risks of both treatments utilized 

in combination (Subbiah, Madsen et al. 2010).   
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bbPTH 

Reduction of mechanical stress to bone results in accelerated osteoclast mediated 

resorption and is termed disuse ostseoporosis.  Common causes of this in humans include 

prolonged bed rest, immobilization, and the application of a cast to treat fractures (Takata and 

Yasui 2001).  It has been shown in certain hibernating species, such as black bears, that 

extended periods of hibernation and disuse do not change their bone properties.  One study 

revealed that although bone turnover did decrease during hibernation, a balance of formation 

and resorption is maintained preserving bone strength thus preventing osteoporosis (McGee-

Lawrence, Carey et al. 2008).  Similar work demonstrated that trabecular bone resorption and 

formation indices remained balanced in hibernating grizzly bears.  There were no differences in 

bone volume fraction or tissue mineral density between hibernating or active bears (McGee-

Lawrence, Wojda et al. 2009).  Continued work led to the implication of black bear parathyroid 

hormone (bbPTH) in preserving bone during disuse.  A positive correlation was shown between 

bone formation markers, including bbPTH, during periods of hibernation (Donahue, Galley et al. 

2006; Donahue, McGee et al. 2006; McGee-Lawrence, Wojda et al. 2009).  Further support for 

the role of black bear PTH is a study demonstrating greater anabolic effects on trabecular bone 

in dystrophin-deficient mice than wild type mice.  This included increased bone volume 

fraction, trabecular number, and osteoblast area (Gray, McGee-Lawrence et al. 2012).  Work 

utilizing the same model showed that bbPTH was more potent than hPTH at increasing 

trabecular bone volume.  Approximately half of the required hPTH dose was needed to achieve 

wild-type values of femoral bone volume (Gray 2012).    

Local Delivery of PTH   
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Systemic administration of parathyroid hormone requires daily subcutaneous self-

injections that result in the exposure of non-targeted tissues.  This is less than ideal for the 

optimization of localized bone regeneration.  Local therapy has the potential to create a 

number of advantages over systemic administration.  These include a possible reduction in side 

effects from systemic use, a decrease in dose and number of treatments, and the ability to 

tailor dosages to the level needed locally (Chan and McCauley 2013).  There are few 

publications on locally administered parathyroid hormone.  In vivo work at the Musculoskeletal 

Research Unit in Zurich revealed rapid filling of drilled defects (13 x 8 mm) in sheep bone 

following treatment with a fibrin-based hydrogel and PTH 1-34 (Kemper 2003).  Fuerst et al. 

described the successful treatment of a sub-chondral bone cyst in a in a warm blood filly.  

Following curettage and lavage, the cyst was filled with 1.5 ml of 1mg PTH 1-34/ml enriched 

hydrogel resulting in improved healing time without complications (Fuerst, Derungs et al. 

2007).  Jung et al.  demonstrated that a hydrogel containing PTH was effective at achieving 

bone regeneration in a dental implant model.  More bone was formed in comparison to vehicle 

treated and empty defects however they could not detect significant differences between their 

PTH groups and those implants using autogenous bone (Jung, Cochran et al. 2007).  Arrighi et 

al. showed in vivo success treating humeral and femoral defects in a sheep model with a 

parathyroid hormone fusion protein (TGplPTH1-34)-derivatized fibrin.  They found a dose-

dependent improvement in percent bone formation in defects without evidence of an 

immunological response (Arrighi, Mark et al. 2009).   

1.4  Bisphosphonates 

Mechanism of Action/Physiologic Effects of Bisphosphonates 
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Bisphosphonates are derivatives of inorganic pyrophosphate, which is a naturally 

occurring compound released as a by-product of a number of the body’s synthetic reactions 

(Russell 2006).  Early work demonstrated pyrophosphate’s ability to inhibit calcification by 

binding to hydroxyapatite crystals (Fleisch, Russell et al. 1966).  Bisphosphonates share this 

extremely high affinity for mineral in binding to hydroxyapatite crystals.  Once bound they 

effectively inhibit bone resorption through two different mechanisms.  Non-nitrogen containing 

bisphosphonates (etidronate, clodronate, and tiludronate) are metabolized in osteoclasts to 

compounds that replace the terminal pyrophosphate moiety of ATP.   This forms a 

nonfunctional molecule in osteoclasts leading to apoptosis and cell death (Frith, Mönkkönen et 

al. 1997).  Nitrogen-containing bisphosphonates (including alendronate, risedronate, 

ibandronate and zoledronate) inhibit the enzyme farnesyl pyrophosphate synthase in 

osteoclasts.  This enzyme is important in the mevalonate pathway and disrupts the ability of 

cellular proteins to attach to the cell membrane.  This ultimately creates non-functional 

osteoclasts thereby inhibiting resorption (Russell, Xia et al. 2007).  Bisphosphonates not bound 

to bone mineral are rapidly excreted through renal clearance.  This mechanism has led to the 

common use of bisphosphonates as primary therapy for a number of disorders characterized by 

imbalances in bone remodeling.    

Clinical Applications of Bisphosphonate Administration 

The major applications for current bisphosphonate therapy include postmenopausal 

osteoporosis, glucocorticoid-induced osteoporosis, Paget disease of bone, osteogenesis 

imperfecta, hypercalcemia and malignancy metastatic to bone.  Treatment for osteoporosis, a 

disease characterized by decreased bone strength with an increased fracture risk, is the most 

http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Apoptosis
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common application of bisphosphonate therapy.  Both alendronate and risedronate, oral 

bisphosphonates, reduce the number of vertebral and hip fractures, while slowing the 

progression of vertebral deformities and height loss in postmenopausal women (Liberman, 

Weiss et al. 1995; Black, Cummings et al. 1996).  Initial work consistently used daily dosing 

however more recent studies have shown similar results with bisphosphonates dosed at weekly 

or even monthly regimens.  Paget disease of bone is characterized by disordered and poorly 

formed bone resulting in bone pain, fractures, and even deformities.  Bisphosphonates ability 

to profoundly suppress bone resorption has made them the cornerstone for current treatment.  

Bone metastases are commonly found with breast and prostate cancer and bisphosphonates 

have been shown to substantially decrease bone pain and other complications.  Osteogenesis 

imperfecta, a heritable skeletal disorder in children, responds to bisphosphonate therapy with 

increases in bone mineral density and reduces fracture risk (Akcay, Turan et al. 2008).  Despite 

its broad use, it is important to understand the potential adverse effects of bisphosphonate 

therapy.  Potential adverse effects include osteonecrosis of the jaw, atrial fibrillation, 

hypocalcemia, an acute inflammatory response, and gastro-esophageal irritation with oral 

administration (Drake, Clarke et al. 2008).             

Zoledronic Acid 

Zoledronic acid (zoledronate) is a third generation nitrogen containing bisphosphonate 

that is the only drug of its class developed exclusively for intravenous administration (Russell, 

Watts et al. 2008).  It is used in a once-yearly infusion regimen which makes it attractive in 

comparison to more frequent oral administration of other bisphosphonates.  Among similar 

drugs it has the most potent enzymatic inhibitory effect with a strong affinity for bone.  Like 
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other bisphosphonates it is widely used in patients with bone metastases as well as the 

treatment of osteoporosis.  It is marketed in the US as Reclast and Zometa for the treatment of 

osteoporosis and metastatic bone disease, respectively.  Reclast is dosed as a 5mg once yearly 

infusion and Zometa is a 4mg monthly infusion.  Like other bisphosphonates, Zoledronic acid 

has been shown to reduce the amount of skeletal related events (SREs) including pathologic 

fracture through its inhibition of osteoclastic bone resorption (Arrington, Fisher et al. 2010).    

 Although zoledronic acid is used for its anti-resorptive capabilities, a number of studies 

in recent years have demonstrated a variety of direct and indirect anticancer activities (Gnant 

and Clezardin 2012).  Zoledronic acid has been extensively studied in a number of cancer cell 

lines.  It induces apoptosis, inhibits proliferation, and directly prevents tumor cell invasion and 

adhesion (Clezardin 2011).  It has also been shown to indirectly prevent angiogenesis in vivo.  It 

does this by modulating endothelial cell proliferation, adhesion and migration as well as 

reducing levels of vascular endothelial growth factor (Winter, Holen et al. 2008; Green and 

Clezardin 2010; Clezardin 2011).  In a mouse model of metastatic breast cancer, zoledronic acid 

prevented metastasis to bone, liver, and lung (Hiraga, Williams et al. 2004).  Other work has 

shown improved antitumor characteristics when given following chemotherapeutic treatments 

(Gnant and Clezardin 2012).   

 Clinical trials have also supported the concepts studied in preclinical work.  The addition 

of zoledronic acid to adjuvant therapy in hormone responsive breast cancer in 1803 

premenopausal women resulted in a prolonged disease-free survival, recurrence-free survival, 

and a prolonged overall survival as compared to hormone therapy alone (Gnant, Mlineritsch et 

al. 2009; Gnant, Mlineritsch et al. 2011).  Another trial, showed a significant increase in disease-
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free interval among patients who were postmenopausal for greater than five years before 

initiating treatment.  This suggests that the anticancer effects of zoledronic acid are most 

significant in a low-estrogen environment.  Other work showed a positive effect in 

premenopausal women.  Here, the addition of zoledronic acid improved disease-free survival in 

breast cancer patients taking anastrozole or tamoxifen.  The data from this trial was interpreted 

to demonstrate persistent benefits of zoledronic acid administration as a chemotherapeutic 

agent, and authors recommended the addition of zoledronic acid to adjuvant therapy (Gnant, 

Mlineritsch et al. 2011).  Zoledronic acid is currently undergoing clinical trials involving over 

25,000 patients with various cancers (Gnant and Clezardin 2012).         

1.5  Hypothesis and Specific Aims 

Bone tissues are exposed to radiation during a variety of treatment strategies.  These 

include exposure to nearby normal bone during treatment of adjacent tissues, during treatment 

of metastatic bone disease, and in few instances using new treatment methodology for primary 

bone tumors themselves.  Research indicates a potential for adverse effects on the skeleton 

following irradiation including delays in healing, osteonecrosis, growth abnormalities, 

pathological fracture, and even neoplasia itself.   

Specific to the treatment of canine osteosarcoma with stereotactic radiation therapy, a 

loss of mechanical integrity and a high rate of pathologic fracture limit the utility of radiation 

therapy.  If a large number of patients experience fracture as a side effect of the SRT, this 

promising therapy will not provide advantages over the current standard of care.  Thus 

therapies to restore bone strength and limit future fracture risk are needed.  Promising 

compounds include the class of drugs known as bisphosphonates.  Through their ability to 
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inhibit osteoclastic bone resorption, these drugs have demonstrated the potential to restore 

bone properties following radiation.  Although promising, bisphosphonates may not stabilize 

lytic lesions and an agent that could stimulate bone formation could augment the effect of 

bisphosphonates alone.  PTH is an osteoanabolic agent approved for use for postmenopausal 

osteoporosis.  Its ability to stimulate bone formation over resorption makes it an attractive 

candidate to improve properties of bone following radiation and ultimately reduce fracture risk.   

 

Central Hypothesis:  Black bear parathyroid hormone combined with zoledronic acid therapy, 

administered systemically following bone cancer irradiation in a rat orthotopic model of canine 

osteosarcoma, will result in greater increases in bone volume,  strength, and revitalization than 

those treated with PTH, bisphosphonate (zoledronic acid), or stereotactic radiation treatment 

alone. 

Specific Aims: 

1) Assess microstructural properties of bone in the distal metaphysis via uCT comparing 

treatment groups 8 weeks following stereotactic radiation therapy (36Gy). 

2) Compare treatment groups via dynamic and static histomorphometry following 8 weeks 

of treatment using various histologic staining techniques including H&E, TRAP, VK, and 

calcein labeling.  Static histomorphometric analysis will include % tumor necrosis, tumor 

recurrence, osteoclast number, osteoclast surface, TRAP surface, bone area, bone 

surface, osteoid thickness, osteoid surface, osteoid volume and osteoblast number.  

Dynamic histomorphometric analysis will include double labeled surface, interlabel 

width and mineral apposition rate.     
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3) Demonstrate a safe and effective method of delivering PTH locally via vetrigel (polymer 

hydrogel).   Aim to decrease systemic effects of therapy while enhancing local bone 

regenerative properties.      
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Chapter 2 

Methods 

2.1  Animals 

Forty immunocompromised, athymic, female nude rats (RH-Foxn1rnu) that were 7 to 8 

weeks of age were obtained from the National Institutes of Health and housed at a laboratory 

animal resources facility.  Animals were housed 2 per cage with climate-controlled conditions 

and allowed free access to standard laboratory diet and water.  Each rat was identified by an 

ear tag. Rats rather than mice were chosen for the model because their larger size allows for 

the use of image-guided SRT with clinically relevant total dose and fractionation schedules, 

which would not be feasible in mice.  Rats were acclimated for one week prior to initiation of 

experiments with tumor inoculation.  All animal procedures and experiments were carried out 

under an approved protocol by the Colorado State University Institutional Animal Care and Use 

Committee (Protocol ID: 12-3596A).   

2.2  Osteosarcoma Cells 

Abram’s luciferase-expressing canine osteosarcoma cell line was generously provided by 

the Colorado State University’s Flint Animal Cancer Center.  Canine OSA cell validation was 

performed by multiplex PCR using mitochondrial DNA to ensure the cell line was from canine 

origin and free of contamination (O'Donoghue, Rivest et al. 2011).  The cells were grown at 37°C 

with 5% CO2 in Minimum Essential Media (MEM) supplemented with 10% fetal calf serum, 7.5% 

sodium bicarbonate, MEM essential amino acids, 10mM non-essential amino acids, L-glutamine 

and an antibiotic-antimycotic (penicillin-streptomycin). Cells were split as needed (~90% 
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confluency) by incubating in 0.25% Trypsin for 5 minutes, centrifugation at 1200 rpm for 10 

minutes followed by re-suspension and plating in growth media.  Luciferase activity was 

confirmed by exposing luciferase expressing OSA cells for 5 minutes to luciferin.  Then 

expression was captured using a Xenogen IVIS 100 (Caliper, Hopkinton, MA) at a 30 second 

exposure with medium binning (Appendix A, Donahue Lab SOP 5-11).  

2.3  Drug Therapies 

Recombinant black bear parathyroid hormone 1-84 (bbPTH) was produced by Proteos 

(Kalamazoo, MI).  bbPTH was stored lyophilized from PBS at -80°C.  The bbPTH was 

reconstituted in acidic (0.15M NaCl and 0.001M HCl) saline solution to a concentration of 0.1 

µg/µl before subcutaneous administration.  For local administration, bbPTH was reconstituted 

in Vetrigel (Royer Biomedical, Frederick, MD) at a concentration of 2.264 µg/µl (Appendix A, 

Donahue Lab SOP 9-11).  Zoledronic acid (ZA), provided by Novartis (Basel, Switzerland), was 

stored at room temperature and reconstituted in sterile normal saline prior to use (Appendix A, 

Donahue Lab SOP 9-12).    

2.4  Osteosarcoma Cell Inoculation 

Rats were anesthetized by gaseous chamber induction with isoflurane (4-5%) and 

oxygen. Rats were transferred to a heated surgery table and anesthesia maintained via 

isoflurane (1% to 3%) mixed with 100% oxygen administered via facemask and a non-

rebreathing anesthesia circuit.  As previously described by Schwartz et al., a 22-gauge needle 

was inserted into the femur at the level of the trochanteric fossa, advanced distally within the 

medullary canal with a rotating motion to the distal metaphysis, and then withdrawn.  A 1ml 

syringe was then drawn up with 200 µl of MEM at a concentration of 1 x 10^6 cells per 50 µl.  A 
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new 22-gauge needle is placed on the syringe and held upright for three minutes (needle 

down).  This allows for settling of cells increasing percentage of tumor take.   This needle and 

syringe (holding 200 µl of MEM at a concentration of 1 x 10^6 cells per 50 µl) was then 

advanced to the distal metaphyseal region through the track previously made.  Approximately 

90 µl was slowly injected, greatly reducing the risk of embolization.  This injection technique 

allows for approximately 40 µl of solution to be injected at the level of the distal metaphysis (50 

µl in needle).  Approximate estimation of cell number is between 1 and 3 million cells following 

settling in syringe (Appendix A Donahue Lab SOP 9-19).      

 

 
(Image:  Schwartz, 2013) 

Fig. 1  Inoculation technique entering proximally at the level of the trochanteric fossa and depositing 
osteosarcoma cells at the distal metaphysis. 

 
2.5  Experimental Design 

Tumor-inoculated (Day 0) rats were randomly divided into one of five treatment groups:  

36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and bbPTH(1-84), 36 Gy SRT plus bbPTH(1-

84), and 36 Gy SRT plus localized bbPTH treatment.  Radiographs consistent with distal femoral 

osteosarcoma were confirmed on day 10 following inoculation and stereotactic radiation 
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therapy was administered on days 14, 15, and 16.  Each fraction consisted of 12 Gy of radiation 

for a total treatment dose of 36 Gy.  This protocol was used for all rats in the study (n = 40).  

The rats in the zoledronic acid group and the combined ZA/bbPTH group (each n = 8) were 

injected subcutaneously once weekly with ZA (12.5 µg/kg) beginning on day 13 (total ZA dose of 

100 µg/kg).  The rats in the bbPTH and ZA/bbPTH combined groups (each n = 8) were injected 

with bbPTH (100 µg/kg ) subcutaneously daily (5 days per week) beginning on day 17.  The 

localized bbPTH treatment group (n=8) received 100 µg via intramedullary inoculation utilizing 

the same technique described for tumor inoculation on day 17.  The bbPTH was reconstituted 

in Vetrigel (hydrogel polymer) (Royer Biomedical, Frederick, MD) at a concentration of 2.26 

µg/µl just prior to inoculation.  To administer the dose of 100 µg, 44 µl of bbPTH reconstituted 

in Vetrigel was administered slowly over one minute prior to hardening of gel (Appendix B – 

bbPTH relase profile from Vetrigel, Gookin S).  All rats were imaged with radiography (every two 

weeks) and bioluminescence imaging (weekly until loss of expression, then again at Day 70 

endpoint) throughout the experiment to monitor for any tumor progression.  Animals were 

euthanized at day 70 following tumor inoculation or earlier if they developed severe lameness 

caused by tumor burden or fracture.        

2.6  Bioluminescence Imaging 

Rats were imaged on days 0, 4, and 10 and then weekly using a Xenogen IVIS 100 

(Caliper, Hopkinton, MA).  All rats were imaged until complete loss of expression and finally on 

the day of sacrifice (Day 70).   Five minutes prior to imaging, rats were anesthetized by chamber 

induction (5% isoflurane with 2L/min O2) and maintained by mask (1-3% isofluorane with 2 

L/min O2) and injected intraperitoneally with 150 µl/rat of luciferin (30mg/ml) (Caliper, 
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Hopkinton, MA).  Rats were positioned in right lateral recumbency in the Xenogen machine and 

images of the left femur were taken at 3 minute time intervals at medium binning.  The 

expression value (photons/sec) was recorded for each animal at each time point.  Due to the 

inability to reproduce consistent numerical values for expression only a qualitative analysis was 

completed. 

 

 
Fig. 2  Representative image illustrating bioluminescence at the distal metaphysis following tumor cell 
inoculation. 

 
2.7  Radiography 

While rats were anesthetized, digital radiography of the femurs was performed (every 

two weeks) to monitor the onset of tumor-associated osteolysis, tumor progression, and risk of 

pathological fracture. Rats were positioned in dorsal recumbency with both limbs down 

creating ninety degree angles at the knee and hip joints.  Lateral radiographic views were 

obtained.  Images were acquired with settings of 50 kV and 2.5 mA at 0.14 seconds, and stored 

electronically for comparison and analysis. 
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Fig. 3  Representative radiograph (lateral) of the left femur highlighting a lytic lesion shown at the 
distal metaphysis (arrow). 

 

 A scoring system was created to monitor the degree of lysis and progression of tumors 

prior to and throughout the treatment schedule.  The evaluator was blinded to treatment group 

and comparisons were made between groups using ANOVA.  A detailed description of the 

scoring can be seen below in Figure 4.     

 
 

 
0  1  2  3  4  5 

 
Fig. 4  Radiograph severity scoring on a scale from 0-5.  0 – No evidence of tumor osteolysis.  1 – Mild 
trabecular lysis apparent (less than 50% of the femur diameter affected.  2 – Moderate trabecular lysis 
apparent (>50% of the femur diameter affected).  3 – Severe osteolysis evident with 1 cortex involved.  
4 – Severe osteolysis evident with both cortices affected.  5 – Fracture.   
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2.8  Stereotactic Radiation Therapy  

Stereotactic radiotherapy was initiated 2 weeks after osteosarcoma cell injection and 

after confirmation of tumor cell engraftment via radiography and bioluminescence imaging.  In 

preparation, rats assigned to receive SRT were individually anesthetized via the same protocols 

as previously described.  Breathing was observed via closed circuit video monitors when 

personnel were required to be outside the radiation suite.  Non-invasive immobilization was 

achieved by positioning each rat in dorsal recumbency within a customized bolus and cushion 

indexed to the couch of the linear accelerator via the baseplate.  Any space between the rat 

and bolus was ablated with petroleum jelly. 

Trans-axial computed tomography images of the affected femur were captured via 

onboard cone-beam computed tomography (CBCT).  CBCT images were reconstructed with a 

slice thickness of 1 mm and imported into the computerized treatment planning system.  

Contouring consisted of identifying the gross tumor volume (GTV), noncancerous bone, and 

skin.  The GTV was defined to include the entire left femur to ensure dose delivery to all 

possible tumor cells.  For all rats, the clinical target volume (CTV) was identical to the GTV. The 

planning target volume (PTV) was the result of a symmetric 2-mm expansion beyond the GTV or 

CTV.  A SRT plan consisting of 7 isocentrically placed fields was created.  A multi-leaf collimator 

(5-mm leaf width at isocenter) was used to increase the dose conformality achieved within the 

tumor volumes, while preferentially sparing surrounding unaffected tissues outside the PTV.  

Each plan was normalized to achieve a minimum of 99% of the desired dose (36 Gy) within the 

GTV and a minimum of 95% of the desired dose (36 Gy) within the PTV as determined through 

evaluation of a dose-volume histogram.   
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Fig. 5  Color wash showing dose distribution as well as the GTV (red line) and the 2-mm symmetrically 

expanded PTV (purple line).  

Prior to delivery of each SRT fraction, a CBCT of the affected femur was obtained with 

the onboard imaging system.  This CBCT was matched to the original cone-beam CT, with 

particular attention made to align the PTV with the affected femur.  Any changes in the couch 

position, based on the matching process, were made to ensure precision and accuracy of SRT 

delivery.  Each field of the SRT plan was then delivered individually.   

Rats were anesthetized daily and underwent a 12 Gy fraction of SRT daily for 3 days for 

a total treatment dose of 36 Gy.  When multiple fractions of SRT were administered, a 

symmetric 2-mm PTV expansion assured inclusion of the GTV through the digital matching of 

that day’s CBCT with the original CBCT used for SRT planning.  On completion of SRT each day, 

rats were allowed to recover from anesthesia and returned to their cages.  Rats were 

monitored serially for their response to SRT.  Quality-control testing of the linear accelerator 

was performed daily prior to SRT delivery. 
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2.9  Micro-CT 

Following sacrifice on Day 70, left femurs were collected and soft tissues removed from 

the osteosarcoma affected limbs.  The femurs were isolated and placed in 10% neutral buffered 

formalin for 48 hours.  Then femurs were placed in 70% ethanol until micro-CT scanning.   

Femurs of all rats were scanned with a Scanco uCT-80 (Brüttisellen, Switzerland) at a 10-micron 

resolution.  The region of interest for analyses included the distal femoral metaphysis spanning 

3.5 millimeters beginning at the most proximal edge of the distal femoral growth plate (Fig. 6).  

For trabecular bone we quantified bone volume, bone mineral density, trabecular number, 

trabecular thickness, and trabecular separation.  For cortical bone as well as whole bone 

analysis, we quantified bone volume and bone mineral density.  Polar moments of inertia were 

also quantified over the region of interest as surrogate measures of bone strength.     

 
 

a)            b)      c)  
Fig. 6  a)  Scanning region for micro-CT scan (tumor-burdened femora).  b)  Region of interest for 
analysis (tumor-burdened femora).  c)  3-D reconstruction of region of interest (contralateral control 
shown, non-tumor burdened). 
 

 

 

ROI 
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2.10  Histology 

After micro-CT scanning, non-decalcified femurs were longitudinally sectioned in the 

midsaggital-craniocaudal plane and embedded in methylmethacrylate.   Serial sections were 

stained with hematoxylin and eosin, tartrate resistant acid phosphatase (TRAP), and Von Kossa.  

Unstained sections were also used to visualize fluorochrome staining (calcein) to assess double 

labeled surface, interlabel width, and mineral apposition rate (Appendix A Donahue Lab SOP 3-

27).  Total positive fluorochrome labeling was quantified as a total number of pixels as 

described below (Fig. 7).   The calcein was administered at 12 and 3 days prior to euthanasia at 

a dose of 10 mg/kg given subcutaneously.  

a) b)  

Fig. 7  a) Unedited original picture of the region of interest for sample 235.  b)  Edited Image 235.  The 
editing process included removing all potential noise pixels and turning them into black to match the 
background. The intensities of the Calcein green were then intensified and each pixel of the image 
was counted as either green (+) or black (-). The pixels were then counted individually and a total 
number of positive pixels was determined. This gives a side by side comparison of the amount of 
calcein in each image. 

   Static histomorphometric parameters including TRAP surface, osteoclast numbers and 

surfaces, bone surface, bone area, osteoid surface, area and thickness were quantified with 

Bioquant Osteo Software (Bioquant Image Analysis, Nashville, TN, Appendix A Donahue Lab SOP 

3-28, 3-25).  Slides were also interpreted by an ACVP boarded pathologist for the presence of 
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viable osteosarcoma cells as well as interpreting percent tumor necrosis from radiation 

treatment.  

Further qualitative assessment of the H&E slides included the location of tumor along 

the entire femur as well as the percentage of cortical necrosis evident in the diaphyseal cortex.  

Cortical bone was defined as confluent new and existing bone in the cortical line.  Necrotic 

bone was defined as an area (greater than 20 lacunae) of cortex with greater than 50% of the 

lacunae lacking osteocytes.   

2.11  Statistical Analysis 

The micro-CT parameters, moments of inertia, radiographic severity scores and 

histological parameters were compared between treatment groups with ANOVA and Tukeys 

method for a post-hoc test (GraphPad Prism 6, GraphPad Software, San Diego, CA).  

Comparisons with a p-value less than 0.05 were considered significant.  Transformations or 

non-parametric alternatives would be used when appropriate and described with the data.       
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Chapter 3 

Results 

3.1  Tumor Development 

 Abrams osteosarcoma cells were inoculated into the left distal metaphysis of the femur 

on Day 0 as described previously (2.4).  A combination of imaging modalities was utilized to 

monitor for successful tumor inoculation.  This included bioluminescence imaging, radiographs, 

and cone beam CT scans prior to beginning stereotactic radiation treatment.  Thirty-seven of 

forty rats (93%) inoculated showed positive bioluminescence on days 0, 4, or 10.  

Bioluminescence was used as a qualitative measure of tumor presence or absence as we 

experienced a number of day to day inconsistencies in regard to quantitative luciferase 

expression in photons/second.  For example, bioluminescence that appeared positive on Day 0 

may not show up at all on day 4, but reappear on day 10.  One possible explanation for this 

could be Luciferin’s inconsistent ability to penetrate deep tissues such as metaphyseal bone.    

Evidence of tumor-associated osteolysis from radiographs and CT scans confirmed 

successful tumor inoculation in all forty rats (100%).  All rats that received a radiograph severity 

score of 1 were confirmed via on board cone-beam CT scan for evidence of tumor-associated 

lysis prior to the initiation of radiation treatment.       

3.2  Response to Stereotactic Radiation Therapy 

Bioluminescence Imaging 

Bioluminescence was used to monitor for tumor regression following stereotactic 

radiation treatment as well as recurrence.  Thirty-four of thirty-nine (87%) lost expression by 
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day 25.  Of the remaining five subjects four lost expression by day 32 and the last subject lost 

expression by day 39.  One subject was removed from this total due to an early displaced 

fracture discovered on day 14.  This subject was euthanized.  Overall, all of the subjects lost 

expression by day 39 and thirty-eight of thirty-nine (97%) lost expression by day 32.  The loss of 

bioluminescence is presumed to be due to the success of stereotactic radiation in causing 

tumor cell death.  The precise timeline for cell killing is unknown as radiation-induced cell death 

often occurs upon future mitotic events.  Our results indicate that all of our subjects lost 

expression within twenty-three days of the last radiation treatment.  

 Day 70 bioluminescence was carried out to check for significant recurrence of 

osteosarcoma cells.  Thirty-seven of thirty-nine (95%) of the subjects showed no return of 

bioluminescence on the day of sacrifice.  Two of thirty-nine (5%) of the subjects showed a 

return of bioluminescence.  Of these, one was at the distal metaphysis (LPTH treatment group) 

and the other near the proximal region and neck of the femur (PTH treatment group) (Fig. 8).    

 

 
Fig. 8  Day 70 Bioluminescence suggesting recurrence in 2 of 39 subjects.  Left - Subject 251 (LPTH), 
Middle – Subject 266 (PTH), Right – Subject 266 (PTH) harvested femur.    

 
Radiography 

 
Lateral radiographs were taken following the protocol previously described (2.7) on day 

10 and every two weeks thereafter.  The radiographs were scored by a blinded evaluator 
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according to the previously described scoring system (2.7).  There were no significant 

differences found between treatment groups on any day that radiographs were taken 

throughout the experiment (p > 0.84) (Fig. 9).       

 
 

 
Fig. 9  Radiograph severity scoring compared between groups.  Score shown as group mean +/- SE.  
There were no significant differences between groups on any given day (p > 0.84).  Treatment groups 
are as follows:  SRT only = stereotactic radiation therapy alone, ZA = zoledronic acid alone, PTH = 
parathyroid hormone alone, ZA/PTH = zoledronic acid and parathyroid hormone, LPTH = localized 
parathyroid hormone treatment alone.    

 

  
 Although there was no significant differences between treatment groups at any given 

time point, there was a significant difference from the day 10 radiograph score to day 24 (p ≤ 

0.0001).  Following day 24, a pattern of decreasing severity (day 24 to 38), followed by 

stabilization (day 38 to 70), over the remaining duration of the study, was seen over all 

treatment groups.  
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Fig. 10  Radiograph severity score over time for each treatment group.  There were no significant 
differences between treatment groups on any given day of imaging (p > 0.84).  There was a significant 
difference from Day 10 to Day 24 (p ≤ 0.0001).  Score shown as mean +/- SE.  Treatment groups are as 
follows:  SRT only = stereotactic radiation therapy alone, ZA = zoledronic acid alone, PTH = parathyroid 
hormone alone, ZA/PTH = zoledronic acid and parathyroid hormone, LPTH = localized parathyroid 
hormone treatment alone.    

 
Fracture 
 
 A total of four subjects were euthanized due to fracture prior to the study endpoint of 

70 days.  These subjects were not included in the statistical analysis of other data.  All subjects 

that fractured had high severity scores prior to and shortly after the initiation of treatment.  It is 

likely that they were at the highest risk for fracture due to early tumor severity.  Histology and 

bioluminescence revealed no evidence of tumor recurrence in any of the subjects that 

fractured.  A table below describes the characteristics for each subject.  

Table 1.  Fracture characteristics of the four subjects with displaced fractures prior to study endpoint. 

ID Day of Fx Location  Treatment 
Group 

Radiograph 
Score  
(Day 10/24) 

Recurrence 
(Y/N) 

255 14 Mid-Diaphysis N/A(prior to 
start) 

2/N/A N/A (prior to 
start of 
treatment) 

236 38 Proximal/Near 
Femoral Head 

SRT 3/4 N 

240 67 Distal Metaphysis PTH 2/3 N 

249 52 Distal Metaphysis PTH 2/3 N 
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3.3  Micro-CT 

Whole Bone analysis of Distal Metaphysis – BMD, BV and pMOI 

 

 

a)  b)  
 

  

c)  
 

Fig. 11  Effects of radiation and adjunct therapy on bone volume (BV) (a), bone mineral density (BMD) 
(b) and polar moment of inertia (Ip) (c) in the distal metaphysis of tumor-burdened femora.  Data 
represent mean (+/- SE) of raw data.  Significance for polar moment of inertia calculated based on log 
transformed data due to differences in standard deviation.  No transformations were required for 
bone volume or bone mineral density.  Significance is noted by a connecting line above treatment 
groups.  Treatment groups are as follows:  SRT only = stereotactic radiation therapy alone, ZA = 
zoledronic acid alone, PTH = parathyroid hormone alone, ZA/PTH = zoledronic acid and parathyroid 
hormone, LPTH = localized parathyroid hormone treatment alone.    
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 The tumor-burdened left femurs were compared between all treatment groups as 

described previously (2.11) and shown in Fig. 11a, b, c.  Analysis over the region of interest 

revealed a significant increase in bone volume in the combined ZA/PTH treatment group as 

compared to SRT treatment alone (p = 0.04488).  The p-value for the ZA group compared to SRT 

only was 0.31187.  The PTH and LPTH groups compared to SRT had p values both greater than 

0.95.    Measurements of bone mineral density revealed no differences between groups (p > 

0.83 for all groups compared to SRT only).  Analysis of log transformed data for polar moment 

of inertia revealed a significant difference between groups (p = 0.0483) by ANOVA.  Despite 

this, Tukey’s method for multiple comparisons did not result in any significant difference in the 

pairwise comparisons (p = 0.0805).     

Trabecular and Cortical Analysis 

 
Fig. 12  Micro-Ct 3-D reconstruction of normal (top) trabecular and cortical architecture and tumor 
burdened (bottom) in the distal metaphysis. 
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In order to find a localized effect of drug therapies following radiation treatment, both 

trabecular and cortical compartments were evaluated for differences in microstructural 

properties.  The trabecular and cortical compartments were defined based on what normal 

bone looked like on visual assessment from micro-CT.  A clear distinction between true 

trabecular and cortical bone on many samples was made difficult due to previous tumor burden 

and altered ongoing bone regeneration.  Analysis from the micro-CT scans revealed no 

significant differences between treatment groups in any of the variables quantified (Figures 13 

and 14). 

 

 

 
Fig. 13  Effects of radiation and adjunct therapy on trabecular bone volume, bone mineral density, 
number, separation and thickness in the distal metaphysis of tumor-burdened femora.  Data 
represent mean (+/- SE) of raw data.  There were no significant differences between groups (p ≥ 
0.1566).   
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Fig. 14  Effects of radiation and adjunct therapy on cortical bone volume, bone mineral density, and 
polar moment of inertia in the distal metaphysis of tumor-burdened femora.  Data represent mean 
(+/- SE) of raw data.  There were no significant differences between groups (p ≥ 0.0852). 
 
 

 Although there were no significant differences between groups, the trabecular analysis 

appeared to show a number of trends.  In regard to bone volume fraction, there appeared to be 

a trending increase in the combined ZA/PTH treatment group (p = 0.9088).  Similar to the data 

for all bone, a trend appeared with increasing trabecular number in the ZA and combined 

ZA/PTH treatment groups (p = 0.7912).  Trabecular thickness was increased in only the PTH 

treated group, although this trend was not significant (p = 0.1566).  Analysis of cortical bone 

volume compared between treatment groups revealed a similar trend to both data of all bone 

and trabecular regions increasing with both ZA/PTH and ZA treatment (p = 0.0862).  A similar 

pattern was revealed with analysis of the polar moment of inertia although this result was also 

not significant (p = 0.2097).   

Control Analysis 

Contralateral femurs (non-irradiated, non-tumor-bearing) were used as controls to 

compare the effects of systemic treatment on normal bones.  Analysis of all bone over the 

region of interest revealed significant increases in bone volume in the ZA treated groups (p = 

0.0149) (Fig. 15).  Comparison of bone volume between the PTH group and control for all bone 
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did not result in a significant difference (p = 0.2603).  Analysis of polar moment of inertia also 

did not result in a significant difference although a trending increase in the ZA group was seen 

(p = 0.1609).        

 
Fig. 15  Effect of PTH and ZA on microstructural properties of all bone over the region of interest in 
contralateral femurs representing control limbs (non-irradiated, non-tumor-bearing).  Data represent 
mean (+/- SE) of raw data.  Significance is noted by a connecting line above treatment groups.  ZA 
treatment resulted in a significant increase in bone volume compared to control femurs (p = 0.0149).   

 

 Analysis of the trabecular bone of contralateral controls revealed significant increases in 

bone volume, trabecular number, and trabecular thickness in the ZA treated group compared 

to controls (Fig. 16).  Systemic treatment with PTH resulted in significant increases in trabecular 

thickness and trabecular separation while decreasing trabecular number (Fig. 16).  These results 

suggest the increased bone volume seen with combination therapy (ZA/PTH) for the irradiated 

femurs is mostly due to the ZA treatment.  However, it cannot be ruled out that there is some 

synergistic effect of combination therapy (ZA/PTH), as this was the only group to show 

statistically significant difference in the irradiated tumor-burdened femurs.  The analysis of the 

contralateral controls also reveals an unusual response to systemic PTH therapy.  A number of 

studies have shown a very consistent effect of systemic PTH treatment which includes 

increased bone volume, trabecular number, trabecular thickness, and a decrease in trabecular 
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separation (Brouwers, van Rietbergen et al. 2009; Li, Zhou et al. 2012; Chandra, Lan et al. 2013; 

Vegger, Nielsen et al. 2014).   

 

 

 
Fig. 16  Effect of PTH and ZA on microstructural properties of trabecular bone in contralateral femurs 
representing control limbs (non-irradiated, non-tumor-bearing).  Data represent mean (+/- SE) of raw 
data.  Significance is noted by a connecting line above treatment groups. 

 
 
 
 

 

a) b)   
 

Fig. 17  Three-dimensional reconstruction of the distal metaphysis of contralateral control limbs 
reveals an increase in trabecular thickness, trabecular number and bone volume in the ZA treated 
bone (b) as compared to the no treatment control (a).  Quantitative analysis corroborates these 
findings. 
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 Contralateral control limbs (non-irradiated, non-tumor-burdened) were also compared 

to the group of tumor-burdened left femurs that were treated with only stereotactic radiation 

therapy.  This allowed us to compare the effects of radiation and the tumor itself to normal 

femora.  Analysis of all bone over the region of interest resulted in no significant differences (p 

≥ 0.1583) (Fig. 18).  Interestingly, compartmental analysis revealed significant increases in 

cortical bone volume in the tumor-burdened, irradiated femurs as compared to controls (p = 

0.0370) (Fig. 19).  As expected, tumor-burdened femora had a significantly decreased 

trabecular number (p= 0.0351) and an increase in trabecular separation (p = 0.0242) (Fig. 19).   

 
 
 

a)    b) c)  
Fig. 18  Effects of radiation and tumor-burden on bone volume(a), bone mineral density(b) and polar 
moment of inertia(c) in the distal metaphysis compared to control femora.  Data represent mean (+/- 
SE) of raw data.  There were no significant differences between groups (p ≥ 0.1583).   
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a) b) c)  

d) e)  
 

f) g)  h)  
Fig. 19  Effects of radiation and tumor-burden compared to control femora.  Radiation and tumor-
burden resulted in significantly increased cortical bone volume (a), decreased trabecular number (f), 
increased trabecular thickness (g), and separation (h).  Data represent mean (+/- SE) of raw data.  
Significance is noted by a connecting line above groups with corresponding p value.  Abbreviations.  
pMOI = polar moment of inertia (Ip), BV/TV = bone volume/total volume, Tb.N = trabecular number, 
Tb.th = Trabecular thickness, Tb.Sp = Trabecular separation.      

 
3.4  Histology 
 
Dynamic Histomorphometry 
 
 The dynamic analysis revealed both single and double-labeled surfaces in both the 

trabecular and cortical bones of all subjects regardless of treatment group.  This represents 

active mineralization occurring at the times of calcein administration on days 58 and 67 of the 

study.  This, in and of itself, is of interest as this means that active mineralization is occurring 

approximately eight weeks following radiation doses of approximately 36 Gy to the femur.  
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Radiation has been shown to strongly suppress mineralization, however few studies have 

shown the effect of clinically-relevant doses of stereotactic radiation on bone mineralization 

(Chandra, Lan et al. 2013).   

a)  

 b)  

Fig. 20  Representative fluorescent micrograph illustrating single and double-labeled surfaces of both 
trabecular and cortical bone (a) as well as dystrophic mineralization (b) within the distal femoral 
metaphysis.  Bone formation was examined by sequential labels with calcein in non-decalcified bone 
sections administered at 12 and 3 days prior to study endpoint.  Single-labeled surface(arrow) and 
double-labeled surface (arrowhead) are highlighted (a).   



58 
 

Dystrophic mineralization in areas of tumor necrosis in the distal metaphyseal region of 

interest confounded the quantification of single-labeled surface. Thus, of the parameters 

typically quantified for calcein-labeled mineralization, it was deemed appropriate to only 

quantify double-labeled surface and inter-label width.  In this work, double-labeled surface can 

be used interchangeably with mineralizing surface.  There were no significant differences 

between treatment groups in regard to double-labeled surface or inter-label width (p = 0.1504 

and 0.6891 respectively) (Fig. 22).  The mineral apposition rate was calculated by dividing the 

average inter-label width by the time between calcein administration (9 days).  Although no 

significant differences were found (p = 0.6888), the mineral apposition rate calculated is similar 

to control rats of other studies illustrating a normal rate of mineralization 8 weeks following 

stereotactic radiation therapy (Chandra, Lan et al. 2013; Jing, Cai et al. 2014).  Double-labeled 

surface per bone surface (mineralizing surface) over the region of interest was also calculated 

and compared between treatment groups.  No significant differences were discovered (Fig. 22) 

between groups (ANOVA p-value = 0.0852).  It should be noted that the percentage of 

trabecular bone surface comprised of double-labeled surface is quite small (~1%) likely due to 

the combination of tumor-associated lysis and radiation effect over the region of interest.       
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Fig. 21  Representative fluorescent micrographs illustrating double labeled surface (double arrows) of 
trabecular bone within the region of interest.   

 
 
 
 

a) b) c)  

d) e)  
 
 
Fig. 22  Dynamic histopmorphometry of trabecular bone within the region of interest.  Double-labeled 
surface (a) and inter-label width (b) were quantified using Bioquant Osteo Software(Bioquant Image 
Analysis, Nashville, TN) within the region of interest.  Mineral apposition rate (c) was calculated by 
dividing inter-label width by the time between calcein administration (9days).  Double-labeled surface 
was calculated as a fraction of trabecular bone surface (d).  Total positive fluorescence was calculated 
as number of pixels as described in methods (e).  There were no statistically significant differences 
found between any treatment groups (p ≥ 0.0852). 
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Static Histomorphometry 
 
Hematoxylin and Eosin 
 
 Longitudinal sections of left femurs from all experimental subjects were analyzed to 

qualitatively describe the location of osteosarcoma within the femur, check for recurrence with 

active osteosarcoma cells, and assess osteocyte viability in cortical bone.   

 The location of the previously irradiated osteosarcoma was made apparent by discrete 

areas of necrosis with few viable cells other than a loosely defined network of fibrous 

connective tissue (Fig. 23).  In many samples, within these areas, were areas of dystrophic 

mineralization.  Prior to irradiation, imaging modalities (radiographs, bioluminescence) were 

utilized to confirm tumor placement in the distal metaphyseal region of the left femur.  

Although the distal metaphysis was the most common site of lysis, other sites along the femur 

may have been exposed to tumor cells due to the inoculation technique (proximal to distal).  

Distal metaphyseal location of tumor was confirmed via histologic evaluation in 35/37 (95%) 

experimental subjects.  Osteosarcoma cells in the diaphysis of the femur was confirmed in 

33/37 (90%) of experimental subjects.  The most severe lesions due to osteosarcoma were 

evident in the distal metaphysis (consistent with imaging) but these results illustrate the 

shortcomings of this model in completely depositing tumor cells in a strict well-defined 

location.  The cells deposited in the diaphysis typically did not result in radiographically evident 

lysis or fracture but were confirmed present via histology.  No experimental subjects exhibited 

osteosarcoma cells in the distal epiphysis, highlighting the tumor’s inability to cross the growth 

plate.  One subject did not show evidence of active or previous osteosarcoma over the entire 

femoral section, however only one plain of section was analyzed. 
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a)  b)  
F 

Fig. 23  Evidence of previous osteosarcoma. (H&E)  a)  Distal metaphysis exhibiting trabecular 
destruction, necrosis, and replacement fibrosis throughout regions of previous tumor burden (thick 
arrow).  Growth plate (arrowhead) and normal trabecular bone of epiphysis (thin arrow) are 
highlighted. (2x)  b)  Closer magnification of loosely organized fibrous connective tissue and necrosis 
in tumor-burdened areas. (10x) 

 
Tumor necrosis was 100% in thirty-two of thirty-six (89%) of the experimental subjects 

(one subject removed as no evidence of active or previous tumor was found).  The overall mean 

percentage of tumor necrosis was 98%.  Active osteosarcoma was discovered in four subjects 

(~10%), but exhibited an average of 85% tumor necrosis (Fig. 24).  These results highlight the 

effectiveness of this radiation protocol totaling 36 Gy over three once-daily fractions. 
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a) b)  

Fig. 24  Active Osteosarcoma  a)  Rat.  Distal Metaphysis of Femur.  (H&E.  20x).  Replacing normal 
trabecular architecture are poorly differentiated neoplastic cells that are polygonal to spindle shaped 
with lightly eosinophilic cytoplasm.  b)  Rat.  Distal Metaphysis of Femur.  (H&E.  40x).  Neoplastic cells 
are irregularly polygonal with indistinct cell borders and moderate amounts of cytoplasm. Nuclei 
contain multiple, distinct nucleoli and a mitotic figure is present (arrow).    

 
The femurs of all experimental subjects showed typical changes in bone following 

irradiation.  These included a reduced, but present population of hematopoietic cells, 

osteoclasts, osteoblasts and osteocytes.  A precise timeline for survival and regeneration of 

marrow cells is unknown, but this work illustrates that at 8 weeks post-SRT many viable cells 

remain in the bone and marrow.  The distal epiphysis is a prime example of this where the 

effect is similar to irradiated normal bone (Fig. 25).   
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Fig. 25  Distal Femoral Epiphysis (H&E, 20x).  The bone marrow of the distal epiphysis reveals normal 
lineage hematopoetic cells that are reduced in number. 

 

The diaphyseal cortex showed minimal areas of necrosis as previously defined in the 

methods section (2.10) (Fig. 26).  Nineteen of thirty-seven (51%) of the subjects had no 

evidence of cortical necrosis.  Fifteen of thirty-seven (41%) had between 0 and 25% of cortical 

necrosis.  Only three of thirty-seven (8%) of the subjects had 25% to 50% of cortical necrosis.  

These results represent a snapshot in time (8 weeks post irradiation) and areas of necrotic bone 

and overall cell viability may change over time due to the effects radiation treatment.  
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a)  

b)  

Fig. 26  The effect of stereotactic radiation therapy on cortical bone.  92% of experimental subjects 
showed less than 25% of the cortex having areas of necrosis.  a)  Cortical bone illustrating viable 
osteocytes filling over 80% of the lacunae (H&E, 20x).  b)  Cortical bone with areas exhibiting >50% of 
lacunae being empty representing necrotic bone (H&E, 20x).   
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Tartrate-Resistant Acid Phosphatase (TRAP) 
 
 TRAP stained sections were used to quantify osteoclastic activity over the region of 

interest.  There were no significant differences between treatment groups in regard to 

osteoclast number (p = 0.1658) (Fig. 27).  Osteoclast surface was significantly different between 

groups (ANOVA p = 0.0219) however pairwise comparisons were unable to detect a significant 

difference between groups (p ≥ 0.0761).  Analysis of total TRAP surface (Kruskall-Wallis) 

revealed a statistically significant decrease in the combined (ZA/PTH) treatment group 

compared to SRT treatment only (p = 0.0341).  These data highlight the expected outcome with 

successful bisphosphonate therapy reducing osteoclast-mediated resorption.      

a) b)  

c)  
Fig. 27  Assessment of resorption over the region of interest.  TRAP surface (a), osteoclast number (b), 
and osteoclast surface (c) were analyzed with a Kruskall Wallis test for significance.  Data represent 
mean (+/- SE) of raw data.  Significance is noted by a connecting line above groups.  Analysis of TRAP 
surface showed a statistically significant decrease compared to SRT treatment alone (p = 0.0341).  
Analysis of osteoclast surface showed a significant difference between groups (p = 0.0219), however 
pairwise comparisons were unable to detect which groups (ZA/PTH vs SRT, p = 0.0761).  There were 
no significant differences found in regard to osteoclast number (p = 0.1658).    

 



66 
 

Von Kossa McNeal’s 

 
 Sections stained with Von Kossa McNeal’s were analyzed to quantify bone mineral 

properties, osteoid properties, and osteoblast numbers within the trabecular bone of the 

region of interest.  Analysis revealed a significant increase in bone area (µm^2) in the combined 

(ZA/PTH) treatment group compared to radiation treatment alone (Fig. 28, p = 0.0426).  This is 

consistent with the three-dimensional results of all bone from the micro-CT data.  There was no 

significant difference in bone perimeter (p = 0.3282).  Analysis of osteoid properties revealed no 

significant differences in osteoid width (p = 0.2856), area (p = 0.0636), and surface (p = 0.1029).  

There were also no significant differences in osteoblast number (p=0.1049) (Fig. 29).      

 
 

a)    b)   
Fig. 28  Bone mineral properties including bone area (a) and bone perimeter (b).  Data represent mean 
(+/- SE) of raw data.  Significance is noted by a connecting line above treatment groups.  The 
combined (ZA/PTH) treatment group significantly increases bone area over the region of interest 
compared to SRT treatment alone (p = 0.0426).   
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a) b)  
 

c) d)  
 

Fig. 29 Osteoid properties including osteoid area (a), osteoid surface (b), osteoid width (c), and 
osteoblast number (d).  Data represent mean (+/- SE) of raw data.  There were no significant 
differences between groups (p = 0.0636 (a), 0.1029 (b), 0.2856 (c), & 0.1049 (d).   
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Chapter 4 
 

Discussion 
 

 Stereotactic radiation therapy has been utilized clinically at Colorado State University’s 

Flint Animal Cancer Center as a limb-sparing technique in the treatment of canine-appendicular 

osteosarcoma.  Although median survival times achieved are similar to those of patients 

treated with the standard of care (amputation and adjuvant chemotherapy), there remains a 

high risk of pathologic fraction following radiation treatment.  Using an orthotopic model of 

canine osteosarcoma in athymic rats, we compared four different therapeutic regimens and 

radiation treatment alone (SRT; SRT plus ZA; SRT plus PTH; SRT plus ZA and PTH; and SRT plus 

locally-delivered PTH).  The treatment effect was characterized in relation to bone 

microarchitecture, bone quantity, bone strength as well as histological evaluation over the 

region of interest (distal femoral metaphysis).   

 The combination therapy (ZA/PTH) resulted in greater total bone volume (p = 0.0449) 

and polar moment of inertia (ANOVA p value = 0.0483) compared to SRT alone based on micro-

CT analysis of bone in the region of interest (Fig. 11).  Polar moment of inertia has been shown 

to positively correlate with bone strength in nude rats and is a useful surrogate when 

mechanical testing cannot be performed (Bagi, Hanson et al. 2006).  Individual treatment with 

PTH or ZA failed to produce statistically significant differences (p = 0.9938 & 0.3214 

respectively).  Static histomorphometry also showed that the combination therapy (ZA/PTH) 

resulted in statistically significant increases in bone area (Fig. 28). 
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 Due to their differing mechanisms of action, bisphosphonates (which decrease 

osteoclast-mediated resorption) and parathyroid hormone (a bone anabolic agent) have been 

studied in combination as their use may result in an additive effect improving bone 

architecture.  Studies that have evaluated combination therapies in relation to osteoporosis 

have failed to show an increased benefit of this therapy (Gasser, Kneissel et al. 2000; Black, 

Greenspan et al. 2003; Finkelstein, Hayes et al. 2003; Samadfam, Xia et al. 2007).  The benefits 

of combination therapy have been shown in treatment for disuse osteopenia (Vegger, Nielsen 

et al. 2014), fracture healing (Li, Zhou et al. 2012), and adjunct treatment following radiation 

therapy (Arrington, Fisher et al. 2010). 

 Although the combination treatment group demonstrated the most dramatic treatment 

effect, this appears largely due to the bisphosphonate.  This becomes evident when looking at 

the data from control contralateral limbs.  These represent essentially normal bone that is non-

tumor bearing and non-irradiated across all groups.  Micro-CT analysis reveals significant 

increases in bone volume (p ≤ 0.05) in the ZA treatment group as compared to no treatment 

controls (Fig. 15).  Analysis of the trabecular bone in the contralateral controls reveals a 

significantly increased trabecular bone volume fraction (p ≤ 0.01), trabecular number (p ≤ 0.05) 

and trabecular thickness (p ≤ 0.01) in the ZA group (Fig. 16).  Although ZA alone appears to 

substantially affect bone microarchitecture in both control and experimental groups, it was only 

combination therapy that resulted in significant improvements In the tumor-burdened, 

irradiated femurs.  

 The anabolic effect of intermittently administered PTH has been illustrated in many 

studies leading to FDA approval for high risk osteoporosis treatment (Neer, Arnaud et al. 2001; 
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Black, Greenspan et al. 2003; Greenspan, Bone et al. 2007).  Bone volume fraction, trabecular 

number, and trabecular thickness tend to be increased with a decrease in trabecular separation 

(Brouwers, van Rietbergen et al. 2009; Li, Zhou et al. 2012; Chandra, Lan et al. 2013; Vegger, 

Nielsen et al. 2014).  In our study, PTH did not result in this pattern of improved bone 

microarchitecture when administered on its own (Fig. 11 & 13).  The micro-CT analysis of all 

bone over the region of interest of experimental, tumor-burdened, irradiated femurs resulted 

in no significant differences from radiation treatment itself (Fig. 11).  Control analysis revealed 

no changes in whole bone or trabecular bone volume fraction (Figs. 15 & 16).  Trabecular 

properties of contralateral controls administered systemic PTH revealed a significant decrease 

in trabecular number (p ≤ 0.01) and an increased trabecular thickness (p ≤ 0.01) and separation 

(p ≤ 0.01) (Fig. 16).   

The use of immunodeficient animal models for the study of intermittent PTH 

administration has not been widely described; only one published study could be identified that 

used athymic rats.  In this particular study, the characteristic anabolic bone properties were 

elicited by PTH administration at a dose twice that used in this study and administered four 

times daily (as opposed to once-daily dosing) (Bagi, Hanson et al. 2006).  This study aimed to 

illustrate the correlation between micro-CT and mechanical testing which appears to be the 

reasoning behind the atypically high dose used in most clinically-based rodent PTH studies in 

immunocompetent animals.  There is some evidence supporting the role of T-cells in 

modulating PTH in a mouse model of hyperparathyroidism (Gao, Wu et al. 2008).  It should be 

noted that we ensured bioactivity of our PTH with an ELISA for cAMP and the analysis from our 
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control limbs confirms an atypical response.  Further work is necessary to elucidate the 

effectiveness/dose-response of PTH in immunodeficient models, specifically athymic rats.   

Currently, bisphosphonates are the first line treatment for osteoporosis and are also 

used as palliative treatment for metastatic bone disease.  Their use stems from their binding 

affinity for bone mineral and their ability to inhibit osteoclast-mediated bone resorption.  

Zoledronic acid, a potent, third-generation nitrogen-containing bisphosphonate, demonstrates 

the strongest inhibitory profile against osteoclasts and the strongest binding affinity in 

comparison to all other bisphosphonates (Russell, Watts et al. 2008).  Our work demonstrated 

its effect with improved bone architecture in contralateral controls and a decreased TRAP 

surface in experimental tumor-burdened femora (Figs. 15, 16 & 25).  Although, the decreased 

TRAP surface reflects a reduction in bone turnover there was an increase in bone volume in 

groups treated with ZA.  This is likely due to ZA’s indirect effect on the remodeling cycle 

through osteoclastic inhibition.   

A number of recent studies have evaluated the direct and indirect anti-cancer effects of 

ZA as well as its ability to act as a radiosensitizing agent against tumor cells.  Preclinical studies 

in tumor cell lines have illustrated reduced migration, invasion, adhesion, and proliferation 

after bisphosphonate treatment.  Clinical trials have also reported a reduced risk of new cancer 

or recurrence in breast and colorectal cancer (Gnant and Clezardin 2012).  A number of cell 

lines, tumoral and non-tumoral, are radiosensitized following ZA administration (Alcaraz, 

Olivares et al. 2013; Kijima, Koga et al. 2013).  Further studies aim to work out the full 

mechanism of this observation. 
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Zoledronic acid has already been utilized for the palliative treatment of a number of 

canine osteolytic tumors.  Fan et al. reported the use of ZA in healthy dogs (n = 6) and those 

exhibiting malignant osteolysis (n = 20).  This study reported that ZA administration resulted in 

bone biologic effects, as evidenced by decreased bone resorption markers as well as subjective 

pain alleviation in 50% of those dogs treated for osteosarcoma.  Repeated administration of ZA, 

at a dose of 0.25 mg/kg, was also well tolerated with no evidence of toxicity (Fan, de Lorimier et 

al. 2008).  A single case report demonstrated successful palliation for appendicular 

osteosarcoma over 16 months.  This dog was administered a monthly dose of 4mg that was 

well-tolerated, reduced pain and improved the quality of life for this large breed dog when 

other treatment options were not pursued (Spugnini, Vincenzi et al. 2009).   

Current clinical practices at Colorado State University provide for a single dose (1 mg/kg, 

IV diluted in 250mls of 0.9% NaCl, administered over 2 hrs) of pamidronate, another nitrogen-

containing bisphosphonate, one day prior to the initiation of stereotactic radiation therapy for 

local treatment of osteosarcoma.  Pamidronate is relatively inexpensive and has shown some 

clinical success in palliation of bone osteolysis.  Zoledronic acid has been shown to be superior 

to pamidronate in humans for the treatment of skeletal complications due to multiple myeloma 

and hypercalcemia of malignancy (Major, Lortholary et al. 2001; Sanfilippo 2014).  In regard to 

multiple myeloma, ZA was associated with an increased overall survival, decreased skeletal-

related events, and may be the preferred bisphosphonate in this context (Sanfilippo 2014).  Our 

study showed improved bone quantity and estimated strength with ZA treatment 8 weeks 

following stereotactic radiation therapy and may similarly indicate a potential for superior 

outcomes with zoledronic acid versus pamidronate when treating prior to SRT.  Our work also 
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indicates that there may be a potential benefit of continued dosing of zoledronic acid following 

stereotactic radiation treatment.  At this time, cost may be the most important limiting factor 

(~24 times more expensive than pamidronate for a single dose in large breed dogs) for the use 

of ZA.  A single dose of pamidronate for a 30kg dog costs approximately $50 compared to 

$1200 for a single 4mg (human recommended dose) dose of zoledronic acid.  Further studies to 

compare the two bisphosphonates directly as well as determining a minimal effective dose are 

needed.  Based on our work, using a total dose of  0.1 mg/kg and the human recommended 

dose (4mg, or approx.. 0.057 mg/kg in a 70 kg adult), it is likely that a reduced dose, from that 

already utilized in dogs, would still result in clinical effect.  

 Stereotactic radiotherapy was delivered successfully and achieved local tumor control in 

all rats with experimentally induced osteosarcoma of the distal aspect of the femur.  Our study 

resulted in a mean percentage tumor necrosis of 98%.  Active osteosarcoma was found in only 

four subjects, one of which was detected as recurrence by bioluminescence imaging at the 

study endpoint (251, LPTH group).  These subjects still maintained tumor necrosis between 80-

90%.  A previous study of radiation therapy for dogs with osteosarcoma showed that a mean 

percentage tumor necrosis of ≥ 80% correlates with excellent local tumor control and an 

increase in survival rate (Powers, Withrow et al. 1991)  Short-term effects of radiation on the 

skin were acceptable (Grade 1, VRTOG) with none requiring treatment (LaDue and Klein 2001).  

Those rats that were only treated with radiation therapy showed no signs of progressive 

disease and their loss of luciferase activity further highlighted the success of treatment 

achieving local control.  Previous work with this model showed that if left untreated local 
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progression would lead to fracture around 5 weeks post-inoculation (Schwartz, Custis et al. 

2013).          

While the deleterious effects of radiation on bone have been described, there is very 

little reported information cataloguing the effects of stereotactic radiation therapy on bone 

(higher dose per fraction/fewer fractions).  We were able to qualitatively assess the femurs 8 

weeks following radiation at study endpoint.  As expected, we found a severely reduced, but 

present population of hematopoietic cells in the marrow cavity.  Osteoblasts, osteoclasts, and 

osteocytes, appear subjectively reduced in number as well.  Dynamic histomorphometry 

revealed single and double-labeling of surfaces across all treatment groups.  This is of interest 

as there remains some level of active mineralization occurring at the study endpoint.  The 

cortical bone remains viable to a large extent with less than 25% of the diaphyseal cortical bone 

exhibiting signs of necrosis in 41% of experimental subjects.  51% of subjects showed no 

evidence of cortical necrosis.  Although radiation may cause long term effects not yet seen in 

this study (continued necrosis, fibrosis, vascular damage), these findings indicate a potential 

window of time where therapeutic interventions may be of benefit in regard to bone healing 

and regeneration.   

There are some limitations in this study that need to be addressed.  First, there was 

some variability in tumor severity at the initiation of treatment.  Although this orthotopic model 

allows for control in timing, location and number of tumor cells delivered we noted variation in 

progression.  Radiographic analysis confirmed that no groups had significantly different grades 

of tumor severity at the time of treatment.  Despite this, in vivo micro-CT analysis may provide 

a more accurate assessment for standardizing tumor severity at the time of treatment.  This 
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would allow for an individualized treatment approach relating starting severity with response to 

treatment.  Secondly, our model successfully created tumor-associated osteolysis at the distal 

metaphyseal region of the femur; however, due to our inoculation technique (proximal to 

distal) a small number of cells were deposited at more proximal locations of the femur.  This 

typically did not result in visible osteolysis at other locations, but the presence of tumor cells 

was confirmed via histologic examination.  We controlled for this by including the entire femur 

as our gross tumor volume in radiation planning regardless if there was evidence or not of 

osteolysis at other locations of the femur.           

 Overall, the combined treatment (ZA/PTH) improved bone microarchitecture, quantity 

and a surrogate measure of bone strength following stereotactic radiation therapy in 

comparison to radiation treatment alone.  These properties support a reduction in fracture risk 

and showed therapeutic benefit eight weeks following radiation.  Our data indicate this result 

was largely due to zoledronic acid, a potent anti-resorptive, however we showed a beneficial 

effect of combined therapy.  Zoledronic acid is therefore a promising therapeutic for decreasing 

bone pain due to lysis, improving bone microarchitecture and strength, and reducing fracture 

risk in canine patients undergoing stereotactic radiation therapy for the local treatment of 

canine-appendicular osteosarcoma.  Further studies are needed to characterize its effect 

compared to other bisphosphonates as well as its appropriate dosing regimens to maximize 

effect and reduce cost.  This work also illustrates the success of stereotactic radiation therapy in 

achieving local tumor control and a potential therapeutic window of opportunity.  Longitudinal 

studies of the long term effect of high dose radiation on bone will be important as the clinical 

benefits of stereotactic radiation therapy expand its application.                   
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5-11:  SOP- Abrams OSA  

Protocol Used by: Sara Gookin 

 

 

 

Time to Complete: 30-60 minutes/day 

Supplies Required Supplier and Catalog 

Number 

Storage 

Conditions 

Location 

Minimum Essential Media 

1X with Earle’s Salt and L-

glutamine 

  Cellgro (Fisher) 

10-010-CV 

4°C Fridge  

Antibiotic 

Penn-Strep? (ask Laura) 

VWR  

45000-652 

 Fridge 

MEM essential amino acids 

(50X) 

Cellgro (Fisher) 

25-030-CI 

4°C Fridge 

MEM non-essential amino 

acids (100X) 

Gibco 

11140-050 

4°C Fridge 

Sodium Bicarbonate 7.5% Cellgro (Fisher) 

25-035-CI 

4°C Fridge 

FBS (Characterized) VWR 

16777-014 

4°C -20°C 

 

Additional Supplies Required: 

Pipet Aid (Hood) 
Centrifuge  
CO2 incubator at 37°C  
Serological Pipettes (5, 10, 25 mL) 
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Sterile media bottle (100 ml, 250 ml, 1000 ml) 
15 and/or 50 ml Centrifuge Tubes (BD Falcon) 
Corning TC Flask (#430641) 
 

General Notes: 

 All materials used must be sterile.   

 Warm all solutions except PBS in a water bath to 37°C prior to use. 

 Grow cells to 70-80% confluent before splitting.  It is important not to allow cells to be too over or 

under confluent.   

Procedure: 

1. Growing Cells 

a. Perform all steps in a laminar flow hood 

b. Prepare Growth Media 

 

 

 

 

 

 

 

 

 

 

 

c. Sterile Filter after mixing everything together 

d. Keep at 4°C for about a month 

2. Thaw Cells 

% Item Amount for 500mL 

 MEM 1X with Earle’s Salt and L-

glutamine 

430mL 

10% Fetal Bovine Serum 50mL 

1% Anitibiotic-Antimycotic (100X) 5mL 

0.5% MEM essential amino acids (50X) 5mL 

1% MEM Non-essential amino acids 

(100X) 

5mL 

0.075% Sodium Bicarbonate 7.5% 5mL 
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a. Wear eye protection, if cryogenic vials have not been tightly sealed they may 

contain liquid nitrogen and this may cause bursting. Also, wear ultra-low temp 

gloves. 

b. Remove vial 

c. Place immediately in 37°C water bath and allow to thaw completely ~2min 

d. Spray vial with 70% EtOH and place in biosafety cabinet 

e. Transfer cells to culture dish 

f. Add media gradually  

i. 15mL media to a T75 

g. Place in 37°C + 5%CO2 Incubator 

3. Growing Cells 

a. From Frozen Stock: grow O/N and replace media within 24hours (Feed Cells) 

b. If confluent, split cells 

4. Split Cells 

a. Remove media 

b. Wash with 5mL PBS 

c. Add 2mL Trypsin-EDTA 

d. Let sit for 5min, check with microscope to see if all the cells detached 

e. Add 4mL Growth Media to deactivate Trypsin 

f. Transfer to a 14mL Falcon Tube 

i. Remove 50L to epp for counting cells 

g. Centrifuge 1200rpm, 5-10min, RT 

h. Remove Supernatant 

i. Split accordingly  

5. Cell Count  

a. Invitrogen Countess Cell Counter 

i. Mix 50L Trypan Blue + 50L Cells (not sterile) in epp 

1. 0.4% Trypan Blue 

ii. Open cell counting chamber 

iii. Add 10L of mixture to side A & B on chamber 

1. Pipette up and down to make sure mixture is equally distributed 
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iv. Insert slide chamber into the Countess Cell Counter 

v. Adjust Focus 

vi. Count Cells 

b. Hemocytometer 

i. Affix cover slip 

ii. Mix equal volumes of 0.4% Trypan Blue and Cells 

1. 50l Trypan Blue + 50l Cells 

iii. Load 10l into each side of Hemocytomoeter 

iv. Count Cells 

1. Four outer corners: take the average of those cells (A+B+C+D)/4 

v. Average x Dilution Factor (2, because 1:1 dilution with trypan) x 10,000 = 

cells/ml 

 

6. Repeat growth, counting and splitting of cells 

a. Confluencey should be 70-80% before splitting  

7. Freeze Cells 

a. Freeze Media 

 

 

b. Centrifuge Cells 

i. 1200rpm, 10’, RT 

c. Remove Media 

d. Resuspend Pellet in Freeze Media 

i. Depends on how many cells 

ii. Want 1-2million cells/cryovial 

iii. Write the cell line, passage number, date and your initials on the cryogenic 

tube 

e. Place in Nalgene Mr. Frosty 

% Item Amount for 10mL 

45% MEM 1X w/Earle’s salt and L-glutamine 22.5mL 

45% FBS 22.5mL 

10% DMSO 5mL 
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i. Directions for Mr. Frosty are in Lab 

ii. Place in -80°C Over Night 

f. Remove Mr. Frosty and Transfer to Liquid Nitrogen Tank for Long Term Storage 

  

IF LUCIFERASE EXPRESSING 

1. Add D-Luciferin to cells (want 150mg/ml) 

a. T75 – add 75L  

b. T25 – add 25L 

2. Let sit for 10min before imaging 

3. Imaging System 

a. Open 

i. Administrator (No Password) 

b. Initialize 

c. Field of View –  

i. A: For T25 or T75 flask 

ii. B: For T125 or larger 

d. Start with AUTO or 1:00min exposure 

e. If no glow, increase the time 

f. If too much glow, decrease the time 

g. Binning: Medium 

h. Temperature Bar: should be green before you are able to image 

i. DON’T open the door unless it Reads IDLE 

i. Ready 

j. Acquire  

k. Yes, on pop up screen (background problem) 

i. Wait for the 1min exposure and results will pop up on the screen 
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9-11:  bbPTH Reconstitution for Rat’s 

Protocol Used by: 

 

 

 

 

 

Supplies Required Supplier and 

Catalog Number 

Storage 

Conditions 

Location 

    

0.9% Sodium Chloride Central Supplies RT Laura’s Lab 

bbPTH  -80°C Freezer 

Filter 0.2m  RT  

HCl  RT Chemical Cabinet 

Insulin Syringe 309301 RT Drawer 

Rat’s    

Eppendorfs 1.5ml  RT  

Falcon Tubes 50ml  RT  

 

General Notes: 

 Administer Injections at the same time each day 
 Record individual injections 

o Bent Needles 
o Volume administered in two partial doses 

 Keep reconstituted bbPTH on ICE – bring ice bucket to mouse room 
 Use Laura’s Mouse Scale to weigh rat’s once a week 
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Acidic Saline (50ml’s) 

0.9% NaCl + 0.001N HCl 

 

1. Measure out 50ml’s of 0.9% Sodium Chloride 
a. 0.9% Sodium Chloride = 0.154M NaCl 

2. Sterile Filter (0.2m) in Biosafety Cabinet 
3. Add 0.001N HCl to 50ml’s of 0.9% Sodium Chloride in Biosafety Cabinet 

a. HCl: 12.1N 
b. (50ml)(0.001N) = (X)(12.1N) 

X = 0.0041ml or 4.1l 

Black Bear PTH 

Lyophilized from PBS 

01/05/2011 

0.566mg 

9444.7g/mol 

 

Reconstitute 

1. Reconstitute the bbPTH to a concentration of 1mg/ml 

a. 566g/566l acidic saline = 1g/l = 1mg/ml 
2. Remove bbPTH from -80°C 
3. Let thaw at RT for 15min 
4. Centrifuge vial to collect the lyophilized powder to the bottom of the tube 
5. In Biosafety cabinet for remaining steps 

6. Add 566l of Sterile acidic saline to vial containing 566g of bbPTH 
a. Vortex 
b. Centrifuge 

7. Transfer 100l of the reconstituted bbPTH Sol’n into five Sterile 1.5ml epps 

a. 100l = 100g 
8. Immediately freeze aliquots of bbPTH Sol’n at -80°C 

 

Animal Dose 

Dose: 100g/kg 
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*Keep everything on ICE 

 

1. Remove aliquoted bbPTH (1mg/ml) from -80°C 
a. Allow to thaw on ice 
b. Centrifuge before opening 

2. Dilute bbPTH to a concentration of 0.1g/l solution of bbPTH 
 

*100l bbPTH (1mg/ml) + 900l acidic saline = 0.1g/l 

 

3. Add 900l of acidic saline to our aliquoted 100l of bbPTH (1mg/ml) 
a. Mix/vortex 

4. Rat Dose 

l
g

lkgRat

kg

g







1.0

)(100
 Injection Amount 

5. Weigh the Rat’s once a week and recalculate the injection amount (ml) for each mouse 
6. Examples 

ID Weight (kg) Injection Amount(l) 

95 0.125 125 

63 0.140 140 

 

7. Fill Insulin Syringes with calculated amount of bbPTH 
8. Inject bbPTH Subcutaneously  

Vetrigel 

 

*2 people necessary  

 

1. Anesthetize Rat 

2. Shave 

3. Clean (3 hibiclens + 3 70% EtOH) 

4. Ryan places first needle on both Rat’s 

5. Run Heparin through 2
nd

 Needle’s  

6. Place 2
nd

 Needle’s 

7. Vetrigel 

a. Use Liquid syringe A to reconstitute bbPTH 1-84 

i. Remove 2 vials of bbPTH 1-84 from -80°C 
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ii. Thaw at RT for 15min 

iii. Centrifuge 

iv. Attach a needle to syringe A and resuspend PTH 

v. Centrifuge vials before placing back in syringe A 
 

Dose: 100g 

(566g x 2 Vials) / 500l = 2.264l/l 

 

100g = 44l 

 

b. Connect Syringe A to B 

c. Push all of liquid into powder and slowly mix Back and Fourth 

Mixing Time 

0” – Begin slowly 

30” – Transition slow to fast 

60” – DONE (~30 Cycles) 

 

*Leave in Syringe A 

 

d. Two drops in sterile Petri Dish 

e. Two Syringes with Needles 

 

Load: 0.1ml of Vetrigel in each syringe 

 

f. Remove Needle from syringe’s 

g. Connect to Rat with Needle 

h. Inject Slowly 
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9-12:  ZA Reconstitution for Rat’s 

Protocol Used by: 

 

 

 

 

 

Supplies Required Supplier and 

Catalog Number 

Storage 

Conditions 

Location 

    

0.9% Sodium Chloride Central Supplies RT Laura’s Lab 

bbPTH  -80°C Freezer 

Filter 0.2m  RT  

HCl  RT Chemical Cabinet 

Insulin Syringe 309301 RT Drawer 

Rat’s    

Eppendorfs 1.5ml  RT  

Falcon Tubes 50ml  RT  

General Notes: 

 Administer Injections at the same time, once weekly 
 Record individual injections 

o Bent Needles 
o Volume administered in two partial doses 

 Keep reconstituted ZA on ICE – bring ice bucket to mouse room 
 Use Laura’s Mouse Scale to weigh rat’s once a week 
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Zoledronic acid (Zometa) 
Lyophilized  
10mg 
Reconstitute the ZA to a concentration of 2 mg/ml 

 10mg/5ml = 2mg/ml 

1. Remove ZA from Sara’s Drawer 

2. Centrifuge vial to collect the lyophilized powder to the bottom of the tube 

3. In Biosafety cabinet for remaining steps 

4. Add 5ml’s of Sterile saline to 10mg of ZA 

5. Transfer 50l of the reconstituted ZA  into 100 Sterile 0.6 ml epps 
6. Immediately freeze aliquots of ZA at -20°C 

Animal Dose 

Dose: 12.5g/kg 
*Keep everything on ICE? 
 

1. Remove aliquoted ZA(2mg/ml) from -20°C 
g. Allow to thaw on ice 
h. Centrifuge before opening 

2. Dilute ZA to a concentration of 0.01g/l  

3. Add 50l of 0.9% saline to the 2mg/ml 50l ZA aliquot (from the -80°C) = 1mg/ml 
a. Mix/vortex 

4. Add 50l of 1mg/ml ZA to 450l 0.9% saline = 0.1mg/ml 
a. Mix/vortex 

5. Add 400l of 0.1mg/ml ZA to 3.6ml 0.9% saline = 0.01mg/ml = 0.01g/l 
a. Mix/vortex 

6. Rat Dose 

l
g

lkgRat

kg

g







01.0

)(5.12
 Injection Amount 

7. Weigh the Rat’s once a week and recalculate the injection amount (l) for each rat 
8. Examples 

ID Weight (kg) Injection Amount(l) 

95 0.125 156 

63 0.140 175 

 

9. Fill Insulin Syringes with calculated amount of ZA 
10. Inject ZA Subcutaneously  

2mg/ml             2X diluted = 1mg/ml 
1mg/ml             10X diluted = 0.1mg/ml 
0.1mg/ml          10X diluted = 0.01mg/ml 
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9-19: SOP – Osteosarcoma Cell Injections into Distal Femoral Metaphysis of Nude Rats 

Protocol used by:  Ryan Curtis 

Cell Culture work done following SOP – Abrams OSA 5-11 by Sara Gookin 

Materials  

22g 1.5 inch needles 
1ml luer lock syringes 
Surgical scrub - 70% ethanol and Chlorhexadine solution 
Cultured Abram’s OSA Luc + cells (0.2 ml of MEM with cells at a conc. of 1 x 10^6 cells per 50 ul) per rat 
Isoflurane  
Sterile Surgical Gloves 
Nude Rats  
Heating Pad  
Rodent Anesthesia unit 
 
Procedure  
 

1. Prepare procedure area as needed to include heating pad, surgical drapes, towels etc.  
2. Prep enough cells as needed using SOP – Abrams OSA 5-11 by Sara Gookin.  Per individual rat 

you will use 0.2 ml of MEM with a concentration of 1 x 10^6 cells per 50ul drawn up in a 1 ml 
syringe. 

3. Anesthetize rat using 5% Isoflurane in an induction chamber.  
4. Place rat on surgical table in right lateral recumbency (right leg down) while maintaining general 

anesthesia with 2-3% Isoflurane. 
5. Give Buprenorphine SR-Lab (0.8 to 1 mg/kg) SQ once ~15 minutes prior to procedure for nearly 

72 hours of pain control.  Apply sterile lubricant to eyes prior to procedure.  
6. Clip area over left femur followed by surgical prep (three times interchanging from 

chlorhexadine then 70% ethanol). 
7. Insert a 22g 1.5 inch needle into the left femur at the level of the trochanteric fossa and advance 

distally through the medullary cavity until the desired injection site (distal femoral metaphysis). 
8. Once placed, 0.2 ml of MEM at 1 x 10^6 OSA cells per 50ul can be drawn up into a 1 ml luer lock 

syringe.  The cells in MEM should be imaged to test for luciferase expression prior to injection.  
Then place a new 22g 1.5 inch needle on that syringe before letting stand upright(needle down) 
for three minutes.  This allows for clumping of cells and improved tumor cell uptake.  

9. Following 3 minutes, remove the first placed needle from the femur as this needle cannot be 
used as it is typically clogged by a bone core. 

10. Now insert the 2nd needle (attached to filled syringe with cells) through the already drilled hole 
in the proximal femur to advance distally to desired injection site (distal femoral metaphysis).  

11. Once placed, inject 0.1 ml of cells into site slowly to prevent embolism. 
12. Remove the needle and syringe slowly, then discard into sharps container.  
13. Repeat procedure for each rat needing Abrams OSA Luc + inoculation. 
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Fig. 1 – Proper placement of a 22g 1.5 inch needle prior to OSA cell inoculation into the distal 
femoral metaphysis.   
 
 
Notes: 

22g x 1.5 needle + syringe – the empty needle holds 50l, so when you attach the new needle 

and place it (2nd needle placed) you have to inject 100l to account for the void space.  
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3-27.  Bioquant Fluorescent Labeled Bones (Cortical and 

Trabecular) 

Protocol used by: Alison Doherty and Danielle Roteliuk 

Time to complete/image:  5-15min 

Supplies required: 

BioQuant 

10x objective images of fluorescent-labeled bone slides 

General Notes:  

 Analysis of single label, double label, interlabel width 

Procedure: 

1. Start computer and open Bioquant Osteo 

 

2. Open Data set 

a. File folder 

b. “Open Data Set” 

i. Data Directory: C:\BQDATA\ 

ii. Data Volume: Doherty 

iii. Data Set: Doherty **  This will change with each sample:  Create Quick 

Set! 

 
c. Click “Open” 
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3. In “Selected List” window, click “Open List” 

 
a. Select correct list under: 

i. Computer 

ii. Windows 7 (C:) 

iii. BQOSTEO 

iv. Selected Lists 

v. Doherty Cortical Fluorescent… 

  
 

4. In “Selected List” window, under “Available Arrays,” double click the following to move 

them over to the “Selected” column* 

a. L5 Double Label (0) 

b. I2 Interlabel width (0) 

c. L6 Single Label (0) 

  
*To remove an array from column, double click the array under “selected” 

column 

 

5. In “Parameters” window, check that 10x is selected for magnification, and that D4 is 

selected for Topo Array for each of the selected arrays.  The assign button will lock that 

(theoretically) in place. 

 
6. Open your image:  

a. In the “Image” window, click “Open Single” 
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b. Find your image of choice and open 

7. In “Image” window, click the “Calibration” button 

a. In the “Optical Calibration” window, under “File,” click “Load” 

 
b. Select: 

i. Computer 

ii. Windows 7 (C:) 

iii. BQOSTEO\Calibration Backup 

iv. 9-9-13_NikonScope.cal 

 

c. Click “Open,” then close the “Optical Calibration” window 

8. Double check, in the “Parameters” window, that 10x is selected for magnification, and 

that D4 is selected for Topo Array 

9. Ensure that “Additive Mode” is checked under “Measure” 

 
10. In the “Large Image Navigator” window, click the Shrink/Expand Image button so that 

your whole image is visible in the image box (not zoomed in) 

 
11. In the “ROI Tools” window, select “Full Screen” under “Type,” then click “Define” 
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12. For measuring double labels:  In the “Selected List” window, click to highlight “L5” 

under “Selected” 

 

13. In the “Measurement” window, make sure that: 

a. dLs is selected 

b. I2 is the width variable 

c. L5 is the surface variable 

d. The box is checked for “spacebar to end” 

 

14. Click the “Draw 1” button 

a. This will take the cursor into the image box 

b. Use the “Z” key to zoom in and out 

c. Left click at the start of the outer label (so on endocortical surfaces this will be the 

closest label to the medullary cavity, on the periosteal surface this will be the 

label closest to the soft tissues) and continue clicking along the length of the outer 

double label. 

d. Spacebar to stop when you reach the end of the label 

15. Click the “Draw 2” button 

a. Repeat the steps in 14 only on the inner label 

b. Make sure that the outer label is longer than the inner label, otherwise you will get 

aberrant width measurements! 

c. Spacebar to leave the box 

16. The two lines should now be connected by various interlabel measurements (interlabel 

width) 

17. In the “Measurement” window, click “Measure”: a number should appear under L5 and 

I2 in the “Raw Data” window 

 
 

18. For measuring Single labels:  In the “Selected List” window, click to highlight “L6” 

under “Selected” 

19. Make sure that the Topo array is set to full screen and defined 

20. In the “Measurement” window, make sure that: 

a. Manual is selected 

b. The box is checked for “spacebar to end” 
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21. Click measure 

a. This will take the cursor into the image box 

b. Use the “Z” key to zoom in and out 

c. Left click at the start of the label and continue clicking to trace the label 

d. Right click to end tracing that label and start a new single label in the image 

e. Spacebar to exit the image window and to measure the single label lengths…this 

is additive!** 

**Note:  For each new image, hit Ctl+Alt+i to add rows to the raw data table.  Hit 

Ctl+i to add just one new data cell.  For each image, make sure that you record the 

single labels separately by clicking on the L6 data cell corresponding to the image 

you are measuring (i.e. image 3, make sure you are in the L6 colum, row 3) 

 

22. Save Data and move to excel file 

a. File folder: Save Data 

b. File folder: Data Manager: 

i. Desktop: My Computer: Windows 7 (C:): scroll to Doherty 

ii. Click “export Raw Data” 

iii. Drag each quick set to window, then click “to clipboard” 

c. Open Excel 

i. On keyboard, hit “Ctrl” “V” to paste data table 

ii. Check that pasted data matches your data 

iii. Save the Excel file 

d. You can also copy data quickly by going to Edit:  Copy Data:  All or selected 

array 

i. Open Excell and hit “Ctrl” “V” to paste data table 
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3-25.  SOP – Marmot trabecular Von Kossa 
 

1. Open BIOQUANT OSTEO 2012 

2. File -> Open Data Set 

3. Data Volumes: Doherty VK (or Curtis VK) 

a. Open Previous Data Set (ex: last animal you collected data) 

 
4. File -> Quick Data Set 

5. Data Set Name: VK_M#  

*Make a new one for each animal 

a. VK : Von Kossa 

b. M: Marmot 

c. #: Sample ID 

 
6. Open Single Image 
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7. Calibration 

a. An Optical Calibration Window will pop up 

 
b. File -> Load 

 
c. 3-3-14_Slide Scanner.cal 

* This is for images taken on the slide scanner in pathology (DMC) 

d. Exit out of the Optical Calibration Window 

8. Open List (in the Selected List area) 

a. An Open Selected List Window will pop up 

b. Select Doherty Trabecular VK.bqa 

c. Open 

d. Selected Arrays will automatically be selected  

D8: Tissue Volume (m
2
) 

D12: Bone Volume (m
2
) 

L3: Bone Surface () 

D13: Osteoid Volume (m
2
) 

L1: Osteoid Surface () 

I1: Osteoid Thickness () 

D15: Osteoblast Number 

 

9. Select L3 

a. This will give you data for D8, D12 and L3 
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b. Under Parameter 

i. Make sure Save to Topo Array is checked in the Parameters area 

ii. Select the Magnification the image was taken at 

Mag: 40x 

iii. Topo Array: D4 

iv. Z Offset: NOTHING 

c. Under ROI Tools 

i. Type: Irregular 

ii. Check Spacebar to End 

iii. Draw Region of Interest 

*Exclude Cortices Edge 

 
d. Under Threshold 

i. Select  

 
ii. Threshold the Bone = All of the BLACK 

iii. Fill in all of the holes in the bone with either the paint bucket (if lines 

connect so you don’t fill in the entire white region) or with the paint brush 
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iv. When you are satisified that all the bone is selected -> Preview (to double 

check) -> Measure 

 
v. Values for D8, D12 and L3 will be measured 

 
vi.  

10. Select D13 

Width: I1 (Osteoid Width) 

Surface: L1 (Osteoid Surface) 

Volume: D13 (Osteoid Volume) 
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a. In the Large Image Navigator Window -> Zoom 1:1 (so you can see the osteoid) 

b. Use the Course Move buttons to move the window 

  
*You will have zero overlap with the course move buttons 

*Use the Fine Move buttons to move it slightly to make an osteoid more in the 

middle 

c. Once you Find Osteoid 

i. Threshold -> Select osteoid 

*Use the paint brush to add more to the selection or the eraser to remove 

non-osteoid 

ii. Happy with Selected Osteoid 

iii. Preview  

iv. Curser will automatically enter Window 

v. Highlight osteoid 

vi. Curser will automatically exit window 

vii. Set Ends -> place an ‘x’ at each end of the osteoid 

viii. Measure 

 
ix. Values for D13, L1 and I1 will be measured 
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x. Under D13 -> Ctrl+I to make a new line  

* For ONLY D13 

*L1 and I1 automatically fill in the next line when you measure the next 

osteoid 

*D13 is additive so it will continue to add to the same line unless you tell 

it not to (by adding a line with Ctrl+I) 

xi. BEFORE moving onto the next section on the image measure D15 
 

11. Select D15 

a. DO AT THE SAME TIME YOU FIND OSTEOID… after you measure osteoid, 

measure D15 before moving on to the next section in the image 

b. ALWAYS  

i. ROI Tools 

ii. Type: Full Screen 

iii. Define 

*This deletes any previous data that bioquant AUTOMATICALLY saves 

c. In Editing, Select Paint Brush 

d. Make the size of the paint brush half the size of the osteoblast 

e. Make a dot on the osteoblast 

 
f. Measure 

*Measures the number of osteoblasts you selected 

g. Ctrl + I for D15 to make a new line 

h. Return to D13  

i. Ctrl + I for D13 to create a new line 

*this only creates a new line for D13, NOT L1 and I1 (they are not 

additive and will automatically create a new line) 

ii. Continue scanning image until you find the next osteoid and repeat Steps 

#10 and #11 

*Once you select D13 (full screen) and find the next osteoid, Click 

Preview and the same threshold that was used for the previous osteoid 

should automatically appear, You can use this or you can start from 

scratch and select a NEW threshold 
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12. Moving on to the next image in the same sample 

*Marmots have around 4 images per animal 

a. Ctrl+I for D8, D12 and L3 and D13 and D15 

 
b. Open Single image 

i. Verify overlap with last image so you aren’t counting the same thing 

c. Repeat steps #9-12 
 

 

 

TIPS 

 Ctrl + I in Raw Data box makes a second row (only selected array, ex. D8) 

 Ctrl + Alt + I in Raw Data box makes entire new row in all arrays (D8, D12, L3, ect…) 

 Right click to get out of the image box 

 Keyboard functions when in the image box 

o Z – ZOOM (can only zoom twice before going back to original) 

o B – when on erase or fill -> B automatically switches to Draw 

o M – when in draw or erase -> M switches to fill 

o D – toggles between highlighted threshold and no threshold 

 Helps you see what is under the threshold 

 Threshold -> Draw a circle and then fill and everything in the circle will be highlighted 
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Appendix II 

bbPTH Release Profile in Vetrigel 
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-

well plates.  After solidification, sterile PBS was placed into the well and incubated at 37°C 

containing 5% CO2. The PBS was collected and replaced on Days 0.5, 1, 3, 7, 10, 14 and 18. A 

canine intact PTH ELISA (Immutopics International, San Clemente, CA), using bbPTH as 

standards, was used to determine the bbPTH levels released throughout the duration of the 

experiment. The data collected by the ELISA was used to calculate the amount of bbPTH 

needed to treat cells in the following experiment.  
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50g Scaffold Average(B&C) stdev Cumulative(B&C) % Release 
% 

stdev 

0 
   

0 0 

0.5 14211111 314270 14211111 28 0.629 

1 12211111 1257079 26422222 53 2.514 

3 11544444 2514157 37966667 76 5.028 

5 10433333 1099944 48400000 97 2.200 

7 10211111 314270 58611111 117 0.629 

10 11211111 471405 69822222 140 0.943 

14 1065556 251416 70887778 142 0.503 

18 993333 212132 71881111 144 0.424 

sum 71881111 
    100g 

Scaffold Average(A&B&C) stdev Cumulative(A&B) % Release 
% 

stdev 

0 
   

0 0.00 

0.5 30359259 5254432 30359259 30 5.25 

1 12840741 1866975 43200000 43 1.87 

3 14951852 5342970 58151852 58 5.34 

5 15951852 3913152 74103704 74 3.91 

7 15248148 1118494 89351852 89 1.12 

10 16840741 339450 106192593 106 0.34 

14 2102593 170813 108295185 108 0.17 

sum 108295185 
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