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ABSTRACT 
 
 
 

MODELING SOIL ORGANIC MATTER: THEORY, DEVELOPMENT, AND APPLICATIONS IN BIOENERGY  

CROPPING SYSTEMS 
 
 
 

 Soil organic matter (SOM) is a complex, dynamic, and highly variable soil constituent that is of 

fundamental importance to many soil functions, terrestrial ecosystem processes, and biogeochemical 

cycles. Its importance extends across scales, ranging from site-specific impacts on soil fertility to the 

global net exchange of carbon between terrestrial systems and the atmosphere. Soil organic matter is 

impacted by human activities, as seen most directly in agricultural systems. In this context, SOM models 

play an important role in integrating the understanding of complex, interacting soil processes across 

temporal and spatial scales, contributing to land use decision making by providing comparative 

evaluation of soil impacts associated with different management practices. Crop-based bioenergy 

feedstock productions systems are an emerging area for these types of SOM model applications. 

However, model evaluations are dependent on the theoretical basis of a given SOM model, as well as 

the quality of data used to drive the model for a given system or management scenario. This study 

therefore explores linkages between advances in the theoretical understanding of SOM dynamics, the 

development of SOM models to reflect these advances, and the application of SOM models to assess 

crop-based bioenergy production systems.  

First, five emerging areas in SOM research were reviewed in the context of SOM models, 

including SOM stabilization mechanisms, saturation kinetics, temperature sensitivity, dynamics in deep 

soils, and incorporation into earth system models. These reviews demonstrated the importance of 

identifying where SOM model development and applications are most limited, whether in theoretical 

understanding, in model implementation, or in data availability. For example, SOM saturation kinetics is 
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theoretically well understood but remains difficult to implement in SOM models, only yielding 

improvements in a narrow set of ecological conditions. SOM temperature sensitivity and deep soil 

dynamics, however, are more limited by poor data availability in addition to poor theoretical 

understanding of interacting processes.  

A selection of shortfalls in SOM modeling were then addressed and explored with the Litter 

Decomposition and Leaching (LIDEL) model, a litter decomposition model that incorporates dynamic 

microbial carbon use efficiency (CUE) and yields dissolved organic carbon (DOC) as one of the 

byproducts of litter decomposition. In this analysis a hierarchical Bayesian statistical approach was used 

to test model performance and estimate unknown model parameters using experimental data. While 

this analysis showed the LIDEL model successfully integrates hypotheses for litter nitrogen and lignin 

controls on dynamic microbial CUE and the generation of DOC from litter decomposition, there remains 

a great deal of uncertainty in the rate of microbial biomass turnover as well as the proportioning of 

biomass from microbial turnover between solid versus soluble microbial products. Targeted 

experimental evaluation of the generation of DOC from microbes versus litter would support greater 

certainty in these model parameters and further model development for more general applications.  

Finally, the performance of the DAYCENT ecosystem model was evaluated in simulating US corn 

residue removal and Brazilian sugarcane production, two types of crop-based bioenergy feedstocks. 

DAYCENT is a process-based ecosystem model that integrates a soil organic carbon model to simulate 

carbon and nitrogen cycling processes through plant-soil interactions. The results of DAYCENT corn 

residue removal simulations highlighted several DAYCENT model biases, such as low corn yield estimates 

in dry regions and an overestimation of soil carbon loss with conventional tillage. Despite these biases, 

the results showed the importance of considering interactive effects between corn residue removal and 

other crop management practices in this type of bioenergy feedstock production system. The results 

suggest corn residue removal is ideally paired with management practices—such as reduced tillage—to 
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maintain or improve soil carbon stocks. The analysis of Brazilian sugarcane management practices also 

highlighted management practices poorly simulated by DAYCENT, in particular identifying the need to 

improve DAYCENT simulations of high N2O emission conditions observed in mechanically-harvested 

sugarcane, perhaps by adding simulation of DOC movement across the soil profile. However, this 

analysis also identified a need for more accurate and consistent daily precipitation data to drive 

DAYCENT simulations of N2O emissions from Brazilian sugarcane management practices, particularly as 

there is interest in regionally-scaled analyses of direct greenhouse gas emissions from sugarcane 

production in Brazil.  

Taken together, the results of this study show the importance of a close connection between 

emerging areas in SOM theory, SOM model developments, and SOM model applications in crop-based 

bioenergy feedstock production systems. This connection allows for the identification of specific areas in 

need of further research, whether developing new modeling approaches or gathering additional data to 

parameterize, drive, and evaluate model simulations.  This connection should remain a central emphasis 

as SOM models are increasingly incorporated into crop-based bioenergy policy and land management 

decision making.  
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1    INTRODUCTION 
 
 
 

Soil organic matter (SOM) is highly complex, often mysterious, and offers endless challenges to 

the understanding of its underlying dynamics. Soil organic matter also plays a fundamental role in 

natural processes across scales. These scales range from soil microsites where water, organic matter, 

nutrients, and oxygen, and living organisms interact to determine the fate of litter inputs (Davidson et 

al., 2014), to globally-scaled processes such as carbon (C) cycling between terrestrial systems and the 

atmosphere (Heimann and Reichstein, 2008). Soil organic matter is therefore an important 

consideration in land management, both in sustaining its value as a resource—e.g. supporting 

productive soils used for agricultural production—and in mitigating direct and indirect ecosystem 

impacts of human activities—e.g. the potential for loss of soil C due to land use conversion from native 

ecosystems into agricultural production (Searchinger et al., 2008). The understanding of SOM dynamics 

is therefore often linked to efforts to soil and ecosystem management, whether to improve soil health 

and productivity or to preserve key functions such as C storage. 

In this context, SOM models play a key role in integrating understanding of complex, interacting 

soil processes across scales. Soil organic matter model development has continually advanced, with 

recent emphasis on testing hypotheses for the impacts of climate change on SOM dynamics and 

ecosystem processes. The climate impact assessment of crop-based bioenergy production systems is an 

example of an area where SOM models are seeing increasing application, in the context of greenhouse 

gas emission management and the development of sustainable land management practices. In these 

applications, SOM models provide a tool to project across temporal and spatial areas, contributing to 

decision making by providing comparative evaluation of GHG impacts associated with crop management 

practices. However the validity of these model evaluations are only as good as their basis in the scientific 

understanding of SOM dynamics.  
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The first part of this work, presented in chapter two, provides an extensive review of SOM 

modeling, discussing past developments, history, and giving an overview of the ‘toolbox’ common model 

formulations. Chapter two also provides a series of five short reviews on rapidly advancing areas in SOM 

modeling. These short reviews are on the topics of 1) recent ideas in SOM stabilization mechanisms, 2) 

saturation kinetics, 3) temperature controls on decomposition, 4) deep SOM dynamics, and finally 

concludes with 5) a discussion of SOM representation in earth system models.  

Looking to address some of the shortfalls in SOM modeling discussed in chapter two, chapter 

three presents the Litter Decomposition and Leaching (LIDEL) model, a new modeling approach to litter 

decomposition that incorporates dynamic microbial carbon use efficiency and yields dissolved organic 

carbon (DOC) as one of the byproducts of litter decomposition. Other SOM models have been criticized 

for poorly accommodating either of these important components of litter decomposition. The LIDEL 

model provides a first step to a new approach to litter decomposition that would strongly advance 

simulation of DOC dynamics through the soil profile, recognized as an important component of deep soil 

C processes (Rumpel and Kögel-Knabner, 2010). Chapter three additionally presents a hierarchical 

Bayesian analysis for data-model integration, using this approach to estimate unknown LIDEL model 

parameters and compare the performance of four different LIDEL model formulations. This analytical 

approach accommodates the high variability and uncertainty in both measured data and model 

formulation that are commonly characteristic in SOM research.   

The final two chapters then step out to a larger scale to explore the use of the DAYCENT 

model—a full ecosystem model that integrates the CENTURY soil organic carbon model to simulate C 

and N cycling processes in plant-soil interactions (Parton, 1987)—in simulating two types of crop-based 

bioenergy feedstocks. Chapter four provides a validation analysis of DAYCENT performance in simulating 

corn stover harvest for cellulosic ethanol in the United States. Chapter five then presents a  
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parameterization and validation analysis of DAYCENT model performance in South Central Brazilian 

sugarcane production systems.  

Taken together, these four chapters contribute towards a more integrated connection between 

emerging areas in SOM theory, SOM model developments, and SOM model applications in crop-based 

bioenergy feedstock production systems. This connection is an important area of consideration as SOM 

models are increasingly incorporated into crop-based bioenergy policy and land management decision 

making. This study aims to demonstrate how connecting across SOM theory, SOM model development, 

and SOM model applications can allow for better identification of specific areas in need of further 

research, whether developing new modeling approaches or gathering additional data to parameterize, 

drive, and evaluate model simulations.   
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2    SOIL ORGANIC MATTER MODELING- PAST APPROACHES AND NEW CHALLENGES1 
 
 
 

2.1 Introduction 

Many discussions of soil organic matter (SOM) research begin with a statement to the effect 

that soils are complex, challenging to study, and do not easily part with their mysteries. A new favorite 

term is ‘the Gemish effect’ (Davidson et al., 2014), referring to the challenge of identifying fundamental 

drivers in the hodgepodge of soil minerals, organisms, and organic matter cycling dynamically through 

space and time in the belowground environment. Apart from being recognized as the “most complicated 

biomaterial on the planet” (Young & Crawford, 2004, pg 1634), SOM is also a key component of 

ecosystem processes and biogeochemical cycles, notably including the responses to and sustainability of 

human impacts on the earth. The study of SOM further requires wrestling with the logistical challenges 

of soil opacity and observer effects—where what is observed is changed by the process of observation—

as well as the conceptual challenges of integrating interactions between multiple factors across scales. It 

is with the latter that simulation models for SOM dynamics play a crucial role in SOM research.  

In soil science and ecology, simulation models serve many purposes ranging from mathematical 

formalization of hypotheses to projecting processes across space and time. Models are meant to provide 

a useful simplification of reality. Yet even after over a century of study there are few hard rules in the 

understanding SOM dynamics. Some of this is driven by the logistical challenges of measuring soils. Soils 

are difficult to characterize in ways that account for their complexity and heterogeneity across systems, 

scales, and depths. SOM model testing is therefore routinely data-poor, particularly across large scales 

and long periods of time. However other uncertainties arise from using measurements of operationally 

defined (e.g., by mesh size, chemical extraction, density) soil fractions to evaluate and compare SOM 

                                                           
1
 In preparation with K. Paustian for a chapter titled “Simulation Modeling” in Methods of Soil Analysis: Soil 

Organic Matter, edited by R.F. Turco. 
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dynamics. Soil fractionation methods are recognized to have variable linkages to mechanisms that affect 

SOM and drive its ecological behavior (von Lützow et al., 2007; Wander, 2004). Bulk soil dynamics are 

not easily reconstructed from measurement of its parts. 

Simulation models of SOM therefore play a key role in SOM research and application by 

supporting hypothesis testing and predictions that are often infeasible by direct measurements, and 

more importantly, by providing an explicit mathematical framework for considering the structure and 

dynamics of SOM. The linkage between SOM measurements and conceptual understanding of SOM 

dynamics is accordingly at the foundation of SOM model structure. For example, some SOM models are 

formulated with conceptual, kinetically-defined SOM pools, that are not directly measurable per se,  but 

have been proven through decades of testing as general models that work reasonably well to simulate 

bulk soil dynamics, particularly over the long-term (e.g., Jenkinson & Rayner, 1977; Parton et al., 1987). 

Other emerging SOM models take different approaches to SOM dynamics—e.g. defining SOM pools by 

specific SOM mechanisms or as analytically measureable SOM fractions. However, many of these 

models currently remain more limited in their applications, either due to simplification of factors that 

are important at larger scales, or due to limited data availability (Davidson et al., 2014; Segoli et al., 

2013; Tipping et al., 2012).  Ideally, a SOM model would be based on mechanistic understanding of SOM 

dynamics, use SOM pools that can be informed by measured data, and apply across multiple scales.  At 

this point in time, however, no single SOM model yet fits this ideal and indeed inherent tradeoffs 

between model attributes (e.g., generality, predictive capacity, complexity) relative to their intended 

purpose suggest that no such ideal model can exist (Levins, 1966; Sharpe, 1990).  

Jenny’s now classic factors of soil formation, informed by even earlier work (Hilgard, 1906; 

Dokuchaev, 1883), provides a useful framework to examine the complexities SOM dynamics, presenting 

the interaction of soil forming factors as; 

                  Eqn 1  
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such that a particular soil attribute (S) is a function of climate (cl), organisms (o), topography (r), parent 

material (p), time (t) and other factors that often include human activities (Bidwell and Hole, 1965; 

Jenny, 1941). This approach has formed the conceptual underpinning of many process-based soil and 

ecosystem models (Vitousek, 1994). We argue that it continues to act as an overarching framework in 

SOM modeling, providing a common thread to evaluate how current hypotheses for SOM dynamics are 

reflected in SOM models applied across scales. 

Development of SOM models moves hand-in-hand with conceptual understanding of SOM 

dynamics and their linkages to SOM measurements. In recent years, new hypotheses for SOM 

persistence have led to reformulation of SOM models to explore explicit simulation of microbial biomass 

and more mechanistically-based microbial decomposition mechanisms. Researchers have also examined 

the mechanism of SOM saturation as a limitation on soil carbon storage. Expanding efforts to aggregate 

SOM data and complete large-scale multi-model testing are also pushing SOM model development 

forward. These efforts have been driven in part by the potential role of SOM as a sink or source of 

atmospheric CO2, with implications for global climate change. Temperature sensitivity of SOM 

decomposition with warming climates has consequently been brought under greater scrutiny, alongside 

increased interest in simulation of SOM dynamics in deep soil layers. Global and earth system models, 

which are now incorporating SOM models of increasing complexity, are an area for soil scientists to both 

evaluate SOM hypotheses at a global scale, as well as support better model development and accuracy 

through model-data integration.  

In this review we first provide some background and history of SOM model development, as well 

as brief summaries of modeling approaches and their linkages to SOM measurements and the 

conceptual understanding of SOM dynamics (Section 2.2). We will then review a selection of recent 

advances in SOM modeling that we believe are particularly relevant to ongoing SOM research. These 

include: new ideas in SOM stabilization, modeling SOM saturation kinetics, temperature controls on 
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decomposition, SOM dynamics in deep soil layers, and finally a review of SOM representation in earth 

system models (ESMs) (Section 2.3).  

2.2 SOM modeling, past and present 

2.2.1  Basic modeling concepts and terminology 

There are several general differences in approaches to mathematical modeling. The first is the 

difference between an empirical versus a mechanistic model. An empirical model is data-driven, making 

predictions based on observations of a relationship or interaction, without explicitly defining the 

underlying causal mechanisms. A mechanistic model, on the other hand, is based on a representation of 

mechanisms that drive dynamics in a system, using a ‘first principles’ approach (i.e. starting with the 

most basic assumptions) to build a predictive model. The latter is often a more defensible foundation for 

an explanatory model, but is hard to come by in ecology and biogeochemistry where system dynamics 

typically result from complex, heterogeneous, interactive factors that are often not fully understood.  

Whether empirically- or mechanistically-based, models can be static or dynamic, the former 

referring to a model of a system at a fixed point or interval of time while the latter explicitly includes 

changes through time. Models can also be either stochastic or deterministic. Stochastic models include 

random variation in model simulations, while deterministic models do not. In a deterministic model the 

same initial conditions and model parameters will always generate the same result, while stochastic 

model results will have some degree of random variability. Many processes in ecology and 

biogeochemistry are variable and change through time. Stochastic and dynamic models are often a 

closer representation of these types of systems. However, stochastic and dynamic models are also 

typically more complex and computationally intensive, which may limit their use. Models are ideally as 

simple as possible, while still serving as an effective representation of reality. 

As commonly used terminology, a model pool refers to a quantity of material. For the purposes 

of this review model pools are generally quantities of OM or C. A flux is the rate at which material 
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moves from one pool to another or into a larger sink or source external to the system being simulated. 

A parameter controls the dynamics of the system and can either be a constant or variable, depending on 

whether it is a set value or informed by other internal (e.g. pools or fluxes) or external (e.g. driving 

variables) components of the system. Figure 2-1 gives a visual representation of a set of dynamic, 

deterministic models with structures commonly used in SOM models, representing pools as boxes and 

fluxes as arrows.  

2.2.2 History overview of SOM modeling  

The origins of mathematical modeling of SOM processes, we would argue, largely stem from 

two main areas of inquiry.  First, several early models were developed to describe the rate of mass loss 

of plant residues and the relationship between plant residue inputs and soil organic matter levels (Hénin 

and Depuis, 1945; Jenny et al., 1949; Salter and Green, 1933), including the observed loss of SOM 

following conversion of native ecosystems to cropland (Jenny, 1941).  These were formulated as single 

pool models with first-order decay kinetics for mass loss, vis,     

  

  
       Eqn 2 

at equilibrium(C*), 
  

  
  , then, 

   
 

 
,  Eqn 3 

where C is SOC (or plant litter C), I is organic C input and k is the specific rate of decay.  This simple 

formulation expresses the fundamental concept that (in a stable environment) SOM content (or plant 

litter stock) tends towards an equilibrium state given by the balance between plant carbon litter inputs 

(I) and SOM C decay, which can be defined by an overall mean residence time (equal to 
 

 
) of C in soil 

(Olson, 1963). 

A second area of early mathematical modeling concerned the dynamics of nitrogen, given its 

many recognized states in soil and particularly with the advent of 15N as a tracer, models were 
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formulated to describe and interpret the results of isotopic mixing and N transformations between 

different forms in soils (Jansson, 1958; Kirkham and Bartholomew, 1954).  For early models of both soil C 

and N dynamics, models needed to be solvable using analytical methods and thus representation of 

SOM was highly simplified, usually as a single ‘homogeneous’ pool.  Although the heterogeneity of SOM, 

in the sense that it is comprised of many different forms of organic matter decomposing at different 

rates, was clearly recognized (e.g Waksman, 1926; Waksman & Stevens, 1930), this key aspect of SOM 

was not addressed in early models, likely due to the practical mathematical reasons stated above.    

With the widespread availability of digital computers and programming languages beginning in the 

late 1960s, along with the establishment of the International Biological Programme (IBP) and its goal of 

computer modeling of whole ecosystem dynamics (Innis, 1978), more complex models, which included 

soil organic matter dynamics formulated with multiple SOM pools, continuous driving variables (e.g., 

temperature, moisture) and a more mechanistic treatment of controls on decomposition and 

stabilization factors, were developed (e.g., Hunt, 1977; Smith, 1979; McGill et al., 1981).  Arguably, one 

of the motivations affecting the formulation of this first generation of computerized models was a desire 

for comprehensiveness and detail in the components and processes known to be of importance.  Hence, 

in several models, explicitly including microbial biomass components as explicit state variables 

controlling decomposition and transformation of non-living litter and SOM pools was axiomatic.  While 

useful as explanatory and research models, the strong feedbacks between microbial biomass and 

organic matter pools and high sensitivity of the models to poorly-understood parameters controlling 

microbial growth and mortality, yielded model stability problems and made the models less suitable for 

predictive purposes.  Subsequently, the vast majority of ecosystem-scale models of SOM dynamics 

developed during the 1980s and 90s (e.g. Smith et al., 1997) retained a multiple-pool approach and a 

relatively comprehensive inclusion of dynamic environmental drivers, but reverted back to a first-order 

kinetics paradigm.  In these models the role of microbes and other decomposer organisms are certainly 
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implicit, and their responses are represented by rate modifying functions determined by dynamic 

environmental and management conditions, but the actual quantity or biomass of decomposer 

organisms are not included as a rate control.  This mainstream approach largely continues to this day, 

although as discussed in the third section of this review, there is an ongoing reexamination of this 

dominant paradigm and an exploration of ways to more explicitly represent microbial controls on SOM 

transformations.  

2.2.3 SOM modeling approaches 

The ‘toolbox’ of mathematical approaches to SOM modeling has seen relatively little recent 

change or expansion (Parton et al., 2015). Rather, advancements in SOM modeling are largely derived 

from new linkages between mathematical approaches and conceptual understanding of SOM dynamics. 

In this section we present a basic summary of mathematical modeling and applications to SOM, as 

background to more recent developments in SOM models reviewed in Section 2.3.  

2.2.3.1 First order kinetics – dominant multi-compartment models 

1st order decomposition kinetics are a modeling approach where the flux of material from a pool 

is linearly related to the quantity of material in that pool (Figure 2-1, A & B). 1st order kinetics are a 

mathematically simple expression of decomposition that continues to dominate SOM modeling. It is also 

a mathematical approach that lends itself more easily to analysis of steady-state conditions, particularly 

when applied to a single pool model where the steady state is proportional to the input divided by the 

decomposition rate (Eqn's 2 & 3, detailed derivation in Stewart et al., 2007).  

As described above, a single-pool SOM model using 1st order kinetics is one of the simplest 

mathematical approaches to simulate a dynamic relationship between SOM and decomposition 

processes (Figure 2-1, A). A single-pool approach has been used to simulate SOM dynamics (e.g. 

Giardina & Ryan, 2000). However, the most common SOM model structure uses multiple pools to 

simulate SOM dynamics, each pool acting under 1st order kinetics but with different rates of change and 
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input movement from one compartment to another (Figure 2-1, B) (Paustian, 1994). The widely-used 

CENTURY model reflects this approach, using three compartments that reflect pools containing fast, 

slow, and passive SOM as well as additional pools representing fresh plant residues (Parton et al., 1987). 

As will be discussed in Section 2.3.5, this type of structure is particularly common within models applied 

at high spatial scales (e.g. Earth System Models (ESMs)), by serving as a relatively simple mathematical 

approach that dynamically represents decomposition across heterogeneous SOM. However, it is 

increasingly critiqued as having limited ability to reflect new understanding of mechanisms driving SOM 

dynamics (Todd-Brown et al., 2012). 

2.2.3.2 Organism-oriented and non-1st order kinetic 

There are currently two main areas of development in SOM models exploring alternative 

approaches to 1st order kinetics. The first centers on an old debate described above, specifically: how 

are soil organisms represented in SOM models? Decomposition processes are obviously dependent on 

microorganisms. However, 1st order decomposition models like CENTURY implicitly model microbes 

through controls on decomposition rates while lumping microbial biomass within kinetically-defined 

SOM pools. This approach is based on the assumption that the soil microbial community can respond 

quickly to changes, and their biomass will therefore not limit the rate at which decomposition processes 

occur (Paustian, 1994). Early models like PHOENIX took a more organism-oriented approach, explicitly 

simulated microbial biomass as a direct control on decomposition rates (McGill et al., 1981). These types 

of models were more commonly applied to examine soil food webs and energy flow through the soil 

environment (Paustian, 1994). However, 1st order kinetic models represented a simpler approach shown 

to perform well simulating a wider array of SOM responses, and therefore gained more widespread 

acceptance and use than organism-oriented models for ecosystem-scale soil C dynamics (Stockmann et 

al., 2013).  
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Recent ideas in SOM persistence have brought explicit microbial models back into focus, where 

microbial biomass is included as a SOM pool that affects SOM decay rates (Figure 2-1, C). It is not yet 

clear if returning to these approaches yields improvements in model simulations across scales, but there 

are rapidly developing efforts exploring these mathematical approaches. This will be discussed in more 

detail in Section 2.3.1. 

A perhaps less contentious topic is the implementation of saturation kinetics within SOM 

models, where the quantity of material in a pool—relative to a maximum amount—affects the flow of 

material into that pool (Figure 2-1, D). This is a reasonably straightforward, defensible SOM concept. 

However it adds mathematical complexity to SOM models relative to 1st order kinetics. It is also not yet 

certain how to quantify saturation capacity for a given SOM pool. Despite repeated observation of 

saturation kinetics, this is a dynamic that has had little successful implementation in SOM models.  

Saturation kinetics in SOM modeling will be discussed in more detail in Section 2.3.2. 

2.2.3.3 Conceptual vs. measurable SOM pools 

Linking measurable SOM fractions to modeled SOM pools has been long recognized as an 

important area of development in SOM modeling (Elliott et al., 1996; Paustian, 1994; Stockmann et al., 

2013). In the absence of this linkage, the dynamics of individual SOM pools cannot be directly compared 

against measured pool quantities to evaluate their accuracy in SOM simulations. This creates a strong 

potential for equifinality, where the same results can occur through different means (Luo et al., 2012; 

Tang and Zhuang, 2008), often referred to by the more colloquial phrase of ‘getting the right answer for 

the wrong reasons’.  

An additional benefit of linking SOM measured fractions to modeled SOM pools would be to 

reduce the uncertainty inherent in ‘spin-up’ equilibrium simulations needed to initialize conceptual 

(non-measured) SOM pools. The spinup method of SOM model initialization is based on the assumption 

that the underlying SOM pools are distributed with reasonable accuracy if the equilibrium simulations 
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match the initial conditions of the experiment being simulated, and therefore model pools ‘self-initialize’ 

as a function of their mathematically-defined turnover rates. This is the best method available to use a 

multi-pool model when, as in the case of most SOM models, the initial conditions of the pools are not 

measurable. Spin-up simulations often need to be run for tens, hundreds, or even thousands of 

simulated years, and therefore drastically increases the time required to complete experimental model 

simulations. In the case of large-scale analyses this can place a logistical limit on simulation complexity 

and applications (Xia et al., 2012). Direct measurements of SOM pools would remove the need for spin 

up simulations entirely, by making starting conditions equal to those known to exist in soils directly.  On 

the other hand, determining initial pool sizes based on direct-measurement of the modeled pools would 

necessarily require that the soil measurements are in fact made, which could be a major constraint for 

large-scale regional and global model applications. 

However, the fact that this topic continues to be recognized as a challenge in SOM modeling is 

expressive of the remaining uncertainty linking measurement of SOM fractions to conceptual 

understanding of SOM dynamics. Benchmarking data have been suggested to reduce equifinality (Luo et 

al., 2012).  Increases in computational capacity has also allowed for innovations in data assimilation and 

the increasing use of Bayesian statistical approaches to constrain model parameters (Braakhekke et al., 

2013; Luo et al., 2011). Until a SOM measurement method yields consistently SOM fractions uniform in 

their kinetic or biochemical behavior, the linkages between SOM measurements and modeled SOM 

pools will remain unclear (Dungait et al., 2012; Wander, 2004).  Linking modeled SOM pools to 

measurable soil fractions remains an important area in the development of SOM model-data 

integration. In the meantime the type of measurements being analyzed as well as the scope and scale of 

the question being asked needs to guide model selection, as some models are more suited to certain 

types of analyses than others (Manzoni et al., 2012). 
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2.2.3.4 Data-model integration in SOM research 

A detailed discussion linking specific measurement methods to pools and dynamics within SOM 

models is beyond the scope of this work, with the exception of examples in topics reviewed in Section 

2.3. However, we suggest exploring previous research examining this linkage between SOM 

measurements, conceptual understanding of SOM dynamics, and SOM models in greater detail (Dungait 

et al., 2012; Simpson and Simpson, 2012; von Lützow et al., 2007; Wander, 2004). Here we will instead 

step back and make a few points about the integration between data and models in SOM research and 

SOM model development. 

First, there are several ways SOM models and SOM data interact. These can be grouped into 

three general categories: using data to formulate a SOM model, using data to drive a SOM model, or 

using data to evaluate a SOM model. Data used to formulate SOM models are tied to the hypotheses 

that a model represents. An example: using incubation data from warming experiments to 

mathematically define a SOM decomposition temperature response curve (e.g. Parton et al., 1987). 

Empirical, data-driven relationships are used in models when factors are known or hypothesized to 

impact SOM processes, but underlying mechanisms are either unknown or not fully understood. Data 

can also be used to parameterize components of an SOM model, optimizing model performance by 

‘tuning’ parameter values to data when parameters are not measured directly. Data to drive a SOM 

model, on the other hand, are typically based on external factors known or hypothesized to force SOM 

behavior. These data, depending on their scale and variation, can link spatial and temporal 

heterogeneity to simulated SOM dynamics. These data often tie back to Jenny’s factors of soil formation 

(Eqn 1), for example with air temperature and precipitation (climate), soil texture (parent material), and 

vegetation (organisms) commonly used in simulating SOM dynamics in ecosystem, global, or earth 

system models. Finally, data to evaluate SOM models are fairly self-explanatory, used to validate model  
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performance, evaluate uncertainty, and finally support hypothesis testing through the comparison of 

SOM simulations with measured results.  

These categories help clarify some of the pitfalls in model-data integration. From the 

formulation side, data link to the hypotheses mathematically represented by a model. New data may 

therefore prompt model changes, for example if new data alter the shape of an empirical relationship 

built into model structure, or if new measurement methods yield entirely new hypotheses for SOM 

processes. In any case, data used in model formulation require careful consideration to ensure a model 

accurately represents hypotheses for SOM dynamics. The information to drive SOM models tends to be 

more sensitive to data limitations, particularly across scales.  Data limitations for drivers affect how 

spatial and temporal heterogeneity are represented in the simulation of SOM dynamics, potentially 

leading to biased or erroneous results. Model evaluation experiences similar limitations determined by 

the scale at which an SOM model is being applied. Data availability for model evaluation will affect 

assessment of model accuracy, uncertainty, as well as its ability to support hypothesis testing.  

The full suite of data for model formulation, driving, and evaluation are not always easy to 

identify or compare between SOM models, particularly when they are integrated into large-scale 

ecosystem or global models. Measurement uncertainty is also a consideration across all three types of 

data-model integration. Neither challenge is new (Keenan et al., 2011). However, in recent years 

researchers have targeted these challenges using rapidly advancing computational capacity, developing 

networks that bridge between SOM data and models. These efforts are aimed to support an iterative 

cycle of data-model integration. Components of this cycle includes data standardization, increasing data 

acquisition and accessibility to models, identifying and targeting data-poor areas of research (e.g. 

tropical soils), model benchmarking, and ideally multi-model comparisons (e.g. Luo et al., 2012). These 

efforts provide a better environment for model development, and hypothesis testing. Large scale data-

model integration is increasingly recognized as a multidisciplinary effort with high value for SOM 
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research. This is an area of development that will likely continue to advance, potentially dramatically 

and in the near future. 

2.3 New directions in SOM model development  

We now present a series of short reviews on selected areas in SOM research of particular 

relevance for the use and development of SOM models. We emphasize areas where SOM modeling and 

experimental research can greatly benefit by integration and collaboration. A recurring theme is the 

challenge of integrating understanding across scales. 

2.3.1 Recent ideas for SOM stabilization mechanisms 

Researchers have studied SOM dynamics for over a century, understanding with increasing 

sophistication how the quantity, quality, and cycling of SOM play important roles in soil functions (e.g. 

hydrology and water holding capacity), soil fertility (e.g. nutrient availability and cycling), and ecosystem 

processes (e.g. net exchange of carbon and energy flow) (Manlay et al., 2007; Wander, 2004).  However, 

a fundamental area for SOM research, including SOM modeling, are the linkages between SOM cycling 

processes and SOM persistence.  In other words: what controls the persistence of macromolecules in 

the soil against the pervasive presence and activity of organic matter mineralizing microorganisms and 

microbial enzymes?  

For decades, stabilization mechanisms and SOM persistence have been integral components of 

research on SOM cycling and the development of SOM models (Campbell et al., 1967; Jenkinson & 

Rayner, 1977; Parton et al., 1987; Oades, 1988). It continues to be a predominant research topic 

(Dungait et al., 2012; Kleber, 2010; Schmidt et al., 2011), of particular importance to understand the role 

of soils in the global C cycle and to determine their potential to either contribute or mitigate 

atmospheric greenhouse gas (GHG) emissions (Friedlingstein et al., 2001; Jobbagy and Jackson, 2000; 

Schimel, 1995). Soil organic matter turnover and stabilization mechanisms have been subject to 

numerous recent reviews (Table 2-1) and we will not tackle an exhaustive update to these previous 
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works. Rather we will focus this section on a major shift in one of the dominant conceptual paradigms 

for SOM stabilization, equating SOM chemical complexity with resistance to enzymatic attack and thus 

its longevity in soils. New observations of SOM chemical characteristics and behavior have provided 

evidence against inherent SOM chemical complexity as a dominant mechanism for long-term SOM 

stabilization (Dungait et al., 2012; Kleber et al., 2011; Schmidt et al., 2011; von Lutzow, 2008). New 

hypotheses have led to re-evaluating SOM modeling approaches as well as increasing exploration of 

more organism-oriented models explicitly linking microbial biomass and microbial mechanisms to SOM 

dynamics. 

Stepping back, we would first like to link SOM persistence more generally to our previous 

discussion connecting SOM fractionation methods, modeled SOM pools, and conceptual understanding 

of SOM dynamics. Organic matter is a high-energy organization of molecules created and maintained by 

living processes that—upon death and particularly in the presence of the ubiquity of microbes and 

microbial enzymes—should decompose, forming new bonds at lower energy states (Hedges et al., 2000; 

Kleber, 2010; Schmidt et al., 2011). The persistence of OM in soils indicates widespread operation of 

protective mechanisms that slow or prevent OM decomposition from occurring in the soil environment.  

Linking protective mechanisms to SOM persistence is, however, challenged by their temporal 

variability and tendency to interact. For example, some OM inputs are accessed quickly by soil microbes, 

mineralized within minutes, hours, or days. However, OM that becomes protected from microbial 

activity, e.g. tightly bound to soil minerals within micro-aggregates or more temporarily stabilized by 

roots or fungal hyphae within macro-aggregates (Golchin et al., 1994; Oades, 1984; Pronk et al., 2012; 

Six et al., 2004; Six and Paustian, 2014; Tisdall and Oades, 1982), can remain in soils for years, decades, 

centuries or even millennia depending on factors driving the dynamics of protective mechanisms (e.g. 

Oades, 1988; Jastrow, 1996). The net result of interacting stabilization mechanisms are soils containing  
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SOM that is a mixture of ages at different stages of decomposition, and that potentially react differently 

to change (e.g. land use or climate) (Paul et al., 1997; Schimel et al., 1994; Trumbore, 2000).  

Experimentally isolating the mechanism or interaction of mechanisms that determine SOM 

persistence also remains difficult, as some mechanisms operate over extended time periods, and 

experimentally studying mechanisms often requires changing some of the conditions that affect them. 

Laboratory soil incubation studies, for example, must account for changes in soil structure and the 

effects of isolation from the in situ plant-soil system. Due to logistics and the development of 

increasingly unrealistic conditions in laboratory incubations through time, there is also predominance of 

short-term laboratory experiments evaluating more rapid SOM cycling mechanisms (Conant et al., 

2011). Long-term field experiments begin to account for slower soil mechanisms and interaction 

between multiple factors in situ (Paustian et al., 1995), but these experiments can only cover so much 

ground and are still relatively ‘short-term’ for some soils processes, even with the longest (at 

Rothamsted, UK) having recently surpassed 170 years (Jenkinson and Rayner, 1977).  Isotopic analyses 

using 14C ‘bomb carbon’ labeling from atmospheric nuclear testing has high value for estimating 

responses of slow SOM mechanisms (Trumbore, 2009, 2000). It is also possible to evaluate longer-term 

SOM dynamics using other isotopic C labels, or natural changes in 13C abundance when vegetation shifts 

between a dominance of C3 and C4 plants (Kuzyakov and Domanski, 2000). A combination of 

approaches and the use of non-C tracers can also be revealing in a given soil environment (Braakhekke 

et al., 2013; Kuzyakov and Domanski, 2000).  

Regardless of experimental approach, bulk SOM dynamics are generally not fully informative of 

underlying mechanisms and can even mask important short-term dynamics when, as is common, total 

SOM mass is dominated by older, more slowly cycling material (Trumbore, 2000). Therefore SOM 

stabilization, turnover rates and persistence are typically evaluated in association with SOM 

fractionation methods. The age of bulk SOM ranges on average from decades to centuries, associated 
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with kinetic dynamics across soil fractions that exhibit patterns most consistent at kinetic extremes, e.g. 

the slowest turnover rates of hundreds to thousands of years associated with tightly mineral-bound OM, 

while the fastest turnover rates of weeks to a few years associated with fresh litter inputs (Balesdent, 

1987; Campbell et al., 1967; Scharpenseel and Becker-Heidmann, 2006; Trumbore, 2009; von Lützow et 

al., 2007). Unfortunately SOM cycling at either extreme tend to make up a relatively small quantity of 

SOM, with the remainder cycling somewhere in a decade-to-century continuum that is, as discussed 

above, difficult to separate into fractions with uniform kinetic or biochemical characteristics.  

Simulation models for SOM dynamics therefore play a key role integrating understanding in a 

mathematical framework that allows for broader and more rapid hypothesis testing than feasible 

through direct experimentation and measurement alone (Schimel et al., 1994). Models such as CENTURY 

and RothC—both still widely used today—are based on multiple 1st order dynamic SOM pools assigned 

different kinetics, or rates of change through time (Jenkinson and Rayner, 1977; Parton, 1987). While 

the multi-pool 1st order kinetic approach has been shown to successfully represent the heterogeneity of 

SOM decomposition and improve model predictions (Carpenter, 1981; Trumbore, 2000), these pools 

remain conceptually defined. There have been efforts to link modeled SOM pools to specific measured 

SOM fractions (e.g. Zimmermann et al., 2007), but this is difficult particularly for slowly cycling SOM 

pools where the linkages between measure pools, stabilization mechanisms, and decomposition rates 

remain unclear. 

It is within this context that a new understanding of SOM chemical complexity and its role as a 

mechanism for SOM persistence can be more thoroughly explored. Until recently mechanisms for SOM 

stabilization were generally grouped into three categories: 1) physical protection from microbial 

processes (e.g. through aggregate formation), 2) mineral associations that limit exposure to lytic 

enzymes, and 3) increasing OM recalcitrance by selective preservation of less biodegradable litter inputs 

and the formation of complex, stable humic molecules (Six et al., 2002; Sollins et al., 1996; von Lutzow, 
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2008). Mineral associations and physical separation continue to be recognized as important SOM 

stabilization mechanisms. They can be explored in greater detail in the reviews listed above (Table 2- 1). 

However the hypothesis that a main mechanism for long-term SOM persistence is the gradual 

transformation of primary biomolecules into complex secondary ‘humic’ molecules resistant to 

decomposition has been largely refuted. 

The origin of the hypothesis linking inherent chemical complexity to SOM stability—what has 

been termed ‘biochemical protection’ or simply ‘recalcitrance’ (Six et al., 2002; Sollins et al., 1996)—

traces back to early research on soil humus. We refer to a historical accounting of SOM conceptual 

development by Manley et al. (2007) for greater detail, but here will summarize a few key points. 

Humus saw its first use as scientific term in the late 1700’s/early 1800s, referring to the dark material 

accumulating in soils with the decay of dead plants and animals. One of the earliest linkages of humus to 

SOM as a soil constituent was in Albrecht Thaër’s Principles of rational agriculture (1809). The 

connection between humus and soil fertility drove subsequent research to understand its development 

and behavior, particularly in the context of plant nutrition and soil nutrient availability (Manlay et al., 

2007). This included exploring various measurement methods to separate humus into meaningful 

fractions, notably including acid and alkali extraction that yielded fractions with varying decomposition 

behaviors in soil incubation. It is worth noting that as early as 1938 an argument was made against the 

use of these chemical fractionation methods—at least to characterize humus—due to their dubious 

linkages to underlying soil processes: 

“Practically all the methods suggested at various times for determining the amounts of “humus” or of the 
“humified” portions of the organic matter in soils, peats, and composts are unsuitable for this purpose, 
primarily because they were developed with little or no regard to the processes that take place when fresh 
organic matter undergoes decomposition…One is justified in speaking of humus only in regard to the sum 
total of the organic matter in soils, peats or composts. A study of the nature of this humus involves an 
investigation of the chemical nature of the plant and animal residues from which it originated, of the 
chemical processes of decomposition involved in its formation, of the nature and activities of the 
microorganisms bringing about the decomposition, as well as of the environmental conditions under which 
the decomposition took place.” (Waksman, 1938, pg 87-88) 
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Some of the above should sound familiar from our introduction and Section 2.2. Clearly the challenge of 

linking measured OM fractions to conceptual understanding of underlying processes has taxed many 

generations of soil scientists! 

The emergence of ecosystem ecology and the increasing focus on SOM as a component of 

biogeochemical cycles saw a gradual shift away from the use of humus as a scientific term in these 

fields, as concepts behind humus formation and dynamics fit within the purview of SOM processes and 

dynamics. Humus and humification came to be viewed more as classic soil concepts, referring to 

microbially and chemically processed organic matter resistant to further decomposition and the process 

that creates it, respectively (Lützow et al., 2006). However the chemical fractionation approach to 

characterize SOM by acid and alkali extraction, originating in humus theory and tied to the concept of 

isolating the large, complex organic molecules inherently resistant to decomposition (Schnitzer and 

Khan, 1972), largely remained, supported by radiocarbon dating that showed its isolation of SOM pools 

that cycled at different rates (Leavitt et al., 2006; Paul, 1984; Paul et al., 1997). This was generally 

referred to as the Humic Polymer Model (Brady and Weil, 2007). 

Arguments against this theoretical approach and application of fractionation methods clearly 

are not new (e.g. Waksman, 1938). However, it is largely in the last decade that the weight of evidence 

against this hypothesis accumulated (Simpson et al., 2007; Stockmann et al., 2013), particularly based on 

new measurements for SOM chemical forms in situ as well as re-examination of the alkali- and acid-

based chemical SOM fractionation method. Closer examination of the molecular nature of humic 

molecules have lent more support to the hypothesis that they have supramolecule structures—clusters 

of small molecules stabilized by hydrogen bonds and hydrophobic interactions, capable of forming 

micelles in aqueous solution and changing structure under different chemical conditions—rather than 

large polymer structures (Piccolo, 2002). Analyses also support that the behavior of humic molecules 

links more to the underlying properties that characterize molecular interactions, rather than the 
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chemical composition of humic molecules themselves (Sutton and Sposito, 2005). The link between acid 

and alkali extraction and SOM fractions with varying resistance to decomposition were shown to be 

largely a result of the extraction method, rather than indicative of underlying SOM chemical differences 

(Kelleher and Simpson, 2006). These extraction methods were further recognized to yield data with poor 

explanatory power for underlying SOM dynamics (Lützow et al., 2006; Wander, 2004). Within the soil in 

situ, evidence supported the characterization of SOM as a complex mixture of smaller biopolymers with 

complex spatial distribution in the soil matrix, rather than as large complex humic molecules (Lehmann 

et al., 2008). Ultimately, evidence supported decoupling inherent SOM chemical complexity from SOM 

persistence. As summarized by Kleber (2010); “recent investigations…revealed that significant quantities 

of organic material in soil may persist in spite of being chemically labile, unprotected, accessible, and 

decomposable” (pg 325). New hypotheses have emerged, centered on linking microbial processes with 

OM input chemistry and properties of the soil matrix (Cotrufo et al., 2013; Dungait et al., 2012; Gleixner, 

2013; Schmidt et al., 2011). These hypotheses have invigorated an enduring debate in SOM modeling: to 

what degree should microbes and microbial mechanisms be explicitly represented in SOM simulations? 

As mentioned in Section 2.2, the implicit versus explicit simulation of microbes and microbial 

processes in SOM models is a debate that dates back to the 1970’s, when explicit microbially-based 

models such as PHOENIX emerged alongside models, such as RothC  and CENTURY (Jenkinson et al., 

1987; Jenkinson and Rayner, 1977; McGill et al., 1981; Parton, 1987). The latter models performed more 

successfully simulating long-term SOM changes, based on the assumption that litter quality and 

environmental factors (i.e. temperature, moisture, and soil texture) are the main drivers of SOM 

turnover. However, while these types of models have been shown to predict long-term SOM dynamics 

well they perform more poorly over transient dynamics and short-term change, both of which are 

important in the context of predicting impacts from climate change (Lawrence et al., 2009). Interest in 

responses to climate change combined with rapidly advancing methods to study microbial processes 
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have resulted in a renewed interest to explicitly connect microbial mechanisms to models of SOM 

dynamics (Stockmann et al., 2013).  

Hypotheses have been developed linking variable microbial growth efficiency (MGE) to 

decomposition processes (e.g. Moorhead & Sinsabaugh, 2006; Sinsabaugh et al., 2013). Previously some 

of these concepts were explored in the Q- model, which explicitly included microbial growth rate and 

assimilation efficiency effects on SOM turnover (Bosatta and Ågren, 1991), tied to measures of litter 

chemistry to model C decomposition and SOM accumulation (Ågren and Bosatta, 1996). A recent 

synthesis of theory is provided by the Microbial Efficiency-Matrix Stabilization (MEMS) hypothesis, 

based on evidence that stable SOM is predominantly comprised of microbially-processed organic 

matter. The MEMS hypothesis suggests the potential for greater stabilization of more labile plant 

material, as high microbial growth efficiency would reduce OM lost to respiration during decomposition, 

increasing the creation of microbial products that could then persist by interactions with the soil matrix 

(Cotrufo et al., 2013). There have been some successes with representing variable MGE within SOM 

models in large-scale analyses (Wieder et al., 2013). 

Other modeling approaches are exploring the connection between microbial community 

structure and SOM stabilization. This might be implemented by modeling the presence or absence of 

‘narrow’ microbial community functions, such as N fixation or lignin degradation that are only 

accomplished by certain types of enzymes created by a small subset of microbes (McGuire and Treseder, 

2010). The guild-based decomposition model (GDM) provides one such model of this type, with a 

structure based on microbial affinity for different types of substrates, as regulated by changing litter 

lignin and N characteristics over the course of decomposition (Moorhead and Sinsabaugh, 2006). The 

Microbial-Mineral Carbon Stabilization (MIMICS) is another example, linking microbial community 

functional groups (specifically, r- versus K- strategists), litter chemistry, and SOM stabilization through 

dynamic microbial growth efficiency. They hypothesize that the greatest SOM stabilization in sandy soils 
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occurs with low quality litter inputs due to biochemical protection versus the greatest SOM stabilization 

in fine-textured soils with high quality litters due to physical protection of microbial products (W. R. 

Wieder et al., 2014). In both cases, these models are largely theoretical and difficult to test in complex 

soil environments, as measurements of microbial community functional groups are not well established. 

Measurement methods, such as the use of genetic markers to quantify soil microbial community 

functions, is an area of active development that will allow for these types of hypotheses to be tested 

more explicitly.  

The role of mycorrhizal fungi in SOM stabilization is another area of recent interest.  Researchers 

have shown that plants in symbiotic relationships with mycorrhizal fungi can compete directly with free-

living microbes for nitrogen (N) (Chapman et al., 2006). Mycorrhizal fungi, in particular ectomycorrhizae 

and ericoid mycorrhizae (EEM), secrete enzymes that allow them—and their plant symbiotes—to access 

organic N directly. However not all mycorrhizal fungal associations are equal in this regard, with 

arbuscular mycorrhizae providing more limited access to organic N. These differences led to the 

hypothesis that plants with different types of symbiotes would compete differently with free-living 

microbes for N, leading to varying degrees of microbial decomposition repression with concordant 

impacts on total SOM (i.e. better mycorrhizal-based competition for resources = more repression of 

free-living microbes = more SOM). This hypothesis was evaluated and supported at a global scale, across 

climate, clay content, and biomes (Averill et al., 2014). Additionally, a study of SOM accumulation in 

boreal forests due to root-fungal interactions demonstrated long-term continual SOM accumulation in 

the absence of disturbance. This suggested an alternative to SOM stabilization from aboveground litter 

inputs whereby SOM layers “grow from below” (Clemmensen et al., 2013, pg 1617). Cumulatively these 

results suggest mycorrhizal fungal associations are an important consideration in SOM stabilization 

across scales, and may be a fruitful avenue to consider in refining SOM models. 
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In the midst of these developing areas of research, it remains difficult to determine whether 

microbial mechanisms improve SOM predictions, largely due to lack of data to either drive or validate 

new models (see Section 2.3.5). For example, a review of conventional versus microbially-based model 

performance was largely inconclusive, since microbial models with promise were limited by lack of data 

from larger scale application and benchmarking (Treseder et al., 2012). This will not always be the case, 

as ongoing studies target filling in these data gaps. In terms of SOM stabilization, the new understanding 

of SOM chemical characteristics and interactions with microbial processes have created many new 

testable hypotheses that will continue to develop as data are accumulated (Rillig et al., 2007). We 

suggest an emphasis on testing new hypotheses across temporal and spatial scales, recognized by others 

as an important focus for SOM model development (Manzoni and Porporato, 2009). Testing across 

scales is necessary to determine if the added complexity of explicit microbial mechanisms leads to an 

improvement in SOM simulations. The degree to which specific microbial mechanisms are integrated 

into SOM models will likely depend on the scale at which a given model is being applied (Stockmann et 

al., 2013). 

2.3.2 First order model versus saturation kinetics 

As shown (Figure 2-1, A & B) and discussed both above and in Section 2.3.5, single and multi-

pool 1st order decomposition kinetics are commonly used to simulate SOM dynamics. This simple 

approach performs reasonably well across a diversity of soils and land use changes (Paustian, 1994). 

Mathematically, however, 1st order kinetics implies a linear proportional relationship between OM 

inputs and the quantity of SOM stocks when a soils system is at equilibrium (Eqn’s 2 & 3). This is a 

reasonable mathematical approach for some theorized mechanisms of SOM stabilization. The zonal 

structure theory of organo-mineral interactions is one example, suggesting the thickness of OM layers in 

the kinetic zones of organo-mineral complexes are predominantly determined by OM inputs (Kleber et 

al., 2007). However, field research repeatedly demonstrates the capacity for soils to become saturated, 
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in which case SOM stocks become relatively insensitive to increases in OM inputs or show a diminishing 

rate of SOM accumulation with increasing rates of OM input (Gulde et al., 2008; K. Paustian et al., 1997; 

Stewart et al., 2007). First-order kinetics may therefore overestimate OM gains in soils where SOM 

storage capacity is near a saturation point (Figure 2-2), i.e., where the rate of OM input into a pool may 

be controlled by the quantity already contained in the pool relative to its maximum holding capacity 

(Figure 2-1, D) (Hassink and Whitmore, 1997). Given the possibility of land use changes that lead to high 

OM inputs—such as fertilized, highly productive crops—and given interest in increasing soil C storage as 

a strategy to reduce atmospheric C concentrations (Follett et al., 2012), the potential for soil saturation 

is an important consideration as setting an upper limit to SOM stabilization (Baldock and Skjemstad, 

2000). In the past this subject was given extensive review (Six et al., 2002). In this section we will update 

this review with advances in understanding and recent applications in SOM models. 

In the Six et al. (2002) review, the three ‘standard’ categories of SOM stabilization mentioned in 

2.3.1 were used, of mineral-associations (termed ‘chemical protection’), physical protection through 

aggregate compartmentalization, and protection through inherent recalcitrance of SOM (termed 

‘biochemical protection’), with the remaining OM in the ‘unprotected’ pool. These pools were then 

linked to measurable SOM fractions in order to evaluate the potential for saturation within each 

fraction, as well as link these mechanisms to a maximum capacity for total SOM protection (Six et al., 

2002). The ‘biochemically protected’ conceptual pool and its associated acid hydrolysis-based 

measurements have been largely dropped from studies evaluating saturation kinetics. However, the 

potential for saturation kinetics to affect both bulk soil OM storage as well as dynamics between 

mineral-associated, aggregate protected, and unprotected OM fractions in soils have continued to be 

developed and recognized as an important consideration in recent research on SOM and stabilization 

(Dungait et al., 2012). 

  



27 
 

Several key studies following the Six et al. (2002) review supported the SOM saturation concept 

and laid more of the groundwork for its current application. In bulk soils, for example, studies of long-

term agricultural experimental sites confirmed the possibility of soil saturation behavior and suggest a 

distinction between the absolute maximum capacity of soils to stabilize C versus a soil’s ‘effective 

stabilization capacity’, given external factors such as disturbance by tillage (Balesdent et al., 2000; 

Stewart et al., 2007). A subsequent laboratory incubation study of soils that varied in their ‘saturation 

deficit’ (i.e., proximity to a texture-dependent maximum SOC content), showed that ‘saturation deficit’ 

impacted total SOC stabilized with increasing C inputs. This study supported saturation behavior as 

impacting the total SOM stabilization capacity of soils, and further suggested that management 

practices to increase SOM storage in soils should target soils with greater starting SOM deficits (Stewart 

et al., 2008a). Several studies used the Six et al. (2002) framework to show that soil fractions could be 

evaluated for saturation behavior (Stewart et al., 2009, 2008b). Another study used an alternative 

measurement approach to evaluate physically separated fractions (e.g. macro and micro aggregates vs. 

silt- and clay- associated OM), and suggested the possibility of a hierarchy in SOM saturation across 

mineral-associated and aggregate-protected OM, increasing OM concentrations in more labile, faster 

cycling fractions when stable fractions are saturated (Gulde et al., 2008). These latter studies suggest 

that fractions within soils can become saturated even if bulk soils are not, with consequences for how 

SOM is distributed between pools that vary in turnover times. 

The saturation concept has continued to be incorporated into studies of bulk soil OM dynamics. 

For example, bulk soils have continued to be evaluated for linear versus non-linear relationships 

between experimental OM additions and SOM content, in order to determine how close experimental 

soils are to their saturation capacity (Heitkamp et al., 2012; W. J. Zhang et al., 2010). A laboratory 

incubation study analyzing a gradient of degraded agricultural soils showed that, counter to Stewart et 

al. (2008a), the greatest C gains were in soils with intermediate rather than maximum saturation deficits 
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due to destruction of OM storage capacity in the most degraded soils. In this study researchers suggest 

management practices to increase OM storage need to intervene before soils reach a degradation 

threshold when stabilization mechanisms begin to decline (Kimetu et al., 2009).  

The use of physically separated soil fractions to evaluate mineral –associated, aggregate 

protected, and ‘unprotected’ OM applied by Gulde et al. (2008) also continues to be a useful conceptual 

and measurement protocol in current research. One study linked soil C saturation theory to mineral N 

dynamics and potential for saturation, highlighting concern for mechanisms that saturate stable OM 

pools and concentrate OM in the more labile OM pools that are at greater risk for loss (Castellano et al., 

2012). Another study of long-term agricultural experiments in Virginia uses a similar framework to show 

saturation in the silt+clay fraction, suggesting further OM accumulation at these sites will occur in 

particulate organic matter (POM) and aggregates and be more susceptible to loss unless management 

practices continuously minimize soil disturbance (Stewart et al., 2012). A recent study expands the 

mineral-associated fraction from only considering the saturation capacity of silt+clay to also include the 

saturation capacity of Fe and Al oxides. In some soils, such as the Andisols reviewed in the study, 

aluminum and iron oxides may contribute more to SOM stabilization than clay, therefore should be 

evaluated for saturation behavior (Matus et al., 2014).  

In summary, experimental data increasingly support saturation kinetics as an important 

mechanism in SOM dynamics, particularly in soils with high SOM and/or increasingly high OM inputs. 

Therefore, saturation is conceptually well defined, well supported by experiment evidence, and simple 

(on its own) to express mathematically. It is notable, then, that saturation kinetics have had limited 

incorporation in SOM models since the Six et al. (2002) review. In one study exploring changes to the 

RothC-26.3 model to simulate physical protection with aggregate formation and hierarchy, saturation 

kinetics were not included but suggested as an improvement to include non-linear relationship between 

fresh organic matter and SOC dynamics (Malamoud et al., 2009). Another study with the RothC model 
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did add simulation of C saturation, in order improve simulation of high OM input treatments that 

deviated increasingly from model predictions based on 1st order kinetics. However, the modified model 

performed poorly for all treatments except those exhibiting saturation behavior, suggesting the need for 

better implementation of saturation dynamics within the model (Heitkamp et al., 2012).    

In conclusion, this is a clear area in need of development in SOM modeling. At the very least, 

high OM soils in systems with high OM inputs should be recognized as vulnerable to overestimation of 

SOM storage and accumulation when simulated with conventional first-order decay SOM models.  

2.3.3 Temperature controls on decomposition 

Temperature is an important driver of SOM dynamics, recognized alongside moisture as key 

components of climate as a soil-forming factor (Eqn. 1, Jenny, 1941). This fact is neither new nor in 

dispute. However, in the last two decades controversy and debate have surrounded how, exactly, SOM 

dynamics respond to temperature change, motivated by the importance of understanding whether soils 

will become a stronger sink or source of CO2 as temperatures increase under global climate change 

(Kirschbaum, 1995; Trumbore et al., 1996). Soils contain far more C than the atmosphere. Even a small 

percentage change in SOC with increasing temperatures can have a substantial impact on atmospheric 

CO2 concentrations. However, the linkages between SOM dynamics and temperature-sensitive soil 

processes remain poorly understood. Behaviors observed in controlled laboratory incubations are often 

less consistent or less discernible under more realist in situ experiments. Temperature sensitivity is also 

extremely difficult to isolate from confounding effects of moisture and plant productivity in large scale 

analyses (Kirschbaum, 2000). While SOM temperature responses are far from resolved, in this section 

we will present the basis of past debate as well as summarize progress in the context of SOM model 

development.  

First we will clarify our use of the terms ‘temperature response’ and ‘temperature sensitivity’. 

Temperature response is a general term referring to changes in a unit of measure (CO2 flux, mean 
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resident time, etc.) over a range of incrementally increasing or decreasing temperatures. Temperature 

sensitivity refers to the magnitude of the response given the magnitude of the change, and is often used 

as a comparative term. For example, two soils incubated at the same interval of increasing temperatures 

might both have a positive temperature response and release more CO2 per unit of temperature, but 

the magnitude of the increase in CO2 released per temperature increment is greater in the second soil 

(e.g. Figure 2-3, R2) than the first (e.g. Figure 2-3, R1). The second soil (R2) therefore has higher 

temperature sensitivity. Temperature responses are often exponential, so a common term used to 

express experimental differences in temperature sensitivity (as well as model temperature responses in 

SOM decomposition) is Q10, or the proportional change in respiration with 10  Celsius change in 

temperature. A Q10 of  2 (i.e. a doubling of respiration with 10  C temperature increase) is common 

across biologically meaningful temperatures, but values can vary from less than 0.5 to more than 300 

and differ across soil fractions (Hamdi et al., 2013; Leifeld and Fuhrer, 2005). An Arrhenius type equation 

(Eqn. 4) and a modified version referred to as the Lloyd and Taylor equation (Eqn. 5)  are both also 

common approaches to modeling temperature effects on respiration, connecting temperature effects to 

the activation energy of chemical reactions (Lloyd and Taylor, 1994). In these equations the rate of 

respiration given temperature,      is calculated using the general structure of either; 

            
, or  Eqn 4 

                
,   Eqn 5 

where   is a constant,     is the activation energy, and   is a parameter used to correct temperature 

bias. 

A central challenge in this area of research is disentangling the abundance of known and 

suspected temperature responses across the multitude of interacting processes that affect SOM 

dynamics. At a small scale, for example, many microbial decomposition processes are understood to be 

temperature sensitive, ranging from the strong temperature sensitivity of enzyme kinetics to potential 
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temperature sensitivities of microbial growth and substrate use efficiency (Frey et al., 2013; Hagerty et 

al., 2014). Microbes can also acclimatize or change community characteristics under varying 

temperature environments through time (Luo et al., 2001, Figure 2-4). The soil matrix can further 

modulate temperature responses, for example by affecting soil water dynamics or directly interacting 

with and suppressing microbial enzyme activity. The temperature sensitivity of decomposition also 

potentially varies by the chemical nature of the SOM substrate being decomposed (Davidson and 

Janssens, 2006), although as will be discussed this is an area of extensive debate. 

On longer timescales and at a landscape level, other factors vary with temperature and cause 

difficulty with conclusively identifying temperature-related SOM mechanisms. For example, 

temperature responses of primary productivity occurs over short and long timeframes- e.g. immediate 

impacts on photosynthesis and transpiration as well as potential long-term impacts on vegetation 

structure and community dynamics. Primary production responses affect litter inputs into soils as well as 

soil water dynamics and the decomposition environment experienced by microbes (Bardgett et al., 

2008). Ultimately, small-scale, isolated temperature responses and sensitivities in SOM dynamics may 

have a positive, negative, or no feedback with other ecosystem components in the soil environment 

when integrated over longer time scales, larger areas, or in interaction with other factors (Figure 2-4). 

In this context, experimental results and SOM models are often combined to explore potential 

impacts of individual mechanisms, with an eye towards understanding global SOM changes with 

increasing temperatures (Jones et al., 2003; Kirschbaum, 1995).  As a consequence, the underlying 

conceptual model of SOM structure then becomes the foundation on which mechanistic understanding 

of temperature responses are integrated and applied to larger scales. As will be presented below, this 

can result in the same data supporting opposite SOM responses to temperature increases. Advances in 

the understanding of SOM persistence (discussed in Section 2.3.1), have also led to re-interpretation of  
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some linkages between observed temperature responses and mechanisms within SOM models. The 

remainder of this section will focus on these developments. 

Since the topic emerged, concern with SOM responses to global warming focused research on 

evaluating temperature sensitivities across temperature ranges in bulk soils as well as among individual 

SOM fractions with different turnover rates (i.e. ‘labile’ versus ‘recalcitrant’ SOM). Ecosystem models 

supported the potential for increasing temperatures to increase C inputs into soils via the stimulation of 

decomposition rates, particularly by increasing the release of mineral N (Schimel et al., 1994). An early 

synthesis of incubation studies noted variability in Q10 values that suggested greater sensitivity of SOM 

responses at lower temperatures, which could place the large stores of SOM in cold boreal and arctic 

regions at greater risk for loss (Kirschbaum, 1995). A different study using repeated measures of soils 

across an elevation transect showed that more ‘labile’ SOM could contribute to rapid SOM response 

with temperature increases (Trumbore et al., 1996), but that longer term consequences are of greater 

concern for the often larger pool of SOM cycling more slowly.  

Several topics then became subject to extensive debate, one centered on the hypothesis that 

‘labile’ and ‘recalcitrant’ SOM fractions had different temperature sensitivities, with the latter being 

more sensitive than the former. At the time, this hypothesis was connected to a model linking SOM 

substrate quality to temperature sensitivity of decomposition. This model, now referred to as the 

carbon quality-temperature theory (Fierer et al., 2005), was based on the hypothesis that SOM 

decomposition dynamics were determined by substrate quality via the number of enzymatic steps- and 

therefore the total free energy change- required to mineralize organic matter carbon. The carbon 

quality-temperature theory predicted greater temperature sensitivity in low quality substrates 

compared to high quality substrates, as well as greater temperature sensitivity at low temperatures 

versus high temperatures (Bosatta and Ågren, 1999). Based on the assumption that ‘old’ SOM is more 

chemically complex and a poorer microbial substrate than ‘new’ SOM, this made a logical linkage to the 
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hypothesis that ‘older’ (i.e. more stable, ‘recalcitrant’) SOM will be more sensitive to temperature than 

‘newer’ (i.e. less stable, ‘labile’) SOM. Liski et al (1999) then explicitly argued against this hypothesis, 

presenting results that suggested old SOM is less temperature sensitive than newer litter, leading to less 

C loss and even some C gain with increasing temperatures than predicted by other models (Liski et al., 

1999). However, the SOM model underlying Liski et al.’s (1999) conclusions was criticized, specifically 

the assumption of fixed residence times in the pools used to simulate SOM and temperature effects on 

respiration (Ågren, 2000). Subsequent studies continued to examine this hypothesis, yielding results that 

supported, showed no difference, or suggested the opposite relationship between ‘labile’ versus 

‘recalcitrant’ SOM, maintaining a high level of uncertainty on this topic (Benbi et al., 2014; Conant et al., 

2008; Fang et al., 2005; Hartley and Ineson, 2008; Melillo et al., 2002). This theory has been argued as 

largely irrelevant for mineral-associated SOM and SOM that is cycling more slowly. As discussed in 

Section 2.3.1, 'recalcitrance’ does not have a basis in chemical complexity (Kleber, 2010), and older SOM 

is not necessarily more thermodynamically stable or chemically different than ‘newer’ SOM (Kleber et 

al., 2011). The activation energy-based temperature sensitivity in the carbon quality-temperature 

theory, therefore, is not necessarily a mechanism with logical application to mineral-associated or slowly 

cycling OM pools (Conant et al., 2011). However, it should be noted a study that looked to address the 

shortfall of short-term incubation studies in the comparison of ‘labile’ and ‘stable’ SOM temperature 

sensitivities—specifically by evaluating initial versus final soils from long-term bare fallow agricultural 

experiments, where labile SOM has been shown to be progressively depleted through time—used 

apparent activation energy as part of strong evidence supporting greater temperature sensitivity in 

more stable SOM (Lefèvre et al., 2014). 

A second topic of controversy in temperature effects on SOM emerged from a study that 

questioned the temperature sensitivity of mineral soils as a whole, suggesting they are largely 

insensitive to temperature and therefore may not be as important in the context of climate change as 
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hypothesized at that time. This study based their conclusions on experimental results from mineral soils 

in temperate forested systems (Giardina and Ryan, 2000). A theoretical model exploring the separation 

of physico-chemical stabilization (e.g. stabilization by adsorption to soil minerals) from microbial 

processes was able to replicate this effect simulating SOM at equilibrium, if physico-chemical 

stabilization increased in excess of microbial respiration (Thornley and Cannell, 2001). However, as with 

the Liski et al. (1999) study, results from Giardina & Ryan (2000) were also critiqued on the basis of the 

underlying SOM model, which in this case made the assumption of using single SOM pool model to 

calculate turnover times. It was suggested that a multi-pool SOM modeling approach was needed to 

calculate turnover times, to prevent obscuring temperature sensitivities of individual SOM pools 

(Davidson et al., 2000; Powlson, 2005). The Giardina & Ryan (2000) data were eventually re-analyzed by 

Knorr et al. (2005) using a multi-pool approach, which showed that cumulative temperature insensitivity 

in the short term could be exhibited by aggregating responses of individually temperature-sensitive SOC 

pools, but ultimately would lead to a strong positive feedback in the long term as more slowly cycling 

pools persist in releasing CO2. This reverses the conclusion from Giardina & Ryan (2000) and fell in line 

with other studies, by supporting a strongly positive feedback between warming and SOM 

decomposition in mineral soils. However, Reichstein et al. (2005) recommended precaution towards the 

Knorr et al. (2005) conclusions. Though they supported the use of the multi-pool approach, Reichstein et 

al. (2005) noted that Knorr et al.’s (2005) results—showing that slowly cycling SOM is more sensitive to 

temperature than more rapidly cycling SOM—could be due to a statistical anomaly (Reichstein et al., 

2005).  

Even as research has moved past these earlier controversies, identifying mechanistic linkages 

between SOM dynamics and temperature remain a challenging experimental effort. As mentioned 

earlier, it is difficult to isolate temperature-sensitive mechanisms in SOM dynamics, particularly across 

scales and within slowly cycling SOM pools. It has been suggested that the latter is in part due to the 
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relatively short duration of most climate change experiments (Conant et al., 2011). Regardless, evidence 

for positive feedbacks between increasing temperatures and SOM is often strongest with incubation 

studies due to minimization of confounding effects, such as concurrent changes in primary productivity 

(Janssens et al., 2001). At larger scales temperature sensitivity often seems reduced, suggesting a 

weaker or slower positive feedback between warming temperatures, SOM, and atmospheric CO2 (Ise 

and Moorcroft, 2006; Kirschbaum, 2000). One large scale study did support a linkage between SOM loss 

and warming climate conditions through direct measurements at a national scale, although they were 

not able to distinguish loss through respiration versus loss through leaching (Bellamy et al., 2005). In 

their highly cited review on the topic, Davidson and Janssens (2006) highlight the relative ease with 

which environmental factors can obscure temperature sensitivities, suggesting separation between 

‘intrinsic’ and ‘apparent’ temperature sensitivity due to the interaction with environmental constraints 

that could amplify or suppress temperature responses. Ecosystem respiration has shown a strong 

convergence in ‘intrinsic’ temperature sensitivity when high resolution FLUXNET CO2 data were used to 

exclude confounding ecosystem properties and seasonal dynamics (Mahecha et al., 2010). However, this 

analysis also suggested mechanisms that impact C stabilization versus C supply—operating  both above- 

and belowground on longer time scales—may potentially have complex impacts on ecosystem 

respiration and C cycling behavior (Mahecha et al., 2010). Studies support the potential for increased 

rates of C cycling in soils under increasing temperature, but the resulting impact on SOM storage 

remains uncertain (Bond-Lamberty and Thomson, 2010; Giardina et al., 2014; Smith and Fang, 2010). 

Cumulatively these studies support the importance of identifying mechanisms that drive SOM responses 

to warming temperatures, as well as incorporating these mechanisms explicitly into SOM models. 

Many widely used SOM models cannot easily reflect specific temperature-sensitive mechanisms, 

due to their basis on kinetically-defined SOC pools that are not clearly linked to measurable soil fractions 

(Dungait et al., 2012). Representations of temperature controls on decomposition within these models, 
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and the data used to inform them, must therefore be considered carefully. For example, many widely 

used models initially had their temperature functions parameterized using incubation data. Examples 

include the CENTURY and the RothC models (Jenkinson and Rayner, 1977; Kirschbaum, 1995; Parton, 

1987). These models have obviously undergone considerable change and development since initial 

parameterization (e.g. Del Grosso et al., 2005). However, given observations that temperature 

sensitivity tends to change in strength across spatial scales (e.g. Kirschbaum, 2000; Ise & Moorcroft, 

2006), incubation-based model parameterizations of temperature response should be examined 

carefully when models are applied at larger scales. Additionally kinetically-based SOC models are 

commonly implemented in Earth System Models (ESMs), often using Q10 functions to simulate 

temperature sensitivity (Todd-Brown et al., 2013). Q10 functions have been shown to perform poorly at 

temperature extremes, making this approach potentially poorly suited to simulate tropical and arctic 

ecosystems where climate change is of particular concern (e.g. Koven et al., 2011). The use of a static 

Q10 function has also been strongly criticized (Davidson et al., 2006; Tang and Riley, 2015). A Gaussian 

model has been suggested as a better representation of temperature sensitivity across a wider range of 

temperatures (Tuomi et al., 2008). Using multiple temperature response models for measured-modeled 

comparison can also be more revealing than the use of a single model (Benbi et al., 2014). Implementing 

functions to better simulate temperature sensitivity in SOM models based on kinetically-defined SOC 

pools, as well parameterizing temperature sensitivity across scales, is a logical and reasonably 

straightforward area to improve SOM model development. However kinetically-defined models will 

always be limited by the lack of mechanistic linkages between SOM dynamics and temperature 

response, by the inability to link SOC pools to mechanistically defined and measurable SOC fractions. 

As an alternative, researchers are beginning to develop and explore models to simulate 

temperature-sensitive respiration responses more mechanistically, based on understanding of factors 

such as substrate diffusion, enzyme activity, and membrane transport (Davidson et al., 2006). The 
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DAMM model, as one example, simulates the interaction between soil water, soluble substrates and 

temperature as they affect enzyme kinetics (Davidson et al., 2012). Other models like ecosys are better 

suited to accommodate mechanistically-based microbial responses to temperature, by explicitly 

simulating microbial communities (Grant et al., 2003). The substrate quality-based model by Bosatta & 

Ågren (1999) provides a mechanistic basis for temperature sensitivity in some SOM components. A litter 

incubation study supported this theory, with results showing increased temperature sensitivity in lower 

quality litters as well as litters as they progressed through the decomposition process (with declining 

quality as decomposition advanced) (Fierer et al., 2005). The carbon quality-temperature theory was 

also supported by an analysis of the low density (or “light fraction”; LF) fraction of soils, a SOM fraction 

considered to be more microbially accessible as it is not associated with soil minerals (Wagai et al., 

2013).  

More recent models include better mechanistic linkages to a wider array of SOM pools. One 

conceptual model differentiates between processes that make SOM available for decomposition (e.g. 

physical protection and aggregate turnover) versus processes that decompose SOM once it is available 

(e.g. microbial enzyme dynamics, depolymerization, Figure 2-4) (Conant et al., 2011). Microbial 

interactions with SOC dynamics under warming scenarios have suggested a diversity of possible 

pathways for SOM dynamics and interactions with global carbon cycles (Bardgett et al., 2008), and also 

are being more explicitly incorporated into SOM models. Microbial substrate use efficiency has been 

shown to be sensitive to temperature, but with the potential for community shifts and acclimation that 

may reduce this sensitivity through time (Allison et al., 2010; Frey et al., 2013; Luo et al., 2001; Tucker et 

al., 2013). An incubation study supported a separation of microbial turnover from MGE, with 

temperature sensitivity of the former and temperature insensitivity in the latter leading to possible 

increases in SOC with temperature, a dynamic not reflected in current models (Hagerty et al., 2014). A 

model linking microbial biomass and enzyme kinetics to temperature and moisture aims to tease apart 
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these tightly linked drivers, supporting field experiment results suggesting moisture control when 

moisture is limiting, and temperature control when it is not (Steinweg et al., 2012). A recent model 

suggests CUE and abiotic mechanisms like mineral sorption vary interactively in temperature sensitivity 

through time, suggesting the need for  temperature sensitivity to be modeled dynamically in order to 

gain greater accuracy through better linkages to underlying processes (Tang and Riley, 2015). Long-term 

multi-factorial ecosystem-level experiments are needed to clarify interactive climate change effects on 

microbial processes, and better inform development of these types of models (Bardgett et al., 2008). 

In summary, temperature sensitivity in SOM dynamics remains an important area of continued 

research, both experimentally and from the standpoint of SOM model development. There has been a 

strong call for greater standardization and clarity in how experimental results are reported and 

interpreted, to support better integration with modeling efforts (Subke and Bahn, 2010). Models, in 

turn, need to better reflect the full spectrum of potential temperature responses, in order to more 

accurately simulate the implications for the timing, magnitude, direction, and geographic location of 

SOM changes under increasing global temperatures. Only further experimental exploration of 

temperature-sensitive decomposition mechanisms—particularly including large-scale studies that cross 

a range of ecosystem types (Giardina et al., 2014; Subke and Bahn, 2010)—integrated with SOM model 

development will continue advancing this area of research. 

2.3.4 Deep soil organic matter dynamics 

‘Deep soil’ in this discussion refers to the soils beneath the surface 20-30 cm depth layer, which 

has often been excluded from many ecosystem-scale models of SOM dynamics.  Organic matter 

dynamics below the top soil layers remain, to a large extent, much less studied and one of the open 

frontiers in SOM research. Subsurface soils are consequently an important area of development in SOM 

modeling.  Many models focus on the top 20-30 cm soil layer, partially due to logistics; surface soils are 

easier to sample, are often more uniform (particularly in tilled agricultural soils) and have much more 
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data available for model formulation and testing.  In addition, surface soils generally contain a large 

fraction of the total SOM, which is  younger and cycling more rapidly than SOM in deeper soil layers, and 

which is most responsive to management perturbations (Batjes, 1996; Jobbagy and Jackson, 2000; Paul 

et al., 1997; Scharpenseel et al., 1989). This has led to their emphasis in the simulation of ecosystem 

dynamics and soil responses to land management practices. Historically, SOM in deep soil layers was 

thought to consist mainly of inert complex humic material and mineral-bound OM. However while 

mineral-bound OM remains supported as an important stabilization mechanism in subsurface soils 

(Rumpel and Kögel-Knabner, 2010), more recent analyses show deep SOM to mainly consist of simple 

molecules—often  dominated by highly processed microbial products (Erich et al., 2012)—that  are also 

responsive to land management change (Baker et al., 2007; Follett et al., 2012; Poeplau and Don, 2013; 

Trumbore et al., 1995), on shorter timescales than previously understood (Koarashi et al., 2012). 

Therefore there is more recent focus on dynamics of the 50% or greater total SOC contained in soils 

below 20-30cm (Batjes, 1996; Jobbagy and Jackson, 2000), particularly in the context of subsurface soils’ 

role, response, and management under global change scenarios (Salomé et al., 2010). Knowledge gaps 

in the understanding of deep SOM dynamics, as well as their connection to global cycles, are being 

targeted by experimental and field research, with calls to better reflect and test new hypotheses in SOM 

models (Schmidt et al., 2011).  

Deep soil OM dynamics involve similar mechanisms to surface soils, but with the potential for 

time lags and differences in soil environments that may separate subsurface and surface SOM responses 

to change (Fierer et al., 2003a; Salomé et al., 2010; Sanaullah et al., 2011). A review of deep soil OM by 

Rumpel & Kögel-Knabner (2010) provides a framework for recent experimental work focusing on deep 

SOM dynamics. They highlight the need to clarify dominant SOM inputs as well as mechanisms that 

stabilize or destabilize SOM in deep soil layers. They summarized key inputs to deep SOM as 1) the 

movement of dissolved organic matter (DOM) with water, 2) root growth, exudates, and turnover, and 
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3) physical OM transport through bioturbation or physical soil processes. They suggest destabilization 

mechanisms include aggregate disturbance and increases in microbial access to nutrients and labile C. 

Stabilization of deep SOM is linked more strongly to mineral associations and the physical separation 

between dispersed microbes and SOM at depth. However the authors state that the relative importance 

of these mechanisms as well as their interactions remained in need of development, particularly with in 

situ field experiments (Rumpel and Kögel-Knabner, 2010). Moreover, the relative importance of these 

factors is likely variable across ecosystems (Jobbagy and Jackson, 2000; Schmidt et al., 2011). In the 

following section we will summarize recent research in deep SOM, expanding on stabilization and 

destabilization mechanisms as well as the dynamics of deep SOM inputs. We will then discuss modeling 

approaches to deep SOM dynamics and conclude with suggestions for future directions. 

The importance of physical separation between microbes and OM in deep soils as a stabilization 

mechanism—specifically as opposed to the inherent chemical complexity of deep SOM—has received 

widespread experimental support (Rumpel and Kögel-Knabner, 2010; Salomé et al., 2010). For example, 

a study using ‘bomb’ radiocarbon from past atmospheric thermonuclear testing provided evidence that 

subsurface SOM can cycle rapidly on a decadal scale, turning over up to an estimated 1.6% of total 

annual gross terrestrial primary production across temperate grassland and deciduous forest biomes 

each year (Koarashi et al., 2012). In this study the chemistry of the light fraction, often theoretically used 

as a measure of fast-cycling SOM, was consistent across depths, only increasing in age but not changing 

in chemical characteristics (Koarashi et al., 2012). A different field study using 13C and 15N labeled wheat 

roots buried in litter bags at three soil depths to 90cm observed that the chemical characteristics as well 

as the quantity of litter decomposed at different depths was similar after a 3-year period (Sanaullah et 

al., 2011). The importance of physical protection from microbes in subsurface SOM stabilization is 

further supported by a laboratory incubation demonstrating that old SOM in deep soil layers could be 

mobilized simply by successive drying and rewetting, suggesting that SOM in deeper soils is not 
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necessarily biologically inert but rather may persist through mechanisms that limit microbial access 

(Schimel et al., 2011). The authors of this study suggest the term ‘metastable’, for deep SOM that is 

‘unused but not unusable’ (pg 1103). 

Mechanistic linkages between microbial community characteristics and SOM stability remain 

poorly understood. Microbes clearly vary across the soil profile, and can show different sensitivities to 

factors such as temperature, moisture and nutrient addition (Fierer et al., 2003a). Microbes have a 

strong association with SOC content across soil depths (Fierer et al., 2009, 2003b), and their use of ‘old’ 

versus ‘new’ soil C has been shown to depend on depth as well as microbial community composition 

(Kramer and Gleixner, 2008). One study demonstrated that microbial communities varied as much 

across the vertical soil profile as they do between ecosystem in the surface soils, but without being able 

to link these differences to SOM dynamics (Eilers et al., 2012). 

Regardless of mechanistic linkages to microbial community characteristics, the importance of 

SOM stabilization by physical separation from sparse microbes supports the potential importance of 

‘priming’ as a SOM destabilization mechanism in deep soil layers. Priming occurs when inputs of ‘fresh’ 

OM - i.e. labile OM that has not been microbially-processed leads to increasing decomposition of 

otherwise persistent deep SOM with the stimulation of microbial activity (Fontaine et al., 2007; 

Kuzyakov et al., 2000). Priming could play an important role in predicting deep soil responses to 

increasing concentrations of atmospheric CO2, particularly in forested systems where elevated CO2 has 

been shown to increase fine root production as well as cumulative C inputs into deeper soil layers 

(Iversen, 2010). The potential for priming also must be considered in land management strategies for 

increasing SOM, particularly with the growth of deep-rooted crop species. Deeps soils have the potential 

to gain and store soil C with land management to increase soil C sequestration (Poeplau and Don, 2013). 

However, priming may offset desired gains in SOM storage with increased belowground OM inputs 

(Dungait et al., 2012; Follett et al., 2012). Research aimed towards evaluating priming in deep soils has 
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not yet identified easily generalizable mechanisms, but rather suggests a high degree of site specificity. 

For example, Free-Air CO2 Enrichment sites have shown accrual, loss, as well as no change in SOC from 

increased OM inputs to deeper soil layers (Drake et al., 2011; Iversen et al., 2012; Langley et al., 2009).  

 As described earlier there are several pathways for OM to move into deep soil layers, including 

bioturbation, root growth and turnover, and DOM movement. Of these, DOM has received particular 

attention. This attention is due to its rapid cycling, as well as its role linking surface OM with deep soil 

mineral fractions through vertical transport and thereby possibly affecting deep SOM stabilization and 

storage (Fröberg et al., 2009; Rumpel and Kögel-Knabner, 2010). The quantity and quality of DOM from 

different parts of the soil profile can also serve as a metric for cumulative behavior of sorption, 

desorption, decomposition and leaching processes, as they interact with soil minerals, pH, litter, and 

hydrology (Kalbitz et al., 2000). In earlier research DOM emerging from deeper soil layers were thought 

to have ‘escaped’ either adsorption or respiration after generation from litter decomposition (Schiff et 

al., 1997), an idea supported by bulk DOC measurements across the soil profile (Kalbitz et al., 2000). 

However more recent evidence supports the concept of repeated microbial processing as DOM is 

successively sorbed and desorbed down the soil profile, leading to predominance of highly processed 

DOM as depth increases (Kaiser and Kalbitz, 2012). Drying-rewetting can affect the depth and direction 

of DOM movement different in surface versus deep soil layers, with the potential for either upward or 

downward flow depending on the size and frequency of drying and rewetting cycles (Lopez-Sangil et al., 

2013). There is strong evidence that Fe- and Al-oxide concentrations have a positive effect on DOM 

sorption capacity (Oren and Chefetz, 2012; Sanderman et al., 2008). However other mechanisms can 

affect DOM in deep soil layers. For example N addition decreased DOM release from deep soils in a 

temperate largely deciduous forested system. The authors linked this behavior to changes the soil 

chemical environment and solute behavior with the form of N addition (Hagedorn et al., 2012).  
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Recent research on deep SOM dynamics still only reveals pinpoints of understanding in a 

complex belowground system. Logistical challenges and lack of data are profoundly limiting. For 

example the Jobbagy & Jackson (2000) global estimate of SOM cited above required mathematically 

extrapolating down to 3m from datasets largely limited to 1m depths, excluded all agricultural soils, and 

discussed the possibility of biome-specific biases due to lack of data (Jobbagy and Jackson, 2000). ‘Deep 

soil’ research also may often not go deep enough. A study of highly weathered, very deep soil profiles 

demonstrated that SOC measurements limited to the top 50cm of soil would only capture as little as 

14% of total SOC across the soil profile, while even measurements as deep as 5m captured at most 75% 

of the total in soils that averaged 21m in depth (Harper and Tibbett, 2013). Burial of soils through 

volcanic, loess, alluvial, or human mechanisms can create pockets of deep SOM with characteristics and 

behavior largely unaccounted in either global estimates or existing deep SOM model dynamics 

(Chaopricha and Marín-Spiotta, 2014).  In this context, perhaps even more so than in other areas of SOM 

research, SOM model-data integration is needed to advance understanding. Simulation models can 

provide a framework to integrate data and test hypotheses, potentially helping direct subsequent 

experimental work to tease apart interacting, often co-occurring mechanisms in deep soil environments. 

In the past, deep soil SOM turnover was only explicitly included in a few models and was noted 

as a critical area for SOM model development (Falloon & Smith, 2000). In addition to different 

approaches to addressing the three main deep SOM inputs summarized by Rumpel and Kögel-Knabner 

(2010)—roots and exudates, SOM movement with water, and vertical mixing with bioturbation and 

other physical processes—models developed before and since use a variety of approaches to simulate 

changing dynamics and SOM stability across soil layers. As one example, the DAYCENT model—a newer 

version of the CENTURY model—was modified to simulate deep soil C dynamics only by slowing SOM 

pool turnover and increasing allocation to passive soil C, without separating soil layers (Wieder et al., 

2014b). Alternatively the Community Land Model (CLM) was modified to simulate deep SOM dynamics 
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using a vertical cascade, where SOM passes through layers in the soil profile with loss at each transition 

(Koven et al., 2013). The vertical cascade approach and multiple soil layers is more common (Table 2-2). 

The SOLVEG-II model, for example, uses 27 separate layers from the surface to 5.5m, each individually 

containing three CENTURY-type first order kinetic SOM pools with flows between preceding and 

following layers (Ota et al., 2013). 

As discussed earlier, DOM is clearly an important mechanism of OM input into deep soil layers, 

and recent models have varied in explicitly or implicitly simulating DOM movement (Table 2-2). The 

RothPC-1 model, for example, includes DOC implicitly by modeling vertical C transport associated with 

advection (distance time-1) (Jenkinson and Coleman, 2008). The DyDOC model, on the other hand, 

explicitly models DOC dynamics across soil layers using measured soil C pools derived from a detailed 14C 

labeling experiment (the Enriched Background Isotope Study (EBIS) out of Oak Ridge Reservation 

(Tipping et al., 2012). However the DyDOC model does not include the exchange of C with solid soil C, 

suggested by other researchers as a mechanism to explain both greater age and greater microbial 

processing of OM at deeper soil depths (Kaiser and Kalbitz, 2012; Sanderman et al., 2008). The SOVEG-II 

model is another model that explicitly simulates DOM, as a function diffusion, advection with water 

flow, plant uptake, and microbial decomposition (Ota et al., 2013). Alternatively, in the SOMPROF model 

DOM is implicitly simulated using a single advection rate (Braakhekke et al., 2013).  

We would like to note that root inputs and bioturbation show much less variation in modeling 

approaches than DOM. Root distributions with depth tend to be modeled using exponential functions 

(Table 2-2). Modeling approaches to roots has been critiqued as insufficient to capture key dynamics, 

with the suggestion of modifying models to accept root distribution data directly (Iversen, 2010). 

Limited study of deep root dynamics is largely linked to the logistical challenges of their measurement 

and evaluation (Maeght et al., 2013). The limited exploration of modeling approaches to root growth in 

SOM models is likely a combination of the lack of data with the potential complexity involved in moving 
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away from a simple exponential function. However vertical root dynamics are certainly important the 

context of projecting SOM responses with climate change (Iversen, 2010). Therefore as deep SOM 

modeling approaches develop, this is an area in need of careful consideration. Bioturbation, on the 

other hand, has been shown to be largely inconsequential compared to other input and transport 

mechanisms (Braakhekke et al., 2013). It is therefore less of a priority for deep SOM model 

development. 

The goal of these various modeling approaches to deep SOM is to clarify key mechanisms, 

identify patterns, and ideally simulate impacts of future climate projections and land use change 

scenarios with some degree of accuracy. The C-TOOL model takes a practical approach to its application, 

by simplifying assumptions and solely focusing on whole-soil SOC dynamics in agricultural systems. The 

C-TOOL model aims to encourage utility by minimizing parameters and data requirements for its use, 

and saw reasonable model performance when initial SOM pools were optimized using measured data 

(Taghizadeh-Toosi et al., 2014). In a study by Guenet et al. (2013), simplicity was also the aim, by 

comparing simple models that simulate vertical SOM transport using either only diffusion, only 

advection, or the combination of diffusion and advection as they acted on three different SOC 

mineralization models (1st order kinetics, only the input of fresh OM, or 2-pool 1st order kinetics) 

(Guenet et al., 2013). In this study the vertical transport mechanism with the best fit to data from a long-

term bare fallow experiment depended on the underlying SOC model, yielding little mechanistic 

understanding for transport but supporting the importance of fresh SOC inputs in controlling deep soil 

OM dynamics (Guenet et al., 2013). Other experimental results are supported by model simulations. 

Numerical experimentation of rooting depth using the SOLVEG-II model resulted in SOM movement 

below rooting depth as well as dominance of SOM in active and slow pools at depth (Ota et al., 2013). 

These results confirm both as possible mechanisms leading to global observations of SOM below rooting 

depths (Jobbagy and Jackson, 2000), as well as supporting observations that deep SOM can cycle on 
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decadal scales (Koarashi et al., 2012). The BAMS1 model, which takes a more mechanistic approach to 

SOM and includes vertical SOM dynamics, simulated the persistence of relatively decomposable SOM 

across the soil profile. This model has potential to test SOM responses to global change across the soil 

profile. However it is highly complex and requires  expanded observed data to more carefully test 

components of the model’s internal structure (Riley et al., 2014). 

Clearly there is room for iterative development of deep SOM understanding by combining 

experimental, field, and modeling research. We would like to note that, given the preceding short 

review, changes in temperature sensitivity and response to climate change are particularly poorly 

understood across soil depths, are not accounted in these models, and are an area in need of targeted 

consideration (Subke and Bahn, 2010). The models discussed in this deep soil review support some 

observed mechanisms but also suggest testable hypotheses in need of additional data to confirm or 

refute. Carbon isotope labeling and tracers are particularly important tools for deep SOM research, by 

allowing for OM dynamics to be observed with minimal disturbance. However there is likely value in 

using other, non-carbon tracers with known dynamics and interactions with SOM. For example, the use 

of 210Pbex was able to inform SOMPROF model parameters, although use in addition with 14C or other C 

labeling was suggested as a more powerful approach (Braakhekke et al., 2013). Given logistical 

challenges in studying the deep soil realm, collaborative efforts between modelers and experimental 

researchers are needed identify, understand, evaluate, and predict deep SOM dynamics.  

2.3.5 Representation of SOM in earth system models (ESMs)  

The development of SOM modeling within Earth System Models (ESMs) is an advancing area of 

research in need of careful attention from soil scientists. Soils contain the largest terrestrial C pool, and 

have the potential to be either a sink or source of atmospheric greenhouse gas (GHG) emissions due to 

interacting factors that vary across scales, ranging from global vegetation shifts, to site-specific land 

management practices, to temperature effects on microbial dynamics (e.g. Section 2.3.3) (Heimann and 
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Reichstein, 2008). The integration of SOM models into ESMs is a critical activity for the robust 

characterization of feedbacks between the Earth System and future climate changes, both for the 

purposes of mitigation and adaptation across multiple fields that include the sciences, economics, and 

policy. However the inclusion of SOM models in ESMs present new challenges in SOM model 

development and validation, due to high uncertainty, variability, and uneven coverage in both data 

needed to drive SOM models and data to evaluate model performance. The use of SOM models within 

ESMs also requires SOM researchers to grapple with the challenge of integrating the understanding of 

SOM dynamics across scales (Manzoni and Porporato, 2009). Model intercomparison, benchmarking, 

and model-data integration projects will be an increasingly important component of scientific 

development in this field (Luo et al., 2012). In this section we will describe the development of SOM 

modeling in ESMs, and summarize current focal areas within ESM model development as well as across 

multi-model ESM comparisons 

Global biotic C cycling components included in ESMs are often grouped in three broad 

categories: atmosphere, land, and ocean. As the largest terrestrial C pool (Jobbagy and Jackson, 2000), 

as well as by interacting dynamically with atmospheric C, soils play an important role in determining 

global land-based C cycling and land-atmosphere C interactions. Models of SOM are accordingly needed 

in ESM development to dynamically link atmospheric C, climate change effects, and land-based C 

storage (Falloon and Smith, 2000; William R. Wieder et al., 2014). 

Earth system models are highly computationally intensive but have been developed to increase 

their resolution and complexity as advancing technology allowed more detailed climate modeling 

coupled with feedbacks from biotic and abiotic system components. ESM development began in the 

1960s, but originally only included static land surface simulations to gain limited capacity in simulating 

water runoff and evaporation. Land surface models eventually became more dynamic, interacting with 

the atmosphere in model simulations. However dynamic C cycling did not appear until the 1990’s, with 
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the advancement of simulating primary productivity in ESMs through a more mechanistic understanding 

of photosynthesis and stomatal conductance (e.g. implementing the model from Farquhar et al. (1980)). 

This created a dynamic linkage between the atmospheric C cycle and net primary productivity (NPP) of 

the biosphere, which then made C available to move through other ecosystem processes (e.g. growth in 

different vegetation structures, litter inputs, soil decomposition) (Pitman, 2003). For the sake of 

simplicity, initially ESMs did not include coupled feedbacks between climate and terrestrial C cycling, but 

instead simulated climate change effects on soils separately from climate change forecasting models 

(Jenkinson et al., 1991; Schimel et al., 1994). However the need to couple soil models with both climate 

and vegetation models was well recognized (Jenkinson et al., 1991). 

When coupled atmospheric and terrestrial C cycling models did develop, the resulting 

predictions suggested the potential for soils to accelerate climate change (Friedlingstein et al., 2001). 

These predictions were largely driven by relatively simplistic approaches to terrestrial C cycling, wherein 

the effects of increased CO2 concentrations on photosynthesis surpassed temperature effects on 

microbial respiration (Cox et al., 2000),with high uncertainty in the latter (Jones et al., 2003). 

Subsequent ESM simulations and multi-model comparisons included some form of SOM modeling, 

varying by the number of soil pools being modeled but generally using 1st order kinetics (Section 2.2, 

Figure 2-1) (Friedlingstein et al., 2006; Krinner et al., 2005; Sitch et al., 2003). ESMs have since been 

developed to link C and N cycling (long-recognized as an important component for global SOM modeling 

(Schimel et al., 1994)) as well as the simulation of land use and land cover changes (LULCC) with climate 

change (Friedlingstein and Prentice, 2010; Lawrence et al., 2011; Wang et al., 2013).  

Feedbacks between nutrient cycles at global scales continue to be an important area of 

development in ESMs. For example, a terrestrial coupled C-N model emphasized the importance of 

including demand-driven biological N fixation to more accurately simulate C-N interactions in terrestrial 

systems at a global scale (Esser et al., 2011). Another study highlighted phosphorous (P) dynamics, 
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particularly in P-limited tropical ecosystems, as an important component missing from most global 

models (Yang et al., 2014). Spin-up simulations to initialize C pools within ESMs also remain a major 

bottleneck in the implementation of more complex SOM models, although there is ongoing work to 

decrease the computational intensity of this component of ESM simulations (Wang et al., 2013; Xia et 

al., 2012). In one study, global SOM model simulations have been shown to improve with the use of 

observed rather than internally simulated litter decomposition, with some models showing convergence 

over long-term projections with climate change impacts (William R. Wieder et al., 2014). More recently, 

ESMs have been developed to include soil C and N cycling in deeper soil layers (discussed in Section 

2.3.4), which while not capturing SOC age dynamics adequately, did improve long-term simulations of 

SOC responses to climate change (Koven et al., 2013).   

As ESMs advance and incorporate SOM models with higher levels of complexity, there are 

expanding opportunities to implement and test of new ideas in SOM modeling, including many 

discussed earlier in this chapter. Clearly the debate surrounding SOM dynamics under increasing 

temperatures, discussed in Section 2.3.3, can and should link to ESM simulations both for hypothesis 

testing as well as improving ESM simulations under climate change scenarios. The implicit versus explicit 

inclusion of microbial biomass and processes, discussed in Section 2.3.1, is another example. As 

mentioned above, 1st order kinetic SOM models remain widely used in ESMs. However microbial 

dynamics have many direct and indirect linkages to land-atmosphere carbon exchange, with complex 

interactions and potential for community shifts that can lead to positive or negative atmospheric 

feedbacks (Allison et al., 2010; Bardgett et al., 2008; He et al., 2010). The implicit inclusion of microbial 

processes that dominate ESMs has been criticized (Schimel, 2013), with arguments that microbial 

growth efficiency (MGE) controls on SOM dynamics (Wieder et al., 2013; Xu et al., 2014), as well as 

explicit microbial biomass and microbial C:N stoichiometry would improve model predictions (Fujita et 

al., 2014; Todd-Brown et al., 2012). Simulating MGE did improve global simulations of measured SOC 
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variability despite poor performance in tropical and Arctic ecosystems (Wieder et al., 2013). 

Incorporating microbial dynamics in the Community Land Model (CLM) also changed global projections 

of SOC dynamics with warming temperatures and increased C inputs from CO2 fertilization on plant 

growth, resulting in larger SOC loss from the former and minimal SOC gain from the latter as compared 

with prior ESM projections (Wieder et al., 2013). However adding an explicit microbial biomass pool to 

ESMs remains a challenge, in terms of both model complexity and data availability. For example, globally 

scaled distributions of microbial biomass that could be used to inform or test ESM predictions have only 

recently been estimated and were derived from highly variable global data unevenly distributed across 

biomes and hemispheres (Serna-Chavez et al., 2013; Xu et al., 2013). It has been suggested that SOM 

models incorporating more mechanistic approaches to microbial processes may be better suited to 

capture transient change in large-scale ESM simulations (Manzoni and Porporato, 2009; Schimel, 2013). 

There is certainly appeal to the use of microbial enzyme kinetics and stoichiometric constraints to derive 

a better, simpler ‘first principles’ approach to SOM dynamics that is analytically tractable and might 

emulate the early success of simulating photosynthesis and stomatal conductance in ESMs (Bonan et al., 

2012; Davidson et al., 2014; Pitman, 2003). However these types of models (e.g. the DAMM model) are 

still in the early stages of development and testing. 

Ultimately, ESMs pose a central challenge to SOM modeling and model development: that is, 

they test the ability of SOM models to predict accurately across temporal and spatial scales. This arises 

from both the varying scale of ESM application—e.g. short to long term past and future projections 

across regional to global spatial scale—as well as the varying scale of the processes and the data used to 

develop, run, and evaluate simulations (Ostle et al., 2009). Integrating SOM research from smaller-scale 

experimental studies and model development into coupled global models (e.g. dynamic global 

vegetation models, (Arneth et al., 2009)) that can then link to ESMs requires determining how best to 

scale up in spatial resolution while scaling down and simplifying model processes as much as is required 
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(Figure 2- 5). Deciding how best to integrate any of these components across varying process 

complexities and spatial scales remains difficult. Early analyses showed that while simple versus more 

complex SOM models in ESMs converged over long periods of time, the complex models more 

accurately captured transient changes (Schimel et al., 1994). More recently, the relative uniformity in 

using 1st order kinetics SOM modeling in ESMs has been shown to result in better performance at large 

temporal and spatial scales, but poorer performance at smaller scales due to either poor data 

availability, high levels of uncertainty, or poor representation of ecosystem properties/dynamics 

important to capture finer-scale dynamics (Todd-Brown et al., 2013). It still remains unclear whether 

explicit modeling of microbial biomass and processes instead of using 1st order kinetic SOM modeling 

approaches in ESMs lead to improvement in predictive accuracy across scales (Todd-Brown et al., 2012).  

Answering these questions requires multi-model ESM performance comparison with validation 

datasets that range from regional to global scales, a need that has been recognized but remains in early 

developmental stages (Luo et al., 2012). For example, data from the C4MIP multi-model comparison 

suggest the potential for increased C storage in high northern latitudes due to increased primary 

production and rates of litter turnover, but recognizes that these estimations are missing a substantial 

list of potentially important interactive factors (e.g. C in permafrost and peatlands, impacts of land use 

disturbance, N cycling) (Qian et al., 2010). Multi-model comparisons (Cramer et al., 2001; Friedlingstein 

et al., 2006; Qian et al., 2010) and simulations that interchange key submodels to test model sensitivity 

have been a useful tool for ESM development (Meehl et al., 2004). As a high profile example, the 

Intergovernmental Panel on Climate Change (IPCC) developed ensembles of Earth system Models of 

Intermediate Complexity (EMICs) for a more robust approach to simulate past and future climate 

change (Randall et al., 2007). SOM model development could continue to benefit from involvement in 

these efforts  (C4MIP now incorporated into CMIP5, for example, Table 2-3). SOM model development 

at these scales need to consider multiple model structures and variance in input data to reduce either 
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model-specific or data aggregation biases (Paustian et al., 1997), alongside comparisons between 

different modeling approaches to better understand the range of potential soil and ecosystem 

responses to climate change (Esser et al., 2011; Friedlingstein et al., 2006; Qian et al., 2010).  

A number of ESM model comparisons, parameter validation, and benchmarking projects are 

ongoing (Table 2-3), with organizations like the World Climate Research Programme providing resources 

to promote project development. Researchers have repeatedly recognized that, for individual 

submodels or in its entirety, ESMs are fundamentally an interdisciplinary effort (Bonan et al., 2002; 

Pitman, 2003). Given the importance of climate change prediction across temporal and spatial scales, 

alongside the increasing sophistication in developing and evaluating climate change scenarios for 

mitigation and adaptive measures (Moss et al., 2010), we would like to emphasize the importance of 

this area of research and the need for collaboration between ESM researchers, SOM model developers, 

and SOM field and laboratory researchers alike to advance predictive accuracy through model-data 

integration. Expanding the network of scientists involved in either providing data for or advancing 

projects like the coupled model inter-comparison project (CMIP5) could lead to more rapid advances in 

understanding climate-soil interactions in the context of the global carbon cycle, in addition supporting 

to better predictions of future climate change.  

2.4 Conclusions 

We began this chapter by providing a brief background to SOM modeling, giving an overview of 

its history, philosophy, and foundational concepts. With this background we aimed to clarify the 

enduring value of the factors of soil formation as an overarching framework in SOM modeling. We also 

emphasized recent advances in SOM measurement methods and data-model integration, two areas 

with the potential to revolutionize the field in coming years.  

We then highlighted recent advances in five areas of SOM model development: SOM 

stabilization mechanisms, saturation kinetics, temperature sensitivity, dynamics in deep soils, and 
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incorporation in earth system models. Across these five areas some challenges are universal, including in 

particular the integrating of understanding across varying scales. We support the view, suggested by 

others (Manzoni and Porporato, 2009; Stockmann et al., 2013), that SOM model use for hypothesis 

testing must be done with careful consideration of both the scale at which the model was developed, as 

well as the scope of the underlying questions being addressed. However, within these five areas some 

challenges are specific. SOM saturation kinetics, for example, are supported by both laboratory and field 

experimental data and additionally are relatively well understood from a SOM modeling standpoint. Yet 

it has seen extremely limited implementation in SOM models, due to its potential to drastically increase 

SOM model complexity while yielding SOM model improvements only in a narrow set of ecological 

conditions. Modeling SOM temperature sensitivity and deep soil dynamics, on the other hand, are more 

sharply limited by data availability, as temperature effects are difficult to isolate, while deep soils are 

difficult to access. In earth system modeling, however, the strongest limitations come from both the 

availability of sufficient computational technology to accommodate SOM models with higher 

complexity, as well as from varying data availability to drive SOM models for globally-scaled analyses. 

Understanding both the universal and the specific challenges in these areas of SOM model development 

can help target research to most effectively advance the field. 

We see SOM research entering an exciting time. New measurement methods reveal new 

insights for the relationship between SOM’s chemical nature, spatial distribution, and dynamics in the 

soil environment.  Advances in computational capacity and development of collaborative networks for 

data sharing, management, and data-model integration increasingly relieve the bottlenecks in advancing 

the conceptual understanding of SOM. These efforts provide better environments to apply SOM models 

and test hypotheses for SOM dynamics across scales. As Pitman (2003) described more than a decade 

past (in regards to land surface modeling) the breadth of knowledge required to tackle comprehensive 

analysis using models of such complexity is vast, and the best approach is through multidisciplinary 
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collaborations. We recognize, alongside others (Stockmann et al., 2013), the continual importance of 

collaborative, interdisciplinary effort in SOM modeling.  

Within this context there is also room for more openly sourced involvement in model-data 

integration. Data management is an increasingly sophisticated branch of research and development. 

Particularly if NSF funded, projects must generally make data management and the open provision of 

data a component of proposals and final products from research efforts.  Libraries are developing 

capacity to house citable datasets, with standardized approaches to metadata and organizational 

structure. We believe data-model integration has only touched the surface of what is feasible, given 

more openly source collaborative networks of data sharing and model-data integration. 

We urge the importance of considering scale in all of these developments, using general 

categories of microsite, site, regional, and global to frame the applicability of the SOM concepts being 

developed and tested. Due to overlapping levels of complexity, and the many ways in which data and 

models can interact, keeping consistency and clarity in underlying assumptions is particularly difficult. 

More standardized frameworks for data sharing and model-data integration will resolve this challenge. 

Given the continual and expanding importance of SOM models in understanding and managing soils as a 

natural resource we see this as a challenging, but fruitful, path forward.  
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Table 2-1 A selection of SOM reviews 

Publication Description 

Oades, (1988) “The retention of organic matter in soils”- clarifies terminology for soil C cycling and 
the linkage between the term ‘humus’ and ‘biomass’. Emphasis on physical 
stabilization and soil matrix interaction mechanisms that impact rates at which SOM is 
mineralized. 

Sollins et al., (1996) “Stabilization and destabilization of soil organic matter: mechanisms and controls” - A 
conceptual framework for SOM dynamics aiming to bring together the state of the art 
in terms of mechanisms underlying SOM stability.  

Falloon & Smith, 
(2000) 

“Modeling refractory soil organic matter”- review of soil organic matter models- 
including static, dynamic, organismal- or process-based- approaches to modeling SOM 
with the longest turnover times. 

Kuzyakov et al., (2000) “Review of mechanisms and quantification of priming effects”- consideration of SOM 
priming, and its potential to increase or slow SOM turnover rates. Additional: 
Fontaine et al., (2007) – “Stability of organic carbon in deep soil layers controlled by 
fresh carbon supply” 

Six et al., (2002) “Stabilization mechanisms of soil organic matter: Implications for C-saturation of 
soils”- evaluates mechanisms for SOM protection that have potential for saturation, 
proposing a fractionation method to evaluate soils for saturation kinetics. 

Lützow et al., (2006) “Stabilization of organic matter in temperate soils: mechanisms and their relevance 
under different soil conditions – a review”- Methodical discussion of all SOM 
stabilization mechanisms occurring in temperature soils, identifying uncertainties and 
inconsistencies. Questions inherent chemical recalcitrance as a stabilization 
mechanism. 

Trumbore, (2009) “Radiocarbon and soil carbon dynamics”- A review of radiocarbon dating as an 
integrated measure of SOM cycling processes and turnover time over long-term 
timescales, centered on a state-factor approach to test hypotheses for SOM dynamics 
and showing differences in cycling dynamics across ecosystem components and 
timescales. Additional: Paul et al., (1997)- “Radiocarbon dating for determination of 
soil organic matter pool sizes and dynamics”. 

(Kleber, 2010) “What is recalcitrant soil organic matter”- Complete examination of the term 
‘recalcitrant’ in terms of general, mechanistic, and operational definitions. Examines 
logic for recalcitrance as a concept, arguing that it is largely semantic rather than 
providing meaningful connection to SOM dynamics.   
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Table 2-2 Comparison of a selection of SOM models simulating deep soil dynamics. 

Model Timestep, 
Simulation 
Timeframe 

Depth Drivers SOM DOM Roots Biotur-
bation 

SOLVEG-II 
(Ota et al., 
2013) 

0.25hr 
timestep, 
immediate 
to long-term 
simulations 

5.5m, 
27 
varying 
layer 
depths 

Temp., 
moisture, 
soil 
texture  

1
st

 order, 
CENTURY-type 
structure, 3 
pools each 
layer (active, 
slow, passive) 

Explicit, 
f(diffusion, 
advection, 
uptake, water 
flow, decomp) 

Exponential 
function 
across depth 

NA 

C-TOOL 
(Taghizad
eh-Toosi 
et al., 
2014) 

Monthly, 
medium to 
long-term 
simulations 

100cm, 
0 – 
25cm & 
25-
100cm 

Temp, 
clay 
content, 
soil C/N, 
OM inputs 

1
st

-order, 3 
pool 

Implicit Exponential 
function 
across depth 

NA 

SOMPROF 
(Braakhek
ke et al., 
2013) 

Monthly, 
Medium to 
long-term 
simulations 

0.7 – 
2m, 
variable 
layer 
depths 

Temp, 
moisture 

1
st

 order, root 
& fragmented 
litter, 
leachable & 
non-leachable 
slow OM in 
mineral layer 

Implicit, 
effective 
advection with 
liquid tranport 

1
st

 order 
decay 

Single 
rate, 
with 
diffus. 
trans-
port 

RothPC-1 
(Jenkinson 
and 
Coleman, 
2008) 

Monthly, 
Medium to 
long-term 
simulations 

92cm: 
in 0-23, 
23-46, 
46-69, 
and 69-
92cm 
depth 
increme
nts 

Temp, 
moisture, 
clay 
content 

1
st

 order, 
including 
microbial 
biomass, 
humus, and 
inert OM pools 

Implicit 1
st

 order 
decay, 
implicit in C 
flows 
through 
‘decompos-
able’ versus 
‘resistant’ 
plant OM 
pools 

NA 
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Table 2-3 Selection of model intercomparison and model-data integration projects focused on carbon 
cycling and including a soils component. 

Name Description Status and 
Resources 

Select Contributions Publications 

International Land 
Model 
Benchmarking 
Project 
(ILAMB) 

Model-data integration 
and intercomparison; 
develop and promote 
benchmarks; software 
system for benchmarking 

Ongoing, 
www.ilamb.org 

Identify ecosystem 
benchmarks for 
measured/modeled 
comparison, to 
reduce equifinality 
problem 

(Luo et al., 
2012) 

Project for 
Intercomparison of 
Land surface 
Parameterization 
Schemes 
(PILPS) 

Landsurface process 
modeling 
intercomparison of 
parameters; community-
based documentation, 
comparison, and 
validation of parameters 

Designed to be on-
going, listed as a 
former model 
intercomparison 
project by World 
Climate Research 
Programme, 
http://www.wcrp-
climate.org/  

Comparison of 1
st

 vs 
2

nd
 generation 

models showed 
improvement when 
plant-soil 
interactions with 
atmosphere are 
dynamic, instead of 
passive; developing 
use of isotopes to 
improve 
parameterization 

(Henderson-
Sellers, 2006; 
Pitman, 2003) 

Coupled Carbon 
Cycle Climate 
Model 
Intercomparison 
Project 
(C4MIP), now 
incorporated in the 
Coupled Model 
Intercomparison 
Project Phase 5 
(CMIP5) 

Isolate feedback between 
the carbon cycle and the 
climate in the presence of 
external forcing 

Ongoing, 
http://c4mip.lsce.i
psl.fr/, focus area 
within 5

th
 Coupled 

Modeling 
Intercomparison 
Project (CMIP5): 
e.g. 
http://journals.am
etsoc.org/page/C4
MIP  

10 model comparison 
suggests high 
northern latitudes 
(poleward of 
60degrees N) will be 
C sink to 2100, under 
warming and 
increased CO2 

(Friedlingstein 
et al., 2006; 
Qian et al., 
2010) 
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Figure 2-1 First order single and multi-compartment models (a & b, respectively) versus non-first order 
multi-compartment models showing compartment feedback on the rate of loss and compartment 
feedback on the rate of transfer between compartments (dotted arrow, c & d, respectively). Boxes 
indicate model states. 
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Figure 2-2 Theoretical relationship between C input level and soil organic C (SOC) contents at steady-
state, with and without C saturation. Steady-state SOC accumulation dynamics expressed over time (a) 
produces a linear relationship when expressed over C input level (b) Under the conditions of C 
saturation, SOC stabilization with increasing input rates (at steady-state) is not proportional (c) resulting 
in an asymptotic relationship when expressed over C input level (d). Reprinted with permission  from 
(Stewart et al., 2007). 
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Figure 2-3 Hypothetical decomposition response curves with increasing temperature, showing greater 
temperature sensitivity of R2 versus R1, as exemplified by ΔR2 being larger in magnitude than ΔR1 over 
the same temperature interval.  
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Figure 2-4 Conceptual diagram showing factors that can interact with atmospheric CO2 emissions and 
soil respiration under climate warming, with hypothesized positive and negative feedbacks as originally 
described by Luo et al. (2001) (A), versus new approaches that separate mechanisms that affect 
microbial processes from mechanisms that affect SOM availability (B, vis à vis (Conant et al., 2011)). 
Colored boxes and lines can be considered a plausible scenario under increasing temperatures. Many 
other interactions are possible.  
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Figure 2-5 Conceptual grouping of carbon models across scales, in terms of process versus application, 
where GCMs refers to global circulation models (e.g. earth system models), and DGVMs refer to 
dynamic global vegetation models. Reprinted with permission from Ostle et al. (2009). 
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3    TRACKING THE FATE OF LITTER C INTO CO2, MICROBIAL PRODUCTS AND DISSOLVED ORGANIC 
CARBON BY THE LITTER DECOMPOSITION AND LEACHING (LIDEL) MODEL USING A HIERARCHICHAL 

BAYESIAN APPROACH TO ESTIMATE PARAMETERS AND VARIABILITY2 
 
 
 

3.1 Introduction 

Litter decomposition creates a dynamic link between atmosphere and terrestrial carbon C 

(Houghton, 2007), tying into concerns with the interaction of these two  main global C pools in the 

context of global climate change (Friedlingstein et al., 2006, 2001). Decomposers interact dynamically 

with the physical characteristics and chemistry of litter, as well as with other biotic and abiotic factors 

(e.g. climate) through time. These interactions result in different rates of litter decomposition that have 

the potential to generate different types and quantities of decomposition products (e.g. Don and 

Kalbitz, 2005). Litter decomposition is therefore a fundamental mechanism determining the rate and 

partitioning of litter C—i.e. atmospheric CO2 fixed via photosynthesis in terrestrial primary productivity 

–between returning to the atmosphere quickly as respired CO2 and remaining in soils as partially 

decomposed litter or microbially-processed OM. Accurately representing litter decomposition in 

ecosystem and global C cycle models is therefore necessary to project climate change impacts, both to 

anticipate specific ecosystem changes as well as predict the magnitude and direction of feedbacks that 

affect global C dynamics.  

Litter decomposition occurs through three general processes: fragmentation, catabolism to CO2, 

and leaching (Swift et al., 1979). Current litter decomposition models are generally based on litter mass 

loss and CO2 flux (e.g. Adair et al., 2008; Manzoni et al., 2012), an approach which does not consider 

leaching and the generation of dissolved organic matter (DOM). Dissolved organic matter can make up  

6-39% of litter decomposition products (Don and Kalbitz, 2005; Magill and Aber, 2000; Qualls et al., 

                                                           
2
 In preparation for Soil Biology and Biochemistry with W.B. Parton, J.L. Soong, N.T. Hobbs, M.F. Cotrufo, and K. 

Paustian. 
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1991). It is also recognized as an important near-term mechanism for vertical OM movement through 

soils, with the potential to contribute towards long-term SOM persistence by adsorption to soil minerals 

(Kaiser and Kalbitz, 2012). While some models simulate DOM movement in soils (Braakhekke et al., 

2013; Jenkinson and Coleman, 2008; Ota et al., 2013; Tipping et al., 2012), there has been limited 

attention to the dynamics of DOM generation during litter decomposition.  Studies show DOM 

generation can vary  in quantity and chemistry between litter types and through time, in patterns that 

are often unrelated to cumulative litter mass loss dynamics (Don and Kalbitz, 2005; Soong et al., 2015). 

A dynamic model for DOM generation from litter decomposition is needed to examine the implications 

of these patterns on OM cycling, either at a fine scale—e.g. within a specific soil profile—or more 

generally in global biogeocycling processes. 

Microbial carbon use efficiency (CUE)—the quantity of microbial biomass generated per unit of 

substrate use (Lekkerkerk et al., 1990)—is another important mechanism in litter decomposition, 

specifically within the process of catabolism to CO2. Microbial CUE determines the partitioning of litter C 

between respired CO2 versus the formation of microbial biomass and products. Microbial CUE is related 

to DOM generation and movement, as DOM shows increasing evidence of microbial processing  across 

the vertical soil profile (Kaiser and Kalbitz, 2012; Tipping et al., 2012). However, to our knowledge this 

interaction has not been examined in a litter decomposition model.  

Evidence suggests microbial CUE is often variable during litter decomposition, depending on the 

decomposition environment, chemical characteristics of substrates being decomposed, and the 

physiological characteristics of microbes and microbial communities (Frey et al., 2013; Lekkerkerk et al., 

1990; Manzoni et al., 2008). However many widely used models simulate CUE as a static variable (e.g. 

DAYCENT (Parton, 1988)).  This is an important area for litter decomposition model development, as 

evidence supports microbial products as an important contributor to SOM formation (Miltner et al., 

2011; Schmidt et al., 2011). Theoretical implications of variable CUE in SOM formation are summarized 
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in the Microbial Efficiency-Matrix Stabilization (MEMS) framework, proposing potential for greater 

persistence of litter OM that is more efficiently decomposed due to greater generation of microbial 

material that can then be stabilized in the soil matrix (Cotrufo et al., 2013). The MEMS hypothesis is 

suggested as an alternative to past hypotheses linking SOM stability to inherent litter chemical 

recalcitrance, that have since been strongly criticized (Dungait et al., 2012; Kleber, 2010; Kleber et al., 

2011). Litter decomposition models that include variable CUE would more accurately reflect partitioning 

of decomposed litter C to CO2 versus microbial materials, and thus be able to test new hypotheses 

linking microbial processes to SOM persistence (Wieder et al., 2014).  

In this paper we propose the Litter Decomposition and Leaching (LIDEL) model as a new 

approach to modeling litter decomposition that 1) includes explicit modeling of DOM as a litter 

decomposition product, and 2) dynamically links substrate chemistry with variable CUE and the 

generation of DOM and other litter decomposition products. In the LIDEL model, we focus on the 

control of CUE by litter N and lignin content. Nitrogen, whether internally (e.g. as a component of plant 

litter) or externally  (e.g. as present in the surrounding environment) available, is an important driver of 

litter decomposition dynamics (Adair et al., 2008; Aerts, 1997; Manzoni et al., 2008; Sinsabaugh et al., 

2013). Lignin is a litter chemistry metric that also shows strong explanatory power when incorporated 

into litter decomposition models (Adair et al., 2008), and has been linked to mechanistic controls on 

microbial processes during decomposition (Moorhead et al., 2013). The LIDEL model specifically 

integrates Moorhead et al. (2013) and Sinsabaugh et al. (2013) hypotheses for lignin and N impacts on 

microbial CUE, with experimental data from Soong et al. (2015) for the impact of litter chemistry on the 

generation of CO2 versus DOC from litter decomposition.  

Linking changes in measured C pools with conceptual understanding of decomposition 

dynamics, particularly as C moves from the surface into the soil matrix, is a fundamental challenge 

modeling litter decomposition and soil C dynamics (Elliott et al., 1996). There are a variety of established 
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methods to optimize model parameters and evaluate uncertainty in model performance in state-space 

models characteristic of modeling C dynamics (e.g. Del Grosso et al., 2010; Ogle et al., 2010, 2007). 

However, these analyses are often not satisfactory in accounting for multiple types of measurement 

data, accommodating different types of measurement and model uncertainty, or integrating these two 

components in time-series models and observations. Hierarchical Bayesian methods offer an approach 

to factor highly complex problems with high dimensionality into problems with lower dimensions, 

specifically by separating the problem into the process model (e.g. the LIDEL model), data models, and 

associated parameter models, and having uncertainty associated with each component (Berliner, 1996; 

Clark, 2007; Geremia et al., 2014). Bayesian methods for model-data integration provides a powerful 

approach to estimate unknown model parameters and compare C cycling models (Tuomi et al., 2008), 

clarifying how measured data connect to ecological hypotheses (Hararuk and Luo, 2014). Bayesian 

methods can also help identify areas where data are needed or where additional data would help clarify 

the understanding of underlying dynamics (Braakhekke et al., 2013). Hierarchical Bayesian methods 

have further been used to successfully partition variability in C cycling dynamics (Ogle and Pendall, 

2015).  In the hierarchical Bayesian framework it is also possible to separate model error from 

observation error if we use informative priors on error terms, for example if error in a specific 

measurement technique is well understood (Hobbs and Hooten, in press). 

In this paper we present the LIDEL model structure and assumptions, as well as parameter 

estimates using hierarchical Bayesian methods (Berliner, 1996; Clark, 2007; Geremia et al., 2014) to 

integrate LIDEL model simulations with data from an experiment measuring the generation of 

decomposition products from five litters that varied in initial lignin  and N content (Soong et al., 2015). 

We explore separate hypotheses for N control on litter decomposition and the efficiency of DOC 

generation from litter fractions. Specifically we examine 1) a logistic versus a linear relationship between 

N content, N controls on litter decomposition rates, and microbial CUE, to test whether N limitation is 
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better modeled as occurring suddenly at a threshold, or as occurring more gradually as N content 

decreases. We also examine 2) equal DOC/CO2 generation efficiency from both the soluble and 

cellulose-dominated litter fractions versus higher DOC generation from the soluble litter fraction. The 

combination of these alternate hypotheses for 1) N limitation and 2) DOC/CO2 generation efficiency 

yielded four separate LIDEL model formulations. Parameter estimates and overall model predictive 

accuracy were compared between these four LIDEL model formulations, to identify the model structure 

that best predicted measured litter decomposition dynamics. 

3.2 Material and methods 

3.2.1 LIDEL model description 

In the LIDEL model (Figure 3-1) we propose separating litter into three C fractions including: 

water soluble, lignin, and non-lignin structural (NLS). A similar fractionation approach separating plant 

litter into lignin, labile, and cellulose pools has been successfully applied in other models to include the 

impacts of microbial growth efficiency on C dynamics, yielding improved global simulations of soil C 

(Wieder et al., 2013). However we use water soluble litter instead of labile litter to better link to DOC 

and the ecological importance of water in generating and moving this OC fraction. We model lignin, 

similarly to Weider et al. (2013), in order to explicitly implement the Moorhead et al. (2013) hypotheses 

for lignin control on CUE, described below. The remaining litter material is estimated by difference and 

thus termed non-lignin structural. However we assume that the NLS fraction is dominated by cellulose 

and hemicellulose—termed holocellulose—and treat it as such when implementing Moorhead et al. 

(2013) hypotheses for lignin controls on decomposition. We therefore refer to the NLS pool using the 

more familiar term holocellulose, even though technically by our definition this pool will contain a small 

quantity of non-holocellulose material. 

In order to incorporate dynamic microbial CUE impacts on the generation of microbial biomass 

and microbial products we model litter material movement into microbial biomass and then microbial 
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products pools, with losses to DOC and CO2.  It should be noted that lignin does not directly contribute 

to microbial biomass, but only decomposes to CO2 and DOC. This is drawn from the Moorhead et al. 

(2013) hypothesis that lignin is not energetically favorable for microbes to decompose, and is therefore 

decomposed to access holocellulose without yielding microbial biomass directly (Moorhead et al., 2013). 

It should also be noted that microbial products only contains structural microbial material, as soluble 

microbial products from microbial biomass will be lost as DOC (Figure 3-1). 

The mathematical representation of Figure 3-1 is expressed as a system of seven ordinary 

differential equations, where: 
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The LIDEL model runs on a daily time step. Parameters   and    are the maximum rates (day-1) 

of water soluble and holocellulose decay, and are parameters fitted in our analysis. The rate (day-1) of 

microbe biomass decay (  ), the generation of microbial products from microbe biomass (  ), and the 

generation of DOC from the decay of microbe biomass (  ) are also fitted parameters in our analysis. 

Parameters    and    are the maximum growth efficiencies (g microbial biomass/g decayed material) 

for microbial use of water soluble and holocellulose litter, set at values of 0.6 and 0.5, assuming the 

maximum CUE stipulated by Sinsabaugh et al. (2013) for soluble C and assuming a lower maximum for 

γ 
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decomposition of holocellulose (Figure 3-2b). The remaining parameters are based on hypotheses 

described in the following sections. 

3.2.1.1 Linking hypotheses for microbial CUE and litter decay 

We differentiate individual N and lignin effects in the LIDEL model by setting a maximum CUE 

limit and a threshold for N effects on CUE (Moorhead et al., 2013; Sinsabaugh et al., 2013).  Lignin 

affects litter decomposition, as well as microbial CUE, by limiting microbial access to usable plant 

material (i.e. holocellulose) (Herman et al., 2008; Manzoni et al., 2008; Moorhead et al., 2013; 

Sinsabaugh et al., 2013). We adapted these hypotheses to set lignin and N limitations on decomposition 

and CUE in the LIDEL model, as based on the initial litter N content and the dynamic lignocellulose index 

(Lc), calculated as; 

   
           

                    
. Eqn 8 

Based on prior publications (Moorhead et al., 2013; Sinsabaugh et al., 2013) and DOC generation 

dynamics in the Soong et al (2015) experiment we hypothesized that the water soluble and holocelluose 

pools are affected by both Lc and N. We assumed the litter chemistry (i.e. either Lc or N) exerting the 

greatest limitation at any given point in time during decomposition is, at that time point, controlling 

decomposition dynamics and microbial uptake of these pools.  Therefore; 

 
 

              , and Eqn 9 

 
 

              , Eqn 10 

where  
 

 is the litter chemistry limitation on the maximum rate of decay for the water soluble and 

holocellulose fractions,  
 
 is the litter chemistry limitation on the maximum rate of microbial uptake of 

these pools. The value for  
 

 is determined by the minimum of   — the rate modifier based on N 

limitation (Figure 3-3)—versus   , a rate modifier for Lc-dependent limitation on decay. The value for  
 
 

is determined by the minimum of   versus   , a rate modifier for Lc-dependent limitation on CUE (Figure 



70 
 

3-2). Moorhead et al. (2013) propose microbes do not decompose lignin when Lc <0.4, when 

holocellulose is highly available for microbial use. They further propose a linear increase in rates of 

lignin decay accompanied by a linear decrease in rates of holocellulose decay when Lc is between 0.4 – 

0.7. Finally, they propose an equal decay rate of both pools when Lc > 0.7. We approximated these 

equations with a continuous equivalent (Figure 3-2). We expressed    as; 

           . Eqn 11  

We expressed the control of Lc on water soluble and holocellulose CUE (  ) when Lc is less than 0.7 as: 

           |      |    . Eqn 12 

We expressed the control of Lc on the rate of lignin decay (  , in units of day-1), based on the 

holocellulose maximum rate of decay (  , in units of day-1), as: 

     
   

   
   

       
 
. Eqn 13 

Microbial products are hypothesized to be an important contributor to SOM formation (Cotrufo et al., 

2013), but are difficult to measure (Preston et al., 2009), and their dynamics remain poorly understood. 

We assume microbial products are decomposed slowly, and do not directly contribute to the generation 

of microbial biomass (Figure 3-1). We expressed the rate of microbial products decay (  , in units of day-

1), for simplicity (i.e. without adding additional model parameters), as similar to the maximum possible 

rate of lignin decay, where: 

      
    . Eqn 14 

Sinsabaugh et al. (2013) link substrate N content to microbial CUE, providing evidence for a 

threshold for N availability above which N does not limit CUE. Based on this hypothesis, we propose that 

above 3% N, either in litter or as available to microbes from external sources (e.g. soil, which we did not 

consider in this analysis), CUE and litter decomposition are unaffected by N availability. However, below 

that threshold we explore two mathematical expressions of N limitation: 
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  , Eqn 16 

where    modifies rates of decay from the water soluble and holocellulose C pools, as well as the rate of 

C uptake by microbes. In both Eq.15 and 16,      is the maximum percent litter N for a N effect while 

   is the internally available initial litter percent N. In Eq. 15,      determines the midpoint of the N 

limitation curve. In Eq. 16,      is the intercept determining minimum N limitation.      can be 

considered a measure of external N availability, and could be an estimated parameter with application 

of the LIDEL model in systems that vary by both litter N and externally available N (e.g. connecting the 

LIDEL model to a model of soil organic matter dynamics) (Figure 3-3).  

3.2.1.2 Hypotheses from experimental data: DOC versus mass loss 

Data from the litter decomposition experiment by Soong et al. (2015) were used to develop the 

remaining structure of the LIDEL model. In this experiment five litter types were selected that exhibited 

a range of initial % N and initial Lc (Table 3-1), in order to examine their relative impacts on the character 

and quantity of DOC and CO2 generation across a 365 day incubation. Each litter type was exposed to a 

microbial inoculum and allowed to decompose in absence of soil and without any additional N, with 

periodic leaching events that were more frequent in early stages of decomposition (approximately every 

1-3 days, then approximately weekly, then approximately every 1-2 months). Measurements of DOC and 

CO2 were taken at each leaching event, and measures of litter mass loss were taken by destructive 

harvesting half of the samples at day 95 and the remaining half at the conclusion of the experiment on 

day 365 (for more details about the experiment see Soong et al.,2015). This experiment provides a 

unique dataset explicitly evaluating the fractionation of DOC generation versus CO2 through time, across 

litters that vary in their N and Lc chemistry. We use these data to develop empirically-based hypotheses 

for the generation of DOC from decomposition from the litter pools included in the LIDEL model. 
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We hypothesized linear declining relationships between the ratio of DOC versus litter mass loss 

(i.e.  DOC/(DOC+CO2)) as a function of initial litter % N and Lc, with highest proportion of DOC generation 

at the lowest initial % N and Lc values. Based on these hypotheses, we examined the predictive power of 

initial litter % N and Lc in estimating DOC generation, across the range of DOC versus litter mass loss 

observed in the Soong et al. (2015) experiment (0.15 – 0.48 g DOC per g litter mass loss from day 10 - 20, 

0.004 – 0.27 g DOC per g litter mass loss from day 20 - 365). We examined the predictive power of these 

relationships individually as well as by taking the minimum of the DOC versus mass loss predicted by 

each factor—similar to the approach applied to determine  
 
 and  

 
 (Eqn’s 8 and 9). Predictions using 

the minimum of the two factors had a higher r2 than predictions based on either of these factors 

individually (minimum predicted: r2=0.319, slope=0.616, intercept=0.113; Lc predicted: r2=0.149, 

slope=0.477, intercept=0.111; N predicted: r2=0.105, slope=0.269, intercept=0.128), suggesting litter N 

and Lc influence different mechanisms for DOC generation during decomposition. Predictions had a 

substantially higher r2 as well as a slope closer to 1 and intercept closer to 0 when accounting for the 

higher proportion of DOC generation between early versus later decomposition (i.e. day 10 – 20 versus 

day 20 – 365), again using the minimum of predictions from initial litter %N and Lc (Figure 3-4) 

(minimum predicted: r2=0.862, slope=0.991, intercept=0.018; Lc predicted: r2=0.704, slope=0.896, 

intercept=0.01; N predicted: r2=0.613, slope=0.702, intercept=0.012). The generation of DOC has been 

linked to the water soluble fraction of litter (Magill and Aber, 2000; Smolander and Kitunen, 2002). This 

is further supported by Soong et al. (2015) data that show early DOC generation is strongly plant-

derived, and strongly predicted by the hot water extractable fraction. We therefore assume that early 

DOC generation is predominantly derived from the litter water soluble fraction, and hypothesize that 

DOC generated from both the water soluble and holocellulose litter fractions are similarly affected by 

litter N and Lc. We express the rate of DOC generation from decomposition of water soluble and 

holocellulose C (   and   ) as; 
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where       and       are the minimum and maximum leached fractions from the soluble pool,       

and       are the minimum and maximum leached fraction from the holocellulose pool, and        is 

the maximum Lc index. We use this component of the LIDEL model to evaluate our hypotheses for DOC 

generation efficiency from litter decomposition, developing two formulations of the LIDEL model with 

respect to the maximum and minimum leached fractions from the soluble versus the holocellulose 

pools. In one formulation these values were set equal to each other, at a minimum and maximum of 

0.005 day-1 and 0.15 day-1. In the other formulation the soluble pool values were set higher than the 

holocellulose pool values, at 0.1 and 0.5 day-1 versus 0.001 and 0.1 day-1. The latter approach assumes 

greater efficiency of plant-derived DOC release from decomposition of the holocellulose pool versus the 

soluble pool.  

Finally, in the LIDEL model DOC is also generated from lignin, microbes, and microbial products. 

The generation of soluble microbial products from microbial biomass turnover is not well understood 

and is therefore a fitted parameter in this analysis. We assume for the lignin and microbial products 

pools that only a very small, constant portion of DOC is generated from decomposition. We used 

measurements of DOC generation from late in alfalfa decomposition (that decomposed very quickly and 

had very little mass at the end of the incubation) to set this rate, where: 

                                  Eqn 19 

3.2.1.3 LIDEL initial conditions 

The initial conditions of the LIDEL model pools (referred to by   subscripts) were assumed to be 

determined by the fraction of initial litter material in the soluble, lignin, and DOC pools, with the 

remaining material in the holocellulose pool. These initial conditions were calculated as; 
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      , Eqn 26 

where      is the total initial litter C mass of litter  ,    
 is the soluble fraction for a given litter  ,      is 

the fraction of soluble material that is not microbially processed, and      
 is the lignin fraction for a 

given litter  .  

3.2.2 Statistical Approach 

3.2.2.1 Data 

Data used in this analysis include experimental time series data from the laboratory litter 

decomposition experiment described in detail in Soong et al. (2015) and literature data (Adair et al., 

2008; Parton et al., 2007) for the initial litter chemistry of the five litters; alfalfa (Medicago sativa), ash 

(Fraxinus excelsior), big bluestem (Andropogon gerardii), oak (Quercus macrocarpa) and pine (Pinus 

ponderosa). To initialize the LIDEL model C pools we used Soong et al. (2015) experimental data for 

measurements of initial litter chemical fractions. The acid unhydrolyzable residue (AUR) measured from 

the acid detergent fiber (ADF) digestion method (Van Soest and Wine, 1968) used in Soong et al. (2015) 

is a reasonable approximation of lignin at the initial phase of the experiment when the litters have not 

been exposed to microbial processing. It therefore was the only source of data used to inform the initial 

size of the lignin C pool in the LIDEL model. However the connection is less clear between the soluble C 
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pool used in the LIDEL model and either hot water extraction (noted as HWE) or measurement of this 

fraction as the mass loss during NDF digestion (Soong et al., 2015). Therefore we used both of these 

measurements from Soong et al. (2015), supplemented with literature values across the five litters to 

more accurately reflect their variance. Conceptually, the initial value of the DOC pool in the LIDEL model 

is representative of soluble litter C that is released immediately with exposure to water, without any 

interaction with microbial processes. We made the assumption that the DOC released in the first 10 

days of the experiment is an approximation of this initial DOC value. The initial holocellulose pool was 

assumed to consist of the remaining initial litter C after removal of the soluble, initial DOC, and lignin 

litter C (Eq. 21). Full details on these data and their use to initialize the LIDEL model are described in 

Appendix 1.   

We additionally used the series of CO2, DOC, and total mass loss measurements taken by Soong 

et al. (2015) through the 365 day incubation to evaluate LIDEL temporal dynamics. Each time series 

measurement had three replicates for each litter. Full details on these data and their use to evaluate the 

LIDEL model are described in Appendix 2. 

3.2.2.2 Hierarchical Bayesian Analyses 

Using the data described above, we applied hierarchical Bayesian models to use the 

experimental data to estimate initial LIDEL model pools as well as five parameters that drive LIDEL 

temporal dynamics. The five parameters include the decay of the soluble (  ), non-lignin structural (  ), 

and microbial biomass pools (  ), the generation of microbial products from microbe biomass (  ), and 

the generation of DOC from the decay of microbe biomass (  ). These parameters are important for the 

dynamics of litter decomposition through time as well as the generation of products from microbial 

processes. However, they are poorly understood in part due to the difficulty in measuring them 

experimentally.  
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The LIDEL model includes several equations where the minimum of two values drive model 

dynamics at a given point in time (Eq.’s 9, 10, 17, and 18). The LIDEL model is therefore non-linear and 

cannot be solved analytically, requiring the use of an ordinary differential equations solver to resolve 

model dynamics into daily time steps. We split the data and processes into two hierarchical Bayesian 

analyses. The first analysis estimated the initial conditions (IC) of the LIDEL model. The second analysis 

used the results of the first as priors in the estimate of LIDEL temporal dynamics (TD), using the four 

LIDEL formulations under consideration (linear versus logistic N control, Eqns 15 vs 16, and equal versus 

unequal DOC generation efficiency from the soluble and holocellulose pools, Eqns 17 & 18). This 

approach was meant to reduce the number of estimated parameters in the TD analysis, where the 

ordinary differential equations solver is required. The TD analysis used the posterior distributions of the 

IC analysis as priors to initialize LIDEL model pools on day 0. To further simplify the TD analysis a subset 

of measured time points for DOC and CO2 were used to estimate a subset of latent states, measurement 

error and model error. 

Since the five main parameters of interest for the TD analysis each have a single value across all 

litter types and all time points, subsetting time points was considered an appropriate method to reduce 

computational complexity by reducing the number of estimated values (by reducing the estimated 

latent states) while still informing the parameters of interest with time series measurements across the 

decomposition experiment. The subset of time points were selective to be representative of the ‘early’, 

‘middle’ and ‘late’ stage decomposition dynamics identified by Soong et al. (2015). The subset of time 

points included all measurements for all litter types on days 7, 15, 28, 64, 95, and 365. The remaining 

measurements were used for a non-exhaustive cross validation at each iteration of the MCMC, 

calculating the root mean square error (RMSE) for the model prediction of all measured time points 

excluded from the subset. Litter mass remaining measurements were only taken at two time points, on 

day 95 and day 365. Therefore all mass measurements were used in the TD analysis to estimate model 
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parameters. RMSE results are therefore an indication of model fit for predicting out-of-sample DOC and 

CO2 measurements. 

In both the IC and the TD hierarchical Bayesian analyses, latent states and parameter marginal 

posterior distributions were estimated using a random-walk Metropolis Hastings Markov Chain Monte 

Carlo (MCMC) algorithm. The analyses were written in R (R Core Team, 2014). We used the lsoda 

function in the R package deSolve as the ODE solver (Soetaert et al., 2010). Three MCMC chains were 

run out 100,000 iterations for the IC analysis, discarding the first 50,000 iterations as the burn-in period. 

In the four LIDEL model formulations considered in the TD analysis, 80,000 iterations were simulated 

total with the first 40,000 iterations discarded as the burn-in period. Individual chains were assessed 

visually for convergence using trace and marginal density plots, as well as using Geweke convergence 

diagnosis  Z-scores (Geweke, 1992). The 3 chains were then assessed for convergence using the Gelman-

Rubin MCMC convergence diagnostic (Gelman and Rubin, 1992). Once the 3 chains passed convergence 

tests, summary statistics of model parameters were evaluated (mean and 95% Bayesian credible 

intervals). All of these convergence diagnoses and summary analyses were completed using the coda 

package in R (Plummer et al., 2006). Details for both the IC and the TD analyses, including the full 

Bayesian models as well as MCMC algorithms are described in Appendix 1 and 2, respectively. 

3.3 Results 

Summary statistics for estimates of litter fractions—including the soluble and lignin fractions by 

litter type as well as the initial DOC fraction—are presented in Table 3-2. Parameter estimates for the 

variance of the hot water extraction and mass-difference soluble fraction measurements, as well as the 

final estimated soluble fraction parameters are presented in Figure 3-5. Across litter types, the initial 

lignin fraction in the LIDEL model—informed by AUR data in the Soong et al. (2015) experiment—shows 

a narrower width than the other fractions estimated in this analysis (Table 3-2). 
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The hierarchical Bayesian approach allows litter fractionation parameter variance and 

uncertainty, estimated in the IC analysis, to be carried into the estimates of LIDEL temporal dynamic 

parameters. Overall there is high variability in LIDEL estimates (Figure 3-6). This is particularly apparent 

in LIDEL DOC and CO2 predictions, as indicated by the width of 95% BCI’s (Figure 3-6). These wide ranges 

are likely related to the variable initial litter fraction estimates yielded from the IC analysis, used to 

initialize the LIDEL model litter pools. Both the initial soluble and DOC pools are less constrained by data 

than the initial lignin pool. However in the TD analysis the data suggest the soluble LIDEL pool 

decomposes much more quickly than the holocellulose pool and is therefore responsible for providing 

the input that drive DOC and CO2 generation, particularly early in decomposition (Table 3-3). Variability 

in the initial soluble pool size for each litter will therefore contribute to variability in model estimates of 

DOC and CO2 generation. 

Models 1, 2 and 3 had comparable     estimates, although the last was less well informed by the 

data (as shown by its broader 95% BCI width, Table 3-3). Estimates of     were more tightly constrained, 

only ranging by 0.0045 day-1 between all LIDEL model formulations. Microbial biomass turnover was 

weakly informed by the data but suggests fast turnover, with all estimated means exceeding 0.5 and 

with values that were closer to the upper range of the 95% BCI than the lower range (indicating a 

predominance of higher parameter values in the MCMC). Microbial product generation from microbial 

biomass turnover was very weakly informed by the data in models 1, 2, and 4, and not informed by the 

data in model 3. DOC from microbial biomass was more strongly informed by the data, showing similar 

characteristics in models 1 & 2 (higher) versus models 3 & 4 (lower). According to RMSE values the 

lowest predictive accuracy for out-of-sample DOC and CO2 measurements was model 4, versus the 

highest predictive accuracy in models 1 and 3 (Table 3-3). The measured/modeled comparison of 

estimated time points, however, shows improved mass remaining estimation in models 1 & 2 versus 3 & 

4 (Figure 3-6, A & D versus G & J), and improved high DOC predictions in models 2 & 4 versus models 1 & 
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3 (Figure 3-6, E & K versus B & H). It is important to note that all mass measurements from Soong et al. 

(2015) were used in the TD Bayesian analysis. We only used out-of-sample measurements to calculate 

RMSE values, which therefore only assesses out-of-sample measured vs. model prediction for DOC and 

CO2. The RMSE values therefore do not factor in the bias in LIDEL mass remaining prediction apparent in 

Model 3 and 4 results (Figure 3-6, G & J). It is also notable that RMSE is lower with models 1 and 3 versus 

2 and 4, whereas in the latter there is a clear improvement in model predictions of high DOC 

measurements (Figure 3-6, E & K versus B & H). However DOC predictions also become more variable in 

models 2 and 4, as indicated by the wider 95% BCI’s (Figure 3-6). 

3.4 Discussion 

An ongoing debate in modeling terrestrial OM dynamics is the degree to which explicit modeling 

of microbial biomass and processes is needed to accurately simulate C cycling and ecosystem dynamics 

(Stockmann et al., 2013; Treseder et al., 2012). This debate is in part centered on accurately capturing 

ecosystem responses to direct and indirect human impacts, such as global warming and land use change 

(Wieder et al., 2014). New modeling efforts are aimed to better reflect microbial processes in litter 

decomposition and SOM dynamics (Davidson et al., 2014; Moorhead and Sinsabaugh, 2006; Wieder et 

al., 2013; W. R. Wieder et al., 2014). However, there is the potential for increases in model complexity 

and unrealistic oscillatory behavior with the added feedback between explicit microbial biomass and 

decomposition dynamics (Wang et al., 2014). Data to drive and evaluate models with explicit microbial 

biomass and mechanisms are also more limited (Treseder et al., 2012). With the LIDEL model, we look to 

strike a balance between model complexity and simulating dynamic microbial processes. The LIDEL 

model includes an explicit microbial biomass pool, is driven with broadly available data, and includes 

dynamic microbial CUE, but maintains a relatively simple first-order structure by not linking microbial 

biomass directly to decomposition rates (Figure 3-1).  
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The LIDEL model incorporates variable microbial CUE and litter chemistry to explicitly simulate 

DOC versus structural microbial products generation during litter decomposition, an important new 

direction for the simulation of litter decomposition dynamics in SOM models. DOC and persistent 

microbial products are recognized both as important contributors to SOM dynamics across soil profiles, 

and as shortfalls in many SOM models (Rumpel and Kögel-Knabner, 2010; Schmidt et al., 2011). From 

this analysis there remains uncertainty in the ‘internal’ dynamics of the LIDEL model, particularly 

pertaining to microbial biomass turnover and the fractionation between microbially-derived soluble 

versus structural material. However, the LIDEL model provides a robust theoretical structure to connect 

litter chemistry and microbial processes to the generation of these separate products (Moorhead et al., 

2013; Sinsabaugh et al., 2013), as well as suggest testable hypotheses. For example, we only used data 

on total DOC and CO2 to inform our parameter estimations. We did not inform our statistical models 

with data indicating the relative contribution of microbially-derived versus plant-derived DOC. Therefore 

while the DOC/CO2 fractionation difference explored in models 1 and 3 versus 2 and 4 supported the 

hypothesis of higher efficiency in the generation of DOC/CO2 from soluble litter pools versus 

holocellulose litter pools during decomposition, the parameters controlling these are an important area 

for further examination and refinement. Measurements of microbial products or using changes in DOC 

C/N ratios to determining plant litter versus microbially-derived DOC through time would address these 

remaining uncertainties regarding LIDEL simulations of microbial processes.  

Another area for further development in the LIDEL model is the relationship between N 

availability and microbial biomass characteristics (e.g. fractionation between soluble versus structural 

material with microbial biomass turnover). For example, is the partitioning of microbial biomass 

between soluble and non-soluble products controlled by N availability? N control of microbial 

generation of DOC versus microbial products can be simulated by the LIDEL model but was not a  
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hypothesis we could explore given the data used in this analysis. However, this is potentially an 

important consideration for stabilization of litter inputs in soils due to N effects on microbial processes.  

The hierarchical Bayesian approach used to estimate LIDEL parameters in this analysis suggests 

the importance of examining the relationship between measures of soluble plant litter fractions and 

variability in the true plant litter soluble fractions both within and across litter types. As discussed 

above, the soluble plant litter pool is conceptually well defined but more difficult to measure in a way 

that links to its ecological function and variability. Measurement of the soluble pool using HWE is clearly 

more variable than measurement by mass-difference (Figure 3-5, A & B). However, both types of 

measurements are variable relative to the estimated true state of the soluble fraction (Figure 3-5, C), 

making it difficult to determine whether one or the other more accurately reflects the true litter soluble 

fraction, or if another measure of the litter soluble fraction would be more consistent. The results of this 

analysis support the importance of the soluble litter fraction in both generating DOC and driving 

microbial dynamics during litter decomposition. Comparative measures of a variety of litters from a 

variety of sources, using both analysis techniques, is needed to clarify the connection between soluble 

litter C, measurements of soluble litter fractions, and the generation of DOC versus persistent microbial 

products during litter decomposition. 

In the IC analysis we estimated an entirely unknown model parameter:     , or the fraction of 

soluble plant litter that avoids microbial processes and is immediately released from plant litter when it 

is exposed to water. In our IC analysis we informed the estimate of initial DOC using the cumulative DOC 

measured from day 0 – day 10 of the Soong et al. (2015) experiment. As shown in Table 3-2, this fraction 

estimate has the broadest 95% BCI width, likely in part due to a lack of any direct measurements as well 

as the estimation of one single initial DOC fraction across all litter types. We observed that the use of 

this parameter distribution to initialize the pine DOC pool from the Soong et al. (2015) experiment in the 

TD analysis resulted in initial DOC estimates that were higher than DOC ever cumulatively reached in the 
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experiment. We therefore added a ‘structural protection’ coefficient (0.4) for pine initial DOC, based on 

the assumption that needle litters have a molecular structure that allows for a greater protection of 

plant soluble C. This suggests the need to examine factors that physically protect soluble C from 

leaching, in addition to the microbial processes reflected in the generation of DOC in the LIDEL model. 

Litter-specific initial      parameters may need to be estimated to better reflect litter-specific variability 

in this OM fraction. 

DOC showed its highest measured values early in the decomposition experiment, with the 

majority of leachate accumulating within the first few weeks. Simulating these high early fluxes is 

important from the standpoint of accurately modeling the largest litter inputs into soils, further 

supporting closer examination of the      parameter. It is also important to accurately simulate overall 

litter decomposition dynamics (i.e. mass remaining), as undecomposed litter can be an increasingly 

important contributor to SOM formation in late stages of decomposition (Cotrufo et al., in review, 

Nature Geosciences). The results of this analysis statistically support Model 1 as the best fit given the 

data (RMSE values, Table 3-3). However, litter contributions to soils would likely be more accurately 

simulated by a LIDEL model formulation more in the direction of Model 2, in terms of simulating the 

generation of the products of litter decomposition with the potential to make the greatest contributions 

to SOM dynamics. Therefore, further development of the LIDEL model should focus on simulating these 

key periods in litter decomposition, in order to more accurately reflect the connection between litter 

decomposition, the generation of products from litter decomposition, and SOM dynamics. 

3.5 Conclusions 

In this analysis we present the LIDEL model, a new litter decomposition model that includes 

dynamic lignin and N controls on microbial CUE and simulates the partitioning of litter decomposition 

products to DOM, CO2, microbes, and microbial products. By simulating the production of these 

dissolved and particulate litter C products, the LIDEL model can more accurately connect litter 
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decomposition with important SOM C input pathways identified in litter decomposition experiments 

(e.g. Cotrufo et al., in review, Nature Geosciences), but poorly represented in many SOM models (e.g. 

Schmidt et al., 2011). We use hierarchical Bayesian methods to inform LIDEL model parameters with 

experimental and literature-derived data, both for initial LIDEL conditions as well as parameters that 

drive LIDEL temporal dynamics. Some parameters were informed by the data more strongly than others, 

due to variability in the measured data as well as the strength of the linkage between measurements 

and conceptually defined LIDEL model pools. The LIDEL model provides a robust theoretical structure to 

connect litter chemistry to microbial processes and the generation of products from litter 

decomposition, suggesting testable hypotheses for controls on microbial processes and their connection 

to the generation of products from litter decomposition.  
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Table 3-1 Litter chemistry characteristics from Soong et al. (2015). 

Litter Average initial %N Initial Lc range 

Alfalfa (Medicago sativa) 4.09 0.15-0.42 

Ash (Fraxinus excelsior) 0.88 0.28-0.64 

Bluestem (Andropogon 

gerardii) 
0.48 0.22-0.64 

Oak (Quercus macrocarpa) 1.32 0.48-0.86 

Pine (Pinus ponderosa) 0.41 0.51-0.80 
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Table 3-2 Estimated parameters for fractions used to initialize LIDEL model pools, reporting mean and 
95% Bayesian credible intervals as well as credible interval widths. 

Fraction Litter Mean 95% BCI 95% BCI Width 

DOC All 0.15 0.09-0.21 0.12 

Soluble C Alfalfa 0.70 0.65-0.75 0.11 

 Ash 0.52 0.46-0.58 0.11 

 Bluestem 0.27 0.22-0.33 0.11 

 Oak 0.40 0.35-0.45 0.11 

 Pine 0.35 0.29-0.40 0.11 

Lignin C Alfalfa 0.08 0.05-0.12 0.07 

 Ash 0.15 0.11-0.18 0.08 

 Bluestem 0.13 0.09-0.16 0.07 

 Oak 0.27 0.23-0.31 0.08 

 Pine 0.32 0.28-0.38 0.08 
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Table 3-3 Mean and 95% Bayesian credible intervals for the five estimated LIDEL parameters, as well as 
mean root mean square error for LIDEL model predictions versus out-of-sample measurements for each 
iteration of the TD analysis after the burn-in period. 

  Model 1 Model 2 Model 3 Model 4 

N Limitation Curve: Logistic Logistic Linear Linear 

DOC/CO2 Frac.: Sol vs 

Holo: 
Equal Soluble Higher Equal Soluble Higher 

Paramete

r 
Definition  Mean 95% BCI Mean 95% BCI Mean 95% BCI Mean 95% BCI 

   
Soluble 

decay 
0.24 

0.13-

0.50 
0.37 

0.16-

0.70 
0.097 

0.038-

0.23 
0.28 

0.071-

0.93 

   
Holocell. 

decay 
0.0079 

0.0016-

0.017 
0.0090 

0.0011-

0.020 
0.0034 

0.0015-

0.0067 
0.0049 

0.0018-

0.012 

   

Mic. 

biomass 

decay 

0.60 
0.14-

0.97 
0.57 

0.11-

0.97 
0.55 

0.071-

0.97 
0.51 

0.053-

0.97 

   

Mic. prod. 

from mic. 

biomass 

0.27 
0.022-

0.76 
0.33 

0.028-

0.77 
0.50 

0.048-

0.92 
0.43 

0.042-

0.88 

   

DOC from 

mic. 

biomass 

0.16 
0.018-

0.41 
0.19 

0.022-

0.42 
0.063 

0.0092-

0.23 
0.099 

0.011-

0.32 

 RMSE 15280 16150 15350 17380 
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Figure 3-1 Schematic showing the soluble (C1), non-lignin structural (C2), lignin (C3), microbial biomass 
(C4), microbe products (C5), DOC (C6), and CO2 (C7) pools within the LIDEL model, in addition to the fluxes 
that connect model pools and the parameters that control the rates of these fluxes. The three litter 
pools (C1, C2, and C3) generate microbial products (C5) and DOC (C6) as separate physical pools that, 
alongside remaining litter, can then enter soils and soil organic matter formation pathways. 
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Figure 3-2 Limitation on water soluble and holocellulose decay rate (A), and microbial CUE with use of 
these litter fractions (B), by lignocellulose index. Water soluble litter is assumed to have a maximum CUE 
closer to the theoretical maximum of 0.6 proposed by Moorhead et al. (2013), while holocellulose (NLS) 
is proposed to have a lower maximum of 0.5. Equations modified from those presented in Moorhead et 
al. (2013) to be expressed as a single continuous non-linear equation rather than the combination of 
linear equations (Moorhead et al., 2013). 
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Figure 3-3 Limitation on CUE and decay of water soluble and holocellulose pools by initial litter percent 
N, as based on a 3% threshold element ratio drawn from (Sinsabaugh et al., 2013). 
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Figure 3-4 Measured versus predicted DOC generation per mass lost during decomposition, taking the 
minimum of the predicted fractionation based on % initial N and initial Lc, for early and late-stage 
decomposition.  
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Figure 3-5 Initial Condition Bayesian analysis results, showing trace density plots of estimated variance 
parameters for hot water extraction (A) and mass-difference (B) measurements of the litter soluble 
fractions, as well as the final estimate of the soluble fraction parameters (showing means and 95% 
Bayesian credible intervals) by litter type as compared to measured values (C). 

  

A 
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Figure 3-6 Measured (x-axes), versus modeled (y-axes) LIDEL prediction of litter mass remaining (A, D, G, 
& J) as well as the generation of DOC and CO2 (B & C, E & F, H & I, K & L) for the four model formulations 
evaluated in the TD hierarchical Bayesian analysis, presenting posterior means (dark circles) and 95% 
BCIs for each LIDEL prediction of measured data. Diagonal lines indicate 1:1 relationships. 
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4    ASSESSING THE SOIL CARBON, BIOMASS PRODUCTION, AND NITROUS OXIDE EMISSION IMPACT OF 
CORN STOVER MANAGEMENT FOR BIONERGY FEEDSTOCK PRODUCTION USING DAYCENT3 

 
 
 

4.1 Introduction 

Corn (Zea mays L.) stover, the plant residue remaining after harvest, is an attractive source of 

biomass for bioenergy in the United States (US). The US Department of Energy Billion Ton Study Update 

(2011) considers agricultural residues such as corn stover to be among the best sources of raw material 

to support bioenergy industry, as they are already produced on a large scale at low costs in regions with 

established crop production infrastructure. Corn stover currently accounts for ~70% of all crop residue 

production in the US and is therefore of high interest as a feedstock to support the expansion of 

industrially-scaled bioenergy production (U.S. Department of Energy, 2011). 

The impetus to expand bioenergy production in the US, exemplified at the federal level with the 

Energy Information and Security Act of 2007 and its revised Renewable Fuels Standard (RFSII), includes 

replacing the use of fossil fuels to strengthen US fuel security, reduce the climate change impact of fossil 

fuel combustion, and concomitantly enhance rural development (Lynch and von Lampe, 2011). 

However, the removal of crop residues to expand bioenergy production must consider potential impacts 

to the agroecosystem services provided by agricultural byproducts like corn stover. While corn stover is 

widely available in the corn production regions in the US, care must be taken with residue removal in 

order to maintain agroecosystem health and productivity (Halvorson and Jantalia, 2011; Karlen et al., 

2011b). Crop residues influence multiple agroecosystem functions which impact crop productivity, 

including providing the building blocks for soil organic matter that in turn contribute to water and 

nutrient-holding capacity as well as nutrient availability (Burgess et al., 1996; Linden et al., 2000; Power 

                                                           
3
 Campbell, E.E., Johnson, J.M.F., Jin, V.L., Lehman, R.M., Osborne, S.L., Varvel, G.E., Paustian, K., 2014. Assessing 

the Soil Carbon, Biomass Production, and Nitrous Oxide Emission Impact of Corn Stover Management for 
Bioenergy Feedstock Production Using DAYCENT. BioEnergy Research 7, 491–502. doi:10.1007/s12155-014-9414-z 
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et al., 1986). Crop residues can reduce soil erosion, help maintain soil fertility, and impact greenhouse 

gas emissions (GHGs), including nitrous oxide (N2O) and methane (CH4) fluxes from soil and changes in 

soil organic carbon (SOC) storage and net carbon dioxide (CO2) emissions (Crutzen et al., 2008; Wilhelm 

et al., 2004). Corn stover removal can reduce or increase grain yields depending on other land 

characteristics and management practices (Burgess et al., 1996; Varvel et al., 2008). Furthermore, 

replacing nutrients removed by stover removal can increase fertilizer costs (Karlen et al., 2011a). 

Sustainable agricultural management practices involving residue use must support a robust bioenergy 

industry, meet climate impact reduction (e.g. RFSII) standards for renewable fuels, and maintain 

cropland health to support growing crop production demands. 

An economically viable and environmentally sustainable bioenergy industry based on corn 

stover feedstock must incorporate both crop management practice recommendations for corn stover 

production as well as accurate predictions of production potential. Past studies evaluated impacts of 

corn stover removal on subsequent grain yield (Burgess et al., 1996; Maskina et al., 1993; Power et al., 

1986; Wilhelm et al., 1986), and used long-term sites to address other ecosystem effects such as SOC 

changes (Hooker et al., 2005; Moebius-Clune et al., 2008; Wilts et al., 2004). A research goal of the Sun 

Grant Initiative’s Corn Stover Regional Partnership team- which is also supported by the USDA-

Agricultural Research Service’s Resilient Economic Agricultural Practices (ARS-REAP) project- was to 

supplement these studies by establishing an extensive network of field trials across a range of climatic 

and soil types to assess varying levels of residue removal on soil C, water, nutrient content, as well as 

biomass characteristics. More information on the Regional Partnership studies are included within this 

and previous publications (Karlen, 2010; Karlen et al., 2011a, 2011b).  

The Regional Partnership corn stover trials greatly expand of the amount of site-specific primary 

data on corn stover residue production and the agroecosystem impacts of its removal. Empirical data 

are needed to calibrate, validate, and refine process-based models so they can be used to help establish 
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valid sustainable harvest rate guidelines (Johnson et al. (this issue) and (Wilhelm et al., 2004)).  The need 

for such data was recognized by the Regional Partnership corn stover team; therefore the project was 

designed to support predictive modeling, linking field trial data to expanded regional projections 

(Karlen, 2010).  

A modeling tool suited to accommodate region-specific factors and provide regional predictions 

for a broad array of agroecosystem impacts is DAYCENT. The DAYCENT model, a process-based 

ecosystem model developed at Colorado State University, simulates GHG fluxes as well as plant/soil C 

dynamics and many other ecosystem processes (Parton, 1988, 1987). DAYCENT and its predecessor 

CENTURY have been applied and tested in many agricultural systems both in the US and globally 

(Abdalla et al., 2010; Del Grosso et al., 2008; M. V. Galdos et al., 2009), including several types of 

bioenergy production systems (Adler et al., 2007; Davis et al., 2012, 2010). While DAYCENT modeling of 

corn production has been widely tested for model applications such as estimating agricultural land use 

emissions for the US Environmental Protection Agency annual GHG inventory report (U.S. Environmental 

Protection Agency, 2013) , evaluations of its performance simulating the impacts of corn stover harvest 

are limited. One example is a recent study by Gao et al. (2013), where DAYCENT was applied as part of a 

Michigan-specific life-cycle assessment (LCA) of corn stover management (Gao et al., 2013).  

There is a critical need for the application of process-based models such as DAYCENT in 

designing scientifically sound decision support tools for the development of bioenergy feedstock 

production (Huggins et al., 2011). Therefore, members of the Regional Partnership team completed a 

review to identify economic and sustainability metrics that impact the potential for corn stover residue 

harvest in the Midwest (Wilhelm et al., 2010). Based on this review (Wilhelm et al., 2010), an integrated 

stover removal tool was designed that linked several existing models (i.e. the Revised Universal Soil Loss 

Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS) and the Soil Conditioning 

Index (SCI)) to predict maximum residue removal rates that would meet multiple sustainability criteria 
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(Muth and Bryden, 2013). Recently, the DAYCENT model was integrated into this framework to provide 

dynamic estimates of biomass yields, SOC changes and GHG fluxes, thereby refining the evaluation and 

recommendation of ‘sustainable’ residue removal rates on regional and site-specific levels. Evaluating 

DAYCENT simulations of corn stover residue removal effects against empirical data from the Regional 

Partnership field sites contributes to the development of the sustainability assessment tool that can 

provide region-specific recommendations to support agroecosystem services and the bioenergy 

industry. 

Balancing agroecosystem services and developing a viable large-scale bioenergy industry will 

require changing management practices (e.g., growing cover crops, modifying fertilizer form or rate) to 

increase or supplement C and nutrients in the system. Cover crops and manure application (Fronning et 

al., 2008; Wiggans et al., 2012), increased synthetic N fertilizer application (Sindelar et al., 2013, 2012), 

and reduction in tillage intensity (Hooker et al., 2005; Linden et al., 2000) have been identified as 

amelioration approaches to develop ‘sustainable’ practices for corn residue harvest  (Gollany et al., 

2010; Wilhelm et al., 2010) and subsequently are recurring focal treatments in field studies assessing 

corn stover management. In this study, we evaluated DAYCENT performance in simulating SOC change, 

corn grain and stover yields, and direct N2O emissions- a powerful greenhouse gas (Forster, 2007)- from 

soils against measured data from three of the Regional Partnership corn stover sites and two long term 

published corn stover removal experiments (Clapp et al., 2000; Follett et al., 2012; Hammerbeck et al., 

2012; Linden et al., 2000; Reicosky et al., 2002; Stetson et al., 2012; Varvel et al., 2008; Wilts et al., 

2004). For the current study, simulated treatments were based on site-specific variation in residue 

removal rates, tillage, N fertilizer and cover crops. We focus our analyses on overall DAYCENT 

performance in these systems, as well as on the measured versus modeled impacts of residue removal 

rates combined with variation in tillage treatments.  
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4.2 Materials and Methods 

4.2.1 Experimental Data 

 To test the performance of the DAYCENT model, a series of data were assembled from 

published literature evaluating two sites in Rosemount, MN and Morris, MN for the soil and crop 

production impacts of long-term corn stover removal, as well as different levels of nitrogen (N) fertilizer 

application and types of tillage (Clapp et al., 2000; Linden et al., 2000; Reicosky et al., 2002; Wilts et al., 

2004). Data were also assembled from three Corn Stover Regional Partnership sites in Ithaca, NE, 

Brookings, SD and a different site in Morris, MN established as a subset of ARS-REAP to evaluate the 

sustainability of corn stover harvest (Karlen, 2010). The Regional Partnership sites test multiple levels of 

residue removal combined with differences in tillage, N fertilizer application, and cover crop 

management practices and are described in greater detail in this issue as well as in prior publications 

(Hammerbeck et al., 2012; Stetson et al., 2012; Varvel et al., 2008). Measurements at the Regional 

Partnership sites included grain and stover yields, SOC change from 0 – 20 cm, and direct soil N2O 

emissions (Table 4-1). The Regional Partnership data and published literature values allowed us to test 

DAYCENT’s performance in simulating biomass (i.e. grain and stover) production, SOC change, and N2O 

emissions. 

4.2.2 DAYCENT Model Overview 

The DAYCENT model runs on a daily time-step and simulates various ecosystem processes to a 

soil depth of 20 cm.  The model includes routines for simulating the movement of soil nutrients, the 

movement of water through soil layers, plant growth, and many other ecosystem components that are 

described in greater detail elsewhere (Del Grosso et al., 2008). The key drivers of DAYCENT include 

maximum and minimum daily temperature, daily precipitation, soil texture, and land management 

(including specific plant types grown and soil management such as tillage and nutrient additions).  
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The DDcentEVI version of DAYCENT (a version of DAYCENT with the option to use Enhanced 

Vegetation Index- i.e. EVI- data) was used for this analysis. DDcentEVI was developed and tested to 

estimate total agricultural land use emissions for the US Environmental Protection Agency’s (EPA) GHG 

emission inventory annual report (U.S. Environmental Protection Agency, 2013). This repeated annual 

set of simulations involve model parameterization for common agricultural crops- including corn and 

soybean- as well as millions of model runs and established protocols for estimating model uncertainty 

(Del Grosso et al., 2010; Ogle et al., 2010, 2007), documented in detail in Annex 3.12 of the most recent 

inventory report (U.S. Environmental Protection Agency, 2013). Given the extensive parameterization 

process with DDcentEVI, we chose to use this version in order to focus our efforts on validating model 

performance using all data for corn stover residue removal experiments available for this analysis.   

An important component of any DAYCENT model simulation is initializing the model based on 

the native ecosystem type expected for the specific site and using the best available information about 

land management after the native ecosystem is converted for agricultural use. Given temperature and 

precipitation as key drivers of biogeochemical processes, the longest possible continuous daily climate 

datasets are needed to run model initializations as well as drive simulations for the experimental periods 

of interest. The climate data used to drive model simulations for this study were derived using the 

latitude and longitude of site locations to determine the nearest North American Regional Reanalysis 

(NARR) grid cell and the associated daily maximum and minimum temperatures and total precipitation 

from 1979 – 2009. NARR data, given at a 32 km scale, were generated as an extension of the National 

Centers for Atmospheric Research Global Reanalysis project and are freely available online 

(http://www.emc.ncep.noaa.gov/mmb/rreanl/). NARR data are generated using algorithms to 

interpolate weather for areas between weather stations. The NARR dataset is the standard used for 

simulations in the US GHG inventory, and therefore was the source of climate data for all sites and years 

in this analysis where site-specific data were not available. For the three Regional Partnership sites, site-
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specific daily weather data were available for the experimental time periods, and these data were used 

instead of NARR weather data in the years available, extending the climate data time period at these 

sites to 2010.  

Soil texture information was gathered either from direct field measurements reported by the 

Regional Partnership sites or from soil texture data reported in publications for the two non-Regional 

Partnership sites. Prior land use history used for model initialization were drawn from 1) county-level 

native vegetation assumptions used in simulations for the EPA GHG emission annual report and 2) 

information gained from literature and personal communication for agricultural management from 

when native vegetation was converted into cropland up to the treatment period. Experimental 

management practices, such as planting and harvest dates, dates and quantities of fertilizer application, 

and corn stover harvest rates, were drawn from reported literature and Regional Partnership field data. 

These land use data were used to schedule events within DAYCENT model simulations. A total of 53 

different corn stover management scenarios, matching experimental management practices across the 

five experimental sites, were simulated to generate model results to compare against measured data. 

4.2.3 Statistical Analyses 

 Statistical analyses were completed using R-2.15.1 software as well as the Hmisc and car 

packages (Fox and Weisberg, 2011; Harrell Jr., 2012; R Core Team, 2012). Regression analyses were 

applied to compare measured versus modeled grain yield (Mg C ha-1), stover yield (Mg C ha-1), SOC 

change over the measurement period (Mg C ha-1), and annual N2O flux (kg N2O-N ha-1 yr-1) across all sites 

and all years. Two treatment effects were also selected for measured versus modeled estimate 

evaluation:  (1) residue removal level, and (2) residue removal level + tillage. For measurements taken 

across multiple years, averages by treatment were used to compare measured versus modeled results 

across all sites. For evaluation of residue removal level alone, measured versus modeled estimates of 

grain C and SOC change were compared for three stover removal levels: full removal (100 %), moderate 
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removal (29 – 50%), and no removal (0%).  Soil N2O emissions were evaluated using two treatment 

levels: stover removal (>0%) and no removal (0%). For evaluation of residue removal level + tillage, 

measured versus modeled estimates of grain C and SOC change were compared using four levels: 

conventional tillage + 0% removal, conventional tillage + >0% removal, no tillage + 0% removal, no 

tillage + >0% removal.  Measured versus modeled estimates were assessed for normality using a 

Shapiro-Wilk test, as well as assessed for equal variance. These measured versus modeled estimates 

were then assessed across these treatment effects using type III sums of squares two-way analyses of 

variance (ANOVAs) to account for unequal sample sizes, where the fixed effects tested were residue 

removal level and tillage.  

4.3 Results 

4.3.1 Biomass 

DAYCENT simulated annual grain yields with significant correlation with measured yields but 

with high dispersion and significant bias – there was a significant positive intercept and a slope less than 

1 (Figure 4-1a). DAYCENT simulated annual stover harvest with a tighter significant correlation and less 

bias, with a slope closer to 1 and an insignificant intercept (Figure 4-1b).  

Measured and modeled average grain yields across sites did not differ between residue removal 

levels (Figure 4-2a, p>0.05). Across all treatment levels, measured values were significantly higher than 

modeled estimates (Figure 4-2a, p=0.012).  Measured and model estimates of average grain yields did 

not show a significant overall effect of tillage + residue removal levels, measured versus modeled 

estimates, or a significant interaction between these factors (Figure 4-2b, p>0.05).  

4.3.2 Soil C Change 

Modeled and measured SOC change for all sites exhibited a significant correlation but deviation 

from the 1:1 linear relationship, with a significant positive intercept and slope less than 1 (Figure 4-3a). 

Excluding sites that had ten or fewer years between initial and final SOC measurements (Figure 4-3b), 
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and thus greater uncertainty in the magnitude and direction of change, gave a tighter correlation 

between measured and modeled estimates. However, removing short-term sites did not change the 

model overestimation of SOC loss rates for sites where measured SOC stocks were declining, with a less 

significant positive intercept and a lower slope (Figure 4-3b).  

For treatments where the time between initial and final SOC measurements exceeded 10 years, 

SOC change did not vary significantly by residue removal rate or by the interaction between residue 

removal rate and the measured versus modeled estimates (Figure 4-4a, p>0.05). However measured 

versus modeled estimates did differ significantly, with the model consistently overestimating SOC 

change in the same direction as the measured data (Figure 4-4a, p<<0.001). For these same treatments, 

SOC did vary significantly by tillage + residue removal level and measured versus modeled estimates 

alone, as well as by the interaction between these factors (Figure 4-4b, p=0.003, p=0.003, and p=0.006, 

respectively). Both the measured and modeled data suggest conventional tillage leads to a loss of SOC, 

while no tillage leads to a gain or little change in SOC that may depend on whether residue is removed. 

However the model shows a clear bias of overestimating SOC loss with conventional tillage, with or 

without residue removal. 

4.3.3 N2O emission 

 Modeled versus measured annual N2O emissions showed a significant relationship and an 

intercept that did not differ significantly from 0, but the slope > 1 indicates  a model bias of 

underestimating annual N2O emissions. The increasing divergence from the 1:1 line between modeled 

and measured values with higher measured emission rates suggests better DAYCENT performance in 

low-emission systems (<2 kg N2O-N ha-1 yr-1) but underestimation for sites and years with high emission 

rates (i.e., > 3 kg N2O-N ha-1 yr-1) (Figure 4-5a). There were no significant differences in N2O as a function 

of residue removal in either the measured or modeled estimates (Figure 4-5b, p>0.05 for all factors). 
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 A qualitative comparison of measured versus modeled estimates of daily N2O emission shows no 

obvious pattern of divergence between daily modeled and measured values when N2O emissions are 

low (Figure 4-6 & 7). However there is substantial divergence when N2O emissions are in peak periods. 

DAYCENT sometimes simulated peak periods with similar timing to measured peak periods but 

underestimated their magnitude (Figure 4-6b, Figure 4-7c). DAYCENT simulation of peaks sometimes did 

not match the timing of measured peaks (Figure 4-6d, Figure 4-7b). DAYCENT also failed to simulate 

some peak periods reflected in the measured data (Figure 4-6b, Figure 4-7a & 7b).  

4.4 Discussion 

4.4.1 Biomass 

Modeled results suggest that DAYCENT can reasonably simulate corn stover yields across the 

management practices considered in this study, a key concern for the expansion of bioenergy industry 

based on corn residue as a feedstock material. However the slope did exceed 1- the value that would 

reflect perfect model simulation of measured values- indicating some bias towards DAYCENT 

underestimating stover yields that should be considered in the use of DAYCENT model results within the 

context of a bioenergy decision support tool.  

DAYCENT performed more poorly in simulating annual grain yields.  The low coefficient of 

determination (r2) reflected high dispersion, and the model tended to overestimate grain yields in years 

where measured grain yields were low and underestimate grain yields in years where measured grain 

yields were high (Figure 4-1a). DAYCENT simulates the growth of aboveground biomass based on 

interactions between moisture and temperature, and then simulates grain harvest based on the harvest 

index specified by the user. Fine-scaled timing-specific interactions between temperature, moisture, and 

grain yields (e.g. high or low precipitation or temperature events that impact flowering or grain filling) 

are not yet included in DAYCENT, and may cause its variable performance simulating annual grain yields. 

When the data were aggregated across years, DAYCENT did successfully simulate the overall non-
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significant impact of corn stover residue removal levels across these treatments; however, the 

significant difference between modeled versus measured results indicates an overall model bias of 

underestimating grain yields (Figure 4-2a). This bias was not apparent in the comparison between 

measured versus modeled grain yields across combined tillage and residue removal levels; in this 

analysis, the model successfully captured the overall insignificant impact of residue removal levels and 

tillage on grain yields, with no significant difference between measured and modeled results (Figure 4-

2b).   

These results suggest DAYCENT can be used to successfully model the relative impacts of residue 

removal on grain yields, but should be used carefully if simulating quantities of grain yield on an annual 

basis. The DDcentEVI version of DAYCENT has shown a tendency to overestimate water stress effects on 

grain production in the northern Midwest region (Steve Williams, personal communication). This region 

was the location of several sites used in this study that showed substantial model underestimation of 

annual grain yields relative to measured values (open circles, Figure 4-1a). This model bias should be 

addressed for evaluating sustainability factors for corn stover residue harvest in the northern Midwest 

region, with a better representation of water stress effects on grain yields- particularly better 

representation of the effects of precipitation timing, which can be critical for grain production- to 

alleviate this bias in modeled results. 

4.4.2 Soil C change 

The DAYCENT model had variable performance modeling SOC change. DAYCENT simulations 

matched the direction of SOC change for most sites (Figure 4-3a), particularly sites with greater periods 

of time between initial and final SOC measurements used to calculate SOC change (Figure 4-3b).  

DAYCENT results, however, showed increasing divergence from measured values showing SOC losses 

(Figure 4-3). Soil C is highly heterogeneous and variable, and often longer periods of time are required to 

effectively measure and observe SOC changes due to changes in land management. The sites in this 
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study with shorter time sets had greater measured variation than was reflected in the model estimates, 

which tended to model treatments at these sites as just above or below 0 change (Figure 4-3a). It would 

be useful to repeat measurement of SOC at these sites in the future to assess the accuracy of model 

simulations over a longer time period. The sites might experience more SOC change following near-term 

management changes than the model is predicting, but the model might account for some of this SOC 

change if it simulates the effects of the practice (such as increased decomposition) for longer than the 

site experiences. Alternatively the model may be underestimating total changes occurring with the 

management practices at these sites. The modeled versus measured comparison of SOC changes over a 

longer time period (e.g., 10 years or greater, as were available for the other sites in this analysis) would 

address this question, with either increasing correlation between measured versus modeled results 

supporting the former behavior of underestimating near-term changes, or continued disconnect 

between modeled and measured SOC change indicating poor model performance in these locations. In 

the latter case, further model assessment of SOC simulations would be required to identify the cause for 

these site-specific discrepancies in modeled simulations as compared to measured data.  

Measured SOC changes by residue removal show no significant SOC change with different levels 

of residue removal, but suggest greater SOC loss with full residue removal and the potential for SOC gain 

with partial removal (Figure 4-4a). This supports a number of studies suggesting that SOC change can be 

minimized by partial rather than full residue removal (Blanco-Canqui and Lal, 2007; Johnson et al., 2010; 

Varvel et al., 2008; Wilhelm et al., 1986). In contrast, modeled results show the unexpected behavior of 

greatest SOC gain with moderate residue removal, and potential for loss with both no and full residue 

removal (Figure 4-4a). However these results could be due to interacting effects with the overestimated 

modeled SOC loss with conventional tillage, which can be observed in Figure 4-4b.  

DAYCENT captures the measured trend of potential for SOC loss with conventional tillage across 

residue removal treatments versus some SOC gains with residue treatments combined with no tillage 
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(Figure 4-4b). However the model is clearly overestimating the SOC losses in the conventional tillage 

treatments (Figure 4-4b). Simulated soil decomposition processes in the DDcentEVI version of DAYCENT 

may be too sensitive to tillage. Comparison of modeled estimates to total aboveground and 

belowground biomass, as well as an analysis of modeled soil decomposition sensitivity to tillage, would 

clarify the model processes causing this overestimation of SOC loss. Despite oversensitivity to tillage, our 

results support other modeled analyses that identified the potential for no tillage management practices 

to maintain SOC with residue removal (Dalzell et al., 2013). Specifically, our measured and modeled SOC 

changes indicated a minimal or positive SOC change when no tillage is combined with residue removal, 

versus a more strongly negative SOC change when conventional tillage is combined with residue 

removal (Figure 4-4b). Numerous studies have focused on combining management practices such as 

increased N fertilizer and reduced tillage with corn stover residue harvest, in order to maintain yields 

and soil fertility (Burgess et al., 1996; Hooker et al., 2005; Sindelar et al., 2013, 2012). In the set of sites 

analyzed in this study, we were only able to analyze tillage in addition to residue removal for modeled 

versus measured analyses. While N fertilizer levels were included in some of the experiments considered 

in this analysis, aggregating data for cross-site comparison between N fertilizer levels was not possible 

due to differences in experimental designs. The importance of combined tillage plus residue removal 

level in this analysis suggests that other combined management practices such as N fertilizer across 

residue removal levels should be the next focal area of cross-region model validation and assessment, in 

order to better support the simulation of these management practices within a bioenergy decision 

support tool framework. 

4.4.3 N2O emission 

The DDcentEVI version of DAYCENT performed more accurately modeling lower annual 

measured estimates of N2O flux, as indicated by an insignificant intercept in the regression analysis. 

However the slope indicates increasing underestimation of simulated annual flux as measured values 
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increased, which is particularly apparent for sites and years >3 kg N2O-N ha-1 yr-1 (Figure 4-5a). Due to 

how data were reported, error measurements were only available for some of the treatments and were 

included to give some visualization of the variability of measured annual N2O estimates (Figure 4-5a). 

Including error measurements on all measured annual N2O emission estimates would help clarify the 

comparison between modeled and measured values. The model showed an overall bias of 

underestimating annual N2O flux, when results were averaged and compared across residue removal 

levels (Figure 4-5b). 

N2O emissions are highly variable and transient, with high flux occurring often in short 

timeframes following certain events, such as high precipitation, spring-thaw, or N fertilizer application. A 

comparison of daily measured versus modeled N2O flux shows that the divergence between measured 

and modeled annual flux may be due in part to DAYCENT’s failure to capture the presence, timing, or 

magnitude of transient peak periods (Figures 4-6 & 4-7). For example, in the representative treatment 

shown in Figure 4-6, the model seems to do well in years when soybean is grown and N2O emissions are 

consistently low (Figure 4-6, a & c), perhaps missing a small peak around the harvest period. In 

comparison, when measured values reflect larger and more frequent peaks during corn growth years 

the model performs more variably. In 2009 (Figure 4-6b) the model simulations seems to match the 

timing but not the magnitude of the highest N2O peak and then missed a peak period at the end of the 

season, while in 2011 (Figure 4-6d) the model simulations seemed to match the magnitude but not the 

timing of the highest N2O peak.  

Despite evidence for variable DAYCENT performance simulating transient peak periods of N2O 

flux, it is challenging to validate DAYCENT performance either cumulatively or on a daily basis using the 

discontinuous and sometimes sparse time series of N2O emission measurements made available in this 

study. These types of N2O emission datasets are common, as more frequent measurements taken by 

hand or by automatic chambers are resource-intensive. Where continuous N2O emission measurements 



107 
 

are not possible, discontinuous samples taken at time points aimed to capture transient periods of high 

flux as well as background flux across the season is a common methodological approach. However 

sampling frequency has been recognized to affect cumulative estimates of N2O emissions, with 

increasing divergence between true and estimated N2O emissions as sampling intervals increase in 

length (Parkin, 2008).  

In the comparison between DAYCENT modeled estimated and measured values, when N2O flux 

changes occur at a time resolution finer than the measured data, the accuracy of DAYCENT simulation 

between measured data points will remain unclear. This can be observed in the results of this study, 

with specific examples include the peaks and lows simulated for N2O emissions between consecutive 

high measured data points in Figures 4-6d (measured data on either side of day 200), 4-7a (the first two 

measured data points), and 4-7b (measured data points on either side of the highest simulated peak). As 

another example, while the highest measured peak in Figure 4-6d is comparable to the modeled peak in 

magnitude, it is unknown whether the model is simulating the peak too early, or whether the 

measurement was taken as the flux was coming down from a higher peak (Figure 4-6).  

There is additional potential for sparse, discontinuous N2O measurements to overestimate 

annual flux, depending on the resolution and timing of the measured data and the method of 

integration used to generate an annual estimate. For example, measured time points might miss a peak 

or a period of low emissions between peaks, or might miss the timing with which a transient peak 

returns to a baseline flux. The first two data points in Figure 4-7a demonstrate this potential; if the 

period of low emissions simulated by DAYCENT did occur at that site, but is not considered in the 

integration of the two measured data points to estimate total flux for that period, their integration will 

result in an overestimation of N2O flux. It is possible that DAYCENT’s underestimation of high N2O flux 

may be due to how the measurement data were integrated to determine cumulative emissions. 

However it should be noted that a comparison of continuous versus discontinuous N2O emission 
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measurements demonstrated a pattern of underestimation of cumulative emissions using discontinuous 

data, due to failure to capture transient peaks in the time interval between measurements (Fassbinder 

et al., 2013). In this latter case DAYCENT simulations of N2O emissions would diverge even further from 

measured estimates in years with high flux. Without data at a higher temporal resolution, it is not 

possible to determine either the accuracy of the annual measured estimates or the extent to which 

DAYCENT simulations diverge from true N2O emissions. 

 Due the transience and the magnitude of N2O flux changes across the growing season, there 

would be great benefits in comparing continuously measured N2O data against DAYCENT model results, 

in order to inform the magnitude and timing of peak flux events in model simulations as well as more 

accurately compare annual flux to measured values. For the purposes of using DAYCENT to evaluate the 

N2O emissions of different production practices as a sustainability metric, care should be taken not to 

underestimate N2O emissions in systems of potentially high flux. 

4.5 Conclusion 

Overall DAYCENT had variable performance simulating the impacts of treatments for corn stover 

harvest included in the 5 sites used in this analysis, with the greatest accuracy simulating corn stover 

yields and consistency in capturing management practice impacts on the relationship and direction of 

change with SOC and corn grain biomass. DAYCENT had variable performance simulating N2O emissions, 

with more accurate performance where annual emissions are low. Cumulatively the model concurred 

with measured results suggesting little overall grain yield impacts and suggested the potential for 

negative SOC impacts with corn stover residue removal and conventional tillage. The model has a 

tendency to underestimate grain yields- particularly in some regions where the model might be 

overestimating the impacts of water stress- as well as overestimate SOC loss with conventional tillage, 

and underestimate treatments with high N2O emissions compared to modeled data. These behaviors are 

important to consider when integrating DAYCENT results into a larger sustainability estimate, where 
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theses tendencies could respectively lead to underestimation of corn grain production potential, 

overestimation of the negative soil C impacts of residue removal and tillage, and underestimation of the 

emission of N2O.   

Our residue removal and tillage results support the concept of pairing changes in management 

for corn stover harvest with treatments such as conversion to no-till to maintain productivity and soil 

health. Modeled results suggested the potential for interactive effects between residue removal and 

tillage. We also suggest that other combined management practices such as fertilizer application and 

cover crops be included in subsequent analyses of measured and modeled data comparisons, as these 

are key practices being considered and recommended as large-scale corn stover harvest for bioenergy 

moves forward.  

This study reflects one of the original purposes of the Regional Partnership corn stove project; 

integrating field data with predictive modeling of corn stover removal management practices on a 

regional basis, in order to support the recommendation of sustainable practices to advance a robust 

bioenergy industry based on corn stover as a feedstock material.  
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Table 4-1 Summary of study locations and treatments. 

Source Location 
Lat/ 
Long 

Management Description 
Grain 
yield 

Stover 
yield 

Soil 
C 

N2O 

(Reicosky et al., 2002; 
Wilts et al., 2004) 

Morris, MN 
45.6/ 
-95.9 

29 years continuous corn; 
moldboard tillage; low 
fert. (83 kg N/ha), high 
fert. (166 kg N/ha), & 

control (0 kg N/ha); 0 & 
100% stover removal 

X X X - 

(Clapp et al., 2000; 
Linden et al., 2000) 

Rosemount, 
MN 

44.7/ 
-93.1 

13 years continuous corn; 
chisel, moldboard & no 

till tillage; 0 & 200 kg 
N/ha; 0 & 100% stover 

removal 

X X X - 

Reg. Partnership: 
Swan Lake Exper. Site 

Morris, MN 
45.7/ 
-95.8 

7 years corn/soy rotation; 
chisel & no till tillage; 130 

kg N/ha; 0, 50, 100% 
stover removed 

X X X X 

Reg. Partnership: 
U of N Ag. Res & 

Develop. Center(Follett 
et al., 2012; Varvel et 

al., 2008) 

Ithaca, NE 
41.2/ 
-96.4 

13 years continuous corn; 
no till tillage; 60, 120, & 
180 kg N/ha; 0 & 100% 

stover removed 

X X X X 

Reg. Partnership: 
N. Cent. Ag. Res 

Lab.(Hammerbeck et 
al., 2012; Stetson et al., 

2012) 

Brookings, 
SD 

44.3/ 
-96.8 

7 years corn/soy rotation; 
no till tillage; avg. 135 kg 

N/ha; 0, ~29% & ~97% 
residue removal, with and 

without cover crop 

X X X X 
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Figure 4-1 Measured versus modeled grain yields (A) and corn stover harvest (B) for all treatments and 
all years for which daily weather data was available. The grain comparison (A) shows a significant 
relationship and intercept (adjusted r2=0.13, slope=0.47, intercept=1.43, p<<0.001; RMSE=0.95). The 
stover comparison (B) shows a significant relationship, but insignificant intercept (adjusted r2=0.53, 
slope = 1.18, p<<0.001; intercept=0.36, p=0.11; RMSE=0.90).  
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Figure 4-2 Modeled versus measured grain yields by three levels of residue removal rates (100% = full, 
100%>moderate>0%, and 0%=none) (A), as well as four levels of combined tillage (conventional versus 
no tillage) and residue removal (0%=none versus >0%=rem) (B).  Error bars show standard error, with 
the number of replicates reported above each set of measured versus modeled comparison. 

  

n=15 n=13 n=19 n=7 n=8 n=12 n=20 
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Figure 4-3 Measured versus modeled SOC change from 0 – 20cm for all sites and all treatments (A) and 
for sites and treatments with greater than 10 years between initial and final SOC measurements (B). All 
sites (A) show a significant relationship and intercept (adjusted r2=0.54, slope=0.43, p<<0.001; 
intercept=1.97, p=0.002; RMSE=4.03). Sites with longer SOC measurements (B) show a significant 
relationship and slope, but a weakly significant intercept (adjusted r2=0.67, slope=0.48, p<<0.001; 
intercept=2.7, p=0.03; RMSE=3.89). 
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Figure 4-4 Modeled versus measured SOC change at sites with > 10 years between initial and final SOC 
measurements from 0 – 20cm by three levels of residue removal rates (100% = full, 
100%>moderate>0%, and 0%=none) (A), as well as four levels of combined tillage (conventional versus 
no tillage) and residue removal (0%=none versus >0%=rem) (B), showing standard error.  

  

n=8 n=3 n=12 n=7 n=6 n=5 n=5 
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Figure 4-5 Measured versus modeled annual N2O flux for two sites (A) showing measured standard error 
where reporting made these data available, a significant relationship, and an insignificant intercept 
(adjusted r2=0.22, slope=1.67, p=0.019; intercept=0.078; RMSE=1.2).  Bar graph (B) shows measured 
versus modeled mean annual N2O flux by residue removal level (none=0% stover harvest (n=3), 
removal= >0% stover harvest (n=4)), with standard error.  
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Figure 4-6 Daily N2O flux measurements (hatched diamonds) compared to daily model simulations (line) 
of N2O flux for one representative site under four years of corn - soybean rotation, with no residue 
removal in soybean years (A and C) partial residue removal during corn years (B and D). 

 

  



117 
 

 

 

 

Figure 4-7 Daily measured (hatched diamonds) versus modeled (line) N2O flux for a selection of sites and 
years where annual emissions calculated from measured values exceeded simulated annual emissions 
by at least 1.5 kg N2O-N ha-1 year-1 (see Figure 4-5a), showing examples of model failure to simulate N2O 
peaks (A & B), failure to simulate the timing of N2O peaks (B), and underestimation of N2O peak 
magnitude (C).    
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5    EVALUATING DAYCENT MODEL PERFORMANCE ESTIMATING SOIL CARBON AND NITROUS OXIDE 
EMISSIONS IN SOUTH CENTRAL BRAZILIAN SUGARCANE PRODUCTION SYSTEMS4 

 
 
 

5.1 Introduction 

In the developing global bioenergy industry, Brazilian ethanol production from sugarcane 

(Saccharum officinarum L.) holds an important position due to its history as a dominant nationally-scaled 

biofuel, combined with its recognized potential to serve growing global demands for bioethanol 

(Goldemberg et al., 2014). Brazil has been a lead producer of fuel ethanol from sugarcane since the 

1970’s, with policies that supported large-scale national development and use (Solomon et al., 2007).  In 

the most recent decade international export of Brazilian sugarcane has increased. This increase is driven 

in part by the high productivity of sugarcane combined with the relative ease with which it can be 

converted into ethanol, as well as in part by Brazilian efforts to export national expertise in ethanol 

production (Solomon et al., 2007; Wells and Faro, 2011). Growing international demand has 

consequently supported the expansion of land area devoted to sugarcane production in Brazil. This 

expansion is reflected in the construction of increasingly large sugarcane processing facilities. As of 

2010, for example, 30 existing facilities could process over 3 Mt sugarcane per year while developing 

facilities were anticipated to process 3 – 4 Mt sugarcane per year, each of the latter requiring ~56,000 

ha of land (Seabra et al., 2010). Between the years 2000 – 2012 land area for sugarcane production 

increased by nearly 5 Mha in Brazil, with half devoted to bioenergy production (Goldemberg et al., 2014; 

Mello et al., 2014).  

The rapid, large-scale, and potentially continued expansion of sugarcane production in Brazil 

elicits several concerns for the sustainability of sugarcane-based bioenergy. Generally, sustainable crop-

based biofuel development is expected to meet criteria for positive or minimal impact on soil fertility 

                                                           
4
 In preparation for submission to BioEnergy Research with A. Silva, F.F.C Mello, C.E.P. Cerri, M.J. Easter, C. Davies, 

C.C. Cerri and K. Paustian. 
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and function, food production, soil C storage, soil greenhouse gas (GHG) flux, and ecosystem services 

(Reijnders, 2006). In developing global legislation, however, there is an emphasis on supporting biofuels 

with minimal greenhouse gas impacts ((Congressional Research Service, 2007), see also (Goldemberg et 

al., 2014)). Greenhouse gases accumulating in the atmosphere—largely from human sources—are 

warming the globe, causing impacts on human societies and natural systems which will continue to 

expand and be sustained for centuries (Collins et al., 2013; Forster, 2007). Fossil fuel combustion is a 

dominant source of these emissions, releasing carbon into the atmosphere that otherwise would have 

remained stored for geologically long periods of time. Thus bioenergy has the potential to reduce the 

GHG emissions by substituting for fossil fuels, but this requires understanding and effectively managing 

the fluxes from which greenhouse gases can be derived in the process of growing, processing, and using 

crop-based biofuels for energy (Cherubini, 2010). While greenhouse life cycle assessment methods 

address many aspects of biofuel production chains with increasing sophistication (Cherubini, 2010; Lee, 

2004), the heterogeneity of ecosystem processes involved in determining the soil C and direct GHG 

fluxes impacts of bioenergy crop production remain a challenge.  

In Brazilian sugarcane production there has been a recent focus on evaluating direct soil C 

impacts of land use conversion into sugarcane production (Mello et al., 2014). Land use change has been 

long recognized as an area for agriculture to act as a sink versus source of CO2 (Paustian et al., 1998) and 

in bioenergy production is additionally recognized as holding long-term implications for the life cycle 

GHG emissions associated with crop-based bioenergy production (Searchinger et al., 2008). In Brazil 

there is particular concern with expanded sugarcane production pushing soybean production and cattle 

grazing, accompanied with deforestation, closer to the Amazon region (Wells and Faro, 2011), although 

legislation has been established to prevent the conversion of native lands into crop production 

(Goldemberg et al., 2014). Rather, there is greater focus on changing how existing agricultural and 

pasture lands are used, to accommodate the expansion of sustainable sugarcane production 
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(Goldemberg et al., 2014; Mello et al., 2014). These developments combine with a widespread shift 

from the tradition of burned sugarcane harvest to unburned and mechanized harvest—driven by 

legislation in the late-1990’s and early 2000’s—to make soil C a focal component of both experimental 

and modeling work in Brazilian sugarcane production systems (Galdos et al., 2009; Galdos et al., 2009a; 

Hassuani et al., 2005). 

A missing component coming now under close scrutiny is the impact of sugarcane management 

practices on GHG emissions, with specific focus on changes in nitrous oxide (N2O) emissions from 

burned versus mechanical harvest (de Oliveira Bordonal et al., 2012; Galdos et al., 2009), application of 

organic ethanol production byproducts such as vinasse and filtercake (Carmo et al., 2013; de Oliveira et 

al., 2013; Paredes et al., 2014), different levels of residue return following harvest (Carmo et al., 2013), 

and application of different forms of synthetic fertilizer (Signor et al., 2013). Other studies have used 

lower tier Intergovernmental Panel on Climate Change (IPCC) methods to determine the N2O emissions 

from different Brazilian sugarcane production practices (De Figueiredo and La Scala Jr., 2011). However, 

direct measurements indicate a high level of variability in the emission of N2O from nitrogen inputs 

during sugarcane production, relative to IPCC estimates (Carmo et al., 2013; de Oliveira et al., 2013; 

Signor et al., 2013). Process-based ecosystem models can integrate multiple land use changes and crop 

management practices, across varying soil and climate conditions, in order to estimate the soil C and 

GHG emission impacts of different types of bioenergy production systems (Campbell et al., 2014; Galdos 

et al., 2009; Muth and Bryden, 2013; Zhang et al., 2010). In order to evaluate the climate impact of 

sugarcane production practices at larger scales, there is a need to use such process-based models to 

integrate the interaction between land use change, sugarcane production practices, and spatially and 

temporally varying biophysical factors that drive the emission of GHGs from soils. 

The DAYCENT ecosystem model has been used to simulate soil C and GHG emission impacts of 

bioenergy cropping systems (Campbell et al., 2014; Duval et al., 2013; Gao et al., 2013), while its 
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predecessor CENTURY has been used to successfully evaluate some of the different Brazilian sugarcane 

management practices listed above (Galdos et al., 2009). The DAYCENT model was used to evaluate the 

GHG impacts of land use conversion from pasture into energy cane in Florida, USA (Duval et al., 2013). In 

this analysis we use data from a collection of studies in South Central Brazil to parameterize and validate 

DAYCENT model performance simulating sugarcane production and soil C. One of the challenges in Brazil 

is the relative paucity of high quality weather stations and meteorological data over large areas of the 

country, since weather variables (temperature and precipitation) are important drivers for soil N2O 

fluxes.  Thus we evaluated DAYCENT estimation of N2O emissions and compare modeled versus 

measured estimates of N2O emission factors using two different sources of climate data: 1) nearest 

meteorological station data and 2) interpolated weather data from the Climate Forecast System 

Reanalysis (CFSR) global meteorological dataset (Fuka et al., 2014). DAYCENT simulations are highly 

limited by the quality, availability, and continuity of available weather data. A standardized resource like 

CFSR can be invaluable to drive DAYCENT simulations over larger areas. The comparison of weather data 

estimations in this analysis aims to contribute towards the use of DAYCENT for larger-scale regional and 

national analyses of GHG emissions with sugarcane production practices in Brazil. 

5.2 Materials and Methods 

5.2.1 Experimental Data 

To parameterize the DAYCENT model, data were collected from a selection of published studies 

grouped in the South Central region of Brazil (Figure 5-1). Most studies measured a single type of data, 

specifically soil C, N2O emissions, or aboveground production. Therefore the parameterization studies 

were selected to represent data gathered from experiments that included the main management 

practices of interest from the perspective of N2O emissions, including mineral fertilizer application, 

vinasse application, residue return, and burned versus unburned harvest (Table 5-1).  Parameterizing 

DAYCENT to accommodate this range of management practices, across yields, soil C, and N2O emissions 
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may therefore result in a more general model performance for estimating GHG impacts with 

management practices over a broader area.  

Measured data were converted into units comparable to DAYCENT model results, expressed in 

units of g C m-2 for sugarcane production, g N2O-N ha-1 yr-1 (or day-1, or cumulative over the 15- and 50-

day experiments) for nitrous oxide flux, and g C m-2 from 0 – 20cm for soil organic matter. Aboveground 

production and stalk yields were reported as either weight at harvest, dry weight, or C mass per unit 

area (Table 5-1). Sugarcane stalks have a percent moisture that can exceed 80% during peak growth, 

with an ideal range for sugarcane harvest between 70-74% (Bakker, 2012). No moisture contents were 

directly reported in studies with data on stalk harvest weights. If stalk measurements were not reported 

in terms of C mass per unite area, the measurements were assumed to contain 70% water and 45% C 

content, using these values to convert harvest or dry weight into g C m-2. This approach is similar to that 

used by Galdos et al., (2009) in a CENTURY model study of sugarcane production, but may overestimate 

stalk C if 70% water is lower than the true water content at harvest. 

Soil C data from Mello et al. (2014) consist of a large set of paired field comparison sites (under 

different land uses), which included all sites where sufficient data were available for DAYCENT model 

simulations. We were able to include 63 of the original 135 study sites, as well as 28 of the original 75 

conversion pairs, across eight regions (Table 5-1). This subset of sites predominantly represents areas of 

pasture conversion into sugarcane, although one region included conversion of two native vegetation 

sites into sugarcane while another included three sites with conversion of agricultural lands into 

sugarcane (Table 5-1). The eight regions are geographically spaced across the longitudinal gradient of 

the main South Central sugarcane producing region in Brazil (Figure 5-1). This study also provides the 

only dataset where sufficient data were available to split their use between DAYCENT parameterization 

versus out-of-sample validation of DAYCENT performance. We therefore divided these sites into two 

groups, using one group of sites across four regions (Itirapina, Ipaussu, Igarapava, and Gioiatuba) for soil 
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C parameterization  while reserving those located in the other four regions (Anhembi, Arapora, 

Maracaju, and Iacanga) for soil C validation. We split these sites randomly across the longitudinal extent 

of the South Central region, such that parameterization and validation sites were located across 

comparable longitudinal reach (Figure 5-1). Insufficient sites were available to extend parameterization 

versus validation sites across comparable latitudinal area.  The sites in the regions reserved for DAYCENT 

validation included >70% of all of the Mello et al. (2014) sites simulated in this analysis, or 46 of the 63 

total.  

To evaluate N2O emissions we used three studies with direct measurement of N2O emissions in 

four locations, representing 27 different experimental treatments that included burned versus unburned 

harvest, application of vinasse, varying levels and forms of synthetic fertilizer addition, and different 

amounts of residue return following harvest (Table 5-2). Exact experimental start dates were variably 

reported; Carmo et al. (2013) reported the experimental start day for one location (Piracicaba), while 

only reporting the starting month for the other location (Jaú). Signor et al. (2013) reported the exact 

start date, while Oliveira et al. (2013) indicated only that the experiment started in July and continued 

into August. When not reported, we used estimated values to schedule the days of experimental events 

in DAYCENT simulations. In all studies, N2O emissions measured using static polyvinyl chloride chambers 

had between 3 and 5 replicate chambers per treatment.  

5.2.2 DAYCENT model overview 

The DAYCENT model runs on a daily time-step and simulates soil processes by horizon across the 

soil profile, including soil nutrient movement, water movement, plant growth, and many other 

ecosystem components (Del Grosso et al., 2008). The key drivers of DAYCENT include maximum and 

minimum daily temperature, daily precipitation, soil texture, and land management (including specific 

plant types grown and soil management such as tillage and nutrient additions). Nitrous oxide emissions 

are derived from nitrification and denitrification, based on soil water content and soil texture, NH4
+ and 
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NO3
- concentration, and availability of labile C as estimated using heterotrophic respiration as a proxy 

(Parton et al., 2001). Nitrate is mobile and can be either leached or taken up by plants. It is therefore 

controlled by interactions with either plants or water movement across the soil profile. Ammonium is 

immobile and only distributed in the top 15cm of the soil profile. On a daily time step, denitrification is 

determined by soil texture, water content, temperature, NO3
- availability, and heterotrophic respiration, 

while nitrification is determined by the same soil factors (texture, water content, temperature) 

alongside NH4
+ concentration only in the 0 – 15cm layer (Del Grosso et al., 2008). The DDcentEVI version 

of DAYCENT (a version of DAYCENT with the option to use Enhanced Vegetation Index- i.e. EVI- data) 

was used for this analysis. DDcentEVI was developed and tested to estimate total agricultural land use 

emissions for the US Environmental Protection Agency’s (EPA) GHG emission inventory annual report 

(U.S. Environmental Protection Agency, 2013).  

Temperature and precipitation are key drivers of biogeochemical processes, and are particularly 

important in the simulation of N2O emissions. Long-term, continuous daily climate datasets are 

therefore needed to both represent regional climate patterns in spin-up simulations—i.e. that bring 

DAYCENT to equilibrium conditions prior to simulating experimental treatments—as well as to drive 

simulations for the experimental periods of interest. As mentioned above, in this study we considered 

two climate datasets for simulating N2O flux from experimental treatments, in addition to directly 

reported climate data. The first climate dataset consisted of climate data drawn from the nearest 

available meteorological station to each study location, provided by the Agrometeorological Monitoring 

System (AGRITEMPO). These data ranged in their temporal span, starting as early as 1917 and as late as 

2007, and extending mainly to 2010 although in the Maracju region data were available until 2011. Our 

second climate data source was the Climate Forecast System Reanalysis (CFSR) global meteorological 

dataset (Fuka et al., 2014), which is accessed using the EcoHydRology R package.  These climate data are 

generated using site-specific latitude and longitude, and are given at a 38-km scale from 1979 – 2013 
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using algorithms to interpolate weather for areas between weather stations. The CFSR dataset is under 

active evaluation and is considered, in the tropics, comparable to a quality weather station at a 30 – 

40km distance from the experimental location (D. Fuka, personal communication). These climate 

datasets vary considerably from each other and from climate data reported in the studies considered in 

this analysis, in terms of temperature biases, the timing, magnitude, and cumulative amount of 

precipitation, as well as in the prevalence of missing data. A summary of reported climate versus the 

two climate datasets used to drive DAYCENT simulations in this analysis are reported in Table 5-2. 

Soil texture and prior land use history used for model initialization were drawn, where available, 

from data reported in the publications included in this study, as well as from additional publications 

presenting different datasets from the same experimental sites. For the Mello et al. (2014) land 

conversion sites, additional land use history and sugarcane production practices data were acquired 

directly from managers of nearby sugarcane processing facilities. In addition to the 63 land use 

conversion sites from Mello et al. (2014), 42 different sugarcane management practices were simulated 

matching experimental management practices in the 6 studies that provided the sugarcane production 

and N2O emission measurements used in this study (Table 5-1). 

5.2.3 Climate data modifications for simulating N2O emissions 

In order to evaluate the accuracy with which the two climate datasets described above reflect 

environmental conditions driving N2O emissions, in this analysis we chose to focus on reported versus 

climate dataset estimations of precipitation. Specifically, in our analysis we compared measured versus 

DAYCENT modeled N2O emissions for all treatments as estimated using unaltered version of each 

climate dataset, and as estimated using as many directly reported precipitation data as were available 

for each experimental site. Only mean annual climate data were reported in Carmo et al. (2013) (Table 

5-2). Therefore we simulated these treatments using only each of the two climate datasets, without 

alteration. In Signor et al. (2013), daily precipitation data were reported for the 50-day experimental 
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period. Therefore these treatments were simulated using each of the two climate datasets, without 

alteration, as well as simulated using each of the climate datasets with the reported precipitation data 

integrated in place of the original values. In the 15-day Oliveira et al (2013) study only monthly 

summaries of climate data were reported for the year in which the experiment took place (Figure 5-7). 

However, water-filled pore space was reported for the 15-day experimental period. The water-filled 

pore space data indicated a likely precipitation event early in the experimental period not reflected in 

either of the two climate datasets, while the reported monthly summaries of precipitation data show 

that each of the climate datasets were substantially underestimating precipitation during the 

experimental period (Figure 5-7). Therefore the treatments in Oliveira et al. (2013) were simulated using 

each of the two climate datasets, without alteration, as well as using each of the two climate datasets 

where the estimated ‘missing’ precipitation was added, evenly divided on a daily basis for the month 

preceding the experimental period.  

5.2.4 Statistical Analyses 

Statistical analyses were written in  R-3.1.1 software (R Core Team, 2014), using tidyr (Wickham, 

2014), dplyr (Wickham and Francois, 2015), hydroGOF (Zambrano-Bigiarini, 2014), and ggplot2 packages 

(Wickham, 2009). Regression analyses were used to compare measured versus modeled total C in 

aboveground sugarcane production (g C m-2), C in sugarcane stalk production (g C m-2), total soil C (g C 

m-2), and the difference in soil C between paired Mello et al. (2014) land use conversion sites (g C m-2). 

Regression analyses were additionally used to compare measured versus modeled cumulative and daily 

N2O flux (g N2O-N ha-1 yr-1/day-1/15-day-1/50-day-1) across all sites where these data were available.  

Root mean square errors were calculated for all comparisons, to evaluate relative model performance 

across different types of measured observations. A two-tailed test was used to compare measured 

versus modeled validation soil C results by region, calculating 95% confidence intervals (mean +/- the  
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standard error * 1.96), where overlap between confidence intervals indicates no statistical difference 

between means.  

5.3 Results 

Primary productivity and soil C are a primary focus for evaluating baseline DAYCENT 

performance; in either case in this analysis, DAYCENT was able to capture trends in treatment effects on 

sugarcane yields and soil, but with high variability. For example, after parameterization, DAYCENT 

simulated total aboveground sugarcane production with minimal bias but high dispersion, with a slope 

close to 1 and an intercept that did not differ significantly from 0, but a low adjusted r2 of 0.3 (Figure 5-

2, A). Stalk production had higher dispersion (a lower adjusted r2) and more bias, with a slope less than 1 

and an intercept that significantly differed from 0 (Figure 5-2, B). However stalk yield data were more 

uncertain due to unreported percent water content at harvest. Therefore, we have greater confidence 

in the quality of the total aboveground measured data in evaluating DAYCENT performance (Figure 5-2, 

A). Predicted C:N ratios of the sugarcane trash were consistent with reported values, ranging from 79-

100 (data not shown), which are very similar to the 80 – 100 C:N ratio reported in published literature 

(Gava et al., 2005). DAYCENT may therefore be variable in how accurately it simulates the quantity of 

litter input that it simulates for sugarcane, but DAYCENT is relatively consistent in simulating the litter’s 

C:N ratio.   

DAYCENT did reflect overall trends in soil C in most regions simulated in this analysis, but given 

the high variability of the measured soil C data it is difficult to be conclusive in the valuation of overall 

DAYCENT performance for soil C dynamics. After parameterization, model predictions of total soil C 

showed a significant relationship, with a higher r2 than production predictions (Figure 5-2), and an 

intercept that did not differ significantly from 0. However, model predictions showed a tendency to 

overestimate low soil C values while underestimating high soil C values, as indicated by having a slope <1 

(Figure 5-3). The set of regions from Mello et al. (2014) used to validate the DAYCENT model showed 
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variable model performance by region. In simulating total soil C and the difference between paired LUC 

sites included in Mello et al (2015), model performance was more comparable to measured values in 

Arapora and Anhembi, performed more poorly estimating total soil C in Iacanga, and did not accurately 

estimate either total soil C or the difference in soil C between paired sites in Maracaju (Figure 5-4).  

DAYCENT simulations of N2O emissions were highly sensitive to precipitation data inputs. 

Precipitation data from the two climate datasets considered in this study were, in turn, variable relative 

to reported precipitation information. In estimating annual N2O emissions for the two sites in the Carmo 

et al. (2013) study, DAYCENT performance was improved using the nearest weather station versus the 

interpolated dataset (Figure 5-5, A), but with both analyses showing a tendency to overestimate annual 

N2O emissions (intercept significantly greater than 0) that was more pronounced with the interpolated 

climate dataset (Figure 5-5, A). In Carmo et al. (2013) the only reported climate data were annual 

averages (Table 5-2). It is therefore difficult to assess this site’s model performance and sensitivity 

related to precipitation data on a finer timescale. The model estimation of annual emissions in Carmo et 

al. (2013) using the nearest weather station climate dataset provided the best estimate of treatment 

effects on relative N2O emissions, with a slope closest to 1 of all cumulative modeled/measured 

comparison (Figure 5-5). The overestimation of annual emissions using interpolated climate data was 

likely impacted by a bias towards high annual precipitation in the dataset for this location (Table 5-2). 

Cumulative measured versus modeled comparisons for the shorter-term experiments (50 days for Signor 

et al. (2013) (Figure 5-5 & 5-6), 15 days for Oliveira et al. (2013)) showed poorer DAYCENT simulation of 

treatment effects, with the latter having no significant relationships between measured and modeled 

values using either climate dataset. 

In Signor et al. (2013), precipitation measurements for the experimental period were directly 

reported; however, these precipitation data did not improve cumulative model performance when 

incorporated into the climate datasets used to drive model simulations (Figure 5-6, A & B). These results 
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suggest the precipitation preceding the experimental period is important for accurately capturing N2O 

emissions during the experimental period; model performance was improved using reported 

precipitation in the interpolated climate dataset, which has higher overall precipitation (Figure 5-5 & 5-

6, B).  

However, on a daily basis direct precipitation measurements did support more accurate N2O 

emission estimates in some treatments from Signor et al. (2013). Using the interpolated dataset and 

reported precipitation, DAYCENT performed well with both the timing and magnitude of daily N2O 

emissions in Signor et al., when N additions and measured N2O emissions were low (Figure 5-6, C). 

However these model simulations increasingly diverge as N additions and measured N2O emissions 

increased (Figure 5-6, A & B, D). The treatment with extremely high measured N2O emissions (180 kg N 

ha-1 ammonium nitrate) was excluded from these measured/modeled comparisons (Figure 5-6, A & B), 

to better evaluate the range of treatments where DAYCENT currently shows greater success. DAYCENT 

performance for the specific 180 kg N ha-1 ammonium nitrate treatment was universally poor, indicating 

factors that result in exceptionally high emissions in sugarcane systems are not represented well in 

DAYCENT. 

Oliveira et al. (2013) cumulative simulated emissions were 1 – 2 orders of magnitude less than 

reported measurements, with no significant relationship between cumulative measured versus modeled 

values using either of the two climate datasets. This indicates very poor model performance at this site. 

However, while summary climate data would suggest these climate datasets are estimating excessively 

high precipitation on an annual basis for Oliveira et al. (2013) (Table 5-2), a comparison of monthly 

reported versus estimated precipitation reveals a bias towards very low precipitation estimates in both 

climate datasets during the experimental period (7.2 cm in July reported, versus 1.8cm from the nearest 

weather station and 2.4cm from the interpolated climate dataset, Figure 5-7). When the difference in 

precipitation was added on an even daily basis in the month preceding the experimental period, model 
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performance for daily emissions in the burned treatments improved substantially, although showing 

more sensitivity to water additions than to N addition with vinasse (Figure 5-8). Model simulations of 

mechanical harvest treatments were also improved in these simulations but still an order of magnitude 

too low relative to measured values (data not shown).  Therefore there are structural improvements 

needed for DAYCENT to better simulate the impact on N2O emissions of high litter inputs added back to 

the soil with mechanical harvest. The exact experimental start date was not reported in Oliveira et al. 

(2013). Model variability based on available climate data versus the need for structural model 

improvements would be better clarified by lining up the precipitation data and the experimental period 

more exactly, particularly with such a short-term experiment.  

Modeled estimates of N2O emission factors—the percentage of N2O-N released per unit of N 

applied to the soil—showed high variability, due to both variability in climate data accuracy as well as 

the need for improved model simulation of very high N2O emission periods and locations. Only the 

original climate datasets were used in this analysis of EFs. Model EFs ranged from greater than 5% to 

less than 0.1%. This range therefore extends an order of magnitude lower and at least 5x higher than the 

IPCC emission factor (Figure 5-9). This variability was comparable to measured variability that exhibited 

a similar high range, but with a lowest value of only 0.31%. Regardless of climate data source, the 

highest measured EF was not successfully predicted by model simulations. The tendency of N2O 

overprediction in the Piracicaba site in Carmo et al. (2013), in turn, resulted in extremely high predicted 

emission factors.  

5.4 Discussion 

In this analysis, the DAYCENT model was parameterized using measured data for sugarcane 

aboveground production, soil C and N2O emissions drawn from publications that represented a range of 

management practices and land use conversions of key concern in determining the sustainability of 

Brazilian sugarcane production. The results from the validation component of this study, evaluating 
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DAYCENT performance simulating soil C, demonstrate that the DAYCENT model is capable of simulating 

soil C trends under different land conversion scenarios, but with variable regional performance. The 

poorest performance in the validation component of this study was in the simulation of sites in the 

Maracju region. However Maracaju differs from the all other sites used in parameterization in two 

respects. First, Maracaju is situated furthest west and is geographically distanced from all other sites 

(Figure 5-1). Second, sites in the Maracaju region include only land use conversion from active 

agricultural production into sugarcane. The sites used for parameterization in this study did not include 

any conversion of agricultural production into sugarcane. Poor DAYCENT performance simulating 

Maracaju sites indicates a need to expand DAYCENT parameterization into both this region as well as 

into the evaluation of agricultural land conversion into sugarcane production. This would allow for 

DAYCENT use simulating land conversion of key concern in the development of Brazilian sugarcane 

(Carvalho et al., 2009; de Souza Braz et al., 2013; Mello et al., 2014). 

With the exception of Maracaju, model results generally matched the direction and variability of 

mean regional measured values of differences in soil C between paired land use conversion sites (Figure 

5-4, B). As discussed above, the sites in these remaining regions predominantly represent pasture 

conversion into sugarcane. Conversion from pasture into sugarcane was shown in Mello et al. (2014) to 

result in a cumulative soil C loss, a trend reflected in measured means in these regions (Figure 5-4, B). 

Our modeled results support that trend, but with high variability. By necessity the number of paired 

sites in this DAYCENT validation study was substantially reduced from those included in the original 

analysis, due to limited data available to drive DAYCENT simulations. Studies show that it is possible for 

productive soils to store more C than native Cerrado (Carvalho et al., 2009), particularly with high C 

storage under pasture (Figueiredo et al., 2013) and grasslands due to root contributions (Fidelis et al., 

2013). Results shown in Figure 5-4 do reflect the trend of higher C storage in pasture versus sugarcane 

production. However a greater diversity of soil C measured data are needed to explore other aspects of 
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soil C change with land management practices, and further evaluate this aspect of DAYCENT model 

performance.  

Model parameterization and validation focused on aboveground sugarcane production and soil 

C were mainly intended to ensure a sufficient level of basic DAYCENT performance simulating key 

ecosystem properties. These values are considered benchmarks in the evaluation of land-surface models 

(Luo et al., 2012), and are similarly a primary concern in assessing baseline DAYCENT performance. In  

the simulation of N2O emissions from sugarcane production management practices, the selection of 

studies included in this analysis represent the main management practices of concern for impacts on 

N2O emissions—i.e. residue management, mineral fertilizer application, organic fertilizer application, 

and harvest methods. However, we had insufficient replications of treatments across sites to consider 

general rather than site-specific estimations of N2O emissions with specific management practices. 

Therefore, we considered model performance in aggregate across management practices, which further 

demonstrate the challenge of modeling the extreme temporal and spatial heterogeneity of N2O 

emissions in sugarcane production systems.  

In this analysis, evaluating DAYCENT simulation of N2O emissions was limited by the short 15-

and 50-day length of the Signor et al. (2013) and Oliveira et al. (2013) experiments, in addition to the 

variable supplemental data on experimental start dates and precipitation that these studies provided. 

While these types of short-term measurement periods are valuable in evaluating model performance 

simulating GHG emissions for specific types of management practice events, model performance will 

likely diverge from measured values on a daily basis if the timing of experimental treatments is 

estimated rather than informed directly. For example, model simulations are less likely to estimate the 

exact timing or the extremes of N2O emissions, if estimated days for experimental treatments do not 

line up with the environmental conditions when the measurements were taken—e.g. if simulated 

fertilizer application occurs in a dry series of days, when in reality it occurred in close proximity to a 
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large rain event. Additional short-term studies would be useful for further evaluating N2O emissions 

from sugarcane management practices of interest, and support DAYCENT estimations for the GHG 

impacts of specific management practices on a more regional basis. However, longer-term N2O emission 

measurement time series are also needed, to better determine the time scale at which DAYCENT can 

most accurately estimate N2O flux from sugarcane production. 

Despite their limitations, the data used in this analysis do give widespread support to the 

importance of using high quality, long-term climate data to drive the evaluation of N2O emissions from 

Brazilian sugarcane production practices using DAYCENT. In this analysis we experimented with different 

forms and combinations of weather data, using the two climate datasets in addition to reported climate 

information. The results suggest that climate data need to accurately reflect conditions before and 

during experimental treatments being evaluated, in order to more closely approximate the N2O 

emission dynamics that occur from specific types of sugarcane management practices. This again 

addresses the need, mentioned above, for longer-term N2O measured datasets. In other studies 

DAYCENT performance tends to improve when evaluating N2O emissions over longer temporal periods: 

the model may not accurately capture specific daily emission events, particularly if the driving climate 

data do not reflect true climate conditions. However, DAYCENT tends to compensate over longer time-

spans, again as long as the driving climate data reflect true conditions over the long term. Poor climate 

data—for example simulating inaccurately dry conditions or excessive precipitation when N sources are 

applied, as seen in this analysis—can substantially over- or under-estimate N2O flux, sometimes even 

when a period of directly measured climate data are incorporated (Figure 5-6, A & B).  

While climate data variability was responsible for some poor DAYCENT performance simulating 

N2O flux in this study, DAYCENT also showed an inability to simulate the sometimes extremely high N2O 

emissions than can occur in Brazilian sugarcane systems. In another study (Campbell et al., 2014), 

DAYCENT tended to perform more poorly simulating high levels of N2O emissions (Figure 5-5 B), 
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particularly at a daily level (Figure 5-8). In this study the measured data (i.e. from Signor et al. (2013)) 

show the potential for conditions to occur in sugarcane that can release very high emission, that were 

subsequently missed by sometimes several orders of magnitude in DAYCENT. Similar conditions have 

been observed in Austrialian sugarcane systems, and are currently undergoing evaluation using 

DAYCENT (W. Parton, personal communication). Although these high emission events may be rare and 

short-term, they can be a substantial contributor to total N2O emissions. One aspect of DAYCENT 

performance that may be contributing to these patterns of underestimation is DAYCENT’s lack of explicit 

dissolved organic carbon simulation, which could transport some of the very large amounts of surface 

litter inputs following mechanical harvest in a form and a direction that would support higher 

denitrification in the soil. However, DAYCENT does not yet simulate the movement of DOC across the 

soil profile, although this feature is currently in development (Campbell et al., in preparation for Soil 

Biology and Biochemistry). The lack of sensitivity of the mechanically harvested treatments in Oliveira et 

al. (2013) to additional precipitation, as compared to the burned harvested treatments, supports that a 

limiting factor related to litter inputs is likely contributing to poor DAYCENT N2O emission simulation of 

those treatments. 

Our results further demonstrate the challenge of simulating the extreme variability in emissions 

factors for N2O. Certainly the standard Tier 1 IPCC value may not reflect true N2O emissions from a given 

location or sugarcane management practice. However, while DAYCENT modeling would support a Tier 2 

IPCC approach to GHG evaluation, the large discrepancy between modeled versus measured evaluation 

of high N2O emissions must first be addressed, and a robust climate dataset to drive regional DAYCENT 

simulations either identified or developed. 
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Table 5-1 Site descriptions. 

Study 
Collection 

Period 
Data description 

Lat/ 
Long 

Texture Description 

N2O Emissions     

(Carmo et al., 2013)- 
Piracicaba 

335 days, on 
event basis 

Est. daily & annual flux, from 
replicated static polyvinyl 

chloride chambers 

-22.68/ 
-47.55 

Sandy Clay 
Loam 

Sugarcane production from 
1990, unburned harvest, 0, 7, 
14, 21 Mg/ha trash w vinasse 

(Carmo et al., 2013)- 
Jaú 

314 days, on 
event basis 

Est. daily & annual flux, from 
replicated static polyvinyl 

chloride chambers 

-22.25/ 
-48.57 

Sandy 
Loam 

Sugarcane production since 
1990, unburned harvest, 

mineral fertilizer & vinasse 

(Signor et al., 2013)- 
Piracicaba 

50 days, every 
1-2 days 

Est. daily & cumulative flux, 
from replicated static 

polyvinyl chloride chambers 

-22.72/ 
-47.63 

Clay 
Urea and ammonium nitrate 

fertilizer applications 

(de Oliveira Bordonal 
et al., 2012)- Boa Vista 

Farm Piracicaba 

15 days, every 
1-2 days 

Est. daily & cumulative flux, 
from replicated static 

polyvinyl chloride chambers 

-18.72/ 
-46.97 

Clay 
 

Burned vs unburned, vinasse vs 
water 

Sugarcane Production     

(Franco et al., 2010)- 
Pirassunuga 

Plant cane 
harvest (1 yr) 

Dry matter (kg ha-1): total, 
stalk 

-21.92/ 
-47.17 

Clay 
Different rates of urea applied 

to crops at planting 

(Franco et al., 2010; 
Otto et al., 2009)- 

Jaboticabal 

Plant cane 
harvest (1 yr) 

Dry matter (kg ha-1): total, 
stalk 

-21.32/ 
-48.32 

Sandy Clay 
Loam 

Different rates of urea applied 
to crops at planting 

(Hassuani et al., 
2005)- Usina São 

Martinho 

Plant cane 
harvest + 5 

ratoons (6 yrs) 

Harvest weight (t ha-1): 
aboveground total, trash 

-22.36/ 
-47.38 

Sandy Clay 
Loam 

unburned harvest with 0, 33%, 
66%, and 100% trash  

(Hassuani et al., 
2005)- Usina Santa 

Luisa 

Plant cane 
harvest + 1 

ratoon (2 yrs) 

Harvest weight (kg plot-1): 
aboveground total, stalk, 

trash 

-22.58/ 
-47.52 

Clay unburned harvest of sugarcane 

(M V Galdos et al., 
2009)- Usina São 

Martinho 

Plant cane 
harvest + 7 

ratoons (8 yrs) 

Stalk C (g m-2), assuming 70% 
water content & 44% C 

content from fresh weight 

-21.37/ 
-48.05 

Clay burned vs unburned sugarcane 

Soil Carbon      

(Mello et al., 2014)- 
Igarapava 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-20.16/ 
-47.77 

Clay 
7 sites: sugarcane/pasture 

conversion, 2 conversion pairs 
(parameterization) 

(Mello et al., 2014)- 
Ipaussu 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-23.11/ 
-49.52 

Clay 
5 sites: sugarcane/pasture 

conversion, 3 conversion pairs 
(parameterization) 

(Mello et al., 2014)- 
Itirapina 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-22.37/ 
-47.91 

Loamy 
Sand 

4 sites: sugarcane/pasture, 3 
conversion pairs 

(parameterization) 

(Mello et al., 2014)- 
Gioiatuba 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-18.09/ 
-49.62 

clay loam 
1 sugarcane/pasture 

conversion site 
(parameterization) 

(Mello et al., 2014)- 
Anhembi 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-22.75/ 
-48.02 

Loamy 
Sand 

11 sites: sugarcane/pasture 
conversion, 4 conversion pairs 

(validation) 

(Mello et al., 2014)- 
Arapora 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-18.47/ 
-49.12 

Clay 
25 sites: sugarcane/pasture/ 

native conversion, 13 
conversion pairs (validation) 

(Mello et al., 2014)- 
Iacanga 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-21.97/ 
-49.04 

Loamy 
Sand 

4 sites: sugarcane/pasture 
conversion, 3 conversion pairs 

(validation) 

(Mello et al., 2014)- 
Maracaju 

Sampled with 
replicates, 2010 

Soil C (%) by 10cm layer from 
0 – 100cm 

-21.43/ 
-55.35 

Clay 
6 sites: agriculture/sugarcane 
conversion, 3 conversion pairs 

(validation) 
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Table 5-2 Summary climate data for the four sites with N2O emission data, as reported and as calculated 
from weather data given by the nearest weather station versus the interpolated dataset from the 

Climate Forecast System Reanalysis global meteorological dataset . 

Site Reported Climate Nearest Weather Station Interpolated 

 

Mean 

Annual 

Precip. (cm) 

Mean 

Temp 

( C) 

Mean 

Annual 

Precip. (cm) 

Mean 

Temp 

( C) 

Missing 

data 

(days/total) 

Mean 

Annual 

Precip. (cm) 

Mean 

Temp 

( C) 

Carmo- Piracicaba 139 21 132.7 22.7 91/2922 178 22.1 

Carmo- Jaú 139 21 129.9 24.2 312/2557 133.9 23 

Signor- Piracicaba 127 21.5 130.9 22.5 101/4383 170.8 22.2 

Oliveira- Piracicaba 141.9 NR 122.2 23.3 13/3287 166.9 21.9 
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Figure 5-1 Location of sites used to parameterize and validate the DAYCENT model. Validation sites were 
selected to represent similar longitudinal gradients as sites used to parameterize the model. 
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Figure 5-2 Within-sample measured (x-axes) versus modeled (y-axes) total aboveground production (A) 
and stalk production (B), both showing significant relationships (adjusted r2=0.3, slope=1.05, p=0.001, 
RMSE=497 and adjusted r2=0.25, slope=0.65, p<0.001, RMSE=396, respectively). However, while the 
total production had an insignificant intercept (intercept=25), the stalk production intercept was weakly 
significant (intercept=487, p=0.04). The 1:1 relationships are shown with the solid line, while linear 
regression relationships are shown with the dotted lines and shading. 

  

A 

B 
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Figure 5-3 Within-sample measured (x-axes) versus modeled (y-axes) total soil C, showing a significant 
relationship and insignificant intercept (adjusted r2=0.4, slope=0.67, p=0.008, RMSE=791; 
intercept=1660). The 1:1 relationship is shown with the solid line, while the linear regression 
relationship is shown with the dotted lines and shading. 
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Figure 5-4 Out-of-sample measured versus modeled prediction of total soil carbon (A) and the difference 
in soil carbon between paired land use change sites from Mello et al. (2014) (B), for DAYCENT validation, 
showing 95% confidence intervals as well as the number of sites included in these analyses in each 
region. In A & B, Maracaju modeled and measured confidence intervals did not overlap. Iacanga total 
soil C modeled results were substantially higher than measured values (A), but soil C difference 
confidence intervals for the 3 sites with LUC pairs did overlap (B). Modeled and measured confidence 
intervals for Anhembi and Arapora overlapped in total (A) as well as by difference in paired sites (B).   

 

  

A 

B 
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Figure 5-5 Measured (x-axes) versus modeled (y-axes) predictions of cumulative N2O emissions for both 
sites in the long-term study by Carmo et al. (2013) (A) versus the Piracicaba sites in the 50-day study by 
Signor et al. (2013) (B), using nearest weather station versus interpolated climate data. Both types of 
climate data resulted in significant relationships between measured and modeled values in the Carmo et 
al. (2013) study (adjusted r2=0.38, slope=0.98, p=0.011, RMSE=4700; and adjusted r2=0.32, slope=2.1, 
p=0.021, RMSE= 14000, A), but intercepts that were significantly different than 0 (intercept=4799, 
p=0.0036; intercept=8900, p=0.015, A). In the Signor et al. (2013) study the nearest weather station data 
resulted in a significant relationship (adjusted r2=0.66, slope=0.26, p=0.0047, RMSE=6771) and an 
intercept that was not significantly difference from 0 (intercept = 762, B). However, the interpolated 
climate data did not result in a significant relationship between measured values and modeled 
prediction. The 1:1 relationships are shown with the solid line, while linear regression relationships are 
shown with the dotted lines and shading. 

A. Carmo et al. (2013) 

B. Signor et al. (2013) 
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Figure 5-6 Measured (x-axis) versus modeled (y-axes) predictions, excluding the 180 kg N ha-1 
ammonium nitrate treatment, of cumulative N2O emissions over 50 days in Signor et al. (2013) 
treatments—as estimated using the nearest weather station (A) and interpolated (B) climate datasets 
either with (light points) or without (dark points) the use of reported precipitation data—alongside daily 
measured (red line) versus modeled (blue and green lines) N2O emissions in the 60 and 80 kg N ha-1 
ammonium nitrate treatments (C & D, respectively), considering only climate datasets where reported 
precipitation data were included. Cumulative emissions all showed significant relationships between 
measured and modeled values, with intercepts that did not differ significantly from 0 (adjusted r2=0.62, 
p=0.012, RMSE=3295, intercept = -38 and adjusted r2=0.65, p=0.0.0094, RMSE= 5200, intercept=197, 
original versus with reported climate data, A; adjusted r2=0.70, p=0.0057, RMSE=2200, intercept = 1394 
and adjusted r2=0.61, p=0.0.013, RMSE= 4000, intercept=750, B). However, slopes were substantially 
different, at values of 0.45, 0.05, 0.48 and 0.19, A & B, respectively. DAYCENT successfully simulates the 
timing of N2O flux in these treatments (C & D) but increasingly diverges from simulating the magnitude 
of N2O flux as N application increases (D). 

  

A 

B 

C 

D 
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Figure 5-7 Monthly cumulative precipitation for 2009, as reported by Oliveira et al. (2013) (black bars) 
versus from the nearest weather station and interpolated climate datasets (medium and light bars, 
respectively). Biases vary by time of year, type of climate data, and climate dataset. Notably, both 
climate datasets tend to overestimate precipitation in wet months and underestimate precipitation in 
dry months relative to reported values.  
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Figure 5-8 Precipitation data used to drive model simulations for the Oliveira et al. (2013) experimental 
period—as originally reported in the nearest weather station (A) and interpolated (B) climate datasets as 
well as with the addition of precipitation in the month preceding the experimental period in order to 
match, by day 210, the reported precipitation for July, 2009 (C & D)—alongside measured versus 
modeled predictions of daily N2O emissions from application of water versus vinasse in a burned harvest 
site (E & F, respectively). Climate drivers both during and preceding the experimental periods can 
strongly affect DAYCENT simulation of either the magnitude or the timing of high N2O emissions. 
Simulated N2O emissions are more affected by the addition of water than N in these simulations; 
modeled N2O emissions are comparable in both treatments in timing and magnitude, while measured 
values are much lower when only water is applied.  

  

B 

A 

D 

C 

E 

F 
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Figure 5-9 Measured versus modeled emission factors (EF) for treatments within each N2O study, as 
compared to IPCC emission factor for N addition in agriculture (dotted black line), using nearest weather 
station climate data (A) versus interpolated climate data (B). On the x-axis, the first treatment in each 
study is labeled, and all treatments to the right of the label until the subsequent label fall within that 
study. OL refers to 2 treatments with vinasse additions in Oliveira et al. (2013), SIG to the 8 urea and 
ammonium nitrate fertilizer addition treatments in Signor et al. (2013), CAR1 to the vinasse + residue 
return treatments in Piracicaba and CAR2 to the fertilizer treatments in Jaú, respectively, from Carmo et 
al. (2013). Emission factors are highly variable, with model results under predicting the highest emission 
factor using both types of climate data. However, interpolated climate data resulted in model 
predictions that substantially overestimated more treatments (predicting EFs of >5% with 5 treatments 
(B), versus predicting an EF >5% at only 1 treatment (A)). 

  

A 

B 
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6   CONCLUSION 
 
 
 

 The research presented in this dissertation examines the theory and development of SOM 

modeling, as well as its application in evaluating crop-based bioenergy production systems when 

integrated into the DAYCENT ecosystem model. There remains a great deal of uncertainty in how SOM 

heterogeneity and variability integrates across temporal and spatial scales, e.g. whether mechanisms 

and empirical relationships known to be of importance at small scales continue to effect cumulative 

SOM dynamics at larger scales. As a result, SOM modeling structure and approaches must carefully 

consider the scale at which they are being applied, both in terms of the data used to drive SOM models 

as well as in terms of model structure and formulation.  

 The review chapter supported the importance of scale in across advancing areas in SOM 

modeling development, particularly as SOM models of increasing complexity are integrated into earth 

system models. Clarification and consistency in the underlying assumptions for either SOM formulation 

or data used to drive SOM simulations are of high importance for crossing scales from microsite to 

regional and global levels. Beyond the issue of scale, the review chapter also suggests increasing 

sophistication in data-model integration in SOM modeling is needed, to capitalize on collaborations 

across multiple disciplines as well as advances in computational capacity. These efforts can help identify 

and target SOM measurement and SOM modeling areas where development can maximize advances in 

the field. The LIDEL analysis provides support for this concept, where the use of a hierarchical Bayesian 

approach for data-model integration and model parameterization accommodated high variability and 

uncertainty in measurements as well as in the LIDEL model formulation. The data used for LIDEL model 

analysis were able to strongly inform three of five unknown parameters, and suggested targeted data 

evaluating microbial processes during litter decomposition would resolve the high uncertainty for the 

remaining two parameters. The LIDEL model itself provides an innovative new approach to litter 
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decomposition simulations that includes both variable microbial CUE and the simulation of microbial 

products and DOC generation. This is a first step in meeting some of the shortfalls in SOM models 

discussed in the preceding review chapter. 

 The final two chapters return to the issue of scale, consistency, and clarity in the application of 

SOM models to evaluated crop-based bioenergy production systems. In the analysis of corn stover 

residue removal, DAYCENT model results support the importance of compensating for the removal of 

biomass with management practices that contribute towards soil C accumulation and storage—e.g. 

reduced tillage, cover cropping, or additional fertilizer application to increase crop productivity. In the 

analysis of sugarcane production in Brazil, model results support measured trends in soil C loss with 

conversion of pasture land into sugarcane production. However, both analyses highlight poor DAYCENT 

performance simulating N2O emissions, which are of high concern in estimating the cumulative GHG 

impact of crop-based bioenergy feedstock production. N2O emissions are inherently highly temporally 

and spatially variable. In both analyses DAYCENT model simulations improved at longer temporal scales, 

although model performance remained poor in treatments where measured N2O emissions were very 

high. A comparison of nearest weather station versus interpolated, gridded climate data in the analysis 

of Brazilian sugarcane highlighted the importance of climate data accuracy in driving DAYCENT model 

simulations, particularly in the estimation of GHG emissions associated with different management 

practices. 

 In summation, this body of work suggests that SOM model theory and development must be 

carefully connected to their applications in evaluating the GHG impacts of crop-based bioenergy 

production systems. The application of SOM models in these systems must consider both the scale and 

assumptions used for SOM model formulation, as well as the scale and assumptions behind data used to 

drive SOM model simulations. As crop-based biofuels expand globally, this further supports the  
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importance of collaborative, multi-disciplinary efforts to support SOM model use in these systems, to 

ensure the strength of their basis on theory for SOM dynamics.  
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APPENDIX 1 
 
 
 

 In this section we detail the hierarchical Bayesian analysis used for the initial conditions of the 

LIDEL model. We describe the steps of the Monte Carlo Markov chain (MCMC) algorithm used to 

estimate the posterior distributions of model parameters. We define the notation used to express the 

process models, data models, and parameter models, and then describe the assumptions for the data 

and parameter models. We then describe the steps of the MCMC algorithm used in this analysis. 

The LIDEL model has 7 pools. The microbial (  ), microbial products (  ), and CO2 (  ) pools 

each have an initial value of 0. This analysis estimates the posterior distribution for the latent (“true”) 

states of the non-lignin structural (C2) and DOC (C6) pools, as well as initial litter mass (     ) based on 

parameters for the fraction of initial litter C that is soluble (   
), the fraction of soluble material that 

bypasses all processes reflected in the LIDEL model when exposed to water (    ), and the fraction of 

initial litter C that is lignin (     
). The initial values for the soluble (  ) and lignin (  ) LIDEL pools are 

then calculated by using the posterior distribution of these parameters and the initial litter mass latent 

state. 

A1.1 Definitions 

    litter type (alfalfa, ash, bluestem, oak pine) 

    measurement replicate 

    latent state, or the 'true' underlying condition of the C mass 

   process model state 

    index for pools in the LIDEL model linked to measured data;         , where    indicates 

the non-lignin structural (NLS) pool, and    indicates the DOC pool 

    initial time point, where       

       fraction of DOC, non-microbially released, from plant soluble C 



192 
 

    
  fraction of plant soluble carbon (C) by litter type ( ) 

      
  fraction of lignin C by litter type ( ) 

A1.2 Data models 

 The % C fraction measurements were assumed to have beta distributions, which have shape 

parameters calculated by moment matching the mean of the    
 or      

 parameters and the variance of 

the given measurement type (    
 ,     

 ,     
 ). 

       
 extraction measurement of soluble litter C, as % C in hot water extracted material. 

These measurements were drawn from Soong et al. (2015) as well as a review of published literature. 

       
       (   

     
 )  

       
  mass difference measurement of soluble litter C, as % remaining material after acid 

detergent fiber digestion. These measurements were drawn from Soong et al. (2015) as well as a review 

of published literature. 

       
        (   

     
 )  

       
  % acid unhydrolyzable residue C, with acid detergent fiber digestion method. These 

measurements were drawn from Soong et al. (2015) 

       
       (      

     
 )  

         mass of C in initial litter, drawn from Soong et al. (2015). This measurement is 

assumed to be normally distributed, with a mean and a variance determined by the latent state of the 

litter mass and the measurement error, where: 

                          
  . 

        mass of the cellulose and hemicellulose C in initial litter mass, using acid detergent fiber 

digestion, taken from Soong et al. (2015). In the LIDEL model we chose to define the non-lignin 

structural (NLS) pool (  ) as everything remaining when the lignin pool and the soluble pool had been 

removed. However this pool is predominantly cellulose and hemicellulose. Therefore the direct 
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measurement of cellulose and hemicellulose was assumed to be a reasonable approximation for the size 

of the NLS pool. This measurement could not be used for the temporal dynamics analysis because 

hemicellulose was not measured at subsequent time points. This measurement is assumed to be 

normally distributed, with a mean and a variance determined by the latent state of the cellulose plus the 

hemicellulose mass and the measurement error, where; 

                          
   

        mass of cumulative DOC as of day 10 of the experiment, taken from Soong et al. (2015). 

Conceptually, the initial value of the DOC (  ) pool in the LIDEL model is representative of soluble litter 

C that is released immediately with exposure to water, without any exposure to microbial processes. 

Thus the initial value of this pool indicates the quantity of litter C that bypasses all processes simulated 

in the LIDEL model. This is an unknown and unmeasured value that conceptually important but 

extremely difficult to observe directly. However given changes in DOC chemistry observed in Soong et al. 

(2015) we made the assumption that the DOC released in the first 10 days of the experiment is a 

reasonable approximation. These data were assumed to be normally distributed, with a mean and 

variance determined by the latent state of the initial DOC mass and measurement error, where: 

                           
   

A1.3 Process models 

 Models for the initial state of the non-lignin structural () and DOC () LIDEL model pools. 

           (  (   
      

))    , where                

  , and 

                     
   , where                

   

A1.4 Parameter models 

We assumed the latent states for the non-lignin structural (  ) and DOC (  ) pools to be 

normally distributed, with a mean of the process model prediction and a variance based on model error: 

              (   
      

      )    

  , and 
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              (        
      )    

  .  

The % soluble C in the initial litter pool as well as the % lignin C are assumed to have beta 

distributions, but given uninformative priors due to lack of knowledge. Therefore: 

   
          , and 

     
          .  

The % soluble C in the initial DOC pool is assumed to have a beta distribution, but is given an 

uninformative prior due to the lack of knowledge of this parameter. Therefore: 

              .  

For total litter mass, we assume an uninformative uniform prior distribution on the Latent state, 

in units of g C as; 

                             . 

Measured and modeled variance terms for all mass values were assumed to have inverse gamma 

distributions. Measurement variances for      
 ,        

 , and       
  were given informative priors based 

on known measurement error in the instruments used to collect observations, at 5-10% of the quantity 

measured. Informative priors were calculated by determining the two variance terms that placed 95% of 

the normal distribution within either 5 or 10%, respectively, of the mean of all measurements for each 

litter type. The shape parameters were then calculated assuming that 95% of the inverse gamma 

distribution for the variance was within these two variance values. Model variances were given 

uninformative priors. Therefore; 

     
                         where; 

                         and                                     , 

     
                         where; 

                         and                              , 

     
                         where; 
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                         and                                          , and in 

units of grams carbon as 

  
                       ). 

The informative prior alpha and beta terms reported above are for the variance of the mass 

measurements, in units of grams carbon. 

The variance terms for all fractional measurements were assumed to have beta distributions, 

and were given uninformative priors. Therefore: 

    
           , 

    
           , and 

    
           . 

A1.5 Monte Carlo Markov chain algorithm 

The joint posterior distribution for the latent states and parameters described above, give the 

observations, can be expressed as: 
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We approximated the marginal posterior distributions for each latent state and parameter using 

a random-walk Metropolis Hastings Markov Chain-Monte Carlo (MCMC) algorithm. We present the 

steps of the MCMC algorithm in the following section. 

Step 1.            
    

  parameters and latent variables are initialized with starting values. 
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Step 2. The soluble fraction parameter vector (   
) is updated in order for each individual litter 

type, based on the conditional distribution given by 

[   
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Step 3. The lignin fraction parameter vector (     
) is updated in order for each individual litter 

type, based on the conditional distribution given by 
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Step 4. Individual litter value for latent variables for       are updated in succession based on its 

conditional distribution, given by 
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Step 5. Measurement and model variance are then updated in succession, given by the 

conditional distributions 
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Step 6. Individual litter value for latent variables for       are updated in succession based on its 

conditional distribution, given by 
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followed by litter values in succession for       given by 
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Step 7. After step 6, parameters not individual to litter type (scalars) are then updated. This first 

includes the scalar for     , given by the conditional distribution as 

     |    [     | (        
      )    

 ]     |    . 

Step 8. Measurement and model variance are then updated in succession, given by the 

conditional distributions 
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Step 9. Repeat steps 1-8 many times. 

To simplify the number of parameters being estimated in this analysis, the initial values for the 

soluble (  ) and lignin (  ) LIDEL model pools were then calculated based on posterior distributions for 

     ,    
,     , and      

, since these pools did not have additional data to estimate the underlying 

latent states. 
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APPENDIX 2 
 
 
 

In this section we describe a hierarchical Bayesian analysis to estimate posterior distributions of 

parameters in the LIDEL model, as well as the posterior distribution of latent variables and variance 

components of time series measurement data from Soong et al. (2015). The posterior distributions and 

analyses are based on initial conditions analysis (Appendix 1) priors to initialize model pools when the 

LIDEL model is run in the analysis described here. The LIDEL model is presented in the main text and will 

not be repeated here. We define notation used to express the data and parameter models, and then 

present the assumptions used to specify the data and parameter models. We then describe the steps of 

the MCMC algorithm used in this analysis. 

A2.1 Definitions 

    litter types (alfalfa, ash, bluestem, oak pine) 

    measurement replicate 

    latent state, or the 'true' underlying condition of the variable 

    index for states in the LIDEL model linked to measured data;            , where    

indicates the total mass of the 3 litter pools plus the microbes and microbial products pools,     

indicates the DOC pool, and    indicates the CO2 pool 

    initial time point, where       

         measures of a given  , from 1-n measurements in increments of 1 

         day at which   - indexed measurement is taken. The time interval between 

measurements can therefore be calculated using the notation         . 

     vector of the 5 parameters of interest in this analysis: the decay of the soluble (  ) , non-

soluble structural (  ), and microbial biomass pools (  ), the generation of microbial products from 

microbe biomass (  ), and the generation of DOC from the decay of microbe biomass (  ). 
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A2.2 Data models 

All measures of litter C mass were assumed to be normally distributed, with a mean of the latent 

variable corresponding to the 'true' state of that measurement and variance based on the measurement 

error associated with the instrument used to take the observation. Therefore: 

                     
        

  , 

                     
        

  , and 

                     
        

  . 

A2.3 Parameter models 

We assume a normal distribution for all latent variables, with a mean of the LIDEL model 

prediction at a given measurement time point and variance based on model error for that time point 

and model state. Therefore: 

       
         (              

)      

  , 

      
         (              

)      

  , and 

      
         (              

)      

  . 

All five parameters of interest in this analysis are rates (expressed as a fraction day-1). Therefore 

all five parameters were assumed to have beta distributions and were given uninformative priors, 

where: 

            . 

Measured and modeled variance terms were assumed to have inverse gamma distributions. 

Measurement variances were given informative priors based on known measurement error in the 

instruments used to collect observations. Model variances were given uninformative priors. Therefore; 

     

                            , and 

       

                      
       

 . 
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A2.4 Monte Carlo Markov chain algorithm 

The joint posterior distribution for the latent states and parameters described above, given the 

observations, can be expressed as: 
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We estimated posterior distributions for each latent state and parameter using a random-walk 

Metropolis Hastings within a Markov Chain-Monte Carlo (MCMC) algorithm. We present the steps of the 

MCMC algorithm in the following section. 

Step 1.       
    

  parameters and latent variables are each initialized with an estimated 

starting value. 

Step 2. The latent variables for   ,    and    are updated for all measurement time points and 

model pools across litter types by iterating across the   indices. For   , the two measured time points 

(day 95 and day 365) of mass remaining in the incubation experiment correspond to the sum of five 

LIDEL model pools (  -  ). However the litter mass (  ) measurements at these time points are not 

paired with sufficient data to inform how measures of litter mass are fractionated across these five 

LIDEL model pools. Therefore the day 95 and day 365     measurements can only be informed by the 

initial model values, where sufficient fractionation data allowed for the posterior distribution of each 

individual LIDEL model pool to be estimated. The conditional distribution for the    latent variables are 

therefore given by 
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The latent variables for    and   , however, are informed by measurements that correspond to these 

individual pools through time. Therefore, except for the initial and final time measurements, the 

conditional distribution of a given latent variable at a given point in time must consider both the 

previous and the subsequent time point.  

At    , the conditional distribution is given by 
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When     is between 2 and  , the conditional distribution is given by 
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When     the conditional distribution is given by 
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Step 3. The each of the five LIDEL parameters is then updated sequentially, each based on the 

conditional distribution given by 
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Step 4. Measurement and model variance are then updated in succession, given by the 

conditional distributions 
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Step 5. Repeat steps 1-4 many times. 

 


