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ABSTRACT

In most available computer models of stream-aquifer interaction,
the river stages are treated as boundary conditions. However in reality
for low flow conditions, the actual problem is the prediction of the
river stages. In addition for management purposes it is essential to
have explicit relations between the decision variables such as pumping
rates or upstream flow releases and the resulting states of the system
such as downstream river flows and aquifer drawdowns. By combining the
diserete kermel approach for an isolated aquifer with the discrete
kernel approach for an isolated river (treated as a cascade of Muskingum
reaches) it was possible to derive the discrete kernels (influence
coefficients) for all the states of interest as responses to all the
relevant decision variables. The developed tool is well suited for
management due to the explicit nature of the relatians which makes it
possible to formulate the management (optimization) problem as a Mathe-
matical’Programming problem for which efficient solution algorithms

exist.
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RESEARCH OBJECTIVES

The first objective of this project was the development of a stream-
aquifer model that portrays properly the dynamice of the interaction
between a stream (or a canal) and the underlying water-table aquifer.

The second objective was to design the model so that it can be used on
a practical (i.e., inexpensive) basis for integrated management of a

surface-groundwater system.



ACHIEVEMENTS OF CONTRACT

It is not desirable to repeat in this completion report all the
results obtained over the past three years and the detailed procedures
by which they were obtained. These results and procedures can (or will)
be found in one dissertation (Illangasekare, 1978), one report (Illan-
gaskare and Morel-Seytoux, 1978),-one published paper (Illangasckare and
Morel-Seytoux, 1978) and several papers in preparation.

Rather a brief review of the methods of attacks and a sample of
results will be given. The emphasis is on the latest developments
which have not been reported elsewhere and which hold promise for the
future. Generally speaking the thrust of the research has been in the
direction of development of new and imaginative methods that will reduce
the cost of management studies of conjunctive use of surface and ground
waters without significant reduction in accuracy. In this regard the

project was fairly successful.



A. INTRODUCTION

In a system which includes natural components such as an aquifer
and a stream in hydraulic connection with it and is subjected to man-
made interferences such as stream diversions; pumping wells, field irri-
gation, etc., the future state of the system will depend on a number of
management decisions. The state of the system can be described by water
table drawdowns, aquifer return flows to the stream and river stage
drawdowns. The evolution of these states depends upon the decisions:
pumping rates from the wells, upstream inflows into the river, all of
which can be controlled. The evolution of these states depends also on
the initial conditions of the system such as initial water table eleva-
tions and initial river stages, which cannot be controlled.

The prablem at hand is the development of a method of quantitative
description of the states in terms of the decision and initial variables
which is accurate, cost effective and explicit, so that the effect of
various management strategies can be predicted properly, easily and
inexpensively. The approach taken to develop these explicit relations
was described in earlier studies (Morel-Seytoux et al, 1973, 1975;
Morel-Seytoux, 1975, 1977; Morel-Seytoux and Daly, 1975; Rodriguez, 1976;
Peters, 1977). It consists of describing separately the behaviour of the
aquifer and of the stream (as if the other component did not exist) by
a suitable linear model and then combining the two components in order

to describe their actual dynamic interaction.



B. ISOLATED AQUIFER COMPONENT

It has been shown previously (e.g., Morel-Seytoux and Daly, 1975)
that drawdown in an aquifer can be expressed in terms of the pumping

rates by the relation:

s, () =

I~
[T s Fon}

SWP(n—v+1)Qp(v) : (1)

1 v=1

P

where sw(n) is the drawdown at any point w at the end of the nth
time period, the dwp( )} are the so-called discrete pumping kermels
which are obtained from a finite-difference (Morel-Seytoux and Daly,
1975; Rodriguez, 1976) or finite element (Illangasekare and Morel-
Seytoux, 1978; also Appendix 1 of this report) model, P 1is the total
number of wells, and Qp(v) is the mean pumping rate from well p
during the vth period [(or pumped volume for the period).

1f one does not treat the presence of the stream in an interactive
way but as an imposed boundary condition, then in the presence of a

stream Eq. (1) can be generalized to the form:

I o~10
o~
It~
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8., (n-v+1) Q_(v) (2)

Sw(n) = .

, Gwp(n—v+1) Qp(V) +

1 v=1 r=1 v

where Qr(v) is the pumping rate from the rth reach of the river and

R is the number of reaches. The aquifer return flow is formally treated
as a pumping rate from the river. However whereas pumping from a well
can be effectively controlled the aquifer return flow cannot be because
it depends itself upon the state of the aquifer. The solution provided
by Bq. (2) i1s mathematically corrcct but only formal because Qr(v)
though shown on the right-hand sidec is not a decision variable but is

itself a state (dependent) variable.



Also Egs. (1) and (2) are only valid for a system initially at
rest. If ipitially the system is not at rest, cven without pumping from
wells or from the river the drawdowns will change in time, water moving
from the high levels to the low ones. The natural redistribution of
drawdowns naturally depends upon the initial conditions. A method of
prediction was developed in earlier studies (Morel-Sevtoux, 1975, 1977:
Peters, 1977) consisting of recreating the initial conditions by arti-
ficially pumping from the system one period prior to the inital time.
With this procedure the general behaviour of drawdowns is characterized

by the expression:

0o~
He~-13
LI e = |

8 (M) (s-5) (3)

sw(n)-'g = 1

8 e (M-V+1)Q (V) +

e=l vy=1 T

where E 1is the total number of excitation points (wells and reaches),
s; is the initial drawdown at point =, s is the initial average
drawdown in the aquifer and the eww( ) are (influence) coefficients
deduced from the Gwe( } coefficients by linear algebraic manipulaﬁions

(Morel-Seytoux, 1975, 1977; Peters, 1977; Illangasekare, 1978).

C. ISOLATED RIVER COMPONENT

For modeling purposes the stream is divided into a set of R
reaches (Fig. 1). The isolated stream is subjected to two types of
excitations: (1) upstream inflows and (2) diversioné. if Sr deéig—
nates storage in reach r, Rr the inflow into reach r, Rr+1 the out-
flow from the reach and Wr the net withdrawal (e.g., diversion-
tributary inflow) from the reach, then the continuity cquation can he

written in the form:
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(4)

The selected pseudo-momentum equation used to describe the stream evolu-

tion is the Muskingum equation:

S. = K, [ErRr + (- IR 1 (5)

To maintain the convenience of dealing with lincar systems it is assumed
that for the expected range of fluctuations in river stage there cxists

a proporticnality between storage and river stage, namely:

5, = Ar(yr B ?;) (6)

where S is deviation of storage in reach r from a steady-state
reference level, Ar is the horizontal water surface area of the reach,

y.. 1is river stage in the reach measured from river bed and y is the

T

steady-state reference stage. Equivalently Eq. (6) can be written in

terms of river drawdown rather than stage in the form

S. = - Ar(or-Er) (7N

where . is river drawdown measured from a high datum and 5% is the
steady-state reference river drawdown.

It has been shown previously (Morel-Seytoux, 1975) using the system
of Egqs. (4), (S) and (6) that the reach drawdown ar(t) can be expressed
as a function of the deviation of inflow from the steady-state reference
level into the first reach denoted by 1I*(t) and stream withdrawals
from the rtM reach and all the reaches upstream of it. The general solu-

tion is of the form:
t Wp(r)
t- - b I* }d 8
1£Kro(T){ b Tl (®)

N~

— 1
o {t) = o ~ —
T T Ar 0



where bo and n_ are functions of the Muskingum parameters K and
£ and Krp( ) 1is the routing kernel. The derivation of the expres-
sions for the routing kernels has been given in earlier studies (Morcl-

Seytoux, 1975). 1In discrete form Eq. (8) becomes:

W (V)

or(n) = E} -

o~
i ~13

xrp(n—v+l) {-

+ b I*(v)} (9)
1 0 P

R
Ar p=l v

where crfn) is the river drawdown at the end of the nth period,
Wp(v) is the volume of water withdrawn from the oth sub-reach during
the vth period and I*(v) 1is the deviation of upstream inflow from the

steady state reference inflow during the yth period. The discrete rout-

ing kernel coefficients x_(v] are defined as:
rp
1
Xy (V) =(j)' Krp(\)—T)dT (10)

It has been shown (Morel-Seytoux, 1975) that the routing kernels are
functions of the Muskingum parameters X and & of all the reaches.
Hence, if the Muskingum parameters of the reaches are known the discrete
routing kernels can be generated and saved. The coefficients in combina-
tion with the other fixed parameters of the routing model (Ar’ n.
and br) can be used in Eq. (9) to derive the response or(n) due to
upstream and withdrawal excitations I(v) and W(v).

In all the previous discussion it was tacitly assumed that there
was no return flow or seepage taking place. However, Eg. (9) is still
mathematically correct by interpreting the net withdrawal Wr as the

difference hetween diversions Dr and return flows Qr' Then Eq. (9)

takes the more explicit form:



Q, (v) - Dp (v)
]xrp(n—v+1) T + pr (V)} (10)
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The upstream inflows (I*) and the diversions Up are controllable true
decision variables whereas the aquifer return flows Qp even though they
appear on the right-hand side are not decision variables. Roughly specak-
ing the system of Eqs. (2} and (10) provide two sets of equations for
three sets of state variables, Sy Or and Qp. Another set of cqua-
tions is needed to describe the stream-aquifer interaction.

Eq. (10) applies for a stream initially in a steady state at the
reference level. If initially the system was not in steady state a
relaxation term must be added on the right-hand side of Eq. (10). Let
o; denote the initial river drawdowns. To represent the effect of these
initial condition excitations one can assume that the system was in a
steady state one period prior to initial time. One then chooses arti-
ficial diversions for the zeroth period in such a way that the predic-
tion of drawdown by Eq. (9) with a summation index for time starting at
the value O rather than 1 for n=0 be precisely the o;, namely:

D (0)
Xpy (1) (11)

1 np

— 1

o = 0 + —

T T A
T

It o~

p

The system of Egs. (11) provide R equations for the R unknowns
Dp(o) given the initial river drawdowns o;. Since the system of Eqs.
{11) is linear the Dp(o) can be expressed as linear combinations of
the (o;—8¥). Then substitution of these expressions for the Dp(o)

in Eq. (9) will yield the final expression for the river drawdown as:
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T n QM -D V)
— 1
T o X. (n+1)
1 T ° —
- = e a* (0. - 0.) (12)

where the a;i are initial river drawdown coefficients which are func-

tions of the routing discrete kernels and stream parameters.

The second term on the right-hand side represents the effect of
diversions and aquifer return flows (external excitations) on the river
drawdowns whereas the last term (the relaxation term) represents the

effect of the initial stream conditions (internal excitations).

D. STREAM-AQUIFER INTERACTION

As discussed previously, Eqs. (2) and (10) apply respectively to
the isolated aquifer and the isolated stream. In each case the aquifer
return flow is treated as an imposed boundary condition. 1In reality it
depends upon the state of the system. It has been shown that the aquifer
return flow, Qr’ could be expressed in terms of reach drawdown and

aquifer drawdown in the form:

O =7 (o, -5) (13)

where Fr is the reach transmissivity which can be expressed as a

function of aquifer and river parameters as:

T 2
2
where T 1is the aguifer conductivity, e the saturated thickness, L

is the length of the reach, and Wp is the wetted perimeter. The
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validity of the derived Eq. (14) (Illangasekare, 1978) has been verifioed
on a reach of the South Platte River (Morel-Seytoux, 1977; Pcters, 1977).

An alternate form of Eq. (13) is:

0 = -
T Fr [Gbr * yr sr] (1)

where Obr is the drawdown to river bed and Y. i1s river depth (or stage).
With the system of Eqs. (13} the set of Eqs. (2) and (10) is now complete
and it is possible to express the state variables of aquifer drawdown,

river drawdown, reach storage, reach outflow and aquifer return flow in
terms of the external excitations (pumping rates, diversions, upstream
inflows) and of the internal excitations (initial aquifer and reach draw-

downs). The coefficients in these linear relations are the influence

coefficients. These relations can be written in the general format:

Y (n)

i

T R
(1) ° (2) e
ngl X.ﬂ (n) Sﬁ * Zl X.o (n) OO

Y

X3 (novel) 10w)

+
e~

v=l
p n R n
7 T xWaen e s T x®mewnn o
p=1 v=1 °P P p=1 v=1 P
Fxmy 17 x Py (16)

where Y (n) is the state variable of interest and the X(l)( ),

X(Z)( ), X(S)( ), X(4)( ), X(S)( ) and X(6)( ) are the matrices
or vectors of influence coefficients relating the state variable to the
(7

decision variables. The coefficient X does not depend upon the

excitations and may be called a constant in that sense though it varies

with time. Table 1 provides the nomenclature used for all the particular



Table 1.

Symbols Used for the Various Influence Coefficients

Decision Variables

State Variabl Initial Initial Tnitial .
¢ variable Aquifer River Upstream Pumping Upstream c g¥§tgnt
Drawdown Drawdown Inflow Rate Diversion Inf%ow oetTicients
5; 0; 1(v) Qp ™) D, (V) I
Influence Coefficients
v <) £ (2) (3 <@ 2 (5) < (6) (7
Reagh(iiturn flow er( ) Urp( ) wr( ) Erp( ) Crp( ) Qr( ) At( )
T
Reach(i;awdown eT“( } fr“( ) gr( ) drp( ) ro( ) Cr( ) Rr( )
°r
Reagh(igorage e, () frp( ) g.() drp( ) hro( ) c.() 2.0
T
Reach flow ern( ) rp( ) gr( ) rp( ) hrp( ) Cr( ) Qr( )
R_(n)
T
Aqu;fﬁ)drawdown & () £ () g.() () | RO ¢.() 20)
1%
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coefficients. Programs have been written to generate systematically all

the coefficients described in Table 1.

E. SAMPLE OF RESULTS

Figure 2 shows a small hypothetical stream-aquifer system. Figure

3(a) shows the calculated influence coefficients of aquifer return flows

in reaches 1, 2 and 3 due to pumping at well Py Physically the coeffi-
cients ¢ , € and ¢

P17 TPy T3Py

would take place if well py was pumped at a unit rate for one period

represent the actual return flows that

{(week) and then shut off permanently. According to Figure 3(a) for eight
weeks the first reach loses water to the aguifer. This is understandable
as the pumping from the nearby well lowers the aquifer level near the
river. After a week the aquifer recovers because (1) the well is shut
down and (2) it receives water from the stream. The first reach contin-
ues to lose water but less and less as time proceeds. In the case of the
3rd reach which is relatively far, the river gains water continuously.
Because the first reach loses water, levels in reaches 2 and 3 drop. This
drop in river stage is felt rapidly in reaches 2 and 3 because the river
drawdown wave travels rapidly. On the other hand, the aquifer drawdown
wave travels much less rapidly. Thus in reach 3 the water level in the
river has dropped but the aquifer level has not, having not felt yet the
impact of the pumping or not feeling it significantly being far from the
pumping well 1. In the case of the second reach the situation is an
intermediate one, the reach losing water at first, then gaining for about
2 weeks and then losing water again.

Figure 4 shows similar results for the case when well py, pumps for one

week and is then shut down permanently. In this case the return flows are
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all negative, all the rcaches heing unstream of well P,- The reach ncar-
est to the well experiences the greatest loss during the first week but
later the upstream reach loses morc water. This is due to the fact that
during the later weeks the river stage in reach 3 drops due to losses

from reach 2. That drop in river stage tends to compensate the aquifer
drawdown near reach 3, whereas in reach 2 there is no drop in river level
as there is no losses in reach 1, reach 1 being too far away from the

well to feel any impact of significance for the first 8 weeks. Other
curves of various influence coefficients can be found in a separate publi-

cation (Illangasekare, 1978).

F. CONCLUSIONS

New tools have been developed for the description of a stream-
aquifer system. They appear to be well suited for studies of management
and such studies are currently under way for the lower South Platte River
in Colorado and for the lower Rio Grande River in the San Luis Valley in

Colorado. These applications studies will be documented in subsequent

reports.
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A FINITE ELEMENT ""DISCRETE KERNEL GENERATOR™ TFOR EFFICTENT
GROUNDWATER MANAGEMENT

Tissa Illangaseckarc, H. J. Morel-Scvtoux
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Colorado State University, Fort Collins, Colorado

INTRODUCTION

The constantly increasing demand for water in regions with
already limited supply makes it imperative to manage the sur-
face and groundwater supplies efficientlv. In water scarce
regions such as the Western United States, the water regulat-
ing agencies are facing the problem of regulating the water
usage on a day-hy-day basis during periods of high water de-
mand. A typical case of a day-hy-day controlled diversion of
stream watcr to an irrigation district in the South Platte
basin is shown on Figure 1. In the conventional approaches,
for each set of decision variables such as aquifer pumping a
simulation run has to be made and one must check whether the
defined management objectives are met. Such an approach will
be very inefficient in problems where large stream-aquifer
systems are involved and a large mumber of decision variables
has to be regulated on a day-by-day basis.

Most of the existing mathematical models of stream-
aquifer systems arc designed to predict the hydrologic behav-
ior of the system in response to a particular set of numerical
values of the excitations. An approach which makes use of the
functional relation between the responses of the system to the
excitation was presented by Morel-Seytoux (1973). The concept
of the response function and the applicability of the approach
to hydrologic modeling and simplified management problems were
illustrated in a paper by Morel-Seytoux (1975). The usc of
these basic aquifer response functions in combination with a
lincarized stream routing model to predict the water table and
river stage evolution was described briefly by Morcl-Scytoux
(1975).

Figure 2 schcmatically represents the operation of a
management model using the influence cocfficient approach.
Figure 3 compares the conventional simulation approach and the
suggested influence coefficient approach.

The models discussed by Morel-Seytoux (1975) and
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Rodrigucz-Amaya (1976) usc two versions of the finite differ-
ence mcthod to solve the basic saturated flow equation. A
user oriented, {(minimum input decisions taken by the user)
storage efficient finite element model which generates the
basic response functions without being limited by the size of
the aquifer is presented in this paper.

DISCRETE KERNEL OF AQUITER DRAWDOWN DUE TO PUMPING EXCITATION

The basic saturated flow equation is the Boussinesq equation:

as v} 95 d 3s

¢ o - 5o (T oy (T 5;9 = 4, (1)
where ¢ 1is the drainable (or cffective) povosityv, s is
the drawdown measured positive downward from a (high) hori-
zontal datum, t 1is time, x and vy are the horizontal
cartesian coordinates, T is the transmissivity, and Qe is
the instantaneous pumping rate per unit area at excitation
peint e in the aquifer (chosen algebraically positive for a
withdrawal excitation). It has been shown by Morel-Sevtoux
and Daly (1975) that the solution to Equation (1) can he
expressed generally in the form:

swe(n) = Gwe(n-v‘rl)Qe(v) (2)

1

It is clear that once the discrete kernel coefficients
Syel(v), v=1,2...n have been obtained, the drawdown response
swye(n) can be obtained for any type of pumping schedule
Qe(v), v=1,2...n from Equation (2), whereas in the tradi-
tional simulation approach the total right-hand side of
Equation (2) has to be computed for each given pumping
schedule.

To generate the '"discrete kernel' coefficients for an
aquifer with given boundary conditions, Equation {1) has to
be solved for a unit pulse excitation q, on the right-hand
side.

[ Ins ot

AY

A USER ORIENTED COMPUTER-EFFICIENT MODEL

One of the shortcomings of existing numerical models of
aquifer simulation is related to the decisions which has to
be taken by the user with respect to the data inputs. The
basic inputs needed for the numerical solution of Boussinesq's
equation are the aquifer geometry, distribution of transmis-
sivity, distribution of specific yield and the locations and
values of net pumping excitations. In the 'discrete kernel
generator' the net pumping excitation is fixed as a unit
pulse applied at a known node point. Thus all the inputs
needed could be extracted from the basic data sources of maps
defining aquifer boundaries, transmissivities and specific
vields. A "user oriented" program is one such that the user



does not have to make the decisions rcolated to the type of
mesh (or grid) system to be used in the numerical procedure,
the spacing of nodes, the estimation of nodal transmissivity
and specific yield values from data maps and time increment
parameters, etc.

There are two aspects of efficiency which have to be
considered in computer wodeling. The efficiency with respect
to the computer memory storage nceded and the central pro-
cessing time used. In solving problems associated with large
stream-aquifer systems, the memory storage becomes a limiting
factor. Even though the computing time which decides the
computing cost becomes high for the generation of the dis-
crete kernel coefficicents, once they have been calculated and
saved, simulation of aquifer behavior to any pumping excita-
tion pattern can be obtained without ever making use any
longer of the costly numerical model.

The "discrete kernel generator' developed in this study
has the following features which makes it user oriented and
storage efficient:

(1) The program uses the geometry of aquifer boundaries,
contours of equal transmissivity and specific
yields as inputs.

(2) The program generates a finite element mesh system
to fit the given aquifer geometry.

(3) It defines a sub-mesh system to scan the total
aquifer.

(4) The built-in time-parameters in the program guaran-
tee numerical stability.

Moving sub-aquifer

The idea of the moving sub-aquifer is based on the fact that
the aquifer drawdown (response) due to a pumping excitation
at a node is significant only locally in the aquifer. Figure
4 shows the maximum value of the discrete kernels (8ye(n))
generated at different distances away from the excitation
peint e, for a homogeneous aquifer. For this case the
response is significant only up to about the 8th node space.
Hence for this particular case the width of the sub-aquifer
within which the excitation is assumed to be felt is taken as
16 node spaces.

By assuming that the response is only significant locally
in a region close to the excitation we arc assuming that the
initial zero gradient of the water table is not changed out-
side this region. lHence the boundary of this region which is
also the boundary of the sub-aquifer (Figurce 5) 1s assumed to
have no flow boundary condition. The finite clement cquations
are formulated for the sub-aquifer to solve Equation (1) for
an excitation point on the ecxcitation grid line EE (Figure 6).
Once all the nodes on EE have been excited and the discrete
kernels generated, the system moves by one grid space, making
the next vertical grid linec the excitation grid linc. The
sub-system scans the total aquifer by moving one grid space at
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Figure 4 Maximum excitation response in a homo-
geneous aquifer.
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Figure 5 Moving sub-aquifer.
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Figure 6 Moving sub-mesh.
a time till all the nodes have been excited.
FINITE ELEMENT FORMULATION

Using the Galerkin method on the operator defined by Equation
(1) and following procedures described in various texthooks
(e.g., Gray and Pinder (1974)) a matrix equation for the un-
known drawdowns at the nodes is obtained. This equation is
of the form:

[A] {s} = {R} (3)
An element of the matrix [A] is given by,

A G.n T T Yk T %5 Ve (4]
where 1,j are nodes defined on the x-y planc and k,% are
time nodes (Figure 7). The genecral expressions for the ele-
ments of matrices ([P} and [Q] defined on the x-y plane and
the elements of the matrices [U] and [V] defined on the
time axis are given by:

i aNg AN BN, aNj
Pij T L ATy /I m (ax ax 3y By ) dxdy (5)
m=1 ny
K.
1
Q; = ) {:m [oow N dxdy} (6)
m=1] m



Figure 7 Definition of space and time nodes

U, = / Yy Y dt (7)
D
t
372
Vig = v dt (8)
DC

where N; and vy, are the basis functions on space and time
respectively, K; is the number of elements sharing the space
node i, T, and ¢, are the constant transmissivity and
specific yield in the mth element, DYy is the spacc domain
of mth element and D, is the time domain. \

An element of the right-hand side vector is given by,

K.
o o I I et ] o) )

ny

The set of Equations (3) can be solved for ¢ ¢y, where
(i,8) 1is the node whose projection is the ith'pode on the
x~-y plane and £ 1is the time level (Figure 7).

NUMERICAL SCHEME AND THE COMPUTER PROGRAM

The computer program developed for the gencration of "discrete
kernels' has three main components:



(1) a program which estimates the parameters and the
size of the moving sub-mesh,

(2) a program which generates the mesh system and esti-
mates the nodal values of transmissivity and
specific yield from input data, and

(3) a program which, (a) computes and updates the
"space'" matrices [P] and [Q] as the system moves,
(b) computes and updates the "time' watrices [U]
and [V] as the time nodes move along the time axis,
and (c) solves the system of Equations (3).

Algebraic structure of the finite element equations
The structure of the matrices defined by Equations (5) to (9)
is determined by the type of elements and the basis functions
used. In this study, simple triangular elements with lincar
basis functions Nj(x,y) were used to generate the matrices
[P] and [Q]. Along the time axis, two nodes per element with
linear basis functions vy;(t) were used to generate the
matrices [U] and [V].

In Equations (5), (6) and (9) the domains of integration
DQY become the triangular elements of the mesh system. The
double integration was performed for each finite elcment to
obtain the following expressions for an elemental setup shown
in Figure 8.

- v 32 . - -
_ Tm(y2 y3) Tm.\'3(>'2 y3) Tmyz(y2 y3) )
8A 8A 8A
- - R 2 2 2
(o] = Tmys(yz y3) Tm(y3 + AL<) Tm(y2y3 + ALC) (10)
Pl = 8A 8A 8A
- 2 . 2 2
8A 8A 8A -
- A | A A T
¢m 6 ¢m 12 ¢m 12
A A A
faJ = 1o, 13 Sn G S T3 (11)
A A
L.d)m ﬁ ,¢m 12 ¢m 6 ..J
{r} = (12)

WP wi>» w>

L
[
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where [p], [q] and {r} are the components of elements of
{P]1, [Q] and {R} contributed by each finite clement and A
is the area of the triangle.

Y“A

E
hat

Figure 8 General element setup.

Using two nodes per element spaced at At, the follow-
ing expressions were obtained for the '"time" matrices.

[at/3  at/6

ful = (13}
| at/6 At/3
[-1/2 1/2

vi = (14)
| -1/2 1/2

Parameters of the moving sub-svstcm
At all stages of the computation the "space" matrices [P] and
[Q] hold only the information of the sub-mesh system. There-
fore the mesh system is generated only for the sub-aquifer.
Two parameters definc totally the configuration of the sub-
aquifer mesh (Figure 9), namely the vertical grid line spacing
(AL) which is kept constant all along the length of the
aquifer and the number of vertical grid lines (NSUBV) in a
sub-aquifer. The number of nodes (NW) on a vertical grid line
is estimated using a user supplied average total aquifer width
and the parameter AL. The NW value used will make the dis-
tance between nodes on a vertical, approximately equal to AL.
An empirical reclationship which guarantces stability of
solution was obtained using computer runs made for a howmogen-
cous square aquifer whose nodes were spaced cqually at a




Figure 9 Finite element mesh system.
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distance AL. The routine which solves the finite element
equations was used for different combinations of T/¢, AL
and time increments At and it was found that the following
condition should be satisfied for stability of the numerical
solution.

2
¢ (L7 5 9 (15)

T At -

Using the extreme case of At = 0.5 used during the first
few periods,

/T
AL < 5 (16)

From user supplicd values of average transmissivity and
specific yield for the total aquifer, AL can be estimated
from Equation (16). Using the same values of T and ¢

and a user supplied average aquifer width the analytical solu-
tion for a homogencous aquifer is usecd to determine the num-
ber of grid spaces away from the excitation point at which

the maximum value of the '""discrete kernel" coefficients be-
come insignificant. The above information is used to define
the length of the sub-aquifer (NSUBV).

Finite clement mesh generator
With a knowledge of the vertical grid line spacing AL the
user can fit a vertical grid line system onto the total aqui-
fer as shown in Figure 9. By superimposing the vertical grid
line system onto the appropriate map the user prepares for
each grid line vertical grid line information cards with the
following information:
(a) the y-coordinates of the points at the interscction
of the bottom and top boundaries of the aquifer.
{(YB and YT as shown on Figure 9),
(b) the contour values and the y-coordinates of the
" points of intersection of the contours of equal
transmissivity,
(c) same as (b) for contours of equal specific yield.
Using the fixed number of nodes on a vertical (NW) the
program distributes nodes at equal spaces on the vertical
grid line between aquifer boundaries and the nodal values of
transmissivity and specific yicld are interpolated using the
information given in (b) and (c). Each time the sub-aquifer
moves a new vertical grid linc information card is read and
information on the leftmost grid line is dropped to minimize
the computer storage requirements.

Finite element solution routine

Using the node numbering scheme shown on Figure 9, the sym-
metric ''space' matrices [P] and [Q] becomes banded with a
band width of NW + 2, where NW is the number of nodes on a
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vertical grid line. In addition to being banded the matrices
arc systematically sparse. That is, irrespective of the NW
uscd, out of the NW+2 ecolumns of the band all the columns
have zero entries except columns 1, 2, NW+1 and NW+2
(Figure 10). This property makes it possible to save storage

3 ] 9 12 15
2 5 8 1 3
.
( 4 7 10 13
Nw+2
NW l
12 314 516 7 @& 9 (0 (1t 42 I3 14 13
Initial Matrix
1jo o o 0o
£ [ o o
3 o ]
1 17
s i ow o . u h/.Sub-sysiem flﬁoved
] 1 by One Verticol
L 3¢ o L] M
7 L3 ] LI ] LI 3 f
L] 5: L R R :
) 6 " ] '
0 7} R ow oA :
" ol " oA "o |
2 ¢ !
5y ” [ !
" |o|| MoK A Ay
14 1y Mo A A:
1
19 2 L) al
l): A a4 :
iy A oAy
|
L OO

D= Elements Dropped When System Moved
Mz Efements Modiltied

R:Elements Reltoined

A:zElements Added

Figure 10 Structure of “space" matrices [P] and [Q]

as only these four columns have to be stored. In solving the
system of equations given by Equation (3), the elements of
matrix [A] are generated using Equation (4). Each time a node
is excited the vector {R} 1is generated using Equation (9).
The system of equations is solved using the Gauss-Seidel
iterative scheme.

Once all the nodes on the excitation vertical grid line
have been excited the sub-~system 1s moved by one vertical.
For the new sub-system the ''space' matrices [P] and [Q] are
modified by dropping the matrix elements corresponding to the
set of nodes dropped and adding elements of the nodes of the
added vertical. The elements to be dropped, modified, re-
tained from the original matrix and added arc shown in Figure
10 for an example problem.

The "‘discrete kernel” values generated are printed out
(or stored on magnetic tape) at the end of each excitation.
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RESULTS

The program developed was used to generate the discrete

kernel coefficients for a homogencous aquifer for which an
analytical solution exists.

A square aquifer of size 350
meters with no-flow boundary conditions and uniformly spaced

nodes 350 meters apart was excited at the central node
{Figure 11).

e
The analytical solutions and the program
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Figure 11

Comparison of program gecnerated coefficients
and analytical solutions - Casc 1.

generated response functions §y,(n) obscrved at the nodes
Wy, Wy and w3 are comparced on Figure 10. The comparison was
done for a range of values of specific yield and the results
are shown on Figures 12 and 13. The comparison shows that
the analytical solutions and the program generated values are

in very good agreement for a range of values of T/¢.

To demonstrate the steps involved in applying the model

to real stream-aquifer systems, a sample reach was selected
from the South Platte River (Figure 14).
Step 1:

Using maps of aquifer geometry, transmissivity
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Figure 12 Comparison of program generated coefficients
and analytical solutions - Case 2.
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Figure 14 Sample reach from South Platte River.

and specific yield, estimate average values of aquifer width,
transmissivity and specific yield. -
average width = 2600 meters
T = 24,600 m?/wk
o = 0.2

From the relationship (16), using the average values of

T and ¢, the vertical grid line spacing AL 1is estimated.
AL = 350 meters

Step 2: Using the average values of aquifer width, T,
¢ and the estimated AL the program computes the moving-
aquifer parameters.

length of the sub-system = 16 grid line spaces
number of nodes on a vertical = 9,

Step 3: The user defines the x,y axes (Figure 14) and
fits a vertical grid line system spaced at 350 meters. The
vertical grid line information cards are prepared for the 21
grid lines to be used as the inputs to the "discrete kernel
generator' program.

CONCLUSION

A cost efficient method which has the potential to be used
effectively in making day-by-day short term management deci-
sions in stream-aquifer management problems was presented.
The user oriented 'kernel generator" program discussed simpli-
fies the application of the model to real field problems.
The agreement of the model generated values with analytical
solutions shows that the model can be used to generate the
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"discrete kernels'" to a reasonably good accuracy for different
ranges of values of transmissivity and specific yield.

REFERENCES

Morel-Seytoux, H. J., R. A. Young and G. E. Radosevich (1973)
Systematic Design of Legal Regulations for Optimal Surface-
Groundwater Usage. OWRR Complcetion Rep. Ser. 53, Inviron.
Resour. Cntr., Colo. State Univ., Fort Collins, Colo., 81 p.

Morel-Seytoux, H. J. (1975) Optimal Legal Conjunctive Opera-
tion of Surface and Ground Waters. [Paper presented at 2nd
World Congress on Water Resources, New Delhi, India.

Morel-Seytoux, H. J. (1975) A Combined Model of Water Table
and River Stage Evolution. Water Resour. Res., Vol. 11,
No. 6, 9068-972.

Morel-Seytoux, H. J. and C. J. Daly (1975) A Discrete Kernel
Generator for Stream-Aquifer Studies. Water Resour. Res.,
Vol. 11, No. 2, 253-260.

Gray, W. G. and G. F. Pinder (1974) Galerkin Approximation of
the Time Derivative in the Finite Element Analysis of Ground-
water Flow. Water Resour., Res., Vol. 10, No. 4, 821-828.

Rodriguez-Amaya, C. (1976) A Decomposed Aquifer Model Suitable
for Management. Ph.D. dissertation, Colorado State University,
Fort Collins, Colorado.

ACKNOWLEDGMENTS

The work upon which this paper is based was supported in
part by funds provided by the U.S. Department of Interior,
Office of Water Research and Technology, as authorized under
the Water Resources Rescarch Act of 1964, and pursuant to
Grant Agreement No. 14-34-0001-6006. The OWRT support is
gratefully acknowledged.

The authors also wish to express their appreciation for
many fruitful discussions with Mr. Charles Daly, Research
Associate, Dept. of Civil Engineering, Colorado State Univer-
sity, and Greg Pcters, Lxxon Production Research Co., llouston,

Texas.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


