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Abstract.  This paper presents an application of an evolutionary optimization 
algorithm for multiobjective analysis of selective withdrawal from a thermally 
stratified reservoir. A multiobjective particle swarm optimization (MOPSO) algorithm 
is used to find nondominated (Pareto) solutions when minimizing deviations from 
outflow water quality targets of: (i) temperature; (ii) dissolved oxygen (DO); (iii) total 
dissolved solids (TDS); and (iv) potential of hydrogen (pH).  The decision variables 
are the flows through each port in the selective withdrawal structure.  

The MOPSO algorithm, implemented as an add-in for Excel, is able to find 
nondominated solutions for any combination of the four abovementioned objectives. 
An interactive graphical method was also developed to display nondominated 
solutions in such way that the best compromise solutions can be identified for 
different relative importance given to each objective. The method allows the decision 
maker to explore the Pareto set and visualize not only the best compromise solution 
but also sets of solutions that provide similar compromises. 
 
1. Introduction 

Decision making in water resources planning and management frequently 
involves multiple objectives. As greater attention is being given to the 
environmental and social aspects of water resources allocation and 
management the need for effective multiobjective optimization approaches is 
increasing. Many of the developments in the area of multiobjective analysis in 
the United States have come from the field of water resources (Goicoechea et 
al. 1982). 

In multiobjective optimization, a set of nondominated solutions is usually 
produced instead of a single recommended solution. According to the concept 
of nondominance, also referred to Pareto optimality, a solution to a 
multiobjective problem is nondominated, or Pareto optimal, if no objective can 
be improved without worsening at least one other objective.  

Traditional multiobjective optimization methods attempt to find the set of 
nondominated solutions using mathematical programming. In the case of 
nonlinear problems, the weighting method and the ε-constraint method are the 
                                                 
1 Dept. of Civil and Environmental Engineering, Colorado State University, 1600 W. Plum St. 
26H, Fort Collins, CO 80521, Tel: 970/492-9899,  abaltar@engr.colostate.edu  
2 Dept. of Civil and Environmental Engineering, Colorado State University, B213 Engr. 
Building, Fort Collins, CO 80521, Tel: 970/491-5248, fontane@engr.colostate.edu  

© Hydrology Days 

mailto:abaltar@engr.colostate.edu
mailto:fontane@engr.colostate.edu


Baltar and Fontane 

most commonly used techniques. Both methods transform the multiobjective 
problem into a single objective problem which can be solved using nonlinear 
optimization. 

With the weighting method, nondominated solutions are obtained if all 
weights are positive, however not all Pareto optimal solutions can be found 
unless all objective functions as well as the feasible region are convex. Another 
disadvantage of this method is that many different sets of weights may produce 
the same solution, compromising the efficiency of the method. When the 
weights reflect the preferences of the Decision Maker (DM), the method gives 
the best-compromise solution, i.e. the solution which produces the highest 
utility to the DM. The ε-constraint method, on the other hand, does not require 
convexity but only leads to nondominated solutions if certain specific 
conditions are satisfied (Miettinen 2001). 

According to Coello Coello (2001), the first hints on the potential of 
evolutionary algorithms (EA) for multiobjective optimization occurred in the 
1960s but this research area remained largely unexplored until mid 1980s. This 
author also highlighted two advantages of evolutionary algorithms that make 
them particularly suitable for multiobjective optimization, when compared to 
traditional mathematical programming techniques: 

• EA work simultanously with a set of possible solutions, the so-called 
population, and several nondominated solutions may be found in a 
single run of the algorithm; 

• EA are less sensitive to the shape or continuity of the Pareto surface. 
Since the mid 1980s, a growing number of evolutionary multiobjective 

optimization algorithms have been proposed in the literature (Fonseca and 
Fleming 1995). Some studies have attempted to compare different algorithms. 
Coello Coello et al. (2004) compared four different algorithms when applied to 
five different test problems. All test problems, however, involved only two 
objectives. Zitzler and Thiele (1999) compared another five methods with three 
test problems. Some of the methods compared were later improved. 

Particle swarm optimization – PSO (Kennedy and Eberhart 1995) is one of 
the newest techniques within the family of evolutionary optimization 
algorithms. The algorithm is based on an analogy with the choreography of 
flight of a flock of birds. Due to its fast convergence, PSO has been advocated 
to be especially suitable for multiobjective optimization (Coello Coello et al. 
2004). 

There are many variants of the single objective PSO but in most of them 
the movement of the particles towards the optimum is governed by equations 
similar to the following:  

 
( ) ( ) ( ) ( )( ) ( ) ( )( )ttrcttrctwt igiiii xPxPvv −⋅⋅+−⋅⋅+⋅=+ 22111   (1) 

( ) ( ) ( 11 ++=+ ttt iii vxx )             (2) 

Where w is an inertia coefficient that has an important role balancing 
global (a large value of w) and local search (a small value of w), c1 and c2 are 

2 



A generalized multiobjective particle swarm optimization solver for spreadsheet models: 
application to water quality 

constants (usually c1 = c2 = 2), r1 and r2 are uniform random numbers in [0,1], 
Pi is the best position vector of particle i so far, Pg is the best position vector of 
all particles so far, xi(t) is the current position vector of particle i, and vi(t) is 
the current “velocity” of particle i. Mendes et al. (2004) suggests an inertia 
coefficient w of less than 1, while other authors recommend to start with larger 
values and decrease with time, for example from a value of 1.4 to 0.5 (e.g. 
Elbeltagi et al. 2005, Jung and Karney 2006). Coello Coello et al. (2004) 
highlighted the sensitivity of the standard PSO algorithm to the value of w and 
proposed the introduction of a mutation operator that assures an adequate 
global search while keeping a small value of w (suggested 0.4) which favors a 
refined local search. 

Several applications with evolutionary multiobjective optimization have 
been recently reported in the water resources literature (e.g. Liong et al. 2001, 
Muleta and Nicklow 2005, Suen et al. 2005, Tang and Reed 2005, Kapelan et 
al. 2005). None of these applications, however, used multiobjective PSO. Jung 
and Karney (2006) compared the performance of single-objective Genetic 
Algorithm and PSO approaches to optimize the selection, sizing, and 
placement of hydraulic devices for transient protection. The authors studied six 
different cases and concluded that both algorithms produced very similar 
results in most cases but the PSO found better solutions when the same 
population size and number of iterations were applied. 

In this paper, a modified version of the multiobjective PSO (MOPSO) 
proposed by Coello Coello et al. (2004) is used with an application to analyze 
the problem of selective withdrawal from thermally stratified reservoirs. A 
graphical procedure to incorporate the DM’s preferences is also proposed, 
further exploring the set of nondominated solutions and displaying the best-
compromise solution as well as families of solutions with similar 
compromises. 
 
2. Multiobjective Particle Swarm Optimization 

In the MOPSO algorithm (Coello Coello et al. 2004), the performances of 
different particles are always compared in terms of their dominance relations. 
The main characteristic of this algorithm is the use of an external repository 
which stores nondominated solutions. The algorithm starts by generating an 
initial population. All the particles of this population are compared to each 
other and the nondominated particles are stored in the repository. The 
particles’ positions will be subsequently updated using the following: 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )ttrcttrctwt ihiiii xRxPvv −⋅⋅+−⋅⋅+⋅=+ 22111   (3) 

Where Rh is a solution selected from the external repository in each 
iteration t, and the other terms have already been defined, with w = 0.4. 

The best position vector of particle i, Pi, is initially set equal to the initial 
position of particle i. In the subsequent iterations, the best position vector is 
updated in the following way: (i) if the current Pi(t) dominates the new 
position xi(t+1) then Pi(t+1) = Pi(t), (ii) if the new position xi(t+1) dominates 
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Pi(t) then Pi(t+1) = xi(t+1), or (iii) if no one dominates the other then one of 
them is randomly selected to be the Pi(t+1). 

In MOPSO there is no such thing as the best position vector (Pg) as in the 
standard PSO. There are several equally good nondominated solutions stored 
in the external repository. To update the velocity of each particle using 
Equation (3), the algorithm has to select one of the position vectors stored in 
the repository. This selection is made in such a way that nondominated 
solutions located in regions more densely populated in the objective space have 
lower probabilities of being selected, therefore leading to better distributions of 
points in the Pareto front.  Instead of using the adaptive grid proposed in 
Coello Coello et al. (2004), the approach followed in this study simply 
calculates, in the objective space, the density of points around each solution 
stored in the repository and performs a roulette wheel selection such that the 
probability of choosing one point is inversely related to its associated density.  

In every iteration t, the new positions of all particles are compared among 
themselves and the nondominated ones are then compared with all solutions 
stored in the repository. The repository is then updated, adding new 
nondominated solutions and eliminating old solutions that are now dominated. 
The size of the repository is an important parameter to be set. Once the 
repository is full and a new nondominated solution is found, then this new 
solution takes the place of another nondominated solution in the repository 
which is selected randomly using a similar procedure based on density as 
described above but now assigning higher probabilities of being selected to 
solutions located in denser regions of the objective space. The algorithm runs 
until the maximum number of iterations (cycles) is reached. 

The algorithm handles constraints in a very simple and efficient way. 
When comparing two different solutions, with at least one infeasible, the 
algorithm does the following: (i) one feasible solution dominates other which 
is infeasible; (ii) with two infeasible solutions the one with smaller violation of 
the constraints dominates the other. To implement this procedure when several 
constraints are imposed, an index is calculated to reflect the aggregated degree 
of constraint violation. 
 
3. An Application to Water Quality 

MOPSO is applied to find nondominated solutions for the operation of a 
selective withdrawal structure. The algorithm is used to determine flows from 
the various ports that minimize the square deviations from outflow water 
quality targets of: (i) temperature, (ii) DO, (iii) TDS, and (iv) pH. The model 
was implemented in a spreadsheet format using Microsoft Excel© and Visual 
Basic for Applications. 
 
3.1. The select withdrawal model 

The selective withdrawal (SELECT) model is described in detail in Bohan 
and Grace (1973), and Fontane and Schneider (1994).  Figure 1 presents a 
schematic view of the type of selective withdrawal structure modeled in this 
application.   
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Figure 1. Selective Withdrawal Structure 
 
The SELECT model evaluates the release temperature, DO content, TDS 

and pH for any combination of flows from different ports. The user has to 
provide, as main inputs, the levels where the ports are located, and the water 
quality profiles in the reservoir for the four mentioned variables. Using the 
temperature profile, the model computes the density profile which is used to 
determine the zone of withdrawal of each port using Equation (4).  
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Where Vo is the average velocity through the port, Z is the vertical distance 
from the elevation of the port center line to the lower or upper limit of the zone 
of withdrawal, Ao is the area of the port opening, ∆ρ’ density difference 
between the port center line and the lower or upper limit of the zone of 
withdrawal, ρo is the density at the elevation of the port center line, and g is 
acceleration due to gravity. 

Once the zone of withdrawal is defined, the velocity profile within this 
zone is determined as a function of the density profile and the average velocity.  
Details of these calculations can be found in Bohan and Grace (1973).

The water quality characteristics of the total outflow are then computed as 
a flow-weighted average throughout the depth of the reservoir using the 
velocity profile and the quality profiles. 

Fontane and Schneider (1994) used a linear goal programming approach to 
find the flows that meet release quality targets as closely as possible. This 
application, however, produced only one solution for each set of weights 
introduced by the DM to penalize deviations from the quality targets. The 
SELECT model is first used to find quality characteristics for each port 
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individually. It assumes that the release qualities will be linear combinations of 
the quality characteristics of each individual port. It solves the linear goal 
programming problem to find the optimal flows from the various ports and 
then uses the SELECT model again to recalculate the characteristics for the 
new set of flows. The iterative process usually converges in two or three runs 
of both models. This approach is not suitable to investigate trade-offs among 
the water quality objectives, however. 

 
4. Multiobjective Optimization Problem 

The MOPSO was coded in VBA as a generalized multiobjective solver that 
can be imported as an add-in to Excel. The MOPSO Solver allows the user to 
specify up to six objectives to be considered. The user specifies the cell 
references for the objectives, for the decision variables, and for the constraints. 
The solver also includes a scripting tool which allows the user to code specific 
procedures that will be called immediately before the objective functions are 
evaluated in the MOPSO algorithm. This tool can be used to call external 
programs or perform computations that cannot be easily made in the 
spreadsheet. This considerably increases the flexibility of the MOPSO Solver. 
The MOPSO Solver Interface is presented in Figure 2. 

 

 
Figure 2. MOPSO Solver Interface 
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The MOPSO Solver also includes a procedure to incorporate more 

intelligence in the way the particles move from one iteration to the next. With 
Equation (3), a particle’s position in any iteration is updated using a randomly 
defined combination of the particle’s individual best previous position and the 
position of a nondominated particle selected from the repository. In the case of 
constrained problems, this combination may yield an infeasible solution. The 
MOPSO Solver has an option that allows the evaluation of feasible directions 
for all dimensions, adjusting the velocity given by Equation (3) so that the 
particle is not allowed to make large steps in directions of increasing 
infeasibility. 

Figure 3 presents the temperature-DO trade-off curve generated by using 
the MOPSO Solver with 100 particles, a repository size of 50 solutions, and 50 
iterations. The processing time was 130 seconds in a PC AMD Athlon™ 64, 
2.2 GHz. This problem has two objectives and five decision variables. 
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Figure 3. Temperature-Dissolved Oxygen Trade-off Curve 
 
Figure 4 presents a plot of the Pareto surface when minimizing the square 

deviations from the targets of temperature, DO, and TDS. The MOPSO 
processing time was 660 seconds with 150 particles, repository size of 150 
solutions, and 150 iterations. 

The MOPSO Solver also allows the user to define binary decision variables 
that can be applied to find nondominated solutions when a restriction on the 
maximum number of ports to be used is desired. For this problem, the user 
must specify five decision variables representing flows through each port and 
five binary variables that will determine in each solution whether that port will 
be used. The flow in each port is the product of the flow decision variable and 
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its associated binary variable. The user can then include a constraint 
establishing a limit to the number of ports used, by making the sum of the 
binary variables to be equal to this limit. This is a very difficult problem to 
solve, and nonlinear mathematical programming optimization methods will 
have difficulty finding Pareto optimal solutions. 
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Figure 4. Temperature-DO-TDS Trade-off Surface 
 

4.1. Procedure to visualize and explore the Pareto set 
A procedure was developed to incorporate the preferences of the DM as 

well as to visualize and explore the Pareto set. First, all Pareto solutions are 
normalized using a compromise programming approach with a Euclidian norm 
(L-2 norm). All objectives are placed as vertices equally spaced in a 
circumference of diameter 1. Let N be the number of objectives. The first 
objective is arbitrarily assigned to coordinates [0.5,1.0]. The x and y 
coordinates of the following objectives are given by the following equations: 

2
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Where N is the number of objectives and k = 2,3,..N.  
The normalized metrics are calculated for each objective as follows: 

( ) ( ) ( )[ ]
( ) ( )[ ]2

2,,
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−
−

=     (11) 

Where CP(i,k) is the [0,1] normalized metric of particle i for objective k, 
and R(i,k) is the value of objective k of particle i in the repository. 
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The normalized metric for each objective is then used to calculate a new 
coordinate measured in the diameter corresponding to that objective. The new 
coordinates are given by: 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅−⋅+⋅+= θππ 22

2
cos,, kkkiCPkxkix obCP   (12) 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅−⋅+⋅+= θππ 22

2
sin,, kkkiCPkykiy obCP   (13) 

Each particle in the repository now has a (x,y) coordinate for each of the N 
objectives. The particle is then plotted in the centroid defined by these N 
points. A weighted average of the normalized metrics is calculated based on 
weights given by the DM. The DM can change the weights and automatically 
see the best-compromise Pareto solution, as well as other Pareto solutions with 
a similar compromise. Figure 5 presents the MOPSO Solver interface with the 
temperature-DO-TDS-pH trade-off graph for the case of equal weights. Figure 
6 presents the same trade-off graph for two other sets of weights, one set with 
equal weights for temperature and DO and no importance to TDS and pH, and 
another considering only pH. 
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Figure 5. MOPSO Solver Interface: Temperature-DO-TDS-pH Trade-off 
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Figure 6.  Temperature-DO-TDS-pH Trade-off Graphs 
 
5. Conclusions 

The multiobjective particle swarm optimization algorithm, applied in a 
model for operation of selective withdrawal structures, proved to be able to 
find well-distributed nondominated solutions in the objective space. Compared 
to the goal programming approach of Fontane and Schneider (1994) that only 
produced single compromise solutions based upon an a priori set of weights, a 
single run of the MOPSO defined the trade-off regions among the four water 
quality objectives. Once defined, these trade-off regions can be explored to 
find a number of compromise solutions based upon a posteriori set of weights. 

The graphical procedure proposed in this paper can help decision makers to 
explore Pareto sets when three or more objectives are considered. The best-
compromise solution may be identified as well as subsets of the Pareto set that 
provide similar compromises. 
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The MOPSO Solver was found to be very flexible allowing the user to 
easily conduct many types of analyses.  The implementation of the MOPSO 
Solver as an add-in EXCEL greatly enhances the potential applicability of the 
approach. 
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