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ABSTRACT 
 

 

‘FALSE BAKKEN’ INTERVAL- SEDIMENT PATTERNS AND DEPOSITIONAL ARCHITECTURE 

AT THE FACIES BOUNDARY BETWEEN SILICICLASTIC MUDSTONES AND CARBONATES, 

LODGEPOLE FORMATION, MISSISSIPPIAN IN THE WILLISTON BASIN, ND 

 
 

The lateral facies transition on deep shelves between carbonates and siliciclastic mudstones is 

largely enigmatic. Based on detailed facies descriptions and interpretations, this study explores which 

processes have shaped the sedimentary rocks on both sides of this lithological divide, and adds to our 

understanding of processes operating on deep shelves in general. Both siliciclastic and carbonate rocks of 

the ‘False Bakken’ and ‘Scallion’ intervals of the lower Lodgepole Formation in the Williston Basin, ND, 

can be grouped into twelve facies: these facies are graded argillaceous mudstone (F1), massive 

siliciclastic-argillaceous mudstone (F2a), massive calcareous-argillaceous mudstone (F2b), bioturbated 

pyrtitized bioclast-bearing mudstone (F3), lenticular mudstone (F4), bioclast-rich wavy mudstone (F5), 

siliciclastic siltstone (F6), glauconitic siltstone (F7), calcareous siltstone (F8), massive to bioturbated 

carbonate mudstone (F9), nodular skeletal wackestone (F10), and laminated skeletal packstone (F11). 

These facies are here presented in order of increasing grain size, carbonate content, and bioturbation from 

F1 to F11. They are arranged in three fining- and coarsening-upward units that can be identified 

throughout the basin within the succession.  

These twelve facies are interpreted to represent distinct processes on a low-inclined shelf system 

with carbonate occupying the proximal, and siliciclastic mudstones the distal portions of this transect. An 

overall decrease in energy is reflected from the proximal carbonate to distal siliciclastic facies in this 

sedimentary system. Nevertheless, most of the mudstone facies still reflect high energy processes 

operating within the distal portions of the basin; in fact, only one mudstone facies is interpreted to reflect 

suspension settling under tranquil conditions. Therefore, this study suggests that storm wave base is best 

placed within the distal siliciclastic mudstones instead of in the proximal carbonates. Carbonate 
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mudstones, deposited above storm wave base but lacking tempestite deposition are therefore interpreted 

as having been subject to intense degradation of storm-derived bioclasts. A decrease in oxygen 

concentration is inferred from proximal carbonates to distal siliciclastics as indicated by the decrease in 

size and type of burrows; yet, the presence of burrows within the most distal facies belt indicates that at 

least dysoxic conditions prevailed throughout the Williston Basin during the deposition of the ‘False 

Bakken’.  

Three transgressions and regressions are identified within this succession based on laterally 

correlated facies patterns and indicate an overall increase in sea level from the beginning to the end of 

‘False Bakken’ times. Sediment starvation occurred in the northeastern and/or southwestern portions of 

the basin as indicated by the presence of glauconitic siltstones and/or lenticular mudstones at various 

locations within the succession. However, a source of sediment input is interpreted to be located in the 

northwestern part of the basin based on a high abundance of detrital silt. In addition, a shift in the basin 

depocenter southwards from Bakken to lower Lodgepole times is reflected in this succession most likely 

mirroring an increase in subsidence south of Mountrail County during ‘False Bakken’ deposition. 

 



 

iv 

ACKNOWLEDGEMENTS 
 

 

I would like to thank the SEPM Foundation for funding a portion of my research in pursuit of my 

master’s thesis. I also owe a special thanks to Sven Egenhoff for dedicating a substantial amount of his 

time to me throughout my entire time here at Colorado State University from teaching me about shale and 

carbonate sedimentology, to guiding me in my thesis work, and for always being an enjoyable person to 

work with and talk to. In addition, I would like to thank my committee members Dr. Sally Sutton and Dr. 

Joe Von Fischer for their insight and revisions and general support during my thesis work. 

 I owe a thanks to Heather Lowers at the USGS for providing both her expertise and SEM 

machine to allow me to collect data for my thesis work. I also would like to thank Kent Hollands at the 

NDGS Core Center for organizing the cores, obtaining samples for me, and transporting me to and from 

the core center during my time spent in North Dakota. I would also like to thank members of my research 

group, James Van Hook and Aleks Novak, for the fun times spent in and out of the office as well as for 

their help and useful input throughout my thesis work. Finally, I would like to thank all the other grad 

students in the department who made my time here in Colorado such an enjoyable and fun experience. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 

TABLE OF CONTENTS 
 
 
 

ABSTRACT………………………………………………………………………………………………..ii 
ACKNOWLEDGEMENTS………………………………………………………………………………..iv 
LIST OF FIGURES………………………………………………………………………………………..vi 
INTRODUCTION………………………………………………………………………………………….1 
GEOLOGIC SETTING…………………………………………………………………………………….3 
METHODS…………………………………………………………………………………….…………...6 
FACIES …………………………………………………………………………………………………...10 
     Siliciclastic Facies of the False Bakken ‘Interal’……...………………...…………………………..10 
     Carbonate Facies of the False Bakken ‘Interal’ …..………………………………………………..23 
     Carbonate Facies of the Scallion ‘Interval’…………………………………………………………24 

FACIES ARCHITECTURE………………………………………………………………………………33 
DEPOSITIONAL MODEL……………………………………………………………………………….39 
DISCUSSION……………………………………………………………………………………………..46 
     Facies in Siliciclastic Mudstones……………………………………………………………………..46 
     Carbonate-Shale Transitions…………………………………………………………………...........47 
     Position of Storm Wave Base and Implications for Carbonate Facies Models…………………...49 
     Glauconite……………………………………………………………………………………………..51 
     Oxygen Availability in the Water Column and Sediment during ‘False Bakken’ deposition…...53 
CONCLUSIONS…………………………………………………………………………………………..55 
REFERENCES…………………………………………………………………………………………….58 
APPENDIX I: MEASURED SECTIONS………………………………………………………………...64 
APPENDIX II: THIN SECTION DESCRIPTIONS…………………………………………………….106 
APPENDIX III: SEM IMAGES AND DATA………………………………………………….……….150 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

vi 

LIST OF FIGURES 
 

  
 

Figure 1: Stratigraphic Column…………………………………………………………………………..…2 
Figure 2: Regional Map of Core Locations and Structural Highs…………………………………………..4 
Figure 3a: Facies 1 and 2a in a thin section scan……………………………………………………………14 
Figure 3b: SEM image of facies 2a matrix…………………………………………………………………14 
Figure 3c: Phycosiphon incertum isp. fecal strings in facies 2a……………………………………………15 
Figure 3d: Thin section scan of facies 2b………………………………………………………………….15 
Figure 3e: Cross-polarized image of agglutinated foraminifera……………………………………………15 
Figure 4a: Core image of F3……………………………………………………………………………….19 
Figure 4b: SEM image of F3 matrix……………………………………………………………………….19 
Figure 4c: Plane-polarized image of Chondrites isp. in F3………………………………………………..19 
Figure 4d: Core image of brown F4 laminae………………………………………………………………19 
Figure 4e: Thin section scan with F4 laminae thickening and thinning laterally………………………….20 
Figure 5a: Core image of F5 lamina within F3……………………………………………………………..22 
Figure 5b: Thin section scan of F5 lamina…………………………………………………………………22 
Figure 5c: Thin section scan of thin F5 lamina……………………………………………………………23 
Figure 5d: Thin section scan of F6 and F7 laminae………………………………………………………..23 
Figure 5e: Thin section scan of F6 and F8 laminae………………………………………………………..23 
Figure 6a: Core image of F9……………………………………………………………………………….26 
Figure 6b: Thin section scan of F9…………………………………………………………………………26 
Figure 6c: Core image of F10……………………………………………………………………………...27 
Figure 6d: Thin section scan of F10……………………………………………………………………….27 
Figure 6e: Core image of F11……………………………………………………………………………...27 
Figure 6f: Thin section image of F11………………………………………………………………………27 
Figure 7: Map with contacts between shales and carbonates for coarsening- and fining-upward units…..34 
Figure 8: Cross-section from A to A’……………………………………………………………………..35 
Figure 9a: Areal distribution of F1 laminae……………………………………………………………….38 
Figure 9b: Areal distribution F4 laminae…………………………………………………………………..38 
Figure 9c: Areal distribution of F5 laminae………………………………………………………………..38 
Figure 9d: Areal distribution of F7 laminae………………………………………………………………..38 
Figure 10: Idealized depositional model…………………………………………………………………...40 
Figure 11: General map of facies belts…………………………………………………………………….42 
Figure 12: Areal distribution of F7 laminae on structural high map………………………………………52 
 

 
 
 
 
 
 
 
 
 
 
 



  

1 

 

INTRODUCTION 

 
 
 

The lateral facies transition from carbonates to adjacent siliciclastic mudstones in distal areas 

remains completely enigmatic and surprisingly underexplored. Most carbonate literature focuses on 

shallow-marine limestones, be it reefs (e.g., Hubbard et al. 1990; Pomar, 1991; Ritter and Grammer, 

2017), lagoons (e.g., Colby and Boardman, 1989; Randazzo and Baisley, 1995; Beanish and Jones, 2002; 

Klostermann and Gischler, 2015), the shallow shelf (e.g., Nelson et al. 1988; Rankey, 2004), or a ramp 

system (e.g., Martin et al. 1996; Brandano and Corda, 2002; Pomar et al. 2004). The step from carbonate 

producing platforms to equivalent facies signatures in adjacent basins is not a far one, so calci-turbidites 

are similarly well-explored (e.g. Reijmer et al. 1991; Kenter, 1991).  

In recent years, siliciclastic mudstones have also received significant attention (Schieber et al. 

2007; Schieber and Southard, 2009; Schieber et al. 2010; Macquaker et al. 2010; Wilson and Schieber, 

2014), and current-induced processes in these environments once believed to be entirely tranquil have 

been explored in great detail (e.g. Egenhoff and Fishman, 2013; Borcovsky et al. 2017; Li and Schieber, 

2018). However, the intersection where these two rocks, the carbonates and the siliciclastic mudstones, 

meet has been severely underexplored (e.g. Burchette and Wright 1992). This is insofar surprising as 

many deep shelves in the world, in the Recent as well as in ancient examples, exhibit this particular 

transition. This study will therefore propose a model of how such a transition looks in the geological 

record, and how to unravel sedimentological details to characterize such a facies transition that is likely 

ubiquitous since carbonates started to form a distinct environment on many shelves worldwide in the 

Proterozoic (Grotzinger, 1989).  

The main unit under study is the ‘False Bakken’, a siliciclastic mudstone succession intercalated 

into the lower portion of the Mississippian Lodgepole Formation; in addition, the underlying skeletal 

wackestones to packstones of the ‘Scallion’ interval are also assessed (Fig. 1; Mackie, 2013). Based on 

conodont biostratigraphy, deposition of the lower Lodgepole occurred during the Siphonodella crenulate 



  

2 

 

Zone in the Tournasian Stage and is suggested to have commenced prior to the Tournasian-Visean 

boundary, although the upper boundary is not well defined due to a lack of conodont data (Holland et al. 

1987; Hogancamp and Pocknall, 2018).  

 

Fig. 1: Stratigraphic column from the Devonian Bakken Formation to the Mississippian Charles 
Formation modified from Borcovsky et al. (2017). Conodont biozones from Hogancamp and Pocknall, 
(2018). 
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GEOLOGIC SETTING 
 
 
 

Covering an area of 300,000km2, the Williston Basin is an intracratonic basin that extends across 

a large portion of North Dakota, the northwestern portion of South Dakota, the eastern portion of 

Montana, and the southern portion of Saskatchewan and Manitoba in Canada (Gerhard et al. 1982; Kerr, 

1988; Anna et al. 2010). Sedimentation, mainly controlled by sea level fluctuations and episodic, slow 

subsidence, began in the Cambrian and continued into the Quaternary with the accumulation of about 

4,875m of sediments in the deepest section of the basin in northwestern North Dakota (Kerr, 1988; 

Gaswirth and Marra, 2015). A lack of thick siliciclastic sequences and abundance of carbonates in the 

Paleozoic indicate the basin was isolated from major orogenic events (Kerr, 1988; Gaswirth et al. 2013), 

although local structural highs such as the Billings Anticline, Burleigh High, Cedar Creek Anticline, 

Foster High, and Stutsman High are suggested to have been active highs during the late Devonian-early 

Mississippian (Ballard, 1963; LeFever and Crashell, 1991; Grover, 1996) in addition to other trends not 

formerly named (Novak and Egenhoff, 2019; Fig. 2). Paleogeographic reconstructions place the Williston 

Basin of North America just north of the equator at the end of the Devonian and early Mississippian 

(Scotese, 1994; Blakey, 2003).  

The Mississippian Madison Group reaches a maximum thickness of 610m, conformably overlies 

the Bakken, and is comprised of carbonates and rare shales of the Lodgepole, anhydrite-bearing 

carbonates of the Mission Canyon, and evaporites of the Charles Formations (Fig. 1; Carlson and 

Anderson, 1965; Kerr, 1988). Prior to deposition of the Lodgepole, the Bakken Formation was deposited 

from Late Devonian to Early Mississippian times (Holland et al. 1987). The Bakken reaches a maximum 

thickness of 43m and is composed of four units: a basal sand-rich unit, a lower and an upper shale 

member that are organic rich, and a coarse-grained middle member composed mostly of siltstone and 

some sandstone (Meissner, 1978; LeFever, 1990; Egenhoff and Fishman, 2013; Egenhoff, 2017).  
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Fig. 2: Location of 33 cores in the western portion of North Dakota. Both core numbers and relevent 
county names are displayed. Structural highs and anticlines present throughout the Williston Basin at 
various times. Modified from Novak and Egenhoff (2018) with additional structural highs from Ballard 
(1963).  

 

The Lodgepole Formation reaches a maximum thickness of 270m in McKenzie County where it 

consists of mostly limestones with rare shale stringers and thins towards the margins where it is a 

fossiliferous and oolitic limestone (LeFever and Anderson, 1984; Montgommery, 1996; Stroud, 2011). 

The ‘Scallion’ Interval, composed of nodular skeletal wackestones and packstones, conformably overlies 

the upper Bakken shale member and represents a regression from late Bakken times (Gaswirth et al. 2013; 

Mackie, 2013; Borcovsky et al. 2017). One to three siliciclastic shales intercalated with carbonate 
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mudstones are informally known as the ‘False Bakken’ and represent an overall transgression from the 

‘Scallion Interval’ (Montgommery, 1996; Kerr, 1988; LeFever, 1990; Hansen and Long, 1991; Mackie, 

2013). The ‘False Bakken’ is suggested to have been deposited in distal areas on a low-inclined westward 

dipping carbonate platform and beautifully displays shale-carbonate transitions (Mackie, 2013). The 

carbonate unit overlying the ‘False Bakken’ does not have a specific name and is generally just referred to 

as being part of the “Lower Lodgepole Limestone” (LeFever and Anderson, 1984).  
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METHODS 
 
 
 

Detailed sedimentological analyses were completed for 33 drill cores that penetrated the ‘False 

Bakken’ and ‘Scallion’ intervals of the lower Lodgepole Formation (Fig. 2; see Table 1). All cores are 

stored at the North Dakota Geological Survey (NDGS) Wilson M. Laird Core and Sample Library in 

Grand Forks, ND or at the U.S. Geological Survey (USGS) Core Research Center in Denver, CO. 

Detailed core descriptions on the millimeter to centimeter scale were made with the aid of a hand lens, 

tape measure, and hydrochloric acid to identify various facies and features. For the purpose of this paper, 

a facies is best classified as any lamina or bed that reflects a certain composition, grain size distribution, 

and depositional feature allowing it to be tied to a distinct depositional process.  

Ultra-thin thin sections (~20um) were made both perpendicular (n=48) and parallel (n=9) to 

bedding, as compaction should not impact any depositional features preserved parallel to bedding (i.e., 

clay clasts and burrows). Additional thin sections (n=16) were borrowed from the USGS to further 

describe each facies. All thin sections were used for petrographic analyses to identify textures and 

compositions of various facies identified in core.  

Point counting (n=300) was completed on thin sections (n=22) to determine the modal abundance 

of matrix versus silt grains, as well as the abundance of various grain types within the silt fraction (see 

Table 2). For other thin sections, modal abundances were determined with the aid of Baccelle and 

Bosellini (1965) visual diagrams. To determine the mean grain size of the silt-sized fraction of all 

siliciclastic facies, point counts (n=300) were completed on thin sections (n=26; see Table 3). 

An FEI Quanta 450 FEG Scanning Electron Microscope (SEM) equipped with an energy 

dispersive spectrometer (EDS) at the USGS in Denver, CO, was used to analyze carbon-coated thin 

sections (n=7) with the most representative siliciclastic facies to identify very small structures and 

particles (e.g., clay clasts, biogenic grains, burrows, and organic matter; see Appendix III). 
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Table. 1: All wells with geographic locations and core storage locations. 
Number Well # Well Name Latitude Longitude County Location 

1 8251 USA #1-24 47.183926 -103.548139 Billings NDGS 

2 18502 TEDDY 44-13TFH 47.111641 -103.415384 Billings NDGS 

3 9426 FEDERAL #12-1 47.30137 -103.54544 Billings NDGS 

4 12886 CONNELL #24-27 47.2567  -103.597082 Billings NDGS 

5 7887 MEE USA #3-17 47.120931 -103.379412 Billings NDGS 

6 10077/E385 FEDERAL 11-4 47.31096 -103.56845 Billings NDGS/USGS 

7 B832 AL AQUITAINE BN 1-23H 47.194467 -103.568295 Billings NDGS/USGS 

8 8638 SLATER #1-24 48.751046  -102.433563 Burke NDGS 

9 20648 GROTE 1-21H 48.663157 -102.834024 Burke NDGS 

10 
19773 

PRODUCER`S CORPORATION 159-
94-17C-8-2H 

48.590525  -102.85718 Burke NDGS 

11 13167 SKARPHOL "D" #5 48.708913 -102.898789 Divide NDGS 

12 17396 BLOOMING PRAIRIE 48.879255  -103.438098 Divide NDGS 

13 19709 ROSENVOLD 1-30H 48.661666 -103.132496 Divide NDGS 

14 12785 CARUS FEE #21-19 47.542727 -102.963685 Dunn NDGS 

15 607 ANGUS KENNEDY #F32-24-P 47.711593 -102.522114 Dunn NDGS 

16 22092 MHA 2-05-04H-148-91 47.667005  -102.310361 Dunn NDGS 

17 20453 WALLACE 7-1H 47.213633 -102.635928 Dunn NDGS 

18 
21734 OLSON 12-139-104 A 1H 46.863048 -103.749957 

Golden 
Valley 

NDGS 

19 
19917 MAUS 23-22 47.013434 -103.850932 

Golden 
Valley 

NDGS 

20 24123  MARIANA TRUST 12X-20G2 47.71198 -103.131792 Mckenzie NDGS 

21 
12772 

AHEL ET AL GRASSEY BUTTE 
#12-31 H3 

47.485595 -103.234115 Mckenzie NDGS 

22 29426 TETON 5-1-3TFSH 47.850828  -102.951089 Mckenzie NDGS 

23 21966 FAIRBANKS 1-20H 47.558227 -103.551635 Mckenzie NDGS 

24 17723 MILLER 34X-9 47.386652  -102.150999 Mercer NDGS 

25 16160 STATE ND 1-11H 48.530775 -102.666355 Mountrail NDGS 

26 26661 WAYZETTA 46-11M 48.094157 -102.212323 Mountrail NDGS 

27 28036 NESS 41-21-2XH 48.152402 -102.375696 Mountrail NDGS 

28 15889 SARA G. BARSTAD 6-44H 48.183932 -102.825858 Mountrail NDGS 

29 15986 J. HORST 1-11H 48.181385 -102.610359 Mountrail NDGS 

30 19472 A TROUT 6H 3-14 48.892306 -101.617541 Renville NDGS 

31 20002 PRAUS 21-28TFH 46.831879 -102.926142 Stark NDGS 

32 17272 IM-SHORTY-159-88- 0805H-1 48.604914 -102.061985 Ward NDGS 

33 27216 LOREN 5303 14-1 2T 48.110300  -103.867388 Williams NDGS 
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Table 2: Point counts (n=300) to determine modal abundance of various silt grains.  

PI=Phosphate Intraclast. AF= Agglutinated Foraminifera 

Facies Sample # Matrix  
Silt 

Quartz Calcite Bioclast Mica PI AF 

Facies 

2a 

#12886 10505.8 84 9 7 0.0 0.3 0.0 0.0 

#12785 11275 82 12 3 0.3 2 0.0 0.0 

#9426 10782.1 85 9 5 0.3 0.7 0.0 0.0 

#12785 11273.6 85 12 1 0.3 1.0 0.0 0.0 

Average 84 10 4 0 1 0 0 

Std. Dev. 1 2 2 0 1 0 0 

Facies 

2b 

#8251 10375.1 80 6 13 0.3 1.0 0.0 0.0 

#8251 10369.6 84 6 8 1.0 1.0 0.0 0.0 

#18502 10496.7 80 7 13 0.0 0.3 0.0 0.0 

#18502 10500.8 84 5 10 0.7 0.0 0.0 0.3 

#12886 10508.8 75 7 18 0.3 0.0 0.0 0.0 

#15986 10494.1 81 6 13 0.3 0.0 0.0 0.0 

#8251 10377 80 8 11 0.3 1.0 0.0 0.0 

#12785 11276 85 5 9 0.3 0.0 0.0 0.0 

#9426 10785.9 77 7 15 1.3 0.0 0.0 0.0 

#12785 11274.6 87 5 7 0.0 0.3 0.0 0.0 

#18502 10502.1 81 8 9 1.7 1.0 0.0 0.0 

Average 81 6 11 1 0 0 0 

Std. Dev. 4 1 3 1 0 0 0 

Facies 3 

#12886 10509.7 79 7 12 2 0.0 0.0 0.0 

#15986 10494.5 79 7 10 3 0.7 0.0 0.0 

#12886 10509 85 1 10 4 0.0 0.0 0.0 

#12785 

11277.10 91 1 7 0.3 0.0 0.0 0.0 

#20453 10251.6 94 1 4 0.7 0.0 0.0 0.3 

Average 86 3 9 2 0 0 0 

Std. Dev. 7 3 3 2 0 0 0 

Facies 5 
#9426 10786.6 71 1 10 16 0.0 3 0.0 

#19709 9250.3 67 5 15 13 0.0 0.0 0.3 

Average 69 3 12 14 0 1 0 

Std. Dev. 2 2 4 2 0 2 0 
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Table 3: Silt grain size values from point counting (n=300) 

siliciclastic facies.   

Thin Section Facies Mean 
Std. 

Dev. 
Min. Max. 

#12785-11275 1 0.017 0.006 0.006 0.041 

#9426 2a 0.018 0.006 0.005 0.046 

#12785-11273.6 2a 0.018 0.006 0.007 0.041 

#12785-11275 2a 0.018 0.007 0.005 0.051 

#12886-10505.8 2a 0.018 0.007 0.006 0.049 

#8251-10375.1 2b 0.022 0.007 0.010 0.051 

#8251-10377 2b 0.023 0.009 0.008 0.059 

#9426-10785.9 2b 0.022 0.007 0.005 0.056 

#12785-11274.6 2b 0.022 0.008 0.009 0.060 

#12785-11276 2b 0.022 0.007 0.008 0.062 

#12886-10508.8 2b 0.022 0.008 0.008 0.061 

#15986-10494.1 2b 0.022 0.008 0.008 0.050 

#18502-10496.7 2b 0.022 0.008 0.005 0.061 

#18502-10500.8 2b 0.022 0.009 0.004 0.062 

#18502-10502.1 2b 0.023 0.009 0.005 0.053 

#12785-11277.10 3 0.025 0.009 0.009 0.052 

#12886-10509.7 3 0.025 0.010 0.010 0.083 

#12886-10509 3 0.026 0.012 0.008 0.074 

#15986-10494.5 3 0.025 0.008 0.005 0.047 

#20453-10251.6 3 0.024 0.008 0.008 0.057 

#28036-9698.4 4 0.030 0.009 0.013 0.077 

#9426-10786.8 5 0.034 0.013 0.009 0.084 

#19709-9250.3 5 0.028 0.010 0.010 0.065 

#17396-7942.1 6 0.031 0.010 0.012 0.061 

#19709-9251 7 0.036 0.015 0.013 0.109 

#17396-7904.8 8 0.056 0.018 0.017 0.122 
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FACIES 
 
 
 

 A total of twelve distinct facies are identified within the ‘Scallion’ and ‘False Bakken’ intervals 

with facies 2a and 2b counting as two facies since they are distinctly different microscopically yet have 

similar interpretations. These facies were identified from detailed core descriptions, thin section analyses, 

point counts of grain type and abundance, and/or SEM-EDS analyses. For a summary of these twelve 

facies see Table 4 and to see the total percentage of facies in each core see Table 5. 

Siliciclastic Facies of the ‘False Bakken’ Interval 

Facies 1: Graded Argillaceous Mudstone 

Facies 1 accounts for less than 1% of the entire succession and is a dark argillaceous mudstone 

that occurs as thin, black laminae less than 2mm thick that are laterally continuous across thin sections 

(Fig. 3a). Macroscopically, this facies can be identified with a keen eye as faint black laminae darker in 

color than other mudstone facies, but is best described microscopically. Up to 3% of this facies is 

composed of sub-rounded silt-sized detrital calcite, quartz, and muscovite grains that display normal 

grading from 0.04mm to 0.005mm in diameter with an average grain size of 0.017mm. The matrix is 

composed mostly of calcite, quartz, and illite with lesser amounts of potassium feldspar and organic 

matter. Phycosiphon incertum fecal strings up to 0.05mm wide pass through entire lamina in places. A 

gradual decrease in grain size from the underlying mudstone facies to this facies indicates a gradational 

basal contact, while an abrupt increase in grain size from this facies to overlying mudstone facies 

indicates a sharp contact. Diagenetic pyrite, sphalerite, calcite, and apatite are present within this facies.  

Facies 1 Interpretation:  

The lateral continuity as far as visible in thin section and the fine grain size suggest a very low-

energy environment for sedimentation of this facies. Facies 1 laminae were most likely deposited from 

suspension as no thickness variations are visible in the laminae, and the normal grain size distribution in 

each of these laminae suggests that these rocks were laid down from a cloud of particles in the water 
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column that deposited successively finer grains with no additional sediment being supplied to the site of 

sedimentation. This scenario explains the gradational lower contact of facies 1 laminae recording 

continued deposition from the underlying rocks; however, its upper, sharp boundary reflects the change in 

energy during deposition and the onset of a new depositional event, unrelated to facies 1 laminae. It is 

likely that these fine-grained mudstones were deposited in a dysoxic but not an anoxic environment; this 

is indicated by the abundance of Phycosiphon incertum isp. fecal strings cutting through them. The 

complete lack of any other burrows in this facies most likely reflects colonization efforts by exclusively 

an opportunistic life form (cf. Egenhoff and Fishman, 2013). The composition of facies 1 sediments 

reflects the closeness of these mudstones to a nearby carbonate system yet also shows that some 

siliciclastic quartz input took place during deposition, most likely introduced into this sedimentary 

environment by fluvial systems from the nearby Canadian Shield. The composition of the rocks eroded 

from the Canadian Shield is still reflected in the muscovites that are found in rocks of facies 1. 

Facies 2a: Massive Siliciclastic-Argillaceous Mudstone 

Facies 2a is a massive, black to dark blue mudstone that shows low effervescence and rare 

bioclasts in core. The bioclasts, brachiopod fragments, conodonts, and agglutinated foraminifera are in the 

order of 1mm in length and make up less than 1% of this facies. They are randomly distributed 

throughout the fine-grained matrix, are generally intact but some being broken, and show various angles 

relative to bedding. Biotite, muscovite, potassium feldspar, and fecal pellets also occur, are silt-sized and 

each make up less than 1% of this facies. Mudstones of this facies contain an average of 10% quartz and 

4% calcite silt that is 0.018mm in diameter on average and only discernible microscopically (Fig. 3a). The 

matrix of this facies is dominated by quartz, calcite, micas, and clay minerals, generally with small 

amounts of organic matter (less than 1%; Fig. 3b). Phycosiphon incertum isp. fecal strings up to 0.05mm 

wide dissect this facies perpendicular to bedding and are best distinguished microscopically by a lack of 

silt-sized grains and a darker color than the surrounding matrix (Fig. 3c). Diagenetic calcite, sphalerite, 

apatite, pyrite, and phosphate, the latter in the form of concretions, occur within this facies. This 
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mudstone can form beds up to 0.5m thick and has a gradational contact with all mudstone facies, but a 

sharp basal contact with facies 1. In places, dikes from the overlying carbonate facies can be seen 

intruding into this facies. 

Facies 2b: Massive Calcareous-Argillaceous Mudstone  

Facies 2b is a massive, black to dark blue calcareous-argillaceous mudstone. It does not differ 

from facies 2a macroscopically but contains a greater abundance of calcite than quartz silt when 

compared in thin section, and a coarser silt sized fraction than Facies 2a (see Tables 2 and 3). Sub-angular 

to sub-rounded silt grains within this facies are 0.022mm in diameter on average and composed of 7-18% 

calcite (avg., 11%), less than 8% quartz, and a maximum of 1% micas. Intact biogenes and bioclasts of 

brachiopods (<2mm) and echinoderms (<1mm) make up 1% of this facies or less (Fig. 3d). Agglutinated 

foraminifera (<1mm) occur in distinct levels of this facies, generally in close stratigraphic proximity (Fig. 

3e). All grains and bioclasts are randomly distributed throughout this facies but generally aligned parallel 

to bedding; nevertheless, they can occur at an angle to bedding in places. Phycosiphon incertum isp. fecal 

strings up to 0.05mm wide are abundant, while Planolites isp. burrows are rare. Planolites isp. burrows, 

characterized by a light color, low silt content, and an abundance of calcite and dolomite, are a maximum 

of 0.2mm high by 0.03mm wide and occur parallel to bedding. Similar to Facies 2a, this mudstone facies 

usually forms a gradational contact with other mudstone facies, but is intruded by clastic dikes when 

overlain by carbonate facies. 

Facies 2a and 2b Interpretation: 

Two processes are most likely responsible for depositing the two mudstone facies (2a & 

2b). First, the coarse bioclast and biogenic grains have likely been transported into the environment by 

high-energy events, probably storms; however, their scarcity indicates that such high-energy events must 

have occurred relatively rarely in facies 2a and slightly more often in facies 2b settings. Transport of these 
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grains is reflected in the broken nature of some of the bioclasts; nevertheless, intact shells might not be a 

good indicator for the absence of transport as many shells do not get abraded much or at all during 

transport (Miller et al. 1988). The second process indicated by this facies is not easy to identify, and it 

remains unclear if the bulk of the matrix has been deposited from suspension or as bed load (see Schieber 

et al. 2007). The large variety of grain sizes in the matrix ranging from clay to silt, however, seems to 

indicate that these grains were deposited together as marine snow particles. Nevertheless, as no remnants 

of the marine snow particles are preserved it seems likely that abundant burrowing in facies 2a and 2b 

probably increased the destruction of the marine snow particles post deposition. 

It is likely that the sea-floor was not entirely inhospitable during sedimentation of facies 2a and 

2b. Some amount of oxygen must have been present at the sea floor and maybe millimeters into the 

sediment as indicated by both the agglutinated foraminifera, and the abundance of Phycosiphon 

incertum isp. within facies 2a/b, as well as the rare presence of Planolites isp. in 2b. It is therefore 

assumed here that the environment was most likely dysoxic and not anoxic during deposition. 

Facies 3: Bioturbated Pyritized Bioclast-bearing Mudstone 

Facies 3 is easily distinguished in core as a massive, brown to black, bioturbated mudstone with 

pyritized bioclasts (Fig. 4a). Bioclasts make up as much as 4% of this facies and are mostly fragmented 

and pyritized, but when intact and unaltered can be identified as echinoderms (up to 2.5 by 1mm in size) 

and brachiopods (less than 3 by 0.1mm in size). Agglutinated foraminifera (0.6 by 0.2mm on average) 

and conodonts (up to 1mm in length) are rarely found. In most places, these coarse grains are randomly 

oriented. The silt-sized fraction is mostly sub-angular to sub-rounded, 0.025mm on average in diameter, 

and composed of up to 12% calcite, 7% quartz, 1% calcispheres, and <1% micas. The matrix is 

commonly light brown and composed of mostly calcite with lesser amounts of illite, chlorite, and quartz 

with rare dark patches composed of pyrite (Fig. 4b). Chondrites isp. bisects this facies at all angles to 

bedding from parallel to perpendicular (Fig. 4c). These burrows are identified by a fine grain size, an 
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increase in carbonate or pyrite relative to the surrounding matrix, and are up to 1.5mm across and 0.3mm 

high. This facies occurs as beds up to 1m thick in most places and often has a gradational contact with 

overlying and underlying Facies 1 and 2a/b mudstones but may have dikes that come from overlying 

carbonates. 

Facies 3 Interpretation:  

The abundance of calcareous fossils and calcite silt reflects a depositional environment that was 

situated proximal to an area of carbonate production although siliciclastic input is still evident. Coarse 

bioclasts and detrital grains reflect deposition associated with high energy events (i.e., storms; Borcovsky 

et al., 2017) with the fine-grained matrix deposited during intermittent tranquil times. Gradational 

contacts with nearby facies are the result of gradual changes in the depositional environment over 

significant time periods; however, in some instances carbonate sedimentation on top of this 

unconsolidated facies may have resulted in the formation of dikes during seismic shocks (Novak and 

Egenhoff, 2019). After deposition, significant bioturbation by Chondrites isp. occurred destroying all 

potential sedimentary fabrics resulting in the massive bedding. Chondrites isp. trace fossils are produced 

by organisms that can tolerate low oxygen levels (Bromley & Ekdale, 1984). However, the agglutinated 

foraminifera in this facies indicate the presence of at least some oxygen at the sediment-water interface at 

times during deposition (Schieber, 2009). 

  

Fig 3a: F1 and F2a 

Fig. 3b: F2a 
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Fig. 3a: Thin section scan of F1 laminae within F2a. F1 laminae are continuous across thin section and 
contain a low abundance of silt clasts relative to F2a. (#12785-11275) 
Fig. 3b: SEM image of F2a matrix with grains labeled. Qtz=quartz; Ca=calcite; il=Illite; Bt=Biotite. 
(#12785-11275) 
Fig. 3c: Two of the same cross-polarized images of Phycosiphon isp. dissecting F2a. The top photo 
displays the burrows without tracks outlined and the bottom photo has some of the burrows outlined in 
black. (#12785-11275) 
Fig. 3d: Thin section scan of F2b that contains bioclasts oriented parallel to bedding and a silt size 
fraction composed of mostly calcareous silt with some quartz silt. (#8251-10369.6) 
Fig. 3e: Cross-polarized image of two agglutinated foraminifera in a brown matrix. In addition, both 
quartz and calcite silt can be seen distributed throughout this image of F2b. (#12886-10508.8) 

 

Fig 3: F2a 

Fig 3d: F2b Fig. 3e: F2b 



  

16 

 

Facies 4: Lenticular Mudstone 

In core, facies 4 appears as faint brown laminae within other mudstone facies (Fig. 4d) and has a 

distinct lenticular fabric formed by clay clasts, evident microscopically. Clay clasts are composed of clay 

sized calcite, quartz, and potassium feldspar, and vary in abundance from 50 to 90% of the volume. 

Organic matter (<10%) commonly appears as brown to black flakes oriented parallel to bedding and is 

slightly bent around clay clasts. The silt-sized fraction contains 12% quartz and 5% calcite clasts that are 

sub-rounded to sub-angular and have an average diameter of 0.031mm. Coarse grains around 1mm in 

length such as conodonts, agglutinated foraminifera, and brachiopod fragments make up 1% of this facies 

and are randomly distributed throughout and aligned parallel to bedding. The matrix consists of mostly 

quartz, calcite, organic matter, and clay minerals with some potassium feldspar and dolomite. Planolites 

isp. burrows occur parallel to bedding, are up to 0.7mm wide and 0.05mm in height, light in color with no 

silt present, and moderately abundant.  

Coarse laminae of this facies, 2 to 5mm thick, are laterally continuous across thin sections and 

contain a greater abundance of silt (20-40%) and less clay clasts (60-80%) in comparison to thin laminae. 

Thin laminae (0.2-1.5mm) commonly thicken and thin laterally (Fig. 4e), are continuous across thin 

sections, contain a great abundance of clay clasts (80-100%), and have low-inclined foresets preserved. 

Basal contacts are often sharp for both thick and thin laminae, but contacts with overlying facies for thick 

laminae are gradational and thin laminae are sharp.  

Facies 4 Interpretation:  

A high energy depositional process is interpreted for this facies based on the presence of clay 

clasts, coarse silt, bioclasts, and low-inclined foresets. The formation of clay clasts occurs from the 

erosion of semi-consolidated, water-rich beds on the sea floor by bottom water currents that transport 

these clasts by traction transport up to 10 km (6mi) (Schieber et al. 2010; Borcovsky et al. 2017). 

Variability in the abundance of clay clasts versus silt clasts can be attributed to the energy of the flow, the 
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rate of siliciclastic input into the area of erosion, distance from source, potential reworking, or a 

combination of those factors. Thin laminae composed almost entirely of clay clasts are interpreted to have 

originated from an area of sediment starvation with clay clasts being moved by bed load transport during 

high-energy events, probably storms (cf. Schieber et al. 2010); however, it is unlikely that the currents 

containing exclusively clay clasts reworked other sediment as no remnants of such sediment has been 

found in lenticular mudstones. Similarly, thick laminae with 20 to 40% silt and 60-80% clay clasts are 

associated with high energy events; however, as such currents were capable of transporting both clay 

clasts and silt together, it is most likely that they reworked the silt from the sea-floor during transport of 

the clay clasts. However, these clay clasts may have originated from an area of the basin that was not 

sediment starved allowing for silt and clay clasts to be reworked and transported together. Reworking 

would also explain why laminae containing clay clasts and silt grains are often thicker than laminae 

exclusively consisting of clay clasts considering that sediment must have been added in order to increase 

grain diversity in the laminae.  

The presence of agglutinated foraminifera and Planolites isp. burrows suggests that at least 

dysoxic conditions, rather than anoxic conditions, prevailed on the sea-floor during deposition and may 

have extended several centimeters into the substrate. However, this facies has a high abundance of 

preserved organic matter attributed to it having a short residence time on the seafloor and/or deposition as 

organomineralic aggregates (Macquaker et al. 2010; Passey et al. 2010). 

Facies 5: Bioclast-rich Wavy Mudstone  

Facies 5 is a bioclast-rich mudstone forming laminae and beds that range in thickness from 1mm 

to 5cm (Figs. 5a, 5b, and 5c), but occurring commonly as beds thicker than 1cm. Disarticulated 

echinoderms (0.5-1.5mm) and brachiopods (<1.2cm) account for 14% of this facies on average. Rugose 

corals, agglutinated foraminifera, conodonts, and phosphate intraclasts are up to 1mm in length and 

compose a maximum of 1% of this facies. The silt-sized fraction makes up to 20% of this facies and is 
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dominated by calcite (10-15%) and up to 5% quartz grains that are mostly sub-angular to sub-rounded and 

0.03mm in diameter on average. The matrix is light brown to dark brown and composed of quartz, clay 

minerals, micas, calcite, and potassium feldspar. Planolites isp. burrows bisect this facies parallel to 

bedding and are up to 1.5mm in length and 0.2mm in height. This facies commonly has a sharp wavy 

contact with the underlying mudstone facies, and displays a slight decrease in grain size and abundance 

up-section within a single bed; in places, bioclasts are intermixed with matrix in these normally graded 

beds and also decrease in size and abundance up-section. In places, this facies occurs as thin laminae less 

than 2mm thick composed mainly of brachiopods or echinoderms that are aligned parallel to bedding 

within a dark brown matrix (Fig. 5c). 

Facies 5 Interpretation:  

An abundances of bioclasts, coarse detrital silt, and a sharp erosional basal contact all indicate 

that this facies represents deposition from high energy events capable of transporting up to sand-size 

material. The volume of bioclasts relative to matrix is interpreted to reflect lag deposition (e.g. storms 

and/or bottom currents; cf. Schieber, 2017) concentrating large particles such as bioclasts, phosphate 

intraclasts, and conodonts at the base of event beds. The fine-grained material most likely settled in-

between the large components during waning of the depositing flow; the same waning is also reflected in 

the normal grading observed in individual beds of this facies. The small bioclasts intermixed with matrix 

overlying the lags are thought to have also been deposited during the waning stages of these high-energy 

events. The fact that the bioclasts decrease in size and abundance is interpreted to directly reflect the 

waning stages of the flow. Where exclusively lags occur it is envisioned that only the lowermost part of 

the event deposit was preserved. Planolites isp. forming organisms and agglutinated foraminifera indicate 

that the environment at the sediment-water interface contained at least some free oxygen to enable them 

to survive.  
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Fig. 4a: Core image of F3 that is easily identified by the abundance of pyritized bioclasts (pointed out 
by white arrows) in a dark grey matrix. (#20002) 
Fig. 4b: SEM image of the calcite rich matrix in F3. Qtz= quartz; Ca= calcite; il=Illite; Cl=Chlorite. 
(#12886-10509) 
Fig. 4c: Plane polarized thin section image with arrows pointing at Chondrites isp. burrows in F3. Silt-
sized clasts around burrows are predominantly calcite. (#12886-10509) 
Fig. 4d: Core image showing faint brown lenticular mudstone laminae (F4) indicated by white arrows. 
(#21734) 
Fig. 4e: Thin section scan displaying lenticular mudstone (F4) laminae composed of entirely clay clasts 
that thicken and thin laterally.Two black arrows point at low-inclined foresets within individual 
laminae and the arrows are at the same inclination as foresets (#21734-10369.9) 

Fig 4a: F3 Fig 4b: F3 

Fig. 4c: F3 Fig. 4d: F4 

Fig 4e: F4 
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Facies 6: Siliciclastic Siltstone 

Facies 6 is a faintly laminated, black to dark brown, siliciclastic siltstone. This facies occurs as 

beds up to several centimeters thick and laminae (Figs. 5d and 5e) with a maximum of 55% sub-rounded 

silt that is on average 0.031mm in diameter. Individual laminae vary in thickness laterally in thin sections. 

The silt grains are composed of less than 35% quartz and 20% calcite in a matrix made up of calcite, 

quartz, clay minerals, and rutile. Rip-up clasts are made up of mudstone and are dark brown with silt-

sized quartz and calcite grains, clay-sized clay minerals, and organic matter. Phosphate grains, rip-up 

clasts, conodonts, and bioclasts are a maximum of 1mm in length, oriented parallel to bedding, and 

distributed evenly throughout. Planolites isp. burrows are present with a light brown color and fine grain 

fill dominated by quartz and calcite. Basal contacts are sharp and planar with other siltstone and mudstone 

facies, and sharp and wavy with overlying siltstone facies. 

Facies 6 Interpretation:  

The abundance of quartz silt grains in this facies and the scarcity of matrix indicates a relative 

high-energy setting for the deposition of siliciclastic siltstones (F6). Rip-up clasts confirm a high-energy 

setting for these sediments as well as the bioclasts and conodonts which are interpreted to represent lag 

deposits. These rip-up clasts with coarse silt are interpreted to be from a similar facies as the composition 

and grain size is equivalent to these siliciclastic siltstones. The fact that many of the laminae show distinct 

changes in thickness at the microscope scale indicates that bed-load processes were responsible for the 

deposition of these rocks. Sharp contacts likely reflect rapid changes in the depositional environment 

associated with pulses of siliciclastic input from a nearby source. The presence of Planolites isp. indicate 

that enough oxygen was present to sustain life within this setting. 

Facies 7: Glauconitic Siltstone 

Facies 7 contains about 20% glauconite (0.5mm) within laminae up to 8mm thick (Fig. 5d). 

Brachiopods, echinoderms, and bioclasts are up to 4% of this facies and often less than 1mm in length. 
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Sub-rounded quartz silt accounts for a maximum of 25% of this facies and is 0.036mm in diameter on 

average. The matrix is light brown and composed of quartz, clay minerals, and calcite. Both glauconite 

and bioclasts are randomly oriented in most places but can be aligned parallel to bedding. This facies 

often has a sharp, wavy contact with underlying and overlying siltstones and varies in thickness laterally.  

Facies 7 Interpretation:  

The detrital quartz silt and bioclasts within this facies suggests that high energy processes 

were responsible for depositing both silt and sand-sized grains in this setting.  Bed load transport of these 

coarse grains is indicated by laminae that thicken and thin laterally. The high energy events that 

transported the silt and bioclasts were strong enough to erode into the underlying beds as indicated by the 

presence of a sharp wavy basal contact of beds containing facies 8 deposits. After deposition, individual 

laminae were exposed at the sea floor long enough for glauconite to form (Amorosi, 1995) suggesting that 

sediment was not continuously supplied to this area. Although bioturbation is not evident, it is likely the 

cause for the random orientation of coarser grains within this facies 

Facies 8: Calcareous Siltstone 

Facies 8 is a dark grey calcareous siltstone that appears as faint laminae up to 2cm thick but more 

commonly forms laminae up to 8mm thick containing rare bioclasts and phosphate intraclasts identifiable 

in core. Microscopically, silt that is 0.056mm in diameter on average and sub-rounded makes up to 65% 

of this facies with bioclasts and the matrix accounting for the other 35% (Fig. 5e). Silt grains are 

composed of a maximum of 35% calcispheres (0.05mm), 15% calcite, and 15% quartz (0.025mm). 

Brachiopods, phosphate intraclasts, and conodonts are commonly up to 1mm in length and are located at 

the bottom of laminae or concentrated together in lens-like structures that are laterally discontinuous 

within laminae; however, calcispheres and quartz silt occur throughout this facies. The matrix is light 

brown and comprised of mainly quartz and calcite with lesser amounts of clay minerals, dolomite, and 

rutile. Light brown Planolites isp. burrows (<1.5 by 0.2mm) occur in this facies and are often filled 
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with mostly mud sized calcite, quartz, and clay minerals. Beds of this facies vary in thickness laterally 

and have a wavy, sharp basal contact with underlying facies. 

Facies 8 Interpretation:  

The coarse silt-sized fraction, bioclasts, phosphate intraclasts, and rip-up clasts in this 

facies reflect sedimentation by high energy processes. As coarse bioclasts often occur at the base of this 

facies, it is thought that these are transported by high energy events (i.e. bottom currents induced by 

storms, e.g. Schieber, 2016) that show a waning stage reflected in the decrease of grain sizes.  Bed load 

processes are indicated by the laminae that thicken and thin laterally in addition to a wavy, likely 

erosional basal contact. High abundances of bioclasts within laterally discontinuous laminae 

are interpreted as lag deposits also associated with high energy events capable of scouring into the 

underlying sediment and depositing coarse-grained material. The great abundance of calcispheres 

suggests that algal organisms were present within this area or nearby, deposited within this environment 

and replaced by calcite (Hart, 1991; Scholle & Ulmer-Scholle, 2003). The presence of burrows indicate 

that oxygen was available in this setting. 

Fig. 5a: F5 Fig. 5b: F5 
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Fig. 5a: Core image of F5 lamina within F3. A great abundance of white bioclasts and some brown 
phosphate intraclasts are present within the lamina. (#12785) 
Fig. 5b: Thin section scan that displays the wavy contact between a thick bioclast mudstone lamina 
(F5) and the underlying mudstone (F2b). An abundance of bioclast debris is present within this facies 
in addition to a dark black phosphate intraclast. (#92426-10786.6) 
Fig. 5c: Thin section scan of a thin bioclast lamina (F5) composed entirely of brachiopod shell 
fragments in a dark brown matrix. (#9426-10783.1) 
Fig. 5d: Thin section scan of F6 and F7 laminae interbedded with one another and irregular way 
contacts with laminae that thicken and thin laterally. Can see green glauconite within F7 laminae and 
an abundance of quartz silt within F6 laminae. (#19709-9251) 
Fig. 5e: Thin section displaying the irregular wavy contact between F8 and the underlying F6. F8 is 
lighter in color and contains more calcite than the underlying finer grained quartz rich siltstone (F6). 
Notice the wavy contact with a brown phosphate intraclast at the base of F8. (#17396-7915.8) 

 

Carbonate Facies of the ‘False Bakken’ Interval 

Facies 9: Massive to Bioturbated Carbonate Mudstone  

This facies is easily identified in core as a light to dark grey, massive or heavily bioturbated 

carbonate mudstone with up to 3% bioclasts in a matrix composed of carbonate mud (Figs. 6a and 6b). 

Biogenes, such as echinoderms, brachiopods, gastropods, and ostracods, are randomly distributed and 

Fig. 5c: F5 

Fig. 5d: F7 and F8 Fig 5e: F6 and F8 
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oriented throughout this facies when present. Calcispheres and detrital quartz account for less than 2% of 

this facies and are about 0.05mm in diameter. This facies is often massive with skeletal material randomly 

oriented and distributed throughout, and is bisected by burrows in places. Zoophycos isp. burrows cut 

through this facies at any angle to bedding; these burrows are less than 1cm in diameter, devoid of 

bioclasts, and display clear back filling spreiten structures (Fig. 6a). This facies can form beds up to 

several meters thick, and most commonly has a gradational contact with underlying mudstone and 

carbonate facies. 

Facies 9 Interpretation:  

This facies is dominated by fine grained carbonate mud suggesting a fairly low depositional 

energy allowing the fine grained carbonate mud to be deposited. Nevertheless, previous experimental 

work suggests that carbonate mud floccules can be transported via bed load transport in the same manner 

as clay clasts (Schieber et al. 2013) and therefore this facies may represent bed load transport despite its 

fine-grained nature. The coarse fraction of bioclasts, although rare, suggests that some high energy 

processes capable of transporting bioclasts may have operated within this depositional environment. The 

presence of quartz silt indicates siliciclastic input reached this setting but was not abundant. Bioturbation 

has reworked the sediment destroying any potential sedimentary fabrics (i.e., floccule ripples and/or 

bioclast lag deposits) that may have been preserved resulting in the massive nature of this facies. 

The large Zoophycos isp. burrows suggest high oxygen levels and an overall hospitable environment 

allowing for relatively large organisms to thrive. 

Carbonate Facies of the ‘Scallion’ Interval 

Facies 10: Nodular Skeletal Wackestone  

Facies 10 is a nodular, grey to greyish brown wackestone with up to 25% bioclasts and thin shell-

rich lamina in places (Figs 6c and 6d). It occurs as massive beds up to several meters thick with 15-20% 

biogenes and 5-10% bioclasts that are randomly distributed throughout a matrix dominated by calcareous 
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mud with nodular concretions in places. Skeletal material is 0.5-1mm in length and composed of mostly 

intact and disarticulated echinoderms (<15%) and brachiopods (<10%) with ostracods, trilobites, and 

conodonts accounting for less than 3% of this facies each. In addition, detrital calcite silt (0.05mm on 

average) makes up to 10% of this facies and is distributed throughout. Nodular carbonate concretions are 

commonly up to 5cm in diameter and are easily distinguished by a dark grey material around the 

concretions. 

Facies 10 Interpretation:  

A high abundance of biogenes and bioclasts indicate that these organisms most likely lived in or 

very close to this depositional environment. The concentration of biogenes and bioclasts in laminae, 

nevertheless, indicates that high energy storm events operated frequently within this facies allowing for 

the bed load transportation and abrasion of the bioclasts. The carbonate mud was likely deposited either 

during more tranquil times or perhaps in a similar manner to the carbonate mudstone facies by bedload 

transport as floccules (Schieber et al. 2013). Intact biogenes likely lived within the substrate, implying 

that oxygen levels were high enough within this environment to support a large fauna. Nodular 

concretions formed from the precipitation of carbonate cements along bedding planes (Mackie, 2013). 

Facies 11: Laminated Skeletal Packstone  

Facies 11 is a grey to dark grey packstone with biogenes and bioclasts (0.75 to 1.25mm in length 

on average) generally aligned parallel to bedding (Fig. 6e). Echinoderms (<45%) and brachiopods (<15%) 

are the most common biogenes in addition to rare gastropods, trilobite fragments, ostracods, conodonts, 

and phosphate intraclasts (Fig. 6f). Calcite fragments and quartz make up the silt sized fraction (0.06mm 

on average) of this facies and contain a brown matrix dominated by calcite, clay minerals, and quartz. 

Shells often align horizontal or at a slight angle to bedding forming laminations up to several centimeters 

thick. These laminations often occur as packages forming beds up to 25cm thick. Irregularly shaped dark 

brown clay lenses or thin laminae with low abundances of bioclasts occur within this facies and are 
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laterally discontinuous (Fig. 6f). In core, a wavy, sharp contact with underlying carbonate facies is often 

observed, and the contact with overlying mudstone or carbonate facies is generally gradational. 

Facies 11 Interpretation:  

The high abundance of bioclasts within this facies and erosional contact indicates that this facies 

was deposited by high energy processes. Biogenes are often found intact likely indicating that they were 

either transported short distances or lived within the environment. The great abundance of bioclasts 

and their orientation parallel to bedding reflects strong high-energy events (e.g. large storms) that 

transported and deposited bioclasts and biogenes via bed load processes. Erosion of the underlying facies 

occurred from the high energy event resulting in the sharp wavy contact. Large clay lenses within the 

bioclastic fraction are interpreted as rip-up clasts from nearby that were transported and deposited with 

the coarse bioclasts. When thin laminae of fine-grained silt and clay occur within this facies it may be a 

result of more tranquil times between storm events allowing for the deposition of this fine-grained 

material. 

  

Fig 6a: F9 Fig 6b:  F9 
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Fig. 6a: Core image of F9 dominated by grey carbonate mud with rare bioclasts. Zoophycos burrows 
seen dissecting this facies at all angles. (#16160-9412)  
Fig. 6b: Thin section scan of F9 composed almost entirely of carbonate mud. (#12785-11271.5) 
Fig. 6c: An image of F10 in core, a nodular greyish wackestone with bioclasts evenly distributed 
throughout and irregular dark brown laminae. (#8251-10384’) 
Fig. 6d: A thin section scan of F10 with an abundance of bioclasts suspended in a brown matrix. 
(#16160-9420.5) 
Fig. 6e: A core image of the laminated skeletal packstones (F11) that contain a high abundance of 
bioclasts within irregular laminae. (#12785-11278’) 
Fig. 6f: A thin section scan of laminated skeletal packstones with an abundance of bioclasts distributed 
throughout. Several clay lens that are brown in color occur within this thin section. (E385-10759.1) 

 

 

Fig 6c: F10 Fig 6d: F10 

Fig. 6e: F11 Fig 6f: F11 
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Table. 4: This table lists all facies in order with the main distinguishable features present for each 

facies. 

Facies 

 Thickness 

and 

Sedimentary 

Structures 

Upper and 

Lower 

Contact 

Silt Grains 

Mean 

Silt 

Grain 

Size 

(mm) 

Biogenes, 

Bioclasts, 

and/or Other 

Sand-Sized 

Grains 

Burrows 

F1: Graded 

Argillaceous 

Mudstone 

Laminae 

(2mm); 

Normal 

Grading  

Upper-

Sharp; 

Lower- 

Gradational 

Quartz (2%), 

Calcite (1%), 

and Micas 

(<1%) 

0.017 n/a 

Phycosiphon 

incertum isp. 

(<0.05mm) 

F2a: Massive 

Siliciclastic-

Argillaceous 

Mudstone 

Beds (5cm to 

50cm) 

Upper-

Gradational; 

Lower-Sharp 

Quartz (8-

12%), Calcite 

(1-7%), 

Micas (<1%), 

and 

Potassium 

Feldspar 

(<1%) 

0.018 

Bioclasts, 

Brachiopods, 

Conodonts, 

Agglutinated 

foraminifera 

are about 

1mm and 

make up less 

than 1% of 

facies  

Phycosiphon 

incertum isp. 

(<0.05mm) 

F2b: Massive 

Calcareous-

Argillaceous 

Mudstone  

Beds (5cm to 

50cm) 

Upper-

Gradational; 

Lower-Sharp 

Calcite (7-

18%), Quartz 

(<8%), and 

Micas (<1%) 

0.022 

Bioclasts, 

Brachiopods, 

Echinoderms,  

and 

Agglutinated 

foraminifera 

are <2mm and 

make up less 

than 2% of 

this facies 

Phycosiphon 

incertum isp. 

(<0.05mm) 

and 

Planolites 

isp. (<0.2 by 

0.03mm)  

F3: 

Bioturbated 

Pyritized 

Bioclast-

bearing 

Mudstone 

Beds (5 to 

100cm) 

Upper-

Gradational; 

Lower-

Gradational 

Calcite 

(<12%), 

Quartz 

(<7%), and 

Micas (<1%) 

0.025 

Bioclasts may 

be pyritized, 

Echinoderms, 

Agglutinated 

foraminifera, 

and 

Conodonts are 

<3mm and 

make up less 

than 4% of 

this facies 

Chondrites 

isp. (<1.5mm 

by 0.3mm) 

F4: 

Lenticular 

Mudstone 

Laminae 

thicken and 

thin laterally 

(0.2 to 5mm) 

Upper-

Sharp; 

Lower-Sharp 

and Wavy 

Clay clasts 

(50-90%), 

Quartz 

(<12%), 

Organic 

0.030 

Bioclasts, 

Brachiopods, 

Conodonts, 

Agglutinated 

foraminifera  

Planolites 

isp. (<0.7 by 

0.05mm) 
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Matter 

(<10%), and 

Calcite (5%) 

make up to 1% 

of this facies. 

F5: Bioclast-

rich Wavy 

Mudstone  

Laminae 

(1mm to 

5cm); Faint 

grading 

Upper-

Gradational; 

Lower-Sharp 

and Wavy 

Calcite (10-

15%%) and 

Quartz (<5%) 

0.031 

Echinoderms 

and 

Brachiopods 

(10 to 20%); 

Rugose corals, 

Agglutinated 

foraminifera, 

Conodonts, 

and 

Phosphate 

intraclasts 

make up less 

than 1% of 

this facies 

Planolites 

isp. (<1.5 by 

0.2mm) 

F6: 

Siliciclastic 

Siltstone 

Laminae 

(1cm) to 

Beds (5cm) 

Upper-

Sharp; 

Lower-Sharp  

Quartz (35%) 

and Calcite 

(20%) 

0.031 

Phosphate 

grains, Rip-up 

Clasts, 

Conodonts, 

Bioclasts are 

<1mm in 

length and 

make up <2% 

of this facies 

Planolites 

isp. (<1.5 by 

0.2mm) 

F7: 

Glauconitic 

Siltstone 

Laminae 

(~8mm) 

Upper-

Sharp; 

Lower-Sharp 

and Wavy 

Quartz (25%) 0.036 

Glauconite 

(20%), 

Brachiopods 

(2%), 

Echinoderms 

(2%), and 

Bioclasts (2%) 

are <1mm in 

length 

n/a 

F8: 

Calcareous 

Siltstone 

Laminae (0.8 

to 2cm) 

Upper-

Sharp; 

Lower-Sharp 

and Wavy 

Calcispheres 

(35%), 

Calcite 

(15%), and 

Quartz (15%) 

0.056 

Brachiopods, 

Phosphate 

intraclasts, 

and 

Conodonts are 

<1mm 

Planolites 

isp. (<1.5 by 

0.2mm) 
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F9: Massive 

to 

Bioturbated 

Carbonate 

Mudstone  

Beds (<3m) 

Upper-

Gradational; 

Lower-

Gradational 

Calcispheres 

(1%) and 

Quartz (1%) 

0.05 

Echinoderms, 

Brachiopods, 

Gastropods, 

and Ostracods 

are <0.5mm 

and make up < 

3% of this 

facies 

Zoophycos 

isp (<1cm) 

F10: Nodular 

Skeletal 

Wackestone  

Beds (<1m) 

Upper-

Gradational; 

Lower-

Gradational 

Calcite (10%) 0.05 

Echinoderms 

(<15%), 

Brachiopods 

(<10%), 

Bioclasts (5-

10%), 

Ostracods 

(<3%), 

Trilobites 

(<3%), and 

Conodonts 

(<1%) 

n/a 

F11: 

Laminated 

Skeletal 

Packstone  

Laminae 

(<5cm) 

Upper-

Gradational; 

Lower-Sharp 

and Wavy 

Calcite (10%) 

and Quartz 

(<1%) 

0.06 

Echinoderms 

(<45%), 

Brachiopods 

(<15%), 

Gastropods 

(<1%), 

Trilobites 

(<1%), 

Ostracods 

(<1%), 

Conodonts 

(<1%), and 

Phosphate 

Intraclasts 

(<1%) 

n/a 
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Table 5: Wells organized by county with the total thickness of each core from the base of the Scallion 

to the last siliciclastic False Bakken shale. The percentage of each facies present in each core is 

displayed. In addition, at the bottom is the number of thin sections that have each facies.  

Well # County 
F1

% 

F2a

/  

F2b

% 

F3% 
F4

% 

F5

% 

F6

% 

F7

% 

F8

% 
F9% 

F10

% 

F11

% 

A
b

se
n

t 

C
o

re
%

 

C
o

re
 

T
h

ick
n

e
ss 

(in
) 

8251 Billings 0 17 38 0 0 0 0 0 0 40 1 4 225 

18502 Billings 2 17 35 0 3 0 0 0 0 41 2 0 177 

9426/E

383 
Billings 0.

5 14 21 0 3 0 0 0 0 60 1 0 221 

12886 Billings 0 12 34 0 0.9 0 0 0 0 27 3 23 212 

7887/

B659 
Billings 

1 9 23 0 0.5 0 0 0 0 39 2 24 193 

10077

/E385 
Billings 

0 17 19 0 0 0 0 0 0 62 2 0 167 

B832 Billings 0 18 24 0 0 0 0 0 0 55 3 0 176 

8638 Burke 0 4 2 1 0 1 2 0 3 84 3 0 141 

20648 Burke 0 2 3 0 0 0.7 1 0 3 90 0 0 136 

19773 Burke 0 0 0 0 0 0.8 2 0 3 94 0 0 125 

13167 Divide 0 2 4 0 0 1 4 0 4 80 4 0 145 

17396 Divide 0 0 0 0 0 28 0 48 0 23 0 0 1138 

19709 Divide 0 3 0 0 3 0.8 2 0 3 88 0 0 128 

12785 Dunn 2 21 9 0 2 0 0 0 0 58 9 0 194 

607 Dunn 0 4 25 0.7 0.7 0 0 0 1 65 0 3 295 

22092 Dunn 0 0.9 6 2 0.9 0 0 0 4 82 4 0 228 

20453 Dunn 0 5 20 0 3 0 0 0 13 39 1 19 197 

21734 

Golden 

Valley 0 7 15 1 0 0 0 0 55 20 2 0 413 

19917 

Golden 

Valley 0 17 39 2 0.5 0 0 0 26 12 3 0 195 

24123 Mckenzie 0 4 7 0 0 0 0 0 41 43 1 3 308 

12772 Mckenzie 0 9 8 0 0.7 0 0 0 0 81 1 0 151 

29426 Mckenzie 0 8 12 0 0.6 0 0 0 0 74 3 3 154 

21966 Mckenzie 0 3 6 0 0.7 0 0 0 7 80 4 0 135 

17723 Mercer 0 0.8 20 0 0.4 0 0 0 12 67 0 0 256 

16160 Mountrail 0 5 3 0 0 1 3 0 0 80 8 0 150 

26661 Mountrail 0 5 13 0.3 0 0 0 0 36 45 2 0 376 

28036 Mountrail 0 3 7 0.8 0.3 0 0 0 21 62 2 4 364 

15889 Mountrail 0 2 6 0 0 0 0 0 22 68 2 0 176 

15986 Mountrail 0 2 5 0 0 0 0 0 8 82 3 0 196 

19472 Renville 0 2 6 0.7 0 0 0 0 9 79 3 0 303 

20002 Stark 0 11 40 0 0.5 0 0 0 0 47 1 0 190 

17272 Ward 0 5 8 0.5 0 1 2 0 4 71 8 0 191 
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27216 Williams 0 12 3 0 0 0 0 0 13 71 1 0 152 

Total Facies 

Thickness in all 

cores 11 489 1,002 22 39 335 24 548 822 4168 167 181 7808 

Total Facies 

Percentage in all 

cores 

0.

1 6.3 12.8 0.3 0.5 4.3 0.3 7.0 10.5 53.4 2.1 2.3 100 

Total Facies 

observed in thin 

section 2 

6\ 

16 15 6 6 3 1 2 1 3 4     
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FACIES ARCHITECTURE 
 
 
 

The ‘False Bakken’ interval consists of mostly siliciclastic mudstones, and towards the North, 

East, and West also intercalated limestones in its upper portion, and varies in thickness between about 0.1 

to 20m with an average thickness of 1.9m (see Table 5). The “Scallion interval”, composed of coarse-

grained carbonate facies, has a sharp contact with the underlying upper Bakken mudstone or Three Forks 

dolomitic limestone, and a gradational contact with the overlying ‘False Bakken’ (Mackie, 2013). The 

transition from coarse bioclastic limestones of the “Scallion interval” to fine-grained siliciclastic and 

carbonate mudstones of the ‘False Bakken’ indicates an overall decrease in grain size for the entire 

succession. Three alternating small-scale (0.5-1.5m thick) fining- and coarsening-upward packages are 

evident in the ‘False Bakken’ interval that can be mapped throughout the basin. These packages increase 

in areal extent from the first to third package (Fig. 7) and can be correlated across the basin (Fig. 8).  

Vertical facies transitions and stacking patterns are similar in cores of close proximity to one 

another but vary when further apart spatially. The lowermost fining-upward unit of the succession is 

indicated by the gradual transition from coarse bioclastic limestones (F10-F11) of the uppermost 

‘Scallion’ interval to bioturbated pyritized bioclast-bearing mudstones (F3) of the lower ‘False Bakken’ in 

all areas south of Renville County. Further to the north, this facies transition shows a gradual contact from 

the ‘Scallion’ coarse bioclastic limestones (F10 and F11) to glauconitic siltstones (F7), the latter 

constituting the basal ‘False Bakken’ facies. The bulk of this first fining-upward succession is made up of 

siliciclastic mudstones (F1-F4); its uppermost portion is represented by massive siliciclastic mudstones 

(F2a and F2b) in Billings, Stark, and Dunn Counties, bioturbated pyritized bioclast-bearing mudstones 

(F3) in areas outside of these counties, and glauconitic siltstones (F7) in the very northeast of the study 

area. 
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Fig. 7: Individual lines represent the contact between shales and carbonates for the coarsening and 
fining upward units, when dashed the contact is inferred. Three contacts between the siliciclastics and 
carbonates within the fining-upward units are indicated by brown lines labeled T1, T2, and T3. In 
addition, two coarsening upward units are represented by lines shaded blue and labeled R1 and R2. T1 
occurs in the lowermost part of the succession and T3 at the top. 
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Fig. 8: Cross-section from core #18502 to #17723 in which these fining- and coarsening-upward units 
are correlated across the basin. Brown=F1, F2a, F2b, F4, and F5; Red=F3, F4, F5; and Grey=F9. See 
Fig. 7 for cross-section line. 
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Overlying the first fining-upward package are three coarsening- and two fining-upward units that 

alternate with one another and display similar facies changes up-section based on location within the 

basin. In the northern, eastern, and western parts of the study area, the typical fining-upward packages are 

composed of carbonates mudstones (F9) at the base, overlain by pyritized bioclast-bearing mudstones 

(F3), and massive fine-grained siliciclastic mudstones (F2a and F2b) at the top. However, in Billings 

County and nearby the characteristic fining-upward packages show basal pyritized bioclast-bearing 

mudstones (F3) overlain by massive fine-grained siliciclastic mudstones (F2a and 2b). Characteristic 

coarsening-upward packages in the northern, eastern, and western parts of the basin have massive fine-

grained siliciclastic mudstones (F2a and F2b) at their bases which are overlain by pyritized bioclast-

bearing mudstones (F3) and carbonates mudstones (F9) at the tops. Within and near Billings County, 

carbonate mudstones are absent and the coarsening-upward successions are composed of massive fine-

grained siliciclastic mudstones (F2a and F2b) that are overlain by pyritized bioclast-bearing mudstones 

(F3). 

The three fining- and overlying coarsening-upward packages forming the ‘False Bakken’ interval 

show some distinct facies differences throughout the study area in northwestern North Dakota: graded 

argillaceous mudstones (F1) and lenticular mudstones (F4) occur only in the second and third fining- and 

coarsening-upward packages and are absent in the basal fining- and coarsening-upward unit; bioclast-rich 

wavy mudstones (F5), in contrast, occur in all three packages. Nevertheless, not every core necessarily 

shows all of the facies that generally make up the fining- and coarsening-upward packages so the 

occurrence of graded argillaceous mudstones (F1) and lenticular mudstones (F4) may be restricted to 

distinct cores. For example, graded argillaceous mudstones (F1) are only present in four cores within and 

around Billings County (Fig. 9a) while lenticular mudstones (F4) occur exclusively in the northeast and 

southwest portions of the basin outside of Billings County (Fig. 9b). Bioclast-rich mudstones (F5) occur 

throughout the basin in general but are more abundant within Billings and adjacent Counties (Fig. 9c). 

Core #17396 in the northwest of the study area is an anomaly as it contains a 22m thick succession of silt-
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rich siliciclastics (F6; F8) while this thick succession is absent east of this core; instead, several cores in 

that area contain glauconitic siltstones (F7; Fig. 9d) that are in places interbedded with siliciclastic 

siltstones (F6), and this facies generally forms the basal portion of the ‘False Bakken’ section. 

Within this succession, various facies occur as laminae intercalated into other facies. Laminated 

skeletal packstones (F11) occur within nodular skeletal wackestones (F10); however, carbonate mudstones 

(F9) have no additional facies present within them. Within the bioturbated pyritized bioclast-bearing 

mudstone facies (F3) and massive calcareous-argillaceous mudstones (F2b), lenticular (F4) and bioclast-

rich (F5) mudstones can occur as laminae in these facies; however, the abundance of these laminae (F4 and 

F5) is greater within facies 3. Finally, graded argillaceous mudstones (F1) only occur within the massive 

siliciclastic-argillaceous mudstones (F2a). 
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Maps above show the distribution of graded argillaceous mudstone facies (F1) indicated by a brown 
triangle (Fig. 9a), lenticular mudstones (F4) by orange stars (Fig. 9b), bioclast-rich wavy mudstones 
(F5) by red stars (Fig. 9c), and glauconitic siltstones (F7) by green circles (Fig. 9d). 
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DEPOSITIONAL MODEL 
 
 
 

The ‘False Bakken’ succession shows a subdivision into two distinctly different depositional 

zones, the more proximal one characterized by carbonate deposition, and the distal one by sedimentation 

of siliciclastic mudstones similar to facies models in recent and ancient carbonate systems (Burchette and 

Wright, 1992). Within these depositional zones, the facies are arranged following an energy gradient 

which assumes overall high energy in proximal, and low energy in distal settings (Fig. 10); this energy 

gradient is reflected in the overall grain size of facies: high-energy deposits show large maximum grain 

sizes and low-energy facies overall small grain sizes. The carbonate depositional zone consists of two 

distinct facies belts which are here defined as areas of deposition of similar facies: a proximal zone of 

carbonate wacke- to packstone sedimentation (FB1) consisting of dominantly wackestone facies (F10) 

with intercalated packstone laminae (F11), and a distal carbonate mudstone (F9) dominated facies belt 

(FB2) containing only minor isolated bioclasts and no other facies types (Fig. 11). The siliciclastic 

mudstone depositional zone is subdivided into three facies belts: a proximal dominantly siliciclastic 

mudstone facies belt (FB3) with abundant carbonate in the matrix and pyritized fossil debris (F3) which 

in places contains lenticular siliciclastic mudstones (F4) and bioclast wavy siliciclastic mudstones (F5), a 

massive siliciclastic mudstone facies belt (FB4) with calcareous debris and quartz grains (F2b) that also 

shows lenticular siliciclastic mudstones (F4) and bioclast wavy siliciclastic mudstones (F5), and a 

massive siliciclastic mudstone facies belt (FB5) with quartz grains and rare calcareous debris (F2a) that 

shows laminae of intercalated very fine-grained siliciclastic mudstones (F1). The size, abundance, and 

type of burrow varies between the various facies belts with large Zoophycos isp. tracks exclusively found 

churning through the carbonate mudstones (FB2); Chondrites isp. and Planolites isp. are found mainly 

within the most proximal siliciclastic facies belt (FB3); and small Phycosiphon incertum isp. are the only 

tracks within the most distal massive siliciclastic facies belt (FB5).  
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Fig. 10: Idealized depositional model that displays where each facies belt and the intercalated laminae 
occur from distal to more proximal settings on the low inclined ramp. This model is representative for 
both transgressions and regressions as all facies belts are thought to be present throughout the succession. 
A decrease in bioturbation, grain size, and carbonate occurs from proximal carbonates to distal 
siliciclastics. Types of burrows are labeled where they occur on this model. 

 

Following this general facies distribution (Fig. 10), the five facies belts represent distinct 

positions on the low-inclined margin of the Williston epicontinental basin that most likely reflect different 

depths of deposition, distances from the shoreline which influenced the potential delivery of grains to any 

given location within the basin, and oxygen concentrations limiting infaunal and benthic life. Starting at 

the proximal end of what is preserved in the lowermost Lodgepole Formation, the carbonate wackestones 

(F10) with intercalated packstone laminae (F11) show an alternation of fair-weather and storm influence 

on deposition, and therefore likely represent sedimentation in a mid-ramp position (Burchette and Wright, 

1992) above storm wave base as indicated by the packstone laminae (F11) interpreted as tempestites. 

Further basinwards, a lack of packstone laminae (F11) and low abundances of bioclasts within the 

carbonate mudstones (F9) indicate little storm influence on deposition, and an abundance 
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of Zoophycos isp. burrows up to 1cm in diameter reflect that oxygen concentrations were significant 

enough to support numerous large organisms. However, crossing the threshold from carbonates to 

siliciclastic mudstones, the siliciclastic facies belt adjacent to the carbonate mudstones (mainly F3 with 

laminae of F4 and F5) again reflects high-energy influence on deposition, most likely by storms or similar 

currents (see Schieber 2016). It is therefore likely that also the carbonate mudstones (F9) were subjected 

to storm deposition. The facies belt basinward of the most proximal siliciclastic mudstones, the massive 

calcareous-argillaceous mudstone (F2b), still records the influence of storm waves with the presence of 

some intercalated bioclast-rich wavy mudstones (F5). Nevertheless, other indicators of high-energy 

events also occur in places such as lenticular mudstones (F4). The most distal facies belt consisting of 

massive siliciclastic-argillaceous mudstones (F2a) with some intercalated graded argillaceous mudstone 

laminae (F1) shows mostly enigmatic sedimentary conditions based on its nearly completely bioturbated 

nature with only the fine grain size of the graded argillaceous mudstones (F1) showing deposition from 

suspension. The bulk of the succession, though, is thought to be deposited by bed-load transport based on 

its grain size that is coarser than the suspension laminae; it is therefore interpreted to be largely deposited 

by storm events and associated bed-load depositional processes (see Li and Schieber 2018) prior to 

bioturbation. The deepest of the siliciclastic facies belts exclusively shows sub-millimeter Phycosiphon 

incertum fecal strings reflecting that most likely dysoxic conditions prevailed during deposition allowing 

for small organisms to move through the muddy substrate (Egenhoff and Fishman, 2013). 
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Fig. 11: A schematic map of where facies belts occur relative to one another within the basin. The 
aerial extent of each facies belt changes for each sequence and the distribution presented here is based 
on the location of each facies belt for the first sequence. 

In this study, the ‘False Bakken’ is interpreted to consist of three transgressive and regressive 

sequences based on grain-size trends throughout measured sections in this particular stratigraphic interval 

(Figs. 7 and 8). Nevertheless, these three sequences are not made up of exactly the same facies. The fact 

that lenticular mudstones occur only in the upper two but not in the lowermost sequence indicates that 

sediment starvation did not occur throughout the entire succession. As lenticular mudstones (F4) are 

generally interpreted to reflect condensation (Schieber et al 2010; Borcovsky et al. 2017), their 

distribution almost entirely in the eastern portion of the study area reflects sediment starvation mostly in 
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this part of the basin and not in most of its western portion (Fig. 9b). However, the two sections to the 

extreme southwest in Golden Valley County containing lenticular mudstones (F4) indicate a locally 

different starved environment, either on a basin high, or in an otherwise sheltered setting that is confined 

to this part of the basin. Similarly, the graded argillaceous mudstone laminae (F1) are restricted to 

exclusively the central portion of the basin (Fig. 9a) and do not occur in any of the other sections as they 

are deposited only in the most distal settings. This seems reasonable as suspension laminae will be easiest 

formed and best preserved in distal settings, and the center of the basin during ‘False Bakken’ deposition 

seems adequate for conserving these sediments. Glauconitic siltstones (F7) are restricted to the very 

northeastern portion of the basin and exclusively occur in the first sequence (Fig. 9d) indicating 

condensation of the depositional environment (e.g. Amorosi 1995) during this time, however, only in this 

particular location of the basin. Although glauconitic siltstones (F7) are only present within the first 

sequence unlike lenticular mudstones (F4), both occur in the northeastern portion of the basin suggesting 

this part of the basin was even more sheltered from sedimentation than the east in general, leading to 

extreme condensation during ‘False Bakken’ deposition exclusively in that area. 

The elevated thickness of the siltstone facies (F6; F8) as well as high amounts of quartz silt 

exclusively in the central portion of Divide County (in the very northwest of the study area) indicates a 

nearby source of siliciclastic input. While this one well (#17396) is located close to the basin area where 

glauconite is abundant (Fig. 12), its characteristics indicate rather high amounts of sedimentation and not 

condensation like the adjacent wells that contain glauconite facies. It is therefore assumed that the central 

part of Divide County was located close to a sediment input area, likely representing a distal delta 

environment (cf. Angulo and Buatois, 2012, for the underlying upper Bakken shale). Nevertheless, the 

glauconite-bearing succession must have been completely sheltered from its neighbors further in the 

northwest not allowing any sediment to be transported to these glauconite-bearing successions during the 

first cycle. This could either indicate a barrier (see Fig. 12), e.g. a tectonic element, subdividing the 

northern Divide County well from its eastern neighbors by blocking any sediment flow to the east, or be 
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caused by the Coriolis force preferentially transporting sediment to the right in the northern hemisphere 

(Duke, 1990). Some tectonic influence on facies distribution seems, however, likely as the northeastern 

most well (#19472) in the study area, located east of the glauconite-bearing wells, does not contain any 

glauconite, and was therefore likely not sediment-starved.  

The distribution of facies throughout the ‘False Bakken’ clearly shows this unit to be overall 

transgressive (Fig. 7). This is shown in the maximum extent of the transgressive siliciclastic mudstones 

(cf. Loutit et al. 1988) that cover an increasingly larger area starting with the transgressive siliciclastic 

mudstones of sequence 1 (T1) which are overstepped by the siliciclastic mudstones of sequence 2 (T2) 

showing a wider areal distribution, and the siliciclastic mudstones of sequence 3 which are present in all 

wells used in the present study. The maximum regressions, however, are not as well defined as the 

transgressions. The data suggest, though, that the two regressions reflected in the succession seem to 

show the position of the carbonate-siliciclastic mudstone transition in a similar place for sequence 1 and 

sequence 2. The sea-level fall during sequence 3 must have been of major amplitude as it terminated 

black shale deposition in the North Dakota portion of the Williston Basin for the lower Mississippian 

succession and therewith defined the end of the ‘False Bakken’. 

The ‘False Bakken’ facies study also shows an interesting aspect of basin geometry reflected in 

the distribution of carbonate and siliciclastic mudstone facies: throughout ‘False Bakken’ deposition the 

basin center was located in western Dunn and northern Billings Counties and may have extended 

westwards through Golden Valley County into Montana. The basin center remained stable during ‘False 

Bakken’ sedimentation yet presents a southwards shift of the basin center from the underlying Bakken 

Formation where it was near the borders of Williams, McKenzie, and Mountrail Counties (Borcovsky et 

al. 2017, and references therein). It is unclear what caused this shift. However, throughout Bakken times 

the Williston Basin was connected to the Elk Point Basin in southern Saskatchewan (Gerhard et al. 1982; 

LeFever and Anderson, 1984; Gaswirth et al. 2013) and tectonic subsidence in the middle Lodgepole 

caused the Williston Basin to gain access to the Cordilleran sea to the west through the Central Montana 
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trough and abandon its previous connection to the Elk Point Basin (Bjorlie, 1979; Gerhard et al. 1982; 

Gaswirth et al. 2013). It is therefore inferred that this tectonic subsidence thought to occur in the middle 

Lodgepole actually occurred during sedimentation of the ‘False Bakken’ interval of the lower Lodgepole 

causing a southward shift of the basin depocenter from Bakken to lower Lodgepole times. 
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DISCUSSION 
 
 
 

Facies in Siliciclastic Mudstones 

This study assumes that there are six different siliciclastic mudstone facies that make up the 

succession of the ‘False Bakken’ in the Williston Basin in contrast to merely two described before 

(Mackie 2013; Stroud, 2011). The question remains whether these additional facies are warranted, and 

what they achieve in order to describe the sedimentology of the ‘False Bakken’ in better detail. 

In this contribution, the siliciclastic mudstone facies are grouped into three facies belts that are 

placed adjacent to two carbonate facies belts but in waters deeper and further away from land than the 

carbonates. These three siliciclastic mudstone facies belts, are characterized by decreasing grain sizes 

further distally but at the same time also differ significantly in their biogenic and carbonate content. The 

further away from the shoreline a facies is the less carbonate mud it contains as the carbonate is thought 

to be produced in shallow water (e.g. Schlager 2003) and then transported downslope, probably 

preferentially during storms. The identification of three siliciclastic mudstone facies belts and three 

intercalated facies allows for a much more detailed and precise look at the ‘False Bakken’ succession in 

comparison to previous models that identified only two siliciclastic facies. Therefore, this more detailed 

approach provides a way to easily differentiate proximal from distal siliciclastic sediments within the 

succession. Furthermore, the proximal portion contains many more high-energy features not displayed in 

distal siliciclastic mudstones: the bioclast-rich wavy mudstones (F5) interpreted as storm laminae get less 

prominent further downslope and are not found in the most distal massive siliciclastic-argillaceous 

mudstones (F2a). Suspension-derived graded argillaceous mudstones (F1) occur exclusively in the most 

distal facies belt (FB5-massive siliciclastic-argillaceous mudstones) thereby highlighting its deep-shelf 

nature and it being out of reach of some of the storm waves during deposition. All in all, the mudstone 

subdivision proposed in this contribution therefore invites a much more detailed look at the ‘False 

Bakken’ interval, and the proposed model allows for predictions of facies occurrences throughout the 
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study area that would not have been possible otherwise. It is therefore suggested that a detailed 

documentation of siliciclastic mudstone facies, as similar as they may seem macroscopically, can elevate 

the understanding of any succession from being merely fine-grained to reflecting significant shifts in 

depositional energy, and associated sedimentary structures and grains. 

Carbonate-Shale Transitions 

During ‘False Bakken’ deposition, the boundary between carbonate mudstones (F9) and 

siliciclastic mudstones (F2a, F2b, and F3) are observed in two of the three cycles documented for this 

stratigraphic interval. Both facies belts, not only the carbonates (e.g. Burchette and Wright, 1992), are 

well documented in core and thin section. It therefore seems reasonable to compare the processes 

interpreted for both sides of this shale-carbonate transition, and highlight differences and similarities in 

order to get an idea for the preservation and expression of e.g. storm-induced structures in the 

sedimentary record. 

In the carbonates, storm beds are only preserved in the wackestone facies belt, here interpreted to 

be the most proximal (Fig. 10), but not in the adjacent carbonate mudstone facies belt. Consequently, it is 

assumed that the lack of storm beds in carbonate mudstone facies reflects a lack of storm wave reworking 

for the carbonate mudstones, and therefore storm wave base should have been placed at the top of the 

carbonate mudstone facies belt; yet, most models place it at the transition from carbonates to siliciclastic 

mudstones assuming that the mudstones, following an antiquated view, have been deposited from 

suspension whereas carbonates are thought to have formed in shallow water (see above). Close 

examination of the siliciclastic mudstone facies present in the ‘False Bakken’ interval, however, 

contradicts this concept of suspension deposition in nearly all of the mudstones: suspected suspension-

derived sediments are in fact quite rare and restricted to exclusively the most distal facies belt. The most 

proximal two siliciclastic facies belts, however, show abundant bioclast lags that are here (and in Mackie 

2013) interpreted to represent storm beds characterized by shells and other bioclast debris. 
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The problem highlighted by this work is that storms are evident in siliciclastic mudstone facies in 

the ‘False Bakken’ of the Williston Basin until at least its second deepest facies belt (Fig. 10), and the 

carbonate mudstones which do not reflect any storm activity are bordering facies belts with abundant 

storm indicators on both sides, the deep and the shallow end. This indicates that the carbonate mudstones 

most likely do not preserve storm-formed structures, e.g. shell lags present in both of the adjacent facies 

belts, and the question remains why this is the case.  

It may be suggested that carbonate mudstones were deposited on structural highs; therefore, storm 

deposits may not have been preserved. However, there is little evidence for this as carbonates occur 

mostly in areas that are not associated with structural highs. It is well known that carbonate mud can be 

transported by bed load processes (Schieber et al. 2013) and form e.g. ripples. These bed load processes 

may be masked by subsequent intense bioturbation from organisms that entirely burrowed through the 

fine-grained carbonate and destroyed any sedimentary structures originally present in the sediment. 

However, carbonate particles of mostly bioclastic debris are present in greater abundances in siliciclastic 

mudstones than in the carbonate mudstones; therefore, it seems reasonable to assume that the carbonate 

facies belt originally contained a greater abundance of bioclastic debris. 

Up to centimeter-size carbonate grains, biogenic in origin, can be completely corroded by 

biogenic processes governing micritization (bioerosion, e.g. Hallock, 1988; Peterhänsel and Pratt, 2001) 

and has been shown to occur for the Palliser Platform and several other examples in the rock record (e.g. 

the Prague Basin, Vodráqková et al. 2013; Adriatic Carbonate Platform; Zamagni et al. 2008; Ándara 

Massif; Merino-Tomé et al. 2009). Although not yet suggested to have taken place within the Williston 

Basin, micritization is suspected to occur within the carbonates of the ‘False Bakken’ interval and likely 

in other places with carbonate-siliciclastic mudstone transitions. 

The process most likely works in the following way: the carbonate mudstones are generally seen 

as the most distal carbonate facies belt (e.g. Burchette and Wright, 1992). The further distal an 

environment is the less sediment will likely be transported to that location as it is deeper and requires 
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higher energy to be delivered that far from the shoreline. Carbonate mudstones therefore represent the 

area where low amounts of bioclastic debris will be delivered. Nevertheless, based on the facies 

characteristics of adjacent facies these carbonates most likely also contained more bioclasts. Because of 

the low sedimentation rates in this distal setting the carbonate grains remain at or near the sea floor, where 

bioeroding organisms thrive from the influx of river-borne nutrients (Hallock, 1988; Peterhänsel and Pratt 

2001). This increase in nutrient availability is confirmed by the abundance of calcispheres, suggested to 

be of algal origin, that form blooms associated with high nutrient concentrations in the water column 

(Hart, 1991; Scholle and Ulmer-Scholle, 2003). The bioclasts are degraded at the sea floor thereby 

producing the carbonate mud that is so characteristic for this facies belt. The storm beds degrade from this 

process and the newly produced mud will be mixed in with the carbonate mud already in place. Only silt-

size bioclastic remnants in the carbonate mudstones still reflect that this facies was originally not 

exclusively a mudstone but most likely contained some coarser-grained storm beds. It is therefore 

assumed that in similar settings with terrestrial input and its associated nutrient influx, as indicated by the 

presence of e.g. biotite and calcispheres, more distal carbonate mudstones likely contained storm events 

that were not preserved due to an increase in bioerosion of bioclastic grains exposed on the sea floor.  

Position of Storm Wave Base and Implications for Carbonate Facies Models 

This study shows that distinct storm beds are still detectable in the siliciclastic mudstones in the 

second deepest facies belt of the Williston Basin (Fig. 10). The classical position of the storm wave base 

at the lower boundary of the carbonate facies belts is therefore not corroborated by this study as at least 

two of the siliciclastic mudstone facies belts have distinctive storm beds and other indicators of erosional 

processes (e.g. erosion of clay clasts from the sea floor, see above). Commonly, storm wave base, the 

depth at which storms frequently influence sedimentation on the seafloor, is used to define the transition 

from mid- to outer-ramp depositional settings and can vary significantly in depth depending on the basin 

type (Burchette and Wright, 1992). During deposition of the ‘False Bakken’, many of the siliciclastic 
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mudstone facies are thought to reflect storm deposition, and therefore the position of the storm wave base 

has to be significantly deeper than the carbonate-siliciclastic mudstone facies boundary. 

In the Recent, the storm wave base is located as deep as 250m in the open Atlantic, and even in 

the “sheltered” Gulf of Mexico around 200 m based on buoy measurements (Peters and Loss, 2012). It is 

suspected that the intracratonic Williston Basin in the Mississippian was much more sheltered than the 

Gulf of Mexico today and most likely experienced a much shallower storm wave base; however, where 

that was located is not clear. Based on comparisons with the modern Persian/Arabian Gulf (Purser and 

Seibold, 2012) which is also a sheltered setting, the carbonate-siliciclastic mudstone transition is 

approximately at 70 m water depth. It can therefore be assumed that the Williston Basin may have 

possessed this facies transition at a similar water depth or, because of its even more protected nature, even 

further up in the water column. In any case, this facies transition cannot have been much deeper than 

some tens of meters, and the Williston Basin as a whole was probably not deeper than about 100m 

considering that the inclination of an intracratonic basin is significantly less than 1° (Burchette and 

Wright, 1992). 

The findings of this study therefore have important implications even for carbonate facies 

models: it is suspected that there are more examples in the rock record that will contain bioclast storm 

horizons in the shales adjacent to and more distal than the carbonate mudstones. Consequently, storm 

wave base should not be placed at the carbonate-siliciclastic mudstone facies boundary but is most likely 

located somewhere in the siliciclastic mudstones if it is not below the deepest point of the basin center, 

and therewith not within a given succession at all. Storm wave bases as deep as 250m in open ocean 

settings seem to limit identifying this boundary in many successions in the rock record, and it clearly will 

be located significantly deeper than is assumed for many carbonate units throughout geological time, and 

all climatic zones. 
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Glauconite 

This study assumes that the glauconite in facies 7 defines a part of the basin that is very restricted, 

and found exclusively in sequence one of the three sequences that make up the ‘False Bakken’ 

succession. However, as the ‘False Bakken’ is shown to be overall transgressive as indicated by the 

overstepping of transgressive fine-grained strata in the three sequences (Fig. 7), condensation should be 

common in the transgressive portions of all three sequences and not just in the first one. The exclusivity 

of glauconite in only the lower ‘False Bakken’ sequence therefore remains enigmatic. 

Nevertheless, there are other sedimentary features that are indicative of sedimentary starvation, 

e.g. the clay clasts (Schieber et al. 2010; Borcovsky et al. 2017). These features are common in both the 

‘False Bakken’ sequences two and three indicating that sediment starvation was indeed still a major factor 

during the middle and upper part of ‘False Bakken’ deposition. Alternatively, the distribution of 

glauconitic sediment may be patchy so that certain areas, e.g. where the drill cores were taken, may not 

show glauconite even though it may be present in the sediments. Nevertheless, the abundance of 

glauconite in sequence one of the ‘False Bakken’ interval seems to reflect that starvation was strongest in 

this part of the succession, and it is worth exploring why. 

Sedimentation of the Lodgepole Formation started with carbonates throughout North Dakota, 

showing a distinct coarsening towards the boundary of the ‘False Bakken’ interval, interpreted as a 

lowering of sea-level. Sea-level change must have been significant in order to transition from the 

‘Scallion’ carbonate wacke- to packstones underlying the ‘False Bakken’ to the siliciclastic mudstones 

characterizing this last black shale interval in the lower Mississippian succession. The two subsequent 

sea-level changes of the ‘False Bakken’ interval reach an overall larger area than the first one; however, 

they did not show such a significant change in basin configuration as the first sea-level fluctuation. The 

glauconite may therefore be a result of strong sediment starvation related to a very prominent sea-level 

rise during sequence one. 
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Fig. 12: All cores are labeled and any cores with a green dot contain glauconitic siltstones (F7). Anticline 
structures from Novak and Egenhoff, (2018) are overlain onto this map. 

Nevertheless, another factor may have influenced glauconite to be entirely restricted to the 

northeast of the study area. The initial sea-level rise during sequence one formed a gulf extending 

eastwards and then northwards into the central and northern-central part of the study area. The glauconite 

is only occurring at the very end of this gulf when it was newly formed, and in an area especially isolated 

from the rest of the Lodgepole Sea. It is therefore likely that the isolated position of sediments containing 

glauconite has added to this area being especially sediment-starved. 
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Finally, tectonic structures mapped out in the basin for middle Bakken times may have influenced 

sediment patterns during ‘False Bakken’ deposition, too. The two northwestern-most wells in Divide 

County (17396 and 19709; Fig. 12) are separated by a lineament that could have been forming a barrier 

during ‘False Bakken’ deposition and thereby altering sediment delivery to areas now occupied by 

glauconitic-siltstones. Alternatively, as the Williston Basin was situated on the northern hemisphere 

during Lodgepole Formation deposition, the main sediment flow was likely preferentially shedding 

sediment to the west thereby starving areas located towards the east of well 17396. Either one of these 

factors, or a combination of any or all of them was likely responsible for glauconitization during the 

initial sequence of ‘False Bakken’ deposition. Glauconite sediments therefore represent not only a 

testimony to strong sediment starvation but at the same time indicate a distinct stratigraphic level within 

‘False Bakken’ stratigraphy. 

Oxygen Availability in the Water Column and Sediment during ‘False Bakken’ deposition 

Burrows of several types and/or fecal strings are present in the ‘False Bakken’ interval throughout 

all facies. Nevertheless, the abundance of burrow types and the intensity of burrowing change from more 

proximal to distal settings with proximal sediments showing high and distal low to moderate abundances 

of burrows and burrowing (Fig. 10). It is well known that carbonate facies are generally well oxygenated 

(Wilson, 1975). However, siliciclastic mudstones are generally not seen as strongly bioturbated, yet some 

ichnospecies exist (e.g. Schieber 2003; Borcovsky et al. 2017): Planolites isp. have been identified in a 

number of siliciclastic mudstone units (e.g.  Alum Shale, Egenhoff et al. 2015; upper Bakken Shale, 

Egenhoff and Fishman 2013, Borcovsky et al. 2017), and Chondrites isp. is also known from several 

shale units (e.g. Greenhorn and Niobrara Formation, Archer and Hattin, 1984; Posidonienschiefer 

Formation, Bromley and Ekdale, 1984; Upper Kellwasser interval, Boyer et al. 2014). Nevertheless, 

transitioning from carbonates to siliciclastic mudstones, diameters of burrow structures become smaller, 

from several millimeters in the carbonates to about 0.05 millimeters in the siliciclastic mudstones. This 

size reduction is interpreted to reflect a decrease in oxygen availability at the sediment-water interface 
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(Bottjer and Gorsline, 1984; Savrda and Bottjer, 1987). This deficit in oxygen availability is also reflected 

in the decrease of burrow types within the sediment: in the most distal depositional facies belt, 

only Phycosiphon fecal strings (Egenhoff and Fishman, 2013) are present yet they indicate that the 

environment could not have been completely anoxic as an opportunistic fauna was able to survive. It is 

therefore concluded that the carbonate-siliciclastic mudstone transition most likely represents a reduction 

in oxygen level reflected in smaller faunas whereas oxygen values decreased dramatically towards the 

deepest portions of the basin. Yet, they most likely never reached anoxic levels as shown by the presence 

of fecal strings in the distal most facies. 
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CONCLUSIONS 
 
 
 

The ‘False Bakken’ interval of the lower Lodgepole Formation in the Williston Basin is 

comprised of 9 siliciclastic facies and 3 carbonate facies: these are graded argillaceous mudstone (F1), 

massive siliciclastic-argillaceous mudstone (F2a), massive calcareous-argillaceous mudstone (F2b), 

bioturbated pyrtitized bioclast-bearing mudstone (F3), lenticular mudstone (F4),  bioclast-rich wavy 

mudstone (F5), siliciclastic siltstone (F6), glauconitic siltstone (F7), calcareous siltstone (F8), massive to 

bioturbated carbonate mudstone (F9), nodular skeletal wackestone (F10), and laminated skeletal 

packstone (F11). Grain size, carbonate content, and bioturbation increase successively from F1 to F11 

throughout the succession. 

The ‘False Bakken’ shows three fining- and coarsening-upwards units : (1) a fining upward trend 

from carbonate mudstones (F9) to bioturbated pyritized bioclast-bearing mudstones (F3) to massive 

siliciclastic mudstones (F2a and F2b) and (2) a coarsening upward trend from carbonate mudstones (F9) 

to bioturbated pyritized bioclast-bearing mudstones (F3) to massive siliciclastic mudstones (F2a and F2b).  

Bioclast-rich wavy mudstones (F5) and lenticular mudstones (F4) are commonly intercalated 

within bioturbated pyritized bioclast-bearing mudstones (F3) and massive calcareous-argillaceous 

mudstones (F2b), while graded argillaceous mudstones (F1) are only found within massive siliciclastic-

argillaceous mudstones (F2a). These facies (F1, F4, and F5) are not always present within the three 

coarsening- and fining- upward units and only occur locally within the basin. Bioclast-rich wavy 

mudstones (F5) are present within all three coarsening- and fining- upward units and distributed 

throughout the basin. Lenticular mudstones (F4) and graded argillaceous mudstones (F1) are only present 

within the upper two coarsening- and fining- upward units; however, the graded argillaceous mudstones 

(F1) are exclusive to Billings County while lenticular mudstones (F4) occur mostly in the northeastern 

portion of the study area. With each successive fining upward unit, siliciclastic mudstones occupy 

increasingly larger areal extents. Siltstone facies are restricted to the northern part of the basin with a 
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thick succession of siltstones present only in core #17396 in the very northwest of the study area. Just east 

of this core, however, are several cores that contain glauconitic siltstones (F7). 

From these coarsening- and fining- upward units, five facies belts were identified based on 

similar depositional characteristics: the (FB1) nodular skeletal wackestone, (FB2) the carbonate 

mudstone, (FB3) the pyritized bioclast-bearing mudstone, (FB4) the calcareous-argillaceous mudstone, 

and (FB5) the siliciclastic-argillaceous mudstone. The five facies belts are interpreted to represent a 

transect from proximal to distal settings during ‘False Bakken’ sedimentation with the carbonates being 

deposited in more proximal settings and siliciclastics in distal settings. These facies belts are consequently 

arranged along a depositional transect that shows a decrease in grain size and carbonate abundance from 

proximal to distal basin locations and is accompanied by a decrease of bioturbation abundance and 

diversity in the same direction. The most distal facies shows normally-graded fine-grained laminae (F1) 

that reflect suspension settling in quiet waters, intercalated into massive siliciclastic-argillaceous 

mudstones (F2a). High-energy reworking and deposition of fine-grained sediment, in contrast, is 

represented by bioclast-rich wavy mudstones (F5) and lenticular mudstones (F4) thought to show storm 

reworking and bed-load transport. The distribution of these features in all but the most distal facies belts 

shows how far storm waves could reach during ‘False Bakken’ deposition. Storm wave base therefore has 

to be placed either between the lowermost two siliciclastic mudstone facies belts or could have reached 

down even to the deepest basin position as suspension settling laminae are rare within the distal facies 

belt.  

The burrowing trends detected in the ‘False Bakken’ succession show that siliciclastic mudstone 

deposition did not occur in an anoxic environment as proposed for many black shale successions. Instead, 

the presence of burrows and fecal strings even in the more distal basin areas show most likely dysoxic 

conditions throughout ‘False Bakken’ deposition, with the increase in burrow diversity and abundance 

up-dip most likely reflecting an increase in oxygenation of the basin towards proximal areas. 
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The three fining and coarsening-upward successions are interpreted to reflect three transgressions 

and regressions in the ‘False Bakken’ succession. Each of the transgressions occupied a successively 

larger area showing that the ‘False Bakken’ interval was overall transgressive. These transgressions 

flooded a carbonate-dominated shelf in western North Dakota with the first transgression resulting in the 

largest amount of change in facies distribution interpreted to reflect the highest amount of sea-level rise. 

Nevertheless, all three transgressions resulted in sediment starvation with only the first one leading to the 

local development of glauconitic siltstones (F7) at the most sediment-starved end of a newly developed 

gulf in northwestern North Dakota. Lenticular mudstones (F4) deposited during the two later 

transgressions are interpreted as resulting from the local reworking of siliciclastic mudstones because of 

sediment starvation in the eastern portion of the basin. The limited extent of siltstone facies (F6; F8) in 

the northwestern most part of the basin is thought to indicate local sediment input into the basin. It is 

suspected that structural elements confined sediment distribution to the east; however, the local 

occurrence of siltstone laminae in glauconitic siltstones (F7) seems to reflect that at times of major 

sediment input these tectonic barriers could be overcome.  
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APPENDIX I: MEASURED SECTIONS 
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APPENDIX II: THIN SECTION DESCRIPTIONS 

Facies 2a 

 
#12886-10505.8 (Facies 2a): This thin section is composed entirely of massively bedded facies 2a. It 

contains silt-sized detrital quartz, calcite, and mica distributed throughout a dark brown matrix. No 

biogenes or bioclasts >0.05mm are present within this thin section. Phycosiphon isp. fecal strings can 

be seen throughout this facies. For grain sizes and modal abundances see Tables 2 and 3. 
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#12785-11273.6 (Facies 2a): This thin section is massively bedded with silt grains distributed evenly 

throughout. These silt grains are mostly detrital quartz with some calcite in a dark brown to black 

matrix. Bioclasts are rare and often oriented parallel to bedding. In places, Phycosiphon isp. fecal 

strings can be seen bisecting the matrix. For grain sizes and modal abundances see Tables 2 and 3. 

 

 
#9426-10782.1 (Facies 2a): This thin section is comprised of massively bedded facies 2a with detrital 

silt distributed evenly throughout a dark brown to black matrix. The silt grains are mostly composed 

of quartz with some calcite present. Bioclasts are oriented parallel to bedding but are rare throughout 

this thin section. For grain sizes and modal abundances see Tables 2 and 3. 
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B832-10337.5 (USGS; Facies 2a): Silt grains account for about 15% of this thin section with detrital 

quartz (~10%) and calcite (~3%) making up the majority of the silt grains in addition to rare micas. 

These silt grains are distributed evenly throughout a dark brown to black matrix. Faint laminations of 

facies 2a are present within this thin section. No biogenes or bioclasts are present within this thin 

section. 

 

 



  

109 

 

 
E385-10755 (USGS; Facies 2a): This thin section is comprised of silt grains (~15%) distributed within a 

dark brown matrix. Detrital quartz makes up the majority of the silt sized fraction in addition to some 

calcite. Furthermore, bioclasts are present in places although rare.  
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Facies 2b 

 
#15986-10494.1 (Facies 2b): This facies is massive and comprised of calcite, quartz, and mica silt 

distributed evenly throughout a mostly dark brown matrix. In addition, large brachiopod shell 

fragments and some echinoderms can be seen distributed evenly throughout. Sub-millimeter size 

roundish grains consisting of pyrite occur throughout and in places the matrix is darker in color due to 

a high abundance of pyrite. Phycosiphon isp. fecal strings bisect this thin section. For grain sizes and 

modal abundances see Tables 3 and 4. 

 

 
#8251-10369.6 (Facies 2b): This thin section is composed of massively bedded facies 2b.  Silt grains 

consist of calcite, quartz, and mica that are randomly distributed in a dark brown matrix. Brachiopod 
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shell fragments occur in places with the long axis parallel to bedding. In places, Phycosiphon isp. fecal 

strings bisect this facies. For modal abundances see Table 3 and for SEM data see Appendix 3. 

 

 
#8251-10375.1 (Facies 2b): Massive bedding is evident in this thin section which has a silt fraction 

composed of mostly calcite with some quartz. In addition, brachiopods and echinoderms are rare and 

occur within a dark brown matrix. In the upper portion of the thin section, a light brown concretion is 

evident. For grain sizes and modal abundances see Tables 3 and 4. 

 

 
#8251-10377 (Facies 2b): Calcite and quartz silt grains occur throughout this thin section within a dark 

brown to black matrix. Brachiopods and bioclastic material are present throughout this facies. Two 
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concretions can be seen along the edge of the upper half of the thin section and are light brown in 

color. For grain sizes and modal abundances see Tables 3 and 4. 

 

 

 

 
#12886-10508.8 (Facies 2b): This facies is comprised of silt grains consisting of calcite, quartz, and 

mica that are distributed evenly throughout a brown matrix. Brachiopods and agglutinated 

foraminifera can be seen within this thin section, however, both are rare. Planolites isp. burrows are 

present within this thin section and have little silt within them. For grain sizes and modal abundances 

see Tables 3 and 4 and for SEM data see Appendix 3. 
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#18502-10496.7 (Facies 2b): This thin section has an abundance of calcite silt with some quartz grains 

intermixed in a dark brown matrix that is massively bedded. Rare large bioclasts are present, 

however, coarse silt grains appear to be the remains of broken bioclasts. Calcispheres make up a 

small portion of the silt-sized fraction. For grain sizes and modal abundances see Tables 3 and 4. 

 

 
#19917-10534.7 (Facies 2b): This thin section is composed of laminae of facies 2b that have about 

20% silt grains distributed throughout a brown matrix. Calcite accounts for about 15% of these silt 

grains in addition to about 5% quartz. In the upper portion of the thin section, several large bioclasts 

are present, however, broken bioclasts make up a portion of the silt sized fraction. Planolites isp. 
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occur throughout this facies and are light brown in color. Phycosiphon isp. also occur within this 

facies. 

 

 
#18502-10502.1 (Facies 2b): This thin section has calcite and quartz silt present within a dark brown 

to black matrix. Bioclasts are present throughout, however, occur in higher concentrations in the 

upper half of the thin section. Echinoderms and agglutinated foraminifera can be identified but are 

rare in the thin section. In the upper left-hand portion of the thin section a light brown concretion is 

present with a similar concentration of silt and bioclasts as the surrounding matrix. For grain sizes and 

modal abundances see Tables 3 and 4. 
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#18502-10500.8 (Facies 2b): This thin section is massively bedded and comprised entirely of facies 2b 

with a silt-sized fraction that has more detrital calcite that quartz silt. Although not abundant, 

bioclasts are present throughout this facies. Light brown concretions are present and often irregularly 

shaped with sharp edges. Planolites isp. burrows are present within this thin section although not 

common. For grain sizes and modal abundances see Tables 3 and 4. 
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#12785-11276 (Facies 2b): Silt grains are distributed throughout this thin section and mostly 

composed of calcite. This thin section has two massive beds of this facies with light brown concretions 

extending several centimeters across the thin section that appear to grow from burrows. Bioclasts are 

present in low concentrations throughout this facies and are slightly more abundant within the 

concretions. For grain sizes and modal abundances see Tables 3 and 4. 

 

 

 
#12785-11274.6 (Facies 2b): This thin section has a matrix that varies in color from brown to black in 

places. Calcite silt is present throughout in addition to some quartz and micas. Brachiopods and 

agglutinated foraminifera can be identified within this thin section but mostly bioclasts are present. 

Sub-millimeter-sized components consisting of pyrite are distributed throughout and occur more 

often where the matrix is black and are less abundant when it is brown. For grain sizes and modal 

abundances see Tables 3 and 4. 
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#9426-10785.9 (Facies 2b): This thin section is composed of silt grains with more calcite than quartz 

silt in a light to dark brown matrix. Light brown concretions are present throughout and comprised of 

the same abundance of silt grains as the surrounding dark brown matrix, but the concretions have 

slightly more bioclasts. For grain sizes and modal abundances see Tables 3 and 4. 
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E383-10782 (USGS; Facies 2b): This facies is massively bedded with more calcite (~10%) than quartz 

silt (~4%). In addition, both brachiopod and echinoderms are distributed throughout this facies in a 

brown matrix. Planolites isp. burrows can be identified in places as they are lighter in color than the 

surrounding matrix. 

 

 
B659-10775 (USGS; Facies 2b): This thin section is comprised of several laminae with detrital silt 

grains distributed throughout evenly. Silt grains (~25%) are composed of detrital calcite (~18%), some 

quartz (~6%), and rare micas. In addition, bioclasts are present in places and are generally oriented 

parallel to bedding. These grains occur within a brown matrix. 
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Facies 3 

 
#20453-10251.6 (Facies 3): This thin section is comprised of a massive bed of facies 3 containing some 

brachiopod debris, however, most bioclasts have been pyritized. Although not in great 

concentrations, detrital calcite and quartz silt are distributed evenly throughout the light brown 

matrix that has more calcite than quartz within it. Chondrites isp. burrows occur parallel to bedding. 

For grain sizes and modal abundances see Tables 3 and 4. 
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#12886-10509 (Facies 3): This thin section is composed of bioclasts that are evenly distributed 

throughout a light brown matrix. Most biogenes can be identified as echinoderms and brachiopods 

composed of calcite, however, some are replaced by pyrite. In addition, silt is present and comprised 

mostly of calcite with minor amounts of quartz. Chondrites isp. burrows occur parallel to bedding and 

often in close proximity to one another. For grain sizes and modal abundances see Tables 3 and 4. 
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#12886-10509.7 (Facies 3): Bioclasts are present in most of this thin section with some of them being 

pyritized. In addition, calcite silt is distributed throughout with some quartz silt. Light brown 

concretions occur within this thin section and have a slightly higher concentration of bioclasts when 

compared to the surrounding rock. Chondrites isp. burrows are present and elongated parallel to 

bedding; they often occur in close proximity to one another. For grain sizes and modal abundances 

see Tables 3 and 4. 

 

 



  

122 

 

 
#12785-11277.10 (Facies 3): This thin section is dominated by a light grey to brown matrix with some 

silt grains throughout in low modal abundances. The silt-sized fraction is composed mostly of calcite 

with some quartz grains. Pyritized bioclasts are present throughout this thin section in addition to 

calcareous bioclasts that are randomly oriented. This thin section has a high abundance of Chondrites 

isp. burrows bisecting through the matrix. For grain sizes and modal abundances see Tables 3 and 4. 
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#21734-10358 (Facies 3): Facies 3 makes up this thin section and is bisected by Chondrites isp. 

burrows. In addition, bioclastic material (~3%) is distributed throughout the entire thin section with a 

slightly higher concentration near the top. Calcispheres and agglutinated foraminifera are present but 

rare within this thin section. Silt grains account for about 15% of this facies and are comprised of 

detrital calcite with rare quartz grains. The silt and bioclast grains occur within a light brown matrix 

that likely has more calcite than quartz. 

 

 
#19917-10533.8 (Facies 3): This thin section has bioclasts distributed throughout with some of the 

bioclasts being pyritized. This thin section has about 10% silt grains with detrital calcite accounting for 

9% of the silt in addition to 1% quartz. These grains are distributed throughout a light brown matrix. 

Chondrites isp. burrows occur in clusters in various places throughout this thin section.  
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B832-10338.9 (USGS; Facies 3): This thin section contains detrital calcite (~10%) and some quartz 

(~5%) silt in a light brown matrix. Large pyritized bioclasts are present in addition to brachiopods. 

Chondrites isp. burrows occur parallel to bedding within this thin section.  
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E383-10781.3 (USGS; Facies 3): This thin section is massively bedded and composed entirely of facies 

3. Both brachiopods and echinoderms can be identified, however, other bioclasts are pyritized. 

Bioclasts are often oriented at random angles to bedding. In addition, detrital calcite (~12%) and 

quartz (~3%) silt are distributed throughout this facies. Chondrites isp. burrows are abundant and 

occur in clusters. 
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B659-10772.7 (USGS; Facies 3): This thin section is comprised of both bioclasts (~2%) and silt (~18%) 

that occur within a brown massive matrix. Echinoderms can be identified but most grains are 

disarticulated bioclasts or have been pyritized. The silt grains are mostly composed of detrital calcite 

(~12%) in addition to some quartz (~3%). Chondrites isp. burrows are present in various areas of this 

thin section. 
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B659- 10775.6 (USGS; Facies 3): This thin section is massive and comprised of bioclasts (~6%) and 

calcite (~15%) silt distributed throughout a light brown matrix. Echinoderms can be identified; 

however, most grains are bioclasts with some having been pyritized. Silt grains do make up a portion 

of this thin section and are mostly comprised of detrital calcite (~15%) with some quartz (~3%) silt.  
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E383-10785 (USGS; Facies 3): This thin section has calcite (~8%) and quartz (2%) silt within a mostly 

light brown matrix; however, in places the matrix is a darker black color because of an increase in 

pyrite. Bioclasts are rare and can be pyritized although pyritization is not common.  

 

 
E385-10754.5 (USGS; Facies 3): This thin section is massively bedded with up to ~2% bioclasts present 

with some being pyritized. In addition, calcite (~8%) silt is distributed evenly throughout with some 

quartz (3%) silt as well. Bioclasts are often randomly oriented relative to bedding. Chondrites isp. are 

present throughout this thin section. 
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Facies 4 

 
#28036-9698.4 (Facies 4): This thin section is composed of multiple laminae up to a centimeter thick 

that extend across the entire thin section. These laminae are comprised of silt grains that vary in 

abundance from ~20 to 30% in addition to ~60-75% clay clasts oriented parallel to bedding. These clay 

clasts are comprised of calcite, quartz, and feldspars and are often outlined by brown organic matter. 

In places, bioclasts may be present and oriented parallel to bedding. See table 4 for grain size data. 

 

 
#26661-9327.3 (Facies 4): This thin section is comprised of multiple laminae with clay clasts 

throughout. These clay clasts account for about 60 to 70% of these laminae in addition to silt grains 

and organic matter. These laminae often have sharp contacts with one another. See Appendix 3 for 

SEM data. 



  

130 

 

 

 
#21734-10369.9 (Facies 4): This thin section is made up of multiple laminae of facies 4 containinf 

varying abundances of clay clasts. Light laminae that thicken and thin laterally are comprised almost 

entirely of clay clasts (90-100%) with little silt. These clay clasts are made up of calcite, quartz, and 

feldspars and have organic matter occurring around the clay clasts. However, other laminae are also 

present that have silt grains (~20-40%) intermixed with clay clasts (60-80%). These clay clasts are 

oriented parallel to bedding in laminae with high amounts of silt, however, they also may be inclined 

to bedding forming foresets within laminae dominated by clay clasts. 
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#607-10487 (Facies 4): This thin section consists entirely of facies 4 laminae that extend across the 

entire thin section and have sharp contacts with one another. Laminae are up to 5mm thick and 

composed of clay clasts (~60%), quartz (~10%), and calcite (5%) silt. Elongate brachiopod shell 

fragments occur within these laminae and are aligned parallel to bedding. In places, there are laminae 

that extend laterally for several centimeters that have a dark matrix with sub-millimeter rounded 

pyrite grains. 

 

 

 
#22092-9879 (Facies 4): This thin section is made up of several laminae of facies 4 that extend across 

the entire thin section and have sharp contacts with one another. These laminae have clay clasts 

(~70%) oriented parallel to bedding intermixed with quartz (~10%) and calcite (~5%) silt. In addition, 

dark organic matter, elongate brachiopods, and echinoderms occur in these laminae. For SEM data 

see Appendix 3. 
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Facies 5 

 
#19709-9250.3 (Facies 5): This entire thin section has biogenes and bioclasts distributed throughout. 

In places, concentrations of bioclasts are more abundant along bedding planes. Biogenes such as 

echinoderms and brachiopods can be distinguished; however, most grains have been broken and are 

no longer identifiable. All grains occur within a dark brown matrix. For grain sizes and modal 

abundances see Tables 3 and 4 and see Appendix 3 for SEM data. 
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E383-10784.7B (USGS; Facies 5): The top half of this thin section is comprised of bioclasts within a 

brown matrix. Some biogenes such as brachiopods and echinoderms are present. In addition, 

phosphate grains occur but are rare within this thin section.  
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Facies 6 

 
#17396-7942.1 (Facies 6): This thin section is composed of several laminae that range in thickness 

from 1 to 4cm. These laminae have about 55% silt grains with quartz silt (~30%) and calcite silt (~25%) 

being distributed evenly throughout. In addition, phosphate grains, brown in color, are present in 

places and oriented parallel to bedding. Conodonts are rare. Contacts between laminae are sharp and 

planar across the entire thin section. See table 4 for grain size data and see Appendix 3 for SEM data. 
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Facies 8 

 
#17396-7904.8 (Facies 8): This thin section is comprised of several calcareous siltstone laminae that 

extend across the entire thin section and are up to several centimeters thick. Silt grains account for 

about 50 to 60% of this thin section with calcispheres accounting for about 35% of this thin section in 

addition to bioclast fragments (~15%) and quartz (~15%). Phosphate grains occur in places and are 

associated with coarse grained bioclasts in places. Planolites isp. are present in places and lighter in 

color than the surrounding matrix. See table 4 for grain size data. 
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Facies 9 

 
#12785-11271.5 (Facies 9): This thin section consists of massively bedded carbonate mudstone. 

Carbonate mud accounts for 98% of this thin section. Calcispheres and quartz silt are rare accounting 

for less than 2% of this facies and are often around 0.05mm in diameter. In addition, several bioclasts 

are present within the silt sized fraction.  
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Facies 10 

 
#16160-9420.5 (Facies 10): This thin section is comprised of about 25-30% bioclasts distributed 

throughout a carbonate mud matrix. Biogenes such as echinoderms, brachiopods, ostracods, 

trilobites, and gastropods can be identified within this thin section. Calcite silt is also present 

throughout the matrix and accounts for ~10% of this thin section. In places, the abundance of 

bioclasts is more dense or coarser grained in comparison to other places. 

 

 
B659-10782.3 (USGS; Facies 10): This thin section has bioclasts present throughout that vary in 

abundance from 20 to 30% and are present within a carbonate mud matrix. These bioclasts are 

randomly oriented relative to bedding. Echinoderms and brachiopods can be identified within this 

thin section in addition to trilobites and some ostracods.  
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Facies 11 

 
B659-10777 (USGS; Facies 11): Several laminae that are comprised of about 50 to 60% bioclasts are 

present within this thin section. Biogenes such echinoderms, brachiopods, rugose corals, and 

trilobites can be identified when not disarticulated. These bioclasts occur within a light grey to brown 

carbonate mud matrix. In addition, irregular dark brown clay lenses with silt grains are also present 

within this thin section. 

 



  

139 

 

 
E385-10759.1 (USGS; Facies 11): This thin section has a high abundance of bioclasts (<60%) that are 

distributed throughout. In places, irregular dark brown clay lenses are present and have only a few 

bioclasts within them. Biogenes are identifiable and are mostly echinoderms. 
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#20453-10254.7 (Facies 11): This thin section is dominated by bioclast-rich laminae that extend across 

the entire thin section and have a sharp wavy basal contact. Echinoderms, brachiopods, and rugose 

corals can be identified in addition to an abundance of bioclasts with biogenes and bioclasts 

accounting for ~50% of this thin section. In certain laminae, there are areas with a high density of 

bioclasts compared to other portions of the same laminae. Thin laminae that are not continuous are 

also present and have only few bioclasts present. Rare glauconite grains occur in this facies.   
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Multiple facies in one thin section  

 
#19709-9251 (Facies 6):  Laminae extend across this thin section and have both a sharp, wavy upper 

and basal contact with facies 7. Facies 6 laminae are comprised of mostly quartz silt (~30%) and 

calcite silt (~20%) distributed evenly throughout a brown matrix.  

#19709-9251 (Facies 7): Facies 7 laminae extend across this thin section and have both a sharp, wavy 

upper and basal contact with facies 6. These laminae can be easily distinguished by the abundance of 

glauconite grains (~15-20%). In addition, quartz silt is present in concentrations of up to 25% and 

occurs within a light brown matrix. For point counts on grain sizes see Table 4. 
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#12785-11275: (Facies 2a): This facies comprises 98% of this thin section and is easily distinguished by 

the dark brown to black matrix with mostly quartz silt distributed throughout in addition to some 

calcite and micas. Bioclasts are very rare and only present near the very top of the thin section. 

Phycosiphon isp. fecal strings are easily identified throughout this thin section. For grain sizes and 

modal abundances see Tables and 4. 

#12785-11275: (Facies 1): This facies only occurs as two thin laminae (<2mm) that extend across the 

entire thin section. These laminae have a distinctly smaller silt-size fraction compared to the 

underlying and overlying facies 2a, but are still comprised of mostly quartz with some calcite and 

micas. These fine-grained laminae show a faint fining-upwards; however, in places this fining upwards 

is difficult to distinguish because Phycosiphon isp. fecal strings bisect through the entire lamina in 

places. For point counts on grain sizes see Table 4. 

See Appendix 3 for SEM images and data. 
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#15986-10494.5: (Facies 3) This thin section has bioclasts distributed throughout with some being 

pyritized. In addition, detrital calcite and quartz silt also occur throughout this thin section. In places, 

Chondrites isp. burrows occur parallel to bedding. For grain sizes and modal abundances see Tables 3 

and 4. 

(Facies 2b) The lower half of this thin section is comprised of a massive bed with mostly calcite silt and 

some bioclasts within a brown matrix. Irregular Z-shaped concretions can be seen in places and are 

lighter in color than the surrounding matrix. 
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#9426-10786.6: (Facies 3) The lower quarter of this thin section is comprised of a bed that is light 

brown in color with few pyritized and calcareous bioclasts. In addition, the silt grains are mostly 

detrital calcite with rare quartz. Chondrites isp. are common throughout this bed and often slightly 

darker in color than the surrounding matrix. 

#9426-10786.6: (Facies 5) The upper three fourths of this thin section has a bed up to several 

centimeters thick with an abundance of bioclasts within a brown matrix. Biogenes such as 

echinoderms, brachiopods, and agglutinated foraminifera can be identified. A large phosphate 

intraclast that is brown in color occurs in the upper center of the thin section. In addition to the sand-

sized grains, both detrital calcite and quartz are intermixed throughout this bed. The basal contact 

with the underlying facies 4 bed is sharp and wavy. For grain sizes and modal abundances see Tables 3 

and 4. 
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#9426-10783.1: (Facies 2b) Laminae from 1 to 3cm thick make up the majority of this thin section. 

These laminae have sharp planar contacts with one another and extend across the entire thin section. 

Silt grains are present throughout all laminae and comprised of about 15% calcite and 5 to 10% 

quartz. More elongate calcite silt is oriented parallel to bedding. These grains occur within a brown 

matrix. 

(Facies 5) In the lower half of this thin section, there is one lamina that extends across the entire thin 

section and is composed of brachiopod fragments within a dark brown matrix. 
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E383-10786 (USGS): (Facies 5) The top half of this thin section is composed of mostly bioclasts. 

Brachiopod and echinoderms can be identified. In addition, two large (~2cm) phosphate intraclasts 

are present within this thin section. Rip-up clasts composed of calcite and quartz silt in a brown matrix 

are also present but have little to no bioclasts.   

(Facies 3) The lower half of the thin section is a massive bed of facies 3 that has mostly calcite silt in a 

light brown matrix. A few bioclasts are present and have been pyritized. Chondrites isp. are present in 

places. 
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#19917-10534.5: (Facies 4) Several laminae of facies 4 are present within this thin section. In the 

lower part of the thin section a light lamina of this facies is present. This lamina thickens and thins 

laterally and is composed of 95% clay clasts in addition to some silt grains and organic matter. Other 

laminae of this facies are up to 2mm thick with ~30% quartz and calcite silt intermixed with clay clasts 

(~60%).  

(Facies 5) In the center of the thin section a lamina with a sharp wavy basal contact shows an 

abundance of echinoderms present within it in addition to detrital calcite and quartz silt grains in a 

brown matrix. 
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#17396-7915.8: (Facies 6): The lower half of this thin section is comprised of a massive bed of this 

facies which has about 55% silt that is dominated by quartz silt (35%) and detrital calcite silt (20%) in a 

dark brown matrix. Rip up clasts composed of silt grains in a light brown matrix are present within the 

thin section and often oriented parallel to bedding. Planolites isp. burrows occur throughout. 

(Facies 8): The upper half of this thin section is dominated by calcispheres (~35%) with some quartz 

(~20%) silt distributed throughout a light brown matrix. In addition, a phosphate intraclast several 

millimeters in diameter is present at the base of this facies. Several laminae comprise the upper half 

of this thin section. Planolites isp. burrows are present throughout this portion of the thin section. 
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#12785-11278.3 (USGS): (Facies 10) The lower two-thirds of this thin section is comprised of a 

massive bed of facies 10. Bioclasts are distributed evenly throughout and randomly oriented. Bioclasts 

account for about 20 to 25% of this bed and are distributed throughout a carbonate mud matrix. In 

places, echinoderms, brachiopods, and gastropods can be identified, however, most grains are 

disarticulated and not identifiable. In addition, detrital calcite accounts for about 8% of this facies.  

(Facies 11) This facies occurs as several laminae in the upper portion of this thin section and contains 

up to 60% bioclasts in places. Echinoderms are most common with brachiopods also being present. 

These bioclast-rich laminae have irregular clay laminae that can extend across a single thin section but 

often do not. The basal contact with facies 10 is sharp and wavy. 
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APPENDIX III: SEM IMAGES AND DATA 

Facies 1 

 

 
#12785-11275-(F1) Fine grained lamina at bottom half of thin section left of pyrite.  

Pt1 Calcite 

Pt2 Quartz 

Pt3 Sphalerite 

Pt4 Pyrite 
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#12785-11275-Zoomed in image of same lamina (F1).  

Pt5        Quartz 

Pt6 Calcite 

Pt7 Carbon (Likely epoxy) 

Pt8 Apatite Replacing Calcite 

Pt9 Calcite 

Pt10 Muscovite  

Pt11 Calcite 

Pt12 Pyrite 
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#12785-11275-Matrix of lamina (F1) 

Pt13 Calcite 

Pt14 Quartz 

Pt15 Illite 

Pt16 Kspar 

Pt17 Everything and OM 
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Facies 2a 

 
#12785-11275: Facies 2a coarse grains 

Pt18 Calcite  

Pt19 Calcite  

Pt20 Biotite  

Pt21 Kspar  

Pt22 Calcite  

Pt23 Quartz  

Pt24 Calcite  

Pt25 Biotite  

Pt26 Sphalerite  

Pt27 Quartz  

Pt28 Biotite-Likely Metamorphic because Chlorite comes in 
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#12785-11275: Matrix within Facies 2a 

pt29 Calcite  

pt30 Quartz  

pt31 Quartz  

pt32 Mixture Illite-like clay 

pt33 Mixture Illite-like clay 

pt34 Calcite and Clay  

pt35 Biotite Fe oxide in clay-Biotite on its way to chlorite 

pt36 Illite and OM  

pt37 Apatite   

pt38 Calcite  

pt39 Calcite  
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#12785-11276: Phycosiphon Fecal String in Facies 2a- More OM and slighlty finer grained. Appears 

that some clays are going perpendicular to clays on the side. 

pt40 Dolomite  

pt41 Dolomite-Fe-rich 

pt42 Clay Mixture- With Vanadium 

pt43 Quartz  

pt44 Calcite  
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#12785-11275: Facies 2a cements 

pt45 Calcite 

pt46 Pyrite 
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#12785-11275: Facies 2a cements and grains. 

pt47 Pyrite 

pt48 Pyrite 

pt49 Calcite 

pt50 Quartz 

pt51 Illite 
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#12785-11275: Fecal pellet? In facies 2a 

Pt52 Phosphate 

Pt53 Phosphate 
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#12785-11275: Facies 2a 

Pt92 Biotite 

Pt93 Biotite 
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Facies 2b 

 
#8251-10369.6: Coarser grains of Facies 2b 

Pt63 Quartz  

Pt64 Quartz  

Pt65 Calcite Mg-rich 

Pt66 Illite  

Pt67 Pyrite  

Pt68 Epoxy  

Pt69 Dolomite  
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#8251-10369.6: Zoomed in on Planolites near the knotch at the top of thin section in Facies 2b 

Pt70 Dolomite 

Pt71 Calcite 

Pt72 Calcite 
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#8251-10369.6: Matrix of Facies 2b 

pt73 Quartz  

pt74 Dolomite  

pt75 Calcite  

pt76 Quartz  

pt77 Chlorite  

pt78 Clay-Calcite/Clay mix 

 

 

 

 

 

 

 

 

 

 



  

163 

 

Facies 3 

 
#12886-10509: Matrix of facies 3 

pt79 Calcite  

pt80 Quartz  

pt81 Illite to Muscovite 

pt82 Chlorite  

pt83 Quartz  
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#12886-10509: Composition of agglutinated foraminifera in facies 3. 

pt87 Kspar  

pt88 Quartz  

pt89 Quartz  

pt90 Clay-Clay supported in matrix not much organic matter in the center 

pt91 Clay  

pt92 Quartz  
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Facies 4 

 
#26661-9327.3: Facies 4 with clay clast outlined by organic matter 

pt96 Organic matter  

pt97 Calcite with clays 

pt98 Quartz with clays 

pt99 Quartz  

pt100 Calcite  

pt101 Kspar  

pt102 Pyrite  
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#26661-9327.3: Coarse grains within Facies 4 lamina 

pt103 Calcite 

pt104 Calcite 

pt105 Calcite 

pt106 Chlorite 

pt107 Calcite 

pt108 Calcite 

pt109 Pyrite 

pt110 Calcite 

pt111 Quartz 

pt112 Dolomite 
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#26661-9327.3: Light band just above dark clay lamina under knotch in facies 4 

pt113 Calcite 

pt114 Apatite 

pt115 Dolomite 

pt116 OM 

pt117 Calcite 

pt118 Illite 

pt119 Rutile 

pt120 Calcite 

pt121 Chlorite 

pt122 Chlorite 
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#26661-9327.3: Matrix of facies 4 

pt123 Clay 

pt124 Calcite 

pt125 Dolomite 

pt126 Clay 

pt127 Quartz 

pt128 OM 

pt129 Quartz 

pt130 Pyrite 

pt131 Clay 

pt132 Clay 

pt133 Kspar 

pt134 Calcite 
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#22092-9879: Composition of matrix in facies 4. 

pt217 Quartz 

pt218 Clay 

pt219 Calcite 

pt220 Quartz 

pt221 Clay 

pt222 Quartz 

pt223 Pyrite 

pt224 Clay 

pt225 Clay 
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#22092-9879: Within Facies 4 lamina 

pt227 Clay  

pt228 Organic matter  

pt229 Calcite and Clay 

pt230 Calcite  

pt231 Quartz  

pt232 Clay  
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#22092-9879: Matrix of Facies 4 laminae 

pt233 Kspar 

pt234 Dolomite 

pt235 Dolomite 

pt236 Quartz 

pt237 Calcite 

pt238 Rutile 

pt239 Chlorite 

pt240 Calcite 
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Facies 5 

 
#19709-9250.3: Calcisphere in facies 5 

pt188 Calcite  

pt189 Kspar  

pt190 Calcite And Kspar 

pt191 Quartz  

pt192 Kspar  

pt193 Pyrite  

pt194 Quartz  

pt195 Quartz  
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#19709-9250.3: Matrix in upper lighter half of thin section of facies 5 

pt196 Quartz  

pt197 Calcite  

pt198 Clay  

pt199 Quartz  

pt200 Albite  

pt201 Illite and Muscovite 

pt202 Quartz  

pt203 Clay  

pt204 Clay and Calcite 
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#19709-9250.3: Matrix in bottom darker half of facies 5 

pt206 Calcite and Clays 

pt207 Quartz  

pt208 Kspar  

pt209 Calcite and Clays 

pt210 Kspar  

pt211 Illite  

pt212 Quartz  

pt213 Kspar  

pt214 Quartz  

pt215 Calcite and Chlorite 

pt216 Clay  
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Facies 6 

 
#17396-7915.8: Coarse grains within the lower half of this thin section in facies 6 

pt159 Calcite 

pt160 Dolomite 

pt161 Calcite 

pt162 Quartz 

pt163 Calcite 

pt164 Calcite 

pt165 Calcite 

pt166 Quartz 

pt167 Pyrite 

pt168 Calcite 

pt169 Dolomite 

pt170 Dolomite 
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#17396-7915.8- Matrix of lower half of the thin section within facies 6. 

pt171 Dolomite  

pt172 Everything- Calcite/Clay/Pyrite 

pt173 Clay-Calcite 

pt174 Quartz  

pt175 Quartz  

pt176 Rutile-Clay and Calcite 

pt177 Chlorite  and Calcite 

pt178 Chlorite and Calcite 

pt179 Clay  

pt180 Clay  

pt181 Calcite  

pt182 Calcite  

pt183 Quartz  

pt184 Calcite  

pt185 Clay  

pt186 Dolomite  

pt187 Rutile  
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Facies 8 

 

 
#17396-7915.8: Planolites burrow within Facies 8. 

pt135 Calcite 

pt136 Quartz 

pt137 Calcite 

pt138 Calcite 

pt139 OM 

pt140 Dolomite 

pt141 Quartz 

pt142 Calcite 

pt143 Calcite 
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#17396-7915.8: Matrix within facies 8 

pt 144 Calcite 

pt 145 Calcite 

pt 146 Pyrite 

pt 147 Calcite 

pt 148 Quartz 

pt 149 Calcite 

pt 150 Quartz 

pt 151 Calcite 

pt 152 Quartz 

pt 153 Calcite 

pt 154 Calcite 

pt 155 Dolomite 

pt 156 Rutile 

 

 

 


