
DISSERTATION

CONSTRUCTING SUBTLE HIGHER ORDER MUTANTS FROM JAVA AND ASPECTJ

PROGRAMS

Submitted by

Elmahdi Omar

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2015

Doctoral Committee:

Advisor: Sudipto Ghosh

Co-Advisor: Darrell Whitley

James M. Bieman

Daniel E Turk

Copyright by Elmahdi Omar 2015

All Rights Reserved

ABSTRACT

CONSTRUCTING SUBTLE HIGHER ORDER MUTANTS FROM JAVA AND ASPECTJ

PROGRAMS

Mutation testing is a fault-based testing technique that helps testers measure and improve the

fault-detection effectiveness of their test suites. However, a majority of traditional First Order Mu-

tants (FOMs), which are created by making a single syntactic change to the source code, represent

trivial faults that are often easily detected (i.e. killed). Research has shown that the majority of real

faults not detected during testing are complex faults that cannot be simulated with FOMs because

fixing these faults requires making multiple changes to the source code. Higher Order Mutants

(HOMs), which are created by making multiple syntactic changes to the source code, can be used

to simulate such faults.

The majority of HOMs of a given program are killed by any test suite that kills all the FOMs.

We refer to HOMs that are not killed as subtle HOMs. They represent cases where single faults

interact by masking each other with respect to the given test suite and produce complex faulty

behavior that cannot be simulated with FOMs. The fault-detection effectiveness of the given test

suite can be improved by adding test cases that detect the faults denoted by subtle HOMs.

Because subtle HOMs are rare in the exponentially large space of candidate HOMs, the cost

of finding them can be high even for small programs. A brute force approach that evaluates every

HOM in the search space by constructing, compiling, and executing the HOM against the given

test suite is unrealistic.

We developed a set of search techniques for finding subtle HOMs in the context of Java and

AspectJ programming languages. We chose Java because of its popularity, and the availability of

experimental tools and open source programs. We chose AspectJ because of its unique concepts

and constructs and their consequent testing challenges.

We developed four search-based software engineering techniques: (1) Genetic Algorithm,

(2) Local Search, (3) Test-Case Guided Local Search, (4) Data-Interaction Guided Local Search.

We also developed a Restricted Random Search technique and a Restricted Enumeration Search

technique. Each search technique explores the search space in a different way and that affects

ii

the type of subtle HOMs that can be found by each technique. Each of the guided local search

techniques uses a heuristic to improve the ability of Local Search to find subtle HOMs.

Due to the unavailability of higher order mutation testing tools for AspectJ and Java programs,

we developed HOMAJ, a Higher Order Mutation Testing tool for AspectJ and Java programs for

finding subtle HOMs. HOMAJ implements the developed search techniques and automates the

process of creating, compiling, and executing both FOMs and HOMs.

The results of our empirical studies show that all of the search techniques were able to find

subtle HOMs. However, Local Search and both the Guided Local Search techniques were more

effective than the other techniques in terms of their ability to find subtle HOMs.

The search techniques found more subtle HOMs by combining faults created by primitive Java

mutation operators than by combining faults created by Java class level operators and AspectJ

operators.

Composing subtle HOMs of lower degrees generated by Restricted Enumeration Search is an

effective way to find new subtle HOMs of higher degrees because such HOMs are likely to exist

as compositions of multiple subtle HOMs of lower degrees. However, the search-based software

engineering techniques were able to find subtle HOMs of higher degrees that could not be found

by combining subtle HOMs of lower degrees.

iii

ACKNOWLEDGEMENTS

My great gratitude to my advisers, Dr. Sudipto Ghosh and Dr. Darrell Whitley, for their

continuous guidance and support. I am thankful to them for their valuable input on how to improve

my work and research skills. A big thanks to both of them for pushing me further and inspiring me

to be a better thinker and writer.

My appreciation also goes to my advisory committee members, Dr. James Bieman and Dr. Dan

Turk, for taking the time to give me valuable feedback. I would like to thank the entire Computer

Science Department staff for being available and supportive.

A special thanks to my wife and son for being patient, understanding, and supportive, to my

parents for their continuous support and encouragement, and to all my friends for their support.

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Problem Description . 1

1.2 Approach and Contributions . 4

2 Background 9

2.1 Mutation Testing . 9

2.2 Higher Order Mutant Classification . 11

2.3 Aspect-Oriented Programming . 13

2.4 Search-Based Software Engineering . 14

2.4.1 Applying Search-Based Techniques to Software Engineering Problems . . 14

2.4.2 Commonly Used Search Based Optimization Techniques 15

3 Related Work 17

3.1 Mutation Testing for Java Programs . 17

3.2 Mutation Testing for Aspect-Oriented Programs 19

3.3 Mutation Cost Reduction Techniques . 21

3.4 Higher Order Mutation Testing . 22

3.5 Search-Based Software Engineering for Testing Problems 25

4 Approach 28

4.1 Objective Function . 28

4.2 Genetic Algorithm . 32

4.3 Local Search . 36

4.4 Guided Local Search . 39

4.4.1 Data-Interaction Guided Local Search . 39

4.4.2 Test-Case Guided Local Search . 40

4.5 Restricted Random Search . 41

4.6 Restricted Enumeration Search . 42

v

5 Implementation 43

5.1 Higher Order Mutation Testing Tool . 43

5.1.1 I/O Services . 43

5.1.2 FOM Generation . 45

5.1.3 HOM Creation . 47

5.1.4 Search Strategies . 47

5.1.5 Evaluation . 47

6 Experimental Setup 49

6.1 Subject Programs . 49

6.2 Test Sets . 52

6.3 Configuration of the Search Techniques . 53

7 Measuring the Relative Effectiveness of the Search Techniques 54

7.1 Research Questions . 54

7.2 Results and Analysis . 56

7.2.1 RQ1: What is the relative effectiveness of the search technique in terms of

their ability to find subtle HOMs? . 56

7.2.2 RQ2: How does the relative effectiveness of the search techniques compare

over time? . 58

7.2.3 RQ3: How does the relative effectiveness of the search techniques compare

with respect to the degree of subtle HOMs? 58

7.2.4 Discussion . 60

7.3 Summary of findings . 86

8 Comparing Sets of Subtle HOMs Found by Different Search Techniques 87

8.1 Research Question . 87

8.2 Results and Analysis . 88

8.3 Summary of findings . 100

vi

9 Impact of Programming Language Constructs on Creating Subtle HOMs 102

9.1 Research Questions . 102

9.2 Results and Analysis . 104

9.2.1 RQ1: What mutation operators are more likely to create subtle HOMs? . . 104

9.2.2 RQ2: Are subtle HOMs more likely to be created when combining mutated

constructs from specific locations? . 114

9.3 Summary of findings . 126

10 Cost of Finding Subtle HOMs 127

10.1 Research Questions . 127

10.2 Results and Analysis . 129

10.2.1 RQ1: What is the computational cost of finding subtle HOMs using the

search techniques? . 129

10.2.2 RQ2: What proportion of subtle HOMs that were found constitutes equiv-

alent mutants? . 130

10.3 Summary of findings . 132

11 Composition and Decomposition Relationships Between Subtle HOMs 133

11.1 Research Questions . 134

11.2 Results and Analysis . 136

11.2.1 RQ1: Can subtle HOMs be composed to create new subtle HOMs of higher

degrees? . 136

11.2.2 RQ2: To what extent do subtle HOMs of higher degrees represent a com-

position of subtle HOMs of lower degrees? 139

11.2.3 RQ3: How often subtle HOMs of higher degrees strongly subsume their

decomposed subtle HOMs of lower degrees? 142

11.3 Summary of findings . 143

12 Threats to Validity 144

vii

12.1 External Validity . 144

12.2 Internal Validity . 145

12.3 Construct validity . 145

12.4 Conclusion validity . 146

13 Conclusions 147

14 Future Work 150

References 152

Appendices 160

viii

LIST OF TABLES

6.1 Subject Programs . 50

7.1 Number of subtle HOMs that were found for Cruise Control (Java) 60

7.2 Cruise Control (Java) . 60

7.3 Number of subtle HOMs that were found for Movie Rental 62

7.4 Movie Rental . 63

7.5 Number of subtle HOMs that were found for Telecom 65

7.6 Telecom . 65

7.7 Number of subtle HOMs that were found for Kettle 68

7.8 Kettle . 68

7.9 Number of subtle HOMs that were found for Banking 70

7.10 Banking . 70

7.11 Number of subtle HOMs that were found for Coordinate 73

7.12 Coordinate . 73

7.13 Number of subtle HOMs that were found for Elevator Program 75

7.14 Elevator . 76

7.15 Number of subtle HOMs that were found for Cruise Control (AspectJ) 78

7.16 Cruise Control (AspectJ) . 78

7.17 Number of subtle HOMs that were found for Roman 80

7.18 Roman . 81

7.19 Number of subtle HOMs that were found for XStream 83

7.20 XStream . 83

10.1 Number of test cases that killed all FOMs and some of the subtle HOMs 129

10.2 Average time for finding subtle HOMs . 130

10.3 Subtle HOMs and Equivalent HOMs . 131

11.1 Composing subtle HOMs to create new subtle HOMs 137

ix

11.2 Comparing the number of subtle HOMs that were found by the search techniques and

by composing subtle HOMs that were found by Restricted Enumeration Search . . 138

11.3 Number of subtle HOMs of degree three and higher that were found by the best run

for each technique . 140

11.4 Overlap between the sets of subtle HOMs of higher degrees 141

11.5 Strongly subsuming subtle HOMs of higher degrees 142

x

LIST OF FIGURES

4.1 Example of neighboring HOMs . 38

5.1 Architecture of HOMAJ . 44

5.2 FOM Metadata file Example . 46

7.1 Distribution of the number of subtle HOMs that were found for Cruise Control (Java) . 60

7.2 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Cruise Control (Java) . 61

7.3 Number of HOMs with respect to the degree for Cruise Control (Java) 62

7.4 Distribution of the number of subtle HOMs that were found for Movie Rental 63

7.5 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Movie Rental . 63

7.6 Number of HOMs with respect to the degree for Movie Rental 64

7.7 Distribution of the number of subtle HOMs that were found for Telecom 65

7.8 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Telecom . 66

7.9 Number of HOMs with respect to the degree for Telecom 67

7.10 Distribution of the number of subtle HOMs that were found for Kettle 68

7.11 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Kettle . 69

7.12 Number of HOMs with respect to the degree for Kettle 69

7.13 Distribution of the number of subtle HOMs that were found for Banking 71

7.14 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Banking . 72

7.15 Number of HOMs with respect to the degree for Banking 72

7.16 Distribution of the number of subtle HOMs that were found for Coordinate 73

7.17 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Coordinate . 74

xi

7.18 Number of HOMs with respect to the degree for Coordinate 75

7.19 Distribution of the number of subtle HOMs that were found for Elevator 76

7.20 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Elevator . 76

7.21 Number of HOMs with respect to the degree for Elevator 77

7.22 Distribution of the number of subtle HOMs that were found for Cruise Control (As-

pectJ) . 78

7.23 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Cruise Control (AspectJ) . 79

7.24 Number of HOMs with respect to the degree for Cruise Control (AspectJ) 80

7.25 Distribution of the number of subtle HOMs that were found for Roman 81

7.26 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for Roman . 81

7.27 Number of HOMs with respect to the degree for Roman 82

7.28 Distribution of the number of subtle HOMs that were found for XStream 83

7.29 Growth in the average number of subtle HOMs that were found over the number of

explored HOMs for XStream . 84

7.30 Number of HOMs with respect to the degree for XStream 85

8.1 Number of subtle HOMs that were found by the search techniques over 30 runs for

Cruise Control (Java) . 90

8.2 Number of subtle HOMs with respect to the number of search techniques that found

them for Cruise Control (Java) . 90

8.3 Number of subtle HOMs that were found by the search techniques over 30 runs for

Movie Rental . 91

8.4 Number of subtle HOMs with respect to the number of search techniques that found

them for Movie Rental . 92

8.5 Number of subtle HOMs that were found by the search techniques over 30 runs for

Telecom . 92

xii

8.6 Number of subtle HOMs with respect to the number of search techniques that found

them for Telecom . 93

8.7 Number of subtle HOMs that were found by the search techniques over 30 runs for

Kettle . 94

8.8 Number of subtle HOMs with respect to the number of search techniques that found

them for Kettle . 94

8.9 Number of subtle HOMs that were found by the search techniques over 30 runs for

Banking . 95

8.10 Number of subtle HOMs with respect to the number of search techniques that found

them for Banking . 95

8.11 Number of subtle HOMs that were found by the search techniques over 30 runs for

Coordinate . 96

8.12 Number of subtle HOMs with respect to the number of search techniques that found

them for Coordinate . 96

8.13 Number of subtle HOMs that were found by the search techniques over 30 runs for

Elevator . 97

8.14 Number of subtle HOMs with respect to the number of search techniques that found

them for Elevator . 97

8.15 Number of subtle HOMs that were found by the search techniques over 30 runs for

Cruise Control (AspectJ) . 98

8.16 Number of subtle HOMs with respect to the number of search techniques that found

them for Cruise Control (AspectJ) . 99

8.17 Number of subtle HOMs that were found by the search techniques over 30 runs for

Roman . 99

8.18 Number of subtle HOMs with respect to the number of search techniques that found

them for Roman . 100

8.19 Number of subtle HOMs that were found by the search techniques over 30 runs for

XStream . 101

xiii

8.20 Number of subtle HOMs with respect to the number of search techniques that found

them for XStream . 101

9.1 Distribution of Subtle HOMs based on their Mutation Operators for Cruise Control

(Java) . 105

9.2 Distribution of Subtle HOMs based on their Mutation Operators for Telecom 106

9.3 Distribution of Subtle HOMs based on their Mutation Operators for Kettle 108

9.4 Distribution of Subtle HOMs based on their Mutation Operators for Banking 109

9.5 Distribution of Subtle HOMs based on their Mutation Operators for Coordinate 110

9.6 Distribution of Subtle HOMs based on their Mutation Operators for Elevator 111

9.7 Distribution of Subtle HOMs based on their Mutation Operators for Cruise Control

(AspectJ) . 112

9.8 Distribution of Subtle HOMs based on their Mutation Operators for Roman 113

9.9 Distribution of Subtle HOMs based on their Mutation Operators for XStream 113

9.10 Distribution of HOMs based on the location of their constituent FOMs for Cruise Con-

trol (Java) . 115

9.11 Distribution of HOMs based on the location of their constituent FOMs for Movie Rental116

9.12 Distribution of HOMs based on their construction approach for Movie Rental 117

9.13 Distribution of HOMs based on the location of their constituent FOMs for Telecom . . 118

9.14 Distribution of HOMs based on their construction approach for Telecom 118

9.15 Distribution of HOMs based on the location of their constituent FOMs for Kettle . . . 119

9.16 Distribution of HOMs based on their construction approach for Kettle 120

9.17 Distribution of HOMs based on the location of their constituent FOMs for Banking . . 120

9.18 Distribution of HOMs based on their construction approach for Banking 121

9.19 Distribution of HOMs based on the location of their constituent FOMs for Coordinate . 122

9.20 Distribution of HOMs based on the location of their constituent FOMs for Elevator . . 122

9.21 Distribution of HOMs based on the location of their constituent FOMs for Cruise Con-

trol (AspectJ) . 123

9.22 Distribution of HOMs based on their construction approach for Cruise Control (AspectJ)124

xiv

9.23 Distribution of HOMs based on the location of their constituent FOMs for Roman . . . 125

9.24 Distribution of HOMs based on the location of their constituent FOMs for XStream . . 125

10.1 Subtle HOMs and Equivalent HOMs . 130

11.1 Number of subtle HOMs that were found by the search techniques with respect to their

decomposition type for all subject programs . 139

xv

Chapter 1

Introduction

Developing test cases that are effective at revealing hard-to-find faults is essential for creating

reliable software applications. However, due to the growing complexity of software, developing

test cases that can expose faults is becoming an even more challenging task. Testers generally

rely on software specifications, documentation, and source code to develop their test cases, but

this is usually not sufficient to deliver a correct and reliable software application [1]. Therefore,

researchers have developed systematic testing techniques, such as mutation testing, to help testers

measure and improve the ability of their test cases to detect faults [2, 3, 4, 5].

Mutation testing is a fault-based testing technique that involves creating faulty versions of the

program under test and then measuring the ability of the given test suite to distinguish each faulty

version from the original program. The faulty versions of the program are called mutants. Each

mutant is created by making a single syntactic change to the original program. The syntactic

changes are based on mutation operators, which simulate typical programming errors. A mutant

that produces a different output than the original program is said to be killed, which means that

the syntactic change (i.e. mutation fault) was detected by the given test suite. The mutation score

is the ratio of the number of killed mutants over the total number of non-equivalent mutants. It

predicts the ability of the given test suite to detect faults.

Equivalent mutants are those that are semantically identical to the original program and cannot

be killed by any test case. The non-equivalent mutants that are not killed help testers generate new

test inputs that improve the fault-detection effectiveness of the given test suite.

1.1 Problem Description

Mutation testing has been shown to be effective for improving the quality of test suites [6, 7].

However, a majority of traditional First Order Mutants (FOMs), which are created by making a

single syntactic change to the source code, represent trivial faults that are often easily detected [8].

1

Purushothaman and Perry [9] showed that the majority of real faults not detected during testing

are complex faults that cannot be simulated using FOMs. Their study reported that fixing 90% of

these complex faults required making multiple changes to the source code. Moreover, Gopinath

et al. [10] investigated real faults in 6,000 programs in four different programming languages

and reported that a typical real fault involves about three to four tokens. They also reported the

large majority of typical faults cannot be simulated with a single traditional mutation operator.

Therefore, there is a need for techniques that can produce mutants that can simulate real complex

faults.

Higher Order Mutants (HOMs), which are created by making multiple syntactic changes to

the source code (i.e. combining multiple FOMs), can simulate real complex faults. Wedyan and

Ghosh [11] used HOMs to produce mutants that cover all Aspect-Oriented Programming [12] fault

types. Researchers have used HOMs to reduce the cost of mutation testing. Jia and Harman [8, 13,

14] developed techniques to identify HOMs that can replace their constituent FOMs without loss

of test effectiveness. The goal of such HOMs, which are referred to as strongly subsuming HOMs,

is to reduce the total number of FOMs that need to compiled and executed, thereby reducing test

execution cost. Kintis et al. [15] used second order mutants to detect equivalent FOMs and to

reduce the total number of equivalent FOMs that need to be inspected by testers.

We introduced the notion of subtle HOMs [16, 17, 18], which denote non-trivial and complex

faults that are not detected by the given test suite that kills all the non-equivalent FOMs for the

program under test. Subtle HOMs represent HOMs whose constituent FOMs interact by masking

each other to produce new faulty behavior that cannot be simulated using all the FOMs for the

program under test separately.

The mutation faults simulate typical programming errors and research has shown that mutation

faults can be representative of real faults [19]. Subtle HOMs can simulate complex real faults. The

fault-detection effectiveness of the given test suite can be improved by adding test cases that kill

subtle HOMs.

The cost of finding subtle HOMs can be high even for small programs [16]. The number of

HOMs is exponentially large because each HOM is created by combining two or more FOMs,

2

which result in a combinatorial explosion in the number of HOMs that can be created. Subtle

HOMs are rare because a large majority of the HOMs are killed by any test suite that kills all the

FOMs for the program under test; this is known as the coupling effect [20, 21].

Another factor that adds to the cost of finding subtle HOMs is the high computational cost of

evaluating mutants. The process of evaluating mutants involves the compilation and execution of

each mutant against the given test suite to determine whether the mutant is killed by the given test

suite or not. Using a brute force approach to explore the large space of HOMs, which requires

evaluating all the HOMs, is unrealistic. Therefore, there is a need for search techniques that can

effectively explore the search space and find subtle HOMs.

Researchers used Search-Based Software Engineering (SBSE) techniques to solve various soft-

ware engineering problems [22]. Harman and Jones [23] reported that 59% of the published SBSE

techniques targeted software testing problems, such as the automation of test input generation [24]

and bug fixing [25]. Search-Based Software Engineering techniques can be used to find subtle

HOMs.

Jia and Harman [8] used search-based software engineering techniques to explore the space

of all HOMs and find strongly subsuming HOMs in the context of the C programming language.

Because strongly subsuming HOMs are defined as those that are killed by a subset of the union of

the sets of test cases that kill the constituent FOMs, Jia and Harman defined their fitness measure

such that it favors HOMs that are killed by fewer test cases than their constituent FOMs.

The fitness measure defined by Jia and Harman [8] is not sufficient for finding subtle HOMs.

This is because subtle HOMs are defined as those that their constituent FOMs can interact to

produce new faulty behavior that cannot be detected by the given test set. Therefore, a fitness

measure for finding subtle HOMs should favor HOMs with high level of interaction amongst their

constituent FOMs. A new faulty behavior results when multiple faults interact to mask each other

with respect to the given test set. Nonetheless, a fitness measure for finding subtle HOMs should

also favor HOMs that are killed by fewer test cases than their constituent FOMs. Subtle HOMs by

definition are harder to kill than their constituent FOMs.

3

1.2 Approach and Contributions

In this dissertation we introduce the notion of subtle HOMs and developed a set of search tech-

niques for finding subtle HOMs in the context of Java and AspectJ programming languages. We

chose Java because of its popularity, and the availability of experimental tools and open source pro-

grams. We chose AspectJ because of the unique concepts and introduced by the Aspect-Oriented

Programming (AOP) paradigm. The unique constructs cause new types of interactions between

the program elements, which result in new testing challenges [11, 26]. The main contributions of

this dissertation are as follows.

1- Search techniques for finding subtle HOMs

We developed three types of search techniques for finding subtle HOMs: (1) search-based

software engineering techniques, (2) a restricted random search technique, and (3) a restricted

enumeration search technique. Each search technique explores the search space in a different way.

We developed an objective function that provides a metric to measure the fitness of HOMs. The

objective function uses information about the sets of test cases that kill the HOM and those that kill

its constituent FOMs to calculate the fitness value of the HOM. The objective function is designed

such that it favors HOMs with high level of interaction amongst their constituent FOMs as well

as those HOMs that are killed by fewer test cases than their constituent FOMs. The developed

search techniques use the objective function to identify subtle HOMs as well as HOMs that have

the potential to develop into subtle HOMs when the right FOMs are added or removed.

The search-based software engineering techniques are a Genetic Algorithm, Local Search, and

two Guided Local Search techniques. The Genetic Algorithm evolves a set of HOMs over a number

of iterations using combinatorial operators, crossover and mutation. The Genetic Algorithm uses

a selection operator to favor HOMs with better fitness values for reproduction.

Local Search starts with an arbitrary solution and iteratively improves it by searching the neigh-

borhood for HOMs with better fitness values. Local Search uses a neighborhood graph to deter-

mine the neighborhood of an HOM.

4

An initial experimental evaluation [16, 17, 18] of the Genetic Algorithm and Local Search

provided insights into the search space and enabled us to identify ways in which to improve the

ability of the search techniques to find subtle HOMs. The evaluation showed that certain FOM

combinations were more likely to produce subtle HOMs than others.

Because Local Search was the most effective technique in terms of its ability to find subtle

HOMs, we propose two guided versions of Local Search. Each version uses a heuristic to improve

the ability of Local Search to find subtle HOMs. The first version, Data-Interaction Guided Local

Search, utilizes program structural information, such as data flow, to identify the FOM combina-

tions that are more likely to produce subtle HOMs. The second version, Test-Case Guided Local

Search, utilizes information about the given test suite, such as the set of test cases that kills each

FOM, to identify the FOM combinations that are more likely to produce subtle HOMs.

Restricted Random Search is a constrained version of a random search technique. It iteratively

explores the search space of HOMs by selecting a random number of FOMs at each iteration to

create an HOM. Restricted Random Search uses a parameter that allows it to limit the degree of

the explored HOMs. The majority of the subtle HOMs found by the search techniques in the initial

experimental evaluation were HOMs of lower degrees [16, 17, 18].

Restricted Enumeration Search is a guided version of brute force approach. It explores the

space of all HOMs in a predefined order starting with the areas of the search space where more

subtle HOMs are expected to be found. Restricted Enumeration Search enumerates HOMs in an

increasing order of their degrees starting with second order mutants.

2- Higher order mutation testing tool

The second contribution of the dissertation is the automation of the process of finding sub-

tle HOMs. Due to the unavailability of higher order mutation testing tools for AspectJ and Java

programs, we developed HOMAJ, a Higher Order Mutation Testing tool for AspectJ and Java pro-

grams. HOMAJ consists of five main components that automate the process of creating, compil-

ing, and executing both FOMs and HOMs and implement the search techniques presented above.

HOMAJ uses a selective compilation process to optimize the compilation of HOMs and reduce

5

the high computational cost associated with finding subtle HOMs. HOMAJ takes as an input the

program under test along with a number of test suites. It creates AspectJ and Java FOMs, and

compiles and executes them against the given test suite. HOMAJ starts the search process based

on the selected search technique. When the search process stops, HOMAJ presents a list of all

subtle HOMs that were found.

To promote the use of higher order mutation testing among researchers and practitioners,

HOMAJ is designed such that it can be easily extended to include new search strategies and objec-

tive functions.

3- Evaluation studies

We performed a set of empirical studies to evaluate the effectiveness of the proposed search

techniques in term of their ability to find subtle HOMs and investigated different factors that impact

the creation of subtle HOMs. The empirical studies are as follows:

• Measuring the relative effectiveness of the search technique

In this study we compared the relative effectiveness of the search techniques in terms of

their ability to find subtle HOMs. The goal is to determine which technique can find a higher

number of distinct, subtle HOMs. A higher number of distinct, subtle HOMs can be more

beneficial for improving the fault-detection effectiveness of test suites.

We measured the effectiveness in terms of the average number of subtle HOMs that were

found. We investigated how the effectiveness of the search techniques compare over time and

investigated the effectiveness of the search techniques with respect to the degree of subtle

HOMs that were found.

• Comparing sets of subtle HOMs found by different search techniques

The search techniques use different operators to generate HOMs, which can lead to dif-

ferent results. We investigated the overlap between the sets of subtle HOMs found by differ-

ent techniques to determine what set of subtle HOMs can be uniquely found by each search

technique and what set of subtle HOMs can be found by all techniques.

6

In a practical setting, a tester may not have the time nor the resources to run all the

search techniques to find subtle HOMs. Therefore, knowing what set of subtle HOMs can be

uniquely found by each search technique and what set of subtle HOMs can be found by all

techniques can help testers select and prioritize the search techniques based on the desired

type of subtle HOMs.

• Impact of programming language constructs on creating subtle HOMs

We investigated the impact of the different constructs provided by both AspectJ and Java

on the creation of subtle HOMs. We also investigated the impact of the aspectual behavior

on the creation of subtle HOMs. The goal is to determine if subtle HOMs are more likely to

be found when combining FOMs that correspond to a specific set of constructs or locations

of the program under test.

• Cost of finding subtle HOMs

We measured the cost of finding subtle HOMs in terms of the time taken by each search

technique to find subtle HOMs. Because equivalent HOMs cannot be killed by test suites,

they are treated as subtle HOMs. Equivalent HOMs can increase the cost of finding subtle

HOMs because of the additional human effort needed to identify equivalent mutants. We

investigated the proportion of subtle HOMs that represent equivalent HOMs and investigated

the difficulty of killing non-equivalent subtle HOMs using randomly generated test cases.

• Composition and decomposition relationships between subtle HOMs

Our initial investigation showed that the search techniques found a low number of subtle

HOMs of higher degrees (four and higher). Thus, we investigated alternative techniques

that can be more effective for finding subtle HOMs of higher degrees. We investigated how

composing subtle HOMs of lower degrees could create subtle HOMs of higher degrees. We

also analyzed subtle HOMs of higher degrees that were found by the search techniques to

determine if subtle HOMs of higher degrees can only exist as a composition of other subtle

HOMs.

7

The rest of the dissertation is organized as follows. Chapter 2 summarizes concepts pertaining

to traditional and higher order mutation testing, aspect-oriented programming, and search-based

software engineering. Chapter 3 presents related work in the areas of mutation testing for Java and

AspectJ programs, cost reduction techniques in traditional mutation testing, higher order mutation

testing, and search-based software engineering testing techniques. Chapter 4 describes the search

techniques. Chapter 5 presents the design and use of HOMAJ. Chapter 6 presents the experimen-

tal setup for the empirical evaluation. Chapter 7 presents a study to measure the effectiveness

of the search techniques. Chapter 8 presents a study to compare the sets of Subtle HOMs found

by different search techniques. Chapter 9 presents a study to investigate the impact of the pro-

gramming language constructs on the creation of subtle HOMs. Chapter 10 presents a study to

measure the cost of finding subtle HOMs. Chapter 11 presents a study to investigate the com-

position and decomposition relationships between subtle HOMs. Chapter 12 discusses threats to

validity. Chapter 13 presents the conclusions and Chapter 14 outlines directions for future work.

8

Chapter 2

Background

This chapter describes the concepts and terminology pertaining to traditional and higher order

mutation testing, provides a brief introduction into AspectJ concepts and constructs, and introduces

background information related to search-based software engineering techniques.

2.1 Mutation Testing

The first documented work of mutation testing can be found in 1971 in a student paper by

Lipton [2]. In the late 1970s, DeMillo et al. [3] and Hamlet [5] presented the first published work

in the field of mutation testing. Since then, mutation testing has gained a lot of interest and it has

been increasingly used for testing software. Recently, Jia and Harman [6] stated that the field of

mutation testing is reaching a mature state and showed evidence suggesting that mutation testing

is becoming a practical testing approach.

There are two hypotheses underlying the work of mutation testing: the competent programmer

hypothesis and the coupling effect [6, 20]. The competent programmer hypothesis states that pro-

grammers tend to develop programs that are almost correct (i.e., close to being correct). Therefore,

a few syntactic changes can fix the faults in the program. The coupling effect states that complex

faults and simple faults are coupled in a way that detecting simple faults can lead to the detection

of many of the complex faults. Below we describe the key concepts and processes involved in

mutation testing.

• Mutation operator: A mutation operator makes specific syntactic changes to the program to

generate mutants. The syntactic changes simulate the mistakes often made by programmers.

Researchers have defined mutation operators for various programming languages, such as

Fortran [27], C [28], and Java [29, 30]. A single mutation operator might generate different

mutants when applied to the same part of a program, each with a unique syntactic change.

9

For example, applying Relational Operator Replacement (ROR) to a Java statement, such as

if(x>y), produces the following mutated statements: if(x >= y), if(x<= y), if(x<y),

if(x==y), and if(x ! = y).

• Mutant compilation and execution: Mutant compilation refers to the translation of the

source code of the generated mutants into object code that can be executed. Mutant execution

refers to the process of executing the compiled mutant against the given test suite to assess

the fault-detection effectiveness of the test suite. A mutant that produces a different execution

result than the original program for some test case is considered killed.

• Equivalent mutant: An equivalent mutant is one that cannot be killed by any test case

because it always produces the same output as the original program. Determining whether

or not a mutant is equivalent is an undecidable problem [6, 31]. The presence of equivalent

mutants is a major obstacle for the practical use of mutation testing because of the additional

human effort needed to manually identify them, which can be high even for small programs.

• Stubborn mutant: Stubborn mutants [32] are those not killed by a high quality test suite.

Although they are not equivalent to the original program, they are hard to kill because they

require a specific set of test inputs or a specific set of test input combinations that are difficult

to identify. The number of remaining stubborn mutants depends on the effectiveness of the

test suite. Increasing the effectiveness of the test suite will result in fewer stubborn mutants.

Exhaustive testing, which is infeasible to achieve in most cases, will result in no stubborn

mutants.

• Result analysis: Result analysis involves calculating the mutation score, which is a measure

of the fault-detection effectiveness of the test suite. The mutation score is the ratio of the

number of killed mutants over the total number of non-equivalent mutants.

• Mutation testing tool: A mutation testing tool automates the process of generating and

compiling mutants, executing them against the given test suite, and calculating the mutation

score. Jia and Harman [6] reported 36 mutation tools that were implemented for different

10

programming languages. Some mutation tools can detect certain types of equivalent mu-

tants [30, 33]. For example, AjMutator [33], which is a mutation tool for AspectJ programs,

uses static analysis to automatically detect some of the equivalent mutants.

2.2 Higher Order Mutant Classification

Jia and Harman [8] classified HOMs in terms of their coupling and subsumption relations with

FOMs. Below we summarize the formal definitions of HOM classifications.

• F = {f1, . . . , ff} is the set of all the FOMs for the program under test.

• H is the space of all candidate HOMs. H = P (F), where P is a power set.

• U is the universe of all possible test cases.

• T = {tc1, . . . , tct} is the set of all test cases under consideration (the given test set), T ⊂ U .

• hn
i ∈ H is an HOM constructed from n FOMs, such that hi = {fi1 , . . . , fin}. The notation

can be simplified to hi = hn
i without confusion.

• Let Thi
⊆ T denote the set of those test cases in T that kill hi.

• There are n test sets Ti1 , . . . , Tin , ∀j ∈ [1, . . . , n], Tij ⊆ T and Tij contains all test cases that

kill fij in hi

• TUi is a test set such that

TUi =
n⋃

j=1

Tij

• TIi is a test set such that

TIi =
n⋂

j=1

Tij

An HOM is considered to be coupled to its constituent FOMs “if a test set that kills the FOMs

also contains test cases that kill the HOM” [8], otherwise the HOM is decoupled. Formally, an

HOM is defined as coupled to its constituent FOMs if:

Thi
∩ TUi 6= ∅ (2.1)

11

A decoupled HOM is that killed by a different set of test cases than its constituent FOMs.

Decoupled HOMs are valuable to the testing process because they represent different faults than

their constituent FOMs. An HOM is defined as decoupled from its constituent FOMs if:

Thi
∩ TUi = ∅ (2.2)

A subsuming HOM is one that is killed by a test set smaller in size than the test set that kills

all FOMs used to construct the HOM. This means that the subsuming HOM is harder to kill than

its constituent FOMs. A strongly subsuming HOM (SSHOM) is defined as one that is “only killed

by a subset of the intersection of test cases that kill each FOM from which it is constructed” [8].

In other words, if a test case kills an SSHOM, it also kills all the constituent FOMs.

An SSHOM can replace its constituent FOMs without loss of test effectiveness. Therefore,

SSHOMs reduce test effort by reducing the total number of FOMs to be compiled and executed

and also by reducing the total number of test cases that need to be executed to kill the FOMs. An

HOM is defined as a strongly subsuming HOM if:

Thi
⊂ TIi and Thi

6= ∅ (2.3)

A weakly subsuming HOM is one that is killed by a test set that is smaller in size than the

union of the test sets that kill each FOM from which the HOM is constructed. An HOM is defined

as a weakly subsuming HOM if:

|Thi
| < |TUi| and Thi

6= ∅ (2.4)

A weakly subsuming and decoupled HOM is considered valuable because it is killed by fewer

and different test cases than the constituent FOMs. An HOM is defined as a weakly subsuming

and decoupled HOM if:

|Thi
| < |TUi|, Thi

6= ∅, and Thi
∩ TUi = ∅ (2.5)

A weakly subsuming and coupled HOM is harder to kill than the constituent FOMs, but it can-

not replace the constituent FOMs without possible loss of test effectiveness. An HOM is defined

as a weakly subsuming and coupled HOM if:

|Thi
| < |TUi|, Thi

6= ∅, and Thi
∩ TUi 6= ∅ (2.6)

12

2.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm that supports software mod-

ularity and composition by providing the means to modularize crosscutting concerns [12, 34].

Crosscutting concerns are aspects of the program that affect the primary functionalities of the

system, which are called core concerns [34]. Crosscutting concerns, such as synchronization,

logging, and memory allocation, need to be addressed in many if not all system units. In procedu-

ral programming and object-oriented programming, the code that handles a crosscutting concern

is scattered or duplicated across various related locations, resulting in poor system modularity,

maintainability, and evolvability [34, 35]. An AOP language provides mechanisms to support the

separation and composition of such crosscutting concerns.

AspectJ [12] is an AOP extension for the Java programming language and it is the most widely

used AOP language. It introduces the following concepts and constructs to handle the crosscutting

concerns.

• Join point: A join point is well-defined point during the execution of a program where the

execution can be augmented or altered. A join point can be a call or execution of a method

or constructor, initialization of a class or an object, field read and write access, or execution

of an exception handler.

• Pointcut: A pointcut is a set of join points. A pointcut descriptor is expressed as a predicate

that matches a set of join points. AspectJ pointcuts can be expressed as a set of primitive

pointcuts combined using logical operators where each primitive pointcut targets the desired

join points.

• Advice: An advice contains the actions to be applied at the identified join point(s). It con-

tains code that implements the additional behavior to be executed when program execution

reaches a join point. The additional behavior represents the functionalities that implement

the crosscutting concern. AspectJ provides three types of advice, which can be executed

around, before, and after a join point.

13

• Inter-Type Declarations: Inter-Type Declarations (ITD) are used to introduce new fields

and methods into classes and interfaces. Inter-type declarations allow developers to add

methods, constructors, state variables to classes, and concrete implementation to an inter-

face. They can also be used to alter the class and interface hierarchies and to declare aspect

precedence.

• Aspects: An aspect is a modular unit that encapsulates pointcuts, advices, and inter-type

declarations.

2.4 Search-Based Software Engineering

Search Based Software Engineering (SBSE) refers to the body of work in which optimization

and search techniques, such as genetic algorithms and local search, are applied to software en-

gineering problems [36]. SBSE techniques have attracted a lot of attention within the software

engineering community because many software engineering problems can be easily formulated as

optimization problems and the evaluation of candidate solutions can be automated [36, 37]. Soft-

ware testing problems were the first type of problems to be tackled by SBSE techniques and the

majority of the available SBSE research publications targeted testing problems [36, 38].

2.4.1 Applying Search-Based Techniques to Software Engineering Problems

Harman and Jones [23] presented three steps that need to be taken to reformulate a software

engineering problem into a search-based problem.

• Defining solution representation: A candidate solution is represented as a scheme that is

amenable to symbolic manipulation. The choice of the representation is a key for the success

of the SBSE technique. For many software engineering problems, the original representa-

tion of a candidate solution can be directly used by the search techniques. Frequently used

representations are binary strings and floating point numbers. Data structures, such as arrays

and trees, have also been used.

14

• Defining objective function: An objective function provides a metric to measure the quality

of solutions.

• Defining operators: The operators of a search technique are responsible for transforming

one solution to another. For example, a Genetic Algorithm applies mutation and crossover

operators to a set of solutions to produce new solutions. The design and implementation of

the operators depend on the selected solution representation.

2.4.2 Commonly Used Search Based Optimization Techniques

Genetic Algorithms and Local Search are the most commonly used SBSE techniques [22].

Random Search have also been frequently used in the software engineering literature [36]. In the

remainder of this section, we briefly describe the distinguishing features of these techniques.

1- Genetic Algorithm

The earliest work of Evolutionary Algorithms (EA) can be dated back to the late 1950s [39].

Holland et al. [40, 41] introduced the model known as Genetic Algorithm. Genetic algorithms have

been shown to perform well for many problem domains, including large-scale software engineering

problems [22, 42, 43, 44].

A Genetic Algorithm starts with a set of initial solutions, called chromosomes, which can be

randomly generated. A set of chromosomes is called a population, and the set of the initial solu-

tions is called the first population. A Genetic Algorithm applies a set of reproduction operators

to a population to produce a new population. The reproduction operators are crossover and mu-

tation. The crossover operator combines two or more chromosomes, which are called parents, to

produce new chromosomes, which are called offspring. The mutation operator alters a small part

of a chromosome to maintain diversity in a population. A Genetic Algorithm iteratively applies

the reproduction operators. In each iteration, the selection operator is used to favor better chromo-

somes for reproduction. The better chromosomes are those that have better fitness values, which

get assigned by the objective function. By favoring the better chromosomes, a Genetic Algorithm

is more likely to find even better chromosomes in each iteration.

15

2- Local Search

A Local Search technique moves in the search space by applying local changes to a solution

until an optimal solution is found [45]. Hill Climbing and Simulated Annealing are the most

commonly used Local Search techniques in SBSE literature [22, 36]. Hill Climbing is an iterative

search technique that starts with an arbitrary solution, called the incumbent solution. Hill Climbing

searches for a better solution using an objective function to examine the set of candidate solutions in

the neighborhood. The neighborhood graph determines which candidate solutions are considered

neighbors and which are not.

When Hill Climbing finds a better neighboring solution, it becomes the incumbent solution.

If no better neighboring solution is found, the incumbent solution is considered to be a locally

optimal solution, which may not be globally optimal. The process can be restarted in order to find

potentially better solutions [45].

Hill Climbing uses different strategies to move in the search space. The steepest ascent usually

requires evaluating all candidate solutions in the neighborhood and then selecting the solution

that provides the best improvement. First ascent requires evaluating the candidate neighboring

solutions, one at a time, and then selecting the first improvement [22].

Simulated Annealing is based on the annealing process that happens in metallurgy where a

material is heated beyond its melting point and then cooled to change its structural properties [46].

Unlike Hill Climbing, Simulated Annealing uses a probabilistic measure when selecting a neigh-

boring solution. The probabilistic measure can lead to the selection of a solution of a lower fitness

value than the incumbent solution [47].

3- Random Search

Random Search iteratively moves in the search space randomly to locate candidate solutions in

the search space [48, 49]. Pure (unguided) Random Search techniques usually fail to find globally

optimal solutions [36]. However, many Random Search techniques have been successfully applied

to many software engineering problems, such as generation of test inputs [22, 50].

16

Chapter 3

Related Work

In this chapter, we summarize related work in the area of mutation testing in the context of

Java and AspectJ programs. We describe existing mutation cost reduction techniques. We present

related work in the area of higher order mutation testing and fault interactions. We highlight some

of the reported uses of search-based software engineering techniques in software testing.

3.1 Mutation Testing for Java Programs

The earliest work of mutation testing targeted the programming language, Fortran [51]. Re-

searchers designed mutation operators and implemented mutation systems for procedural program-

ming languages, such as Fortran [27, 52, 53] and C [28, 54]. However, the mutation operators that

were proposed for the procedural languages did not cover the programming concepts and con-

structs introduced in Object-Oriented Programming (OOP) languages, such as Java. Such con-

cepts and constructs result in different program structure and new fault types that did not exist in

programs developed using procedural languages.

Moore [55] developed the first mutation tool for Java programs, Jester. The tool makes four

types of syntactic modifications to the source code. It modifies literal numbers, switches boolean

values, and makes the condition of an if-statement always true or always false. Jester can also

introduce syntactic changes to JUnit test cases to help testers identify errors in their testing code.

Kim et al. [56] proposed 20 Java mutation operators and grouped them into six categories:

types and variables, names, classes/interface declarations, blocks, expressions and others. Kim

et al. [57, 58] later added 15 class mutation operators that target faults related to object-oriented

features. The class operators were classified as polymorphic, method overloading, information

hiding, and exception handling.

Ma et al. [59] proposed 24 Java mutation operators, which were based on previous studies of

object-oriented fault models [60, 61, 62, 63, 64]. The operators were classified as information hid-

17

ing, inheritance, polymorphism, overloading, Java-specific features, and common programming

mistakes. Ma et al. [30, 65] developed MuJava, a mutation tool for Java programs. The tool auto-

mates the process of generating FOMs, compiling and executing them against the given test suite,

and calculating the mutation score. MuJava provides graphical user interfaces and implements ap-

proaches to automatically detect some types of equivalent FOMs and to reduce the cost of mutation

testing.

Ma et al. [66] conducted an experimental study to examine the numbers and kinds of mutants

that can be generated using MuJava. Ma et al. also examined whether or not the faults introduced

by class mutation operators can be detected by test cases that detect statement level faults. The

number of class mutants is relatively smaller than statement level mutants. A similar observation

was reported by Offutt et al. [67]. Some class mutation operators can be omitted because their

faults can be easily detected by test cases that detect statement level faults.

Offutt et al. [67] presented an empirical study for object-oriented programs using MuJava. They

used six open-source programs and described techniques for eliminating some equivalent mutants.

Although the number of class level mutants was far less than the number of statement level mutants,

there were more equivalent class level mutants than equivalent statement level mutants.

Chevalley and Fosse [68] developed the first Java mutation tool, JavaMut, with a graphical user

interface support. The tool implements 26 mutation operators. Kim et al. [69] introduced a tech-

nique and a prototype tool for mutation testing called MUGAMMA. The tool gathers information

about the program states to be used later for regression testing. MUGAMMA implements only a

small set of Java mutation operators.

Irvine et al. [70] developed Jumble, a bytecode level mutation testing tool. Jumble implements

heuristics to speed the execution and analysis processes of FOMs. Schuler et al. [71] presented the

JAVALANCHE framework to mutate Java bytecode. JAVALANCHE uses a small set of mutation

operators, which have been shown to be sufficient for mutation testing [67]. The tool also uses

techniques to reduce the number of generated FOMs and the number of test cases that need to be

executed on each FOM.

18

More recently, Madeyski and Radyk [29] presented a new approach to mutation testing, called

Fast Aspect-oriented Mutation Testing Approach (FAMTA). The approach takes advantage of the

pointcut and advice mechanisms provided by AspectJ to enhance the performance of the mutation

testing process. Madeyski and Radyk developed Judy, a tool that implements the new approach

and supports 16 mutation operators.

Kirk [72] developed PIT, which is a bytecode level mutation testing tool for Java. PIT was

intended to be used by development teams rather than academic researchers. PIT implemented a

set of 14 mutation operators that were designed to be produce harder to kill mutants while minimize

the number of equivalent mutants.

3.2 Mutation Testing for Aspect-Oriented Programs

Because of the unique concepts and constructs introduced by Aspect-Oriented Programming

languages, researchers proposed new fault models to target the new types of faults that may rise.

According to the proposed fault models [11, 26, 73, 74, 75, 76], faults can be classified as those

that can occur in base classes, aspects (pointcut, inter-type declarations, aspect declarations, and

advice), or in the interaction between the base classes and aspects.

Ferrari et al. [73] presented four aspect-oriented fault types, which were based on specific

AspectJ constructs, and designed a set of mutation operators based on these fault types. The

fault types are: pointcut faults (8 faults), inter-type declaration faults (9 faults), advice faults (6

faults), and base program related faults (3 faults). Ferrari et al. defined 26 mutation operators

and divided them into three groups. Group 1 contains 15 mutation operators that model pointcut

expression faults. Group 2 contains five operators that model Java generics faults. Group 3 contains

six operators that model advice definition and implementation related faults. Ferrari et al. also

conducted a cost analysis to measure the cost of using their mutation operators. Pointcut expression

operators resulted in the largest number of mutants comparing to other AspectJ constructs.

Delamare et al. [33] developed AjMutator, an AspectJ mutation tool that implements the point-

cut mutation operators proposed by Ferrari [73]. The tool classifies and compiles the mutants in

addition to executing the test cases on the mutants. The mutants are classified by comparing the

19

set of join points they match with the set of join points matched by the original pointcut. The tool

outputs an XML file that contains information about every mutant handled (e.g., mutant status,

pointcut ID and aspect ID). The tool was evaluated using two different AspectJ systems. The ex-

periments showed that AjMutator was able to generate and compile a large number of mutants on

large systems and perform mutation analysis to obtain a mutation score.

Ferrari et al. [77] developed a tool for mutation testing of AspectJ programs called Proteum/AJ.

The tool automates a set of aspect-oriented mutation operators proposed in their previous work [73]

and supports the basic steps of mutation testing. Proteum/AJ implements 24 mutation operators,

15 of which are pointcut related operators. The tool allows the tester to select and manage mutation

operators in several ways.

Wedyan and Ghosh [11] modified the existing AspectJ fault models to address some of the

shortcomings. The modifications included moving some existing faults from one fault category to

another and adding new data-flow interaction based fault types. Wedyan and Ghosh also studied

three problems with the use of mutation analysis: manual identification and removal of equivalent

mutants, generating mutants that cover the all fault types, and measuring the difficulty of killing the

generated mutants. They used higher order mutation to produce HOMs that cover all pointcut fault

types. In the subject programs they studied, the pointcut mutants that match some of the intended

join points and some of the unintended join points at the same time could only be obtained with

the help of HOMs.

Anbalagan et al. [78] used mutation testing to test the strength of pointcuts to help developers

detect pointcut faults. They developed a framework that generates relevant pointcut mutants and

detects equivalent mutants. Relevant mutants are those that resemble the original pointcut expres-

sion closely, reflecting the kind of mistakes developers may make. Equivalent mutants are those

matching the same set of join points as the original pointcut. The framework classifies the mu-

tants and ranks them using distance measures to reduce the total number of mutants that need be

inspected. Developers can inspect the highly ranked mutants and their differentiating join points

to determine pointcut correctness and robustness. The framework implementation was applied on

selected pointcuts from aspects in different AspectJ benchmarks.

20

3.3 Mutation Cost Reduction Techniques

Due to the high computational cost associated with the compilation and execution of a large

number of mutants, researchers proposed different mutation cost reduction techniques for tradi-

tional FOMs.

Jia and Harman [6] classified the mutation cost reduction techniques into two types. The first

type of techniques reduces the number of generated mutants. Acree and Budd [4, 79] presented

a mutant sampling approach, which requires randomly selecting a small number of FOMs from

the large number of generated FOMs for mutation analysis. Only the randomly selected FOMs are

compiled, executed, and analyzed and the remaining FOMs are discarded. Hussain [80] introduced

the mutant clustering approach, which involves classifying FOMs into different clusters based on

the test cases that kill them, then selecting a small number of FOMs from each cluster, and dis-

carding the rest. The selective mutation approach [81, 82] involves using a smaller set of mutation

operators to generate a smaller number of FOMs that can be used for mutation testing without

significant loss of test effectiveness. Strongly subsuming HOMs have also been used to reduce the

total number of mutants to be compiled and executed without loss of test effectiveness [8].

Cost reduction techniques of the second type optimize the compilation and execution process of

FOMs by adopting smart and fast mechanisms. King and Offutt [27, 52] presented an interpreter-

based technique that interprets the FOM execution result directly from the source code. The origi-

nal program is translated into an intermediate form, and mutation and interpretation are performed

at this intermediate code level.

DeMillo et al. [83] proposed a compiler-integrated technique where an instrumented compiler

generates the executable code for the original program along with FOM patches. Each patch con-

tains the binary code of the mutated code, which can be applied directly to the original executable

code to produce the executable FOM. Untch [84, 85] presented a similar approach called the mu-

tant schema generation approach. This approach generates a meta-program (i.e; super mutant),

which represents all generated FOMs.

21

3.4 Higher Order Mutation Testing

Jia and Harman [8] utilized three search based optimization approaches, a Genetic Algorithm,

a Greedy Algorithm, and a Hill Climbing Algorithm, to explore the search space seeking out the

strongly subsuming HOMs in C programs. They introduced a fitness function that uses a fragility

function, which measures the difficulty of killing a mutant. The fitness of an HOM is measured

by the ratio of the fragility of the HOM to the fragility of the constituent FOMs. HOMs with

lower fitness value are less fragile (harder to kill) than their constituent FOMs. Jia and Harman [8]

conducted an experimental study using 10 C programs. Subsuming HOMs were found for all the

studied programs. Although the proportions of strongly subsuming HOMs were low, the actual

numbers were large because the total numbers of all generated HOMs were extremely large. The

Genetic Algorithm performed the best at finding strongly subsuming HOMs because they were

easier to generate from existing subsuming HOMs.

Jia and Harman [87] developed a mutation testing tool, MILU, for both first order and higher

order mutation testing. In first order mutation testing mode, testers can use a pre-defined set of

mutation operators or customize their own mutation operators. The tool implements 77 C mutation

operators and provides a flexible scripting language for the customization of operators. In higher

order mutation testing mode, testers can use one of the predefined search-based techniques, a

Genetic Algorithm, Greedy Algorithm, or Hill Climbing Algorithm, or specify their own. MILU

provides graphical user interfaces and introduces a test harness technique that reduces the cost of

running mutants. The technique involves compiling each mutant into a shared library, and then

using the given test suite to generate a test harness that runs all the test cases by dynamically

invoking the shared mutant library.

Langdon et al. [13] presented a study to explore the relationship between mutated source code

syntax and its semantics. They used a Multi-Objective Pareto Optimal Genetic Programming ap-

proach to search for HOMs that were hard to kill and were syntactically similar to the original

program. The syntactic distance between the original and mutated source code is measured in

terms of the number of the syntactic differences weighted by a constant. The semantic distance

22

is measured in terms of the number of test cases that kill the mutant. The Pareto search produced

HOMs that were harder to kill than any of the FOMs for the two studied programs. Exploring the

search space of HOMs could provide more insights into the different structure and behavior of test

cases in the test suite.

Polo et al. [88] presented three algorithms for constructing second order mutants from FOMs:

LastToFirst, Different Operators, and Random Mix. The LastToFirst algorithm constructs second

order mutants by combining the first mutant in the FOMs list with the last, the second with the

previous, and so on. The Different Operators algorithm combines FOMs resulting from different

mutation operators. The Random Mix algorithm randomly combines FOMs using each FOM once.

The number of mutants was reduced to half and the number of equivalent second order mutants

was significantly reduced.

DiGiuseppe and Jones [89] presented a study of the effects of the interaction of different faults

within a program. The goal was to reveal the nature of fault interaction in programs with different

numbers of faults. They reported four significant types of fault interaction: fault synergy, which

occurs when fault interaction produces new faults, fault obfuscation, which occurs when fault

interaction produces less faults, fault independence, which occurs when fault interaction does not

produce more or less faults, and fault multi-type interaction, which occurs when fault interaction

results in both synergy and obfuscation of faults. Fault obfuscation was the most prominent fault

type and this fault type was even more prominent among the larger programs they studied. The

authors argued that the prevalence of fault obfuscation can affect many of the existing test practices

and emphasized the needs for models that can predict such fault interactions.

Debroy and Wong [90] presented a study of the implication of fault interference. They exam-

ined the status of passing and failing test cases as more faults were added to the program. Their

results showed that failure masking was more frequent in the programs they studied.

Omar and Ghosh [91] presented an exploratory study of higher order mutation testing in the

context of AspectJ programs. They proposed four approaches to constructing second order mutants

in AspectJ programs.

23

The approaches classify HOMs based on the proposed AOP fault models [11, 26, 73]. Faults

in AspectJ programs can occur in the base classes, in the aspects, or in the interactions between

base classes and aspects. The construction approaches are as follows.

1. Single Base Class or Aspect Approach (SCA): Each HOM is constructed by inserting two

or more mutation faults into a single base class or by inserting two or more mutation faults

into a single aspect.

2. Dispersed Base Class Approach (BC): Each HOM is constructed by inserting two or more

mutation faults in two or more different base classes.

3. Dispersed Aspect Approach (AS): Each HOM is constructed by inserting two or more

mutation faults in two or more different aspects.

4. Dispersed Base Class and Aspect Approach (BC&AS): Each HOM is constructed by in-

serting at least one fault in a base class and at least one fault in an aspect.

Omar and Ghosh also developed a prototype tool that automates the process of generating,

compiling, and executing both first and second order mutants. They evaluated the approaches in

terms of their ability to create second order mutants that result in higher test effectiveness and lower

test effort compared to FOMs. All approaches produced second order mutants that can be used to

increase test effectiveness and reduce test effort. However, the first approach produced a larger

percentage of higher order mutants that were harder to kill than the constituent FOMs as compared

to the last three approaches. The first approach lowered the total number of mutants to be compiled

and executed to a greater extent than the last three approaches. The last three approaches produced

a lower density of equivalent mutants. We can use second order mutants to reduce the number of

FOMs that need to be compiled and executed by 17.6% without loss of test effectiveness.

Kintis et al. [15] used second order mutants to isolate possible first order equivalent mutants.

The proposed technique, I-EQM, aims to reduce the number of possible equivalent FOMs that

need to be inspected by the tester. I-EQM classifies FOMs that are not killed by the given test set

into two sets. The first set contains FOMs that are considered more likely to be killable, which

24

the tester needs to inspect. The second set contains FOMs that are considered more likely to be

equivalent, which the tester can ignore. The technique combines an already killed FOM with a

possibly equivalent FOM and compares the execution result of the resulting second order mutant

to the execution result of the already killed FOM. If the results differ, the possibly equivalent FOM

is classified as a possibly killable FOM, otherwise it is classified as an equivalent FOM. Kintis et

al. presented a case study using four subject programs to evaluate the effectiveness of the proposed

technique. The proposed technique was able to correctly classify 82% of the killable mutants.

3.5 Search-Based Software Engineering for Testing Problems

In the available literature, most of the proposed SBSE testing techniques are concerned with

test input generation for fault discovery. Researchers also proposed SBSE techniques for fixing

bugs [25] and facilitate debugging [92]. However, other than the work presented by Jia and Har-

man [8, 13, 14], which is described in detail in Section 3.4, none of the proposed SBSE testing

techniques tackle similar testing goals as the techniques presented in this proposal. We present

some of the reported uses of SBSE techniques in software testing.

Xanthakis et al. [24] was the first to use an SBSE technique to solve a software engineering

problem. They used Genetic Algorithms to generate test input for structural coverage. Since then,

SBSE techniques have been applied to automate test input generation for the coverage of specific

program structures, exercising specific program features, and to verify non-functional properties.

Search-based techniques have also been used to generate test input that kill mutants [93, 94, 95, 96].

Davies et al. [97] presented a Genetic Algorithm approach for test input generation. The goal

of the algorithm was to find test inputs for which an expert system for supporting combat pilots

performs most poorly. Other researchers used SBSE testing techniques to search for test inputs

that degrade software performance (stress testing) and cause exceptions to be raised [98, 99].

Ferguson and Korel [100] proposed a Local Search technique for automated software test input

generation. They used data dependence analysis to guide the test input generation process to seek

inputs that traverse hard-to-cover predicate branches. The technique was effective in generating

test inputs that traverse specified branches.

25

Lakhotia et al. [101] introduced the first multi-objective approach for structural test input gen-

eration. All previous techniques aimed to find test inputs that traverse a specific branch. The

proposed approach seeks to maximize both program coverage and dynamic memory consump-

tion at the same time. The authors presented five case studies to compare the performance of

three search techniques: (1) a random search, (2) a Pareto Genetic Algorithm, and (3) a weighted

Genetic Algorithm. The weighted Genetic Algorithm outperformed the other two algorithms in

most cases. The authors also argued that a hybrid approach between Pareto and weighted Genetic

Algorithms may offer the best overall results.

Unlike procedural languages, the test inputs for class methods in object-oriented programs can

include objects that need to be created and their internal state might need to be changed to satisfy

some criterion [102]. Further, determining neighboring inputs can be difficult because a small

change in a state variable can produce totally different program behavior. Therefore, researchers

proposed SBSE techniques for test input generation for object-oriented programs. Tonella [102]

used a Genetic Algorithm to generate test inputs for unit testing of classes. The chromosome

representation included information about the objects to be created, methods to be invoked, and

input values to be used. A tool called eToc was implemented to conduct an experimental study

using some classes from the standard Java library. The generated test cases were able to cover

hard-to-reach code and revealed a known fault in the standard Java library.

Harman et al. [103] introduced a search-based technique for test input generation for AspectJ

programs. They also introduced a domain reduction technique to improve the performance of

the proposed technique. They used dependence analysis based on slicing to reduce the test input

space and remove irrelevant parts that cannot affect the output. Harman et al. conducted an em-

pirical study using 14 AspectJ programs to demonstrate the effectiveness of their technique. They

compared their technique with an existing random technique for test input generation for AspectJ

programs [104, 105]. The proposed technique produced significantly better results than the ran-

dom technique. The domain reduction technique increased both effectiveness and efficiency of the

developed system.

26

SBSE testing techniques have been used for regression testing for the selection of representative

test cases from a large pool of test cases, prioritization of the execution of test cases within a test

suite, and minimization of the size of test suites without loss of test effectiveness [106, 107, 108].

SBSE testing techniques have also been used to automate the process of software repair [109,

110, 111]. Forrest et al. [109] used genetic programming and program analysis methods to repair

faults in C programs. The approach uses negative test cases to exercise the fault and positive test

cases to encode the required behavior of the program. A successful repair passes all test cases.

Reported results showed that 11 bugs in over 60,000 lines of code were repaired.

27

Chapter 4

Approach

In this chapter, we present the search techniques for finding subtle HOMs. Section 4.3 presents

the objective function used by the search techniques to measure the quality of HOMs. Sections 4.2

through 4.6 present the Genetic Algorithm, Local Search, the Guided Local Search techniques,

Restricted Random Search, and Restricted Enumeration Search respectively.

4.1 Objective Function

The goal of our objective function is to provide a metric to measure the quality of HOMs. The

objective function identifies subtle HOMs, which represent optimal solutions. The metric should

also identify the HOMs that have the potential to develop into subtle HOMs. The search techniques

aim to find as many distinct optimal solutions as possible. Below we provide the notation and

formal definition of the objective function.

• F = {f1, . . . , ff} is the set of all non-equivalent FOMs for the program under test.

• H is the space of all candidate HOMs. H = P (F), where P is a power set.

• U is the universe of all possible test cases.

• T = {tc1, . . . , tct} is the set of all test cases under consideration (the given test suite), T ⊂ U

and T kills all the FOMs in F .

• hn
i ∈ H is an HOM constructed from n FOMs, such that hi = {fi1 , . . . , fin}. The notation

can be simplified to hi = hn
i without confusion.

• Let Thi
⊆ T denote the set of those test cases in T that kill hi. Thi

= ∅ if none of the test

cases in T kill hi.

28

• There are n test sets Ti1 , . . . , Tin , ∀j ∈ [1, . . . , n], Tij ⊆ T and Tij contains all test cases that

kill fij in hi.

• TUi is a test set such that

TUi =
n⋃

j=1

Tij

Based on these notations we first present two measures, fault detection difference between

HOM and its constituent FOMs and difficulty of killing HOM, which are both used by the objec-

tive function below.

Fault detection difference between HOM and its constituent FOMs

FDD(hi) =
|(TUi ∪ Thi

)| − |(TUi ∩ Thi
)|

|TUi ∪ Thi
|

(4.1)

The goal of this measure is to capture the level of interaction between the constituent FOMs

of an HOM. The level of interaction between the constituent FOMs is measured in terms of the

difference between the set of test cases that kill the HOM and the union of all sets of test cases

that kill each individual constituent FOMs. FOMs that are killed by a different set of test cases

when combined than when individually are those that can interact to mask each other. Subtle

HOMs represent the case where the constituent FOMs interact to completely mask each other and

produce new faulty behavior that cannot be detected by the given test suite. Therefore, an HOM

with a greater difference between the set of test cases that kill the HOM and the union of all the sets

of test cases that kill its constituent FOMs should be assigned a higher fitness value and favored in

the selection process of the search techniques.

The value of the fault detection difference in Equation 4.1 lies between 0 and 1. An HOM that

is killed by a totally different set of test cases than its constituent FOMs will have the highest value

of 1. This includes subtle HOMs, which are not killed by any of the test cases in the given test

suite. An HOM that is killed by the same set of test cases that kill all its constituent FOMs will

have the lowest value of 0.

29

This measure does not take into consideration the size of the set of test cases that kills the

HOM as long as this set is totally different from the union of all the sets of test cases that kill

the constituent FOMs. For example, two HOMs that are each killed by totally different set of test

cases than their constituent FOMs will be assigned value of 1 regardless of the size of the set of

test cases that kill each one. Although both HOMs are desired because their constituent FOMs can

interact and form different faulty behavior, the HOM that is killed by a smaller set of test cases

is more desirable because it is harder to kill. This aspect of measuring the fitness of an HOM is

captured by the following measure, called difficulty of killing HOM.

Difficulty of killing HOM

DOK(hi) =
|(TUi ∪ Thi

)| − |(Thi
)|

|TUi ∪ Thi
|

(4.2)

The goal of this measure is to capture how hard it is to kill an HOM with respect to its con-

stituent FOMs. A harder to kill HOM is killed by a set of test cases that is smaller in size (i.e fewer

test cases) than the union of the sets of test cases that kill each individual constituent FOMs. Subtle

HOMs by definition are harder to kill than their constituent FOMs. In fact, they are the hardest to

kill because they are not killed by any test case in the given test suite. Therefore, HOMs that are

harder to kill than their constituent FOMs should be assigned higher fitness values so that they can

be favored in the selection process of the search techniques.

The value of the difficulty of killing an HOM in Equation 4.2 lies between 0 and 1. An HOM

that is not killed by any test case in the given test suite will have the highest value of 1 and an HOM

that is killed by all the test cases that kill its constituent FOMs will have the lowest value of 0.

Objective function

fitness(hi) = α ∗ DOK(hi) + (1− α) ∗ FDD(hi) (4.3)

The objective function assigns the fitness value of an HOM based on the sum of the two

weighted terms, (1) difficulty of killing HOM and (2) fault detection difference, in Equation 4.3.

The value of α, which lies between 0 and 1, determines the weight of the two terms.

30

The fitness value of an HOM lies between 0 and 1. HOMs with higher final fitness values

represent better solutions and are favored in the selection process. Note that an HOM which has a

fitness value of 1 represents a global optimum in the search space, and there are potentially many

globally optimal solutions. FOMs have zero fitness value. HOMs are classified based on their

fitness values as follows:

1. Entirely Coupled HOMs:

An HOM with a fitness value of 0 (worst value) is entirely coupled to its constituent

FOMs. An entirely coupled HOM represent the case where there is no difference between

the set of test cases that kill the HOM and the union of all sets of test cases that kill each

individual constituent FOMs. An entirely coupled HOM is considered to be useless because

its constituent FOMs cannot interact to form new faulty behavior and the HOM is as hard to

kill as its constituent FOMs. The value of α has no impact on the entirely coupled HOMs

because the values of the difficulty of killing and fault detection difference are equal to 0.

2. Promising HOMs:

An HOM with a fitness value greater than 0 but less than 1 is considered to be a promising

HOM because it has the potential to develop into a subtle HOM when the right FOMs are

added or removed.

A promising HOM represent the case where there is an interaction between the con-

stituent FOMs because the set of test cases that kill the HOM and the union of all sets of

test cases that kill each individual constituent FOM are not the same. The value of the fault

detection difference for a promising HOM will be higher than 0 depending on the differ-

ence between the two sets of test cases. However, the value of the difficulty of killing for a

promising HOM will be less than 1 depending on the number of test cases that kill the HOM.

The value of the difficulty of killing will be 0 if the HOM is easier to kill (i.e. killed by more

test cases) than its constituent FOMs.

The value of α, which is determined by the tester, affects the fitness values of promising

HOMs. A higher value for α means harder to kill HOMs will have higher fitness values than

31

those with higher level of interaction between their constituent FOMs. The optimal value

for α is one that leads to finding the highest number of subtle HOMs and that is not easy to

determine. In this dissertation we used experimental evaluation to determine the value of α

that leads to best results.

3. Subtle HOMs:

An HOM with a fitness value of 1 is called a subtle HOM (an optimal solution). Such

an HOM represents new faulty behavior that has not been tested because it was not killed by

any test case in the given test set. The values of the difficulty of killing and fault detection

difference are equal to 1 and the value of α has no impact in this case.

4.2 Genetic Algorithm

The Genetic Algorithm (GA) evolves a set of HOMs over a number of iterations allowing

the survival of HOMs that are considered to be more promising to produce subtle HOMs. Be-

low we describe the Genetic Algorithm operators and discuss some implementation issues. The

pseudocode is shown in Algorithm 1.

1- Inputs

Our Genetic Algorithm takes as input the list of FOMs (FOMsList) for the program under

test, number of crossover points (numCrossPoint), mutation rate (mutationRate), the popula-

tion size (populationSize), the maximum degree of HOMs in the first population (firstPopu-

lationMaxDegree), and the number of elite HOMs that get carried over at each iteration (num-

EliteHOM). These parameters are configured as follows.

• 1 ≤ numCrossPoint ≤ NOS, where NOS represents the number of code statements in

the program under test.

• 0 ≤ mutationRate ≤ 1.

• populationSize > 0.

32

• 2 ≤ firstPopulationMaxDegree ≤ |F |, where F represents the set of all non-equivalent

FOMs for the program under test.

• 0 ≤ numEliteHOM < populationSize.

The configuration of these parameters is set by the user. However, the optimal configurations,

which can lead to the highest number of subtle HOMs are not easy to determine. We used experi-

mental evaluation to determine the configuration that gave the best results.

2- Chromosome representation

Each chromosome corresponds to an HOM. The chromosome is represented as one-dimensional

array of strings such that each element in the array represents a Java/AspectJ statement from the

program under test. All program statements from all the classes and aspects are included in each

chromosome. Each mutated statement corresponds to a constituent FOM. This representation

makes it easy to manipulate the program statements and to implement crossover and mutation

operators.

3- First population

Each HOM in the first population is created by combining a number of randomly selected

FOMs from FOMsList. The degree of each HOM in the first population is randomly selected

such that the degree is between 2 and the maximum degree allowed (firstPopulationMaxDegree)

for the first population.

4- Selection

The selection process involves selecting HOMs that are allowed to produce offspring using

crossover and mutation. Our Genetic Algorithm uses tournament selection to implement gen-

erational replacement of the population. Our tournament selection selects four random HOMs

and then selects the two HOMs with the highest fitness value to be parents. The two parents

then produce offspring that are passed on to the next generation. The offspring replace the par-

ents. However, a certain number of HOMs with the highest fitness values in the current popula-

tion are automatically carried over (copied) to the next generation. This number is specified by

33

numEliteHOM . The elitist selection strategy ensures that copies of the best HOMs are not lost

when moving from one generation to the next.

5- Crossover

The crossover happens between two selected parent HOMs that are recombined to produce two

offspring HOMs. The crossover depends on the number of crossover points, which could be one or

many, based on the configurable parameter, numCrossPoint. The crossover operator is designed

such that it does not produce an offspring with a single mutation fault. An offspring HOM with a

single mutation is combined with a random mutation to become a second order mutant.

6- Mutation

Our Genetic Algorithm mutation operator applies mutation to an existing HOM by either

adding or removing an FOM. The FOMs to be added to an HOM are randomly selected from

FOMsList and the FOMs to be removed from an HOM are randomly selected from the HOM’s

constituent FOMs. The configurable parameter, mutationRate, determines how many FOMs are

added to or removed from HOMs. The mutation operator is designed such that it does not cause

an HOM to become an FOM.

7- Evaluation

Evaluating HOMs in a population involves two steps. All HOMs in the population are created,

compiled, and executed against the given test suite. The objective function shown in Equation 4.3

evaluates each HOM and assigns a fitness value.

8- Stopping condition and output

Our Genetic Algorithm maintains a list of distinct, subtle HOMs (subtleHOMsList) that were

found during the search process. That list is returned to the tester after a stopping condition is met.

The stopping condition is configurable by the tester. The tester can define the maximum number

of distinct HOMs that the Genetic Algorithm is allowed to explore, the time limit that the Genetic

Algorithm is allowed to run for, and the number of required subtle HOMs.

34

Algorithm 1 Genetic Algorithm

Require: FOMsList, numCrossPoint, populationSize, mutationRate, numEliteHOM ,

firstPopulationMaxDegree

1: t← 0
2: subtleHOMsList← ∅
3: pop[t]← createFirstPopulation(FOMsList, populationSize, firstPopulationMaxDegree)

4: pop[t].repairMutants()

5: pop[t].executeMutants()

6: pop[t].calculateFitness()

7: subtleHOMsList.add(pop[t].getSubtleHOMs())

8: while not (Termination Condition()) do

9: pop[t+ 1].add(pop[t],numEliteHOM)

10: while pop[t+ 1].size < pop[t].size do

11: parents← pop[t].select(4,2)

12: offSpring ← parents.crossover(numCrossPoint)

13: offSpring.mutate(mutationRate)

14: pop[t+ 1].add(offSpring)

15: end while

16: t← t+ 1
17: pop[t].repairMutants()

18: pop[t].executeMutants()

19: pop[t].calculateFitness()

20: subtleHOMsList.add(pop[t].getSubtleHOMs())

21: end while

22: return subtleHOMsList

35

4.3 Local Search

Local Search (LS) selects the most promising HOM at each iteration. It starts by selecting a

random HOM as the incumbent HOM, and then searches for the neighboring HOM that has the

best fitness value. If no better HOM is found, Local Search restarts by selecting a new HOM.

Below we describe Local Search. The pseudocode is shown in Algorithm 2.

1- Inputs

Local Search takes as input the list of FOMs for the program under test (FOMsList).

2- Starting point

Local Search starts by selecting an incumbent HOM from the list of all candidate Second Order

Mutants (SOMs), SOMsList. The list of all SOMs contains pairs of FOMs and it is generated

prior to the search process. Local Search then evaluates the incumbent HOM by (1) compiling and

executing it against the given test suite, (2) recording the execution result, and (3) calculating the

fitness value using Equation 4.3.

3- Neighborhood graph

After the incumbent HOM is generated and evaluated, Local Search generates all the HOMs

neighboring the incumbent HOM. A neighborhood graph defines HOMs that are considered to be

neighbors. Our neighborhood graph defines neighbors as those that vary by one FOM (one step)

from the incumbent HOM. The neighboring HOMs are maintained in a list called neighborsList.

Our neighborhood graph can be formally defined as follows.

• F = {f1, . . . , ff} is the set of all the non-equivalent FOMs for the program under test.

• H is the space of all candidate HOMs. H = P (F).

• hn
i ∈ H is an HOM constructed from n FOMs, such that n ≥ 2.

• hm
j ∈ H is an HOM constructed from m FOMs, such that m ≥ 2.

36

Algorithm 2 Local Search

Require: FOMsList

1: shouldRestart← true

2: subtleHOMsList← ∅
3: restrictedList← ∅
4: SOMsList← createListOfSOMs(FOMsList)

5: while not (Termination Condition()) do

6: if shouldRestart then

7: i← genererateRandomInt(SOMsList.getSize())

8: incumbentHOM ← SOMsList.remove(i)

9: executeMutant(incumbentHOM)

10: evaluateFitness(incumbentHOM)

11: end if

12: neighborsList← generateNeighbors(incumbentHOM)

13: executeMutants(neighborsList)

14: evaluateFitnesses(neighborsList)

15: if (incumbentHOM .isSubtle()) then

16: subtleHOMsList.add(incumbentHOM)

17: end if

18: subtleHOMsList.add(neighborsList.getSubtleHOMs())

19: restrictedList.add(incumbentHOM))

20: bestHOM ← getBestHOM(neighborsList)

21: if (bestHOM .getFitnessValue() ≥ incumbentHOM .getFitnessValue() &&

!restrictedList.contains(bestHOM)) then

22: incumbentHOM ← bestHOM

23: shouldRestart← false

24: else

25: shouldRestart← true

26: end if

27: end while

28: return subtleHOMsList

37

• hm
j is a neighbor of hn

i such that m = n, or m = n+ 1, or m = n− 1. Furthermore, one of

the following conditions holds:

1. hn
i ⊂ hn+1

j

2. hn−1

j ⊂ hn
i

3. |hn
i − hn

j | = 1 and |hn
j − hn

i | = 1

Figure 4.1 shows an example of each of the three cases with n = 3.

h

i
={f

1
, f

2
, f

3
}

 h
j

= { f
1
, f

2
}

Case #b

 h
j

= { f
1
, f

2
, f

3
, f

4
}

Case #a

h
j
={ f

1
, f

2
, f

4
}

Case #c

n

n

n+1

n-1

Figure 4.1: Example of neighboring HOMs

4- Evaluating neighboring HOMs

Each HOM in the neighborsList is created, compiled, and executed against the test suite, its

execution result is recorded, and its fitness value is assigned using Equation 4.3.

5- Iterations

After the HOMs in the neighborsList are evaluated, Local Search looks for the best neigh-

boring HOM that has an equal or higher fitness value than the incumbent HOM. The Local Search

maintains a list of HOMs that have been selected as incumbent HOMs, which is called restrictedList.

This list prevents the local Search from selecting the same incumbent HOM twice and allows the

Local Search to explore different parts of the search space at each iteration. If a better neighboring

HOM is found, it becomes the next incumbent HOM, and the process starts all over again. If no

38

better neighboring HOM is found, Local Search restarts by selecting a different SOM from the list

of SOMs, SOMsList, to be the new incumbent HOM.

6- Stopping condition and output

Local Search maintains a list of all distinct, subtle HOMs (subtleHOMsList) that were found

during the search process. The tester can define the maximum number of distinct HOMs that Local

Search is allowed to explore, the time limit that Local Search is allowed to run for, and the number

of required subtle HOMs that need to be found by Local Search.

4.4 Guided Local Search

We present two guided versions of the Local Search that have the same steps as Local Search.

However, these techniques use different heuristics. The first version, called Data-Interaction Guided

Local Search, utilizes program structural information to favor combining FOMs with data interac-

tions because they are more likely to produce subtle HOMs. The second version, called Test-Case

Guided Local Search, utilizes information about the test sets that kill each FOM for the program

under test to avoid combining FOMs that are killed by totally different test sets because they are

not expected to produce subtle HOMs.

4.4.1 Data-Interaction Guided Local Search

Data-Interaction Guided Local Search (DIGLS) generates a smaller set of neighboring HOMs

than Local Search. It aims to avoid creating and evaluating HOMs that are expected to be entirely

coupled to their constituent FOMs.

During the preliminary empirical studies that set the foundation for this work [16, 17], we

found that the majority of HOMs that have a fitness value greater than zero (promising and subtle

HOMs) are those where the mutated statements shared a common variable, such as local, instance,

static, and method parameters of classes, and variables and parameters defined in aspects. For

example, for the Kettle Program, we found that in 96% of HOMs with fitness value greater than

zero, at least two of their mutated statements shared at least one common instant variable. On the

39

other hand, 60% of the HOMs with a fitness value equal to zero, their mutated statements shared

some common instant variables. Although the presence of a common variable among the mutated

statements in the HOM cannot guarantee that the HOM is not entirely coupled, the initial data we

obtained for most subject programs motivated us to utilize this knowledge in the search process.

When an incumbent HOM is selected and evaluated, DIGLS explores only neighboring HOMs

where at least two of their mutated statements share at least one common variable. That is, there

exists at least one pair of mutated statements where both statements read and/or write to at least

one program variable. DIGLS considers all type of variables.

In addition, DIGLS maintains a list of all SOMs that were found and evaluated during the

search process. This list contains the fitness values for the evaluated SOMs. DIGLS uses the list

of SOMs to further reduce the size of the neighborhood by ignoring all HOMs that contain pairs

of mutated statements that share a common variable when all these pairs were found to result in

entirely coupled SOMs.

4.4.2 Test-Case Guided Local Search

Test-Case Guided Local Search (TCGLS) generates a smaller set of neighboring HOMs than

Local Search. When an incumbent HOM is selected and evaluated, TCGLS explores only neigh-

boring HOMs that their constituent FOMs are killed by similar test cases. That is, there exists

at least one pair of constituent FOMs that are killed by at least one common test case. TCGLS

uses the heuristic that FOMs that are killed by test sets that do not intersect (i.e. overlap) cannot be

combined in a way to mask one another. This is because such FOMs usually represent independent

faults that cannot interact.

TCGLS maintains a list of all SOMs that were found and evaluated during the search process.

TCGLS uses this list to further reduce the size of the neighborhood by ignoring all HOMs who

contain pairs of FOMs that are killed by common test cases when all these pairs were found to

result in entirely coupled SOMs.

40

4.5 Restricted Random Search

Restricted Random Search (RRS) explores the space of all candidate HOMs by randomly se-

lecting HOMs, one at a time, seeking out the HOMs that are not killed by the given test suite. RRS

iterates the process of generating an HOM (randomHOM) with a set of randomly selected FOMs

from the list of FOMs. The pseudocode for RRS is provided in Algorithm 3.

Algorithm 3 Restricted Random Search

Require: FOMsList, maxHOMDegree

1: subtleHOMsList← ∅
2: while not (Termination Condition()) do

3: randomHOM ← generateHOM(FOMsList, maxHOMDegree)

4: executeMutant(randomHOM)

5: evaluateFitness(randomHOM)

6: if (randomHOM .isSubtle()) then

7: subtleHOMsList.add(randomHOM)

8: end if

9: end while

10: return subtleHOMsList

RRS uses a configurable parameter, maxHOMDegree, to allow it to control the maximum

degree of explored HOMs. This parameter allows RRS to limit the search to a smaller part of the

search space where subtle HOMs are more likely to be found. Our preliminary investigation [16,

18] showed that most of the discovered subtle HOMs were of lower degrees (less than six).

Setting the configurable parameter, maxHOMDegree, to null allows RRS to be unrestricted

and capable of exploring any candidate HOM in the search space. The maximum degree of ex-

plored HOMs in this case is controlled by the maximum number of FOMs for the program under

test that can be combined together.

Each generated randomHOM is compiled and executed, its execution result is recorded, and

its fitness value is calculated. If the randomHOM is subtle, it is stored in subtleHOMsList.

RRS repeats this process until a stopping condition is reached. The stopping conditions, which can

be configured, include the maximum number of distinct HOMs RRS is allowed to explore, time

limit, and the number of subtle HOMs required to be found.

41

4.6 Restricted Enumeration Search

Restricted Enumeration Search (RES) examines candidate HOMs in the search space in a pre-

defined sequence until a defined stopping condition is met. Restricted Enumeration Search takes

as input the list of FOMs for the program under test. It creates and evaluates all candidate SOMs,

followed by third order mutants, and so on until a stopping condition is met.

Algorithm 4 Restricted Enumeration Search

Require: FOMsFile

1: subtleHOMsList← ∅
2: degree← 2
3: HOM ← null

4: while not (Termination Condition()) do

5: HOM ← getNewHOM(degree)

6: if HOM .isNull() then

7: degree← degree+ 1
8: HOM ← getNewHOM(degree)

9: end if

10: executeMutant(HOM)

11: evaluateFitness(HOM)

12: if (HOM .isSubtle()) then

13: subtleHOMsList.add(HOM)

14: end if

15: end while

16: return subtleHOMsList

The method getNewHOM(degree) randomly selects a new HOM based on the required de-

gree. This method does not select the same HOM more than once and returns Null if no new HOM

of the specified degree is found. Restricted Enumeration Search is designed to start the search in

the space of lower degree HOMs because the majority of subtle HOMs found in an initial experi-

mental evaluation were HOMs of lower degrees [16, 18]. Further, adding more faults to an HOM

in general makes it easier to be killed and that makes subtle HOMs of higher degrees harder to find

than subtle HOMs of lower degrees.

42

Chapter 5

Implementation

This chapter presents the design and use of the Higher Order Mutation Testing tool for AspectJ

and Java programs, called HOMAJ. The goal of HOMAJ is to automate the (1) generation of FOMs

and HOMs, (2) compilation and execution of FOMs and HOMs against the given test suite, and

(3) finding subtle HOMs. The process of finding subtle HOMs for a given program requires as

input a set of non-equivalent FOMs and a test suite that contains test cases that kill all the FOMs

in that set.

HOMAJ can be used by researchers to perform studies involving higher order mutation. For

example, HOMAJ can classify HOMs based on their coupling and subsumption relations with

FOMs [8] and their construction approaches [16]. To promote the use of higher order mutation

testing among researchers and practitioners, HOMAJ is designed with flexibility in mind; new

evaluation measures and search techniques can be easily added.

5.1 Higher Order Mutation Testing Tool

HOMAJ consists of five main components. Figure 5.1 shows the architecture and main compo-

nents of HOMAJ. Third-party components, which are used by the main components, are marked

with a triangle. In the remainder of this chapter we describe the components and their functionality.

5.1.1 I/O Services

This component is responsible for receiving inputs from testers and presenting outputs. HOMAJ

takes as inputs (1) the program under test, (2) JUnit test suites, and (3) a set of configuration pa-

rameters for the search technique selected by the tester.

Using the sub-component “Program Setup Services”, HOMAJ creates a set of folders and

sub-folders to maintain information about the program under test. For each program, HOMAJ

maintains the files of the original source code, the files of the given test suites, XML files that

43

0

HOMAJ

XML and

Persistence

Services

JUnit

I/O Services

Result Analysis

Services
Program setup

Services

Advice/ITD FOM

Creation

Services
Pointcut FOM

Creation Services
Base Class FOM

Creation Services

FOM Generation

Compilation &

Execution

Services

Evaluation

Local

Search

Guided

Local

Search

Objective

Function

Search Strategies

Enumeration

Search
Random

Search

HOM Creation

Services

HOM Creation

AspectJ

Compiler AjMutator
Java

Decompiler
Project

MuJava Java Compiler

Genetic

Algorithm

HOM

Classification

Services

Figure 5.1: Architecture of HOMAJ

4
4

contain metadata about the generated FOMs and subtle HOMs, and files that contain the execution

and classification results of HOMs. The sub-component “XML and Persistence Services” is re-

sponsible for maintaining and persisting the XML records. The sub-component “Result Analysis

Services” is responsible for running queries on the HOM execution results and producing reports.

5.1.2 FOM Generation

HOMAJ utilizes all the operators of two available traditional mutation testing tools, Mu-

Java [30] and AjMutator [33], to generate FOMs. MuJava generates both traditional method-level

and class-level FOMs for Java. It can also compile and execute these mutants using a Java runtime

environment. AjMutator implements only pointcut mutation operators out of all the AspectJ mu-

tation operators proposed by Ferrari et al. [73]. It can compile the mutants and execute test cases

in conjunction with an AspectJ compiler and a Java runtime environment.

HOMAJ uses the public methods in the MuJava.MutationSystem class to create Java

base class FOMs. This process requires the name of the class to be mutated, the source and result

folders, and the set of mutation operators to be applied. After creating the mutants, MuJava gener-

ates a log file for each mutated class that contains metadata, such as the applied mutation operator,

the line number of the mutated statement, the mutated method or operator, and the performed

mutation (i.e., the original code statement and the mutated code statement). HOMAJ extracts the

information and produces a file that contains metadata records in XML, such that each record pro-

vides complete information about a generated FOM. Figure 5.2 shows a file containing three FOM

metadata records.

To create pointcut FOMs from an aspect, the AjMutator command line interface is provided

the names of the original program source folder and the result folder. AjMutator log files do not

provide sufficient information about the generated mutants. We developed functionality in HOMAJ

to iterate through the generated mutant folders and sub-folders, and extract the necessary mutant

metadata. Some of the extracted information, such as the applied mutation operator, line number of

the mutated statement, mutated pointcut, and mutated aspect name are obtained from the generated

mutant’s path, which is obtained from the AjMutator log files. The performed mutation (i.e., the

45

<FOM> <!--Base class FOM -->

<Mutation Operator> AOIS</Mutation Operator>

<Line Number>45 </Line Number>

<Mutated Method>char_getType() </Mutated Method>

<Mutation>movieType => movieType++ </Mutation>

<Class>Movie.java </Class>

<Mutant Path> .\movieRental\...\AOIS_7\Movie.java </Mutant Path>

</FOM>

<FOM> <!--Pointcut Descriptor FOM -->

<Mutation Operator>PCCE </Mutation Operator>

<Line Number>13 </Line Number>

<Mutated Pointcut>pointcut newCustomer() </Mutated Pointcut>

<Mutation> execution(Customer.new(..)) => call(Customer.new(..))

</Mutation>

<Aspect>Updates.aj </Aspect>

<Mutant Path> .\movieRental\....\PCCE000\Updates.aj</Mutant Path>

</FOM>

<FOM> <!--Aspect Advice FOM -->

<Mutation Operator>AORB </Mutation Operator>

<Line Number>56</Line Number>

<Mutated Advice> void around(double charges) </Mutated Advice>

<Mutation>charges -= (charges*1/4) => charges += (charges*1/4)

</Mutation>

<Aspect>Updates.aj </Aspect>

<Mutant Path> .\movieRental\....\AORB56\Updates.aj</Mutant Path>

</FOM>

Figure 5.2: FOM Metadata file Example

original code statement and the mutated code statement) is obtained from both the mutated file and

the original file. After extracting all the information, HOMAJ produces metadata records for the

pointcut FOMs as shown in Figure 5.2.

To mutate aspect advice and inter-type declarations, we used a technique previously used by

Wedyan and Ghosh [11]. The technique requires the use of a Java decompiler. We used The

Java Decompiler Project [112] to decompile AspectJ files into Java files on which MuJava can be

used. HOMAJ copies the mutated statements into the original aspect files to produce FOMs. The

metadata records for the aspect advice and inter-type declaration FOMs are produced in the same

way as for base class FOMs.

46

5.1.3 HOM Creation

An HOM metadata record is generated by combining two or more selected FOM metadata

records. The HOM is created by first creating a folder using information from the HOM metadata

record and then copying all class and aspect files of the program, statement by statement, while

replacing each statement corresponding to a selected FOM record with the mutated statement of the

FOM (obtained from the mutation field in the FOM metadata record). HOMAJ supports multiple

faults in a single statement if the selected FOMs mutate different tokens in that statement. HOMAJ

can be configured to create HOMs by using a particular HOM construction approach.

5.1.4 Search Strategies

The component “Search Strategies” includes the implementations of the search techniques for

finding subtle HOMs. Currently HOMAJ implements all the search techniques described in Chap-

ter 4.

HOMAJ uses XML files and records to set the values of the configurable parameters for each

of the search techniques. For example, the tester can use the Genetic Algorithm configuration file

to set the number of crossover points, mutation rate, and the stopping condition.

5.1.5 Evaluation

This component is responsible for the compilation and execution of both FOMs and HOMs

as well as the classification of HOMs. HOMAJ requires Java and AspectJ compilers to compile

mutants and uses JUnit to execute test cases on mutants.

The process of compiling and executing a large number of HOMs against the given test suite

is computationally expensive. For example, our preliminary studies [16, 17] showed that an un-

restricted Random Search took 27 hours to explore 50,000 HOMs. Local Search and Genetic

Algorithm took 16 and 15 hours respectively. Both Genetic Algorithm and Local Search explored

more duplicate HOMs than Random Search. Duplicate HOMs are evaluated only once. Thus, their

execution time was less than that of Random Search. On the other hand, when HOM compilation

and execution time was not included, Random Search, Local Search, and Genetic Algorithm, took

47

13.7, 16.8, and 22.5 seconds respectively. Both Local Search and Genetic Algorithm use more op-

erators to create HOMs, such as neighborhood graph, crossover, and mutation, during the search,

which results in their higher execution time.

Because of the high computational cost of compiling and executing HOMs, we extended

HOMAJ to use the utility program, Make [113], and perform selective compilation of Java and

AspectJ files. Make automates the process of building executable programs and determining which

pieces of a program need to be recompiled. Make reads a file, called makefile, that specifies how to

derive and compile the target program. Make uses Java and AspectJ compilers to compile mutants

and it only recompile the files that had changed since the last compilation.

To compile and execute mutants, HOMAJ creates an execution folder for the program under

test and copies packages and classes of the original source code to that folder. An HOM is cre-

ated by modifying the source files in the execution folder and changing the program statements

corresponding to the constituent FOMs.

For each program, HOMAJ automatically generates and executes a makefile to compile the

HOMs. HOMAJ runs the java command to execute each HOM. The execution result of an HOM

includes a list of identifiers of all the test cases that kill the HOM. HOMAJ maintains a list of all

compiled and executed HOMs. This list is used to check for duplicates, and to compile and execute

each distinct HOM only once.

HOMAJ uses results obtained from executing both HOMs and FOMs to classify the HOMs

based on the definitions of subsumption and coupling relationships proposed by Jia and Har-

man [8].

48

Chapter 6

Experimental Setup

This chapter presents the setup for the empirical studies conducted in this dissertation. We

present the subject programs used in the studies and describe the approach used to develop the

test suites for these programs. We also present the configurations that were selected for the search

techniques.

6.1 Subject Programs

We used five Java programs that varied in size and implemented various Java constructs. The

selected programs contain various constructs, such as loops and multithreading. The programs

also implement various Object-Oriented concepts, such as interfaces and inheritance. Table 6.1

summarizes the information about the subject programs, their sizes, and size of their test suites.

The programs are as follows:

1. Coordinate:

The Coordinate Program shown in Appendix 1 simulates a rectangular grid for the world,

such grids are commonly used for games. It contains two classes, Coordinate.java and

World.java. The program allows the world to wrap from top to bottom and from left to right.

2. Roman:

The Roman program shown in Appendix 2 converts Roman numbers to Hindu-Arabic

numbers and vice versa. It contains two classes Roman.java and InvalidRomanNumberEx-

ception.java.

3. Cruise Control:

The Cruise Control program [114] simulates a car and its cruise and speed controllers.

We used two versions of the cruise Control program. One used Java and the other one used

49

Table 6.1: Subject Programs

Subject program Type LOC # of

FOMs

of

classes

of as-

pects

of ad-

vices

of

pointcuts

of ITDs # of test

cases

Coordinate Java 121 242 2 0 0 0 0 14

Roman Numbers Java 179 208 2 0 0 0 0 11

Cruise Control Java 917 129 6 0 0 0 0 18

Elevator Java 1046 249 17 0 0 0 0 14

XStream Java 14,388 1216 318 0 0 0 0 96

Kettle AspectJ 125 125 1 2 4 3 2 12

Movie Rental AspectJ 191 316 3 1 8 9 0 15

Banking AspectJ 243 92 2 2 2 2 1 9

Telecom AspectJ 928 152 10 3 9 12 9 10

Cruise Control AspectJ 1008 215 9 3 18 19 15 26

5
0

AspectJ. The Java version contains six classes that implement the main features of the car

and its cruise and speed controllers, such as starting the car, setting and resetting the cruise

and speed controls.

4. Elevator:

The Elevator program [115] contains 17 classes that simulate a number of elevators ser-

vicing a number of floors. An elevator accepts travel requests from one floor to another. The

program uses multi-threading.

5. XStream:

The XStream program [116] is an open source library for object serialization. It contains

318 classes that serialize Java objects into XML records. XStream can also be used to

transform XML records back to Java objects.

We used five AspectJ programs that varied in size and implemented various Java and AspectJ

constructs. They contain before, after, and around advices, inter-type declarations, as well as

primitive and composed pointcuts. These programs also contain base classes that contain Java

constructs to which we could apply MuJava operators. Table 6.1 provides information about these

programs, their sizes, and size of their test suites. The AspectJ programs are as follows.

1. Kettle:

The Kettle program [117] simulates the functionality of an electric kettle for heating

water. It contains one class, Kettle, and two aspects, HeatControl and SafetyControl, to

optimize the power consumption and temperature control of the kettle.

2. Movie Rental:

The Movie Rental program shown in Appendix 3 simulates some of the functionality of

a movie rental kiosk. It contains three classes, Movie, Customer, and Rental, and one aspect,

Updates, which implements functionality to enable the addition of new movie classifications

and pricing strategies.

51

3. Banking:

The Banking program [34] is a bank account management system that contains two

classes, Customer and Account, and two aspects, MinimumBalance and OverdraftProtection.

The aspects implements additional functionalities for checking the balance and controlling

the overdraft fee.

4. Telecom:

The Telecom program [12] simulates a telephone system. It allows customers to make,

accept, merge, and hang up both local and long distance calls. Telecom contains ten classes

to perform the basic telephone system functionalities and three aspects that implement func-

tionalities for measuring the call durations, maintaining call logs, and generating bills.

5. Cruise Control:

This is an AspectJ version of the Cruise Control program [114]. It contains three as-

pects that enforce the pre and post-conditions for cruise and speed controllers, which are

implemented in nine Java classes.

6.2 Test Sets

We developed our own random test case generator to develop a large pool of JUnit test cases

for each subject program. Each random test case contains code that exercises the class constructors

and methods in a random sequence and creates assertions on the execution results. The size of the

generated test cases randomly varied from two to 20 method calls per test case. For each subject

program, the pool of JUnit test cases achieved statement coverage, coverage of equivalence classes

and boundary values of the input domain, and killed all the non-equivalent FOMs.

For each subject program, we generated a test suite by randomly selecting test cases from the

large pool of JUnit test cases. Each test suite contains test cases that achieved statement coverage

and killed all non-equivalent FOMs.

Unlike other programs, the XStream program came with 60 test suites, which contained a large

number of test cases that achieved statement coverage. MuJava generated more than 40,000 FOMs

52

for the XStream program and all of the test cases in the 60 test suites killed only 588 FOMs. We

manually developed another 18 test cases that killed another 628 FOMs. We eventually used 1216

FOMs and all 63 test suites that contained 96 test cases for the XStream program.

6.3 Configuration of the Search Techniques

We used 64-bit Linux machines with Intel CoreTM4x3.3G and 8 Gb memory. The configu-

ration used for each technique can affect its performance. In the early stages of this study we

ran the search techniques with different configurations and finally selected the configurations that

produced the highest number of subtle HOMs.

Due to the stochastic nature of the proposed search techniques, we ran each technique 30 times

per subject program and calculated different statistical measures to compare the effectiveness of

the search techniques. The search techniques were configured in the same way for all subject

programs as follows.

1. Objective Function: the value of α of the objective function was set at 0.75.

2. Stopping Condition: we used the stopping condition of exploring 50,000 distinct HOMs.

3. Genetic Algorithm

• Number of crossover points was set at two and the number of elite HOMs was set at

15.

• Population size was set at 600.

• Mutation rate was set at 0.01 of the number of mutable statements of the program.

• HOMs of the first population degrees ranged from two to three.

4. Restricted Random Search: the maximum HOM degree allowed was set at six.

5. Restricted Enumeration Search: restricted Enumeration Search does not have any config-

urable parameters besides the stopping condition.

53

Chapter 7

Measuring the Relative Effectiveness of the

Search Techniques

This chapter presents a study to measure the effectiveness of the search techniques in terms of

their ability to find subtle HOMs. First, we present the research questions motivating the study.

Second, we present the general findings for each research question. Last, we discuss the results for

each subject program.

7.1 Research Questions

This section presents three research questions and the metrics used to measure the effectiveness

of the search techniques.

RQ1: What is the relative effectiveness of the search technique in terms of

their ability to find subtle HOMs?

We measured the effectiveness in terms of the average number of distinct, subtle HOMs that

were found by each techniques. We compared the effectiveness of the search techniques to de-

termine which technique can find a higher number of distinct, subtle HOMs. A higher number of

distinct, subtle HOMs can be more beneficial for improving the fault-detection effectiveness of test

suites.

In addition, we investigated the variation in the ability of search techniques to find subtle

HOMs. We calculated the maximum, average, standard deviation, median, and minimum num-

ber of distinct, subtle HOMs that were found over the 30 runs for each search technique. We used

box plots to show the distribution of the number of distinct, subtle HOMs that were found by each

technique. We also used the Analysis of Variance (ANOVA) test to analyze the number of subtle

HOMs that were found by each technique and determine if there is a significant difference between

the ability of the search techniques to find subtle HOMs.

54

According to Harman et al. [23], a pure random search technique can be used as a base line to

validate the use of search-based software engineering techniques. Restricted Random Search is not

purely random and our initial experimental evaluation [16] showed that Restricted Random Search

found a higher average number of subtle HOMs than a pure random search technique. Nonetheless,

we used Restricted Random Search as a base line measure for the other five techniques. That is,

we consider Local Search, both the Guided Local Search techniques, the Genetic Algorithm, and

Restricted Enumeration Search to be effective at finding subtle HOMs if they can find a higher

average number of distinct, subtle HOMs than Restricted Random Search.

We also compared the average number of subtle HOMs that were found by Local Search, both

the Guided Local Search techniques, and the Genetic Algorithm with the average number of subtle

HOMs that were found by Restricted Enumeration Search. The former four techniques are search

based software engineering techniques while the latter technique is an exact method for finding

subtle HOMs. The four techniques are not required to find a higher average number of subtle

HOMs than Restricted Enumeration Search in order to be considered effective at finding subtle

HOMs. However, we investigated whether the four techniques can find distinct, subtle HOMs that

are not found by Restricted Enumeration Search after all the techniques have explored the same

number of distinct HOMs.

RQ2: How does the relative effectiveness of the search techniques compare

over time?

We investigated the growth in the average number of distinct, subtle HOMs that were found

as the search techniques explored more distinct, subtle HOMs. The number of explored, distinct

HOMs is considered a quasi-representation of the time taken by each search technique. The goal

is to determine which of the search techniques is more effective when a tester has limited time and

resources for finding subtle HOMs.

55

RQ3: How does the relative effectiveness of the search techniques compare

with respect to the degree of subtle HOMs that were found?

We evaluated the effectiveness of the search techniques in terms of their ability to find subtle

HOMs of specific degrees. For each program, we investigated the number of explored HOMs and

subtle HOMs that were found with respect to the degree of the HOMs. The goal is to determine in

what ways the search techniques explored the search space and how that affects the degree of the

subtle HOMs that were found. We also used the Chi-square test to determine if there is a significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

7.2 Results and Analysis

First, we highlight the general findings and present the answers for the three research questions.

Second, we discuss and explain the results for each subject program.

7.2.1 RQ1: What is the relative effectiveness of the search technique in

terms of their ability to find subtle HOMs?

Tables 7.1 through 7.19 show the maximum, average, standard deviation, median, and min-

imum number of distinct, subtle HOMs that were found over the 30 runs for each technique.

ANOVA results 7.2 through 7.20 show the test result for each program with alpha level of 0.05.

Box Plots 7.1 through 7.28 show the distribution of the number of distinct, subtle HOMs that were

found over the 30 runs for each technique.

Although all six techniques found subtle HOMs for all subject programs, there is a significant

difference in terms of the ability of the search techniques to find subtle HOMs. For all programs,

the P-value was much lower than 0.05 and F statistic was higher than F critical.

Local Search, both the Guided Local Search techniques, the Genetic Algorithm, and Restricted

Enumeration Search found higher average and median numbers of subtle HOMs than Restricted

Random Search for all ten programs. This indicates that the five techniques were effective in terms

of their ability to find subtle HOMs.

56

Local Search and both the Guided Local Search techniques were more effective than the other

techniques at finding subtle HOMs. The average and median numbers of subtle HOMs that were

found by Local Search were higher than the average and median numbers of subtle HOMs that

were found by Restricted Enumeration Search for nine out of the ten programs. Data-Interaction

Guided Local Search and Test-Case Guided Local Search were more effective than Restricted

Enumeration Search for eight and seven programs, respectively. The combination of the fitness

evaluation and the neighborhood graph (i.e. selection mechanism) seem to be a better strategy for

finding subtle HOMs.

Data-Interaction Guided Local Search was more effective than Test-Case Guided Local Search.

Data-Interaction Guided Local Search found a higher average number of subtle HOMs than Local

Search for six programs, while Test-Case Guided Local Search found a higher average number of

subtle HOMs than Local Search for four programs. Test-Case Guided Local Search found a higher

average number of subtle HOMs than Data-Interaction Guided Local Search for only one program,

Roman. For all other program, either Data-Interaction Guided Local Search found a higher average

number of subtle HOMs than Test-Case Guided Local Search, which is the case for four programs,

or both techniques found almost the same average number of subtle HOMs, which is the case for

five programs. The maximum number of subtle HOMs that were found by Data-Interaction Guided

Local Search was higher than the maximum number of subtle HOMs that were found by Test-Case

Guided Local Search for all programs. The maximum number of subtle HOMs in Tables 7.1 to

7.19 represent the best result out of the 30 runs for each technique.

The Genetic Algorithm was more effective for AspectJ programs than for Java programs. It

found a higher average number of subtle HOMs than Restricted Enumeration Search for four out

of the five AspectJ programs and found a lower average number of subtle HOMs than Restricted

Enumeration Search for four out of the five Java programs.

Although Restricted Random Search was the least effective at finding subtle HOMs, it found

subtle HOMs for all programs. Limiting the search to the space of lower degree HOMs is a good

strategy because it allowed Restricted Random Search to find a higher average number of subtle

HOMs than pure random search [16].

57

7.2.2 RQ2: How does the relative effectiveness of the search techniques com-

pare over time?

Line Charts 7.2 through 7.29 show the growth in the average number of distinct, subtle HOMs

that were found as the search techniques explored more distinct HOMs. The vertical line in these

charts shows where Restricted Enumeration Search finished enumerating all Second Order Mutants

(SOMs) and started enumerating third order mutants.

For nine out of the ten subject programs, Restricted Enumeration Search enumerated all SOMs.

Restricted Enumeration Search did not enumerate all third order mutants for any subject programs.

This is because the number of third order mutants was much more than the number of HOMs that

the search techniques were allowed to explore (50,000 distinct HOMs) for all subject programs.

Restricted Enumeration Search was more effective during the early stages of the search process

than the latter stages. This is because Restricted Enumeration Search explores the space of SOMs

first where more subtle HOMs are expected to be found.

For nine out of the ten programs, Data-Interaction Guided Local Search was more effective

than Local Search during the early stages of the search process. For six out of the ten programs,

Test-Case Guided Local Search was more effective than Local Search during the early stages of

the search process.

The Genetic algorithm was less effective than Restricted Enumeration Search during the early

stages of the search process for all programs. However, the Genetic Algorithm was eventually

more effective than Restricted Enumeration Search for five programs. Restricted Random Search

was less effective than Restricted Enumeration Search during all stages of the search process for

all subject programs.

7.2.3 RQ3: How does the relative effectiveness of the search techniques com-

pare with respect to the degree of subtle HOMs?

Column Charts 7.3 through 7.30 show the average number of the distinct, subtle HOMs and all

explored HOMs with respect to their degrees.

58

For five programs, the Chi-Square test produced a P-value that is less than the significance

level of 0.05. For such programs, there is a significant difference between the number of subtle

HOMs that were found by the search techniques with respect to the degree of HOMs.

Our investigation showed that 89% of the subtle HOMs that were found for all programs were

of second or third degrees. Subtle HOMs of higher degrees were harder to find because increasing

the degree of an HOM by adding more FOMs makes it easier to kill in most cases, and that can

cause the number of subtle HOMs of higher degrees to be low.

For nine out of the ten programs, Restricted Enumeration Search was able to find all subtle

SOMs because it fully explored the space of SOMs. For programs with a small number of SOMs

(e.g., Banking with 4065 SOMs) Restricted Enumeration Search was able to quickly find subtle

HOMs. The XStream program contained about a half million SOMs, and thus Restricted Enumer-

ation Search could not find all subtle SOMs.

Data-Interaction Guided Local Search was also effective at finding subtle SOMs. On average

for nine programs, Data-Interaction Guided Local Search found 94% of the subtle SOMs while it

explored only 16% of the space of SOMs. Local Search, the Genetic Algorithm, Test-Case Guided

Local Search, and Restricted Random Search found 90%, 85%, 83%, and 55% of the subtle SOMs

while exploring 80%, 64%, 34%, and 50% of the space of SOMs, respectively.

For all programs, Restricted Enumeration Search was less effective than Local Search, both

the Guided Local Search techniques, and the Genetic Algorithm at finding subtle HOMs of degree

three and higher. Although Restricted Enumeration Search explored more distinct third order

mutants than the four techniques for five programs, it still found a lower average number of third

order subtle HOMs than the four techniques.

59

7.2.4 Discussion

This section discusses and explains the results for each subject program.

1- Cruise Control (Java) Program

Table 7.1: Number of subtle HOMs that were found for Cruise Control (Java)

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 94 76.1 10.8 74 63

Local 83 77.8 3 78 73

Data-Interaction Guided 98 80.7 10.7 78 64

Test-Case Guided 93 77.1 9.6 74 65

Restricted Random 30 25.8 2.3 25.5 22

Restricted Enumeration 40 34.8 3.4 34.5 30

ANOVA Result 7.2: Cruise Control (Java)

Source of Variation SS df MS F statistic P-value F critical

Between Groups 30764.2 5 6152.8 106.3 1.11495E-26 2.4

Within Groups 3126.7 54 57.9

Total 33890.9 59

0

20

40

60

80

100

120

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Box Plot 7.1: Distribution of the number of subtle HOMs that were found for Cruise Control (Java)

Table 7.1 and Box Plot 7.1 show that Local Search, both the Guided Local Search techniques,

and the Genetic Algorithm were more effective than the other techniques for Cruise Control (Java)

60

0

10

20

30

40

50

60

70

80

90

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.2: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Cruise Control (Java)

Program. The average number of subtle HOMs that were found by these four techniques is higher

than the average number of subtle HOMs that were found by Restricted Enumeration Search. This

is true for the median number of subtle HOMs as well. However, the average numbers of subtle

HOMs that were found by these four techniques deviated by less than four subtle HOMs, which

means the effectiveness of these four techniques is comparable.

The Chi-Square test produced a P-value of 1.4E-14, which is less than the significance level of

0.05. This indicates that there is a significant difference between the number of subtle HOMs that

were found by the search techniques with respect to the degree of HOMs.

Column Chart 7.3 shows that subtle SOMs were relatively easy to find by all techniques. The

Java Cruise Control program has a low number of SOMs (8042 HOMs) with respect to the other

programs. Restricted Enumeration Search was able to quickly find all subtle SOMs. Local Search,

Data-Interaction Guided Local Search, and the Genetic Algorithm found all the subtle SOMs. Test-

Case Guided Local Search and Restricted Random Search found 28 and 24 out of the 30 subtle

SOMs, respectively. However, Data-Interaction Guided Local Search and Test-Case Guided Local

Search explored less than 25% of the space of SOMs.

61

0

5

10

15

20

25

30

35

40

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided
Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided
Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.3: Number of HOMs with respect to the degree for Cruise Control (Java)

2- Movie Rental Program

Table 7.3: Number of subtle HOMs that were found for Movie Rental

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 57 39.1 8.7 36.5 28

Local 90 59.8 17.6 58 35

Data-Interaction Guided 117 93.3 13.5 91.5 74

Test-Case Guided 19 15.3 4.1 17 8

Restricted Random 8 4.7 2.2 5 2

Restricted Enumeration 22 22 0 22 22

Table 7.3 and Box Plot 7.4 show that Data-Interaction Guided Local Search was more effective

than the other techniques for the Movie Rental program. Line Chart 7.5 shows that Data-Interaction

Guided Local Search was more effective than the other techniques during all stages of the search

62

ANOVA Result 7.4: Movie Rental

Source of Variation SS df MS F statistic P-value F critical

Between Groups 51726.7 5 10345.3 52 1.92433E-19 2.4

Within Groups 10734.3 54 198.8

Total 62461 59

0

20

40

60

80

100

120

140

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Box Plot 7.4: Distribution of the number of subtle HOMs that were found for Movie Rental

0

10

20

30

40

50

60

70

80

90

100

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.5: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Movie Rental

process. The Genetic Algorithm and Local Search were more effective than Restricted Enumera-

tion Search.

63

Test-Case Guided Local Search was less effective than Restricted Enumeration Search during

all stages of the search process. However, it was more effective than Restricted Random Search.

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.6: Number of HOMs with respect to the degree for Movie Rental

The Chi-Square test produced a P-value of 4.9E-12, which indicates that there is a significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.6 shows that only Restricted Enumeration Search was able to find all the subtle

SOMs (22 subtle SOMs). However, Restricted Enumeration Search did not find any subtle HOMs

of degrees higher than two. The Movie Rental program has a large number of SOMs (47122

HOMs) and Restricted Enumeration Search explored only 2878 third order mutants.

Data-Interaction Guided Local Search, Local Search, and the Genetic Algorithm found more

than 62% of the subtle SOMs that were found by Restricted Enumeration Search.

64

The three techniques found 169, 106, and 64 subtle HOMs of degrees three and higher, respec-

tively, and that is why they were more effective than Restricted Enumeration Search.

3- Telecom Program

Table 7.5: Number of subtle HOMs that were found for Telecom

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 14 10.3 2.7 9.5 6

Local 24 20.5 2.3 20 16

Data-Interaction Guided 23 19 1.8 18 17

Test-Case Guided 24 19.9 2.8 20.5 14

Restricted Random 6 4 1.2 4 2

Restricted Enumeration 9 6.8 1 6.5 6

ANOVA Result 7.6: Telecom

Source of Variation SS df MS F statistic P-value F critical

Between Groups 2655.5 5 531.1 119.9 5.72273E-28 2.4

Within Groups 239.1 54 4.4

Total 2894.6 59.0

0

5

10

15

20

25

30

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Box Plot 7.7: Distribution of the number of subtle HOMs that were found for Telecom

65

0

5

10

15

20

25

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
S

u
b

tl
e

 H
O

M
s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.8: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Telecom

Table 7.5 and Box Plot 7.7 show that Local Search and both the Guided Local Search tech-

niques were more effective than the other techniques for the Telecom program. The average num-

ber of subtle HOMs that were found by these techniques deviated by less than two subtle HOMs.

Line Chart 7.8 shows that Data-Interaction Guided Local Search was more effective than Re-

stricted Enumeration Search during all stages of the search process. Although the Genetic Algo-

rithm was less effective than Restricted Enumeration Search during the early stages of the search

process, it eventually found a higher average and median numbers of subtle HOMs than Restricted

Enumeration Search.

Telecom is a medium size program with respect to the other programs and it has 928 lines of

code, ten classes, and three aspects. However, the number of subtle HOMs that were found for

this program was lower than all other programs. Restricted Enumeration Search found six subtle

SOMs.

The Chi-Square test produced a P-value of 0.13, which is higher than the significance level of

0.05. This indicates that there is no significant difference between the number of subtle HOMs that

were found by the search techniques with respect to the degree of HOMs.

Column Chart 7.9 shows that Local Search, Data-Interaction Guided Local Search, and Test-

66

0

2

4

6

8

10

12

14

16

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.9: Number of HOMs with respect to the degree for Telecom

Case Guided Local Search found all subtle SOMs. The three techniques were more effective

than Restricted Enumeration Search because they found more subtle HOMs of degree three and

higher (15, 14, and 13 respectively), which could not be found by Restricted Enumeration Search.

However, while Local Search fully explored the space of SOMs, Data-Interaction Guided Local

Search explored less than 4% of the space of SOMs. Test-Case Guided Local Search explored 60%

of the same space.

4- Kettle Program

Table 7.7 and Box Plot 7.10 show that both the Guided Local Search techniques and Local

Search were more effective than the other techniques for the Kettle program. The average number

of subtle HOMs that were found by these techniques deviated by less than three subtle HOMs.

Restricted Enumeration Search was more effective than the other techniques during the early

67

Table 7.7: Number of subtle HOMs that were found for Kettle

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 39 35.3 1.9 35 33

Local 60 55.1 3.5 55 48

Data-Interaction Guided 67 56.1 7.6 55.5 46

Test-Case Guided 64 57.7 4.5 58 49

Restricted Random 25 19.7 2.9 19 15

Restricted Enumeration 37 31.5 3.6 31 26

ANOVA Result 7.8: Kettle

Source of Variation SS df MS F statistic P-value F critical

Between Groups 12674.1 5 2534.8 131.5 5.83389E-29 2.4

Within Groups 1040.6 54 19.3

Total 13714.7 59

0

10

20

30

40

50

60

70

80

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.10: Distribution of the number of subtle HOMs that were found for Kettle

stages of the search process (see Line Chart 7.11) because it quickly explored the small space

of SOMs (7617 SOMs) and found all subtle SOMs. Although the Genetic Algorithm was less

effective than Restricted Enumeration Search during most stages of the search process, it eventually

found a higher average number of subtle HOMs than Restricted Enumeration Search.

the Chi-Square test produced a P-value of 0.02, which indicates that there is a significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

68

0

10

20

30

40

50

60

70

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.11: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Kettle

0

5

10

15

20

25

30

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.12: Number of HOMs with respect to the degree for Kettle

69

Column Chart 7.12 shows that Local Search and both the Guided Local Search techniques were

more effective than Restricted Enumeration Search because each of the three techniques found all

of the subtle SOMs that were found by Restricted Enumeration Search and more than 31 subtle

HOMs of degree three and higher. The Genetic found all of the subtle SOMs and 10 more subtle

HOMs of higher degrees.

5- Banking Program

Table 7.9: Number of subtle HOMs that were found for Banking

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 37 30.9 3.5 30 27

Local 34 29.2 2.6 28 27

Data-Interaction Guided 34 30.8 2.2 30.5 28

Test-Case Guided 32 28.9 2.6 28 24

Restricted Random 26 23.3 1.4 23 22

Restricted Enumeration 30 27.1 1.8 27 25

ANOVA Result 7.10: Banking

Source of Variation SS df MS F statistic P-value F critical

Between Groups 404.3 5 80.9 13.6 1.37149E-08 2.4

Within Groups 321.3 54 6

Total 725.6 59

Table 7.9 and Box Plot 7.13 show that subtle HOMs for the banking program were relatively

easy to find by all techniques. The average number of subtle HOMs that were found by Local

Search, both the Guided Local Search techniques, the Genetic Algorithm, and Restricted Enu-

meration Search deviated by less than four subtle HOMs. Same for the median number of subtle

HOMs.

Line Chart 7.14 shows that Restricted Enumeration Search was more effective than the other

techniques during the early stages of the search process. It quickly explored the small space of

4065 SOMs and found all subtle SOMs.

70

0

5

10

15

20

25

30

35

40

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.13: Distribution of the number of subtle HOMs that were found for Banking

The Chi-Square test produced a P-value of 0.31, which indicates that there is no significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.15 shows that all subtle SOMs were found by all techniques except for Re-

stricted Random Search. Data-Interaction Guided Local search explored the lowest number of

SOMs, 714 HOMs.

Although Restricted Enumeration Search explored more distinct HOMs of degree three than

the other techniques, it found a lower number of subtle HOMs of degree three than Local Search

and both the Guided Local Search techniques. The Genetic Algorithm was more effective than the

other techniques at finding subtle HOMs of degree four and higher.

71

0

5

10

15

20

25

30

35

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.14: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Banking

0

5

10

15

20

25

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.15: Number of HOMs with respect to the degree for Banking

72

6- Coordinate Program

Table 7.11: Number of subtle HOMs that were found for Coordinate

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 90 72.4 13 76 53

Local 273 200.9 34.3 192.5 156

Data-Interaction Guided 316 213.8 50 210.5 149

Test-Case Guided 299 223.3 33.1 223 165

Restricted Random 33 27.5 4.9 28.5 18

Restricted Enumeration 87 84.4 1.8 84 82

ANOVA Result 7.12: Coordinate

Source of Variation SS df MS F statistic P-value F critical

Between Groups 363593 5 72718.6 87.8 1.11749E-24 2.4

Within Groups 44725.9 54 828.3

Total 408318.9 59

0

50

100

150

200

250

300

350

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.16: Distribution of the number of subtle HOMs that were found for Coordinate

Table 7.11 and Box Plot 7.16 show that both the Guided Local Search techniques and Local

Search were more effective than the other techniques for Coordinate, while both the Guided Local

Search techniques were more effective than Local Search.

Although the Coordinate program is the smallest in terms of size (lines of code) with respect to

the other program, the number of subtle HOMs that were found is higher than all other programs.

73

0

50

100

150

200

250

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.17: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Coordinate

Line Chart 7.17 shows that both the Guided Local Search techniques and Local Search were

more effective than Restricted Enumeration Search during all stages of the search process. The

Genetic Algorithm was less effective than Restricted Enumeration Search during all stages of the

search process.

The Chi-Square test produced a P-value of 1.3E-35, which indicates that there is a significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.18 shows that none of the search techniques found all subtle SOMs that were

found by Restricted Enumeration Search. However, only Restricted Enumeration Search explored

all the space of SOMs. Both the Guided Local Search techniques and Local Search found a large

number of third order subtle HOMs and that is why they were more effective than Restricted

Enumeration Search. The average number of subtle HOMs that were found by Restricted Random

Search was low compared to the other techniques.

74

0

20

40

60

80

100

120

140

160

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.18: Number of HOMs with respect to the degree for Coordinate

7- Elevator Program

Table 7.13: Number of subtle HOMs that were found for Elevator Program

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 17 13.7 1.9 14 11

Local 28 26 3.5 28 22

Data-Interaction Guided 27 24.1 3 25 18

Test-Case Guided 26 20.6 3.7 20.5 15

Restricted Random 10 5.7 2.1 5 3

Restricted Enumeration 19 19 0 19 19

Table 7.13 and Box Plot 7.19 show that Local Search was more effective than the other tech-

niques for the Elevator program. Line Chart 7.20 shows that Local Search, Data-Interaction Guided

Local Search, and Restricted Enumeration Search found a comparable average number of subtle

75

ANOVA Result 7.14: Elevator

Source of Variation SS df MS F statistic P-value F critical

Between Groups 2301.3 5 460.3 72.7 5.89814E-21 2.4

Within Groups 297.5 47 6.3

Total 2598.8 52

0

5

10

15

20

25

30

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Box Plot 7.19: Distribution of the number of subtle HOMs that were found for Elevator

0

5

10

15

20

25

30

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
S

u
b

tl
e

 H
O

M
s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.20: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Elevator

HOMs during the early stages of the search process. The Genetic Algorithm was less effective

than Restricted Enumeration Search during all stages of the search process.

76

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided
Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.21: Number of HOMs with respect to the degree for Elevator

The Chi-Square test produced a P-value of 0.1, which indicates that there is no significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.21 shows that only Restricted Enumeration Search was able to find all the 19

subtle SOMs. However, Restricted Enumeration Search did not find any subtle HOMs of degrees

higher than two. Local Search, both the Guided Local Search techniques, and the Genetic Algo-

rithm found more than half the number of subtle SOMs. However, each of the Guided Local Search

techniques explored less than 15% of the space of SOMs. Local Search and both the Guided Local

Search techniques were more effective than the other techniques at finding subtle HOMs of degree

three and higher.

77

Table 7.15: Number of subtle HOMs that were found for Cruise Control (AspectJ)

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 29 20.3 6.2 20.5 9

Local 42 29 7 25.5 21

Data-Interaction Guided 56 39.9 8.6 39.5 28

Test-Case Guided 42 33.2 7 34 20

Restricted Random 10.0 7 2.3 7.5 3

Restricted Enumeration 25 22.1 2.1 22.5 19

ANOVA Result 7.16: Cruise Control (AspectJ)

Source of Variation SS df MS F statistic P-value F critical

Between Groups 4753.3 5 950.7 11.7 1.05428E-07 2.4

Within Groups 4373.6 54 81

Total 9126.9 59

0

10

20

30

40

50

60

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.22: Distribution of the number of subtle HOMs that were found for Cruise Control

(AspectJ)

8- Cruise Control (AspectJ) Program

The effectiveness of some of the search techniques for the Cruise Control (AspectJ) version

varied from their effectiveness for the Cruise Control (Java) version. The Genetic Algorithm was

more effective than Restricted Enumeration Search for the Java version, but it was less effective

than Restricted Enumeration Search during all stages of the search process for the AspectJ version.

The Genetic Algorithm was more effective than Restricted Enumeration Search during the last

78

0

5

10

15

20

25

30

35

40

45

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.23: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Cruise Control (AspectJ)

stages of the search process for all the other AspectJ programs.

Table 7.15 and Box Plot 7.22 show that Data-Interaction Guided Local Search was more effec-

tive than the other techniques for Cruise Control (AspectJ) program. Line Chart 7.23 shows that

Local Search and Test-Case Guided Local Search were more effective than Restricted Enumeration

Search during the latter stages of the search process.

The Chi-Square test produced a P-value of 0.03, which indicates that there is a significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.24 shows that none of the search techniques found all of the 22 subtle SOMs

that were found by Restricted Enumeration Search. However, Data-Interaction Guided Local

Search explored less than 18% of the space of SOMs and found 21 of the subtle SOMs. Local

Search and both the Guided Local Search techniques were more effective at finding subtle HOMs

of degree three and higher.

79

0

5

10

15

20

25

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM Degree

Restricted Enumeration Local Data-Interaction Guided
Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.24: Number of HOMs with respect to the degree for Cruise Control (AspectJ)

9- Roman Program

Table 7.17: Number of subtle HOMs that were found for Roman

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 33 28.6 2.9 29 24

Local 43 30.4 7.8 29.5 15

Data-Interaction Guided 39 35.4 3.1 36 31

Test-Case Guided 45 37.9 4.9 39.5 31

Restricted Random 22 16.7 2.7 16.5 13

Restricted Enumeration 45 41 2.1 40 40

Table 7.17 and Box Plot 7.25 show that Restricted Enumeration Search was more effective than

the other techniques for the Roman program. The Roman program is the only subject program

where the average and median numbers of subtle HOMs that were found by Restricted Enumera-

80

ANOVA Result 7.18: Roman

Source of Variation SS df MS F statistic P-value F critical

Between Groups 3749.1 5 749.8 39.3 8.07299E-17 2.4

Within Groups 1030.2 54 19.1

Total 4779.3 59

0

5

10

15

20

25

30

35

40

45

50

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.25: Distribution of the number of subtle HOMs that were found for Roman

0

5

10

15

20

25

30

35

40

45

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.26: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for Roman

tion Search were higher than all other techniques.

Line Chart 7.26 shows that Restricted Enumeration Search was more effective than the other

techniques during all stages of the search process. Local Search was less effective than Restricted

81

Random Search during the early stages of the search process and less effective than the Genetic

Algorithm during most stages of the search process. Both the Guided Local Search techniques

were more effective than Local Search during all stages of the search process.

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.27: Number of HOMs with respect to the degree for Roman

The Chi-Square test produced a P-value of 0.27, which indicates that there is no significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.27 shows that none of the search techniques found all of the 40 subtle SOMs

that were found by Restricted Enumeration Search. The chart also shows that none of the search

techniques, except for Restricted Enumeration Search, fully explored the space of SOMs.

Local Search, both the Guided Local Search techniques, and the Genetic Algorithm were not

effective at finding subtle HOMs of degree three and higher, which could explains why they were

overall less effective than Restricted Enumeration Search. Each of the four techniques found less

82

than five subtle HOMs of degree three and higher, in addition to finding around half the number of

subtle SOMs.

10- XStream Program

Table 7.19: Number of subtle HOMs that were found for XStream

Technique
Subtle HOMs

Maximum Average St. Deviation Median Minimum

Genetic 1 0.4 0.5 0 0

Local 42 20 10.8 19 9

Data-Interaction Guided 37 11.4 14.2 3 0

Test-Case Guided 22 12 10.7 13 0

Restricted Random 1 0.3 0.5 0 0

Restricted Enumeration 19 13.4 4 13 6

ANOVA Result 7.20: XStream

Source of Variation SS df MS F statistic P-value F critical

Between Groups 3427.4 5 685.5 10 8.60154E-07 2.4

Within Groups 3715 54 68.8

Total 7142.4 59

0

5

10

15

20

25

30

35

40

45

Genetic Local Data-Interaction

Guided

Test-Case Guided Restricted Random Restricted

Enumeration

N
u

m
b

e
r

f
S

u
b

tl
e

 H
O

M
s

Box Plot 7.28: Distribution of the number of subtle HOMs that were found for XStream

Table 7.19 and Box Plot 7.28 show that Local Search was more effective than the other tech-

niques for the XStream program. The average and median numbers of subtle HOMs that were

83

0

5

10

15

20

25

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

1
0

k

1
1

k

1
2

k

1
3

k

1
4

k

1
5

k

1
6

k

1
7

k

1
8

k

1
9

k

2
0

k

2
1

k

2
2

k

2
3

k

2
4

k

2
5

k

2
6

k

2
7

k

2
8

k

2
9

k

3
0

k

3
1

k

3
2

k

3
3

k

3
4

k

3
5

k

3
6

k

3
7

k

3
8

k

3
9

k

4
0

k

4
1

k

4
2

k

4
3

k

4
4

k

4
5

k

4
6

k

4
7

k

4
8

k

4
9

k

5
0

k
A

ve
ra

g
e

 n
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Number of explored distinct HOMs

Genetic Local Data-Interaction Guided

Test-Case Guided Restricted Random Restricted Enumeration

Line Chart 7.29: Growth in the average number of subtle HOMs that were found over the number

of explored HOMs for XStream

found by Local Search were higher than all other techniques. The average number of subtle HOMs

that were found by the Genetic Algorithm and Restricted Random Search were low compared to

the other techniques.

Line Chart 7.29 shows that Local Search was more effective than Restricted Enumeration

Search during all stages of the search process. Both the Guided Local Search techniques were

more effective than Restricted Enumeration Search during the early stages of the search process.

The Chi-Square test produced a P-value of 0.85, which indicates that there is no significant

difference between the number of subtle HOMs that were found by the search techniques with

respect to the degree of HOMs.

Column Chart 7.30 shows that Local Search found more subtle SOMs than Restricted Enu-

meration Search. Restricted Enumeration Search was not able to fully explore the large space of

SOMs, which is larger than the 50,000 distinct HOMs Restricted Enumeration Search was allowed

to explore. Both the Guided Local Search techniques found more than half the number of subtle

SOMs that were found by Restricted Enumeration Search.

The effectiveness of the Genetic Algorithm and Restricted Random Search found was low

compared with other search techniques. Figure 7.30 shows that the Genetic Algorithm did explored

a low number of HOMs of lower degrees where more subtle HOMs can be found. More than 94%

84

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
su

b
tl

e
 H

O
M

s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(a) Distinct Subtle HOMs

0

10000

20000

30000

40000

50000

60000

2 3 4 5 6 7+

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
e

xp
lo

re
d

 H
O

M
s

HOM degree

Restricted Enumeration Local Data-Interaction Guided

Test-Case Guided Restricted Random Genetic

(b) All Explored HOMs

Column Chart 7.30: Number of HOMs with respect to the degree for XStream

of all distinct HOMs explored by the Genetic Algorithm were of degrees higher than nine.

The crossover operator of the Genetic Algorithm kept increasing the degree of HOMs at each

iteration for the XStream program. When two parents are crossed-over, the set of FOMs that need

to be applied to each offspring can contains some FOMs that cannot be combined because they

apply mutation to the same token in the same program statement. The crossover operator in such

cases cannot apply all FOMs intended for an offspring. As a result, the both offspring could have

lower degrees than their parents. There is a higher chance for this to happen for programs with

a low number of statements that can be mutated, which is the case for the other nine programs.

However, XStream is a large program with a large number of statements that can be mutated and

thus there is a lower chance to combine FOMs that apply mutation to the same token than the other

nine programs. As a result, it became easier for the crossover operator to create more offspring

HOMs of higher degrees. This caused the Genetic Algorithm to spend most of the execution time

85

exploring the space of HOMs of high degrees where it is harder to find subtle HOMs and less

number of subtle HOMs are expected to be found. The large number of HOMs for the XStream

program made it even harder for Restricted Random Search to find many subtle HOMs.

7.3 Summary of findings

All the search techniques found subtle HOMs for all programs. However, Local Search and

both the Guided Local Search techniques were more effective than the other techniques in terms

of their ability to find subtle HOMs.

The search techniques found more subtle HOMs of second and third degrees; subtle HOMs of

higher degrees were harder to find. The Genetic Algorithm, Local Search, and both the Guided

Local Search techniques were more effective than Restricted Enumeration for finding subtle HOMs

of degree three and higher.

Overall, Data-Interaction Guided Local Search was more effective than the other techniques

for finding a higher number of distinct, subtle HOMs. It found on an average 94% of the subtle

SOMs while it explored only 16% of the space of SOMs.

86

Chapter 8

Comparing Sets of Subtle HOMs Found by

Different Search Techniques

This chapter presents a study to investigate the difference between the sets of subtle HOMs that

were found by different search techniques. First, we present the research question motivating the

study then we present the findings and analysis of the results.

8.1 Research Question

The study is motivated by the following research question.

RQ1: What set of subtle HOMs is found by all techniques and what set of

subtle HOMs is uniquely found by each technique?

The search techniques use different operators to generate HOMs and that can have an affect

what set of subtle HOMs found by each technique. We define the hardest-to-find subtle HOM as

the one that can be uniquely found by only one search technique. We also define the easiest-to-find

subtle HOM as the one that can be found by all the search techniques. We investigated the numbers

of subtle HOMs that were the hardest-to-find and easiest-to-find by the search techniques.

In a practical setting, a tester may not have the time nor the resources to run all the search

techniques to find subtle HOMs. Therefore, knowing what set of subtle HOMs can be uniquely

found by each search technique and what set of subtle HOMs can be found by all techniques can

help testers select and prioritize the search techniques based on the desired subtle HOMs.

For each subject program we generated six sets of subtle HOMs. Each set represents the union

of the 30 sets of subtle HOMs that were found by a search technique over the 30 runs. We then

used these six sets to determine the subtle HOMs that were the hardest-to-find and easiest-to-find

for each program. In addition, we calculated the number of subtle HOMs that were found by two,

three, four, and five search techniques. We also calculated the union of the six sets to obtain the set

87

of all distinct, subtle HOMs that were found by all the search techniques for each subject program.

This set is called the set of all subtle HOMs.

8.2 Results and Analysis

Bar Charts 8.1 through 8.19 show the six sets of subtle HOMs for each program, which are

depicted by the black bars. Each chart also shows the set of all distinct, subtle HOMs for each

program, which is depicted by the striped bar.

The Column Charts shown in part (a) of Figures 8.2 through 8.20 show the number of subtle

HOMs with respect to the number of search techniques that found them. For example, Figure 8.2

(a) shows that 38 subtle HOMs were the easiest-to-find as they were found by all the search tech-

niques. The figure also shows that 223 subtle HOMs were the hardest-to-find as each one was

uniquely found by one technique. The hardest-to-find subtle HOMs are depicted by the gray col-

umn.

The Pie Charts shown in part (b) of Figures 8.2 through 8.20 show the number of the hardest-

to-find subtle HOMs with respect to the search technique that found them. For example, Figure 8.2

(b) shows that the 223 hardest-to-find subtle HOMs shown in part (a) were as follows: 176 subtle

HOMs were uniquely found by the Genetic Algorithm, two subtle HOMs were uniquely found by

Local Search, 11 subtle HOMs were uniquely found by Data-Interaction Guided Local Search, 33

subtle HOMs were uniquely found by Test-Case Guided Local Search, and one subtle HOMs was

uniquely found by Restricted Random Search.

The search techniques found more of the hardest-to-find subtle HOMs than the easiest-to-

find subtle HOMs. For eight out of the ten subject programs, the number of the hardest-to-find

subtle HOMs was higher than the number of the easiest-to-find subtle HOMs. This shows that the

different operators implemented in the search techniques can impact the type of subtle HOMs that

can be found by each technique.

Our investigation showed that 94% of the hardest-to-find subtle HOMs of all programs were

of degree three and higher, and more than 92% of the easiest-to-find subtle HOMs of all pro-

grams were subtle SOMs. More than 95% of the hardest-to-find subtle HOMs of all programs

88

resulted from the Genetic Algorithm, Data-Interaction Guided Local Search, Test-Case Guided

Local Search, and Local Search. The three techniques were more effective than the other tech-

niques at finding subtle HOMs of degree three and higher.

Restricted Enumeration Search was less effective than the other techniques at finding the

hardest-to-find subtle HOMs despite Restricted Enumeration Search explored more distinct third

order mutants than the four techniques for five programs.

For the XStream program, which has much larger search space than the other nine programs,

Restricted Enumeration Search found a larger number of the hardest-to-find subtle HOMs than

the Genetic Algorithm, both the Guided Local Search techniques, and Restricted Random Search.

Restricted Enumeration Search found only three and two hardest-to-find subtle HOMs for another

two programs.

Although Restricted Random Search was less effective at finding subtle HOMs than the other

techniques, it found hardest-to-find subtle HOMs for seven out of the ten programs. However,

Restricted Random Search found a low number of hardest-to-find subtle HOMs compared to the

other techniques.

More than 38% of the hardest-to-find subtle HOMs of all programs were found by the Genetic

Algorithm. For six out of the ten programs, the Genetic Algorithm found a higher number of the

hardest-to-find subtle HOMs than all other techniques.

Although Local Search, Data-Interaction Guided Local Search, and Test-Case Guided Local

Search used a similar mechanism to explore the search space, each of the three techniques was

able to find hardest-to-find subtle. However, both the Guided Local Search Techniques found

more of the hardest-to-find subtle HOMs of all programs than Local Search.

For nine out of the ten programs, the set of subtle HOMs that were found by Local Search,

both the Guided Local Search techniques, and the Genetic Algorithm included more than 98% of

the subtle HOMs that were found by Restricted Enumeration and Restricted Random Search. This

suggest that the former four techniques need to be used in order to find a large number of subtle

HOMs that can be used to improve the effectiveness of the test suites.

89

For five out of the ten subject programs, the number of all distinct, subtle HOMs that were

found by all search techniques was higher than the number of non-equivalent FOMs for these

programs. For another four programs, the number of all distinct, subtle HOMs was more than half

the number of non-equivalent FOMs for these programs.

In the remainder of this section, we further analyze the results and highlight the findings for

each subject program.

1- Cruise Control (Java) Program

0 50 100 150 200 250 300 350 400

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.1: Number of subtle HOMs that were found by the search techniques over 30 runs for

Cruise Control (Java)

0

50

100

150

200

250

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm,

176

Local

Search,

2

Test-Case

Guided, 33

Data-Interaction

Guided, 11

Restricted

Random, 1

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.2: Number of subtle HOMs with respect to the number of search techniques that found

them for Cruise Control (Java)

Figure 8.2 (a) shows that the number of the hardest-to-find subtle HOMs is higher than the

number of the easiest-to-find subtle HOMs for the Cruise Control (Java) Program. Figure 8.2 (b)

90

shows that the majority of the hardest-to-find subtle HOMs were found by the Genetic Algorithm,

which found the largest set of subtle HOMs over 30 runs (see Bar Chart 8.1). The majority of the

hardest-to-find subtle HOMs that were found by the Genetic Algorithm were of degree three and

higher that could not be found by the other techniques.

Restricted Enumeration Search did not find any the hardest-to-find subtle HOMs while Re-

stricted Random Search found only one hardest-to-find subtle HOM. Both techniques were the

least effective in terms of their ability to find subtle HOMs for the Cruise Control (Java) Program

(see Chapter 7). Further, Bar Chart 8.1 shows that both techniques found smaller sets of subtle

HOMs over 30 runs than the other techniques.

The set of subtle HOMs that were found by the Genetic Algorithm and both the Guided Local

Search techniques included more than 99% of all the subtle HOMs that were found for the Cruise

Control (Java) program.

2- Movie Rental Program

0 50 100 150 200 250 300

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.3: Number of subtle HOMs that were found by the search techniques over 30 runs for

Movie Rental

Figure 8.4 (a) shows that the number of the hardest-to-find subtle HOMs was higher than the

number of the easiest-to-find subtle HOMs. The hardest-to-find subtle HOMs were found by the

Genetic Algorithm, Data-Interaction Guided Local Search, and Local Search.

Figure 8.4 (b) shows that the Genetic Algorithm found more of the hardest-to-find subtle HOMs

than Data-Interaction Guided Local Search. This is despite the fact that the latter technique found

91

0

20

40

60

80

100

120

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm, 58

Local

Search,

12

Data-

Interaction

Guided, 43

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.4: Number of subtle HOMs with respect to the number of search techniques that found

them for Movie Rental

more subtle HOMs over the 30 runs than all the other techniques (see Bar Chart 8.3) and it also

found the highest average number of subtle HOMs (see Chapter 7).

The set of subtle HOMs that were found using the Genetic Algorithm, Data-Interaction guided

Local Search, and Local Search included all subtle HOMs that were found for the Movie Rental

program. The sets of subtle HOMs that were found by the Genetic Algorithm, Data-Interaction

guided Local Search, and Local Search individually included all subtle HOMs that were found by

Restricted Enumeration Search.

3- Telecom Program

0 5 10 15 20 25 30 35

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.5: Number of subtle HOMs that were found by the search techniques over 30 runs for

Telecom

92

0

1

2

3

4

5

6

7

8

9

10

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic Algorithm,

3

Data-

Interaction

Guided, 1

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.6: Number of subtle HOMs with respect to the number of search techniques that found

them for Telecom

Bar Chart 8.5 shows that the set of all subtle HOMs that were found by all the search tech-

niques included 30 subtle HOMs, which is the lowest number of subtle HOMs for the ten subject

programs.

Figure 8.6 (a) shows that the number of the easiest-to-find subtle HOMs is slightly higher than

the number of the hardest-to-find subtle HOMs. The number of subtle HOMs that were found by

four techniques was the highest. This is because the Genetic Algorithm, both the Guided Local

Search techniques, and Local Search found many of the same subtle HOMs. Each of the four

techniques found more than half the number of subtle HOMs that were found by all techniques.

The Genetic Algorithm and Data-Interaction Guided Local Search were the only techniques to

find the hardest-to-find subtle HOMs. Although the Genetic Algorithm was not the most effec-

tive technique for the Telecom program, it found a few more of the hardest-to-find subtle HOMs

than Data-Interaction Guided Local Search, which was one of the most effective technique for the

Telecom program.

The set of subtle HOMs that were found by the Genetic Algorithm, Data-Interaction guided

Local Search, and Local Search included all subtle HOMs that were found by all other techniques.

93

0 20 40 60 80 100 120 140 160

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.7: Number of subtle HOMs that were found by the search techniques over 30 runs for

Kettle

0

10

20

30

40

50

60

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm, 23

Test-Case

Guided, 2

Data-Interaction

Guided, 18

Restricted

Random, 6

Local

Search,

2

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.8: Number of subtle HOMs with respect to the number of search techniques that found

them for Kettle

4- Kettle Program

Figure 8.8 (a) shows that the number of the hardest-to-find subtle HOMs was higher than the

number of the easiest-to-find subtle HOMs. This is because five out of the six search techniques

found the hardest-to-find subtle HOMs for the Kettle program. Restricted Enumeration Search did

not find any of the hardest-to-find subtle HOMs.

The Genetic Algorithm found a higher number of the hardest-to-find subtle HOMs than the

other techniques followed by Data-Interaction Guided Local Search. Restricted Random Search

found a higher number of the hardest-to-find subtle HOMs than Local Search and Test-Case Guided

Local Search, which both were far more effective than Restricted Random Search in terms of their

94

ability to find subtle HOMs (see Chapter 7). The set of subtle HOMs that were found by Local

Search included all subtle HOMs that were found by Restricted Enumeration Search.

5- Banking Program

0 10 20 30 40 50 60 70 80 90

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.9: Number of subtle HOMs that were found by the search techniques over 30 runs for

Banking

0

5

10

15

20

25

30

35

40

45

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic Algorithm,

37

Data-Interaction

Guided, 1

Restricted

Random, 4

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.10: Number of subtle HOMs with respect to the number of search techniques that found

them for Banking

Figure 8.10 (a) shows that the number of the hardest-to-find subtle HOMs was higher than the

number of the easiest-to-find subtle HOMs. The majority of the hardest-to-find subtle HOMs were

found by the Genetic Algorithm, which found the largest set of subtle HOMs over 30 runs (see

Bar Chart 8.9). The majority of the hardest-to-find subtle HOMs that were found by the Genetic

Algorithm were of degree three and higher and these could not be found by the other techniques.

95

The number of the easiest-to-find subtle HOM was also high because all techniques were ef-

fective for the Banking program (see Chapter 7) and they found many of the same subtle HOMs.

The set of subtle HOMs that were found by the Genetic Algorithm, Data-Interaction Guided

Local Search, and Restricted Random Search included all subtle HOMs that were found by all

other techniques.

6- Coordinate Program

0 200 400 600 800 1000 1200

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.11: Number of subtle HOMs that were found by the search techniques over 30 runs

for Coordinate

0

100

200

300

400

500

600

700

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Restricted

Enumeration, 3

Local Search,

137

Test-Case

Guided, 163

Restricted

Random, 5
Data-

Interaction

Guided, 148

Genetic

Algorithm, 133

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.12: Number of subtle HOMs with respect to the number of search techniques that found

them for Coordinate

Bar Chart 8.11 shows that the number of subtle HOMs that were found for the Coordinate

program was higher than those found by all other programs. Although all search techniques found

96

the hardest-to-find subtle HOMs, Restricted Enumeration Search and Restricted Random Search

found a low number of the hardest-to-find subtle HOMs compared to the other techniques.

The number of the hardest-to-find subtle HOMs was higher than the number of the easiest-to-

find subtle HOMs. Test-Case Guided Local Search, Data-Interaction Guided Local Search, Local

Search, and the Genetic Algorithm found a high number of the hardest-to-find subtle HOMs of

higher degrees.

7- Elevator Program

0 5 10 15 20 25 30 35

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.13: Number of subtle HOMs that were found by the search techniques over 30 runs

for Elevator

0

2

4

6

8

10

12

14

16

18

20

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm,

2

Restricted

Random,

1

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.14: Number of subtle HOMs with respect to the number of search techniques that found

them for Elevator

Similar to the Telecom program, the Elevator program has a low number of subtle HOMs. Bar

Chart 8.13 shows that the set of all subtle HOMs that were found by all the search techniques

97

included 31 subtle HOMs, which is the second lowest number of subtle HOMs among the ten

subject programs.

Figure 8.14 (a) shows that the number of the easiest-to-find subtle HOMs was higher than the

number of the hardest-to-find subtle HOMs. The search techniques found only three of the hardest-

to-find subtle HOMs, which is the lowest number of hardest-to-find subtle HOMs amongst the ten

programs.

Figure 8.14 (a) shows that the number of subtle HOMs that were found by three techniques

was high because both the Guided Local Search techniques and Local Search found many of the

same subtle HOMs.

The set of subtle HOMs that were found using the Genetic Algorithm, Data-Interaction guided

Local Search, and Restricted Random Search included all subtle HOMs that were found using all

other techniques. The sets of subtle HOMs that were found by the Genetic Algorithm, Test-Case

Guided Local Search, and Local Search individually included all subtle HOMs that were found by

Restricted Enumeration Search.

8- Cruise Control (AspectJ) Program

0 50 100 150 200 250

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.15: Number of subtle HOMs that were found by the search techniques over 30 runs

for Cruise Control (AspectJ)

Figure 8.16 (a) shows that the number of the hardest-to-find subtle HOMs was higher than the

number of the easiest-to-find subtle HOMs. This is because five out of the six search techniques

found the hardest-to-find subtle HOMs for the Cruise Control (AspectJ) program. Restricted Enu-

98

0

20

40

60

80

100

120

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm, 31

Test-Case

Guided, 32

Local

Search

, 9

Data-

Interaction

Guided, 27

Restricted

Random, 1

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.16: Number of subtle HOMs with respect to the number of search techniques that found

them for Cruise Control (AspectJ)

meration Search did not find any hardest-to-find subtle HOMs, while Restricted Random Search

found only one hardest-to-find subtle HOMs. The Genetic Algorithm and both the Guided Local

Search techniques found a higher number of hardest-to-find subtle HOMs than Local Search.

9- Roman Program

0 20 40 60 80 100 120

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.17: Number of subtle HOMs that were found by the search techniques over 30 runs

for Roman

Figure 8.18 (a) shows that the number of the hardest-to-find subtle HOMs was higher than the

number of the easiest-to-find subtle HOMs. The Genetic Algorithm and Local Search found the

majority of the hardest-to-find subtle HOMs, while Restricted Enumeration Search and Restricted

Random Search found two and three hardest-to-find subtle HOMs, respectively.

99

0

5

10

15

20

25

30

35

40

45

50

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm,

18

Restricted

Random, 3

Local

Search, 21

Restricted

Enumeration, 2

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.18: Number of subtle HOMs with respect to the number of search techniques that found

them for Roman

None of the Guided Local Search techniques found any hardest-to-find subtle HOMs. The set

of subtle HOMs that were found by Local Search included all subtle HOMs that were found by

Data-Interaction Guided Local Search and Test-Case Guided Local Search.

10- XStream Program

Figure 8.20 (a) shows that the search techniques did not find any of the easiest-to-find subtle

HOMs for the XStream program. That is, no subtle HOM was found by all techniques. Further,

only one subtle HOM was found by five techniques. This is because the Genetic Algorithm and

Restricted Random Search found a low number of subtle HOMs compared to the other techniques.

The search techniques found 97 hardest-to-find subtle HOMs and Local Search and Restricted

Enumeration Search together found more than half the number of these subtle HOMs.

8.3 Summary of findings

Subtle HOMs that were uniquely found by one search technique represented 50% of all the

subtle HOMs found in the ten programs. This shows that the different operators implemented in

the search techniques have an impact on the set of subtle HOMs that can be uniquely found by

each technique. 94% of the uniquely found subtle HOMs were of degree three and higher; and

92% of the subtle HOMs that were found by all techniques were subtle SOMs.

100

0 50 100 150 200 250

Restricted Enumeration

Restricted Random

Test-Case Guided

Data-Interaction Guided

Local Search

Genetic Algorithm

All Subtle HOMs

Number of subtle HOMs

Bar Chart 8.19: Number of subtle HOMs that were found by the search techniques over 30 runs

for XStream

0

20

40

60

80

100

120

Easiest to

find

Found by 5 Found by 4 Found by 3 Found by 2 Hardest to

find

N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Type of subtle HOMs

(a) Easiest-to-find and hardest-to-find subtle

HOMs

Genetic

Algorithm, 1

Local Search,

33

Test-Case

Guided,

21

Data-

Interaction

Guided,

13 Restricted

Enumeration,

29

(b) hardest-to-find subtle

HOMs by search technique

Figure 8.20: Number of subtle HOMs with respect to the number of search techniques that found

them for XStream

For most programs, the set of subtle HOMs that were found by the Genetic Algorithm, both

the Guided Local Search techniques, and Local Search included all subtle HOMs that were found

by the other two techniques. This shows that using the four search-based software engineering

techniques is more likely to produce a large number of distinct, subtle HOMs that can be used to

improve the fault-detection effectiveness of test suites.

101

Chapter 9

Impact of Programming Language Construc-

ts on Creating Subtle HOMs

In this chapter we present a study to investigate the impact of the different constructs provided

by the programming languages, AspectJ and Java, on the creation of subtle HOMs. The goal is

to determine whether or not subtle HOMs are more likely to be created by combining FOMs that

apply mutation faults to a specific set of constructs of the programming language.

9.1 Research Questions

This section presents two research questions that motivated the study presented in this chapter.

RQ1: What mutation operators are more likely to create subtle HOMs?

The mutation operators for a programming language are designed based on the syntax, con-

structs, and structure of the language. The mutation operators that we used to create the FOMs for

the subject programs can be classified into three types. The method-level mutation operators apply

changes to expressions that include primitive Java operators. The method-level mutation operators

apply mutations, such as replacing, deleting, and inserting a primitive operator, in the Java class

methods, AspectJ advices, and AspectJ inter-type declaration methods.

The second type is class-level mutation operators and they apply changes to expressions that

implement Object-Oriented features, such as encapsulation, inheritance, and polymorphism. The

last type is aspect-level mutation operators and they apply changes to expressions that imple-

ment Aspect-Oriented features, such as pointcut descriptors, advice weaving kind, and precedence

among aspects.

For each program, we used the FOM XML records to obtain the set of mutation operators that

were used to create all the non-equivalent FOMs. We investigated what set of mutation operators

102

were used to create the constituent FOMs of the subtle HOMs that were found by each search

technique. We also investigated whether or not the search techniques favor combining FOMs that

were created by a specific set of mutation operators.

RQ2: Are subtle HOMs more likely to be created when combining mutated

constructs from specific locations?

We investigated whether subtle HOMs are more likely to be created when combining mutated

constructs (FOMs) from specific locations within the program, such as when combining FOMs

that apply mutation to the same program statement or that apply mutation to different statements

of the same program method. For each program, we investigated the number of subtle HOMs and

all explored HOMs with respect to the location of their constituent FOMs. We classified HOMs

based on the location of their constituent FOMs into the following four categories:

1. HOMs of the same statement: represent HOMs that their constituent FOMs apply mutation

to different tokens of the same statement of code.

2. HOMs of the same method/advice: represent HOMs that their constituent FOMs apply mu-

tation to different statements in the same method/advice of a class.

3. HOMs of the same class/aspect: represent HOMs that their constituent FOMs apply muta-

tion to different statements in different methods/advices in the same class/aspect.

4. HOMs of different classes/aspects: represent HOMs that their constituent FOMs apply mu-

tation to different statements in different classes/aspects.

We also investigated the number of subtle HOMs and all explored HOMs with respect to the

construction approach used to create the HOMs in AspectJ programs. The goal was to determine

if subtle HOMs are more likely to be created using one of the construction approaches.

The HOM construction approaches [91] specify the locations of the program where single

changes can be made, where each change corresponds to an FOM. For example, an HOM may be

constructed by combining only FOMs of the same class or the same aspect. The approaches are

103

based on Aspect-Oriented Programming fault models [11, 26, 73]. The construction approaches

are as follows:

1. Single Base Class or Aspect Approach (SCA): Each HOM is constructed by inserting two

or more mutation faults into a single base class or by inserting two or more mutation faults

into a single aspect.

2. Dispersed Base Class Approach (BC): Each HOM is constructed by inserting two or more

mutation faults in two or more different base classes.

3. Dispersed Aspect Approach (AS): Each HOM is constructed by inserting two or more mu-

tation faults in two or more different aspects.

4. Dispersed Base Class and Aspect Approach (BC&AS): Each HOM is constructed by insert-

ing at least one fault in a base class and at least one fault in an aspect.

9.2 Results and Analysis

This section presents the results for the two research questions and analysis of the results.

9.2.1 RQ1: What mutation operators are more likely to create subtle HOMs?

Figure 9.1 through 9.9 show the number of subtle HOMs with respect to the combination of

mutation operators that created their constituent FOMs. For example, the Bar Chart in Figure 9.1

(a) shows that the Genetic Algorithm found 23 subtle HOMs, such that each of these subtle HOM

was created by combining only FOMs created by the three mutation operators: Arithmetic Op-

erator Insertion (AOIS), Logical Operator Insertion (LOI), and Relational Operator Replacement

(ROR). The same Bar Chart also shows that the Genetic Algorithm found 13 subtle HOMs where

each subtle HOM was created by combining only FOMs created by the two mutation operators:

Arithmetic Operator Insertion (AOIS) and Relational Operator Replacement (ROR).

The results showed that more than 92% of subtle HOMs of all programs resulted from combin-

ing FOMs created by method-level mutation operators, which apply mutation faults to expressions

that include Java primitive operators. The FOMs that were created by class-level and aspect-level

104

mutation operators produced a low number of subtle HOMs. Although no a specific set of method-

level mutation operators seems to be more likely to create subtle HOMs, the mutation operators

that created more subtle HOMs were those that created more FOMs for each subject programs.

In the remainder of this section, we further analyze the results and highlight the findings for

each subject program.

1- Cruise Control (Java) Program

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.1: Distribution of Subtle HOMs based on their Mutation Operators for Cruise Control

(Java)

The set of non-equivalent FOMs for the Cruise Control (Java) program was created by eight

mutation operators. However, more than 75% of these FOMs were created using only three

method-level mutation operators: Arithmetic Operator Insertion of Short-cut (AOIS), Relational

Operator Replacement (ROR), and Logical Operator Insertion (LOI).

105

We analyzed the HOMs explored by the search techniques and found out that different com-

binations of these three mutation operators represented more than 60% of all HOMs explored by

each search technique.

Figure 9.1 shows that the majority of subtle HOMs found by all search techniques included

different combinations of FOMs created using the three mutation operators, AOIS, ROR, and LOI.

However, the Genetic Algorithm, Local Search, and both the Guided Local Search techniques

found a large number of subtle HOMs by combining only FOMs created by these three muta-

tion operators. All search techniques found subtle HOMs by combining FOMs of Static Modifier

Insertion (JSI), which is a class-level mutation operator, with FOMs of method-level mutation

operators.

2- Telecom Program

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.2: Distribution of Subtle HOMs based on their Mutation Operators for Telecom

106

The set of non-equivalent FOMs for the Telecom program was created by 18 mutation oper-

ators, which is higher than most other programs. However, more than 54% of the FOMs were

created using only three method-level mutation operators: Arithmetic Operator Insertion of Short-

cut (AOIS), Logical Operator Insertion (LOI), and Arithmetic Operator Insertion of basic Unary

(AOIU).

Although the three mutation operators generated more than 54% of FOMs, our analysis of the

HOMs explored by the search techniques showed that the different combinations of these mutation

operators represented less than 25% of all HOMs explored by each search technique. This is due

to the large number of mutation operators for the Telecom program.

Figure 9.2 shows that the majority of subtle HOMs found by all search techniques included

different combinations of the three mutation operators. All search techniques found subtle HOMs

by combining only FOMs of AOIS.

3- Kettle Program

The set of non-equivalent FOMs for the Kettle program was created by ten mutation opera-

tors and more than 80% of these FOMs were created using the four method-level mutation op-

erators: Arithmetic Operator Insertion of Short-cut (AOIS), Assignment Operator Replacement

(ASRS), Relational Operator Replacement (ROR), and Arithmetic Operator Insertion of basic

Unary (AOIU). Our analysis showed that different combinations of these mutation operators rep-

resented around 50% of all HOMs explored by each search technique.

Figure 9.3 shows that the majority of the subtle HOMs found by the search techniques repre-

sented different combinations of the four method-level mutation operators. However, all search

techniques found subtle HOMs by combining only FOMs of AOIS and by combining only FOMs

of AOIU.

107

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.3: Distribution of Subtle HOMs based on their Mutation Operators for Kettle

4- Banking Program

The set of non-equivalent FOMs for the Banking program was created by eight mutation opera-

tors and more than 75% of these FOMs were created using three method-level mutation operators:

Arithmetic Operator Insertion of Short-cut (AOIS), Assignment Operator Replacement (ASRS),

and Relational Operator Replacement (ROR).

Our investigation revealed that different combinations of these three method-level mutation

operators represented more than 50% of all HOMs explored by each search technique. However,

the majority of the subtle HOMs found by all search techniques were created by combining only

FOMs of AOIS. All search techniques found subtle HOMs by combining FOMs of Static Modifier

Insertion (JSI), which is a class-level mutation operator, with FOMs of method-level mutation

operators.

108

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.4: Distribution of Subtle HOMs based on their Mutation Operators for Banking

5- Coordinate Program

The set of non-equivalent FOMs for the Coordinate program was created using ten mutation

operators and more than 71% of these FOMs were created using three method-level mutation

operators: Arithmetic Operator Insertion of Short-cut (AOIS), Logical Operator Insertion (LOI),

and Arithmetic Operator Replacement basic Binary (AORB).

Our investigation revealed that different combinations of the three method-level mutation op-

erators represented less than 30% of all HOMs explored by each search technique. However,

Figure 9.5 shows that different combinations of the three mutation operators represented the ma-

jority of the subtle HOMs found by each search technique. All search techniques found subtle

HOMs by combining only FOMs of AOIS.

109

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.5: Distribution of Subtle HOMs based on their Mutation Operators for Coordinate

6- Elevator Program

The set of non-equivalent FOMs for the Elevator program was created by 14 mutation operators

and 70% of these FOMs were created using four method-level mutation operators: Arithmetic Op-

erator Insertion of Short-cut AOIS, Logical Operator Insertion (LOI), Relational Operator Replace-

ment (ROR), and Conditional Operator Insertion (COI). Our investigation revealed that different

combinations of these four mutation operators represented less than 25% of all HOMs explored by

each search technique. This is due to the large number of mutation operators.

Different combinations of the four method-level mutation operators represented a large number

of the subtle HOMs found by all search techniques. All search techniques found subtle HOMs by

combining only FOMs of AOIS, by combining only FOMs of AOIU, and by combining only

FOMs of LOI. Local Search and both the Guided Local Search techniques found subtle HOMs by

combining only FOMs of COI.

110

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.6: Distribution of Subtle HOMs based on their Mutation Operators for Elevator

7- Cruise Control (AspectJ) Program

The set of non-equivalent FOMs for the Cruise Control (AspectJ) program was created by

12 mutation operators and 80% of these FOMs were created using four method-level mutation

operators: Arithmetic Operator Insertion of Short-cut (AOIS), Relational Operator Replacement

(ROR), Logical Operator Insertion (LOI), and Conditional Operator Insertion (COI).

Different combinations of the mutation operators AOIS, ROR, and LOI represented a large

number of the subtle HOMs found by all search techniques. However, all search techniques found

subtle HOMs by combining only FOMs of AOIS and by combining only FOMs of AOIU.

8- Roman Program

The set of non-equivalent FOMs for the Roman program was created by nine mutation opera-

tors and more than 75% of these FOMs were created using three method-level mutation operators:

AOIS, ROR, and ASRS. Although different combinations of these three method-level mutation

111

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.7: Distribution of Subtle HOMs based on their Mutation Operators for Cruise Control

(AspectJ)

operators represented the majority of HOMs explored by all search techniques, the majority of the

subtle HOMs found by all search techniques were created by combining only FOMs of AOIS.

9- XStream Program

The set of non-equivalent FOMs for the XStream program was created by 25 mutation oper-

ators and 46% of these FOMs were created using three method-level mutation operators: COI,

ROR, and AOIS. The mutation operators that created a large number of FOMs were more success-

ful in creating subtle HOMs. Similar to other programs, all search techniques found subtle HOMs

by combining only FOMs of AOIS.

112

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.8: Distribution of Subtle HOMs based on their Mutation Operators for Roman

(a) Genetic (b) Local

(c) Data-Interaction Guided (d) Test-Cases Guided

(e) Restricted Enumeration (f) Restricted Random

Figure 9.9: Distribution of Subtle HOMs based on their Mutation Operators for XStream

113

9.2.2 RQ2: Are subtle HOMs more likely to be created when combining

mutated constructs from specific locations?

Part (a) in Figures 9.10 through 9.24 shows the number of subtle HOMs that were found by

each search technique with respect to the location of their constituent FOMs. Part (b) in these

figures shows the number of all HOMs that were explored by each search technique with respect

to the location of their constituent FOMs.

Part (a) in Figs 9.12 through 9.22 shows the number of subtle HOMs that were found by each

search technique with respect to their construction approach and part (b) shows the number of all

explored HOMs with respect to their construction approach.

The results showed that subtle HOMs that were constructed by combining FOMs of the same

statement and of the same method represented 35% and 31% respectively, of subtle HOMs that

were found for all programs.

For five out of the ten programs, the majority of subtle HOMs found by all search techniques

were constructed by combining FOMs of the same statement. For three programs, the majority

of subtle HOMs were constructed by combining FOMs of the same method. Subtle HOMs con-

structed by combining FOMs of the same class represented the majority only for the Telecom

program, and subtle HOMs constructed by combining FOMs from different classes represented

the majority only for the Kettle program.

The results also showed that the Genetic Algorithm, Local Search and both the Guided Local

Search techniques were able to find more subtle HOMs of the same class and subtle HOMs of dif-

ferent classes than Restricted Enumeration Search and Restricted Random Search. This is because

the former four techniques were able to find more of subtle HOMs of higher degrees than the latter

two techniques. Subtle HOMs of higher degrees have more FOMs than HOMs of lower degrees

and that create higher chances to include FOMs from different methods and classes.

Because the majority of subtle HOMs for most AspectJ programs were constructed by combin-

ing FOMs of the same statement or same method, the majority of subtle HOMs for these programs

were counted for Single Base Class or Aspect Approach (SCA). However, the search techniques

found few subtle HOMs for all other construction approach. For one program, Kettle, the majority

114

of subtle HOMs were constructed by Dispersed Base Class and Aspect Approach (BC&AS).

In the remainder of this section, we further analyze the results and discuss the findings for each

subject program.

1- Cruise Control (Java) Program

0

5

10

15

20

25

30

35

40

45

50

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.10: Distribution of HOMs based on the location of their constituent FOMs for Cruise

Control (Java)

Figure 9.10 shows that the majority of HOMs explored by the search techniques were con-

structed by combining FOMs from different classes. The Cruise Control (Java) program has six

Java classes, which is a quite large number of classes with respect to other program and that in-

creased the chance of combining FOMs from different classes. However, because 93% of the

non-equivalent FOMs for the Cruise Control (Java) program were created from only two classes,

the number of HOMs constructed by combining FOMs of the same class is quite high as well.

The majority of subtle HOMs found by all search techniques were constructed by combining

FOMs of the same statement. However, the search techniques found subtle HOMs constructed by

combining FOMs of the same method, same class, and different classes. The Genetic Algorithm,

Local Search and both the Guided Local Search techniques found a higher number of subtle HOMs

constructed by combining FOMs of the same class than the other techniques. The four techniques

115

also found few subtle HOMs constructed by combining FOMs from different classes. This is be-

cause the four techniques found more subtle HOMs of higher degrees than Restricted Enumeration

Search and Restricted Random Search.

2- Movie Rental Program

0

10

20

30

40

50

60

70

80

90

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.11: Distribution of HOMs based on the location of their constituent FOMs for Movie

Rental

The number of explored HOMs constructed by combining FOMs from different classes is high

because Movie Rental has four classes, which increased the chance of combining FOMs from

different classes. The Movie Rental has three Java classes and one aspect and 74% of the non-

equivalent FOMs were created from the aspect. For this reason the number of explored HOMs

constructed by combining FOMs of the same class, which corresponds to Single Base Class or

Aspect Approach (SCA), is also high. The number of explored HOMs corresponding to Dispersed

Base Class and Aspect Approach (BC&AS) is high because this number represent all cases where

at least on FOM of the aspect is combined with any number of FOMs from the other three Java

classes.

The majority of subtle HOMs found by all search techniques were constructed by combining

FOMs of the same statement, which corresponds to Single Base Class or Aspect Approach (SCA).

116

0

10

20

30

40

50

60

70

80

90

100

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
S
u

b
tl

e
 H

O
M

s

SCA AS BC BC&AS

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

SCA AS BC BC&AS

(b) Explored HOMs

Fig 9.12: Distribution of HOMs based on their construction approach for Movie Rental

However, the search techniques found few subtle HOMs by combining FOMs of the same method

and same class. Local Search and both the Guided Local Search techniques found few subtle

HOMs by combining FOMs from different classes. The three techniques also found few subtle

HOMs corresponding to Dispersed Base Class and Aspect Approach (BC&AS).

3- Telecom Program

The number of explored HOMs constructed by combining FOMs from different classes is

the highest because the Telecom program has ten classes, three aspects and seven Java classes.

Figure 9.14 shows that the number of explored HOMs that correspond to Dispersed Base Class

and Aspect Approach (BC&AS) represent the majority of explored HOMs. This is because 44%

of the non-equivalent FOMs for Telecom were created from the three aspects.

The majority of subtle HOMs found by all search techniques were constructed by combining

FOMs of the same class. However, all search techniques found few subtle HOMs by combining

FOMs of the same statement and same method. These three types of HOMs correspond to Single

Base Class or Aspect Approach (SCA), which is why it has higher number of subtle HOMs than

the other construction approaches.

117

0

2

4

6

8

10

12

14

16

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

10000

20000

30000

40000

50000

60000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.13: Distribution of HOMs based on the location of their constituent FOMs for Telecom

0

2

4

6

8

10

12

14

16

18

20

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

SCA AS BC BC&AS

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

SCA AS BC BC&AS

(b) Explored HOMs

Fig 9.14: Distribution of HOMs based on their construction approach for Telecom

The Genetic Algorithm found few subtle HOMs that were constructed by combining FOMs

from different classes. Most of these were high degree subtle HOMs that correspond to Dispersed

Base Class Approach (BC) or Dispersed Base Class and Aspect Approach (BC&AS).

118

0

5

10

15

20

25

30

35

40

45

50

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.15: Distribution of HOMs based on the location of their constituent FOMs for Kettle

4- Kettle Program

The majority of subtle HOMs found by all search techniques for Kettle were constructed by

combining FOMs from different classes and the majority of those subtle HOMs correspond to

Dispersed Base Class and Aspect Approach (BC&AS). The Kettle program is one of the smallest

programs and it has two aspects and one Java class. The two aspects contain five advices that are

executed after every method in the Java class. This results in high interaction between the methods

and advices of this program and any mutation applied to these advices affects every method and

functionality in that program. However, all search techniques found subtle HOMs by combining

FOMs of the same class and same statement. Local Search and both the Guided Local Search

techniques found few subtle HOMs by combining FOMs of the same method. Local Search and

both the Guided Local Search techniques also found few subtle HOMs constructed by Dispersed

Aspect Approach (AS).

5- Banking Program

The majority of the explored HOMs were constructed by combining FOMs from different

classes and the majority of these HOMs correspond to Dispersed Base Class and Aspect Approach

119

0

5

10

15

20

25

30

35

40

45

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
S

u
b

tl
e

 H
O

M
s

SCA AS BC BC&AS

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

SCA AS BC BC&AS

(b) Explored HOMs

Fig 9.16: Distribution of HOMs based on their construction approach for Kettle

(BC&AS). The Banking program has four classes, two Java classes and two aspects, and the num-

bers of non-equivalent FOMs are evenly distributed between the aspects and base classes.

0

5

10

15

20

25

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.17: Distribution of HOMs based on the location of their constituent FOMs for Banking

The majority of subtle HOMs found by all search techniques were constructed by combining

FOMs of the same method. However, all search techniques found subtle HOMs constructed by

120

combining FOMs of the same class and same statement. The Genetic Algorithm found subtle

HOMs constructed by combining FOMs from different classes.

0

5

10

15

20

25

30

35

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

SCA AS BC BC&AS

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

SCA AS BC BC&AS

(b) Explored HOMs

Fig 9.18: Distribution of HOMs based on their construction approach for Banking

6- Coordinate Program

Figure 9.19 shows that the number of explored HOMs constructed by combining FOMs of

the same class is higher than the number of explored HOMs constructed by combining FOMs

from different classes. This is because the Coordinate program has two classes and 84% of the

non-equivalent FOMs were generated only from one class.

All search techniques found subtle HOMs by combining FOMs of the same statement, same

method, and same class. However, subtle HOMs constructed by combining FOMs of the same

method represented the majority of subtle HOMs found by all search techniques.

Restricted Enumeration Search and Restricted Random Search found a low number of subtle

HOMs constructed by combining FOMs of the same class compared to the other techniques. This

is because Restricted Enumeration Search and Restricted Random Search found a low number of

subtle HOMs of higher degrees compared to the other search techniques. The Genetic Algorithm,

Data-Interaction Guided Local Search, and Restricted Random Search found few subtle HOMs by

121

0

20

40

60

80

100

120

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.19: Distribution of HOMs based on the location of their constituent FOMs for Coordinate

combining FOMs from different classes.

7- Elevator Program

0

2

4

6

8

10

12

14

16

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.20: Distribution of HOMs based on the location of their constituent FOMs for Elevator

The majority of HOMs explored by all search techniques were constructed by combining FOMs

from different classes. Elevator program has 17 Java classes, which increased the chance of com-

122

bining FOMs from different classes. However, because 73% of the non-equivalent FOMs for the

Elevator program were generated from only one class, the number of explored HOMs constructed

by combining FOMs of the same class is quite high as well.

The majority of subtle HOMs found by all search techniques were constructed by combining

FOMs of the same statement. However, all search techniques found subtle HOMs constructed

by combining FOMs of the same method and same class. Local Search and both the Guided

Local Search techniques found more subtle HOMs of the same class than the other techniques.

The Genetic Algorithm found few subtle HOMs constructed by combining FOMs from different

classes.

8- Cruise Control (AspectJ) Program

0

2

4

6

8

10

12

14

16

18

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.21: Distribution of HOMs based on the location of their constituent FOMs for Cruise

Control (AspectJ)

The number of explored HOMs constructed by combining FOMs from different classes is the

highest because the Cruise Control (AspectJ) program has 12 classes, three aspects and nine Java

classes, and that increased the chance of combining FOMs from different classes. The number of

explored HOMs that correspond to Dispersed Base Class and Aspect Approach (BC&AS) is low

because the FOMs created from the aspects represent less than 2% of all the non-equivalent FOMs.

123

0

5

10

15

20

25

30

35

40

45

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
S
u

b
tl

e
 H

O
M

s

SCA AS BC BC&AS

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

SCA AS BC BC&AS

(b) Explored HOMs

Fig 9.22: Distribution of HOMs based on their construction approach for Cruise Control (AspectJ)

The search techniques found subtle HOMs by combining FOMs of the same statement, same

method, and same class. The three types of HOMs correspond to Single Base Class or Aspect

Approach (SCA). The Genetic Algorithm found few subtle that were constructed by combining

FOMs from different classes. Most of these subtle HOMs are of high degrees and correspond to

Dispersed Base Class Approach (BC) or Dispersed Base Class and Aspect Approach (BC&AS).

9- Roman Program

Although the Roman program has two classes, all non-equivalent FOMs were created from

one class. That is why no HOMs were created by combining FOMs from different classes. The

majority of subtle HOMs found by the search techniques were created by combining FOMs of

the same method and same statement. The Genetic Algorithm, Local Search, Test-Case Guided

Local Search, and Restricted Random Search found few subtle that were constructed by combining

FOMs of the same class, witch are mostly HOMs of higher degrees.

124

0

5

10

15

20

25

30

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.23: Distribution of HOMs based on the location of their constituent FOMs for Roman

10- XStream Program

0

2

4

6

8

10

12

14

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

S
u

b
tl

e
 H

O
M

s

Same Statement Same method Same Class Different Classes

(a) Distinct Subtle HOMs

0

10000

20000

30000

40000

50000

60000

Restricted

Enumeration

Genetic Algorithm Local Search Data-Interaction

Guided

Test-Case Guided Restricted Random

N
u

m
b

e
r

o
f

E
xp

lo
re

d
 H

O
M

s

Same Statement Same method Same Class Different Classes

(b) Explored HOMs

Figure 9.24: Distribution of HOMs based on the location of their constituent FOMs for XStream

The XStream program has the largest number of classes amongst the ten subject programs, 318

Java classes, which explain why the large majority of explored HOMs were created by combining

FOMs from different classes.

125

The majority of subtle HOMs found by search techniques were constructed by combining

FOMs of the same statement. However, the search techniques found subtle HOMs by combin-

ing FOMs of the same method and same class. Local Search and both the Guided Local Search

techniques found few subtle HOMs by combining FOMs from different classes.

9.3 Summary of findings

More than 92% of the subtle HOMs that were found resulted from combining FOMs that

applied mutation to primitive Java operators, such as replacing, deleting, and inserting a primitive

operator. FOMs that applied mutation to OOP and AOP constructs and expressions resulted in a

low number of subtle HOMs.

More than 67% of the subtle HOMs that were found were constructed by combining FOMs

that applied mutation to different tokens within the same statement of code or different statements

of code within the same method of a class/aspect.

126

Chapter 10

Cost of Finding Subtle HOMs

This chapter presents a study to measure the cost of finding subtle HOMs. We present the

research questions motivating the study then we present the results and analysis.

10.1 Research Questions

The study is motivated by the following research questions.

RQ1: What is the computational cost of finding subtle HOMs using the search

techniques?

We measured the computational cost of finding subtle HOMs in terms of the time taken to find

subtle HOMs. We separately ran each technique once per subject program on an isolated machine,

and measured the time taken by each technique to explore, create, compile, and execute 50,000

distinct HOMs.

The exploration time refer to the time taken by the different operators of the search techniques

to create and maintain the XML records that correspond to an HOM. The creation time refer to

the time taken to write the program classes that correspond to the HOM in the physical drive to be

compiled and executed. The compilation time refer to the time to generate the binary code from the

created classes. The execution time refers to the time taken by the Java virtual machine to execute

the Junit test suites on the binary code that corresponds to the HOMs.

First, we measured the cost with respect to the overall time, which includes the time to explore,

create, compile, and execute 50,000 distinct HOMs. For each technique, we calculated the average

time over the ten programs.

Second, we investigated the cost of the different operators of the search techniques and we

measured the exploration time for each technique. For each technique, we calculated the average

exploration time over the ten programs.

127

Last, we investigated the reduction in the computational cost that resulted from optimizing the

compilation process. We configured HOMAJ to rely only on Java and AspectJ virtual machines

to perform the compilation. This means that HOMAJ recompiles all class and aspect files for

each HOM. We then run HOMAJ over the ten programs and calculated the overall time for each

technique to explore, create, compile, and execute 50,000 distinct HOMs.

RQ2: What proportion of subtle HOMs that were found constitutes equiva-

lent mutants?

The presence of equivalent mutants is a major obstacle for the practical use of mutation testing.

HOMAJ does not identify equivalent HOMs and it treats them as subtle HOMs because they are

not killed by the test suites. The presence of equivalent HOMs amongst the subtle HOMs can

increase the cost of finding subtle HOMs because of the additional human effort needed to identify

equivalent HOMs. A high proportion of equivalent HOMs can degrade the practical value of subtle

HOMs because it increases the cost.

For each program, we identified the non-equivalent subtle HOMs and measured the proportion

of equivalent HOMs. In addition, we investigated the difficulty of killing non-equivalent subtle

HOMs using new randomly generated test cases. We added 8963 randomly generated test cases to

our original test suites of the ten programs, and measured the number of subtle HOMs that were

killed by the new test suites.

Because subtle HOMs are harder to kill than the FOMs, the new test cases were more exhaus-

tive than the test cases that were generated to kill all the FOMs. The new test cases randomly

varied in size from 20 to 100 method calls per test case, while the test cases that were generated to

kill all the FOMs randomly varied from two to 20 method calls per test case. We did not generate

new test suites for the XStream program because we used all the test cases from the 60 test suites

that were available with the program. Equivalent HOMs for the XStream program were manually

identified.

Table 10.1 shows the number of test cases that killed all the FOMs and the number of new test

cases that were generated to kill subtle HOMs.

128

Table 10.1: Number of test cases that killed all FOMs and some of the subtle HOMs

Subject program # of test cases that killed all

FOMs

of test cases that were gener-

ated to kill subtle HOMs.

Coordinate 14 1290

Roman 11 876

Cruise (Java) 18 818

Elevator 14 1017

XStream 96 0

Kettle 12 912

Movie Rental 15 1015

Banking 9 1012

Telecom 10 1115

Cruise (AspectJ) 26 908

For each program, we calculated the set of all distinct, subtle HOMs that were found. This set

represent the union of all sets of subtle HOMs that were found by all techniques over the 30 runs.

We then evaluated this set of subtle HOMs against the new test set and calculated the number of

non-equivalent subtle HOMs that were killed by the new test set. Finally, we manually inspected

the remaining subtle HOMs that were not killed and identified equivalent HOMs.

10.2 Results and Analysis

This section presents answers for the research questions and highlights the general findings.

10.2.1 RQ1: What is the computational cost of finding subtle HOMs using

the search techniques?

Table 10.2 shows the average times taken by the search techniques over the ten subject pro-

grams. The time is presented in terms of hours:minutes:second (hh:mm:ss). The second column

shows the average exploration time for each technique. The third column shows the time taken to

explore, create, compile without optimization, and execute 50,000 distinct HOMs. The last col-

umn shows the same time in the second column when the compilation process is optimized using

a makefile.

The major contributor to the cost of finding subtle HOMs is the compilation and execution

process of HOMs. The exploration time represented a small fraction of the total time taken by

129

Table 10.2: Average time for finding subtle HOMs

Search Technique Exploration

Time

Overall time Overall time

when com-

pilation is

optimized

Restricted Enumeration 0:00:46 18:52:05 11:35:5

Local 0:10:23 19:15:17 13:02:6

Test-Case Guided 0:08:55 19:51:01 11:44:0

Data-Interaction Guided 0:08:46 19:06.0 11:35:07

Restricted Random 0:00:36 18:03:04 13:58:5

Genetic 0:11:49 19:38:6 11:01:25

each search technique. However, Restricted Random Search and Restricted Enumeration Search

have the lowest average exploration times. This is because the other four techniques use more

operators to create and manipulate the XML records of the HOMs. For example, the Genetic

Algorithm uses selection, crossover, and then mutation to create a population of HOMs, which

explains why the Genetic Algorithm had the highest average exploration time.

Optimizing the compilation process reduced the computational cost of finding subtle HOMs by

each technique by more than 32%.

10.2.2 RQ2: What proportion of subtle HOMs that were found constitutes

equivalent mutants?

Figure 10.1: Subtle HOMs and Equivalent HOMs

0 200 400 600 800 1000 1200

Coordinate

Roman

Cruise-Java

Elevator

XStream

Kettle

Movie Rental

Banking

Telecom

Cruise-AspectJ

killed by the new test cases Manually identified Equivalent HOMs

130

Table 10.3: Subtle HOMs and Equivalent HOMs

Subject Program
All subtle

HOMs

Non-equivalent Subtle HOMs Equivalent

HOMs

Killed by new

test cases

Manually

identified

Coordinate 1082 1038 31 13 (1%)

Roman 105 48 41 16 (15%)

Cruise (Java) 353 147 66 140 (40%)

Elevator 31 8 15 8 (26%)

XStream 216 0 85 131 (61%)

Kettle 150 127 4 19 (13%)

Movie Rental 283 267 6 10 (4%)

Banking 79 58 8 13 (17%)

Telecom 30 9 3 18 (60%)

Cruise (AspectJ) 227 110 22 95 (42%)

Total 2556 1812 281 463 (18%)

In Table 10.3, the second column shows the number of all distinct, subtle HOMs that were

found by the search techniques. The third column shows the number of non-equivalent subtle

HOMs that were killed by the new test suites. The fourth column shows the number of non-

equivalent subtle HOMs that were not killed by the new test suites and manually identified. The

last column shows the number of subtle HOMs that are considered to be equivalent HOMs and

their percentages out of all subtle HOMs.

Although the list of FOMs for each program did not include any equivalent FOMs, the search

techniques found equivalent HOMs. Equivalent HOMs result when two or more faulty statements

interact to eliminate the effect of their faults. For example, suppose that the test case assertion is

based on the variable, customerPayments, in the two consecutive statements shown below:

customerAccount -= payment;

customerPayments += payment;

When these two statements are mutated as follows, the resulted second order mutant is equiv-

alent to the original program.

customerAccount -= payment++;

customerPayments += --payment;

131

The set of all subtle HOMs for all ten programs contained 2556 subtle HOMs. Our investiga-

tion revealed that 463 of these subtle HOMs, which represent around 18%, are considered to be

equivalent HOMs. The remaining subtle HOMs were indeed subtle (i.e., not equivalent), and they

exposed weaknesses in the fault-detection effectiveness of the test suites that killed all the FOMs

for the ten programs.

The new test suites that were generated to kill subtle HOMs were much larger in size and more

exhaustive than the test suites that killed all the FOMs. However, the new test suites still have

weaknesses in their fault-detection effectiveness because they did not kill all the subtle HOMs.

We manually identified 281 subtle HOMs that were not equivalent and not killed by the new test

suites. These subtle HOMs required a specific set of input combinations that were not generated by

the test input generator tool. These subtle HOMs represented 14% of the set of all non-equivalent

subtle HOMs.

For eight out of the ten programs, the search techniques found more non-equivalent subtle

HOMs than equivalent HOMs. For the XStream and Telecom programs, the search techniques

found more equivalent HOMs than non-equivalent subtle HOMs.

10.3 Summary of findings

More than 98% of the cost of finding subtle HOMs was related to compiling and executing

HOMs. Restricted Random Search and Restricted Enumeration Search have the lowest average

exploration times because they use less operators to create and manipulate the XML records of the

HOMs. Optimizing the compilation process of HOMs reduced the computational cost of finding

subtle HOMs by 32%.

For all subject programs, 82% of the subtle HOMs were non-equivalent subtle HOMs. The

equivalent HOMs were treated as subtle in this work because they cannot be killed by test suites.

Of the non-equivalent subtle HOMs, 14% were not killed by test suites that were much larger

in size and much more exhaustive than the test suites that killed all the FOMs for the subject

programs.

132

Chapter 11

Composition and Decomposition Relationsh-

ips Between Subtle HOMs

This chapter presents a study to investigate different factors that affect the discovery of subtle

HOMs of higher degrees. Subtle HOMs of degree four and higher were harder to find than subtle

HOMs of lower degrees and that is due to two reasons. First, increasing the degree of an HOM by

adding more FOMs makes it easier to kill in most cases and that can cause the number of subtle

HOMs of higher degrees to be low.

Second, the exponential growth in the number of HOMs makes it even harder to find subtle

HOMs of higher degrees. For example, the number of HOMs for the Banking program, which has

the smallest search space, grew exponentially until degree 13 resulting in over 38 million HOMs.

Finding subtle HOMs of higher degrees in such a large search space is not easy even for search-

based software engineering techniques, especially when the search techniques were allowed to

explore only 50,000 distinct HOMs due to the high computational cost. Increasing the number of

explored HOMs might give the search techniques the chance to find more subtle HOMs of higher

degree but the computational cost will increase as well. For example, exploring and evaluating

one million distinct HOMs for the Banking program can take up to 10 days, which might not

be practical from a tester’s point of view, and exploring and evaluating 38 million HOMs is not

feasible.

We investigated alternative techniques that can be more effective for finding subtle HOMs

of higher degrees. We investigated composing subtle HOMs that were found by the Restricted

Enumeration Search to create new subtle HOMs of higher degrees. In addition, we analyzed the

subtle HOMs of higher degrees that were found by the search techniques to determine to what

extent subtle HOMs of higher degrees represent a composition of subtle HOMs of lower degrees.

133

In the remainder of this chapter, we present the research questions motivating the study and

analysis of the results. Then we summarize the general findings.

11.1 Research Questions

The study aimed to answer the following research questions.

RQ1: Can subtle HOMs be composed to create new subtle HOMs of higher

degrees?

For each program, we selected the set of subtle HOMs found by the median run of Restricted

Enumeration Search and composed these subtle HOMs in two different ways to create new HOMs.

First, we created new HOMs by composing all pairs of subtle HOMs. Second, we created new

HOMs by using all combinations of three subtle HOMs.

Some of the newly created HOMs cannot include all the constituent FOMs of the composed

subtle HOMs. Such HOMs result from cases where the composed subtle HOMs contain FOMs

that cannot be composed in one HOM because they apply mutation to the same token in the same

statement of code. Such HOMs were ignored. There are also cases when combining two Second

Order Mutants (SOMs) result in a third order mutant instead of a fourth order mutant because both

of the SOMs have a common FOM. Such HOMs were considered. We then evaluated the newly

created HOMs to determine how many of them represent new subtle HOMs.

RQ2: To what extent do subtle HOMs of higher degrees represent a compo-

sition of subtle HOMs of lower degrees?

We classified subtle HOMs based on how they can be decomposed into three types: (1) fully

decomposable, (2) partially decomposable, and (3) not decomposable into other subtle HOMs. A

subtle HOM is considered to be fully decomposable if all of its constituent FOMs can be com-

posed to form other subtle HOMs, partially decomposable if some of its constituent FOMs can be

composed to form other subtle HOMs, and not decomposable if none of its constituent FOMs can

be composed to form other subtle HOMs. We investigated the number of subtle HOMs that were

found by each search technique with respect to their decomposition type.

134

For each program, we selected the sets of subtle HOMs that were found by the best run out of

the 30 runs for each search technique. The best run represents the case where the search technique

found the highest number of subtle HOMs. From each set, we selected the subtle HOMs of de-

grees higher than two because they can be decomposed into other HOMs. Each subtle HOM was

decomposed into a number of HOMs that represent all subcombinations of the constituent FOMs.

In other words, each subtle HOM was treated as a set of FOMs and we created all possible subsets

that represent HOMs.

We evaluated the newly created HOMs and calculated the number of subtle HOMs that were

fully decomposable, partially decomposable, and not decomposable into other subtle HOMs.

RQ3: How often subtle HOMs of higher degrees strongly subsume their de-

composed subtle HOMs of lower degrees?

We conducted an initial investigation of the implications of HOM subsumption relationships [8]

on subtle HOMs. The subsumption relationships were introduced by Jia and Harman [8] are de-

fined in terms of an HOM and its constituent FOMs. Jia and Harman defined a strongly subsuming

HOM as one that can replace its constituent FOMs without loss of test effectiveness. That is, if

a test case kills a strongly subsuming HOM, it also kills all its constituent FOMs. As a result,

strongly subsuming HOMs reduce the number of FOMs that need to be evaluated and the number

of test cases that need to be executed.

We redefined the subsumption relationships in terms of a subtle HOM of higher degree and

its decomposed subtle HOMs of lower degrees. That is, a subtle HOM of higher degree strongly

subsumes its decomposed subtle HOMs of lower degrees if the set of test cases that kills the

subtle HOM of higher degree will also kill all its decomposed subtle HOMs of lower degrees. We

performed a preliminary investigation on how often a set of test cases that kills a subtle HOM

of higher degrees will also kill all its decomposed subtle HOMs of lower degrees. The strongly

subsuming subtle HOMs of higher degree can reduce the total number of test cases that need to be

developed and the number of subtle HOMs that need to be evaluated.

135

From a tester’s point of view, developing fewer test cases that kill a high degree subtle HOM

and its decomposed subtle HOMs is cost effective.

11.2 Results and Analysis

This section presents the results for the two research questions.

11.2.1 RQ1: Can subtle HOMs be composed to create new subtle HOMs of

higher degrees?

Table 11.1 shows the results of composing subtle HOMs. For example, Table 11.1 shows that

the median run of the Restricted Enumeration Search for the Elevator program produced 19 subtle

HOMs (second column). We obtained a set of 162 HOMs (fourth column and second row) when

we composed two subtle HOMs at a time, and a set of 818 HOMs (fourth column and third row)

when we composed three subtle HOMs at a time. Both new sets of HOMs do not contain any

HOMs that existed in the set of the 19 subtle HOMs.

Evaluating HOMs showed that the set of 162 HOMs contained 161 new subtle HOMs, such

that all of them were of degree four (column six). The set of 818 HOMs contained 801 new subtle

HOMs, such that all of them were of degree six. The last column shows that 99.4% of the HOMs

created by composing two subtle HOMs at a time were subtle; 97.9% of the HOMs created by

composing three subtle HOMs at a time were subtle.

Table 11.2 shows the number of all distinct, subtle HOMs that were found by the search tech-

niques (second column) over the 30 runs and the number of all distinct, subtle HOMs that were

found by composing subtle HOMs that were found by Restricted Enumeration Search (third col-

umn).

Composing subtle HOMs is an effective way for finding new subtle HOMs of higher degrees.

For all ten programs, the number of subtle HOMs that were found by composing subtle HOMs

that were found by Restricted Enumeration Search was higher than the number of all subtle HOMs

that were found by all search techniques, see Table 11.2. Overall, 88% of all HOMs created by

composing subtle HOMs represented new subtle HOMs.

136

Table 11.1: Composing subtle HOMs to create new subtle HOMs

Program
of subtle

HOMs

of composed

subtle HOMs

of generated

HOMs

of new subtle HOMs by degree Percentage of new

subtle HOMs3 4 5 6 7 8+

Elevator 19
2 162 0 161 0 0 0 0 99.4

3 818 0 0 0 801 0 0 97.9

Cruise (Java) 34
2 465 9 346 92 3 0 0 96.8

3 3418 0 2 276 1988 785 60 91

Roman 40
2 673 4 659 0 0 0 0 98.5

3 6332 0 0 108 5946 0 0 95.6

XStream 14
2 73 1 70 0 0 0 0 97.2

3 237 0 1 8 212 0 0 93.2

Coordinate 83
2 2944 38 2713 74 0 0 0 96

3 11987 0 10156 610 60 13 0 90.4

Telecom 7
2 20 0 14 5 0 0 0 95

3 30 0 0 0 16 9 0 83.3

Banking 27
2 233 0 139 40 0 0 0 76.8

3 967 0 18 25 344 127 0 53.2

Kettle 30
2 275 0 128 71 7 0 0 74.9

3 1105 0 7 8 215 237 64 48.1

Cruise

(AspectJ)
22

2 199 0 94 18 0 0 0 56.3

3 983 0 0 6 362 78 0 45.4

Movie Rental 22
2 190 12 160 0 0 0 0 90.5

3 833 0 14 144 448 0 0 72.7

1
3
7

Table 11.2: Comparing the number of subtle HOMs that were found by the search techniques and

by composing subtle HOMs that were found by Restricted Enumeration Search

Program # of all subtle HOMs that

were found by the search

techniques

of all subtle HOMs that

were found by composing

subtle HOMs

Elevator 31 962

Cruise (Java) 355 3464

Roman 105 6717

XStream 216 291

Telecom 30 44

Banking 79 650

Kettle 150 724

Cruise (AspectJ) 227 558

Movie Rental 283 764

Composing two subtle HOMs is more likely to produce new subtle HOMs than composing

three subtle HOMs. 93% of all HOMs created by composing two subtle HOMs represented new

subtle HOMs; while 87% of all HOMs created by composing three subtle HOMs represented new

subtle HOMs.

Composing subtle HOMs for Java programs produced a higher percentage of new subtle HOMs

than for AspectJ programs. Our investigation revealed that 97% of all HOMs created by composing

two subtle HOMs for all Java programs were subtle, while 75% of all HOMs created by compos-

ing two subtle HOMs for all AspectJ programs were subtle. This is probably because some of

the FOMs in the AspectJ programs are technically HOMs and that is due to the nature of aspect

weaving in AspectJ programs. Since an aspect advice is potentially woven in multiple locations

of the base code, a single fault in an advice gets woven in multiple places, resulting in an HOM.

This can increase the degree of the composed subtle HOMs making them less likely to be subtle.

Composing less number of subtle HOMs is more likely to produce new subtle HOMs.

The Telecom program was the only AspectJ program for which the percentage of new subtle

HOMs was comparable to that generated from the Java programs. This is explained by the obser-

vation that the majority of FOMs that constitute the subtle HOMs in the Telecom program are base

class FOMs (i.e., FOMs created from the Java classes in the Telecom program).

138

11.2.2 RQ2: To what extent do subtle HOMs of higher degrees represent a

composition of subtle HOMs of lower degrees?

Figure 11.1 shows that subtle HOMs of higher degrees that were found by the search techniques

are more likely to be decomposable into other subtle HOMs. The higher the degree of the subtle

HOM, the higher the chance it was decomposable. For example, all of the subtle HOMs of degree

five and higher were either fully or partially decomposable, 95% of those with degree four were

either fully or partially decomposable, and 74% of those with degree three were either fully or

partially decomposable.

0

50

100

150

200

250

300

350

400

450

3 4 5 + 3 4 5 + 3 4 5 + 3 4 5 + 3 4 5 + 3 4 5 +

Restricted

Enumeration

Local Search Data-Interaction

Guided

Test-Case Guided Restricted

Random

Genetic Algorithm

To
ta

l N
u

m
b

e
r

o
f

su
b

tl
e

 H
O

M
s

Fully Decomposable Subtle HOMs Partially Decomposable Subtle HOMs Not Decomposable Subtle HOMs

Figure 11.1: Number of subtle HOMs that were found by the search techniques with respect to

their decomposition type for all subject programs

The set of all subtle HOMs that were found by the best run for Local Search for all programs contained 382

subtle HOMs of degree three, 116 subtle HOMs of degree four, and two subtle HOMs of degree five. The

382 subtle HOMs of degree three were such that, 32 fully decomposable, 219 partially decomposable, and

77 not decomposable into other subtle HOMs.

This observation raises an important question of whether or not subtle HOMs of higher degrees

can only exist as a composition of other subtle HOMs. If this were true, then it would be more

effective and practical for a tester to use Restricted Enumeration Search to enumerate all Second

Order Mutants (SOMs) and then explore different combinations of these SOMs to create new subtle

139

HOMs of higher degrees. This approach can produce a higher number of subtle HOMs than any

of the six search techniques with less cost. However, for large programs, such as the XStream,

enumerating all SOMs can be expensive and the search-based software engineering techniques can

be more effective for such programs.

To further analyze the results, we investigated whether the search-based software engineering

techniques can find subtle HOMs of higher degrees that cannot be found when composing subtle

HOMs that were found by Restricted Enumeration Search. We investigated the overlap between

the set of subtle HOMs of higher degrees found by composing subtle HOMs found by Restricted

Enumeration Search and the set of subtle HOMs of higher degrees that were found by the search-

based software engineering techniques. We used the best runs out of the 30 runs for each search

technique.

Table 11.3 shows the number of subtle HOMs of degree three and higher that were found by

the best run. Table 11.4 shows the number of subtle HOMs that overlap between the sets of subtle

HOMs in Table 11.3 and the sets of the new subtle HOMs of higher degrees that were found by

composing subtle HOMs. For example, Table 11.3 shows that the best run of Local Search for the

Coordinate program found 217 subtle HOMs of degree three and higher and Table 11.4 shows that

20 out of the 217 subtle HOMs were also found by composing subtle HOMs that were found by

Restricted Enumeration Search.

Table 11.3: Number of subtle HOMs of degree three and higher that were found by the best run

for each technique

Program Local Data-Interaction Guided Test-Case Guided Genetic

Elevator 7 9 9 0

Cruise (Java) 51 66 66 62

Roman 13 2 9 4

XStream 5 3 2 0

Coordinate 217 252 222 52

Telecom 14 17 16 9

Banking 11 11 9 14

Kettle 35 42 39 15

Cruise (AspectJ) 21 31 26 14

Movie Rental 77 97 0 49

Total 451 530 398 219

140

Table 11.4: Overlap between the sets of subtle HOMs of higher degrees

Program Local Data-Interaction Guided Test-Case Guided Genetic

Elevator 0 0 0 0

Cruise (Java) 7 8 13 36

Roman 2 0 2 3

XStream 0 0 0 0

Coordinate 20 38 15 19

Telecom 0 0 0 0

Banking 0 0 0 7

Kettle 0 0 0 4

Cruise (AspectJ) 0 0 0 0

Movie Rental 6 6 0 0

Total 35 52 30 69

Although composing subtle HOMs produced a large number of subtle HOMs of higher degrees,

the search-based software engineering techniques found many subtle HOMs of higher degrees that

could not be found by composing subtle HOMs that were found by Restricted Enumeration Search.

The set of subtle HOMs of higher degrees found by composing subtle HOMs that were found by

Restricted Enumeration Search contained 32%, 10%, 8%, and 8% of the subtle HOMs of higher

degrees that were found by the best runs of the Genetic Algorithm, Data-Guided Local Search,

Test-Case Guided Local Search, and Local Search for all programs, respectively.

Figure 11.1 shows that the different operators implemented in the search techniques affected

the type of subtle HOMs that were found by each technique. The Genetic Algorithm found a higher

proportion of fully decomposable subtle HOMs than the other techniques; and Local Search and

both the Guided Local Search techniques found a higher proportion of partially decomposable

subtle HOMs than the other techniques.

The combination of elite selection and crossover probably caused the Genetic Algorithm to find

a higher proportion of fully decomposable subtle HOMs. The selection of subtle HOMs as elite

HOMs and crossing them over (i.e., combining them) creates a higher chance for creating subtle

HOMs that are fully decomposable into other subtle HOMs. This trend can also be seen from

the results in Table 11.4, where 32% of the subtle HOMs of higher degrees that were found by

the Genetic Algorithm were also found by composing subtle HOMs that were found by Restricted

141

Enumeration Search. The selection of the best neighbor and the neighborhood graph probably

caused Local Search and both the Guided Local Search techniques to find a higher proportion of

partially decomposable subtle HOMs. When a subtle HOM is selected as the incumbent HOM,

the neighborhood graph will create neighboring HOMs that include the subtle HOM. This process

creates a higher chance for creating subtle HOMs that are partially decomposable into other subtle

HOMs.

11.2.3 RQ3: How often subtle HOMs of higher degrees strongly subsume

their decomposed subtle HOMs of lower degrees?

We selected three programs where we evaluated the set of all composed subtle HOMs that

were found against the new set of test cases that were generated to kill subtle HOMs. We then

selected the set of composed subtle HOMs that were killed by the new test cases and evaluated

how many of these composed subtle HOMs strongly subsume their decomposed subtle HOMs of

lower degrees. The strongly subsuming subtle HOMs represent the subtle HOMs of higher degrees

that can replace their decomposed subtle HOMs of lower degree without loss of test effectiveness.

In Table 11.5, the second column shows the number of all distinct, composed, subtle HOMs

that were killed by the new set of test cases that were developed to kill subtle HOMs. The third

column shows how many of these composed subtle HOMs strongly subsumed their decomposed

lower degrees subtle HOMs.

Table 11.5: Strongly subsuming subtle HOMs of higher degrees

Program # of subtle HOMs that were

killed by the test cases

of strongly subsuming subtle

HOMs of higher degrees

Elevator 387 0

Cruise (Java) 348 0

Coordinate 3891 1327

For the first two programs, none of the composed subtle HOMs that were killed by the new set

of test cases strongly subsumed their decomposed subtle HOMs. This means that these composed

subtle HOMs represent different faults than their decomposed subtle HOMs. Thus, the tester needs

to develop new test cases to kill the decomposed lower degree subtle HOMs and that can increase

142

test effectiveness. For the Coordinate program, 34% of the composed subtle HOMs that were killed

by the new set of test cases strongly subsumed their decomposed subtle HOMs. These strongly

subsuming subtle HOMs reduce test effort.

11.3 Summary of findings

Subtle HOMs of higher degrees can be effectively found by composing subtle HOMs. Com-

posing subtle HOMs that were found by Restricted Enumeration Search produced a high number

of subtle HOMs while exploring a relatively small number of HOMs. However, the search-based

software engineering techniques can find many subtle HOMs of higher degrees that cannot be

found by composing subtle HOMs that were found by Restricted Enumeration Search.

Subtle HOMs of higher degrees are more likely to be decomposable into other subtle HOMs of

lower degrees. All subtle HOMs of degree four and higher that were found by the search techniques

were either fully or partially decomposable into other subtle HOMs. However, not all subtle HOMs

of higher degrees can substitute their decomposed subtle HOMs of lower degrees without loss of

test effectiveness.

The results suggest that we perform more empirical studies to further investigate the implica-

tion of subsumption relationships amongst subtle HOMs. The strongly subsuming subtle HOMs

can reduce test effort and the non-strongly subsuming subtle HOMs can increase test effectiveness.

However, we need to investigate what characteristics of subtle HOMs cause them to be strongly

subsuming subtle HOMs and to what extent can strongly subsuming subtle HOMs reduce test

effort.

The results also suggest that we perform further empirical studies to investigation to determine

whether high degree subtle HOMs that are composed of other subtle HOMs can further improve

the fault-detection effectiveness of the test suite when we already added test cases that kill the

decomposed subtle HOMs of lower degrees.

143

Chapter 12

Threats to Validity

We identified four types of threats to the validity of our empirical studies: external validity,

internal validity, construct validity, and conclusion validity [118, 119]. External validity refers

to how well the results can be generalized outside the scope of the study. Internal validity is

concerned with cause and effect relationships: the extent to which we can state that the changes in

dependent variables are caused by changes in independent variables. Construct validity refers to

the meaningfulness of measurements. Conclusion validity refers to whether the conclusions about

the relationship among variables based on the data are correct. Below we summarize the threats to

validity of our empirical studies.

12.1 External Validity

One threat to external validity is that the selected subject programs may not be representative of

AspectJ and Java programs in general, and thus, the results of the study may not be generalizable

to all AspectJ and Java programs. However, the selected programs differ in size and complexity

and contain various OOP and AOP constructs. Furthermore, many of these programs have been

used in various empirical studies by the mutation testing research community.

Another threat to external validity stems from the mutation operators that were used to gen-

erate FOMs. We used both MuJava [30] and AjMutator [33] to generate FOMs. Using different

tools that implement different mutation operators to generate FOMs can lead to different results.

However, MuJava is the most commonly used mutation testing tool for Java programs and it covers

most of the mutation operators defined in the mutation testing literature. AjMutator on the other

hand, implements only pointcut mutation operators and it is the only mutation tool that is publicly

available for AspectJ programs. We used MuJava to apply mutations to the inter-type declaration

methods and advices. This technique was previously used by Wedyan and Ghosh [11].

144

12.2 Internal Validity

A threat to internal validity stems from the quality of the test suites and the number of test

cases. There is a possibility of getting different results if we used test suites that are created with

different test objectives. However, the used test suites kill all the FOMs, which is the precondition

for finding subtle HOMs. Furthermore, the used test suites achieved statement coverage.

The configuration of the parameters of the search techniques represents a threat to internal

validity. An optimal configuration that leads to best results can be hard to identify. However, in

this dissertation we used experimental evaluation to determine the configuration of the parameters

that gave the best results.

12.3 Construct validity

Some of the FOMs are technically HOMs because of the nature of aspect weaving in AspectJ

programs. Since an aspect advice is potentially woven in multiple locations of the base code,

a single fault in an advice gets woven in multiple places, resulting in an HOM. However, the

traditional practice is to defined FOMs and HOMs with respect to the number of syntactic changes

to the source code. Nevertheless, because of aspect weaving, the order of an HOM may have been

higher than the number of its constituent FOMs.

The use of the number of explored distinct HOMs as a quasi-representation of time instead

of actual time represents a threat to construct validity. Using actual time is a better way to com-

pare the relative effectiveness of the search techniques. This is because the search techniques use

different operators to generate and manipulate the XML records of HOMs, which can cause the

search techniques to explore different numbers of HOMs in the same amount of time. The search

techniques might also explore the same HOM more than once although such HOMs are counted

only one time. Running each technique 30 times per subject program on isolated machines re-

quires a long time or a large number of isolated machines. However, because the time taken by the

different operators of the search techniques represented a fraction (less than 2%) of the total time,

the number of explored HOMs can be used as a quasi-representation of time.

145

A threat to construct validity stems from the ability to measure the workload on the machines

used to measure the computational cost. The machines were isolated and had identical specifica-

tions, and we controlled the processes running on these machines during the experiments.

A threat to construct validity stems from the correctness of the implementation of MuJava,

AjMutator, and HOMAJ. The results presented in this dissertation depend on the three tools work-

ing correctly. For each tool, we inspected randomly selected outputs and manually verified their

correctness. The manual identification of equivalent mutants is another threat to construct validity.

12.4 Conclusion validity

A threat to conclusion validity stems from the stochastic nature of the proposed search tech-

niques. However, we ran each technique 30 times per subject program and drew the conclusions

based on statistical measures. We also used the Analysis of Variance (ANOVA) test and Chi-Square

test to demonstrate the significance of the results.

146

Chapter 13

Conclusions

We developed a set of search techniques for finding subtle HOMs in the context of Java and As-

pectJ programming languages. We developed four search-based software engineering techniques:

(1) the Genetic Algorithm, (2) Local Search, (3) Test-Case Guided Local Search, and (4) Data-

Interaction Guided Local Search. We also developed a Restricted Random Search technique and a

Restricted Enumeration Search technique.

We developed an objective function that provides a metric to measure the fitness of HOMs.

The search techniques used the objective function to identify subtle HOMs as well as HOMs that

have the potential to develop into subtle HOMs when the right FOMs are added or removed.

We developed HOMAJ, a Higher Order Mutation Testing tool for AspectJ and Java programs

for finding subtle HOMs. HOMAJ implements the developed search techniques and automates the

process of creating, compiling, and executing both FOMs and HOMs.

We performed a set of empirical studies to evaluate the effectiveness of the search techniques in

term of their ability to find subtle HOMs. We investigated different factors that affect the creation

of subtle HOMs. Below we summarize the findings of the empirical studies.

1- Measuring the relative effectiveness of the search techniques

All the search techniques were able to find subtle HOMs. However, Local Search and both

the Guided Local Search techniques were more effective than the other techniques in terms of their

ability to find subtle HOMs. The combination of the fitness evaluation and the neighborhood graph

resulted in a better strategy for finding subtle HOMs.

Data-Interaction Guided Local Search was more effective than Test-Case Guided Local Search.

The Genetic Algorithm was more effective for AspectJ programs than for Java programs.

The majority of subtle HOMs that were found by all search techniques were of second and

third degrees. Subtle HOMs of higher degrees were harder to find because increasing the degree

147

of an HOM by adding more FOMs makes it easier to kill in most cases, and that can cause the

number of subtle HOMs of higher degrees to be low.

Although Restricted Random Search was less effective than the other techniques, it found a

higher average number of subtle HOMs than a pure random search technique for all ten subject

programs. This shows that limiting the search to the space of lower degree HOMs is a good

strategy.

The Genetic Algorithm, Local Search, and both the Guided Local Search techniques were

more effective than Restricted Enumeration for finding subtle HOMs of higher degrees (third and

higher). For smaller programs, Restricted Enumeration Search was more effective than the other

techniques at finding subtle SOMs.

Data-Interaction Guided Local Search was more effective than the other techniques for finding

a higher number of distinct, subtle HOMs. For nine programs, Data-Interaction Guided Local

Search found on an average 94% of the subtle SOMs while it explored only 16% of the space of

SOMs.

2- Comparing the sets of subtle HOMs found by different search techniques

The different operators implemented in the search techniques affect what set of subtle HOMs

can be uniquely found by each technique. The different operators allowed the search techniques to

find more of the uniquely found (hardest-to-find) subtle HOMs than the commonly found (easiest-

to-find) subtle HOMs. More than 94% of the hardest-to-find subtle HOMs were of degree three

and higher, and more than 92% of the easiest-to-find subtle HOMs were subtle SOMs.

Using the four search-based software engineering techniques is more likely to produce a large

number of distinct, subtle HOMs that can be used to improve the fault-detection effectiveness of

test suites.

3- Impact of programming language constructs on creating subtle HOMs

Combining mutation faults of Java primitive operators is more likely to create subtle HOMs.

Mutation faults of OOP and AOP constructs and expressions produced a low number of subtle

148

HOMs. Subtle HOMs that were constructed by combining FOMs of the same statement and of the

same method represented 66% of subtle HOMs that were found for all programs.

4- Cost of finding subtle HOMs

The compilation and execution process of HOMs is the major contributor to the cost of finding

subtle HOMs. The computational cost of the operators of the search technique represented less

than 2% of the overall cost of finding subtle HOMs.

Equivalent HOMs represented 18% of subtle HOMs found for all ten programs. To be killed,

non-equivalent subtle HOMs required test suites that were much larger in size and more exhaustive

than the test suites that killed all the FOMs. Furthermore, 14% of these non-equivalent subtle

HOMs required a specific set of input combinations that needed to be manually identified.

5- Composition and decomposition relationships between subtle HOMs

Subtle HOMs of higher degrees are more likely to exist as compositions of multiple subtle

HOMs of lower degrees. However, not all subtle HOMs of higher degrees can substitute their

decomposed subtle HOMs of lower degrees without loss of test effectiveness. Composing subtle

HOMs of lower degrees that were found by Restricted Enumeration Search is an effective way

for finding new subtle HOMs of higher degrees. This approach produced a large number of subtle

HOMs of higher degrees while exploring a relatively small number of HOMs. However, the search-

based software engineering techniques were able to find subtle HOMs of higher degrees that could

not be found by composing subtle HOMs of lower degrees.

149

Chapter 14

Future Work

This chapter presents various opportunities for improving the work presented in this disserta-

tion and discusses new research directions in the area of higher order mutation testing.

1- Impact of subtle HOMs on test input generation techniques

There is a lack of test input generation techniques that target HOMs. Current test generation

techniques generate test inputs that allow the program execution to reach a mutated statement.

However, test inputs that kill subtle HOMs need to allow the program execution to reach multiple

mutated statements, and these mutated statements might need to be executed in a specific sequence

in some cases. Such requirements bring new challenges and thus, further research is needed to

investigate the impact of subtle HOMs on test input generation techniques.

2- Finding subtle HOMs of higher degrees

Subtle HOMs of higher degrees were harder to find and a large number of the subtle HOMs that

were found were partially or fully decomposable into other subtle HOMs. The search techniques

did not find any subtle HOMs of degree five or higher that is not decomposable into other subtle

HOMs for any of the ten subject programs. Such subtle HOMs can be beneficial for improving

the fault-detection effectiveness of test suites because they can reveal unexpected behavior of the

program under test.

3- Reducing the computational cost of finding subtle HOMs

Researchers have proposed various techniques to reduce the cost associated with the compila-

tion and execution of FOMs [52, 27, 83, 84, 85, 86] but not HOMs. HOMAJ performs selective

compilation to reduce the cost of compiling HOMs but there is a chance to further reduce the

compilation and execution cost of HOMs. Other FOMs cost reduction techniques can be de-

150

veloped for HOMs by extending compiler-integrated techniques [83], mutant schema generation

techniques [84, 85], and modified bytecode techniques [86].

5- Impact of equivalent HOMs

There is a lack of techniques for identifying equivalent HOMs. Researchers proposed tech-

niques for eliminating some equivalent FOMs but not HOMs. We propose to investigate extending

some of the existing techniques to identify some equivalent HOMs and thus reduce the manual

effort to identify non-equivalent subtle HOMs.

6- Generalization of the empirical results

The used subject programs may not be representative of Java and AspectJ programs in general,

and thus, the results of may not be generalizable to all Java and AspectJ programs. The empirical

studies need to be replicated using larger programs and using test suites that are created with

different test objectives. Increasing the fault-detection effectiveness of the test suites can impact

the number of subtle HOMs that were found.

7- Configuring the parameters of the search techniques

Further research is needed to investigate the implications of the configurations on how the

search techniques explore the search space and what subtle HOMs can be found.

151

References

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University Press,

2008.

[2] R. Lipton, “Fault diagnosis of computer programs,” tech. rep., Carnegie Mellon University,

1971.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the

practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[4] T. A. Budd, Mutation Analysis of Program Test Data. PhD thesis, Yale University, 1980.

[5] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Transactions on Software

Engineering, vol. 3, pp. 279–290, July 1977.

[6] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”

IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[7] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing

experiments?,” in International Conference on Software Engineering, pp. 402–411, 2005.

[8] Y. Jia and M. Harman, “Higher order mutation testing,” Information and Software Technol-

ogy, vol. 51, no. 10, pp. 1379–1393, 2009.

[9] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric of small source code

changes,” IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 511–526, 2005.

[10] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they to real faults?,” in

International Symposium on Software Reliability Engineering, 2014.

[11] F. Wedyan and S. Ghosh, “On generating mutants for AspectJ programs,” Information and

Software Technology, vol. 54, no. 8, pp. 900–914, 2012.

[12] The AspectJ Team, “AspectJ Compiler 1.6.12.” http://www.eclipse.org/aspectj/. 2011.

[13] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher order mutation test-

ing with genetic programming,” Journal of Systems and Software, vol. 83, no. 12, pp. 2416–

2430, 2010.

[14] Y. Jia and M. Harman, “Constructing subtle faults using higher order mutation testing,” in

International Working Conference on Source Code Analysis and Manipulation, pp. 249–258,

2008.

[15] M. Kintis, M. Papadakis, and N. Malevris, “Isolating first order equivalent mutants via sec-

ond order mutation,” in International Conference on Testing, Verification and Validation,

pp. 701–710, 2012.

152

[16] E. Omar, S. Ghosh, and D. Whitley, “Constructing subtle higher order mutants for Java

and AspectJ programs,” in International Symposium on Software Reliability Engineering,

pp. 340–349, 2013.

[17] E. Omar, S. Ghosh, and D. Whitley, “HOMAJ: A tool for higher order mutation testing in

AspectJ and Java,” in Workshop on Mutation Analysis, pp. 165–170, 2014.

[18] E. Omar, S. Ghosh, and D. Whitley, “Comparing search techniques for finding subtle higher

order mutants,” in Genetic and evolutionary computation conference, pp. 1271–1278, 2014.

[19] P. Gong, R. Zhao, and Z. Li, “Faster mutation-based fault localization with a novel mutation

execution strategy,” in Software Testing, Verification and Validation, Mutation Workshops,

pp. 1–10, IEEE, 2015.

[20] J. Offutt, “Investigations of the software testing coupling effect,” IEEE Transactions on Soft-

ware Engineering and Methodology, vol. 1, no. 1, pp. 5–20, 1992.

[21] K. H. T. Wah, “An analysis of the coupling effect I: single test data,” Science of Computer

Programming, vol. 48, no. 23, pp. 119 – 161, 2003.

[22] M. Harman, A. Mansouri, and Y. Zhang, “Search-based software engineering: Trends, tech-

niques and applications,” ACM Computing Surveys, vol. 45, no. 1, p. 11, 2012.

[23] M. Harman and B. F. Jones, “Search-based software engineering,” Information and Software

Technology, vol. 43, no. 14, pp. 833 – 839, 2001.

[24] P. R. Srivastava and T.-h. Kim, “Application of genetic algorithm in software testing,” In-

ternational Journal of software Engineering and its Applications, vol. 3, no. 4, pp. 87–96,

2009.

[25] A. Arcuri, “On the automation of fixing software bugs,” in International Conference on

Software Engineering, Doctoral Symposium, pp. 1003–1006, 2008.

[26] J. S. Baekken and R. T. Alexander, “A candidate fault model for AspectJ pointcuts,” in

International Symposium on Software Reliability Engineering, pp. 169–178, 2006.

[27] J. Offutt and K. N. King, “A Fortran 77 interpreter for mutation analysis,” Symposium on

Interpreters and Interpretive Techniques, vol. 22, pp. 177–188, 1987.

[28] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. J. Martin, A. P.

Mathur, and E. Spafford, “Design of mutant operators for the C programming language,”

tech. rep., Software Engineering Research Center, Purdue University, 1989.

[29] L. Madeyski and N. Radyk, “Judy-a mutation testing tool for Java,” IET Software, vol. 4,

no. 1, pp. 32–42, 2010.

[30] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class mutation system,” Soft-

ware Testing, Verification and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

153

[31] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to testing,” Acta

Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[32] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn mutation operators

using human analysis of equivalence,” in Proceedings of the 36th International Conference

on Software Engineering, pp. 919–930, ACM, 2014.

[33] R. Delamare, B. Baudry, and Y. Le Traon, “ AjMutator: A Tool for the Mutation Analysis of

AspectJ Pointcut Descriptors,” in International Conference on Software Testing, Verification,

and Validation, Workshop, pp. 200–204, 2009.

[34] R. Laddad, AspectJ in action. Manning Publications Co, 2003.

[35] G. Kiczales1, E. Hilsdale2, J. Hugunin2, M. Kersten2, J. Palm2, and W. G. Griswold3, “An

overview of AspectJ,” in European Conference on Object-Oriented Programming, pp. 327–

354, 2001.

[36] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search based software engineering:

Techniques, taxonomy, tutorial,” in Empirical Software Engineering and Verification, pp. 1–

59, 2012.

[37] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Man-

coridis, K. Rees, M. Roper, and M. Shepperd, “Reformulating software engineering as a

search problem,” IEE Proceedings - Software, vol. 150, no. 3, pp. 161–175, 2003.

[38] W. Miller and D. L. Spooner, “Automatic generation of floating-point test data,” IEEE Trans-

actions on Software Engineering, vol. 2, no. 3, pp. 223–226, 1976.

[39] L. Davis, Handbook of genetic algorithms. Van Nostrand Reinhold, 1991.

[40] K. A. De Jong, Analysis of the behavior of a class of genetic adaptive systems. PhD thesis,

University of Michigan, Ann Arbor, 1975.

[41] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence. U Michigan Press, 1975.

[42] M. Mitchell, “An introduction to genetic algorithms,” 1998.

[43] M. Musnjak and M. Golub, “Using a set of elite individuals in a genetic algorithm,” in

International Conference on Information Technology Interfaces, pp. 531–535, 2004.

[44] L. M. Schmitt, “Theory of genetic algorithms,” Theoretical Computer Science, vol. 259,

no. 1, pp. 1–61, 2001.

[45] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm for aligning dna

sequences,” Journal of Computational biology, vol. 7, no. 1-2, pp. 203–214, 2000.

[46] V. Laarhoven, P. JM, and E. H. Aarts, Simulated annealing. Springer, 1987.

154

[47] E. Aarts and J. Korst, Simulated annealing and Boltzmann machines: a stochastic approach

to combinatorial optimization and neural computing. John Wiley & Sons, Inc., 1989.

[48] W. L. Price, “A controlled random search procedure for global optimisation,” The Computer

Journal, vol. 20, no. 4, pp. 367–370, 1977.

[49] Z. B. Zabinsky, “Random search algorithms,” Wiley Encyclopedia of Operations Research

and Management Science, 2009.

[50] R. Hamlet, Random Testing. John Wiley & Sons, Inc., 2002.

[51] T. A. Budd, F. Sayward, R. J. Lipton, and R. DeMillo, “The design of a prototype mutation

system for program testing,” in National Computer Conference, pp. 623–127, 1978.

[52] K. N. King and J. Offutt, “A Fortran language system for mutation-based software testing,”

Software - Practice and Experience, vol. 21, pp. 685–718, 1991.

[53] B. Choi, R. A. DeMillo, E. W. Krauser, R. Martin, A. Mathur, J. Offutt, H. Pan, and E. H.

Spafford, “The mothra tool set (software testing),” in Hawaii International Conference on

System Sciences, vol. 2, pp. 275–284, 1989.

[54] M. E. Delamaro and J. C. Maldonado, “Proteum-a tool for the assessment of test adequacy

for C programs,” tech. rep., Software Engineering Research Center, Purdue University, 1996.

[55] I. Moore, “Jester-a Junit test tester,” eXtreme Programming and Flexible Processes in Soft-

ware Engineering, pp. 84–87, 2000.

[56] S.-W. Kim, J. A. Clark, and J. A. McDermid, “The rigorous generation of java mutation

operators using hazop,” in International Conference Software and Systems Engineering and

their Applications, 1999.

[57] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Investigating the effectiveness of object-

oriented testing strategies using the mutation method,” in Workshop on Mutation Analysis,

2001.

[58] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Assessing test set adequacy for object-oriented

programs using class mutation,” in Symposium on Software Technology, pp. 72–83, 1999.

[59] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter class mutation operators for Java,” in Interna-

tional Symposium on Software Reliability Engineering, no. 12, pp. 352–366, 2002.

[60] D. Firesmith, “Testing object-oriented software,” in Technology of Object-Oriented Lan-

guages and Systems, pp. 407–426, 1993.

[61] R. V. Binder, “Testing object-oriented software: a survey,” Software Testing, Verification and

Reliability, vol. 6, no. 3-4, pp. 125–252, 1996.

[62] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson, “A fault model for subtype

inheritance and polymorphism,” in International Symposium on Software Reliability Engi-

neering, pp. 84–93, 2001.

155

[63] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Class mutation: Mutation testing for object-

oriented programs,” in Object-Oriented Software Systems, pp. 9–12, 2000.

[64] P. Chevalley, “Applying mutation analysis for object-oriented programs using a reflective

approach,” in Asia-Pacific Software Engineering Conference, pp. 267–270, 2001.

[65] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: a mutation system for Java,” in International

conference on Software engineering, pp. 827–830, 2006.

[66] Y. S. Ma, M. J. Harrold, and Y. R. Kwon, “Evaluation of mutation testing for object-oriented

programs,” in International conference on Software engineering, pp. 869–872, 2006.

[67] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level mutants of MuJava,” in International

workshop on Automation of software test, pp. 78–84, 2006.

[68] P. Chevalley and P. Thévenod-Fosse, “A mutation analysis tool for Java programs,” Interna-

tional journal on software tools for technology transfer, vol. 5, no. 1, pp. 90–103, 2003.

[69] S.-W. Kim, M. J. Harrold, and Y.-R. Kwon, “Mugamma: Mutation analysis of deployed

software to increase confidence and assist evolution,” in Workshop on Mutation Analysis,

pp. 10–10, 2006.

[70] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting, “Jumble Java

byte code to measure the effectiveness of unit tests,” in Testing: Academic and Industrial

Conference Practice and Research Techniques, pp. 169–175, 2007.

[71] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invariant

violations,” in International symposium on Software testing and analysis, pp. 69–80, 2009.

[72] “PIT, mutation testing system.” http://pitest.org/, 2011.

[73] F. C. Ferrari, J. C. Maldonado, and A. Rashid, “Mutation Testing for Aspect-Oriented

Programs,” in International Conference on Software Testing, Verification, and Validation,

pp. 52–61, 2008.

[74] R. T. Alexander, J. M. Bieman, and A. A. Andrews, “Towards the Systematic Testing of

Aspect-Oriented Programs,” tech. rep., Department of Computer Science, Colorado State

University, 2004.

[75] M. Ceccato and P. T. F. Ricca, “Is AOP code easier or harder to test than OOP code?,” in

International Conference on Aspect-Oriented Software Development, Workshop, pp. 123–

127, 2005.

[76] A. V. Deursen, M. Marin, and L. Moonen, “A Systematic Aspect-Oriented Refactoring and

Testing Strategy, and its Application to JHotDraw,” tech. rep., Delft University of Technol-

ogy, 2005.

[77] F. C. Ferrari, E. Y. Nakagawa, A. Rashid, and J. C. Maldonado, “Automating the muta-

tion testing of aspect-oriented Java programs,” in Workshop on Automation of Software Test,

pp. 51–58, 2010.

156

[78] P. Anbalagan and T. Xie, “Automated generation of pointcut mutants for testing pointcuts

in AspectJ programs,” in International Symposium on Software Reliability Engineering,

pp. 239–248, 2008.

[79] A. Acree, On Mutation. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, 1980.

[80] S. Hussain, Mutation clustering. PhD thesis, Kings College London, London, 2008.

[81] J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of selective mutation,” in

International conference on Software Engineering, pp. 100–107, 1993.

[82] A. P. Mathur, “Performance, effectiveness, and reliability issues in software testing,” in In-

ternational Computer Software and Applications Conference, pp. 604–605, 1991.

[83] R. A. Demillo, E. W. Krauser, and A. P. Mathur, “Compiler-integrated program mutation,”

in International Computer Software and Applications Conference, pp. 351 – 356, 1991.

[84] R. H. Untch, “Mutation-based software testing using program schemata,” in ACM Southeast

Regional Conference, pp. 285–291, 1992.

[85] R. H. Untch, J. Offutt, and M. J. Harrold, “Mutation analysis using mutant schemata,” SIG-

SOFT Software Engineering Notes, vol. 18, no. 3, pp. 139–148, 1993.

[86] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “An experimental mutation system for Java,” SIGSOFT

Software Engineering Notes, vol. 29, pp. 1–4, 2004.

[87] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized higher order mutation

testing tool for the full C language,” in Testing: Academic and Industrial Conference - Prac-

tice and Research Techniques, pp. 94–98, 2008.

[88] M. Polo, M. Piattini, and I. Garcı́a-Rodrı́guez, “Decreasing the cost of mutation testing with

second-order mutants,” Software Testing, Verification and Reliability, vol. 19, no. 2, pp. 111–

131, 2009.

[89] N. DiGiuseppe and J. A. Jones, “Fault interaction and its repercussions,” in International

Conference on Software Maintenance, pp. 3–12, 2011.

[90] V. Debroy and E. Wong, “Insights on fault interference for programs with multiple bugs.,”

in International Symposium on Software Reliability Engineering, pp. 165–174, 2009.

[91] E. Omar and S. Ghosh, “An exploratory study of higher order mutation testing in aspect-

oriented programming,” in International Symposium on Software Reliability Engineering,

pp. 1–10, 2012.

[92] O. Räihä, K. Koskimies, E. Mäkinen, and T. Systa, “Pattern-based genetic model refinements

in MDA,” Nordic Journal of Computing, vol. 14, no. 4, pp. 338–355, 2008.

[93] M. Pereira and S. R. Vergilio, “Gptest: A testing tool based on genetic programming,” in

Genetic and Evolutionary Computation Conference, pp. 1343–1350, 2002.

157

[94] L. Shan and H. Zhu, “Testing software modelling tools using data mutation,” in International

Conference on Software Engineering, pp. 43–49, 2006.

[95] M. M. Masud, A. Nayak, M. Zaman, and N. Bansal, “Strategy for mutation testing us-

ing genetic algorithms,” in Canadian Conference on Electrical and Computer Engineering,

pp. 1049–1052, 2005.

[96] K. Adamopoulos and R. M. Hierons, “How to overcome the equivalent mutant problem

and achieve tailored selective mutation using co-evolution,” in Genetic and Evolutionary

Computation Conference, pp. 1338–1349, 2004.

[97] E. Davies, J. McMaster, and M. Stark, “The use of genetic algorithms for flight test and

evaluation of artificial intelligence and complex software systems,” in The role of intelligent

systems in defence, pp. 36–47, 1995.

[98] N. Tracey, J. A. Clark, and K. Mander, “Automated program flaw finding using simulated

annealing,” ACM Sigsoft Software Engineering Notes, vol. 23, pp. 73–81, 1998.

[99] L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing real-time systems with genetic

algorithms,” in Genetic and Evolutionary Computation Conference, pp. 1021–1028, 2005.

[100] R. Ferguson and B. Korel, “The chaining approach for software test data generation,” ACM

Transactions on Software Engineering and Methodology, vol. 5, pp. 63–86, 1996.

[101] K. Lakhotia, M. Harman, and P. Mcminn, “A multi-objective approach to search-based test

data generation,” in Genetic and Evolutionary Computation Conference, pp. 1098–1105,

2007.

[102] P. Tonella, “Evolutionary testing of classes,” ACM Sigsoft Software Engineering Notes,

vol. 29, pp. 119–128, 2004.

[103] M. Harman, F. Islam, T. Xie, and S. Wappler, “Automated test data generation for aspect-

oriented programs,” in Aspect-Oriented Software Development, pp. 185–196, 2009.

[104] T. Xie and J. Zhao, “A framework and tool supports for generating test inputs of AspectJ

programs,” in International conference on Aspect-oriented software development, pp. 190–

201, 2006.

[105] T. Xie, J. Zhao, D. Marinov, and D. Notkin, “Automated test generation for AspectJ pro-

grams,” in International conference on aspect-oriented software development, workshop on

Testing Aspect-Oriented Programs, pp. 102–111, 2005.

[106] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for regression

testing,” IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[107] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases for regression

testing,” in International Symposium on Software Testing and Analysis, pp. 102–112, 2000.

[108] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a

survey,” Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

158

[109] S. Forrest, T. Nguyen, W. Weimer, and C. L. Goues, “A genetic programming approach to

automated software repair,” in Genetic and Evolutionary Computation Conference, pp. 947–

954, 2009.

[110] C. L. Goues, W. Weimer, and S. Forrest, “Representations and operators for improving

evolutionary software repair,” in Genetic and evolutionary computation conference, pp. 959–

966, 2012.

[111] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic method for

automatic software repair,” IEEE Transactions on Software Engineering, vol. 38, pp. 54–72,

2012.

[112] SourceForge, “The Java Decompiler project.” http://dcompiler.sourceforge.

net/, 2002.

[113] A. Oram, Managing Projects with make. O’Reilly, 1991.

[114] “Software-artifact Infrastructure Repository.” http://sir.unl.edu/portal/index.php.

[115] S. Mouchawrab, L. C. Briand, Y. Labiche, and M. Di Penta, “Assessing, comparing, and

combining state machine-based testing and structural testing: a series of experiments,” Soft-

ware Engineering, IEEE Transactions on, vol. 37, no. 2, pp. 161–187, 2011.

[116] J. Walnes, “XStream for object serializations.” http://xstream.codehaus.org/. 2011.

[117] F. Wedyan and S. Ghosh, “A dataflow testing approach for aspect-oriented programs,” in

International Symposium on High-Assurance Systems Engineering, pp. 64–73, 2010.

[118] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-

tation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer Academic

Publishers, 2000.

[119] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach.

Boston, MA, USA: PWS Publishing Co., 2nd ed., 1998.

159

Appendices

160

Appendix 1: Coordinate Program

1 public class Coordinate

2 {

3 private int x;

4

5 private int y;

6

7 protected World world;

8

9 public Coordinate(World w, int x, int y)

10 {

11 if (helper(x) && helper(y)) {

12 world = w;

13 this.x = x % world.board.length;

14 this.y = y % world.board[0].length;

15 }

16 }

17

18 public java.lang.Object get()

19 {

20 return world.get(x, y);

21 }

22

23 public void put(java.lang.Object o)

24 {

25 if (o == null) {

26

27 } else {

28 world.put(x, y, o);

29 }

30 }

31

32 public boolean equals(java.lang.Object o)

33 {

34 if (o instanceof Coordinate) {

35 return ((Coordinate) o).world == world &&

((Coordinate) o).x == x && ((Coordinate) o).y

== y;

36 } else {

37 return false;

38 }

39 }

40

161

41 public int hashCode()

42 {

43 return x + y + world.hashCode();

44 }

45

46 public Coordinate north()

47 {

48 return new Coordinate(world, x, y + 1);

49 }

50

51 public Coordinate south()

52 {

53 if (y == 0) {

54 return new Coordinate(world, x,

world.board[0].length - 1);

55 } else {

56 return new Coordinate(world, x, (y - 1) %

world.board[0].length);

57 }

58 }

59

60 public Coordinate east()

61 {

62 return new Coordinate(world, x + 1, y);

63 }

64

65 public Coordinate west()

66 {

67 if (x == 0) {

68 return new Coordinate(world, world.board.length

- 1, y);

69 }

70 return new Coordinate(world, (x - 1) %

world.board.length, y);

71 }

72

73 private boolean helper(int d)

74 {

75 boolean result = true;

76 if (d < 0) {

77 result = false;

78

79 }

80 return result;

81 }

162

82

83 public java.lang.String toString()

84 {

85 return "Coordinate(" + x + "," + y + ") in " + world;

86 }

87

88 }

89

90 public class World

91 {

92

93 protected java.lang.Object[][] board;

94

95 public World(int n, int m)

96 {

97 if (n < 1 || m < 1) {

98

99 } else {

100 board = new java.lang.Object[n][m];

101 }

102 }

103

104 public World(int n)

105 {

106 this(n, n);

107 }

108

109 protected java.lang.Object get(int x, int y)

110 {

111 return board[x][y];

112 }

113

114 protected void put(int x, int y, java.lang.Object o)

115 {

116 board[x][y] = o;

117 }

118

119 protected java.lang.Object get(Coordinate c)

120 {

121 if (this == c.world) {

122 return c.get();

123 } else {

124

125 return null;

126 }

163

127 }

128

129 protected void put(Coordinate c, java.lang.Object o)

130 {

131 if (this == c.world) {

132 c.put(o);

133 } else {

134

135 }

136 }

137

138 public java.lang.String toString()

139 {

140 return "World(" + board.length + "," +

board[0].length + ")";

141 }

142 }

164

Appendix 2: Roman Program

1 public class Roman

2 {

3 static java.lang.String roman;

4

5 static int decimal;

6

7 static char romanChar;

8

9 public static void main(java.lang.String[] args)

10 {

11 roman = "IIX";

12 roman = roman.toUpperCase();

13 decimal = convertToDecimal(roman);

14 if (decimal != -1) {

15 System.out.println("The Roman number " + roman

+ " is equal to the Decimal number " +

decimal);

16 } else {

17 System.out.println("The roman number " + roman

+ " is not valid ");

18 }

19 }

20

21 public static int convertToDecimal(java.lang.String

roman)

22 {

23 roman = roman.toUpperCase();

24 decimal = 0;

25 if (isValid(roman)) {

26 int x = 0;

27 while (x < roman.length()) {

28 romanChar = roman.charAt(x);

29 switch (romanChar) {

30 case ’M’ :

31 decimal += 1000;

32 break;

33

34 case ’D’ :

35 decimal += 500;

36 break;

37

38 case ’C’ :

165

39 decimal += 100;

40 break;

41

42 case ’L’ :

43 decimal += 50;

44 break;

45

46 case ’X’ :

47 decimal += 10;

48 break;

49

50 case ’V’ :

51 decimal += 5;

52 break;

53

54 case ’I’ :

55 decimal += 1;

56 break;

57

58 }

59 x++;

60 }

61 return decimal;

62 } else {

63 return -1;

64 }

65 }

66

67 public static int pos(char chr)

68 {

69 if (chr == ’M’) {

70 return 7;

71 } else {

72 if (chr == ’D’) {

73 return 6;

74 } else {

75 if (chr == ’C’) {

76 return 5;

77 } else {

78 if (chr == ’L’) {

79 return 4;

80 } else {

81 if (chr == ’X’) {

82 return 3;

83 } else {

166

84 if (chr == ’V’) {

85 return 2;

86 } else {

87 if (chr == ’I’) {

88 return 1;

89 } else {

90 return 10;

91 }

92 }

93 }

94 }

95 }

96 }

97 }

98 }

99

100 public static boolean isValid(java.lang.String roman)

101 {

102 roman = roman.toUpperCase();

103 int x = 0;

104 int y = 0;

105 try {

106 if (roman == null) {

107 }

108 } catch (java.lang.Exception e) {

109 return false;

110 }

111 if (roman.length() <= 0) {

112 return false;

113 }

114 while (x < roman.length()) {

115 y = x;

116 while (y <= roman.length() - 1) {

117 if (pos(roman.charAt(x)) == 10 || pos(

roman.charAt(x)) < pos(roman.charAt(

y))) {

118 return false;

119 }

120 y++;

121 }

122 x++;

123 }

124 return true;

125 }

126

167

127 public static java.lang.String convertToRoman(int

number)

128 {

129 java.lang.String roman = "";

130 if (number <= 0 || number > 3999) {

131 return "error";

132 }

133 while (number >= 1000) {

134 roman += "M";

135 number -= 1000;

136 }

137 while (number >= 900) {

138 roman += "CM";

139 number -= 900;

140 }

141 while (number >= 500) {

142 roman += "D";

143 number -= 500;

144 }

145 while (number >= 400) {

146 roman += "CD";

147 number -= 400;

148 }

149 while (number >= 100) {

150 roman += "C";

151 number -= 100;

152 }

153 while (number >= 90) {

154 roman += "XC";

155 number -= 90;

156 }

157 while (number >= 50) {

158 roman += "L";

159 number -= 50;

160 }

161 while (number >= 40) {

162 roman += "XL";

163 number -= 40;

164 }

165 while (number >= 10) {

166 roman += "X";

167 number -= 10;

168 }

169 while (number >= 9) {

170 roman += "IX";

168

171 number -= 9;

172 }

173 while (number >= 5) {

174 roman += "V";

175 number -= 5;

176 }

177 while (number >= 4) {

178 roman += "IV";

179 number -= 4;

180 }

181 while (number >= 1) {

182 roman += "I";

183 number -= 1;

184 }

185 return roman;

186 }

187

188 }

169

Appendix 3: Movie Rental Program

1 public class Movie

2 {

3 public static java.lang.String movieTitle;

4

5 public static char movieType;

6

7 public Movie(java.lang.String title, char movieType2)

8 {

9 movieTitle = title;

10 movieType = movieType2;

11 }

12

13 public static double getPrice()

14 {

15 switch (movieType) {

16 case ’R’ :

17 return 1.5;

18

19 case ’C’ :

20 return 1;

21

22 case ’N’ :

23 return 2.5;

24

25 default :

26 return 10;

27

28 }

29 }

30

31 public static java.lang.String getTitle()

32 {

33 return movieTitle;

34 }

35

36 public static char getType()

37 {

38 return movieType;

39 }

40

41 public static void setTitle(java.lang.String tit)

42 {

170

43 movieTitle = tit;

44 }

45

46 public static void setType(char type)

47 {

48 movieType = type;

49 }

50

51 }

52

53 public class Customer

54 {

55

56 public static java.lang.String customerName;

57

58 public static double customerAccount;

59

60 public static double customerPayments;

61

62 public static char customerType;

63

64 public Customer(java.lang.String name, double account,

char type)

65 {

66 customerName = name;

67 customerAccount = account;

68 customerType = type;

69 customerPayments = 0;

70 }

71

72 public static java.lang.String getCustomerName()

73 {

74 return customerName;

75 }

76

77 public static void setCustomerName(java.lang.String

name)

78 {

79 customerName = name;

80 }

81

82 public static double getCustomerAccount()

83 {

84 return customerAccount;

85 }

171

86

87 public static char getCustomerType()

88 {

89 return customerType;

90 }

91

92 public static void setCustomerType(char type)

93 {

94 customerType = type;

95 }

96

97 public static void addToCustomerAccount(double charges)

98 {

99 customerAccount += charges;

100 }

101

102 public static void addCustomerPayment(double payment)

103 {

104 customerAccount -= payment;

105 customerPayments += payment;

106 }

107

108 public static double getCustomerPaymentsTotal()

109 {

110 return customerPayments;

111 }

112

113 }

114

115 public class Rental

116 {

117

118 public static Movie movie;

119

120 public static Customer customer;

121

122 public static java.util.Date startDate;

123

124 public static java.util.Date returnDate;

125

126 public Rental(java.lang.String movieName, char

movieType, java.lang.String customerName, double

customerBalance, char customerType, java.util.Date

mStartDate, java.util.Date mReturnDate)

127 {

172

128 movie = new Movie(movieName, movieType);

129 customer = new Customer(customerName,

customerBalance, customerType);

130 startDate = mStartDate;

131 returnDate = mReturnDate;

132 }

133

134 public static double getDaysRented()

135 {

136 return (returnDate.getTime() - startDate.getTime())

/ (1000 * 60 * 60 * 24);

137 }

138

139 public static double getCharges()

140 {

141 return movie.getPrice() * getDaysRented();

142 }

143

144 public static void setReturnDate(java.util.Date

mNewReturnDate)

145 {

146 customer.addCustomerPayment(Rental.getCharges());

147 returnDate = mNewReturnDate;

148 customer.addToCustomerAccount(Rental.getCharges());

149 }

150

151 }

152

153 public aspect Updates {

154 pointcut newMovie(): execution(Movie.new(

String,char)) ;

155 pointcut updateMovie(): execution(* Movie.setType(

char));

156 after() returning: newMovie()|| updateMovie() {

157 Movie.movieType = Character.toUpperCase(

Movie.movieType);

158 if ((Movie.movieType! = ’R’) && (

Movie.movieType! = ’C’) && (

Movie.movieType! = ’N’) && (

Movie.movieType! = ’A’) && (

Movie.movieType! = ’B’) && (

Movie.movieType! = ’D’) && (

Movie.movieType! = ’E’)) {

159 Movie.movieType = ’0’;

160 }

173

161 }

162 pointcut newCustomer(): execution(Customer.new(

..)) || execution(* Customer.setCustomerType(

..));

163 after() returning: newCustomer() {

164 Customer.customerType =

Character.toUpperCase(

Customer.customerType);

165 if ((Customer.customerType! = ’A’) && (

Customer.customerType! = ’B’)) {

166 Customer.customerType = ’C’;

167 }

168 }

169 pointcut newRental(): execution(Rental.new(..));

170 after() returning: newRental(){

171 if (Rental.startDate.after(

Rental.returnDate)){

172 Date temDate = Rental.startDate;

173 Rental.startDate = Rental.returnDate;

174 Rental.returnDate = temDate;

175 }

176 else {

177 }

178 Rental.customer.addToCustomerAccount(

Rental.getCharges());

179 }

180 after() returning: execution(*
Rental.setReturnDate(..)){

181 if (Rental.startDate.after(

Rental.returnDate)){

182 Date temDate = Rental.startDate;

183 Rental.startDate = Rental.returnDate;

184 Rental.returnDate = temDate;

185 }

186 else {

187 }

188 }

189 pointcut moviePriceUpdate(): call (double

Movie.getPrice());

190 double around(): moviePriceUpdate(){

191 if (Movie.movieType = = ’A’){return 4;}

192 else if (Movie.movieType = = ’B’){return

5;}

193 else if (Movie.movieType = = ’D’){return

4.5;}

174

194 else if (Movie.movieType = = ’E’){ return

5.2;}

195 else return proceed();

196 }

197 void around(double charges): call(*
Customer.addToCustomerAccount(double)) && args (

charges) {

198 if (Customer.customerType = = ’A’){

199 proceed(charges-(charges*1/4));

200 } else

201 if (Customer.customerType = = ’B’){

202 proceed(charges-(

charges*1/3));

203 }else{

204 proceed(charges);

205 }

206 }

207 void around(double payment): call(*
Customer.addCustomerPayment(..)) && args (

payment) {

208 if (Customer.customerType = = ’A’){

209 proceed(payment*1.2);

210 } else

211 if (Customer.customerType = = ’B’){

212 proceed(payment*1.3);

213 }else{

214 proceed(payment);

215 }

216 }

217 double around (): call(* Rental.getDaysRented(..))

{

218 double daysRented = proceed();

219 if ((daysRented>3) && (daysRented<10)) {

220 daysRented = 3;

221 } if ((daysRented> = 10) && (

daysRented<100)) {

222 daysRented = 10;

223 } if ((daysRented> = 100) && (

daysRented<365)) {

224 daysRented = 100;

225 }

226 return (daysRented);

227 }

228 }//aspect

175

