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Abstract: This paper describes an approach to develop soil salinity maps using 
remotely sensed data. This approach is applied to an ongoing salinity monitoring 
program in a portion of the Arkansas Valley in southeastern Colorado. The approach 
involves integrating remote sensing data from Ikonos, GIS, and spatial analysis. The 
collected soil salinity data is tied to the corresponding values from the satellite 
image bands. The stepwise regression method is applied to find the best correlation 
between soil salinity data and corresponding pixel values on the satellite image 
bands. Two regression methods were tested with the combinations of variables: 
ordinary least squares (OLS) and spatial autoregressive (SAR). The results show 
that, the green band, the near infrared band, and the near infrared band divided by 
the red band ratio are strongly related to soil salinity. When these variables were 
introduced to the OLS model, the analysis of residuals suggested that there might be 
some spatial dependency based on the Lagrange multiplier test. When the same 
variables were introduced to the SAR model, the likelihood ratio test indicated that 
the SAR model was a significant improvement over the OLS model. Also the SAR 
model has a smaller value of Akaike Information Corrected Criteria (AICC).    

1. Introduction 

Soil salinity is a severe environmental hazard (Hillel 2000) that impacts 
the growth of many crops. Worldwide, salinization problems are spreading at 
a rate of up to 2 million hectares a year, which offsets a good portion of the 
increased productivity achieved by expanding irrigation (Postel 1999). 
Natural salinization, or primary salinization, results from the long-term 
influence of natural processes. Human-induced salinization, or secondary 
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salinization, is the result of salt stored in the soil profile being mobilized by 
extra water provided by human activities such as irrigation (Szabolcs 1989).  

The Arkansas River is one of the most saline rivers of its size in the 
United States. Salinity levels, measured as dissolved solid concentrations, 
increase from 300 mg/L near Pueblo to over 4,000 mg/L at the Colorado-
Kansas border (Ghassemi et al. 1995). It was estimated that in 1977 over 
200,000 acres in the Arkansas Valley were being irrigated with water that 
contained salinity concentrations greater than 1,400 mg/L (Miles 1977). 
Gates et al. (2002) established that salts were returned from the irrigated 
valley to the Arkansas River at an estimated average rate of about 740 
kg/week per irrigated hectare. Goff et al. (1997) noted that the degradation of 
the quality of surface and groundwater in the lower Arkansas River Valley is 
closely related to extensive agricultural diversions and usage, and the 
consumption of irrigation water by evapotranspiration increases salinity in 
return flows.  

Remotely sensed data has a great potential for monitoring dynamic 
processes, including salinization. The ability to predict soil salinity accurately 
from remote sensing data is important because it saves labor, time, and effort 
when compared to field collection of soil salinity data (Robbins and Wiegand 
1990). Remote sensing of surface features with aerial photography, 
videography, infrared thermometry, and multispectral scanners has been used 
intensively to identify and map salt-affected areas (Robbins and Wiegand 
1990).  

Metternicht and Zinck (1997) combined digital image classification with 
field observation of soil degradation and laboratory analysis to map salt and 
sodium-affected areas in the semiarid valleys of Cochabamba, Bolivia. 
Multispectral data acquired from platforms such as Landsat, SPOT, and the 
Indian Remote Sensing (IRS) series of satellites, have been found to be useful 
in detecting, mapping and monitoring salt affected soils. Dwivedi and Rao 
(1992) noted that the digital analysis of multispectral data using the spectral 
response pattern of salt-affected soils is plagued by misclassification, and in 
order to improve the detectability of these soils and other natural features 
using remote sensing data various image transforms must be developed. 
These transforms not only enhance the detectability of these features, but also 
aid data compression resulting in substantially reduced computational time 
and cost (Dwivedi and Rao 1992). Band ratios of visible to near-infrared and 
between infrared bands have proven to be better for identifying salts in soils 
and salt-stressed crops than individual bands (Craig et al. 1998; Hick and 
Russell 1990; and Hick et al. 1984). Srivastava et al. (1997) studied the 
accuracy of mapping shallow groundwater depth and salinity using remote 
sensing data. They formulated a methodology involving image processing 
and GIS techniques using false color, vegetation indices, density slicing, 
overlaying, and supervised classification and applied the methodology to 
IRS-1B LISSS II data. In their study, groundwater depth and salinity maps 
were based on reflectance variations of vegetation above the ground surface, 
and they assert that the species of vegetation found in an area and vegetation 
densities can provide evidence of shallow groundwater conditions. Wiegand 
et al. (1994) assessed the extent and severity of soil salinity in fields in terms 
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of economic impact on crop production and effectiveness of reclamation 
efforts. Their study emphazised practical ways of combining image analysis 
capabilities, spectral observations, and ground truth to map and quantify the 
severity of soil salinity and its effects on crops. Golovina et al. (1992) made 
an effort to automate methods of interpreting aerial photos in order to speed 
up the interpretation process and make it more objective. They stated that 
automated analysis is capable of performing a more complex evaluation of 
the quantitative degree of salinization than visual interpretation. 

The integration of remotely sensed data, Geographic Information Systems 
(GIS), and spatial statistics provides useful tools for modeling variability to 
predict the distribution, presence, and pattern of soil characteristics (Kalkhan 
et al. 2000). This integration also provides tools for assessing the landscape-
scale structure of forest and rangelands (Chong et al. 2001). Kalkhan et al. 
(2000) incorporated trend surface analysis to estimate the probability of 
exotic species richness. They found that Landsat TM bands 1, 2, 5, 6, and 7, 
elevation, slope, and aspect were significant predictors. Thomas et al. (1997) 
presented a rapid, cost-efficient methodology to link plant diversity surveys 
from plots to landscapes using unbiased site selection based on remotely 
sensed information. Utset et al. (1998) used a calibrated Four-Electrode 
Probe (FEP) for inexpensive and indirect determinations of salinity-sensor 
electrical conductivity (EC) in a plot in Cauto Valley, Cuba. Their cross-
validation analysis showed that EC semivariograms obtained from FEP 
measurements can characterize the soil EC spatial variation in a similar way 
to semivariograms of laboratory-measured soil EC.  

In this paper, we evaluate the relationship between soil salinity and 
satellite imagery. These relationships are evaluated using multiple regression 
models that are capable of accounting for any spatial dependency in the 
residuals. The best model is then used to produce salinity maps. 

2. Site Description and Data Collection 

The study area (Figure 1) for this project is located in southeastern 
Colorado, primarily in Otero County. This region was selected because it 
provides a good illustration of a salinity-affected area. The salinity 
monitoring program is applied on the sub-region scale and on the field scale. 
For the sub-region scale, salinity readings are taken twice each growing 
season in approximately 69 fields with an EM-38 salinity probe (Gates et al. 
2002). This EM-38 data is collected at between 60 and 120 points in each 
field depending on the field's area. In each of these fields, there is one 
monitoring well where groundwater level and groundwater salinity readings 
are taken during the year. For the field scale, fields with different irrigation 
systems, soil types and crop types were selected. In each of these fields, 
salinity readings are taken three times during the growing season. Each field 
also contains between 7 and 15 monitoring wells. At the field scale, the 
following readings are taken: soil salinity, water table fluctuation, and 
groundwater salinity, rainfall, estimates of irrigation water quality and 
quantity, and evapotranspiration. Yield samples are also taken. Figure 1 
shows the map of the study site along with the Ikonos satellite imagery that 

 33 



Eldiery et al. 

was acquired in 2001. The image covers part of the study area. The dominant 
irrigated fields were alfalfa, corn, cantaloupe, and onion. Five fields were 
selected for field scale study (7, 17, 20, 40 and 80). Three of these fields were 
planted with corn (17, 40, and 80) and are described in this paper. The other 
two fields (7 and 20) are excluded from this discussion because field 7 was 
planted with alfalfa and field 20 was not covered by the image. 
 

 
 
 
 
 

 
 
Figure 1. Map of the Lower Arkansas Valley study area. 
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3. Methodology and Procedure 

A satellite image from Ikonos was taken in 2001 which covers a part of 
the study area where the field scale monitoring is taking place. The irrigated 
fields in this region are mainly alfalfa, corn, wheat, cantaloupe, and onion. 
The reflection of the satellite image is affected mainly by the ground cover 
type, and each crop has a different reflection. For, the study described in this 
paper, only fields planted with corn (17, 40, and 80) were used. 

Soil salinity data collected using the EM-38 salinity probe are tied by 
location to the corresponding values from the different bands of the Ikonos 
satellite image. The stepwise regression technique is used to decide the 
combination of variables from the Ikonos image bands that relate to soil 
salinity. The relationships between soil salinity data and the four bands of the 
Ikonos satellite image (blue, green, red, and near infrared), the normalized 
difference vegetation index (NDVI), the near infrared band divided by red 
band (NIR/R), and principal component analysis (PCA) are evaluated with 
the regression models. The residuals from the regression models were tested 
for spatial autocorrelation using Moran’s I and the Lagrange multiplier test. 
In analyzing the residuals inverse distance weighting was used to define the 
spatial proximity of the sample data. If the residuals showed signs of spatial 
autocorrelation, the model was refit using a spatial autoregressive model 
(SAR). A likelihood ratio test was used to test the improvement of the SAR 
model to that of the ordinary least squares (OLS). Competing models were 
evaluated using Akaike Information Corrected Criteria (AICC). 

4. Results and Analysis 

Table 1 summarizes the results of the analysis. The OLS model included 
the green band, the near infrared band, and near infrared band divided by red 
band (NIR/R). The green band and NIR/R band ratio had a positive 
relationship with soil salinity while the near infrared band had a negative 
relationship. Analysis of residuals suggested that there might be some spatial 
dependency based on the Lagrange multiplier test. To account for the spatial 
dependency, the same variables were also presented to the SAR model, 
however their level of significant was lower. The likelihood ratio test 
indicated that the SAR model was a significant improvement over the OLS 
model. Also, the AICC for the SAR was smaller than that for the OLS model. 
There was a significant amount of spatial autocorrelation in the residuals (λ

∧  
= 0.93). This explains the decrease in the R2 value for the SAR model when 
compared to the OLS model (0.24 vs. 0.52). The presence of spatial 
autocorrelation makes the relationship between the satellite imagery and soil 
salinity more important than it actually is, thus inflating the R2 value as well 
as deceasing the standard errors associated with the parameter estimates. 
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Table 1. Summary of statistics for the OLS and SAR models for predicting soil 
salinity as a function of remote sensing imagery. 
Variable OLS SAR 
 R2 0.5206 0.2365 
 Residual Standard error 1.5623 1.3387 

Coefficient 6.238 4.6293 
Standard Error 1.462 2.1523 

Intercept 

p-value 0 0.0324 
Coefficient 0.0136 0.0128 

Standard Error 0.0029 0.0028 

Green 
Band 

p-value 0 0 
Coefficient -0.0112 -0.0101 
Standard Error 0.0019 0.0024 

Near 
infrared 
Band p-value 0 0 

Coefficient 0.9405 1.0577 
Standard Error 0.3588 0.3639 

NIR/R 

p-value 0.0093 0.004 
Coefficient  0.9353 
Standard Error  0.0349 

λ
∧  

p-value  0 
AICC 962.7875 897.1561 
p-value (Lagrange) 0  
Likelihood ratio p-value  0 
Sample Size 257 257 

 
Analysis of the residuals from the SAR model are displayed in figures 2,3 

and 4. The residuals are approximately normally distributed as is clear from 
Figure 2. The errors associated with the predicted soil salinity increased with 
increasing value of soil salinity values as seen in Figure 3. Finally, in the plot 
of residuals versus a weighted average of nearest neighbors (Figure 4), no 
pattern exists, suggesting that the SAR was able to account for the spatial 
dependency in the residuals.  
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Figure 2. Histogram of residuals. 
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Figure 3. Residuals versus predicted values of soil salinity. 
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Figure 4. Residuals versus the weighted average of nearest neighbors. 

 
The following figures (5, 6, 7, and 8) show the predicted soil salinity 

maps for the area covered by the image and another three corn fields. These 
maps are derived using the equation for the SAR model shown in Table 1. 
Figure 5 represents the whole area covered by the image. In addition to the 
irrigated fields, this area contains many other non-irrigated areas (rivers, 
lakes, urban areas, etc). The soil salinity values for these non-irrigated areas 
are not realistic since there were no data collected for these areas. But when 
looking at the fields where data were collected, especially for the images of 
the individual fields, the non-irrigated areas help in interpreting the results. 
Field 17 represents one of the homogeneous fields, except for a small area at 
the left north part of the field, the field's salinity level is almost the same 
throughout. This homogeneity is reflected in the predicted soil salinity map 
shown in Figure 6. Field 40 and field 80 represent heterogeneous fields. The 
predicted maps for these two fields (Figures 7 and 8) show most of the highly 
affected areas by soil salinity.  
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Figure 5. Predicted soil salinity for the area covered by the image. 

 

 
Figure 6. Predicted soil salinity for field 17. 
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Figure 7. Predicted soil salinity for field 40. 
 

 
 

Figure 8. Predicted soil salinity for field 80. 
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5. Summary and Conclusion 

The results presented in this paper show the feasibility of using remote 
sensing data to predict soil salinity. Compared to the labor, time, and money 
invested in field work devoted to collecting soil salinity data, the availability 
and ease of acquiring satellite imagery is very attractive. Numerous 
combinations of bands have been evaluated using OLS and SAR models. It is 
clear from the results presented in this paper that selecting the regression 
model is very important in determining the quality of the map of predicted 
soil salinity. The results also show the importance of the residuals and how 
they can affect the quality of the maps generated.  The presence of spatial 
autocorrelation makes the relationship between the satellite imagery and soil 
salinity more important than it actually is.  In evaluating the regression 
techniques for soil salinity, attention should be paid to the issue of selecting 
the most suitable regression model.  It is very important for future research to 
consider most of the regression variables that control the accuracy of the 
regression. This paper shows that depending only on R2 and standard errors 
will not produce salinity maps of high quality and high accuracy when using 
remote sensing. Likelihood ratio test, Lagrange multiplier, and AICC must be 
considered to improve the quality of the interpolated maps.  
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