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ABSTRACT 
 

 

 

PROBABILITY STRUCTURE AND RETURN PERIOD CALCULATIONS FOR  

MULTI-DAY MONSOON RAINFALL EVENTS AT SUBANG, MALAYSIA 

 

Flooding is the most common natural disaster in Malaysia, as a result of heavy 

rainfall. Malaysia is located in the equatorial zone and experiences a tropical climate 

with two seasons classified as the Northeast (November to May) and Southwest (May to 

September) monsoons. Both monsoons bring moisture, and multi-day rainfall events 

that cause particularly devastating floods on large watersheds.  

The objectives of this study are the following: (1) examine the probability 

structure of multi-day rainfall events; (2) determine the most suitable distribution 

function to represent the multi-day rainfall amounts; (3) select the most appropriate 

model to simulate the sequence of daily rainfall using the discrete autoregressive family 

models; and (4) develop and test an approach to calculate the return period of multi-

day rainfall events with respect to the duration and amount. Daily monsoon rainfall 

data recorded at Subang Airport are gathered from the Malaysian Meteorological 

Department. Subang Airport is located near Kuala Lumpur (the capital city of Malaysia) 

and has a long and reliable daily rainfall record, with 18,993 daily measurements from 

1960 to 2011.   

The majority of wet and dry events at Subang Airport from 1960 to 2011 are 

multi-days, with the fraction of 57% and 51%, respectively.  The analysis of conditional 
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probabilities for t-consecutive wet and dry days shows that the probability of 

occurrence for multi-day wet and dry days is increasing as the event duration increases. 

For example, the probability of rain on any random day is 0.53; and the conditional 

probability of rain the second day increases to 0.63. Also, the probability of dry on any 

random day is 0.47; and the probability of the second dry day increases to 0.58. The 

probability of rain and dry days increases gradually with rainfall duration. These 

findings show that the occurrence of rain and dry is time-dependent.  

The autocorrelation coefficient for the daily rainfall amounts is very low at 

0.0283. It is concluded that this parameter is independent from one day to another.  

The two parameter gamma function is most suitable to fit the daily rainfall 

precipitation data and the cumulative rainfall from t-consecutive rainy days up to 6 

days. A graphical method, i.e. the 1:1 plot confirms the goodness-of-fit of the gamma 

function. 

Two discrete autoregressive models are tested in this study, i.e., the low order 

Discrete Auto Regressive [DAR(1)] and the low order Discrete Auto Regressive and 

Moving Average [DARMA(1,1)]. These models require data stationarity, therefore the 

analysis is done separately for the Northeast and Southwest monsoons. The model 

selection is based on the four-step process suggested by Salas and Pielke (2003). The 

comparisons between the observed and calculated autocorrelation coefficient and the 

low sum of squared errors for the probability distributions confirm that DARMA(1,1) is 

most suitable to simulate daily rainfall sequences at Subang Airport for both monsoons. 
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The return period for 1-day and multi-day rainfall events is defined as a function 

of wet run length and rainfall amount. A test of return period calculations up to 20 

years based on the mean wet and dry run lengths shows good agreement between 

calculation and observations of multi-day rainfall amounts up to 150 mm. A very long 

sequence of daily rainfall (1,000,000 days) is generated to extend the analysis of multi-

day events with cumulative rainfall up to 350 mm, which gives an estimated return 

period of more than 2,000 years. The mean, standard deviation, maximum daily rainfall, 

lag-1 ACF coefficient and maximum wet and dry run lengths of the generated daily 

rainfall sequence using DARMA(1,1) are also comparable with the observed data. 

 The December 2006 rainstorm event at Kota Tinggi, Johor is used as an example 

of the application of the algorithms developed in this study. This multi-day rainstorm 

totaling 350 mm caused devastating floods in the area. The December 2006 rainstorm is 

extremely rare because the cumulative rainfall amount from the multi-day event gives 

an estimated return period of greater than 2,000 years. The method proposed in this 

study is helpful for the design of levees on large watersheds (size of more than 1,000 

km2) because multi-day rainstorms are the main cause of flooding to the area.  For 

example, the return period to overtop the current levee at Kota Tinggi is 220 years when 

considering a 1-day rainstorm, but this period of return decreases to 24 years when 

considering 4-day rainstorms.  
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CHAPTER 1 

 

INTRODUCTION 

 

Malaysia is located in the equatorial zone and experiences a tropical climate with 

two major seasons classified as the North East (NE) and South West (SW) monsoons. 

Both monsoons bring lots of moisture and, as a result, Malaysia receives between 2000 

to 4000 mm of rainfall with 150 to 200 rainy days annually (Suhaila and Jemain 2007).  

Multi-day rainfall events are common in the area and cause particularly devastating 

floods on large watersheds.  

This study focuses mainly on the analysis on multi-day rainfalls, particularly on 

the probability structure and also the amount of rainfall resulting from such events. 

Understanding the probability structure of multi-day events leads to the selection of the 

best suited model to simulate the sequences of daily rainfall. Additionally, the method 

to estimate the return periods of multi-day rainfall events will also be discussed.  

This chapter discusses the general information on Malaysian weather, which 

includes the descriptions of the mechanism of NE and SW monsoons.  The motivation 

of study, objectives and chapter outlines are also given in the following sections.  

  

1.1 GENERAL INFORMATION ON MALAYSIAN WEATHER 

Malaysia is exposed to two monsoon seasons, which occur for about 10 months 

every year. The Malaysian Meteorological Department (2010) classifies the North East 
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(NE) monsoon between November to March, while the South West (SW) monsoon 

occurs from May to September. The transition between the NE and SW monsoon (and 

vice versa) in the months of April and October is referred to as the intermonsoon 

season, which occurs for about four to seven weeks (Morgan and Valencia 1983; Saadon 

et al. 1999). Figure 1.1 gives a graphical reference of monsoon seasons in Peninsular 

Malaysia. The mechanisms of NE and SW monsoons are also given in this section.  

 

 

Figure 1.1 Monsoon seasons in Peninsular Malaysia 
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Figure 1.2 shows that Earth orbits the sun in a counter clockwise direction. From 

May to June (northern hemisphere summer months), the land mass in the region warms 

rapidly as compared to the water body (ocean). Higher temperature on the land mass 

causes warm air to rise, resulting in a low pressure system on the land mass. On the 

other hand, the water body (ocean) is relatively cool, therefore the cool air falls and 

causes a high pressure system on the water body. This creates a difference in pressure 

between the land mass and the water body, which in turn dictates the wind direction. 

Therefore, during this season, the prevailing winds blows from the SW direction, as 

shown by the red arrows in Figure 1.2 (Saadon et al. 1999; NAHRIM 2008; Lau  1997).  

During the northern hemisphere winter months, i.e., November to March, the 

monsoon changes direction due to the difference in temperature between the land mass 

and water body. The land mass becomes relatively colder than the water body. Low 

temperature on the land mass causes the high pressure. The water body (ocean) is 

relatively warmer than the land mass, resulting in low pressure on the water body 

system. Figure 1.3 shows the direction of wind during the NE monsoon season. The 

cold surges result in prevailing winds in the NE direction (Ngai 1995; Lau 1997). 
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Figure 1.2 Mechanism of SW Monsoon (modified from Wang 2006) 

 

Figure 1.3 Mechanism of NE Monsoon (modified from Wang 2006) 
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1.2  MOTIVATION 

In Malaysia, multi-day rainfall events, especially common during monsoon 

seasons, are the main causes of flooding (Ngai 1995).  There are more examples of the 

occurrence multi-day rainfall events in other parts of Malaysia (Table 1.1).  

  

Table 1.1 Examples of multi-day rainfall events in Peninsular Malaysia (NAHRIM 2008) 

Rainfall Station 

Total maximum amount recorded during the multi-
day rainfall (mm) 

2-day 3-day 5-day 7-day 

Jasin, Melaka 263.0 276.7 283.0 298.1 

Rubber Research 
Institute of Malaysia, 
Selangor 

225.9 252.0 291.2 293.4 

Gua Musang, Kelantan 325.5 373.0 416.5 419.5 

Bayan Lepas, Penang 316.4 339.2 375.0 404.6 

Kuala Tahan National 
Park, Pahang 

243.8 282.6 309.7 337.2 

Kota Tinggi, Johor 922.0 1113.0 1511.0 1722.0 

 

Understanding the probability structure of multi-day rainfall events is extremely 

important in order to select appropriate rainfall precipitation models. The multi-day 

rainfalls are time-dependent events, and thus require that the analyses of this stochastic 

process be done using autoregressive models. This study utilizes the discrete 

autoregressive models in order to generate the sequence of daily rainfall.    

The Discrete Auto Regressive of order 1 [DAR(1)] model is often used to generate 

the sequence of daily rainfall, under the assumption that the events are time dependent. 

This model is also known as the first order Markov Chain and assumes that the 
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probability of rain depends only on the current state (rain or dry) and will not be 

influenced by its past behavior. The model is easy to use, but it lacks long-term 

persistence. Therefore, it may not be adequate to simulate the long sequence of daily 

rainfall in tropical and monsoon-affected areas.  

Buishand (1978) recommended the low order Discrete Auto Regressive and 

Moving Average model, which is also known as DARMA(1,1), be used in simulating 

daily rainfall sequences  in tropical and monsoon areas. He found that the DARMA(1,1) 

model has a long-term persistence, thus it can overcome the problem represented by the 

first order Markov Chain.  

Return periods are usually used in hydrology to measure the severity of an 

event. This study takes into account the duration, as well as the amount of rainfall to be 

expected from multi-day events. The joint probability of rainfall amount and duration is 

utilized to quantify the return period.  

This study is intended to enhance the current knowledge of the probability 

structure and occurrence of multi-day rainfall events caused by tropical monsoons and 

also the return periods related to them. The findings from this study are important in 

order to improve the predictability of multi-day rainfall events. There have been a few 

attempts to use the DARMA(1,1) model in India and Indonesia (Buishand 1978), but the 

model has not been tested in Malaysia. The determination of return periods of such 

events may help authorities and engineers quantify the severity of such events.  

Additionally, the model proposed in this study may also assist in future 

planning, including flood warning and evacuation. The methods and results from this 
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study may also help researchers in other monsoon-affected countries, such as India and 

Pakistan, in managing multi-day rainfall events. 

 

1.3  OBJECTIVES 

 This study examines the probability structure, generating the sequence of daily 

rainfall using the discrete autoregressive model and also evaluating the severity of the 

multi-day events using the concept of return period. The main objectives of this study 

are to: 

1. Examine the probability structure of multi-day rainfall events for tropical 

monsoons. The daily rainfall data at Subang Airport from 1960 to 2011 are used to 

calculate the conditional probability of the multi-day rainfall events.  

2. Find the most suitable distribution function and give an analytical expression of 

the rainfall amounts to represent the daily record at Subang Airport.    

3. Select the most suitable model to simulate the sequence of daily rainfall using the 

discrete autoregressive models, i.e., the DAR(1) and DARMA(1,1). The statistics of 

the generated daily rainfall sequence are compared with the original data in order 

to evaluate the capability of the model to replicate the observed values.  

4. Develop and test an approach to calculate the return period of multi-day rainfall 

events with respect to rainfall duration and amount. The approach suggested by 

Shiau and Shen (2001), Salas et al. (2005) and Cancelliere and Salas (2010) is 

examined in order to calculate the return period for a specific wet run length and 

rainfall amount, using the conditional probability of both properties.  
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1.4  CHAPTERS OUTLINE 

 Various topics which are directly related to the objectives of this study are 

discussed in the remaining chapters of this report.  Chapter 2 gives the details on the 

related topics pertaining to the determination of threshold to define a wet day, 

autoregressive models, rainfall amount and return periods.  

 Chapter 3 discusses the analysis of the definition of wet and dry days and the 

daily rainfall statistics from Subang Airport. This study uses a long and reliable rainfall 

record, i.e., from 1960 – 2010 provided by the Department of Meteorology, Malaysia. 

This chapter gives details pertaining to the annual, monthly and daily statistics of the 

study area. Additionally, the probability structure of the study area, as well as the 

distribution function that is suitable to represent the daily rainfall pattern, are also 

discussed in this chapter.  

Chapter 4 details the methods to select the best suited model to generate the 

sequences of daily rainfall at Subang Airport. Two discrete auto-regressive model are 

selected, i.e., the DAR(1) and DARMA(1,1). The four-step model selection procedure, 

i.e., model identification, model estimation, model selection and model verification 

suggested by Salas and Pielke (2003) is used in this study. 

The procedures to simulate the occurrence of daily rainfall as a sequence of 

binary time series are given in Chapter 5. This step leads to the generation of rainfall 

amount, the comparison of relevant statistics between observed and simulated data and 

finally the calculation of return periods.  
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Chapter 6 provides the details of the application of return period calculations. 

The analysis concentrates on the most recent rainstorms in the state of Johor, i.e., the 

Kota Tinggi flood event in December 2006.  The estimation of return periods are based 

on the flood thresholds determined using hydrological modeling by Abdullah (2013). 

Chapter 7 summarizes the major findings and conclusions of this study.  
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CHAPTER 2 

 

LITERATURE REVIEW 

  

 This chapter discusses the concept and theories that are related to achieve the 

objectives of this study. The topics included in the section are (1) the method to 

determine the definition of a rainy day; (2) autoregressive models; (3) distribution 

functions to represent the observed rainfall amount for a study area; and (4) return 

period.  

   

2.1  THRESHOLD OF RAINFALL 

 The threshold (δ in mm) of rainfall is important in determining the occurrence of 

daily rainfall. A dry state is defined as a day which receives rainfall below a certain 

threshold value, δ (mm). Buishand (1977) stated that an overestimation of δ gives a bad 

approximation of the real rainfall process. On the other hand, if δ is underestimated, the 

daily rainfall sequence may not be homogeneous.    

Buishand (1977 and 1978) used the Von Neumann ratio to measure the 

homogeneity of rainfall data at various locations in the Netherlands, India, Indonesia 

and Surinam. The analysis was done based on the total annual rainfall and total annual 

wet days. 
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Von Neumann (1941) measured homogeneity of a time series based on the ratio 

of the mean square successive (year to year) difference to the variance. The formulation 

of Von Neumann ratio (N) is given in Eq. 2.1. 

 

  
∑ (       )

    
   

∑ (    ̅) 
 
   

                                                            (      ) 

Where     ,       = the annual series to be tested; 

 ̅     = the mean of annual series 

 

 The value of N is expected to be 2 if the time series is homogeneous. When N is 

smaller than 2, it indicates that the sample contains a break. On the other hand, N larger 

than 2 shows that there are rapid variations in the sample (Bingham and Nelson 1981). 

The critical values of N can be found in Owen (1962) for N ≤ 50 and Buishand (1981) for 

N = 70 and N = 100.  Table 2.1 summarizes the critical values of N. 

 

Table 2.1   Critical Values of   for the Von Neumann ratio test at 1% and 5% 

n 20 30 40 50 70 100 

1% 1.04 1.20 1.29 1.36 1.45 1.54 
5% 1.30 1.42 1.49 1.54 1.61 1.67 

 

2.2  MARKOV CHAIN 

Gabriel and Neumann (1962) successfully developed a Markov Chain model 

with stationary transitional probabilities for the occurrence of daily rainfall at Tel Aviv 



12 
 

for the mid-winter season. The Markov Chain is intended to be a simple model by 

requiring only two parameters and fit various aspects of the rainfall occurrence pattern. 

The assumptions in this model are that the probability of a rainy (or dry) day depends 

only on whether it has rained (or not) the previous day; and the probability of rain (or 

dry) is assumed to be independent of the preceding days. These probabilities are also 

known as transitional probabilities, denoted by     and      for the sequence of two-

rainy days and two-consecutive dry days, respectively. The estimation of     and     is 

by direct counting methods from the available rainfall record. The formula is given in 

Eq. 2.2 and 2.3. 

 

                                         (    |      )  
 (            )

 (      )
                     (      ) 

                                         (    |      )  
 (            )

 (      )
                     (      ) 

Where  t   = time in days, i.e. 1, 2, … 

 

Gabriel and Neumann (1962) found that if the Markov Chain model is correct, 

then the geometric distribution represents the probability of occurrence of t-consecutive 

rainy or dry days, as shown in Eq. 2.4 and 2.5, respectively. 

 

                              (                        )     
(   )(     )                            (      ) 

                                (                      )     
(   )(     )                              (      ) 
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  Where     = time in days (t ≥ 2).  

 

Since then, the Markov Chain has been widely used in hydrology and 

meteorological sciences. Richardson and Wright (1984), Hess et al. (1989), Katz (1996) 

and Baigorria and Jones (2010) reported the use of Markov Chain model to generate 

weather data.  

Haan et al. (1976), Katz (1977), Roldán and Woolhiser (1982), Small and Morgan 

(1986), Jimoh and Webster (1996), Sharma (1996), Tan and Sia (1997) and Wilks (1998) 

are among the studies that were successful in modeling the sequence of rainy and dry 

days using first-order Markov Chains.  

Wilks (1998) used rainfall data from 1951 to 1996 from 25 stations in New York 

State, USA to simulate the occurrence of daily rainfall using first order Markov Chains. 

Several statistical tests that were done indicate that the simulated rainfall data match 

the rainfall data really well. Among the statistical properties are the joint probabilities 

for both rainy and dry days, mean monthly rainfall and standard deviations of monthly 

rainfall. Therefore, it was concluded that the model was successful in preserving the 

dependence nature of daily rainfall at these stations.  

Bardaie and Abdul Salam (1981) applied the first order Markov Chain to produce 

ten synthetic sequences of daily rainfall at Universiti Pertanian Malaysia (UPM), 

Serdang, Selangor, Malaysia. The authors gathered the daily rainfall data from 1968 to 

1978 and divided the data into eleven states according to the amount. The simulations 

were done for the different monsoon seasons in Malaysia: the Northeast (from 
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November to March), two transitional periods (April and October) and the Southwest 

(from May to September). They found that the first order Markov Chain was able to re-

produce the daily rainfall of any length in the area. However, the synthetic daily rainfall 

was generated for a period of one year only. This research did not indicate if the first 

order Markov Chain is able to simulate long daily rainfall sequences.      

First order Markov Chains are simple and do not require a lot of computational 

effort. However, research articles in the literature concluded that first order Markov 

Chains are inadequate to model the sequence of daily rainfall. Feyerherm and Bark 

(1965) found that first order Markov Chains are unable to describe the random behavior 

of daily rainfall sequence at six weather stations in the north-central region of the 

United States of America (USA), but can be used to provide a good approximation. 

They suggested a higher order of Markov Chain be tested. Farmer and Homeyer (1974) 

gathered the summer rainfall record from the Wasatch Mountain Range in Utah to 

compare the probability of occurrence between the measured data and estimation using 

a simple Markov Chain model. Their study limits the number of consecutive dry days 

to less than or equal to 30. Their analyses found that the Markov chain model 

underestimates the probability of occurrence, especially during a long dry-day 

sequence. They concluded that this result was observed as a result of a strong dry day 

persistence and that first order Markov Chains are unable to model this phenomenon. 

The same conclusions were found by Wallis and Griffiths (1995) and Semenov et al. 

(1998). Another study by Wan et al. (2005) concluded that a modified first-order 

Markov Chain is more suitable to simulate the Canadian rainfall sequence.  
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The order of a Markov Chain may be influenced by seasonal change and location 

(Chin 1977; Cazacioc and Cipu 2004; Deni et al. 2009a). Chin (1977) found that the 

seasonal change has a significant impact in determining the suitable order of a Markov 

Chain in more than 200 stations located all over the USA. He found that high order 

Markov Chains are suitable to model the sequence of daily rainfall during winter at 

most stations, and that first order Markov Chains are appropriate for summer. He also 

argued that physical environmental causes and geography can influence the order of 

Markov Chains. The same findings were reported by Cazacioc and Cipu (2004) for the 

simulation of rainfall sequence at several stations in Romania.  

A different approach was used in the analysis of Malaysian daily rainfall data 

using the Markov Chain model by Deni et al. (2009a). The objective of their study was 

to find the optimum order of Markov Chain for daily rainfall during North East (NE) 

and South West (SW) monsoons using two different thresholds, i.e., 0.1 and 10.0 mm. 

The Akaike’s (AIC) and Bayesian information criteria were used to determine the 

appropriate order. This study uses the available data from 18 rainfall stations located in 

various parts of Peninsular Malaysia. They also concluded that the optimum order of a 

Markov Chain varies with the location, monsoon seasons and the level of threshold. For 

example, the occurrence of rainfall (threshold level 10.0 mm) for NE and SW monsoons 

at stations located in the northwestern and eastern regions of Peninsular Malaysia can 

be represented using a first-order Markov Chain model. Additionally, Markov Chain 

models of higher order are suitable to represent rainfall occurrence, especially during 

the NE monsoon, for both levels of threshold. Other examples of the use of a high order 
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Markov Chain to simulate the rain and dry day sequence are reported by Mimikou 

(1983), Dahale et al. (1994), Katz and Parlange (1998) and Dastidar et al. (2010). 

Even though higher order Markov Chain maybe used to overcome the problems 

presented by the first order, more parameters have to be used, which increases the 

model uncertainty (Jacobs and Lewis 1983) and also makes the calculations more 

complex. 

 

2.3  AUTOREGRESSIVE MODELS 

Autoregressive models (AR) have been used in hydrological research to describe 

the dependency of hydrological phenomena such as streamflow and rainfall. There are 

four main categories of AR models in time series modeling, namely Autoregressive 

model (AR), Autoregressive Moving Average (ARMA), Discrete Autoregressive (DAR) 

and Discrete Autoregressive Moving Average (DARMA). The model selection depends 

on the time scale and the persistence of hydrological data, i.e., long or short memory 

required to preserve the statistics of observed data. ARMA family models, which 

includes the AR model, are suitable for modeling continuous hydrological processes, 

rainfall-runoff relationships (Spolia and Chander 1974; Weeks and Boughton 1987; Hsu 

et al. 1995) and streamflow at various scales, such as annual (Salas and Obeysekera 

1982; Vogel et al. 1998; Stedinger 1985; Kendall and Dracup 1991), monthly (Hirsh 1979; 

Fernando and Jayawardena 1994; Mujumdar and Kumar 1990; Wu et al. 2009) and daily 

(Kuo and Sun 1996; Yurekli and Ozturk 2003;  Wang et al. 2005; Greco 2012). Other 
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applications of the AR family models can be found in Salas et al. (1980) and Marivoet 

(1983).  

DAR(p) and DARMA(p,q) models are suitable for generating binary sequences 

of time series such as daily rainfall. Among the challenges in modeling daily rainfall is 

the sequence of dry and wet days, which include zeros for dry days and ones for wet 

days (Tan and Sia 1997; Detzel and Mine 2011). Previous work and the basic properties 

of DAR and DARMA models are discussed in the following sections.  

 

2.3.1  DAR (p) 

Jacobs and Lewis (1978a) discuss the model that has the correlation structure of 

an autoregressive process of order p. The mechanism to model the binary sequence of 

daily rainfall using first order Markov Chain is also referred to as the DAR(1) model 

(Buishand 1978; Chang et al. 1984a; Delleur et al. 1989). 

Evora and Rousselle (2000) have successfully use the DAR(1) model to simulate 

the sequences of daily rainfall at Bakel Station located near the Senegal River. The 

simulated daily rainfall was then used as an input to generate the daily flows 

simulation using the hybrid of DAR-AR and DAR-GAR (Gamma Autoregressive) 

stochastic models.  

The equation for DAR(1) model is given in Eq. 2.6 below ;   

 

          (    )                                                      (      ) 
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with    {
                        
                    (   )

 

Where:     = the independent sequences of independent random variables  

    taking values of 0 (dry day) and 1 (wet day) only and has the  

    probability of  , i.e., 

 

                                       (    )       (    )                                                       (      ) 

Where:      = a sequence of identically and independent distributed  

         (i.i.d.) random variable, with a common probability of  

           (    )          .  

 

It should be noted that     is a first order Markov Chain and the process of 

simulation is assumed to start at     (Buishand 1978). The theoretical autocorrelation 

function of DAR(1)  model is (Jacobs and Lewis 1978a) 

 

                                     (       )    ( )    
       ≥                                                   (      ) 

Where:      = the autocorrelation function of lag k-th day 

 

The empirical autocorrelation function for the daily rainfall dataset is calculated 

based on the sequences of dry and rainy days, i.e., 0s and 1s, and not the rainfall 

amounts (Delleur et al. 1989). The formula is given in Eq. 2.9. 
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                                      (      ) 

                                                                             ̅  
 

 
∑  

 

   

                                                   (       ) 

Where:      = either dry or rainy day (0 or 1, respectively) 

  N  = the number of samples 

 

There are two parameters for DAR(1) model, i.e.,    or    and     The lag-1 

autocorrelation coefficient is the estimator for  , as given in Eq. 2.8. The parameter    or 

   are based on the run length property calculated from the observed daily rainfall 

dataset, and the formulas are given in Eq. 2.11 and 2.12.  

 

                                                            
  ̅̅̅

  ̅̅̅    ̅
                                                                  (       )    

                                                                                                                                 (       ) 

Where :   ̅̅̅  = the mean run length for dry days (state 0) 

  ̅  = the mean run length for wet days (state 1) 

 

One-step transitional probability,  (   )   (      |    ) is given by (Jacobs 

and Lewis 1978a). 

 

                                     (   )  {
  (   )            

(   )         
                                               (       ) 
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Eq. 2.13 can also be represented in terms of transitional probability matrix, as 

shown in Eq. 2.14. 

 

                                                         [
  (   )  (   )  
(   )    (   )  

]                         (       )  

 

The transitional probability matrix simplifies the calculation of run length. The 

concept of run length is important, especially in modeling the sequence of daily rainfall. 

The run length is defined as the succession of events of the same kind, and it is bounded 

at the beginning and the end by events of a different kind. Eq. 2.15 and 2.16 show the 

general mathematical representation of wet and dry run lengths. 

 

(    )  (                                              )     (       ) 

(    )  (                                              )     (       ) 

 

For DAR(1) model, the probability distribution of wet and dry run lengths can be 

obtained from Eq. 2.17 and 2.18 (Chang et al. 1984a). 

 

                                                              (    )   
   (   )[   (   )]                           (       )    

                                                          (    )   
   (   )[   (   )]                             (       ) 
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2.3.2  DARMA (p,q)  

DARMA is the discrete process of ARMA. The structure of the DARMA model 

makes it suitable to be used in modeling the sequence of wet and dry days. Jacobs and 

Lewis (1977, 1978b, 1978c and 1983) introduced the concept of the DARMA model, 

which is intended to be a simple tool to model stationary sequences of dependent 

discrete random variables with specified marginal distribution and correlation 

structure.  

Several studies reported in literature have used the DARMA family models to 

generate the sequence of daily rainfall (Buishand 1977 and 1978; Chang et al. 1982, 

1984a and 1984b; Delleur et al. 1989; Cindrić 2006).  

Buishand (1977 and 1978) modeled the sequence of daily rainfall using 

DARMA(1,1) at several stations in the Netherlands, Suriname, India and Indonesia. 

DARMA(1,1) is a stationary model, therefore the data in each station were divided into 

their respective seasons in order to consider the seasonal variations. It is assumed that 

during a specific season the data may be taken as stationary (Kedem 1980). The results 

have shown that DARMA(1,1) was successful in simulating the daily rainfall in tropical 

and monsoon areas, where the long-term persistence model is needed.  

Other applications of DARMA include the analysis of drought using annual 

streamflow (Chung 1999; Chung and Salas 2000; Cancelliere and Salas 2010). Chung 

and Salas (2000) concluded that the DARMA(1,1) model is suitable to generate the 

drought occurrence of the Niger River in Africa. This study defined a drought when the 

annual streamflow of a river is less than the mean annual streamflow of a river. From 
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the results it was shown that there were long periods of drought and high flows. This 

finding was consistent with the behavior of DARMA(1,1), i.e., it is suitable to model 

long events and has a longer memory as compared to DAR(1).  

Chang et al. (1987) used the DARMA(1,1) to generate the sequence of daily 

rainfall and then extended the model to estimate the daily streamflow using linear 

transfer function at an Indiana watershed. They name the extended model as Transfer 

Discrete Autoregressive Moving Average [T-DARMA(p,q,m,n,c,d)]. The model 

produces satisfactory results in terms of model building procedures, which can be 

observed from the ability of the model to preserve the auto correlation function. 

Additionally, the means of observed and generated daily streamflow are almost the 

same, and this result shows that water balance is also well preserved. The authors also 

concluded that T-DARMA is a stationary model, therefore the data should be divided 

into their respective seasons and the analyses done separately for each season. 

The basic properties of the DARMA(1,1) model are given in the following 

paragraphs. Eq. 2.19 represents the general formula for DARMA(1,1), as shown below: 

 

                                                                       (    )                                           (       ) 

                                   with    {
                        

                       (   )
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And the autoregressive component is given by 

 

   {
                        
                    (   )

 

Where:      = the independent sequences of independent random variables take  

   values of 0 (dry day) or 1 (wet day) only and have the probability  

   of  , as given by Eq. 2.20:   

 

                                                         (    )       (    )                                 (       ) 

Where:      = a sequence of identically and independent distributed (i.i.d.)  

   random variable having a common probability of 

      (    )   

  = 0 and 1 

 

Variable    has the same probability distribution as    but is independent of   . It 

should be noted that    is not Markovian, but (     ) forms a first order bivariate 

Markov Chain.  

 The theoretical autocorrelation function of DARMA(1,1)  model is 

 

                                           (       )    ( )     
         ≥                                    (       ) 

Where :               (   )(       )                                                                 (       ) 
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The coefficient c can be estimated as the lag-1 autocorrelation function coefficient 

of the DARMA(1,1) model. It should be noted that the DARMA model has the same 

correlation structure as ARMA (Buishand 1978; Jacobs and Lewis, 1983).  

Three parameters in DARMA(1,1) need to be estimated, namely             ,     

and   . These parameters are always positive and less than 1, and             is estimated 

using Eq. 2.11 and 2.12.  Buishand (1978) uses the ratio of second to the first 

autocorrelation function as an estimator for    as shown in Eq. 2.23. 

 

                                                                       ̂  
  
  
                                                                    (       ) 

Where :      = the second autocorrelation coefficient 

    = the first autocorrelation coefficient 

 

The estimate of   is calculated by minimizing Eq. 2.24 using the Newton-

Raphson iteration techniques and Eq. 2.23 is used as the initial estimate.  

 

                                                                    ( )  ∑[     
   ]

 
 

   

     ≥                     (       )  

Where:  c  = can be estimated as the lag-1 autocorrelation function coefficient  

   of the DARMA(1,1) model, as shown in Eq. 2.21. 
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After solving equation (2.24) for   ̂    is estimated using Eq. 2.25 

 

                              ̂  
(  ̂   )  √(  ̂   )

 
  (  ̂   )( ̂   ̂)

 (  ̂   )
                             (       ) 

 

Alternatively, Eq. 2.24 can also be minimized using the Marquardt (1963) method 

for nonlinear equations (Chang et al. 1984a; Delleur et al. 1989).  The estimator for   is 

suggested as  

 

                                                             ̂  
        
        

                                                            (       ) 

Where:     = the first autocorrelation coefficient 

    = the second autocorrelation coefficient 

    = the third autocorrelation coefficient 

    = the forth autocorrelation coefficient 

 

As mentioned earlier, (     ) forms a first order bivariate Markov Chain, 

therefore the one step transitional probabilities   (   ) is  

 

  (   )   (             |         )     (             |    )   

(       ) 
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Where :  (         )  = independent of    and u,v,k,m are 0,1 values.  

The transitional probability matrices are given in Eq. 2.28 and 2.29. 

 

                               [
 (   )  [   (   )]  (   )(   )  

 (   )      
]               (       ) 

                             [
     (   )  

(   )(   )   (   )  [   (   )]  
]                 (       ) 

 

Lloyd and Salem (1979) introduced the use of “label variable”           to 

convert the first order bivariate Markov Chain (     ) into a four-state simple Markov 

Chain. (     )  can have values of 0 or 1, so there are four possibilities for the value of 

  , i.e., {       }. Table 2.2 summarizes the    values. 

 

Table 2.2 Four state Markov Chain,    

 

 

 

 

 

The value of 0 and 1 in    corresponds to the state of 0 in   , which implies a dry 

day. In the same manner, a wet day is represented as 1 in     which gives the value of 2 

and 3 in     

 

Variable Values 

   0 0 1 1 

   0 1 0 1 

   0 1 2 3 
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The transitional probabilities are given as 

 

  (   )   (             |         )   (             |    )

   (   )                                                                                          (       ) 
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  (   )   (             |         )   (             |    ) 
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  (   )   (             |         )   (             |    ) 

  (   )    (   )                                                                                                     (       ) 

 

 

Transitional probability matrix Q of the univariate Markov Chain    is 

 

                               

 
 
 
 [
 
 
 
  (   )   (   )   (   )   (   )

  (   )   (   )   (   )   (   )

  (   )   (   )   (   )   (   )
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                   (       ) 

 

 

 

0                1                2                  3 
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and its marginal distribution is 
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Probability distributions of wet and dry run lengths of t-consecutive days for 

DARMA(1,1), denoted by   (    ) and  (    ), respectively, can be calculated using 

conditional probabilities, as given by Chang et al. (1984a). 

 

 (    )   (                       |          )             

 (    )  
 (                        )

 (         )
                                                  (       ) 

 

Note that  

 

 (                        ) 

 ( [    ][  
( )( )    

(   )( )]   [    ][  
( )( )    

(   )( )])    (       ) 

 

Where:   
( )( )    

( )(   )    
( )(   )                                                       (       )  

 

Both    
( )(   )       

( )(   ) are elements of the n-step transitional probability 

matrix.  

 

                      (         )  ∑∑  (   ) [   ∑  (   )  

 

   

]                (       )  

 

   

 

   

 

Where :    (   )   (   ) = elements of the n-step transitional probability matrix 
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 (    )   (                       |          )             
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Where:    
( )( )    

( )(   )    
( )(   )                                                       (       )  

 

Both    
( )(   )       

( )(   ) are elements of the n-step transitional probability 

matrix.  

 

                   (         )  ∑∑  (   ) [   ∑  (   )  

 

   

]

 

   

 

   

               (       ) 

Where:    (   )   (   ) = elements of the n-step transitional probability matrix 

 

2.4  RAINFALL AMOUNT 

The rainfall amount is often associated with the occurrence of daily rainfall. In 

water resources planning and management, the analyses of rainfall amount and daily 

rainfall occurrence help engineers to better understand the hydrological behavior of a 

particular study area.     
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Delleur et al. (1989) suggested that the daily rainfall amount can be computed 

using Eq. 2.47. 

 

                                                                                                                                            (       ) 

Where:     = a sequence of daily rainfall generated using DAR(1) or  

                DARMA(1,1) model 

   = a sequence of random variables with the suitable distribution  

                 function 

 

A number of studies discussing the distribution function of n-consecutive rainy 

or dry day events were reported in literature. Among these, a few studies reported on 

Malaysian data  (Deni et al. 2008; Deni and Jemain 2009a and 2009b; Deni et al. 2009b; 

Deni et al. 2010).  

Deni et al. (2008) gather the rainfall data from 10 gaging stations which are 

located all over Peninsular Malaysia. These stations were selected based on the length 

of record, ranging from 1971 to 2005, and the missing data. Seven probability 

distributions were tested to determine the best fit function for each station. The 

suitability of each distribution function was tested using the Chi-squared test. Their 

research found that, for most stations, the compound geometric distribution and the 

truncated negative binomial distribution were the best functions to fit the behavior of n-

consecutive rainy and dry days, respectively. Deni and Jemain (2009a and 2009b) and 

Deni et al. (2009b) expanded the research for other stations in Peninsular Malaysia.  
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These studies also propose the use of mixed probability models, such as two log series 

distributions, log series Poisson distributions and the combination of log series and 

geometric distributions. A Chi-squared goodness-of-fit test is used in Deni and Jemain 

(2009a and 2009b) and Akaike’s information criterion was used by Deni et al. (2009b). 

These researchers found that the best distribution functions varied according to the 

location of the rainfall gaging stations.  

Deni et al. (2010) used a slightly different approach to investigate the most 

suitable probability models for consecutive dry and rainy days during monsoon 

seasons. Thirteen distribution functions were tested for 38 rainfall stations located all 

over Peninsular Malaysia. They concluded that, for most stations, the modified log 

series and the compound geometric distributions were the best fit functions for n-

consecutive dry and rainy days, respectively. The test for goodness-of-fit was done 

using the Akaike’s information criteria and Kolmogorov-Smirnoff test.  

Previous studies on fitting the best probability distribution function for 

maximum rainfall depths in n-consecutive rainy days in a monsoonal climate area were 

reported in the literature (Upadhyaya and Singh 1998; Ali et al. 2002; Machiwal et al. 

2006; Bhakar et al. 2008).  

Upadhyaya and Singh (1998) investigated the suitability of eight probability 

distributions to describe the behavior of maximum rainfall amount for 1- to 6-

consecutive rainy days. The daily rainfall data of 42 years from 1950 to 1991 were 

collected from Orissa University of Agriculture and Technology, Bhubaneswar, India. 

The authors found that Gringorten’s plotting position function is the best fit to 
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represent the maximum rainfall amount in a one-day rainfall event. For 2- to 6-

consecutive rainy days, the log extreme value 1 shows the most promising results.  

Ali et al. (2002) expanded the research done by Upadhyaya and Singh (1998). The 

authors used six different stations at the Koraput district, which is a part of the Eastern 

Ghat High Land Zone of Orissa, India. Their research limits the number of consecutive 

rainy events to a maximum of 4 days. The two parameter log-normal distribution 

function was the best fit function for all cases tested in the region and is verified using 

the standard error method. A regression function was also developed in their study to 

calculate the amount of maximum rainfall in n-consecutive days.  

The probability density functions for one day and 2- to 6-consecutive days of 

maximum rainfall of Kharagpur, West Bengal in India were examined by Machiwal et 

al. (2006). A long period of rainfall data was used, i.e., 47 years from 1956 to 2002. Nine 

different functions were tested. To determine the goodness-of-fit for these functions, 

they use two different approaches, i.e., the Chi-square and Kolmogorov-Smirnoff 

methods. Their findings concluded that the best fit function was the Pearson type-V for 

all cases.  

Additionally, a linear regression model was used to generate the equation to 

calculate the maximum rainfalls for 2- to 6-consecutive rainy days. The relationship was 

derived from the one-day maximum rainfall.  

Bhakar et al. (2008) analyze the daily rainfall collected from the Agricultural 

Meteorological Observatory, Udaipur, India. A long record was obtained for this site, 

i.e., 85 years, from 1921 to 2005. The probability distributions used in this study were 
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normal, lognormal and gamma, while the goodness-of-fit test was evaluated using the 

Chi-square method. They concluded that the gamma distribution is the best fit function 

for this study area. 

 

2.5  RETURN PERIOD 

 In hydrology, the term “return period” is used to define the risk of a particular 

design of a hydraulic structure. There are two different terms of return period reported 

in literature, i.e., first arrival time and interarrival time or recurrence interval. These 

terms give different values when the events are dependent in time. On the other hand, 

for single and independent events, the first arrival time and recurrence interval give the 

same value (Fernández and Salas 1999a). Most of the completed studies use first order 

Markov Chain to describe the events as serially dependent. Extensive theories and 

applications on the return period definitions and serial dependence are discussed in 

Fernández and Salas (1999a and 1999b). 

 Woodyer et al. (1972), Kite (1978), Lloyd (1970), Loaiciga and Mariňo (1991) and 

Şen (1999) define recurrence interval as the average elapsed time between the 

occurrences of critical events, such as earthquake of high magnitude and extreme floods 

or drought. The calculation of return period by these authors is for any event that has a 

value of equal or greater to the critical event. 

 Lloyd (1970) compared the return periods for river flows using two different 

conditions, (1) mutually independent, and (2) dependent time series, which was serially 

correlated using the first order Markov Chain model. His research found that the same 
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return periods were calculated for the independent and dependent time series. 

Therefore, the method proposed by Lloyd (1970) may not be suitable to estimate the 

annual streamflow data with strong persistence.  

 Şen (1999) compares the independent and dependent return periods for short 

and long records. For short records, there are significant differences in return periods 

but as the number of records grew, the dependence theory reduces to independent case. 

This study shows that the length of record may influence the calculation of return 

period.  

 Another definition of return period used by other authors (Vogel 1987; Douglas 

et al. 2002) is the average number of trials required to the first occurrence of a critical 

event. This definition may be more useful in determining the return period for a 

reservoir operation because the interest is knowing the first time that the reservoir is at 

the risk of failure, rather than the average time between failures (Douglas et al. 2002).  

 Vogel (1987) analyzed the state of operation of a reservoir, and the expected 

number of years until the first reservoir failure. He used the first order Markov Chain 

model to represent the time dependency of reservoir operation for the Pacific 

Northwest Hydroelectric Power System. This study simulated 1,000 sets of 100-year 

simulations to find the importance of annual streamflow persistence in determining the 

return period based on the first reservoir failure. The results show that the estimation 

using the Markov Chain model was appropriate to model the return periods because 

they matched the simulated data reasonably well. This result also shows that the 

failures are time dependent.  
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 Douglas et al. (2002) found that the conventional methods to calculate the return 

period and risk, which assume that the time series are independent, do not take into 

account the persistence and statistics of annual streamflow. As a result, the return 

period, risk and the low flow quantiles are often underestimated by the conventional 

method. This study suggests the method to calculate return period and risk that 

considers the persistence of annual streamflow and the evaluation of the risk of drought 

in the United States.  

 Goel et al. (1998), Shiau and Shen (2001), Kim et al. (2003), González and Valdéz 

(2003), Salas et al. (2005), and Cancelliere and Salas (2004 and 2010) reported their 

studies on the calculation of return period and risk that include both the amount (or 

severity) and duration of the hydrological events.  

    Shiau and Shen (2001) suggested that the bivariate probability distribution 

function of drought duration and severity be used in order to describe the conditional 

distribution of both properties. The relationship is presented in Eq. 2.48. 

 

                                                      (     )     |  (  |  )   (  )                          (       ) 

Where :        = drought duration 

         = drought severity 

      (     ) = bivariate probability distribution function of drought  

   duration and severity 

   |  (  |  ) = conditional distribution of drought severity given a  

   drought duration 
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   (  )  = distribution of drought duration.  

 

   (  ) is calculated using a simple Markov chain and Loaiciga and Leipnik 

(1996) showed that the geometric distribution can represent the probability distribution 

function of drought duration (refer to Eq. 2.49). 

 

                                                                      (  )     (     )
                             (       ) 

Where:       = transitional probability of observing given that there is a deficit at  

       time t and a surplus at time t+1   

      = drought duration 

  

 The probability of occurrence, denoted by P(E), which includes both the duration 

and amount of a hydrological event, can be calculated by integrating the conditional 

distribution (   |  (  |  ))  Then the return periods for the given conditions can be 

calculated using Eq. 2.50.  

 

                                               (  |  )  (
       
      

)
 

 ( )
                             (       ) 

 

Where :    = drought severity 

   = drought duration   
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       = transitional probability of observing given that there is a deficit at  

       time t and a surplus at time t+1 

       = transitional probability of observing given that there is a surplus  

       at time t and a deficit at time t-1 

  P(E)  = the probability of occurrence for an event 

 

Cancelliere and Salas (2010) adapted the same method as Shiau and Shen (2001), 

but they used the DARMA(1,1) model to calculate the probability distribution of 

drought length (refer to Eq. 2.39 to 2.46). The formulas for the expected duration of 

drought and non-drought events are given in Eq. 2.51 and 2.52, respectively. 

 

               ( )  
  [      (         )(    )]

(    )[   (   )(     )     {   (   )}]
              (       ) 

          (  )  
  [      (         )(    )]

(    )[   (   )(     )     {   (   )}]
               (       ) 

Where :   ( )   = expected duration of drought events; 

   (  )   = expected duration of non-drought events; 

              = the DARMA(1,1) parameters, calculated using Eq.  

                 2.11, 2.12, 2.24 and 2.25, respectively. 

 

 

 

 



39 
 

The return period for a critical event can be calculated using Eq.  2.53.  

 

                                                                 
 ( )   (  )

 ( )
                                                  (       ) 

 

González and Valdés (2003) use the alternating renewal process to describe the 

occurrence of droughts, and assume equal distribution and independence of drought 

and nondrought events when using Eq. 2.53. Cancelliere and Salas (2010) show that Eq. 

2.53 gives an excellent approximation for an autocorrelated process. 

 

2.6  SUMMARY  

 The extensive discussions and literature review given in this chapter show that 

the study of multi-day rainfall events in Malaysia has received minimal attention from 

Malaysian researchers. Current studies focus on determining the most appropriate 

order of Markov Chain. Furthermore, there are no attempts to model the sequence of 

daily rainfall using the discrete autoregressive models, i.e., DAR(1) and DARMA(1,1) in 

Malaysia, even though Ngai (1995) shows that multi-day rainfall events are the main 

causes of floods.  

DAR(1) is also known as the first order Markov Chain and is often used in the 

analysis of daily rainfall sequence.  However, this model has a short memory and is 

unable to simulate the daily rainfall that requires long daily sequences of wet or dry 

cycles. To overcome the problem, the DARMA(1,1) model can be used. The 
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autocorrelation function for this model decays slowly, which also means that it has 

long-term persistence.  

 Rainfall amounts are an important parameter in the analysis of daily rainfall and 

this is a random variable. A suitable function to represent the probability distributions 

of rainfall amounts from the observed data needs to be determined for a particular 

study area. Goodness-of-fit test can be used to determine the suitability of a distribution 

function.  

 A return period describes the average waiting time for another event to occur. 

The bivariate probability distribution function of duration and amount of rainfall can 

give a quantitative idea of the possibility for a specific event to occur, which leads to the 

determination of the return period.  The return period estimation for multi-day rainfall 

events is uncommon in the literature.  Therefore, this study is intended to explore and 

fill in the gaps that have not been explored by other researchers in this particular topic.  
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CHAPTER 3 

 

MULTI-DAY RAINFALL PROBABILITY STRUCTURE AND DISTRIBUTION 

FUNCTION 

 

 This study is motivated by the nature of monsoon rainfall, in which the rainfall 

duration exceeds one day. The threshold of a rainy day is determined using the Von 

Neumann ratio test. This chapter discusses the statistics of annual, monthly and daily 

rainfall of the study area. The statistical dependence of multi-day rainfall events at 

Subang Airport is determined using the conditional probability structure.  Additionally, 

the distribution functions and statistical dependence of rainfall amount for daily and 

multi-day rainstorms are also examined.   

 

3.1  STUDY AREA  

Subang Airport is located near Kuala Lumpur, the capital city of Malaysia. The 

coordinate for this rainfall station is 3o 7’ 1.20” N, 101o 33’ 0.00” E. Subang Airport was 

the main gateway to Malaysia via air from the 1960s to 1998. Since 1998, the airport is 

used for general aviation and commercial services. Based on its history, this site is 

chosen because of the length, reliability and quality of daily rainfall data that it can 

provide, i.e., more than 50 years. The location of Subang Airport is shown in Figure 3.1. 
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Figure 3.1 Location of Subang Airport and other major cities 

 

3.2 RAINFALL RECORDS AT SUBANG AIRPORT  

The daily rainfall data from 1960 to 2011 are provided by the Department of 

Meteorology, Malaysia. Rain is collected using the tipping bucket method, and the 

amount is recorded from 8 in the morning until 8 a.m the next day. Constant 

monitoring of rainfall is done at the Subang Airport because this is a high priority 

meteorological station. Hence, the dataset is complete, with a total of 18,993 daily 

measurements. 

 

3.2.1  DETERMINING THE THRESHOLD OF A RAINY DAY 

In this study, the definition of rain (or wet) is a day in which the rainfall exceeds 

a certain threshold, δ (mm).  The threshold of rain is determined by the assessment for 
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homogeneity.  It is well known that the location of Subang Airport does not change 

over the years.  Therefore, the Von Neumann ratio test is chosen because it is not 

location specific and does not yield information based on the year of the break, which is 

unnecessary for this study. Additionally, homogeneity is measured based on the ratio of 

the mean square successive (year to year) difference from the variance. This method 

ensures that homogeneity determined from the measurements is statistically consistent.   

The Von Neumann ratio test is done based on the total annual rainfall and the 

number of annual wet days.  The formulation for the Von Neumann ratio test is given 

in Eq. 2.1. Five different values of thresholds are considered, i.e., 0.1, 1.0, 2.5, 5.0 and 

10.0 mm of daily rainfall. Table 3.1 shows the statistics of each threshold, i.e., the mean, 

standard deviation and skewness, as well as the Von Neumann ratio for the total annual 

rainfall.  

 

Table 3.1 The statistics and Von Neumann ratio based on total annual rainfall 

Threshold, 
δ (mm) 

Mean, 
(mm) 

Percentage 
difference 

Standard 
deviation, 

(mm) 
Skewness 

Von 
Neumann 

ratio 

0.1 2,531  379 0.11 1.39 
1.0 2,515 0.6 380 0.11 1.38 
2.5 2,469 2.5 378 0.08 1.38 
5.0 2,378 6.0 381 0.09 1.38 
10.0 2,160 14 381 0.11 1.28 

 

The Von Neumann ratios for the total annual rainfall show that all thresholds 

except 10.0 mm do not exceed the 1% significance level (refer to Table 2.1). Figure 3.2 

shows the total annual rainfall from 1960 to 2011 for thresholds of 0.1, 1.0, 2.5 and 5.0 
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mm. The highest total annual rainfalls are shown for threshold 0.1 mm, and smaller 

values are shown for other thresholds. There are no significant differences in the total 

annual rainfall between thresholds of 0.1 and 1.0 mm. Additionally, the decreasing 

mean with the increasing amount of threshold is expected because the smaller rainfall 

amounts are being neglected. The changes in mean are quantified in terms of 

percentage based on the 0.1 mm threshold. Small differences are shown between the 

thresholds of 1.0, 2.5 and 5.0 mm. Other statistics, such as standard deviation and 

skewness, also show insignificant differences.  

The second homogeneity test is done based on the total annual wet days. Table 

3.2 summarized the statistics, percentage difference of the mean of total annual wet 

days based on threshold 0.1 mm, and also the Von Neumann ratio.   

 

Table 3.2 The statistics and Von Neumann ratio based on total annual wet days 

Threshold, 
δ (mm) 

Mean, 
(days) 

Percentage 
difference 

Standard 
deviation, 

(days) 
Skewness 

Von 
Neumann 

ratio 

0.1 194  14 -0.21 1.91 
1.0 156 20 13 -0.01 2.06 
2.5 130 33 12 -0.08 1.89 
5.0 105 46 11 -0.02 1.94 
10.0 75 61 10 0.13 1.41 
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Figure 3.2 Total annual rainfall from 1960 to 2011 for thresholds 0.1, 1.0, 2.5 and 5.0 mm
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The Von Neumann ratios for thresholds of 0.1, 1.0, 2.5 and 5.0 mm show excellent 

results; these values did not exceed the 5% critical values. Figure 3.3 illustrates the total 

annual wet days for thresholds of 0.1, 1.0, 2.5 and 5.0 mm.  

Substantial differences in the total annual wet days are shown for all thresholds. 

For example, the difference in total annual wet days between thresholds of 0.1 and 1.0 

mm is 20% and it increased significantly to 33% when the threshold is 2.5 mm.  

The Von Neumann ratios give an indication that all thresholds, except for 10.0 

mm, are suitable to be used. However, the statistics of the test show that there is a 

significant difference in the mean of total annual number of wet days for each of the 

thresholds. Selecting a larger value of threshold may result in the underestimation of 

rainfall occurrence. Considering this factor, therefore, 0.1 mm is selected as the 

threshold for this study. 

The occurrence of rainfall event in this study is treated as discrete and the time 

frame for a day is from 8 a.m. to 8 a.m the next day, based on the daily data provided by 

the Department of Meteorology, Malaysia. The definition of wet is any day with rainfall 

of more than 0.1 mm, and a dry day received less than or equal to the said amount. This 

classification can be summarized as follows; 

 

   {
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Figure 3.3 Total annual wet days from 1960 to 2011 for thresholds 0.1, 1.0, 2.5 and 5.0 mm
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3.2.2  ANNUAL RAINFALL STATISTICS 

The total annual rainfall statistics from 1960 to 2011 at Subang Airport shows that 

the study area receives an average annual rainfall of 2,531 mm, with a standard 

deviation of 379 mm. Figure 3.4 shows the plot of total annual rainfall from 1960 to 

2011.  

 

 

Figure 3.4 Total annual rainfall at Subang Airport from 1960 to 2011 
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The discussions of total annual rainfall are concentrated on five years and these 

include: 

1) 1968 - the total annual rainfall is very close to the average annual rainfall; 

2) 1971 – the maximum rain in a day occurs in this particular year; 

3) 1974 – the minimum total annual rainfall; 

4) 2003 – the longest wet run; 

5) 2006 – the maximum total annual rainfall.  

 

Figure 3.5 shows the plot of daily rainfall recorded in 1968. The year 1968 

recorded the amount of rainfall closest to the average rainfall, with a total of 2,515 mm. 

For an average year, there are a few occurrences of rainfall where Subang Airport 

receives considerably more than 50 mm. The highest rainfall in a day was recorded in 

August 23rd, which is more than 80 mm. The measurement was taken during the 

occurrence of the SW monsoon.  Another important observation is that multi-day 

rainfalls are common and these events can be observed in Figure 3.5. 
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Figure 3.5 Daily rainfall recorded in 1968 

 

Figure 3.6 shows the daily rainfall recorded in 1971. The maximum rainfall in a 

day was recorded on Jan 4th, 1971 with the measurement of 171.5 mm. This event 

occurred as a part of an 11-consecutive rainy days event starting on December 26th, 

1970, which is classified in the NE monsoon. After this event, the occurrences of other 

multi-day events are commonly observed, but the magnitudes of rainfall are much less 

than the January 4th rainfall. However, multi-day rainfall events with the magnitude of 

more than 50 mm are observed mainly towards the end of 1971, which is during the NE 

monsoon season.   
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Figure 3.6 Daily rainfall recorded in 1971 

 

Figure 3.7 shows the daily rainfall recorded in 1974, in which the Subang Airport 

received the least amount, with the measurement of 1,802 mm.  Although this particular 

year recorded minimum rainfall, there are a few occurrences of events with magnitude 

of more than 50 mm. Another important observation is that multi-day rainfall events 

are common in 1974, as shown in Figure 3.7.  
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Figure 3.7 Daily rainfall recorded in 1974 

 

Figure 3.8 shows the daily rainfall recorded in 2003.  This particular year 

recorded the longest multi-day event.  The event was recorded from 27th October to 26th 

November, 2003, i.e., 31 consecutive wet days, which resulted in a total rainfall of 624 

mm. This event happens during the NE monsoon season. Additionally, Figure 3.8 also 

shows that the multi-day rainfall events are common. Some of the events at Subang 

Airport recorded significant rainfall amounts of more than 50 mm.  
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Figure 3.8 Daily rainfall recorded in 2003 

 

Figure 3.9 shows the daily rainfall recorded in 2006 at Subang Airport. This 

particular year was chosen because it records the highest total amount of annual 

rainfall, i.e., 3,455 mm. Substantial amounts of rainfall were recorded at Subang Airport. 

Seventeen rainy days recorded amounts of more than 50 mm. The highest rainfall 

magnitude in a day was measured on October 20th, 2006 with 163.0 mm. Multi-day 

rainfall events are also commonly observed in Figure 3.9.   
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Figure 3.9 Daily rainfall recorded in 2006 

 

Figures 3.6 to 3.9 show the various conditions of annual rainfall at Subang 

Airport. The common observations from these figures are the many occurrences of 

multi-day events and that the study area received considerable rainfall amounts each 

year.  

 

3.2.3 MONTHLY RAINFALL STATISTICS 

The plot of average monthly rainfall is given in Figure 3.10. The monthly rainfall 

amounts are affected by the respective monsoon seasons.  
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 Figure 3.10 Average total monthly rainfall at Subang Airport 

 

The average total monthly rainfall at Subang Airport shows that November (the 

beginning of the NE Monsoon) receives the highest amount. Lower magnitude of 

monthly rainfall was recorded in December, continues to decrease steadily until 

February and increases again in March. The total average rainfall amount recorded 

during the NE monsoon is 1,146 mm.  

During the SW monsoon season, the maximum rainfall amount is recorded in 

May. The rainfall amounts decrease steadily for a few months and increase again in 

August and September. The months of June and July (SW Monsoon) recorded the 
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lowest monthly rainfall. The total average rainfall amount recorded during the SW 

monsoon is slightly lower than the NE monsoon, with the measurement of 825 mm.  

The inter monsoon months, i.e., April and October, show considerable rainfall 

amount as a result of convective rain, which usually occurs in the afternoon.  

 

3.2.4 DAILY RAINFALL STATISTICS 

The daily rainfall data measured at Subang Airport from 1960 to 2011 have a 

total of 18,993 days and from that number, 10,092 are rainfall days of more than 0.1 mm. 

The average daily rainfall is 13 mm and standard deviation of 17 mm.  

The estimated numbers of wet run lengths observed at Subang Airport are given 

in Figure 3.11. There are a total of 3,726 wet run lengths. From that amount, 1,586 runs 

are one-rainy day, which accounts for 43% of the total wet run lengths. That gives 57% 

of the wet run lengths as equal to or more than 2-consecutive rainy days, i.e., multi-day 

events.  

The details of the number of dry run lengths observed at Subang Airport are 

shown in Figure 3.12. The daily rainfall records give an estimated total of 3,727 dry run 

lengths. The majority of the dry run lengths are equal to or longer than 2-consecutive 

dry days, with the fraction of 52%, i.e., 1938 dry runs. The percentage shown for the dry 

run lengths is similar to the wet run lengths, i.e., the occurrence of multi-day events is 

more than the single day event.   

Figures 3.13 and 3.14 give the estimated probability distribution based on the wet 

and dry run lengths, respectively. The estimated probability distribution for a single  



57 
 

 

Figure 3.11 Number of wet run lengths 

 

Figure 3.12 Number of dry run lengths 
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Figure 3.13 Probability distribution of wet run lengths 

 

Figure 3.14 Probability distribution of dry run lengths 
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wet and dry day is 0.43 and 0.48, respectively.  The mean wet and dry run lengths for 

the measured data is  2.7809 and  2.3882 days, respectively.  These numbers also show 

that most of the rainfalls are multi-day events.  

 

3.3 CONDITIONAL PROBABILITY OF MULTI-DAY RAINFALL EVENTS AT 

SUBANG AIRPORT 

 The conditional probability theory may determine whether the occurrence of 

random events is statistically independent or dependent. In this study, the interest is to 

determine whether future rainfall events are dependent on the given state (rain or dry) 

the previous day by analyzing the probability structure of multi-day events at Subang 

Airport. 

Let R and D be the events in a probability space. R denoted a rainy day and D is 

a dry day on any random (t-th) day. Say P(R) is the probability of rain (wet) and P(D) is 

the probability of dry on any random day. Therefore the conditional probabilities are 

defined as 
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Where:      = any random day 

t  = time (days) = 1,2,3… 

 

Events R and D are independent if and only if the following conditions are true: 

 

            (    |      )   ( )       ( )                                          (      )                                                                                                                             

            (    |      )   ( )       ( )                                          (      ) 

    

   The analysis started by counting the frequency of these events, and later  Eq. 3.1b 

and 3.1d are used to calculate the conditional probabilities of t-consecutive wet and dry 

events at Subang Airport.  

Table 3.3 gives the details of the frequency and the estimated conditional 

probability of 1 to 15-consecutive wet and dry days. Figures 3.15 and 3.16 show plots of 

the estimated conditional probability of n-consecutive wet and dry days, respectively. 

It is estimated that more than 50% of the events observed at Subang Airport are 

rainy days. The estimated probability of rain on any random day is 0.5314. If day to day 

rainfall events are independent at this particular study area, the probability of rain on 

any day will remain constant at 0.5314 (shown in blue lines in Figure 3.15). However, 

Figure 3.15 shows that the probability structure increased significantly when the 

number of consecutive rainy day increased, i.e., from 0.5314 for a single rainy day to 

0.80 for 15-consecutive days. The estimated conditional probability of a fourth rainy  
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Table 3.3 Frequency and estimated conditional probability of t-consecutive wet and dry 
days 

WET DRY 

t-
consecutive 

wet days 
Frequency 

Estimated 
conditional 
probability 

t-
consecutive 

dry days 
Frequency 

Estimated 
conditional 
probability 

1 10,092 0.5314 1 8,901 0.4686 
2 6,366 0.6308 2 5,174 0.5813 
3 4,226 0.6638 3 3,236 0.6254 
4 2,875 0.6803 4 2,148 0.6638 
5 2,009 0.6988 5 1,455 0.6774 
6 1,432 0.7128 6 1,006 0.6914 
7 1,050 0.7332 7 700 0.6958 
8 778 0.741 8 485 0.6929 
9 582 0.7481 9 335 0.6907 
10 444 0.7629 10 236 0.7045 
11 345 0.7770 11 161 0.6822 
12 266 0.7710 12 117 0.7267 
13 207 0.7782 13 85 0.7265 
14 162 0.7826 14 61 0.7176 
15 129 0.7963 15 44 0.7213 

 

day, given that it had rained for 3-consecutive days, is 0.6908.  This probability is far 

greater than the estimated probability of the first day of rain, i.e., 0.5314. The examples 

given above show that the events are dependent; therefore, the estimated probability of 

rain on a given day is not constant. The occurrence of rain on a given day affects the 

probability of rain the following day. 
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Figure 3.15 Plot of conditional probability of t-consecutive wet days 

 

Figure 3.16 Plot of conditional probability of t-consecutive dry days 
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An exponential function is fitted to the conditional probability structure for t-

consecutive wet days, and the equation is 

 

                                                   [     (                )]                               (      ) 

Where :         = conditional probability of t-consecutive wet days 

t  = time (days) = 1,2,3,… 

 

According to Eq. 3.4, the estimated probability of rain after a long multi-day 

rainfall gradually increases from 0.5314 to 0.7886.  

Figure 3.16 shows the probability structure of n-consecutive dry days at Subang 

Airport. The estimated probability that a randomly chosen day will be dry is 0.4686, 

which increases significantly to 0.7213 after 15 consecutive dry days. Another example 

is that the estimated conditional probability for a 2 consecutive dry day is 0.5813, and 

the estimated probability for the third dry day increases to 0.6254. Thus, the probability 

structure of t-consecutive dry days is also dependent. Note that the estimated 

conditional probabilities of t-consecutive dry days are fitted using the exponential 

function, as shown in Eq. 3.5. 

 

                                                   [     (                )]                               (      ) 

Where:         = conditional probability of t-consecutive dry days 
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3.4  DAILY RAINFALL DISTRIBUTION FUNCTION AT SUBANG AIRPORT 

The Cumulative Distribution Function (CDF) for the observed data is 

represented using the plotting position formula known as the Weibull method. The 

formula for the Weibull method is given in equation 3.6. 

 

                                                                   ( )  
 

   
                                                                    (      ) 

Where:  x = rainfall amount (mm)  

  i = rank (ordered sample from the smallest to the largest)  

N         = sample size 

 

The two parameter gamma function is used to fit the daily rainfall data, and the 

density function is given in Eq. 3.7.  
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Where: x  = rainfall amount (mm) 

μ  = average daily rainfall (mm)  

α  = scale parameter 

β  = shape parameter 

 

 The shape and scale parameters are estimated using the method of moments, and 

are given in Eq. 3.8 and 3.9, respectively. 
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    = sample standard deviation 

  N  = sample size 

 

 The estimated sample mean and standard deviation are   ̂   12.77 mm and  ̂  

 17.24 mm. These values lead to the estimation of shape (β) and scale (α) parameters, 

and the values are  ̂  0.55 and  ̂   23.29, respectively.  The density function for a rainy 

day is given in Eq. 3.10. 
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Figure 3.17 shows the CDF for the daily rainfall amount. For 1-rainy day, about 

60% of the amounts of rainfall are less than 10 mm. The CDF also shows that the 

Subang Airport had received 50 mm or more rainfall in a day, i.e., 5% of the data, which 

is about 500 days from 1960 to 2011. 
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3.5  MULTI-DAY DISTRIBUTION FUNCTION AT SUBANG AIRPORT  

Multi-day rainfall events are common in this study area, therefore the 

distribution function to represent t-consecutive rainfall days is examined in this section.  

Eq. 3.11 to 3.15 show the empirical representation of 2- to 6- consecutive rainy 

days, and Eq. 3.16 gives the general form of the probability distribution for the total 

amount of rainfall resulted from 1- and t-consecutive rainy days.  

 

2-consecutive rainy days  
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Figure 3.17 CDF for daily rainfall amount at Subang Airport 
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6-consecutive rainy days  
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General equation 
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Where: x  = total amount of rainfall for t-consecutive rainy days (mm) 

t  = number of consecutive rainy days  

 

Sections 3.4 and 3.5 show that the two-parameter gamma function is most 

suitable to represent the one-day and multi-day rainfall events at Subang Airport. This 

is because the moment generating function for the distribution of sum is also gamma 

distributed. The derivations for the moment generating function of a gamma function 

are given in Eq. 3.17 to Eq. 3.24.  

 

The Moment Generating Function for a gamma function is  
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Where:   x  = daily rainfall measurements at Subang Airport (mm) 

       t  = time (days) 
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    α  =  scale parameter 

                β  = shape parameter 

 

After defining                                                   
 

 
                                                              (       )  

 

Rearranging Eq. 3.18 and applying the (   ) to both sides gives Eq. 3.19 and 3.20, 

respectively. 
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Differentiating Eq. 3.20 gives 
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Substituting Eq. 3.22 into Eq. 3.17 gives 
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 is gamma function, therefore Eq. 3.23 becomes 
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Eq. 3.24 shows that the moment generating function for one-day is a function of 

scale ( ) and shape ( ) parameters.  

Let B be the rainfall on any first day and C is the measurement on any second 

day, then A is the sum of any t-consecutive rainy days; i.e., A = B+C. The moment 

generating function for two-consecutive rainy days is shown in Eq. 3.25.  

 

  ( )    ( )  ( )  (    )
    (    )    (    )             (       ) 

 

Eq. 3.25 shows that the moment generating function for the sum is (    )       

which has two parameters, that is scale (α) and shape (     ). Therefore it is shown 

that the distribution of a gamma function is also gamma distributed.  

 Figure 3.18 shows the CDF for 2- to 6- consecutive rainy days at Subang Airport. 

The CDFs show that the multi-day rainfall events resulted in a significant amount of 
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rainfall to the study area. Historical records show that 2- and 3-consecutive rainy days 

are capable of producing more than 100 mm of rain. Half of the data for 4-, 5- and 6-

consecutive events resulted in more than 55, 65, and 85 mm of rainfall, respectively. The 

probability of receiving more than 100 mm of rain increases as the number of 

consecutive rainy days increases. These results show that the duration and magnitude 

have the same significance in the analysis of multi-day events.  

  

3.6  GOODNESS-OF-FIT TEST  

The goodness-of-fit test is used to confirm the selection of a distribution function 

that has been proposed to represent the observed data. As shown in sections 3.6 and 3.7, 

the two-parameter gamma distribution best suited the distribution of daily rainfalls at 

Subang Airport.  

Goodness-of-fit test can be performed using graphical or analytical methods. In 

this study, the graphical method, i.e., the 1:1 plot, is preferable to the analytical methods 

because it gives an excellent visual representation for the comparison between the 

observed data and the calculated values.  Analytical methods such as the Chi-Square 

and Kolmogorov-Smirnov are best suited for a small sample size. Therefore, these 

methods are not suitable to be used in this study, because the sample size is large, i.e., 

10,092 rainy days.   
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Figure 3.18 CDF of t-consecutive rainy days 
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Figure 3.19 shows the 1:1 plot for the observed data and calculated values.  There 

are some insignificant differences which can be seen in 1-day of rainfall for probability 

distribution of less than 0.1. There is more than one occurrence of light rain (less than 1 

mm), and therefore the same values of estimated probability are calculated using the 

two-parameter gamma function.  Excellent fit is observed for other probabilities, 

including the large events (having the exceedence probability of 0.1 or less).  

In general, the 1:1 plots show good agreement for 1-day to 6-consecutive rainy 

days, which confirms that the two-parameter gamma function is suitable to represent 

the distribution of rainfall for t-consecutive wet days. 
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Figure 3.19 Comparison of CDF between calculated and observed using 1:1 plot 
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3.7  DEPENDENCE OF RAINFALL AMOUNT  

 The dependency of rainfall amount from one rainy day to the next is tested in 

this section, using three different scenarios: (1)  all consecutive wet days; (2) rainfall on 

Day 1 and Day 2 (D1 & D2);  and (3) rainfall on day 2 and day 3 (D2 & D3). The tests are 

done using two methods, i.e., determining the Auto Correlation Function (ACF) of the 

rainfall amount which is based on the rainfall amount (similar to equation 2.8) and by 

plotting the scatter plot. 

 For the first method, i.e., the ACFs for all scenarios are very low, which shows 

that the rainfall amounts are independent of each other. The ACFs are 0.0283, 0.0451, 

0.0066 for all consecutive rainy days, D1 & D2 and D2 & D3, respectively. The results 

are summarized in Table 3.4. 

 

Table 3.4 The ACFs for all consecutive rainy days, D1 & D2 and D2 & D3 

Scenario Sample Size (Days) ACF 

All consecutive rainy days 6,367 0.0283 
D1 & D2 2,140 0.0451 
D2 & D3 1,351 0.0066 

 

 Figures 3.20 and 3.21 show the scatter plot of the amounts of rainfall for D1 & D2 

and D2 & D3. The observations for both graphs are the same, there are no structured 

appearances at any of the points and the plots are totally random. These plots further 

prove that there is no dependency between the amounts of rainfall for consecutive rainy 

days. 
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Figure 3.20 Amounts of Rainfall on D1 and D2 

 

Figure 3.21 Amounts of Rainfall on D2 and D3 
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3.8  SUMMARY 

The daily rainfall statistics show that most of the rainfall events at Subang 

Airport are multi-days. The conditional probabilities of t-consecutive wet and dry days 

increase with the event duration. This finding shows that the events are time-

dependent.  However, the rainfall amounts in this study area are independent from one 

rainy day to another.  The two-parameter gamma distribution function is suitable to 

represent the daily rainfall data at Subang Airport.  
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CHAPTER 4 

 

SIMULATION OF WET AND DRY DAY SEQUENCES FOR NORTH EAST AND 

SOUTH WEST MONSOONS 

 

 The rainstorms at Subang Airport are time-dependent and the majority of the 

events are multi-days rainfall, as shown in Chapter 3. Therefore, the daily rainfall 

sequence should be simulated using a discrete autoregressive model. This chapter gives 

detailed procedures of the model selection process. Two models are tested, i.e., the low 

order Discrete Auto Regressive [DAR(1)] and the low order Discrete Auto Regressive 

and Moving Average [DARMA(1,1)]. These models are chosen because of the different 

characteristics that they have. DAR(1) is a short memory model, while DARMA(1,1) has 

a long-term persistence. 

 

4.1  MODEL FOR THE SIMULATION OF WET AND DRY SEQUENCES 

A four-step process, as suggested by Salas and Pielke (2003), is adopted to 

simulate the sequences of daily rainfall. The four-step process is: model identification, 

model estimation, model selection and model verification. There are two major 

monsoon seasons that affect Peninsular Malaysia, i.e., the North East (NE) and South 

West (SW) monsoon. Separate analyses are conducted for these monsoons. In this study 

the NE and SW monsoons are classified as the daily rainfall recorded in the months of 
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October to March and April to September, respectively. The details of each step are 

given in the following sections. 

 

4.1.1  Step 1:  Model Identification 

The first step is the model identification, in which the behaviour of the observed 

data is determined using the empirical Auto Correlation Function (ACF).  The 

estimated empirical ACFs for each monsoon coefficient calculated using equation 2.9, 

based on the sequence of wet and dry days. The DAR(1) is a short memory model, 

therefore the ACF plot is expected to decay exponentially and tails off. If the empirical 

ACF exhibits this behaviour,  then a DAR(1) model may be suitable. On the other hand, 

DARMA(1,1) has a long memory, therefore the ACF for this model should decay 

gradually.  Figure 4.1 shows the observed plot of estimated ACFs for both monsoons.  

Figure 4.1 shows a similar trend in the estimated values of ACFs for both 

monsoons. The estimated lag-1 ACFs for both monsoons are about 0.20. After that, the 

estimated ACFs for both monsoon decreased to 0.12 on day 2  and continue to gradually 

drop to 0.10 on day 3. The decreasing trend also continues from day 4 until the 

estimated ACFs are almost zero at day 15.  The plot of estimated ACFs for NE and SW 

monsoons as shown in Figure 4.1 gives an early indication that the DARMA (1,1) model 

may be suitable to simulate the sequence of daily rainfall at Subang Airport for the NE  

and SW monsoons.  
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Figure 4.1 Observed ACFs for NE and SW monsoons 

 

The analysis continues to the model estimation; that is, to determine the 

parameters needed for DAR(1) and DARMA(1,1). From there, the theoretical ACF for 

each model can be calculated and compared with the observed ACF.  

 

4.1.2  Step 2:  Model Estimation 

In this step, the related parameters in the DAR(1) and DARMA(1,1) models are 

estimated using the Method Of Moments (MOM). The DAR(1) model has two 
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parameters, that is    (or   ) and  ; while the DARMA(1,1) model is made up of three 

parameters, namely     and    (or   ). 

The sample mean wet (  ̅) and dry (  ̅̅̅) run lengths are estimated from the 

observed daily rainfall dataset, therefore the values are the same for both the DAR(1) 

and DARMA(1,1) models. During the NE monsoon,   ̅   3.000 days and   ̅̅̅   2.1893 

days, and the values for the SW monsoon differ slightly, i.e.,   ̅   2.4300 days and   ̅̅̅  

 2.5798 days.  

The probability distributions of dry and wet run lengths are estimated following 

Eq. 2.11 and 2.12, respectively. The observed data for the NE monsoon give the 

estimated wet and dry probability distributions of    ̂         and   ̂           

respectively. The SW monsoon shows a slightly smaller value of wet probability 

distribution, i.e.,    ̂        , which resulted in a bigger value of dry probability 

distribution,   ̂           

The other parameter in DAR(1),    is calculated using Eq. 2.8, which is estimated 

as the observed lag-1 autocorrelation coefficient. The estimated values for  ̂ are 0.1960 

and 0.1918 for NE and SW monsoons, respectively.  There are no significant differences 

in the estimation of  ̂ for the two separate monsoon seasons. 

The model estimation continues with the estimation of model parameters for the 

DARMA(1,1) model, namely   and β. Using Eq. 2.23 as the initial value, parameter   is 

estimated using Newton-Raphson iteration techniques (refer to Eq. 2.24).  Eq. 2.25 leads 

to the estimation value of β. 
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For the NE monsoon, the estimated model parameters for DARMA(1,1) are 

 ̂          and  ̂        , while the observed daily rainfall series during the SW 

monsoon gives the estimation of  ̂         and  ̂        . Table 4.1 summarizes the 

estimated model parameters for DAR(1) and DARMA(1,1) for both monsoon seasons.  

The final task in this step is to compare the observed and theoretical ACF of the 

DAR(1) and DARMA(1,1) models using the graphical method. Theoretical ACFs are 

determined using Eq. 2.8 and 2.21 for DAR(1) and DARMA(1,1), respectively, with the 

estimated parameters that have been determined earlier in this section (refer to Table 

4.1). Figures 4.2 and 4.3 show the comparison between the observed and theoretical 

ACFs for the NE and SW monsoons, respectively.  

 

Table 4.1 Model Parameters for DAR(1) and DARMA(1,1) 

Monsoon 
Seasons 

Estimated by run lengths Estimated by ACF 

DAR(1) and DARMA(1,1) DAR(1) DARMA(1,1) 

  ̂   ̂  ̂  ̂  ̂ 

NE                                    
SW                                    

 

For the NE monsoon (refer to Figure 4.2), excellent agreements are shown in the 

observed and theoretical ACFs estimated for DARMA(1,1). The ACFs estimated using 

the DAR(1) formulation decay abruptly to zero after day 2, which is expected since it is 

a short persistence model.  The theoretical ACFs calculated from the daily rainfall 

dataset collected for the SW monsoon using the formulation for DARMA(1,1) match the 

observed ACFs quite well, as shown in Figure 4.3.  
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Figure 4.2 Observed and theoretical ACF for NE Monsoon 

 

Figure 4.3 Observed and theoretical ACF for SW Monsoon 
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Overall, the theoretical ACFs for both NE and SW monsoons decay slowly and 

eventually reach zero at day 15. The behaviour matches the characteristics of a 

DARMA(1,1) model. This observation confirms the results shown in the previous 

section, i.e., the DARMA(1,1) model is suitable to represent the sequence of daily 

rainfall for any season at Subang Airport. The ACF for the DAR(1) model shows that it 

decays exponentially, as expected.   

The parameters determined in this step ease the process of model selection, that 

is the comparison between the observed and theoretical probability distributions of wet 

and dry run lengths.  

 

4.1.3  Step 3:  Model Selection 

Chung et al. (1984a and 1984b) suggested that the model selection process is 

based on the minimum of sum of squared errors between the observed and theoretical 

probability distributions of wet and dry run lengths. Wet and dry run lengths are 

equally important in determining the behavior of the model, therefore both sums of 

squared errors are added and the model that produces the minimum error will be 

selected. The model selection is done separately for each season, as shown below. 

 

NE Monsoon 

Eq. 2.13 is used to calculate the transitional probabilities for DAR(1), which 

include:  

1) the probability of a dry day followed by another dry day, denoted as    ; 
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2) the probability of a dry day followed by a wet day, denoted as    ; 

3) the probability of a wet day followed by another wet day, denoted as    ; 

4) the probability of a wet day followed by a dry day, denoted as    . 

 

These transitional probabilities are used to calculate the probability distribution 

function of wet and dry run lengths. The parameters for the DAR(1) model determined 

in the previous sections lead to the estimated transitional probabilities of    ̂         

   ̂            ̂                  ̂           

Eq. 2.39 to 2.46 are used to calculate the probability distributions of wet and dry 

run lengths for the DARMA(1,1) model. The probability distributions of wet and dry 

run lengths are determined based on the elements in transitional probability 

matrices,    and      Eq. 2.28 and 2.29 give the details of    and     which are 

calculated based on the parameters for DARMA(1,1). The transitional matrices    and 

   for the NE monsoon are given as 

 

   [
            
            

]       [
            
            

]       

 

Figures 4.4 and 4.5 show the probability distributions of wet and dry lengths 

from the DAR(1) and DARMA(1,1) models and NE monsoon observations. Both plots 

show that DARMA(1,1) performs better than DAR(1). The DARMA(1,1) model is able to 

generate the probabilities with the least amount of error from one to 15 consecutive  
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Figure 4.4 Probability distribution of wet run lengths for NE monsoon 

 

Figure 4.5 Probability distribution of dry run lengths for NE monsoon 
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rainy days. For example, the probability distribution for 4-consecutive wet days 

estimated using the theoretical formula for DARMA(1,1) is 0.0792, while the observed 

dataset gives a probability of 0.0829. Excellent agreement is also observed for the 

probability distributions of dry run lengths. The theoretical formula for DARMA(1,1) 

gives a probability of 0.5245 for a single dry day, compared to 0.5236 for the observed 

dataset.  

The DAR(1) model performance is poor, and it can be observed from Figures 4.4 

and 4.5 that the errors are bigger as the number of day increased. For instance, the 

probability of 2-consecutive wet days is 0.2241 using the DAR(1) formula, while the 

observed value is 0.2066. Additionally, the estimated probability of 3-consecutive dry 

days using the DAR(1) formula is 0.1331 and the observed value is 0.0961.  

The sum of squared errors for wet run lengths given by DARMA(1,1) and 

DAR(1) is 0.0010 and 0.0033, respectively. The value of error recorded by the 

DARMA(1,1) model is 3 times smaller as compared to DAR(1). The DARMA(1,1) model 

also produced smaller error for the probability distributions for dry run lengths when 

compared to DAR(1). The sum of squared error for dry run lengths estimated using the 

DARMA(1,1) model is 0.0005, compared to 0.0058 when DAR(1) is used. The details of 

the sum of squared errors for both wet and dry run lengths are summarized Table 4.2. 

Therefore, the DARMA(1,1) model is chosen to simulate the sequences of daily 

rainfall for the NE monsoon because it gives the least amount of errors for both wet and 

dry probability distributions. This conclusion also confirms the initial findings reported 

in model identification and model estimation. 
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Table 4.2 Sum of squared errors of wet (  ) and dry run lengths (  ) for DAR(1) and 
DARMA(1,1) models during NE monsoon 

Model             Selection 

DAR(1) 0.0033 0.0058 0.0091 
DARMA(1,1) DARMA(1,1) 0.0010 0.0005 0.0015 

 

SW Monsoon 

The same procedures described in the previous section are used in determining 

the probability distribution of wet and dry run length for the DAR(1) and DARMA(1,1) 

models during the SW monsoon.   

The transitional probabilities for the DAR(1) model during the SW monsoon are 

   ̂            ̂            ̂                 ̂          

The transitional probability matrices for the DARMA(1,1) model are given 

below;  

 

   [
            
            

]       [
            
           

]       

 

Figures 4.6 and 4.7 show the probability distribution of wet and dry lengths from 

the DAR(1), DARMA(1,1)  and SW monsoon observations. Both plots show that 

DARMA(1,1) performs better than DAR(1). As an example, the probability of 3-

consecutive rainy days is 0.1257; DARMA(1,1) estimated the value to be 0.1114, while 

the DAR(1) model gives an estimation of 0.1419. The sum of squared errors for the 

DARMA(1,1) model is 0.0021, as compared to 0.0079 for DAR(1). From the SW monsoon  
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Figure 4.6 Probability distribution of wet run lengths for SW monsoon 

 

Figure 4.7 Probability distribution of dry run lengths for SW monsoon 
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observations, the probability distribution of 3-consecutive dry days is 0.1122. The 

DARMA(1,1) formulation gives a very close estimation to the observed value, i.e., 

0.1135. DAR(1) performs poorly, giving the estimated probability of 0.1449 for 3-

consecutive dry days. 

The sum of squared error for wet run lengths given by DARMA(1,1) and DAR(1) 

is 0.0009 and 0.0033, respectively. The value of error recorded by the DARMA(1,1) 

model is almost 4 times smaller as compared to DAR(1). The DARMA(1,1) model also 

produced smaller error for the probability distributions for dry run lengths when it is 

compared to DAR(1). The sum of squared error for dry run lengths estimated using the 

DARMA(1,1) model is 0.0012, compared to 0.0045 when DAR(1) is used. The sum of 

squared errors for DARMA(1,1) is 0.0021. The DAR(1) model gives a total error almost 4 

times larger compared to DARMA(1,1) at 0.0079. The details of the sum of squared 

errors for both wet and dry run lengths are summarized Table 4.3. 

 

Table 4.3 Sum of squared errors of wet (  ) and dry run lengths (  ) for DAR(1) and 
DARMA(1,1) models during SW monsoon 

Model             Selection 

DAR(1) 0.0033 0.0045 0.0079 
DARMA(1,1) 

DARMA(1,1) 0.0009 0.0012 0.0021 

 

The findings as discussed in the previous paragraphs clearly indicate that the 

DARMA(1,1) model is most suitable to simulate the sequences of daily rainfall for the 

SW monsoon because it recorded the least amount of errors for both wet and dry 
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probability distributions. This conclusion also confirms the initial findings reported in 

model identification and model estimation.  

 

Conclusion for the model selection process 

 Significant differences in the sum of squared errors are calculated for both 

monsoons using the DAR(1) model when compared with DARMA(1,1). Therefore, the 

DARMA(1,1) model is most suitable to simulate the sequences of daily rainfall for the 

NE and SW monsoons because it recorded the least amount of errors for both wet and 

dry probability distributions.  

  

4.1.4  Step 4:  Model Verification 

 A separate verification process is performed for the NE and SW monsoons. The 

model verification process is done by comparing the probability distributions of wet 

and dry lengths of the observed and simulated datasets using the Monte Carlo method, 

with 9,600 days. The wet and dry probability distributions for the generated sequence 

are estimated using the theoretical formula given by the DARMA(1,1) model.    

 

NE Monsoon 

 The Monte Carlo method is used to simulate the sequence of daily rainfall during 

the NE monsoon season, with a sample size of 9,600 days.  The DARMA(1,1) 

parameters estimated from the observed and generated sequence are given in Table 4.4.  
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Table 4.4  Model Parameters for DARMA(1,1) estimated from observed (NE monsoon) 
and generated using the Monte Carlo method 

Monsoon Seasons 
Model Parameters 

 ̂  ̂   ̂   ̂ 

Observed                             
Generated                             

 

 The model parameters estimated from the generated sequence are comparable 

with the observed data. For instance, the probability of a wet day (  ̂) estimated from 

the generated sequence is 0.5725, while the observed data give a value of 0.5781.  

Another example is the  ̂, where observed data give an estimated value of 0.7330; 

compared with 0.7111 calculated from the generated sequence.  

Figures 4.8 and 4.9 show the verification process for the NE monsoon. Both plots 

show excellent agreement between the observed (NE monsoon) and the simulated data. 

This observation concludes that the simulated sequence of daily rainfall is capable of re-

producing the parameters and characteristics of the original dataset.   

 

SW Monsoon 

Model verification process continues to the SW monsoon dataset. The 

DARMA(1,1) parameters estimated from the observed and generated sequence are 

given in Table 4.5.  
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Figure 4.8 Model verification for NE monsoon using the probability distributions of wet 
run length 

 

Figure 4.9 Model verification for NE monsoon using the probability distributions of dry 
run length 
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Table 4.5  Model Parameters for DARMA(1,1) estimated from observed (SW 
monsoon) and generated using the Monte Carlo method 

Monsoon Seasons 
Model Parameters 

 ̂  ̂   ̂   ̂ 

Observed                             
Generated                             

 

The model parameters estimated from the generated sequence are comparable 

with the observed data. For instance, the probability of a dry day (  ̂) estimated from 

the generated sequence is 0.5103, while the observed data give a value of 0.5149.  

Another example is the  ̂, where observed data give an estimated value of 0.7827, 

compared with 0.7398 calculated from the generated sequence.  

The plots of wet and dry run lengths probabilities are shown in Figures 4.10 and 

4.11, respectively. Generally, both plots demonstrate good agreement between the 

observed and simulated data. There are insignificant errors shown in the longer 

duration of wet and dry events. This finding confirms that the DARMA(1,1) model is 

suitable to be used in generating the sequence of daily rainfall during the SW monsoon 

season.  
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Figure 4.10 Model verification for SW monsoon using the probability distributions of 

wet run length 

 
Figure 4.11 Model verification for SW monsoon using the probability distributions of 

dry run length 
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4.2  SUMMARY 

 The four-step model selection procedure leads to the conclusion that 

DARMA(1,1) is the most suitable model to simulate the sequence of daily rainfall for 

both scenarios, i.e., NE and SW monsoons at Subang Airport. The occurrences of multi-

day rainfall events are common at the study area, therefore a long-term persistence 

model is required to replicate of the characteristics the observed data. 
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CHAPTER 5 

 

SEQUENCE OF DAILY RAINFALL AND RETURN PERIOD CALCULATIONS 

 

This chapter discusses the simulation of daily rainfall using a discrete binary 

time series model, i.e., low order Discrete Auto Regressive and Moving Average 

[DARMA(1,1)]. Additionally, the rainfall amounts are generated randomly using the 

two-parameter gamma distribution function. Long sequences of data are simulated for 

both North East (NE) and South West (SW) monsoons. Return period curves are 

produced from the generated sequences and compared with the observed data.   

 

5.1 MODELING THE SEQUENCE OF DAILY RAINFALL USING DARMA(1,1) 

 As shown in equation 2.19, there are a few different components in simulating 

the sequence of daily rainfall using the DARMA(1,1) model. The first step is generating 

a sequence of an identical and independent distributed random variable (  ), with the 

discrete probability distribution of    for a wet day (denoted as 1) and     for a dry day 

(denoted as 0).  

The second step is to randomly select the value of   , either a 0 or 1. The 

parameter    is the probability of moving average component, denoted as 1, and the 

autoregressive component is selected with the probability of (1-β), i.e., when 0 is chosen.  

If a moving average component is chosen, (    )  then    equals    (as 

described earlier). On the other hand,       indicates that the autoregressive (  ) 
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component is selected. For   , the sequence is generated  with   and (1-  ) probabilities 

of 1 and 0, respectively. The regression part is selected when     , therefore    

          of 0 means that there is no regression, and the autoregressive part is      . 

After these steps are carefully followed, the sequence of daily rainfall generated using 

the DARMA(1,1) model is simulated. The autoregressive and moving average parts of 

order 1 are chosen with the probability of (1-β) and β, respectively.  

 The final step is to randomly generate the rainfall amounts using the two-

parameter gamma distribution function (as shown in equation 3.16). The whole process 

described in this section is done using the Matlab software. This software is chosen 

because of its availability, ease of use and ability to randomly generate numbers for the 

sequences of binary time series using the specified probability and also the amount of 

rain.  

 In this study, the sequences of daily rainfall are generated separately for the NE 

and SW monsoons. For each monsoon season, two simulations are done; simulation A 

and simulation B. Simulation A consists of 100 samples with the size of 9,600 days; 

while Simulation B is done by generating a sample of 1,000,000 days, which is 

equivalent to 2,740 years. The summary of both simulations is given in Table 5.1. 

 

Table 5.1 Simulations of daily rainfall for NE and SW monsoons 

Simulation 
No. of 

samples 
No. of 

rainfall days 
Monsoon Seasons 
NE SW 

A 100 9,600 X X 
B 1 1,000,000 X X 
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Three parameters are needed to simulate the daily rainfall sequences using the 

DARMA(1,1) model, namely     and    (or   ). The model parameters estimated for 

the NE and SW monsoons used in simulations A and B are shown in Table 5.2.  

 

Table 5.2 Model Parameters for DARMA(1,1) 

Monsoon Seasons 
Model Parameters 

 ̂  ̂   ̂   ̂ 

NE                             
SW                             

 

The main purpose of simulation A is to make sure that the DARMA(1,1) model is 

capable of reproducing the statistics of the observed data. Therefore, 9,600 days are 

chosen as the sample size because this is about the same as the observed data for each 

monsoon. Additionally, 100 samples are produced for simulation A to check the 

consistency of the DARMA(1,1) model in simulating the daily rainfall sequences at 

Subang Airport.  

Simulation B is done to test the ability of DARMA(1,1) to model a long sequence 

of daily rainfall and also to produce comparable statistics with the observed data.  

Therefore, a million days are simulated to represent the long sequence of daily rainfall. 

Only one sample is generated because the consistency of the model has been tested in 

simulation A. The statistics of the daily rainfall sequence for simulation are also 

compared to the observed data. A detailed discussion is given in the next section.   
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5.2 STATISTICS OF THE OBSERVED AND GENERATED DAILY RAINFALL 

SEQUENCE AT SUBANG AIRPORT 

 The relevant statistics of the simulated sequence of daily rainfall using the 

DARMA(1,1) model are examined in this section. This analysis is important in order to 

ensure that the simulated sequences are able to reproduce the same statistics as the 

observed data. The statistics chosen in this study are mean and standard deviation of 

the amount of rainfall, maximum rainfall in a day, lag-1 Auto Correlation Function (lag-

1 ACF) and the maximum wet and dry run lengths. The mean, standard deviation and 

the maximum daily rainfall are chosen to observe the statistics of the generated rainfall 

amounts, while the lag-1 ACF and maximum wet and dry run lengths are used to 

evaluate the statistics of the simulated sequences of daily rainfall. Additionally, further 

verification process is done comparing the probability of wet and dry run lengths from 

observed data, Simulation A and Simulation B.  

 

5.2.1  NE Monsoon 

 Table 5.3 summarizes the statistics of the observed and simulated daily rainfall 

events at Subang Airport during the NE monsoon. Generally, for simulation A (100 

samples of 9,600 days), the statistics for the rainfall amounts generated show excellent 

results. The mean and standard deviation of daily rainfall are comparable with the 

observed data. Even though the maximum rainfall in a day is slightly higher than the 

observed data, it is still acceptable, with a difference of about 4%. Simulation A gives  
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Table 5.3 Statistics for observed and simulated daily rainfall during NE monsoon 

Statistics 

NE Monsoon 
(Observed 

Data) 
 

Simulation A - Simulated daily 
rainfall (based on 100 samples, 

each 9,600 days) 

Simulation B 
- Simulated 

daily rainfall 
(based on one 

sample of 
1,000,000 days 

Mean 
Standard 
deviation 

Mean (mm) 13.4 12.9 0.3 12.9 

Standard 
deviation 
(mm) 

17.6 17.2 0.4 17.3 

Maximum 
rainfall in a 
day (mm) 

171.5 178.9 24.6 292.2 

Lag-1 ACF 0.1960 0.1790 0.0116 0.1805 

Maximum 
wet run 
length (days) 

31 24 4 34 

Maximum 
dry run 
length (days) 

21 16 3 25 

 

a reasonable value for the standard deviation of maximum daily rainfall, that is 24.6 

mm, which gives the lower and upper bound of 154.3 mm and 203.5 mm, respectively.   

Similarly, for simulation B, the long sequence of daily rainfall (a sample of 

1,000,000 days) is also capable of reproducing the statistics of observed data. The 

maximum rainfall in a day is much higher than the observed data, but this is needed in 

order to perform future predictions for the study area.  

 The statistics for daily rainfall sequences are also examined in this section. The 

lag-1 ACFs estimated for the generated sequence are comparable but slightly lower than 
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the observed data. DARMA(1,1) is a long persistence model, therefore the model is 

capable of producing long sequences of wet and dry days, as shown in Table 5.3.  

Figure 5.1 presents the wet run lengths probability distributions from the 

observed data, simulation A and simulation B. The generated daily sequences 

(simulations A and B) are capable of reproducing the same values of wet run lengths 

probability distributions when they are compared with the observed data.  

 

 

Figure 5.1 Probability distributions of wet run lengths for NE monsoon generated from 
simulations A and B  
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The probability distributions of dry run lengths from the observed data, 

simulation A and simulation B are shown in Figure 5.2. Excellent results are shown, 

where the generated daily sequences (simulations A and B) are capable of reproducing 

the same values of dry run lengths probability distributions when they are compared 

with the observed data.  

 

 

Figure 5.2 Probability distributions of dry run lengths for NE monsoon generated from 
simulations A and B  

 

 

 



104 
 

5.2.2   SW Monsoon 

 The statistics for the observed and simulated sequences of daily rainfall during 

the SW monsoon are given in Table 5.4.  

 

Table 5.4 Statistics for observed and simulated daily rainfall during SW monsoon 

Statistics 

SW Monsoon 
(Observed 

Data) 
 

Simulation A - Simulated daily 
rainfall (based on 100 samples, 

each 9,600 days) 

Simulation B 
- Simulated 

daily rainfall 
(based on one 

sample of 
1,000,000 days 

Mean 
Standard 
deviation 

Mean (mm) 12.0 12.9 0.3 12.9 

Standard 
deviation 
(mm) 

16.8 17.2 0.4 17.2 

Maximum 
rainfall in a 
day (mm) 

158.3 173.6 26.4 325.1 

Lag-1 ACF 0.1918 0.1813 0.0114 0.1798 

Maximum 
wet run 
length (days) 

17 20 3 27 

Maximum 
dry run 
length (days) 

20 20 3 28 

 

The mean and standard deviation for the generated sequences are comparable 

with the observed data. Maximum daily rainfalls in a day for all simulated sequences 

are expected to be higher than the observed value. This property is useful for the 

calculations of return period, which will be discussed later in this chapter.  
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The maximum wet and dry run lengths given by the simulated sequences are 

comparable with the observed data. The sequence of 1,000,000 days of generated 

rainfall shows that the DARMA(1,1) is capable of modeling long wet and dry run 

lengths. The lag-1 ACF for the generated sequences are slightly lower than the observed 

data.  

The probability distributions of wet run lengths from the observed data, 

simulation A and simulation B are shown in Figure 5.3. Excellent agreements are 

shown, which further proves that Simulations A and B are capable of reproducing the  

 

 

Figure 5.3 Probability distributions of wet run lengths for SW monsoon generated from 
simulations A and B  
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same values of dry run lengths probability distributions when they are compared with 

the observed data.   

Figure 5.4 presents the dry run lengths probability distributions from the 

observed data, simulation A and simulation B. The generated daily sequences 

(simulations A and B) perform well in terms of reproducing the comparable values of 

observed dry run lengths probability distributions.  

 

 

Figure 5.4 Probability distributions of dry run lengths for SW monsoon generated from 
simulations A and B  
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5.3 RETURN PERIOD CALCULATIONS 

 The methods suggested by Shiau and Shen (2001) and Salas et al. (2005) shown in 

equation 2.50 concentrate on the estimation of return periods for annual drought. This 

study modified the approach presented in equation 2.50 in order to calculate the return 

periods of daily rainfall, with the emphasis on multi-day events. Detailed procedures 

for the estimation of return periods for multi-day events are presented in the following 

paragraphs. 

 The bivariate probability distribution functions of rainfall amount and duration 

are used in order to describe the conditional distribution of both properties. The 

relationship is presented in Eq. 5.1. 

 

                                                                       (   )   ( | ) ( )                                                   (      ) 

Where:   = number of consecutive rainy days; 

    = total amount of rainfall (mm); 

 (   ) = bivariate probability distribution function of rainfall amount and  

    duration; 

 ( | ) = conditional distribution of the amount of rainfall given a rainfall  

   duration; 

 ( ) = distribution of rainfall duration.  
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 The bivariate probability distribution function of rainfall amount and duration, 

 ( | )   has been derived in Chapter 3, i.e., the general equation for t-consecutive rainy 

days. The two-parameter gamma equation is given below; 

 

                                            ( | )  
 

     (    )
(
 

    
)
      

   ( 
 

    
)                         (      ) 

 

The distribution of rainfall duration,  ( )  has been discussed in detail in Chapter 

2 (refer to Eq. 2.39 to Eq. 2.42). To recall, the probability distribution function of wet run 

lengths is estimated using the equation given below; 

 

 ( )   (    )   (                       |          )             

 (    )  
 (                        )

 (         )
                                                       (      )     

 

The probability of an event occurring, P(E) for  ≥     and t         can be 

calculated by integrating Eq. 5.4 as shown below; 
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Thus, the return period is calculated using equation 5.5.  

 

                                                                                    
  ̅    ̅̅̅

 ( )
                                                 (      ) 

Where:    ̅ = mean run length for wet days; 

    ̅̅̅ = mean run length for dry days; 

 

 This study modified the approach used by Cancelliere and Salas (2010) (Eq. 2.53) 

in order to calculate the return period for 1-day and multi-day rainfall events. Eq. 5.5 

gives the best theoretical estimation of return periods for 1-day and multi-day rainfall 

events, which are shown in the following section. 

 

5.4 RETURN PERIOD CURVES 

 The return period curves are developed separately for each of the monsoon 

seasons, i.e., NE and SW. Eq. 5.1 to Eq. 5.5 are used to calculate the theoretical return 

periods, which are then compared with the observed data.  The return periods for the 

observed data (daily rainfall measurements at Subang Aiport from 1960 to 2011) are 

estimated by counting. Next, two sequences of daily rainfall, 9,600 and 1,000,000 days 

long, are generated using the DARMA(1,1) model.   

The first sequence is done to make sure that the estimated return periods from a 

generated sample (which has the same size as the observed data) are comparable with 

the observed data. The amounts of rainfall (in mm) selected for this analysis are 1, 13, 
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30, 60, 90, 120 and 150. 1 mm is selected to represent the majority of rainfall events and 

13 mm is the average daily rainfall. The remaining amounts are selected because these 

values are considered as significant rainfall, especially during multi-day events. 

The second generated sample is done to represent a long sequence of daily 

rainfall, i.e., 1,000,000 days (2,740 years). The return period estimations are performed 

for significant rainfall amounts (in mm), i.e., 50, 100, 150, 200, 250, 300 and 350. These 

values (more than 150 mm) are chosen to represent rare events.  

The details for each analysis are given in the following subsections.  

 

5.4.1 NE Monsoon  

 Figure 5.5 shows the comparison between the observed and theoretical return 

periods (estimated using Eq. 5.1 to Eq. 5.5). In general, the theoretical values show good 

agreement with the observed data. The estimated return periods for multi-day rainfall 

events for any amounts are higher as compared to the 1-day event.  The 1-day events 

occur more often as compared with 2-consecutive days or more. For higher rainfall 

amounts (in mm), i.e., 13, 30, 60, 90, 120 and 150, the return periods decreased for 

several t-consecutive rainy days and increased steadily after that. This trend is observed 

because more amounts are collected during multi-day events, as compared to a 1-day 

rainfall. Excellent agreements are shown in the calculation of return periods for multi-

day events. For example, the observed and calculated return periods of 4-consecutive 

rainy days, with the total amount of 60 mm is 211 days.  
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Figure 5.5 Observed and theoretical return periods for NE monsoon 
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 A generated sample of 9,600 days is simulated using the DARMA(1,1) model. 

The return periods from this generated sample are compared with the observed data, as 

shown in Figure 5.6. Generally, the estimated return periods from the generated time 

series are comparable with the observed data. Same trends are observed, i.e., the 

estimated return periods for multi-day rainfall events (rainfall amounts more than 1 

mm) are higher as compared to 1-day event. Other return period curves,  i.e., rainfall 

amounts (in mm) of 13,  30, 60, 90, 120 and 150, show that the estimated return periods 

decreased for several rainy days and increased steadily after that. The calculation of 

return periods for multi-day events shows excellent results. For instance, the observed 

return period of 6-consecutive rainy days, with the total amount of 60 mm, is 243 days 

(1.37 years), while the calculated value is 233 days (1.34 years). The findings from this 

analysis show that the generated time-series has the same characteristics as the 

observed data, and hence is able to represent the return periods very well. Additionally, 

it also proves that Eq. 5.1 to Eq. 5.5 can be used to estimate the return periods for a 

generated daily rainfall sequence using DARMA(1,1).  

Daily rainfall measurements collected from Subang Airport have limited sample 

size. Therefore, DARMA(1,1) is used to generate a long sequence of daily rainfall. 

Furthermore, the occurrences of rare events are also being simulated in this sequence. 

This section discusses the capability of DARMA(1,1) to give reliable return periods for a 

long sequence of daily rainfall, i.e., 1,000,000 days.  
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Figure 5.6 Observed and theoretical return periods from generated daily rainfall sequence (9,600 days) for NE monsoon 
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Figure 5.7 shows the comparison between calculated (by counting) and 

theoretical (calculated using Eq. 5.1 to Eq. 5.5) return periods.  The return period 

estimations are performed for significant rainfall amounts (in mm), i.e., 50, 100, 150, 200, 

250, 300 and 350. The return period curves for all classifications of rainfall amount show 

excellent agreement, which further verifies that Eq. 5.1 to Eq. 5.5 are reliable to estimate 

the return periods for multi-day events. For instance, the calculated return period of 5-

consecutive rainy days, with the total amount of 200 mm, is 14,280 days (about 39 

years), while the theoretical value is 16,100 days (about 44 years). 

 

5.4.2 SW Monsoon 

 The return periods for various rainfall amounts during the SW monsoon are 

estimated using the proposed method, as shown in Eq. 5.1 to Eq. 5.5.  Figure 5.8 shows 

that the estimated return periods using the proposed method (theoretical values) are 

comparable with the observed data. The theoretical return periods for any rainfall event 

totaling more than 1 mm give excellent agreement with the observed data. Good 

agreement is shown in the theoretical return periods for multi-day rainfall events. For 

example, the observed return period of 4-consecutive rainy days, with the total amount 

of 60 mm is 221 days, and the calculated value is 229 days. That gives 3.6% difference 

between the observed and theoretical values.  
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Figure 5.7 Calculated (by counting) from generated daily rainfall sequence (1,000,000 days) and theoretical return periods 
for NE monsoon 
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Figure 5.8 Observed and theoretical return periods for SW monsoon 
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Figure 5.9 shows that the return periods calculated from a generated sequence of 

daily rainfall are comparable with the observed values. The DARMA(1,1) model is used 

to generate the sequence of 9,600 days of daily rainfall. The generated return period 

curves show good agreement with both observed and theoretical values. For instance, 

the observed return period of 7-consecutive rainy days, with the total amount of 90 mm, 

is 560 days, while the theoretical value is 549 days.  

The DARMA(1,1)  model is used to generate a long sequence of daily rainfall 

during the SW monsoon, i.e., 1,000,000 days. The objective of simulating this sequence 

is to estimate the return periods for rare rainstorm events.  

Figure 5.10 shows the comparison between calculated (by counting) and 

theoretical (calculated using Eq. 5.1 to Eq. 5.5) return periods.  The return period 

estimations are performed for significant rainfall amounts (in mm), i.e., 50, 100, 150, 200, 

250, 300 and 350. The return period curves for all classifications of rainfall amount show 

excellent agreement, which further verifies that Eq. 5.1 to Eq. 5.5 are reliable to estimate 

the return periods for multi-day events. For instance, the calculated return period of 4-

consecutive rainy days, with the total amount of 200 mm, is 26,310 days (about 72 

years), while the theoretical value is 29,100 days (about 80 years). 
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Figure 5.9 Observed and theoretical return periods from generated daily rainfall sequence (9,600 days) for SW monsoon 
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Figure 5.10 Calculated (by counting) from generated daily rainfall sequence (1,000,000 days) and theoretical return 
periods for SW monsoon 
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5.5  SUMMARY 

 The statistical properties of the generated sequences of daily rainfall shows the 

DARMA(1,1) model capable of reproducing the statistics of the observed data for both 

NE and SW monsoons at Subang Airport. Additionally, the DARMA(1,1) model is also 

able to generate a long sequence of daily rainfall, i.e., 1,000,000 days.   

The return periods are calculated using the proposed method shown in Eq. 5.1 to 

Eq. 5.5. Good agreements in the estimation of return periods are shown between the 

observed, theoretical (calculated) and generated daily rainfall sequence. Return period 

curves for rare rainstorm events (rainfall amount of more than 150 mm) are also 

produced using a long sequence of daily rainfall.   
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CHAPTER 6 

 

MODEL APPLICATION: MULTI-DAY MONSOON RAINFALL EVENTS AT KOTA 

TINGGI WATERSHED  

 

Multi-day rainfalls are common in Malaysia and the occurrences of these events 

can be simulated using the DARMA(1,1) model. This section discusses the return period 

estimation for multi-day rainstorms using the methods and algorithms that have been 

developed in this study (as shown in Chapter 5). The most recent multi-day rainstorms 

in the city of Kota Tinggi, Johor are used as an example.  These events occurred in 

December 2006 and January 2007 resulting in more than 350 and 450 mm of cumulative 

rainfall.  

 

6.1 KOTA TINGGI RAINSTORMS 

Kota Tinggi is located in the central part of the state of Johor. The Kota Tinggi 

watershed has an area of 1,639 km2 and numerous rivers and tributaries with total 

channel length of 122.7 km. The location of this study area and the rivers are shown in 

Figure 6.1. 

Kota Tinggi receives significant amounts of rainfall, and the total annual average 

is 2,470 mm. There were historical floods recorded in 1926, 1967, 1968 and 1971 (Badrul 

Hisham et. al. 2010).  However, the worst floods were reported recently in December 

2006 and January 2007, which occurred 3 weeks apart. An economic loss of
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Figure 6.1 The location of Kota Tinggi and water bodies surrounding it (after Shafie 
2009) 

 

RM1.5 billion (equivalent to about half billion U.S dollars) occurred, and more than 

100,000 local residents have to be evacuated during both events (Abu Bakar 2007).  

The severe floods in December 2006 and January 2007 are the results of 5 and 4 

consecutive rainy days, respectively.  Table 6.1 gives the total amount of daily rainfall at 

several gaging stations for these events. For the December 2006 event, most of the 

stations recorded an accumulated amount of close to 100 mm for 2-consecutive days. A 

significant amount of rain was recorded on the 3rd day, December 19, 2010. Figure 6.2 

shows the rainfall gage stations around Kota Tinggi and the amount of rainfall 

measured in a day on December 19, 2006.  The highest rainfall was recorded at Bukit 

Besar station, with 200 mm, and this measured value is the same as the average 

monthly rainfall. The Ulu Sebol station, which is located in the northeastern part of the 

Kota Tinggi watershed, recorded 189 mm of rainfall on December 19, 2006. Other 
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Table 6.1 Total amount of daily rainfall recorded at several gaging stations around Kota 
Tinggi during December 2006 and January 2007 floods (after Shafie 2009) 

Date Layang-layang Ulu Sebol Bukit Besar 
Kota 

Tinggi 

December 2006 

Dec-17 66 mm 33 mm 29 mm 48 mm 
Dec-18 52 mm 23 mm 47 mm 43 mm 
Dec-19 156 mm 189 mm 200 mm 161 mm 
Dec-20 73 mm 78 mm 69 mm 39 mm 

4 days total 367 mm 353 mm 345 mm 287 mm 

January 2007 

Jan-11 145 mm 124 mm 147 mm 167 mm 
Jan-12 135 mm 290 mm 234 mm 122 mm 
Jan-13 84 mm 76 mm 42 mm 49 mm 
Jan-14 20 mm 44 mm 35 mm -  

4 days total 384 mm 534 mm 458 mm 338 mm 

 

stations also recorded significant amount of rainfalls and these values are given in 

Figure 6.2.  

The January 2007 flood was more severe than the December 2006 event. Figure 

6.3 shows the satellite images of a band of clouds from 11th to 14th January, 2007.  The 

Kota Tinggi watershed received a significant amount of rainfall for 4 consecutive days 

from these clouds. The maximum magnitude of rainfall was recorded for the first two 

days, i.e., January 12 – 13, 2006. For example, the accumulated rainfall for two days in 

Ulu Sebol station was 366 mm, which is almost double the average monthly rainfall. 

This station also recorded the highest total rainfall for the 4-consecutive rainy days, 

with 534 mm. In general, the gaging stations in Kota Tinggi recorded an average total 

rainfall of more than 400 mm.  
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Figure 6.2 Rainfall gage stations around Kota Tinggi and the amount of daily rainfall on 
December 19, 2006 (after Shafie 2009) 
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Figure 6.3 Satellite images rainfall distribution (modified from Shafie 2009) 
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6.2  ESTIMATION OF RETURN PERIODS FOR KOTA TINGGI RAINSTORMS 

The procedures and algorithms presented in Chapter 5 are used to estimate the 

return periods of the December 2006 and January 2007 rainstorm events. The detailed 

discussions of the return periods pertaining to the December 2006 rainstorm event are 

given in the following section. The estimation of return periods for the January 2007 

storm is given in Appendix A.  

 

6.2.1  RETURN PERIODS FOR THE DECEMBER 2006 RAINSTORM EVENT 

 Table 6.2 summarizes the estimation of return periods for the December 2006 

rainstorm event using Eq. 5.1 to Eq. 5.5. Rainfall measurements from four rainfall 

gaging stations are used: Layang-Layang, Ulu Sebol, Bukit Besar and Kota Tinggi.   

The highest rainfall on the first day was measured at the Layang-Layang station, 

with 66 mm. This rainfall amount corresponds to the return period of 2 years. Other 

stations recorded small rainfall amounts, and the return periods estimated for these 

measurements are less than 1 year.  

The amounts measured for the second (Dec 18), third (Dec 19) and fourth (Dec 

20) of the multi-day rainstorm events are much more significant as compared to the first 

day. Layang-Layang recorded the most rainfall with the estimated return period of 8 

years, followed by Kota Tinggi (3 years), Bukit Besar (1.5 years) and Ulu Sebol (0.7 

years). These values continue to increase on the third and fourth day. Most of the 

stations recorded the rainfall amount with return period of more than 1,000 years. Bukit 

Besar station received 276 mm on the third day, which corresponds to 2,750 years 
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Table 6.2    Estimation of return periods for the December 2006 rainstorm event 

December 2006 
Date Dec-17 Dec-18 Dec-19 Dec-20 

Station : Layang-layang 

Cumulative 
Rainfall (mm) 

66 118 274 347 

Return period 
(years) 

2 8 2,534 20,575 

Station : Ulu Sebol 

Cumulative 
Rainfall (mm) 

33 56 245 323 

Return period 
(years) 

0.3 0.7 778 7,910 

Station : Bukit Besar 

Cumulative 
Rainfall (mm) 

29 76 276 345 

Return period 
(years) 

0.3 1.5 2,750 19,013 

Station : Kota Tinggi 

Cumulative 
Rainfall (mm) 

48 91 252 291 

Return period 
(years) 

0.7 3 1,036 2,247 

 

of return period. On 20th December, 2006, the Kota Tinggi watershed received between 

291 to 347 mm of rainfall. The return periods measured from these stations are greater 

than 2,000 years. 
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6.3 KOTA TINGGI FLOODS 

The water levels at Sungai Johor gaging station during the December 2006 

rainstorm event are illustrated in Figure 6.4.  Figure 6.4A shows the water depth one 

day before the event, which is at the normal level. The water level increases 

significantly to an alert level on December 19, 2006, as shown in Figure 6.4B. Figures 

6.4C and 6.4D show the flooding as a result of the multi-day rainfall events.  The stage 

recorded reached the danger level of 2.75 m, making it the highest level ever recorded 

since 1950, resulting in a declared emergency curfew (Badrul Hisham et. al. 2010).  

Figure 6.5 shows the flood levels observed during December 2006 and January 

2007 at the same location. On December 21, 2006, one day after the multi-day rainstorms 

stopped, the stage was at the same level as the flood in 1948 (refer to Figure 6.5a). 

Figures 6.5b to 6.5d show flood level for the 4 consecutive days of rainstorms in January 

2007.  On January 12th, 2007, i.e., day 2 of the multi-day rainstorms, the flood level 

exceeds the December 2006 rainstorm and also the historical event in 1948 (refer to 

Figure 6.5b).  The water level continues to rise the third day, as shown in Figure 6.5c. 

Figure 6.5d shows that the flood has subsided 5 days after the multi-day rainstorm 

occurred.  
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Figure 6.4 Water level indicators   [A] On Dec. 18, 2006 – 14:56, [B] On Dec. 19, 2001 – 
08:01 [C] On Dec. 20, 2006 – 08:01 and [D] On Dec. 21, 2006 – 08:16 (after Shafie 2009) 

 

Figure 6.5 Water level indicators   a) On Dec. 21, 2006  b) On Jan. 12, 2007 c) On Jan 13, 
2007 and d) On Jan 19, 2007 (after Shafie 2009) 
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6.4  HYDROLOGICAL MODELING AT KOTA TINGGI 

 Abdullah (2013) simulated the flood events at Kota Tinggi using the Two-

dimensional Runoff, Erosion and Export (TREX) model. The 1,635 km2 watershed area 

was discretized using a grid size of 230 m.   

 Figure 6.6 shows detailed water depths at Kota Tinggi watershed using 3-

dimensional representation when the water level reached the alert level. The stage 

continued to increase and easily passed the alert and danger level as a result of the 

continuous rainfall. Figure 6.7 gives the 3-dimensional representation of the flooding 

areas at Kota Tinggi watershed on December 21, 2006. The maximum stage was reached 

on December 22, 2006, 2 days after the rainfall stopped.  

The TREX model was able to simulate the hydrological conditions of the study 

area with reasonable accuracy, as shown in Figure 6.8.  The calibration process was 

done using the historical storm event that occured from November 23 to December 4, 

2010. The observed daily discharge and stage are provided by the Department of 

Irrigation and Drainage (DID).  

The validation process was performed using the stage data from December 14, 

2006 to January 25, 2007.  The comparison between observed and simulated stage for 

these events is presented in Figure 6.9.  The validated model shows that the multi-day 

rainfall event in December 2006 passed the normal level after 2 days.  

 The stage increased more rapidly during the second event in January 2007.  The 

stage increased to the alert and danger level after one day of rainfall. This condition is 

driven by the high intensity of rainfall for 2 consecutive days. The maximum stage was  
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Figure 6.6 3-dimensional representation of the water depths at Kota Tinggi watershed 
on December 19, 2006 (adapted from Abdullah 2013) 

 

Figure 6.7 3-dimensional representation of the water depths at Kota Tinggi watershed 
on December 21, 2006 (adapted from Abdullah 2013) 
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Figure 6.8 Hydrologic calibrations for large watershed (adapted from Abdullah 2013) 

 
Figure 6.9 Hydrologic validations for large watershed using stage (adapted from 

Abdullah 2013) 
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reached on the 4th day of the multi-day rainfall event. It took 6 days for the stage to 

return to the normal level.  

The hydrological modeling performed by Abdullah (2013) gives a physical 

representation of the flooding in Kota Tinggi. The results further prove that the multi-

day rainfall events are the main cause of severe flooding in the area.  

 Using the calibrated and validated TREX model of the Kota Tinggi watershed 

(from Abdullah, 2013), the thresholds of flood were determined for rainfall durations of 

1- to 4-consecutive days.  An average value of rainfall intensity (in mm/hr) was used to 

model the rainstorm for each duration. The thresholds of flooding for each rainfall 

duration were determined by the total rainfalls that reach the danger level of 2.8 m.  

Figure 6.10 shows the stage hydrograph for single and multi-day rainfall events. The 

simulations give a range of flood threshold of between 140 and 170 mm for rainfall 

durations of 1 to 4-consecutive days.  The range of flood threshold values take into 

account the uncertainty of model parameters in the TREX model such as Manning’s n 

and hydraulic conductivity.  
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Figure 6.10 Stage hydrograph for 1-day and multi-day rainfall event
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6.5  RETURN PERIODS FOR FLOOD THRESHOLD 

The multi-day rainstorm caused flooding at Kota Tinggi watershed. 

Hydrological modeling using TREX was performed by Abdullah (2013) to determine 

the flood thresholds for 1-day and multi-day rainstorm events. Eq. 5.1 to Eq. 5.5 are 

used to estimate the return periods corresponding to the total rainfall that can cause 

flooding in Kota Tinggi. Table 6.3 provides the summary of the return periods for each 

rainfall duration.  

 

Table 6.3 Rainfall duration, flood threshold and the respective return period  

Rainfall Duration 

(t-consecutive days) 

Flood Threshold 
(mm) 

Return Period (years) 

Upper values Lower values 

1 
Between 140 to 

170 

220 54 
2 83 23 
3 42 13 
4 24 7 

 

A return period of 220 years (upper value) is the flood threshold for 1 day of 

rainfall. The return period decreased significantly to 83 years for 2 consecutive days of 

rainfall. The return period for 2 consecutive days is significantly lower than the 1-day 

event because the probability to receive 170 mm of rainfall in 2 days is higher than a 

single day.  For the same reason, it can be observed from Table 6.3 that the return 

periods for 3- and 4-consecutive rainy days are lower than the 2-day event at 42 and 24 

years, respectively. Overall, the return period estimated for the multi-day rainfall is 

significantly lower than a single day event. For example, the return period to reach the 



136 
 

flood threshold in a day is 220 years, while the return period for 4 consecutive rainy 

days is 24 years.  

These results are useful in determining the design rainfall for a flood mitigation 

structure at Kota Tinggi watershed. The recommended design rainfall at Kota Tinggi for 

this historical storm event is 220 years.  The structure is estimated to be exceeded once 

(on average) every 220 years. Additionally, it is estimated that the flood mitigation 

structure will contain a 2-day event on average of about 3 times in 220 years. The 220-

year design is adequate to contain the 3- and 4-consecutive day rains. On average, the 

structure will be used 5 and 9 times in the period of 220 years for 3- and 4-consecutive 

day rains, respectively.   

Figure 6.11 shows the rainfall durations for the gaging stations in Kota Tinggi, its 

corresponding return periods and also the flood threshold for the December 2006 

rainstorm. The plot shows that the cumulative rainfall at all gaging stations crossed the 

flood threshold level after day 2 of the multi-day rainstorm event.  

 

6.6  SUMMARY 

 The algorithms developed in this study are used to estimate the return periods 

for flood thresholds, and also the December 2006 and January 2007 rainstorm events. 

The return period estimated for the multi-day rainfall is significantly lower than a 

single day event. Multi-day rainstorms in December 2006 crossed the flood threshold 

value after 2 days of continuous rainfall.  
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Figure 6.11 Rainfall durations versus return periods for the December 2006 rainstorms 
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The estimation of return periods using Eq. 5.1 to Eq. 5.5 is suitable to be used at a 

large watershed (size of more than 1,000 km2) because multi-day rainstorms are the 

main cause of flooding in the area.   
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CHAPTER 7 

 

CONCLUSIONS 

 

Peninsular Malaysia is exposed to two major monsoon seasons, the North East 

(NE) and South West (SW). The NE and SW monsoons occur between the months of 

November to March and May to September, respectively. These monsoons result in 

significant amounts of rainfall, the majority of it resulting from multi-day events. Multi-

day rainstorms are also very important because large rainstorms cause major floods on 

large watersheds (more than 1,000 km2). The December 2006 and January 2007 multi-

day rainstorm events at Kota Tinggi, Johor are the example of such circumstances.    

This study examines various aspects pertaining to the characteristics of the 

monsoon-affected rainfall, with the emphasis on the multi-day events. The specific 

objectives and conclusions are given in the following sections: 

 

Objective 1: Examine the probability structure of multi-day rainfall events.  

A day is classified as wet when the recorded rainfall amount exceeds 0.1 mm. 

This value is selected based on the Von Neumann ratio test. The daily rainfall data at 

Subang Airport from 1960 to 2011 show that the majority of wet and dry events are 

multi-days, with the fraction of 57% and 51%, respectively.  Conditional probabilities of 

t-consecutive wet and dry days are used to prove the dependency of the events. The 

probability of occurrence for both wet and dry days increases from day to day. For 
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instance, the probability of rain on any random day is 0.53, and the conditional 

probability of rain the second day increases to 0.63. The probability of rain after 9-

consecutive rainy days exceeds 0.75. Similarly, the probability of dry on any raindom 

day is 0.4686, and the conditional probability of another dry day increases to 0.58. The 

significant increments in the conditional probabilities for both t-consecutive wet and 

dry days show that the events in the study area are time dependent.    

A dependency test is performed on the amount of rainfall. The estimated 

autocorrelation coefficients are very low, which proves that there is no significant 

correlation between the amounts of rainfall from one day to another.  

 

Objective 2: Find the most suitable distribution function and derive an analytical 

expression of the daily rainfall amount to represent the daily rainfall record at Subang 

Airport.    

The mean and standard deviation of daily rainfall at Subang Airport are 12.77 

mm and 17.24 mm, respectively. The two parameter gamma function is suitable to 

represent the distribution of one and t-consecutive wet days at the study area.  The 1:1 

plot shows excellent agreement between the observed data and calculated values for 

multi-day events up to 6 consecutive days.    

 

Objective 3: Select and simulate the sequence of daily rainfall using the discrete 

autoregressive family models, i.e., the DAR(1) and DARMA(1,1).  
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The DAR(1) and DARMA(1,1) models are applied separately to the NE and SW 

monsoons. The best model to generate the sequences of daily rainfall at Subang Airport 

is selected based on the four-step process suggested by Salas and Pielke (2003). The 

four-step process includes model identification, model estimation, model selection and 

model verification. The autocorrelation coefficients of the observed data do not decay 

rapidly to zero, and this characteristic shows that a long-persistence model such as 

DARMA(1,1) is more suitable than DAR(1).  Additionally, the low sum of squared 

errors for the probability distributions confirm that DARMA(1,1) is most suitable to 

simulate daily rainfall sequences at Subang Airport for both monsoons. 

 

Objective 4: Develop and test an approach to calculate the return period of multi-day 

rainfall events with respect to the duration and amount.  

The return period for 1-day and multi-day rainfall events is estimated from the 

properties of wet run length and rainfall amount. The proposed method shows good 

agreement between calculated and observed values for multi-day rainfall amounts up 

to 150 mm and return period of 20 years. A very long sequence of daily rainfall 

(1,000,000 days) is generated to extend the analysis of multi-day events with cumulative 

rainfall up to 350 mm, which gives an estimated return period as high as 2,000 years. 

The mean, standard deviation, maximum daily rainfall, lag-1 ACF coefficient and 

maximum wet and dry run lengths of the generated daily rainfall sequence using 

DARMA(1,1) are also comparable with the observed data. 
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 The algorithms developed in this study are applied to the December 2006 

rainstorm event at Kota Tinggi, Johor. This rainstorm is extremely rare because the 

multi-day rainstorm resulted in 350 mm of cumulative rainfall and the estimated return 

period is greater than 2,000 years. The method proposed in this study is helpful for the 

design of levees on large watersheds (size of more than 1,000 km2) because multi-day 

rainstorms are the main cause of flooding to the area.  The return period to overtop the 

current levee at Kota Tinggi is 220 years for a 1-day rainstorm, but this period of return 

decreases to 24 years when considering 4-day rainstorms.  
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APPENDIX A 

RETURN PERIODS FOR THE JANUARY 2007 RAINSTORM EVENT 

 

 Table A1 summarized the estimation of return periods for the January 2007 

rainstorm event using Eq. 5.1 to Eq. 5.5. The cumulative rainfalls measured from 

Layang-Layang, Ulu Sebol, Bukit Besar and Kota Tinggi gaging stations are used in this 

section.   

 

Table A1 Estimation of return periods for the January 2007 rainstorm event 

January 2007 
Date Jan-11 Jan-12 Jan-13 Jan-14 

Station : Layang-layang 

Cumulative 
Rainfall (mm) 

145 280 364 384 

Return period 
(years) 

71 8,493 102,466 89,863 

Station : Ulu Sebol 

Cumulative 
Rainfall (mm) 

124 414 490 534 

Return period 
(years) 

27 2,630,137 19,150,685 38,849,315 

Station : Bukit Besar 

Cumulative 
Rainfall (mm) 

147 381 423 458 

Return period 
(years) 

77 641,370 1,178,082 1,753,424 

Station : Kota Tinggi 

Cumulative 
Rainfall (mm) 

167 289 338 - 

Return period 
(years) 

192 12,603 35,069 - 
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The rainfall magnitudes for January 2007 are much higher than December 2006 

rainstorm. The highest rainfall on the first day was measured at the Kota Tinggi station, 

with 167 mm. This rainfall amount corresponds to the return period of almost 200 years. 

Other stations also recorded significant rainfall amounts, ranging from 124 to 147 mm.  

The amounts measured for the second (Jan 12), third (Jan 13) and fourth (Jan 14) 

of the multi-day rainstorm events were much more significant as compared to the first 

day. Ulu Sebol recorded the most rainfall with the estimated return period of more than 

2,000,000  years, followed by Bukit Besar (641,370 years), Kota Tinggi (12,603  years) and 

Layang-Layang (8,493 years). These values continue to increase on the third and fourth 

day. The gaging stations recorded the rainfall amount with return period greater than 

35,000 years on the third day (Jan 13). The high estimated return periods on Jan 13 and 

14 were reasonable since the cumulative rainfall amount measured for 3- and 4-

consecutive days exceeds the average monthly rainfall of 200 mm. Ulu Sebol station 

received more than twice the average monthly rainfall for 4-consecutive days, i.e., 534 

mm.  

Figure A1 shows the rainfall durations for the gaging stations in Kota Tinggi, its 

corresponding return periods and also the flood threshold for the January 2007 

rainstorm. Significant rainfalls on day-1 resulted in flooding almost immediately. Figure 

A1 also shows that the cumulative rainfall at all gaging stations crossed the flood 

threshold level after day 1.  
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Figure A1 Rainfall durations versus return periods for the January 2007 rainstorms 
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APPENDIX B 

THE STATISTICS OF WET AND DRY YEARS 

  

Figure B1 shows the total annual rainfall at Subang Airport from 1960 to 2011. 

The total annual rainfalls at Subang Airport show that there are distinctive dry and wet 

periods, from 1970 to 1986 and 1987 to 2011, respectively. In this section, the rainfalls 

from 1970 to 1986 are referred to as the dry years, while the wet years are for the rainfall 

between 1987 and 2011.  

 The daily rainfall statistics, such as the mean, standard deviation and wet and 

dry run lengths for these periods are given in the following sections.  These statistics are 

compared with the whole time series (rainfall from 1960 to 2011) in order to give the 

difference between the overall statistics, wet and dry years. 

 

DAILY RAINFALL STATISTICS 

The daily rainfall data measured at Subang Airport from 1960 to 2011 have an 

average daily rainfall of 12.77 mm. The average daily rainfalls during the period of dry 

and wet years are 11.72 mm and 13.84 mm, respectively.  The difference between the 

dry and wet years and the whole time series is about ∓8%. 

The standard deviation of the daily rainfall data for the whole time series is 17.24 

mm. Higher standard deviation is estimated for the wet years, i.e., 18.23 mm, which 

gives the difference of 5.7% when it is compared with the whole time series. The dry 
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Figure B1 Total Annual Rainfall from 1960 to 2011 at Subang Airport 

 

years gives a standard deviation of 15.79 mm, that is 8.4% lower that the whole time 

series.  

The estimated numbers of wet run lengths observed at Subang Airport for the 

wet and dry years and also the whole time series are given in Figure B2. There are a 

total of 1,787 and 1,206 wet run lengths for wet and dry years respectively. From that 

amount, 42% and 45% are 1-day events for wet and dry years respectively. That gives 

more than 50% of the wet run lengths as equal to or more than 2-consecutive rainy 

days, i.e., multi-day events for both wet and dry years. These numbers are almost 
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similar to the whole time series, which show that 43% of the total wet run lengths are 

one-day events, while the remaining 57% are multi-day rainfall.  The estimated mean 

wet run lengths for the whole time series is 2.71 days. The estimation for the period of 

wet years is slightly higher at 2.78 days, while the calculated value for dry years is 2.65 

days. These values are consistent with the percentage of wet run lengths, i.e., most of 

the rainfall events at Subang Airport are multi-day.  The longest wet run lengths for the 

wet and dry years are 31 and 30 days, respectively.  

The comparison of the estimated number of dry run lengths from wet, dry and 

whole time series at Subang Airport are shown in Figure B3. The daily rainfall records 

give an estimated total of 1,788, 1,205 and 3,727 dry run lengths for wet, dry and whole 

time series respectively. The majority of the dry run lengths for all cases are equal to or 

longer than 2-consecutive dry days, with the fraction of more than 50%. The percentage 

shown for the dry run lengths is similar to the wet run lengths, i.e., the occurrence of 

multi-day events is more than the single day event.  The estimated mean dry run 

lengths for the whole time series is 2.39 days. The estimation for the period of dry years 

is slightly higher at 2.50 days, while the calculated value for wet years is 2.33 days. 

These values further verify that most of the events at Subang Airport are multi-days.  

The longest dry run lengths for the wet and dry years are 19 and 20 days, respectively. 

Table B1 summarizes the daily rainfall statistics of the whole time series, dry years and 

wet years. 
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Figure B2 Probability distributions of wet run lengths for whole time series, wet years 

and dry years 

 
Figure B3 Probability distributions of dry run lengths for whole time series, wet years 

and dry years 
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Table B1 Daily rainfall statistics for the whole time series, dry years and wet years 

Parameters Whole time series Dry Years Wet Years 

Mean,  ̂ (mm) 12.77 11.72 13.84 

Standard 
deviation,  ̂ 

(mm) 
17.24 15.79 18.23 

Mean wet run 

length,  ̅ 
̂  

(days) 

2.71 2.65 2.78 

Mean dry run 

length,  ̅ 
̂  

(days) 

2.39 2.50 2.33 

 

CONDITIONAL PROBABILITIES OF T-CONSECUTIVE WET AND DRY DAYS FOR 

THE WHOLE TIME SERIES, WET YEARS AND DRY YEARS 

Figure B4 shows the plot of conditional probabilities for t-consecutive wet days, 

considering the whole time series, wet years and dry years. The highest probability for a 

wet day is estimated for the wet years’ time series, i.e., 0.54, followed by the whole time 

series at 0.53 and dry years give a calculated value of 0.51.  These estimations indicate 

that there are some differences in the probability wet of any random day for the three 

different scenarios. In general, the average difference between the conditional 

probabilities of t-consecutive wet days for wet and dry years is 5.2%. The highest 

difference can be seen at 9-consecutive wet days, where the wet years give an estimated 

conditional probability of 0.79, while the calculated value for dry years is 0.73. This 

gives a difference of more than 7%. Smaller differences are shown for the comparison 

between the whole time series with the wet and dry years. For instance, the average 

difference between the whole time series and wet years is 3.2%. An average of 2.2%  
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Figure B4 Conditional Probability of t-consecutive wet days 

 

Figure B5 Conditional Probability of t-consecutive dry days 
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difference is estimated for the conditional probabilities of t-consecutive wet days for 

whole time series and dry years. 

The probability structure increased significantly when the number of consecutive 

rainy day increased for all the scenarios tested in this section. For example, the 

estimated probability for the whole time series from one rainy day to 15-consecutive 

days increased significantly, i.e., from 0.53 to 0.80. The significant increments are also 

seen for the wet and dry years (refer to Figure B4). With reference to the wet years, the 

conditional probability of a fourth rainy day, given that it has rained for 3-consecutive 

days, is 0.70.  This probability is far greater than the probability of the first days of rain, 

i.e., 0.54. The examples given above show that the events are dependent; therefore, the 

probability of rain in a day is not constant. The occurrence of rain in one day affects the 

probability of rain the following day. 

Figure B5 shows the plot of conditional probabilities for t-consecutive dry days, 

considering the whole time series, wet years and dry years. The highest probability for a 

dry day is estimated for the dry years’ time series, i.e., 0.49, followed by the whole time 

series at 0.47 and wet years give an estimated value of 0.46.  These estimations indicate 

that there are some differences in the probability of a dry day for any random day for 

the three different scenarios. The average difference between the conditional 

probabilities of t-consecutive dry days for wet and dry years is 4.2%. The highest 

difference can be seen at 11-consecutive dry days, where the dry years give an 

estimated conditional probability of 0.71, while the calculated value for wet years is 

0.66. This gives a difference of 8.4%. Smaller differences are shown for the comparison 
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between the whole time series with the wet and dry years. For instance, the average 

difference between the whole time series and wet years is 1.8%. An average of 2.2% 

difference is estimated for the conditional probabilities of t-consecutive wet days for 

whole time series and dry years.  

 

DEPENDENCE OF RAINFALL AMOUNT  

 The dependency of rainfall amount from one rainy day to the next is tested in 

this section, using three different scenarios: (1)  all consecutive wet days; (2) rainfall on 

Day 1 and Day 2 (D1 & D2);  and (3) rainfall on day 2 and day 3 (D2 & D3). The tests are 

done using two methods, i.e., determining the Auto Correlation Function (ACF) of the 

rainfall amount which is based on the rainfall amount and by plotting the scatter plot. 

 

Wet Years  

 For the first method, i.e., the ACFs for all scenarios are very low, which shows 

that the rainfall amounts are independent of each other. The ACFs are 0.0115, 0.0231, -

0.0126 for all consecutive rainy days, D1 & D2 and D2 & D3, respectively. The results 

are summarized in Table B2. 
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Table B2 ACFs for all consecutive rainy days, D1 & D2 and D2 & D3 

Scenario Sample Size (Days) ACF 

All consecutive rainy days 3,178 0.0115 

D1 & D2 1,039 0.0231 

D2 & D3 647 -0.0126 

 

 Figures B6 and B7 show the scatter plot of the amounts of rainfall for D1 & D2 

and D2 & D3. The observations for both graphs are the same, there are no structured 

appearances at any of the points and the plots are totally random. These plots further 

prove that there is no dependency between the amounts of rainfall for consecutive rainy 

days. 

 

Figure B6 Amounts of rainfall on D1 and D2 for wet years 
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Figure B7 Amounts of rainfall on D2 and D3 for wet years 

 

Dry Years  

Similar results are shown for the dry years. The ACFs for all scenarios are very 

low, which shows that the rainfall amounts are independent of each other. The ACFs 

are 0.0551, 0.1139, 0.0126 for all consecutive rainy days, D1 & D2 and D2 & D3, 

respectively. The results are summarized in Table B3. 

 

Table B3 ACFs for all consecutive rainy days, D1 & D2 and D2 & D3 

Scenario Sample Size (Days) ACF 

All consecutive rainy days 1,989 0.0551 
D1 & D2 669 0.1139 
D2 & D3 435 0.0126 
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Figures B8 and B9 show the scatter plot of the amounts of rainfall for D1 & D2 

and D2 & D3.  There are no structured appearances at any of the points and the plots 

are totally random. These plots further prove that there is no dependency between the 

amounts of rainfall for consecutive rainy days. 

 

 

Figure B8 Amounts of rainfall on D1 and D2 for dry years 
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Figure B9 Amounts of rainfall on D2 and D3 for dry years 

 

RETURN PERIODS  

 The estimated return periods for the whole time series, wet years and dry years 

are given in Figure B10.  This analysis is done for several amounts of rainfall (in mm), 

that is 1, 13, 30, 60, 90, 120 and 150. 1 mm is selected to represent the majority of rainfall 

events and 13 mm is the average daily rainfall. The remaining amounts are selected 

because these values are considered as significant rainfall, especially during multi-day 

events. 

 For rainfall amount of more than 1 mm, the estimated return periods for whole 

time series, wet years and dry years are the same from one to 7-consecutive days. As the 

number of t-consecutive rainy days increased, the difference in estimated return periods 
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also increased. Larger differences are seen in high rainfall amounts, i.e., 60 mm or more. 

Other rainfall amounts, i.e., from 13 to 150 mm show similar trend, that is the lowest 

return periods are seen for the wet years, followed by the whole time series and dry 

years. There are minimal differences between the estimated return periods for the 

whole time series and wet years. For example, the estimated return period for rainfall 

amount of more than 60 mm and rainfall duration of 5 consecutive days is 222 days for 

whole time series, compared to 199 days for wet days. The difference between these 

values is about 10%.  The estimated return period of dry years (with the same 

conditions) is 270 days which gives a difference of 27%. Higher differences can be 

observed for rainfall amounts of 90, 120 and 150 mm.   

This analysis shows that there is a difference in the estimated return periods 

between the whole time series, wet years and dry years. The dry years give larger 

return periods for all rainfall amounts, while the wet periods show the smallest return 

period.   
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Figure B10 Return period curves for the whole time series, wet years and dry years 
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CONCLUSIONS 

The statistics of wet and dry years, such as the mean, standard deviation, 

probability distributions and mean wet and dry run lengths, conditional probabilities 

and return periods are compared in this section. There are a few differences in the 

statistics of wet and dry years.  

The estimated average daily rainfall during the period wet years is higher at 

11.72 mm, as compared to 13.84 mm for dry years.  Similarly, the standard deviation of 

the daily rainfall estimated for the wet years is 18.23 mm and for the dry years is 15.79 

mm, which gives a difference of 13%.  

The mean wet and dry run lengths for wet and dry years do not change 

significantly. However, the conditional probabilities for t-consecutive wet (dry) days are 

higher during wet (dry) years as compared to the dry (wet) years.  The rainfall amounts 

for both scenarios are dependent from one day to another.  

Significant differences are shown in the estimation of return periods for wet and 

dry years. Shorter return periods are estimated for wet years for all rainfall amounts 

that are considered in this analysis. The bigger differences are shown for the large 

amount of rainfalls, i.e., 60, 90, 120 and 150 mm.  
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APPENDIX C 

FREQUENCY ANALYSIS FOR THE ANNUAL MAXIMUM DAILY RAINFALL AT 

SUBANG AIRPORT 

 

The Cumulative Distribution Function (CDF) for the observed annual maximum 

daily rainfalls from 1960 to 2011 at Subang Airport is represented using the plotting 

position formula known as the Weibull method. The formula for the Weibull method is 

given in Eq.  C1. 

 

                                                                  ( )  
 

   
                                                                    (     ) 

Where:  x = annual maximum daily rainfall (mm)  

  i = rank (ordered sample from the smallest to the largest)  

N         = sample size 

 

Log-Pearson Type III distribution (LPIII) is used to fit the annual maximum daily 

rainfalls at Subang Airport. The probability density function of LPIII is given in Eq. C2.  
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Where:  x  = annual maximum daily rainfall (mm)  

   = shape parameter 
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   = scale parameter 

    = location parameter 

 

LPIII has three parameters, namely the shape ( ), scale ( ) and location (  )  

These parameters are estimated based on the log transformation of the annual 

maximum daily rainfall i.e.,       . The indirect method of moments is used to 

estimate these parameters and the formulations are given in Eq.  C3 to Eq. C5. 
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                                                               (     ) 
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  Where:   ̂  = sample mean 

 ̂  = sample standard deviation  

 ̂  = sample skewness coefficient  

 

 The CDF for the annual maximum daily rainfall at Subang Airport is shown in 

Figure C1. The Kolmogorov-Smirnoff (KS) method is used to test the goodness of fit for 

the fitted CDF at quantile point of 0.95. The maximum difference between the empirical 

and fitted CDF is 0.084, which is well below the KS test statistical value of 0.189. 

Therefore, it is concluded that the LPIII is suitable to represent the distribution of 

annual maximum daily rainfall at Subang Airport.  
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Figure C1 Empirical and fitted CDF using LPIII for the annual maximum daily rainfall 
at Subang Airport 

 

CONFIDENCE LIMITS ON QUANTILES OF THE LOG-PEARSON TYPE III 

DISTRIBUTION 

 This section summarized the estimation of 95% Confidence Limits (CL) on the 

quantiles of return periods of 10, 25, 50, 100 and 500 years for the annual maximum 

rainfall at Subang Airport. The formulations for the calculations are given in Eq. C6 to 

Eq. C13. 
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                                                                   (  )    ̂       ⁄   ̂                                              (     ) 

Where:    ̂ = quantile estimator corresponding to the non-exceedence  

   probability q  

      ⁄  = 1-α quantile of the standard normal deviation 

α  = significance level 

  ̂  = standard error  

 

The    and    are estimated using the formulations given in Eq. C7 and C11. 
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Where :  ̂  = sample mean 

 ̂  = sample standard deviation  

  ̂ = frequency factor, which is calculated using the Eq. C8 to Eq. C9 
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Finally, the confidence limits and quantile estimator must be transformed from the log 

form, i.e., 

 

                                                    (  )     [     (  )]                                    (Eq.  C12) 

                                                                      (  )                                                (Eq. C13) 

Where:       (  )  = estimated confidence limits of the corresponding LPIII 

     = estimated for the quantile of the corresponding LPIII  

    = estimated for the quantile, transformed from LPIII 

 

Table C1 summarizes the 95% confidence limits and quantile values for return 

periods of 10, 25, 50, 100 and 500 years. Figure C2 show the plot of 95% confidence 

limits and quantile values estimated using LPIII.  

In general, the observed values are well within the estimated upper and lower 

limits of LPIII distribution. With reference to Figure C2, the observed annual maximum 

daily rainfalls for return periods of 1 to 3 years are close to the estimated quantile value. 

After that, the observed values for return periods of 3 to 6 years are close to the 

estimated lower limits. The estimated annual maximum daily rainfall for the 10-years 
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return period is between 124 to 149 mm, while the observed value is slightly higher at 

152 mm. 

Attention should also be given to the upper and lower limits calculated for the 

return periods of 25 and 50 years. The observed values for these return periods are well 

within the confidence limits estimated using the LPIII distribution. Based on these 

findings, it is concluded that the LPIII distribution is able to give reasonable estimates  

of annual maximum daily rainfalls of rare events, such as the return periods of 100 or 

more. For example, the annual maximum daily rainfall for return period of 100 years is 

estimated to be between 154 to 229 mm. The annual maximum daily rainfall with the 

return period of 500 years is expected to be in the range of 169 to 303 mm.  

  

Table C1 Confidence Limits and Quantile for the annual maximum daily rainfall at 
Subang Airport estimated using the LPIII distribution 

Return 
Period, T 

Non-
exceedence 

Probability, q 

Lower Limit 
(mm) 

Quantile (mm) 
Upper Limit 

(mm) 

10 0.90 124 136 149 
25 0.96 137 156 177 
50 0.98 146 172 202 
100 0.99 154 187 229 
500 0.998 169 226 303 

 

GENERATED ANNUAL MAXIMUM DAILY RAINFALL AT SUBANG AIRPORT 

The sequence of daily rainfall at Subang Airport from 1960 to 2011 is simulated 

using the DARMA(1,1) model. This model is chosen because the generated sequence of 

daily rainfall has similar statistical properties as the measured daily rainfall at 
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Figure C2 Empirical frequency distribution, fitted CDF and 95% confidence limits on quantiles for the LPIII distribution 
for the annual maximum daily rainfalls of the Subang Airport 
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Subang Airport. The two-parameter gamma function has been shown to represent the 

amount of rain at this particular station. 

Two simulations are done, i.e., Simulation A using the parameters derived from 

the 52 years of observed data (from 1960 to 2011) and Simulation B where parameters 

are estimated based on the statistical properties of the last 25 years of measured data 

(from 1987 to 2011). The return periods examined in this section are 10, 25, 50, 100 and 

500 years. For each simulation and return period, 1,000 samples are generated in order 

to give a range of annual maximum rainfall values. The generated sequences of daily 

rainfalls are then divided into individual groups of 365 days. Then the highest values 

for each group are recorded as the annual maximum daily rainfall.  

There are three parameters in DARMA(1,1) need to be estimated, namely  , β 

and   (     )   The DARMA(1,1) model parameters for Simulations A and B are given 

in Table C2. There are no significant differences in the values of DARMA(1,1) 

parameters between Simulations A and B.  The estimated values of   and β for 

Simulation A are 0.8445 and 0.5446, respectively while Simulation B gives the 

estimation of  ̂         and  ̂        . 

 

Table C2 DARMA(1,1) model parameters for Simulations A and B 

Simulation 
Model Parameters 

 ̂  ̂   ̂   ̂ 

A                             
B                             
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For Simulation A, the estimated wet and dry probability distributions are  

  ̂         and   ̂           respectively. Simulation B shows a slightly higher value 

of wet probability distribution, i.e.,   ̂        , which resulted in a smaller value of 

dry probability distribution,   ̂           Table C2 summarizes the DARMA(1,1) 

model parameters for simulations A and B.  

Table C3 summarizes the range of annual maximum daily rainfall estimated 

using LPIII, Simulation A and Simulation B.  In general, Simulations A and B are 

capable to produce reasonable annual maximum daily rainfall and wider range of 

values when it is compared with the LPIII. For example, the estimated annual 

maximum daily rainfall using the LPIII method for return period of 25 years is between 

137 to 177 mm; while Simulation A gives the estimated value of between 135 to 243 mm. 

For the same return period, Simulation B provides an estimation of 143 to 254 mm of 

annual maximum daily rainfall.  

 

Table C3 Annual maximum daily rainfall estimated using LPIII, Simulations A and B 

Return 
Period 
(years) 

 
LPIII 

Simulation A – 1000 
Generated Samples 

(95% CL) 

Simulation B - 1000 
Generated Samples 

(95% CL) 

Lower 
Limit 
(mm) 

Quantile 
Estimate 

(mm) 

Upper 
Limit 
(mm) 

Lower 
Limit 
(mm) 

Mean 
(mm) 

Upper 
Limit 
(mm) 

Lower 
Limit 
(mm) 

Mean 
(mm) 

Upper 
Limit 
(mm) 

10 124 136 149 115 156 226 122 164 233 
25 137 156 177 135 177 243 143 186 254 
50 146 172 202 151 192 264 157 200 272 
100 154 187 229 166 208 284 175 218 290 
500 169 226 303 202 241 307 212 255 331 
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The range of annual maximum daily rainfall for each return periods, i.e., 10, 25, 

50, 100 and 500 years for Simulations A and B are shown graphically in Figures C3 and 

C4, respectively.   

With reference to Figure C3, Simulation A gives a smaller minimum value for 

return periods of 10, 25 and 50 years as compared with the lower limit estimated using 

the LPIII. Simulation A also shows that the estimated mean for return periods of 10, 25 

and 50 years are close to the upper limits calculated using the LPIII method. The range 

of values for these return periods are also within the measured value.  

For higher return periods, i.e., 100 and 500 years, the minimum values are closer 

to lower limits calculated with LPIII. The mean annual maximum daily rainfalls in 

Simulation A for these return periods are close to the quantile estimated given by LPIII. 

Additionally, the range of annual maximum daily rainfall in Simulation A for return 

periods of 100 and 500 years are reasonable.  

Figure C4 shows that the annual maximum daily rainfalls estimated from 

Simulation B have a wider range than the values determined using the LPIII method. 

For example, Simulation B estimated that the annual maximum daily rainfall for return 

period of 10 years to be between 104 to 298 mm, while the LPIII method estimated the 

value to be in the range of 124 to 149 mm. The minimum values for return periods of 10 

and 25 years are smaller than the lower limits estimated using the LPIII method.  It 

should also be noted that the means estimated from Simulation B are close to the upper 

limits determined by LPIII method.  
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Figure C3 Range of simulated annual maximum rainfall for return periods 10, 25, 50, 100 and 500 years for whole time 
series 
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Figure C4 Range of simulated annual maximum rainfall for return periods 10, 25, 50, 100 and 500 years for wet years 
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Simulation A gives a wider range of annual maximum daily rainfall for all return 

periods when it is compared with Simulation B. However, considering that the 

parameters from Simulation B are estimated from a shorter period of observed data, the 

results are comparable to the values from Simulation A. Table C4 shows the difference 

(in percentage) between the annual maximum daily rainfall estimated from Simulations 

A and B. In general the differences for all return periods are very small, with an average 

of 4.8%. The highest difference is shown at the upper limit for return period of 500 

years, with 7.8%.   

 

Table C4 Percentage difference between the estimated values from Simulations A and B 

Return Periods (years) 

Difference (%) 

Lower Limit 
(mm) 

Mean (mm) 
Upper Limit 

(mm) 

10 6.1 5.1 3.1 
25 5.9 5.1 4.5 
50 4.0 4.2 3.0 
100 5.4 4.8 2.1 
500 5.0 5.8 7.8 

 

CONCLUSION 

 The estimated annual maximum daily rainfalls using the parameters calculated 

from 52 years of sample gives more reasonable values when it is compared with the 

measured data. It should be noted that the annual maximum daily rainfalls estimated 

from simulation B (using the parameters from a shorter measurement) show 

encouraging results even though bigger differences are calculated when they are 

compared to simulation A.  


