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ABSTRACT

PATTERN FORMATION IN REACTION DIFFUSION SYSTEMS AND ION

BOMBARDMENT OF SURFACES

We have analyzed pattern formation in two different systems: (1) Vapor-to-particle reaction

diffusion systems and (2) Highly ordered square arrays in ion bombardment. The vapor-to-particle

reaction exhibits oscillatory behavior and produces a spatial pattern called Liesegang rings. In this

thesis, we develop a finite element scheme to model the hydrogen chloride and ammonia vapor-

to-particle reaction. In our simulations, we develop parametric regions for different patterns and

corroborate data obtained from experiments of this reaction.

For the ion bombardment of a planar surface, we add the Ehrlich-Schwoebel barrier terms to the

Bradley-Shipman equations of motion and see the impact of ion bombardment at normal incidence

on a binary crystalline material. A weakly nonlinear stability analysis was conducted and regions

were determined where highly ordered square pyramids formed.
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Chapter 1

Introduction

This thesis concerns nonlinear partial differential equation models for chemical and physical

systems. The models are motivated by experiments. Analysis of the models includes multiple-

scale asymptotic analysis and finite-element numerical simulations. The various models can be

categorized into two main themes: (1) The vapor-to-particle nucleation and growth of the hydrogen

chloride and ammonia reaction, and (2) the formation of highly ordered square patterns in the ion

bombardment of a binary crystalline material.

If vapor-phase hydrogen chloride and ammonia are introduced into a tube, after some time

the reaction will produce a white solid, ammonium chloride. However, under certain conditions,

the diffusion and reaction of these vapor reactants produce precipitary patterns. These patterns

are products of precipitary oscillations in the reaction front. We improve on current models by

introducing a continuous nucleation differential equation with explicit terms for nucleation and

growth kinetics. They include oscillations of varying frequency and amplitude that have been

quantified in recent experiments [1] but have not been noticed in previous literature on precipitary

reactions. Our simulations are conducted in both one and two dimensions. By analyzing reaction

front oscillations we propose the existence of three types of pattern states, one of which has not

been observed experimentally.

The second area of interest is the ion bombardment of a binary crystalline material. We extend

the Bradley-Shipman model to incorporate the crystalline nature of the bombarded surface. The

Bradley-Shipman equations couple surface erosion of a binary material from ion bombardment

with surface composition. We add terms pertaining to the Ehrlich-Schwoebel barrier that are de-

rived from the crystalline structure of the material. We conduct a linear stability analysis and define

regions in the parameter space that predict the formation of various patterns. We demonstrate that

the crystallinity of the material and its binary alloy composition are necessary conditions for the
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formation of highly ordered square arrays. This work has resulted in a publication in Physical

Review E [2].

In Chapter 2, we discuss previous models for nucleation and growth and present our model

for the vapor-to-particle reaction of hydrogen chloride and ammonia. In Chapter 3, we discuss

the numerical techniques employed for simulating the vapor-to-particle reaction. The results of

simulations for this system are presented in Chapter 4. Chapter 5 explains the formation of highly

ordered squares under ion bombardment, followed by a discussion on soft mode and defect forma-

tion in Section 5.7.

2



Chapter 2

Oscillations in Reaction-Diffusion Systems

2.1 Introduction
In 1896, Raphael Liesegang mixed inorganic salts in a gel matrix and observed the formation

of periodic precipitary bands. It was not a trivial result given that reactant molecules were in a con-

stant change of random motion. More peculiar was the fact that these periodic precipitary bands,

known as Liesegang rings, were reproducible in different reactions, under varying scenarios. As

the discovery of more diverse patterns continued amongst chemists, the importance of structured

pattern formation intrigued scientists from different sciences. Einstein was able to quantify random

motion and subsequently developed parabolic partial differential equations for diffusion [3]. A few

decades later, Alan Turing in a paper title ‘The Chemical Basis of Morphogenesis’ [4] showed that

structured patterns can emerge from the ‘instability of the homogeneous equilibrium’, triggered by

‘random disturbances’. Turing showed that by a relatively simple reaction-diffusion model of mor-

phogens, the formation of spots and stripes in nature could be explained. Although Turing’s work

on mathematical biology was largely ignored and the importance of it dismissed even by Turing

himself, his work was reexamined decades later and is now a basis of mathematical understanding

in biology.

With the foundation of reaction-diffusion models now on firm footing, scientists have revisited

pattern formation in the original chemical reactions. It is now believed that the process that governs

Liesegang rings is far more prevalent than previously thought. Many geological formations are

believed to arise from similar processes, and recently a link between Balo’s sclerosis and periodic

precipitation has caused biologists to focus on the chemical kinetics of Liesegang ring formation

[5]. In the paper by Thompson and Shipman [6], the vapor-to-particle reaction produced micro

weather patterns like tornadoes and hurricanes. In a larger context, organizations like NASA and

CERN are conducting research on the effect of aerosols on global weather patterns.
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Figure 2.1: Experiment: Vapor-to-particle reaction of hydrogen chloride and ammonia producing Liesegang
rings in a reaction tube.

Since the discovery of the Liesegang rings, many theories have been presented in order to

understand the chemical kinetics better. The classical understanding of this process, first proposed

by Otswald, was based on the concept of local supersaturation i.e. once the concentration of the

vapor product of two reactants is greater than a threshold value, the vapor product nucleates to

a precipitate by depleting the vapor from its surroundings. As the reaction front moves, it takes

time to reach the threshold concentration value again and for the same process to repeat. Hence,

periodic bands of precipitate (rings) are said to occur discontinuously (see Fig. 2.11). This is

known as the prenucleation theory, and most models have adopted it to explain the Liesegang ring

phenomenon.

However, recently a detailed analysis of the reaction front have been conducted. It has been

observed that the precipitate at the reaction front exhibits oscillatory behavior. It is now our un-

derstanding that the Liesegang ring phenomenon is just a special case of this oscillatory pattern.

These oscillations have been quantified in [1] and discussed in [6]. In this thesis, essentially we

want to develop a model that reflect reaction front oscillations and corroborate experimental data

detailed in the vapor-to-particle reaction of ammonia and hydrogen chloride as detailed in [1].

1Image taken from Patterns, Oscillations, and Microtornadoes: Extreme Events in Vapor-to-particle Reaction
Zones by Thompson and Shipman [6]
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Figure 2.2: Reaction of ammonia and hydrogen chloride

In Chapter 2.2 we lay down the framework for the results that will be presented in Chapter 4.

We talk about patterns in vapor-to-particle system as special cases of oscillations in the reaction

front. We describe some previous mathematical models used and how we have improved on them

to develop our own results.

2.2 Oscillations in Vapor-to-Particle Systems
The ammonia and hydrogen chloride is a classic chemical experiment. It is often used to

demonstrate the relative diffusion of chemicals based on their molar mass. In a typical experiment

in a reaction tube, ammonia and hydrogen chloride are introduced at opposite ends of the tube and

allowed to diffuse (Fig. 2.2). Ammonium chloride precipitate first becomes visible closer to the

tube end where hydrogen chloride was introduced. That is because hydrogen chloride has a higher

relative molar mass compared to ammonia.

The reaction represented in Fig. 2.2 can be expressed in relative simple terms by the following

chemical equation:

NH3(g) + HCl(g) −−→ NH4Cl(s)

However, there are many intermediates steps that take place before the ammonium chloride

precipitate is formed. We describe them in detail in the following section.
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2.2.1 HCL-NH3 Reaction

In this section we will explain the hydrogen chloride-ammonia reaction in a way that is consis-

tent with the mathematical model that we will subsequently develop. As a result, many assump-

tions are made and reaction methodologies proposed in [7–14] and reaction steps detailed in [6]

are simplified in the formation of our mathematical model.

The first step in the vapor-to-particle reaction of hydrogen chloride and ammonia is the forma-

tion of ammonium chloride vapor. The reaction can be given the following way:

NH3(g) + HCl(g)
k−−→ NH4Cl(g)

k is the reaction rate constant associated with this reaction. It must be noted at this point that k

is a large unknown in scientific circles and there are many parameters that affect k. For example,

the affect of water vapor on k is detailed in [15, 16]. In our mathematical model, we assume k to

be constant through the entirety of each simulation, however k is varied to obtain simulation data

that corroborates experimental data obtained in [1].

The next step involves the formation of ammonium chloride precipitate from ammonium chlo-

ride vapor. Chemically it can be written as:

NH4HCl(g)

f−−→ NH4Cl(s)

f represents the nucleation and growth rate corresponding to this chemical step. The value of

f is dependent on multiple factors and varies throughout the course of a reaction. There have been

many proposed versions of f in part literature [6, 17]. We develop a new function that is based on

types of nucleation processes:

• Homogeneous nucleation

• Heterogeneous nucleation
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In the absence of any catalyst, the formation of ammonium chloride precipitate (NH4Cl(s)) from

ammonium chlorde vapor (NH4Cl(g)) will only take place if the concentration value of ammonium

chloride vapor is above a threshold value. This is known as homogeneous nucleation. However, if

ammonium chloride precipitate is already formed, it acts as a catalyst and the threshold value for

further nucleation is reduced. This is called heterogeneous nucleation2. The minimum threshold

requirement for homogeneous and heterogeneous nucleation have been calculated in [6] and we

use them in the constructing the threshold function f .

2.2.2 Saturated-Vapor Reactions: Experiments and Data

There are two types of experiments we analyze: (1) Saturated-vapor experiments and (2)

Counter-diffusional experiments. In saturated-vapor experiments, the reaction tube is flooded with

one of the reactants until it reaches an equilibrium. The second reactant is then introduced from

one of the ends. As a result, the reaction begins immediately at the end of the tube where the sec-

ond reactant is introduced. A counter-diffusional experiment is similar to the experiment described

in Fig. 2.2. Initially, the reaction tube is devoid of each reactant. The reactants are then introduced

simultaneously from each end and allowed to diffuse.

We will first discuss saturated-vapor experiments. In particular, we will be discussing the ex-

periments conducted and results obtained by Timothy Lenczycki in [1]. In [1], the author describes

the process of conducting saturated-vapor experiments between ammonia and hydrogen chloride.

The reaction is conducted in a 20cm tube. The tube is then flooded at 77mm/HG of hydrogen

chloride vapor. Once the entire tube reaches an equilibrium concentration value, ammonia vapor

is allowed to diffuse into the tube from one end. An illustration of the experimental set up is given

by Fig. 2.33.

2In actual experiments, dust particles in the reaction tube act as catalysts in the vapor-to-particle reaction and
hence the phenomenon of heterogeneous nucleation is observed before the process of homogeneous nucleation. In our
mathematical model we ignore this aspect and as a result, in our simulations heterogeneous nucleation always takes
place after homogeneous.

3Image taken from ‘Oscillations in gas-phase periodic precipitation patterns: NH3-HCl Story’ [1]
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Figure 2.3: Experimental set up for the saturated-vapor reaction of ammonia and hydrogen chloride

When the molecules of ammonia vapor diffuse into hydrogen chloride, a reaction front is im-

mediately established. Due to the pressure vapor differentials of the reactant vapor sources, the

reaction front moves down the tube from the initial point of reaction. Eventually, the reaction front

position reaches an equilibrium towards the center of the tube. In unprecedented work, the author

observed and quantified oscillations in the precipitary deposition at the reaction front as it propelled

across the tube. The frequency and amplitude of the precipitary oscillations were calculated and

two distinct results were determined: (1) The amplitude of oscillations increased with time and (2)

the frequency of oscillations decreased with time. Figs.2.4-2.5 illustrate the two results obtained

from experimental data. It must be noted at this point that such oscillations in vapor-to-particle

reactions have not been observed before and simulating the data as illustrated in Figs. 2.4-2.54 is

the primary objective of our reaction-diffusion simulations. With the introduction of a continuous

threshold function we present our simulations in Chapter 4. We also demonstrate that the forma-

tion of Liesegang rings is a special case of oscillations observed in vapor-to-particle systems. We

use the data in [1], to determine values of unknown parameters in our system and demonstrate how

varying certain parameter values can lead to different types of pattern formations.

4Image taken from [1]
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Figure 2.4: Increasing amplitude of precipitary oscillations at the reaction front with time.
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Figure 2.5: Decreasing frequency of precipitary oscillations at the reaction front with time.
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2.2.3 Counter-Diffusional Experiments

In counter-diffusional experiments, the reaction tube is initially empty of both reactants. The

reactants are then introduced simultaneously from opposite ends and allowed to diffuse through

the reaction tube. An illustration of a counter-diffusional experiment is given in Fig. 2.2.

Although, the simulations of counter-diffusional experiments are not the primary objective

of this thesis, counter-diffusional have produced extreme micro-weather systems as observed by

Thompson and Shipman [6]. We discuss this paper in more detail in section 2.2.4.

2.2.4 Past Mathematical Models

Although, a model has not been previously developed for saturated-vapor, vapor-to-particle

ammonia-hydrogen chloride reactions, we analyze the mathematical models proposed for simi-

lar reaction-diffusion systems. We will primarily present the work of G.T Dee [18], Keller and

Rubinow [19] and Thompson and Shipman [6].

G.T Dee

The model proposed by Dee [18] is concerned with the reaction between hydrogen chloride and

silver nitrate suspended in aqueous gel. Dee models saturated-vapor experiments where one of this

reactants is allowed to reach equilibrium in the reaction tube before the other reactant is introduced.

The basis of Dee’s model is the prenucleation theory and requires a little more attention as he has

detailed his system in great mathematical detail. In Eq. (2.1), he defines the nucleation rate J(s)

as a product of the number of critical nuclei N(s) and the rate at which droplets attach themselves

to critical nuclei τ(s). ‘s′ is the supersaturation ratio. The threshold function that Dee gives is the

following,

J(s) = N(s)τ(s) (2.1)

where,

N(s) = C0(1 + s)exp(−4πσr2/3kBT )

and
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τ(s) = (D3/d
2)[4πr2dC0(1 + s)]

where C0, σ, r, kB, T , D3 and d are parameter values explained in the paper [18].

Dee’s model focuses on the droplet-growth kinetics pertaining to the prenucleation theory. The

size of the droplet affects the nucleation rate at which surrounding smaller droplets get attracted

to it. Dee presents the rate of nucleation as a product of the number of critical nuclei (N ) and the

rate at which droplets attach themselves to a critical nuclei τ . It is known that both N and τ are

functions of the supersaturation ratio, hence the rate of nucleation is also a function of s. There

are two important conclusions that are reached in Dee’s model: (1) Pattern formation is dependent

on a rapidly changing threshold function and (2) Precipitate exists between the bands. These are

two conclusions that are corroborated in our simulations with a different threshold function but an

essential detail that has been overlooked in Dee’s work is that fundamental to both his conclusions

is the fact that he is modeling an oscillatory system. In our simulations in Chapter 4, we illustrate

and quantify these oscillations at the reaction front.

Keller and Rubinow

In the model presented by Keller and Rubinow [19], the nucleation rate is not only dependent

on the supersaturation ration but also on the precipitate. The threshold kinetic function presented

by Keller and Rubinow is,

f2(a, b, c, d) =


0 if c ≤ g(d),

c− g(d) if c > g(d).

(2.2)

where,

g(d) =


cs > 0 for d > 0,

css > cs for d = 0.

12



In our attempt to use the concept presented by Keller and Rubinow, we develop a continuous

form of Eq. (2.2). It is an improvement of Dee’s analysis as we not only describe the sink term as a

function of the local supersaturation but of also of the precipitate. In [19], the authors demonstrate

how the formation of Liesegang bands follow the spacing and time laws of Liesegang rings. In

our simulations, the Liesegang bands that do form within a certain parametric region are also in

sync with the spacing and time laws. However, in the model proposed by Keller and Rubinow,

precipitate does not form in between bands, in contrast to the conclusion reached by Dee [18]. By

proposing a continuous threshold function for Eq. 2.2, we bridge the gap between the work of Dee

and Keller and Rubinow.

Thompson and Shipman

In the paper Patterns, oscillations, and microtornadoes: Extreme event in vapor-to-particle re-

action zones [6] by Thompson and Shipman, an analysis of counter-diffusional and saturated-vapor

experiments is discussed in relation to the vapor-to-particle reaction of ammonia and hydrogen

chloride. The vapor-to-particle reaction of ammonia and hydrogen chloride has produced inter-

esting thermodynamic behaviors like micro-tornadoes and mini-hurricanes in a lab environment.

In [6], these processes are explored in great detail. These events primarily take place because of

the highly exothermic nature of the reaction. Thompson and Shipman [6] use the prenucleation

theory as the basis of their model, while expanding on the Keller-Rubinow [19] model of threshold

kinetics. These unique events were a result of counter-diffusional experiments between ammonia

and hydrogen chloride. Some of the parameters in our threshold nucleation function have been

derived from this paper. We expand on those results to determine a continuous threshold kinetic

function which incorporates some of the quantitatively determined parameter values. Later work

on this thesis would encompass some of the observations seen in the experiments conducted in this

paper [6]. Although the paper does discuss the case when the reaction is conducted in a saturated-

vapor experiment, most of the paper reflects on the results when the position of the hydrogen

chloride and ammonia drops are varied in a petri dish. The exothermic nature of this particular

reaction generates convection currents which leads to extreme weather behavior.
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2.3 Mathematical Model

2.3.1 A Model of Partial Differential Equations

Since our system is the typical reaction-diffusion equation, it is modeled by a system of

parabolic partial differential equations. For clarification, hydrogen chloride and ammonia are the

reactants, the product ammonium chloride in vapor form is called the monomer and the product

ammonium chloride in solid form is called the precipitate.

In Eq. (2.3), a represents hydrogen chloride, b represents ammonia, c represents the monomer

and d represents the precipitate. As illustrated in Eq. (2.3), a, b and c are modeled by parabolic

PDEs while d is modeled by a simple ordinary differential equation as we assume the precipitate

to not diffuse in space.

∂a

∂t
= Da∇2a− kab− f1(a, b, c, d)

∂b

∂t
= Db∇2b− kab− f1(a, b, c, d)

∂c

∂t
= Dc∇2c+ kab− f2(a, b, c, d)

∂d

∂t
= f2(a, b, c, d)

(2.3)

The main focus in this otherwise traditional model are the terms f1 and f2. These terms are

responsible for threshold kinetics. But for the sake of simplicity we assume that the reactants

do not have an effect on the nucleation threshold and hence we can decouple the system. In our

resulting model, f1 = 0 and f2 becomes a function dependent on just the monomer and precipitate.

Hence, we reduce our system to the following chemical process:

a(g) + b(g) −→ c(g)

c(g) −→ d(s)

14



Under these assumptions, mathematically we can write Eq. (2.3) as a system of equations

expressed in Eq. (2.4). As we are now only dealing with one type of threshold function, we

denote it by just f(c, d). All units of concentration are given in g/cm3. Da, Db, Dc represent the

diffusion coefficients of hydrogen chloride, ammonia and ammonium chloride respectively. The

mathematical equation modeling the system is as follows:

∂a

∂t
= Da∇2a− kab

∂b

∂t
= Db∇2b− kab

∂c

∂t
= Dc∇2c+ kab− f(c, d)

∂d

∂t
= f(c, d)

(2.4)

2.3.2 Threshold Kinetics

The real debate in the modeling of this problem is in determining the appropriate threshold

function f(c, d). As mentioned in the literature review previously, there have been many attempts

to determine the appropriate right-hand side function. We base our threshold function f(c, d)

on the equation proposed by Keller and Rubinow in Eq. (2.2). The nucleation process is based

on threshold kinetics. The precipitate does not form unless the concentration of the monomer is

above a certain threshold value, chom. However, once precipitate exists at a point, the threshold

concentration for further nucleation is reduced and precipitate will form at lower concentration

values of the monomer.

In all the simulations we have conducted, chom = 0.02 and chet = 0.002. These values are

based on the paper by Thompson and Shipman [6]. The threshold function is

f(c, d) =
κ(c+ φ− γe−d)η+1

1 + (c+ φ− γe−d)η
, (2.5)

where

15



Figure 2.6: Effect of precipitate d on the threshold function f(c, d) with chom = 0.02, chet = 0.002, κ = 2
and η = 10000.

φ = 1− chet , and

γ = chom − chet.

We have assumed the threshold function to decrease exponentially with the increase in the

precipitate. chet represents the minimum value required for nucleation to take place. The threshold

dynamics are illustrated in Fig. 2.6. The benefit of this equation is we have explicit terms for

homogeneous and heterogeneous nucleation.

2.3.3 Boundary and Initial Conditions

Apart from trying to determine the appropriate threshold function representing Eq. (2.2), for

our simulations we will vary a few parameters. Amongst those, different boundary and initial

conditions play an important role in simulating different classes of experiments. Despite tubes

being three dimensional objects, we assume our system to be in either one or two dimension. So
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for our simulations, our boundary conditions are concentrations at the extreme end points of the

tube. In the case of the one dimensional system the boundary conditions are expressed Eq. (2.6).

a(0, t) = ao, b(0, t) = bo
∂a

∂x
(L, t) = 0,

∂b

∂x
(0, t) = 0

∂c

∂x
(0, t) = 0,

∂c

∂x
(L, t) = 0

∂d

∂x
(0, t) = 0,

∂d

∂x
(L, t) = 0.

(2.6)

In the two types of experiments that are conducted, the boundary conditions remain qualitatively

the same i.e. a0 and b0 are both non-negative values in the counter-diffusional model and the

saturated-vapor model.

The initial conditions however, are different for the two experiments. In the case of the counter-

diffusional experiment in Eq. (2.7) a1 = 0 and b1 = 0. In the saturated-vapor model, we choose

the initial condition of one of the two reactants to be greater than zero. In the lab experiments

conducted by Tim Lenczycki [1], the concentration of hydrogen chloride was greater than zero at

the beginning of the experiment. The initial conditions are,

a(x, 0) = a1

b(x, 0) = b1

c(x, 0) = 0

d(x, 0) = 0.

(2.7)

Once the PDE system is set, up we discuss various solution techniques in Chapter 3.
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Chapter 3

Numerical Techniques

To solve the mathematical model represented by Eq. (2.4), finite element schemes for one and

two dimensional parabolic systems are developed. Our scheme consists of discretizing the spatial

and temporal domains. For the spatial discretization, we develop a continuous Galerkin P1 finite

element scheme explained in Section 3.1-3.3. In Section 3.4, we use the Crank-Nicholson method

to develop the temporal scheme. After solving the partial differential equations in Eq. (2.4), in Sec-

tion 3.5 we describe our Runge-Kutta scheme for evaluating the only ordinary differential equation

in Eq. (2.4). For the following sections, we define our spatial domain be Ω = [Ω◦,Ωδ] ∈ R2, where

Ω◦ represents the interior of the domain and Ωδ represents the boundary of the domain. M repre-

sents the total number of elements in Ω and N is equal to the total number of time iterations.

3.1 Spatial Discretization: Basis Vectors
To explain our numerical technique, let us begin with an inhomogeneous parabolic partial

differential equation as follows:

ut +4u = f ∈ Ω× [0, T ] (3.1)

If the domain Ω ∈ R (one-dimensional simulation), it is discretized by uniform intervals and

if the domain Ω ∈ R2(two-dimensional simulation), it is discretized by triangular elements. The

triangular elements are not uniform in size or orientation. A finer mesh is used for areas closer to

the boundary.

In order to evaluate Eq. (3.1), we linearize it with piecewise linear functions. For that purpose,

let us define the space Vh such that Vh ⊆ V = H1
0 (Ω), whereH1

0 is the Hilbert space of polynomial

degree 1. If uh(t) ∈ Vh, we can develop a variational form of Eq. (3.1) given by,
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∫
Ω

u̇hv +

∫
Ω

∇uh.∇v =

∫
Ω

f(t)v ∀v ∈ Vh (3.2)

At a fixed time tn ∈ [0, T ], we approximate u̇h such that u̇h =
uhn − uhn−1

∆t
for ∆t =

T

N
where

N is the total number of time iterations and uhn ≈ u(tn). We can now substitute our discretized

derivative into Eq. (3.2) to develop the following equation:

∫
Ω

uhn − uhn−1

∆t
v +

∫
Ω

∇u.∇v =

∫
Ω

f(t)v ∀v ∈ Vh

∫
Ω

uhnv + ∆t

∫
Ω

∇uh.∇v = ∆t

∫
Ω

f(t)v +

∫
Ω

uhn−1v ∀v ∈ Vh (3.3)

From Eq. (3.3) it is obvious that we have to linearize three types of integrals. The matrix

corresponding to
∫

Ω

∇u.∇v is called the global stiffness matrix A, for
∫

Ω

uhnv and
∫

Ω

uhn−1v it is

called the global mass matrix B and
∫

Ω

f(t)v is represented by the global right-hand side matrix

F (t).

We define uh to be the approximate solution of u given in equation (3.1) and has the following

representation:

uh =
M∑
i=1

ξi(t)ϕi(x) (3.4)

whereϕi ∀ i = 1, 2, ..,M represent the basis vectors of Vh such that Vh = span [ϕ1, ϕ2, ..., ϕM ].

If Ω ⊆ R (one-Dimensional case) then we define the linear basis functions as follows:

ϕi(x) =



0 if x ≤ xi−1,

(x− xi−1)

h
if xi−1 ≤ x < xi.

1− (x− xi)
h

if xi ≤ x < xi+1.

0 if x ≥ xi+1,

(3.5)
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Figure 3.1: Hat function (linear basis function) for One-Dimensional elements

If Ω ⊆ R2 (two-dimensional case), we define a node Pj = (xj, yj) which represents the

coordinates of the jth node of the triangular elements in Ω. Analogous to the one-dimensional

linear basis functions defined in Eq. (3.5), we define similar linear basis function for Ω ⊆ R2

such that ϕi(Pj) =

 1 if i = j

0 if i 6= j

. The height of the basis function ϕi(Pi) is supported by

continuous linear functions (L(x, y)) from Pi to all the neighboring nodes as given in Fig. 3.2 such

that Lik(xi, yi) = ϕi(Pi) = 1 and Lik(xk, yk) = ϕi(Pk) = 0 where Pk = (xk, yk) represents any

one of the neighboring nodes of Pi.

3.2 Assembling of Matrices
As mentioned in the previous section, we need to solve for three types of integrals. Since we

have also discretized the domain with the appropriate basis functions, we start with the formulation

of the global stiffness matrix.

3.2.1 Global Stiffness Matrix:

We have two cases corresponding to the two dimensions in the assembly of the global stiffness

matrix. We will first discuss the one-dimensional case before we proceed to the assembly in two-

dimension.
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Figure 3.2: Hat function (linear basis function) for 2D triangulation

For the one-dimensional case let the domain be equal to [0, L] where L is the length of our

domain. For our own convenience, we partition the domain into N uniform intervals such that the

length of each interval E is h =
L

N
. As mentioned before, the global stiffness matrix corresponds

to the linearization of the divergence term in Eq. (3.3). Hence our global stiffness matrix A can be

expressed in the following way:

A =
∑
E∈Ω

∫
Ω

∇ϕi.∇ϕjdx ∀i, j = 1, 2, ..., N (3.6)

Before we sum over all elements to obtain A, let us define our element stiffness matrix Mij such

that,

Mij =

∫
[0,L]

∇ϕi.∇ϕjdx
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If j = i+ 1, using Eq. (3.5), it can easily be shown that Mij =
1

h

 1 -1

-1 1

 and hence,

A =
1

h



1 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

0 0 −1 2 . . .

...
...

...
... . . .


We proceed in a similar fashion to evaluate the global stiffness matrix in two-dimensions, the

only difference in our elements E being triangles rather than intervals. Our global stiffness matrix

is defined as,

A =
∑
E∈Ω

∫
Ω

∇ϕi.∇ϕjdx ∀i, j = 1, 2, ..., N (3.7)

where N is the total number of triangular elements in our domain. Before we define our

basis vectors in two-dimensions, let us define notation for our triangular elements. For a triangular

element E ∈ Ω, let E be defined by the vertices Pi, Pj and Pk. ϕi, ϕj and ϕk are the corresponding

basis vectors defined for each of the three vertices. Eq. (3.8) illustrates a convenient form of the

basis vector corresponding to Pi.

ϕi(x, y) =

∣∣∣∣∣∣∣∣∣∣
1 1 1

x xj xk

y yj yk

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1 1 1

xi xj xk

yi yj yk

∣∣∣∣∣∣∣∣∣∣

−1

(3.8)

Subsequently, the gradient vector of Eq. (3.8) can be calculated accordingly,

∇ϕi(x, y) =
1

2|E|

 yj − yk

xj − xk


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where 2|E| =

∣∣∣∣∣∣∣
xj − xi xk − xi

yj − yi yk − yi

∣∣∣∣∣∣∣. The resulting element stiffness matrix ME is,

ME =


Mii Mij Mik

Mji Mjj Mjk

Mki Mkj Mkk


where the following equation is used to calculate each elements of ME

Mjk =

∫
E

∇ϕj.∇ϕkdx =
|E|

(2|E|)2
(yk − yi, xi − xk)

 yi − yj

xj − xi

 (3.9)

We can solve for ME simultaneously by using the following equation,

ME =
|E|
2
.GGT with G :=


1 1 1

xi xj xk

yi yj yk


−1

0 0

1 0

0 1

 (3.10)

With Eq. (3.10), we can now solve for the global stiffness matrix A corresponding to Eq. (3.7).

3.2.2 Global Mass Matrix:

To evaluate the global mass matrix B we follow the same route as in the previous section.

We will first explain the calculation in one-dimension before we proceed to two-dimensions. In

one-dimension, the global mass matrix B can be expressed as follows,

B =
∑

E∈[0,L]

∫
[0,L]

ϕiϕjdx ∀i, j = 1, 2, ..., N (3.11)

In order to evaluate B, we will first solve for the element mass matrix Mij where,
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Mij =

∫
[0,L]

ϕiϕjdx

If j = i+ 1, the corresponding element mass matrix Mij =
h

6

 2 1

1 2

 and hence,

B =
h

6



2 1 0 0 . . .

1 4 1 0 . . .

0 1 4 1 . . .

0 0 1 4 . . .

...
...

...
... . . .


If our domain Ω ∈ R2, similar to the methodology used in evaluating our two-dimensional

element stiffness matrix, our elemental mass matrix ME for the triangular element E with vertices

Pi, Pj and Pk can be given by,

ME =
1

24

∣∣∣∣∣∣∣
xj − xi xk − xi

yj − yi yk − yi

∣∣∣∣∣∣∣


2 1 1

1 2 1

1 1 2

 (3.12)

Using Eq. (3.11)-(3.12) we can evaluate the global mass matrix B.

3.2.3 Global Right Hand Side and Boundary Conditions

The global right hand side vector Fn(t), corresponds to the term
∫

Ω
f(t)v in Eq. (3.3). For an

element E defined by nodes Pi, Pj and Pk in our domain we have,

∫
E

fϕidx ≈
1

6

∣∣∣∣∣∣∣
xj − xi xk − xi

yj − yi yk − yi

∣∣∣∣∣∣∣ fC (3.13)

where ,

fC =
1

3
(f(Ni) + f(Nj) + f(Nk))
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We now have all corresponding matrices to substitute terms in Eq. (3.3). In the next section,

we will discuss our implementation of Dirichlet and Neumann boundary conditions.

3.3 Boundary Conditions
In the modeling of the system (2.4), there are two types of boundary conditions that emerge.

Before the boundary conditions are expounded upon, we have to detail some notation. We define

our domain Ω such that Ω = [Ω◦, Ω∂], where Ω◦ represents the interior of the domain and Ω∂

represent the boundary. The boundary Ω∂ =[ΩD
∂ , ΩN

∂ ] where ΩD
∂ and ΩN

∂ represent parts of the

boundary where Dirichlet and Neumann boundary conditions are applied respectively.

For all k ∈ [1, 2, ...,M ] such that Nk ∈ ΩN
∂ , we implement the Neumann boundary condition

dun(Nk)

d~n
= 0 where ~n is the normal vector.

To implement Dirichlet boundary condition if Nk ∈ ΩD
∂ for some k ∈ [1, 2, ...,M ] then we

implement the boundary condition on Un(Nk) = fD where fD is the boundary function. In our

system of equations fD is always a constant.

3.4 Temporal Discretization: Backward-Euler and

Crank-Nicholson Method
We will now discuss the temporal discretization of the domain. To derive Eq. (3.3) from

Eq. (3.1) we used the Backward-Euler method to discretize the derivative ut such that ut =

un − un−1

∆t
As mentioned before, for our simulations we keep the time steps ∆t uniform for all

iterations. We implement the Backward-Euler scheme in Eqs. (3.14-3.15).

BUn + dt(AUn) = ∆tFn +BUn−1 (3.14)

Un = (B + ∆t(A))−1(∆tFn + Un−1B) (3.15)
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For the Crank-Nicholson scheme along with the discretization of the derivative in Eq. (3.3,

3.14-3.15), we substitute un by its average over tn−1 and tn such that un =
un + un−1

2
. Our

improved version of Eq. (3.3) can be expressed as,

∫
Ω

unv + ∆t

∫
Ω

∇(
un + un−1

2
).∇v = ∆t

∫
Ω

(
fn(t) + fn−1(t)

2
)v +

∫
Ω

un−1v (3.16)

Linearizing Eq. (3.16), we obtain

(B +
∆t

2
A)Un = (B − ∆t

2
A)Un−1 + ∆t(

F (tn) + F (tn−1)

2
) (3.17)

Un = (B +
∆t

2
A)−1((B − ∆t

2
A)Un−1 + ∆t(

F (tn) + F (tn−1)

2
)) (3.18)

As our spatial and temporal discretization is complete, we can now apply our numerical techniques

to our equations explained in system (2.4).

3.5 Computing Ammonium Chloride Precipitate
In our original system 2.4, we use the finite element scheme described earlier to evaluate

for the three parabolic PDEs for hydrogen chloride (a), ammonia (b) and ammonium chloride

(c).However, the equation to model ammonium chloride precipitate (d) is a standard ordinary dif-

ferential equation. For that purpose we use Runge-Kutta scheme of order 4. Our differential

equation for ammonium chloride precipitate is given by,

dt = f(c, d) (3.19)

If cn and dn are known, we can evaluate for dn+1 according to,

dn+1 = dn +
∆t

6
(k1 + k2 + k3 + k4) (3.20)
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where k1 = f(cn, dn), k2 = f(cn + ∆t
2
k1, dn + ∆t

2
k1), k3 = f(cn + ∆t

2
k1, dn + ∆t

2
k2) and

k2 = f(cn + ∆t
2
k1, dn + ∆tk3).

We will now implement our numerical techniques to our system 2.4 and illustrate some of our

results in Chapter 4.
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Chapter 4

Simulations

4.1 One-Dimensional Simulations
As the threshold function f(c, d) is the base of our reaction-diffusion system, we illustrate

simulations corresponding to ammonium chloride vapor and ammonium chloride precipitate. We

present the results for varying values of the reaction rate parameter k. The primary reason for

that is the reaction rate k not only affects the production rate of ammonium chloride vapor but also

affects the structure of the reaction front. Fig. 4.1 demonstrates the affect of the reaction rate on the

reaction front. The reaction rate k is a large unknown in scientific circles. Experimental estimates

of the reaction range from 10−1 ≤ k ≤ 1012 [1,6]. It is also not constant under all conditions. The

effect of water vapor on the reaction rate has been explored extensively in previous studies [15,16].

In our simulations, smaller values of k have proved to be more effective in corroborating physical

data. We still do not have an exact value for the reaction rate k, but based on the correlation

between experimental data and our simulations we believe that 10−1 ≤ k ≤ 102.

Although interesting patterns have been observed in our simulations, the foremost purpose of

our model is to corroborate some of the experimental observations presented by Tim Lenzycki

in [1]. He observes that in a saturated-vapor experiment of hydrogen chloride and ammonia, the

amount of precipitate (amplitude) at the reaction front increases with time while the frequency

of the oscillations of precipitary deposit decreases with time. In the following illustrations, the

monomer has been scaled by a factor of 100 to be more discernible in the figures.

Fig. 4.2 represents the one-dimensional simulation with parameters corresponding to the saturated-

vapor experiments in [1]. In Fig. 4.2(a), the reaction front is formed and has reached the concen-

tration threshold for homogeneous nucleation to take place. At t = 0, the reaction flux of hydrogen

chloride and ammonia are at their maximum value. As a result, the reaction front’s velocity is also
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Figure 4.1: Reaction front shape for varying values of the reaction rate k
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Figure 4.2: Numerical Simualtion: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 10, κ = 2,
φ = 0.998, γ = 0.018 and η = 20000.
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Figure 4.3: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 0.01,
κ = 2, φ = 0.98, γ = 0.018 and η = 20000.

0 5 10 15 20
0

200

400

600

800
time = 10

(a)

Precipitate
100*Monomer

0 5 10 15 20
0

50

100

150

200
time = 100

Precipitate
100*Monomer

Figure 4.4: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 1, κ = 2,
φ = 0.98, γ = 0.018 and η = 20000.

at it’s largest at the start of the reaction. As the reaction front velocity is reduced, oscillations at

the reaction front can be observed. These oscillations are observable in Fig. 4.2(b).

Figs. 4.3-4.5, demonstrate the effect of varying the reaction rates k at the start of the reaction.

We can observe in Fig. 4.5 that oscillations are less apparent and the width of the reaction front is

smaller compared to the simulations in Figs. 4.4-4.3. This is due to the effect of the reaction rate k

on the horizontal spread of the reaction front as illustrated in Fig. 4.1.

Fig. 4.6 shows the results at t = 300 for k = [0.01, 1, 10]. The reaction front velocity has

slowed down considerably and in Fig. 4.6(a)-(d) rings begin to appear for k = 0.01 & k = 1. In

Fig. 4.6(e)-(f), rings are replaced with oscillations due to the higher value of k.
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Figure 4.5: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 10, κ = 2,
φ = 0.998, γ = 0.018 and η = 20000.

A closer look of Fig. 4.6(a)-(b) at t = 600 can be seen in Fig. 4.7(a)-(d). In Fig. 4.8(a)-(d),

spatially uniform rings appear and in Fig. 4.9 we can observe the change from oscillations to

spatially uniform rings. The rings have become more distinct but are irregularly positioned.

In our analysis of the reaction front, we have aimed to replicate Lenczycki’s definition of the

reaction front and then calculate the corresponding amplitude and frequency. Fig. 4.10 shows the

precipitate at the reaction front. The oscillations are clearly visible. Initially, the frequency of these

oscillations is hard to determine visually but as the frequency decreases, the period increases and

the oscillations become more apparent. This behavior is consistent with observations in [1]. We

conduct similar reaction front analysis with different values of k. For any reasonable value of k,

there is an increase in amplitude and decrease in frequency as a function of time. However, varying

k does affect the formation of rings. Ring formation only take place at the appropriate combination

of front velocity and threshold dynamics. That combination is most sensitive to the reaction rate k.

The purpose of illustrating the effect of a changing reaction rate was to demonstrate the depen-

dency of different patterns on the reaction rate parameter. As mentioned in the beginning of this

thesis, we believe there are three distinct pattern states in the hydrogen chloride ammonia reaction-

diffusion system: (1) Rings that are not spatially uniform (Fig. 4.7 (b) & (d)) (2) Rings that are

spatially uniform (Fig. 4.8 (b) & (d)) (3) Precipitary oscillations but no rings (Fig. 4.9 (b) & (d)).

However, to corroborate experimental data provided in [1], we need to demonstrate that pre-

cipitary amplitude at the reaction front increases with time while the frequency decreases. The
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Figure 4.6: Numerical Simulation: At t = 300 precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0
κ = 2, φ = 0.998, γ = 0.018 and η = 20000. (a) Precipitate formation with k = 0.01 (b) Magnification of
(a) from x = 9 − 10 (c) Precipitate formation with k = 1 (d) Magnification of (c) from x = 13 − 13.5 (e)
Precipitate formation with k = 100 (f) Magnification of (e) from x = 13.7− 14.
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Figure 4.7: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 0.01,
κ = 2, φ = 0.998, γ = 0.018 and η = 20000. (a) Precipitate formation at the reaction front at 300 seconds
(b) Close up of tail end of reaction front at 300 seconds (c) Precipitate formation at the reaction front at 600
seconds (b) Close up of tail end of reaction front at 600 seconds.
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Figure 4.8: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 1, κ = 2,
φ = 0.998, γ = 0.018 and η = 20000. (a) Precipitate formation at the reaction front at 300 seconds (b)
Close up of tail end of reaction front at 300 seconds (c) Precipitate formation at the reaction front at 600
seconds (b) Close up of tail end of reaction front at 600 seconds.
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Figure 4.9: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 10, κ = 2,
φ = 0.998, γ = 0.018 and η = 20000. (a) Precipitate formation at the reaction front at 300 seconds (b)
Close up of tail end of reaction front at 300 seconds (c) Precipitate formation at the reaction front at 600
seconds (b) Close up of tail end of reaction front at 600 seconds.
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Figure 4.10: Simulation amplitude at reaction front with (a) k = 0.01 (b) k = 3 (c) k = 5 (d) k = 7.
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Figure 4.11: Simulation precipitate formation frequency at reaction front from t = 0− 1000 with k = 3.
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Figure 4.12: Simulation precipitate formation frequency at reaction front from t = 0− 1000 with k = 5.
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Figure 4.13: Simulation precipitate formation frequency at reaction front from t = 0− 1000 with k = 7.
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amplitude data provided in [1] is based on the relative brightness of pixel data so there is no quan-

titative method to compare the amplitude data with our simulations. However, we can analyze it

qualitatively. Since rings are not observed in the actual experiment, we believe that k ≥ 1. In

Fig. 4.10, we have the amplitude plot for k = [0.01, 3, 5, 7]. In all cases, we can increase in the

amplitude of the precipitary oscillations with time.

The second claim in [1] is the decrease in the oscillation’s frequency with time. In Fig. 4.11,

we plot the experimental frequency along with simulation frequency at k = 3. Qualitatively we

can demonstrate that the oscillation’s frequency decreases with time. We also believe that we

quantitatively match the data within a small enough error. As we increase the reaction rate to

k = 5, 7, in Figs. 4.12-4.13 we can see that within an error, our simulations match experimental

data in [1]. In Section 4.2, we present simulation results in a two-dimensional domain.

4.2 Two-Dimensional Simulations
Similar to the one-dimensional simulations in the previous section, we have conducted two-

dimensional simulations based on the experiments in [1]. As discussed previously, the reaction rate

k is the most important parameter in our system and was varied in multiple simulations. Unlike

the case in one-dimensional simulations, the two-dimensional simulation reveal underlying bifur-

cating patterns based on varying the reaction rate k that was not visible in the one dimensional

simulations. In this section, we will first present the two-dimensional simulations with varying

values of the reaction rate. We will discuss the patterns that form and provide an explanation on

the apparent discrepancy between one-dimensional and two-dimensional simulations.

In Fig. 4.14-4.15, we present the results of our two-dimensional simulations for varying values

of the reaction rate k. All other parameter values are consistent with the experiments conducted in

[1]. In these saturated-vapor simulations, the tube is flooded with hydrogen chloride and ammonia

vapor is introduced from the right hand of the figure.

In Fig. 4.14, k = 0.01. As the reaction front moves from right to left of the 20 cm reaction tube,

we can see distinct rings form as time progresses. The results in Fig. 4.14(a)-(b) are surprising for
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a multiple of reasons: (1) The structure for Liesegang rings forms very early in the reactions, (2)

Liesegang rings form in consistency with spacing and time laws and (3) Precipitate is present in

between the clearly defined rings.

In Fig. 4.14, k = 1. Although Liesegang rings do not appear to obey the spacing and time laws

as in Fig. 4.15, we can see the formation of rings that are spatially more uniform. This is consistent

with the one-dimensional simulations as described in Fig. 4.7.

With a different domain size in Fig. 4.16, the tube is inundated with hydrogen chloride at

77 mm/Hg and ammonia is introduced at the top at 45 mm/Hg. As a result a reaction front of

ammonium chloride is formed that forms precipitate as it moves down the tube. Visually, rings can

be seen 2 − 3 cm down the tube with uniform precipitate before it. It is our belief that with a fine

enough mesh, precipitary oscillations can be seen visually, but may already exist numerically. A

close up of the area of Liesegang ring formation is provided in Fig. 4.17.

By changing the topological structure of the boundary source, we can also develop curved

rings as illustrated in Fig. 4.18. We can now simulate experiments described in [6]. However, this

is beyond the scope of this thesis.
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Figure 4.14: Numerical Simulation: Reaction front and precipitate formation at t = 10 and t = 100 with
a0 = a1 = 77mm/Hg, b0 = 45mm/Hg, b1 = 0, k = 0.01, κ = 2, φ = 0.998, γ = 0.018 and η = 20000.
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Figure 4.15: Numerical Simulation: Reaction front and precipitate formation at t = 10 and t = 100 with
a0 = a1 = 77mm/Hg, b0 = 45mm/Hg, b1 = 0, k = 1, κ = 2, φ = 0.998, γ = 0.018 and η = 20000.
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Figure 4.16: Numerical Simulation: Precipitate in tube with a0 = a1 = 77, b0 = 45, b1 = 0, k = 0.1,
κ = 2, φ = 0.98, γ = 0.018 and η = 10000.
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Figure 4.17: A zoom in of the precipitate bands in Fig. 4.16
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Figure 4.18: Numerical Simulation: Precipitate in petri dish with reactants source introduces as circular
droplet. a0 = 10, a1 = 0, b0 = 2, b1 = 0, k = 0.1, κ = 2, φ = 0.998, γ = 0.018 and η = 20000.
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Chapter 5

Square Arrays in Ion Bombardment of a Binary

Crystalline Material

The work in most of this chapter has been published5. The paper published is presented in

Section 5.1-5.6.

5.1 Introduction
When the planar surface of a binary material is bombarded with a broad ion beam, generally

one of the two atomic species is preferentially sputtered, and, as a consequence, a surface layer

of altered composition develops. If the solid surface is not flat initially, the spatial variation of

the surface height can lead to a surface composition that varies from point to point. This spatially

varying surface composition in turn influences the time evolution of the surface topography [20].

The dynamics of the surface morphology and composition are therefore coupled.

This coupling can lead to intriguing types of pattern formation and to a higher degree of order

than can be achieved if a surface layer of altered composition is not present. Normal-incidence

bombardment of GaSb, for example, can produce an array of nanodots with a remarkable degree of

hexagonal order [21–24]. In the case of oblique-incidence bombardment, nearly defect free surface

ripples may develop with a spatially oscillating surface composition that mirrors the oscillations of

the surface height [25–27]. A “dots-on-ripples" topography in which dots that form a hexagonal

array sit atop a ripple topography can also emerge as a result of the coupling [26].

In the models that have been developed so far for these phenomena, it is assumed that the solid

is either amorphous or that a surface layer is amorphized by the impinging ions. This assumption

is valid, for example, if the target material is a semiconductor that is maintained at a temperature

5Highly ordered square arrays of nanoscale pyramids produced by ion bombardment of a crystalline binary ma-
terial-Hashmi, Shipman and Bradley. Phys. Rev. E volume 93 issue 3.
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below its recrystallization temperature TR. However, if the target is a metal single crystal, the

crystal structure is not significantly disrupted by the ion bombardment. This is also the case if the

target is a crystalline semiconductor held at a temperature T in excess of TR.

Pattern formation on the surface of elemental materials that remain crystalline during ion bom-

bardment is strongly influenced by the Ehrlich-Schwoebel (ES) barrier [28–31]. The ES barrier

produces an uphill atomic current on the crystal’s surface and so tends to destabilize an initially

flat surface. This current is typically anisotropic, which is a manifestation of the anisotropy of the

underlying crystal lattice.

When an Ag (001) surface at a temperature of 200 K was bombarded at normal incidence with

a 1 keV Ne+ beam, a disordered checkerboard pattern of inverted four-sided pyramids was ob-

served [32]. Analogous patterns formed when the (001) surface of germanium was bombarded at

normal incidence and T was maintained at a value not too far in excess of TR [33]. In both of these

experiments, the patterns formed were disordered and there was no surface layer of altered com-

position. These observations suggest a question: Can highly ordered square arrays of nanoscale

pyramids or pyramidal pits be produced by normal-incidence bombardment of the (001) surface of

a crystalline binary material?

In this paper, we will study the nanoscale patterns formed when the (001) surface of a crys-

talline binary material with fourfold rotational symmetry about the z axis is subjected to normal-

incidence ion bombardment. We will assume that the material’s crystal structure is left intact by

the impinging ions; this is a reasonable assumption if the material is a substitutional alloy of two

metals or if it is a binary semiconductor that is held at a temperature above TR. As we will demon-

strate, for certain ranges of the parameters, highly ordered square arrays of four-sided pyramids

emerge. An Ehrlich-Schwoebel barrier is essential if patterns of this kind are to form — diffusional

anisotropy alone does not yield orderly square arrays.

This paper is organized as follows: We develop the equations of motion in Section 5.2. In

Section 5.3, we find the domain in parameter space in which there is a narrow band of unstable

wavelengths. It is in this region of parameter space that a Turing instability that leads to a well-
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ordered pattern may occur. In Section 5.4, we derive the amplitude equations which describe

the pattern formation that occurs near the Turing instability. Stability analysis of the steady-state

solutions to the amplitude equations gives rise to conditions for the formation of ripple or square

patterns. In Section 5.5, we carry out numerical simulations of the original equations of motion

developed in Section 5.2 and compare the results with the amplitude equation analysis. Physical

implications of our results and a summary of our conclusions are given in Section 5.6.

5.2 Equations of Motion
In groundbreaking work, Shenoy, Chan and Chason studied the coupling between the sur-

face topography and composition that arises during ion bombardment of a binary compound [20].

Bradley and Shipman (BS) extended this theory to include the effect of mass redistribution and

the leading order nonlinear terms [22–24]. The BS equations govern the behavior of u(x, y, t) and

φ(x, y, t), the deviations of the surface height and surface concentration from their unperturbed,

steady-state values. Using the same notation, assumptions and rescaling as BS employed, we have

∂u

∂t
= φ−∇2u−∇2∇2u+ λ(∇u)2 (5.1)

and
∂φ

∂t
= −aφ+ b∇2u+ c∇2φ+ νφ2 + ηφ3 (5.2)

for normal-incidence bombardment. Explicit expressions that relate the dimensionless constants

a, b, c, λ, ν and η to the underlying physical parameters may be found in Ref. [23].

It is assumed that the binary solid is either amorphous or that the incident ions amorphize a

layer at the surface of the solid in the BS theory. The surface mass currents included in the theory

result from surface diffusion and ion-induced mass redistribution.

In this paper, we will study the time evolution of the (001) surface of a crystalline binary solid

that is bombarded with a broad ion beam at normal incidence. We assume that the crystal structure

of the solid has fourfold rotational symmetry about the z axis. Examples of binary compound
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semiconductors having this property are the IV-VI materials PbSe, PbS, PbTe and SnTe, all of

which have the halite crystal structure.

When the semiconducting compounds GaAs and InAs are subjected to normal-incidence bom-

bardment at temperatures in excess of TR, nearly defect free surface ripples result [34]. These

materials have a zincblende crystal structure. As a result, they only have twofold rotational sym-

metry about the z axis. The theory developed here therefore does not apply to these experiments.

Although the incident ions introduce defects into the crystal lattice, it will be assumed that

these are rapidly annealed away so that the solid remains a nearly defect-free crystal during the

bombardment. In this case, the ES surface atomic currents must be added to the currents that stem

from surface diffusion and mass redistribution. The surface currents of the two atomic species A

and B that are produced by the ES barrier may be written [29, 31]

J
(ES)
i = eiux(1− piu2

x − qiu2
y)uy(1− qiu2

x − piu2
y)). (5.3)

Here i = A, B, the subscripts on u denote partial derivatives and eA, eB, pA, pB, qA and qB are

constants that depend on the choice of target material and ion beam. In addition, surface diffusion

is in general anisotropic on the crystal surface. In the BS theory, the surface currents produced by

surface diffusion and capillarity are isotropic and may be written

J
(SD)
i = Di∇∇2u, (5.4)

where i = A, B and the positive constants DA and DB are proportional to the diffusivities of the

two atomic species. These currents take the form

J
(SD)
i = Di∇∇2u+ Ci(uxyyx̂ + uxxyŷ) (5.5)
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for the problem at hand. The magnitudes of the constants CA and CB gauge the extent to which

the surface diffusion is anisotropic on the crystal’s surface. In the BS theory, eA = eB = CA =

CB = 0.

We now adopt the same assumptions and approximations as BS employed, except that it will

be assumed that the solid remains crystalline during the ion bombardment, as we already stated.

The analysis very closely parallels the detailed derivation in Ref. [23] and so we will only give the

resulting rescaled equations of motion. They are

ut = φ−∇2u−∇2∇2u+λ(∇u)2 + ρuxxyy +∂x[ux(α1u
2
x +β1u

2
y)] +∂y[uy(β1u

2
x +α1u

2
y)] (5.6)

and

φt = −aφ+ b∇2u+ c∇2φ+ νφ2 + ηφ3 + ∂x[ux(α2u
2
x + β2u

2
y)] + ∂y[uy(β2u

2
x + α2u

2
y)]. (5.7)

The explicit expressions that relate the dimensionless parameters a, b, c, λ, ν, η, ρ, α1, α2, β1 and

β2 to the underlying physical parameters are readily obtained. They are, however, quite lengthy

and not particularly illuminating and so we will not pause to list them here. If there is no ES

barrier, then α1 = α2 = β1 = β2 = 0 and if, in addition, diffusion is isotropic, then ρ = 0. In that

event, the BS equations (5.1) and (5.2) are recovered.

If the term φ is dropped from Eq. (5.6), the surface morphology is not coupled to the com-

position. The resulting equation is similar to the equation of motion used by Ou et al. to model

normal-incidence bombardment of the (001) surface of a germanium sample held at a tempera-

ture above its recrystallization temperature [33]. In the model employed by Ou et al., however,

ρ = λ = β1 = 0. This means that they assumed the surface diffusion to be isotropic, neglected

the nonlinearity coming from sputtering, and adopted a particular form for the ES terms. These

simplifications seem to be good approximations for their experiments. Ou et al. also included the

conserved Kuramoto-Sivashinsky nonlinearity ∇2(∇u)2 in their equation of motion. This leads

the surface patterns to coarsen with time, in accord with their experiments.
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In our model, it is sufficient to consider only values of the parameter ρ that are less than or

equal to zero. To see this, we choose a new coordinate system that is obtained by rotating the

original coordinate system by 45◦ and then rescaling [35]. Explicitly, we set x̃ = (2r)−1/2(x+ y),

ỹ = (2r)−1/2(−x+ y), t̃ = r−1t, ũ = u and φ̃ = rφ, where r ≡ 1− ρ/4. This yields

ũt̃ = φ̃−∇̃2ũ−∇̃2∇̃2ũ+ λ̃(∇̃u)2 + ρ̃ũx̃x̃ỹỹ +∂x̃[ũx̃(α̃1ũ
2
x̃ + β̃1ũ

2
ỹ)] +∂ỹ[ũỹ(β̃1ũ

2
x̃ + α̃1ũ

2
ỹ)] (5.8)

and

φ̃t̃ = −ãφ̃+ b̃∇̃2ũ+ c̃∇̃2φ̃+ ν̃φ̃2 + η̃φ̃3 + ∂x̃[ũx̃(α̃2ũ
2
x̃ + β̃2ũ

2
ỹ)] + ∂ỹ[ũỹ(β̃2ũ

2
x̃ + α̃2ũ

2
ỹ)]. (5.9)

Here ã = ra, b̃ = rb, c̃ = c, λ̃ = λ, ν̃ = ν, η̃ = r−1η,

ρ̃ = − ρ

1− ρ/4
, (5.10)

α̃1 =
1

4r
(α1 + β1), (5.11)

β̃1 =
1

4r
(3α1 − β1), (5.12)

α̃2 =
1

4
(α2 + β2), (5.13)

and

β̃2 =
1

4
(3α2 − β2). (5.14)

If we were to drop the tildes, Eqs. (5.8) and (5.9) would be identical to Eqs. (5.6) and (5.7). We

shall see in the next section that for the theory to be well posed, ρ must be less than 4. Thus, if ρ is

positive, Eq. (5.10) shows that we may adopt a rotated and rescaled coordinate system in which ρ̃

(the transformed value of ρ) is negative. We will therefore confine our attention to ρ ≤ 0 in what

follows.
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5.3 Linear Stability Analysis
We now determine whether or not the flat, compositionally homogeneous steady-state solution

u = φ = 0 is linearly stable for a given set of parameter values. Consider a perturbation to the

steady state that is small enough that the nonlinear terms may be dropped from Eqs. (5.6) and (5.7),

yielding the linearized equations of motion. We seek solutions to these equations of the form

u = u∗ exp(ik · x + σt), φ = φ∗ exp(ik · x + σt), (5.15)

where k ≡ kxx̂ + kyŷ, x ≡ xx̂ + yŷ and u∗ and φ∗ are constants. Reσ gives the rate with which

the amplitude of the mode grows (for Reσ > 0) or attenuates (for Reσ < 0). For each wavevector

k, there are two possible values of σ, given by

2σ± = f ±√g, (5.16)

where k ≡ |k|,

f(k, a, c, α) ≡ −a+ (1− c)k2 − k4 + ρk2
xk

2
y (5.17)

and

g(k, a, b, c, α) ≡
[
a+ (1 + c)k2 − k4 + ρk2

xk
2
y

]2 − 4bk2. (5.18)

We will assume that ρ < 4 since in that case Reσ+ and Reσ− are both negative for sufficiently

large wavenumbers k, and the theory is therefore well posed.

The remainder of the linear stability analysis closely parallels that given elsewhere [23] for the

special case ρ = 0 and so only the results will be given. For fixed ρ ≤ 0, we partition the positive

quadrant of the (a, c) plane into three regions (see Figure 1 of Ref. [ [23]]):

In Region I, c > a and 4a > (1− c)2 if c < 1;

In Region II, c < a and 4a > (1− c)2 if c < 1;

In Region III, c < 1 and 4a < (1− c)2.
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The necessary and sufficient condition for the solid surface to be unstable in Region I is b < bT ,

where

bT ≡
(c+ a)2

4c
. (5.19)

The surface is unstable in Region II if b < a. Finally, in Region III, the surface is unstable for

arbitrary values of b.

For the weakly nonlinear analysis that follows, we will confine our attention to Region I since

it is for parameter values in this region that stable well-ordered patterns can form. Consider the

case b = bT . If ρ < 0 and the point (a, c) lies in Region I, then σ+ is zero for k = 0 and ±k1 and

±k2, where k1 ≡ kT x̂, k2 ≡ kT ŷ and kT is given by

k2
T =

c− a
2c

. (5.20)

If ρ = 0, on the other hand, then σ+ is zero for k = 0 and k such that |k| = kT . The real part of

σ+(k) is negative for all other k for both ρ = 0 and ρ < 0. A Turing instability therefore occurs

for b = bT [36–38]. For b just below bT , there is a narrow annular region in k space in which

Reσ+(k) > 0 for the case ρ = 0, whereas for ρ < 0, there are small regions in k space about each

of the points ±k1 and ±k2 in which Reσ+(k) is positive. These regions are shown in Fig. 5.1.

5.4 Weakly nonlinear analysis
We now analyze Eqs. (5.6) and (5.7) close to the Turing transition. We assume that the values

of the parameters a and c lie in Region I so that c > a and 4a > (1− c)2 if c < 1. The bifurcation

parameter b is taken to be slightly below the critical value bT : we set b = bT − ε, where ε > 0 is

small and positive. As discussed in Sec. 5.3, if ρ < 0 and b is close enough to bT , then there are

small regions about the wavevectors ±k1 and ±k2 in which Reσ+(k), is positive; if ρ = 0, there

is an annular region of such modes. The analysis, which yields ordinary differential equations for

the time-evolution of the amplitudes of these unstable modes [36–38], is similar to that we have
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Figure 5.1: Regions in wavevector space in which Reσ+(k) > 0 for a = 0.25 and c = 1 (shaded). In (a)
ρ = 0 and b = 0.99bT ' 0.3867, while in (b) ρ = −0.25 and b = 0.99bT ' 0.3867.

given elsewhere [22, 23] for normal-incidence ion bombardment of binary materials and so only

the principal results will be given here.

We obtain approximate solutions to the equations of motion of the form

 u

φ

 =
2∑
j=1

 1

a2−c2
4c2

 (Ajeikj ·x + c.c.) +

 G

0

 , (5.21)

where the complex-valued amplitudes Aj and real-valued amplitude G vary slowly with time and

c.c. denotes the complex conjugate. The Goldstone mode with u = G and φ = 0 corresponds to the

neutrally stable wavenumber k = 0; physically, this mode is simply a vertical displacement of the

surface. Although this mode is not linearly unstable, it may not be neglected, due to its interactions

with the linearly unstable modes through the nonlinear terms in the equations of motion. In the case

ρ < 0, the vectors kj in the sum in Eq. (5.21) are k1 = kT x̂ and k2 = kT ŷ since the corresponding
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Fourier modes have the largest growth rates. In the case in which ρ vanishes, k1 and k2 could be

any pair of vectors with length kT .

The solvability conditions obtained by expanding Eqs. (5.6) and (5.7) to second order in ε yield

equations that govern the time dependence of the amplitudes A1, A2 and G. We find that

dA1

dt
= σA1 − γA1(γ1|A1|2 + γ2|A2|2), (5.22)

dA2

dt
= σA2 − γA2(γ2|A1|2 + γ1|A2|2), (5.23)

where

σ ≡ 2c(c− a)

(c+ a)(2c2 + a− c)
(bT − b) , (5.24)

γ ≡ 2c2

2c2 + a− c
, (5.25)

and in the case ρ < 0,

γ1 ≡
3η(c− a)3(a+ c)2

32c6
+ 3(aα1 + cα1 + 2α2), (5.26)

and

γ2 ≡
6η(c− a)3(a+ c)2

32c6
+ 4(aβ1 + cβ1 + 2β2). (5.27)

If ρ = 0, the coefficients of the cubic terms in Eqs. (5.22) and (5.23) are functions of the wavevec-

tors k1 and k2. Setting cj = cos(θj), sj = sin(θj), and kj = kT (cj, sj) for j = 1 and 2, the

coefficients γ1 and γ2 become

γ1 ≡
3η(c− a)3(a+ c)2

32c6
+ 3(aα1 + cα1 + 2α2)(c4

1 + s4
1) + 6(aβ1 + cβ1 + 2β2)c2

1s
2
1, (5.28)

and
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γ2 ≡
6η(c− a)3(a+ c)2

32c6
+6(aα1+cα1+2α2)(c2

1c
2
2+s2

1s
2
2)+4(aβ1+cβ1+2β2)(c2

1s
2
2+c1s1c2s2+s2

1c
2
2).

(5.29)

We also obtain
dG

dt
=

[
λ
(

1− a

c

)
+

2ν

a

(
c2 − a2

4c2

)2
]

(|A1|2 + |A2|2) (5.30)

for any value of ρ. The value of dG/dt gives the change in the net sputter yield that stems from the

spatial variations in the surface height and composition. As shown by Eq. (5.30), dG/dt may be

either positive or negative, depending on the values of the coefficients. Thus, the Goldstone mode

either increases the spatially-averaged sputter yield (if dG/dt < 0) or reduces it (if dG/dt > 0).

The real amplitude G does not appear on the right-hand side of either Eqs. (5.22), (5.23) or (5.30)

since only derivatives of u appear in the equations of motion, and we are assuming that G does not

vary in space.

A detailed analysis of the amplitude equations (5.22) and (5.23) may be found in Ref. [ [36]];

here we summarize the results. The system of equations (5.22) and (5.23) admits stationary solu-

tions of three different types that are stable for some range of σ:

1. Homogeneous state: A1 = A2 = 0. This solution is the undisturbed steady state u = φ = 0

and is stable for σ < 0 (equivalently, for b > bT ).

2. Roll pattern: A1 = (σ/γγ1)1/2eip and A2 = 0, or A1 = 0 and A2 = (σ/γγ1)1/2eip. Here p is

an arbitrary phase. These solutions are surface ripples (or “rolls") with wavevectors k1 and

k2 and are stable for σ > 0 and γ1 < |γ2|.

3. Square pattern: A2
1 = σ

γ(γ1+γ2)
eip1 and A2

2 = σ
γ(γ1+γ2)

eip2 , where p1 and p2 are arbitrary phases.

These solutions are square arrays of nanodots or nanoholes and are stable for σ > 0 and

γ1 > |γ2|.

If b is slightly less than bT , then σ is positive and the flat steady-state solution is unstable. If

ρ < 0 and γ1 < |γ2|, then partially intersecting patches of surface ripples with wavevectors k1 and
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k2 begin to form as the instability sets in. If, as in our idealized model, there is no source of noise,

ultimately only one ripple orientation will survive and the fourfold rotational symmetry about the

z axis will be broken. In an experiment, however, there is shot noise in the ion beam and one ripple

orientation will never cover the entire sample.

For ρ < 0 and σ > 0, the condition γ1 > |γ2| that must be satisfied for square solutions to be

stable may be written

3(a+ c)α1 + 6α2 > 3ξ(a+ c) + 4(a+ c)β1 + 8β2 if γ2 > 0, or

3(a+ c)α1 + 6α2 > −9ξ(a+ c)− 4(a+ c)β1 − 8β2 if γ2 < 0, (5.31)

where ξ ≡ η(c − a)3(a + c)/(32c6) is positive for a and c in Region I. For the simpler case in

which α2 = β2 = 0, this condition reduces to

α1 >
4

3
β1 + ξ if β1 > −

2

3
ξ, or

α1 > −
4

3
β1 − 3ξ if β1 < −

2

3
ξ.

The region in the (α1, β1) plane for which square solutions are stable if α2 = β2 = 0 is shown as

the shaded region in Fig. 5.2. This region is bounded away from the origin in the (α1, β1) plane.

In particular, if there is no Ehrlich-Schwoebel barrier (so that α1 = α2 = β1 = β2 = 0), a square

array of nanodots or nanoholes is not stable. This means that diffusional anisotropy alone is not

sufficient to stabilize a square pattern — an ES barrier is needed as well. Moreover, not just any

ES terms will do — the ES coefficients must satisfy the condition (5.31) if a square pattern is to

form.

Because c > a in Region I, Eq. (5.21) shows that the spatial variations of u and φ are 180◦ out

of phase. As a consequence, the preferentially sputtered species is most concentrated at the highest

points of the surface.
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Figure 5.2: The region in the (α1, β1) plane for which γ1 > |γ2| if α2 = β2 = 0 is shaded. The other
parameters are a = 0.25, c = 1, and η = 10. Square patterns are stable for (α1, β1) in this region if σ > 0.

The situation is completely analogous for 0 < ρ < 4. The only difference between this case and

the case ρ < 0 is that the two possible ripple wavevectors are k3 and k4, where k3 ≡ kT (x̂+ ŷ)/
√

2

and k4 ≡ kT (x̂− ŷ)/
√

2 and kT is given by

k2
T =

c− (1 + α)a

2c(1 + α)
. (5.32)

As a consequence, the ripples form 45◦ angles with the x− and y−axes when ρ > 0.

For the case ρ = 0, the linear stability analysis yields an entire annulus of wavevectors cor-

responding to unstable modes and therefore does not put any restriction on the angles θj . In fact,

the wavevectors chosen by the dynamics may not even be orthogonal to each other. A prediction

of the chosen angles θ1 and θ2 may be obtained by realizing that, although the system of partial

differential equations (PDEs) given by Eqs. (5.8) and (5.9) is not a gradient system, the system of

amplitude equations given by Eqs. (5.22) and (5.23) is. Indeed, defining the effective potential
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∗
1, A2, A

∗
2; θ1, θ2,p) ≡ −σ(A1A

∗
1+A2A

∗
2)+

1

2
γ
[
γ1A

2
1(A∗1)2 + 2γ2A1A

∗
1A2A

∗
2 + γ1A

2
2(A∗2)2

]
,

(5.33)

where p is the vector of parameters, the amplitude equations may be written as

dAj
dt

= − ∂

∂A∗j
P

for j = 1, 2. This implies that the effective potential P decreases with time until a local minimum

is reached and the pattern stops evolving.

For a given choice of the angles θj , the system of amplitude equations may be solved for the

stationary pattern A2
1 = A2

2 = σ
γ(γ1+γ2)

eip, and the corresponding effective potential may be found.

For a given set of parameters, the effective potential thus becomes a function of the angles θj , and

we can determine what choice of angles minimizes the effective potential. We return to an analysis

of the potential landscape in Section 5.5, where we predict the angles θj by finding the minima of

the effective potential and compare the prediction to the results of a simulation with ρ = 0 (see

Fig. 5.7). A similar approach has been successfully applied in other contexts [39, 40] in which the

system of PDEs is not a gradient system but the system of amplitude equations derived from the

PDEs near the onset of a pattern is.

5.5 Numerical Simulations
In this section, we compare our analytical results with numerical simulations of the original

system of partial differential equations, Eqs. (5.6) and (5.7). For all simulations, the initial condi-

tions are low-amplitude white noise. We employ a Fourier spectral method with periodic boundary

conditions and a fourth-order exponential time differencing Runge-Kutta method for the time step-

ping as the numerical technique [41, 42]. The spatial grid is 256× 256 unless otherwise noted.

As predicted by the amplitude equation analysis, for ρ < 0 and b slightly less than bT , a pattern

with stripes parallel to either the x- or y-axis forms for γ1 < |γ2| (Fig. 5.3 (a)), whereas a square

pattern aligned with the x- and y-axes forms for γ1 > |γ2| (Fig. 5.3 (c)). Figs. 5.3 (b) and (d) show
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a histograms of the surface gradients ∇u = (ux, uy) for the patterns shown in Figs. 5.3 (a) and

(c) respectively. In both cases, the histogram has strong peaks. In the case of the square pattern,

the peaks are at the four corners of a square, indicating that the pattern is composed of faceted

pyramids with nearly flat faces. The ripples are faceted as well since there are two peaks on the uy

axis that are equidistant from the origin.

Figure 5.3: (a) and (c): Gray-scale plots of u(x, y, t) at time t = 20000 resulting from numerical simula-
tions of Eqs. (5.6) and (5.7) for a = 0.25 and c = 1 in Region I. For both simulations, ρ = −0.25, λ = −1,
ν = 1, and η = 10. For panel (a), α1 = 0.5, α2 = 0.5, β1 = 1, and β2 = 1, whereas for panel (c),
α1 = 0.5, α2 = 0.5, β1 = 0.25, and β2 = 0.25. For both plots, the domain is −60 ≤ x, y ≤ 60. For
these parameter values, γ1 = 5.493. In addition, γ2 = 14.236 for panel (a), whereas γ2 = 4.486 for panel
(c). (b) and (d): Histograms of (ux, uy) for the surfaces in panel (a) and (c) respectively. The domain is
−0.9 ≤ ux, uy ≤ 0.9 for (b) and −0.8 ≤ ux, uy ≤ 0.8 for (d).

In Fig. (5.4), we show the time-evolution of the pattern for the particular case α2 = β2 = 0

discussed in Section 5.4. For the chosen parameters, β1 > −2
3
ξ, and, as predicted by the analysis,

the steady-state pattern consists of ripples if α1 <
4
3
β1 + ξ (so that γ1 < |γ2|), as in Fig. 5.4 (c),

whereas the steady state pattern consists of squares if α1 > 4
3
β1 + ξ (so that γ1 > |γ2|), as in

Fig. 5.4 (f). Note that in Figs. 5.4 (a)-(c) the pattern evolves to ripples through states in which

there are patches of squares.

The simulations shown in Fig. 5.5 show that even if ρ 6= 0, terms arising from the Ehrlich-

Schwoebel barrier are necessary if a well-ordered pattern of squares is to form. If there is no ES

barrier (so that α1 = α2 = β1 = β2 = 0), a pattern of rolls forms if the coefficients λ and ν of the

quadratic terms in the equations of motion are zero (Fig. 5.5 (a)). As illustrated in Fig. 5.5 (b,c),
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Figure 5.4: Gray-scale plots of u(x, y, t) resulting from two numerical simulations of Eqs. (5.6) and (5.7).
Each row is a time series of a simulation. For each simulation, a = 0.25, c = 1, ρ = −0.25, λ = 0, ν = 0,
and η = 10. For the top row, α1 = 0.25, α2 = 0, β1 = 0.25, and β2 = 0, whereas for the bottom row,
α1 = 0.6, α2 = 0, β1 = 0.25, and β2 = 0. For these parameter values, γ2 = 2.486. In addition, γ1 = 1.555
for the top row, whereas γ1 = 2.868 for the bottom row. For all plots, the domain is −60 ≤ x, y ≤ 60. The
times are (a) 2000, (b) 5000, (c) 10000 for the simulation of the top row, and (d) 2000, (e) 3000, (f) 10000
for the simulation of the bottom row.
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the effect of nonzero quadratic coefficients is to produce a pattern which has more resemblance to

squares for b closer to the critical value bT (b = 0.99bT for Fig. 5.5 (b), whereas b = 0.96bT for

Fig. 5.5 (c)). In both cases, however, the patterns display little order.

Figure 5.5: Gray-scale plots of u(x, y, t) resulting from numerical simulations of Eqs. (5.6) and (5.7). For
each simulation, a = 0.25, c = 1, ρ = −0.25, ν = 0, and η = 10, α1 = α2 = β1 = β2 = 0, and the time
is t = 30, 000. For panels (a) and (b), b = 0.99bT , whereas for panel (c), b = 0.96bT . For panel (a), λ = 0,
whereas for panels (b) and (c), λ = −0.5. For all plots, the domain is −60 ≤ x, y ≤ 60. Insets show the
Fourier transform on the domain −12 ≤ kx, ky ≤ 12.

The simulations shown in Fig. 5.6 further illustrate the impact of quadratic nonlinearities on

the pattern. The coefficients in the amplitude equations (5.22) and (5.23) do not depend on the

coefficients λ and ν of the quadratic terms in the equations of motion. In the case in which ρ = 0

and there is no Ehrlich-Schwoebel barrier (so that α1 = β1 = α2 = β2 = 0), our results in

Refs. [22] and [23] predict hexagonal patterns in Region I for large enough magnitudes of λ or ν.

In the simulations pictured in Fig. 5.6, we select parameters that would give a hexagonal pattern,

except that we choose ρ < 0, fix β1 = β2 = 0.25 and vary α1 = α2. Our amplitude equation

analysis predicts a square pattern for large enough α1 = α2, and our simulations confirm this

prediction. However, the pattern is only well ordered for large enough α1 = α2. This provides

additional evidence that Ehrlich-Schwoebel coefficients of sufficient magnitude are essential for

the formation of well-ordered square patterns.

As discussed in Sec. 5.3, for ρ = 0, it is not apparent from linear stability analysis that the

pattern will be aligned with the x or y axes or that the chosen wavevectors k1 = (cos(θ1), sin(θ1))
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Figure 5.6: Gray-scale plots of u(x, y, t) at time t = 30000 with parameters a = 0.25 and c = 1 chosen
from Region I. The remaining parameter values are ρ = −0.5, b = 0.99bT , λ = −1, ν = 0, η = 10,
β1 = 0.25, β2 = 0.25, and (a) α1 = α2 = 0.5, (b) α1 = α2 = 1, (c) α1 = α2 = 1.5, (d) α1 = α2 = 2. The
domain is −60 ≤ x, y ≤ 60. Insets show the Fourier transform on the domain −10 ≤ kx, ky ≤ 10.

and k2 = (cos(θ2), sin(θ2)) will be orthogonal. In Fig. 5.7 (d), we plot the effective potential (5.33)

as a function of θ1 and θ2. The effective potential has minima at (θ1, θ2) = (π/2, 0) and (0, π/2)

and at equivalent choices of (θ1, θ2) that correspond to a square pattern aligned with the coordinate

axes. In accordance with this prediction, in the time series shown in Fig. 5.7 (a)-(c) for ρ = 0 and

γ1 > |γ2|, the system system evolves to a pattern of patches of squares that are aligned with the

coordinate axes.

Figure 5.7: (a)-(c) A time series of gray-scale plots of u(x, y, t) with a = 0.25 and c = 1 chosen in Region
I, and ρ = 0, b = 0.96bT , λ = 0, ν = 0, η = 10, α1 = 1, α2 = 0, β1 = 0.25, and β2 = 0. The times are (a)
1000, (b) 4000, (c) 18000, and the spatial domain is−150 ≤ x, y ≤ 150. The spatial grid for the simulation
is 512 × 512. (d) A gray-scale plot of the effective potential (5.33) for the values of the parameters in the
simulation of panels (a)-(c) as a function of θ1 and θ2. Darker shading indicates a lower value of the effective
potential.
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Our weakly nonlinear analysis and resulting amplitude equations are not applicable for param-

eter values a and c in Region II. We explore this regime with numerical simulations, as given in

Figs. 5.8 and 5.9 for ρ < 0 and in Fig. 5.10 for ρ = 0. If ρ < 0, the pattern coarsens and evolves

into either patches of ripples aligned with the axes (Fig. 5.8) if γ1 < |γ2| or a square pattern of

ever-increasing length scale if γ1 > |γ2| (Fig. 5.9). The pattern also coarsens in the case ρ = 0, as

shown in Fig. 5.10.

Figure 5.8: A time series of gray-scale plots of u(x, y, t) with parameters a = 0.75 and c = 0.5 chosen
from Region II. The remaining parameter values are ρ = −0.25, b = 0.94a, λ = 0, ν = 0, η = 10,
α1 = 0.25, α2 = 0, β1 = 1, and β2 = 0. The times are (a) 4000, (b) 14000, (c) 30000, (d) 60000, (e)
80000, (f) 100000, and the domain is −120 ≤ x, y ≤ 120. Insets show the Fourier transform on the domain
−30 ≤ kx, ky ≤ 30.

5.6 Conclusions and Discussion
We have advanced a theory for the spontaneous pattern formation that occurs on the (001)

surface of a crystalline binary material with fourfold rotational symmetry about the z axis when it

is subjected to normal-incidence ion bombardment. The theory accounts for the Ehrlich-Schwoebel

barrier which produces uphill atomic currents and results in cubic nonlinearities involving spatial

derivatives of the field u, the deviation from a homogeneous surface height.

As for the case of irradiation of an amorphous binary material, the coupling between u and the

surface composition φ is key to the formation of well-ordered patterns since it leads to a region

of parameter space in which there is a narrow band of unstable wavelengths. Linear stability
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Figure 5.9: A time series of gray-scale plots of u(x, y, t) with parameters a = 0.75 and c = 0.5 chosen
from Region II. The remaining parameter values are ρ = −0.25, b = 0.94a, λ = 0, ν = 0, η = 10,
α1 = 1, α2 = 0, β1 = 0.25, and β2 = 0. The times are (a) 4000, (b) 14000, (c) 30000, (d) 60000, (e)
80000, (f) 100000, and the domain is −120 ≤ x, y ≤ 120. Insets show the Fourier transform on the domain
−30 ≤ kx, ky ≤ 30.

Figure 5.10: A time series of gray-scale plots of u(x, y, t) with parameters a = 0.75 and c = 0.5 chosen
from Region II. The remaining parameter values are ρ = 0, b = 0.94a, λ = 0, ν = 0, η = 10, α1 = 1,
α2 = 0, β1 = 0.25, and β2 = 0. The times are (a) 4000, (b) 14000, (c) 30000, (d) 60000, (e) 80000,
(f) 100000, and the domain is −120 ≤ x, y ≤ 120. Insets show the Fourier transform on the domain
−30 ≤ kx, ky ≤ 30.
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analysis shows that if the parameters a and c are chosen so that a < c and 4a > (1 − c)2 if

c < 1, then there is a narrow band of unstable wavelengths. Weakly nonlinear analysis of the

model in this region of parameter space and near the critical value of the bifurcation parameter

b results in a system of ordinary differential equations for the amplitudes of the Fourier modes.

Analysis of these amplitude equations predicts that if the coefficients of the cubic nonlinearities

that describe the Ehrlich-Schwoebel barrier are large enough, and the coefficients of those terms

obey certain relations (which roughly say that the coefficients α1 and α2 of the derivatives with

respect to only one variable need to be sufficiently large compared to the coefficients β1 and β2

of the terms involving mixed derivatives), then highly ordered square arrays of nanopyramids can

form. If the coefficients of the Ehrlich-Schwoebel barrier terms do not satisfy these conditions,

then the analysis predicts the formation of well-ordered ripple patterns. These analytical results

are supported by numerical simulations of the equations of motion. Histograms of the gradient

of u have peaks at the four corners of a square for square array patterns and at either end of a

pole for ripple patterns. The square arrays and ripple patterns produced in the presence of the

Ehrlich-Schwoebel barrier therefore differ from those produced without this effect.

Cubic nonlinearities in the governing equations are essential for the formation of square arrays

since these terms give rise to the cubic terms in the amplitude equations produced by the weakly

nonlinear analysis. However, cubic nonlinearities of a very special form are needed for stable

square patterns to develop [43]. The cubic nonlinearities that arise from an Ehrlich-Schwoebel

barrier lead to solutions in which exactly four Fourier modes have nonzero amplitudes. For the

square patterns to be stable, however, the coefficients γ1 and γ2 of the cubic nonlinearities in the

amplitude equations must satisfy the condition γ1 > |γ2|. This condition is not satisfied by a simple

cubic nonlinearity such as the term ηφ3 that appears in the Bradley-Shipman theory.

Another key requirement for the formation of a well-ordered square array of nanopyramids is

that the coefficients λ and ν of the quadratic terms in the governing equations be sufficiently small.

As we have shown in previous work, these terms are responsible for the formation of hexagonal

arrays of nanodots in the case in which there is no Ehrlich-Schwoebel barrier [22–24]. Even if
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the conditions for a square pattern rather than a ripple pattern are satisfied, the quadratic terms can

prevent the formation of well-ordered square arrays. For large enough values of the coefficients

of the Ehrlich-Schwoebel barrier terms, however, well-ordered square arrays can occur even if the

coefficients of the quadratic terms are nonzero.

The parameter ρ in our equations of motion is nonzero if the surface diffusion is anisotropic.

For ρ < 0 and the bifurcation parameter b close to threshold, the wavevectors for which the real

part of the linear growth rate, Reσ+(k), is positive are confined to four small regions in wavevector

space about each of the orthogonal pairs of wavevectors ±k1 = ±(kT , 0) and ±k2 = ±(0, kT ). In

this case, the square arrays are aligned with the coordinate axes. In contrast, if ρ = 0, there is an

annulus of wavevectors in which Reσ+(k) > 0, and so it not immediately apparent which pairs of

wavevectors will be chosen by the dynamics. We obtained a prediction for the chosen wavevectors

by finding the wavevectors that minimize the effective potential for the amplitude equations. This

prediction is in accord with the results of our simulations. It has also been observed in other con-

texts, such as convection in a horizontal fluid layer [39] and phyllotactic pattern formation at plant

meristems [40], that even for nongradient systems, the amplitude equations may be gradient near

threshold and that solutions to the full system of PDEs coincide with minimizers of the effective

potential for the amplitude equations.

In contrast to the case in which the parameters a and c are chosen from Region I, linear stability

analysis shows that if a and c are chosen from Region II (that is, a > c), there is not a narrow band

of unstable wavelengths. If b < a, then all wavelengths that exceed a critical value are unstable.

Numerical explorations of this region in parameter space yield disordered ripple or square patterns

that coarsen with time. The square patterns are similar to those produced in the experiments of Ou

et al. [33] with an elemental crystalline target material. The equation of motion proposed by Ou et

al. for the case of an elemental material also does not have a narrow band of unstable wavelengths.

Although the amplitude equations derived in our weakly nonlinear analysis only apply if there is

a narrow band of unstable wavelengths, our simulations suggest that the condition γ1 > |γ2| may

nonetheless serve as a guide to producing disordered square arrays if a > c.
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Our theoretical results provide a strong motivation for experimental studies in which the (001)

surfaces of the binary compound semiconductors PbSe, PbS, PbTe and SnTe are subjected to

normal-incidence ion bombardment while being maintained at temperatures in excess of their re-

spective recrystallization temperatures. These materials have fourfold rotational symmetry about

the z axis. Our results establish that if the experimental parameters are appropriately chosen, highly

ordered square arrays of nanoscale pyramids will develop. If successful, these experiments would

yield a new entry in the short but growing list of well ordered nanopatterns that can be fabricated

by bombardment of a solid surface with a broad ion beam.

R.M.B. and P.D.S. are grateful to the National Science Foundation for its support through grant

DMR-1305449.

5.7 Defect Analysis and Soft Mode in Ion Bombardment of

Surfaces
Unrelated to the work of highly ordered square arrays described in Section 5.1-5.6, we are

currently analysing the emergence and persistence of defects in ion bombardment systems. In

the Bradley-Shipman equations of motion, a hexagonal array is predicted if parameter values are

within a certain region. However, defects may arise in the hexagonal lattice if certain parameter

values are slightly perturbed. In an effort to identify and classify these defects, we ran over 500

simulations. From our results three scenarios arise,

• No defects in the hexagonal array,

• Temporary defects in the hexagonal array,

• Permanent defects in the hexagonal array.

We are trying to identify indicators within these simulations that help us determine the emerg-

ing scenario at an earlier time. However, before we run enough simulations to develop the sce-

narios, we need to determine parameter values in our system to which the emergence of defects in

sensitive.
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Figure 5.11: For (a)-(i) ν = 1.03 (a)-(c) represent simulations at a = 0.17 at time t =1500, 9000, 30000
respectively (d)-(f) represent simulations at a = 0.19 at time t =1500, 9000, 30000 respectively (g)-(i)
represent simulations at a = 0.21 at time t =1500, 9000, 30000 respectively.

In [26], a linear analysis is conducted and a soft mode term similar to Eq.(5.30) is derived. This

soft mode term given by Eq. (5.34) is dependent on a few parameters.

dG

dt
=

2

a

3∑
j=1

[
λ
(

1− a

c

)
+

2ν

a

(
c2 − a2

4c2

)2
]
|Aj|2 +

6η

a

(
(a+ c)(a− c)

4c2

) 3
2

Re(A1A2A3)

(5.34)

As the regularity of a pattern is believed to be a function of Eq. 5.34, we choose ν and a as

our varying parameters that affect the hexagonal pattern in our simulations. We want to vary and

see how it impacts the pattern formation. As it can be seen in Fig. 5.11, with a constant ν and

a = [0.17, 0.19.0.21] we obtain the three scenarios described earlier. In order to understand the

emergence and removal of defects, we plot the average height of defects against time. If there are

no defects in our hexagonal pattern then the average height of defects is zero.

Fr one simulation with a = 0.19, in Fig. 5.12, we can see the corresponding height of de-

fects that correspond to the simulations in Fig. 5.11. Since we have random initial conditions, in

Fig. 5.13 we take an average of height defects across multiple simulations. We can clearly see the
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Figure 5.12: Average defect height from one simulation for a = [0.17, 0.19, 0.21].
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Figure 5.13: Average defect height from multiple simulation for a = [0.17, 0.19, 0.21].
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affect of higher softmode on the resulting height of defects. Further work will be to determine

these regions where we know more defects develop and when these defects do arise, what are the

appropriate steps that might remove them.
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