THESIS

INVENTORY DYNAMICS AND SOIL FACTORS AFFECTING SOIL-TO-PLANT ¹³⁷Cs TRANSFERS IN

FUKUSHIMA FOREST ECOSYSTEMS

Submitted by

Jian Zhang

Department of Environmental and Radiological Health Sciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2020

Master's Committee:

Advisor: Thomas Johnson

Alexander Brandl Ralf Sudowe Elizabeth Pilon-Smits Copyright by Jian Zhang 2020

All Rights Reserved

ABSTRACT

INVENTORY DYNAMICS AND SOIL FACTORS AFFECTING SOIL-TO-PLANT ¹³⁷Cs TRANSFERS IN FUKUSHIMA FOREST ECOSYSTEMS

The objective of this study was to understand the soil factors affecting soil-to-plant transfer factors in understory plant species as well as their contribution to the total ¹³⁷Cs inventory in aboveground biomass within the Fukushima forest ecosystem.

Radiocesium contamination from the March 2011 accident at the Fukushima Da-ichi Nuclear Power Station (FDNPS) was initially deposited on the forest canopies with deposition into the soil occurring over the next few years through litterfall and precipitation. Measurements taken from the Yamakiya site in 2014 show that the contribution of understory plants to the total inventory of radiocesium in aboveground biomass was very low compared to the dominant Japanese cedar trees. However, measurements were not taken in other affected sites within Fukushima prefecture as well as potential change in concentrations of radiocesium in understory biomass since 2014.

Data for evaluating the transfer factors was obtained through sampling of soil and understory plants at the Yamakiya, Tsushima, Tomioka, Okuma, and Yokomuki sites inside Fukushima Prefecture. Both ¹³⁴Cs and ¹³⁷Cs measurements were collected, however ¹³⁴Cs concentrations were negligible compared to ¹³⁷Cs so only ¹³⁷Cs data was considered. ¹³⁷Cs content was determined using gamma spectroscopy of the soil and plant samples and to find the concentration of bioavailable ¹³⁷Cs within the root profile of the understory plants as well as

ii

¹³⁷Cs concentration within the understory plant itself. The soil and plant ¹³⁷Cs concentration was used to determine the soil-to-plant uptake factors for the sampled understory species as well as the contribution of the understory plants to the total ¹³⁷Cs inventory in aboveground biomass. The effect of soil exchangeable [K⁺], exchangeable [Cs⁺], exchangeable ¹³⁷Cs activity concentration, total ¹³⁷Cs activity concentration, and pH on ¹³⁷Cs uptake by understory plants was determined through the soil-to-plant uptake factors at the various sample sites. The same data was used to find the ¹³⁷Cs deposition in the soil, ¹³⁷Cs inventory in Yamakiya, and patterns between plant activity concentration between plant species.

Soil measurements showed a logarithmic decrease in ¹³⁷Cs activity concentration with decreasing soil depth. Measurements also supported a 4.39 year effective half-life using GIS and Nuclear Regulatory Authority data, however using IER data a radiological half-life of 30.17 years was supported instead. The majority of ¹³⁷Cs inventory in Yamakiya was found to be in soil (80.54%) and trees (18.52%) with understory plants making up a negligible contribution. This contribution by trees was much higher than the one found in previous years. For understory plants, it was found that there are higher 137Cs activity concentrations in the more metabolically active portions of the plants. ¹³⁷Cs was a significant contributing factor across all understory plant species in predicting the soil to plant transfer factors. The ability to properly estimate the activity concentration of understory plants using only the one soil factor can contribute to faster estimation of potential ¹³⁷Cs. The further understanding of ¹³⁷Cs dynamics in forest ecosystems will assist in creation of a long-term forest radiation contamination management strategy.

iii

ACKNOWLEDGEMENTS

Thanks to all the faculty at both the Health Physics program at Colorado State University (CSU) and at the Institute of Environmental Radioactivity (IER) at Fukushima University (FU). Dr. Thomas Johnson, Dr. Alexander Brandl, and Dr. Ralf Sudowe have been excellent instructors who strove far beyond what they are expected in educating all the students under them, assisting them in their research, and helping in their careers after graduation. It was a pleasure to work with Dr. Vasyl Yoschenko who helped organize and conduct this research in Fukushima Prefecture as well as providing needed mentorship and guidance during my time in Japan. Thank you, Dr. Kenji Nanba without whose organization of the CSU-FU student program, none of this would have even been possible. Thank you, Dr. Tsugiko Takase and Azusa Goto, for providing their much-needed support and skills in conducting sample preparation and analysis. Thank you, Kenji Watanabe and Hiroko Nagata, for going out to the field and assist in collecting the soil and plant samples for this research project. Thank you, Matt Meengs for all your help with how to use R to analyze my data. Thank you, to the Radioactivity Research Network Center and the United States Air Force, for funding the research trip to Fukushima, Japan. I hope to be able to work with everyone again in the future.

iv

TABLE OF CONTENTS

ABSTRACT	.ii
ACKNOWLEDGMENTS	iv
INTRODUCTION	.1
1.1 Background	1
1.2 FDNPP Accident	1
1.3 FDNPP Release and Isotopes of Concern	.2
1.4 Fukushima Forest ¹³⁷ Cs Dynamics	.3
1.5 Factors Affecting ¹³⁷ Cs Uptake by Understory Plants	5
METHODS	.8
2.1 Sampling Locations	.8
2.2 Sample Collection	12
2.3 Soil and Plant ¹³⁷ Cs Concentration Measurements	15
2.4 Exchangeable Soil [K ⁺] and [Cs ⁺] Measurements	17
2.5 Understory Plant [K ⁺] and [Cs ⁺] Measurements	19
2.6 Soil pH	21
RESULTS	22
3.1 ¹³⁷ Cs Deposition in Soil	22
3.2 ¹³⁷ Cs Concentrations and Concentration Ratios in Understory Plants	25
3.3 Understory Plants Contribution to Forest Aboveground Biomass ¹³⁷ Cs Inventory	33
3.4 Exchangeable [K ⁺], Exchangeable [Cs ⁺], and pH in Soil	36
3.5 Soil to Plant Transfer Factor Linear Fit Model	41
DISCUSSION	53
4.1 ¹³⁷ Cs Soil Deposition	53
4.2 Understory Plant ¹³⁷ Cs Dynamics and Contribution to Yamakiya ¹³⁷ Cs Inventory	56
4.3 Soil Factor Correlations	50
4.4 Transfer Factor Linear Fit Model	52
CONCLUSION	56
REFERENCES	58
APPENDIX	72
A. Plant and Soil Total Radiocesium Counts	73
B. Soil Exchangeable Radiocesium Counts	32
C. Plant Exchangeable [K] & [Cs]	39
D. Soil Exchangeable [K] & [Cs]) 2
E. Soil pH	96
F. Total Understory Plant Fresh Weights10	00
G. Yamakiya Practicum Data10)2
H. Linear Model Tables10	03

INTRODUCTION

1.1 Background

On 11 Mar 2011 an earthquake struck 70 km east of Oshika Peninsula off the coast of Miyagi Prefecture, Japan (USGS, 2016). The earthquake caused a catastrophic tsunami which hit the east coast of Japan causing 18,483 fatalities and damage to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) consisting of 6 boiling water reactors (BWR) (Sato, 2015). This damage eventually resulted in the release of large quantities of radiocesium along with other isotopes into the environment. Sixty six percent the heavily contaminated areas ($^{134,137}Cs \ge 1000$ kBq m⁻²) were forest ecosystems (Hashimoto et al, 2012). Due to this, a great amount of research has been conducted on forest ecosystems and more specifically the trees that make up the vast majority of the forest biomass (Yoschenko et al, 2017). The dynamics of understory plants in Fukushima forest ecosystems is less studied and continued research to find a more complete picture of ^{137}Cs dynamics in forest ecosystems contributes to the creation of a complete longterm forest contamination management strategy and also to future studies involving herbivore radiocesium uptakes from understory plants.

1.2 FDNPP Accident

The tsunami that struck FDNPP was of a height of more than13 m and the protective seawall was only 10 m tall (Matthews et al, 2017). The seawater from the tsunami flooded the FDNPP complex causing a power outage and disabling 12 of the 13 emergency diesel generators with only one generator at unit 6 surviving, as it was 13 m above sea level (Springer, 2014). Due to the loss of site power and key systems due to the tsunami, shutdown cooling systems were

1

no longer operational. Loss of cooling led to a heat buildup in the recently shutdown reactors and an eventual meltdown. The reaction of water and zirconium in the fuel rod cladding created large amounts of hydrogen gas resulting in a hydrogen explosion and subsequent release of the volatile fission products and radiocesium present in the reactor (Springer, 2014).

1.3 FDNPP Release and Isotopes of Concern

¹³⁷Cs

30.17 years

An estimated total source term of 340-800 PBq was released into the atmosphere from the FDNPP (Steinhauser et al, 2014). Radioactive noble gases such as ⁸⁵Kr and ¹³³Xe were not included in the release estimate, as they have much less impact onto the terrestrial environment. Volatile fission products such as ¹³¹I and ¹³²Te were also released in large amounts (Table 1) but due to their short half-lives (8 and 3 days, respectively) are not a long term concern for forest contamination. As 8 years have passed since the release, even ¹³⁴Cs has become a negligible source of soil contamination, especially considering that the effective halflife of ¹³⁴Cs would be even shorter taking into account the environmental half-life of Cs in the Fukushima soils (Hayes et al, 2019). The vast majority of the radioactivity currently present in the forests surrounding FDNPP is from ¹³⁷Cs (30.17 year half-life). While Chaisan et al, 2013 had a corrected ¹³⁴Cs/¹³⁷Cs ratio in soil of 0.90 ± 0.01, more recent studies had observed activity ratios closer to 1 (Aoyama et al, 2015; Steinhauser et al, 2014).

Average concercuratio from son samples within oo kin of the row r and taken within				
30 days following the accident.				
Radionuclide	Half-life	Activity Release (PBq)	Corrected Ratio to ¹³⁷ Cs in Soil	
		(IAEA, 2016)	(Chaisan et al, 2013)	
¹³¹	8.020 days	100-400	22.5 ± 3.70	
¹³² Te	3.204 days	0.76-162	18.3 ± 1.70	
¹³⁴ Cs	2.065 years	8.3-50	0.90 ± 0.01	

 Table 1: Isotopes of concern released at Fukushima

 Average corrected ratio from soil samples within 80 km of the FDNPP and taken within

7-20

 1.00 ± 0.00

1.4 Fukushima Forest ¹³⁷Cs Dynamics

During the early period after the FDNPP accident, the majority of radiocesium was intercepted by tree canopies and eventually transported to the surface through litterfall, throughfall, and stemflow (Yoschenko et al, 2017). Radiocesium falling on the soil and the decomposition of organic matter into the soil eventually results in a decrease in radiocesium in litter and increase in radiocesium in soil with respect to the total radiocesium percentage of the soil profile. The total radiocesium inventory of soil is expected to increase over time while radiocesium content of litter decreases over time as shown in Figure 1. Figure 2 shows increasing ¹³⁷Cs concentration in soil and decrease in ¹³⁷Cs concentration in litter.

Figure 2 does not show how understory plants contribute to or remove ¹³⁷Cs from soil.

Understory plants comprise a very small percentage of the aboveground ¹³⁷Cs inventory as seen

in figure 3. Trees comprise over 98% of aboveground ¹³⁷Cs inventory (Yoschenko et al, 2017). Trees encompass the vast majority of the aboveground biomass in forests. The topmost layers of soil contain the majority of the contaminant deposition, and much of the remediation work since the accident has been the removal of the top layer of soil. Remediation efforts of Japanese cedar forests near lawaki, Japan in 2013 have led to a ¹³⁷Cs reduction of 31±3% compared to the control area of 17.5±1.3% in 2014 (Sanderson et al, 2016).

Figure 2: Yamakiya ¹³⁷**Cs inventory contributions in Yamakiya forest** Decreasing litter and increasing soil ¹³⁷Cs contribution to Yamakiya forest ecosystem over time (Yoschenko et al, 2018)

Litter L	Minimally decomposed litter
Litter F	Partially decomposed litter
Litter H	Mostly decomposed litter

Figure 3: Distributions of biomass and ¹³⁷Cs inventories in the aboveground forest compartments of Yamakiya

Understory plants contribute little to total ¹³⁷Cs inventory due to low mass contribution in Yamakiya forest ecosystem (*Yoschenko et al, 2017*)

1.5 Factors Affecting ¹³⁷Cs Uptake by Understory Plants

Radioactive elements are chemically indistinguishable from their stable counterparts

(such as ¹³³Cs and ¹³⁷Cs) and are expected to behave in the same way in soil and how they are

taken up by plants. Soil chemistry can, however, affect how much cesium can be taken up by

plants through the fixation of Cs⁺ in the soil as well as competition from group I alkali metal

analogues such as K⁺ (Wakeel, 2013). Due to Cs⁺ being an analogue of K⁺, Cs⁺ is able to use plant

K⁺ transporters to be taken up by plants (Nobori et al, 2014). K⁺ in the soil will compete with Cs⁺

in being taken up by plants, with higher concentrations of K⁺ causing a decreased uptake of ¹³⁷Cs by plants (Burger and Lichtscheidl, 2018). Figure 4 shows that the addition of K⁺ fertilizer has been shown to reduce the total uptake of ¹³⁷Cs in brown rice grown in paddy fields (Nobori et al, 2014).

It has been well established that Cs⁺ adsorbs very well on clay minerals and the fixation

of ¹³⁷Cs in soil will depend heavily on the percent clay composition of soil (Cornell, 1993).

Negligible amounts of clay are found in the soils of Yamakiya, Tomioka, and Tsushima sampling

sites, as shown in previous studies (Personal communication, 29 Jul 2019, Vasyl Yoschenko).

Clay content at the Okuma site was 15-23%, typical of gray lowland soil at 0-12 cm depth

(USDA, 1999).

Highly organic soils have high amounts of bioavailable Cs⁺ (Dumat and Staunton, 1999). Highly organic soils also have higher radiocesium concentration and mobility, which in turn is related to low clay content, high NH₄⁺ concentration of the soil, and low K⁺ availability (Sanchez et al, 1999 & Rigol et al, 2002).

The objective of this study was to examine how exchangeable [K⁺], [Cs⁺], exchangeable ¹³⁷Cs activity concentration, total ¹³⁷Cs activity concentration, and pH in soil would affect ¹³⁷Cs uptake on understory plants. A correlation between total ¹³⁷Cs activity concentration in the soil and soil to plant transfer factors was found for all understory plant species. Soil to plant transfer factors varied between plant species with [K⁺], [Cs⁺], exchangeable ¹³⁷Cs activity concentration, and pH. Soil exchangeable ¹³⁷Cs was hypothesized to correlate with plant uptake, as plants are expected to uptake more ¹³⁷Cs if more is present in the soil. Unexpectedly, the hypothesis was not proven. The total soil ¹³⁷Cs activity concentration had more influence on ¹³⁷Cs uptake by plants then the soil exchangeable ¹³⁷Cs activity concentration. Only exchangeable ¹³⁷Cs was expected to be available for plant uptake.

METHODS

2.1 Sampling Locations

Plant, litter, and soil samples were taken from six different areas within five sites in or near the Difficult to Return Zone (exclusion zone) and one control area expected to have low radiocesium contamination. Both ¹³⁴Cs and ¹³⁷Cs measurements were conducted, however ¹³⁴Cs concentrations were negligible compared to ¹³⁷Cs, so only ¹³⁷Cs data were considered. Sample locations were chosen for their expected varying ¹³⁷Cs concentrations along with previous data locations for comparison. Table 2 lists the location name, initial ¹³⁷Cs deposition data (Kato, H and Onda, Y, 2019), dominant tree type, and soil type (NARO 2019). Figure 5 and 6 show the sample sites and the sample location overlaid on a dose rate and ¹³⁷Cs soil concentration map from the Japan Map Center respectively (GSI, 2019).

Table 2: Sampling Location Information

¹³⁷Cs soil concentration range data chosen from nearest from the nearest soil sampling location shown in figure 2. Soil Type from the National Agriculture and Food Research Organization.
1 Suai is Jananese cedar (Cryptomeria janonica)

Location Name	Coordinates of location	Dominant Tree Species	Soil Type
Yamakiya	37.5884, 140.7108	Sugi	Allophanic Black Soil
Tomioka	37.36942, 140.9461	Sugi	Brown Forest Soil
Tsushima Sugi ¹	37.5528, 140.789	Sugi	Allophanic Black Soil
Tsushima Pine ²	37.5528, 140.789	Pine	Allophanic Black Soil
Okuma	37.40637, 141.03242	N/A	Gravel Ordinary Gray Lowland Soil
Yokomuki	37.65557, 140.25255	Multiple	Multiple Soil Types

•	Jugi	13 50	ipunesi		(Cry	ρισπε	ոս յսբ	Jointuj
ź	2. Pir	ne is	Japane	se red	pine	(Pinus	densij	flora)

Figure 5a: Yamakiya sugi forest (37.5884, 140.7108)

Figure 5b: Tsushima sugi forest (37.5528, 140.789)

Figure 5c: Tsushima pine forest (37.5528, 140.789)

Figure 5d: Tomioka sugi forest (37.36942, 140.9461)

Figure 5e: Okuma site (37.40637, 141.03242)

Figure 5f: Yokomuki control site (37.65557, 140.25255)

Figure 6: Sampling locations 1 Oct 2018 ¹³⁷Cs soil concentration data and 15 Nov 2018 dose rate data. Map overlay and data from the Japan Map Center (GSI, 2019)

2.2 Sample Collection

Three types of samples were collected at each site; plant, litter, and soil. Only understory plants with a noticeable contribution to the biomass in the sampling area were collected. A noticeable contribution was ascertained visually. A noticeable contribution was assumed if >1% of the total biomass were understory plants in the designated sampling perimeter. At the Yamakiya, Tsushima Sugi, and Tomioka sites, a perimeter was established with all understory plants collected and measured for mass to find the total aboveground biomass contribution to ¹³⁷Cs inventory (Figure 7). Sites were selected based on previous samples at these locations. The sampling perimeter was established using a string with both the length of the perimeter and diagonal of the site being measured to calculate the area. The perimeter and diagonal distances of the site were found using a Leica Disto D510 E7500i laser measuring device (Figure 8). The perimeter and area for the Yamakiya, Tsushima Sugi, and Tomioka sites (Table 3) were not all used to find the total biomass inventory, but data were collected for future research at these sites.

Sampling Site	Perimeter (m)	Area(m²)
Yamakiya	41.04	101.66
Tsushima Sugi	20.53	24.48
Tomioka	27.27	45.70

Table 3: Sampling site perimeter and area

Figure 7: Tomioka sampling site

The left and right picture shows the before and after the collection of all major aboveground understory plants at the same location but taken at a different angle and time on same day at the Tomioka site

Soil sampling locations were determined by proximity to certain different understory plant species. A soil core sampler was used to collect a 30 cm soil core in a plastic liner inside the sampler apparatus (Figure 8). The core sampler was first pushed into the soil by hand until standing stably on its own. A hammer was then used to drive the full length of the core sampler tube into the soil. The core sampler was then extracted using the handle on the core sampler. The 30 cm plastic liner containing the sample was removed from the core sampler and placed into a sample bag for future sample preparation.

Figure 8: Soil core sampler (top), field weight balance (bottom left) and laser distance measuring device (bottom right)

The aboveground portion of the understory plants within 0.5 m of the soil sample locations were cut using plant shears and separated into different sample bags by plant species. The field weight (f.w.) of the samples was then taken using a 400-TST005 digital scale (Figure 8). A tray with a known area was used to identify and collect litter samples (Figure 9). A plant shear was used to cut all litter around the tray and only litter within the tray area was collected.

Figure 9: Tray used for litter collection area

2.3 Soil and Plant ¹³⁷Cs Concentration Measurements

The 30 cm soil core was cut up into three 5 cm thick and one 15 cm thick section and placed into a metal bin located in the plant preparation lab (Figure 10). The metal bins containing the soil sections were placed in a Panasonic MOV-212-PJ natural convection oven to dry at 105°C until at constant dry weight (d.w.). Soil samples were dried for 24 hours, a time found to be sufficient to achieve to a constant d.w. which was recorded upon completion. Some litter samples required 48-hours to achieve a constant d.w. Both litter and plant samples were further shredded using a plant shear and placed into a metal bin before being dried in the oven. All equipment used in all procedures was cleaned between each sample to prevent crosscontamination.

Figure 10: Soil core sections

Both the dry soil sections and plant samples were homogenized using an Absolute3 Vita-Mix or Pure Natura blender (Figure 11) before being placed into 100 mL U-8 containers (Figure 12). As some homogenized soil and litter samples were too large to fit in the U-8 containers, the mass of the soil in the sample was measured and recorded. The ¹³⁷Cs content for the soil, plant, and litter samples were found through gamma spectroscopy using a Canberra High Purity Germanium (HPGe) auto-sampler detector.

Figure 11: Absolute3 Vita-Mix blender

Figure 12: Homogenized soil samples in U-8 containers

Figure 13: Canberra HPGe auto-sampler detector

2.4 Exchangeable Soil [K⁺] and [Cs⁺] Measurements

One molar ammonium acetate (NH₄Ac) was used to extract the exchangeable cations bound in the soil aliquots. Three grams of each soil aliquot were placed into 15 mL tubes and

mixed with one molar NH₄Ac until all interspatial space in the soil was filled. Some soil aliquots could not be placed into 15 mL tubes and were put into 50 mL tubes instead. An orbital shaker was used to mix the samples for 20 hours.

Figure 14: Soil aliquots on orbital shaker

A filtration system using a Nalgene vacuum flask with a 0.45 μm PES filter along with an additional 0.45 μm filter placed on top along with a portable pump was used to filter samples (Figure 15). The soil aliquot was filtered and then transferred to a U-8 container where the filtrates mass was measured and recorded. The top filter was removed, and the flask and built-in filter rinsed with tap water after each use. A new Millipore filter was placed on top of the built-in filter. The Nalgene vacuum flask was reused for 8 samples before being discarded and replaced. The soil aliquots were then analyzed for ¹³⁷Cs activity via gamma spectroscopy using a Canberra HPGe auto-sampler detector before being analyzed for [K⁺] and [Cs⁺] using an Agilent 4100 Microwave Plasma – Atomic Emission Spectrometer (MP-AES).

Figure 15: Thermo Scientific[™] Nalgene[™] Sterile Disposable Filter Unit with 0.45µm PES filter and additional Millipore[™] Membrane Filter (90 mm, 0.45 µm) and pump

Figure 16: After filtration soil aliquots in U-8 containers

2.5 Understory Plant [K⁺] and [Cs⁺] Measurements

The plant aliquots were homogenized using a blender (Figure 11) and passed through a

1 mm sieve to sort out any plant particles >1 mm in diameter. One gram of the sorted plant

aliquot was placed into a ceramic crucible where the mass of the crucible and the plant aliquot together was determined. The crucible then was placed into a furnace for 12 hours at 450°C to ash the plant aliquot (Figure 17). The crucible was weighed again to find the ash weight (a.w.) of the plant aliquot.

Figure 17: Furnace and plant aliquot after

50 mL tubes were filled with 45 mL of 18.2MΩ ultra-pure water (UPW) before the acid digestion of the plant ash. 2.5 mL of 13M nitric acid (HNO₃) were mixed with the plant ash in the crucible to digest the plant ash. If the plant ash was not dissolved, then another 2.5 mL of HNO₃ were added before being transferred to a 50 mL tube. Some of the plant species could not be properly dissolved in the HNO₃. Due to the insufficient dissolution of certain plants, particulates too large to be analyzed by MP-AES remained in the aliquot. To solve this issue, new plant aliquots were filtered using the same 0.45 µm filter apparatus as the soil aliquots before MP-AES. Acknowledging that there will be loss, the filtrate was also transferred into U-8 containers and counted for ¹³⁷Cs activity. Since the total ¹³⁷Cs activity for each plant sample was known, the difference between the filtrate ¹³⁷Cs activity and the total ¹³⁷Cs activity was used to correlate the loss of K⁺ and Cs⁺ due to the incomplete acid digestion and filtration.

Figure 18: Plant aliquot after acid treatment in 50 mL U-8 containers

2.6 Soil pH Measurements

Soil samples were prepared for pH measurement by mixing 1:10 soil to UPW liquid mixture. This ratio was used due to the high organic matter content of the soil samples. 2 g of soil were mixed with 18 mL of UPW in a 50 mL tube. A digital pH meter with a 9615S-10D ToupH electrode was used to measure the pH of the soil. The pH meter was calibrated using pH 4, 7, and 12 standards at the beginning of each new day or every 25 samples., and Soil pH was determined after the electrode was placed into the liquid mixture and after pH readings had stabilized.

Figure 19: Laqua pH meter and soil samples

RESULTS

3.1¹³⁷Cs Deposition in Soil

The ¹³⁷Cs soil deposition was found through averaging the total ¹³⁷Cs activity across the

30 cm depth of soil and dividing it by the area of the soil core sampler. Table 4 shows the

deposition density of the soil samples collected compared to the initial deposition study

conducted by an airborne survey 2 Jul 2011 (Kato, H and Onda Y., 2019).

2. 30.17 year radiological half-life for ¹³⁷ Cs				
Location	2 Jul 2011 Deposition Density ¹ (kBq/m ²)	Sample Deposition Density (kBq/m²)	2 Jul 2011 Radiological Decay Corrected ² Deposition Density (kBq/m ²)	2 Jul 2011 Effective Decay Corrected ³ Deposition Density (kBq/m ²)
Okuma	4001	6000±1611	21007±9773	7200±3350
Tomioka	740	551±127	1928±768	661±263
Tsushima Pine	2370	1221±90	4274±545	1465±187
Tsushima Sugi	2370	1196±39	4188±203	1435±70
Yamakiya	752	684±119	2394±1168	821±400
Yokomuki	44	25±8	87±49	30±17

Table 4: Soil ¹³⁷Cs Deposition Density Results and Comparison

1. Initial deposition density for ¹³⁷Cs only (Kato, H and Onda Y., 2019)

Figure 20a provides a comparison of ¹³⁷Cs concentration in terms of soil depth and sample location while Figure 20b provides a linear regression comparison of the ¹³⁷Cs concentration (Bq/m²) at the different sampling locations as a factor of soil depth. Figures 21a and 21b provide the same information, respectively, in terms of ¹³⁷Cs activity deposition (Bq/m²). Figure 22 provides a comparison of the contributions to the total ¹³⁷Cs inventory for each sampling location in terms of litter and soil depth.

Figure 20a: Mean ¹³⁷Cs Soil Vertical Concentration Distribution

Figure 20b: ¹³⁷Cs Soil Vertical Concentration Linear Regression

Figure 21a: Mean ¹³⁷Cs Soil Vertical Deposition Distribution

Figure 21b: ¹³⁷Cs Soil Vertical Deposition Distribution Linear Regression

Figure 22: ¹³⁷Cs percent contribution to soil profile

3.2 ¹³⁷Cs, Cs⁺, and K⁺ Concentrations and Concentration Ratios in Understory Plants

Figures 23 to 26 shows the mean plant ¹³⁷Cs concentration for each sampling location with reported activity concentration in Bq per dry weight kg of the plant. All plant radiocesium concentrations, total dry weight, and dry weight in U-8 container are provided in Appendix A. The common and scientific names for the sampled plants are listed in Table 5 with the common name being used for all other graphs and tables.

Common Name	Sample Classification	Scientific Name
Bamboo Grass	Species	Microstegium vimineum
Dogwood	Genus	Cornus
Fern	Genus	Athyrium
Glory-Bower	Species	Clerodendrum trichotomum
Hazelnut	Species	Corylus heterophylla
Hydrangea	Genus	Hydrangea
Myoga	Species	Zingiber mioga
Wisteria	Genus	Wisteria
Japanese Knotweed	Species	Reynoutria japonica
Japanese Lacquer	Species	Toxicodendron vernicifluum
Japanese Maple	Species	Acer palmatum

Table 5: Plant Sample Common and Scientific Names

Tsushima Sugi Plant Cs-137 Concentration

Okuma, Tomioka, and Tsushima Pine Plant Cs-137 Concentration

Figure 25: Okuma, Tomioka, and Tsushima Pine plant ¹³⁷Cs dry weight concentration

Yokomuki Plant Cs-137 Concentration

Figure 26: Yokomuki plant ¹³⁷Cs dry weight concentration

Figure 27 shows the mean ¹³⁷Cs concentration ratios for the most sampled understory plant species located at more than one of the sampling sites. Figures 28 to 32 show the natural

log of the soil to plant concentration ratio at each measured soil depth. The soil to plant concentration ratio was calculated by dividing the plant ¹³⁷Cs concentration by the soil ¹³⁷Cs concentration at each soil depth. Figures 33 to 36 show the same information only with comparisons of different understory plant species within each sampling site. While ¹³⁷Cs activity was measured for the 15-30 cm soil depth, it was omitted due to the low contribution to the total ¹³⁷Cs inventory in the soil (Figure 22).

Mean Cs-137 Soil to Plant Concentration Ratio

Figure 27: Soil to plant mean ¹³⁷Cs concentration ratio at 0-15 cm soil depth

Soil to Bamboo Grass Concentration Ratio (CR)

Figure 28: Soil to bamboo grass ¹³⁷Cs concentration ratio ln[soil (Bq/kg)/plant (Bq/kg)]

Soil to Fern Concentration Ratio (CR)

Figure 29: Soil to fern ¹³⁷Cs concentration ratio soil ln[(Bq/kg)/plant (Bq/kg)]

Soil to Wisteria Concentration Ratio (CR)

Figure 31: Soil to maple concentration ratio soil ln[(Bq/kg)/plant (Bq/kg)]

Soil to Hydrangea Concentration Ratio (CR)

Yamakiya Soil to Plant Concentration Ratio (CR)

Figure 33: Yamakiya soil to plant concentration ratio soil ln[(Bq/kg)/plant (Bq/kg)]

Tsushima Pine Soil to Plant Concentration Ratio (CR)

Tomioka, Okuma, and Tsushima Sugi Soil to Plant Concentration Ratio (CR)

Figure 35: Tomioka, Okuma, and Tsushima Sugi soil to plant concentration ratio In[soil (Bq/kg)/plant (Bq/kg)]

Yokomuki Soil to Plant Concentration Ratio (CR)

Total dry biomass contributed by each compartment of the Japanese Sugi tree dominant forest at Yamakiya were determined using model tree #84 (Yoschenko et al., 2018). The activity concentration data was determined using tree #B1, #B3, and #B10 samples collected 6 Jun 2019 at the Yamakiya site for new leaves, old leaves, small branches, and big branch compartments of the Japanese Sugi tree (Appendix G). The inner bark, outer bark, sapwood 1-3, sapwood, and heartwood compartment activity concentrations were determined using tree #B99 samples also collected on 6 Jun 2019. Total ¹³⁷Cs was calculated through multiplying the model tree #84 biomass with the average activity concentration of tree #B1, #B3, #B10 for their compartments and tree #B99 for its compartments.

Figure 37: % ¹³⁷Cs contribution to Japanese Sugi tree in Yamakiya

A dogwood in Yamakiya and a maple tree at Tsushima Sugi were not included in the study as they grew sizably and could not readily be cut down. Bamboo grass at Yamakiya and fern at Tsushima Sugi were not included as they were collected outside the sampling perimeter set up at each respective site. The activity concentration and dry weight to fresh weight ratio for Yamakiya whole maple were determined by using maple leaves, as no whole maple was counted for ¹³⁷Cs. Maple leaves were sampled as they were assumed to best represent radiocesium uptake in early life maple trees when they are still very small plants. Figure 39 shows a comparison between the percent contribution of aboveground biomass and ¹³⁷Cs activity in Yamakiya.

Figure 38: % ¹³⁷Cs contribution to total understory plant biomass in Yamakiya

Figure 39a: % Contribution to aboveground biomass and ¹³⁷Cs activity in Yamakiya Inner ring (% Bq ¹³⁷Cs), Outer ring (% biomass kg)

3.4 Exchangeable [K⁺], Exchangeable [Cs⁺], and pH in Soil

Figure 40a provides a comparison of exchangeable ¹³⁷Cs concentration in terms of soil depth and sample location while Figure 40b provides a linear regression comparison of the exchangeable ¹³⁷Cs concentration (Bq/kg) at the different sampling locations as a factor of soil depth. Figures 41 to 46 show the linear regression comparison of ¹³⁷Cs total soil to exchangeable ratio, exchangeable soil [K⁺], exchangeable soil [Cs⁺], and exchangeable soil [Cs⁺]/[K⁺], exchangeable [¹³⁷Cs] to total [Cs⁺] ratio, and total ¹³⁷Cs to total [Cs⁺] ratio as a function of soil depth. The exchangeable [¹³⁷Cs] to total [Cs⁺] ratio and total ¹³⁷Cs to total [Cs⁺] ratio graphs have been natural log transformed as well as removing Yokomuki data to fit the facet-graph so a proper comparison can be performed between each sampling site. Figure 47 provides the soil pH vertical distribution comparison between soil depths and sampling locations.

Exchangeable Cs-137 Soil Vertical Distribution

Figure 40a: Mean Exchangeable ¹³⁷Cs soil vertical concentration distribution

Exchangeable Cs-137 Soil Natural Log Vertical Concentration

Cs-137 Total/Exchangeable Soil Concentration

Soil Exchangeable Cs Concentration

Figure 44: Exchangeable [Cs]/[K] ratio in soil (ppm/ppm)

Figure 45: Exchangeable ¹³⁷Cs to exchangeable [Cs] ratio

Figure 46: Total ¹³⁷Cs to exchangeable [Cs] ratio

Figure 47: Soil pH vertical distribution

3.5 Soil to Plant Transfer Factor Linear Fit Model

Models do not include any data from Yokomuki due to the large uncertainty and lack of correlations found in any of the measured factors, except for pH in relation to soil depth as with the other five sampling sites. Only data from plant species with three or more distinct sampling locations were used for the transfer factor linear fit models. Tables 7 and 8 show all five variables used for the linear model. Tables 9 and 10 use the variables for the linear best fit model with the dredge function model comparison shown in Appendix F. Tables 11 and 12 show only the soil ¹³⁷Cs activity concentration factor in the linear model. Soil depth is not added as a factor as each depth had its own transfer factor calculated in the dataset. Tables 13 and 14 have the linear models using separate depth categories along with different combinations of the vertical distribution depths. Figures 48 to 50 show the observed to predicted transfer factors using the three different linear models.

Factor	Unit	Variable
Y	In(Transfer Factor) - Unitless	Y
Intercept	N/A	B ₀
Exchangeable [K ⁺]	ppm	B1
Exchangeable [Cs ⁺]	ppt	B ₂
¹³⁷ Cs Activity Concentration	ln(Bq/kg)	B ₃
Exchangeable ¹³⁷ Cs Concentration	ln(Bq/kg)	B4
рН	-log ₁₀ [H ⁺]	B 5

Table 6: Linear model variables

Plant	Y	B ₀	B ₁	B ₂	B ₃	B 4	B5
All	Υ _T	8.538e00	6.632e-03	1.090e04	-8.751e-01	-7.530e-02	-3.531e-01
Bamboo Grass	\mathbf{Y}_{BG}	1.103e01	5.906e-04	-4.364e03	-1.258e00	2.975e-01	-3.658e-01
Glory- Bower	\mathbf{Y}_{GB}	1.081e00	7.841e-02	5.764e04	9.415e-01	-2.2021e00	-1.285e00
Wisteria	Yw	1.228e01	-1.685e-02	-1.316e04	-1.232e00	2.142e-01	-2.739e-01
Fern	\mathbf{Y}_{F}	1.810e01	-7.304e-02	-3.753e03	-1.123e00	4.193e-01	-1.563e00
Hydrangea	Y_{UA}	1.424e01	-3.818e-03	1.229e04	-1.129e00	1.830e-01	-1.222e00
Maple	Υ _M	9.796e00	-1.339e-02	-2.476e03	-1.223e00	1.919e-01	-8.182e-02
Japanese Lacquer	Υĸ	1.110e01	2.091e-02	2.480e04	-2.769e-01	-5.345e-01	-1.668e00
Unknown	Y _{UB}	5.289e00	7.014e-02	3.100e04	-4.620e01	-8.923e-01	3.480e-02

Table 7: Transfer factor linear fit model

Table 8: Linear fit model R	² and residual	standard error -	all factor model
-----------------------------	---------------------------	------------------	------------------

Transfer Factor	Multiple R ²	Adjusted R ²	Residual Standard Error	Degrees of Freedom
V_	0 9679	0.9640	0.8033	17/
11	0.0070	0.8040	0.8032	1/4
Y _{BG}	0.9269	0.9117	0.5192	24
Y _{GB}	0.9619	0.8985	0.7391	3
Yw	0.9766	0.9702	0.3745	18
Y _F	0.9827	0.9770	0.3398	15
Y _{UA}	0.9899	0.9815	0.3039	6
Y _M	0.9953	0.9913	0.1730	6
YL	0.9888	0.9702	0.3235	3
Y _{UB}	0.9721	0.9256	0.5290	3

Figure 48: Observed to predicted transfer factors (YT – All Factors)

Dlant	v	D	D	D	р	D	D
Plant	T	D 0	D 1	D2	D3	D4	D5
All	Υ _T	9.122e0		8.477e3	-9.330e-1		3.786e-1
Bamboo	v	1.010-1			1 225 -0	2 1 2 1 2 1	2 1 4 2 2 1
Grass	¥ BG	1.01901			-1.225e0	3.1210-1	-3.1430-1
Glory-	V	0 20200			0 7270 1		
Bower	I GB	0.30360			-9.7578-1		
Wisteria	Yw	8.567e0			-9.773e-1		
Fern	Y_{F}	1.717e1	-7.176e-2		-1.058e0	3.612e-1	-1.485e0
Hydrangea	Y_{UA}	1.333e1		1.362e4	-9.865e-1		-1.173e0
Maple	Υ _M	8.924e0	2.232e-2		-1.113e0		
Japanese	v	7 5 7 7 0			1,000-0		
Lacquer	ιĸ	7.52700			-1.00960		
Unknown	Y _{UB}	4.377e0		3.191e4	-6.708e-1		

Table 9: Transfer factor linear fit model – dredge best fit

Transfer Factor	Multiple R ²	Adjusted R ²	Residual Standard Error	Degrees of Freedom
Υ _T	0.8670	0.8647	0.8011	176
Y _{BG}	0.9246	0.9159	0.5066	26
Y _{GB}	0.9325	0.9229	0.6444	7
Yw	0.9687	0.9672	0.3924	22
Y _F	0.9825	0.9781	0.3312	16
Y _{UA}	0.9888	0.9846	0.2778	8
YM	0.9944	0.9932	0.1534	9
YL	0.9590	0.9531	0.4056	7
Y _{UB}	0.9559	0.9412	0.4702	6

Table 10: Linear fit model R² and residual standard error – dredge best fit

Observered to Predicted Transfer Factor - Dredge Best Fit

Figure 49: Observed to predicted transfer factors (Y_T – Dredge Best Fit)

Plant	Y	Bo	B ₃
All	Υ _T	7.98683	-0.95982
Bamboo Grass	Y _{BG}	7.56568	-0.96440
Glory-Bower	Y _{GB}	8.39327	-0.97372
Wisteria	Yw	8.56651	-0.97727
Fern	Y _F	8.77076	-0.99740
Hydrangea	Y _{UA}	8.08484	-0.97912
Maple	Y _M	8.37936	-1.01827
Japanese Lacquer	Y _K	7.52735	-1.00877
Unknown	Y _{UB}	10.2081	-1.0533

Table 11: Transfer factor linear fit model – ¹³⁷Cs activity

Table 12: Linear fit model R2 and residual standard error – ¹³⁷Cs activity

Transfer Factor	Multiple R ²	Adjusted R ²	Residual Standard Error	Degrees of Freedom
Υ _T	0.8465	0.8456	0.8558	178
Y _{BG}	0.8838	0.8797	0.6061	28
Y _{GB}	0.9325	0.9229	0.6444	7
Yw	0.9687	0.9672	0.3924	22
Y _F	0.8635	0.8563	0.8487	19
YUA	0.9173	0.9091	0.6740	10
Y _M	0.9814	0.9796	0.2652	10
YL	0.9590	0.9531	0.4056	7
Y _{UB}	0.8667	0.8477	0.757	7

Observered to Predicted Transfer Factor - Cs-137 Activity Concentration Factor

Figure 50: Observed to predicted transfer factors ($Y_T - {}^{137}Cs$)

There is a chance that the linear fit could be due to a mixture of unrelated predicted transfer factors between the three depth categories. To find how transfer factors could be affected on a per depth basis, ¹³⁷Cs factor linear models were made for all combinations of the three soil depths as shown in Tables 13 and 14. The correlation between all of the seven possible depth category combination models are shown in Figures 51 and 52.

Model	Bo	B3			
0-5 cm (1)	5.6835	-0.7568			
5-10 cm (2)	7.24509	-0.87568			
10-15 cm (3)	7.69557	-0.90341			
0-10cm (4)	7.55458	-0.92036			
0-5 cm & 10-15 cm (5)	8.10099	-0.97277			
5-15 cm (6)	7.8285	-0.9339			
0-15 cm (7)	7.98683	-0.95982			

Table 13: Y_T Transfer factor linear fit model per depth category–¹³⁷Cs activity

Depth Category	Multiple R ²	Adjusted R ²	Residual Standard Error	Degrees of Freedom			
0-5 cm (Model 1)	0.3368	0.3253	0.8478	58			
5-10 cm (Model 2)	0.6538	0.6478	0.8536	58			
10-15 cm (Model 3)	0.6495	0.6434	0.8600	58			
0-10 cm (Model 4)	0.7306	0.7283	0.8537	118			
0-5 cm & 10-15 cm (Model 5)	0.8800	0.8790	0.8599	118			
5-15 cm (Model 6)	0.7737	0.7718	0.8550	118			
0-15 cm (Model 7)	0.8465	0.8456	0.8558	178			

Table 14: Y_T linear fit model R^2 and residual standard error per depth category – 137 Cs activity

Observered to Predicted Transfer Factors

Figure 51: Model 1-3 observed to predicted transfer factors per individual depth $(Y_T - {}^{137}Cs)$

Figure 52: Model 4-7 observed to predicted transfer factors for depth 0-15cm ($Y_T - {}^{137}Cs$)

Figures 53 shows the predicted to observed plant activity concentration using the dredge best fit and ¹³⁷Cs linear models with data from all sampled plant species. The predicted plant activity concentration did not correlate well with the observed plant activity. More accurate per plant species (Y_{BG}, Y_{GB},..., Y_{UB}) models were made to find better success in the prediction of the plant activity concentration. The predicted to observed soil-to-plant transfer factors for the dredge best fit and ¹³⁷Cs per plant species model is shown in Figure 54 and the accompanied predicted plant activity concentration model results are shown in Figure 55.

Observered to Predicted Plant Activity - All Plant Model

Figure 53: Predicted to observed plant activity concentration – Y_T models

Observered to Predicted Transfer Factors - Per Plant Species Model

Figure 54: Predicted to observed soil-to-plant transfer factor – per plant species models

Observered to Predicted Plant Activity - Per Plant Species Models

Figure 55: Predicted to observed plant activity concentration – per plant species models

Figures 56 to 59 show the scatterplot for different variables found in relation to the plant activity concentration. These are segregated per soil depth category as well as location at which the samples were taken.

Soil Cs-137 vs Plant Cs-137 Concentration

Exchangeable Cs-137 Activity vs Plant Cs-137 Concentration

Figure 57: Soil exchangeable activity vs plant activity concentration – per soil depth (cm)

Exchangeable [Cs] vs Plant Activity Concentration

Exchangeable [K] vs Plant Activity Concentration

Figure 59: Exchangeable [K⁺] vs plant activity concentration – per soil depth (cm)

DISCUSSIONS

4.1¹³⁷Cs Soil Deposition

The ¹³⁷Cs deposition density found in this study best correlated with past surveys and studies using the disturbed areas post disturbance effective half-life of 4.39 years (as described in Hayes et al 2020).

The ¹³⁷Cs soil deposition density correlated well with samples taken in the same locations during Oct 2018 (GSI, 2019) and Mar 2013 (Nuclear Regulation Authority, 2013) after decay correction was applied. The best correlation was using decay corrected deposition densities and an effective half-life of 4.39 years for disturbed areas post disturbance (Hayes et al, 2010) instead of the radiological half-life of 30.17 years for ¹³⁷Cs as shown in Table 15b. Decay corrections using the normal radiological decay half-life of ¹³⁷Cs of 30.17 years did not match with the expected deposition density ranges for Mar 2013 for the Tomioka, Tsushima Pine, Tsushima Sugi, and Yamakiya sites (Table 15a). The deposition density of the soil at Yamakiya was found to be 1,000 kBq/m² in 2016. Decay correcting using an effective half-life of 4.39 years for results in a soil deposition density of 1091±532kBg/m² (Workman 2019). This is important as the 2016 study used the exact same soil collection methods, tools, and detectors as the ones in this study. However, other samples collected at Yamakiya from 2014 to 2017 showed a decrease in ¹³⁷Cs deposition density to soil and litter closer to the radiological half-life with a deposition density respectively which also matches with the deposition density measurements (Table 15c). Using the 4.39 year half-life matches with the decay correction comparison with the GIS and Nuclear Regulatory Authority while using the 30.17 year half-life

matches with the decay correction comparisons with the soil samples collected by the Dr. Yoschenko. As the soil samples collected by Dr. Yoschenko were much closer to the actual sample site and used the same soil collection methods, tools, and detectors as the ones in this study, it is assumed to be more accurate than the data from the GIS and Nuclear Regulatory Authority.

The effective half-life decay correction deposition density was found to be much higher than the one found by the initial deposition study (Table 4). The initial deposition estimates were found through an airborne survey based on correlations between the measured air dose rate and the contribution to dose rate by ¹³⁷Cs measured by an in-situ germanium detector at 1m height (Kato, H and Onda Y., 2019). The lower than expected initial deposition density could have been influenced by the fact that most of the radiocesium was intercepted by the tree canopies during this time period and had not yet been transported down to the soil through litterfall, throughfall, and stemflow (Yoschenko et al, 2017).

Table 15a: Radiological half-life (30.17 years) decay corrected soil deposition density1. Deposition range from Nuclear Regulation Authority, 20132. Deposition range from GIS, 2019

Location	Mar 2013 Deposition Density Range ¹ (K- kBq/m ²)	Oct 2018 Deposition Density Range ² (kBq/m ²)	Sample Mar 2013 Decay Corrected Deposition Density (kBq/m ²)	Sample Oct 2018 Decay Corrected Deposition Density (kBq/m ²)
Okuma	>3000	>3000	7007±3260	6163±2867
Tomioka	1000-3000	600-1000	643±256	566±225
Tsushima Pine	>3000	1000-3000	1425±182	1254±160
Tsushima Sugi	>3000	1000-3000	1397±68	1228±60
Yamakiya	1000-3000	600-1000	799±390	702±343
Yokomuki	N/A	<10	29±16	26±14

Table 15b: Effective half-life (4.39 years) decay corrected soil deposition density

 Mar 2013	Oct 2018	Comple Mar 2012	Comula Oct.
2. D	eposition range f	rom GIS, 2019	
1. Deposition ran	ge from Nuclear	Regulation Authority, 2	2013

Location	Mar 2013 Deposition Density Range ¹ (kBq/m ²)	Oct 2018 Deposition Density Range ² (kBq/m ²)	Sample Mar 2013 Decay Corrected Deposition Density (kBq/m ²)	Sample Oct 2018 Decay Corrected Deposition Density (kBq/m ²)
Okuma	>3000	>3000	17434±8111	7214±3356
Tomioka	1000-3000	600-1000	1600±637	662±264
Tsushima Pine	>3000	1000-3000	3547±452	1468±187
Tsushima Sugi	>3000	1000-3000	3475±169	1438±70
Yamakiya	1000-3000	600-1000	1987±969	822±401
Yokomuki	N/A	<10	72±41	30±17

Table 15c: IER Yamakiya soil sample deposition density comparison

1. (Personal communication, 24 Mar 2020, Vasyl Yoschenko) 2. 2019 collected sample deposition density 3. Yoschenko, 2018

4. Decay corrected from sampled deposition density data

Yamakiya	2014	2015	2016	2017	2019
Sampled Deposition Density (kBq/m ²)	722 ¹	714 ¹	741 ¹	696 ¹	691±334 ²
2014 Radiological Decay	=				4
corrected Deposition Density (kBq/m ²)	746±400 ³	730±370 ³	780±140 ³	/46	//5±3/5⁴

The ¹³⁷Cs vertical profiles of the soil samples show a logarithmic decrease in both ¹³⁷Cs concentration (Bq/kg) and ¹³⁷Cs activity distribution (Bq/m²) as a function of soil depth (Figures 20a and 21a). Over 90% of the total ¹³⁷Cs deposition was located at the top 10 cm of the soil (Figure 22). The total litter ¹³⁷Cs litter contribution has shown a continually decreasing trend at both the Yamakiya and Tsushima Sugi sites. From 2016 to 2019, the Yamakiya site litter contribution decreased from 8±4% to 4.9% and at Tsushima Sugi site it decreased from 4±2% to 2.2% (Yoschenko et al, 2018). These trends correspond with the soil profiles found in previous years at Yamakiya and Tsushima except for the Yokomuki site samples (Yoschenko et al, 2018). The large uncertainty and p-value for the Yokomuki samples could be due to wild boar that

disturb the soil at the sampling locations resulting in ¹³⁷Cs vertical profiles being very different from the expected trend found at the other sampling locations (Figure 60).

Figure 60: Yokomuki sampling site

4.2 Understory Plant ¹³⁷Cs Dynamics and Contribution to Yamakiya ¹³⁷Cs Inventory

There are large variations between ¹³⁷Cs activity concentrations in different plant species and location, and between the same species of understory plants. It should be noted that some plants sampled were of the same genus, but not necessarily of the same species (Table 5). All of the plants were subdivided using the term species even if they are only part of the same genus and not species for continuity purposes in the discussions. There is a correlation between the ¹³⁷Cs activity concentrations of stems, branches, and leaves of saplings as well as that of non-woody seedlings of the same species. Higher concentrations of radiocesium were found in the metabolically active portions of the understory plants with leaves having a higher radiocesium concentration then the branches and stem. This correlates with previous observations in which the root of the plant had higher radiocesium concentration than leaves which in turn was higher than that in the woody portions of the plant (Y-G. Zhu and E. Smolders, 2000). All of the understory plants' leaves, branches, and stems, were measured for radiocesium. The leaves of the understory plants were found to have a higher ¹³⁷Cs concentration than the branches, and the plant stem had even higher concentrations than all other plant tissues (Figures 23-26). Non-woody saplings have a ¹³⁷Cs concentration in between that of the leaves and the woody parts of the mature plants. One understory plant species could not be properly identified. The unidentified plant was only found in the high elevation sampling areas of Tsushima and Yokomuki (Figure 61). Future research in these areas during the summer months should require further samples to better identify the unknown plant species.

Figure 61: Unknown plant

The soil to plant ¹³⁷Cs concentration ratios show a large variance between both plant species and locations (Figure 27). The concentration ratio for fern at Yamakiya is much greater than any other plant at any other location including fern at other sampling sites. The concentration ratio of wisteria at Yamakiya is also much greater than at other locations. The variance of the concentrations ratios for maple is much less between sampling sites as compared with any other plant species. Possible explanations for the variability in concentration ratios could be due to differences of exchangeable [K], [Cs], and [¹³⁷Cs] in different soils along with differences in soil pH and how each of the factors change per soil depth. All sites except for the Yokomuki site followed the general logarithmic decrease in radiocesium present in the vertical soil profile as shown in Figures 28 to 36.

For aboveground biomass, the radiocesium inventory in trees was found to be 47±21 kBq/m² in 2014 decreasing to 37±21 kBq/m² in 2015 after which it remained stable at 32±18 kBq/m² in 2016 (Yoschenko et al, 2018). ¹³⁷Cs inventory in trees was found to be 157 kBq/m² in 2019, a fivefold increase compared to previous years (Figure 62). The higher radiocesium inventory in trees could be due to the difference in tree density in the sampled area as compared to the site sampled in 2016, as well as the previous samples being taken in the winter compared to the summer in 2019. The trees would have increased ¹³⁷Cs concentration in the summer due to the increased metabolic activity that occurs during the warmer months. Similarly, litterfall from Japanese cherry trees was shown to have radiocesium concentrations 2.5 times greater in early September 2011 as compared to late October 2011 which shows that radiocesium concentrations are higher in trees during the warmer months of the year (Yoshihara et al, 2014).

Radiocesium contribution from understory plants was found to be negligible in both terms of biomass and radiocesium deposition in 2014. Studies in 2015 and 2016 did not include understory plants as part of the total radiocesium deposition inventory (Yoschenko et al, 2017). Sampling of understory plants in 2019 showed similar conclusions, with understory plants contributing negligible amounts of ¹³⁷Cs and biomass at Yamakiya. Only 0.067% of the total aboveground ¹³⁷Cs deposition and 0.073% of the total aboveground biomass were from understory plants at Yamakiya. Factoring in ¹³⁷Cs deposition contribution by soil, understory plants comprise only 0.013% of the radiocesium deposition at Yamakiya. Due to the inconsistencies in the time of the year at which samples were taken, it is difficult to establish continuing trends of radiocesium contributions by the different compartments using data from

previous years. However, the trend of a sharp decrease in litter contribution to the radiocesium

inventory was found to have continued as shown in Table 16.

Figure 62: Contribution to total ¹³⁷Cs inventory in Yamakiya

Table 16: Litter ¹³⁷Cs contribution in Yamakiya2014 – 2016 data from Yoschenko et al, 2018

Year	2019	2016	2015	2014
Deposition Density (kBq/m ²)	7.94±2.80	37±14	53±25	150±47

4.3 Soil Factor Correlations

Exchangeable ¹³⁷Cs concentration follows a logarithmic decrease with increasing soil depth similar to that of the total ¹³⁷Cs concentration (Figure 40b). The total to exchangeable ¹³⁷Cs ratio shown in Figure 41 shows a decrease with soil depth, where more exchangeable ¹³⁷Cs is in the soil as a function of depth. Exchangeable stable Cs concentration increases with increasing soil depth in a linear fashion, unlike the logarithmic decreases found in total ¹³⁷Cs and exchangeable ¹³⁷Cs concentration (Figure 42). The exchangeable K concentration in the soil decreases linearly with increasing soil depth, with the exception of the Okuma site (Figure 43). The exchangeable Cs to K concentration ratio has a noticeable linear increase with soil depth at the Tsushima Pine and Yamakiya sites. Cs and K permanently come into the topsoil mainly from decomposing litter and precipitation in Fukushima forest tree crowns, similar to large K concentration increases after seasonal litterfall events in watershed areas (Tripler et al, 2006). Okuma has much less aboveground biomass available compared to the other five sites. The Okuma litter is composed of bamboo grass, which does not easily decompose compared to other understory plant species. The Tsushima Pine and Yokomuki sites have thin and fast decomposing litter layers, while the Tsushima Sugi and Tomioka sites have thick and slow decomposing litter layers. The lower Cs/K ratio could be due to the more chemically active K fixation into limited exchangeable sites, causing Cs to go deeper down into the soil.

The soil pH of Tomioka and Yamakiya was within a pH range of 5.0 - 7.4 for Japanese Sugi trees (Cornell, 2020). Tsushima Sugi was also a Japanese Sugi dominant forest, but the pH was below 5.0 (less than ideal) for the top 15 cm of soil, which is still tolerable for the Japanese Sugi tree. The soil for both Tsushima Pine and Tsushima Sugi sites were similar due to their proximity to each other. The soil pH at the Sugi dominant forest at the Tsushima Sugi site is at the lower pH range for Sugi trees. At the nearby Tsushima Pine site, pine trees which are more tolerant of acidic soil become the dominant tree species in the forest. Okuma had a higher pH compared to the other sites which could be due to the sandy makeup of the soil along with its proximity to the coast and nearby stream. The pH of the soil was found to be statistically different on the basis of location, but not soil depth, through ANOVA, with a p-value of a variance in means of 1.39×10^{-7} and 0.8927 respectively (Appendix E7). The pH values used in the models were averages across the 15 cm soil depth.

4.4 Transfer Factor Linear Fit Models

The linear model for predicting the soil to plant transfer factors was created using five soil factors, exchangeable [K⁺], exchangeable [Cs⁺], ¹³⁷Cs activity concentration, exchangeable ¹³⁷Cs activity concentration, and pH. The natural log transformed linear model using all five factors had an adjusted R² = 0.8640 when all data for all plants collected were used. Using a linear model that was understory plant specific yielded, a much higher adjusted R² with the lowest being the glory bower plant (*Clerodendrum trichotomum*) with an adjusted R² = 0.8985 and the highest being hydrangea plant with an adjusted R² = 0.9815 as shown in Table 8. The prediction of transfer factors was not dependent on all five factors in the model. Different understory plant species had the total ¹³⁷Cs activity concentration in the soil as the main variable with respect to radiocesium concentration, and a various mix of other different factors influenced the predicted transfer factor depending on the understory plant species (Appendix F).

A dredge test were used to find the best fit model that could be used to predict the soil to plant transfer factors using data of all sampled understory plants and individual understory plant species. The total soil ¹³⁷Cs activity concentration is the only factor that was shown to have a good correlation in predicting transfer factors across all understory plant species. A total soil ¹³⁷Cs activity concentration factor model was created for understory plant species along with each individual understory plant species. The adjusted R² value for the dredge best fit model and ¹³⁷Cs model was 0.8647 and 0.8456 respectively. As shown in Figure 63, all three models are very similar in their prediction of the transfer factors with a slope close to one, indicating a more accurate one to one predicted transfer factor to observed transfer factor

ratio. All three models utilize a natural log transform of the actual transfer factors where small variance in the model would lead to a much larger variance when predicting non-transformed transfer factors.

Observered to Predicted Transfer Factors

Figure 63: All plant species transfer factor models

The ¹³⁷Cs transfer factor linear models were made using each of the 5 cm depth layers as well as any combination of the three to see how they impacted the correlation between predicted and observed transfer factors. It was found that the 0-5 cm depth had a lower correlation (r = 0.58) compared to the 5-10 cm (r = 0.81) and 10-15 cm (r = 0.81) layers. This difference between the upper layer and the bottom two layers could be due to differences in the root structure between plants even those in the same species in the 0-5 cm soil layer. The different plants possibly have their roots start at different depths within the 0-5 cm layer causing a variance in ¹³⁷Cs uptake at this layer compared to 5-10 cm and 10-15 cm layers. Linear models created using different combinations of the three soil layers yielded the same

correlation as the 0-15 cm model (r = 0.92) indicating that the main difference in the r-value between the individual 5 cm soil layers and the 0-15 cm model is caused mainly by the larger sample size used for the 0-15 cm model.

The transfer factors from the ¹³⁷Cs linear model for all plants did not predict plant radiocesium concentration and were not significant (p-value = 0.35). The dredge best fit model for ¹³⁷Cs transfer factors did show a significant correlation (p-value = 0.00043) for plant radiocesium concentration as shown in Figure 53. The dredge best fit model had a weak linear relationship (r = 0.26) between the transfer factor and plant radiocesium concentration. Dredge best fit linear models of transfer factors were used to predict ¹³⁷Cs concentration for eight of the most sampled understory plant species. The dredge models yielded a stronger correlation (0.94 and 0.97 slope), very close to the desired one to one slope ratio (Figure 54). The dredge best fit per plant species basis model had a better correlation (r = 0.89) compared to the ¹³⁷Cs per plant species basis model (r = 0.66) for predicted to observed plant activity concentration. The dredge best fit and ¹³⁷Cs models have a much larger variance and smaller correlation than the predicted to observed correlations of the natural of the transfer factors with an r of 0.97 and 0.97, respectively. This shows that correlating the natural log of the transfer factors while making it easier to see a trend in the graphs, also hides the large variances between the observed and predicted transfer factors. Figures 56 to 59 show how each of the factors, except for pH, was correlated with plant activity concentration for each individual plant sample. The lack of relationship between the factors and plant concentration may indicate additional factors not considered are important, or differences between the plant species are more important than these factors.

The Absalom 1999 transfer model had a natural log predicted ¹³⁷Cs to observed transfer factor with a linear correlation r² ranging from 0.59 for cabbage to 0.92 for straw wheat using crop specific parameters. The Absalom 2001 model for predicting the transfer factor for barley had an r² = 0.52 (Absalom et al, 1999 and Absalom et al, 2001). Our per plant species ¹³⁷Cs model yielded an overall better transfer factor correlation with an adjusted r² ranging from 0.8477 for the unknown plant to 0.9796 for maple. Figure 53 shows that even with a high r² value for the all plant ¹³⁷Cs transfer factor model, the predicted plant activity concentration for a specific plant may still vary greatly from actual observed plant activity concentration. Since a log transform is performed on all data, small changes in values yield large changes in results. Care should be taken when using transfer factor models to predict actual plant activity concentration even if the transfer factor models have exceptional correlation with results.

CONCLUSION

The ¹³⁷Cs deposition density data collected at various forests sites in Fukushima provide further evidence of the natural logarithmic decrease in ¹³⁷Cs activity concentration with increasing soil depth. Additionally, the soil measurements support the effective half-life of 4.39 years given for disturbed areas post disturbance areas more than the radiological half-life of 30.17 years using comparisons with deposition density data from the GIS and Nuclear Regulatory Authority. Comparisons with soil measurements by Dr. Yoschenko, however, shows a gradual decrease with the radiological half-life (Personal communication, 24 Mar 2020, Vasyl Yoschenko). The discrepancies between the GIS data and the data collected by the IER should be further explored.

The majority of the ¹³⁷Cs inventory in Yamakiya is from soil (80.54%) and trees (18.52%). The ¹³⁷Cs contribution by trees in summer of 2019 was found to be much higher than the one found in the winter 2014 to 2016 studies possibly due to differences in seasons. Results still show a continuing declining trend of litter contribution to ¹³⁷Cs inventory at Yamakiya. Understory plants make up a negligible contribution to both the aboveground biomass and ¹³⁷Cs activity inventory at Yamakiya. The ¹³⁷Cs activity concentrations of different understory plant compartments show that the more metabolically active compartments have higher ¹³⁷Cs activity concentrations. Leaves have a higher ¹³⁷Cs concentration then the woody portions of plants. The non-woody juvenile saplings of the same species of plant were shown to have an activity concentration in between that of the leaf and woody compartments of their more mature counterparts.
The per plant species dredge best fit linear model was found to be able to predict the ¹³⁷Cs soil to plant transfer factor and actual plant activity concentration with an r-value of 0.98 and 0.89, respectively. The per plant species ¹³⁷Cs linear model, however, could also be a predictor for soil to plant transfer factors (r = .66). If time constraints exist, the preparation and analysis for only soil total ¹³⁷Cs would be sufficient to yield a reasonable estimate of plant activity concentration. The use of an overall linear model of all plant species to predict ¹³⁷Cs plant activity is not advisable due to the large variance when converting from natural log transfer factors, however, it can still be used to illustrate general soil-to-plant transfer factor trends for a desired area.

REFERENCES

- Yoschenko V, Takase T, Konoplev A, Nanba K, Onda Y, Kivva S, Zheleznyak M, Sato N, Keitoku K. ¹³⁷Cs distribution and fluxes in the typical Cryptomeria japonica forest at the late stage after the accident at Fukushima Dai-Ichi Nuclear Power Plant. Journal of Environmental Radioactivity. 166, 45–55; 2017.
- Workman D. ¹³⁷Cs Soil to Understory Plant Transfers in Fukushima Forests. Theses and Dissertations Environmental and Radiological Health Sciences; 2018.
- Absalom JP, Young SD, Crout NMJ, Nisbet AF, Woodman RFM, Smolders E, Gillett AG. Predicting Soil to Plant Transfer of ¹³⁷Cs Using Soil Characteristics. Environmental Science and Technology, 33 (8), pp 1218–1223; 1999.
- Yoschenko V, Takase T, Hinton T, Nanba K, Onda, Yuichi, Konoplev A, Goto A, Yokoyama A, Keitoku K. Radioactive and Stable Cesium Isotope Distributions and Dynamics in Japanese Cedar Forests. Journal of Environmental Radioactivity, vol. 186, pp. 34–44; 2018.
- Hashimoto S, Ugawa S, Kanko K, Shichi K. The Total Amounts of Radioactively Contaminated Materials in forests in Fukushima, Japan. Scientific Reports, 2, 416; 2012.
- Japan Map Center, Geospatial Information Authority of Japan. Radiation Dose Distribution Map [online] . 2019. Available at **ramap.jmc.or.jp/map.** Accessed 10 September 2019.
- NARO, National Agricultural and Food Research Organization. Soil Map [online]. Available at //soil-inventory.dc.affrc.go.jp/figure.html. Accessed 10 September 2019.
- Chaisan K, Smith JT, Bossew P, Kircherner G, Laptev GV. "Worldwide Isotope Ratios of the Fukushima Release and Early-Phase External Dose Reconstruction." Scientific Reports 3.1: 2520; 2013.
- Earthquake Hazards Program, United States Geological Survey. M 9.1 2011 Great Tohoku Earthquake, Japan. 2016. Available at //earthquake.usgs.gov/earthquakes/eventpage/official20110311054624120_30#exec utive. Accessed 10 September 2019.
- Hirose K. 2011 Fukushima Dai-Ichi Nuclear Power Plant Accident: Summary of Regional Radioactive Deposition Monitoring Results. Journal of Environmental Radioactivity 111: 13–17; 2012.

- Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima Nuclear Accidents: A Review of the Environmental Impacts. Science of the Total Environment 470-471: 800–817; 2014.
- Sanderson DCW, Cresswell, AJ, Tamura K, Iwasaka T, Matsuzaki K. Evaluating Remediation of Radionuclide Contaminated Forest Near Iwaki, Japan, Using Radiometric Methods. Journal of Environmental Radioactivity 162-163: 118–128; 2016.
- Higaki T, Higaki S, Hirota M, Hasezawa S. ¹³⁷Cs Distribution in Bamboo Shoots after the Fukushima Nuclear Accident. PLoS One 9.5: e97659; 2014.
- Seventh Edition: Nuclides and Isotopes, Chart of Nuclides. Knolls Atomic Power Laboratory (KAPL); 2019.
- The Fukushima Daiichi Nuclear Accident: Final Report of the AESJ Investigation Committee. Tokyo: Springer; 2014.
- Sanchez AL, Wright SM, Smolders E, Naylor C, Stevens PA, Kennedy VH, Dodd BA, Singleton DL, Barnett CL. High Plant Uptake of Radiocesium from Organic Soils Due to Cs Mobility and Low Soil K Content. Environmental Science & Technology, ES & T 33.16: 2752–2757; 1999.
- Tarsitano D, Young SD, Crout, NMJ. Evaluating and Reducing a Model of Radiocaesium Soil-Plant Uptake. Journal of Environmental Radioactivity 102.3: 262–269; 2011
- Burger A, and Lichtscheidl I. Stable and Radioactive Cesium: A Review About Distribution in the Environment, Uptake and Translocation in Plants, Plant Reactions and Plants' Potential for Bioremediation. Science of the Total Environment 618: 1459–1485; 2018
- The Fukushima Daiichi Accident: Technical Volume 4/5 Radiological Consequences. International Atomic Energy Agency; 2016.
- Sato S. Characteristics of the 2011 Tohoku Tsunami and Introduction of Two Level Tsunamis for Tsunami Disaster Mitigation. Proceedings of the Japan Academy. Series B, Physical and biological sciences 91.6: 262–272; 2015.
- Matthews JP, Ostrovsky L, Yoshikawa Y, Komori S, Tamura H. Dynamics and Early Post-Tsunami Evolution of Floating Marine Debris Near Fukushima Daiichi. Nature Geoscience 10.8: 598–603; 2017.
- Hayes JM, Johnson TE, Anderson D, Nanba K. Effective Half-Life of ¹³⁴Cs and ¹³⁷Cs in Fukushima Prefecture When Compared to Theoretical Decay Models. Health Physics 118.1: 60–64; 2019.

- Aoyama M, Kajino M, Tanaka T, Sekiyama TT, Tsumune D, Tsubono T, Hamajima Y, Inomata Y, Gamo T. ¹³⁴Cs and ¹³⁷Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of ¹³⁴Cs and ¹³⁷Cs inventories in the North Pacific Ocean. Journal of Oceanography; 2015.
- Kondo M, Maeda H, Goto A, Nakano H Kiho N, Makino T, Sato M, Fujimura S, Eguchi T, Hachinohe M, Hamamatsu S, Ihara H, Takai T, Arai-Sanoh Y, Kimura T. Exchangeable Cs/K ratio in soil as an index to estimate accumulation of radioactive and stable Cs in rice plant. Soil Science and Plant Nutrition 61, 133-143; 2015.
- Nuclear Regulation Authority. Results of the Airborne Monitoring in the Evacuation directed zones [online]. 2013. Available at http://radioactivity.nsr.go.jp/en/contents/7000/6936/24/270_0513.pdf. Accessed 29 November 2019.
- Wakeel A. Potassium–sodium Interactions in Soil and Plant Under Saline-sodic Conditions." Journal of Plant Nutrition and Soil Science 176.3: 344–354; 2013.
- Nobori T, Kobayashi NI, Tanoi K, Nakanishi TM. "Effects of Potassium in Reducing the Radiocesium Translocation to Grain in Rice." Soil Science and Plant Nutrition 60.6: 772– 781; 2014.
- Sanchez AL, Wright SM, Smolders E, Naylor C, Stevens PA, Kennedy VH, Dodd BA, Singleton DL, Barnett CL. High Plant Uptake of Radiocesium from Organic Soils Due to Cs Mobility and Low Soil K Content. Environmental Science & Technology 33.16: 2752–2757; 1999.
- Rigol A, Vidal M, Rauret G. An Overview of the Effect of Organic Matter on Soil–radiocaesium Interaction: Implications in Root Uptake. Journal of Environmental Radioactivity 58.2-3: 191–216; 2002.
- Dumat C, Staunton S. Reduced Adsorption of Caesium on Clay Minerals Caused by Various Humic Substances. Journal of Environmental Radioactivity 46.2: 187–200; 1999
- Cornell RM. Adsorption of cesium on minerals: a review. Journal of Radioanalytical and Nuclear Chemistry, 171, 483-500; 1993
- Official Series Description LOWLAND Series. LOWLAND SERIES [online]. Available at https://soilseries.sc.egov.usda.gov/OSD_Docs/L/LOWLAND.html. Accessed 6 December 2019.
- Kato H, Onda Y. Initial Cs-137 Deposition Data Within Fukushima Prefecture Area Following the Fukushima Daiichi Nuclear Power Plant Accident. CRiED, University of Tsukuba, doi: 10.34355/CRiED.U.TSUKUBA.0002; 2019.

- Zhu YG, Smolders E. Plant Uptake of Radiocaesium: A Review of Mechanisms, Regulation and Application. Journal of Experimental Botany 51.351: 1635–1645; 2000.
- Yoshihara T, Hashida S, Abe K, Ajito H. A Time Dependent Behavior of Radiocesium from the Fukushima-Fallout in Litterfalls of Japanese Flowering Cherry Trees. Journal of Environmental Radioactivity 127: 34–39; 2014.
- Tripler CE, Kaushal SS, Likens GE, Walter MT. Patterns in Potassium Dynamics in Forest Ecosystems. Ecology Letters 9.4: 451–466; 2006.
- Woodyplants Database, Cornell University. Species: Cryptomeria Japonica. 2020. Available at http://woodyplants.cals.cornell.edu/plant/79. Accessed 20 January 2020.
- Absalom JP, Young SD, Crout NMJ, Sanchez A, Wright SM, Smolders E, Nisbet AF, Gillett AG. Predicting the Transfer of Radiocaesium from Organic Soils to Plants Using Soil Characteristics. Journal of Environmental Radioactivity 52.1: 31–43; 2001.
- Chaisan K, Smith JT, Bossew P, Kirchner G, Laptev GV. "Worldwide Isotope Ratios of the Fukushima Release and Early-Phase External Dose Reconstruction." Scientific Reports 3.1 (2013): 2520.

Appendix

Results Tables

Appendix A Plant and Soil Total Radiocesium Count

	Yamaki	iya Sugi		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/6/2019	S-L1	Litter	Litter	409.25	18.14	5441.8	65.616	4.43249847	1.2057775	3600	12.482125	165.9749	150.19	30.5
6/6/2019	S-A5	0-5 cm	Core soil	3949.3	76.638	50217	274.55	1.94054643	0.5467272	1903	80.605213	1024.92897	21.2	20.41
6/6/2019	S-A10	5-10 cm	Core soil	96.412	9.7305	1331.3	35.965	10.0926233	2.70149478	1897	4.98257216	68.801584	51.68	51.68
6/6/2019	S-A15	10-15 cm	Core soil	15.239	2.7469	194.86	9.6245	18.025461	4.93918711	3270	0.88096659	11.2648566	59.31	57.81
6/6/2019	S-A30	15-30 cm	Core soil	5.8221	1.2182	65.8	3.272	20.9237217	4.97264438	8593	0.38751898	4.379648	137.5	66.56
6/6/2019	S-GB1	Glory- Bower	Plant	647.32	58.833	8322.7	200.28	9.0887042	2.40643061	3600	1.5665144	20.140934	2.82	2.42
6/6/2019	S-F1	Fern	Plant	1560.3	64.53	19089	217.07	4.13574313	1.13714705	3600	8.11356	99.2628	5.98	5.2
6/6/2019	S-W1	Wisteria	Plant	677.94	37.57	8139.7	122.85	5.54178836	1.50926938	3600	4.5354186	54.454593	7.2	6.69
6/6/2019	S-L2	Litter	Litter	642.52	23.259	8155.1	82.348	3.61996514	1.00977303	3600	18.31182	232.42035	91.01	28.5
6/6/2019	S-B5	0-5 cm	Core soil	1727.9	49.494	23068	179.31	2.86440188	0.77731056	1906	38.048358	507.95736	22.78	22.02
6/6/2019	S-B10	5-10 cm	Core soil	54.929	5.2646	670.08	18.179	9.58437255	2.71295965	3600	2.52563542	30.8102784	45.98	45.98
6/6/2019	S-B15	10-15 cm	Core soil	11.948	2.0811	146.16	7.2338	17.4179779	4.94923372	4543	0.6655036	8.141112	55.92	55.7
6/6/2019	S-B30	15-30 cm	Core soil	ND	ND	76.858	3.8322	-	4.98607822	8374	0	5.50149564	145.32	71.58
6/6/2019	S-GB2	Glory- Bower	Plant	205.95	15.923	2399.3	53.002	7.73148823	2.20906098	3600	2.2469145	26.176363	12.31	10.91
6/6/2019	S-F2	Fern	Plant	1314.5	46.38	17390	168.58	3.52833777	0.96940771	3600	16.32609	215.9838	13.35	12.42
6/6/2019	S-W2	Wisteria	Plant	467.18	40.878	6052.4	141.9	8.74994649	2.34452449	3600	1.6398018	21.243924	4.2	3.51
6/6/2019	S-L3	Litter	Litter	883.85	26.509	10967	93.976	2.99926458	0.85689797	3600	26.144283	324.40386	113.16	29.58
6/6/2019	S-C5	0-5 cm	Core soil	1628.3	43.099	20495	151.88	2.64687097	0.74105879	1907	44.794533	563.81745	28.98	27.51
6/6/2019	S-C10	5-10 cm	Core soil	118.89	10.567	2015.4	42.413	8.88804778	2.10444577	1900	5.7209868	96.981048	49.74	48.12
6/6/2019	S-C15	10-15 cm	Core soil	11.937	2.0931	139.89	6.9501	17.5345564	4.96826078	4602	0.76910091	9.0131127	68.18	64.43
6/6/2019	S-C30	15-30 cm	Core soil	ND	ND	46.711	2.5794	-	5.52203978	10000	0	3.6574713	144.28	78.3
6/6/2019	S-GB3	Glory- Bower	Plant	651.12	64.888	7782.7	209.27	9.96559774	2.68891259	3600	1.2631728	15.098438	2.3	1.94
6/6/2019	S-F3	Fern	Plant	1078	35.751	12952	121.9	3.31641929	0.94116739	3600	15.67412	188.32208	17.86	14.54
6/6/2019	S-W3	Wisteria	Plant	304.69	15.845	3888.5	54.316	5.20036759	1.39683683	3600	6.7245083	85.819195	22.75	22.07
6/6/2019	S-M1	Myoga	Plant	ND	ND	1583.2	108.1	-	6.82794341	10000	0	0.981584	0.72	0.62

Appendix A1.1 Yamakiya Site A-C Total Radiocesium Count

	Yamak	kiya Sugi		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	in U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/6/2019	S-L4	Litter	Litter	293.99	15.89	3795	56.326	5.40494575	1.48421607	3600	8.466912	109.296	99.11	28.8
			Core											
6/6/2019	S-D5	0-5 cm	soil	4478.8	116.21	58412	410.78	2.59466821	0.70324591	1908	38.875984	507.01616	9.24	8.68
			Core											
6/6/2019	S-D10	5-10 cm	soil	5533.7	89.077	71432	320.47	1.60971863	0.44863647	1906	117.978484	1522.93024	23.53	21.32
			Core											
6/6/2019	S-D15	10-15 cm	soil	182.76	12.273	2444.8	43.671	6.71536441	1.78628109	1903	8.8675152	118.621696	51.22	48.52
			Core											
6/6/2019	S-D30	15-30 cm	soil	32.174	4.4354	478	18.347	13.7856654	3.83828452	1891	2.44329356	36.29932	140.86	75.94
6/6/2019	S-MY2	Myoga	Plant	2730.9	221.82	35078	734.07	8.12259695	2.09267917	3600	1.993557	25.60694	0.93	0.73
6/6/2019	S-U1	Hydrangea	Plant	254.74	37.824	3144.4	125.56	14.8480804	3.99313064	3600	0.6215656	7.672336	2.79	2.44
6/6/2019	S-L5	Litter	Litter	559.17	22.088	7803.5	81.996	3.95014039	1.05075927	3600	15.5728845	217.327475	97.43	27.85
c/c/2010	0.55	0.5	Core	7002.4	121.12	00470	450.70	4 05240076	0 5406546	4000	74 002576	024 22760	11.10	10.50
6/6/2019	S-E5	0-5 cm	SOIL	7092.1	131.43	88478	459.78	1.85318876	0.5196546	1903	74.892576	934.32768	11.16	10.56
c/c/2010	C F10	F 10 am	Core	225.02	10 115	4245 C	C4 200	5 5500102	1 51 601 741	1004	12 4222012	1 62 012006	20.45	20.10
6/6/2019	S-E10	5-10 cm	SOII	325.82	18.115	4245.6	64.398	5.5598183	1.51681741	1904	12.4332912	162.012096	39.45	38.16
6/6/2010	S_E15	10-15 cm	core	28 274	4 4016	210.85	15 772	15 5676502	4 02127409	2222	1 42670604	16 120621	50.46	50.46
0/0/2013	3-113	10-15 cm	Core	20.274	4.4010	319.85	13.773	15.5070555	4.55157408	2273	1.42070004	10.139031	50.40	50.40
6/6/2019	S-F30	15-30 cm	soil	7 6151	1 5954	106 53	5 2493	20 95048	4 92753215	5822	0 53252394	7 4496429	138 95	69 93
6/6/2019	S-112	Hydrangea	Plant	167.23	30.613	1630	80 97	18 305926	4.96748466	7300	0.267568	2 608	2 04	1.6
6/6/2019	S-16	Litter	Litter	562.61	20 579	6898.9	71 484	3 65777359	1 03616519	3600	18 1272942	222 282558	108 5	32.22
0/0/2015	5 20	Litter	Core	502.01	20.575	0050.5	71.101	3.03777333	1.03010313	5000	10.1272512	222.202350	100.5	JL.LL
6/6/2019	S-E5	0-5 cm	soil	2315.1	52,679	29285	186.64	2,27545246	0.63732286	1904	60.262053	762,28855	27.26	26.03
			Core											
6/6/2019	S-F10	5-10 cm	soil	195.65	12.772	2778.6	48.774	6.52798364	1.75534442	1904	11.136398	158.157912	56.92	56.92
			Core											
6/6/2019	S-F15	10-15 cm	soil	12.47	2.8312	226.68	11.035	22.7040898	4.86809599	2939	0.8049385	14.632194	67.5	64.55
			Core											
6/6/2019	S-F30	15-30 cm	soil	8.6646	1.4652	74.32	3.6801	16.9101863	4.95169537	7707	0.65660339	5.6319696	178.45	75.78
6/6/2019	S-U3	Hydrangea	Plant	358.09	57.161	5389.3	206.39	15.9627468	3.82962537	3600	0.8737396	13.149892	1.49	2.44
6/6/2019	S-ML	Maple	Plant	451.85	28.372	5743	94.725	6.279074 <u></u> 91	1.64939927	3600	3.578652	45.48456	8.28	7.92
6/6/2019	S-MSB	Maple	Plant	177.67	12.531	2072.2	41.808	7.05296336	2.01756587	3600	4.6034297	53.690702	82.68	25.91
6/6/2019	S-MS+B	Maple	Plant	65.326	6.9304	981.57	25.545	10.6089459	2.6024634	3600	2.2733448	34.158636	72.86	34.8
6/6/2019	S-HL	Hazelnut	Plant	350.25	25.746	4580.6	91.738	7.35074946	2.00275073	3600	2.837025	37.10286	8.53	8.1
6/6/2019	S-HSB	Hazelnut	Plant	136.55	11.653	1903	43.354	8.53387038	2.27819233	3600	3.3495715	46.68059	54.27	24.53
6/6/2019	S-HS+B	Hazelnut	Plant	99.381	7.7398	1385.6	28.538	7.78800777	2.05961316	3600	3.69498558	51.516608	56.01	37.18

Appendix A1.2 Yamakiya Site D-F Total Radiocesium Count

	Yamak	iya Sugi		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/6/2019	S-L7	Litter	Litter	543.33	21.69	6723.6	75.008	3.99204903	1.11559284	3600	15.430572	190.95024	84.51	28.4
6/6/2019	S-G5	0-5 cm	Core soil	3515.1	48.804	46365	180.99	1.38841	0.39035911	3600	105.347547	1389.55905	29.97	29.97
6/6/2019	S-G10	5-10 cm	Core soil	98.459	9.333	1580.8	36.365	9.47907251	2.30041751	1899	5.13069849	82.375488	52.11	52.11
6/6/2019	S-G15	10-15 cm	Core soil	39.97	5.683	520.8	20.847	14.2181636	4.00288018	1893	1.9933039	25.972296	49.87	49.87
6/6/2019	S-G30	15-30 cm	Core soil	19.856	3.5906	326.02	14.654	18.083199	4.49481627	1888	1.64566528	27.0205376	153.64	82.88
6/6/2019	S-DGL	Dogwood	Plant	147.29	23.343	1925.8	75.58	15.8483264	3.92460276	3600	0.8866858	11.593316	9.15	6.02
6/6/2019	S-DGB	Dogwood	Plant	51.03	9.9112	582.75	25.995	19.4223006	4.46074646	3600	0.7057449	8.0594325	16.03	13.83
6/6/2019	S-L8	Litter	Litter	523.06	20.852	7117.1	75.762	3.98654074	1.06450661	3600	15.4355006	210.025621	56.21	29.51
6/6/2019	S-H5	0-5 cm	Core soil	3672.4	71.157	46193	250.49	1.93761573	0.54226831	1904	69.22474	870.73805	19.66	18.85
6/6/2019	S-H10	5-10 cm	Core soil	2734	56.44	34113	199.34	2.06437454	0.58435201	1903	66.62758	831.33381	25.83	24.37
6/6/2019	S-H15	10-15 cm	Core soil	607.3	23.741	7469.6	82.318	3.90927054	1.10204027	1907	25.032906	307.896912	41.99	41.22
6/6/2019	S-H30	15-30 cm	Core soil	45.166	5.6536	599.23	21.108	12.5173803	3.52252057	1896	3.23975718	42.9827679	110.47	71.73
		Bamboo												
6/6/2019	S-BG	Grass	Plant	ND	ND	942.35	47.038	-	4.99156364	8400	0	2.563192	2.98	2.72

Appendix A1.3 Yamakiya Site G-H Total Radiocesium Count

	Tsushir	na Sugi		Cs-134 (Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs	in U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/11/2019	TS-L1	Litter	Litter	677.33	34.61	8696	123.79	5.10976924	1.42352806	1905	18.96524	243.488	121.75	28
			Core											
6/11/2019	TS-A5	0-5 cm	soil	7133.5	132.99	92243	485.31	1.86430224	0.52612122	1904	98.228295	1270.18611	13.82	13.77
			Core											
6/11/2019	TS-A10	5-10 cm	soil	1709.8	57.501	21269	203.22	3.36302492	0.9554751	1908	31.272242	389.01001	18.33	18.29
			Core											
6/11/2019	TS-A15	10-15 cm	soil	304.95	15.302	4080.1	54.39	5.01787178	1.33305556	1908	18.699534	250.191732	62.22	61.32
			Core											
6/11/2019	TS-A30	15-30 cm	soil	47.23	4.9405	603.94	17.564	10.4605124	2.90823592	1901	4.8330459	61.8011802	260.45	102.33
6/11/2019	TS-HS+B	Hazelnut	Plant	237.55	13.327	2955.4	46.725	5.61018733	1.58100426	3703	7.858154	97.764632	35.84	33.08
6/11/2019	TS-HSB	Hazelnut	Plant	293.07	13.892	4018.1	51.532	4.74016447	1.2824967	3702	10.7791146	147.785718	42.56	36.78
6/11/2019	TS-HL	Hazelnut	Plant	671.24	42.672	8576.1	152.93	6.35718968	1.78321148	3701	5.067862	64.749555	7.89	7.55
		Bamboo												
6/11/2019	TS-BG1	Grass	Plant	616.06	56.254	7710.9	196.85	9.13125345	2.55287969	3693	1.6448802	20.588103	2.71	2.67
6/11/2019	TS-UB1	Unknown	Plant	764.76	32.072	8814.8	106.52	4.19373398	1.2084222	3697	9.1694724	105.689452	12.55	11.99
6/11/2019	TS-W1	Wisteria	Plant	1268	90.402	14942	297.79	7.12949527	1.99297283	3706	2.67548	31.52762	2.13	2.11
6/11/2019	TS-L2	Litter	Litter	1828.1	53.141	23254	191.51	2.90689787	0.82355724	1906	53.56333	681.3422	102.5	29.3
			Core											
6/11/2019	TS-B5	0-5 cm	soil	11801	202.14	152990	736.74	1.71290569	0.48156089	1905	107.97915	1399.8585	9.24	9.15
			Core											
6/11/2019	TS-B10	5-10 cm	soil	1251.6	37.399	16881	137.26	2.98809524	0.81310349	1906	40.814676	550.48941	33.11	32.61
			Core											
6/11/2019	TS-B15	10-15 cm	soil	292.05	14.543	3932.3	52.689	4.97962678	1.33990286	1906	15.6918465	211.282479	54.12	53.73
			Core											
6/11/2019	TS-B30	15-30 cm	soil	64.072	5.9408	945.61	22.936	9.27206892	2.42552426	1902	6.214984	91.72417	218.31	97
		Bamboo												
6/11/2019	TS-BG2	Grass	Plant	297.04	32.907	3953.5	111.41	11.078306	2.81800936	3699	1.2297456	16.36749	4.83	4.14
C/11/2015	TO 110	Japanese	.	101.01	10.10	24.42.6	64.50		2 000011777	2000		46 450785		7.50
6/11/2019	IS-UC1	Knotweed	Plant	191.91	18.19	2148.9	61.59	9.47840133	2.86611755	3686	1.4431632	16.159728	7.87	7.52
6/11/2019	TS-W2	Wisteria	Plant	404.24	17.666	5354.5	63.915	4.37017613	1.19366888	3704	12.1959208	161.545265	84.05	30.17

Appendix A2.1 Tsushima Sugi Site A-B Total Radiocesium Count

	Tsushin	na Sugi		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/11/2019	TS-L3	Litter	Litter	2012.2	58.111	26305	213.94	2.88793361	0.81330546	1907	53.12208	694.452	115.42	26.4
			Core											
6/11/2019	TS-C5	0-5 cm	soil	12132	188.52	155240	683.55	1.55390702	0.44031822	1906	131.0256	1676.592	10.95	10.8
			Core											
6/11/2019	TS-C10	5-10 cm	soil	1581.1	50.423	20824	185.41	3.18910885	0.89036688	1907	34.120138	449.38192	22.64	21.58
			Core											
6/11/2019	TS-C15	10-15 cm	soil	251.42	15.338	3862.5	58.035	6.10054888	1.50252427	1906	12.3547788	189.80325	51.38	49.14
			Core											
6/11/2019	TS-C30	15-30 cm	soil	71.105	6.1255	969.88	23.068	8.6147247	2.37843857	1904	7.70991515	105.164088	188.67	108.43
		Bamboo	- · ·											
6/11/2019	TS-BG3	Grass	Plant	315.15	19.821	4103.4	69.167	6.28938601	1.68560218	3701	4.8627645	63.315462	18.31	15.43
6/11/2019	IS-UBB2	Unknown	Plant	460.6	17.795	5828.3	62.761	3.86343899	1.07683201	3704	16.4111/8	207.662329	39.92	35.63
6/11/2019	TS-UBL2	Unknown	Plant	1209.4	48.199	16010	173.88	3.98536464	1.08607121	3702	12.964768	171.6272	11.26	10.72
6/11/2019	TS-W3	Wisteria	Plant	419.12	42.995	4760.1	138.28	10.2583985	2.90498099	3700	1.3369928	15.184719	3.29	3.19
c/11/2010	TS-		.	750.40		0005.0	00.047	0 50705440	0.07000050			100 000050	40.0	10.01
6/11/2019	ML+SB	Maple	Plant	759.43	27.248	9835.8	96.217	3.58/95412	0.97823258	3700	14.3836042	186.290052	19.3	18.94
6/11/2019	TS-MB2	Maple	Plant	239.48	14.66	3308.6	53.244	6.12159679	1.60926071	3702	5.7331512	79.207884	24.93	23.94
6/11/2019	15-L4	Litter	Litter	672.55	34.866	8870.7	125.99	5.18414988	1.42029378	1904	19.4165185	256.097109	170.21	28.87
C/11/2010		0.5	Core	4700.0	75 257	61204	272 74	1 5762005	0.44400756	1007	121 522550	1000 47204	20.20	27.54
6/11/2019	12-02	0-5 cm	SOII	4780.9	/5.35/	61304	272.74	1.5762095	0.44489756	1907	131.522559	1686.47304	28.38	27.51
6/11/2010	TS-D10	5-10 cm	core	040.02	28 225	12060	100 55	2 07/09022	0 92212610	1007	41 7669102	521 15660	11.96	44.01
0/11/2019	13-010	5-10 cm	Coro	949.03	28.225	12009	100.55	2.97408933	0.83312019	1907	41.7008103	551.15009	44.00	44.01
6/11/2019	TS-D15	10-15 cm	soil	65 63	6 7701	896 5	25 833	10 3155569	2 88153032	1001	5 200/3/3	72 266865	81 38	80.61
0/11/2015	13-013	10-15 cm	Core	05.05	0.7701	850.5	23.033	10.3133303	2.00155552	1301	3.2304343	72.200805	01.50	50.01
6/11/2019	TS-D30	15-30 cm	soil	6.0323	1.3587	86.297	4.2611	22.5237472	4.9377151	5268	0.67839246	9.70496062	291.01	112.46
6/11/2019	TS-M1	Maple	Plant	407.15	28.549	5486.5	104	7.01191207	1.89556183	3695	2.679047	36.10117	7.25	6.58
6/11/2019	TS-L5	Litter	Litter	351.36	23.703	4241.6	85.023	6.7460724	2.00450302	1901	10.1859264	122.963984	101.52	28.99
			Core											
6/11/2019	TS-E5	0-5 cm	soil	3910.5	58.354	49501	210.63	1.49223884	0.42550656	1906	168.659865	2134.97813	44.39	43.13
			Core											
6/11/2019	TS-E10	5-10 cm	soil	129.68	8.6502	1683.1	32.325	6.67041949	1.92056325	1905	9.6144752	124.785034	74.17	74.14
			Core											
6/11/2019	TS-E15	10-15 cm	soil	11.717	2.0761	121.46	6.0048	17.7186993	4.94384983	4509	0.92482281	9.5868378	79.07	78.93
			Core											
6/11/2019	TS-E30	15-30 cm	soil	3.9893	0.81465	52.486	2.6196	20.4208758	4.99104523	10000	0.33155072	4.36211146	190.68	83.11
6/11/2019	TS-F1	Fern	Plant	407.66	71.383	3758.5	186.26	17.5104254	4.95570041	5762	0.3546642	3.269895	1.15	0.87

Appendix A2.2 Tsushima Sugi Site C-E Total Radiocesium Count

	Tsushir	na Pine		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	in U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/11/2019	TP-L1	Litter	Litter	4337.4	82.899	56454	305.41	1.9112602	0.54098912	1905	120.623094	1569.98574	52.31	27.81
6/11/2019	TP-A5	0-5 cm	Core soil	7073.7	107.52	92188	390.93	1.51999661	0.42405736	1900	141.474	1843.76	20.24	20
6/11/2019	TP-A10	5-10 cm	Core soil	1584.2	50.401	19736	174.51	3.18147961	0.88422173	1904	26.266036	327.22288	17.1	16.58
6/11/2019	TP-A15	10-15 cm	Core soil	142.85	12.105	1793.4	44.039	8.4739237	2.45561503	1898	5.0526045	63.432558	35.84	35.37
6/11/2019	TP-A30	15-30 cm	Core soil	36.094	5.8065	400.83	19.235	16.0871613	4.79879251	1887	2.23891082	24.8634849	89.87	62.03
6/11/2019	TP-BG1	Bamboo Grass	Plant	220.2	31.518	2753	101.47	14.3133515	3.68579731	3678	0.805932	10.07598	3.86	3.66
6/11/2019	TP-H1	Hazelnut	Plant	799.51	46.033	10247	160.2	5.75765156	1.56338441	3697	4.1414618	53.07946	5.23	5.18
6/11/2019	TP-M1	Maple	Plant	251.04	19.989	3203.6	71.087	7.9624761	2.21897241	3694	2.0685696	26.397664	8.88	8.24
6/11/2019	TP-W1	Wisteria	Plant	506.95	33.505	6237	113.74	6.60913305	1.82363316	3696	3.7869165	46.59039	7.83	7.47
6/11/2019	TP-L2	Litter	Litter	2241.3	58.91	28257	213.11	2.62838531	0.7541848	1903	68.494128	863.53392	87	30.56
6/11/2019	TP-B5	0-5 cm	Core soil	8047.1	116.71	104460	427.3	1.45033615	0.4090561	1903	163.838956	2126.8056	20.64	20.36
6/11/2019	TP-B10	5-10 cm	Core soil	810.68	29.108	10607	104.39	3.59056594	0.9841614	1907	35.2321528	460.98022	44.51	43.46
6/11/2019	TP-B15	10-15 cm	Core soil	115.77	10.179	1455.6	37.103	8.79243327	2.54898324	1903	6.2481069	78.558732	53.98	53.97
6/11/2019	TP-B30	15-30 cm	Core soil	12.253	2.484	212.34	10.455	20.2725863	4.92370726	3437	0.78210899	13.5536622	146.54	63.83
6/11/2019	TP-BG2	Bamboo Grass	Plant	205.12	21.691	2500.7	76.636	10.5747855	3.06458192	3687	1.3907136	16.954746	7.26	6.78
6/11/2019	TP-H2	Hazelnut	Plant	485.83	22.323	6508.2	79.735	4.59481712	1.22514674	3702	10.153847	136.02138	21.07	20.9
6/11/2019	TP-M2	Maple	Plant	267.66	15.854	3562.9	58.192	5.92318613	1.63327626	3700	5.7734262	76.851753	22.83	21.57
6/11/2019	TP-W2	Wisteria	Plant	-	-	-	-	-	-	-	0	0	-	-
6/11/2019	TP-UB1	Unknown	Plant	3453.2	116.51	41447	390.95	3.37397197	0.94325283	3660	11.533688	138.43298	3.55	3.34
6/11/2019	TP-L3	Litter	Litter	1378.5	48.424	18323	176.08	3.51280377	0.96097801	1906	39.631875	526.78625	86.63	28.75
6/11/2019	TP-C5	0-5 cm	Core soil	7718.9	128.42	97070	453.74	1.66370856	0.46743587	1905	91.932099	1156.1037	11.91	11.91
6/11/2019	TP-C10	5-10 cm	Core soil	1921.8	44.126	25711	163.53	2.29607659	0.63603127	1908	67.243782	899.62789	34.99	34.99
6/11/2019	TP-C15	10-15 cm	Core soil	111.86	11.056	1500.1	40.509	9.8837833	2.70041997	1897	5.0829184	68.164544	45.54	45.44
6/11/2019	TP-C30	15-30 cm	Core soil	12.803	2.5529	175.18	8.642	19.9398578	4.93321155	4270	0.74654293	10.2147458	136.55	58.31
6/11/2019	TP-BG3	Bamboo Grass	Plant	306.12	32.185	3647.3	107.03	10.5138508	2.93449949	3695	1.4724372	17.543513	5.15	4.81
6/11/2019	TP-M3	Maple	Plant	223.11	20.606	2888.1	69.92	9.23580297	2.4209688	3701	1.6911738	21.891798	7.9	7.58
6/11/2019	TP-W3	Wisteria	Plant	405.56	45.009	6491	168.49	11.097988	2.59574796	3700	1.1842352	18.95372	3.1	2.92
6/11/2019	TP-U1	Hydrangea	Plant	ND	ND	8515.5	423.6	-	4.97445834	7288	0	2.469495	0.42	0.29
6/11/2019	TP-UB2	Unknown	Plant	901.84	40.95	11688	139.24	4.54071676	1.19130732	3660	6.718708	87.0756	7.85	7.45

Appendix A3 Tsushima Pine Total Radiocesium Count

	Tomi	oka		Cs-134	(Bq/kg)	Cs-137	Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/12/2019	TO-L1	Litter	Litter	788.41	34.962	10582	126.48	4.43449474	1.1952372	1907	25.8835003	347.40706	56.85	32.83
6/12/2019	TO-A5	0-5 cm	Core soil	1162.1	27.468	15711	101.82	2.36365201	0.64808096	1902	66.541846	899.61186	57.9	57.26
6/12/2019	TO-A10	5-10 cm	Core soil	287.93	13.676	3962.6	50.028	4.74976557	1.26250442	1908	22.804056	313.83792	79.35	79.2
6/12/2019	TO-A15	10-15 cm	Core soil	20.257	3.3933	351.87	14.684	16.7512465	4.17313212	1892	1.73825317	30.1939647	87.44	85.81
6/12/2019	TO-A30	15-30 cm	Core soil	9.4487	1.6681	111.66	5.5172	17.6542805	4.94107111	3881	1.08461627	12.8174514	221.08	114.79
6/12/2019	TO-PO1	Japanese Lacquer	Plant	93.021	12.709	1151.1	41.192	13.6625063	3.57849014	3683	1.03532373	12.811743	11.65	11.13
6/12/2019	TO-F1	Fern	Plant	336.34	23.421	4295.9	83.201	6.96348933	1.93675365	3694	3.2389542	41.369517	10.14	9.63
6/12/2019	TO-L2	Litter	Litter	775.81	34.157	10158	123.55	4.40275325	1.21628273	1907	25.4776004	333.58872	125.94	32.84
6/12/2019	TO-B5	0-5 cm	Core soil	1749.3	35.802	23869	132.76	2.04664723	0.55620261	1905	88.33965	1205.3845	50.67	50.5
6/12/2019	TO-B10	5-10 cm	Core soil	122.33	8.2221	1685.4	31.795	6.72124581	1.88649579	1902	9.7142253	133.837614	81.05	79.41
6/12/2019	TO-B15	10-15 cm	Core soil	20.01	3.6248	242.98	11.654	18.1149425	4.79627953	1890	1.8461226	22.4173348	92.38	92.26
6/12/2019	ТО-В30	15-30 cm	Core soil	ND	ND	30.732	1.8256	-	5.94038787	10000	0	3.72502572	272.96	121.21
6/12/2019	TO-PO2	Japanese Lacquer	Plant	231.96	20.307	2756.4	71.781	8.75452664	2.6041576	3687	1.9971756	23.732604	8.95	8.61
6/12/2019	TO-F2	Fern	Plant	259.69	26.12	3045.6	89.244	10.0581463	2.93026005	3686	1.8723649	21.958776	7.77	7.21
6/12/2019	TO-L3	Litter	Litter	612.55	31.416	7349.2	108.84	5.12872419	1.48097752	1906	18.7869085	225.399964	85.71	30.67
6/12/2019	TO-C5	0-5 cm	Core soil	618.59	21.434	8317	77.65	3.4649768	0.93362991	1902	36.8865217	495.94271	59.63	59.63
6/12/2019	TO-C10	5-10 cm	Core soil	41.064	4.9186	604.62	19.669	11.9778882	3.25311766	1897	3.55449984	52.3359072	86.56	86.56
6/12/2019	TO-C15	10-15 cm	Core soil	13.938	2.9259	229.33	11.157	20.9922514	4.86504164	2051	1.31964984	21.7129644	94.74	94.68
6/12/2019	TO-C30	15-30 cm	Core soil	ND	ND	68.28	3.3923	-	4.9682191	6489	0	7.2998148	255.93	106.91
6/12/2019	TO-PO3	Japanese Lacquer	Plant	127.24	12.555	1659.1	44.317	9.86718013	2.67114701	3692	2.0078472	26.180598	16.04	15.78
6/12/2019	TO-F3	Fern	Plant	175.44	21.14	2500.4	76.628	12.0497036	3.06462966	3685	1.3965024	19.903184	8.36	7.96

Appendix A4 Tomioka Total Radiocesium Count

	Oku	ma		Cs-134	(Bq/kg)	Cs-137 (Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/13/2019	0-L1	Litter	Litter	369.37	65.161	5599.7	80.464	17.6411187	1.43693412	3704	7.3837063	111.938003	187.01	19.99
6/13/2019	O-A5	0-5 cm	Core soil	3343.3	40.45	45211	151.49	1.20988245	0.33507332	1898	356.228615	4817.23205	118.55	106.55
6/13/2019	O-A10	5-10 cm	Core soil	487.14	15.788	6582.2	57.905	3.24095742	0.87972107	1904	48.6311862	657.101026	102.15	99.83
6/13/2019	O-A15	10-15 cm	Core soil	41.702	5.6032	689.71	20.16	13.436286	2.92296762	1898	3.87286474	64.0533677	107.28	92.87
6/13/2019	O-A30	15-30 cm	Core soil	6.373	1.2098	90.925	4.5201	18.9832104	4.97124003	5050	0.63583421	9.07158725	326.7	99.77
6/13/2019	O-BG1	Bamboo Grass	Plant	88.555	17.622	1142.2	48.539	19.8994975	4.24960602	3673	0.6039451	7.789804	7.11	6.82
6/13/2019	0-L2	Litter	Litter	2616.2	55.345	35562	207.79	2.11547282	0.58430347	3704	48.92294	665.0094	29.64	18.7
6/13/2019	O-B5	0-5 cm	Core soil	12689	84.129	168030	311.31	0.66300733	0.18527049	1882	917.92226	12155.2902	89.25	72.34
6/13/2019	O-B10	5-10 cm	Core soil	1156.5	24.357	15095	88.776	2.10609598	0.58811527	1903	99.11205	1293.6415	94.48	85.7
6/13/2019	O-B15	10-15 cm	Core soil	115.75	7.7491	1585.9	28.309	6.69468683	1.78504319	1903	11.8747925	162.697481	105.86	102.59
6/13/2019	O-B30	15-30 cm	Core soil	215.95	10.841	3196.4	41.297	5.02014355	1.29198473	1903	23.2815695	344.603884	153.25	107.81
6/13/2019	O-BG2	Bamboo Grass	Plant	247.61	19.356	3201.1	70.275	7.81713178	2.1953391	3696	2.4810522	32.075022	10.35	10.02
6/13/2019	0-L3	Litter	Litter	1524.2	39.31	21350	148.72	2.57905787	0.6965808	3703	33.440948	468.419	201.83	21.94
6/13/2019	O-C5	0-5 cm	Core soil	13130	92.294	173110	340.82	0.7029246	0.1968806	1889	743.2893	9799.7571	58.09	56.61
6/13/2019	O-C10	5-10 cm	Core soil	1887.5	35.197	25625	132.87	1.86474172	0.51851707	1904	133.937	1818.35	75.74	70.96
6/13/2019	0-C15	10-15 cm	Core soil	75.379	6.4164	1019.8	24.085	8.51218509	2.3617376	1902	6.77129557	91.608634	97.52	89.83
6/13/2019	O-C30	15-30 cm	Core soil	10.257	1.8033	127.74	6.35	17.5811641	4.97103491	3104	1.21945473	15.1870086	215.08	118.89
6/13/2019	O-BG3	Bamboo Grass	Plant	204.37	18.627	2076.8	62.171	9.11435142	2.99359592	3685	2.1417976	21.764864	10.95	10.48

Appendix A5 Okuma Total Radiocesium Count

	Yoko	muki		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	in U8 (Bq)	D.W. (g)	Weight (g)
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137		in U8
6/19/2019	C-M	Moss	Plant	45.307	2.8886	565.97	8.5557	6.37561525	1.5116879	82871	0.20931834	2.6147814	5.09	4.62
6/19/2019	C-A5	0-5 cm	Core soil	33.831	2.1702	492.26	6.8441	6.41482664	1.3903425	20000	1.01391507	14.7530322	30.82	29.97
6/19/2019	C-A10	5-10 cm	Core soil	ND	ND	23.824	1.3022	-	5.46591672	30000	0	0.8826792	38.02	37.05
6/19/2019	C-A15	10-15 cm	Core soil	ND	ND	9.6205	0.60402	-	6.27846786	70000	0	0.36817654	38.78	38.27
6/19/2019	C-A30	15-30 cm	Core soil	ND	ND	4.2057	0.13149	-	3.12647122	362483	0	0.32632026	151.22	77.59
6/19/2019	C-F1	Fern	Plant	37.107	5.8104	396.22	13.118	15.6585011	3.31078694	20628	0.18998784	2.0286464	5.36	5.12
6/19/2019	C-M1	Maple	Plant	7.9765	1.8538	59.674	2.1389	23.2407698	3.58430807	86489	0.05814869	0.43502346	7.58	7.29
6/19/2019	C-BG1	Bamboo Grass	Plant	ND	ND	69.153	2.998	-	4.33531445	86748	0	0.48337947	7.42	6.99
6/19/2019	C-L1	Litter	Litter	11.515	2.6063	164.23	7.0354	22.6339557	4.28387018	10000	0.3551226	5.0648532	82.15	30.84
6/19/2019	C-B5	0-5 cm	Core soil	135.09	8.4801	1556.8	24.671	6.27737064	1.58472508	20000	0.8091891	9.325232	6.28	5.99
6/19/2019	C-B10	5-10 cm	Core soil	174.96	10.042	2233.8	31.738	5.73959762	1.42080759	14660	1.22472	15.6366	7.82	7
6/19/2019	C-B15	10-15 cm	Core soil	70.648	1.6923	997.33	5.7359	2.3953969	0.57512559	100000	1.18971232	16.7950372	18.56	16.84
6/19/2019	C-B30	15-30 cm	Core soil	8.5627	0.51976	143.84	1.6498	6.070048	1.14696885	86149	0.60170093	10.1076368	124.82	70.27
6/19/2019	C-F2	Fern	Plant	21.856	3.6515	311.71	6.3808	16.7070827	2.04703089	65901	0.1158368	1.652063	5.68	5.3
6/19/2019	C-M2	Maple	Plant	10.772	1.6162	90.275	2.853	15.0037133	3.1603434	100000	0.06807904	0.570538	6.61	6.32
6/19/2019	C-U1	Hydrangea	Plant	ND	ND	31.556	4.9172	-	15.5824566	610542	0	0.0520674	1.81	1.65
6/19/2019	C-BG2	Bamboo Grass	Plant	16.974	2.3605	211.5	5.6987	13.906563	2.6944208	100000	0.07112106	0.886185	4.59	4.19
6/19/2019	C-UB1	Unknown	Plant	13.573	2.2588	121.84	3.0008	16.6418625	2.46290217	274792	0.03352531	0.3009448	2.68	2.47
6/19/2019	C-C5	0-5 cm	Core soil	55.217	2.3561	803.92	8.3825	4.26698299	1.04270325	20000	2.35666156	34.3113056	47.6	42.68
6/19/2019	C-C10	5-10 cm	Core soil	3.9844	0.69171	69.836	1.9158	17.3604558	2.74328427	30000	0.21699042	3.80326856	58.07	54.46
6/19/2019	C-C15	10-15 cm	Core soil	2.1708	0.35395	33.414	0.69134	16.3050488	2.06901299	100000	0.15733958	2.42184672	97.31	72.48
6/19/2019	C-C30	15-30 cm	Core soil	7.5548	0.67188	98.424	1.9098	8.89341875	1.9403804	30000	0.70320078	9.16130592	202.14	93.08
6/19/2019	C-F3	Fern	Plant	ND	ND	106.79	7.6229	-	7.13821519	363009	0	0.0608703	0.64	0.57
6/19/2019	C-M3	Maple	Plant	7.5545	1.7306	97.962	4.6034	22.9082004	4.69916907	22154	0.11769911	1.52624796	16.21	15.58
6/19/2019	C-U2	Hydrangea	Plant	ND	ND	40.16	2.03	-	5.05478088	429075	0	0.0855408	2.28	2.13
6/19/2019	C-BG3	Bamboo Grass	Plant	6.4586	1.0586	64.301	2.0937	16.390549	3.25609244	66514	0.09468308	0.94265266	15.3	14.66

Appendix A6 Yokomuki Total Radiocesium Count

Appendix B Soil Exchangeable Radiocesium Count

	Yamal	kiya		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/6/2019	S-A5	0-5 cm	Core soil	8.3384	1.3957	113.7	3.5579	16.7382232	3.12919965	50073	0.07379484	1.006245	2.98	10	8.85
6/6/2019	S-A10	5-10 cm	Core soil	ND	ND	10.517	0.94884	-	9.02196444	69710	-	0.09633572	3	12	9.16
6/6/2019	S-A15	10-15 cm	Core soil	ND	ND	2.1931	0.21689	-	9.88965391	538632	-	0.02024231	3.01	12.5	9.23
6/6/2019	S-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.04	12.5	6.97
6/6/2019	S-B5	0-5 cm	Core soil	9.4075	1.4915	110.65	3.2808	15.8543715	2.96502485	50101	0.0955802	1.124204	3.15	12	10.16
6/6/2019	S-B10	5-10 cm	Core soil	ND	ND	7.8192	0.7756	-	9.91917332	100000	-	0.07092014	2.94	13	9.07
6/6/2019	S-B15	10-15 cm	Core soil	ND	ND	1.3206	0.20621	-	15.614872	772310	-	0.01291547	3.03	12	9.78
6/6/2019	S-B30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.17	12.5	10.26
6/6/2019	S-C5	0-5 cm	Core soil	11.951	1.8687	146.23	4.8015	15.6363484	3.28352595	39559	0.09154466	1.1201218	2.89	11	7.66
6/6/2019	S-C10	5-10 cm	Core soil	ND	ND	14.921	1.4782	-	9.9068427	54096	-	0.14383844	3.15	12	9.64
6/6/2019	S-C15	10-15 cm	Core soil	ND	ND	1.9452	0.27796	-	14.2895332	700000	-	0.01943255	3.2	12.5	9.99
6/6/2019	S-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.03	13	10.51
6/6/2019	S-D5	0-5 cm	Core soil	30.12	2.0305	439.92	6.8745	6.74136786	1.56267049	30066	0.4704744	6.8715504	3.1	20	15.62
6/6/2019	S-D10	5-10 cm	Core soil	34.672	2.722	375.6	6.6577	7.85071527	1.77255059	50088	0.27494896	2.978508	3	11.5	7.93
6/6/2019	S-D15	10-15 cm	Core soil	2.3609	0.76076	23.017	1.242	32.2233047	5.39601164	86797	0.02242855	0.2186615	3.01	11.5	9.5
6/6/2019	S-D30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.08	12	8.56

Appendix B1.1 Yamakiya Site A-D Exchangeable Radiocesium Count

	Yamal	kiya		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs i	n U8 (Bq)	Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/6/2019	S-E5	0-5 cm	Core soil	20.038	2.2895	315.52	7.7627	11.425791	2.46028778	30105	0.16691654	2.6282816	3.11	12.5	8.33
6/6/2019	S-E10	5-10 cm	Core soil	ND	ND	15.052	1.5009	-	9.97143237	85074	-	0.1648194	3.07	13.5	10.95
6/6/2019	S-E15	10-15 cm	Core soil	ND	ND	3.375	0.33749	-	9.9997037	700000	-	0.030375	2.96	11.5	9
6/6/2019	S-E30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	2.98	12.5	7.09
6/6/2019	S-F5	0-5 cm	Core soil	18.875	2.4365	252.57	7.2263	12.9086093	2.86110781	30097	0.14439375	1.9321605	2.93	10	7.65
6/6/2019	S-F10	5-10 cm	Core soil	ND	ND	26.592	2.3007	-	8.65185018	50080	-	0.2579424	3.01	13	9.7
6/6/2019	S-F15	10-15 cm	Core soil	ND	ND	2.3284	0.22732	-	9.76292733	533491	-	0.02337714	3.05	12.5	10.04
6/6/2019	S-F30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.09	13	11.31
6/6/2019	S-G5	0-5 cm	Core soil	16.875	3.5087	233.18	6.9261	20.7922963	2.97028047	30090	0.13584375	1.877099	3.06	10	8.05
6/6/2019	S-G10	5-10 cm	Core soil	ND	ND	12.645	1.2476	-	9.86635034	100000	-	0.12253005	3.12	12	9.69
6/6/2019	S-G15	10-15 cm	Core soil	ND	ND	3.692	0.30932	-	8.37811484	347676	-	0.03776916	3.13	12	10.23
6/6/2019	S-G30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	2.97	13	10.42
6/6/2019	S-H5	0-5 cm	Core soil	ND	ND	148.19	5.6775	-	3.83123018	30078	-	1.1751467	2.92	10.5	7.93
6/6/2019	S-H10	5-10 cm	Core soil	16.298	2.2618	161.02	4.6524	13.8777764	2.88933052	50108	0.13266572	1.3107028	3.17	10.5	8.14
6/6/2019	S-H15	10-15 cm	Core soil	3.7718	0.93545	35.987	1.2641	24.8011559	3.51265735	88086	0.03971705	0.37894311	3.19	12	10.53
6/6/2019	S-H30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.15	12	9.8

Appendix B1.2 Yamakiya Site E-H Exchangeable Radiocesium Count

	Tsushima	a Sugi		Cs-134	(Bq/kg)	Cs-137	(Bq/kg)	err/A	ctivity	Live time (s)	Radio-Cs	in U8 (Bq)	Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/11/2019	TS-A5	0-5 cm	Core soil	52.81	2.5356	805.91	9.2612	4.80136338	1.14916058	30071	0.8159145	12.4513095	3.18	20	15.45
6/11/2019	TS-A10	5-10 cm	Core soil	20.174	1.7996	235.55	4.3012	8.92039258	1.8260242	50088	0.25479762	2.9749965	3.1	20	12.63
6/11/2019	TS-A15	10-15 cm	Core soil	4.8402	1.4972	75.755	2.3038	30.9326061	3.0411194	82444	0.05135452	0.80376055	3.09	11	10.61
6/11/2019	TS-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.08	12.5	12.97
6/11/2019	TS-B5	0-5 cm	Core soil	72.706	2.7376	1115.5	10.3	3.76530135	0.92335276	30077	1.28035266	19.643955	3.17	30	17.61
6/11/2019	TS-B10	5-10 cm	Core soil	18.998	1.8255	264.97	5.0881	9.6089062	1.92025512	50093	0.18998	2.6497	3.03	13	10
6/11/2019	TS-B15	10-15 cm	Core soil	11.414	0.97623	138.02	2.4267	8.55291747	1.75822345	68448	0.1318317	1.594131	3.06	12.5	11.55
6/11/2019	TS-B30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	2.98	12.5	9.77
6/11/2019	TS-C5	0-5 cm	Core soil	39.38	2.4405	698.76	9.128	6.19730828	1.30631404	30069	0.5402936	9.5869872	2.96	30	13.72
6/11/2019	TS-C10	5-10 cm	Core soil	11.001	1.9654	105.38	3.8736	17.8656486	3.67583982	30074	0.14224293	1.3625634	3	13	12.93
6/11/2019	TS-C15	10-15 cm	Core soil	7.8662	3.3425	45.298	4.0342	42.4919275	8.90591196	7353	0.11382391	0.65546206	3.18	13	14.47
6/11/2019	TS-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.03	12.5	9.72
6/11/2019	TS-D5	0-5 cm	Core soil	39.694	2.9996	606.76	10.331	7.55680959	1.70265014	30068	0.3473225	5.30915	3.04	13	8.75
6/11/2019	TS-D10	5-10 cm	Core soil	ND	ND	187.98	6.009	-	3.19661666	30079	-	1.654224	2.92	11	8.8
6/11/2019	TS-D15	10-15 cm	Core soil	6.9971	2.213	23.529	2.2761	31.6273885	9.67359429	19279	0.0704608	0.23693703	2.99	13	10.07
6/11/2019	TS-D30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	2.94	13.5	13.02
6/11/2019	TS-E5	0-5 cm	Core soil	37.107	2.5077	560.04	8.705	6.75802409	1.55435326	30065	0.43971795	6.636474	3.09	15	11.85
6/11/2019	TS-E10	5-10 cm	Core soil	ND	ND	36.95	2.9451	-	7.97050068	30084	-	0.3927785	3.03	12.5	10.63
6/11/2019	TS-E15	10-15 cm	Core soil	1.318	0.60406	4.4295	0.35905	45.831563	8.10588102	582571	0.0086329	0.02901323	2.96	13.5	6.55
6/11/2019	TS-E30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.19	12.5	8.69

Appendix B2 Tsushima Sugi Exchangeable Radiocesium Count

	Tsushima Pine			Cs-134 (Bq/kg)		Cs-137 (Bq/kg)		err/Activity		Live time (s)	Radio-Cs in U8 (Bq)		Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/11/2019	TP-A5	0-5 cm	Core soil	12.264	1.4989	187.29	4.2705	12.2219504	2.28015377	50087	0.1244796	1.9009935	3.07	15	10.15
6/11/2019	TP-A10	5-10 cm	Core soil	7.47	1.0086	93.372	2.31	13.502008	2.47397507	69771	0.0640926	0.80113176	2.99	10	8.58
6/11/2019	TP-A15	10-15 cm	Core soil	ND	ND	15.491	1.4539	-	9.38544962	50093	-	0.15971221	3.02	12.5	10.31
6/11/2019	TP-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.11	12.5	9.87
6/11/2019	TP-B5	0-5 cm	Core soil	15.653	1.4119	250.95	4.7541	9.01999617	1.89444112	50084	0.16811322	2.695203	2.94	15	10.74
6/11/2019	TP-B10	5-10 cm	Core soil	5.8594	1.7539	64.168	3.315	29.933099	5.16612642	50113	0.04505879	0.49345192	2.9	10	7.69
6/11/2019	TP-B15	10-15 cm	Core soil	ND	ND	17.926	1.0721	-	5.98069843	78664	-	0.21762164	2.93	12.5	12.14
6/11/2019	TP-B30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.18	11.5	8.71
6/11/2019	TP-C5	0-5 cm	Core soil	22.193	1.7817	319.19	5.9838	8.02820709	1.87468279	50089	0.199737	2.87271	3.05	15	9
6/11/2019	TP-C10	5-10 cm	Core soil	ND	ND	56.345	3.7432	-	6.64335788	25117	-	0.50992225	3.05	10	9.05
6/11/2019	TP-C15	10-15 cm	Core soil	ND	ND	24.419	1.7255	-	7.06621893	50070	-	0.26055073	2.94	13.5	10.67
6/11/2019	TP-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3	13	9.83

Appendix B3 Tsushima Pine Exchangeable Radiocesium Count

	Tomioka			Cs-134 (Bq/kg)		Cs-137 (Bq/kg)		err/Activity		Live time (s)	Radio-Cs in U8 (Bq)		Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/12/2019	TO-A5	0-5 cm	Core soil	ND	ND	59.959	3.1589	-	5.26843343	30087	-	0.70331907	2.91	13	11.73
6/12/2019	TO-A10	5-10 cm	Core soil	2.105	0.48923	19.831	0.93197	23.2413302	4.69956129	89414	0.0259757	0.24471454	2.98	13.5	12.34
6/12/2019	TO-A15	10-15 cm	Core soil	ND	ND	1.6659	0.1624	-	9.7484843	690803	-	0.02152343	2.98	13.5	12.92
6/12/2019	TO-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.08	13	11.57
6/12/2019	TO-B5	0-5 cm	Core soil	ND	ND	97.246	4.2335	-	4.35339243	30069	-	0.94912096	3.1	11.5	9.76
6/12/2019	TO-B10	5-10 cm	Core soil	ND	ND	9.1492	0.40072	-	4.37983649	277129	-	0.11079681	3.17	13	12.11
6/12/2019	TO-B15	10-15 cm	Core soil	ND	ND	1.2483	0.16722	-	13.3958183	750000	-	0.01541651	3	13	12.35
6/12/2019	ТО-В30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.11	13	13.03
6/12/2019	TO-C5	0-5 cm	Core soil	ND	ND	31.023	2.4066	-	7.75747026	30097	-	0.34001208	2.98	11.5	10.96
6/12/2019	TO-C10	5-10 cm	Core soil	ND	ND	3.3403	0.29617	-	8.86656887	334694	-	0.03881429	3.03	13	11.62
6/12/2019	TO-C15	10-15 cm	Core soil	ND	ND	2.1797	0.24199	-	11.1019865	750000	-	0.01852745	3.11	13	8.5
6/12/2019	TO-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3	13.5	13.47

Appendix B4 Tomioka Exchangeable Radiocesium Count

	Okuma			Cs-134 (Bq/kg) Cs-13		Cs-137	L37 (Bq/kg) err/A		err/Activity L		Radio-Cs in U8 (Bq)		Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/13/2019	O-A5	0-5 cm	Core soil	30.866	3.8829	477.11	14.79	12.5798613	3.09991407	8726	0.38767696	5.9925016	3.19	13	12.56
6/13/2019	0-A10	5-10 cm	Core soil	8.9953	2.1445	115.3	3.1245	23.8402277	2.70988725	50057	0.11630923	1.490829	3.13	13	12.93
6/13/2019	0-A15	10-15 cm	Core soil	ND	ND	14.561	0.91217	-	6.26447359	89209	-	0.14298902	3.05	13	9.82
6/13/2019	O-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.03	13	11.57
6/13/2019	О-В5	0-5 cm	Core soil	68.071	3.1763	1066.6	12.124	4.66615739	1.13669604	30075	0.77056372	12.073912	2.89	13.5	11.32
6/13/2019	O-B10	5-10 cm	Core soil	8.9331	1.4602	91.527	2.85	16.3459493	3.11383526	50101	0.11407569	1.16879979	3.06	13.5	12.77
6/13/2019	O-B15	10-15 cm	Core soil	ND	ND	13.873	0.82625	-	5.95581345	86752	-	0.15995569	3.11	13	11.53
6/13/2019	O-B30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	2.98	12.5	9.5
6/13/2019	O-C5	0-5 cm	Core soil	52.209	1.4172	655.29	4.2818	2.71447452	0.65342062	85000	0.67610655	8.4860055	2.9	13.5	12.95
6/13/2019	0-C10	5-10 cm	Core soil	9.6248	1.5008	117.84	3.153	15.5930513	2.67566191	50061	0.12310119	1.5071736	2.95	13.5	12.79
6/13/2019	0-C15	10-15 cm	Core soil	ND	ND	12.829	0.75182	-	5.86031647	83278	-	0.17665533	3.19	13	13.77
6/13/2019	O-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.12	13	12.38

Appendix B5 Okuma Exchangeable Radiocesium Count

	Okuma			Cs-134 (Bq/kg)		Cs-137	Cs-137 (Bq/kg)		err/Activity		Radio-Cs in U8 (Bq)		Soil Weight	MH4Ac Added	Weight in U8
Date	Label	Part	Туре	Activity	Act. err	Activity	Act. err	Cs-134	Cs-137		Cs-134	Cs-137	(g)	(ml)	(g)
6/19/2019	C-A5	0-5 cm	Core soil	ND	ND	3.6202	0.37651	-	10.4002541	354860	-	0.03091651	2.96	11	8.54
6/19/2019	C-A10	5-10 cm	Core soil	ND	ND	1.0041	0.19975	-	19.8934369	779329	-	0.0102619	2.95	12	10.22
6/19/2019	C-A15	10-15 cm	Core soil	ND	ND	ND	ND	-	-	749322	-	-	3.16	12.5	11.25
6/19/2019	C-A30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.02	13	9.11
6/19/2019	C-B5	0-5 cm	Core soil	ND	ND	20.597	1.1691	-	5.67606933	87826	-	0.27023264	2.95	19	13.12
6/19/2019	C-B10	5-10 cm	Core soil	ND	ND	7.0428	0.27589	-	3.91733401	662877	-	0.06592061	2.93	18.5	9.36
6/19/2019	C-B15	10-15 cm	Core soil	17.203	0.56708	211.72	1.177	3.29640179	0.55592292	661898	0.24514275	3.01701	3.07	15.5	14.25
6/19/2019	C-B30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.13	11	7.55
6/19/2019	C-C5	0-5 cm	Core soil	ND	ND	4.5075	0.41037	-	9.10415973	266813	-	0.05760585	3.17	10	12.78
6/19/2019	C-C10	5-10 cm	Core soil	ND	ND	2.1802	0.29215	-	13.4001468	747871	-	0.026206	3.07	13	12.02
6/19/2019	C-C15	10-15 cm	Core soil	ND	ND	1.5024	0.26403	-	17.5738818	749695	-	0.02050776	3.02	13	13.65
6/19/2019	C-C30	15-30 cm	Core soil	-	-	-	-	-	-		-	-	3.07	13	10.05

Appendix B6 Yokomuki Exchangeable Radiocesium Count

Appendix C Plant Exchangeable [K] & [Cs]

Appendix C1	Yamakiya	Plant	Exchangeable	[K] &	[Cs]
-------------	----------	-------	--------------	-------	------

Diant Campia	Concentration					
Plant Sample	Cs-133 [ppb]	K [ppm]				
S-BG	0.021	318				
S-DGL	0.009	318				
S-DGB	0.003	25				
S-F1	0.087	375				
S-F2	0.028	352				
S-F3	0.030	476				
S-GB1	0.019	512				
S-GB2	0.011	215				
S-GB3	0.013	330				
S-HL	0.006	268				
S-HS+B	0.001	13				
S-HSB	0.002	51				
S-M1	0.014	133				
S-M2	0.007	227				
S-ML	0.007	119				
S-MS+B	0.000	15				
S-MSB	0.002	59				
S-UA1	0.007	495				
S-UA2	0.039	498				
S-UA3	0.006	328				
S-W1	0.005	219				
S-W2	0.005	167				
S-W3	0.006	216				

Diant Comula	Concentration					
Plant Sample	Cs-133 [ppb]	K [ppm]				
TS-BG1	0.001	114				
TS-BG2	0.002	138				
TS-BG3	0.002	136				
TS-F1	0.002	400				
TS-HL	0.002	165				
TS-HS+B	0.001	28				
TS-HSB	0.002	67				
TS-M1	0.002	151				
TS-MB2	0.001	35				
TS-ML+SB	0.002	171				
TS-UB1	0.001	144				
TS-UBB2	0.002	52				
TS-UBL2	0.005	267				
TS-UC1	0.003	278				
TS-W1	0.002	218				
TS-W2	0.003	68				
TS-W3	0.003	229				

Appendix C2 Tsushima Sugi Plant Exchangeable [K] & [Cs]

Appendix C3 Tsushima Pine Plant Exchangeable [K] & [Cs]

Diant Comple	Concer	ntration
Plant Sample	Cs-133 [ppb]	K [ppm]
TP-BG1	0.004	152
TP-BG2	0.002	105
TP-BG3	0.002	275
TP-H1	0.005	155
TP-H2	0.003	131
TP-M1	0.002	117
TP-M2	0.002	119
TP-M3	0.003	129
TP-UA1	0.001	65
TP-UB1	0.008	299
TP-UB2	0.003	244
TP-W1	0.003	190
TP-W3	0.002	168

Diant Comple	Concentration					
Plant Sample	Cs-133 [ppb]	K [ppm]				
TO-F1	0.016	614				
TO-F2	0.013	520				
TO-F3	0.007	478				
TO-PO1	0.013	381				
TO-PO2	0.018	465				
TO-PO3	0.013	522				

Appendix C4 Tomioka Plant Exchangeable [K] & [Cs]

Appendix C5 Okuma Plant Exchangeable [K] & [Cs]

Diant Comple	Concentration					
Plant Sample	Cs-133 [ppb]	K [ppm]				
O-BG1	0.001	233				
O-BG2	0.003	292				
O-BG3	0.001	315				

Appendix C6 Yokomuki Plant Exchangeable [K] & [Cs]

Diant Comple	Concentration					
Plant Sample	Cs-133 [ppb]	K [ppm]				
C-BG1	0.029	238				
C-BG2	0.044	227				
C-BG3	0.062	131				
C-F1	0.131	438				
C-F2	0.378	516				
C-F3	0.047	119				
C-M1	0.017	80				
C-M2	0.022	128				
C-M3	0.051	108				
C-MO1	0.033	47				
C-UA1	0.076	556				
C-UA2	0.064	434				

Appendix D Soil Exchangeable [K] & [Cs]

Appendix D1	Yamakiya Soil	Exchangeable	[K] &	[Cs]
-------------	---------------	--------------	-------	------

	Concentration	
Soli Sample	Cs-133 [ppb]	K [ppm]
S-A5	2.6	15.3
S-A10	7.7	4.5
S-A15	7.9	3.4
S-A30	12.8	4.0
S-B5	4.7	12.7
S-B10	7.9	4.5
S-B15	7.5	3.3
S-B30	15.1	4.6
S-C5	6.4	19.7
S-C10	8.3	6.2
S-C15	9.5	3.5
S-C30	14.5	5.8
S-D5	3.7	32.7
S-D10	4.2	12.8
S-D15	5.5	5.2
S-D30	12.0	6.9
S-E5	1.4	29.4
S-E10	4.9	6.2
S-E15	5.2	4.5
S-E30	11.4	6.2
S-F5	4.8	15.8
S-F10	6.2	4.6
S-F15	8.0	3.4
S-F30	9.8	24.3
S-G5	4.3	13.8
S-G10	5.4	4.4
S-G15	5.4	3.0
S-G30	11.2	3.8
S-H5	4.2	29.3
S-H10	5.3	13.9
S-H15	5.0	5.9
S-H30	12.9	7.6

Coll Comula	Concentration	
Soli Sample	Cs-133 [ppb]	K [ppm]
TS-A5	2.8	37.2
TS-A10	3.3	28.8
TS-A15	8.2	9.8
TS-A30	9.7	7.8
TS-B5	2.3	38.4
TS-B10	5.2	28.8
TS-B15	8.3	9.0
TS-B30	11.7	20.3
TS-C5	1.4	38.9
TS-C10	2.3	67.6
TS-C15	4.8	41.2
TS-C30	7.0	9.3
TS-D5	3.9	46.8
TS-D10	5.7	23.1
TS-D15	6.9	11.4
TS-D30	9.5	8.2
TS-E5	5.7	34.0
TS-E10	6.2	16.3
TS-E15	7.4	15.8
TS-E30	12.7	14.9

Appendix D2 Tsushima Sugi Soil Exchangeable [K] & [Cs]

Appendix D3 Tsushima Pine Soil Exchangeable [K] & [Cs]

Sail Samala	Concentration	
Son Sample	Cs-133 [ppb]	K [ppm]
TP-A5	2.0	17.7
TP-A10	6.4	9.8
TP-A15	7.0	5.2
TP-A30	11.2	4.8
TP-B5	7.8	24.7
TP-B10	8.3	9.0
TP-B15	10.6	5.6
TP-B30	25.9	12.1
TP-C5	4.6	21.0
TP-C10	5.6	7.4
TP-C15	9.3	4.9
TP-C30	17.0	7.3

Coll Comple	Concentration	
Soli Sample	Cs-133 [ppb]	K [ppm]
TO-A5	2.5	13.1
TO-A10	4.8	11.8
TO-A15	4.1	8.1
TO-A30	6.8	7.8
TO-B5	3.9	18.9
TO-B10	5.4	12.0
TO-B15	6.6	9.6
ТО-В30	15.6	7.7
TO-C5	3.4	24.5
TO-C10	6.7	11.7
TO-C15	5.7	12.4
TO-C30	8.4	7.5

Appendix D4 Tomioka Soil Exchangeable [K] & [Cs]

Appendix D5 Okuma Soil Exchangeable [K] & [Cs]

Soil Samala	Concentration	
Soli Sample	Cs-133 [ppb]	K [ppm]
O-A5	3.7	18.8
O-A10	5.2	25.4
O-A15	10.0	28.2
O-A30	2.2	29.3
O-B5	3.4	18.5
O-B10	4.4	14.9
O-B15	7.3	19.3
O-B30	0.9	41.9
O-C5	1.6	18.7
O-C10	2.6	25.7
O-C15	8.3	26.4
O-C30	3.7	42.8

Coll Comple	Concentration	
Soli Sample	Cs-133 [ppb]	K [ppm]
C-A5	14.0	33.9
C-A10	25.5	7.7
C-A15	29.0	4.5
C-A30	40.9	4.4
C-B5	9.7	49.1
C-B10	10.6	43.4
C-B15	5.7	38.9
C-B30	32.7	25.1
C-C5	8.4	22.9
C-C10	13.5	9.6
C-C15	28.3	5.2
C-C30	42.1	5.9

Appendix D6 Yokomuki Soil Exchangeable [K] & [Cs]

Appendix E Soil pH

Appendix E1 Yamakiya Soil pH

Soil Sample	рН	Soil Weight (g)
S-A5	5.044	2.03
S-A10	5.118	2.06
S-A15	4.798	1.94
S-A30	4.902	1.96
S-B5	5.000	2.05
S-B10	5.117	1.94
S-B15	4.943	2.03
S-B30	5.211	2.04
S-C5	5.209	2.05
S-C10	4.986	2.03
S-C15	4.748	1.98
S-C30	4.802	1.99
S-D5	5.166	2.01
S-D10	4.949	1.97
S-D15	5.255	2.01
S-D30	5.143	2.04
S-E5	5.106	1.98
S-E10	5.445	2.01
S-E15	5.157	1.96
S-E30	4.896	2.04
S-F5	4.947	2.04
S-F10	5.214	2.00
S-F15	5.018	2.04
S-F30	5.282	2.02
S-G5	4.992	2.03
S-G10	4.947	2.05
S-G15	4.887	2.02
S-G30	5.298	2.03
S-H5	5.352	2.02
S-H10	5.195	2.01
S-H15	4.890	1.97

Soil Sample	рН	Soil Weight (g)
TS-A5	4.043	1.95
TS-A10	3.783	1.96
TS-A15	4.440	1.97
TS-A30	5.034	2.01
TS-B5	3.806	2.04
TS-B10	3.831	2.08
TS-B15	4.384	2.07
TS-B30	4.748	2.08
TS-C5	4.323	2.04
TS-C10	4.565	2.01
TS-C15	4.683	2.03
TS-C30	4.943	2.05
TS-D5	4.965	2.03
TS-D10	4.900	2.01
TS-D15	5.038	2.04
TS-D30	5.209	2.02
TS-E5	5.425	1.96
TS-E10	5.558	2.00
TS-E15	5.639	2.06
TS-E30	5.599	2.03

Appendix E2 Tsushima Sugi Soil pH

Appendix E3 Tsushima Pine Soil pH

Soil Sample	рН	Soil Weight (g)
TP-A5	4.518	1.98
TP-A10	4.528	1.96
TP-A15	4.857	1.92
TP-A30	4.890	1.94
TP-B5	3.947	1.93
TP-B10	4.395	2.09
TP-B15	4.708	1.99
TP-B30	4.915	2.01
TP-C5	4.476	1.95
TP-C10	4.371	1.91
TP-C15	4.574	1.91
TP-C30	4.678	2.01

Soil Sample	рН	Soil Weight (g)
TO-A5	5.783	1.94
TO-A10	5.819	1.95
TO-A15	5.560	2.06
TO-A30	4.715	2.05
TO-B5	5.645	2.04
ТО-В10	5.659	2.05
TO-B15	5.279	2.07
TO-B30	4.939	2.06
TO-C5	5.827	1.99
TO-C10	5.649	2.01
TO-C15	5.286	1.98
TO-C30	4.861	2.04

Appendix E4 Tomioka Soil pH

Appendix E5 Okuma Soil pH

Soil Sample	рН	Soil Weight (g)
O-A5	6.603	2.00
O-A10	6.654	1.93
O-A15	6.234	1.97
O-A30	6.278	2.04
O-B5	6.644	2.03
O-B10	6.735	2.06
O-B15	6.942	2.08
O-B30	6.757	2.07
O-C5	6.164	1.99
O-C10	5.706	1.99
O-C15	5.884	2.07
O-C30	7.081	2.07

Soil Sample	рН	Soil Weight (g)
C-A5	4.980	2.08
C-A10	4.926	2.05
C-A15	4.828	2.03
C-A30	4.717	1.94
С-В5	3.912	2.08
C-B10	3.707	2.09
C-B15	3.711	1.96
C-B30	4.276	1.92
C-C5	4.315	2.05
C-C10	4.306	1.97
C-C15	4.549	2.09
C-C30	4.751	1.97

Appendix E6 Yokomuki Soil pH

Appendix E7 Soil pH Analysis of Variance Table

Analysis of Variance Table

Response: mean Df Sum Sq Mean Sq F value Pr(>F) location 5 11.4510 2.29020 33.026 1.39e-07 *** depth 3 0.0422 0.01408 0.203 0.8927 Residuals 15 1.0402 0.06935 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Appendix F Total Understory Plant Fresh Weights

Appendix F1 Yamakiya Total Understory Plant Fresh Weight	
--	--

Species	Plant Part	Fresh Weight (g)		
Japanese Wisteria	Whole	2038.2		
Japanese Glory-Bower	Whole	1791.4		
Fern	Whole	903.3		
Myoga	Whole	10.4		
	Leaves	380.0		
Smooth Jananasa Manla	Small Branches	287.4		
Shiooth Japanese Maple	Stem & Branches	167.4		
	Whole	128.4		
	Leaves	227.4		
Hazelnut	Small Branches	137.4		
	Stem & Branches	1147.4		
Hydrangea	Whole	178.5		

Appendix F2 Tsushima Sugi Total Understory Plant Fresh Weight

Species	Plant Part	Fresh Weight (g)		
Bamboo Grass	Whole	950.65		
Japanese Wisteria	Whole	196.87		
Japanese Knotweed	Whole	65.27		
	Leaves	225.29		
Hazalaut	Branches	149.96		
пагениц	Stem & Branches	253.24		
	Whole	394.8		
	Leaves	11.26		
Unknown	Branches	39.92		
	Whole	447.4		
Maple	Whole	7.25		

Species	Plant Part	Fresh Weight (g)		
Japanese Lacquer	Whole	4383.6		
Fern	Whole	1260.6		

Appendix F3 Tomioka Total Understory	Plant Fresh Weight
--------------------------------------	--------------------

Appendix G

Yamakiya Practicum Data

Yamakiya Sugi		Cs-134 (Cs-134 (Bq/kg) Cs-137 (Bq/kg)		Bq/kg)	err/Activity		Live	Weight	
Date	Label	Part	Activity	Act.	Activity	Act.	Cs-134	Cs-137	time	in U8
Date	-4.50		, location,	err	, louinty	err		00 10/	(s)	(g)
7/6/2019	B1BB	big branch	144.19	5.3258	1909.5	16.794	3.69359872	0.87949725	30000	13.35
		small								
7/6/2019	B1SB	branch	200.93	25.741	2302.5	80.04	12.8109292	3.4762215	2400	5.8
		young								
7/6/2019	B1YF	leaves	1780	204.41	17043	613.12	11.4837079	3.59748871	600	2.46
7/6/2019	B1OF	old leaves	66.363	8.8881	938.38	30.598	13.3931558	3.26072593	10000	6.86
7/6/2019	B3BB	big branch	244.59	31.826	2777.3	101.24	13.0119792	3.64526699	2400	5.18
		small								
7/6/2019	B3SB	branch	181.12	14.21	2263	46.022	7.84562721	2.03367212	7200	5.71
		young								
7/6/2019	B3YF	leaves	1515.4	174.52	17524	539.82	11.5164313	3.08046108	610	3.1
7/6/2019	B3OF	old leaves	86.531	7.5385	1178.5	26.707	8.71190672	2.26618583	10000	10.64
7/6/2019	B10BB	big branch	159.12	5.2755	2205.6	18.045	3.31542232	0.81814472	30000	10.79
		small								
7/6/2019	B10SB	branch	120.46	6.8493	1621.5	19.417	5.68595384	1.19747148	30000	5.59
		young								
7/6/2019	B10YF	leaves	1177	74.918	14804	255.67	6.36516568	1.72703323	3600	2.9
7/6/2019	B100F	old leaves	90.371	7.2136	1098.4	25.047	7.98220668	2.28031682	10000	12.15
7/6/2019	IB99	inner bark	155.69	26.59	1838.8	73.636	17.0788105	4.0045682	10000	1.12
7/6/2019	OB99	outer bark	198.14	26.732	2256.2	72.511	13.4914707	3.21385515	7200	2.61
		sapwood								
7/6/2019	SW99 1-3	1-3	ND	ND	719.51	68.333		9.49715779	177313	0.07
7/6/2019	SW99	sapwood	62.115	12.187	821.55	28.752	19.6200596	3.49972613	10000	3.3
7/6/2019	HW	heartwood	39.536	10.444	531.5	15.012	26.4164306	2.82445908	84011	1.08
		new								
7/6/2019	moss_N2	leaves	1403.8	428.31	14923	701.25	30.5107565	4.69912216	14500	0.07
7/6/2019	moss_45	old leaves	3262	377.56	31975	1141.9	11.5744942	3.57122752	665	1.24
7/6/2019	moss_59	root	12675	1048.5	152590	3613.1	8.27218935	2.36784848	1200	0.42
7/6/2019	moss_N18	tree buck	7876.5	780.13	91712	2575.2	9.90452612	2.80792045	500	0.86
7/6/2019	B1BB	big branch	144.19	5.3258	1909.5	16.794	3.69359872	0.87949725	30000	13.35

Appendix G1 Yamakiya Practicum Tree Radiocesium Count
Appendix H

Linear Model Tables

Appendix H1.1 All Plant Models

Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = metapred) Model selection table (Intrc) csppm exk Incon lnxcn ph df logLik AICc delta weight 22 9.1220 8477 -0.9330 24 8.8470 10180 5.302e-03 -0.9385 -0.37860 5 -213.463 437.3 0.00 0.420 -0.34950 6 -213.098 438.7 1.41 0.207 30 9.0070 8621 -0.9020 -3.602e-02 -0.38380 6 -213.413 439.3 2.04 0.151 32 8.5380 10900 6.632e-03 -0.8751 -7.530e-02 -0.35310 7 -212.900 440.5 3.18 0.086 -1.0020 21 10.6700 -0.47480 4 -216.377 441.0 3.71 0.066 5.62 0.025 -2.505e-03 -0.9932 -0.47940 5 -216.273 442.9 23 10,6600 29 10.6700 -1.0020 -8.500e-07 -0.47480 5 -216.377 443.1 5.83 0.023 -2.626e-03 -1.0030 1.177e-02 -0.47740 6 -216.268 445.0 31 10.6800 7.75 0.009 8 6.3130 15680 1.096e-02 -0.8894 5 -217.680 445.7 8.43 0.006 6.4580 12860 4 -219.297 446.8 6 -0.8676 9.55 0.004 16 6.0600 16270 1.201e-02 -0.8411 -5.694e-02 6 -217.572 447.6 10.36 0.002 -0.8877 2.266e-02 14 6.5530 12730 5 -219.278 448.9 11.63 0.001 5 7.9870 -0.9598 3 -226.369 458.9 21.60 0.000 -1.0490 1.058e-01 13 8.3610 4 -225.969 460.2 22.90 0.000 -4.108e-05 -0.9597 4 -226.369 461.0 23.70 7.9860 0.000 15 8.3600 -1.287e-03 -1.0490 1.119e-01 5 -225.945 462.2 24.96 0.000 2.8090 25790 1.936e-02 -9.631e-01 -0.26090 6 -240.424 493.3 28 56.06 0.000 12 1.1250 29370 2.301e-02 -9.237e-01 5 -242.352 495.0 57.78 0.000 26 3.7190 20130 -9.258e-01 -0.34740 5 -243.793 497.9 60.66 0.000 10 1.5700 23690 -8.598e-01 4 -247.274 502.8 65.51 0.000 -1.099e+00 -0.58600 4 -256.606 521.4 84.17 6.6770 25 0.000 -1.088e+00 -0.58850 5 -256.543 523.4 86.16 0.000 27 6.6870 -2.498e-03 3.5580 3 -266.061 538.3 100.99 0.000 9 -1.031e+00 11 3.5570 4 -266.055 540.3 103.07 -8.221e-04 -1.027e+00 0.000 18 -7.6160 62970 0.74790 4 -334.630 677.5 240.22 0.000 0.63700 5 -333.690 677.7 240.45 20 -6.4560 56700 -1.643e-02 0.000 4 -2.7490 50140 -3.095e-02 4 -338.364 685.0 247.68 0.000 3 -342.048 690.2 252.96 -3.8960 61560 0.000 2 3 0.9561 -8.632e-02 3 -363.907 733.9 296.68 0.000 19 0.5166 0.08687 4 -363.836 735.9 298.63 0.000 -8.532e-02 17 -3.2480 0.57130 3 -392.665 791.5 354.19 0.000 1 -0.4655 2 -395.014 794.1 356.82 0.000

Appendix H1.2 All Plant All Factors Model

 $lm(formula = tf1 \sim exk + csppm + lncon + lnexcon + ph, data = meta)$

Residuals: Min 1Q Median 3Q Max -1.8945 -0.5741 -0.0512 0.4710 2.4109

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 8.538e+00 1.088e+00 7.851 4.06e-13 *** 6.632e-03 6.649e-03 0.997 0.31997 exk 1.090e+04 4.233e+03 2.576 0.01083 * csppm Incon -8.751e-01 1.109e-01 -7.890 3.23e-13 *** Inexcon -7.530e-02 1.217e-01 -0.618 0.53708 -3.531e-01 1.160e-01 -3.045 0.00269 ** ph _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8032 on 174 degrees of freedom Multiple R-squared: 0.8678, Adjusted R-squared: 0.864 F-statistic: 228.5 on 5 and 174 DF, p-value: < 2.2e-16

Appendix H1.3 All Plant Best Fit Model

lm(formula = tf1 ~ csppm + lncon + ph, data = meta) Residuals: Min 10 Median 3Q Мах -1.94537 -0.56520 -0.03343 0.46178 2.34387 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.90645 10.063 < 2e-16 *** 9.12177 csppm 8477.31343 3522.42509 2.407 0.017133 * -0.93298 0.04171 -22.369 < 2e-16 *** Incon 0.11027 -3.433 0.000744 *** ph -0.37858 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8011 on 176 degrees of freedom Multiple R-squared: 0.867, Adjusted R-squared: 0.8647 F-statistic: 382.4 on 3 and 176 DF, p-value: < 2.2e-16 Appendix H1.4 All Plant ¹³⁷Cs Model lm(formula = tf1 ~ lncon, data = meta) Residuals: 1Q Median 3Q Min Max -2.05077 -0.52801 -0.08379 0.57614 2.35271 coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.98683 0.27725 28.81 <2e-16 *** 0.03064 -31.33 <2e-16 *** Incon -0.95982 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8558 on 178 degrees of freedom Multiple R-squared: 0.8465, Adjusted R-squared: 0.8456 F-statistic: 981.4 on 1 and 178 DF, p-value: < 2.2e-16

Appendix H1.5 All Plant ¹³⁷Cs Model – 0-5cm depth lm(formula = tf1 ~ lncon, data = hi) Residuals: Min 1Q Median 3Q Max -1.9283 -0.5391 -0.1175 0.5759 2.1386 Coefficients: Estimate Std. Error t value Pr(>|t|) 5.6835 1.5280 3.720 0.000452 *** (Intercept) 0.1395 -5.427 1.17e-06 *** -0.7568Incon signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8478 on 58 degrees of freedom Multiple R-squared: 0.3368, Adjusted R-squared: 0.3253 F-statistic: 29.45 on 1 and 58 DF, p-value: 1.175e-06 Appendix H1.6 All Plant ¹³⁷Cs Model – 5-10cm depth lm(formula = tf1 ~ lncon, data = hi) Residuals: 1Q Median Min 3Q Max -1.7931 -0.5752 -0.1546 0.5497 2.2347 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.24509 0.74555 9.718 8.87e-14 *** Incon 0.08368 -10.465 5.60e-15 *** -0.87568 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8536 on 58 degrees of freedom Multiple R-squared: 0.6538, Adjusted R-squared: 0.6478 F-statistic: 109.5 on 1 and 58 DF, p-value: 5.602e-15 Appendix H1.7 All Plant ¹³⁷Cs Model – 10-15cm depth lm(formula = tf1 ~ lncon, data = hi) Residuals: Min 1Q Median 30 Max -1.9320 -0.5241 -0.1869 0.5379 2.2331 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.69557 0.59255 12.99 < 2e-16 *** 0.08715 -10.37 8.04e-15 *** Incon -0.90341---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8607 on 58 degrees of freedom Multiple R-squared: 0.6495, Adjusted R-squared: 0.6434 F-statistic: 107.5 on 1 and 58 DF, p-value: 8.04e-15

Appendix H1.8 All Plant ¹³⁷Cs Model – 0-10cm depth lm(formula = tf1 ~ lncon, data = hi) Residuals: 1Q Median Min 3Q Max -2.0425 -0.5459 -0.0970 0.5888 2.3394 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.55458 0.51379 14.70 <2e-16 *** 0.05145 -17.89 <2e-16 *** -0.92036 Incon Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8537 on 118 degrees of freedom Multiple R-squared: 0.7306, Adjusted R-squared: 0.7283 F-statistic: 319.9 on 1 and 118 DF, p-value: < 2.2e-16 Appendix H1.9 All Plant ¹³⁷Cs Model – 0-5cm and 10-15cm depth lm(formula = tf1 ~ lncon, data = hi) Residuals: Min 1Q Median 3Q Max -2.0257 -0.5397 -0.1019 0.5935 2.3329 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.10099 0.30152 26.87 <2e-16 *** 0.03307 -29.41 <2e-16 *** Incon -0.97277 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8599 on 118 degrees of freedom Multiple R-squared: 0.88, Adjusted R-squared: 0.879 F-statistic: 865.3 on 1 and 118 DF, p-value: < 2.2e-16

Appendix H1.10 All Plant ¹³⁷Cs Model - 5-15cm depth Im(formula = tf1 ~ lncon, data = hi) Residuals: Min 1Q Median 3Q Max -1.94778 -0.53640 -0.09068 0.55491 2.32208 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.8285 0.3685 21.24 <2e-16 *** Incon -0.9339 0.0465 -20.08 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.855 on 118 degrees of freedom Multiple R-squared: 0.7737, Adjusted R-squared: 0.7718 F-statistic: 403.4 on 1 and 118 DF, p-value: < 2.2e-16

Appendix H2.1 Bamboo Grass Models

Global model ca	11: lm(formu	la = tf1	~ exk +	csppm + lr	ncor	+ 1nex	con + p	oh, dat	ta = bg)		
Model selection table											
(Intrc) cspp	m exk	Incon	Inxcn	ph	df	log∟ik	AICC	delta	weight		
29 10.1900		-1.2250	0.3120	-0.314300	5	-20.019	52.5	0.00	0.318		
21 9.5130		-0.9998		-0.318300	4	-21.761	53.1	0.58	0.237		
30 11.0900 -464	5	-1.2610	0.2995	-0.369600	6	-19.560	54.8	2.23	0.104		
22 10.5900 -537	2	-1.0520		-0.382000	5	-21.209	54.9	2.38	0.097		
23 9.4870	0.0067410	-1.0150		-0.312700	5	-21.290	55.1	2.54	0.089		
31 10.1200	0.0045270	-1.2200	0.2913	-0.310800	6	-19.791	55.2	2.70	0.083		
24 10.2400 -371	1 0.0034330	-1.0440		-0.359500	6	-21.138	57.9	5.39	0.021		
32 11.0300 -436	4 0.0005906	-1.2580	0.2975	-0.365800	- 7	-19.558	58.2	5.67	0.019		
13 8.2930		-1.1990	0.3251		4	-25.148	59.9	7.36	0.008		
5 7.5660		-0.9644			3	-26.510	59.9	7.40	0.008		
7 7.5770	0.0081400	-0.9838			4	-26.007	61.6	9.08	0.003		
14 7.7380 450	9	-1.1690	0.3351		5	-24.712	61.9	9.39	0.003		
6 7.0480 403	9	-0.9305			4	-26.191	62.0	9.44	0.003		
8 6.4200 910	7 0.0157400	-0.9255			5	-24.741	62.0	9.44	0.003		
15 8.2400	0.0058670	-1.1940	0.2980		5	-24.874	62.2	9.71	0.002		
16 7.1030 870	1 0.0132400	-1.1270	0.2831		6	-23.633	62.9	10.38	0.002		
9 3.3060			-1.0680		3	-42.018	91.0	38.42	0.000		
10 2.1400 1229	0		-0.9434		4	-40.892	91.4	38.84	0.000		
12 1.3000 1980	0 0.0254000		-0.9567		5	-39.479	91.5	38.92	0.000		
25 4.8150			-1.1040	-0.265400	4	-40.974	91.5	39.01	0.000		
11 3.2610	0.0090040		-1.0990		4	-41.809	93.2	40.68	0.000		
26 3.4630 841	0		-1.0050	-0.167900	5	-40.569	93.6	41.10	0.000		
27 4.7420	0.0079440		-1.1310	-0.259600	5	-40.799	94.1	41.56	0.000		
28 1.5550 1888	0 0.0245200		-0.9668	-0.028630	6	-39.471	94.6	42.05	0.000		
2 -3.5540 3826	0				3	-53.075	113.1	60.54	0.000		
18 -5.7280 4324	0			0.384700	4	-52.113	113.8	61.29	0.000		
20 -8.2040 5777	0 0.0390200			0.572600	5	-50.783	114.1	61.53	0.000		
4 -4.2920 4457	0 0.0203500				4	-52.685	115.0	62.43	0.000		
1 -1.7570					2	-58.800	122.0	69.51	0.000		
3 -1.1700	-0.0270700				3	-58.089	123.1	70.56	0.000		
17 -1.8030				0.009102	3	-58.800	124.5	71.98	0.000		
19 -0.9922	-0.0273500			-0.034120	4	-58.083	125.8	/3.23	0.000		
Models ranked b	y AICC(X)										

Appendix H2.2 Bamboo Grass All Factors Model $lm(formula = tf1 \sim exk + csppm + lncon + lnexcon + ph, data = yo)$ Residuals: Min 1Q Median 3Q Max -0.9417 -0.2432 0.0168 0.2340 0.8824 coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.103e+01 1.734e+00 6.361 1.41e-06 *** exk 5.906e-04 9.798e-03 0.060 0.9524 csppm -4.364e+03 7.116e+03 -0.613 0.5455 Incon -1.258e+00 1.542e-01 -8.156 2.24e-08 *** Inexcon 2.975e-01 1.822e-01 1.633 0.1156 ph -3.658e-01 1.336e-01 -2.737 0.0115 * --signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.5192 on 24 degrees of freedom Multiple R-squared: 0.9269, Adjusted R-squared: 0.9117 F-statistic: 60.88 on 5 and 24 DF, p-value: 7.581e-13 Appendix H2.3 Bamboo Grass Best Fit Model $lm(formula = tf1 \sim lncon + lnexcon + ph, data = bg)$ Residuals: Min Median 1Q 3Q Max -0.94555 -0.24037 0.06908 0.32951 0.90194 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 10.18642 0.88540 11.505 1.06e-11 *** -1.22470 0.13769 -8.895 2.29e-09 *** Incon 0.31205 0.17438 1.789 0.08520 . Inexcon -0.31432 0.09654 -3.256 0.00314 ** ph ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5066 on 26 degrees of freedom Multiple R-squared: 0.9246, Adjusted R-squared: 0.9159 F-statistic: 106.3 on 3 and 26 DF, p-value: 1.021e-14 Appendix H2.4 Bamboo Grass ¹³⁷Cs Model Im(formula = tf1 ~ Incon, data = bg) Residuals: Min 1Q Median 3Q Max -1.09963 -0.25976 0.08268 0.35974 1.08877 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.56568 0.64825 11.67 2.86e-12 *** Incon -0.96440 0.06608 -14.60 1.29e-14 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.6061 on 28 degrees of freedom

Multiple R-squared: 0.8838, Adjusted R-squared: 0.8797 F-statistic: 213 on 1 and 28 DF, p-value: 1.291e-14

Appendix H3.1 Glory-Bower Models

Global model ca	11: 1m(for	mula = ti	+ csppm +	1n	con + 1ne	excon +	⊦ph, da	ata = gb)				
Model selection table												
(Intrc) csp	m exk	Incon	lnxcn	ph	df	log∟ik	AICC	delta	weight			
5 8.393		-0.9737			3	-7.685	26.2	0.00	0.641			
9 4.203			-1.19600		3	-8.851	28.5	2.33	0.200			
10 1.238 323	0		-0.91560		4	-6.470	30.9	4.77	0.059			
6 6.519 1473	0	-0.8599			4	-7.320	32.6	6.47	0.025			
21 14.070		-0.9241		-1.2110	4	-7.429	32.9	6.69	0.023			
7 8.717	0.03239	-1.0520			4	-7.595	33.2	7.02	0.019			
13 8.200		-0.9281	-0.05730		4	-7.682	33.4	7.19	0.018			
11 4.192	0.04857		-1.34400		4	-8.717	35.4	9.26	0.006			
25 6.583			-1.17000	-0.4901	4	-8.822	35.6	9.47	0.006			
3 3.738	-0.32350				3	-13.804	38.4	12.24	0.001			
2 -5.389 937	0			NA	3	-14.001	38.8	12.63	0.001			
18 25.120 775	0 NA	NA	NA	-5.8800	4	-11.316	40.6	14.46	0.000			
4 -1.023 5324	0 -0.19160	NA	NA	NA	4	-11.329	40.7	14.49	0.000			
26 8.579 355	0 NA	NA	-0.80240	-1.5730	5	-5.970	41.9	15.77	0.000			
12 1.132 333	0 0.06487	NA	-1.10500	NA	5	-6.055	42.1	15.94	0.000			
14 -3.274 4839	0 NA	0.7053	-1.64100	NA	5	-6.231	42.5	16.29	0.000			
22 14.620 2132	0 NA	-0.7313	NA	-1.9050	5	-6.685	43.4	17.20	0.000			
19 21.340	A -0.27230	NA	NA	-3.6070	4	-13.138	44.3	18.11	0.000			
8 6.851 1392	0 0.02249	-0.9209	NA	NA	5	-7.275	44.5	18.38	0.000			
23 14.560	A 0.03456	-1.0070	NA	-1.2410	5	-7.321	44.6	18.47	0.000			
29 15.260	A NA	-1.0410	0.15430	-1.3540	5	-7.408	44.8	18.65	0.000			
15 8.122 1	A 0.04086	-0.9120	-0.20200	NA	5	-7.559	45.1	18.95	0.000			
17 51.510	A NA	NA	NA	-10.0900	3	-17.306	45.4	19.24	0.000			
1 1.111 1	A NA	NA	NA	NA	2	-19.815	45.6	19.46	0.000			
27 6.054 1	A 0.04668	NA	-1.31800	-0.3832	5	-8.699	47.4	21.23	0.000			
20 18.310 5524	0 -0.12990	NA	NA	-3.9980	5	-9.775	49.5	23.38	0.000			
16 -5.593 5742	0 0.08553	1.0460	-2.24200	NA	6	-5.506	65.0	38.84	0.000			
28 7.946 3624	0 0.05913	NA	-0.98340	-1.4580	6	-5.589	65.2	39.01	0.000			
30 4.210 4940	0 NA	0.6177	-1.44400	-1.4840	6	-5.768	65.5	39.37	0.000			
24 14.900 2050	0 0.02114	-0.7891	NA	-1.8970	6	-6.638	67.3	41.11	0.000			
31 14.700	A 0.03375	-1.0200	0.01997	-1.2590	6	-7.321	68.6	42.47	0.000			
32 1.081 5764	0 0.07841	0.9415	-2.02100	-1.2850	7	-5.106	136.2	110.04	0.000			
Models ranked by AICc(x)												

Appendix H3.2 Glory-Bower All Factors Model

lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: 3 10 11 12 19 20 2 21 1 0.30247 0.52434 0.66397 -0.55477 -0.09646 -0.65658 0.10874 -0.26653 -0.02517 coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.081e+00 1.642e+01 0.066 0.952 exk 7.841e-02 1.137e-01 0.689 0.540 5.764e+04 4.174e+04 1.381 0.261 csppm 9.415e-01 1.615e+00 0.583 0.601 Incon Inexcon -2.021e+00 1.832e+00 -1.103 0.351 ph -1.285e+00 2.434e+00 -0.528 0.634

Residual standard error: 0.7391 on 3 degrees of freedom Multiple R-squared: 0.9619, Adjusted R-squared: 0.8985 F-statistic: 15.17 on 5 and 3 DF, p-value: 0.02435

> Appendix H3.3 Glory-Bower Best Fit Model lm(formula = tf1 ~ lncon, data = gb) Residuals: 1Q Median Min 3Q Max -0.8743 -0.7413 0.3491 0.4366 0.4949 Coefficients: Estimate Std. Error t value Pr(>|t|) 0.77106 10.885 1.22e-05 *** (Intercept) 8.39327 Incon -0.97372 0.09902 -9.833 2.39e-05 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6444 on 7 degrees of freedom Multiple R-squared: 0.9325, Adjusted R-squared: 0.9229 F-statistic: 96.7 on 1 and 7 DF, p-value: 2.39e-05

Appendix H4.1 Wisteria Models

Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = w)

MOU	uer serect	. TOTE LADIE	=								
	(Intrc)	csppm	exk	Incon	Inxcn	ph	df	logLik	AICC	delta	weight
5	8.5670			-0.9773			3	-10.560	28.3	0.00	0.237
21	10.4200			-1.0100		-0.3392	- 4	-9.236	28.6	0.26	0.208
23	10.6400		-0.007308	-0.9838		-0.4100	- 5	-8.410	30.2	1.83	0.095
13	8.9590			-1.0760	1.208e-01		- 4	-10.136	30.4	2.06	0.085
7	8.4710		-0.004310	-0.9578			- 4	-10.289	30.7	2.36	0.073
6	8.7500	-1274.0		-0.9898			4	-10.535	31.2	2.85	0.057
22	10.5200	-757.2		-1.0170		-0.3376	- 5	-9.226	31.8	3.47	0.042
29	10.4200			-1.0100	4.607e-06	-0.3392	- 5	-9.236	31.8	3.49	0.041
16	11.5200	-15620.0	-0.017760	-1.3240	3.342e-01		6	-7.676	32.3	3.97	0.032
24	11.7700	-7457.0	-0.012080	-1.0380		-0.4399	6	-7.728	32.4	4.08	0.031
15	8.9410		-0.006146	-1.0780	1.570e-01		- 5	-9.600	32.5	4.21	0.029
8	9.2160	-5693.0	-0.007787	-0.9979	NA	NA	5	-9.948	33.2	4.91	0.020
14	9.4750	-3092.0	NA	-1.1240	1.422e-01	NA	- 5	-9.996	33.3	5.00	0.019
31	10.5900	NA	-0.007451	-1.0030	2.744e-02	-0.3858	6	-8.393	33.7	5.41	0.016
32	12.2800	-13160.0	-0.016850	-1.2320	2.142e-01	-0.2739	- 7	-7.032	35.1	6.75	0.008
30	10.5200	-906.7	NA	-1.0260	1.049e-02	-0.3275	6	-9.224	35.4	7.07	0.007
26	7.6690	24490.0	NA	NA	-9.783e-01	-1.1440	5	-21.316	56.0	27.65	0.000
28	6.7530	29980.0	0.012910	NA	-9.827e-01	-1.0600	6	-20.692	58.3	30.01	0.000
10	1.6550	25550.0	NA	NA	-8.059e-01	NA	4	-25.249	60.6	32.28	0.000
12	0.9457	33670.0	0.019380	NA	-8.314e-01	NA	- 5	-24.174	61.7	33.36	0.000
25	10.3800	NA	NA	NA	-1.235e+00	-1.2050	- 4	-25.983	62.1	33.75	0.000
27	10.6100	NA	-0.009656	NA	-1.189e+00	-1.2580	5	-25.638	64.6	36.29	0.000
9	4.1540	NA	NA	NA	-1.064e+00	NA	3	-29.059	65.3	37.00	0.000
11	4.1310	NA	-0.005180	NA	-1.036e+00	NA	4	-28.982	68.1	39.75	0.000
2	-4.1440	70020.0	NA	NA	NA	NA	3	-38.540	84.3	55.96	0.000
18	-6.1220	66520.0	NA	NA	NA	0.4742	4	-38.283	86.7	58.35	0.000
4	-4.3620	72350.0	0.004728	NA	NA	NA	- 4	-38.519	87.1	58.82	0.000
20	-6.8320	70650.0	0.009384	NA	NA	0.5406	5	-38.205	89.7	61.42	0.000
3	1.2710	NA	-0.079540	NA	NA	NA	3	-46.588	100.4	72.06	0.000
19	-3.5100	NA	-0.067340	NA	NA	0.9930	- 4	-46.030	102.2	73.85	0.000
17	-10.5900	NA	NA	NA	NA	2.2680	3	-49.515	106.2	77.91	0.000
1	-0.1835	NA	NA	NA	NA	NA	2	-52.114	108.8	80.48	0.000
MO	dels ranke	ed by AICO	=(x)								

Appendix H4.2 Wisteria All Factors Model

lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: Min 1Q Median 3Q Max -0.44367 -0.23473 -0.02352 0.18280 0.78500 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.228e+01 1.701e+00 7.221 1.02e-06 *** -1.685e-02 8.873e-03 -1.899 0.0737. -1.316e+04 8.949e+03 -1.470 0.1588 exk csppm -1.232e+00 1.993e-01 -6.179 7.82e-06 *** Incon 2.142e-01 2.067e-01 1.036 0.3138 Inexcon -2.739e-01 2.749e-01 -0.996 0.3323 ph _ _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3745 on 18 degrees of freedom

Multiple R-squared: 0.9766, Adjusted R-squared: 0.9702 F-statistic: 150.5 on 5 and 18 DF, p-value: 4.948e-14

Appendix H4.3 Wisteria Best Fit Model lm(formula = tf1 ~ lncon, data = w) Residuals: 1Q Median Min 3Q Max -0.52644 -0.26074 -0.05126 0.08202 0.85640 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.56651 0.34499 24.83 <2e-16 *** 0.03748 -26.08 Incon -0.97727 <2e-16 *** signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3924 on 22 degrees of freedom Multiple R-squared: 0.9687, Adjusted R-squared: 0.9672 F-statistic: 679.9 on 1 and 22 DF, p-value: < 2.2e-16

Appendix H5.1 Fern Models

Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = f) Model selection table
 Model selection table
 exk
 incon
 inxcn
 ph df
 logLik
 AICc
 delta
 weight

 31
 17.110
 -0.07176
 -1.0580
 0.361200
 -1.4850
 6
 -3.736
 25.5
 0.00
 0.590

 23
 16.990
 -0.05049
 -0.8016
 -1.6980
 5
 -6.556
 27.1
 1.64
 0.260

 32
 18.100
 -3754
 -0.07304
 -1.1230
 0.419300
 -1.5630
 7
 -3.599
 29.8
 4.34
 0.067

 24
 15.290
 6533
 -0.05423
 -0.7603
 -1.5030
 6
 -6.033
 30.1
 4.59
 0.059

 21
 19.450
 -0.9085
 -2.1260
 4
 -11.077
 32.7
 7.18
 0.016

 22
 19.190
 1105
 -0.9028
 -2.0990
 5
 -11.067
 36.1
 10.66
 0.003

 29
 19.480
 -0.9164
 0.009514
 -2.1250
 5
 -11.067
 36.2
 10.68
 0.003

 30
 19.100
 1383
 NA
 -0.8934
 -0.009590
 -2.0202
 6
 -11.066
 40.1
 14.66
 0.0003

 30
 19,100
 1383
 NA
 -0.8934
 -0.009390
 -2.0920
 6
 -11.060
 40.1
 14.60
 0.0000

 8
 5.563
 24920
 -0.09282
 -0.6145
 NA
 NA
 5
 -13.844
 41.7
 16.22
 0.0000

 15
 10.440
 NA
 -0.12850
 -1.2400
 0.673700
 NA
 5
 -14.749
 43.5
 18.03
 0.0000

 16
 7.446
 17480
 -0.10870
 -0.8928
 0.326700
 NA
 6
 -13.192
 44.4
 18.91
 0.000

 7
 8.152
 NA
 -0.10050
 -0.7489
 NA
 NA
 4
 -18.495
 47.5
 22.02
 0.000

 8.152
 NA
 -0.10050
 -0.7489
 NA
 NA
 4
 -18.495
 47.5
 22.02
 0.000

 9.488
 31340
 NA
 NA
 -0.851900
 -1.4740
 5
 -16.983
 48.0
 22.49
 0.000

 7.536
 32780
 -0.04105
 NA
 -0.732700
 -1.0870
 6
 -15.871
 49.7
 24.27
 0.000

 1.242
 42970
 -0.07235
 NA
 -0.626000
 NA
 5
 -18.123
 50.2
 24.77
 0.000

 0.540
 48250
 NA
 NA
 -0.822600
 NA
 4
 -21.540
 53.6
 28.11
 0.000

 16.350
 NA
 NA
 -0.985600
 -2.3460
 4
 -21.891
 54.3
 28.81
 0.000

 5.665
 29360
 NA
 -0.8166
 NA
 NA
 4
 -22.090
 54.7
 29.21
 0.000

 2.793
 39460
 NA
 -0.8438
 -0.493800
 NA
 5
 -20.995
26 28 12 10 25 16.350 6 14 27 15.180 NA -0.02945 NA -0.904400 -2.0970 5 -21.541 57.1 31.61 0.000
 NA
 -0.09943
 NA
 -0.0974
 NA
 NA
 3
 -25.303
 58.0
 32.55
 0.000

 NA
 NA
 -1.0680
 0.084400
 NA
 3
 -25.303
 58.0
 32.55
 0.000

 NA
 NA
 -1.0680
 0.084400
 NA
 4
 -25.271
 61.0
 35.57
 0.000

 NA
 -0.10460
 NA
 -0.759900
 NA
 4
 -27.297
 65.1
 39.62
 0.000

 53620
 -0.16790
 NA
 NA
 NA
 4
 -28.227
 67.0
 41.48
 0.000

 NA
 NA
 -1.086000
 NA
 3
 -30.488
 68.4
 42.91
 0.000
 8.771 5 9.079 4.547 13 11 0.167 53620 -0.16790 Δ

 9
 4.094
 NA
 NA
 NA
 -1.086000
 NA
 3
 -30.488
 68.4
 42.91
 0.000

 20
 -1.933
 56490
 -0.17310
 NA
 NA
 0.3734
 5
 -28.113
 70.2
 44.75
 0.000

 3
 4.219
 NA
 -0.23730
 NA
 NA
 NA
 3
 -34.836
 77.1
 51.61
 0.000

 19
 9.324
 NA
 -0.21320
 NA
 NA
 NA
 3
 -37.208
 81.8
 56.36
 0.000

 2
 -3.956
 87820
 NA
 NA
 NA
 NA
 3
 -37.208
 81.8
 56.36
 0.000

 18
 1.700
 77840
 NA
 NA
 NA
 -0.9484
 4
 -36.854
 84.2
 58.74
 0.000

 17
 19.970
 NA
 NA
 NA
 NA
 -3.5050
 3
 -42.561
 92.5
 67.06
 0.000

 1
 1.265
 NA
 NA
 NA
 NA
 NA
 2
 -46.214
 97.1
 71.62
 0.000</t a 4.094 NA NA Models ranked by AICC(x)

Appendix H5.2 Fern All Factors Model

lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: 10 Median Min 3Q Max -0.54970 -0.26752 -0.01194 0.22555 0.41995 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.810e+01 2.634e+00 6.873 5.30e-06 *** -7.304e-02 1.852e-02 -3.943 0.001303 ** exk -3.754e+03 8.439e+03 -0.445 0.662807 csppm Incon -1.123e+00 1.947e-01 -5.768 3.71e-05 *** Inexcon 4.193e-01 2.119e-01 1.978 0.066569 . ph -1.563e+00 3.302e-01 -4.733 0.000267 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3398 on 15 degrees of freedom Multiple R-squared: 0.9827, Adjusted R-squared: 0.977 F-statistic: 170.7 on 5 and 15 DF, p-value: 1.146e-12 Appendix H5.3 Fern Best Fit Model $lm(formula = tf1 \sim exk + lncon + lnexcon + ph, data = f)$ Residuals: Min 1Q Median 3Q Max -0.50811 -0.28860 -0.03504 0.25343 0.42369 Coefficients: Estimate Std. Error t value Pr(>|t|) 1.35962 12.582 1.03e-09 *** (Intercept) 17.10687 0.01784 -4.023 0.000983 *** -0.07176 exk 0.12541 -8.438 2.76e-07 *** Incon -1.05826 0.16269 2.220 0.041207 * Inexcon 0.36118 -1.484950.27262 -5.447 5.38e-05 *** ph ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3312 on 16 degrees of freedom Multiple R-squared: 0.9825, Adjusted R-squared: 0.9781 F-statistic: 224.6 on 4 and 16 DF, p-value: 7.795e-14

Appendix H5.4 Fern ¹³⁷Cs Model lm(formula = tf1 ~ lncon, data = f) Residuals: Min 10 Median 3Q Max -0.9700 -0.7636 -0.4269 0.9667 1.0724 Coefficients: Estimate Std. Error t value Pr(>|t|) 12.37 1.55e-10 *** (Intercept) 8.77076 0.70915 Incon -0.997400.09097 -10.96 1.17e-09 *** signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8487 on 19 degrees of freedom

Multiple R-squared: 0.8635, Adjusted R-squared: 0.8563 F-statistic: 120.2 on 1 and 19 DF, p-value: 1.172e-09

Appendix H6.1 Hydrangea Models

Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = ua Model selection table (Intrc) csppm exk lncon Inxcn ph df logLik AICc delta weight -0.9865 -1.1730 5 0.778 18.4 0.00 -1.6270 4 -4.848 23.4 4.97 22 13.3300 13620 0.778 18.4 0.00 0.856 21 16.8200 -1.0500 0.071

 10.1000
 -1.0100
 -1.0100
 -1.0100
 -1.0100
 -1.1100

 6.4990
 20440
 -0.9131
 4
 -5.845
 25.4
 6.96

 14.2600
 12690
 -1.1250
 0.162300
 -1.2310
 6
 1.374
 26.1
 7.61

 13.4000
 13770
 0.002028
 -0.9938
 -1.1820
 6
 0.793
 27.2
 8.77

 18.1900
 -1.3150
 0.319100
 -1.6790
 5
 -3.846
 27.7
 9.25

 6 0.026 30 14.2600 12690 0.019 24 0.011 18.1900 29 0.008 -0.011290 -1.0060 -1.5510 5 -4.649 29.3 10.85 23 16,1800 0.004

 8.0850
 -0.9791
 3 -11.199
 31.4
 12.95

 6.3760
 19490
 -0.009517
 -0.8813
 NA
 NA
 5 -5.729
 31.5
 13.01

 6.4760
 20470
 NA
 -0.9079
 -0.006297
 NA
 5 -5.844
 31.7
 13.24

 7.3180
 NA
 -0.037040
 -0.8432
 NA
 NA
 4 -10.312
 34.3
 15.89

 7.3700
 NA
 -0.021060
 -1.3020
 0.405300
 -1.5510
 6 -3.072
 34.9
 16.50

 8.0850 -0.9791 6.3760 19490 -0.009517 -0.8813 0.001 5 8 0.001 6.4760 20470 0.001 14 0.000 31 17.3700 0.000 2.0860 25600 NA NA -1.026000 NA 4 -11.070 35.9 17.41 8.7430 NA NA -1.1360 0.191400 NA 4 -11.081 35.9 17.43 0.000 10 0.000 13 32 14.2400 12290 -0.003818 -1.1290 0.183000 -1.2220 7 1.422 39.2 20.71 0.000
 3.6380
 NA
 NA
 NA
 -1.104000
 NA
 3
 -15.150
 39.3
 20.86

 8.5060
 NA
 -0.046800
 -1.1400
 0.404500
 NA
 5
 -9.749
 39.5
 21.05

 6.5720
 19070
 -0.011560
 -0.9243
 0.059810
 NA
 6
 -5.707
 40.2
 21.77
 9 0.000 8.5060 15 0.000 16 0.000
 25
 10.1900
 NA
 NA
 -1.162000
 -1.2710
 4
 -13.731
 41.2
 22.73

 26
 5.2590
 22520
 NA
 NA
 -1.061000
 -0.5797
 5
 -10.619
 41.2
 22.73
 0.000 NA -1.061000 -0.5797 5 -10.619 41.2 22.79 NA -1.031000 NA 5 -11.069 42.1 23.69 NA -0.897900 NA 4 -14.530 42.8 24.33 0.000 2.0840 25740 0.001273 0.000 12
 25740
 0.001273
 NA
 -1.031000
 NA
 5
 -11.069
 42.1
 23.69

 NA
 -0.046140
 NA
 -0.897900
 NA
 4
 -14.530
 42.8
 24.33

 NA
 -0.027690
 NA
 -1.030000
 -1.1080
 5
 -13.484
 47.0
 28.52

 NA
 0.177000
 NA
 NA
 10.630
 48.2
 29.82
 11 3.3900 0.000 27 9.1970 0.000 NA NA NA 3 -19.639 48.3 29.83 NA -1.089000 -0.5984 6 -10.600 50.0 31.56 3 1.4500 NA -0.177000 0.000 28 5.3520 23140 0.006454 0.000
 NA
 -1.08900
 -0.394
 6
 -10.800
 50.0
 51.36
 0.000

 NA
 NA
 NA
 4
 -19.318
 52.3
 33.91
 0.000

 NA
 NA
 0.2224
 4
 -19.620
 53.0
 34.51
 0.000

 NA
 NA
 NA
 2
 -26.157
 57.6
 39.20
 0.000

 NA
 NA
 NA
 3
 -24.580
 58.2
 30.72
 0.000

 NA
 NA
 0.6454
 5
 -19.166
 58.3
 39.89
 0.000

 NA
 NA
 0.3507
 3
 -26.140
 61.3
 42.84
 0.000

 NA
 NA
 1.5610
 4
 -24.190
 62.1
 43.65
 0.000
 0.6350 13160 -0.162700 Δ 0.3415 NA -0.176800 -0.7317 NA NA -2.8020 42700 NA -2.8020 16720 -0.158300 19 1 20 -2.4760NA NA 17 18 -10.8900 49400 NA Models ranked by AICc(x)

Appendix H6.2 Hydrangea All Factors Model lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: Min 10 Median 3Q Max -0.36772 -0.19687 0.03742 0.11994 0.40181 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.424e+01 2.258e+00 6.305 0.000743 *** exk -3.818e-03 1.727e-02 -0.221 0.832386 csppm 1.229e+04 4.751e+03 2.586 0.041407 * Incon -1.129e+00 1.820e-01 -6.205 0.000808 *** Inexcon 1.830e-01 2.246e-01 0.815 0.446378 -1.222e+00 3.302e-01 -3.700 0.010090 * ph --signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3039 on 6 degrees of freedom Multiple R-squared: 0.9899, Adjusted R-squared: 0.9815 F-statistic: 117.8 on 5 and 6 DF, p-value: 6.658e-06 Appendix H6.3 Hydrangea Best Fit Model lm(formula = tf1 ~ csppm + lncon + ph, data = ua) Residuals: Min Median 1Q 30 Мах -0.31419 -0.21306 0.01645 0.15122 0.43114 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.333e+01 1.757e+00 7.583 6.41e-05 *** csppm 1.362e+04 3.862e+03 3.526 0.00778 ** Incon -9.865e-01 4.389e-02 -22.478 1.62e-08 *** ph -1.173e+00 2.922e-01 -4.015 0.00387 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2778 on 8 degrees of freedom Multiple R-squared: 0.9888, Adjusted R-squared: 0.9846 F-statistic: 234.8 on 3 and 8 DF, p-value: 3.897e-08

Residual standard error: 0.674 on 10 degrees of freedom Multiple R-squared: 0.9173, Adjusted R-squared: 0.9091 F-statistic: 111 on 1 and 10 DF, p-value: 9.842e-07

Glo	Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = m)										
Mod	lelselecti	ion table	e.	-	-						
	(Intrc)	csppm	exk	Incon	Inxcn	ph	df	logLik	AICC	delta	weight
7	8.92400		0.02232	-1.1130			4	7.192	-0.7	0.00	0.519
13	8.93500			-1.2600	0.3906		4	6.694	0.3	1.00	0.315
15	8.96400		0.01351	-1.1860	0.1787		- 5	7.865	4.3	4.94	0.044
23	7.97700		0.01926	-1.0860		0.15990	- 5	7.481	5.0	5.71	0.030
8	9.15700	-1673.0	0.02162	-1.1250			- 5	7.452	5.1	5.77	0.029
29	7.74900			-1.2010	0.3242	0.20010	- 5	7.136	5.7	6.40	0.021
14	9.22900	-2098.0		-1.2700	0.3771		- 5	7.079	5.8	6.51	0.020
21	4.86200			-0.9602		0.64470	4	3.508	6.7	7.37	0.013
5	8.37900			-1.0180			3	-0.006	9.0	9.68	0.004
22	1.84800	7048.0		-0.8646		1.00400	5	4.709	10.6	11.25	0.002
16	9.20000	-1701.0	0.01274	-1.1990	0.1799		6	8.166	12.5	13.14	0.001
6	9.02300	-4312.0		-1.0570			4	0.556	12.6	13.27	0.001
31	8.25500		0.01205	-1.1590	0.1622	0.11910	6	8.036	12.7	13.40	0.001
24	8.34600	-613.4	0.01992	-1.0980		0.11200	6	7.490	13.8	14.49	0.000
30	8.11700	-613.7		-1.2180	0.3360	0.15250	6	7.144	14.5	15.18	0.000
32	9.79600	-2476.0	0.01339	-1.2230	0.1919	-0.08182	7	8.186	25.6	26.30	0.000
26	-15.32000	31140.0			-0.6772	3.27200	5	-3.806	27.6	28.28	0.000
20	-22.77000	42410.0	-0.04873			4.24500	5	-6.649	33.3	33.97	0.000
25	-8.15400				-1.1220	2.57900	4	-10.683	35.1	35.75	0.000
28	-13.98000	29670.0	0.01144		-0.8043	3.08300	6	-3.693	36.2	36.86	0.000
18	-23.85000	56040.0				4.12500	4	-11.518	36.8	37.42	0.000
11	6.89600		0.11520		-2.2480		4	-11.934	37.6	38.25	0.000
27	-3.02000		0.05836		-1.6630	1.78500	5	-9.383	38.8	39.44	0.000
9	4.38000				-1.2700		3	-16.351	41.7	42.37	0.000
12	5.94300	7548.0	0.11380		-2.1380		5	-11.703	43.4	44.08	0.000
19	-18.60000		-0.09437			4.09300	4	-15.866	45.4	46.12	0.000
10	3.13700	10170.0			-1.1380		4	-16.150	46.0	46.68	0.000
2	-4.45500	49890.0					3	-20.736	50.5	51.14	0.000
17	-17,90000					3.62200	3	-21.232	51.5	52.13	0.000
3	0.04756		-0.08134				3	-21.904	52.8	53.48	0.000
1	-1.21700						2	-23.918	53.2	53.84	0.000
4	-3,12600	38790.0	-0.03915				4	-20,252	54.2	54.89	0.000
Mod	Models ranked by AICc(x)										

Appendix H7.1 Maple Models

Appendix H7.2 Maple All Factors Model lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: Min 1Q Median 3Q Max -0.26788 -0.07645 0.01939 0.09101 0.15649 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.796e+00 4.309e+00 2.273 0.06338.

 9.7960+00
 4.3090+00
 2.273
 0.06338

 1.3390-02
 1.2560-02
 1.066
 0.32726

 -2.4760+03
 6.3560+03
 -0.390
 0.71026

 -1.2230+00
 1.9990-01
 -6.119
 0.00087

 1.9190-01
 2.2330-01
 0.859
 0.42332

 -8.1820-02
 5.8790-01
 -0.139
 0.89387

 exk csppm Incon Inexcon ph ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.173 on 6 degrees of freedom Multiple R-squared: 0.9953, Adjusted R-squared: 0.9913 F-statistic: 251.7 on 5 and 6 DF, p-value: 6.973e-07 Appendix H7.3 Maple Best Fit Model $lm(formula = tf1 \sim exk + lncon, data = m)$ Residuals: Min 10 Median 30 Мах -0.23954 -0.11613 0.01659 0.05927 0.23140 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.924346 0.273084 32.680 1.16e-10 *** 0.004885 4.569 0.00135 ** exk 0.022319 0.032962 -33.764 8.65e-11 *** Incon -1.112920 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1534 on 9 degrees of freedom Multiple R-squared: 0.9944, Adjusted R-squared: 0.9932 F-statistic: 799.1 on 2 and 9 DF, p-value: 7.356e-11 Appendix H7.4 Maple ¹³⁷Cs Model lm(formula = tf1 ~ lncon, data = m) Residuals: Min 1Q Median 3Q Max -0.27740 -0.17816 -0.08324 0.09629 0.43207 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.37936 0.42460 19.73 2.45e-09 *** lncon -1.01827 0.04431 -22.98 5.50e-10 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.2652 on 10 degrees of freedom

Multiple R-squared: 0.9814, Adjusted R-squared: 0.9796 F-statistic: 528 on 1 and 10 DF, p-value: 5.502e-10

Appendix no.1 Japanese Edequer Models											
Gl	obal mode	el call:	lm(formul	la = tf1	~ exk + 0	sppm +	Ind	con + lne	excon +	- ph, da	ata = 1)
MO	del selec	tion tal	ble								
	(Intrc)	csppm	exk	Incon	Inxcn	ph	df	logLik	AICC	delta	weight
5	7.52700)		-1.0090			3	-3.519	17.8	0.00	0.546
9	2.42900				-1.11800		3	-5.082	21.0	3.13	0.114
6	5.23300	24590		-0.8604			4	-1.525	21.0	3.21	0.110
21	15.68000)		-0.8638		-1.647	4	-1.752	21.5	3.67	0.087
25	14.26000)			-0.91050	-2.190	4	-2.393	22.8	4.95	0.046
10	0.46800	31400			-0.91290		4	-2.398	22.8	4.96	0.046
7	7.54200)	0.02823	-1.0620			4	-3.158	24.3	6.48	0.021
13	8.15600)		-1.1340	0.14110		4	-3.495	25.0	7.15	0.015
26	10.85000	26800			-0.76570	-1.870	5	1.484	27.0	9.19	0.006
11	2.19500)	0.02635		-1.17300		4	-4.864	27.7	9.89	0.004
22	12.86000	22670		-0.7396		-1.504	5	0.915	28.2	10.33	0.003
8	5.29600	24050	0.02508	-0.9106			5	-1.078	32.2	14.32	0.000
23	15.35000)	0.02207	-0.9113		-1.577	5	-1.430	32.9	15.02	0.000
14	4.44800	25420		-0.7142	-0.15900		5	-1.481	33.0	15.12	0.000
29	15.19000)		-0.6568	-0.22300	-1.748	5	-1.672	33.3	15.51	0.000
12	0.26260	31190	0.02458		-0.96590		5	-2.050	34.1	16.26	0.000
27	13.86000)	0.02069		-0.95770	-2.150	5	-2.150	34.3	16.46	0.000
17	42.10000)				-7.513	3	-12.626	36.1	18.21	0.000
2	-5.23700	108100					3	-12.698	36.2	18.36	0.000
15	7.96100)	0.02780	-1.1440	0.09419		5	-3.146	36.3	18.46	0.000
18	22.83000	65960				-4.642	4	-9.532	37.1	19.23	0.000
19	36.59000)	-0.10880			-6.268	4	-11.530	41.1	23.22	0.000
4	-2.97000	90130	-0.10370				4	-11.758	41.5	23.68	0.000
1	-0.05849)					2	-17.889	41.8	23.94	0.000
3	3.05100)	-0.22920				3	-15.721	42.2	24.40	0.000
20	21.67000	58300	-0.06724			-4.206	5	-8.795	47.6	29.75	0.000
28	10.48000	26720	0.02001		-0.81190	-1.833	6	2.041	49.9	32.08	0.000
30	11.43000	25070		-0.2497	-0.51380	-1.723	6	1.691	50.6	32.78	0.000
24	12.60000	22330	0.01966	-0.7837		-1.444	6	1.384	51.2	33.39	0.000
16	4.31800	25070	0.02585	-0.7296	-0.19860		6	-1.003	56.0	38.17	0.000
31	14.79000)	0.02277	-0.6817	-0.24900	-1.688	6	-1.324	56.6	38.81	0.000
32	11.10000	24800	0.02091	-0.2769	-0.53450	-1.668	7	2.330	121.3	103.50	0.000
MO	Models ranked by AICC(X)										

Appendix H8.1 Japanese Lacquer Models

Appendix H8.2 Japanese Lacquer All Factors Model

lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: 154 155 156 160 161 162 166 167 168 -0.104490 -0.185490 0.060600 0.033583 0.482524 -0.062797 -0.006929 -0.150236 -0.066766 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.110e+01 4.960e+00 2.238 0.111 2.091e-02 3.089e-02 0.677 0.547 exk 2.480e+04 1.279e+04 1.938 csppm 0.148 -2.769e-01 6.206e-01 -0.446 Incon 0.686 0.464 Inexcon -5.345e-01 6.379e-01 -0.838 -1.668e+00 9.192e-01 -1.814 ph 0.167 Residual standard error: 0.3235 on 3 degrees of freedom

Multiple R-squared: 0.9888, Adjusted R-squared: 0.9702 F-statistic: 53.04 on 5 and 3 DF, p-value: 0.003977

lm(formula = tf1 ~ lncon, data = l)

Appendix H8.3 Japanese Lacquer Best Fit Model

Residuals: Min 1Q Median 3Q Max -0.42745 -0.39413 -0.05715 0.44251 0.48274 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.52735 0.60834 12.37 5.17e-06 *** 0.07887 -12.79 4.14e-06 *** Incon -1.00877 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4056 on 7 degrees of freedom Multiple R-squared: 0.959, Adjusted R-squared: 0.9531 F-statistic: 163.6 on 1 and 7 DF, p-value: 4.141e-06

Appendix H9.1 Unknown Models

Global model call: lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = ub)

MOC	lel selecti	on tab	ble								
	(Intrc)	csppm	exk	Incon	Inxcn	ph	df	logLik	AICC	delta	weight
6	4.37800	31910		-0.6708			4	-4.155	26.3	0.00	0.659
5	10.21000			-1.0530			3	-9.134	29.1	2.76	0.166
9	6.63300				-1.4080		3	-9.880	30.6	4.25	0.079
2	-4.19900	63340					3	-10.919	32.6	6.33	0.028
13	9.10700			-0.6213	-0.6560		4	-7.672	33.3	7.03	0.020
10	2.08300	29890			-0.8641		4	-8.045	34.1	7.78	0.013
11	9.14400		0.102800		-2.3090		4	-8.429	34.9	8.55	0.009
7	9.13900		-0.030830	-0.8897			4	-8.635	35.3	8.96	0.007
21	7.61600			-0.9973		0.47670	4	-9.021	36.0	9.73	0.005
22	6.69000	34320		-0.7014		-0.50630	5	-3.813	37.6	11.32	0.002
25	8.64100				-1.4790	-0.38990	4	-9.829	37.7	11.35	0.002
8	4.30500	35080	0.014570	-0.7101			5	-3.920	37.8	11.53	0.002
14	4.55200	29960		-0.6225	-0.1088		5	-4.085	38.2	11.86	0.002
3	2.21800		-0.131300				3	-13.694	38.2	11.88	0.002
4	-2.78700	51070	-0.035690				4	-10.524	39.0	12.74	0.001
18	-6.25200	59230				0.54120	4	-10.826	39.7	13.34	0.001
12	4.50300	31670	0.110100		-1.7960		5	-5.156	40.3	14.00	0.001
17	-17.53000					4.08500	3	-15.725	42.3	15.94	0.000
1	0.05298						2	-18.204	42.4	16.10	0.000
15	10.03000		0.060090	-0.4835	-1.3490		5	-7.083	44.2	17.86	0.000
29	10.78000			-0.6188	-0.7179	-0.32610	5	-7.615	45.2	18.92	0.000
19	2.07500		-0.130700			0.03089	4	-13.694	45.4	19.08	0.000
26	5.55200	31350			-0.9671	-0.71680	5	-7.789	45.6	19.27	0.000
27	5.20200		0.127500		-2.3650	0.88290	5	-8.167	46.3	20.02	0.000
23	10.43000		-0.036400	-0.8922		-0.27270	5	-8.612	47.2	20.91	0.000
20	-1.71100	51220	-0.040440			-0.23390	5	-10.513	51.0	24.72	0.000
16	5.44100	31060	0.068960	-0.4645	-0.8843		6	-2.097	58.2	31.88	0.000
30	7.69000	31290		-0.6177	-0.2084	-0.65240	6	-3.559	61.1	34.81	0.000
24	6.14300	35260	0.006759	-0.7128		-0.39390	6	-3.777	61.6	35.24	0.000
28	2.23500	30820	0.124900		-1.8440	0.53590	6	-4.961	63.9	37.61	0.000
31	8.23200		0.073470	-0.4558	-1.4290	0.39070	6	-7.020	68.0	41.73	0.000
32	5.28900	31000	0.070140	-0.4620	-0.8923	0.03480	7	-2.095	130.2	103.88	0.000
Mod	Models ranked by AICc(x)										

Appendix H9.2 Unknown All Factors Model

lm(formula = tf1 ~ exk + csppm + lncon + lnexcon + ph, data = yo) Residuals: 136 82 83 84 137 138 151 152 153 -0.004723 0.133365 -0.187536 -0.231655 0.715719 0.165963 -0.007110 -0.186127 -0.397896 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.289e+00 5.405e+00 0.978 0.4000 exk 7.014e-02 6.533e-02 1.074 0.3617

 3.100e+04
 1.270e+04
 2.442
 0.0924

 -4.620e-01
 2.827e-01
 -1.634
 0.2007

 -8.923e-01
 7.654e-01
 -1.166
 0.3280

 3.480e-02
 1.112e+00
 0.031
 0.9770

 csppm Incon Inexcon ph ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.529 on 3 degrees of freedom Multiple R-squared: 0.9721, Adjusted R-squared: 0.9256

F-statistic: 20.92 on 5 and 3 DF, p-value: 0.01542

Appendix H9.3 Unknown Best Fit Model lm(formula = tf1 ~ csppm + lncon, data = ub) Residuals: 3Q Min 1Q Median Мах -0.63492 -0.25696 -0.03956 0.37234 0.55706 Coefficients: Estimate Std. Error t value Pr(>|t|) 4.3783 1.9229 2.277 0.06307 . (Intercept) csppm 31909.7765 9157.6277 3.485 0.01307 * -0.6708 0.1465 -4.580 0.00377 ** Incon _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4702 on 6 degrees of freedom Multiple R-squared: 0.9559, Adjusted R-squared: 0.9412 F-statistic: 65.07 on 2 and 6 DF, p-value: 8.561e-05 Appendix H9.3 Unknown ¹³⁷Cs Model lm(formula = tf1 ~ lncon, data = ub) Residuals: 1Q Median Min 3Q Max -0.6808 -0.5146 -0.3005 0.8123 1.0400 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 10.2081 1.5260 6.689 0.000280 *** 0.1561 -6.748 0.000266 *** Incon -1.0533 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.757 on 7 degrees of freedom Multiple R-squared: 0.8667, Adjusted R-squared: 0.8477 F-statistic: 45.53 on 1 and 7 DF, p-value: 0.0002656