THESIS

'FALSE BAKKEN' INTERVAL- SEDIMENT PATTERNS AND DEPOSITIONAL ARCHITECTURE AT THE FACIES BOUNDARY BETWEEN SILICICLASTIC MUDSTONES AND CARBONATES, LODGEPOLE FORMATION, MISSISSIPPIAN IN THE WILLISTON BASIN, ND

Submitted by

Joel Spansel

Department of Geosciences

In partial fulfillment of the requirements

Fort the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2020

Master's Committee:

Advisor: Sven Egenhoff

Sally Sutton Joe Von Fischer Copyright by Joel Parker Spansel 2020

All Rights Reserved

ABSTRACT

'FALSE BAKKEN' INTERVAL- SEDIMENT PATTERNS AND DEPOSITIONAL ARCHITECTURE AT THE FACIES BOUNDARY BETWEEN SILICICLASTIC MUDSTONES AND CARBONATES, LODGEPOLE FORMATION, MISSISSIPPIAN IN THE WILLISTON BASIN, ND

The lateral facies transition on deep shelves between carbonates and siliciclastic mudstones is largely enigmatic. Based on detailed facies descriptions and interpretations, this study explores which processes have shaped the sedimentary rocks on both sides of this lithological divide, and adds to our understanding of processes operating on deep shelves in general. Both siliciclastic and carbonate rocks of the 'False Bakken' and 'Scallion' intervals of the lower Lodgepole Formation in the Williston Basin, ND, can be grouped into twelve facies: these facies are graded argillaceous mudstone (F1), massive siliciclastic-argillaceous mudstone (F2a), massive calcareous-argillaceous mudstone (F2b), bioturbated pyrtitized bioclast-bearing mudstone (F3), lenticular mudstone (F4), bioclast-rich wavy mudstone (F5), siliciclastic siltstone (F6), glauconitic siltstone (F7), calcareous siltstone (F8), massive to bioturbated carbonate mudstone (F9), nodular skeletal wackestone (F10), and laminated skeletal packstone (F11). These facies are here presented in order of increasing grain size, carbonate content, and bioturbation from F1 to F11. They are arranged in three fining- and coarsening-upward units that can be identified throughout the basin within the succession.

These twelve facies are interpreted to represent distinct processes on a low-inclined shelf system with carbonate occupying the proximal, and siliciclastic mudstones the distal portions of this transect. An overall decrease in energy is reflected from the proximal carbonate to distal siliciclastic facies in this sedimentary system. Nevertheless, most of the mudstone facies still reflect high energy processes operating within the distal portions of the basin; in fact, only one mudstone facies is interpreted to reflect suspension settling under tranquil conditions. Therefore, this study suggests that storm wave base is best placed within the distal siliciclastic mudstones instead of in the proximal carbonates. Carbonate

ii

mudstones, deposited above storm wave base but lacking tempestite deposition are therefore interpreted as having been subject to intense degradation of storm-derived bioclasts. A decrease in oxygen concentration is inferred from proximal carbonates to distal siliciclastics as indicated by the decrease in size and type of burrows; yet, the presence of burrows within the most distal facies belt indicates that at least dysoxic conditions prevailed throughout the Williston Basin during the deposition of the 'False Bakken'.

Three transgressions and regressions are identified within this succession based on laterally correlated facies patterns and indicate an overall increase in sea level from the beginning to the end of 'False Bakken' times. Sediment starvation occurred in the northeastern and/or southwestern portions of the basin as indicated by the presence of glauconitic siltstones and/or lenticular mudstones at various locations within the succession. However, a source of sediment input is interpreted to be located in the northwestern part of the basin based on a high abundance of detrital silt. In addition, a shift in the basin depocenter southwards from Bakken to lower Lodgepole times is reflected in this succession most likely mirroring an increase in subsidence south of Mountrail County during 'False Bakken' deposition.

ACKNOWLEDGEMENTS

I would like to thank the SEPM Foundation for funding a portion of my research in pursuit of my master's thesis. I also owe a special thanks to Sven Egenhoff for dedicating a substantial amount of his time to me throughout my entire time here at Colorado State University from teaching me about shale and carbonate sedimentology, to guiding me in my thesis work, and for always being an enjoyable person to work with and talk to. In addition, I would like to thank my committee members Dr. Sally Sutton and Dr. Joe Von Fischer for their insight and revisions and general support during my thesis work.

I owe a thanks to Heather Lowers at the USGS for providing both her expertise and SEM machine to allow me to collect data for my thesis work. I also would like to thank Kent Hollands at the NDGS Core Center for organizing the cores, obtaining samples for me, and transporting me to and from the core center during my time spent in North Dakota. I would also like to thank members of my research group, James Van Hook and Aleks Novak, for the fun times spent in and out of the office as well as for their help and useful input throughout my thesis work. Finally, I would like to thank all the other grad students in the department who made my time here in Colorado such an enjoyable and fun experience.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF FIGURES	vi
INTRODUCTION	1
GEOLOGIC SETTING	3
METHODS	6
FACIES	10
Siliciclastic Facies of the False Bakken 'Interal'	10
Carbonate Facies of the False Bakken 'Interal'	23
Carbonate Facies of the Scallion 'Interval'	24
FACIES ARCHITECTURE	33
DEPOSITIONAL MODEL	
DISCUSSION	46
Facies in Siliciclastic Mudstones	46
Carbonate-Shale Transitions	47
Position of Storm Wave Base and Implications for Carbonate Facies Models	49
Glauconite	51
Oxygen Availability in the Water Column and Sediment during 'False Bakken' depositi	on53
CONCLUSIONS	55
REFERENCES	
APPENDIX I: MEASURED SECTIONS	64
APPENDIX II: THIN SECTION DESCRIPTIONS	106
APPENDIX III: SEM IMAGES AND DATA	150

LIST OF FIGURES

Figure 1: Stratigraphic Column	2
Figure 2: Regional Map of Core Locations and Structural Highs	4
Figure 3a: Facies 1 and 2a in a thin section scan	14
Figure 3b: SEM image of facies 2a matrix	14
Figure 3c: <i>Phycosiphon incertum</i> isp. fecal strings in facies 2a	15
Figure 3d: Thin section scan of facies 2b	15
Figure 3e: Cross-polarized image of agglutinated foraminifera	15
Figure 4a: Core image of F3	19
Figure 4b: SEM image of F3 matrix	19
Figure 4c: Plane-polarized image of <i>Chondrites</i> isp. in F3	19
Figure 4d: Core image of brown F4 laminae	19
Figure 4e: Thin section scan with F4 laminae thickening and thinning laterally	20
Figure 5a: Core image of F5 lamina within F3	22
Figure 5b: Thin section scan of F5 lamina	22
Figure 5c: Thin section scan of thin F5 lamina	23
Figure 5d: Thin section scan of F6 and F7 laminae	23
Figure 5e: Thin section scan of F6 and F8 laminae	23
Figure 6a: Core image of F9	26
Figure 6b: Thin section scan of F9	26
Figure 6c: Core image of F10	27
Figure 6d: Thin section scan of F10	27
Figure 6e: Core image of F11	27
Figure 6f: Thin section image of F11	27
Figure 7: Map with contacts between shales and carbonates for coarsening- and fining-upward units.	34
Figure 8: Cross-section from A to A'	35
Figure 9a: Areal distribution of F1 laminae	38
Figure 9b: Areal distribution F4 laminae	38
Figure 9c: Areal distribution of F5 laminae	38
Figure 9d: Areal distribution of F7 laminae	38
Figure 10: Idealized depositional model	40
Figure 11: General map of facies belts	42
Figure 12: Areal distribution of F7 laminae on structural high map	52

INTRODUCTION

The lateral facies transition from carbonates to adjacent siliciclastic mudstones in distal areas remains completely enigmatic and surprisingly underexplored. Most carbonate literature focuses on shallow-marine limestones, be it reefs (e.g., Hubbard et al. 1990; Pomar, 1991; Ritter and Grammer, 2017), lagoons (e.g., Colby and Boardman, 1989; Randazzo and Baisley, 1995; Beanish and Jones, 2002; Klostermann and Gischler, 2015), the shallow shelf (e.g., Nelson et al. 1988; Rankey, 2004), or a ramp system (e.g., Martin et al. 1996; Brandano and Corda, 2002; Pomar et al. 2004). The step from carbonate producing platforms to equivalent facies signatures in adjacent basins is not a far one, so calci-turbidites are similarly well-explored (e.g. Reijmer et al. 1991; Kenter, 1991).

In recent years, siliciclastic mudstones have also received significant attention (Schieber et al. 2007; Schieber and Southard, 2009; Schieber et al. 2010; Macquaker et al. 2010; Wilson and Schieber, 2014), and current-induced processes in these environments once believed to be entirely tranquil have been explored in great detail (e.g. Egenhoff and Fishman, 2013; Borcovsky et al. 2017; Li and Schieber, 2018). However, the intersection where these two rocks, the carbonates and the siliciclastic mudstones, meet has been severely underexplored (e.g. Burchette and Wright 1992). This is insofar surprising as many deep shelves in the world, in the Recent as well as in ancient examples, exhibit this particular transition. This study will therefore propose a model of how such a transition looks in the geological record, and how to unravel sedimentological details to characterize such a facies transition that is likely ubiquitous since carbonates started to form a distinct environment on many shelves worldwide in the Proterozoic (Grotzinger, 1989).

The main unit under study is the 'False Bakken', a siliciclastic mudstone succession intercalated into the lower portion of the Mississippian Lodgepole Formation; in addition, the underlying skeletal wackestones to packstones of the 'Scallion' interval are also assessed (Fig. 1; Mackie, 2013). Based on conodont biostratigraphy, deposition of the lower Lodgepole occurred during the *Siphonodella crenulate*

Zone in the Tournasian Stage and is suggested to have commenced prior to the Tournasian-Visean boundary, although the upper boundary is not well defined due to a lack of conodont data (Holland et al. 1987; Hogancamp and Pocknall, 2018).

Fig. 1: Stratigraphic column from the Devonian Bakken Formation to the Mississippian Charles Formation modified from Borcovsky et al. (2017). Conodont biozones from Hogancamp and Pocknall, (2018).

GEOLOGIC SETTING

Covering an area of 300,000km², the Williston Basin is an intracratonic basin that extends across a large portion of North Dakota, the northwestern portion of South Dakota, the eastern portion of Montana, and the southern portion of Saskatchewan and Manitoba in Canada (Gerhard et al. 1982; Kerr, 1988; Anna et al. 2010). Sedimentation, mainly controlled by sea level fluctuations and episodic, slow subsidence, began in the Cambrian and continued into the Quaternary with the accumulation of about 4,875m of sediments in the deepest section of the basin in northwestern North Dakota (Kerr, 1988; Gaswirth and Marra, 2015). A lack of thick siliciclastic sequences and abundance of carbonates in the Paleozoic indicate the basin was isolated from major orogenic events (Kerr, 1988; Gaswirth et al. 2013), although local structural highs such as the Billings Anticline, Burleigh High, Cedar Creek Anticline, Foster High, and Stutsman High are suggested to have been active highs during the late Devonian-early Mississippian (Ballard, 1963; LeFever and Crashell, 1991; Grover, 1996) in addition to other trends not formerly named (Novak and Egenhoff, 2019; Fig. 2). Paleogeographic reconstructions place the Williston Basin of North America just north of the equator at the end of the Devonian and early Mississippian (Scotese, 1994; Blakey, 2003).

The Mississippian Madison Group reaches a maximum thickness of 610m, conformably overlies the Bakken, and is comprised of carbonates and rare shales of the Lodgepole, anhydrite-bearing carbonates of the Mission Canyon, and evaporites of the Charles Formations (Fig. 1; Carlson and Anderson, 1965; Kerr, 1988). Prior to deposition of the Lodgepole, the Bakken Formation was deposited from Late Devonian to Early Mississippian times (Holland et al. 1987). The Bakken reaches a maximum thickness of 43m and is composed of four units: a basal sand-rich unit, a lower and an upper shale member that are organic rich, and a coarse-grained middle member composed mostly of siltstone and some sandstone (Meissner, 1978; LeFever, 1990; Egenhoff and Fishman, 2013; Egenhoff, 2017).

Fig. 2: Location of 33 cores in the western portion of North Dakota. Both core numbers and relevent county names are displayed. Structural highs and anticlines present throughout the Williston Basin at various times. Modified from Novak and Egenhoff (2018) with additional structural highs from Ballard (1963).

The Lodgepole Formation reaches a maximum thickness of 270m in McKenzie County where it consists of mostly limestones with rare shale stringers and thins towards the margins where it is a fossiliferous and oolitic limestone (LeFever and Anderson, 1984; Montgommery, 1996; Stroud, 2011). The 'Scallion' Interval, composed of nodular skeletal wackestones and packstones, conformably overlies the upper Bakken shale member and represents a regression from late Bakken times (Gaswirth et al. 2013; Mackie, 2013; Borcovsky et al. 2017). One to three siliciclastic shales intercalated with carbonate

mudstones are informally known as the 'False Bakken' and represent an overall transgression from the 'Scallion Interval' (Montgommery, 1996; Kerr, 1988; LeFever, 1990; Hansen and Long, 1991; Mackie, 2013). The 'False Bakken' is suggested to have been deposited in distal areas on a low-inclined westward dipping carbonate platform and beautifully displays shale-carbonate transitions (Mackie, 2013). The carbonate unit overlying the 'False Bakken' does not have a specific name and is generally just referred to as being part of the "Lower Lodgepole Limestone" (LeFever and Anderson, 1984).

METHODS

Detailed sedimentological analyses were completed for 33 drill cores that penetrated the 'False Bakken' and 'Scallion' intervals of the lower Lodgepole Formation (Fig. 2; see Table 1). All cores are stored at the North Dakota Geological Survey (NDGS) Wilson M. Laird Core and Sample Library in Grand Forks, ND or at the U.S. Geological Survey (USGS) Core Research Center in Denver, CO. Detailed core descriptions on the millimeter to centimeter scale were made with the aid of a hand lens, tape measure, and hydrochloric acid to identify various facies and features. For the purpose of this paper, a facies is best classified as any lamina or bed that reflects a certain composition, grain size distribution, and depositional feature allowing it to be tied to a distinct depositional process.

Ultra-thin thin sections (~20um) were made both perpendicular (n=48) and parallel (n=9) to bedding, as compaction should not impact any depositional features preserved parallel to bedding (i.e., clay clasts and burrows). Additional thin sections (n=16) were borrowed from the USGS to further describe each facies. All thin sections were used for petrographic analyses to identify textures and compositions of various facies identified in core.

Point counting (n=300) was completed on thin sections (n=22) to determine the modal abundance of matrix versus silt grains, as well as the abundance of various grain types within the silt fraction (see Table 2). For other thin sections, modal abundances were determined with the aid of Baccelle and Bosellini (1965) visual diagrams. To determine the mean grain size of the silt-sized fraction of all siliciclastic facies, point counts (n=300) were completed on thin sections (n=26; see Table 3).

An FEI Quanta 450 FEG Scanning Electron Microscope (SEM) equipped with an energy dispersive spectrometer (EDS) at the USGS in Denver, CO, was used to analyze carbon-coated thin sections (n=7) with the most representative siliciclastic facies to identify very small structures and particles (e.g., clay clasts, biogenic grains, burrows, and organic matter; see Appendix III).

Table. 1: All wells with geographic locations and core storage locations.							
Number	Well #	Well Name	Latitude	Longitude	County	Location	
1	8251	USA #1-24	47.183926	-103.548139	Billings	NDGS	
2	18502	TEDDY 44-13TFH	47.111641	-103.415384	Billings	NDGS	
3	9426	FEDERAL #12-1	47.30137	-103.54544	Billings	NDGS	
4	12886	CONNELL #24-27	47.2567	-103.597082	Billings	NDGS	
5	7887	MEE USA #3-17	47.120931	-103.379412	Billings	NDGS	
6	10077/E385	FEDERAL 11-4	47.31096	-103.56845	Billings	NDGS/USGS	
7	B832	AL AQUITAINE BN 1-23H	47.194467	-103.568295	Billings	NDGS/USGS	
8	8638	SLATER #1-24	48.751046	-102.433563	Burke	NDGS	
9	20648	GROTE 1-21H	48.663157	-102.834024	Burke	NDGS	
10	19773	PRODUCER`S CORPORATION 159- 94-17C-8-2H	48.590525	-102.85718	Burke	NDGS	
11	13167	SKARPHOL "D" #5	48.708913	-102.898789	Divide	NDGS	
12	17396	BLOOMING PRAIRIE	48.879255	-103.438098	Divide	NDGS	
13	19709	ROSENVOLD 1-30H	48.661666	-103.132496	Divide	NDGS	
14	12785	CARUS FEE #21-19	47.542727	-102.963685	Dunn	NDGS	
15	607	ANGUS KENNEDY #F32-24-P	47.711593	-102.522114	Dunn	NDGS	
16	22092	MHA 2-05-04H-148-91	47.667005	-102.310361	Dunn	NDGS	
17	20453	WALLACE 7-1H	47.213633	-102.635928	Dunn	NDGS	
18	21734	OLSON 12-139-104 A 1H	46.863048	-103.749957	Golden Valley	NDGS	
19	19917	MAUS 23-22	47.013434	-103.850932	Golden Valley	NDGS	
20	24123	MARIANA TRUST 12X-20G2	47.71198	-103.131792	Mckenzie	NDGS	
21	12772	AHEL ET AL GRASSEY BUTTE #12-31 H3	47.485595	-103.234115	Mckenzie	NDGS	
22	29426	TETON 5-1-3TFSH	47.850828	-102.951089	Mckenzie	NDGS	
23	21966	FAIRBANKS 1-20H	47.558227	-103.551635	Mckenzie	NDGS	
24	17723	MILLER 34X-9	47.386652	-102.150999	Mercer	NDGS	
25	16160	STATE ND 1-11H	48.530775	-102.666355	Mountrail	NDGS	
26	26661	WAYZETTA 46-11M	48.094157	-102.212323	Mountrail	NDGS	
27	28036	NESS 41-21-2XH	48.152402	-102.375696	Mountrail	NDGS	
28	15889	SARA G. BARSTAD 6-44H	48.183932	-102.825858	Mountrail	NDGS	
29	15986	J. HORST 1-11H	48.181385	-102.610359	Mountrail	NDGS	
30	19472	A TROUT 6H 3-14	48.892306	-101.617541	Renville	NDGS	
31	20002	PRAUS 21-28TFH	46.831879	-102.926142	Stark	NDGS	
32	17272	IM-SHORTY-159-88- 0805H-1	48.604914	-102.061985	Ward	NDGS	
33	27216	LOREN 5303 14-1 2T	48.110300	-103.867388	Williams	NDGS	

Facias	Comple #	Matuin			Silt			
Facles	Sample #	iviatrix	Quartz	Calcite	Bioclast	Mica	ΡΙ	AF
Facies	#12886 10505.8	84	9	7	0.0	0.3	0.0	0.0
	#12785 11275	82	12	3	0.3	2	0.0	0.0
2a	#9426 10782.1	85	9	5	0.3	0.7	0.0	0.0
	#12785 11273.6	85	12	1	0.3	1.0	0.0	0.0
	Average	84	10	4	0	1	0	0
	Std. Dev.	1	2	2	0	1	0	0
	#8251 10375.1	80	6	13	0.3	1.0	0.0	0.0
	#8251 10369.6	84	6	8	1.0	1.0	0.0	0.0
	#18502 10496.7	80	7	13	0.0	0.3	0.0	0.0
	#18502 10500.8	84	5	10	0.7	0.0	0.0	0.3
Facias	#12886 10508.8	75	7	18	0.3	0.0	0.0	0.0
2h	#15986 10494.1	81	6	13	0.3	0.0	0.0	0.0
20	#8251 10377	80	8	11	0.3	1.0	0.0	0.0
	#12785 11276	85	5	9	0.3	0.0	0.0	0.0
	#9426 10785.9	77	7	15	1.3	0.0	0.0	0.0
	#12785 11274.6	87	5	7	0.0	0.3	0.0	0.0
#18502 10502.1		81	8	9	1.7	1.0	0.0	0.0
	Average	81	6	11	1	0	0	0
	Std. Dev.	4	1	3	1	0	0	0
	#12886 10509.7	79	7	12	2	0.0	0.0	0.0
	#15986 10494.5	79	7	10	3	0.7	0.0	0.0
Facies 3	#12886 10509	85	1	10	4	0.0	0.0	0.0
Tucies 5	#12785							
	11277.10	91	1	7	0.3	0.0	0.0	0.0
	#20453 10251.6	94	1	4	0.7	0.0	0.0	0.3
Average		86	3	9	2	0	0	0
Std. Dev.		7	3	3	2	0	0	0
Facies 5	#9426 10786.6	71	1	10	16	0.0	3	0.0
Tucles J	#19709 9250.3	67	5	15	13	0.0	0.0	0.3
	Average	69	3	12	14	0	1	0
Std. Dev.		2	2	4	2	0	2	0

Table 3: Silt grain size values from point counting (n=300) siliciclastic facies.							
Thin Section	Facies	Mean	Std. Dev.	Min.	Max.		
#12785-11275	1	0.017	0.006	0.006	0.041		
#9426	2a	0.018	0.006	0.005	0.046		
#12785-11273.6	2a	0.018	0.006	0.007	0.041		
#12785-11275	2a	0.018	0.007	0.005	0.051		
#12886-10505.8	2a	0.018	0.007	0.006	0.049		
#8251-10375.1	2b	0.022	0.007	0.010	0.051		
#8251-10377	2b	0.023	0.009	0.008	0.059		
#9426-10785.9	2b	0.022	0.007	0.005	0.056		
#12785-11274.6	2b	0.022	0.008	0.009	0.060		
#12785-11276	2b	0.022	0.007	0.008	0.062		
#12886-10508.8	2b	0.022	0.008	0.008	0.061		
#15986-10494.1	2b	0.022	0.008	0.008	0.050		
#18502-10496.7	2b	0.022	0.008	0.005	0.061		
#18502-10500.8	2b	0.022	0.009	0.004	0.062		
#18502-10502.1	2b	0.023	0.009	0.005	0.053		
#12785-11277.10	3	0.025	0.009	0.009	0.052		
#12886-10509.7	3	0.025	0.010	0.010	0.083		
#12886-10509	3	0.026	0.012	0.008	0.074		
#15986-10494.5	3	0.025	0.008	0.005	0.047		
#20453-10251.6	3	0.024	0.008	0.008	0.057		
#28036-9698.4	4	0.030	0.009	0.013	0.077		
#9426-10786.8	5	0.034	0.013	0.009	0.084		
#19709-9250.3	5	0.028	0.010	0.010	0.065		
#17396-7942.1	6	0.031	0.010	0.012	0.061		
#19709-9251	7	0.036	0.015	0.013	0.109		
#17396-7904.8	8	0.056	0.018	0.017	0.122		

276	20	0.022	0.007	U
508.8	2b	0.022	0.008	С
494.1	2b	0.022	0.008	С
496.7	2b	0.022	0.008	С
500.8	2b	0.022	0.009	С
502.1	2b	0.023	0.009	С
277.10	3	0.025	0.009	C
509.7	3	0.025	0.010	C
509	3	0.026	0.012	C
494.5	3	0.025	0.008	C
251.6	3	0.024	0.008	C
98.4	4	0.030	0.009	C
86.8	5	0.034	0.013	C
50.3	5	0.028	0.010	C
42.1	6	0.031	0.010	C
51	7	0.036	0.015	C
04.8	8	0.056	0.018	C

FACIES

A total of twelve distinct facies are identified within the 'Scallion' and 'False Bakken' intervals with facies 2a and 2b counting as two facies since they are distinctly different microscopically yet have similar interpretations. These facies were identified from detailed core descriptions, thin section analyses, point counts of grain type and abundance, and/or SEM-EDS analyses. For a summary of these twelve facies see Table 4 and to see the total percentage of facies in each core see Table 5.

Siliciclastic Facies of the 'False Bakken' Interval

Facies 1: Graded Argillaceous Mudstone

Facies 1 accounts for less than 1% of the entire succession and is a dark argillaceous mudstone that occurs as thin, black laminae less than 2mm thick that are laterally continuous across thin sections (Fig. 3a). Macroscopically, this facies can be identified with a keen eye as faint black laminae darker in color than other mudstone facies, but is best described microscopically. Up to 3% of this facies is composed of sub-rounded silt-sized detrital calcite, quartz, and muscovite grains that display normal grading from 0.04mm to 0.005mm in diameter with an average grain size of 0.017mm. The matrix is composed mostly of calcite, quartz, and illite with lesser amounts of potassium feldspar and organic matter. *Phycosiphon incertum* fecal strings up to 0.05mm wide pass through entire lamina in places. A gradual decrease in grain size from the underlying mudstone facies to this facies indicates a gradational basal contact, while an abrupt increase in grain size from this facies to overlying mudstone facies indicates a sharp contact. Diagenetic pyrite, sphalerite, calcite, and apatite are present within this facies.

Facies 1 Interpretation:

The lateral continuity as far as visible in thin section and the fine grain size suggest a very lowenergy environment for sedimentation of this facies. Facies 1 laminae were most likely deposited from suspension as no thickness variations are visible in the laminae, and the normal grain size distribution in each of these laminae suggests that these rocks were laid down from a cloud of particles in the water column that deposited successively finer grains with no additional sediment being supplied to the site of sedimentation. This scenario explains the gradational lower contact of facies 1 laminae recording continued deposition from the underlying rocks; however, its upper, sharp boundary reflects the change in energy during deposition and the onset of a new depositional event, unrelated to facies 1 laminae. It is likely that these fine-grained mudstones were deposited in a dysoxic but not an anoxic environment; this is indicated by the abundance of *Phycosiphon incertum* isp. fecal strings cutting through them. The complete lack of any other burrows in this facies most likely reflects colonization efforts by exclusively an opportunistic life form (cf. Egenhoff and Fishman, 2013). The composition of facies 1 sediments reflects the closeness of these mudstones to a nearby carbonate system yet also shows that some siliciclastic quartz input took place during deposition, most likely introduced into this sedimentary environment by fluvial systems from the nearby Canadian Shield. The composition of the rocks eroded from the Canadian Shield is still reflected in the muscovites that are found in rocks of facies 1.

Facies 2a: Massive Siliciclastic-Argillaceous Mudstone

Facies 2a is a massive, black to dark blue mudstone that shows low effervescence and rare bioclasts in core. The bioclasts, brachiopod fragments, conodonts, and agglutinated foraminifera are in the order of 1mm in length and make up less than 1% of this facies. They are randomly distributed throughout the fine-grained matrix, are generally intact but some being broken, and show various angles relative to bedding. Biotite, muscovite, potassium feldspar, and fecal pellets also occur, are silt-sized and each make up less than 1% of this facies. Mudstones of this facies contain an average of 10% quartz and 4% calcite silt that is 0.018mm in diameter on average and only discernible microscopically (Fig. 3a). The matrix of this facies is dominated by quartz, calcite, micas, and clay minerals, generally with small amounts of organic matter (less than 1%; Fig. 3b). *Phycosiphon incertum* isp. fecal strings up to 0.05mm wide dissect this facies perpendicular to bedding and are best distinguished microscopically by a lack of silt-sized grains and a darker color than the surrounding matrix (Fig. 3c). Diagenetic calcite, sphalerite, apatite, pyrite, and phosphate, the latter in the form of concretions, occur within this facies. This

mudstone can form beds up to 0.5m thick and has a gradational contact with all mudstone facies, but a sharp basal contact with facies 1. In places, dikes from the overlying carbonate facies can be seen intruding into this facies.

Facies 2b: Massive Calcareous-Argillaceous Mudstone

Facies 2b is a massive, black to dark blue calcareous-argillaceous mudstone. It does not differ from facies 2a macroscopically but contains a greater abundance of calcite than quartz silt when compared in thin section, and a coarser silt sized fraction than Facies 2a (see Tables 2 and 3). Sub-angular to sub-rounded silt grains within this facies are 0.022mm in diameter on average and composed of 7-18% calcite (avg., 11%), less than 8% quartz, and a maximum of 1% micas. Intact biogenes and bioclasts of brachiopods (<2mm) and echinoderms (<1mm) make up 1% of this facies or less (Fig. 3d). Agglutinated foraminifera (<1mm) occur in distinct levels of this facies, generally in close stratigraphic proximity (Fig. 3e). All grains and bioclasts are randomly distributed throughout this facies but generally aligned parallel to bedding; nevertheless, they can occur at an angle to bedding in places. *Phycosiphon incertum* isp. fecal strings up to 0.05mm wide are abundant, while *Planolites* isp. burrows are rare. *Planolites* isp. burrows, characterized by a light color, low silt content, and an abundance of calcite and dolomite, are a maximum of 0.2mm high by 0.03mm wide and occur parallel to bedding. Similar to Facies 2a, this mudstone facies usually forms a gradational contact with other mudstone facies, but is intruded by clastic dikes when overlain by carbonate facies.

Facies 2a and 2b Interpretation:

Two processes are most likely responsible for depositing the two mudstone facies (2a & 2b). First, the coarse bioclast and biogenic grains have likely been transported into the environment by high-energy events, probably storms; however, their scarcity indicates that such high-energy events must have occurred relatively rarely in facies 2a and slightly more often in facies 2b settings. Transport of these

grains is reflected in the broken nature of some of the bioclasts; nevertheless, intact shells might not be a good indicator for the absence of transport as many shells do not get abraded much or at all during transport (Miller et al. 1988). The second process indicated by this facies is not easy to identify, and it remains unclear if the bulk of the matrix has been deposited from suspension or as bed load (see Schieber et al. 2007). The large variety of grain sizes in the matrix ranging from clay to silt, however, seems to indicate that these grains were deposited together as marine snow particles. Nevertheless, as no remnants of the marine snow particles are preserved it seems likely that abundant burrowing in facies 2a and 2b probably increased the destruction of the marine snow particles post deposition.

It is likely that the sea-floor was not entirely inhospitable during sedimentation of facies 2a and 2b. Some amount of oxygen must have been present at the sea floor and maybe millimeters into the sediment as indicated by both the agglutinated foraminifera, and the abundance of *Phycosiphon incertum* isp. within facies 2a/b, as well as the rare presence of *Planolites* isp. in 2b. It is therefore assumed here that the environment was most likely dysoxic and not anoxic during deposition.

Facies 3: Bioturbated Pyritized Bioclast-bearing Mudstone

Facies 3 is easily distinguished in core as a massive, brown to black, bioturbated mudstone with pyritized bioclasts (Fig. 4a). Bioclasts make up as much as 4% of this facies and are mostly fragmented and pyritized, but when intact and unaltered can be identified as echinoderms (up to 2.5 by 1mm in size) and brachiopods (less than 3 by 0.1mm in size). Agglutinated foraminifera (0.6 by 0.2mm on average) and conodonts (up to 1mm in length) are rarely found. In most places, these coarse grains are randomly oriented. The silt-sized fraction is mostly sub-angular to sub-rounded, 0.025mm on average in diameter, and composed of up to 12% calcite, 7% quartz, 1% calcispheres, and <1% micas. The matrix is commonly light brown and composed of mostly calcite with lesser amounts of illite, chlorite, and quartz with rare dark patches composed of pyrite (Fig. 4b). *Chondrites* isp. bisects this facies at all angles to bedding from parallel to perpendicular (Fig. 4c). These burrows are identified by a fine grain size, an

increase in carbonate or pyrite relative to the surrounding matrix, and are up to 1.5mm across and 0.3mm high. This facies occurs as beds up to 1m thick in most places and often has a gradational contact with overlying and underlying Facies 1 and 2a/b mudstones but may have dikes that come from overlying carbonates.

Facies 3 Interpretation:

The abundance of calcareous fossils and calcite silt reflects a depositional environment that was situated proximal to an area of carbonate production although siliciclastic input is still evident. Coarse bioclasts and detrital grains reflect deposition associated with high energy events (i.e., storms; Borcovsky et al., 2017) with the fine-grained matrix deposited during intermittent tranquil times. Gradational contacts with nearby facies are the result of gradual changes in the depositional environment over significant time periods; however, in some instances carbonate sedimentation on top of this unconsolidated facies may have resulted in the formation of dikes during seismic shocks (Novak and Egenhoff, 2019). After deposition, significant bioturbation by *Chondrites* isp. occurred destroying all potential sedimentary fabrics resulting in the massive bedding. *Chondrites* isp. trace fossils are produced by organisms that can tolerate low oxygen levels (Bromley & Ekdale, 1984). However, the agglutinated foraminifera in this facies indicate the presence of at least some oxygen at the sediment-water interface at times during deposition (Schieber, 2009).

Fig. 3a: Thin section scan of F1 laminae within F2a. F1 laminae are continuous across thin section and contain a low abundance of silt clasts relative to F2a. (#12785-11275)

Fig. 3b: SEM image of F2a matrix with grains labeled. Qtz=quartz; Ca=calcite; il=Illite; Bt=Biotite. (#12785-11275)

Fig. 3c: Two of the same cross-polarized images of *Phycosiphon* isp. dissecting F2a. The top photo displays the burrows without tracks outlined and the bottom photo has some of the burrows outlined in black. (#12785-11275)

Fig. 3d: Thin section scan of F2b that contains bioclasts oriented parallel to bedding and a silt size fraction composed of mostly calcareous silt with some quartz silt. (#8251-10369.6)

Fig. 3e: Cross-polarized image of two agglutinated foraminifera in a brown matrix. In addition, both quartz and calcite silt can be seen distributed throughout this image of F2b. (#12886-10508.8)

Facies 4: Lenticular Mudstone

In core, facies 4 appears as faint brown laminae within other mudstone facies (Fig. 4d) and has a distinct lenticular fabric formed by clay clasts, evident microscopically. Clay clasts are composed of clay sized calcite, quartz, and potassium feldspar, and vary in abundance from 50 to 90% of the volume. Organic matter (<10%) commonly appears as brown to black flakes oriented parallel to bedding and is slightly bent around clay clasts. The silt-sized fraction contains 12% quartz and 5% calcite clasts that are sub-rounded to sub-angular and have an average diameter of 0.031mm. Coarse grains around 1mm in length such as conodonts, agglutinated foraminifera, and brachiopod fragments make up 1% of this facies and are randomly distributed throughout and aligned parallel to bedding. The matrix consists of mostly quartz, calcite, organic matter, and clay minerals with some potassium feldspar and dolomite. *Planolites* isp. burrows occur parallel to bedding, are up to 0.7mm wide and 0.05mm in height, light in color with no silt present, and moderately abundant.

Coarse laminae of this facies, 2 to 5mm thick, are laterally continuous across thin sections and contain a greater abundance of silt (20-40%) and less clay clasts (60-80%) in comparison to thin laminae. Thin laminae (0.2-1.5mm) commonly thicken and thin laterally (Fig. 4e), are continuous across thin sections, contain a great abundance of clay clasts (80-100%), and have low-inclined foresets preserved. Basal contacts are often sharp for both thick and thin laminae, but contacts with overlying facies for thick laminae are gradational and thin laminae are sharp.

Facies 4 Interpretation:

A high energy depositional process is interpreted for this facies based on the presence of clay clasts, coarse silt, bioclasts, and low-inclined foresets. The formation of clay clasts occurs from the erosion of semi-consolidated, water-rich beds on the sea floor by bottom water currents that transport these clasts by traction transport up to 10 km (6mi) (Schieber et al. 2010; Borcovsky et al. 2017). Variability in the abundance of clay clasts versus silt clasts can be attributed to the energy of the flow, the

rate of siliciclastic input into the area of erosion, distance from source, potential reworking, or a combination of those factors. Thin laminae composed almost entirely of clay clasts are interpreted to have originated from an area of sediment starvation with clay clasts being moved by bed load transport during high-energy events, probably storms (cf. Schieber et al. 2010); however, it is unlikely that the currents containing exclusively clay clasts reworked other sediment as no remnants of such sediment has been found in lenticular mudstones. Similarly, thick laminae with 20 to 40% silt and 60-80% clay clasts are associated with high energy events; however, as such currents were capable of transporting both clay clasts and silt together, it is most likely that they reworked the silt from the sea-floor during transport of the clay clasts. However, these clay clasts may have originated from an area of the basin that was not sediment starved allowing for silt and clay clasts to be reworked and transported together. Reworking would also explain why laminae containing clay clasts and silt grains are often thicker than laminae exclusively consisting of clay clasts considering that sediment must have been added in order to increase grain diversity in the laminae.

The presence of agglutinated foraminifera and *Planolites* isp. burrows suggests that at least dysoxic conditions, rather than anoxic conditions, prevailed on the sea-floor during deposition and may have extended several centimeters into the substrate. However, this facies has a high abundance of preserved organic matter attributed to it having a short residence time on the seafloor and/or deposition as organomineralic aggregates (Macquaker et al. 2010; Passey et al. 2010).

Facies 5: Bioclast-rich Wavy Mudstone

Facies 5 is a bioclast-rich mudstone forming laminae and beds that range in thickness from 1mm to 5cm (Figs. 5a, 5b, and 5c), but occurring commonly as beds thicker than 1cm. Disarticulated echinoderms (0.5-1.5mm) and brachiopods (<1.2cm) account for 14% of this facies on average. Rugose corals, agglutinated foraminifera, conodonts, and phosphate intraclasts are up to 1mm in length and compose a maximum of 1% of this facies. The silt-sized fraction makes up to 20% of this facies and is

dominated by calcite (10-15%) and up to 5% quartz grains that are mostly sub-angular to sub-rounded and 0.03mm in diameter on average. The matrix is light brown to dark brown and composed of quartz, clay minerals, micas, calcite, and potassium feldspar. *Planolites* isp. burrows bisect this facies parallel to bedding and are up to 1.5mm in length and 0.2mm in height. This facies commonly has a sharp wavy contact with the underlying mudstone facies, and displays a slight decrease in grain size and abundance up-section within a single bed; in places, bioclasts are intermixed with matrix in these normally graded beds and also decrease in size and abundance up-section. In places, this facies occurs as thin laminae less than 2mm thick composed mainly of brachiopods or echinoderms that are aligned parallel to bedding within a dark brown matrix (Fig. 5c).

Facies 5 Interpretation:

An abundances of bioclasts, coarse detrital silt, and a sharp erosional basal contact all indicate that this facies represents deposition from high energy events capable of transporting up to sand-size material. The volume of bioclasts relative to matrix is interpreted to reflect lag deposition (e.g. storms and/or bottom currents; cf. Schieber, 2017) concentrating large particles such as bioclasts, phosphate intraclasts, and conodonts at the base of event beds. The fine-grained material most likely settled inbetween the large components during waning of the depositing flow; the same waning is also reflected in the normal grading observed in individual beds of this facies. The small bioclasts intermixed with matrix overlying the lags are thought to have also been deposited during the waning stages of these high-energy events. The fact that the bioclasts decrease in size and abundance is interpreted to directly reflect the waning stages of the flow. Where exclusively lags occur it is envisioned that only the lowermost part of the event deposit was preserved. *Planolites* isp. forming organisms and agglutinated foraminifera indicate that the environment at the sediment-water interface contained at least some free oxygen to enable them to survive.

Fig. 4c: Plane polarized thin section image with arrows pointing at *Chondrites* isp. burrows in F3. Silt-sized clasts around burrows are predominantly calcite. (#12886-10509)

Fig. 4d: Core image showing faint brown lenticular mudstone laminae (F4) indicated by white arrows. (#21734)

Fig. 4e: Thin section scan displaying lenticular mudstone (F4) laminae composed of entirely clay clasts that thicken and thin laterally. Two black arrows point at low-inclined foresets within individual laminae and the arrows are at the same inclination as foresets (#21734-10369.9)

Facies 6: Siliciclastic Siltstone

Facies 6 is a faintly laminated, black to dark brown, siliciclastic siltstone. This facies occurs as beds up to several centimeters thick and laminae (Figs. 5d and 5e) with a maximum of 55% sub-rounded silt that is on average 0.031mm in diameter. Individual laminae vary in thickness laterally in thin sections. The silt grains are composed of less than 35% quartz and 20% calcite in a matrix made up of calcite, quartz, clay minerals, and rutile. Rip-up clasts are made up of mudstone and are dark brown with silt-sized quartz and calcite grains, clay-sized clay minerals, and organic matter. Phosphate grains, rip-up clasts, conodonts, and bioclasts are a maximum of 1mm in length, oriented parallel to bedding, and distributed evenly throughout. *Planolites* isp. burrows are present with a light brown color and fine grain fill dominated by quartz and calcite. Basal contacts are sharp and planar with other siltstone and mudstone facies, and sharp and wavy with overlying siltstone facies.

Facies 6 Interpretation:

The abundance of quartz silt grains in this facies and the scarcity of matrix indicates a relative high-energy setting for the deposition of siliciclastic siltstones (F6). Rip-up clasts confirm a high-energy setting for these sediments as well as the bioclasts and conodonts which are interpreted to represent lag deposits. These rip-up clasts with coarse silt are interpreted to be from a similar facies as the composition and grain size is equivalent to these siliciclastic siltstones. The fact that many of the laminae show distinct changes in thickness at the microscope scale indicates that bed-load processes were responsible for the deposition of these rocks. Sharp contacts likely reflect rapid changes in the depositional environment associated with pulses of siliciclastic input from a nearby source. The presence of *Planolites* isp. indicate that enough oxygen was present to sustain life within this setting.

Facies 7: Glauconitic Siltstone

Facies 7 contains about 20% glauconite (0.5mm) within laminae up to 8mm thick (Fig. 5d). Brachiopods, echinoderms, and bioclasts are up to 4% of this facies and often less than 1mm in length.

Sub-rounded quartz silt accounts for a maximum of 25% of this facies and is 0.036mm in diameter on average. The matrix is light brown and composed of quartz, clay minerals, and calcite. Both glauconite and bioclasts are randomly oriented in most places but can be aligned parallel to bedding. This facies often has a sharp, wavy contact with underlying and overlying siltstones and varies in thickness laterally.

Facies 7 Interpretation:

The detrital quartz silt and bioclasts within this facies suggests that high energy processes were responsible for depositing both silt and sand-sized grains in this setting. Bed load transport of these coarse grains is indicated by laminae that thicken and thin laterally. The high energy events that transported the silt and bioclasts were strong enough to erode into the underlying beds as indicated by the presence of a sharp wavy basal contact of beds containing facies 8 deposits. After deposition, individual laminae were exposed at the sea floor long enough for glauconite to form (Amorosi, 1995) suggesting that sediment was not continuously supplied to this area. Although bioturbation is not evident, it is likely the cause for the random orientation of coarser grains within this facies

Facies 8: Calcareous Siltstone

Facies 8 is a dark grey calcareous siltstone that appears as faint laminae up to 2cm thick but more commonly forms laminae up to 8mm thick containing rare bioclasts and phosphate intraclasts identifiable in core. Microscopically, silt that is 0.056mm in diameter on average and sub-rounded makes up to 65% of this facies with bioclasts and the matrix accounting for the other 35% (Fig. 5e). Silt grains are composed of a maximum of 35% calcispheres (0.05mm), 15% calcite, and 15% quartz (0.025mm). Brachiopods, phosphate intraclasts, and conodonts are commonly up to 1mm in length and are located at the bottom of laminae or concentrated together in lens-like structures that are laterally discontinuous within laminae; however, calcispheres and quartz silt occur throughout this facies. The matrix is light brown and comprised of mainly quartz and calcite with lesser amounts of clay minerals, dolomite, and rutile. Light brown *Planolites* isp. burrows (<1.5 by 0.2mm) occur in this facies and are often filled

with mostly mud sized calcite, quartz, and clay minerals. Beds of this facies vary in thickness laterally and have a wavy, sharp basal contact with underlying facies.

Facies 8 Interpretation:

The coarse silt-sized fraction, bioclasts, phosphate intraclasts, and rip-up clasts in this facies reflect sedimentation by high energy processes. As coarse bioclasts often occur at the base of this facies, it is thought that these are transported by high energy events (i.e. bottom currents induced by storms, e.g. Schieber, 2016) that show a waning stage reflected in the decrease of grain sizes. Bed load processes are indicated by the laminae that thicken and thin laterally in addition to a wavy, likely erosional basal contact. High abundances of bioclasts within laterally discontinuous laminae are interpreted as lag deposits also associated with high energy events capable of scouring into the underlying sediment and depositing coarse-grained material. The great abundance of calcispheres suggests that algal organisms were present within this area or nearby, deposited within this environment and replaced by calcite (Hart, 1991; Scholle & Ulmer-Scholle, 2003). The presence of burrows indicate that oxygen was available in this setting.

Carbonate Facies of the 'False Bakken' Interval

Facies 9: Massive to Bioturbated Carbonate Mudstone

This facies is easily identified in core as a light to dark grey, massive or heavily bioturbated

carbonate mudstone with up to 3% bioclasts in a matrix composed of carbonate mud (Figs. 6a and 6b).

Biogenes, such as echinoderms, brachiopods, gastropods, and ostracods, are randomly distributed and

oriented throughout this facies when present. Calcispheres and detrital quartz account for less than 2% of this facies and are about 0.05mm in diameter. This facies is often massive with skeletal material randomly oriented and distributed throughout, and is bisected by burrows in places. *Zoophycos* isp. burrows cut through this facies at any angle to bedding; these burrows are less than 1cm in diameter, devoid of bioclasts, and display clear back filling spreiten structures (Fig. 6a). This facies can form beds up to several meters thick, and most commonly has a gradational contact with underlying mudstone and carbonate facies.

Facies 9 Interpretation:

This facies is dominated by fine grained carbonate mud suggesting a fairly low depositional energy allowing the fine grained carbonate mud to be deposited. Nevertheless, previous experimental work suggests that carbonate mud floccules can be transported via bed load transport in the same manner as clay clasts (Schieber et al. 2013) and therefore this facies may represent bed load transport despite its fine-grained nature. The coarse fraction of bioclasts, although rare, suggests that some high energy processes capable of transporting bioclasts may have operated within this depositional environment. The presence of quartz silt indicates siliciclastic input reached this setting but was not abundant. Bioturbation has reworked the sediment destroying any potential sedimentary fabrics (i.e., floccule ripples and/or bioclast lag deposits) that may have been preserved resulting in the massive nature of this facies. The large *Zoophycos* isp. burrows suggest high oxygen levels and an overall hospitable environment allowing for relatively large organisms to thrive.

Carbonate Facies of the 'Scallion' Interval

Facies 10: Nodular Skeletal Wackestone

Facies 10 is a nodular, grey to greyish brown wackestone with up to 25% bioclasts and thin shellrich lamina in places (Figs 6c and 6d). It occurs as massive beds up to several meters thick with 15-20% biogenes and 5-10% bioclasts that are randomly distributed throughout a matrix dominated by calcareous mud with nodular concretions in places. Skeletal material is 0.5-1mm in length and composed of mostly intact and disarticulated echinoderms (<15%) and brachiopods (<10%) with ostracods, trilobites, and conodonts accounting for less than 3% of this facies each. In addition, detrital calcite silt (0.05mm on average) makes up to 10% of this facies and is distributed throughout. Nodular carbonate concretions are commonly up to 5cm in diameter and are easily distinguished by a dark grey material around the concretions.

Facies 10 Interpretation:

A high abundance of biogenes and bioclasts indicate that these organisms most likely lived in or very close to this depositional environment. The concentration of biogenes and bioclasts in laminae, nevertheless, indicates that high energy storm events operated frequently within this facies allowing for the bed load transportation and abrasion of the bioclasts. The carbonate mud was likely deposited either during more tranquil times or perhaps in a similar manner to the carbonate mudstone facies by bedload transport as floccules (Schieber et al. 2013). Intact biogenes likely lived within the substrate, implying that oxygen levels were high enough within this environment to support a large fauna. Nodular concretions formed from the precipitation of carbonate cements along bedding planes (Mackie, 2013).

Facies 11: Laminated Skeletal Packstone

Facies 11 is a grey to dark grey packstone with biogenes and bioclasts (0.75 to 1.25mm in length on average) generally aligned parallel to bedding (Fig. 6e). Echinoderms (<45%) and brachiopods (<15%) are the most common biogenes in addition to rare gastropods, trilobite fragments, ostracods, conodonts, and phosphate intraclasts (Fig. 6f). Calcite fragments and quartz make up the silt sized fraction (0.06mm on average) of this facies and contain a brown matrix dominated by calcite, clay minerals, and quartz. Shells often align horizontal or at a slight angle to bedding forming laminations up to several centimeters thick. These laminations often occur as packages forming beds up to 25cm thick. Irregularly shaped dark brown clay lenses or thin laminae with low abundances of bioclasts occur within this facies and are laterally discontinuous (Fig. 6f). In core, a wavy, sharp contact with underlying carbonate facies is often observed, and the contact with overlying mudstone or carbonate facies is generally gradational.

Facies 11 Interpretation:

The high abundance of bioclasts within this facies and erosional contact indicates that this facies was deposited by high energy processes. Biogenes are often found intact likely indicating that they were either transported short distances or lived within the environment. The great abundance of bioclasts and their orientation parallel to bedding reflects strong high-energy events (e.g. large storms) that transported and deposited bioclasts and biogenes via bed load processes. Erosion of the underlying facies occurred from the high energy event resulting in the sharp wavy contact. Large clay lenses within the bioclastic fraction are interpreted as rip-up clasts from nearby that were transported and deposited with the coarse bioclasts. When thin laminae of fine-grained silt and clay occur within this facies it may be a result of more tranquil times between storm events allowing for the deposition of this fine-grained material.

Fig. 6e: A core image of the laminated skeletal packstones (F11) that contain a high abundance of bioclasts within irregular laminae. (#12785-11278')

Fig. 6f: A thin section scan of laminated skeletal packstones with an abundance of bioclasts distributed throughout. Several clay lens that are brown in color occur within this thin section. (E385-10759.1)

Table. 4: This table lists all facies in order with the main distinguishable features present for each facies.

I

Tacles.						
Facies	Thickness and Sedimentary Structures	Upper and Lower Contact	Silt Grains	Mean Silt Grain Size (mm)	Biogenes, Bioclasts, and/or Other Sand-Sized Grains	Burrows
F1: Graded Argillaceous Mudstone	Laminae (2mm); Normal Grading	Upper- Sharp; Lower- Gradational	Quartz (2%), Calcite (1%), and Micas (<1%)	0.017	n/a	Phycosiphon incertum isp. (<0.05mm)
F2a: Massive Siliciclastic- Argillaceous Mudstone	Beds (5cm to 50cm)	Upper- Gradational; Lower-Sharp	Quartz (8- 12%), Calcite (1-7%), Micas (<1%), and Potassium Feldspar (<1%)	0.018	Bioclasts, Brachiopods, Conodonts, Agglutinated foraminifera are about 1mm and make up less than 1% of facies	Phycosiphon incertum isp. (<0.05mm)
F2b: Massive Calcareous- Argillaceous Mudstone	Beds (5cm to 50cm)	Upper- Gradational; Lower-Sharp	Calcite (7- 18%), Quartz (<8%), and Micas (<1%)	0.022	Bioclasts, Brachiopods, Echinoderms, and Agglutinated foraminifera are <2mm and make up less than 2% of this facies	Phycosiphon incertum isp. (<0.05mm) and Planolites isp. (<0.2 by 0.03mm)
F3: Bioturbated Pyritized Bioclast- bearing Mudstone	Beds (5 to 100cm)	Upper- Gradational; Lower- Gradational	Calcite (<12%), Quartz (<7%), and Micas (<1%)	0.025	Bioclasts may be pyritized, Echinoderms, Agglutinated foraminifera, and Conodonts are <3mm and make up less than 4% of this facies	<i>Chondrites</i> isp. (<1.5mm by 0.3mm)
F4: Lenticular Mudstone	Laminae thicken and thin laterally (0.2 to 5mm)	Upper- Sharp; Lower-Sharp and Wavy	Clay clasts (50-90%), Quartz (<12%), Organic	0.030	Bioclasts, Brachiopods, Conodonts, Agglutinated foraminifera	Planolites isp. (<0.7 by 0.05mm)

			Matter (<10%), and Calcite (5%)		make up to 1% of this facies.	
F5: Bioclast- rich Wavy Mudstone	Laminae (1mm to 5cm); Faint grading	Upper- Gradational; Lower-Sharp and Wavy	Calcite (10- 15%%) and Quartz (<5%)	0.031	Echinoderms and Brachiopods (10 to 20%); Rugose corals, Agglutinated foraminifera, Conodonts, and Phosphate intraclasts make up less than 1% of this facies	<i>Planolites</i> isp. (<1.5 by 0.2mm)
F6: Siliciclastic Siltstone	Laminae (1cm) to Beds (5cm)	Upper- Sharp; Lower-Sharp	Quartz (35%) and Calcite (20%)	0.031	Phosphate grains, Rip-up Clasts, Conodonts, Bioclasts are <1mm in length and make up <2% of this facies	Planolites isp. (<1.5 by 0.2mm)
F7: Glauconitic Siltstone	Laminae (~8mm)	Upper- Sharp; Lower-Sharp and Wavy	Quartz (25%)	0.036	Glauconite (20%), Brachiopods (2%), Echinoderms (2%), and Bioclasts (2%) are <1mm in length	n/a
F8: Calcareous Siltstone	Laminae (0.8 to 2cm)	Upper- Sharp; Lower-Sharp and Wavy	Calcispheres (35%), Calcite (15%), and Quartz (15%)	0.056	Brachiopods, Phosphate intraclasts, and Conodonts are <1mm	Planolites isp. (<1.5 by 0.2mm)
F9: Massive to Bioturbated Carbonate Mudstone	Beds (<3m)	Upper- Gradational; Lower- Gradational	Calcispheres (1%) and Quartz (1%)	0.05	Echinoderms, Brachiopods, Gastropods, and Ostracods are <0.5mm and make up < 3% of this facies	<i>Zoophycos</i> isp (<1cm)
---	-------------------	---	---	------	---	--------------------------------
F10: Nodular Skeletal Wackestone	Beds (<1m)	Upper- Gradational; Lower- Gradational	Calcite (10%)	0.05	Echinoderms (<15%), Brachiopods (<10%), Bioclasts (5- 10%), Ostracods (<3%), Trilobites (<3%), and Conodonts (<1%)	n/a
F11: Laminated Skeletal Packstone	Laminae (<5cm)	Upper- Gradational; Lower-Sharp and Wavy	Calcite (10%) and Quartz (<1%)	0.06	Echinoderms (<45%), Brachiopods (<15%), Gastropods (<1%), Trilobites (<1%), Ostracods (<1%), Conodonts (<1%), and Phosphate Intraclasts (<1%)	n/a

Table 5: Wells organized by county with the total thickness of each core from the base of the Scallion to the last siliciclastic False Bakken shale. The percentage of each facies present in each core is displayed. In addition, at the bottom is the number of thin sections that have each facies.

Well #	County	F1 %	F2a / F2b %	F3%	F4 %	F5 %	F6 %	F7 %	F8 %	F9%	F10 %	F11 %	Absent Core%	Core Thickness (in)
8251	Billings	0	17	38	0	0	0	0	0	0	40	1	4	225
18502	Billings	2	17	35	0	3	0	0	0	0	41	2	0	177
9426/E 383	Billings	0. 5	14	21	0	3	0	0	0	0	60	1	0	221
12886	Billings	0	12	34	0	0.9	0	0	0	0	27	3	23	212
7887/ B659	Billings	1	9	23	0	0.5	0	0	0	0	39	2	24	193
10077 /E385	Billings	0	17	19	0	0	0	0	0	0	62	2	0	167
B832	Billings	0	18	24	0	0	0	0	0	0	55	3	0	176
8638	Burke	0	4	2	1	0	1	2	0	3	84	3	0	141
20648	Burke	0	2	3	0	0	0.7	1	0	3	90	0	0	136
19773	Burke	0	0	0	0	0	0.8	2	0	3	94	0	0	125
13167	Divide	0	2	4	0	0	1	4	0	4	80	4	0	145
17396	Divide	0	0	0	0	0	28	0	48	0	23	0	0	1138
19709	Divide	0	3	0	0	3	0.8	2	0	3	88	0	0	128
12785	Dunn	2	21	9	0	2	0	0	0	0	58	9	0	194
607	Dunn	0	4	25	0.7	0.7	0	0	0	1	65	0	3	295
22092	Dunn	0	0.9	6	2	0.9	0	0	0	4	82	4	0	228
20453	Dunn	0	5	20	0	3	0	0	0	13	39	1	19	197
21734	Golden Valley	0	7	15	1	0	0	0	0	55	20	2	0	413
19917	Golden Valley	0	17	39	2	0.5	0	0	0	26	12	3	0	195
24123	Mckenzie	0	4	7	0	0	0	0	0	41	43	1	3	308
12772	Mckenzie	0	9	8	0	0.7	0	0	0	0	81	1	0	151
29426	Mckenzie	0	8	12	0	0.6	0	0	0	0	74	3	3	154
21966	Mckenzie	0	3	6	0	0.7	0	0	0	7	80	4	0	135
17723	Mercer	0	0.8	20	0	0.4	0	0	0	12	67	0	0	256
16160	Mountrail	0	5	3	0	0	1	3	0	0	80	8	0	150
26661	Mountrail	0	5	13	0.3	0	0	0	0	36	45	2	0	376
28036	Mountrail	0	3	7	0.8	0.3	0	0	0	21	62	2	4	364
15889	Mountrail	0	2	6	0	0	0	0	0	22	68	2	0	176
15986	Mountrail	0	2	5	0	0	0	0	0	8	82	3	0	196
19472	Renville	0	2	6	0.7	0	0	0	0	9	79	3	0	303
20002	Stark	0	11	40	0	0.5	0	0	0	0	47	1	0	190
17272	Ward	0	5	8	0.5	0	1	2	0	4	71	8	0	191

27216	Williams	0	12	3	0	0	0	0	0	13	71	1	0	152
Total Facies														
Thickness in all														
cores		11	489	1,002	22	39	335	24	548	822	4168	167	181	7808
Total Facies														
Percentage in all		0.												
cores		1	6.3	12.8	0.3	0.5	4.3	0.3	7.0	10.5	53.4	2.1	2.3	100
Total Facies														
observed in thin			6\											
section		2	16	15	6	6	3	1	2	1	3	4		

FACIES ARCHITECTURE

The 'False Bakken' interval consists of mostly siliciclastic mudstones, and towards the North, East, and West also intercalated limestones in its upper portion, and varies in thickness between about 0.1 to 20m with an average thickness of 1.9m (see Table 5). The "Scallion interval", composed of coarsegrained carbonate facies, has a sharp contact with the underlying upper Bakken mudstone or Three Forks dolomitic limestone, and a gradational contact with the overlying 'False Bakken' (Mackie, 2013). The transition from coarse bioclastic limestones of the "Scallion interval" to fine-grained siliciclastic and carbonate mudstones of the 'False Bakken' indicates an overall decrease in grain size for the entire succession. Three alternating small-scale (0.5-1.5m thick) fining- and coarsening-upward packages are evident in the 'False Bakken' interval that can be mapped throughout the basin. These packages increase in areal extent from the first to third package (Fig. 7) and can be correlated across the basin (Fig. 8).

Vertical facies transitions and stacking patterns are similar in cores of close proximity to one another but vary when further apart spatially. The lowermost fining-upward unit of the succession is indicated by the gradual transition from coarse bioclastic limestones (F10-F11) of the uppermost 'Scallion' interval to bioturbated pyritized bioclast-bearing mudstones (F3) of the lower 'False Bakken' in all areas south of Renville County. Further to the north, this facies transition shows a gradual contact from the 'Scallion' coarse bioclastic limestones (F10 and F11) to glauconitic siltstones (F7), the latter constituting the basal 'False Bakken' facies. The bulk of this first fining-upward succession is made up of siliciclastic mudstones (F1-F4); its uppermost portion is represented by massive siliciclastic mudstones (F2a and F2b) in Billings, Stark, and Dunn Counties, bioturbated pyritized bioclast-bearing mudstones (F3) in areas outside of these counties, and glauconitic siltstones (F7) in the very northeast of the study area.

Fig. 7: Individual lines represent the contact between shales and carbonates for the coarsening and fining upward units, when dashed the contact is inferred. Three contacts between the siliciclastics and carbonates within the fining-upward units are indicated by brown lines labeled T1, T2, and T3. In addition, two coarsening upward units are represented by lines shaded blue and labeled R1 and R2. T1 occurs in the lowermost part of the succession and T3 at the top.

Fig. 8: Cross-section from core #18502 to #17723 in which these fining- and coarsening-upward units are correlated across the basin. Brown=F1, F2a, F2b, F4, and F5; Red=F3, F4, F5; and Grey=F9. See Fig. 7 for cross-section line.

Overlying the first fining-upward package are three coarsening- and two fining-upward units that alternate with one another and display similar facies changes up-section based on location within the basin. In the northern, eastern, and western parts of the study area, the typical fining-upward packages are composed of carbonates mudstones (F9) at the base, overlain by pyritized bioclast-bearing mudstones (F3), and massive fine-grained siliciclastic mudstones (F2a and F2b) at the top. However, in Billings County and nearby the characteristic fining-upward packages show basal pyritized bioclast-bearing mudstones (F3) overlain by massive fine-grained siliciclastic mudstones (F2a and 2b). Characteristic coarsening-upward packages in the northern, eastern, and western parts of the basin have massive fine-grained siliciclastic mudstones (F2) at their bases which are overlain by pyritized bioclast-bearing mudstones (F3) and carbonates mudstones (F9) at the tops. Within and near Billings County, carbonate mudstones (F2a and F2b) that are overlain by pyritized bioclast-bearing mudstones (F3).

The three fining- and overlying coarsening-upward packages forming the 'False Bakken' interval show some distinct facies differences throughout the study area in northwestern North Dakota: graded argillaceous mudstones (F1) and lenticular mudstones (F4) occur only in the second and third fining- and coarsening-upward packages and are absent in the basal fining- and coarsening-upward unit; bioclast-rich wavy mudstones (F5), in contrast, occur in all three packages. Nevertheless, not every core necessarily shows all of the facies that generally make up the fining- and coarsening-upward packages so the occurrence of graded argillaceous mudstones (F1) and lenticular mudstones (F4) may be restricted to distinct cores. For example, graded argillaceous mudstones (F1) are only present in four cores within and around Billings County (Fig. 9a) while lenticular mudstones (F4) occur exclusively in the northeast and southwest portions of the basin outside of Billings County (Fig. 9b). Bioclast-rich mudstones (F5) occur throughout the basin in general but are more abundant within Billings and adjacent Counties (Fig. 9c). Core #17396 in the northwest of the study area is an anomaly as it contains a 22m thick succession of silt-

rich siliciclastics (F6; F8) while this thick succession is absent east of this core; instead, several cores in that area contain glauconitic siltstones (F7; Fig. 9d) that are in places interbedded with siliciclastic siltstones (F6), and this facies generally forms the basal portion of the 'False Bakken' section.

Within this succession, various facies occur as laminae intercalated into other facies. Laminated skeletal packstones (F11) occur within nodular skeletal wackestones (F10); however, carbonate mudstones (F9) have no additional facies present within them. Within the bioturbated pyritized bioclast-bearing mudstone facies (F3) and massive calcareous-argillaceous mudstones (F2b), lenticular (F4) and bioclast-rich (F5) mudstones can occur as laminae in these facies; however, the abundance of these laminae (F4 and F5) is greater within facies 3. Finally, graded argillaceous mudstones (F1) only occur within the massive siliciclastic-argillaceous mudstones (F2a).

DEPOSITIONAL MODEL

The 'False Bakken' succession shows a subdivision into two distinctly different depositional zones, the more proximal one characterized by carbonate deposition, and the distal one by sedimentation of siliciclastic mudstones similar to facies models in recent and ancient carbonate systems (Burchette and Wright, 1992). Within these depositional zones, the facies are arranged following an energy gradient which assumes overall high energy in proximal, and low energy in distal settings (Fig. 10); this energy gradient is reflected in the overall grain size of facies: high-energy deposits show large maximum grain sizes and low-energy facies overall small grain sizes. The carbonate depositional zone consists of two distinct facies belts which are here defined as areas of deposition of similar facies: a proximal zone of carbonate wacke- to packstone sedimentation (FB1) consisting of dominantly wackestone facies (F10) with intercalated packstone laminae (F11), and a distal carbonate mudstone (F9) dominated facies belt (FB2) containing only minor isolated bioclasts and no other facies types (Fig. 11). The siliciclastic mudstone depositional zone is subdivided into three facies belts: a proximal dominantly siliciclastic mudstone facies belt (FB3) with abundant carbonate in the matrix and pyritized fossil debris (F3) which in places contains lenticular siliciclastic mudstones (F4) and bioclast wavy siliciclastic mudstones (F5), a massive siliciclastic mudstone facies belt (FB4) with calcareous debris and quartz grains (F2b) that also shows lenticular siliciclastic mudstones (F4) and bioclast wavy siliciclastic mudstones (F5), and a massive siliciclastic mudstone facies belt (FB5) with quartz grains and rare calcareous debris (F2a) that shows laminae of intercalated very fine-grained siliciclastic mudstones (F1). The size, abundance, and type of burrow varies between the various facies belts with large Zoophycos isp. tracks exclusively found churning through the carbonate mudstones (FB2); Chondrites isp. and Planolites isp. are found mainly within the most proximal siliciclastic facies belt (FB3); and small *Phycosiphon incertum* isp. are the only tracks within the most distal massive siliciclastic facies belt (FB5).

Fig. 10: Idealized depositional model that displays where each facies belt and the intercalated laminae occur from distal to more proximal settings on the low inclined ramp. This model is representative for both transgressions and regressions as all facies belts are thought to be present throughout the succession. A decrease in bioturbation, grain size, and carbonate occurs from proximal carbonates to distal siliciclastics. Types of burrows are labeled where they occur on this model.

Following this general facies distribution (Fig. 10), the five facies belts represent distinct positions on the low-inclined margin of the Williston epicontinental basin that most likely reflect different depths of deposition, distances from the shoreline which influenced the potential delivery of grains to any given location within the basin, and oxygen concentrations limiting infaunal and benthic life. Starting at the proximal end of what is preserved in the lowermost Lodgepole Formation, the carbonate wackestones (F10) with intercalated packstone laminae (F11) show an alternation of fair-weather and storm influence on deposition, and therefore likely represent sedimentation in a mid-ramp position (Burchette and Wright, 1992) above storm wave base as indicated by the packstone laminae (F11) interpreted as tempestites. Further basinwards, a lack of packstone laminae (F11) and low abundances of bioclasts within the carbonate mudstones (F9) indicate little storm influence on deposition, and an abundance of Zoophycos isp. burrows up to 1cm in diameter reflect that oxygen concentrations were significant enough to support numerous large organisms. However, crossing the threshold from carbonates to siliciclastic mudstones, the siliciclastic facies belt adjacent to the carbonate mudstones (mainly F3 with laminae of F4 and F5) again reflects high-energy influence on deposition, most likely by storms or similar currents (see Schieber 2016). It is therefore likely that also the carbonate mudstones (F9) were subjected to storm deposition. The facies belt basinward of the most proximal siliciclastic mudstones, the massive calcareous-argillaceous mudstone (F2b), still records the influence of storm waves with the presence of some intercalated bioclast-rich wavy mudstones (F5). Nevertheless, other indicators of high-energy events also occur in places such as lenticular mudstones (F4). The most distal facies belt consisting of massive siliciclastic-argillaceous mudstones (F2a) with some intercalated graded argillaceous mudstone laminae (F1) shows mostly enigmatic sedimentary conditions based on its nearly completely bioturbated nature with only the fine grain size of the graded argillaceous mudstones (F1) showing deposition from suspension. The bulk of the succession, though, is thought to be deposited by bed-load transport based on its grain size that is coarser than the suspension laminae; it is therefore interpreted to be largely deposited by storm events and associated bed-load depositional processes (see Li and Schieber 2018) prior to bioturbation. The deepest of the siliciclastic facies belts exclusively shows sub-millimeter Phycosiphon incertum fecal strings reflecting that most likely dysoxic conditions prevailed during deposition allowing for small organisms to move through the muddy substrate (Egenhoff and Fishman, 2013).

Fig. 11: A schematic map of where facies belts occur relative to one another within the basin. The aerial extent of each facies belt changes for each sequence and the distribution presented here is based on the location of each facies belt for the first sequence.

In this study, the 'False Bakken' is interpreted to consist of three transgressive and regressive sequences based on grain-size trends throughout measured sections in this particular stratigraphic interval (Figs. 7 and 8). Nevertheless, these three sequences are not made up of exactly the same facies. The fact that lenticular mudstones occur only in the upper two but not in the lowermost sequence indicates that sediment starvation did not occur throughout the entire succession. As lenticular mudstones (F4) are generally interpreted to reflect condensation (Schieber et al 2010; Borcovsky et al. 2017), their distribution almost entirely in the eastern portion of the study area reflects sediment starvation mostly in

this part of the basin and not in most of its western portion (Fig. 9b). However, the two sections to the extreme southwest in Golden Valley County containing lenticular mudstones (F4) indicate a locally different starved environment, either on a basin high, or in an otherwise sheltered setting that is confined to this part of the basin. Similarly, the graded argillaceous mudstone laminae (F1) are restricted to exclusively the central portion of the basin (Fig. 9a) and do not occur in any of the other sections as they are deposited only in the most distal settings. This seems reasonable as suspension laminae will be easiest formed and best preserved in distal settings, and the center of the basin during 'False Bakken' deposition seems adequate for conserving these sediments. Glauconitic siltstones (F7) are restricted to the very northeastern portion of the basin and exclusively occur in the first sequence (Fig. 9d) indicating condensation of the basin. Although glauconitic siltstones (F7) are only present within the first sequence unlike lenticular mudstones (F4), both occur in the northeastern portion of the basin suggesting this part of the basin was even more sheltered from sedimentation than the east in general, leading to extreme condensation during 'False Bakken' deposition exclusively in that area.

The elevated thickness of the siltstone facies (F6; F8) as well as high amounts of quartz silt exclusively in the central portion of Divide County (in the very northwest of the study area) indicates a nearby source of siliciclastic input. While this one well (#17396) is located close to the basin area where glauconite is abundant (Fig. 12), its characteristics indicate rather high amounts of sedimentation and not condensation like the adjacent wells that contain glauconite facies. It is therefore assumed that the central part of Divide County was located close to a sediment input area, likely representing a distal delta environment (cf. Angulo and Buatois, 2012, for the underlying upper Bakken shale). Nevertheless, the glauconite-bearing succession must have been completely sheltered from its neighbors further in the northwest not allowing any sediment to be transported to these glauconite-bearing successions during the first cycle. This could either indicate a barrier (see Fig. 12), e.g. a tectonic element, subdividing the northern Divide County well from its eastern neighbors by blocking any sediment flow to the east, or be

caused by the Coriolis force preferentially transporting sediment to the right in the northern hemisphere (Duke, 1990). Some tectonic influence on facies distribution seems, however, likely as the northeastern most well (#19472) in the study area, located east of the glauconite-bearing wells, does not contain any glauconite, and was therefore likely not sediment-starved.

The distribution of facies throughout the 'False Bakken' clearly shows this unit to be overall transgressive (Fig. 7). This is shown in the maximum extent of the transgressive siliciclastic mudstones (cf. Loutit et al. 1988) that cover an increasingly larger area starting with the transgressive siliciclastic mudstones of sequence 1 (T1) which are overstepped by the siliciclastic mudstones of sequence 2 (T2) showing a wider areal distribution, and the siliciclastic mudstones of sequence 3 which are present in all wells used in the present study. The maximum regressions, however, are not as well defined as the transgressions. The data suggest, though, that the two regressions reflected in the succession seem to show the position of the carbonate-siliciclastic mudstone transition in a similar place for sequence 1 and sequence 2. The sea-level fall during sequence 3 must have been of major amplitude as it terminated black shale deposition in the North Dakota portion of the Williston Basin for the lower Mississippian succession and therewith defined the end of the 'False Bakken'.

The 'False Bakken' facies study also shows an interesting aspect of basin geometry reflected in the distribution of carbonate and siliciclastic mudstone facies: throughout 'False Bakken' deposition the basin center was located in western Dunn and northern Billings Counties and may have extended westwards through Golden Valley County into Montana. The basin center remained stable during 'False Bakken' sedimentation yet presents a southwards shift of the basin center from the underlying Bakken Formation where it was near the borders of Williams, McKenzie, and Mountrail Counties (Borcovsky et al. 2017, and references therein). It is unclear what caused this shift. However, throughout Bakken times the Williston Basin was connected to the Elk Point Basin in southern Saskatchewan (Gerhard et al. 1982; LeFever and Anderson, 1984; Gaswirth et al. 2013) and tectonic subsidence in the middle Lodgepole caused the Williston Basin to gain access to the Cordilleran sea to the west through the Central Montana trough and abandon its previous connection to the Elk Point Basin (Bjorlie, 1979; Gerhard et al. 1982; Gaswirth et al. 2013). It is therefore inferred that this tectonic subsidence thought to occur in the middle Lodgepole actually occurred during sedimentation of the 'False Bakken' interval of the lower Lodgepole causing a southward shift of the basin depocenter from Bakken to lower Lodgepole times.

DISCUSSION

Facies in Siliciclastic Mudstones

This study assumes that there are six different siliciclastic mudstone facies that make up the succession of the 'False Bakken' in the Williston Basin in contrast to merely two described before (Mackie 2013; Stroud, 2011). The question remains whether these additional facies are warranted, and what they achieve in order to describe the sedimentology of the 'False Bakken' in better detail.

In this contribution, the siliciclastic mudstone facies are grouped into three facies belts that are placed adjacent to two carbonate facies belts but in waters deeper and further away from land than the carbonates. These three siliciclastic mudstone facies belts, are characterized by decreasing grain sizes further distally but at the same time also differ significantly in their biogenic and carbonate content. The further away from the shoreline a facies is the less carbonate mud it contains as the carbonate is thought to be produced in shallow water (e.g. Schlager 2003) and then transported downslope, probably preferentially during storms. The identification of three siliciclastic mudstone facies belts and three intercalated facies allows for a much more detailed and precise look at the 'False Bakken' succession in comparison to previous models that identified only two siliciclastic facies. Therefore, this more detailed approach provides a way to easily differentiate proximal from distal siliciclastic sediments within the succession. Furthermore, the proximal portion contains many more high-energy features not displayed in distal siliciclastic mudstones: the bioclast-rich wavy mudstones (F5) interpreted as storm laminae get less prominent further downslope and are not found in the most distal massive siliciclastic-argillaceous mudstones (F2a). Suspension-derived graded argillaceous mudstones (F1) occur exclusively in the most distal facies belt (FB5-massive siliciclastic-argillaceous mudstones) thereby highlighting its deep-shelf nature and it being out of reach of some of the storm waves during deposition. All in all, the mudstone subdivision proposed in this contribution therefore invites a much more detailed look at the 'False Bakken' interval, and the proposed model allows for predictions of facies occurrences throughout the

study area that would not have been possible otherwise. It is therefore suggested that a detailed documentation of siliciclastic mudstone facies, as similar as they may seem macroscopically, can elevate the understanding of any succession from being merely fine-grained to reflecting significant shifts in depositional energy, and associated sedimentary structures and grains.

Carbonate-Shale Transitions

During 'False Bakken' deposition, the boundary between carbonate mudstones (F9) and siliciclastic mudstones (F2a, F2b, and F3) are observed in two of the three cycles documented for this stratigraphic interval. Both facies belts, not only the carbonates (e.g. Burchette and Wright, 1992), are well documented in core and thin section. It therefore seems reasonable to compare the processes interpreted for both sides of this shale-carbonate transition, and highlight differences and similarities in order to get an idea for the preservation and expression of e.g. storm-induced structures in the sedimentary record.

In the carbonates, storm beds are only preserved in the wackestone facies belt, here interpreted to be the most proximal (Fig. 10), but not in the adjacent carbonate mudstone facies belt. Consequently, it is assumed that the lack of storm beds in carbonate mudstone facies reflects a lack of storm wave reworking for the carbonate mudstones, and therefore storm wave base should have been placed at the top of the carbonate mudstone facies belt; yet, most models place it at the transition from carbonates to siliciclastic mudstones assuming that the mudstones, following an antiquated view, have been deposited from suspension whereas carbonates are thought to have formed in shallow water (see above). Close examination of the siliciclastic mudstone facies present in the 'False Bakken' interval, however, contradicts this concept of suspension deposition in nearly all of the mudstones: suspected suspension-derived sediments are in fact quite rare and restricted to exclusively the most distal facies belt. The most proximal two siliciclastic facies belts, however, show abundant bioclast lags that are here (and in Mackie 2013) interpreted to represent storm beds characterized by shells and other bioclast debris.

The problem highlighted by this work is that storms are evident in siliciclastic mudstone facies in the 'False Bakken' of the Williston Basin until at least its second deepest facies belt (Fig. 10), and the carbonate mudstones which do not reflect any storm activity are bordering facies belts with abundant storm indicators on both sides, the deep and the shallow end. This indicates that the carbonate mudstones most likely do not preserve storm-formed structures, e.g. shell lags present in both of the adjacent facies belts, and the question remains why this is the case.

It may be suggested that carbonate mudstones were deposited on structural highs; therefore, storm deposits may not have been preserved. However, there is little evidence for this as carbonates occur mostly in areas that are not associated with structural highs. It is well known that carbonate mud can be transported by bed load processes (Schieber et al. 2013) and form e.g. ripples. These bed load processes may be masked by subsequent intense bioturbation from organisms that entirely burrowed through the fine-grained carbonate and destroyed any sedimentary structures originally present in the sediment. However, carbonate particles of mostly bioclastic debris are present in greater abundances in siliciclastic mudstones than in the carbonate mudstones; therefore, it seems reasonable to assume that the carbonate facies belt originally contained a greater abundance of bioclastic debris.

Up to centimeter-size carbonate grains, biogenic in origin, can be completely corroded by biogenic processes governing micritization (bioerosion, e.g. Hallock, 1988; Peterhänsel and Pratt, 2001) and has been shown to occur for the Palliser Platform and several other examples in the rock record (e.g. the Prague Basin, Vodráqková et al. 2013; Adriatic Carbonate Platform; Zamagni et al. 2008; Ándara Massif; Merino-Tomé et al. 2009). Although not yet suggested to have taken place within the Williston Basin, micritization is suspected to occur within the carbonates of the 'False Bakken' interval and likely in other places with carbonate-siliciclastic mudstone transitions.

The process most likely works in the following way: the carbonate mudstones are generally seen as the most distal carbonate facies belt (e.g. Burchette and Wright, 1992). The further distal an environment is the less sediment will likely be transported to that location as it is deeper and requires

higher energy to be delivered that far from the shoreline. Carbonate mudstones therefore represent the area where low amounts of bioclastic debris will be delivered. Nevertheless, based on the facies characteristics of adjacent facies these carbonates most likely also contained more bioclasts. Because of the low sedimentation rates in this distal setting the carbonate grains remain at or near the sea floor, where bioeroding organisms thrive from the influx of river-borne nutrients (Hallock, 1988; Peterhänsel and Pratt 2001). This increase in nutrient availability is confirmed by the abundance of calcispheres, suggested to be of algal origin, that form blooms associated with high nutrient concentrations in the water column (Hart, 1991; Scholle and Ulmer-Scholle, 2003). The bioclasts are degraded at the sea floor thereby producing the carbonate mud that is so characteristic for this facies belt. The storm beds degrade from this process and the newly produced mud will be mixed in with the carbonate mud already in place. Only silt-size bioclastic remnants in the carbonate mudstones still reflect that this facies was originally not exclusively a mudstone but most likely contained some coarser-grained storm beds. It is therefore assumed that in similar settings with terrestrial input and its associated nutrient influx, as indicated by the presence of e.g. biotite and calcispheres, more distal carbonate mudstones likely contained storm events that were not preserved due to an increase in bioerosion of bioclastic grains exposed on the sea floor.

Position of Storm Wave Base and Implications for Carbonate Facies Models

This study shows that distinct storm beds are still detectable in the siliciclastic mudstones in the second deepest facies belt of the Williston Basin (Fig. 10). The classical position of the storm wave base at the lower boundary of the carbonate facies belts is therefore not corroborated by this study as at least two of the siliciclastic mudstone facies belts have distinctive storm beds and other indicators of erosional processes (e.g. erosion of clay clasts from the sea floor, see above). Commonly, storm wave base, the depth at which storms frequently influence sedimentation on the seafloor, is used to define the transition from mid- to outer-ramp depositional settings and can vary significantly in depth depending on the basin type (Burchette and Wright, 1992). During deposition of the 'False Bakken', many of the siliciclastic

mudstone facies are thought to reflect storm deposition, and therefore the position of the storm wave base has to be significantly deeper than the carbonate-siliciclastic mudstone facies boundary.

In the Recent, the storm wave base is located as deep as 250m in the open Atlantic, and even in the "sheltered" Gulf of Mexico around 200 m based on buoy measurements (Peters and Loss, 2012). It is suspected that the intracratonic Williston Basin in the Mississippian was much more sheltered than the Gulf of Mexico today and most likely experienced a much shallower storm wave base; however, where that was located is not clear. Based on comparisons with the modern Persian/Arabian Gulf (Purser and Seibold, 2012) which is also a sheltered setting, the carbonate-siliciclastic mudstone transition is approximately at 70 m water depth. It can therefore be assumed that the Williston Basin may have possessed this facies transition at a similar water depth or, because of its even more protected nature, even further up in the water column. In any case, this facies transition cannot have been much deeper than some tens of meters, and the Williston Basin as a whole was probably not deeper than about 100m considering that the inclination of an intracratonic basin is significantly less than 1° (Burchette and Wright, 1992).

The findings of this study therefore have important implications even for carbonate facies models: it is suspected that there are more examples in the rock record that will contain bioclast storm horizons in the shales adjacent to and more distal than the carbonate mudstones. Consequently, storm wave base should not be placed at the carbonate-siliciclastic mudstone facies boundary but is most likely located somewhere in the siliciclastic mudstones if it is not below the deepest point of the basin center, and therewith not within a given succession at all. Storm wave bases as deep as 250m in open ocean settings seem to limit identifying this boundary in many successions in the rock record, and it clearly will be located significantly deeper than is assumed for many carbonate units throughout geological time, and all climatic zones.

วบ

Glauconite

This study assumes that the glauconite in facies 7 defines a part of the basin that is very restricted, and found exclusively in sequence one of the three sequences that make up the 'False Bakken' succession. However, as the 'False Bakken' is shown to be overall transgressive as indicated by the overstepping of transgressive fine-grained strata in the three sequences (Fig. 7), condensation should be common in the transgressive portions of all three sequences and not just in the first one. The exclusivity of glauconite in only the lower 'False Bakken' sequence therefore remains enigmatic.

Nevertheless, there are other sedimentary features that are indicative of sedimentary starvation, e.g. the clay clasts (Schieber et al. 2010; Borcovsky et al. 2017). These features are common in both the 'False Bakken' sequences two and three indicating that sediment starvation was indeed still a major factor during the middle and upper part of 'False Bakken' deposition. Alternatively, the distribution of glauconitic sediment may be patchy so that certain areas, e.g. where the drill cores were taken, may not show glauconite even though it may be present in the sediments. Nevertheless, the abundance of glauconite in sequence one of the 'False Bakken' interval seems to reflect that starvation was strongest in this part of the succession, and it is worth exploring why.

Sedimentation of the Lodgepole Formation started with carbonates throughout North Dakota, showing a distinct coarsening towards the boundary of the 'False Bakken' interval, interpreted as a lowering of sea-level. Sea-level change must have been significant in order to transition from the 'Scallion' carbonate wacke- to packstones underlying the 'False Bakken' to the siliciclastic mudstones characterizing this last black shale interval in the lower Mississippian succession. The two subsequent sea-level changes of the 'False Bakken' interval reach an overall larger area than the first one; however, they did not show such a significant change in basin configuration as the first sea-level fluctuation. The glauconite may therefore be a result of strong sediment starvation related to a very prominent sea-level rise during sequence one.

Fig. 12: All cores are labeled and any cores with a green dot contain glauconitic siltstones (F7). Anticline structures from Novak and Egenhoff, (2018) are overlain onto this map.

Nevertheless, another factor may have influenced glauconite to be entirely restricted to the northeast of the study area. The initial sea-level rise during sequence one formed a gulf extending eastwards and then northwards into the central and northern-central part of the study area. The glauconite is only occurring at the very end of this gulf when it was newly formed, and in an area especially isolated from the rest of the Lodgepole Sea. It is therefore likely that the isolated position of sediments containing glauconite has added to this area being especially sediment-starved.

Finally, tectonic structures mapped out in the basin for middle Bakken times may have influenced sediment patterns during 'False Bakken' deposition, too. The two northwestern-most wells in Divide County (17396 and 19709; Fig. 12) are separated by a lineament that could have been forming a barrier during 'False Bakken' deposition and thereby altering sediment delivery to areas now occupied by glauconitic-siltstones. Alternatively, as the Williston Basin was situated on the northern hemisphere during Lodgepole Formation deposition, the main sediment flow was likely preferentially shedding sediment to the west thereby starving areas located towards the east of well 17396. Either one of these factors, or a combination of any or all of them was likely responsible for glauconitization during the initial sequence of 'False Bakken' deposition. Glauconite sediments therefore represent not only a testimony to strong sediment starvation but at the same time indicate a distinct stratigraphic level within 'False Bakken' stratigraphy.

Oxygen Availability in the Water Column and Sediment during 'False Bakken' deposition

Burrows of several types and/or fecal strings are present in the 'False Bakken' interval throughout all facies. Nevertheless, the abundance of burrow types and the intensity of burrowing change from more proximal to distal settings with proximal sediments showing high and distal low to moderate abundances of burrows and burrowing (Fig. 10). It is well known that carbonate facies are generally well oxygenated (Wilson, 1975). However, siliciclastic mudstones are generally not seen as strongly bioturbated, yet some ichnospecies exist (e.g. Schieber 2003; Borcovsky et al. 2017): *Planolites* isp. have been identified in a number of siliciclastic mudstone units (e.g. Alum Shale, Egenhoff et al. 2015; upper Bakken Shale, Egenhoff and Fishman 2013, Borcovsky et al. 2017), and *Chondrites* isp. is also known from several shale units (e.g. Greenhorn and Niobrara Formation, Archer and Hattin, 1984; Posidonienschiefer Formation, Bromley and Ekdale, 1984; Upper Kellwasser interval, Boyer et al. 2014). Nevertheless, transitioning from carbonates to siliciclastic mudstones, diameters of burrow structures become smaller, from several millimeters in the carbonates to about 0.05 millimeters in the siliciclastic mudstones. This size reduction is interpreted to reflect a decrease in oxygen availability at the sediment-water interface

(Bottjer and Gorsline, 1984; Savrda and Bottjer, 1987). This deficit in oxygen availability is also reflected in the decrease of burrow types within the sediment: in the most distal depositional facies belt, only *Phycosiphon* fecal strings (Egenhoff and Fishman, 2013) are present yet they indicate that the environment could not have been completely anoxic as an opportunistic fauna was able to survive. It is therefore concluded that the carbonate-siliciclastic mudstone transition most likely represents a reduction in oxygen level reflected in smaller faunas whereas oxygen values decreased dramatically towards the deepest portions of the basin. Yet, they most likely never reached anoxic levels as shown by the presence of fecal strings in the distal most facies.

CONCLUSIONS

The 'False Bakken' interval of the lower Lodgepole Formation in the Williston Basin is comprised of 9 siliciclastic facies and 3 carbonate facies: these are graded argillaceous mudstone (F1), massive siliciclastic-argillaceous mudstone (F2a), massive calcareous-argillaceous mudstone (F2b), bioturbated pyrtitized bioclast-bearing mudstone (F3), lenticular mudstone (F4), bioclast-rich wavy mudstone (F5), siliciclastic siltstone (F6), glauconitic siltstone (F7), calcareous siltstone (F8), massive to bioturbated carbonate mudstone (F9), nodular skeletal wackestone (F10), and laminated skeletal packstone (F11). Grain size, carbonate content, and bioturbation increase successively from F1 to F11 throughout the succession.

The 'False Bakken' shows three fining- and coarsening-upwards units : (1) a fining upward trend from carbonate mudstones (F9) to bioturbated pyritized bioclast-bearing mudstones (F3) to massive siliciclastic mudstones (F2a and F2b) and (2) a coarsening upward trend from carbonate mudstones (F9) to bioturbated pyritized bioclast-bearing mudstones (F3) to massive siliciclastic mudstones (F2a and F2b).

Bioclast-rich wavy mudstones (F5) and lenticular mudstones (F4) are commonly intercalated within bioturbated pyritized bioclast-bearing mudstones (F3) and massive calcareous-argillaceous mudstones (F2b), while graded argillaceous mudstones (F1) are only found within massive siliciclastic-argillaceous mudstones (F2a). These facies (F1, F4, and F5) are not always present within the three coarsening- and fining- upward units and only occur locally within the basin. Bioclast-rich wavy mudstones (F5) are present within all three coarsening- and fining- upward units and distributed throughout the basin. Lenticular mudstones (F4) and graded argillaceous mudstones (F1) are only present within the upper two coarsening- and fining- upward units; however, the graded argillaceous mudstones (F1) are exclusive to Billings County while lenticular mudstones (F4) occur mostly in the northeastern portion of the study area. With each successive fining upward unit, siliciclastic mudstones occupy increasingly larger areal extents. Siltstone facies are restricted to the northern part of the basin with a

thick succession of siltstones present only in core #17396 in the very northwest of the study area. Just east of this core, however, are several cores that contain glauconitic siltstones (F7).

From these coarsening- and fining- upward units, five facies belts were identified based on similar depositional characteristics: the (FB1) nodular skeletal wackestone, (FB2) the carbonate mudstone, (FB3) the pyritized bioclast-bearing mudstone, (FB4) the calcareous-argillaceous mudstone, and (FB5) the siliciclastic-argillaceous mudstone. The five facies belts are interpreted to represent a transect from proximal to distal settings during 'False Bakken' sedimentation with the carbonates being deposited in more proximal settings and siliciclastics in distal settings. These facies belts are consequently arranged along a depositional transect that shows a decrease in grain size and carbonate abundance from proximal to distal basin locations and is accompanied by a decrease of bioturbation abundance and diversity in the same direction. The most distal facies shows normally-graded fine-grained laminae (F1) that reflect suspension settling in quiet waters, intercalated into massive siliciclastic-argillaceous mudstones (F2a). High-energy reworking and deposition of fine-grained sediment, in contrast, is represented by bioclast-rich wavy mudstones (F5) and lenticular mudstones (F4) thought to show storm reworking and bed-load transport. The distribution of these features in all but the most distal facies belts shows how far storm waves could reach during 'False Bakken' deposition. Storm wave base therefore has to be placed either between the lowermost two siliciclastic mudstone facies belts or could have reached down even to the deepest basin position as suspension settling laminae are rare within the distal facies belt.

The burrowing trends detected in the 'False Bakken' succession show that siliciclastic mudstone deposition did not occur in an anoxic environment as proposed for many black shale successions. Instead, the presence of burrows and fecal strings even in the more distal basin areas show most likely dysoxic conditions throughout 'False Bakken' deposition, with the increase in burrow diversity and abundance up-dip most likely reflecting an increase in oxygenation of the basin towards proximal areas.

The three fining and coarsening-upward successions are interpreted to reflect three transgressions and regressions in the 'False Bakken' succession. Each of the transgressions occupied a successively larger area showing that the 'False Bakken' interval was overall transgressive. These transgressions flooded a carbonate-dominated shelf in western North Dakota with the first transgression resulting in the largest amount of change in facies distribution interpreted to reflect the highest amount of sea-level rise. Nevertheless, all three transgressions resulted in sediment starvation with only the first one leading to the local development of glauconitic siltstones (F7) at the most sediment-starved end of a newly developed gulf in northwestern North Dakota. Lenticular mudstones (F4) deposited during the two later transgressions are interpreted as resulting from the local reworking of siliciclastic mudstones because of sediment starvation in the eastern portion of the basin. The limited extent of siltstone facies (F6; F8) in the northwestern most part of the basin is thought to indicate local sediment input into the basin. It is suspected that structural elements confined sediment distribution to the east; however, the local occurrence of siltstone laminae in glauconitic siltstones (F7) seems to reflect that at times of major sediment input these tectonic barriers could be overcome.

REFERENCES

- Amorosi, A., 1995. Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. J. Sediment. Res. 65, 419–425.
- Angulo, S., Buatois, L.A., 2012. Ichnology of a Late Devonian-Early Carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 315–316, 46–60. https://doi.org/10.1016/j.palaeo.2011.11.007
- Anna, L.O., Pollastro, R., Gaswirth, S.B., 2010. Williston Basin Province Stratigraphic and Structural Framework to a Geologic Assessment of Undiscovered Oil and Gas Resources, in: US Geological Survey Williston Basin Province Assessment Team, Assessment of Undiscovered Oil and Gas Resources of the Williston Basin Province of North Dakota, Montana, and South Dakota. pp. 1–17. https://doi.org/10.1306/M971332
- Archer, A.W., Hattin, D.E., 1984. Trace fossils in upper Cretaceous argillaceous marine facies of the U.S. Western interior. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 165–187. https://doi.org/10.1016/0031-0182(84)90039-7
- Baccelle, L., Bosellini, A., 1965. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Annali dell' Università di Ferrara, IX, 1 (3), 59-62
- Ballard, F. V, 1963. Structural and stratigraphic relationships in the Paleozoic rocks of eastern North Dakota. North Dakota Geol. Surv. Bull. 40.
- Beanish, J., Jones, B., 2002. Dynamic carbonate sedimentation in a shallow coastal lagoon: Case study of South Sound, Grand Cayman, British West Indies. J. Coast. Res. 18, 254–266. https://doi.org/10.7939/R3125QR09
- Bjorlie, P., 1979. The Carrington Shale Facies (Mississippian) and its Relationship to the Scallion. North Dakota Geol. Surv.
- Blakey, R.C., 2003. Carboniferous Permian paleogeography of the assembly of Pangaea. Proc. XVth Int. Congr. Carbonif. Permian Stratigr. 443–456.
- Borcovsky, D., Egenhoff, S., Fishman, N., Maletz, J., Boehlke, A., Lowers, H., 2017. Sedimentology, facies architecture, and sequence stratigraphy of a Mississippian black mudstone succession-The upper member of the Bakken Formation, North Dakota, United States, AAPG Bulletin. https://doi.org/10.1306/01111715183
- Bottjer, D., Gorsline, D., 1984. Development of a Comprehensive Oxygen-deficient Marine Biofacies Model- Evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California Continental Borderland, AAPG Bulletin. 68, 1179-1192.
- Boyer, D.L., Haddad, E.E., Seeger, E.S., 2014. The Last Gasp: Trace Fossils Track Deoxygenation Leading Into the Frasnian-Famennian Extinction Event. Palaios 29, 646–651. https://doi.org/10.2110/palo.2014.049
- Brandano, M., Corda, L., 2002. Nutrients, sea level and tectonics: Constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nov. 14, 257–262. https://doi.org/10.1046/j.1365-3121.2000.00419.x

- Bromley, R., Ekdale, A., 1984. Chondrites : A Trace Fossil Indicator of Anoxia in Sediments. Adv. Sci. 224, 872–874.
- Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sediment. Geol. 79, 3–57. https://doi.org/10.1016/0037-0738(92)90003-A
- Carlson, C.G., Anderson, S.B., 1965. Sedimentary and tectonic history of North Dakota part of Williston Basin. Bull. Am. Assoc. Pet. Geol. 49, 1833–1846.
- Colby, N., Boardman, M., 1989. Depositional Evolution of a Windward, High-Energy Lagoon, Graham's Harbor, San Salvador, Bahamas. J. Sediment. Petrol. 59, 819–834.
- Duke, W., 1990. Geostrophic Circulation or Shallow Marine Turbidity Currents? The Dilemma of Paleoflow Patterns in Storm-Influenced Prograding Shoreline Systems. J. Sediment. Petrol. 60, 870– 883.
- Egenhoff, S., 2017. The lost Devonian sequence Sequence stratigraphy of the middle Bakken member, and the importance of clastic dykes in the lower Bakken member shale, North Dakota, USA. Mar. Pet. Geol. 81, 278–293. https://doi.org/10.1016/j.marpetgeo.2017.01.015
- Egenhoff, S., Fishman, N., 2013. Traces In the Dark-Sedimentary Processes and Facies Gradients In the Upper Devonian-Lower Mississippian Upper Shale Member of the Bakken Formation, Williston Basin, North Dakota, U.S.A. J. Sediment. Res. 84, 839–841. https://doi.org/10.2110/jsr.2014.74
- Egenhoff, S., Fishman, N.S., Ahlberg, P., Maletz, J., Jackson, A., Kolte, K., Lowers, H., Mackie, J., Newby, W., Petrowsky, M., 2015. Sedimentology of spice (Steptoean positive carbon isotope excursion): A high-resolution trace fossil and microfabric analysis of the middle to late Cambrian Alum Shale formation, southern Sweden. Spec. Pap. Geol. Soc. Am. 515, 87–102. https://doi.org/10.1130/2015.2515(05)
- Ekdale, A.A., Mason, T.R., 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology 16, 720–723. https://doi.org/10.1130/0091-7613(1988)016<0720:CTFAIO>2.3.CO;2
- Gaswirth, S.B., Marra, K.R., 2015. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston basin province. Am. Assoc. Pet. Geol. Bull. 99, 639–660. https://doi.org/10.1306/08131414051
- Gaswirth, S.B., Lillis, P.G., Pollastro, R.M., Anna, L.O., 2013. Geologic Assessment of Undiscovered Oil and Gas in the Williston Basin Province, Montana, North Dakota, and South Dakota, in: US Geological Survey Williston Basin Province Assessment Team, Assessment of Undiscovered Oil and Gas Resources of the Williston Basin Province of North Dakota, Montana, and South Dakota. pp. 1–28.
- Gerhard, L.C., Anderson, S.B., Fischer, D.W., 1990. Petroleum Geology of the Williston Basin, in: Interior Cratonic Basins. pp. 507–559.
- Gerhard, L.C., Anderson, S.B., LeFever, J.A., Carlson, C.G., 1982. Geological Development, Origin, and Energy Mineral Resources of Williston Basin, North Dakota. Am. Assoc. Pet. Geol. Bull. V 66, 989–1020.
- Grotzinger, J.P., 1989. Facies and evolution of precambrian carbonate depositional systems: emergence of the modern platform archetype. Control. carbonate Platf. basin Dev. based a Symp. 79–106.
- Grover, P., 1996. Stratigraphy and Diagenesis of the Mississippian Bakken Shale-Lodgepole Limestone Sequence, Williston Basin, North Dakota. Texas A&M University.

- Hallock, P., 1988. The role of nutrient availability in bioerosion: Consequences to carbonate buildups. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63, 275–291. https://doi.org/10.1016/0031-0182(88)90100-9
- Hansen, B., Long, G., 1991. Criteria for horizontal and vertical prospects in the Bakken Formation, Williston Basin, in: 1991 Guidebook to Geology and Horizontal Drilling of the Bakken Formation: Montana Geological Society, Billings, Montana. pp. 151–163.
- Hart, M.B., 1991. The Late Cenomanian calcisphere global bioevent. Proc. Usher Soc. 7, 413-417.
- Hogancamp, N.J., Pocknall, D.T., 2018. The biostratigraphy of the Bakken Formation: A review and new data. Stratigraphy 15, 197–224. https://doi.org/10.29041/strat.15.3.197-224
- Holland Jr, F., Hayes, M., Thrasher, L., Huber, T., 1987. Summary of the biostratigraphy of the Bakken Formation (Devonian and Mississippian) in the Williston basin, North Dakota. Fifth Int. Willist. Basin Symp. 68–76.
- Hubbard, D.K., Miller, A.I., David, A., Islands, U.S.V., 1990. Production and Cycling of Calcium Carbonate in a Shelf-Edge Reef System (St. Croix, U.S. Virgin Islands): Applications to the Nature of Reef Systems in the Fossil Record. J. Sediment. Petrol. 60, 335–360.
- Kenter, J.A.M., Campbell, A.E., 1991. Sedimentation on a Lower Jurassic carbonate platform flank: geometry, sediment fabric and related depositional structures (Djebel Bou Dahar, High Atlas, Morocco). Sediment. Geol. 72, 1–34. https://doi.org/10.1016/0037-0738(91)90121-S
- Kerr, D., 1988. Overview: Williston Basin Carbonate Reservoirs, in: Occurence and Petrophysical Properties of Carbonate Reservoirs in the Rocky Mountain Region. pp. 251–274.
- Klostermann, L., Gischler, E., 2015. Holocene sedimentary evolution of a mid-ocean atoll lagoon, Maldives, Indian Ocean. Int. J. Earth Sci. 104, 289–307. https://doi.org/10.1007/s00531-014-1068-8
- LeFever, J.A., 1990. History of Oil Production from the Bakken Formation, North Dakota, in: Geology and Horizontal Drilling of the Bakken Formation. pp. 3–18.
- LeFever, J.A., Anderson, S.B., 1984. A little known carbonate reservoir within the lower Lodgepole Formation, northwestern North Dakota. Oil gas Saskatchewan 31–43.
- LeFever, R., Crashell, J., 1991. Structural development of the Williston Basin in Southwestern North Dakota. Sixth Int. Willist. Basin Symp. 11, 222–233.
- Li, Z., Schieber, J., 2018. Detailed facies analysis of the Upper Cretaceous Tununk Shale Member, Henry Mountains Region, Utah: Implications for mudstone depositional models in epicontinental seas. Sediment. Geol. 364, 141–159. https://doi.org/10.1016/j.sedgeo.2017.12.015
- Loutit, T., Hardenbol, J., Vail, P., 1988. Condensed Sections: The Key to Age Determination and Correlation of Continental Margin Sequences, in Sea-Level Changes: An Integrated Approach. pp183-213
- Mackie, J., 2013. Sedimentology and Diagenesis of the Lower Lodgepole Formation, Williston Basin, North Dakota. Colorado State University.
- Macquaker, J.H.S., Bentley, S.J., Bohacs, K.M., 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology 38, 947–950. https://doi.org/10.1130/G31093.1
- Macquaker, J. H. S., Keller, M.A., Davies, S.J., 2010. Algal Blooms and "Marine Snow": Mechanisms That Enhance Preservation of Organic Carbon in Ancient Fine-Grained Sediments. J. Sediment.

Res. 80, 934–942. https://doi.org/10.2110/jsr.2010.085

- Martín, J.M., Braga, J.C., Betzler, C., Brachert, T., 1996. Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment (uppermost Miocene, Agua Amarga Basin, Southern Spain). Sedimentology 43, 263–277. https://doi.org/10.1046/j.1365-3091.1996.d01-4.x
- Meissner, F., 1978. Petroleum Geology of the Bakken Formation Williston Basin, North Dakota and Montana, in: Geology and Horizontal Drilling of the Bakken Formation. pp. 19–42.
- Merino-Tomé, O., Bahamonde, J.R., Samankassou, E., Villa, E., 2009. The influence of terrestrial run off on marine biotic communities: An example from a thrust-top carbonate ramp (Upper Pennsylvanian foreland basin, Picos de Europa, NW Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 278, 1–23. https://doi.org/10.1016/j.palaeo.2009.04.002
- Miller, K.B., Brett, C.E., Parsons, K.M., 1988. The Paleoecologic Significance of Storm-Generated Disturbance within a Middle Devonian. Palaios 3, 35–52.
- Montgomery, S.L., 1996. Mississippian Lodgepole Play, Williston Basin: A review. Am. Assoc. Pet. Geol. Bull. 80, 795–810.
- Nelson, C.S., Keane, S.L., Head, P.S., 1988. Non-tropical carbonate deposits on the modern New Zealand shelf. Sediment. Geol. 60, 71–94. https://doi.org/10.1016/0037-0738(88)90111-X
- Novak, A., Egenhoff, S., 2019. Soft-sediment deformation structures as a tool to recognize synsedimentary tectonic activity in the middle member of the Bakken Formation, Williston Basin, North Dakota. Mar. Pet. Geol. 105, 124–140. https://doi.org/10.1016/j.marpetgeo.2019.04.012
- Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R., Sinha, S., 2010. From oil-prone source rock to gas-producing shale reservoir - Geologic and petrophysical characterization of unconventional shale-gas reservoirs. SPE Middle East Oil Gas Show Conf. MEOS, Proc. 1, 6–34.
- Peterhänsel, A., Pratt, B., 2001. Nutrient-triggered bioerosion on a giant carbonate platform masking the postextinction Famennian benthic community. Geology 29, 1079–1082. https://doi.org/10.1130/0091-7613(2001)029<1079:NTBOAG>2.0.CO;2
- Pomar, L., 1991. Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene Reef Complex, Mallorca, Spain. Sedimentology 38, 243–269. https://doi.org/10.1111/j.1365-3091.1991.tb01259.x
- Pomar, L., Brandano, M., Westphal, H., 2004. Environmental factors influencing skeletal grain sediment associations: A critical review of Miocene examples from the western Mediterranean. Sedimentology 51, 627–651. https://doi.org/10.1111/j.1365-3091.2004.00640.x
- Purser, B., Seibold, E., 1973. The Principal Environmental Factors Influencing Holocene Sedimentation and Diagenesis in the Persian Gulf, in: The Persian Gulf Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. pp. 1–10.
- Randazzo, A., Baisley, K., 1995. Controls on carbonate facies distribution in a high energy lagoon, San Salvador Island, Bahamas, in: Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. pp. 157–175.
- Rankey, E.C., 2004. On the Interpretation of Shallow Shelf Carbonate Facies and Habitats: How Much Does Water Depth Matter? J. Sediment. Res. 74, 2–6. https://doi.org/10.1306/071803740002
- Reijmer, J.J.G., Ten Kate, W.G.H.Z., Sprenger, A., Schlager, W., 1991. Calciturbidite composition

related to exposure and flooding of a carbonate platform (Triassic, Eastern Alps). Sedimentology 38, 1059–1074. https://doi.org/10.1111/j.1365-3091.1991.tb00371.x

- Ritter, A., Grammer, M., 2017. Utilizing sequence stratigraphy to develop a depositional model for Silurian (Niagaran) reefs in the Michigan Basin, in: Paleozoic Stratigraphy and Resources of the Michigan Basin: Geological Society of America Special Paper 531. pp. 81–104.
- Savrda, C., Bottjer, D., 1987. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature. 327, 54-56
- Schieber, J., 2003. Simple Gifts and Buried Treasures- Implications of Finding Bioturbation and Erosion Surfaces in Black Shales. Sediment. Rec. 1, 4–8.
- Schieber, J., 2009. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 292– 300. https://doi.org/10.1016/j.palaeo.2008.10.027
- Schieber, J., 2016. Mud re-distribution in epicontinental basins Exploring likely processes. Mar. Pet. Geol. 71, 119–133. https://doi.org/10.1016/j.marpetgeo.2015.12.014
- Schieber, J., Southard, J.B., 2009. Bedload transport of mud by floccule ripples Direct observation of ripple migration processes and their implications. Geology 37, 483–486. https://doi.org/10.1130/G25319A.1
- Schieber, J., Southard, J., Thaisen, K., 2007. Accretion of mudstone beds from migrating floccule ripples. Science. 318, 1760–1763. https://doi.org/10.1126/science.1147001
- Schieber, J., Southard, J.B., Schimmelmann, A., 2010. Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds-Interpreting the Rock Record in the Light of Recent Flume Experiments. J. Sediment. Res. 80, 119–128. https://doi.org/10.2110/jsr.2010.005
- Schieber, J., Southard, J.B., Kissling, P., Rossman, B., Ginsburg, R., 2013. Experimental Deposition of Carbonate Mud From Moving Suspensions: Importance of Flocculation and Implications For Modern and Ancient Carbonate Mud Deposition. J. Sediment. Res. 83, 1025–1031. https://doi.org/10.2110/jsr.2013.77
- Schlager, W., 2003. Benthic carbonate factories of the Phanerozoic. Int. J. Earth Sci. 92, 445–464. https://doi.org/10.1007/s00531-003-0327-x
- Scholle, P., Ulmer-Scholle, D., 2003. Other Micro- and Nannofossils in: A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis. AAPG Memoir 77. pp. 60-62
- Scotese, C.R., 1994. Carboniferous paleocontinental reconstructions. U. S. Geol. Surv. Bull. 3-6.
- Stroud, J., Sonnenberg, S.A., 2011. The Role of the Lower Lodgepole Formation in the Bakken Petroleum System, Billings Nose, North Dakota. Bakken-Three Forks Pet. Syst. Willist. Basin. Colorado School of Mines.
- Vodrážková, S., Frýda, J., Suttner, T.J., Koptíková, L., Tonarová, P., 2013. Environmental changes close to the Lower-Middle Devonian boundary; the Basal Choteč Event in the Prague Basin (Czech Republic). Facies 59, 425–449. https://doi.org/10.1007/s10347-012-0300-x
- Wilson, J.L., 1975. The Stratigraphy of Carbonate Deposits, in: Carbonate Facies in Geologic History. pp. 20–55. https://doi.org/10.1007/978-1-4612-6383-8_2
- Wilson, R.D., Schieber, J., 2014. Muddy Prodeltaic Hyperpycnites In the Lower Genesee Group of

Central New York, USA: Implications For Mud Transport In Epicontinental Seas. J. Sediment. Res. 84, 866–874. https://doi.org/10.2110/jsr.2014.70

Zamagni, J., Mutti, M., Košir, A., 2008. Evolution of shallow benthic communities during the Late Paleocene-earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies 54, 25–43. https://doi.org/10.1007/s10347-007-0123-3

APPENDIX I: MEASURED SECTIONS

Well: <u>USA #1-24 (#8251)</u> County: <u>Bill</u>									Count	y:BillingsState:_ND				
Compan	Company: Jerry Chambers Stratic									graphic iterval: Lower Lodgepole Date: 5/2/18 & 3/5/19				
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone		grainstone	el breccia	Contact	Description	Interpretation			
			clay	silt	fgs	mgs	cgs	grave						
10 362														
10 363														
10,364														
10,504														
10,305										Bluish grey carbonate MS that reacts vigorously with HCL				
10,300														
10,307														
10,308														
10,309	10,369.6									Black massive mudstone with rare bioclasts; Moderate effervescence				
10,370														
10,371			-											
10,372														
10,373										Bioturbation evident				
10 375			000											
10,376	10,375.1									Black massive mudstone; Does not effervesce.				
10.377	10.377									Bluish grey mudstone with pyritized bioclasts oriented parallel to bedding				
10,378			\ge							Black MS with trace bioclasts (<2 crinoids); Concretions near the top				
10,379										Bluish grey mudstone with grains oriented parallel to bedding; Bioclasts (~1-2%)				
10,380										Darker grey with laminae developed by grains; grains are randomly oriented.				
10,381										Greyish Blue WS; Decrease in grain size; Bioturbated; Increase in phosphate?; Decrease in grain size				
10,382														
10,383														
10,384														
10,385														
10,386										Brownish grey packstone; bioturbated				
10387			Upper Bakk							Contact not exposed				
Well: <u>Tec</u>	Well: Teddy 44-13 TFH (#18502) County: Billings Company: Whiting Oil and Gas Co. Stratigraphic iterval: Lower Lodgepole Date: 5/3/18 & 3/8/19													
------------------	---	-------------	----------	------------	-----------	------------	------------	---------	---------	---	----------------	--	--	--
Compan	ıy: <u>Whi</u> r	18 & 3/8/19												
	1		1	<i>a</i> :		;	I	I	l					
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	backstolic	grainstone	breccia	Contact	Description	Interpretation			
			clay	silt	fgs	mgs	cgs	gravel)					
10,491														
10,492														
10,493														
10,494														
10,495			_											
10,496										Laminae of bioclasts Black mudstone with fine grained parallel, continuous, laminae				
10,497	10,496.7									Massice black mudstone with no bioclasts; moderate effervescence.				
10,498														
10,499										Massive brownish black mudstone with ~3-8% bioclasts (mostly pyritized); Moderate to high effervescence.				
10,500														
10,501	10,500.8									Black mudstone with trace crinoids. Low effervescence. Black mudstone with brown concretions/burrows? Dark graw mudstone with ~5% crinoids and brachionods				
10,502	10,502.1									Black mudstone with trace brachiopods; small brown blotches; low.effervesce Black pyrite? organics? Discontinuous shells (bioclasts and crinoids); Lamination	>			
10,503									~~~~	Black mudstone with bioclasts (~15%) brachiopods and crinoids. Greyish black mudstone with pyritized bioclasts. Laminated packstone with ~30% bioclasts (~0.1mm).				
10,504														
10,505										Bluish grey carbonate wackestone with ~10-15% bioclasts (Crinoids, gastropod), globular pyrite; bioturbated				
10,506														
10,507														
10,508										Light grey wackestone with ~15-20% bioclasts that are				
10,509			Upper							randomly oriented; discontinuous laminae; bioturbated Contact not exposed.				
10,510			Bakken											

Well: Fec	leral 12	-1 (#9426	/ E383)						Count	y: BillingsState:ND	
Compan	iy: <u>Fed</u> e	eral Exploi	ration Co.					raphic iterval: Lower LodgepoleDate: 5/4/	18		
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	bacucia	grainstone	breccia	Contact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel	U		
10,778											
10.779											
10,780										Grey massive carbonate mudstone with no bioclasts	
10.781											
10,782	E383- 10,781.3 E383-									Brown mudstone with pyritized bioclasts; High effervescence; Moderately bioturbated.	
10,783	10,782.10									Riack mudstone with this mm thick laminations and a shell	
10,784	10,783.1									layer rich lamina at the base followed by faint dark and light lamina	
10,785	E383- 10,785		X976X9								
10,786	10,785.9									Dark brown to black mudstone with trace pyritized bioclasts and brown concretions and bioturbation	
10,787	10,786.6		7.7.7.7.	****					~~~~		
10,788											
10,789	E383- 10,789				D-A-H-A-H						
10,790										Bluish grey wackestone with some glauconite and phosphate?; Heavily bioturbated	
10,791	E383- 10,790.8										
10,792					HHHHH						
10,793	E383-				THATA						
10,794	10,795.2										
10,795					44444						
10,796					44444						
10,797					MANAAA						
10,798					HAMAN					Greyish brown wackestone with ~15-25% bioclasts;	
10,799					74747977					crinoids (<0.5mm); silt laminae present throughout	
10,800			Upper Bakken								

Well:Cor	nnel 24	-27 (#128	36)						Count	y: BillingsState: _ND	
Compan	y: <u>She</u> l	l Western							Stratig	raphic iterval: Lower Lodgepole Date: 5/3/	18
Depth	Sample/ Photo	Lithology	mudstone	wackestone	packstone	bacupa	grainstone	breccia	Contact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel			
10,496											
10,497											
10,498											
10,499											
10,500										Massive bluish grey carbonate mudstone with <2% bioclasts and bioturbation?	
10,501											
10,502											
10,503										Dark blackish grey mudstone with 2-5% bioclasts	
10,504											
10,505											
10,506	10,505.8									Massive bedded mudstone with no bioclasts; low to moderate effervescence	
10,507										Dark blackish grey mudstone with ~2-5% bioclasts alligned	
10,508										parallel to bedding; Most bioclasts pyritized	
10,509	10,508.8 - 10,509									Dark black mudstone with rare bioclasts Dark brown mudstone with bioclasts (~5%) parallel to bedding Dark black mudstone with concretions and ~2% bioclasts	
10,510	10,509.7		.	ITAI					~~~~	Dark grey massive mudstone with no clasts visible	
10,511										Packstone with ~25% bioclasts, glauconite that decreases	
10,512										Bluish grey wackestone	
10,513											
10,514											
10,515											
10,516											
10,517										Light grey wackestone with ~15% bioclasts and occasional	
10,518										silt rich laminae	
10,519											
10,520			Upper								
10,521			Bakken								

Well: 3	- <u>17 TOC I</u>	<u>MEE USA</u>	(#7887/B6	59)					Count	y: BillingsState: ND	
Compa	any: Tenr	neco Oil C							Stratio	graphic iterval: Lower Lodgepole Date: 4/3/	18
	/ 19/10		92								
Dept	ple/	ology	idstone	ckestone	-ketona		instone	eccia	act	Description	Interpretation
	Sam	Litho	n E	wao		s S	grai	vel br	Conta		
			clay	silt	fgs	gm	cgs	gra			
10,758										**Lots of missing core, so be cautious.	
10,760											
10,762											
Scale <u>10,764</u> Change										Grey massive bedded carbonate mudstone	
10,765											
10,766											
10,767											
10,768										Grey carbonate mudstone with bioturbation.	
10,769			\geq								
10,770										Black mudstone with up to 3% bioclasts and crinoids.	
10,771			\geq							light brown and faint dark laminae.	
10,772			\geq							Black mudstone with laminae identified by contrasting	
10,773										light brown and dark laminae. One lamina is composed of bioclasts.	
10,774			\geq							Dark grow mudstone with bioslasts and grippide	
10,775	B659-									randomly distributed throughout and pyritized in places Black mudstone with calcareous concretion	
10,776	B659- 10775.6									Massive black mudstone with a bioclast	
10,777	B659-		\mid								
10,778	10777									Washertono with increase in all same	
10.779										wackestone with increase in silt content	
10,780			\square								
10 781										Decrease in grain size	
10.782	0000										
10 783	10782.3									Wackestone with bioclasts and crinoids (~10-15%) and trace amounts of pyrite	
10,784											
10,704											
10,702											
10,786			Upper Bal	kken		•	:				

Well: Fee	deral 11	-4 (#1007	7/E385)						Count	y: BillingsState: _ND	(Logged in ND & USGS)		
Compar	mpany: <u>Florida Exploration Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/4/18 & 3/8/19</u>												
									5				
Depth	mple/ oto	hology	udstone	ackestone	acketone		ainstone	breccia	Itact	Description	Interpretation		
	Sai Ph	Lit		3	2	2 	Ð	/el	Cor				
			clay	silt	fgs	, Gu	cgs	grav					
10 749													
10,750													
10,750													
10,751										Massive bedded grey carbonate mudstone			
10,752													
10,753													
10,754													
10,755	E385- 10754.5 E385-												
10,756	10755		_							Massive black shale			
10.757													
10.758										Dark grey massive shale			
10,758				•						Dark shale with pyritized bioclasts			
10,759	E385- 10759.1									Dark brown glauconite and shell laminae interbedded.			
10,760													
10,761													
10,762													
10,763													
10,764													
10,765										Grey Wackestone (~10-15%) bioclasts randomly oriented cm thick			
10,766										laminae of shell rich layers.			
10,767					N I V I V I V I V I V I V I V I V I V I								
10.768													
10.700			Upper Bakken		4								
10,769			I	:	:	;	:	1		I			

Well: AL	Aguitai	ne 1-23Bl	N (B832)						Count	y: BillingsState:ND	(Logged at USGS)	
Compar	mpany: <u>Whiting Oil and Gas.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>4/2/18</u>											
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	backstolic	grainstone	breccia	Contact	Description	Interpretation	
			clay	silt	fgs	mgs	cgs	gravel	0			
10,328												
10,329												
10,330												
10,331												
10.332												
10,333										Maciualu baddad ggau cathanata gyuddana		
10 224										Massively beddeo grey carbonate mudstone		
10,335												
10,336												
10,337										Calcareous mudstone with bioturbation		
10,338												
10,339										Mudstone with pyritized bioclasts (~5-8%) oriented parallel to bedding		
10,340										Marcino dede mudetana		
10,341												
10,342												
10,343										Mudstone that contains pyritized bioclasts (~5-8%) elongated parallel to bedding. Becomes darker at 42:		
10,344										Decense in biodact shundance with some motion through and		
10,345										Decrease in diociast abundance with some pyrite throughout		
10,346												
10,347												
10,348										Warkastona with crinoide come bioclaste (shalls) assise and each		
10,349										vice.ressone with crimorus, some bioClasts (snells); grains randomly oriented; Cm-thick portions of the succession are clay rich laminae with an increase in shells (~20%); these laminae are irregularly thick and often pinchout		
10,350												
10,351												
10,352												
10353			Upper Bakken									

Well: <u>Sla</u> t	Pli: Slater #1-24 (#8638) County: Burke Stratigraphic iterval: Lower Lodgepole Date: 3/7/19													
Compan	ompany: <u>Clarion Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/7/19</u>													
		011110300	100						stratig					
									ı	1				
			he	one		2	ne							
Donth) e/	(gol	dsto	kest	(sto		Jsto	Sccie	t	Description	Interpretation			
Depth	oto Doto	thol	Dnu	vacl	Jack		Irair	bre	ntac	Description	Interpretation			
	S F	Ē		>		<u> </u>	0	-	Ö					
			ay	Ŧ	S	igs	gs	rave						
			d	si	fg	٤	Ŭ,	p						
							-	_						
7,872														
7,873						-		_						
7,874								-						
7.075														
/,8/5										Massive calcareous mudstone with bioturbation				
7.076										in places				
/,8/6														
7 877														
,077														
7 878			**							Large z-shaped calcareous dike in black mudstone Thin laminations in a black shale				
,,070														
7.879										Thin discontinuous/continuous glauconite rich laminae intercalated with silt rich laminae; wavy bedding; phosphate clasts (<3cm)				
,										Glauconite rich laminated packstone				
7,880														
7,881			辛辛辛											
7,882														
7,883							_							
7,884						-		-						
										Increase in grain abundance				
7,885					<u> </u>	-	-	-						
						ĺ								
7,886								-						
7,887					-									
7.000														
,888														
7 000														
7,089			Upper	1993										
7 800			Bakken											
7,890					:		:	:			l			

Well: <u>Gro</u>	Well: Grote 1-21H (#20648) State: ND Company: County: Burke State: ND Company: Continental Resources Stratigraphic iterval: Lower Lodgepole Date: 5/2/18 & 3/8/19													
Compan	Company: <u>Continental Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/2/18 & 3/8/19</u>													
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	bacupation	grainstone	breccia	Contact	Description	Interpretation			
			clay	silt	fgs	mgs	cgs	gravel	0					
0.151														
0.152														
0 152										Nodular grey carbonate mudstone with some some wavy laminations				
0.154														
0 155										Shell rich dark mudstone at the base that fines upward to a massive				
0.156									*****	plack mudstone. Grey carbonate mudstone that is heavily bioturbated with darker patch Dark glauconite rich bed with thin lighter colored laminations and burrows; No effervescence	25			
0 157														
9 158														
9 1 5 9														
9 160														
9 161														
9 162														
9 162														
9 164														
9 165														
9 166														
2,100		-	, opper baki				•	-						

Well: Pro	ducer's	<u>8-2H (#19</u>	9773)						Count	ty: BurkeState: ND			
Compar	npany: <u>Petro_Hunt LLC</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/2/18</u>												
	150								Stratig				
						,				1	1		
	1		ы	one		2	Pe						
	/e/	ogy	sto	test	to I		Isto	ccia	÷				
Depth	mpl	holo	pnu	ack	ack		rain	bre	Itac	Description	Interpretation		
	Sa Ph	Ľ		\$	2	2	D	_	Cor				
			2	÷	s	gs	s	ave					
			C ⁱ	si	fg	Ē	g	gr					
										Core ends at 9,096ft, so likely additonal facies above			
0.006										Heavily bioturbated carbonate mudstone			
9,096													
0.007			-							Glauconite rich bed with laminations			
9,097				<u><u> </u></u>						abundance (~10%)			
0.009			FFF										
9,098													
0.000													
9,099										Grey Wackestone with ~15% bioclasts			
9 1 0 0													
5,100													
9 101													
2,101													
0 102													
9,102			FFFF					Π					
0 102													
2,103								Π					
0.104													
9,104													
0.105													
9,105		<u> </u>											
0.106													
9,100													
0.107			Upper -	- tr	1								
9,107			ваккеп	:	:	:	:	i l					

Well: <u>Ska</u>	Well: Starphol D#5 (#13167) Company: Conoco Inc. Stratigraphic iterval: Lower Lodgepole Date: 4/30/18 & 3/8/19													
Compan	Company: <u>Conoco Inc.</u> Date: <u>4/30/18 & 3/8/19</u>													
Depth	Sample/ Photo Lithology clay mudstone silt wackestone		nackstone	hackstolle	grainstone	breccia	Contact	Description	Interpretation					
			clay	silt	fgs	mgs	cgs	gravel						
										Core ends at 8,905, so could be more shale units above. Also, core images online do not represent core seen at core center.				
8,905														
8,906														
8,907										Nodular carbonate mudstone with laminae throughout and becomes darker in color upsection				
8,908														
8,909									~~~~					
8,910										Glauconite rich(~25%) laminae				
8,911														
8,912														
8,913					HANA					Grav warkestone with ~ 12-20% biodasts and disontinuous				
8,914										and continuous, irregular laminae with more bioclasts.				
8,915														
8,916					HAN									
8,917					H									
8,918														
8,919														
8,920			Upper Bal	ken						Sharp contact				

Well: Sta	te ND 1	<u>-11H</u>							Count	ty: Mountrail State: _ND	
Compan	ıy: <u>Am</u> e	ereda Hes	<u>s Co.</u>						Strati	graphic iterval: Lower Lodgepole Date: 5/4	<u>'18 & 3/8/19</u>
Depth	Add Sample/ Sample/ Photo ay mudstone t wackestone s packstone is grainstone		breccia	Contact	Description	Interpretation					
			clay	silt	fgs	mgs	cgs	grave			
7,870			15 martinet at 10 Percent								
7,871										Massive dark grev siltstone	
7,872			ł								
7,873											
7,874											
7,875											
7,876											
7,877											
7,878											
7,879			-								
7,880											
7,881											
7,882											
7,883											
7,884						<u> </u>					
7,885											
7,886						<u> </u>					
7,887										Grau siltstana becomes more area and efferives as clighty	
7,888						_				more	
7,889						<u> </u>					
7,890											

Well: <u>Blo</u>	oming	Prairie (#1	7396)						Count	ty: DivideState: _ND	
Compan	iy: <u>Sam</u>	son Resou	urces Co.						Strati	graphic iterval: Lower Lodgepole Date: 3/6/	(19
Depth	Lithology Lithology ilt wackestone gs packstone		grainstone	breccia	Contact	Description	Interpretation				
			clay	silt	fgs	mgs	cgs	gravel)		
7,890											
7,891											
7,892											
7,893											
7,894											
7,895											
7,896											
7,897											
7,898											
7,899											
7,900			****							Thin <1mm shell layer laterally discontinuous	
7,901											
7,902								_			
7,903											
7,904	7 004 9									Laminations with a basal lamination composed of	
7,905	7,904.0							_			
7,906											
7,907											
7,908											
7,909										Faint laminations that are laterally continuous;	
7,910										alternate between black and slightly grey; ~1-3mm_	
7 01 2											
7 912											
7 914											
7 915										Black siltstone	

Well: <u>Blo</u>	oming	Prairie (#1	<u>7396) Co</u>	ntinue	<u>d (2)</u>				Count	y: DivideState:ND	
Compar	iy: <u>Sam</u>	son Reso	urces Co.						Stratig	raphic iterval: Lower Lodgepole Date: 3/6/	19
Depth	Sample/ Photo Photo Lithology wackestone advestone grainstone				grainstone	breccia	ntact	Description	Interpretation		
	SIL	C	clay	silt	s6j	ngs	cgs	gravel	ů		
						_	-				
7,915											
7,916	7,915.8								~~~~	Slightly inclined and wavy contact with burrows from overlying mudstone	
7,917											
7,918										Lighter brown siltstone	
7,919									~~~~		
7,920											
7,921											
7,922											
7,923										Appears to be oil stained in places	
7,924											
7,925											
7,926											
7,927											
7,928											
7,929											
7,930											
7,931											
7,932											
7,933											
7,934											
7,935											
7,936										~10 brachiopods and 1 crinoid on left side of core: each ~1mm	
7,937										and no preferential orientation	
7,938										Massive black to dark brown siltstone with rare bioclasts (~1%)	
7,939										randomly throughout. Parallel to subparallel wavy fractures. Faint laminations in places	
7,940											

Well: <u>Blo</u>	oming.	Prairie (#1	7396)						Count	y:DivideState:_ND				
Compan	Company: <u>Samson Resources Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/6/19</u>													
	.			. e					1	1				
	e/	gy	stone	estor	tone		tone	cia						
Depth	mple oto	holo	spnu	acke	acke	2	rains	brec	Itact	Description	Interpretation			
	Sal Ph	Lit		3	2	ב 	Ð		Ū.					
			lay	Ħ	gs	ngs	gs	Irave						
				s	Ψ.	-	-	5						
7.040														
/,940														
7,941														
										Dark brownish black siltstone with moderate effervescence; Mostly massive with some faint laminae in places. Fractures				
7,942	7,942,1									and phosphate sparsely throughout				
	,									Phosphatic grains? form a laterally discontinuous				
7,943										lamina Becomes darker due to more siliciclastic input				
7.944														
·														
7,945								_	ļ					
									*****	Hard ground				
7,946						_								
7.947														
.,														
7,948														
7,949														
7.950														
									İ					
7,951														
									h					
7,952														
7.953														
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
7,954														
7,955														
7,956														
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
7,957														
7,958														
7,959														
,														
7,960														
7,961														
7,962														
.,,,,,,,,														
7,963									ļ					
7,964														
7.965														
						_								

Well: Ros	Well: Rosenvold 1-30H (#19709) County: Divide Company: Continental Resources Stratigraphic iterval: Lower Lodgepole													
Compan	Company: <u>Continental Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>4/30/18</u>													
Depth	Lithology lit wackestone gs grainstone		breccia	Contact	Description	Interpretation								
			clay	silt	fgs	mgs	cgs	gravel)					
9,248														
9,249										Carbonate mudstone with <10% bioclasts; nodular; some irregular laminae				
9,250										Siliciclastic mudstone with ~15-20% bioclasts that are parially alligned				
9.251	9,250.3			<u>Xex</u>						parallel to bedding Massive black mudstone Bioturbated carbonate mudstone				
9.252										Laminated glauconite rich and poor beds with low effervescence				
9,253														
9,254										Wackestone with bioclasts (~10%); irregular laminae (0.1-1mm) that are continuous and discontinuous				
9,255														
9,256														
9,257														
9,258														
9,259														
9,260														
9,261			Upper Bakken											

Well: Ca	Well: Carus Fee #21-19 (#12785) County: Dunn State: ND Company: Maxus Exp Co. Stratigraphic iterval: Lower Lodgepole Date: 5/4/18 & 3/5/19													
Compan	y: Max	us E <u>xp Co</u>		raphic iterval: Lower Lodgepole Date: 5/4/	18 & 3/5/19									
-	·													
	. I		e :	one	i e	2	ē							
Denth	o o	logy	dstor	kesto	kstor		nstor	eccia	t	Description	Interpretation			
Deptii	Samp Phote	Litho	unu M	wac	pac	2	graiı	bre	onta	Description	interpretation			
		_	2		5	gs	s	avel	0					
			d	sil	fg:	Ē	ຕິ	gr						
11,265														
11 266														
11,267														
11,268														
11.260														
										Grey Nodular Carbonate Mudstone				
11,270														
11,271														
										Bioturbated Carbonate Mudstone				
11,272									*****					
11,273														
11.274	11,273.6													
	11,274.6									Pyritized bioclasts randomly distributed throughout.				
11,275	11,275									Black to dark blue mudstone with rare brachiopod shells (~5mm); Low effervescence: Faint dark laminations when looking critically				
11,276	11,276								~~~~	Black mudstone with low to mod effervescence; Irregular brown				
11 277			******	25					*****	blotches (<1mm) in a black matrix Lag deposit with dark black matrix and bioclasts and phosphate intraclasts (up to 5mm).				
										Laminated packstone with bioclasts and phosphate intraclasts; Dark grey.				
11,278	11,277.10 11,278.3								*****	Grey carbonate mudstone with ~5% bioclasts (mostly crinoids)				
11,279														
44.000						ннн								
11,280						H H H H								
11,281						H H								
11,282						AAA								
,						H H H H								
11,283						K H H				Nodular; Darker blue grey color; increase in silt laminae; bioclasts				
11,284						H H H				randomly oriented				
11 205						AAAA								
						ННН								
11,286						HHH		_		Grayish colored; Crinoids ~0.1mm on average and randomly oriented;				
11,287						H H H				heavily bioturbated; irregular continuous and discontinuous laminae.				
						H H H				Contact with Upper Bakken not exposed.				
11,289			I	!		1								

Well: And	<u>qus Ke</u> r	nnedy F32	2-24D (#60	7)					Count	ty:DunnState:_ND			
Compan	ompany: <u>Soconov-Vacuum Qil Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/30/18 & 3/8/19</u>												
	.			Je			41	.		1			
	7	gy	tone	stor	tone		tone	cia					
Depth	mple oto	oloh	spnu	acke	acke	2	ains	brec	tact	Description	Interpretation		
	Sai Ph	Lit		3	<u>م</u>	Σ	Ð	_	Col				
			lay	it	gs	ngs	gs	Irave					
			0	s	Ĵ.	2	0	5					
10 492													
10,465													
10,484													
			F1-F4?							Massive black mudstone with rare bioclasts; low effervescence			
10,485				-									
10.486			F1-F4?							Massive black mudstone with rare bioclasts; Low effervescence			
10,400													
10,487		10,487	~~~							Massive black mudstone with rare brachiopod shells parallel to bedding;			
										Black mudstone with pyritized bioclasts; low effervescence			
10,488			-										
10.489													
			XXIOXX	CALC									
10,490			-										
10,491										Grey nodular carbonate wackestone/mudstone			
10,492													
-													
10,493													
10.404			F1-F4?							Black shale with thin brown parallel laminae faintly distinguishable (F4)?; 1 pyritized shell; No effervescence.			
10,494													
10,495										Grav carbonate wackestone/muditione (~10% bioclasts): irregular			
										discontinuous laminae			
10,496													
10 497													
					-								
10,498													
10,499													
10,500													
10,501													
10 500													
10,502													
10,503													
10,504										Grey wackestone with ~15% bioclasts randomly oriented			
10 505													
. 0,000													
10,506													
10,507													
10508										Contact at 10508.8; Not exposed			
			оррегвак	NCI I									

Well: <u>MH</u>	Well: MHA 2-05-04A-148-91 (#22092) County: Dunn State: ND Company: OEP Energy Co. Stratigraphic iterval: Lower Lodgepole Date: 3/6/19													
Compan	Company: <u>QEP Energy Co.</u> Date: <u>3/6/19</u>													
Depth	ample/ hoto	ithology	mudstone	wackestone	nackstone		grainstone	breccia	ontact	Description	Interpretation			
	СΗ		clay	silt	fgs	mgs	cgs	gravel	CC					
9,874														
9,875														
9,876	9,875.6													
9,877										Light grey carbonate mudstone with parallel laminations?; Dark grains (Phosphate?Glauconite?) alligned parallel to bedding				
9,878														
9,879	9,879 9.879.2		**							Dark black mudstone with laterally discontinuous brown blotches; low to moderate effervescence.; Similar to F5				
9,880			XURAYU	AT-FA	¥				****	Darker mudstone/carbonate with phosphate clasts, bioclasts, crinoids, rip up clasts. Bioclasts not evenly distributed throughout with bioturbation from above.				
9,881										Heavily bioturbated grey carbonate mudstone Bioturbated black mudstone with pyritized bioclasts				
9,882										Darker matrix with increase in mud content and pyrite lenses. Dark grey laminated packstone				
9,883										Wackestone with >10% bioclasts and carbonate nodules and irregular silt laminae that increase in abundance and thickness.				
9,884														
9,885														
9,886														
9,887														
9,888										Wackestone to mudstone with ~6-12% bioclasts and decrease				
9,889										in storm laminae				
9,890														
9,891														
9,892														
9,893														
9,894										Wackestone with ~15% bioclasts, mostly crinoids; Irregular				
9,895										טוגנטיונוינטטג אוג ומחווומפ				
9,896														
9,897										Conformable contact with burrows present that are filled with				
9,898			Upper Ba	kken	1					Loagepole				

Well: <u>Wa</u>	Well: Wallace 7-1H (#20453) County: Dunn State: ND Company: Tracker Resource Development Stratigraphic iterval: Lower Lodgepole Date: 5/1/18													
Compan	Company: Tracker Resource Development Stratigraphic iterval: Lower Lodgepole Date: 5/1/18													
	/ 100	Net Hebook			*====				stratig					
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	harvstolle	grainstone	breccia	ontact	Description	Interpretation			
		_	clay	silt	fgs	mgs	cgs	gravel	0					
10 245														
10,245														
10,240										Heavily bioturbated grey carbonate mudstone				
10,247														
10,248														
10,249										Dark mudstone with up to 2% bioclasts and moderate to high effervescence. Possibly horizontal burrows Dark gray mudstone with up to 7% bioclats and bioturbation				
10,250														
10,251	10,251.6								~~~~~	Light brown mudstone with some bioclasts parallel to bedding	1			
10,252									*****	Dark mudstone with ~10-13% bioclasts				
10,255										Carbonate mudstone that is bioturbated and lacks bioclasts				
10,234	10,254.7									Laminations that are discontinuous; glauconite and bioclasts; Bioturbated				
10,255			\square											
10,257										Gradual decrease in bioclast abundance to about 12%; rugose coral				
10.258														
10.250														
10,239														
10,200					-									
10.267														
10.202										Wackestone with bioclasts (15%), crinoids, and a few gastropods				
10.205			Upper Bakken	àtàq	1									
10,204					•			:						

/ell: <u>Olson 12-139-104-A1H1#21734) Continued</u> County:Golden ValleyState: <u>ND</u> State: <u>ND</u> ompany: <u>Chesapeake Operation Co</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/6/19</u>													
Company: <u>Chesapeake Operation Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/6/19</u>													
Sample/ Photo	Photo Lithology t wadstone b packstone s grainstone		breccia	Contact	Description	Interpretation							
		clay	silt	fgs	mgs	cgs	gravel	0					
									Middle Lodgepole				
									Thin discontinuous crinoid lag?				
10,358									Dark blue to black massive mudstone				
	en 12-1 y: Che: Sample: 	on 12-139-104-A V: Chesaneake C idea of the same ake C </td <td>on 12-139-104-A1H (#2173) 'F Chesaneake Oneration. 'and and and and and and and and and and</td> <td>on 12-139-104-A1H (#21734).Con '' Chesaneake Operation Co <</td> <td>on 12-139-104-A1H (#21734). Continue 'F Chesaneake Operation Co</td> <td>on 12-139-104-A1H (#21734).Continued</td> <td>on 12-139-104-A1H J#217341 Continued Y: Chesapeake Operation Co. y: Chesapeake Operatio</td> <td>on 12-139-104-A1H Jf 21734).Continued Y: Chesaneake Operation Co. Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Seture A1H Jf 21734.Continteteeee Setue</td> <td>on 12:139:104-A1H (#21734) Continued Stratic /*: Chesaneake Operation Co. Stratic /*: 0 000 <t< td=""><td>20.12:13:104-61104212:41.Cootioued County-Golden Yalley Statis AND 1 1 1 1 1 1 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364<</td></t<></td>	on 12-139-104-A1H (#2173) 'F Chesaneake Oneration. 'and and and and and and and and and and	on 12-139-104-A1H (#21734).Con '' Chesaneake Operation Co <	on 12-139-104-A1H (#21734). Continue 'F Chesaneake Operation Co	on 12-139-104-A1H (#21734).Continued	on 12-139-104-A1H J#217341 Continued Y: Chesapeake Operation Co. y: Chesapeake Operatio	on 12-139-104-A1H Jf 21734).Continued Y: Chesaneake Operation Co. Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Seture A1H Jf 21734).Continued Y: Chesaneake Operation Co. Seture A1H Jf 21734).Continued Seture A1H Jf 21734.Continteteeee Setue	on 12:139:104-A1H (#21734) Continued Stratic /*: Chesaneake Operation Co. Stratic /*: 0 000 <t< td=""><td>20.12:13:104-61104212:41.Cootioued County-Golden Yalley Statis AND 1 1 1 1 1 1 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364<</td></t<>	20.12:13:104-61104212:41.Cootioued County-Golden Yalley Statis AND 1 1 1 1 1 1 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364 Date: 364 1 1 1 1 1 Date: 364<			

Well: Ols	on 12-1	<u>39-104A</u>	I <u>H (#2173</u>	34)					Count	y: Golden ValleyState: _ND				
Compar	ompany: <u>Chesapeake Operation Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/6/19</u>													
Depth	ample/ hoto	ithology	mudstone	wackestone	nackstone	backatolic	grainstone	breccia	ontact	Description	Interpretation			
	0, E	_	clay	silt	fgs	mgs	cgs	gravel	Ŭ					
10,366														
10,367														
10,368				<u>+</u>										
10,369			-											
10,370	10369.9									Mudstone with black and brown laminations; with black laminae being thicker; Moderate effervescence				
10,371														
10,372														
10,373														
10,374														
10,375														
10,376														
10,377														
10,378														
10,379														
10,380														
10,381										Massive grev mudstone				
10,382														
10,383														
10,384										Glauconitized grains				
10,385										Carbonate mudstone that appears to have planar, continuous laminae?				
10,386														
10,387														
10,388														
10,389					TARA									
10,390														
10,391			Three Fork	store st										

Well: <u>Ma</u>	<u>us 23-2</u>	2 (#19917	<u></u>						Count	y: Golden ValleyState:ND	
Compan	ıy: <u>Whi</u> t	ting Oil an	nd Gas Co.						Stratio	praphic intervalLower LodgepoleDate: 3/6/	19
	I		1	a)				1		1	
Depth	Sample/ Photo	Lithology	mudstone	wackeston	nackstone	backhoid	grainstone	breccia	Contact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel)		
10,525											
10,526											
10,527											
10,528											
10,529											
10,530											
10,531										No. 1	
10,532										Massive grey carbonate mudstone	
10,533										Contains ~2% pyritized bioclasts oriendted parallel to bedding	
10,534	10,533.8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Contains blotchy greyish brown blotches Laminated mudstone with thin brown lamina <1mm that	
10,535	10,534.7									are straight and continuous lamina and some shell lamina Massive dark blue mudstone with moderate effervescence and rare bioclasts. F3?	
10,536											
10,537											
10,538											
10,539											
10,540											
10,541											
10,542											
10,543			Three Fo	rks							

Well: <u>Ma</u>	Pli: Mariana Trust 12X-20G2 (#24123) Continued County: McKenzie State: ND mpany: XTO Energy Inc. Stratigraphic iterval: Lower Lodgepole Date: 4/30/18 & 3/8/19													
Compan	mpany: <u>XTO Energy Inc.</u> Date: <u>4/30/18 & 3/8/19</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>4/30/18 & 3/8/19</u>													
Depth	Sample/ Photo	-ithology	mudstone	wackestone	narkstone	harmonic	grainstone	breccia	ontact	Description	Interpretation			
	0, L	-	clay	silt	fgs	mgs	cgs	gravel	0					
11,006														
11,007														
11,008														
11,009														
11,010														
11,011														
11,012														
11,013														
11,014														
11,015				l 										
11,016														

Well: <u>Ma</u>	/ell: <u>Mariana Trust 12X-20G2 (#24123)</u> County: <u>McKenzie</u> State: ND												
Compan	Company: <u>XTO Energy Inc</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>4/30/18 & 3/8/19</u>												
	·	******											
	.		1	Je	· a	.	a,		I				
	e/	ygy	ston	estor	stone		stone	cia					
Depth	mple toto	tholc	spnu	vack			rain:	bred	ntact	Description	Interpretation		
	Sa Pr	Ľ		5		L	g	e	Ő				
			clay	silt	gs	mgs	cgs	grave					
				<i>v</i> ,			Ļ	<u>,</u>					
11.016													
11,017				ļ	\vdash								
11 010													
11,018								\square					
11,019				ł									
11,020					$\left \right $								
11.021													
11,021													
11,022													
11,023								\vdash					
11,024													
11,025				<u> </u>	-								
11.026													
I1,020													
11,027			\sum	<u> </u>									
11,028				L	+	_		\vdash					
11.029													
11,030							-	\square					
11.021													
11,051					N/N		-	\square					
11,032													
					LVIVI								
11,033								\square					
11,034													
,					NVV V								
11,035							-	\square					
11.026													
11,036								\square					
11,037													
					N N N								
11,038							-	\square					
11.030					A MAY								
11,040							-						
					8								
11,041				1					ļ		<u></u>		

Well:Gra	Vell: Grassy Butte 12-31 H-3 (#12772) County: McKenzie State: ND ompany: American Hunter Exploration Stratigraphic iterval: Lower Lodgepole Date: 5/1/18 & 3/8/19													
Compan	Company: American Hunter Exploration Stratigraphic iterval: Lower Lodgepole Date: 5/1/18 & 3/8/19													
	,		e	one		2	e	.						
Dopth) ole/	logy	dstor	kesto	ctor.		nstor	eccia	ಕ	Description	Interpretation			
Depth	Samp	-ithol	nm	wacl	had	200	grair	bre	ontae	Description	Interpretation			
	о, <u>т</u>	_	>			S	s	avel	0					
			cla	silt	fgs	Ĕ	g	grë						
11,220														
11 221														
11,222														
11,223														
11,224														
11 225														
11,226										Nodular light grey carbonate mudstone with trace amounts of pyrite shells				
11,227														
11,228														
11.229										Thin black mudstone that is shell rich (mostly brachiopod shells)				
			F1-F4?							Dark mudstone with up to 5% pyritized bioclasts				
11,230										_Massive black mudstone with rare brachiopod shells parallel to bedding; Low effervescence				
11,231					919									
11,232														
11.000														
1,233										Decrease in bioclasts (~10%)				
11,234														
11,235														
11,236										Contact distinguished by hard surface with borings				
11,237										Wackestone with up to 20% bioclasts (mostly crinoids); dicontinuous shell-rich laminae; carbonate nodeules; bioturbation				
11,238														
11,239														
11,240														
11 2 4 1														
1,241			Upper	<u></u>						Conformable contact with burrows and liquefaction indicating soft sediment				
11,242			Bakken											

Well: <u>Tet</u>	on 5-1-	<u>3 TFSH (#</u>	29426)						Count	y: McKenzieState: _ND				
Compan	Company: <u>Burlington Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/8/19</u>													
									stratig					
										1				
			Pe	one			ne	_						
	le/	ogy	lsto	(est	cto.		isto	ccia	H					
Depth	n poto	lou	pnu	/ack	- Ack		rain	bre	Itac	Description	Interpretation			
	P Sa	Lit		5	<u>-</u>	2	ъ	_	Ō					
			A	t.	s	gs	Js	ave						
			Ū	si	fg	E	S,	ŋ						
								_						
10,700														
4.0 7.04														
10,701														
10 700										Nodular grey carbonate mudstone with bioturbation				
10,702														
10 702														
10,703										Bioturbated mudstone				
10 704										Massive black mudstone with moderate effervescence				
10,7.0-4										Dark grey mudstone with ~5-8% bioclasts				
10 705										Black mudstone with ~5% bioclasts and calcareous concretions				
10,705										Black mudstone with rare bioclasts and possibly faint laminations				
10,706										Lag deposit with phosphate clasts and bloclasts (crinolds & brachlopods) Dark blue massive mudstone with rare bioclasts; moderate to high effervescence				
,														
10,707														
,														
10,708														
10,709														
10,710			2222											
10,711					<u> </u>			-			1			
10,712					<u> </u>			-						
10,713														
10,714														
10 715														
10,/15														
10 714														
10,710			Upper					1	~~~~					
10 71 7			Bakken											
10,717								<i>i</i>						

Well: Fair	<u>banks</u>	<u>1-20H (#2</u>	1966)						Count	y: Williams State: ND	
Compan	y: <u>Con</u>	tinental Re	esources .						Stratig	raphic iterval: Lower LodgepoleDate: <u>3/7/</u>	19
		Y	one	tone	euc	2	one	a			
Depth	Sample/ Photo	Litholog	mudste	wackes	nacksto	bachond	grainst	brecci	ontact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel	0		
10,539											
10,540											
10,541											
10,542											
10,543											
10,544											
10,545				E					*****	Dark grey mudstone with ~5-10% bioclasts (<1mm) alligned parallel to bedding Possibly F3? Dark blue massive mudstone with moderate to high effervescence	
10,546										Dark grey mudstone with concretions that effervesce Black shells/clasts? in a black matrix	
10,547											
10,548											
10,549					_						
10,550											
10,551											
10,552											
10,553											
10,554											
10,555											
10,556											
10,557			Upper Bakken								

Well: <u>Mil</u>	Image: Participation of the system County: Mercer State: ND Stratigraphic iterval: Lower Lodgepole Date: 5/3/18 & 3/8/19													
Compan	ompany: <u>XTO Energy</u> Date: <u>5/3/18 & 3/8/19</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/3/18 & 3/8/19</u>													
	ı		l e	one	q	2	ne							
Depth	ple/ o	logy	dsto	kest	kstoi		nsto	eccia	t	Description	Interpretation			
Deptil	Samp Phot	Litho	ĥ	wac	Dar	2	grai	pre	onta	Description	interpretation			
			٧Ē	t	s	gs	s	avel						
			Ü	si	fg	E	8,	ъ						
9.415														
9,416														
9,417														
0.419														
9,410														
9,419										Slighlty more carbonate rich than usual				
9,420														
										Massive grey biouturbated carbonate mudstone				
9,421														
9,422										Massive grey biouturbated carbonate mudstone				
9.423														
2,123			191ALS						****					
9,424			·	_						Dark grey mudstone with large concretions within a matrix of pyritized bioclasts				
9,425														
0.426														
9,420														
9,427														
9,428														
										Greyish blue wackestone with an increase in silt rich laminae				
9,429														
9,430														
9.431														
-,														
9,432										White wackestone with ~10% bioclasts and				
9,433										laminae				
9434														
, ,,,,,														
9,435								-						
9,436														
0.457														
9,437														
9,438														
9,439														
,														
9,440						1		1			L			

Well: <u>Sta</u>	Vell: <u>State ND 1-11H</u> State: <u>ND</u> State: <u>ND</u> State: <u>ND</u> State: <u>ND</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/4/18 & 3/8/19</u>													
Compar	Company: Amereda Hess Co. Stratigraphic iterval: Lower Lodgepole Date: 5/4/18 & 3/8/19 Date: 5/4/18 & 3/8/19 Date: 5/4/18 Date: 5/4/18 & 3/8/19 Date: 5/4/18													
Depth	ptd. Sample/ Sample/ Photo Lithology ay mudstone it wackestone is packstone is packstone is packstone		grainstone	breccia	Contact	Description	Interpretation							
			clay	silt	fgs	mgs	cgs	gravel	0					
9,403														
9,404														
9,405														
9,406														
9,407										Nodular Carbonate MS				
9,408														
9,409										Heavily Bioturbated Carbonate MS				
9,410									~~~~	Dark MS with pyrite stringers Dark black MS with effervescent brown blotches Nodular Cachenate MS				
9,411									~~~~	Notural Carbonate MS				
9,412										Heavily Bioturbated Carbonate MS				
9,413										Darker grey carbonate PS with bioclasts, glauconite, and phosphate?; Laminations				
9,414														
9,415														
9,416														
9,417										Slight decrease in bioclast				
9,418														
9,419														
9,420														
9,421	9420.5													
9,422					2									
9,423										Grey nodular carbonate WS; bioclast randomly oriented.				
9,424														
9,425			Upper Bakken							Conformable contact with Upper Bakken				

Well: <u>Wa</u>	Vell: <u>Wayzetta 46-11M (#26661) Continued</u> County: <u>Mountrail</u> State: <u>ND</u> Company: <u>EOG Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/7/19</u>													
Compan	iy: <u>EOG</u>	Resource	<u>s</u>						Stratig	raphic iterval: Lower Lodgepole Date: 3/7/	19			
Depth	Applied Sample/ Photo Clay mudstone silt wackestone mgs packstone cgs grainstone		grainstone	breccia	Contact	Description	Interpretation							
			clay	silt	fgs	mgs	cgs	gravel						
9,311														
9,312														
9,313										Nodular bioturbated carbonate mudstone				
9,314														
9,315														
9,316									*****	Thin shell layer at the base overlain by thin black massive mudstone				
9,317														
9,318														
9,319														
9,320										Bioturbated nodular carbonate mudstone				
9,321														
9,322														
9,323														

Well: Wa	ell: <u>Wayzetta 46-11M (#26661)</u> County: <u>Mountrail</u> State: <u>ND</u> Stratigraphic iterual: Lower Lodgapola												
Compan	Company: <u>EOG Resources</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/7/19</u>												
•	/ 202	10000100											
	1		1	(D					I	1			
		>	one	tone		2 S	one	a					
Depth	iple/ to	olog	udst	ckes	-ket		inst	recc	act	Description	Interpretation		
	Sam Phoi	Litho	Ĕ	wa	Jed	n d	gra	q	ont		·		
			~			<u>s</u>		vel	0				
			cla	silt	fgs	Ĕ	ĝ	gra					
9,323													
9,324				1						Heavily bioturbated carbonate mudstone			
										,			
9,325								-					
0.226				I									
9,326										Bioturbated from above			
9.327													
-,	9,327.2									Appears to have parallel laminations with thin lighter layer; maybe lithoclasts?			
9,328										Dark grey mudstone with up to 8% bioclasts			
9,329													
9,330													
0.004										Dark grey carbonate mudstone with up to 8% bioclasts			
9,331										Heavily bioturbated or clastic dike?			
9332										Black mudstone with ~5-8% bioclasts not pyritized			
9,333													
9,334													
9,335													
0 336													
9,337													
9,338													
9,339								_					
0.240													
9,540													
9,341													
2,2													
9,342													
9,343							-	_					
					N. V. V. V.								
9,344						-	-						
9 245													
נדינוק													
9,346													
					ALIW. 1								
9,347													
				****	A.M.H.								
9,348			Upper Bal	kken		1					ļ		

Well: Ne:	Vell: <u>Ness 41-21-2XH (#28036) Continued</u> County: <u>Mountrail</u> State: <u>ND</u> ompany: <u>Whiting Oil and Gas Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/8/19</u>													
Compar	Company: <u>Whiting Oil and Gas Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/8/19</u>													
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone		grainstone	breccia	Contact	Description	Interpretation			
			clay	silt	fgs	mgs	cgs	gravel)					
9,690														
9,691										Massive bioturbated nodular carbonate mudstone				
9,692			\geq							Mudstone with laterally continuous laminae (<2mm thick). Lamina identified by variation between black and browns.				
9,693										Sing more canoniale nell mudstone with ~0% Di00d315				
9,694										Nodular bioturbated carbonate mudetone				
9,695														
9,696														
9,697														
9,698														

Well: Ne:	Well: Ness 41-21-2XH (#28036) County: Mountrail State: ND Company: Whiting Oil and Gas Co. Stratigraphic iterval: Lower Lodgepole Date: 3/8/19												
Compan	y: <u>Wh</u> i	ting Oil ar	id Gas Co						Stratig	raphic iterval: Lower Lodgepole Date: 3/8/	19		
Depth	mple/ oto	hology	nudstone	ackestone	ackstone		rainstone	breccia	Itact	Description	Interpretation		
	Sa Ph	Lit	ilay n	ilt v	gs 	ngs r	g g	gravel	Cor				
			Ŭ	01	-	-		0,					
9,698										Black mudstone with concretions and bioturbation			
9,699	9,698.4									Black mudstone with little effervescence and rare bioclasts			
9.700			\succ										
			\geq							Black mudstone with light grey carbonate concretions and bioturbation			
9,701			072767						~~~~	Low enervescence in mudstone. Concretions get larger upsection. Lag deposit with scour surface. Clay clasts present (<5mm)			
9,702										Heavily bioturbated carbonate mudstone			
9,703													
9,704													
9,705													
9,706													
9 707													
5,707													
9,708													
9,709													
9,710													
9,711													
9,712													
9,713													
9,714													
9,715													
0.716													
9,716													
9,717													
9,718													
9,719													
9,720													
9,721													
9,722													
0 722			Upper Bakken										
2,123					•			•	-				

Well: Sar	a Berst	ad 6-44H	(#15889)						Count	y: MountrailState:_ND				
Compan	Company: <u>Amereda Hess Co.</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>5/4/18</u>													
									5					
	. I			. e					I					
	-)-	gy	tone	estor			tone	cia						
Depth	mple oto	holo	spnc	acke			rains	brec	Itact	Description	Interpretation			
	Sa Ph	Lit		3	2	ב 	6		Ū.					
			ilay	Ħ	gs	ngs	gs	Jrave						
			0	s	ġ.	2	0	5						
10,433														
10 4 3 4				Ĩ										
10,131														
10,435														
10.000														
10,436														
10,437				1										
										Nodular carbonate mudstone				
10,438				I										
10 439				1										
10,132														
10,440										Black mudstone with bioclasts				
10.441					919				~~~~	Laminated packstone with bioclasts in a dark matric				
10,441				I										
10,442				I						laminae				
10,443				1						Prown carbonate mudstane with bioturbation				
10.444														
,			× ·							Black massive mudstone Black mudstone with pyritized bioclasts				
10,445					; 7 									
					AVA									
10,446										Increase in grain size (~0.5mm)				
10,447														
10,448														
10.449					NVV.									
,									1					
10,450								_						
10 451														
10,451					THAT									
10,452														
					HAT					Grey wackestone with bioclasts (15-20%) ~0.2-0.3mm				
10,453														
10,454					AAA									
					AAA									
10,455				7375	2			_		Contact not expected				
10 456			Upper Bakken							Contact not exposed				
10,450					1	•		:						

Well: <u>J.</u> H	lorst 1-	<u>11H (#159</u>	86)			 		Count	y: MountrailState: ND	
Compar	ıy: <u>Am</u> e	reda Hes	<u>s Co.</u>			 		Stratio	graphic iterval: Lower Lodgepole Date: 5/1/	18
Depth	Sample/ Photo	Lithology	Lithology clay mudstone silt wackestone fgs packstone mgs grainstone gravel breccia			gravel breccia	Contact	Description	Interpretation	
		<u> </u>								<u> </u>
10,491						 				
10,492						 			Nodular carbonate mudstone	
10,493						 				
10,494	10,494.1					 			Black mudstone with ~2% pyritized bioclasts alligned parallel to bedding.	
10,495	10,494.5					 			Black mudstone with up to 2% bioclasts and grey concretions Bioturbated carbonate mudstone	
10,496									· · · · · · · · · · · · · · · · · · ·	
10 497									Laminated packstone with bioclasts. Increase in silt content	
10,107										
10,498										
10,499					2	 				
10,500										
10,501						 				
10,502						 				
10,503										
10,504									Warkestone with up to 20% bioclasts (~0.2mm and up to 1mm	
10,505									Irregular laminae throughout	
10 506										
10.500										
10,507										
10,508										L
10,509									Dark grey nodular wackestone with bioclasts and crinoids	
10,510			Upper Ba	kken						

Well: <u>A T</u>	rout 6⊦	12-14 (#19	9472)						Count	ty: RenvilleState: _ND	
Compan	ıy: <u>Ren</u>	egade Pet	roleum						Stratio	graphic iterval: Lower Lodgepole Date: 5/2,	18 & 3/8/19
Depth	Sample/ Photo	Lithology	mudstone	wackestone	nackstone	backard	grainstone	breccia	ontact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel	0		
5,408											
5,409											
5,410											
Well: A Trout 6H 2-14 (#19472) County: Renville State: ND											
---	------	------	-------	------	------	-----	-------	------	------	-------------	----------------
Company: Renegade Petroleum, Stratigraphic iterval: Lower Lodgepole Date: 5/2/18 & 3/8/19											
	1		I	0					ı I	1	1
		~	one	tone	auc		ane	a			
Depth	ple/	log	idsto	ckes	kstc		insto	ecci	t	Description	Interpretation
Deptii	hot	ithc	nm	wad	Dac	5	grai	p	onta	Description	interpretation
	мщ							/el	Ŭ		
			clay	silt	fgs	mgs	cgs	grav			
								-			
F 410											
5,410				I							
5 4 1 1											
,+11											
5.412				I							
,											
5,413											
			2 2 2								
5,414											
5,415											
5,416								-			
5,417											
E 410											
5,416											
5 4 1 9											
2,112											
5,420											
5,421											
5,422								-			
5,423											
5 4 2 4											
5 4 2 5											
-,											
5,426											
5,427								_			
5,428							-				
= 100											
5,429											
E 420											
5,450											
5,431											
5,432											
5,433								_			
5,434						-	-	-			
5,435			10000	5555	1		1	1			l

Well: <u>Pra</u>	<u>us 21-2</u>	8TFH (#20	0002)						Count	y: StarkState: ND	
Compar	ıy: <u>Whi</u>	ting Oil ar	<u>nd Gas Co</u>						Stratio	graphic iterval: Lower Lodgepole Date: 5/2/	18
Depth	Sample/ Photo	Lithology	mudstone	wackestone	narketona	backstolic	grainstone	breccia	Contact	Description	Interpretation
			clay	silt	fgs	mgs	cgs	gravel			
10,026											
10,027											
10,028											
10,029										-	
10,030										Grey carbonate mudstone	
10,031											
10,032											
10,033											
10,034											
10,035			-								
10,036			-								
10,037			-								
10,038				_							
10,039			-							Dark mudstone that increases in pyritized bioclasts	
10,040										Dark grey massive mudstone	
10,041										иатк mudstone with ~ 15% bioclasts Laminated packstone with glauconite and bioclasts	
10,042										Decrease in bioclasts and increase in glauconite: globular purity	
10,043											
10,044										Lighter gray wackestaone with ~15% bioclasts	
10,045											
10,046											
10,047										Contact is wavy with shells in the upper 1 cm of the Bakken. Possible	
10,048	10,047.8		Upper B	akken						flame structures and load casts indicating the shale was still soft when carbonate was deposited on top.	

Well: IM Shorty 0805 (#17272) County: Ward State: ND											
Company: Hess Corporation Stratigraphic iterval: Lower Lodgepole Date: 5/2/18											
		~	one	tone			one	ø			
Depth	ple/	log	dsto	kes	-hetc		nsto	ecci	t	Description	Interpretation
Deptil	hot	itho	nu	wao	рас		grai	pr	onta	Description	incopretation
	νď				· · · ·			/el	Ŭ		
			clay	silt	fgs	mgs	cgs	grav			
								_			
			1								
			1								
7,540											
										Bioturbated carbonate mudstone	
7,541								-			
7 5 4 2										Black mudstone with possible laminations	
/,542										Dark Laminated packstone that is still rich in silt	
7.543										Bioturbated carbonate mudstone Very heavily bioturbated from overling facies	
.,										Dark grey mudstone that effervesces	
7,544											
										Wavy Laminated packstone with crinoids, glauconite,	
7,545								-		and phosphate.	
/,546											
7 547											
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
7,548											
7,549											
7,550											
7 5 5 1											
										Grey Wackestone with ~12% bioclasts and carbonate	
7,552										nodules; Irregular silt laminae	
7,553											
7,554								-			
7.555											
/,555											
7 556											
0.00											
7,557											
			Upper								
7,558			ваккеп			1		1			

Well: Loren 5303 14-12T (#27216) County: Williams State: ND											
Company: <u>Oasis Petroleum</u> Stratigraphic iterval: <u>Lower Lodgepole</u> Date: <u>3/7/19</u>											
	le/	ogy	lston	(esto	ston		Iston	ccia	н	Description	
Depth	hotc	ithol	onu	wach	pacl		grair	bre	ontac	Description	Interpretation
	N T					<u>s</u>	s vel	Ŭ			
			cla	silt	fgs	ĥ	ŝ	gra			
10,675											
10,676											
10,677										Black mudstone with light grey concretions and a pyritized	
10,678										Black massive mudstone with up to 3% bioclasts	
10.679										Heavily bioturbated carbonate mudstone	
,			11							Black mudstone with light grey concretions	
10,680									~~~~	Increase in black grains (Glauconite/Pyrite?)	
10,681					¥.						
10,682											
10,683											
10,684											
10,685											
10,686											
10,687											
10,688					*****						
10,689											
10.690			Upper Bakken	tett							
,							-	-			

APPENDIX II: THIN SECTION DESCRIPTIONS

Facies 2a

biogenes or bioclasts >0.05mm are present within this thin section. *Phycosiphon* isp. fecal strings can be seen throughout this facies. For grain sizes and modal abundances see Tables 2 and 3.

#12785-11273.6 (Facies 2a): This thin section is massively bedded with silt grains distributed evenly throughout. These silt grains are mostly detrital quartz with some calcite in a dark brown to black matrix. Bioclasts are rare and often oriented parallel to bedding. In places, *Phycosiphon* isp. fecal strings can be seen bisecting the matrix. For grain sizes and modal abundances see Tables 2 and 3.

#9426-10782.1 (Facies 2a): This thin section is comprised of massively bedded facies 2a with detrital silt distributed evenly throughout a dark brown to black matrix. The silt grains are mostly composed of quartz with some calcite present. Bioclasts are oriented parallel to bedding but are rare throughout this thin section. For grain sizes and modal abundances see Tables 2 and 3.

B832-10337.5 (USGS; Facies 2a): Silt grains account for about 15% of this thin section with detrital quartz (~10%) and calcite (~3%) making up the majority of the silt grains in addition to rare micas. These silt grains are distributed evenly throughout a dark brown to black matrix. Faint laminations of facies 2a are present within this thin section. No biogenes or bioclasts are present within this thin section.

E385-10755 (USGS; Facies 2a): This thin section is comprised of silt grains (~15%) distributed within a dark brown matrix. Detrital quartz makes up the majority of the silt sized fraction in addition to some calcite. Furthermore, bioclasts are present in places although rare.

Facies 2b

#15986-10494.1 (Facies 2b): This facies is massive and comprised of calcite, quartz, and mica silt distributed evenly throughout a mostly dark brown matrix. In addition, large brachiopod shell fragments and some echinoderms can be seen distributed evenly throughout. Sub-millimeter size roundish grains consisting of pyrite occur throughout and in places the matrix is darker in color due to a high abundance of pyrite. *Phycosiphon* isp. fecal strings bisect this thin section. For grain sizes and modal abundances see Tables 3 and 4.

#8251-10369.6 (Facies 2b): This thin section is composed of massively bedded facies 2b. Silt grains consist of calcite, quartz, and mica that are randomly distributed in a dark brown matrix. Brachiopod

shell fragments occur in places with the long axis parallel to bedding. In places, *Phycosiphon* isp. fecal strings bisect this facies. For modal abundances see Table 3 and for SEM data see Appendix 3.

#8251-10375.1 (Facies 2b): Massive bedding is evident in this thin section which has a silt fraction composed of mostly calcite with some quartz. In addition, brachiopods and echinoderms are rare and occur within a dark brown matrix. In the upper portion of the thin section, a light brown concretion is evident. For grain sizes and modal abundances see Tables 3 and 4.

#8251-10377 (Facies 2b): Calcite and quartz silt grains occur throughout this thin section within a dark brown to black matrix. Brachiopods and bioclastic material are present throughout this facies. Two

concretions can be seen along the edge of the upper half of the thin section and are light brown in color. For grain sizes and modal abundances see Tables 3 and 4.

#12886-10508.8 (Facies 2b): This facies is comprised of silt grains consisting of calcite, quartz, and mica that are distributed evenly throughout a brown matrix. Brachiopods and agglutinated foraminifera can be seen within this thin section, however, both are rare. *Planolites* isp. burrows are present within this thin section and have little silt within them. For grain sizes and modal abundances see Tables 3 and 4 and for SEM data see Appendix 3.

#18502-10496.7 (Facies 2b): This thin section has an abundance of calcite silt with some quartz grains intermixed in a dark brown matrix that is massively bedded. Rare large bioclasts are present, however, coarse silt grains appear to be the remains of broken bioclasts. Calcispheres make up a small portion of the silt-sized fraction. For grain sizes and modal abundances see Tables 3 and 4.

#19917-10534.7 (Facies 2b): This thin section is composed of laminae of facies 2b that have about 20% silt grains distributed throughout a brown matrix. Calcite accounts for about 15% of these silt grains in addition to about 5% quartz. In the upper portion of the thin section, several large bioclasts are present, however, broken bioclasts make up a portion of the silt sized fraction. *Planolites* isp.

occur throughout this facies and are light brown in color. *Phycosiphon* isp. also occur within this facies.

#18502-10502.1 (Facies 2b): This thin section has calcite and quartz silt present within a dark brown to black matrix. Bioclasts are present throughout, however, occur in higher concentrations in the upper half of the thin section. Echinoderms and agglutinated foraminifera can be identified but are rare in the thin section. In the upper left-hand portion of the thin section a light brown concretion is present with a similar concentration of silt and bioclasts as the surrounding matrix. For grain sizes and modal abundances see Tables 3 and 4.

#18502-10500.8 (Facies 2b): This thin section is massively bedded and comprised entirely of facies 2b with a silt-sized fraction that has more detrital calcite that quartz silt. Although not abundant, bioclasts are present throughout this facies. Light brown concretions are present and often irregularly shaped with sharp edges. *Planolites* isp. burrows are present within this thin section although not common. For grain sizes and modal abundances see Tables 3 and 4.

#12785-11276 (Facies 2b): Silt grains are distributed throughout this thin section and mostly composed of calcite. This thin section has two massive beds of this facies with light brown concretions extending several centimeters across the thin section that appear to grow from burrows. Bioclasts are present in low concentrations throughout this facies and are slightly more abundant within the concretions. For grain sizes and modal abundances see Tables 3 and 4.

#12785-11274.6 (Facies 2b): This thin section has a matrix that varies in color from brown to black in places. Calcite silt is present throughout in addition to some quartz and micas. Brachiopods and agglutinated foraminifera can be identified within this thin section but mostly bioclasts are present. Sub-millimeter-sized components consisting of pyrite are distributed throughout and occur more often where the matrix is black and are less abundant when it is brown. For grain sizes and modal abundances see Tables 3 and 4.

#9426-10785.9 (Facies 2b): This thin section is composed of silt grains with more calcite than quartz silt in a light to dark brown matrix. Light brown concretions are present throughout and comprised of the same abundance of silt grains as the surrounding dark brown matrix, but the concretions have slightly more bioclasts. For grain sizes and modal abundances see Tables 3 and 4.

E383-10782 (USGS; Facies 2b): This facies is massively bedded with more calcite (~10%) than quartz silt (~4%). In addition, both brachiopod and echinoderms are distributed throughout this facies in a brown matrix. *Planolites* isp. burrows can be identified in places as they are lighter in color than the surrounding matrix.

B659-10775 (USGS; Facies 2b): This thin section is comprised of several laminae with detrital silt grains distributed throughout evenly. Silt grains (~25%) are composed of detrital calcite (~18%), some quartz (~6%), and rare micas. In addition, bioclasts are present in places and are generally oriented parallel to bedding. These grains occur within a brown matrix.

brachiopod debris, however, most bioclasts have been pyritized. Although not in great concentrations, detrital calcite and quartz silt are distributed evenly throughout the light brown matrix that has more calcite than quartz within it. *Chondrites* isp. burrows occur parallel to bedding. For grain sizes and modal abundances see Tables 3 and 4.

mostly of calcite with minor amounts of quartz. *Chondrites* isp. burrows occur parallel to bedding and often in close proximity to one another. For grain sizes and modal abundances see Tables 3 and 4.

#12886-10509.7 (Facies 3): Bioclasts are present in most of this thin section with some of them being pyritized. In addition, calcite silt is distributed throughout with some quartz silt. Light brown concretions occur within this thin section and have a slightly higher concentration of bioclasts when compared to the surrounding rock. *Chondrites* isp. burrows are present and elongated parallel to bedding; they often occur in close proximity to one another. For grain sizes and modal abundances see Tables 3 and 4.

#12785-11277.10 (Facies 3): This thin section is dominated by a light grey to brown matrix with some silt grains throughout in low modal abundances. The silt-sized fraction is composed mostly of calcite with some quartz grains. Pyritized bioclasts are present throughout this thin section in addition to calcareous bioclasts that are randomly oriented. This thin section has a high abundance of *Chondrites* isp. burrows bisecting through the matrix. For grain sizes and modal abundances see Tables 3 and 4.

#21734-10358 (Facies 3): Facies 3 makes up this thin section and is bisected by *Chondrites* isp. burrows. In addition, bioclastic material (~3%) is distributed throughout the entire thin section with a slightly higher concentration near the top. Calcispheres and agglutinated foraminifera are present but rare within this thin section. Silt grains account for about 15% of this facies and are comprised of detrital calcite with rare quartz grains. The silt and bioclast grains occur within a light brown matrix that likely has more calcite than quartz.

#19917-10533.8 (Facies 3): This thin section has bioclasts distributed throughout with some of the bioclasts being pyritized. This thin section has about 10% silt grains with detrital calcite accounting for 9% of the silt in addition to 1% quartz. These grains are distributed throughout a light brown matrix. *Chondrites* isp. burrows occur in clusters in various places throughout this thin section.

B832-10338.9 (USGS; Facies 3): This thin section contains detrital calcite (~10%) and some quartz (~5%) silt in a light brown matrix. Large pyritized bioclasts are present in addition to brachiopods. *Chondrites* isp. burrows occur parallel to bedding within this thin section.

E383-10781.3 (USGS; Facies 3): This thin section is massively bedded and composed entirely of facies 3. Both brachiopods and echinoderms can be identified, however, other bioclasts are pyritized. Bioclasts are often oriented at random angles to bedding. In addition, detrital calcite (~12%) and quartz (~3%) silt are distributed throughout this facies. *Chondrites* isp. burrows are abundant and occur in clusters.

B659-10772.7 (USGS; Facies 3): This thin section is comprised of both bioclasts (~2%) and silt (~18%) that occur within a brown massive matrix. Echinoderms can be identified but most grains are disarticulated bioclasts or have been pyritized. The silt grains are mostly composed of detrital calcite (~12%) in addition to some quartz (~3%). *Chondrites* isp. burrows are present in various areas of this thin section.

B659- 10775.6 (USGS; Facies 3): This thin section is massive and comprised of bioclasts (~6%) and calcite (~15%) silt distributed throughout a light brown matrix. Echinoderms can be identified; however, most grains are bioclasts with some having been pyritized. Silt grains do make up a portion of this thin section and are mostly comprised of detrital calcite (~15%) with some quartz (~3%) silt.

E383-10785 (USGS; Facies 3): This thin section has calcite (~8%) and quartz (2%) silt within a mostly light brown matrix; however, in places the matrix is a darker black color because of an increase in pyrite. Bioclasts are rare and can be pyritized although pyritization is not common.

E385-10754.5 (USGS; Facies 3): This thin section is massively bedded with up to ~2% bioclasts present with some being pyritized. In addition, calcite (~8%) silt is distributed evenly throughout with some quartz (3%) silt as well. Bioclasts are often randomly oriented relative to bedding. *Chondrites* isp. are present throughout this thin section.

#28036-9698.4 (Facies 4): This thin section is composed of multiple laminae up to a centimeter thick that extend across the entire thin section. These laminae are comprised of silt grains that vary in abundance from ~20 to 30% in addition to ~60-75% clay clasts oriented parallel to bedding. These clay clasts are comprised of calcite, quartz, and feldspars and are often outlined by brown organic matter. In places, bioclasts may be present and oriented parallel to bedding. See table 4 for grain size data.

#26661-9327.3 (Facies 4): This thin section is comprised of multiple laminae with clay clasts throughout. These clay clasts account for about 60 to 70% of these laminae in addition to silt grains and organic matter. These laminae often have sharp contacts with one another. See Appendix 3 for SEM data.

#21734-10369.9 (Facies 4): This thin section is made up of multiple laminae of facies 4 containinf varying abundances of clay clasts. Light laminae that thicken and thin laterally are comprised almost entirely of clay clasts (90-100%) with little silt. These clay clasts are made up of calcite, quartz, and feldspars and have organic matter occurring around the clay clasts. However, other laminae are also present that have silt grains (~20-40%) intermixed with clay clasts (60-80%). These clay clasts are oriented parallel to bedding in laminae with high amounts of silt, however, they also may be inclined to bedding forming foresets within laminae dominated by clay clasts.

#607-10487 (Facies 4): This thin section consists entirely of facies 4 laminae that extend across the entire thin section and have sharp contacts with one another. Laminae are up to 5mm thick and composed of clay clasts (~60%), quartz (~10%), and calcite (5%) silt. Elongate brachiopod shell fragments occur within these laminae and are aligned parallel to bedding. In places, there are laminae that extend laterally for several centimeters that have a dark matrix with sub-millimeter rounded pyrite grains.

#22092-9879 (Facies 4): This thin section is made up of several laminae of facies 4 that extend across the entire thin section and have sharp contacts with one another. These laminae have clay clasts (~70%) oriented parallel to bedding intermixed with quartz (~10%) and calcite (~5%) silt. In addition, dark organic matter, elongate brachiopods, and echinoderms occur in these laminae. For SEM data see Appendix 3.

#19709-9250.3 (Facies 5): This entire thin section has biogenes and bioclasts distributed throughout. In places, concentrations of bioclasts are more abundant along bedding planes. Biogenes such as echinoderms and brachiopods can be distinguished; however, most grains have been broken and are no longer identifiable. All grains occur within a dark brown matrix. For grain sizes and modal abundances see Tables 3 and 4 and see Appendix 3 for SEM data.

E383-10784.7B (USGS; Facies 5): The top half of this thin section is comprised of bioclasts within a brown matrix. Some biogenes such as brachiopods and echinoderms are present. In addition, phosphate grains occur but are rare within this thin section.

places and oriented parallel to bedding. Conodonts are rare. Contacts between laminae are sharp and planar across the entire thin section. See table 4 for grain size data and see Appendix 3 for SEM data.

extend across the entire thin section and are up to several centimeters thick. Silt grains account for about 50 to 60% of this thin section with calcispheres accounting for about 35% of this thin section in addition to bioclast fragments (~15%) and quartz (~15%). Phosphate grains occur in places and are associated with coarse grained bioclasts in places. *Planolites* isp. are present in places and lighter in color than the surrounding matrix. See table 4 for grain size data.

#12785-11271.5 (Facies 9): This thin section consists of massively bedded carbonate mudstone. Carbonate mud accounts for 98% of this thin section. Calcispheres and quartz silt are rare accounting for less than 2% of this facies and are often around 0.05mm in diameter. In addition, several bioclasts are present within the silt sized fraction.

#16160-9420.5 (Facies 10): This thin section is comprised of about 25-30% bioclasts distributed throughout a carbonate mud matrix. Biogenes such as echinoderms, brachiopods, ostracods, trilobites, and gastropods can be identified within this thin section. Calcite silt is also present throughout the matrix and accounts for ~10% of this thin section. In places, the abundance of bioclasts is more dense or coarser grained in comparison to other places.

B659-10782.3 (USGS; Facies 10): This thin section has bioclasts present throughout that vary in abundance from 20 to 30% and are present within a carbonate mud matrix. These bioclasts are randomly oriented relative to bedding. Echinoderms and brachiopods can be identified within this thin section in addition to trilobites and some ostracods.
Facies	1	1
--------	---	---

B659-10777 (USGS; Facies 11): Several laminae that are comprised of about 50 to 60% bioclasts are present within this thin section. Biogenes such echinoderms, brachiopods, rugose corals, and trilobites can be identified when not disarticulated. These bioclasts occur within a light grey to brown carbonate mud matrix. In addition, irregular dark brown clay lenses with silt grains are also present within this thin section.

E385-10759.1 (USGS; Facies 11): This thin section has a high abundance of bioclasts (<60%) that are distributed throughout. In places, irregular dark brown clay lenses are present and have only a few bioclasts within them. Biogenes are identifiable and are mostly echinoderms.

#20453-10254.7 (Facies 11): This thin section is dominated by bioclast-rich laminae that extend across the entire thin section and have a sharp wavy basal contact. Echinoderms, brachiopods, and rugose corals can be identified in addition to an abundance of bioclasts with biogenes and bioclasts accounting for ~50% of this thin section. In certain laminae, there are areas with a high density of bioclasts compared to other portions of the same laminae. Thin laminae that are not continuous are also present and have only few bioclasts present. Rare glauconite grains occur in this facies.

Multiple facies in one thin section

#19709-9251 (Facies 6): Laminae extend across this thin section and have both a sharp, wavy upper and basal contact with facies 7. Facies 6 laminae are comprised of mostly quartz silt (~30%) and calcite silt (~20%) distributed evenly throughout a brown matrix.

#19709-9251 (Facies 7): Facies 7 laminae extend across this thin section and have both a sharp, wavy upper and basal contact with facies 6. These laminae can be easily distinguished by the abundance of glauconite grains (~15-20%). In addition, quartz silt is present in concentrations of up to 25% and occurs within a light brown matrix. For point counts on grain sizes see Table 4.

#12785-11275: (Facies 2a): This facies comprises 98% of this thin section and is easily distinguished by the dark brown to black matrix with mostly quartz silt distributed throughout in addition to some calcite and micas. Bioclasts are very rare and only present near the very top of the thin section. *Phycosiphon* isp. fecal strings are easily identified throughout this thin section. For grain sizes and modal abundances see Tables and 4.

#12785-11275: (Facies 1): This facies only occurs as two thin laminae (<2mm) that extend across the entire thin section. These laminae have a distinctly smaller silt-size fraction compared to the underlying and overlying facies 2a, but are still comprised of mostly quartz with some calcite and micas. These fine-grained laminae show a faint fining-upwards; however, in places this fining upwards is difficult to distinguish because *Phycosiphon* isp. fecal strings bisect through the entire lamina in places. For point counts on grain sizes see Table 4.

See Appendix 3 for SEM images and data.

#15986-10494.5: (Facies 3) This thin section has bioclasts distributed throughout with some being pyritized. In addition, detrital calcite and quartz silt also occur throughout this thin section. In places, *Chondrites* isp. burrows occur parallel to bedding. For grain sizes and modal abundances see Tables 3 and 4.

(Facies 2b) The lower half of this thin section is comprised of a massive bed with mostly calcite silt and some bioclasts within a brown matrix. Irregular Z-shaped concretions can be seen in places and are lighter in color than the surrounding matrix.

#9426-10786.6: (Facies 3) The lower quarter of this thin section is comprised of a bed that is light brown in color with few pyritized and calcareous bioclasts. In addition, the silt grains are mostly detrital calcite with rare quartz. *Chondrites* isp. are common throughout this bed and often slightly darker in color than the surrounding matrix.

#9426-10786.6: (Facies 5) The upper three fourths of this thin section has a bed up to several centimeters thick with an abundance of bioclasts within a brown matrix. Biogenes such as echinoderms, brachiopods, and agglutinated foraminifera can be identified. A large phosphate intraclast that is brown in color occurs in the upper center of the thin section. In addition to the sand-sized grains, both detrital calcite and quartz are intermixed throughout this bed. The basal contact with the underlying facies 4 bed is sharp and wavy. For grain sizes and modal abundances see Tables 3 and 4.

#9426-10783.1: (Facies 2b) Laminae from 1 to 3cm thick make up the majority of this thin section. These laminae have sharp planar contacts with one another and extend across the entire thin section. Silt grains are present throughout all laminae and comprised of about 15% calcite and 5 to 10% quartz. More elongate calcite silt is oriented parallel to bedding. These grains occur within a brown matrix.

(Facies 5) In the lower half of this thin section, there is one lamina that extends across the entire thin section and is composed of brachiopod fragments within a dark brown matrix.

E383-10786 (USGS): (Facies 5) The top half of this thin section is composed of mostly bioclasts. Brachiopod and echinoderms can be identified. In addition, two large (~2cm) phosphate intraclasts are present within this thin section. Rip-up clasts composed of calcite and quartz silt in a brown matrix are also present but have little to no bioclasts.

(Facies 3) The lower half of the thin section is a massive bed of facies 3 that has mostly calcite silt in a light brown matrix. A few bioclasts are present and have been pyritized. *Chondrites* isp. are present in places.

#19917-10534.5: (Facies 4) Several laminae of facies 4 are present within this thin section. In the lower part of the thin section a light lamina of this facies is present. This lamina thickens and thins laterally and is composed of 95% clay clasts in addition to some silt grains and organic matter. Other laminae of this facies are up to 2mm thick with ~30% quartz and calcite silt intermixed with clay clasts (~60%).

(Facies 5) In the center of the thin section a lamina with a sharp wavy basal contact shows an abundance of echinoderms present within it in addition to detrital calcite and quartz silt grains in a brown matrix.

#17396-7915.8: (Facies 6): The lower half of this thin section is comprised of a massive bed of this facies which has about 55% silt that is dominated by quartz silt (35%) and detrital calcite silt (20%) in a dark brown matrix. Rip up clasts composed of silt grains in a light brown matrix are present within the thin section and often oriented parallel to bedding. *Planolites* isp. burrows occur throughout. (Facies 8): The upper half of this thin section is dominated by calcispheres (~35%) with some quartz (~20%) silt distributed throughout a light brown matrix. In addition, a phosphate intraclast several millimeters in diameter is present at the base of this facies. Several laminae comprise the upper half of this thin section.

APPENDIX III: SEM IMAGES AND DATA

Facies 1

Facies 3

Facies	4
--------	---

Electron Image 21
Spectrum 134ectrum 127
Spect#um 132 + Spectrum 126 Spectrum 130
Spectrum 133
+
+ spectrum 129
Spectrum 131 Spectrum 123
Spectrum 128
and a second second second second second
Spectrum 124 +
Spectrum 125
5um
#26661 0227 2: Matrix of facios 4
nt123 Clay
pt123 City pt124 Calcite
pt125 Dolomite
pt126 Clay
pt127 Quartz
pt128 OM
pt129 Quartz
pt130 Pyrite
pt131 Clay
pt132 Clay
pt133 Kspar
pt134 Calcite

Electron Image 30	
spectrum 224 +	
Spectrum 220	
C	
Spectrum 225 Spectrum 219 Spectrum 218	
Spectrum 221 + Spectrum 222 +	
Spectrum 217 +	
and the second	
#22002-9870: Composition of matrix in facies 4	
pt217 Quartz	
pt218 Clay	
pt219 Calcite	
pt220 Quartz	
pt221 Clay	
pt222 Quartz	
pt223 Pyrite	
pt224 Clay	
pt225 Clay	

Facies	5
	_

Electron Image 28
Spectrum 201 Spectrum 199 Spectrum 196 Spectrum 202 Spectrum 203 Spectrum 197 + Spectrum 197 - Spectrum 197 - - Spectrum 197 - Spectrum 197 - - - - - - - - - - - - -
#19709-9250.3: Matrix in upper lighter half of thin section of facies 5
pt196 Quartz
pt197 Calcite
pt198 Clay
nt200 Albite
pt201 Illite and Muscovite
pt202 Quartz
pt203 Clay
pt204 Clay and Calcite

Facies 6

Facies 8

