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ABSTRACT

THREE ESSAYS ON ENERGY INPUTS, TECHNOLOGY, AND CONSERVATION POLICY

IN IRRIGATED AGRICULTURAL PRODUCTION

This dissertation explores the role of energy inputs, irrigation technology, and conservation

policy in irrigated agricultural production. In the first chapter, I utilize empirical and simulation

modeling to understand the impact of non-linear energy pricing on groundwater use decisions in

the Republican River Basin of Colorado. The second chapter empirically investigates how peer

effects and resource availability influence a producer’s choice to adopt a resource-conserving ir-

rigation technology using data from the Trifa Plain of Morocco. The third chapter develops a

hydroeconomic model which pairs groundwater demand with a physical model of resource dy-

namics to quantify how a groundwater conservation policy implemented within a subsection of the

Republican River Basin of Colorado creates resource and input market spillovers.
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Chapter 1

Non-Linear Input Pricing and Resource Demand:

The Case of Groundwater and Energy

1.1 Introduction
Groundwater resources are vital for agricultural production in many arid regions of the world,

providing irrigation inputs for over 38% of global irrigated land [Siebert et al., 2010]. The common

pool nature of groundwater precipitates inefficient rates of extraction that may exceed recharge,

leading to aquifer depletion and posing a serious threat to global food security [Rosegrant and

Cline, 2003, Konikow and Kendy, 2005]. Despite the growing scarcity of aquifer resources in

many regions, groundwater often remains unpriced, implying that other relevant price signals,

such as food, energy, or input prices, govern groundwater use decisions [Tsur and Dinar, 1997, Jo-

hansson et al., 2002,Kemper, 2007]. The objective of this research is to understand how non-linear

input price schedules potentially exacerbate common pool resource problems using groundwater

extraction for irrigation as a theoretical and empirical illustration.

Groundwater utilization requires significant amounts of energy to pump water from aquifer

to field and energy prices often constitute the only pricing mechanism guiding groundwater use.

Many energy providers employ non-linear pricing strategies to meet cost recovery and revenue

smoothing objectives [Wilson, 1993, Commission, 2008]. However, past literature examining the

relationship between energy price and water use considers only constant marginal pricing regimes

and relatively little is known about the impact of non-linear pricing [Hendricks and Peterson, 2012,

Pfeiffer and Lin, 2014b]. This is a crucial difference as characterizing and estimating demand

under non-linear pricing regimes differs from the case of constant marginal pricing. We address

this gap in the literature by exploring how non-linear energy pricing affects groundwater extraction

decisions.
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Specifically, we empirically estimate demand responsiveness for the case in which energy pric-

ing follows a decreasing block rate (DBR) schedule. Our empirical analysis exploits a unique

dataset which pairs spatially explicit groundwater demand with evolving energy price structures.

We use empirical results to simulate the implications of energy pricing on groundwater depletion

and short-run producer welfare. Simulation results demonstrate that 4-7.5% of groundwater use

can be attributed to the incentives created by DBR energy pricing. These are an economically sig-

nificant results as they demonstrate how energy pricing potentially exacerbates the common pool

resource challenges of shared aquifers while also elucidating a more general relationship between

priced inputs and unpriced environmental goods and resources.

The relationship between energy and groundwater extraction is an example of a broader eco-

nomic problem wherein priced inputs are complementary1 to unpriced resources in the produc-

tion of a good or service [Foster et al., 2017a, Foster et al., 2018]. The characteristics of many

environmental goods and resources preclude or complicate trade within a market, implying that

these goods lack an efficient pricing mechanism [Janmaat, 2004, Kroeger and Casey, 2007]. Yet

many environmental goods and resources, from air quality to biodiversity, serve as vital inputs to

production. Missing pricing mechanisms imply that other salient price signals, e.g., the price of

complementary and substitute inputs, influence how firms and households use environmental and

resource inputs. In this context, input pricing decisions generate effects that reverberate through-

out vulnerable ecosystems and scarce natural resource stocks. We analyze these effects within the

Republican River Basin of Colorado, a sub-basin of the High Plains Aquifer (HPA), to understand

how energy pricing regimes potentially exacerbate the challenges associated with common pool

resource management.

1Two inputs are complementary to each other if increasing the use of one input increases the marginal product of
second input [Mas-Colell et al., 1995]. The relationship between energy and water is a special case of this as demand
for energy is derived from demand for water and energy. While our analysis focuses on the case wherein priced goods
are complementary to an unpriced environmental good or natural resource, a similar relationship exists when inputs
are substitutes to the environmental good or natural resource, except in this case increased (decreased) input prices
boost (diminish) natural resource demand.
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This research builds on three distinct strands of literature. First, we contribute to the broader

non-linear pricing literature by examining the distributional impacts of heterogeneous rate struc-

tures [Burtless and Hausman, 1978, Hausman, 1980, Olmstead et al., 2007, Olmstead, 2010, Ito,

2014]. Second, we advance the water demand research by exploring the common pool resource

implications of agricultural water use subject to DBR pricing [Scheierling et al., 2006,Schoengold

et al., 2006, Bar-Shira et al., 2006]. Finally, this paper enriches the literature analyzing priced

inputs and unpriced environmental goods and resources by questioning how complementarity in

production affects resource outcomes [Moroney and Toevs, 1977, Hannesson et al., 2010].

The paper proceeds as follows: In Sections 1.2 & 1.3, we provide background on irrigated agri-

culture in the HPA and Republican River Basin of Colorado and a cursory survey of the literature.

In Section 1.4, we describe a simple theoretical model of water demand under DBR energy pricing

given profit maximization motives while the exploring the distributional impacts of a transition to

constant energy pricing. In Section 1.5, we describe an empirical model which estimates agricul-

tural water demand. In Sections 1.6 & 1.7, we describe data sources, present empirical modeling

results, and develop and present results from a counterfactual simulation model examining the im-

pacts of a shift to constant energy pricing. Finally, Section 1.9 provides a conclusion summarizing

the paper’s findings and explores implications for water conservation policymaking.

1.2 Background
The HPA is the largest aquifer in the United States and supplies over 30% of the total ground-

water used for irrigation in the nation [Steward et al., 2013a]. Figure 1.1a presents the extent of

the HPA, the Republican River Basin (dark blue), and the study area whose data are employed in

later empirical modeling (indicated by red frame). The future of the HPA, and the rural agricultural

economies which it supports, is uncertain as rates of extraction exceed recharge in many regions of

the aquifer. Recent research predicts that some areas of the HPA will reach the end of economically

viable groundwater irrigation by 2050 [Haacker et al., 2016], inducing a shift to less productive

dryland agriculture and diminishing land values across the region [Hornbeck and Keskin, 2014].

3



(a) High Plains Aquifer (b) REC pricing

Figure 1.1: Electricity in the HPA 2

Groundwater extraction in the HPA depends on access to energy. Electricity is the most impor-

tant source of energy for irrigated agricultural production in the HPA, powering over 77% of irri-

gated farms and 70% of irrigation wells in HPA states [NASS, 2013]. Over 70 Rural Electric Coop-

eratives (RECs) provide electricity to residential, commercial, and irrigation customers throughout

the HPA region [Brown, 1980]. Groundwater pumping comprises an important part of REC oper-

ations, representing a plurality of the electricity distributed by RECs in the HPA region [USDA,

2011]. While this energy access has facilitated rural and agricultural development [Kitchens and

Fishback, 2011], it has also contributed to the depletion of the region’s groundwater resources.

The utilization of DBR energy pricing structures, which over half the RECS of the HPA utilize

for irrigation customers, relates to the economies of scale inherent in electricity distribution as well

as cost recovery objectives [Wilson, 1993]. The cooperative nature of REC ownership requires

that any excess revenues be distributed back to customers intermittently, as such, cost-recovery

is a primary objective guiding REC pricing [Gardner and Young, 1984]. Figure 1.1b presents the

2Figure 1.1b presents the boundaries of the 73 electricity distribution cooperatives which overlay the HPA. Cross-
hatched RECs utilize DBR electricity pricing from irrigation customers. Data is not available for 4 RECs who are
not legally able to share details of their rate structure with non-members. Note that municipal electricity providers are
excluded from the figure. REC service area boundaries are approximations of actual service area territories.
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spatial distribution of REC pricing regimes in the HPA and demonstrates the prevailing use of DBR

energy pricing in the region.

The Republican River Basin of Colorado (hereafter the Basin) embodies many of the charac-

teristics which define agriculture throughout the HPA. As in many regions of the HPA, the rural

economy of the Basin relies on irrigated agriculture supported almost exclusively by groundwater

resources3 powered with electricity provided by RECs 4 [Rhodes and Wheeler, 1996, Thorvald-

son and Pritchett, 2007]. Similar to the rest of the HPA, irrigation customers in the Basin are an

important part of REC operations5.

Electricity pricing in the Basin follows regional trends in that RECs utilize DBR pricing for

irrigation customers wherein the thresholds of the price schedule are a function of well pump

characteristics, namely horsepower (HP). Specifically, RECs in the Basin utilize thresholds defined

in terms of kilowatt hours (kWh) of demand per well pump HP6. As such, well pumps with more

HP must utilize more kilowatt hours (kWh) to move onto the next (lower) marginal price block.

Figure 1.2 depicts one of the Basin’s REC’s (Y-W) rate structure in 2016. Well pumps constitute a

significant long-term capital investment and once installed, well pump HP remains fixed [Dumler

et al., 2007]. Therefore, while HP is a choice that producers make, it is a long-run decision that

remains fixed over shorter time horizons. In the data used in our analysis, less than 6% of wells

altered their HP between 2009 and 2017. As such, we treat well pump HP as predetermined and

thus exogenous to annual water demand variation. We evaluate the robustness of our results to this

3Groundwater from the HPA is the primary is source of irrigation water as there are only 57 active surface water
rights in the Basin, which supply less than 4% of water applied to crops [Maupin et al., 2014, CDNR, 2017].

4Electricity provided by the Basin’s RECs power over 90% of the irrigation wells in the Basin [USDA, 2013].
None of the Basin’s RECs generate electricity but instead buy energy from Tri-State Generation and Transmission
which is a cooperatively owned by 43 RECs throughout Colorado, New Mexico, Nebraska, and Wyoming.

5The importance of groundwater pumping in REC operations is directly linked to the relatively low population
density of the Basin and the large quantity of electricity necessary to pump groundwater to the surface. An average well
in the Basin demands 116,000 kWhs of energy annually which is roughly 12 times the total annual energy consumption
of the average household in the United States [U.S. EIA, 2016].

6Two RECs, Y-W and Highline, provide electricity within our study area. Y-W’s price thresholds are 400 kWh
HP

and 1000 kWh
HP while Highline’s price thresholds were 300 kWh

HP and 600 kWh
HP before 2013 and 400 kWh

HP afterwards
as Highline switched from a three to two block price schedule.
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(a) 50 HP Well Pump (b) 100 HP Well Pump

Figure 1.2: Y-W irrigation customer rate structure, 2016
(1 MWh = 1,000 kWh)

assumption in Section A.2 of the Appendix where we limit our analysis to only those wells that do

not change their HP.

RECs bill irrigation customers on a monthly basis but the marginal price of electricity at a

given point in time depends on cumulative well-level annual demand for electricity. RECs meter

irrigation customers at the well-level. Therefore, electricity pricing for a given well does not

depend on the water or energy use of another well, even if both wells are owned or operated by

the same producer. Monthly bills communicate price information, namely where along the rate

structure the previous month’s demand was located. This information is also available in real-time

at the well’s electricity meter which tallies cumulative annual electricity demand. Finally, RECs

communicate any changes in their rate structure to constituents by mail before the beginning of the

growing season, typically in January.

1.3 Literature Review
This research builds upon the methodological contributions and results of the non-linear pric-

ing literature, research on agricultural water demand, and a broader literature on the relationship

between priced inputs and unpriced resources.
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1.3.1 Non-Linear Pricing

There exists an extensive literature exploring the effect of non-linear pricing in a diverse array

of applications from labor supply to household electricity demand. The methodological crux of this

literature lies in appropriately addressing the endogeneity that exists between price and consumer

or firm decision-making. Past literature employs structural [Taylor, 1975, Nordin, 1976, Burt-

less and Hausman, 1978, Hausman, 1980, Hausman, 1985] and reduced-form [Terza and Welch,

1982, Agthe et al., 1986, Chicoine et al., 1986, Nieswiadomy and Molina, 1988, Nieswiadomy and

Molina, 1989, Ito, 2014] empirical approaches to address potential endogeneity. We contribute to

this literature by examining the distributional implications of price structures.

Structural approaches in the literature employ likelihood-based methods to model demand un-

der non-linear pricing structures. The genesis of these structural econometric methods lies at the

intersection of labor supply and consumer demand literatures [Burtless and Hausman, 1978,Haus-

man, 1980, Hausman, 1985]. [Hanemann, 1984] leverages the modeling insights employed in the

labor supply literature to create a framework for consumer demand, commonly referred to as

the discrete/continuous choice (DCC) model, which assumes that consumers jointly respond to

marginal prices and thresholds when choosing demand.

The reduced-form literature instruments for price with rate structure parameters (e.g. thresh-

olds, price levels) relying on the identifying assumption that rate structure parameters are exoge-

nous to individual demand. [McFadden et al., 1977] present an alternative, three stage least squares

approach which uses predicted demand quantities as an instrument for price. More recently, [Ito,

2014] investigates household electricity demand under varying non-linear price structures and tests

whether households respond to marginal or average price. Results reveal that households respond

to average rather than marginal price demonstrating how information costs determine the salient

price signal determining demand. This result is important as it calls into question the DCC model’s

assumption that consumers are fully informed of their position within the price schedule.

We contribute to this non-linear pricing literature by analyzing the impact of rate structures on

the distribution of resource use and welfare. Past literature examines heterogeneous rate structures
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and potential endogeneity in utility rate structure choice [Olmstead et al., 2007]. We build on these

insights by leveraging within REC variation in rate structure based on well HP to evaluate the

impact rate structure heterogeneity.

1.3.2 Agricultural Water Demand

This paper also advances the literature that examines how agricultural water use responds to

price signals. A large swath of this literature aims to measure the price elasticity of demand for

irrigation water [Howitt et al., 1980, Wheeler et al., 2008, Schoengold et al., 2006, Scheierling

et al., 2006]. Broadly, this literature finds that demand for irrigation water is relatively inelastic,

suggesting the high value of on-farm water use and lack of available substitutes. We build on this

literature by exploring the agricultural water demand under DBR pricing.

Given that many scarce water resources remain unpriced, researchers analyze the impact of

other price signals (e.g. energy inputs) to understand how producers respond to changing water

prices. [Hendricks and Peterson, 2012] model water demand as a function of extensive margin

choices and estimate the price responsiveness of agricultural water use via heterogeneous pump-

ing costs. [Pfeiffer and Lin, 2014b] similarly evaluate how groundwater users respond to vary-

ing energy prices but utilize a sample selection model to incorporate cropping decisions. How-

ever, [Pfeiffer and Lin, 2014b] and [Hendricks and Peterson, 2012] both limit their analysis to

constant marginal pricing regimes despite the pervasive use of non-linear energy pricing in the

HPA (see Figure 1.1b). Other literature examines the impact of energy subsidies on groundwater

use in developing country settings and further demonstrates the relationship between energy price

and groundwater depletion [Fishman et al., 2016, Foster et al., 2017a, Foster et al., 2018].

[Mieno and Brozović, 2016] explore how measurement error in imputed irrigation costs may

bias empirical estimates of the price elasticity of agricultural groundwater demand. Their results

are important as much of the groundwater demand literature relies on assumptions of uniformity

with respect to irrigation cost parameters and the spatial interpolation of key hydrologic charac-

teristics (e.g. depth to water). This analysis surmounts the measurement error issues presented
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in [Mieno and Brozović, 2016] by utilizing novel data from well tests measuring the quantity

of energy required to pump a unit of water (see Section 1.6 for further explanation), rather than

imputed irrigation costs.

A relatively smaller literature evaluates the impact of non-linear energy pricing on agricultural

water use. Notably, [Gardner and Young, 1984] develop a linear programming model to analyze

the use of DBR electricity pricing for irrigation customers in the same region studied in this paper.

Their results highlight the tension between REC revenue smoothing objectives and groundwater

conservation. In a related paper, [Bar-Shira et al., 2006] analyze the use of increasing block rate

(IBR) water pricing on conservation outcomes using the DCC modeling framework. Simulation

results demonstrate that IBR water pricing generates groundwater conservation compared to the

counterfactual scenario of constant water pricing. However, their analysis relies on the assumption

that water users have perfect information regarding their position within the price schedule, an

assumption questioned by results presented in [Ito, 2014]. This paper builds on the agricultural

water demand literature by empirically evaluating price responsiveness under a DBR structure

which to our knowledge has not been addressed in the literature.

1.3.3 Priced Inputs and Unpriced Resources

Finally, this paper builds on a literature exploring the connection between priced inputs and

unpriced environmental goods and resources. This paper contributes to this literature by analyzing

the case where priced inputs are complementary to unpriced resources. Previous literature exam-

ines how inputs can serve as substitutes for resources as stocks become depleted. [Moroney and

Toevs, 1977] explore implications of substitutability or complementarity between natural resources

and capital/labor within industries which rely on renewable and non-renewable resources. [Han-

nesson et al., 2010] empirically treat the substitutability between natural and human capital in

fisheries and conclude that increased levels of labor productivity counteract the effects of shrink-

ing resource stocks. In the context of water and agriculture, [Cai et al., 2008] explore how other

inputs can serve as substitutes for water and ease the constraints of water scarcity.
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A related literature focuses on the case of complementarity between priced inputs and resources

and demonstrate how the price of complementary goods can increase adoption rates for resource

conserving technologies and promote the provision of ecosystem services [Wossink and Swinton,

2007, Fabrizio and Hawn, 2013]. Within the context of water and energy, [Scott, 2013] recognizes

how energy pricing influences groundwater use and calls for pricing regimes to confront resource

depletion and aid adaptations to climate change. [Foster et al., 2017a, Foster et al., 2018] use

modeling and experimental methods to examine how changing energy subsidy policies impact

groundwater depletion. In a similar paper, [Fishman et al., 2016] further explore this connection by

analyzing how a shift to volumetric, or marginal, electricity pricing can address India’s pervasive

groundwater depletion problems.

This literature begins to outline how the connection between priced inputs and unpriced re-

sources applies within the context of water and energy. This paper furthers that understanding by

exploring the role of input price structure in groundwater use decisions while cultivating greater

knowledge of the factors which aid or hinder resource and environmental sustainability.

1.4 Theoretical Model
In this Section, we develop a theoretical model of water demand under a non-linear input

pricing regime. This model is then utilized to generate hypotheses regarding the impact of a shift

to a constant input pricing regime on the distribution of water use and welfare across agricultural

producers.

Suppose an agricultural producer aims to maximize profits by choosing a volume of water

(w) to extract which is unpriced outside of the energy inputs required for extraction. Assume that

output is sold at a constant price ρ, energy inputs are priced according to a DBR structure, and each

unit of water requires a fixed amount of energy inputs (Q) defined by Q = Aw. For simplicity and

congruence with the empirical application, let the DBR energy schedule consist of three blocks

and two thresholds. Given the known relationship between energy and water, the energy price

schedule, P (w), may be written in terms of water, yielding thresholds w̄1 and w̄2, where w̄1 < w̄2,
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and water prices p1, p2, and p3, where p1 > p2 > p3. Also assume there exists a function, f(w;Z),

representing the agricultural producer’s production as it relates to water conditional on exogenous

characteristics (e.g. resource constraints, soil type, weather, etc.) which are represented by the

time variant parameter Z.

Let the agricultural producer’s demand and inverse demand7 for water be represented byD(p;Z)

and Γ(w;Z), respectively, where p is the marginal price of water and w is water quantity. Note that

extensive margin choices are not contained in Z, thus neither D(p;Z) or Γ(w;Z) are conditional

on crop choices. Rather, cropping choices are implicit in demand and potentially vary with water

price changes. The profit maximizing agricultural producer chooses optimal water demand such

that the marginal benefit of water equals marginal price8. Figure 1.3 graphically represents water

demand decisions for two water users whose demand differ according to exogenous characteristics

defined by Z1 and Z2. Since time-variant Z captures the effect of weather, demand also varies

across time and a given agricultural producer’s optimal demand may be located on the highest or

lowest marginal price block across time.

Now suppose that the energy provider shifts their pricing regime from P (w) to a constant

marginal price, pc. The exact price defining the new constant marginal pricing regime depends on

both the cost structure and objectives of the energy provider as well as the price elasticity of water

demand. If the energy provider aims to generate the same revenue with the new constant price

and initial demand is distributed across all price blocks, then the constant price must fall between

p1 and p3. For clarity we abstract away from the energy provider’s choice of a revenue-neutral

constant price and assume this price equals p2.

This new pricing regime changes the distribution of water demand across agricultural pro-

ducers. For example, under constant energy pricing, lower water-using agricultural producers,

Γ(w;Z1), increase water demand from w
P (w)
1 to wp

c

1 as the marginal price of water determining

demand decreases from p1 to pc. Similarly, higher water-using agricultural producers, Γ(w;Z2),

7Γ(w;Z) = [D(p;Z)]−1

8 ∂f(w;Z)
∂w ρ = p
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Figure 1.3: Conceptual model of agricultural water demand

decrease water demand from w
P (w)
2 to wp

c

2 as the price signal influencing demand on the margin

increases from p3 to pc.

A transition to constant energy pricing also generates changes in the short and long-run wel-

fare of agricultural producers. In the short-run, constant pricing affects welfare by influencing

groundwater demand and changing the price of infra-marginal units of energy and water. While

in the long-run, constant pricing changes producer welfare by altering resource dynamics through

time. Namely, costs and benefits accrue to producers in future time periods when constant energy

and water pricing induces changes in resource availability. The theoretical and empirical analysis

presented in this paper focuses on the short-run welfare impacts of constant pricing and does not

incorporate how changes in current resource use affect future resource availability.

Figure 1.4 characterizes the short-run welfare implications of constant pricing for higher water-

using agricultural producers with inverse demand, Γ(w;Z2). For example, in Figure 1.4 the welfare

losses associated with a reduction in demand from w
P (w)
2 to wp

c

2 are given by
∫ wP (w)

2

wpc

2

[Γ(w;Z2) −

p3]dw. However, this does not fully account for total welfare changes as the infra-marginal price
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Figure 1.4: Welfare impacts of constant water pricing9

increases on the interval [w̄2, w
pc

2 ] while decreasing on the interval [0, w̄1] when pricing is constant.

As such, short-run changes in welfare are a function of both the change in demand, or demand

effects, and the difference between infra-marginal prices and the constant price, or infra-marginal

effects.

To formalize our characterization of short-run welfare changes, suppose that an agricultural

producer demands wP (w) units of water under the DBR price schedule P (w) and wp
c units of

water under constant pricing, pc. Welfare changes arising from a shift to constant pricing are then

given by

∆ Welfare =

∫ min(wpc ,wP (w))

max(wpc ,wP (w))

[
Γ(w;Z)−min(P (wP (w)), pc)

]
dw+ (1.1)∫ min(wpc ,wP (w))

0

[
P (w)− pc

]
dw

9The shaded area in Figure 1.4 represents welfare losses and the cross-hatched area represents welfare gains
arising from a transition to constant energy pricing, pc.
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where P (wP (w)) represents the marginal price of water when wP (w) units are demanded and P (w)

gives marginal price at an arbitrary w when water pricing is DBR.

The first term in equation (??) depicts welfare gains and losses attributable to a change in

demand from wP (w) to wpc , or demand effects. The interval of the definite integral signs welfare

changes as the agricultural producer’s indirect utility function is increasing in water implying nega-

tive demand effects when wpc < wP (w) and positive demand effects otherwise. The second term of

equation ?? characterizes gains and losses in welfare arising from infra-marginal price differences,

or infra-marginal effects.

Assuming that pc falls somewhere between the first and last price blocks of P (w)10, welfare

gains accrue to agricultural producers demanding water along the first price block as both terms

in equation ?? are positive. Welfare impacts for producers demanding water along later price

blocks are less straightforward as they depend on both water demand effects and infra-marginal

price changes. For example, consider the producer whose demand is given by Γ(w;Z2) in Fig-

ure 1.4, the net outcome of a shift to constant pricing depends on the relative magnitude of water

demand effects and infra-marginal price differences. The producer’s welfare losses arising from

infra-marginal effects increase as demand in the final block increases because the producer must

pay a higher marginal price for more units of water that were less expensive when pricing followed

a DBR structure. Pairing this theoretical prediction with the likelihood of negative demand ef-

fects for higher water-using producers, we hypothesize that negative welfare impacts concentrate

among those producers that demand the most groundwater. Short-run welfare gains are guaran-

teed for producer’s demanding water along the first block of the rate schedule P (w) as they face a

lower marginal price and increase their demand. However, the welfare implications for producers

demanding along later price blocks remains unclear as it depends on the producer’s price elasticity

of demand for water and the parameters of P (w) relative to pc. We address this theoretical un-

certainty in our empirical and simulation modeling to measure the magnitude of these effects and

their implications for short-run welfare changes under constant pricing.

10This assumption holds for a revenue-neutral shift to constant pricing.
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Our theoretical model illustrates the distributional impacts of a shift from DBR to constant

pricing. We hypothesize that decreases in water demand concentrate among high water-using pro-

ducers as they face higher marginal prices under constant pricing. Similarly, low water-using agri-

cultural producers increase their water use when pricing is constant as they face a lower marginal

price. As such, the impact of a transition to constant pricing on aggregate energy and water demand

depends on the initial distribution of demand among the rate structure’s blocks. For example, if

the majority of producers demand within the rate structure’s first block, then a transition to con-

stant pricing potentially increases aggregate water demand as the majority of users experience a

decrease in price. If most producers demand in later blocks of the price structure, then it is more

likely that the constant pricing regime will result in diminished energy and water demand. The

precise impact of constant pricing depends crucially on producer’s responsiveness to changes in

price, which we address empirically in our later modeling to uncover the impact of constant pricing

on aggregate demand.

1.5 Empirical Model
In this Section, we develop an empirical model of water demand as a function of energy prices

(P ) and exogenous factors (Z) aiming to test the hypotheses generated in Section 1.4. The model

estimates how input prices and other exogenous factors determine water demand for agricultural

producers and allows us to resolve theoretical ambiguity about impacts of a change from DBR

pricing to a constant price regime.

To facilitate comparison with previous treatments of water demand in the literature, we assume

constant elasticity and estimate the water demand function in log-log form [Hewitt and Hanemann,

1995, Olmstead, 2010]. Let water demand by the ith well11 in time t be given by

log(wit) = αi + δt + γlog(Pit) + βZit + εit (1.2)

11Available water demand data is reported at the well-level (see Section 1.6 for further description). We estimate
water demand at the well-level which allows our model to better capture time variant and invariant differences across
wells. To account for potential unobservables at the well-owner level, we cluster standard errors at the owner level in
all modeling specifications.
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where factors influencing water demand are captured by a well-level fixed effect, αi, time fixed ef-

fects, δt, and the vector of covariates12, Zit, with associated parameter vector β. Pit is the marginal

energy price and, as the model is estimated in logs, the parameter γ represents the price elasticity

of demand for water. We also introduce an idiosyncratic error term, εit. Finally, note that this

formulation of agricultural water demand does not include cropping choices as covariates, rather

we employ a flexible formulation of demand which implicitly accounts for adjustments along the

extensive margin.

We follow standard economic theory and estimate the effect of marginal price, rather than

average price, on water demand. Recent literature suggests that consumers may respond to average

price rather than marginal price signals when information costs associated with knowing where

demand falls on the rate structure are significant and total expenditures on the good are a small

proportion of their budget [Ito, 2014]. However, in the context of agricultural water demand in

the Basin, energy costs constitute a significant proportion13 of farm expenses and most producers’

well pump technology readily supplies information on cumulative water use [CSU, 2013].

Identification Strategy

There exist several sources of potential endogeneity concerning our estimation of groundwater

demand. First, the utilization of non-linear price schedules for electricity in the study area intro-

duces reverse causality between price and demand as a producer’s pumping decision influences

their marginal price. Second, given that electricity rate structures vary as a function of well pump

characteristics, specifically well HP (see Sections 1.2 and 1.6), producers potentially have the abil-

ity to affect their rate structure by endogenously choosing their well’s HP. Finally, well location

decisions and the structure of REC governance present additional sources of endogeneity as these

avenue potentially allow producers to influence their energy price schedule.

12e.g. resource availability, weather, market conditions, soil type, well pump characteristics

13Energy costs related to pumping groundwater constitute 15% of pre-harvest expenses for irrigated producers in
the Basin [CSU, 2013].
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To address this potential for endogeneity, we employ a fixed effect, instrumental variable (FE-

IV) identification strategy common in the non-linear pricing literature as our preferred model spec-

ification [Terza and Welch, 1982, Agthe et al., 1986, Nieswiadomy and Molina, 1989, Olmstead,

2010, Ito, 2014]. Our FE approach controls for time-invariant unobservables like management

capacity and soil attributes which potentially affect groundwater demand. We utilize parameters

of the DBR rate structure as instruments for a well’s marginal energy price. Instrumenting for

marginal price addresses the first source of endogeneity attributable to non-linear energy pricing

by breaking the reverse causality between price and demand using exogenous rate structure param-

eters.

We instrument for endogenous marginal energy price with the difference between the first and

last price of the well’s rate structure (p1 − p3) and the REC-year-HP average volume of water re-

quired to reach the final price block, excluding wells with the same HP as the observation. For

example, we determine the REC-year-HP average water threshold value for a given well with 100

HP by grouping all water threshold observations within the same REC and year that have HP not

equal to 100 and finding the average water threshold. Our water threshold instrument addresses the

second potential source of endogeneity introduced by energy price structures which vary according

to a well’s HP. By instrumenting with average water threshold values that exclude the cohort of

wells with the same HP our instrument removes bias related to producers endogenously determin-

ing their well pump’s HP. We further test the robustness of our results to this potential source of

bias by restricting our sample to those wells which do not report a change in HP during our study

period. These results are reported in Section A.2 of the Appendix.

Endogenous well location decisions and REC governance structures also present potential con-

cerns for obtaining unbiased coefficient estimates. Well location decisions that depend on differ-

ences between REC rate structures threaten the validity of our instrumental variable approach as

inter-REC variation in rate structure parameters is no longer exogenous to individual groundwater

demand but instead depends on the cohort of wells choosing each REC as their energy supplier.

However, this potential source of endogeneity is unlikely given that well locations are fixed once
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installed and well location decisions were taken long before any recent differences in REC pricing

or management were revealed to producers14. This suggests that other factors like land quality, dis-

tance to markets, and groundwater availability, for which there is significant heterogeneity across

the Basin, were more relevant in the initial well location decisions rather than differences between

REC’s in their energy pricing.

The governance structure of RECs also presents an additional source of endogeneity that po-

tentially threatens our identification strategy. RECs in the Basin are governed by elected boards

comprised of REC constituents. As such, there is the possibility that producers in the Basin could

use REC boards to influence REC rate structure decisions to benefit agricultural operations. This

is unlikely for several reasons. First, the composition of REC boards reflects the breadth of cus-

tomer classes (e.g. residential, commercial, irrigation, municipal) served by the REC. As such,

irrigation customer representation does not constitute a majority in REC governing boards and

any changes to irrigation rate structures would require the support of representatives from other

customer classes. Second, REC cost recovery objectives constrain board members from signifi-

cantly changing rate structures for their benefit as the REC must still generate sufficient revenue

to cover the fixed and variable costs of distribution. Third, there exists significant heterogeneity

in resource availability and well pump technology across agricultural producers in the Basin. As

such, changes in the rate structure that would benefit a particular producer is unlikely to benefit all

producers which undermines the probability that producers act collectively to influence electric-

ity rate structures. Finally, we observe only one change in block threshold values among the two

RECs in Basin between 2011-2017 providing further evidence that political capture by irrigation

customer representatives does not significantly influence variation in rate structures.

Finally, we explore the robustness of our results to choice of instrument in Section A.1 of

the Appendix. We also scrutinize the stability of our results to our preferred model specification,

FE-IV, by estimating a pooled OLS, instrumental variable (POLS-IV) model which is also com-

14Drilling a new groundwater well in a new location involves significant fixed costs and most wells in the Basin
were initially installed between 1960 and 1980.
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mon in the water demand literature [Hendricks and Peterson, 2012, Mieno and Brozović, 2016].

These robustness checks reveal that our results remain qualitatively similar across differing price

instruments and restricted samples.

1.6 Data
We utilize a novel panel data set of groundwater and electricity demand for 1,392 irrigation

wells in the Republican River Basin of Colorado from 2011 to 2017 to estimate the empirical

model of water demand presented in Section 1.5. The data set includes electricity price, weather,

and aquifer related variables to account for factors that influence demand for electricity and ground-

water. In this Section, we describe these data, their sources, and the necessary data transformations

required for our empirical modeling.

Estimation of the econometric model outlined in Section 1.5 requires knowledge of the marginal

price of electricity that each well faces annually. However, electricity demand data is not directly

available given privacy concerns among RECs in the Basin, rather we impute total demand by

leveraging data on well pump characteristics and efficiency collected in well capacity tests re-

quired by the State of Colorado15. Figure 1.5 presents a diagram outlining the process and data

used to impute marginal electricity prices.

The process of imputing marginal prices begins with data on well-level annual groundwater

extraction collected by the State of Colorado [CDNR, 2017]. Groundwater pumping data is then

paired with a well-level Power Conversion Coefficient (PCC) which is collected in well capacity

tests and measures the number of kilowatt hours (kWh) required to pump one acre foot of water

which is largely a function of the vertical distance between the aquifer and the surface [CDNR,

2018]. Figure 1.6 presents the distribution of PCC across wells in 2017 demonstrating the extent

of pumping cost heterogeneity. The pairing of well-level groundwater demand and PCC measure-

ments yields imputed annual electricity demand. Next, we utilize data on well locations and REC

15Rule 12 of State Administrative Rule 2 CCR 402-2, which was implemented in 2009, requires that every high
capacity groundwater well in the Republican River Basin test their well yield, i.e. capacity, every two years.
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Figure 1.5: Flowchart of marginal price data generation

boundaries to associate each well in the Basin with its electricity provider and that provider’s rate

structure for irrigation customers [CDNR, 2015, Y-W, 2017, Highline, 2017]. Figure 1.7 displays

irrigation customer rate structure price levels through time for Highline and Y-W RECs. Finally,

we integrate annual electricity demand with annual REC rate structures and well HP which is re-

ported in well capacity tests and influences rate structure thresholds (see Section 1.2) to impute the

marginal price of electricity for each well-year observation.

We further utilize well test data to account for changes in groundwater availability across time

via well capacity16 [CDNR, 2018]. Recent research suggests that well capacity is an important

determinant of groundwater use decisions along the intensive and extensive margins [Foster et al.,

2014]. Annual weather data consists of spatially explicit17 estimates of monthly precipitation

and daily maximum temperature mapped to each well location [Oregon State University, 2018].

Monthly precipitation quantities are aggregated across the growing season18 and daily maximum

temperatures are combined to a count of growing season days with maximum temperature above

16Well capacity is sometimes referred to as well yield.

174 km resolution.

18We assume the growing season is May 1st through August 31st.
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Figure 1.6: Distribution of PCC, 2017

(a) Y-W (b) Highline

Figure 1.7: REC electricity prices, 2011-201719

35◦ Celsius. SSURGO irrigation capability class data is matched to irrigated parcels to account

for cross-sectional variation in soil quality which we utilize in our non-FE model specifications

[Soil Survey Staff, 2018]. Irrigation capability class data classifies soil types according to their

suitability for irrigation (1 = most suitable, 8 = least suitable).

19In 2012 Highline transitioned from a three to two block price schedule.
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Table 1.1 presents summary statistics on groundwater and electricity demand, and well char-

acteristics20. Table 1.1 demonstrates the importance of farm energy costs related to water demand,

which account for up to 15% of total pre-harvest costs in the Basin, confirming how agricultural

water demand differs significantly from household demand as the typical household spends only

0.4% of its monthly income on water [Mayer et al., 1999, CSU, 2013]. Well capacity and HP data

and their standard deviations also illustrate the degree of heterogeneity in groundwater availability

and well pump technology exhibited across wells within the Basin.

1.7 Empirical Results
In this Section, we present results from the econometric model developed in Section 1.5 with

data described in Section 1.6. Model results are presented in Table 1.2.

Our preferred model specification is FE-IV, which addresses the endogeneity of price and con-

trols for unobserved time-invariant well characteristics. Results of the FE-IV model are presented

in column (4) of Table 1.2 where the estimated price elasticity of demand exhibits the sign expected

by economic theory and is statistically significant. Furthermore, our preferred specification’s es-

timated price elasticity falls within the range of elasticities reported in the groundwater demand

literature [Scheierling et al., 2006, Schoengold et al., 2006]. This result is qualitatively robust

across differing modeling specifications presented in columns (1)-(3). Model results presented in

columns (1) and (3), which do not instrument for price, reveal the upward bias of price elasticity

estimates when price endogeneity is not addressed. Finally, we assume our panel dataset of 1,392

yearly observations across 7 years is sufficiently long in the time dimension to accurately iden-

tify well-level fixed effects used for estimation of the inverse demand curve parameters [Arellano,

2003].

Coefficient estimates of other covariates included in the model follow intuition in their sign

and significance. Across all model specifications well capacity coefficient estimates are consis-

20PCC, HP, and discharge pressure are fixed in the short run but may vary in the medium run as agricultural
producers may invest in new well pumps or irrigation systems. We test the robustness of results to potential endogenous
changes in irrigation system discharge pressure and pump HP in Section A.2 of the Appendix.
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Table 1.1: Summary statistics

Variable Mean Std. Dev. Minimum Maximum

Panel Data
Groundwater Demand 229.32 103.18 0 1046.83
(acre feet/year)
Electricity Demand 116.16 52.11 0 630.40
(mWh/year)
Electricity Cost 13488.24 6281.95 0 65556.87
($)
Well Capacity 793.10 314.89 7.76 2852.28
(gallons/minute)
Precipitation 11.75 3.78 3.73 21.72
(inches/growing season)
Temperature 18.99 14.16 0 55
(# days w/ temp > 35◦C )
Irrigation Capability Class 2.026 0.8451 1 6
(factor variable)
Well Pump Characteristics
Power Conversion Coefficient (PCC) 511.23 127.34 126.60 1863.94
(kWh/acre foot)
Horsepower (HP) 112.36 42.67 10 700
(work/time)
Discharge Pressure 44.11 25.57 5.00 567.00
(kPa)
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Table 1.2: Empirical modeling results, groundwater demand

Dependent variable:

Log(Pumping)
POLS POLS-IV FE FE-IV

(1) (2) (3) (4)

Log(Price) −0.8345∗∗∗ −0.4531∗∗∗ −0.7953∗∗∗ −0.2519∗∗∗

(0.0654) (0.0676) (0.0661) (0.0634)
Well Capacity 0.0009∗∗∗ 0.0009∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.00003) (0.00003) (0.00003) (0.0001)
Precipitation −0.0008∗∗∗ −0.0007∗∗∗ −0.0008∗∗∗ −0.0007∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Temperature −0.0020∗ 0.0026∗ −0.0013 0.0051∗∗∗

(0.0010) (0.0010) (0.0010) (0.0010)
Irrigation Class 0.0277∗∗ 0.0331∗∗∗

(0.0087) (0.0088)
Constant 2.7307∗∗∗ 3.5367∗∗∗

(0.1590) (0.1588)

Observations 9,400 9,400 9,400 9,400
R2 0.4570 0.4360 0.2886 0.2361
Adjusted R2 0.4567 0.4357 0.1646 0.1030
F Statistic 1,581.0860∗∗∗ 1,441.0520∗∗∗ 811.8179∗∗∗ 605.6612∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the well owner
Models also include a year fixed effect whose output is omitted

24



tently positive and statistically significant pointing to the importance of resource constraints in

groundwater demand. We also find that growing season precipitation negatively affects groundwa-

ter demand while the number of days with a maximum temperature above 35◦ Celsius increases

groundwater demand. This follows intuition as precipitation and groundwater pumped for irriga-

tion are roughly substitutes in agricultural production and higher temperatures increase demand for

groundwater as increasing rates of evapotranspiration necessitate additional irrigation to maintain

plant health [Hargreaves and Samani, 1985]. Coefficient estimates for the factor variable irrigation

class points to increasing demand for groundwater as soil quality diminishes (e.g. higher sand

content). Finally, we test the robustness of our results to potential endogeneity in rate structures by

restricting the sample to wells which do not report a change in either well HP or irrigation system

discharge pressure21. These results are presented in Section A.2 on the Appendix and qualitatively

align with modeling results generated using the full sample.

1.8 Counterfactual Simulation
In this Section, we leverage the results from our preferred empirical modeling specification,

FE-IV, to simulate the counterfactual scenario of constant electricity pricing and test the theoret-

ical predictions delineated in Section 1.4. Specifically, we simulate the counterfactual scenario

wherein RECs in the Basin transition to a constant electricity pricing regime in 2017. We begin by

outlining the methods used to determine REC-specific constant prices and then utilize these meth-

ods to explore how constant electricity pricing affects groundwater demand and welfare across

agricultural producers in the Basin.

We assume that RECs choose pricing structures that allow the recovery of their distribution and

procurement costs22. Therefore, we calculate the REC-specific, 2017 constant price that achieves

21Agricultural producers can also decrease the energy requirements of their irrigation system by adopting lower dis-
charge pressure application valves [Fipps, 1995]. In the context of this paper, a decrease in irrigation system discharge
pressure decreases a well’s PCC but does not influence the thresholds or marginal prices of their rate structure.

22Neither Y-W or Highline generate electricity. Both RECs buy electricity from Tri-State Generation and Trans-
mission Association, Inc. via long term contracts.
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the same level of expected revenue as DBR pricing generated between 2011 and 2016. More

specifically, for the kth REC, whose wells are indexed by j (j = 1 . . . J), we determine the 2017

constant pricing regime, pck, which minimizes the difference between predicted average REC rev-

enue under DBR pricing, T̄RP (w)
k , and predicted average REC revenue under constant pricing,

T̄R
pc

k , between 2011 and 2016. We multiply preferred model specification demand predictions23,

ŵ
P (w)
it , with PCCit to yield predicted annual well-level electricity demand. To calculate REC rev-

enue under DBR pricing, we match each well’s predicted annual electricity demand to their REC’s

rate structure in time t, Pkt(w), to produce total annual well-level electricity expenditures. Finally,

predicted expenditures are aggregated across J wells and T years (T = 6), and averaged across T

to give T̄RP (w)
k . More formally, we calculate average REC revenue using the following equation

T̄R
P (w)
k =

[∑T
t=1

∑J
j=1 ŵ

P (w)
it ∗ PCCit ∗ Pkt(w)

]
T

(1.3)

REC-specific annual and average revenues are reported in Section A.3 of the Appendix.

We follow a similar approach to calculate T̄Rpc

k but utilize model parameter estimates to sim-

ulate well-level groundwater demand as a function of constant price, pck. Specifically, well-level

simulations of groundwater demand under constant electricity pricing are given by the following

equation

log(ŵp
c

it ) = α̂i + δ̂t + γ̂log(pck) + β̂Zit (1.4)

where ŵp
c

it represents the simulated demand under constant marginal price, pck, and α̂i, δ̂t, γ̂, and β̂

depict parameter estimates from the preferred FE-IV model specification. We then calculate REC

average total revenue under a given constant energy price, pck, using the following equation

T̄R
pc

k =

[∑T
t=1

∑J
j=1 ŵ

pc

it ∗ PCCit ∗ pck
]

T
(1.5)

23We exponentiate model predictions, i.e. ŵP (w)
it = exp( ̂log(wit)) = exp(α̂i + δ̂t + γ̂log(P) + β̂Zit).
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Finally, for the kth REC we determine the 2017 constant price which minimizes the differ-

ence between average annual revenue between 2011 and 2016 under DBR and constant pricing

according to the following optimization problem

minimize
pck

Λ = [T̄R
P (w)
k − T̄Rpc

k ]2 (1.6)

which, for the kth REC, finds the value of pck that minimizes the difference between average total

REC revenue under DBR and constant pricing regimes between 2011 and 2016. Predicted constant

prices for Highline and Y-W RECs are 0.1074 and 0.1179, respectively. The relative difference24

between average REC revenues generated using pck versus Pkt(w) is less than 0.02%.

1.8.1 Counterfactual Simulation: Groundwater Demand

We evaluate groundwater demand under the counterfactual by utilizing the 2017 constant prices

derived by the optimization problem in equation 1.6 to simulate well-level demand using equa-

tion 1.4. We then sum these simulated demand quantities across wells to determine aggregate

demand under constant pricing and compare to aggregate demand under DBR pricing. Results

reveal that a transition to constant electricity pricing in 2017 decreases aggregate groundwater

pumping by approximately 5% compared to the alternative scenario of DBR pricing in 2017.

Figure 1.8 plots well-level changes in 2017 pumping against well capacity while differentiating

between wells based on which price block defined their observed 2017 pumping. Only wells which

demand water on the first, highest marginal price block in 2017 increased groundwater demand as a

result of the transition to constant pricing. Under constant pricing these wells experience a decrease

in the price signal determining their demand as the derived revenue-neutral constant prices are less

than both REC’s first block’s marginal price. Wells that demand water on the third marginal price

block25 experience the largest decreases in groundwater demand under constant pricing in 2017.

24Relative Difference =

∣∣∣T̄Rpc

k −T̄R
P (w)
k

∣∣∣∣∣∣max(T̄Rpc

k ,T̄R
P (w)
k ))

∣∣∣
25Only Y-W utilizes a three block rate structure in 2017.
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Figure 1.8: Change in 2017 Pumping vs. Well Capacity

These large reductions in demand derive from a relatively large increase in marginal price when

electricity pricing is constant. Furthermore, these reductions in demand increase with well capac-

ity suggesting that REC rate structures and resource availability jointly determine the distribution

of water use impacts across wells. Finally, wells which demand on the second price block26 expe-

rience relatively minimal reductions in demand that also increase with higher well capacity. These

minimal decreases in demand are related to the relatively small increase in marginal price experi-

enced by these wells under constant pricing as both REC’s second block’s marginal prices are only

slightly larger than the derived constant prices (see Figure 1.7).

We also explore how the implementation of a constant pricing regime influences aggregate

demand in years previous to 2017. To generate the appropriate comparison, we determine what

each well’s demand under DBR pricing would be between 2011 and 2016 if their REC priced

electricity according to the rate structure used in 2017 and aggregate demand across wells within a

given year. We then compare these annual, aggregate pumping decisions under the 2017 DBR rate

26These include Y-W wells that demand on the second block of their rate structure and Highline wells which
demand on the second, final price block of their rate structure. As mentioned in in Section 1.2, Highline utilized a two
block rate structure after 2013.
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Figure 1.9: Change in Annual Pumping vs. Average Precipitation

structure to annual simulated aggregate pumping when electricity pricing is constant throughout

the 2011 to 2017 time period and equal to the constant prices derived previously. This approach

allows us to identify the impact of constant pricing separate from variation in REC rate structures

across time.

Our simulation results reveal that a transition to constant electricity pricing reduces annual

aggregate groundwater demand by between 4 and 7.5% depending on the year. Figure 1.9 plots

annual percent decreases in aggregate pumping against annual averages27 of well-level precipita-

tion demonstrating how exogenous growing season weather affects the conservation potential of

constant electricity pricing. Generally, years with less than average well-level precipitation expe-

rience greater reductions in aggregate pumping when electricity pricing is constant. This result is

related to the fact that wells demand more groundwater in years with less precipitation, thus in-

creasing the impact of the constant pricing regime as more wells demand on the final block of the

DBR price structure and experience a larger increase in price under the constant pricing regime.

27Vertical bars plot the 25th and 75th quartiles of well-level annual precipitation.
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Results on the impact of constant pricing presented should be interpreted as the sum of both

intensive and extensive margin adjustments. However, past research finds that extensive margin

adjustments are relatively small compared to the total effect of energy prices on groundwater de-

mand [Pfeiffer and Lin, 2014b].

1.8.2 Counterfactual Simulation: Costs of Reduced Groundwater Demand

A transition from DBR to constant electricity pricing in 2017 also yields short-run changes in

welfare. Section 1.4 provides a theoretical treatment of welfare changes, positing that welfare gains

are guaranteed for lower water-using agricultural producers28. Welfare impacts of constant pricing

are less clear for higher water-using producers as their welfare depends on both water demand

effects and infra-marginal price differences (see equation ??). In this Section, we address this

theoretical ambiguity by simulating welfare changes arising from a transition to constant pricing in

2017, revealing how the relative magnitude of demand and infra-marginal effects influence welfare

outcomes.

To calculate short-run welfare changes for agricultural producers, we solve equation 1.2 for

marginal price, yielding an expression of the producer’s inverse water demand function

Γ(w; α̂i, δ̂t, β̂, Zit, γ̂) = exp
[ log(w)

γ̂
− α̂i
γ̂
− δ̂t
γ̂
− β̂Zit

γ̂

]
(1.7)

where price is a function of water demand, covariates, and model parameters. The change in

short-run welfare for the ith well in 2017 is given by

28Specifically, welfare gains are guaranteed for producers whose demand under DBR pricing is located along the
first block of the price schedule and when RECs pursue a revenue-neutral transition to constant pricing.
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∆ Welfarei,2017 =

∫ max(ŵ
P (w)
i,2017,ŵ

pck
i,2017)

min(ŵ
P (w)
i,2017,ŵ

pc
k

i,2017)

[
Γ(w; α̂i, δ̂t, β̂, Zi,2017, γ̂)−min(Pi,2017, p

c
ik)
]
dw︸ ︷︷ ︸

Demand Effectsi,2017

+

(1.8)∫ min(ŵ
pck
i,2017,ŵ

P (w)
i,2017)

0

[
Pk,2017(w)− pcik

]
dw︸ ︷︷ ︸

Infra−marginal Effectsi,2017

where pcik is the constant price faced by the ith well served by the kth REC, Pi,2017 is marginal price

under DBR in 2017, and Pk,2017(w) is a function that outputs 2017 marginal price of the kth REC

for an arbitrary w. As outlined in Section 1.4, the first term in equation 1.8 depicts the welfare

changes associated with altered water demand, or demand effects, while the second term accounts

for changes in welfare arising from differences between the infra-marginal prices of Pk,2017(w) and

pcik, or infra-marginal effects.

We utilize equation 1.8 to calculate short-run welfare changes for each well in our sample.

Results reveal that on average a transition from DBR to constant electricity pricing in 2017 reduces

welfare by nearly $700 per well, or 5.5% of average electricity expenditures under DBR pricing

(see Table 1.1 in Section 1.6). Aggregating across wells, the transition results in a loss in short-run

producer welfare of approximately $1 million. While the transition to constant electricity pricing

leads to average and aggregate losses in producer welfare, the distribution of welfare impacts across

wells demonstrates that some wells benefit from constant electricity pricing. Figure 1.10 depicts

the distribution of ∆ Welfarei,2017, revealing that while average welfare impacts are relatively

small and negative some wells experience large losses and gains in welfare in the counterfactual

scenario. These short-run results do not account for long-run welfare changes as our model does

not account for the future benefits attributable to diminished short-run resource use.

Equation 1.8 describes how well-level changes in welfare are a function of demand and infra-

marginal effects. Section 1.4 explores these effects and posits that their relative magnitudes jointly

determine welfare costs and benefits. Specifically, demand effects increase welfare only for those
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Figure 1.10: Distribution of ∆ Welfareit

wells that increase their demand under constant pricing which is relatively uncommon given the

changes in well-level demand predicted (see Figure 1.8). The magnitude and sign of infra-marginal

effects are less clear as they depend on Pi,2017 and the difference between infra-marginal prices

and the constant price. Differentiating between demand and infra-marginal effects aids an under-

standing of who accrues the welfare benefits and costs displayed in Figure 1.10. Namely, welfare

benefits accrue to wells when positive infra-marginal effects29 outweigh negative demand effects30

while welfare costs occur when negative demand and infra-marginal effects outweigh positive

infra-marginal effects.

We explore how these disparate effects determine welfare outcomes in Figures 1.11a and 1.11b

which plot the distribution of demand and infra-marginal effects, respectively. Demand effects are

largely negative given the paucity of wells which increase their water use in the counterfactual and

29Positive infra-marginal effects occur when producers pay less for infra-marginal units of electricity in the constant
pricing counterfactual while negative infra-marginal effects occur when producers pay more for infra-marginal units
of electricity. It is possible and likely that producers experience both positive and negative infra-marginal effects on
different units of water demand within a given year.

30Demand effects may also be positive but this occurs rarely in our simulation as 95% of wells demand at levels
exceeding the first block of the price schedule and thus see an increase in marginal price implying their demand effect
is negative.
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(a) Demand effects (b) Infra-marginal effects

Figure 1.11: Demand and infra-marginal welfare effects

the abundance of wells which experience a higher marginal price under constant pricing. Infra-

marginal effects presented in Figure 1.11b demonstrate how differences between infra-marginal

prices and the constant price generate average benefits for producers. Finally, comparing Fig-

ures 1.11a and 1.11b with Figure 1.10 reveals how the magnitude of welfare gains from infra-

marginal effects can exceed the welfare costs of demand effects. Comparing welfare changes

attributable to demand effects to total welfare impacts suggests that in some cases infra-marginal

effects outweigh demand effects and producers using less water under the constant pricing regime

experience increases in their total welfare in 2017.

We analyze the spatial distribution of welfare impacts of constant electricity pricing in Fig-

ure 1.12 which maps well-level results, saturated thickness31, and REC boundaries in the Basin.

For visual simplicity, we classify each well as either experiencing a welfare gain or loss as a re-

sult of the transition to constant pricing in 2017. The distribution of welfare impacts presented in

Figure 1.12 provides some visual evidence of the importance of spatially variable resource stocks,

measured by saturated thickness, in determining welfare outcomes. Specifically, wells that expe-

31Saturated thickness quantifies groundwater availability by measuring the vertical distance between the bottom
(impermeable layer) and top (water table) of the aquifer which approximates the groundwater stock influencing pump-
ing decisions.
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rience short-run welfare losses have, on average, 6 feet more saturated thickness and 50 gal./min.

more well capacity32 than wells that gain under constant pricing.

The relationship between resource availability and changes in welfare and groundwater de-

mand (see Figure 1.8) point to a potential inefficiency introduced by constant pricing. Namely,

the constant pricing regime does not consider heterogeneity in the social costs of pumping across

space. Previous research finds that the long-run gains from reduced groundwater pumping depend

on initial aquifer conditions wherein producers with minimal initial groundwater stocks accrue

more gains from diminished pumping [Foster et al., 2017b]. This result demonstrates that in a

dynamic setting, the social costs of pumping costs are likely higher for wells with relatively lower

capacity. Constant electricity can introduce inefficiencies by increasing water use in regions where

external pumping costs are highest (i.e. low water users). While decreased water use concentrates

in areas with higher well capacity and abundant groundwater availability where external costs are

likely lower.

1.9 Conclusion
This paper theoretically and empirically describes how resource users respond to non-linear

(DBR) input pricing regimes. We utilize empirical modeling results generated using groundwa-

ter and electricity data from eastern Colorado to simulate the counterfactual scenario of constant

input pricing. Simulation results reveal how DBR input pricing increases resource use when the

input and resource are complements in production, demonstrating how input pricing decisions

reverberate through natural resource stocks. This is a particularly important result in the con-

text of groundwater-fed irrigated agriculture in the Basin and throughout the HPA given growing

common-pool resource depletion concerns and interest in groundwater conservation. The preva-

lence of DBR electricity pricing (see Figure 1.1) works against conservation efforts as rate struc-

32Well capacity is determined by the saturated thickness, hydraulic conductivity, and specific yield of the aquifer
at the well’s location. Hydraulic conductivity measures the speed at which groundwater moves horizontally in the
aquifer and specific yield describes how the aquifer’s geologic composition affects the total volume of water available
at a given level of saturated thickness.
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Figure 1.12: Spatial Distribution of Average Welfare Effects

ture price signals encourage increased levels of extraction compared to constant pricing regimes.

These results inform groundwater conservation policy in the HPA by highlighting how REC elec-

tricity pricing influences well-level and aggregate extraction decisions. More research is needed

exploring the use of input price signals, for example, increasing block rate electricity pricing, as

an instrument to alleviate resource depletion.

Counterfactual simulation results also uncover that a transition to constant input pricing im-

poses short-run welfare costs on resource users. However, on average these welfare cost are

minimal, only constituting approximately 6% of average annual well-level energy expenditures.

Welfare costs are minimal because infra-marginal price effects diminish the welfare effects associ-

ated with reduced groundwater withdrawals. Differentiating between demand and infra-marginal

effects uncovers that in some cases producers who demand less groundwater under constant pric-

ing experience an increase in their short-run welfare as less expensive infra-marginal water prices

compensate producers induced to conserve water. This result has significant policy relevance as

it demonstrates how lump-sum transfers, potentially generated using revenues from price-based

management policies, can mitigate the welfare impacts of resource conservation efforts.
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Finally, our modeling approach does not account for the potential long-run benefits that may

accrue to resource users induced to decrease their resource demand. These long run benefits of

conservation may be significant, particularly for resources like groundwater where the benefits

of diminished extraction manifest primarily in the long and medium run. As such, our short-run

welfare analysis results do not measure the full welfare effects of a transition to constant elec-

tricity pricing. Future research should integrate economic and hydrologic modeling to examine

the long and medium run impacts of resource conservation and how these impacts influence the

welfare effects of conservation. Also, our model does not explicitly differentiate between inten-

sive and extensive margin adjustments induced by the constant pricing regime. While previous

research finds extensive margin impacts are relatively small compared to the total effect of energy

prices, the literature has not evaluated how non-linear energy pricing influences extensive margin

choices [Pfeiffer and Lin, 2014b]. Future research in this area should disentangle the intensive and

extensive margin to analyze how non-linear energy pricing impacts cropping patterns.
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Chapter 2

Peer Effects, Resource Availability, and Conservation

Technology Adoption: Evidence from the Trifa Plain

of Morocco

2.1 Introduction
A growing world population and changing climate place increasing pressure on agricultural

production and scarce water resources [Vörösmarty et al., 2000]. Promoting the adoption of effi-

cient irrigation technologies is a favored policy option to conserve water resources and sustainably

intensify agricultural production to confront food security concerns [Evans and Sadler, 2008]. De-

spite these efforts, global adoption of efficient irrigation technology remains low while interest

in investigating the determinants of adoption have surged in both policy and research communi-

ties [Koundouri et al., 2006]. This paper contributes to this literature by exploring how peer effects

and resource availability jointly influence the adoption of an irrigation technology that conserves

natural resources.

A growing literature recognizes how social interactions are important in determining tech-

nology diffusion patterns [Foster and Rosenzweig, 1995, Conley and Udry, 2010, Genius et al.,

2014, Sampson and Perry, 2018]. This literature posits that individual technology adoption de-

cisions depend on peer group adoption rates which allow individuals to learn about the potential

returns of the technology. A similar literature argues that economic, demographic, and environ-

mental or resource characteristics determine technology adoption choices within the context of

irrigation [Foltz, 2003, Dridi and Khanna, 2005, Koundouri et al., 2006, Garb and Friedlander,

2014]. In many scenarios, individual adoption decisions generate outside impacts, particularly

when adoption influences conservation behavior among individuals utilizing a common pool re-

source (CPR). This paper contributes to the technology adoption literature by recognizing these
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outside impacts and investigating how peer effects and resource availability affect adoption and

conservation behavior. Specifically, we investigate the adoption of drip irrigation systems which

potentially alter how individuals utilize common pool water resources.

Drip irrigation increases the application efficiency of irrigated agricultural production by di-

rectly applying water to the plant’s root zone thereby minimizing application losses [Camp, 1998].

A large body of agronomic literature finds that drip irrigation adoption increases crop yields and

potentially reduces variable input costs [Tiwari et al., 2003, Sezen et al., 2006, Yahyaoui et al.,

2017]. Furthermore, the adoption of drip irrigation generates benefits for other resource users if

efficiency gains translate into conservation33 when water resources are scarce and common pool.

As such, drip irrigation adoption potentially constitutes a change in individual conservation be-

havior. This paper evaluates how peer effects and resource availability influence drip irrigation

adoption decisions and alter conservation behavior using data from the Trifa Plain of northeastern

Morocco.

The characteristics of agriculture in the Trifa Plain provide an ideal setting to explore the rela-

tionship between resource availability (e.g. groundwater) and peer effects. First, the region has a

long history of furrow, flood-irrigated agriculture dating back to French colonization [Daoud and

Engler, 1981]. Recently, the Trifa Plain has seen an increase in drip irrigation system adoption

which research suggests increases water use efficiency and agricultural productivity [Kang et al.,

2004, Ibragimov et al., 2007]. Second, Moroccan agricultural policy extends generous subsidies

to cover the cost of drip irrigation systems, suggesting that capital constraints are less binding in

adoption. Third, while surface water availability is ubiquitous throughout the Trifa Plain, the dis-

tribution of groundwater is heterogeneous [El Idrysy and De Smedt, 2006]. Finally, agricultural

production in the Trifa Plain’s climate requires irrigation for most high-value crops [Feltz and Van-

clooster, 2013]. We exploit these characteristics to measure how groundwater availability and peer

effects jointly determine the rate of drip irrigation adoption.

33Recent literature calls into question the notion that investments in efficient irrigation technologies, like drip
irrigation systems, necessarily result in water conservation as resource users respond to the change in technology
along the extensive margin [Ward and Pulido-Velazquez, 2008, Pfeiffer and Lin, 2014a].
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This paper utilizes a novel panel dataset of parcel-level drip irrigation system adoption deci-

sions to estimate the effect of peer group adoption and groundwater availability on the probability

of adoption. Empirical results provide modest evidence regarding the importance of social learn-

ing and peer effects in irrigation technology adoption [Genius et al., 2014, Sampson and Perry,

2018]. We also find evidence that resource availability decreases the likelihood of adoption which

aligns with past research results and demonstrates the role of resource constraints in determining

conservation behavior and adoption decisions [Caswell and Zilberman, 1983, Foltz, 2003].

This paper proceeds as follows: in the next Section, we survey relevant peer effect and con-

servation technology literature and situate the paper’s contribution within that literature. In Sec-

tion 2.3, we provide an overview of irrigated agriculture within the Trifa Plain. In Section 2.4, we

develop an empirical framework to model the adoption of a resource conserving irrigation tech-

nology. In Section 2.5, we describe the data utilized to estimate our empirical model of irrigation

technology adoption. Finally, in Sections 2.6 and 2.7, we present results detailing the relation-

ship between drip irrigation adoption, peer effects, and resource availability and conclude with a

discussion of the policy implications of our results.

2.2 Literature Review
This paper builds on several veins of literature exploring the determinants of technology adop-

tion. In this Section, we survey this literature beginning with more general treatments of technol-

ogy adoption and ending with applied research efforts exploring the adoption of irrigation technol-

ogy. Finally, we provide an overview of the peer effects literature and discuss how this literature

addresses identification challenges.

Economists and social scientist have long been concerned with individual technology adoption

decisions. [Griliches, 1957] is often cited as the seminal treatment of technology adoption within

the context of agriculture. Recent literature builds on [Griliches, 1957] by empirically and the-

oretically modeling technology adoption under differing institutional settings [Besley and Case,

1993, Acemoglu et al., 2007, Magnan et al., 2015]. A separate but related literature investigates
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aggregate technology adoption decisions aiming to understand why developing countries exhibit

low adoption rates for productivity and profit enhancing technologies [Feder et al., 1985, Lee,

2005, Suri, 2011].

A related literature focuses on technology adoption among agricultural producers, generat-

ing results that reveal how environmental, economic, and demographic characteristics determine

adoption decisions [Just and Zilberman, 1983, Sunding and Zilberman, 2001, Duflo et al., 2011].

Of particular importance for our paper are the applied research efforts examining the determinants

of irrigation technology adoption [Just and Zilberman, 1983, Dinar and Yaron, 1990, Green et al.,

1996, Carey and Zilberman, 2002, Genius et al., 2013]. [Caswell and Zilberman, 1985] is a sem-

inal paper in this vein of research which develops a stylized theoretical framework to understand

an agricultural producer’s irrigation technology adoption decision. [Shah et al., 1995] extends this

framework to the case of irrigation technology adoption with non-renewable resource extraction

(e.g. groundwater). [Taylor and Zilberman, 2017] provide an exhaustive review of the drip irriga-

tion technology adoption literature.

This literature generates several hypotheses pertinent to our analysis. Specifically, [Caswell

and Zilberman, 1985] find that well-depth and its associated pumping costs are a significant de-

terminant of irrigation technology adoption decisions. As water resources become more scarce,

the benefits of adopting an efficient irrigation technology, like drip irrigation, increase. Our paper

empirically tests this hypothesis by evaluating how the availability of groundwater affects drip ir-

rigation system adoptions. Similarly, [Foltz, 2003] posits that the learning costs associated with

drip irrigation technology influence adoption decisions. We test this hypothesis by incorporating

the effect of peer group adoption on individual adoption decisions, leveraging the methodolog-

ical advances of recent empirical literature investigating the role peer effects play in individual

decision-making.

A related literature recognizes the importance of peer effects in individual adoption deci-

sions [Bollinger and Gillingham, 2012a, Bollinger et al., 2018]. Generally, this literature posits

that social learning is the primary mechanism through which peer effects influence adoption deci-
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sions [Conley and Udry, 2010,Maertens and Barrett, 2012]. This literature identifies that the spatial

clustering of outcomes arises from both contextual and endogenous effects [Manski, 1993,Cohen-

Cole and Fletcher, 2008]. Exogenous contextual effects generate clustering in outcomes as char-

acteristics shared among groups or spatial units generate similar outcomes. To control for these

contextual effects we follow [Sampson and Perry, 2018] who investigate the role of peer effects

in the adoption of groundwater-fed irrigated agriculture in Kansas using a rich set of spatial fixed-

effects and trends to control for the possibility of peer self-selection. In particular, [Sampson and

Perry, 2018] utilize common correlated effects (CCE) developed by [Pesaran, 2006] to account for

region-specific trends that influence groundwater adoption but are unrelated to peer effects.

Endogenous effects include those interactions wherein the decision of an individual is causally

affected by the behavior of other individuals in their peer group. For example, an agricultural

producer may learn about the benefits of drip irrigation from adopting members of their peer group.

This relates to what [Manski, 1993] identifies as the "reflection problem" wherein an individual’s

decision influences group outcomes and vice-versa. However, in our context it is unlikely that

individual choices affect group behavior within a given time period as an individual’s choice to

adopt drip irrigation likely only affects group behavior through a lag given the time needed to

install a drip irrigation system. We incorporate these endogenous effects by following [Bollinger

and Gillingham, 2012a] and controlling for peer group adoptions, or the installed base, in our

empirical modeling. In our context, installed base refers to the lagged number of adoptions within

an individual’s peer group.

2.3 Study Area
The Trifa Plain is the most productive agricultural region of northeastern Morocco with over

39,000 ha of cultivated land irrigated in a semi-arid climate adjoining the Mediterranean Sea

[El Idrysy and De Smedt, 2006]. Figure 2.1 situates the Trifa Plain and its principal source of

water, the Moulouya River, within North Africa. The economy of the region is built around the

cultivation of perennial fruit, particularly citrus, and annual crops, such as potatoes, sugar beet,
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Figure 2.1: Trifa Plain of northeastern Morocco

loquat and vegetables. Over 60% of the region’s cultivated land is planted in citrus [Feltz and Van-

clooster, 2013]. The region’s climate is characterized by cool, wet winters and hot, dry summers

making irrigation a necessity for most crops with the exception of some cereals and forage.

The Trifa Plain traditionally relied on imported water34 and groundwater wells to support the

region’s agricultural economy [Fetouani et al., 2008]. Figure 2.2 maps the primary35 irrigation

canal that imports water from the Moulouya river into the Trifa Plain. Figure 2.2 also maps the

location of the 834 active groundwater wells in the Trifa and an approximation of the aquifer

extents. Aquifer locations are an approximation as they are based upon water table data collected

from existing groundwater wells, as such, we cannot preclude the existence of groundwater in

other locations in the Trifa. Therefore, in our later empirical analysis, we treat the existence of an

active groundwater well within a parcel as the indicator of groundwater availability.

34Water is imported into the Plain via a system of canals from two reservoirs located in the Moulouya river basin.
Water imports are administered by the Office Régional de Mise en Valuer Agricole de Moulouya (ORMVA-Moulouya)
and fluctuate according to inter-annual variation in precipitation and snowpack in the Moulouya catchment. Imported
water is uniformly allocated among all agricultural producers based on the size of their farm.

35From the primary irrigation canal, which is lined with concrete, a system of smaller canals and ditches delivers
water to individuals farms.
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Figure 2.2: Aquifer, wells, and irrigation canals of the Trifa Plain

Growing irrigation demand and climatic variability catalyzed governmental efforts to promote

water conservation and agricultural productivity through drip irrigation and water storage basin

adoption [Badraoui and Dahan, 2011]. These policymaking efforts resulted in the implementation

of a generous subsidy program administered by the Ministry of Agriculture to support the adoption

of drip irrigation systems among Moroccan farmers which include producers in the Trifa Plain. The

subsidy program covers between 60 and 100% of the costs of drip irrigation system installation,

depending on the timing of adoption and farm size36. The subsidy program also requires and

covers the installation costs of water storage basins. The necessity of water storage basins is

related to water quality issues that require water to settle in a basin before application through the

drip irrigation system. As such, water storage basins which increase the productivity of irrigation

are synonymous with drip irrigation systems in the study area [Rost et al., 2009, Wisser et al.,

2010].

Figure 2.3 presents the cumulative adoption of drip irrigation systems within the study area

between 2002 and 2012 while Figure 2.4 depicts the spatial distribution of adoptions in 2002,

36Currently, farms of less than 5 hectares are eligible for subsidies covering 100% of the costs of installation while
farms grater than 5 hectares are eligible for subsidies covering 80% of costs.
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Figure 2.3: Cumulative drip irrigation system adoptions, 2002-2012

2007, and 2012 as well presenting the boundaries of the Trifa Plain’s rural communes37. These

figures demonstrate the rapid uptake of drip irrigation systems and the spatial distribution of these

adoptions within the Trifa Plain. Despite these recent increases, research suggests that aggregate

drip irrigation adoption rates in the Trifa Plain and Morocco remain low [Jobbins et al., 2015].

This paper aims to understand how peer effects and resource availability determine patterns of drip

irrigation adoption across time.

37Rural communes are administrative and governmental entities similar to counties in United States. The com-
munes of the Trifa Plain consist of Boughriba, Zegzel, Fezouane, Madagh, Chouihiya, and Laatamna
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(a) 2002 (b) 2007 (c) 2012

Figure 2.4: Spatial distribution of drip irrigation system adoptions, 2002, 2007, and 2012
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2.3.1 Producer Survey

To better understand agricultural production and the determinants of irrigation technology

adoption decisions in the study area, an in-person survey was conducted during the Spring of

2018. The survey was implemented among 100 producers in the Trifa Plain and collected farm-

level information on cropping and irrigation technology. The choice of which producers to survey

was based upon a rural commune stratified random sample of farm locations collected by the Mo-

roccan Economic Competitiveness (MEC) project which was funded by USAID and implemented

by Development Alternatives INC (DAI).

The average farm size among those producers surveyed was 13.2 ha. while the average farm

size of the data collected by MEC was 11.3 ha. which provides some evidence that our survey

was broadly representative of the region’s agricultural producers. Anecdotally, many of the pro-

ducers surveyed farmed on land their family received after the end of French colonization in 1956

when the large French farms which once existed in the Trifa Plain were split up and distributed

to Moroccan nationals. Furthermore, given Moroccan inheritance laws many farms are owned by

multiple individuals within the same family, many of whom do not live in the Trifa Plain or work

on the farm. These complex ownership structures complicate land transactions as all owners must

agree to sell, providing some evidence that land tenure within the Trifa Plain is static.

Of the producers surveyed, 51 utilized a drip irrigation system on their operation and 45 had

access to groundwater. All the producers utilizing drip irrigation adopted the technology after

2002 when the Moroccan Government’s drip irrigation subsidy program began, and many produc-

ers noted the importance of subsidies in their choice to adopt drip irrigation. 68% of producers

surveyed planted the majority of their cultivated land in perennial crops, primarily differing vari-

eties of citrus (e.g. mandarins, navel oranges, tangerines, etc.) which aligns with regional trends

regarding perennial crop cultivation [Feltz and Vanclooster, 2013]. Among the 45 producers sur-

veyed whose operation has a groundwater irrigation well, only 6 (13%) adopted a drip irrigation

system by 2018.
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Many surveyed producers that adopted drip irrigation mentioned the increased management

effort needed to operate their system. Specifically, producers recounted that transitioning their

operation to drip irrigation demanded additional management of water quality given the potential

for nutrient loading and system blockage. Few of the producers surveyed also lived on the plots

they farmed, opting instead to live in nearby towns and commute to their fields. As such, the

neighbors which constitute their peer group are potentially more spatially dispersed than those

producers which farm parcels near their own.

2.4 Empirical Model of Adoption
In this Section, we develop an empirical model of irrigation technology adoption using [Samp-

son and Perry, 2018]’s notation and discuss the suite of spatial and time controls we utilize to

account for common contextual effects. Suppose the ith individual faces the decision of whether to

adopt a drip irrigation system in each period t. Let dit = 0 denote the decision to continue farming

without drip irrigation and dit = 1 denote the decision to adopt drip irrigation. The perceived profit

associated with each decision is given by πditit .

The returns to adopting a drip irrigation system (π1
it) consist of the perceived present and fu-

ture value of increased irrigation application efficiency less installation costs. The returns of not

adopting (π0
it) consist of the expected profit of current irrigated farming (surface or groundwater)

plus the value of the future option to adopt. The net profit of drip irrigation system adoption is then

given by πit = π1
it − π0

it and the agricultural producer adopts when πit > 0.

As in [Sampson and Perry, 2018], we conceptualize an optimal stopping model wherein an

individual chooses when, if ever, to adopt a drip irrigation system. Previous literature has dealt with

such models of adoption, or more broadly, when to start or end an activity through two approaches.

One strand directly estimates the parameters of the individual’s dynamic decision making process

[Rust, 1987, Lin, 2013]. However, this approach can be computationally intensive particularly

with a large sample [Sampson and Perry, 2018]. Another approach involves approximating the

individual’s dynamic decision making process with a reduced-form, limited dependent variable
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model [Pietola, 2003,Bollinger and Gillingham, 2012a,Burke and Sass, 2013,Sampson and Perry,

2018]. Past research shows that reduced-form models perform as well as structural models in terms

of prediction [Provencher, 1997]. As such, we employ a reduced-form, random effect approach in

estimating drip irrigation system adoptions. We utilize a random effects model to account for the

likely case that unobserved heterogeneity exists within our sample.

Let the latent return function, πit, expressing the ith individual’s adoption decision in time t, be

a given by the following function:

πit = yi(t−1) + β′xit + θit + µi︸ ︷︷ ︸
vit

+εit (2.1)

where yi(t−1) represents the installed base of adoptions in the ith individual’s peer group in the

previous time period, xit is vector of observable covariates, θit is a vector of regionally-specific

time trends and common correlated effects, and µi is an unobserved, random individual effect

where µi ↪→ N (0, σ2
µ), and εit is the model error term. Given our formulation of the latent function,

πit, the probability that dit = 1 is given by the following logit expression

pit =
evit

1 + evit
(2.2)

where pit represents the probability that the ith individual adopts in time t. Given these probabili-

ties, model parameters are estimated using maximum likelihood.

The installed based characterizing the endogenous effect of peer adoption on individual adop-

tion decisions is defined as yi(t−1) =
∑

h∈g[i] Fj(t−1), where Fj(t−1) = 1 if the jth peer within the

ith individual’s peer group, g[i], adopted drip irrigation in a time period before t. The vector of

observable covariates, xit, consists of variables that account for distance to surface water canals

and wholesale markets as well as size of their operation and the subsidy program their operation

qualifies for. We account for the possibility of other unobserved factors by including a rich set

of fixed effects and regional time trends captured in the parameter θit. Specifically, we include

rural commune dummy variables and interactions between those fixed effects and quadratic time

48



trends. We also address potentially unobserved spatially-temporally varying effects by specifying

common correlated effects (CCE) for each rural commune as well as the entire Trifa Plain. We

follow [Sampson and Perry, 2018] and define CCE as
∑

i dit
It

where It represents the number of

individuals that have yet to adopt drip irrigation in time t.

We also account for unobserved heterogeneity amongst individuals in our preferred random

effect model specification. Estimation of the random effect model rests on the following assump-

tions: 1) the random effect (RE), µi, and model covariates, xit, are independent; 2) model covari-

ates are strictly exogenous; 3) the random effect is normally distributed with variance, σ2
µ; and

4) there exist no serial correlation in the dependent variable conditional on model covariates and

the random effect38 [A. Colin Cameron, 2005]. While these assumptions are stringent, the ran-

dom effects model allows our empirical framework to account for further unobserved differences

between individuals not captured in θit. Given the strict assumptions required for the RE specifi-

cation, we also estimate pooled OLS (POLS) and linear probability specifications which rely on

fewer assumptions but do not explicitly model unobserved heterogeneity among individuals.

There is potential concern regarding the assumed exogeneity between our model covariates

and unobservables captured by the estimated random effect and the model’s error term. If our

covariates are not independent of these unobservables, then our model’s ability to generate un-

biased parameter estimates is suspect. Including a rich set of spatial and time controls partially

address these selection on unobservables concerns in so far as these unobservables correlate at the

regional level. However, the concern remains for unobservables at the individual level, for example

if producers with more management capacity choose to farm larger operations with groundwater

available that are also closer to markets and the primary surface water canal. To that extent, we

rely on anecdotal evidence regarding the fixed nature of land tenure in Trifa Plain to address these

exogeneity concerns. Namely, the historical and institutional setting of land tenure in the Trifa

Plains and Morocco as a whole wherein many agricultural land parcels are owned by many indi-

viduals within the same family who received the land after the end of French colonization suggest

38This assumption can be relaxed, see [Wooldridge, 2010].
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that what parcels producers farm is mostly a function of what family they were born into rather

than attributes of the parcel of agricultural land.

Finally, there a several important features in our data that warrant discussion. Firstly, once

we observe an individual adopt a drip irrigation system we do not observe if that individual stops

using their system. This presents a challenge in our modeling regarding the appropriate manner

to code the binary dependent variable representing adoption after the adoption decision is taken.

We could potentially set dit = 1 for all subsequent periods after adoption. However this approach

assumes the drip irrigation system is utilized in each subsequent year, which may not be the case

and could potentially bias model estimates. Similarly, we could follow [Rode and Weber, 2016]

and code post-adoption decisions as zero but this approach assumes the individual utilizes their

drip irrigation system for at most one year which seems unreasonable given the effort required to

adopt. We follow [Sampson and Perry, 2018] and drop observations from the sample in subsequent

time periods after their initial adoption while keeping these observations of adoption in our calcu-

lation of the installed based. [Sampson and Perry, 2018] use Monte Carlo simulations to test how

their method of coding adoption decisions affects parameter estimates and conclude that dropping

post initial adoption decisions generates peer effect parameter estimates below the true estimate.

As such, this approach to coding adoption decisions produces conservative peer effect parameter

estimates.

2.5 Data
In this Section, we describe the parcel-level drip irrigation system adoption data we utilize to

estimate the econometric model of technology adoption presented in Section 2.4. We integrate

open-source parcel data with spatially-referenced drip irrigation adoption decisions observed in

the Trifa Plain to generate a panel dataset of 1,364 parcel-level observations across the 2002-2012

time period.

We utilize geospatial data collected in the Trifa Plain by the Morocco Economic Competitive-

ness (MEC) Project implemented by Development Alternatives Inc. and funded by USAID. These
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primary data were collected between 2011 and 2012 and include a geospatially referenced inven-

tory of all drip irrigation system adoptions in the Trifa Plain up to 2012. These data also include

information on the timing of adoption as well as a full inventory of groundwater wells.

As in many developing country contexts, the Trifa Plain lacks reliable, georeferenced land

tenure data which complicates matching drip irrigation adoption to individuals and their land.

To surmount this challenge, we utilize publicly available OpenStreetMap39 (OSM) data to define

agricultural parcels within the Trifa Plain. A growing literature examines the validity and quality of

open source, user-generated geospatial data, concluding that such data sources are quite accurate

where metrics to asses their quality exist [Haklay, 2010, Mondzech and Sester, 2011, Barron et al.,

2013, Forghani and Delavar, 2014]. A smaller literature analyzes the use of OSM road network

data to define land parcels in urban and rural settings and finds OSM derived parcel data a useful

alternative when other parcel data sources are not available [Liu and Long, 2015, Arsanjani et al.,

2015, Liu et al., 2017].

We utilize road networks and geospatial data on urban boundaries to define agricultural land

parcels [Liu and Long, 2015, Arsanjani et al., 2015, Liu et al., 2017]. Specifically, we utilize

OSM road network data within land classified as agricultural in the Trifa Plain to generate 1,364

land parcels. This characterization of land parcels does not account for potential patterns of land

ownership that differ from parcel boundaries. For example, it is likely that some agricultural

producers own or manage multiple parcels nearby each other. However, we do not observe these

patterns of land tenure. In our later empirical modeling, we assume that the own effect of an

individual adopting drip irrigation on one of their nearby parcels is the same as the peer effect of

another producer adopting on a nearby parcel.

We match individual land parcels to the 236 drip irrigation adoption decisions observed in our

data. We define the installed base for a given parcel in time t as the number of parcels within

a 0.5,1,2, or 3 km buffer40 of the parcel’s centroid that adopted drip irrigation before t and also

39 c©OpenStreetMap contributors

40Concentric circle.
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control for the number of parcels within a given buffer to account for variation in the number

of neighboring parcels or peer group size. Summary statistics regarding the average number of

adopters or the installed based are provided in Table 2.1, which demonstrates the gradual increase

in adoptions from 2002 to 2012.

We also utilize additional geospatial data to control for groundwater availability, parcel size,

drip irrigation adoption subsidies, and market and surface water access. We define parcel-level

resource/groundwater availability as a dummy variable which equals one if a groundwater well

is observed within a given parcel at any point in time between 2002 and 2012, and zero other-

wise. In total, we observe 437 parcels with groundwater availability. We assume that groundwater

availability is exogenous given anecdotal evidence that producers farm on land initially distributed

to their families after the end of French colonization, over 70 year ago and before the advent of

large-scale groundwater-fed irrigation in Trifa Plain.

We control for variation in drip irrigation adoption subsidies by including a dummy variable

which indicates whether a parcel is less than 5 hectares, which is the threshold to qualify for the

100% drip irrigation adotion subsidy. Parcels larger than 5 ha. also qualify for subsidies but these

cover a smaller proportion of adoption expenses. Finally, we control for parcel-level surface water

and market access by calculating distance to the largest wholesale market in the Trifa Plain, which

is located in Berkane, and the distance to the nearest large surface water canal for each parcel in

the sample. These variables capture differences in transportation costs and conveyance losses in

surface water delivery. Table 2.2 presents summary statistics for these time-invariant covariates.

2.6 Results
Tables 2.3 and 2.4 present random effect (RE) model specification results for the econometric

framework developed in Section 2.4. Specifically, Tables 2.3 and 2.4 show model results when the

peer group is defined by the number of neighbors adopting within 1 km and 3 km, respectively, of

an individual’s parcel. The columns in Tables 2.3 and 2.4 present model results with increasing lev-

els of spatial and time controls wherein column 1 uses no additional spatial or time controls while
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Table 2.1: Summary statistics on peer group drip irrigation adoptions

# Neighboring Adopters Within
Year 1/2 km 1 km 2 km 3 km
2002 0.05 0.16 0.37 0.60
2003 0.07 0.20 0.47 0.77
2004 0.09 0.26 0.62 1.01
2005 0.14 0.38 0.94 1.48
2006 0.26 0.72 1.86 2.72
2007 0.43 1.15 3.11 4.56
2008 0.56 1.50 4.08 6.07
2009 0.79 2.15 5.93 8.83
2010 1.00 2.73 7.46 11.15
2011 1.03 2.78 7.65 11.51
2012 1/04 2.79 7.63 11.52

Table 2.2: Summary statistics on parcel characteristics,

Variable Mean Std. Dev. Min. Max

GW Available 0.18 0.39 0 1

Parcel Size (Ha) 20.10 30.38 0.604 194.19

Parcels < 5 Ha. 0.14 0.34 0 1

Distance to Berkane (km) 11.99 5.40 1.26 23.44

Distance to Irrigation Canal (km) 5.13 4.06 0 19.07
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Table 2.3: Drip irrigation adoption model with peer group defined as parcels within 1 km

(1) (2) (3) (4)
# of Peers Adopting W/I 1 km 0.295∗∗∗ 0.180∗∗∗ 0.166∗∗∗ 0.130∗

(0.0484) (0.0347) (0.0438) (0.0548)

GW Available -0.219 -0.435 -0.460 -0.705+

(0.382) (0.278) (0.302) (0.428)

# of Peers Adopting X GW -0.0910 -0.0689 -0.0750 -0.0878
(0.104) (0.0836) (0.0897) (0.118)

Parcel Size -0.0346∗∗∗ 0.0173∗ 0.0189∗ 0.0286∗

(0.0101) (0.00832) (0.00908) (0.0128)

Parcel Size2 0.000209∗∗ -0.000123+ -0.000132+ -0.000194∗

(0.0000689) (0.0000626) (0.0000678) (0.0000950)

Less than 5 Ha. -0.996∗∗ 0.104 0.119 0.262
(0.366) (0.271) (0.294) (0.404)

Distance to Canal -0.261∗∗∗ -0.0527 -0.0667+ -0.129∗

(0.0369) (0.0345) (0.0382) (0.0527)

Distance to Market -0.128∗∗∗ -0.0447+ -0.0477+ -0.0701+

(0.0208) (0.0255) (0.0280) (0.0389)

# of Parcels W/I 1 km -0.0962∗∗∗ -0.00649 -0.00545 -0.000638
(0.00957) (0.00854) (0.00933) (0.0129)

σ2
µ 1.785∗∗∗ 0.560∗ 0.949∗∗ 2.330∗∗∗

(0.232) (0.270) (0.323) (0.140)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2.4: Drip irrigation adoption model with peer group defined as parcels within 3 km

(1) (2) (3) (4)
# of Peers Adopting W/I 3 km 0.148∗∗∗ 0.0960∗∗∗ 0.150∗∗∗ 0.0591+

(0.0203) (0.0187) (0.0292) (0.0320)

GW Available -0.464 -0.776∗ -0.751∗ -1.052∗

(0.550) (0.373) (0.383) (0.504)

# of Peers Adopting X GW 0.0160 0.0190 0.0135 0.0269
(0.0402) (0.0321) (0.0332) (0.0429)

Parcel Size -0.0476∗∗∗ 0.0201∗ 0.0206∗ 0.0277∗

(0.0112) (0.00922) (0.00951) (0.0121)

Parcel Size2 0.000276∗∗∗ -0.000136∗ -0.000138∗ -0.000184∗

(0.0000756) (0.0000683) (0.0000702) (0.0000892)

Less than 5 Ha. -1.268∗∗ 0.0937 0.104 0.213
(0.406) (0.300) (0.308) (0.386)

Distance to Canal -0.291∗∗∗ -0.0768∗ -0.0787+ -0.128∗

(0.0397) (0.0385) (0.0404) (0.0502)

Distance to Market -0.140∗∗∗ -0.0503+ -0.0513+ -0.0631+

(0.0216) (0.0285) (0.0294) (0.0370)

# of Parcels W/I 3 km -0.0324∗∗∗ -0.00207 -0.00337 -0.000213
(0.00329) (0.00283) (0.00297) (0.00381)

σ2
µ 2.443∗∗∗ 1.045∗∗ 1.135∗∗ 2.059∗∗∗

(0.150) (0.320) (0.364) (0.177)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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column 4 uses the full suite of controls. Our preferred model specification results are contained

in column 4 of Tables 2.3 and 2.4 which control for commune-specific effects, commune-specific

quadratic trends, and study area and commune-specific common correlated effects (CCE).

Our empirical model finds modest evidence regarding the positive impact of peer effects on

drip irrigation adoption. Namely, in both model specifications as increasing levels of spatial and

time controls are included the impact of neighboring adoptions, or peer effects, remains positive

and statistically significant, at at least the 10% level. The significance of peer effects diminishes as

additional spatial and time controls are added to the model specification. Specifically, the inclusion

of CCEs which control for time variant regional trends significantly reduces the statistical signif-

icance of peer group adoption rates on individual adoption decisions. This result demonstrates

how the inclusion of a rich set of spatial and time controls reduces residual variation necessary to

identify peer effects, particularly when dealing with smaller sample sizes.

We also evaluate the average marginal effect of peer group adoption and find that a producer

is 0.23% more likely to adopt when one additional peer within 1 km adopts while a producer is

0.10% more likely to adopt when one additional peer with 3 km adopts, these average marginal

effects are statistically significant at the 5% and 10% levels, respectively. These results follow

intuition regarding the diminished marginal effect of peer adoption as the peer group increases in

size. Furthermore, these estimated marginal effects align with marginal peer effect estimates in

past literature, in both developed and developing country contexts, which finds that an additional

peer adopting increases the likelihood of individual adoption between 0.1% and 0.76% [den Broeck

and Dercon, 2011, Maertens and Barrett, 2012, Krishnan and Patnam, 2013, Bollinger et al., 2018,

Sampson and Perry, 2018].

Modeling results also reveal a consistent negative and statistically significant, at at least the

10% level, relationship between the availability of groundwater and the likelihood of adoption.

This result speaks to the importance of resource constraints and availability in determining adop-

tion decisions and aligns with past empirical and theoretical research investigating the relation-

ship between technology adoption and resource constraints and price [Caswell and Zilberman,
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1985, Foltz, 2003]. In our context, agricultural producers with groundwater are less resource con-

strained than their counterparts who rely solely on stochastically available surface water supplies.

As such, the expected parcel-level returns of drip irrigation adoption are less when groundwater is

available on the parcel than when groundwater is not available.

We also estimate marginal peer effects for both producers with and without groundwater avail-

able on their operation. These results reveal that average marginal peer effects are consistently

greater for producers without access to groundwater on their operation. Specifically, for the model

with peer groups defined by a 1 km buffer, the average marginal peer effects are 0.17% and 0.24%

for producers with and without groundwater, respectively, which are both significant at the 5%

level. For the model with peer groups defined by a 3 km buffer, average marginal peer effects are

0.06% and 0.11% for producers with and without groundwater, respectively. However, only the

marginal peer effect for producers without groundwater is statistically significant at the 10% level.

These results suggest that peer effects are potentially more salient among producers without access

to groundwater.

Results also reveal a positive and statistically significant relationship between the probability

of adoption and parcel size when the full set of spatial and time controls are included. Furthermore,

the positive coefficient on parcel size squared implies that the magnitude of this positive effect is

decreasing as parcel size increases. We also find that the 5 ha indicator variable is not statistically

significant in any of the specifications which include spatial or time controls. This result suggests

that differences in drip irrigation subsidies are not a significant factor driving adoption decisions.

Finally, our results indicate a negative relationship between the probability of drip irrigation

adoption and distance to market, implying that access to markets and the government services in

Berkane are a significant determinant of adoption decisions. Our results also reveal a relatively

consistent and statistically significant relationship between distance to surface water canal and the

probability of adoption which is somewhat counterintuitive given we would expect that parcels

further from a canal would be more resource constrained given water conveyance losses and thus

experience increased returns from adoption. Rather, it is likely that this variable is capturing a
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separate effect, particularly if the location of surface water canals was determined by land quality

attributes which are otherwise not controlled for in our model.

We also estimate our empirical model of drip irrigation adoption using the percentage of peers

adopting within the peer group. These results are presented in Section B.3 of the Appendix and

demonstrate that the impact of peer adoption is less robust when the peer effect variable enters the

model as percentage rather than a level. This result provides evidence that there may be differing

mechanisms based on percentage rather than level of peer group adoption through which peer

effects influence adoption decisions.

We test the robustness of our empirical results in Sections B.1 and B.2 of the Appendix which

presents model results for differing spatial buffers defining peer groups, model specifications, and

formulations of the peer effect variable. Results in Section B.1 wherein peer groups are defined by

1/2 and 2 km buffers are similar to those presented here, providing evidence that our results are not

particularly sensitive to the distance defining a parcel’s peer group. Section B.2 displays empirical

model results using a pooled OLS model specification which qualitatively align with the random

effects specification results presented above.

2.7 Conclusion
This paper investigates agricultural producers’ decision to adopt an efficient irrigation technol-

ogy and how peer effects and resource constraints determine this choice. We utilize parcel-level

data on drip irrigation adoption decisions from the Trifa Plain of northeastern Morocco to empir-

ically estimate this relationship. Our results reveal that peer effects, based on spatial proximity,

have a limited impact on drip irrigation adoption decisions when spatial and time controls are in-

cluded in our empirical modeling. We also find that groundwater availability negatively influences

drip irrigation adoption.

Our results regarding the impact of peer effects on drip irrigation adoption provide modest evi-

dence supporting the notion that peer group adoption rates influence individual adoption decisions.

Specifically, we find that an additional peer adopting increases the likelihood of individual adop-
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tion between 0.10% and 0.23%, depending the spatial buffer defining the peer group. This result

aligns with past technology adoption literature which finds peer group adoption a significant deter-

minant of adoption decisions [Conley and Udry, 2010, Bollinger and Gillingham, 2012b, Sampson

and Perry, 2018]. We describe our results as modest given the diminished level of statistical sig-

nificance of peer effects as increasing levels of spatial and time controls are included. However,

this result may be related to our relatively small sample size and the minimal residual variation

left to identify peer effects after controlling for unobservables with the full suite of controls com-

mon in the literature (e.g. regional time trends, CCEs). Future research should explore peer effect

identification issues within the context of small sample sizes common in data poor regions.

Our results also reveal that resource availability decreases the probability of drip irrigation

adoption which aligns with past conclusions in the literature [Caswell and Zilberman, 1983, Foltz,

2003]. The availability of alternate water supplies measured by access to groundwater diminishes

resource constraints and reduces the returns to drip irrigation adoption. We also find that marginal

peer effects are diminished for producers with access to groundwater compared to those without

access, implying that peer effects are potentially more salient for more resource constrained pro-

ducers. These results demonstrate the potential impact of conservation policies that incentivize

individuals to account for resource scarcity via pricing or other resource management policies on

the adoption of efficiency-enhancing technologies. More specifically, our results suggest that drip

irrigation subsidy rates that vary according to resource availability could potentially increase drip

irrigation adoption rates among the least resource constrained individuals. Future research should

investigate how the source of water available to producers influences the likelihood of engaging in

pro-conservation behavior and adopting an efficiency enhancing irrigation technology.

A weakness of our analysis lies in our characterization of land parcels based upon road bound-

aries. It is likely that actual patterns of land tenure and management do not strictly align with

road-based land parcels. This potentially introduces some biases in our modeling if other avenues

(e.g. land ownership) outside peer effects influence how adoption decisions in a given parcel affect
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neighboring parcels. Future research should evaluate the impact of using road-based parcels rather

than observed land ownership patterns in models of technology adoption and land-use.
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Chapter 3

Endogenous Input Markets and Pro-Conservation

Behavior: The Spillovers of Groundwater

Management

3.1 Introduction
The management of common pool resources (CPR) is a major policy concern which attracts

significant attention in the natural resource and environmental economics literature. Much of this

literature focuses on identifying optimal policy regimes that align private resource use decisions

with socially efficient objectives [Gardner et al., 1990, Fisher et al., 2010, Madani and Dinar,

2012]. In practice, institutional and physical constraints often preclude the implementation of

efficient (first-best) management policies across the entirety of a resource. Rather, political and

jurisdictional boundaries often fracture CPR management efforts, creating a regulatory patchwork

within the resource’s extent. This occurs in fisheries, large aquifers, watersheds, and atmospheric

CO2, which often cross national and other political borders [Heikkila, 2003,Schnier and Anderson,

2006, Just and Netanyahu, 2012].

The patchy implementation of CPR management policies creates spillovers which reverberate

through physical systems and markets [Jacobson, 2014]. An extensive literature exists analyz-

ing policy spillover and leakage in the context of air quality [Chen, 2009,Fell and Maniloff, 2018],

forestry [Gan and McCarl, 2007,Warman and Nelson, 2016], and fishery regulation [Halpern et al.,

2009, Gaines et al., 2010, Cunningham et al., 2016]. [Pfaff and Robalino, 2017] classify the chan-

nels through which conservation policy spillovers and leakage occur. We build on this literature

by investigating how input markets interact with resource dynamics to determine the net effect

of conservation policy spillovers. Specifically, we analyze the economic spillovers arising from
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patchy CPR management in the context of groundwater where energy input markets41 and natural

resource dynamics connect CPR users.

Groundwater is an ideal resource to explore the impacts of patchy CPR management as many

of the world’s most productive aquifers cross state and national political boundaries42. As such,

groundwater management and conservation within many shared aquifers takes place under a range

of institutional and legal settings. The High Plains Aquifer (HPA) overlies 8 states43 in the cen-

tral United States and supports millions of acres of irrigated cropland exemplifies the patchwork

of jurisdictions determining CPR management [Scanlon et al., 2012]. The HPA is hydrologically

connected across jurisdictions, suggesting that conservation efforts in one jurisdiction affect re-

source availability in neighboring jurisdictions [Voss, 2014]. Furthermore, groundwater users in

the HPA are also connected by common input markets (e.g. energy, fertilizer, pesticides and her-

bicides) serving the irrigated agricultural economy. This paper develops a hydroeconomic model

of irrigated agricultural production in the Republican River Basin of Colorado, a sub-basin of the

HPA, to evaluate how the patchy implementation of groundwater conservation policies generates

positive and negative spillovers for neighboring groundwater users when prices for complementary

and/or substitute inputs are endogenous.

This paper contributes to the broader integrated modeling literature that aims to align rigorous

economic models with accurate portrayals of physical systems by recognizing how policy-induced

changes in resource dynamics generate impacts in non-resource markets [Muller and Mendelsohn,

2007,Garnache et al., 2017]. We also contribute to the more context-specific hydroeconomic mod-

eling literature by developing a framework that captures how groundwater conservation policies

affect common input markets. Hydroeconomic models integrate economic models of resource

41Energy inputs are complementary to groundwater inputs in irrigated agricultural production as energy inputs
increase the productivity of groundwater by allowing groundwater pumping and application on crops.

42e.g. High Plains, Wajid, Nubian, Guarani, and Upper Rhine Aquifers. The High Plains aquifer underlies several
U.S. States, the Wajid aquifer underlies both Yemen and Saudi Arabia, the Nubian aquifer underlies parts of Chad,
Sudan, Egypt, and Libya, the Guarani aquifer underlies areas of Argentina, Brazil, Paraguay, and Uruguay, and Upper
Rhine aquifer underlies areas of France and Germany.

43Texas, New Mexico, Oklahoma, Kansas, Nebraska, Colorado, Wyoming, and South Dakota
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use with physical models depicting resource dynamics across time to provide policy-relevant in-

sights and better understand the costs and benefits of groundwater management [Harou et al.,

2009, Koundouri, 2004]. Specifically, we model how energy distribution firms adjust their pricing

regimes in response to groundwater conservation policy implementation. This approach recognizes

the unique one-to-one relationship between energy and groundwater demand and how groundwater

conservation policies potentially induce energy input firms to change prices and spread the fixed

costs of maintaining distribution networks across fewer units of energy [Pfeiffer and Lin, 2014a].

The relationship between groundwater conservation and the prices charged by energy distribution

firms constitutes a special case of the broader connection between input markets and environmen-

tal goods or natural resources. For most inputs we would expect that a decrease in demand would

decrease price, however this is not the case for energy distribution firms given they must recover

the fixed costs of maintaining their distribution network.

We also contribute to the hydroeconomic modeling literature by employing a novel empiri-

cal approach in estimating individual groundwater demand as a function of resource availability

and energy prices. Past hydroeconomic models utilize parameters from the literature to estimate

groundwater demand functions [Gisser and Sánchez, 1980, Provencher and Burt, 1993, Guilfoos

et al., 2013, Guilfoos et al., 2016] or develop structural models of groundwater demand based

on agronomic characteristics and economic theory [Hrozencik et al., 2017]. However, these ap-

proaches do not account for unobserved agricultural producer and well characteristics44 which

potentially influence demand. We improve upon this approach by leveraging well-level data on

groundwater demand in the Republican River Basin of Colorado to empirically estimate reduced-

form groundwater demand functions that reflect the characteristics of irrigated agricultural produc-

tion in the study area.

We utilize our hydroeconomic model to analyze conservation policy spillovers by simulating

both baseline (no-policy) and policy scenarios and comparing their outcomes across time. Our

results reveal how input market and resource effects jointly determine the spillovers associated

44e.g. management ability, irrigation technology and efficiency, land tenure, and conservation preferences.
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with patchy CPR management policies. Specifically, we find that resource users neighboring the

policy area accrue benefits in the form of increased levels of resource availability. However, these

gains largely dissipate when resource users share a common input market for electricity with users

subject to the policy regime due to higher input prices. The policy implications of this result are

significant as it demonstrates how input price endogeneity generates costs for resource users not

subject to CPR management policies.

This paper proceeds as follows: in Section 3.2, we review the pertinent economic literature

and situate this paper’s contribution within that literature. In Section 3.3, we develop a theoretical

model which depicts how both common input markets and resource dynamics distribute the costs

and benefits of groundwater management policies. In Section 3.4, we describe the physical and

institutional attributes of groundwater-fed irrigated agriculture in the Republican River Basin of

Colorado. In Section 3.5, we present the hydroeconomic model which consists of empirically

derived groundwater demand equations, common energy input markets, and aquifer dynamics.

Results are presented in Section 3.6 and their significance discussed in Section 3.7.

3.2 Literature Review
In this Section, we review the pertinent economic literature and place the three primary con-

tributions of this paper within that literature. First, this paper contributes to the broader environ-

mental economics literature by analyzing the spillovers, or externalities, arising from patchy CPR

management in a novel context, groundwater. Second,the paper builds on past research examining

the relationship between economic inputs and natural resources by recognizing and modeling how

input markets serve as conduits for CPR management impacts. Finally, this papers advances the

hydroeconomic and integrated modeling literature by linking empirically estimated groundwater

demand functions with a physical model of an aquifer to estimate management policy impacts and

economic value.

A large body of applied research in environmental and natural resource economics examines

the spillovers arising from environmental regulation related to land conservation programs [Ja-
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cobson, 2014, Pfaff and Robalino, 2017], air quality [Chen, 2009, Fell and Maniloff, 2018], fish-

eries [Halpern et al., 2009, Gaines et al., 2010, Cunningham et al., 2016]), and forests [Gan and

McCarl, 2007, Warman and Nelson, 2016]. Broadly, this literature finds that the magnitude of the

benefits and costs imposed by patchy CPR management depends on the characteristics of the phys-

ical system and the policies managing that system. For example, the creation of marine reserves

creates significant positive spillovers for neighboring fisheries while land conservation programs

potentially generate negative spillovers for landowners impacted by the policy given potential ad-

justments along the extensive margin [Jacobson, 2014].

[Pfaff and Robalino, 2017] review how the implementation of conservation programs generate

impacts beyond program borders. Specifically, [Pfaff and Robalino, 2017] identify input reallo-

cation, market prices, learning, non-pecuniary motivations, and ecological-physical links as the

primary channels through which conservation policy spillovers and leakages occur and note that

in many cases multiple channels determine aggregate spillover effects. We build on the insights

presented by [Pfaff and Robalino, 2017] and focus our analysis of the spillovers arising from

patchy groundwater management policies on market prices, specifically input market prices, and

ecological-physical channels. We utilize a novel hydroeconomic modeling approach to separate

the effects of these disparate channels.

A developing literature investigates spillovers that occur between water and energy, finding that

behavioral interventions and policy in one sector affect the other sector and vice versa [Zhou et al.,

2016, Jessoe et al., 2017]. However, the literature has not explored spillovers within the context

of water conservation despite evidence that water users respond to water use restrictions and the

spatial externalities imposed by neighboring use decisions [Pfeiffer and Lin, 2012, Drysdale and

Hendricks, 2018]. Furthermore, the common pool nature of groundwater and the patchwork of

jurisdictions regulating many of the world’s most productive aquifers suggest that economically

significant spillovers may occur within a shared groundwater resource when its management is

non-uniform across space.
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Another growing body of literature examines the relationship between energy and groundwa-

ter use. Broadly, this literature finds that changes in energy pricing and subsidies influence water

demand [Pfeiffer and Lin, 2014a, Foster et al., 2017a, Foster et al., 2018]. Other literature has

suggested utilizing energy policy as a tool to address groundwater depletion concerns [Scott and

Shah, 2004, Scott, 2013, Fishman et al., 2016]. However, a relative paucity of literature has in-

vestigated how changes in water demand affect energy markets despite the evidence linking water

and energy demand. These effects are likely significant when energy demanded for water use con-

stitutes a large portion of the total market, as is the case for electricity distribution firms in the

HPA. We address this gap in the literature by quantifying how the spatial externalities of reduced

groundwater withdrawals induced by conservation policy generate positive spillovers for neigh-

boring, unregulated resource users. We also build on this literature by acknowledging the multiple

channels which distribute policy spillovers and modeling the input market effects of groundwater

conservation policies.

This paper also contributes to a vein of literature that recognizes the role that input markets play

in determining the use of environmental goods and natural resources. This literature focuses on the

complementarity and substitutability of natural and man-made inputs to production and explores

how this relationship influences natural resource stocks and environmental quality [Moroney and

Toevs, 1977,Cai et al., 2008,Hannesson et al., 2010,Manning et al., 2013]. However, this literature

has not explored how the relationship between inputs and natural resources affects the distribution

of CPR management policy impacts across resource users or space. We address this gap in the

literature by analyzing how input markets serve as conduits for policy impacts in the context of

groundwater where energy inputs are required for natural resource extraction.

Finally, this paper makes a methodological contribution of the hydroeconomic modeling lit-

erature by taking a reduced-form empirical approach in estimating groundwater demand func-

tions. Early hydroeconomic economic literature utilized stylized models of groundwater demand

and resource dynamics to assess the costs and benefits of groundwater management [Gisser and

Sánchez, 1980, Provencher and Burt, 1993, Brill and Burness, 1994]. More recent literature inte-
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grates calibrated hydrologic models of groundwater flow recognizing the importance of accurately

depicting natural resource dynamics and spatial externalities [Brozović et al., 2010,Mulligan et al.,

2014, Guilfoos et al., 2013, Guilfoos et al., 2016, Hrozencik et al., 2017]. This paper follows these

recent advances in the literature and utilizes a hydrologic model of the Republican River Basin to

measure how pumping decisions influence spatially-explicit future groundwater availability.

Despite these advances in accurately modeling groundwater resource dynamics, most hydroe-

conomic modeling research utilizes parameters from the literature, applied uniformly across wells,

to estimate individual demand functions wherein differences in pumping depth and the marginal

cost of extraction provide the only source of variation across wells [Mulligan et al., 2014,Guilfoos

et al., 2013]. They often fail to capture the significant heterogeneity in resource access conditions

faced by producers [Foster et al., 2014]. A notable exception is [Hrozencik et al., 2017] who in-

tegrate economic and agronomic models to estimate groundwater demand functions that reflect

observed heterogeneity. This paper builds on these past treatments of groundwater demand in the

literature by utilizing a reduced-form modeling approach to estimate heterogeneous demand func-

tions. Our method permits estimating demand functions that reflect the unique characteristics of

the study area and unobserved differences between producers. More broadly, our methods demon-

strate how to leverage empirical tools to estimate individual behavior and integrate these insights

into physically-based models of resource dynamics.

3.3 Theoretical Model
In this Section, we develop a theoretical model that characterizes the resource and input market

spillovers associated with groundwater conservation policies. Suppose the functionsw1(p
Q, τ1, ψ1)

andw2(p
Q, τ2, ψ2) represent groundwater demand for two agricultural producers that utilize a com-

mon pool aquifer. Their demand for groundwater is a function of the marginal price of energy45,

45All groundwater sources with the exception of artisan springs require some form of energy to utilize in agricul-
tural production.
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pQ, price-based groundwater management policies, τ1 and τ2, and resource availability at the well

location, ψ.

The two agricultural producers share a common energy input market defined by pQ wherein

changes in demand by one producer influences the price faced by both producers. Specifically,

diminished demand by one producer increases the energy price faced by both producers46 which

reflects how many cooperatively owned or regulated monopoly energy distribution firms adjust

their pricing according to changes in aggregate demand as the fixed costs of their distribution

network are distributed over fewer units of energy. Since groundwater management policies change

demand, it follows that marginal energy price, pQ, is a function47 of τ1 and τ2. The changes

in demand induced by management policies also influence aquifer dynamics. As such, resource

availability for both agricultural producers is a function48 of τ1 and τ2.

Suppose that groundwater management within the shared aquifer is non-uniform or patchy in

that τ1 > 0 and τ2 = 0. We analyze how τ1 influences demand by the first producer and second

producer by virtue of their shared groundwater resource and common input market. The effect of

τ1 on demand by the first agricultural producer is given by the following expression

dw1

dτ1
=

∂w1

∂τ1︸︷︷︸
Direct Effect

+
∂w1

∂ψ1

∂ψ1

∂τ1︸ ︷︷ ︸
Resource Effect

+
∂w1

∂pQ
∂pQ

∂τ1︸ ︷︷ ︸
Input Market Effect

(3.1)

where the terms of the total derivative represent the price effect, the direct resource effect, and indi-

rect input market effect of the policy. Price effects are negative as increased policy levels diminish

demand49. Direct resource effects are positive when enhanced resource availability increases de-

mand (∂w1

∂ψ1
> 0) and the policy regime expands resource availability (∂ψ1

∂τ1
> 0). The net effect of

46More formally, ∂pQ

∂w1
< 0 and ∂pQ

∂w2
< 0.

47pQ(τ1, τ2)

48ψ2(τ1, τ2) and ψ2(τ1, τ2)

49Assuming that water is a normal good.
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τ1 on demand by the first producer depends on the relative magnitude of price and indirect input

market effects versus direct resource effects.

The implementation of τ1 also generates impacts for the second producer which are given by

dw2

dτ1
=

∂w2

∂ψ2

∂ψ2

∂τ1︸ ︷︷ ︸
Resource Effect

+
∂w2

∂pQ
∂pQ

∂τ1︸ ︷︷ ︸
Input Market Effect

(3.2)

where both resource and input market effects distribute the spillovers of τ1 to demand by the second

producer. The producers’ common pool aquifer serves as a conduit for transferring policy benefits

when τ1 increases resource availability for the second producer (∂ψ2

∂τ1
> 0). While the producers’

common input market transmits the costs of τ1 as diminished aggregate demand increases energy

price. The net effect of τ1 on demand by the second producer depends on the relative magnitude

of direct resource versus indirect input market effects. Specifically, the second producer increases

their water user under τ1 when the gains accrued due to resource flows induced by τ1 outweigh the

costs introduced by their common input market.

The magnitude of the potential changes in water use for agricultural producers under τ1 de-

pends crucially on the physical system dictating resource dynamics which determine ∂ψ2

∂τ1
and ∂ψ1

∂τ1
.

In the context of groundwater, resource dynamics depend on recharge rate, initial stock or saturated

thickness50, and the degree to which the aquifer is hydrologically connected or hydraulic connec-

tivity. We incorporate these characteristics into our hydroeconomic model by utilizing a physical

model (MODFLOW) calibrated for the study area that simulates groundwater flows subject to spa-

tially and temporally-explicit pumping rates yielding a producer’s future resource availability as a

function of past pumping by the producer and their neighbors.

The water use impacts of τ1 also depend on the characteristics of the producers’ common

energy input market which determine ∂pQ

∂τ1
. We incorporate these indirect input market effects

in our hydroeconomic framework by developing a model of the energy input distribution firm’s

50Saturated thickness is the vertical distance from the confining hydrogeologic unit defining the bottom of an
aquifer to the water table, or top of the aquifer [Lohman et al., 1972]
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pricing decision as function of aggregate groundwater demand. We parameterize the model using

data on the energy distribution firms in the study area. This model allows our hydroeconomic

framework to capture how changes in demand induced by groundwater management affect energy

pricing decisions throughout the common input market.

3.4 Study Area and Background
The HPA is the largest aquifer in the United States, providing over 30% of the total groundwater

used for irrigation in the United States [Steward et al., 2013b]. Figure 3.1a presents the extent of the

HPA and the Republican River Basin, which is a hydrologically connected sub-basin of the HPA.

The red frame in Figure 3.1a indicates the study area, the Republican River Basin of Colorado

(hereafter the Basin) where we focus our modeling efforts. Irrigated agriculture supported by

the HPA is vital to the rural economy of the Basin [Thorvaldson and Pritchett, 2007,Maupin et al.,

2014]. Groundwater depletion is a major concern in the HPA region and the Basin. Recent research

predicts that some areas of the aquifer will reach the end of economically viable groundwater

irrigation by 2050 [Haacker et al., 2016].

The management of the Basin’s groundwater resources rests with eight51 independent Ground-

water Management Districts (GWMD) which possess legal authority to regulate groundwater use

within their district. Figure 3.1b present the boundaries of the Basin’s GWMD in red. There

exists significant heterogeneity in groundwater availability across GWMDs, with some districts al-

ready experiencing the effects of groundwater depletion. As such, there is growing interest among

GWMDs affected by depletion to enact policies to conserve their shared groundwater resource52.

Recent research finds that initial groundwater stock is a significant determinant of the gains as-

sociated with management [Foster et al., 2017a]. This insight paired with the independence of

51Arikaree,East Cheyenne, Central Yuma, Frenchman, Plains, Sand Hills, Marks Butte, and W-Y.

52There are currently no restrictions on groundwater use in the Basin outside of the irrigated acreage and pumping
limits set by the State of Colorado when each well was permitted. However, these permit restrictions are not binding
as very few wells pump volumes approaching their permitted allowance. Finally, a fee of $14.50 is levied on each
irrigated acre in the Basin to finance compact compliance initiatives on the Republican River.

70



(a) High Plains Aquifer (b) GWMDs and RECs of the Republican River
Basin of Colorado

Figure 3.1: The HPA and GWMDs and RECs of Republican River Basin

GWMDs suggests that the implementation of groundwater conservation policies is most likely to

occur at the GWMD level and vary in timing according to differences in groundwater availability.

Irrigated agricultural production in the Basin requires energy inputs to pump water from the

HPA and apply to crops. Electricity provided by three Rural Electric Cooperatives53 (REC) pow-

ers over 90% of the approximately 3,000 irrigation wells located in the Basin [USDA, 2013].

Figure 3.1b presents the service area boundaries of the Basin’s three RECs in black. The coop-

erative ownership structure of RECs relates to their creation under the Rural Electrification Act

of 1936 and requires that any excess REC revenues be distributed back to constituents [Brown,

1980,Rhodes and Wheeler, 1996]. In case of REC revenue shortfalls, the US Department of Agri-

cultural’s Rural Utilities Service administers a loan program for electricity distributors in rural

locations [Cowan, 2010]. The RECs of the Basin do not generate energy, instead RECs buy energy

from Tri-State Generation and Transmission, whose generation portfolio includes coal, natural gas,

53Y-W, Highline, and K.C.
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and renewable energy sources [Inc., 2017]. Irrigation customers are an important aspect of REC

operations as their demand for electricity constitutes, on average, 45% of the electricity distributed

by RECs in the Basin [USDA, 2011]. As such, variation in groundwater demand impacts REC

operations as the fixed costs of maintaining distribution networks must be distributed across fewer

units of electricity. Finally, note that several of the RECs in the Basin utilize decreasing block

rate (DBR) price schedules for irrigation customers wherein the marginal price of electricity (and

water) decreases as demand increases.

3.5 Hydroeconomic Model
In this Section, we describe the hydroeconomic model used to characterize the spillover effects

described in the theoretical model. We begin by outlining an empirical model of groundwater de-

mand, describe the data used to estimate the model, and present empirical model results which we

use to parameterize well-level groundwater demand functions. We then develop a model of the

energy input market wherein electricity prices are endogenous to demand and describe the hydro-

logic model of the Basin which simulates spatially-explicit changes in groundwater availability as

a function of pumping decisions. Next, we detail how we integrate these components to develop

the hydroeconomic model. Finally, we introduce the conservation policy scenario motivating our

analysis.

3.5.1 Groundwater Demand

Let groundwater demand by the kth well54 in time t be given by

log(wkt) = αk + δt + β1log(pwkt) + β2ψkt +BΘkt + εkt (3.3)

54Available water demand data is reported at the well-level (see Section 3.5.2 for further description). We also
estimate water demand at the well-level because it allows our model to better capture time variant and invariant
differences across wells. To account for potential unobservables at the well-owner level we cluster standard errors at
the owner level in all modeling specifications.
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where factors influencing demand are captured by a well-level fixed effect, αk, time fixed effects,

δt, the marginal price of water, pwkt, groundwater availability, ψkt, and a vector of weather variables,

Θkt. εit is an idiosyncratic error term. To facilitate comparison with previous treatments of water

demand in the literature, we assume constant elasticity and estimate the water demand function

in log-log form [Hewitt and Hanemann, 1995, Olmstead, 2010]. As such, the parameter β1 can

be interpreted as the price elasticity of groundwater demand wherein the water price signal, pwkt

incorporates both the energy costs associated with extracting a unit of groundwater and price-

based conservation policies. Finally, note that this formulation of agricultural water demand does

not include cropping choices as covariates, rather we employ a flexible formulation of demand

which implicitly accounts for adjustments along the extensive margin.

When electricity is priced according to a non-linear, DBR schedule the price signal to which

agricultural producers respond is endogenous to their demand as increased levels of groundwater

demand are associated with decreased electricity prices. To address this potential for endogeneity

and generate unbiased parameter estimates we follow a fixed effect, instrumental variable (FE-IV)

approach common in the non-linear pricing literature [Terza and Welch, 1982, Nieswiadomy and

Molina, 1989, Olmstead, 2010, Ito, 2014]. We utilize the parameters of the DBR rate structure

(i.e. difference between price levels, thresholds) as instruments for marginal electricity price.

Specifically, we use the difference between the first and last price of the rate structure and the

volume of water required to reach the final price block as instruments for marginal price.

3.5.2 Data for Demand Parameter Estimation

We utilize a novel panel data set of groundwater and electricity demand for 2,937 irrigation

wells in the Republican River Basin of Colorado from 2011 to 2017 to estimate the empirical

model of groundwater demand presented in Section 3.5.1. The dataset includes imputed marginal

price of water as well as weather and aquifer related variables to account for factors that influence

demand for electricity and groundwater. In this Section, we describe these data as well as their

sources.
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Estimation of the econometric model outlined in Section 3.5.1 requires knowledge of the

marginal price of electricity and well-level energy requirements for pumping to determine the

marginal price of groundwater. However, electricity use data is not publicly available, instead we

calculate electricity demand by utilizing data on well pump characteristics collected in well ca-

pacity tests required by state law55. The process of determining marginal prices begins with data

collected by the Colorado Division of Natural Resources on well-level annual groundwater extrac-

tion [CDNR, 2017]. Groundwater pumping data is then paired with a well-level Power Conversion

Coefficient (PCC) which is collected in well capacity tests and measures the number of kilowatt

hours (kWh) required to pump one acre foot of water yielding annual electricity demand [CDNR,

2018]. PCC describes energy requirements for pumping which are largely56 a function of ground-

water availability and the height of the aquifer. Finally, we associate each well in the Basin with its

electricity provider and that provider’s rate structure to calculate the marginal price of groundwater.

We also utilize well capacity test data to account for changes in resource availability across

time via well capacity [CDNR, 2018]. Recent research suggests that well capacity is an important

determinant of groundwater use decisions along the intensive and extensive margins [Foster et al.,

2014]. Annual weather data consists of spatially explicit57 estimates of monthly precipitation and

daily maximum temperature mapped to the location of each well in the Basin [Oregon State Univer-

sity, 2018]. We aggregate monthly precipitation across the growing season58 and daily maximum

temperatures are combined to a count of growing season days with maximum temperature above

95◦ Fahrenheit.

55Rule 12 of State Administrative Rule 2 CCR 402-2, which was implemented in 2009, requires that every high
capacity groundwater well in the Republican River Basin test their well yield, i.e. capacity, every two years.

56Energy requirements of pumping a unit of groundwater are a function of resource availability, the vertical dis-
tance from the aquifer to the well, and the efficiency of the well pump. PCC accounts for all these characteristics in
determining energy requirements and in our simulation modeling we assume that well pump efficiency remains fixed
through time while resource availability, i.e. well capacity, and the depth to groundwater vary according to resource
dynamic predicted by the RRCA MODFLOW model.

574 km resolution.

58We assume the growing season is May 1st through August 31st.
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Table 3.1 presents summary statistics for the data we use to estimate the empirical model of

groundwater demand as a function of water price, resource availability, and weather presented in

Section 3.5.1. Table 3.1 demonstrates the importance of the energy costs related to water demand,

which account for up to 15% of total pre-harvest costs in the Basin [CSU, 2013]. Well capacity

data and its standard deviation also illustrate the degree of heterogeneity in resource availability

exhibited across wells within the Basin.

Table 3.1: Summary statistics, 2011-2017

Variable Mean Std. Dev. Minimum Maximum

Panel Data
Groundwater Use 213.9 113.2 9.7 1404.1
(acre feet/year)
Marginal Water Price 67.9 101.2 2.1 1245.8
($/acre foot)
Annual Electricity Demand 113.4 63.8 2.3 841.14
(mWh/year)
Annual Electricity Cost 15101.4 15312.6 343.1 89471.7
($/year)
Well Capacity 741.8 356.8 56.2 2887.1
(gallons/minute)
Precipitation 11.7 3.8 3.8 21.7
(in/growing season)
Temperature 18.76 13.5 0 56.0
(# days w/ max temp > 95◦F )
Well Pump Characteristics
Power Conversion Coefficient (PCC) 545.7 161.2 18.85 1911.8
(kWh/acre foot)
Horsepower (HP) 104.9 39.1 10.0 700.0
(work/time)
N = 20,559 with observations of 2,937 wells across the 2011-2017 time period.

Finally, to account for the effect of growing season weather in groundwater demand functions

we utilize modeled well-level data on precipitation and temperature to generate well-level weather

realizations that capture dry, normal, and wet weather conditions [Oregon State University, 2018].

Specifically, we use modeled data on weather to create well-level distributions of precipitation and

75



Table 3.2: Empirical modeling results

Dependent variable:

Log(Pumping)
FE FE-IV FE-Restricted FE-IV-Restricted

(1) (2) (3) (4)

Log(Water Price) −0.2450∗∗ −0.0643∗∗∗ −0.1248∗∗∗ −0.1765∗

(0.0230) (0.0210) (0.0131) (0.1032)
Well Capacity 0.0004 0.0004∗∗∗ 0.0003∗∗∗ 0.0015∗∗∗

(0.0001) (0.0001) (0.00003) (0.0002)
Precipitation −0.0012∗∗∗ −0.0012∗∗∗ −0.0008∗∗∗ −0.0008∗∗∗

(0.0001) (0.0001) (0.0001) (0.0003)
Temperature 0.0005∗∗∗ 0.0038∗∗∗ 0.0051∗∗∗ −0.0003

(0.0010) (0.0008) (0.0004) (0.0037)

Observations 20,556 20,556 15,787 4,769
R2 0.1016 0.0817 0.2550 0.0521
Adjusted R2 −0.0483 −0.0715 0.0914 −0.3856
F Statistic 498.0977∗∗∗ 387.6858∗∗∗ 1,107.4730∗∗∗ 33.4676∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered at the well owner

temperature. The median of these well-level distributions represents normal weather conditions,

Θnormal
kt . We characterize dry weather conditions, Θdry

kt , using the second lowest value of well-level

precipitation and the second highest value of temperature observed. Wet weather conditions, Θwet
kt ,

are the second highest value of well-level precipitation and second lowest value of temperature

observed.

3.5.3 Groundwater Demand Functions and Producer Welfare

Table 3.2 displays empirical modeling results relating groundwater demand to water price, well

capacity, and weather variables. Note that in all model specifications we cluster standard errors

at the well-owner level. Columns (1) and (2) in Table 3.2 present empirical results estimating

equation 3.3 using the full sample of data. Column (1) estimates the model without accounting for

the potential endogeneity of water price given non-linear electricity pricing. Column(2) addresses
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this potential endogeneity by instrumenting for water price with parameters of the electricity rate

structure, specifically the difference between the first and last marginal prices and the amount of

water required to reach the final price block.

We test the robustness of these results by restricting the sample used to estimate our empirical

model. These results are presented in Columns (3) and (4) of Table 3.2. Column (3) displays

FE model results when the sample is restricted to those wells which are observed to demand a

quantity on the final block of their RECs price structure in every year of our sample. We assume

that endogeneity is not a concern among these wells given that marginal price on the final price

block always determines their demand on the margin and thus do not instrument for price. Column

(4) presents FE-IV model results when the sample is restricted to those wells which are observed

to demand within their RECs interior59 price blocks. Endogeneity between demand and price is a

concern for these wells as increased levels of demand may decrease their marginal price.

Broadly, the parameters estimates presented in Table 3.2 are relatively consistent in sign and

significance across specifications. Water price, pwkt negatively impacts demand as theory would

suggest and is statistically significant in all specifications. Water price coefficient estimates also

align with previous agricultural water price elasticities reported in the literature [Schoengold et al.,

2006, Scheierling et al., 2006]. Well capacity, a measure of ground availability, increases demand

implying that resource constraints influence pumping decisions. Finally, coefficient estimates for

weather variables, precipitation and temperature, follow intuition. Specifically, increased precip-

itation diminishes demand as groundwater and natural rainfall are roughly substitutes, and more

days with max temperature above 95◦ Fahrenheit increases demand.

Our preferred model specification is FE-IV estimated with the full sample of data which ad-

dresses the potential endogeneity between marginal water price and groundwater demand. These

parameter estimates are presented in column (2) of Table 3.2. We use these FE-IV modeling results

to generate well-level groundwater demand functions

59e.g. demand within the RECs first or second price block.
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w∗kt = exp(α̂k + β̂1log(pwkt) + β̂2ψkt + B̂Θkt) (3.4)

where α̂k represents estimated well-level fixed effect and β̂1, β̂2, and B̂ are model coefficient esti-

mates. B̂ consists of precipitation and temperature model coefficients. The water price influencing

groundwater demand is a function of electricity price, PCC, and GWMD conservation policies.

This formulation of water price facilitates estimating how both resource availability and conserva-

tion policies affect water price and groundwater demand.

Note that estimated time fixed effects, δt, are not included in our formulation of well-level

groundwater demand functions. In our empirical model these time effects control for inter-annual

variation in commodity and input prices, reflecting market trends for the differing years of data

utilized in our empirical modeling. Given that our demand functions aim to predict extraction in

future time periods without knowledge of future input or commodity market trends, we condition

our well-level demand functions on the base year, 2011, which all other time fixed effects are rel-

ative to and assume the market conditions of 2011 remain constant over our simulation period. To

account for the role of weather when predicting groundwater demand, we assume the parameter

Θkt reflects growing season weather conditions, more formally Θkt ∈ [Θwet
k ,Θnormal

k ,Θdry
k ]. We

derive Θwet
k , Θnormal

k , and Θdry
k using well-level modeled data on precipitation and number of days

with maximum temperature above 95◦ Fahrenheit [Oregon State University, 2018]. Specifically,

for each well in our data set we arrange these weather data as two vectors in ascending order.

Θnormal
k consists of the median of both the precipitation and temperature data, or the fourth ele-

ments of the aforementioned vectors. Θwet
k consists of the second element of the temperature vector

and the sixth element of the precipitation vector. Θdry
k consists of the sixth element of the temper-

ature vector and the second element of the precipitation vector. This characterization of weather

variability aligns with our hydrologic modeling wherein we iterate between differing simulation

years in the RRCA MODFLOW model to capture differences in inter-annual aquifer recharge.

We also calculate estimates of producer welfare by transforming well-level demand functions

described above into well-level inverse demand functions, Γkt(p), by solving equation 3.4 for water
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price which yields

Γkt(p) =
log(w)− α̂k − β̂2ψkt − B̂Θkt

β̂1
(3.5)

which expresses water price as a function of water demand and estimated parameters α̂k, β̂1, β̂2,

and B̂. Using this well-level expression of inverse demand, we then calculate annual producer

welfare60 for the kth producer in time t whose predicted demand equals ŵkt with the following

expression

Λkt =

∫ ŵkt

ε

[
Γkt(p)− pwkt

]
dw (3.6)

where pwkt is the price of water. Note that interval of integration in equation 3.6 is between an

arbitrarily small ε and predicted demand. This relates to our assumption of constant elasticity

demand functions which exhibit a vertical asymptote at zero. As such, integrating between 0

and predicted demand would yield welfare estimates approaching infinity given that our price

elasticity estimate is less than one in absolute value. To surmount this challenge and numerically

estimate producer welfare, we integrate between ε = 0.01 and predicted demand quantities, thus

avoiding the vertical asymptote of Γkt(p) at zero. In Section 3.6.3, we utilize this framework for

estimating producer demand to calculate the changes in welfare attributable to the implementation

of a groundwater conservation policies.

3.5.4 Electricity Pricing Model

Our theoretical presentation of the spillovers arising from patchy groundwater conservation

policy implementation delineates how endogenously determined energy input prices potentially

serve as a conduit to distribute policy impacts. In this Section, we develop a model of electricity

input pricing as a function of aggregate groundwater demand to characterize how evolving patterns

of groundwater demand influence electricity prices and vice-versa. We parameterize this model to

fit the institutional setting of our study area wherein electricity inputs are provided to agricultural

producers by a cooperatively-owned electricity distribution firm. Our model and its parameteri-

60Our ability to use derived demand to estimate quasi-rents or producer surplus rests on the assumption that water
is an essential input to production in the study area.
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zation describe how RECs in the study area adjust their pricing regimes to changes in aggregate

groundwater demand induced by conservation policies and resource depletion.

Consider a cooperatively-owned energy distribution firm that provides energy inputs, Q, to K

agricultural producers. The firm chooses the marginal price of energy, pQ, to charge agricultural

producers subject to expected groundwater demand, E[w∗kt]. For simplicity, we assume that the

firm’s pricing and operational choices for agricultural producers do not vary according to energy

demand by other customer classes, e.g. residential, commercial. Let the firm’s annual fixed costs

associated with maintaining and administering their distribution network for agricultural producers

be given by the constant F . Firm variable costs associated with providing agricultural producers

with energy are a function of aggregate electricity demand and market price of energy, pmkt. Ex-

pected total annual costs and revenues are then given by

E[Total Cost] = F +
K∑
k=1

E
[
w∗kt

]
∗ PCCkt ∗ pmkt (3.7)

E[Total Revenue] =
K∑
k=1

E
[
w∗kt

]
∗ PCCkt ∗ pQ (3.8)

This formulation of firm revenue abstracts away from the possibility of using facilities charges

or hook-up fees to generate revenue. Given the cooperative nature of the firm’s ownership, we as-

sume that the firm chooses pQ such that the expected difference between total costs and revenues is

minimized. More formally, the energy distribution firm solves the following optimization problem

to determine marginal energy price.

minimize
pQ

[
E[Total Cost]− E[Total Revenue]

]2
(3.9)

We parameterize the electricity distribution firm’s pricing model using data on the RECs which

provide electricity to the Basin’s groundwater irrigators. Specifically, we utilize publicly available
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data from 201161 on the quantity of electricity distributed across customer classes and REC fixed

and variable costs. These data are presented in Table 3.3, demonstrating the importance of irri-

gation customer electricity demand for REC operations62. REC attributes introduced in Table 3.3

illustrate how the characteristics of the REC’s distribution network and service area determine

fixed costs.

Table 3.3: REC costs, energy distribution, and attributes

Highline K.C. Y-W

REC Distribution and Costs
Total Electricity Distributed (MWH) 484,478 203,091 349,902

Total Variable Electricity Costs ($) 36,588,889 14,876,845 26,954,637

Total Fixed Costs ($) 9,485,064 5,035,131 8,314,039

pmkt ($/kWh) 0.0703 0.0676 0.0711

Irrigation Electricity Distributed (MWH) 198,859 94,867 174,701

Irrigation Variable Electricity Costs ($) 15,018,287 6,949,208 13,458,060

Irrigation Fixed Costs ($) 3,893,242 2,351,989 4,151,079

REC Attributes
Total # of Customers 10,359 6,241 8,954

# of Irrigation Customers 3,156 719 1,696

# of Full Time Employees 53 27 47

# of Customers per Mile of Distribution 2.03 2.18 2.23

We utilize these data to estimate electricity pricing regimes that reflect changing groundwater

demand through time and REC cost structures. Specifically, we use REC irrigation customer fixed

61Ideally, our electricity distribution firm pricing model would be parameterized using data from multiple years.
However, these data are not publicly available and we take a second best approach and parameterize the model using
data from 2011.

62Data presented in Table 3.3 come from United States Department of Agriculture, Rural Borrowers 2011 Statis-
tical Report [USDA, 2011]. Irrigation variable and fixed costs are estimated based on the percentage of total MWH
distributed attributable to irrigation customers. pmkt or the price that RECs pay for electricity is estimated by dividing
total variable electricity costs by the quantity of kWhs purchased by the REC which is not reported in the table.
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costs, F , and imputed marginal price paid by the REC, pmkt, reported in Table 3.3. In determining

the price that RECs pay per unit of electricity, we abstract away from the possibility of peak load

or demand based pricing by the electricity generation firm and assume that RECs pay a constant

marginal price, pmkt, per kWh of electricity63 which remains constant throughout the simulation

period.

We leverage our empirical characterization of groundwater demand functions to estimate REC-

level expected demand as a function of electricity price, pQ, resource availability, ψkt, and weather,

Θkt. We assume that RECs observe well-level resource availability but are uncertain of growing

season weather when determining optimal marginal electricity prices, as such expected electricity

demand is based on REC expectations regarding weather realizations and their effect on aggre-

gate demand. We characterize this relationship by assuming that normal, wet, and dry weather

conditions, Θdry
k , Θnormal

k , and Θwet
k occur with probabilities Pr1, Pr2, and Pr3, respectively

(Pr1 = 0.2, Pr2 = 0.6, and Pr3 = 0.2). Each REC then chooses the optimal marginal electricity

price to charge irrigation customers subject to expected groundwater and energy demand within

their service area, their fixed costs, and the price they pay for electricity on the wholesale market,

pmkt.

Finally, as noted in Section 3.4, several of the RECs in the Basin utilize DBR price structures

for irrigation customers. Our energy pricing model incorporates the use of these pricing structures

and assumes that RECs do not alter the thresholds of their price structure. Rather, RECs respond

to evolving aggregate demand by adjusting all the marginal prices of their structure proportionally

to find the suite of prices that minimize the difference between expected revenues and costs as

outlined in equation 3.9.

63Our assumption that RECs face a constant marginal price, pmkt, when purchasing electricity focuses the pricing
model on REC response to changes in aggregate demand rather than exogenous changes in electricity price induced
by the dynamics of the energy generation market.
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Figure 3.2: Example RRCA MODFLOW output

3.5.5 Hydrologic Model

To establish how the quantity of groundwater demanded in period t affects resource availability

in t + 1, we utilize the Republican River Basin Compact Agreement (RRCA) MODFLOW model

which simulates spatially explicit groundwater levels for the 1918-2005 time period [Kuwayama

and Brozović, 2013,Mulligan et al., 2014,Hrozencik et al., 2017]. The model represents the aquifer

as one layer which varies in thickness and distance from the surface with a horizontal discretiza-

tion of 1 mile by 1 mile [Harbaugh et al., 2000]. The model incorporates groundwater pumping,

recharge from rainfall, evapotranspiration, groundwater and surface water irrigation, and canal

and stream seepage. Recharge into the aquifer depends on both return flows from irrigation64 and

precipitation. The model solves a system of partial differential equations characterizing ground-

water flows across grid cells on monthly stress periods with two time steps for each period and

observed groundwater levels across time were utilized to test and calibrate the model. An example

of MODFLOW output is presented in Figure 3.2 which maps simulated, spatially-explicit levels of

saturated thickness after one year in the baseline, no-policy scenario.

The RRCA model requires data on spatially-explicit recharge and evapotranspiration. How-

ever, these modeling inputs are only publicly available for 1997-2005. We follow [Hrozencik

et al., 2017] and assume that 2003, 2004, and 2005 represent dry, normal, and wet growing sea-

64We assume that 17% of total recharge is attributable to return flows from irrigation which is recharge parameter
utilized in the original RRCA calibrated MODFLOW model.
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son weather conditions where realized weather is Θdry
k , Θnormal

k , or Θwet
k . Differences in realized

weather allow our formulation of groundwater demand to more accurately reflect how variation in

growing season weather influence pumping decisions and aquifer recharge. Dry, wet, and normal

weather conditions are assumed to occur with probabilities Pr1, Pr2, and Pr3. We specify a 5

year weather cycle based on the assumed frequency of normal, dry, and wet growing seasons and

repeat that cycle throughout the model simulation period (normal, wet, normal, dry, and normal)

which we assume to be 25 years. Finally, note that we utilize a novel methodology introduced

in [Hrozencik et al., 2017] which translates changes in saturated thickness to updated well capac-

ity which previous research suggests is an important determinant of groundwater demand [Foster

et al., 2014].

3.5.6 Dynamic Model Integration

The hydroeconomic model developed in this paper integrates empirically derived, well-level

demand functions, energy input markets, and aquifer dynamics to capture the spillovers associ-

ated with patchy groundwater management policies. In this Section, we briefly describe how

model components are dynamically linked to one another through time. In t = 1 initial expected

well-level groundwater demand is determined using parameters estimated in equation 3.3 with FE-

IV specification, well-level resource availability observed in 2017, and parameters representing

dry, normal, and wet weather conditions and their probabilities. Each REC in the Basin chooses

marginal electricity price based on aggregate expected demand within their service area, fixed

costs, and pmkt. Finally, a realization of weather occurs and agricultural producers choose ground-

water demand quantities in t = 1 subject to marginal electricity price determined by RECs.

Groundwater demand quantities in t = 1 serve as input for the RRCA MODFLOW model

which then simulates groundwater flows subject to pumping decisions to output well-level ground-

water availability65 in t = 2. Well-level resource availability in t = 2 then updates REC expec-

tations regarding groundwater demand, which in turn choose new marginal electricity prices that

65Both well capacity and depth to groundwater.
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reflect changes in expected aggregate demand. Finally, another weather realization occurs and

agricultural producers choose groundwater demand quantities in t = 2 which provides input for

the next iteration of the RRCA MODFLOW model to predict resource availability in t = 3. In this

fashion, the hydroeconomic model iterates between the RRCA MODFLOW model and our static

models of groundwater demand and REC pricing using output from one model as input for the

other.

3.5.7 Baseline and Conservation Policy Simulations

We utilize our hydroeconomic model to simulate two scenarios: 1) a no-policy scenario, and

2) the scenario where one GWMD in the Basin, Plains, implements a water pricing policy aiming

to decrease expected aggregate district demand by 25% in t = 1. Our simulation model reveals

that a policy of $315 per acre foot results in a 25% reduction Plains aggregate pumping in t = 1.

We focus our simulation exercise on the Plains GWMD as it is the only GWMD in the Basin that

is currently considering implementing a conservation policy. Furthermore, both Plains, Arikaree,

and East Cheyenne66 are located within the service area of K.C. REC. Figure 3.3a presents the

boundaries of these GWMDs and K.C. REC while Figure 3.3b depicts the spatial distribution of

irrigation wells within this area. Figures 3.3a and 3.3b demonstrate how groundwater conservation

in Plains potentially generates direct resource effects for nearby resource users both within and

outside of K.C.’s service area while also creating indirect input market effects for resource users

within K.C.’s service area.

We simulate a price-based policy by including the policy level in the water price determining

an individual producer’s groundwater use. Note that the GWMD does observe electricity prices

when determining policy levels but does not observe growing season weather or anticipate how

the conservation policy affects electricity prices. We assume that once the policy is implemented

it remains in place until the end of the simulation period and any revenues generated by the policy

66East Cheyenne is not located within the Republican River Basin and irrigation wells in the GWMD are not
required to submit pumping records or conduct well capacity tests by the State of Colorado. Nor are the wells or
aquifer in East Cheyenne part of the RRCA MODFLOW model. As such, we are not able to evaluate spillover effects
arising in East Cheyenne.
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(a) GWMDs and K.C. REC (b) Spatial distribution of irrigation wells

Figure 3.3: Maps of GWMDs, RECs, and irrigation wells in study area

are uniformly redistributed to GWMD constituents via a lump sum transfer (with no impact on

groundwater demand). Comparing outcomes in our two modeling scenarios facilitates quantifying

how patchy conservation policy implementation creates positive resource spillovers for neighbor-

ing producers while simultaneously imposing costs through input markets.

3.6 Results
In this Section, we discuss our modeling results quantifying direct resource effects and indi-

rect input market effects associated with the conservation policy simulation. Our results compare

the baseline and conservation policy scenarios across time to quantify the impact of groundwa-

ter management in Plains and neighboring groundwater users with respect to water use, resource

availability, and producer welfare.

3.6.1 Water Use

We now report the results of the hydroeconomic model for the policy and no-policy scenarios

described in Section 3.5.7 which demonstrate how indirect input market effects influence ground-

water use decisions both inside and outside the policy area. Specifically, our results quantify how

the implementation of a groundwater conservation policy in Plains GWMD generates both costs

and benefits for nearby groundwater users in Arikaree GWMD (see Figures 3.3a and 3.3b). Our re-
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(a) Groundwater pumping in Plains GWMD in
baseline and policy scenarios

(b) Groundwater conservation in Plains GWMD
relative to baseline, no-policy scenario

Figure 3.4: Baseline and policy scenarios in Plains GWMD

sults also highlight how indirect input market effects alter aggregate conservation policy outcomes

illustrating how non-resource channels partially determine the conservation potential of a policy.

Figure 3.4 presents the change in expected67 aggregate Plains pumping in absolute and per-

centage terms over the simulation period given the implementation of a price-based conservation

policy. Figure 3.4a shows simulated groundwater pumping outcomes with and without the indirect

input market effects associated with a reduction in aggregate electricity demand within the K.C.

REC. Figure 3.4a also demonstrates that water use is decreasing over time in both the baseline,

no-policy scenario and the policy scenario. This diminished demand through time is related to

reductions in groundwater availability and further compounded by increases in endogenously de-

termined electricity prices. The conservation impact of the policy is increasing across time both

with and without indirect input effects. We attribute increasing conservation impacts through time

to resource dynamics within Plains. Under the conservation policy groundwater availability, both

well capacity and saturated thickness, decrease throughout the simulation period as the magnitude

of the policy is not sufficient to fully arrest groundwater depletion. Decreasing well capacity and

saturated thickness causes the policy’s impact to increase through time as resource users’ marginal

productivity diminishes.

67For visual clarity we present changes in expected Plains pumping using the probabilities of wet, dry, and normal
weather conditions introduced in Section 3.5.7.
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Figure 3.5: Water use spillovers in Arikaree GWMD over 25 years of policy implementation in Plains
GWMD

Analyzing the impact of including indirect input market effects on conservation policy impacts

in Figures 3.4a and 3.4b reveals how incorporating policy induced changes in electricity prices in-

creases groundwater conservation outcomes. Specifically, after K.C. REC observes the change in

expected electricity demand created by Plains’ policy our model predicts a 27% increase in K.C.’s

marginal electricity price which in turn increases groundwater conservation by approximately 3%

per year. Our results demonstrate how indirect input market effects potentially increase the con-

servation outcome of a policy as input firms respond to evolving demand by altering their pricing

regime.

The patchy implementation of groundwater conservation policies also generate impacts for

nearby resource users not subject to the policy. On average, Arikaree wells in K.C.’s service area

decrease their total groundwater demand by 204 acre feet over 25 years while those wells served

by Y-W increase their demand by 3 acre feet over 25 years. These changes in demand constitute

approximately 4% and 0.01% of the district’s total water use across the simulation period, respec-

tively. However, these results belie how a well’s location relative to Plains GWMD influences the

water use spillovers induced by the conservation policy.
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Table 3.4 and Figure 3.5 demonstrate how proximity to Plains and input markets affect water

use spillover effects. Figure 3.5 plots well-level, time-aggregated68 changes in groundwater de-

mand for wells in Arikaree GWMD under the policy scenario in Plains against the distance of the

well from Plains GWMD. Figure 3.5 highlights how increases in groundwater pumping induced

by Plains’ policy cluster among wells near Plains which are served by Y-W as these wells benefit

from reduced pumping in Plains and do not experience indirect input market effects.

Table 3.4 presents average changes in water use for K.C. and Y-W wells in Arikaree by dis-

tance from Plains’ border. As evident in Figure 3.5, increases in water use dissipate as distance

from Plains’ increases for wells in Y-W’s service area. Arikaree wells served by K.C. experience

relatively significant changes in water use confirming the importance of indirect input effects in

determining resource use outside the policy area. Proximity to Plains does not significantly al-

ter mean changes in total groundwater demand among K.C. wells, implying that direct resource

effects outweigh indirect input market effects in determining aggregate changes in water use.

Table 3.4: Average changes in total, well-level water use in Arikaree GWMD

Distance from Plains GWMD REC
Y-W K.C.

≤ 1 mile 56.43 -279.98

> 1 mile & ≤ 5 miles 9.87 -320.72

> 5 miles 0.96 -167.37

Changes in well-level water use are reported in acre feet.

68For each well in Arikaree we calculate total groundwater demand across the simulation period for the policy and
no policy scenario in Plains. We then compare time-aggregated demand to measure changes in demand attributable to
the implementation of the policy regime in Plains.
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Figure 3.6: Increase in mean saturated thickness w/ policy relative to baseline, no-policy scenario in Plains
GWMD

3.6.2 Resource Availability

Policy-induced changes in groundwater demand in Plains GWMD and neighboring wells also

generate impacts on resource availability through time. In this Section, we present results from our

hydroeconomic model quantifying how groundwater conservation policies in Plains affect resource

availability both within and outside of the district. Our results demonstrate how resource dynamics

influence the impact of conservation policies through time within Plains while creating positive

resource spillovers for nearby wells.

Objectives to maintain resource availability through time motivate many resource conserva-

tion policies. Figure 3.6 presents the changes in resource availability through time attributable to

Plains’s conservation policy. Specifically, we compare the difference in mean saturated thickness

through time in Plains under policy and no policy scenarios to calculate how the policy influences

groundwater stocks. We find that the conservation policy increases average saturated thickness by

nearly 10 feet, or 8% of the Plains’ average saturated thickness, in the final simulation period com-

pared to the no-policy scenario. We also find that not accounting for indirect input market effects

diminishes the policy’s impact on resource availability. Specifically, we find that not accounting

for indirect effects diminishes the predicted increases in resource availability induced by the pol-
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(a) Resource availability spillovers in Arikaree
GWMD, 10 years

(b) Resource availability spillovers in Arikaree
GWMD, 25 years

Figure 3.7: Resource availability spillovers

icy by approximately 2 percentage points in the final simulation period. This result indicates that

approximately 25% of the total change in resource availability in Plains is attributable to indirect

input market effect.

We also explore the resource availability impacts created by Plains’ policy for neighboring

wells in Arikaree GWMD. On average, Plains’ policy increased Arikaree saturated thickness by

0.22 feet after 25 years of policy implementation in Plains, which is less than 0.1% of average

saturated thickness in Arikaree. However, changes in resource availability vary significantly across

time and the well’s proximity to Plains. Figures 3.7a and 3.7b plot well-level changes in saturated

thickness after 10 and 25 years of policy implementation in Plains, respectively, against the well’s

distance from the border of Plains GWMD, differentiating between wells served by K.C. and Y-W

RECs. These Figures demonstrate how both time and proximity to Plains determine the magnitude

of resource effects. Specifically, comparing Figures 3.7a and 3.7b illustrates how resource effects

accumulate to wells near Plains incrementally over time according to aquifer dynamics as the

impact of reduced pumping in Plains spreads outside the policy area.

Our results indicate that resource effects dissipate as distance to Plains increases which holds

for both K.C. and Y-W wells. Interestingly, many of the Y-W wells nearby Plains that increased

their groundwater demand under Plains’ policy still experience an increase in resource availability,

suggesting that resource flows from Plains’ outweigh the impact of increased rates of well-level
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pumping in Arikaree attributable to Plains’ policy. Finally, note that many wells served by K.C.

and relatively distant from Plains’ (10 - 20 miles) experience increases in resource availability after

both 10 and 25 years of policy implementation in Plains. We attribute this increase to input market

effects which induce lower rates of groundwater demand among K.C. wells that are both nearby

and distant from Plains (see Figure 3.5 and Table 3.4) as these reductions in demand generate

increases in resource availability through time. This result underscores how indirect input market

effects interact with resource dynamics to extend direct resource effects potentially far beyond the

policy area depending on input market connectedness.

3.6.3 Producer Welfare

W utilize output from the hydroeconomic model to quantify how conservation policies influ-

ence producer welfare or quasi-rent both inside and outside policy areas. Our results highlight how

indirect input market effects channel conservation policy costs while direct resource effects convey

policy benefits to wells in neighboring GWMDs. We also find that Plains’ implementation of con-

servation policy results in an aggregate loss of producer welfare and that a well’s initial saturated

thickness influences the welfare impacts.

We utilize equation 3.6 to numerically estimate annual well-level producer welfare under both

the baseline, no-policy and conservation policy scenarios using predicted groundwater demand,

resource availability, and energy input prices generated by the hydroeconomic model. We then

compare producer welfare under the policy and no-policy scenarios to determine annual well-

level changes in welfare attributable to the implementation of the conservation policy in Plains.

We assume a 5% discount rate and aggregate each well’s changes in producer welfare across the

simulation period to obtain a net present value (NPV). We also assess the robustness of our results

to the choice of ε used to numerically estimate producer welfare (see Section 3.5.7). To do so,

we vary the choice of ε and calculate discounted changes in cumulative producer welfare under

these scenarios. Specifically, we calculate changes in welfare when ε equals 0.1 and 0.001. Both

scenarios result in significantly different absolute measurements of producer welfare compared to
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Figure 3.8: NPV of cumulative change in producer welfare in Plains GWMD after 25 years of policy
implementation

our assumed value of ε = 0.01, but relatively small alterations (≤ 0.5%) in the estimated change in

producer welfare attributable to the policy’s implementation.

Figure 3.8 plots discounted changes in producer welfare against initial saturated thickness for

each well in Plains GWMD over the full 25 year simulation period. Our results indicate that

producer welfare gains accrued to those wells with the least initial saturated thickness and policy

benefits dissipate as initial saturated thickness increases. These results align with previous research

in the groundwater economics literature that finds initial aquifer conditions determine gains from

groundwater management [Foster et al., 2017c]. Heterogeneity in policy benefits and costs suggest

that there may be gains from more spatially disaggregated conservation policies similar to Local

Enhanced Management Areas (LEMA) in Kansas.

Figures 3.9a and 3.9b plot discounted changes in producer welfare after 10 and 25 years of

policy implementation in Plains, respectively, against distance from Plains GWMD for wells lo-

cated in Arikaree GWMD differentiating between wells served by K.C. and Y-W RECs. Com-

paring Figures 3.9a and 3.9b illustrates how producer welfare impacts accrue to wells near Plains

incrementally through time as the impact of reduced pumping in Plains increases resource avail-

ability and producer welfare. Policy benefits accrue to wells within Y-W’s service area located
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(a) NPV of cumulative change in producer welfare
for wells in Arikaree GWMD after 10 years of pol-
icy implementation in Plains GWMD

(b) NPV of cumulative change in producer welfare
for wells in Arikaree GWMD after 25 years of pol-
icy implementation in Plains GWMD

Figure 3.9: Producer welfare spillovers

near Plains’ border as these wells experience increases in groundwater availability without indirect

input market effects. Policy costs concentrate among K.C. wells, even those not located in Plains

GWMD, and increase through time as input market effects reduce demand and resource rents asso-

ciated with groundwater extraction. Furthermore, the magnitude of these costs remains relatively

uniform as distance from Plains’ border increases, suggesting that indirect input market spillovers

outweigh resource effect benefits even for Arikaree wells served by K.C. located nearby Plains.

3.7 Conclusion
This paper develops a hydroeconomic model of the Republican River Basin of Colorado to

quantify the input market and resource spillovers associated with patchy groundwater conserva-

tion policy implementation. We utilize novel techniques in the hydroeconomic modeling literature

by utilizing data on groundwater demand in our study area to empirically derive well-level demand

functions. We also contribute to the hydroeconomic literature by recognizing and modeling how

input markets, specifically electricity distribution firms, adjust their pricing regimes to changes in

aggregate groundwater and energy demand. These methodological contributions inform future hy-

droeconomic modeling particularly in data rich settings where our empirical approach to estimate

demand functions is feasible.
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Our results compare the outcomes of no-policy and policy scenarios through time to analyze

the impact of policy implementation on water use, resource availability, and producer welfare.

Specifically, we find that not accounting for input market changes arising from policy implemen-

tation alters estimates of the policy’s effect on demand and resource availability. We also find that

input markets serve as channels distributing conservation policy costs to nearby resource users,

increasing resource availability for these users while diminishing their producer welfare. Future

research should further explore how conservation policy effects are distributed to resource users

through non-resource channels such as land values, commodity markets, and labor.

Our results allow us to compare the magnitude of resource and input market spillovers for re-

source users neighboring the policy area. We find that benefits of increased resource availability

attributable to the policy are largely outweighed by the costs imposed by changes in the input mar-

ket. However, when input markets are not shared, economically significant benefits accrue to wells

near the policy area which points to a potential free rider problem associated with patchy CPR

management. These results inform future groundwater conservation policy-making by quantifying

how policy costs and benefits are distributed outside the policy area according to resource dynam-

ics and input market conditions. As such, the total impact of a patchy CPR conservation policy

depends on effects both within and outside the policy area.

Hydroeconomic model results have implications for policy-making as well as future economic

research related to resource management policies. Our analysis informs future resource policy-

making efforts by demonstrating how non-resource channels, e.g. input markets, distribute man-

agement policy impacts across time and resource users. These non-resource channels also poten-

tially alter the aggregate impacts of management policies and complicate policy-makers ability to

design policies that meet specific resource conservation objectives. Future resource policy-making

efforts should analyze how these potential non-resource channels influence both aggregate policy

impacts and how those impacts are distributed across time and amongst resource users. Future eco-

nomic research related to resource management should also analyze these non-resource channels

in assessing the efficiency of differing management strategies. For example, recent research inves-

95



tigates the impact of localized efforts to manage groundwater resources in the HPA [Drysdale and

Hendricks, 2018]. When assessing the impact of these localized management policies researchers

should also analyze how shifts in resource demand induced by the policy potentially impact other

users via non-resource channels.

Our approach to estimating the spillovers arising from patchy groundwater management pol-

icy implementation is subject to several weaknesses. First, integrating static empirical estimates

of groundwater users’ price responsiveness in our hydroeconomic modeling assumes that ground-

water users price elasticity remains constant through time even as resource stocks become more

depleted. Future research should investigate how price responsiveness evolves through time as a

function of resource stock. Second, significant questions remain regarding the external validity of

our results, particularly as they relate to aquifer and input market characteristics. Future research

should investigate conservation policy spillovers within differing input market structures.
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[Foster et al., 2014] Foster, T., Brozović, N., and Butler, A. P. (2014). Modeling irrigation behav-

ior in groundwater systems. Water resources research, 50(8):6370–6389.

102
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Appendix A

Chapter 1: Supplemental Material

A.1 Model Robustness: Choice of Instruments
To validate the parameters utilized in our counterfactual simulation and test the robustness of

empirical modeling results, we vary the choice of price instruments using the FE-IV specification

of water demand. Table A.1 presents modeling results for differing instrumenting approaches.

Specifically, column (1) presents empirical results using our preferred instruments, the difference

between the first and last marginal price in the rate structure and the REC-Year-HP average water

threshold to reach final price block wherein the average is calculated by excluding observations

with that HP. The remaining columns of Table A.1 all utilize the price difference as instruments

but differ in how price block threshold values are calculated. Column (2) presents results where

REC-Year-HP group averages do not exclude wells with same HP i.e. averages are calculated by

grouping water threshold values at the REC-Year-HP level and finding the average. Column (3)

finds group averages in a similar manner to column (2) but excludes an individual well’s water

threshold in determining their group average. Column (4) groups water thresholds at the REC-

Year level to find group averages and column (5) does the same but excludes an individual well’s

water threshold value when calculating the REC-Year average.

The results presented in Table A.1 demonstrate the robustness of models results to choice of

price instrument. Elasticity estimates vary across instrument specifications but do not change sign

or lose statistical significance.

A.2 Model Robustness: Restricted Samples
The validity of the instrumental variable approach rests on the assumption that agricultural

producers do endogenously determine the rate structure they face. In this Section, we test the ro-

bustness of our results to this assumption by restricting the sample of data utilized in the estimating
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Table A.1: Model robustness to choice of instruments, FE-IV models

Dependent variable:

Log(Pumping)

(1) (2) (3) (4) (5)

Log(Price) −0.2519∗∗∗ −0.2562∗∗∗ −0.2503∗∗ −0.2511∗∗∗ −0.2510∗∗∗

(0.0634) (0.0764) (0.0761) (0.0654) (0.0653)
Well Capacity 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Precipitation −0.0007∗∗∗ −0.0007∗∗∗ −0.0007∗∗∗ −0.0007∗∗∗ −0.0007∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Temperature 0.0051∗∗∗ 0.0050∗∗∗ 0.0051∗∗∗ 0.0051∗∗∗ 0.0051∗∗∗

(0.0010) (0.0012) (0.0012) (0.0010) (0.0010)

Observations 9,400 9,400 9,343 9,400 9,400
R2 0.2361 0.2371 0.2354 0.2360 0.2359
Adjusted R2 0.1030 0.1041 0.1020 0.1028 0.1028
F Statistic 605.6612∗∗∗ 608.6956∗∗∗ 599.3348∗∗∗ 605.1184∗∗∗ 605.0335∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the well owner
Models also include a year fixed effect whose output is omitted
Differing price instruments are as follows:
Column (1): REC-Year Mean w̄2 for all wells with differing HP
Column (2): REC-Year-HP Mean w̄2

Column (3): REC-Year-HP Mean w̄2 exluding well’s w̄2

Column (4): REC-Year Mean w̄2

Column (5): REC-Year Mean w̄2 exluding well’s w̄2

118



Table A.2: Restricted model Results, static well pump horsepower

Dependent variable:

Log(Pumping)
POLS POLS-IV FE FE-IV

(1) (2) (3) (4)

Log(Price) −0.8488∗∗∗ −0.4474∗∗∗ −0.8187∗∗∗ −0.2528∗∗∗

(0.0697) (0.0705) (0.0704) (0.0679)
Well Capacity 0.0009∗∗∗ 0.0009∗∗∗ 0.0002∗∗∗ 0.0003∗∗∗

(0.00003) (0.00004) (0.00003) (0.0001)
Precipitation −0.0008∗∗∗ −0.0007∗∗∗ −0.0008∗∗∗ −0.0007∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Temperature −0.0023∗ 0.0026∗ −0.0015 0.0051∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011)
Irrigation Class 0.0280∗∗ 0.0343∗∗∗

(0.0093) (0.0093)
Constant 2.6972∗∗∗ 3.5429∗∗∗

(0.1680) (0.1649)

Observations 8,866 8,866 8,866 8,866
R2 0.4532 0.4307 0.2862 0.2316
Adjusted R2 0.4529 0.4304 0.1616 0.0975
F Statistic 1,468.6360∗∗∗ 1,329.9340∗∗∗ 756.4614∗∗∗ 556.4170∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the well owner
Models also include a year fixed effect whose output is omitted

the econometric model of groundwater demand to those wells which do not report any change in

well HP and wells which do not report any change in irrigation system discharge pressure. Chang-

ing well pump HP influences rate structure block thresholds while and retooling irrigation systems

to decrease discharge pressure results in reduced pumping costs per unit of water extracted [Fipps,

1995]. Restricted sample results are reported in Tables A.2 and A.3.

A.3 REC Revenues Through Time
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Table A.3: Restricted model results, static irrigation system discharge pressure

Dependent variable:

Log(Pumping)
POLS POLS-IV FE FE-IV

(1) (2) (3) (4)

Log(Price) −0.8266∗∗∗ −0.4094∗∗∗ −0.7681∗∗∗ −0.2213∗

(0.0740) (0.0790) (0.0735) (0.0910)
Well Capacity 0.0008∗∗∗ 0.0009∗∗∗ 0.0001 0.0002∗

(0.0001) (0.0001) (0.00005) (0.0001)
Precipitation −0.0009∗∗∗ −0.0007∗∗∗ −0.0008∗∗∗ −0.0007∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Temperature −0.0016 0.0034∗∗ −0.00001 0.0063∗∗∗

(0.0010) (0.0012) (0.0010) (0.0011)
Irrigation Class 0.0221 0.0303∗

(0.0133) (0.0130)
Constant 2.7797∗∗∗ 3.6647∗∗∗

(0.1805) (0.1719)

Observations 4,708 4,708 4,708 4,708
R2 0.4420 0.4186 0.2871 0.2363
Adjusted R2 0.4414 0.4179 0.1601 0.1001
F Statistic 744.8387∗∗∗ 672.3814∗∗∗ 402.2346∗∗∗ 304.7842∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the well owner
Models also include a year fixed effect whose output is omitted
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Table A.4: REC revenues, 2011-2017

Year Y-W Highline

2011 11,237,304 6,272,035

2012 14,438,849 8,881,095

2013 14,053,273 8,387,452

2014 7,780,864 6,290,051

2015 8,767,457 7,518,073

2016 9,715,581 6,290,051

2017 10,053,750 7,093,861

Mean 10,863,868 7,247,995

Median 10,053,750 7,093,861
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Appendix B

Chapter 2: Supplemental Material

B.1 Model Robustness: Peer Group Definition
In this Section, we test the robustness of our results to the spatial buffer utilized to define peer

groups. Specifically, Tables B.1 and B.2 present results when the spatial buffer defining a parcel’s

neighbors is 1/2 and 2 km, respectively. These alternative peer group model results qualitatively

align with those presented in Section 2.6, providing evidence that our results remain consistent

across differing specifications of the spatial proximity defining peer groups.

B.2 Model Robustness: Model Specification
In this Section, we present results of two alternative model specification, pooled OLS and

linear probability models, to test the robustness of our results. Tables B.3 and B.4 present pooled

OLS model results when a parcel’s neighbors or peer group is defined by 1 and 3 km buffers,

respectively. While Tables B.5 and B.6 present linear probability model results when a parcel’s

neighbors or peer group is defined by 1 and 3 km buffers, respectively. Both model specifications

generate results that qualitatively align with the random effect model specification, which provides

some evidence supporting the robustness or our results to model specification choices.

B.3 Model Robustness: Percent of Neighbors Adopting
This Section provides results of the drip irrigation adoption model when the peer effect variable

is defined as a percentage of parcels adopting within a 1 and 3 km buffer. This specification differs

from that presented in Section 2.6, where the peer effect variable is a count of adoptions with an

additional variable controlling for the number of parcels within the buffer. Tables B.7 and B.8

present modeling results when the spatial buffer defining the percentage of peer group adoption

is 1 and 3 km, respectively. Qualitatively, these results align with those presented in Section 2.6
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Table B.1: Drip irrigation adoption model with peer group defined as parcels within 1/2 km

(1) (2) (3) (4)
# of Peers Adopting W/I 1/2 km 0.414∗∗∗ 0.240∗∗∗ 0.179∗ 0.124

(0.0854) (0.0636) (0.0749) (0.0929)

GW Available -0.754∗ -0.503+ -0.537+ -0.706+

(0.359) (0.262) (0.289) (0.385)

# of Peers Adopting X GW -0.0713 -0.0531 -0.0688 -0.0857
(0.216) (0.181) (0.196) (0.249)

Parcel Size -0.0420∗∗∗ 0.0167∗ 0.0187∗ 0.0260∗

(0.00979) (0.00801) (0.00890) (0.0119)

Parcel Size2 0.000244∗∗∗ -0.000118+ -0.000131∗ -0.000176∗

(0.0000675) (0.0000606) (0.0000666) (0.0000876)

Less than 5 Ha. -1.108∗∗ 0.122 0.136 0.249
(0.359) (0.260) (0.287) (0.376)

Distance to Canal -0.262∗∗∗ -0.0498 -0.0701+ -0.120∗

(0.0363) (0.0318) (0.0360) (0.0478)

Distance to Market -0.123∗∗∗ -0.0434+ -0.0475+ -0.0617+

(0.0197) (0.0242) (0.0271) (0.0357)

# of Parcels W/I 1/2 km -0.149∗∗∗ 0.0174 0.0178 0.0218
(0.0166) (0.0135) (0.0151) (0.0201)

σ2
µ 1.721∗∗∗ 0.341 0.863∗∗ 1.916∗∗∗

(0.193) (0.264) (0.316) (0.198)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.2: Drip irrigation adoption model with peer group defined as parcels within 2 km

(1) (2) (3) (4)
# of Peers Adopting W/I 2 km 0.158∗∗∗ 0.0989∗∗∗ 0.114∗∗∗ 0.0566+

(0.0242) (0.0187) (0.0262) (0.0300)

GW Available -0.436 -0.624∗ -0.629+ -0.867+

(0.456) (0.318) (0.336) (0.444)

# of Peers Adopting X GW 0.0152 0.0103 0.00593 0.0153
(0.0489) (0.0386) (0.0404) (0.0522)

Parcel Size -0.0417∗∗∗ 0.0190∗ 0.0201∗ 0.0266∗

(0.0105) (0.00867) (0.00922) (0.0119)

Parcel Size2 0.000243∗∗∗ -0.000132∗ -0.000138∗ -0.000179∗

(0.0000707) (0.0000651) (0.0000687) (0.0000877)

Less than 5 Ha. -1.132∗∗ 0.114 0.129 0.232
(0.382) (0.282) (0.298) (0.378)

Distance to Canal -0.272∗∗∗ -0.0563 -0.0625 -0.113∗

(0.0389) (0.0361) (0.0389) (0.0499)

Distance to Market -0.144∗∗∗ -0.0511+ -0.0528+ -0.0645+

(0.0214) (0.0271) (0.0289) (0.0366)

# of Parcels W/I 2 km -0.0460∗∗∗ -0.00288 -0.00318 0.000192
(0.00487) (0.00409) (0.00437) (0.00562)

σ2
µ 2.125∗∗∗ 0.776∗∗ 1.008∗∗ 1.934∗∗∗

(0.183) (0.289) (0.339) (0.200)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.3: Drip irrigation adoption model with peer group defined as parcels within 1 km, pooled OLS
specification

(1) (2) (3) (4)
# of Peers Adopting W/I 1 km 0.148∗∗∗ 0.139∗∗∗ 0.122∗∗∗ 0.0633+

(0.0240) (0.0251) (0.0325) (0.0332)

GW Available -0.246 -0.502+ -0.500+ -0.505+

(0.258) (0.258) (0.260) (0.271)

# of Peers Adopting X GW -0.0308 -0.0388 -0.0401 -0.0330
(0.0770) (0.0702) (0.0718) (0.0762)

Parcel Size -0.0179∗∗ 0.0192∗∗ 0.0197∗∗ 0.0189∗

(0.00611) (0.00744) (0.00747) (0.00773)

Parcel Size2 0.000114∗∗ -0.000132∗ -0.000134∗ -0.000130∗

(0.0000412) (0.0000587) (0.0000591) (0.0000612)

Less than 5 Ha. -0.709∗∗ 0.103 0.104 0.115
(0.224) (0.242) (0.242) (0.247)

Distance to Canal -0.142∗∗∗ -0.0292 -0.0345 -0.0506+

(0.0195) (0.0296) (0.0296) (0.0307)

Distance to Market -0.0857∗∗∗ -0.0312 -0.0300 -0.0299
(0.0114) (0.0216) (0.0217) (0.0223)

# of Parcels W/I 1 km -0.0819∗∗∗ -0.0103 -0.00980 -0.00516
(0.00548) (0.00753) (0.00757) (0.00783)

Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.4: Drip irrigation adoption model with peer group defined as parcels within 3 km, pooled OLS
specification

(1) (2) (3) (4)
# of Peers Adopting W/I 3 km 0.0431∗∗∗ 0.0633∗∗∗ 0.119∗∗∗ 0.0362+

(0.00984) (0.0107) (0.0216) (0.0212)

GW Available -0.408 -0.764∗ -0.730∗ -0.789∗

(0.313) (0.316) (0.315) (0.336)

# of Peers Adopting X GW 0.0293 0.0251 0.0212 0.0294
(0.0272) (0.0265) (0.0271) (0.0287)

Parcel Size -0.0232∗∗∗ 0.0208∗∗ 0.0210∗∗ 0.0200∗∗

(0.00584) (0.00725) (0.00716) (0.00753)

Parcel Size2 0.000134∗∗∗ -0.000138∗ -0.000137∗ -0.000135∗

(0.0000387) (0.0000575) (0.0000566) (0.0000596)

Less than 5 Ha. -0.742∗∗∗ 0.103 0.111 0.118
(0.218) (0.237) (0.235) (0.243)

Distance to Canal -0.116∗∗∗ -0.0411 -0.0395 -0.0553+

(0.0178) (0.0281) (0.0283) (0.0292)

Distance to Market -0.0760∗∗∗ -0.0306 -0.0299 -0.0293
(0.0113) (0.0206) (0.0205) (0.0216)

# of Parcels W/I 3 km -0.0231∗∗∗ -0.00390+ -0.00508∗ -0.00255
(0.00151) (0.00217) (0.00221) (0.00233)

Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.5: Drip irrigation adoption model with peer group defined as parcels within 1 km, linear probability
specification

(1) (2) (3) (4)
# of Peers Adopting W/I 1 km 0.00378∗∗∗ 0.00401∗∗∗ 0.00368∗∗∗ 0.00223∗∗

(0.000573) (0.000600) (0.000751) (0.000753)

GW Available -0.00541 -0.00603 -0.00617 -0.00674+

(0.00381) (0.00385) (0.00387) (0.00386)

# of Peers Adopting X GW -0.00236+ -0.00235+ -0.00236+ -0.00206
(0.00139) (0.00139) (0.00139) (0.00138)

Parcel Size 0.0536∗∗∗ 0.0331∗∗ 0.0339∗∗ 0.0352∗∗

(0.0113) (0.0125) (0.0126) (0.0125)

Parcel Size2 -0.00330∗∗∗ -0.00208∗ -0.00212∗ -0.00216∗

(0.000782) (0.000841) (0.000845) (0.000842)

Less than 5 Ha. 0.00628 0.00151 0.00156 0.00180
(0.00408) (0.00422) (0.00424) (0.00422)

Distance to Canal -0.000690∗ -0.000355 -0.000404 -0.000566
(0.000321) (0.000520) (0.000525) (0.000523)

Distance to Market 0.000460∗ -0.000505 -0.000494 -0.000454
(0.000223) (0.000405) (0.000407) (0.000406)

# of Parcels W/I 1 km 0.000122 -0.000210 -0.000202 -0.000157
(0.0000895) (0.000131) (0.000132) (0.000132)

Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.6: Drip irrigation adoption model with peer group defined as parcels within 3 km, linear probability
specification

(1) (2) (3) (4)
# of Peers Adopting W/I 3 km 0.00136∗∗∗ 0.00144∗∗∗ 0.00229∗∗∗ 0.000790∗

(0.000192) (0.000206) (0.000376) (0.000389)

GW Available -0.00802+ -0.00855∗ -0.00803+ -0.00860∗

(0.00419) (0.00423) (0.00424) (0.00421)

# of Peers Adopting X GW -0.0000144 -0.0000257 -0.000109 -0.0000458
(0.000486) (0.000488) (0.000491) (0.000487)

Parcel Size 0.0521∗∗∗ 0.0358∗∗ 0.0362∗∗ 0.065∗∗

(0.0113) (0.0125) (0.0126) (0.0125)

Parcel Size2 -0.00315∗∗∗ -0.00220∗∗ -0.00222∗∗ -0.00223∗∗

(0.000787) (0.000844) (0.000845) (0.000840)

Less than 5 Ha. 0.00492 0.00142 0.00137 0.00179
(0.00412) (0.00423) (0.00424) (0.00422)

Distance to Canal -0.000805∗ -0.000594 -0.000462 -0.000711
(0.000321) (0.000519) (0.000522) (0.000520)

Distance to Market 0.000471∗ -0.000456 -0.000455 -0.000435
(0.000228) (0.000407) (0.000407) (0.000405)

# of Parcels W/I 3 km 0.0000223 -0.0000806∗ -0.000102∗∗ -0.0000635
(0.0000242) (0.0000387) (0.0000396) (0.0000395)

Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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with the exception that when additional spatial and time controls are added in models presented the

columns (3) and (4) the peer effect coefficient switches sign from the expected positive relationship

to negative. However, this unexpected shift in the coefficient’s sign is also paired with a loss in

statistical significance.

Table B.7: Drip irrigation adoption model with peer group defined as parcels within 1 km

(1) (2) (3) (4)
% of Peers Adopting 4.441∗∗∗ 2.105∗ -1.425 -0.986

(1.280) (0.952) (1.616) (2.090)

GW Available -0.885∗ -0.477+ -1.190∗∗ -1.527∗

(0.404) (0.258) (0.461) (0.615)

% of Peers Adopting X GW -0.718 -2.431 -1.077 -1.555
(4.048) (3.409) (4.707) (6.602)

Parcel Size -0.0797∗∗∗ 0.0191∗ -0.0931∗∗∗ -0.136∗∗∗

(0.00995) (0.00789) (0.0119) (0.0167)

Parcel Size2 0.000445∗∗∗ -0.000129∗ 0.000512∗∗∗ 0.000742∗∗∗

(0.0000677) (0.0000602) (0.0000805) (0.000108)

Less than 5 Ha. -1.747∗∗∗ 0.0920 -1.981∗∗∗ -2.724∗∗∗

(0.391) (0.257) (0.429) (0.576)

Distance to Canal -0.350∗∗∗ -0.0626∗ -0.430∗∗∗ -0.568∗∗∗

(0.0421) (0.0308) (0.0509) (0.0720)

Distance to Market -0.232∗∗∗ -0.0371 -0.374∗∗∗ -0.571∗∗∗

(0.0207) (0.0234) (0.0286) (0.0428)
σ2
µ 2.034∗∗∗ 0.263 2.828∗∗∗ 3.523∗∗∗

(0.175) (0.258) (0.128) (0.139)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.8: Drip irrigation adoption model with peer group defined as parcels within 3 km

(1) (2) (3) (4)
% of Peers Adopting 7.462∗∗∗ 3.965∗∗ -3.130 -2.565

(2.150) (1.371) (2.631) (3.430)

GW Available -1.228∗ -0.618∗ -0.622+ -0.887+

(0.493) (0.295) (0.320) (0.463)

% of Peers Adopting X GW 4.315 1.222 0.385 1.178
(4.665) (3.723) (3.982) (5.780)

Parcel Size -0.0857∗∗∗ 0.0194∗ 0.0205∗ 0.0289∗

(0.0111) (0.00804) (0.00881) (0.0123)

Parcel Size2 0.000481∗∗∗ -0.000130∗ -0.000140∗ -0.000191∗

(0.0000748) (0.0000611) (0.0000663) (0.0000909)

Less than 5 Ha. -1.922∗∗∗ 0.0858 0.110 0.231
(0.432) (0.262) (0.285) (0.389)

Distance to Canal -0.384∗∗∗ -0.0726∗ -0.0884∗ -0.148∗∗

(0.0510) (0.0318) (0.0354) (0.0486)

Distance to Market -0.246∗∗∗ -0.0377 -0.0409 -0.0561
(0.0258) (0.0239) (0.0265) (0.0367)

σ2
µ 2.267∗∗∗ 0.405 0.838∗∗ 2.136∗∗∗

(0.223) (0.271) (0.304) (0.158)
Commune Dummies X X X X
Commune Dummies X Trend2 X X X X
CCE X X X X
Observations 14059 14059 14059 14059
Standard errors in parentheses, Parcel Size2 is parcel size squared, Trend2 is a quadratic time trend
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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