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ABSTRACT 

 

SUSTAINABILITY TRADEOFFS WITHIN PHOTOAUTOTROPHIC CULTIVATION 

SYSTEMS: INTEGRATING PHYSICAL AND LIFECYCLE MODELING FOR DESIGN 

AND OPTIMIZATION 

 

Photoautotroph-based biofuels are considered one of the most promising renewable 

resources to meet the global energy requirements for transportation systems. Long-term research 

and development has resulted in demonstrations of microalgae areal oil productivities that are 

higher than crop-based biofuels, about 10 times that of palm oil and about 130 times that of 

soybean. Cyanobacteria is reported to have ~4 times the areal productivity of microalgae on an 

equivalent energy basis. Downstream of this cultivation process, the cyanobacteria biomass and 

bioproducts can be supplied to biorefineries producing feed, biomaterials, biosynthetic 

chemicals, and biofuels. As such, cyanobacteria, and microalgae-based systems can be a 

significant contributor to more sustainable energy and production systems.  This research 

presents novel means to be able to analyze, integrate, assess, and design sustainable 

photoautotrophic biofuel and bioproduct systems, as defined using lifecycle assessment methods 

(LCA).  

As part of a broad collaboration between industry, academia, and the national 

laboratories, I have developed models and experiments to quantify tradeoffs among the 

scalability, sustainability, and technical feasibility of cyanobacteria biorefineries and microalgae 

cultivation systems.  A central hypothesis to this research is that the lifecycle energy costs and 

benefits, the cultivation productivity, and the scalability of any given organism or technology is 
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governed by the fluid mechanics of the photobioreactor systems.  The fluid characteristics of 

both open raceway ponds and flat photobioreactors, are characterized through industrial-scale 

experiment and modeling. Turbulent mixing is studied by applying Acoustic Doppler 

Velocimetry (ADV), Particle Image Velocimetry (PIV), and computational fluid dynamics 

(CFD) characterization tools.  The implications of these fluid conditions on photoautotrophic 

organisms are studied through cultivation and modeling of the cyanobacteria, Synechocystis sp. 

PCC6803. Growth-stage models of this cyanobacteria include functions dependent on incident 

radiation, temperature, nutrient availability, dark and photo-respiration. 

By developing an integrated approach to laboratory experimentation and industrial-scale 

growth experiments, we have validated models to quantify the scalability and sustainability of 

these novel biosystems. These capabilities are utilized to perform long-term and industrially-

relevant assessments of the costs and benefits of these promising technologies, and will serve to 

inform the biological engineering research and development of new organisms. 
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CHAPTER 1: Introduction 

1.1 Background 

Life on earth can be divided into three domains: Archaea, Eukarya, and Bacteria.   

Photoautotrophic microorganisms, which are present in the Eukarya and Bacteria domains, are 

those capable of photosynthesis [1]. Microalgae are capable of photosynthesis because the 

presence of organelles known as chloroplasts [2], which strong evidence suggest were inherited 

from the original symbiosis between a cyanobacterium and a nonphotosynthetic eukaryote [3, 4]. 

Microalgae, as a result, are believed to be descendants of cyanobacteria. For decades microalgae 

has been extensively researched for biofuel production.  Microalgae’s areal oil productivities 

reported from laboratory experimentation are about 10 times that of palm oil and about 131 times 

that of soybean [5]. More recently, the bioenergy industry and research community have 

measured cyanobacterial areal equivalent energy productivities of about four times that of 

microalgae, based on laboratory experimentation [6].  

Photoautotrophic microorganisms are cultivated in photobioreactors (PBR), the most 

prevalent being the open raceway ponds, and flat panel PBR [7]. Open raceway ponds are 

constructed in a configuration with channels, using paddlewheel mixers that promote a low shear 

environment [8]. Flat panel PBR are vertically translucent flat plates, illuminated on both sides 

and stirred by aeration [9]. Unlike outdoor raceways and outdoor PBR, laboratory-scale 

experiments are most commonly grown under ideal conditions including ideal mixing rates, 

optimum light intensities, and optimized media.  The results of these experiments indicate 

biomass and biofuels productivities that are generally overestimated when compared to 

industrial-scale systems. For instance, the light saturation of Synechocystis sp. PCC6803 is 

reported at about 200 μmol photons.s−1.m−2 [10], whereas photoautotrophic microorganisms will 



2 
 

face incident radiations of about 2000 μmol photons.s−1.m−2 at noon in locations such as 

Colorado [11], resulting in light inhibition of the culture when grown in the field.  For the case of 

algae, considering that 46% of the spectrum is in the photosynthetic active radiation (PAR) range 

of 400 to 700 nm, there are losses due to photon transmissions efficiency of 95%, photon 

utilization efficiency ranging from 10% to 30%, biomass accumulation efficiency of 50%, and 

biomass energy content of 21.9 kJ∙g−1, resulting in a total photo conversion efficiency from 2.6% 

(at high light) to 6.3% (at reduced light) [12].  

Algal and cyanobacterial biomass can be converted via hydrothermal liquefaction to 

produce bio-oil [13], and by fermentation to produce ethanol [14], among other technologies. 

More recently, researchers have developed metabolic engineering tools to promote the direct 

biosynthesis of biofuels by manipulating cellular pathways and enhance the product yields [15], 

but these systems are yet to be rigorously considered using a lifecycle assessment (LCA) 

framework.  An LCA is a framework for evaluating the energy use, emissions and impacts of 

direct, indirect, and supply chain processes [16]. LCA has been used to evaluate metabolically 

engineered cyanobacteria biofuels [17], but these previous efforts to assess the life cycle 

implications at the system level from laboratory experimentation are characterized by high 

uncertainty due to the lack of industrially-scaled cultivation data available for validation.   

1.2 Research statement 

Biosynthetic co-products excreted from engineered cyanobacteria is a novel and 

developing technology whose objective is the development of scalable, sustainable, resource 

conserving bio-product systems. There is a need for analyses and evaluation techniques that will 

allow for the inclusion of these system-level metrics of performance in the evaluation of 
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laboratory-level technologies. This can be accomplished by developing a bridge and feedback 

loop approach between lab and industrial scale research (Figure 1.1). 

  

Figure 1.1 Feedback loop approach between lab and industrial scale research. 
 

The state of the field, research questions, and hypothesis for each topic that were developed 

for this research proposal are elaborated in detail in the following sections. 

1.3 Life Cycle Assessments of Cyanobacterial Biorefinery 

1.3.2 State of the Field 

Biofuel technologies, especially microalgae, have been extensively researched to model their 

environmental impacts, techno-economics, net energies and greenhouse gas (GHG) emissions. 

There is a high degree of uncertainty in these studies, for instance, from optimistic scenarios of 

GHG emissions of -95.7 g CO2eq.MJ-1 to pessimistic scenarios of 534 g CO2eq.MJ-1 [18-27].   

One source of this uncertainty is disagreement regarding the boundaries of the LCA.  The 

photoautotrophic biofuel LCA present in the literature have excluded the effects of direct land 
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use change (DLUC) from facility construction under the assumption that DLUC effects are 

negligible in barren land areas of the U.S. Previous studies that consider forested, or pasture 

lands as suitable for microalgae production will disturb above ground biomass (AGB) and soil 

organic carbon (SOC) at higher rates per unit of land area [7, 28]. There is a need to integrate 

available carbon stock data, including above and below ground biomass, with photoautotrophic 

based LCA to have a more holistic understanding of the environmental impact associated with 

biofuels production. 

Another example, is that novel products and systems are not well characterized for LCA.  For 

cyanobacteria-based biofuels, previous research using ethanol as a bioproduct reports net energy 

ratios (NER) ranging from 0.20 to 0.55 MJ consumed.(MJ produced)-1 and GHG emissions 

ranging from 12.3 to 19.8 g CO2eq.MJ-1 [17]. None of the studies to date have evaluated the 

novel biofuels bisabolene and heptadecane produced by cyanobacteria.  Although this previous 

research presents an in-depth review of the processes involved in the proposed technology, 

productivities of ethanol were based on a cost-effective range established by the authors, as 

opposed to near-term or physically realizable productivities. Additionally, this previous effort to 

study the life cycle energy and GHG emissions of cyanobacterial ethanol production ignored the 

commonly accepted cultivation technologies of raceway ponds and flat photobioreactors. Based 

on this understanding, we can define a need for a baseline LCA of Synechocystis sp. PCC6803 

that can consider the current data regarding biofuel production including biomass productivities 

in industrial cultivation systems, new biofuel productivities from biosynthesis, and process 

energy consumption. 
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1.3.3 Research Question 1.1 

Based on the challenges described above in performing LCA of photoautotrophic 

biofuels, the first research challenge is: 

What are the baseline life cycle characteristics of a cyanobacteria-based bio-

product/bio-fuel technology, in terms of sustainability goals? 

1.3.4 Hypothesis 1.1 

Cyanobacterial derived biofuels, being an emerging technology, requires further research to 

reduce the uncertainties in biomass productivities, mixing energy requirements, and energy 

conversion. DLUC due to construction of photosynthetic-derived biofuel plants in barren land 

areas of the U.S. plays a major role in the sustainability of this technology. 

1.4 Wastewater Treatment Facility & Cyanobacterial Biorefinery Integration 

1.4.1 State of the Field 

The U.S. goal of producing 40 billion gallons of biofuel per year from microalgae will be 

limited by the very large scale of the required water and nutrients. For instance, water equivalent 

to 27 % of the Colorado River annual flow, 1900 % of the total urea production of U.S., and 

potential excess of non-fuel carbon co-products equivalent to 7500 % of the North American 

glycerin production are required to produce 40 billion gallons of biofuel per year from 

microalgae [29]. These water and nutrients requirements limit the scalability of microalgae-based 

biorefineries and could reduce the anticipated economic feasibility and environmental 

sustainability of photosynthetic-based biofuel production technologies.   

At the same time, municipal wastewater treatment facilities around the globe including U.S. 

are facing new challenges to meet the water quality criteria, in terms of nitrogen (annual median 

of 7 mg.l-1) and phosphorous (annual median of 0.7 mg.l-1), established by States water 
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regulations and the Environmental Protection Agency (EPA). The major concern for these 

facilities is the sidestream wastewater treatment for sludge centrate due to eutrophication in 

surface waters by nitrogen and phosphorous [30]. Several technologies have been developed for 

the sidestream wastewater treatment including modified Bardenpho process [31], sludge centrate 

recycling [32], anaerobic ammonium oxidation (Anammox) [33], adsorption [34], electrodialysis 

[32], ammonia stripping [32], and struvite precipitation [35, 36]. Among these processes, 

Biological Nutrient Removal (BNR) processes, such as modified Bardenpho, have revealed the 

total nitrogen (TN) and total phosphorous effluents to about 3 and 1 mg.l-1, respectively (EPA 

2007). However, these BNR technologies require a high capital cost in the range of 150 to 1,840 

$. m-3- [37] and energy consumption of 0.09 kwh.m-3-wastewater [38] relative to the 

conventional wastewater treatment facility. While struvite precipitation from sludge centrate is 

recovered in the form of fertilizer [35, 36], the treated effluents reported in the literature [39] 

with 128 ± 5 mg NH4-N.l-1 and 12.3 ± 6.2 mg PO4-P.l-1 do not meet the water quality 

expectations for nitrogen and phosphorous. 

The environmental impacts of photosynthetic biorefineries and wastewater treatment 

facilities may be reduced by integrating these technologies  to accomplish both 1) providing 

resources to enable the large scale cultivation of cyanobacteria for energy production, and 2) the 

large-scale remediation of nitrogen and phosphorous from wastewater [30, 37]. Several past 

studies [40-46] have extensively investigated the growth of photosynthetic microorganisms in 

wastewater. Some recent studies [37, 47, 48] have shown the potential growth of 

photoautotrophic microorganisms in the sludge centrate obtained from the dewatering processes 

of a wastewater treatment facility. These studies suggest that the sludge centrate itself could be 

supplied as the main source of nutrients due to the high concentrations of nitrogen and 
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phosphorous. However, ammonia, the nitrogen compound present in the sludge centrate, inhibits 

the growth of cyanobacteria, including the strain selected in this study-Synechocystis sp. 

PCC6803 [49, 50]. For instance, the biomass productivity of this cyanobacteria strain is inhibited 

at high intracellular concentrations of ammonia of 63 mg NH4.l-1 [51] due to damage to 

photosystem II [52]. These efforts suggest that photoautotrophic microorganisms, such as 

cyanobacteria, could potentially solve the challenges associated with the sidestream wastewater 

treatment system once centrate inhibition can be mitigated or controlled. 

Past LCA studies have focused on biofuel and bioproducts production, and none of the 

previous studies have investigated the synergistic benefits of combining photosynthetic 

biorefineries, based on Synechocystis sp. PCC6803, and wastewater treatment facilities. These 

synergistic benefits include improvement in the quality of water from the wastewater treatment 

facilities, energy recovery, and greenhouse gas (GHG) emissions reduction due to fossil fuels 

and commercial fertilizers displacements with biofuels and co-products, respectively. 

1.4.2 Research Questions 2.1 

By considering the challenges in the integration of wastewater treatment facilities and 

cyanobacterial biorefineries, I propose a second research question: 

To what extent are the joint achievement of sustainability, scalability, and water quality 

goals assisted by the integration of cyanobacterial biorefinery (CBR) and wastewater 

treatment facility (WWTF)? 

1.4.3 Hypothesis 2.1 

Integration of CBR and WWTF provides synergistic lifecycle benefits including the 

displacement of fertilizers for cyanobacteria cultivation by wastewater nutrients, reduction of 
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energy consumption to remove nutrients from the treated wastewater, and improvement of water 

quality from wastewater facilities. 

1.5 Turbulent Mixing/Thermal and Growth as it influences LCA metrics 

1.5.1 State of the Field 

Photoautotrophic productivity in terms of biomass and biofuel are well-understood to be 

overestimated by laboratory scale experiments, relative to industrial scale systems. For instance, 

the light saturation of Synechocystis sp. PCC6803 is reported at about 200 μmol photons.s−1.m−2 

[10], whereas photoautotrophic microorganisms will face incident radiations of about 2000 μmol 

photons.s−1.m−2 in their natural environments [11]. For example, the photo-conversion efficiency 

of microalgae ranges from 2.6% at high incident radiations, to 6.3% at reduced incident 

radiations [12]. 

Previous studies have investigated the effects of mixing rates on photoautotroph biomass 

productivities [11, 15, 62, 63]. Some of these efforts have identified optimum volumes of air 

flow rates per unit volume (VVM) of photobioreactors that might be industrially relevant for 

microalgae [11]. Many others have considered mixing energy inputs that are far outside the 

energy consumption that can be considered economic, or industrially relevant, ranging from 8 to 

633 W.m-3 [53]. For raceway ponds, for instance, energy inputs from 1 to 2 W.m-3 are utilized in 

the algae cultivation demonstrations performed to date [7, 54]. None of this previous research on 

culture mixing has evaluated the implications of turbulent mixing on the NER (and other 

lifecycle sustainability metrics) of the system as whole. 

There are several ongoing efforts in the literature to understand the connections between 

photoautotrophic microorganism’s bioprocesses, and mixing in raceway ponds and 

photobioreactors. Yet most of the literature relies on light distribution in photobioreactors based 
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on Beer-Lambert law [55, 56]. Although previous efforts measured the light absorption 

coefficient of Nannochloropsis sp. in photobioreactors [56], the derived model can only be used 

to describe light distribution for particular validated conditions. The only predictive work 

concerning radiative transfer in aqueous suspensions was developed by Incropera [57, 58], 

consisting of a discrete ordinate method for modeling heat transfer in scattering fluids. None of 

previous efforts in the literature have integrated Incropera’s work in raceway ponds and 

photobioreactors modeling, due to its computational complicatedness relative to Beer-Lambert. 

Similarly, some studies have attempted to predict the fluid mechanics of raceway ponds and 

photobioreactors via Computational Fluid Dynamics (CFD) approaches [59-70]. The conclusion 

of many of the raceway pond CFD models that have been applied to investigate velocity, heat 

transfer, are weakened because they use average velocities as boundary conditions [54, 71], 

missing the dynamics of these systems downstream of the paddlewheel. Other studies utilized 

Acoustic Doppler Velocimetry (ADV) to describe the velocity field of raceway ponds [72] but, 

ignore the time scales and turbulence that describe the physics of this reactors. Lastly, there is 

previous research concerning particle tracking with neutrally buoyant particles in 

photobioreactors [73], but the statistical and temporal nature of turbulence modeling was not 

considered. In general, previous studies have failed in analyzing the flow characteristics at 

industrially relevant mixing energy inputs. 

1.5.2 Research Question 3.1 and 3.2 

From this understanding of the research in turbulent mixing in photoautotrophic 

microorganisms and life cycle metrics at the system level, we have developed the following 

research questions: 

Research question 3.1: 
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What are the implications of mixing rates in the life cycle metrics of flat photobioreactors 

and raceways ponds? 

Research question 3.2: 

What is the incident radiation and thermal environment experienced by single 

cyanobacteria cells. How is the bulk thermal system impacted by turbulent mixing? 

1.5.3 Hypothesis 3.1 

Differences in mixing energy change metrics of growth and sustainability for 

photoautotrophic-derived biofuel systems. Fluid flow and mixing in open raceway ponds is 

hypothesized to strongly influence algae growth. Pilot scale open raceway ponds and flat-panel 

photobioreactors maintain well-mixed conditions under a variety of operating conditions, and 

their cyanobacterial growth performance is described by well-mixed models.  

1.6  Dissertation Outline 

This research presents novel means to be able to analyze, integrate, assess, and design 

photoautotrophic biofuel and bioproduct systems, as defined using LCA. To understand the 

connections between the physical environment and the biological responses of cyanobacteria and 

microalgae, we used experimental and computational fluid mechanics, and models of the 

cultivation system and growth (Figure 1.2). The research effort is composed of a set of research 

tasks that contribute to this overall objective. To answer the research questions this dissertation is 

organized into 10 chapters. 
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Figure 1.2 Summary of research questions, hypothesis, and tasks associated with this 
dissertation. 

 

The first research question (1.1) is answered in Chapters 2 and 3. Chapter 2 develops 

naïve models of laboratory scale data, including cyanobacterial biomass productivities, carbon 

partitioning (biofuel yield), and extrapolated mixing and conversion energy requirements. From 

this chapter, an analysis and quantification of baseline sustainability metrics is performed using 

an LCA of cyanobacterial biorefinery to national relevant scale. Chapter 3 develops an inclusive 

geographical assessment of microalgae facilities in the U.S. to evaluate the impact of DLUC on 

life cycle GHG emissions by constructing refineries in barren land areas. The second research 

question (2.1) is answered in Chapters 4 and 5. Chapter 4 reviews the growth and productivity of 
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photoautotrophic microorganisms grown in wastewater resources, including raw, primary and 

secondary treated, and sludge centrate. Chapter 5 integrates cultivation of cyanobacteria in 

sludge centrate, evaluating the biological and sustainability tradeoffs of centrate dilution.    

The third research question (3.1) is answered in Chapter 6. In this chapter we integrated 

cyanobacterial cultivation at high radiations experienced by photoautotrophic microorganisms 

and biological and sustainability tradeoffs with mixing energy inputs in flat-panel 

photobioreactors and open raceway ponds, with metrics that are relevant for the industry. The 

drivers of growth and biomass productivity are identified in this chapter. Because fluid 

mechanics is hypothesized to influence photoautotrophic growth and productivity, the last 

research question (3.2) of this dissertation in answered in Chapters 7, 8, and 9. Chapter 7 seeks to 

understand the flow characteristics of flat-panel photobioreactors and open raceway ponds, and 

the role that flow characteristics have in the motion and light experienced by photoautotrophic 

microorganisms (Figure 1.2). Chapter 8 evaluates the predictive capability of a dynamic lumped-

thermal model based on open raceway ponds operated in outdoor conditions as part of a 

collaboration with Sandia National Laboratories. The propagated uncertainty of the lumped-

thermal system embedded into an algae growth model is quantified and the epistemic and 

aleatory uncertainty parameters are identified. Chapter 9 seeks to understand biological epistemic 

parameters in well-mixed cyanobacterial growth models by integrating growth as a function of 

mixing energy input in a photo-inhibiting environment. Lastly, Chapter 10 concludes by 

synthesizing the contributions, main findings, and future directions of this dissertation.   
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CHAPTER 2: Life Cycle Net Energy and Greenhouse Gas Emissions of Photosynthetic 

Cyanobacterial Biorefineries: Challenges for Industrial Production of Biofuels1 

2.1 Introduction 

Photoautotroph-based biofuels are considered one of the most promising renewable 

resources to meet the global energy requirements for the transportation system [5].  Long-term 

research and development has resulted in demonstrations of microalgae areal oil productivities 

that are higher than crop-based biofuels, about 10 times that of palm oil and about 131 times that 

of soybean [5, 74-76]. Cyanobacteria is reported to have ~4 times the areal productivity of 

microalgae on an equivalent energy basis [6]. Downstream of the cultivation process, the 

cyanobacteria biomass and bioproducts are supplied to biorefineries producing feed, 

biomaterials, biosynthetic chemicals, and biofuels [77]. 

Biofuel technologies, especially microalgae, have been extensively researched to model 

their environmental impacts, techno-economics, net energies and greenhouse gas (GHG) 

emissions [18-24, 26, 27, 78]. None of these studies have evaluated the biofuels bisabolene and 

heptadecane produced by cyanobacteria.  For cyanobacteria-based ethanol, previous research 

reports net energy ratios (NER) ranging from 0.20 to 0.55 MJ consumed·(MJ produced)-1 and 

GHG emissions ranging from 12.3 to 19.8 g CO2eq.MJ-1 [17]. Although this previous research 

report presents an in-depth review of the processes involved in the proposed technology, 

productivities of ethanol were based on a cost-effective range established by the authors rather 

than being based on near-term or physically realizable productivities. In this LCA, we consider 

the current data regarding biofuel production including biomass productivities, biofuel 

                                                           
1 This chapter is adapted from a published refereed journal article: Quiroz-Arita, Carlos, John J. Sheehan, and 
Thomas H. Bradley. "Life cycle net energy and greenhouse gas emissions of photosynthetic cyanobacterial 
biorefineries: Challenges for industrial production of biofuels." Algal Research 26 (2017): 445-452. 
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productivities and process energy consumptions. This LCA is novel in that the lifecycle impacts 

of the two biofuels investigated in this study, bisabolene and heptadecane, from genetically 

modified cyanobacteria will be evaluated in comparison to more conventional ethanol production 

schemes. 

This research seeks to model the NER and GHG emissions for photosynthetic biorefineries 

growing cyanobacteria, where bisabolane and heptadecane biofuels are compared to ethanol so 

as to understand the biological and process engineering challenges for industrial scale 

production. 

2.2 Methods 

2.2.1 Goals and Scope 

Life Cycle Assessment (LCA) is a framework for evaluating the energy use, emissions and 

impacts of direct, indirect, and supply chain processes [16].  A LCA model was developed in this 

study to assess these aspects of a cyanobacteria-based biofuel facility.  In developing the goals 

and scope of this project, we seek to compare a bisabolane or heptadecane production to 

cyanobacteria-based ethanol production, a near-term and commercially promising technology. 

Cyanobacteria-based ethanol is chosen as the baseline for comparison because these organisms  

display the highest productivities and rates of carbon partitioning [79], and could potentially 

meet the environmental goals as for renewable fuels in the U.S. [80].  

The primary audience for this LCA includes cyanobacteria researchers, policy makers, and 

process engineers.  The outputs of this study are direct lifecycle comparisons of the 

environmental and energy impacts of these cyanobacteria based biofuel systems.   

This LCA considers biomass productivities and biofuel yields of Synechocystis sp. 

PCC6803. Current biofuel yields of biosynthetic bisabolane and heptadecane reported in the 
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literature serve as the baseline in a sensitivity analysis at the system level. The biosynthetic 

bisabolane and heptadecane biofuels secreted by Synechocystis sp. PCC6803 are compared to 

state-of-the-art cyanobacteria-based biofuel, ethanol. Cyanobacteria-based ethanol is the 

cyanobacteria-based biofuel which reaches the highest carbon partitioning assimilated, 63%, 

during cultivation of Synechocystis sp. PCC6803 [79], and therefore has the highest 

commercialization potential.  

This study considers a cyanobacteria production system located in Fort Collins, CO USA.  

Weather conditions, including temperature and incident radiation, are used to model real-world 

biomass productivities.  

2.2.2 Impacts considered 

The two sustainability metrics and impacts considered in this study are net energy ratio 

(NER) and lifecycle GHGs, and were elicited from a set of surveyed stakeholders.   

The production of biofuel as an energy carrier is the primary goal of any potential biofuel 

technology.  Therefore, net energy ratios (Equation 1) were the first metric of interest for this 

LCA. 

NER = ����	
��

����

��


          Eq. 1 

NER are defined in this study by normalizing the energy consumed (Econsumed) in the 

cyanobacteria growth, fuel extraction, and conversion processes by the energy produced 

(Eproduced) by this system as embedded in the lower heating value of the biofuel. 

Various economic and policy incentives have been developed to incent the production of 

fuels with low net GHG emissions [80].  Therefore, the second metric of interest is lifecycle 

greenhouse gas (GHG) emissions (Equation 2). 

GHG emissions����/���� ! = "# ∗ %"���� ∗ &'�()�*�* !     Eq. 2 
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Lifecycle GHG emissions (GHG emissions fuel/energy) are defined by the 

Intergovernmental Panel on Climate Change (IPCC) as the direct or indirect amount of fuel or 

energy consumed (FC) by the emission factor based on the type of fuel or energy technology (EF 

fuel), and the penetration (P technology) or fraction of the energy source of a given energy 

technology [81]. 

2.2.3 Functional unit 

The functional units for this study is the energy produced from biofuels to displace 

petroleum fuels, in MJ (Figure 2.1). 

 

 

Figure 2.1 Functional unit of Photosynthetic Biorefinery (PBR) System. 

2.2.4 System boundary 

The boundaries of the combined growth, extraction and conversion systems to be 

researched in this LCA are illustrated and summarized in Figure 2.1. The processes considered 

for this study start with the growth stage of the cyanobacteria, and end at the point of conversion 
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of the bioproducts to a biofuel which can displace conventional fuels. The system includes the 

direct energy requirements of the facility.  The embedded GHG emissions for each of the energy 

sources are included. The water and nutrient requirements will be supplied by recycled 

commercial water and commercial/industrial fertilizers. Carbon dioxide is assumed to be 

obtained from waste streams from local industrial CO2 facilities including power plants, amine 

natural gas treatment plants, and fermentation plants.  

Three novel cyanobacteria-based biofuel production systems will be evaluated as 

independent systems.  The impacts of these biofuels will be compared to those of the 

conventional fuels they would displace. Bisabolane will replace conventional jet fuel from crude 

oil, heptadecane will replace low-sulfur diesel from crude oil, and ethanol will replace gasoline 

blendstock from crude oil.  The distribution of biofuels and the end use (combustion of these 

biofuels) will not be taken into account to avoid misinterpretations when comparing different 

cyanobacteria-based biofuel systems. 

 

Figure 2.2 Boundaries and inputs of Photosynthetic Biorefinery (PSBR) System. 
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2.2.5 LCA Tools 

The PSBR systems were modeled in the GaBi 6 software by constructing three comparable 

models to describe the function of these three cyanobacteria-based biofuels.  GaBi is a tool that 

allows for the estimation of the lifecycle energy and emissions output of a process as a function 

of the energy, material consumed for that process.  The GaBi model was used to calculate the 

lifecycle, material consumption, net energy use, and GHG emissions for the lifecycle of the 

cyanobacteria-to-biofuel process.   

In evaluating the life cycle energy consumption of the cyanobacteria-to-biofuel process, 

the biomass that is not converted to fuel can be considered as a co-product. For this study, the 

cyanobacteria co-product credits are allocated using the displacement method. The displacement 

method assumes that the co-product displaces a preexisting conventional product. The 

displacement co-product credits represent the lifecycle energy and GHG emissions that would be 

required to produce the displaced product. Co-product credits are subtracted from the overall 

energy and GHG emissions of the cyanobacteria-to-biofuel process. 

2.2.6 Cyanobacteria Cultivation and Biofuel Concentration Systems  

The genetically engineered cyanobacteria, Synechocystis sp. PCC6803, that are the subject 

of this study, are cultivated in enclosed photobioreactors to protect them from contamination and 

to enable the collection of the biofuel from the photobioreactor media and headspace. The batch 

bioprocess is carried out in flat photobioreactors providing a total culture volume of 126,000 m3. 

For validation purposes of the growth stage subsystem of this LCA, we performed experimental 

work in a bench scale flat photobioreactor with surface to volume ratio of 112 m2.m-3. Cultures 

were mixed by sparged air at the bottom of the photobioreactor at 0.5 m3 of air per minute per 

cubic meter (VVM) (+/- 0.3). Photobioreactors were inoculated with Synechocystis sp. PCC6803 
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cells at 0.107 g.l-1 (+/- 0.061). The cultures were grown using a high-pressure sodium (HPS) 

lighting system with a spectrum ranging from 400 to 700 nm at extreme conditions, sunny day at 

noon or a Photosynthetic Active Radiation (PAR) over 1,600 μmol Photons.m-2.s-1. 

Cyanobacterium biomass was harvested upon quasi-steady state conditions, reaching a 

productivity of 0.128 g.l-1.d-1 (+/- 0.033) (Appendix A). 

The cyanobacteria were grown in BG11 media. CO2 enriched air (2% CO2) is sparged 

through the bioreactor to provide carbon and active mixing of the culture. Mixing by sparge is 

performed during periods of photosynthetically active growth and when bioavailable nitrogen is 

present in the media. Industrial forms used in our bioprocess modelling include sodium nitrate 

and monopotassium phosphate [29]. Thermal regulation of the photobioreactors is performed by 

a temperature controlled heat exchanger coil, set at 29 ⁰C, supplying tap water. US average grid 

electricity is used to power pumping and sparging of the cultivation process.  

During cultivation of these genetically engineered cyanobacteria strains, the metabolism of 

the organism produces a carbon flux that generates the biofuel products within the cell.  

Diffusion and secretion transfers the biofuel to the growth media.  When grown in batch culture, 

the biofuel becomes concentrated in the media, and carried via sparged air into the headspace of 

the photobioreactor.  The biofuel is removed from the headspace by vapor compression and 

distillation of the exhaust air.   

2.2.7 Sensitivity Analysis Description 

Because a high degree of uncertainty must be associated with modeling of these novel 

organisms and bioproducts, sensitivity analysis will allow for the consideration of various 

characteristics of growth, extraction and conversion for these cyanobacteria-based biofuel 
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systems. The source of these uncertainties, including productivities and resource requirements, 

will be discussed in more detail in the results section.   

Sensitivity analysis of the growth stage of the system will consider ranges of growth 

system energy consumption, of nutrient uptake rates, and of biomass productivities.  A primary 

source of energy consumption in the growth stage is due to the energy required to mix culture by 

air/CO2 sparging or paddlewheels.  Various studies [82] [83] report air flow rates per volume of 

reactors ranging from 0.2 m3 to 1.2 m3 of air per minute per cubic meter (VVM). Mixing energy 

consumptions ranging from 0.5 W.m-3 to 5.0 W.m-3 will be evaluated in this LCA. Previous 

research based on a cyanobacteria strain, Synechocystis sp. PCC6803, reported nitrogen and 

phosphorus uptakes ranging from 0.05 to 0.098 g.l-1.d-1 and 0.0024 to 0.0114 g.l-1.d-1, 

respectively [10, 84]. These studies report biomass productivities for Synechocystis sp. PCC6803 

ranging from 0.12 to 0.76 g.l-1.d-1. Ranges of productivities and concentrations will be evaluated 

for bisabolene, heptadecane, and ethanol. Bisabolene production will be evaluated in a range 

from 3.6E-05 g.l-1.d-1 to 2.3E-04 g.l-1.d-1 as computed from biomass productivities and yields 

reported in the literature [6, 79, 85]. Heptadecane production, will be evaluated from 0.00132 g.l-

1.d-1 to 0.008 g.l-1.d-1 as reported in the literature for other cyanobacteria strains [86]. Ethanol, as 

reported by the state-of-the-art biofuel production from cyanobacteria, will be evaluated between 

0.024 g.l-1.d-1 to 0.24 g.l-1.d-1 [79]. These ranges of inputs define the ranges of the sensitivity 

analysis for the growth stage.   

The energy requirements in the extraction and conversion stage processes will depend 

upon the biofuel to be assessed in this study: bisabolane, heptadecane, or ethanol (Figure 2.3). 

For these cyanobacteria-excreted biofuels, a dilute water solution of biomass and biosynthetic 

biofuel is obtained from the growth stage [6], bisabolane is then converted to bisabolene, a 
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biosynthetic substitute of D2 diesel, by vapor compression and distillation followed by chemical 

hydrogenation. Chemical hydrogenation requires 4.07 MJ.gbiomass
-1 due to the consumption of 

electricity, natural gas, and hydrogen during the process [87]. Heptadecane is assumed to require 

vapor compression and distillation, whereas ethanol extraction and conversion will include an 

additional filtration by molecular sieve [17, 88]. The separation technology, for heptadecane and 

ethanol, has an energy consumption range of 0.108 to 0.159 MJ.MJfuel
-1  and 190 to 280 

MJ.MJfuel
-1, respectively [17].  These ranges of inputs define the ranges of the sensitivity analysis 

for the extraction and conversion stages.   

 

Figure 2.3 Biosynthetic co-products excreted from engineered cyanobacteria and biofuel’s 
conversion processes. 

 
Microalgae biomass has been previously researched for its potential to replace corn and 

soybean meals in animal feed [89]. Although there is no previous research evaluating the 

displacement of these meals by cyanobacteria, we assumed that the cyanobacteria biomass co-

product will be able to displace the GHG and energy emissions associated with the cultivation 

and processing of these feeds. The range of inputs to be used in the sensitivity analysis 

concerning nutrient uptake, biomass productivities, separation, and biofuel productivities are 

illustrated in Table 2.1. The baseline values in Table 2.1 are used as inputs of the baseline LCA 

for bisabolene, heptadecane, and ethanol productions, respectively. The low and high input 
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values are utilized to compute the uncertainty of the results when evaluating the three biofuel 

processes. For the case of cyanobacteria-based ethanol production, the sensitivity analysis is 

performed by evaluating the NER and GHG emissions response due to input variation by +/- 

20% with respect to the baseline. 

Table 2.1 Inputs for sensitivity analysis  
Process stage   Low Baseline High 

Biomass Productivity (g.Lmedia
-1.d-1) 0.12 0.44 0.76 

Bisabolene Productivity (g.Lmedia
-1.d-1) 0.000036 0.00013 0.00023 

Heptadecane Productivity (g.Lmedia
-1.d-1) 0.0013 0.005 0.008 

Ethanol Productivity (g.Lmedia
-1.d-1) 0.04 0.14 0.24 

Mixing Energy (W.mmedia
-3) 0.50 2.00 5.00 

Nitrogen uptake (g.Lmedia
-1.d-1) 0.05 0.07 0.098 

Phosphorous uptake (g.Lmedia
-1.d-1) 0.0024 0.0069 0.011 

Vapor compression/distillation (MJ.MJbiofuel
-

1) 

0.108 0.194 0.280 

 

2.3 Results and Discussion 

The research results are divided into four components. First, we compared the NER for 

photosynthetic cyanobacterial biorefineries producing bisabolane and heptadecane, respectively, 

with a cyanobacteria-based ethanol production system. Second, the GHG emissions of these 

three biosynthetic biofuel production pathways were compared. By contrasting the NER and 

GHG of these three biofuel pathways, we have identified that cyanobacteria-based ethanol 

production has the lowest environmental cost. The uncertainty of the NER and GHG emissions 

results due to input data variability are included in these sections. Third, we present a sensitivity 
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analysis of the cyanobacteria-based ethanol production system, identifying the major process that 

impact in the system response in terms of NER and GHG emissions. Lastly, we discuss the 

challenges and future perspectives for the most sensitive processes, establishing the potential 

improvements by metabolic engineering of cyanobacteria, displacement of fertilizers, and 

optimization of bioprocess technologies that would maximize the environmental benefits of 

photosynthetic cyanobacterial refineries.  

2.3.1 The energy efficiency of cyanobacteria-based biofuels production systems 

The most efficient pathway identified in this research is the state-of-the-art cyanobacteria-

based ethanol production system, which has the lowest NER compared to bisabolane and 

heptadecane production. Across the sensitivities considered, the NER of the ethanol production 

pathway ranges from 2.64 to 1.16 MJ.MJ-1, where the lowest value represents the best case 

scenario. 

When compared to cyanobacteria-based ethanol production systems proposed in literature, 

these results are more conservative than the results reported by Luo et. al. [17], which ranged 

from NERs of 0.55 and 0.20 MJ.MJ-1. These differences may be attributed to the 1) higher 

energy requirements in this proposed process due to higher rates of mixing, and 2) the energy 

associated with water consumption despite modeling that 90% of water is recycled in the 

process. Cyanobacteria-derived bisabolane and cyanobacteria-derived heptadecane had worse 

NER than the ethanol technologies considered in this study. Under best case scenarios, the 

production of bisabolene resulted in a relative increase of 240% for NER compared to 

cyanobacteria-derived ethanol. Under best case scenarios, the production of heptadecane resulted 

in a relative increase of 673% for NER with respect to cyanobacteria-derived ethanol (Figure 

2.4a and 2.5a). These results are summarized in Table 2.2.  
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The NER of bisabolane and heptadecane production systems identified in this research can 

serve as a baseline to pursue more efficient bioprocesses. These biosynthetic biofuels should 

target in the mid-term similar NER identified in the ethanol production system to justify their 

manufacture by the industry. All the cyanobacteria-based biofuels production systems evaluated 

in this research; however, should accomplish in the long-term more sustainable NER, less than 

one, contributing to the energy efficiency and cost-effectiveness of this bioenergy technology.  

2.3.2 The carbon footprint of cyanobacteria -based biofuels production systems 

The lowest environmental impacts were observed in the cyanobacteria-based ethanol 

production system. The GHG emissions for the cyanobacteria-derived ethanol ranged from 233.5 

to 89.6 g CO2eq.MJ-1. The GHG emissions results found here are more conservative than was 

reported by Luo et. al. [17] for ethanol production, 29.8 to 12.3 g CO2eq.MJ-1. The GHG 

emissions obtained by our model are within the range of the values reported by Passell et. al. 

[90], Sills et. al. [91], Vasudevan et. al. [27], Grierson et. al. [92], and Brentner et. al. [93] for 

open raceway ponds and photobioreactors. 

Cyanobacteria-derived bisabolane and cyanobacteria-derived heptadecane had higher GHG 

emissions than the ethanol technologies considered in this study. Under best case scenarios, the 

production of bisabolene resulted in a relative increase of 30,610% for GHG emissions compared 

to cyanobacteria-derived ethanol. Under best case scenarios, the production of heptadecane 

resulted in a relative increase of 1,096% for GHG emissions with respect to cyanobacteria-

derived ethanol (Figure 2.4a and 2.5a). These results are summarized in Table 2Table.2.  

The cyanobacteria-based biofuels pathways evaluated in this research have proven to have 

high carbon footprints, particularly for bisabolane and heptadecane production systems. In the 
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following sections we discuss the drivers and challenges to enhance the environmental benefits 

of photosynthetic cyanobacterial refineries. 

2.3.3 The drivers to enhance the environmental benefits are identified by a sensitivity 

analysis 

In general, these results demonstrate that the environmental performance of these biofuel 

producing cyanobacteria and their associated processes are worse than the performance of the 

ethanol system, despite their reported high areal biofuel productivities [6, 94].  

So as to understand the drivers of the environmental costs for these systems, we performed 

a sensitivity analysis of the ethanol biofuel production system, as it represents the most well-

developed of the cyanobacteria production systems modeled in this study. For this ethanol 

biofuel production system, Figures 4b and 5b present tornado plots of the percent change in 

lifecycle NER and GHG emissions due to a ± 20% change in each of the sensitivity inputs from 

Table 2.1.  These plots demonstrate that the environmental impacts are particularly sensitive to 

the parameters of ethanol productivity, the energy consumption associated with the biofuel vapor 

compression and distillation processes, the energy consumption associated with culture mixing, 

and the embedded energy in nutrients. 

Table 2.2 Net Energy Ratios (NER) and GHG emissions of PSBR based on cyanobacteria 

Biofuel 

Scenario 

Low Middle High 

Ethanol (baseline)    

NER (MJ consumed. MJ produced
-1) 2.64 1.18 1.16 

GHG (gCO2eq. MJ produced
-1) 233.5 105.9 89.6 

Bisabolene    

NER (MJ consumed. MJ produced
-1) 1306.85 411.53 279.24 
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Biofuel 

Scenario 

Low Middle High 

GHG (gCO2eq. MJ produced
-1) 123,757.4 42,013.3 27,516.1 

Heptadecane    

NER (MJ consumed. MJ produced
-1) 33.99 9.75 7.96 

GHG (gCO2eq. MJ produced
-1) 3,245 1,039 845.5 

 

2.3.4 Challenges and future perspectives 

2.3.4.1 Photoinhibition and low carbon partitioning into biofuels constraints the 

environmental benefits of photosynthetic biorefineries  

One means to address the environmental costs of these biofuel production systems is 

through biological and metabolic engineering of the cyanobacteria to improve biofuels 

productivity.  

Metabolic engineering of cyanobacteria has been utilized to engineer pathways for 

production of carbon-based co-products, including biofuels, from carbon dioxide, incident 

radiation, water, and nutrients [79]. Theoretical ethanol productivities computed from the 

literature have a range of uncertainty of between 0.04 to 0.24 g EtOH.Lmedia
-1.d-1. (assuming 

Synechocystis sp. PCC6803 biomass productivities range from 0.12 to 0.76 g.Lmedia
-1.d-1 in 

photobioreactors subjected to incident radiation above 1000 μmol photons. s-1.m-2 [10, 84], and 

50% of carbon content and 63% of carbon partitioning into ethanol [79]). On the other hand, the 

theoretical bisabolene and heptadecane biofuel yields are 0.09% and 3.5% of ethanol yields, 

respectively. These low yields compared to ethanol, particularly in bisabolene, are due to 

reduced carbon partitioning of 0.06% and 0.55% (1.1% of cell dry weight and assuming 50% of 

carbon content) as reported in the literature for bisabolene by Davies et. al.[85] and for 
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heptadecane by Wang et. al [86], respectively. As illustrated in the sensitivity analysis, the 

carbon partitioning assimilated as bioproduct in cyanobacteria leads to low ethanol productivity, 

which is a significant factor in the life cycle NER and GHG emissions of these biofuels. 

Based on the theoretical yields, bisabolene and heptadecane productivities will not be as 

high as ethanol unless the carbon partitioning is enhanced by metabolic engineering approaches. 

This means that low biofuel yields contribute to low energy produced in the system, worsening 

metrics of sustainability such as NER and GHG emissions when normalized by our functional 

unit. As the engineering of these bisabolene and heptadecane producing pathways improves, the 

environmental benefits of their associated biofuels will correspondingly improve.    

Another means for improving the environmental and energetic performance of these 

organisms is through genetic engineering or optical engineering of their response to outdoor 

lighting conditions.  Although incident solar radiation seems as an ideal resource to grow 

microalgae and cyanobacteria, the photosynthetic active radiation  fraction is about 46% of the 

spectrum and the photon utilization efficiency range from 10% to 30% under high incident light 

conditions [12]. The light saturation of Synechocystis sp. PCC6803, for instance, is reported at 

about 200 μmol photons. s-1.m-2 [10], whereas photoautotroph-based biofuel facilities will face 

incident radiations of about 2000 μmol photons. s-1.m-2 at noon in locations such as Colorado 

[95]. This means that the growth and areal productivities of photoautotrophic microorganisms 

are photoinhibited in outdoors conditions unlike the idealized conditions that may exist at the lab 

scale.  Whether through genetic engineering or the use of light diffusers, a reduction in 

photoinhibition of these organisms would result in higher productivity and improved 

environmental and energetic performance.   
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2.3.4.2 Replacement of Industrial Fertilizers  

Sensitivity analysis has demonstrated that the nutrient sources, sodium nitrate and 

monopotassium phosphate, for these organisms is causative of a large fraction of the NER and 

GHG emissions due to the energy consumption embedded in industrial fertilizer production.  The 

integration of cyanobacteria and microalgae based biofuels production systems with wastewater 

treatment plants has long been proposed as a means to reduce the environmental impact of 

biofuels production [30, 37, 96].  Lab and pilot scale experiments growing photosynthetic-based 

biofuel microorganisms in wastewater [97-129], and in sludge centrate  [37, 103] have been 

successfully conducted. By combining photosynthetic biorefineries with wastewater facilities, 

the combined system could reduce the capital and operation costs required by energy expensive 

biological nutrient removal processes and could contribute to meet the water quality criteria 

required to release treated wastewater to the environment [37]. Although the displacement of 

fertilizers by sludge centrate and treated wastewater will reduce the carbon footprint of PSBR 

systems, the availability of these resources may limit expected biofuel production in the U.S.  

2.3.4.3 Optimized bioprocess technologies will maximize the benefits in PSBR systems   

Optimization of bioprocesses, including mixing of cultures and energy conversion 

technologies, are a third strategy to minimize the energy requirements for the biomass growth 

and maximize biofuel extraction and energy production. Optimization of sparge mixing, by 

maximizing microalgae biomass has been researched at air flow rates per volume of reactors 

ranging from 0.2 m3 to 1.2 m3 of air per minute per cubic meter (VVM) [82]. Although previous 

efforts are reported for cyanobacteria growth in photobioreactors [6, 10, 84], no such research 

has been reported for co-optimization of biomass and biofuel productivities of Synechocystis sp. 

PCC6803 under outdoor conditions [130].  
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Optimization of the growth system and optimization of process engineering variables 

using LCAs such as what has been presented in this study can seek to improve the metrics of 

sustainability for these biofuel production systems.   

 

(a) 

 

(b) 

Figure 2.4 Net Energy Ratios (NER), in terms of Energy Consumed per Energy Produced, of 
cyanobacteria-based biofuels (a) and sensitivity analysis of the LCA based on ethanol on a 

percentage basis (b). The error bars represent the uncertainty of the LCA results by varying from 
low to high input values in the system. NERk stands for the Net Energy Ratio response of the 

system due to input variation for each process by +/- 20%. NERb stands for the Net Energy Ratio 
baseline input values summarized in Table 2.1. 
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(a) 

 

(b) 

Figure 2.5 GHG emissions in equivalent carbon dioxide per energy produced of cyanobacteria-
based biofuels (a) and sensitivity analysis of the LCA based on ethanol on a percentage basis (b). 

The error bars represent the uncertainty of the LCA results by varying from low to high input 
values in the system. GHGk stands for the Greenhouse Gas emissions response of the system due 
to input variation for each process by +/- 20%. GHGb stands for the Greenhouse Gas emissions 

baseline input values summarized in Table 2.1. 
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2.4 Conclusions 

This study presented the results of an LCA for a set of genetically engineered cyanobacteria-

based biofuel production systems. Growth and process engineering parameters from the literature 

were used to populate a model of the cyanobacteria growth, extraction and conversion stages.  

Results demonstrate that Synechocystis sp. PCC6803 producing bisabolene and heptadecane 

have higher lifecycle environmental costs than the exemplar cyanobacteria-based ethanol 

production systems.  Sensitivity analysis was used to understand the primary drivers of the 

environmental costs, and to understand the organism and process engineering pathways that can 

improve the environmental impacts of these biofuels. Potential means to improve the lifecycle 

energy consumption and GHG emissions of these biofuels included: increasing biomass 

productivities by mitigating photoinhibition, increasing biofuel yields by increasing the carbon 

partitioning into bisabolene and heptadecane, minimizing resource inputs through optimization 

of mixing and energy conversion processes, and minimizing industrial fertilizer consumption by 

engineering wastewater tolerance and improve nitrogen uptake in Synechocystis sp. PCC6803. 

This study provided an important baseline of the state of the field for these cyanobacteria-based 

biofuels. Through further multidisciplinary development of these systems, their cost-

effectiveness and sustainability can be improved so as to meet long-term objectives for biofuel 

productivity and environmental benefits. 

2.5 Answer to Research Question 1.1 

This section of the research effort has allowed us to address Research Question 1.1, which is 

restated and answered in section 3.5 of this dissertation. 
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CHAPTER 3: A Geographical Assessment of Vegetation Carbon Stocks and Greenhouse 

Gas Emissions on Potential Microalgae-based Biofuel Facilities in The United States2 

3.1 Introduction 

The cultivation of microalgae-based biofuel feedstocks have various advantages compared to 

conventional biofuels feedstocks including higher solar efficiency, high production rates, and 

utilization of low quality land [131]. However, the conversion of undeveloped or low-quality 

land to microalgae cultivation has the potential to be a disadvantage relative to conventional 

biofuels due to the environmental cost associated with land use change.  For conventional 

biofuels, direct land use changes (DLUC) are a relatively minor component of the biofuels’ life 

cycle greenhouse gas (GHG) emissions because conventional biofuels are often cultivated on 

preexisting dedicated croplands [132].  For example, the DLUC effects of switching from feed 

corn cultivation to ethanol corn cultivation are very small. In comparison, microalgae cultivation 

facilities are typically assumed to require the conversion of marginal agricultural, range, or 

undisturbed land, for which DLUC must be quantified to understand the impact on the life cycle 

emissions of the biofuel product.   

A variety of research efforts have quantified the productivity potential and life cycle 

environmental impacts of microalgae biofuels. The results of these assessments are found to be 

highly sensitive to the siting of the modeled facility. Researchers have subsequently considered 

geographically-specific inputs to these LCAs including meteorological data, land types and 

availability, carbon dioxide (CO2) accessibility, and more. The results of these efforts have been 

an evaluation of the localized life cycle impacts of microalgae-based biofuel facilities in the U.S. 

                                                           
2 This chapter is adapted from a published refereed journal article: Arita, Carlos Quiroz, Özge Yilmaz, Semin 
Barlak, Kimberly B. Catton, Jason C. Quinn, and Thomas H. Bradley. "A geographical assessment of vegetation 
carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States." 
Bioresource technology 221 (2016): 270-275. 
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[7, 22, 27, 28, 78, 91, 93, 133-135].  Sustainability results currently in the literature show algal 

based systems to have great potential.  Combining land and CO2 availability microalgae has the 

capability to produce 44 billion gallon per year in the U.S. [136].  The water footprint of 

microalgae biofuels when optimally sited is comparable to that of other biofuels 80-291 m3.GJ-1 

[133, 137-141].  The environmental impact of algal systems as assessed through net energy ratios 

and net GHG emissions of microalgae of well-developed facilities are favorable relative to 

petroleum-derived and biofuels ranging between -0.74-0.93 MJ consumed·(MJ produced)-1; and 

between -95.7 to 534 gCO2eq.MJ-1 [18-21, 23, 24, 26, 27, 90-93, 135, 142-146].  None of the 

cited studies have taken into consideration the DLUC associated with the construction of the 

biofuel facilities.  Canter et al. (2014) investigated the emissions associated with the actual 

construction of the facility but do not consider emissions associated with the disruption of the 

soil [147].  Ignoring DLUC in these analyses represents a discrepancy in boundary assumptions 

between microalgae life cycle assessments (LCAs) and the state of the art for conventional 

biofuels. 

In general, DLUC has been shown to be a significant contributor to world-wide GHG 

emissions through the transport of CO2 to the atmosphere from carbon stocks stored in soil and 

above ground biomass (AGB).  Currently approximately 30% of anthropogenic carbon emissions 

are generated by deforestation and forest degradation [148].  Although DLUC is considered 

negligible in evaluating the environmental impacts of many 1st generation biofuels, for some 

particularly land-disruptive applications, DLUC has been demonstrated to have a significant 

effect on lifecycle emissions.  For an example, gasoline and diesel produced from Canadian oil 

sand crude is estimated to result in 18% to 21% higher GHG emissions than U.S. conventional 

crudes, with the differences due primarily to DLUC [149].  Recent remote sensing research has 
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resulted in the development of datasets that can broadly represent the AGB and soil organic 

carbon (SOC) for not only forested, but also for the shrubland, and scrubland that are expected to 

be utilized for microalgae-based biofuel production facilities [136, 150].  There is a need to 

integrate available carbon stock data with microalgae based LCA to have a more holistic 

understanding of the environmental impact associated with biofuels derived from microalgae. 

This study integrates AGB and SOC datasets with microalgae biofuels LCAs into a 

geographical assessment of the effect of DLUC on the life cycle GHG emissions of microalgae 

biofuels.  The results and quantified sensitivities of this assessment allow insight into the relative 

importance of DLUC in assessing the sustainability of microalgae based biofuels facilities.  

Geographically resolved results can be used to quantitatively exclude environmentally-

disadvantageous lands from consideration for microalgae biofuels cultivation. These methods and 

results represent the next level of fidelity in the critical assessment of microalgae biofuels on the 

metrics of environmental impact and will support long-term investment planning. 

3.2 Materials and Methods 

To evaluate the life cycle GHG emissions from microalgae-based biofuel facilities, inclusive 

of DLUC, carbon fluxes from microalgae cultivation and industrial processes must be taken into 

account [29], along with the carbon associated with disturbed AGB and Soil SOC release due to 

facility construction activities. The modeling workflow, illustrated in Figure 3.1, integrates the 

equivalent CO2 emissions from these disturbances by applying the Intergovernmental Panel on 

Climate Change (IPCC) method simulated spatially across the U.S. By adding the effects of 

DLUC to the results of microalgae biofuels LCAs in literature, we can develop a more 

comprehensive assessment of the net GHG emissions of potential microalgae-based biofuel 

facilities in the U.S. 
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Figure 3.1 System boundaries and analysis flowchart for calculation of GHG emissions 
(gCO2eq.MJ-1) due to DLUC based on GIS model of microalgae-based biofuel facilities in the 

U.S. 
 

3.2.1 Spatial Inputs to Life Cycle Assessment and Direct Land Use Change Modeling 

The AGB dataset is derived from the Oak Ridge National Laboratory Distributed Active 

Archive Center (ORNL DAAC) for biogeochemical dynamics, National Aeronautics and Space 

Administration (NASA) [150]. The AGB, which is comprised of the dried matter of living 

organisms above ground [151], was utilized to obtain the land cover carbon, which is measured 

as tonnes of dried matter per hectare. The AGB maps of the U.S. and the potential microalgae-

based biofuel facilities areas processed in our research is included in the Appendix B for three 

scenarios described below.  

The potential locations for microalgae-based biofuel facilities and their lipid productivities 

are derived from previous research on siting of microalgae biofuels facilities as reported in 

Quinn et al. (2013).  Only facilities of more than 400 contiguous hectares are considered. Three 

scenarios of land use constraints, each with progressively lower restrictions on sitting, for 

locating microalgae biofuels facilities are considered wherein the facilities are only located on 1) 

barren land with slope of less than 1%, 2) barren land with slope of less than 2%, and 3) forest or 

pasture or barren areas with slopes of less than 5% (see Appendix B).  The projection used for 
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this geographical assessment is the North America Albers Equal Area Conic and the datum is the 

North American 1983. 

To take into account the carbon disturbance in the soil due to the potential change in the land 

use, the total SOC estimated by the U.S. Department of Agriculture (USDA) in the total soil 

profile at 30 meters resolution has been incorporated in the carbon stocks balance of this 

assessment. These SOC maps are included in the Appendix B. By utilizing minimum microalgae 

facilities sizes of 400 Ha, the carbon stocks liberated by facility construction can be well 

represented using AGB and SOC datasets at resolutions of 240 m and 30 m, respectively. 

3.2.2 Spatial Analysis of Direct Land Use Change and Related Emissions 

With these inputs, we use geographical information systems (GIS) tools to synthesize the 

spatial GHG emissions and environmental impacts of microalgae-based biofuels production 

across the US.   This assessment incorporates the methods of the Good Practice Guidance for 

Land use, Land-use Change and Forestry of the Intergovernmental Panel on Climate Change 

(IPCC, 2014).  Map-algebra was applied to calculate the carbon stocks from the attribute values 

of the AGB and the microalgae-based biofuel facilities: 

       Eq. 1 

LOL represents the annual losses of carbon (tonnes of carbon per year); Ad is the vegetation 

areas affected by disturbance (hectares per year); BW is the average biomass stock of ground 

cover areas (tonnes of dried matter per hectare); fBL is the fraction of biomass left to decay in the 

environment (transferred to dead organic matter); and CF is the carbon fraction of dry matter 

(tonnes of carbon per ton of dried matter) [152]. The variable fBL was assumed to be zero in this 

research as would be characteristic of an industrial facility, and CF is assumed to be 50% as 

recommended by the IPCC. SOC is derived from the USDA database as detailed in section 2.1. 

SOCCF)f(BAL BLwdOL +∗−∗∗= 1
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The value of Ad was obtained from the geographical assessment of microalgae biofuel potential 

included in the Appendix B.  

The computed losses of carbon (LOL) are converted to the equivalent CO2 emissions by the 

ratio of molecular weights of CO2 (MWCO2) and carbon (MWC) [151]. The CO2eq produced due 

to land disturbance is amortized over the microalgae facilities’ lifetime (T), which is estimated to 

be 10 years, providing an annual equivalent CO2 balance for the disturbed areas (tonnes of 

equivalent CO2 per year) (IPCC, 2014): 

        Eq. 2  

For comparison to an undisturbed condition, the CO2 equivalent balance must take into 

account the annual increase in carbon stocks associated with accumulating AGB: 

         Eq. 3 

Where CFFG is the annual increase in carbon stocks due to biomass increment (tonnes of 

carbon per year); T is the lifetime in years of the microalgae facilities, assumed to be 10 years in 

our research; GW is the average annual AGB increment (tonnes of dried matter per hectare per 

year), 0.4 for barren areas and 0.8 for forest or pastures areas as derived from the IPCC 

guidelines; and R is the “root-to-shoot” ratio (ratios of belowground to aboveground biomass), 

2.83 was assigned for barren areas and 0.48 for forest-pastures-barren areas as per IPCC 

guidelines.   

3.2.3 Total GHG emissions 

The results from the life cycle modeling, AGB and SOC, are combined for a total greenhouse 

impact quantified through the metric of CO2eq.  The GHG emissions due to DLUC are 

normalized by the functional unit of energy produced from microalgae-based biofuels.  The 
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energy production as a function of US geography is obtained from previous work pertaining to 

barren land areas in the U.S. [136]. 

3.3 Results and Discussion  

The results of this research are presented in three forms.  First, this study quantifies the 

carbon that is disturbed through construction of microalgae-based biofuel facilities including 

both AGB and SOC.  Second, by considering life cycle emissions to include both fuel production 

and DLUC emissions, we find that in many of the locations that are proposed for siting of algae 

based biofuel facilitates, the environmental benefits of microalgae based feedstock are negated 

due to liberation of carbon stocks. We present examples at a state level and highlight microalgae 

cultivation locations that should be excluded from potential production studies due to DLUC 

emissions. Finally, by considering a variety of LCAs from the literature, we find that the 

liberation of carbon stocks is not a negligible component of microalgae biofuels LCAs.  

Inclusion of carbon stocks in LCA reduces the net GHG benefit of microalgae by between 3-

85% for the most cited microalgae biofuels LCAs. 

3.3.1 AGB and SOC disturbed by microalgae-based biofuel facilities   

Using the metrics of AGB and SOC, the modeling results demonstrate that the barren land 

areas that have been selected in some of the previous microalgae cultivation research by Quinn et 

al. (2013) are consistent with low values of AGB and SOC.  Studies by Venteris et al. (2013) and 

Wigmosta et al. (2011) that consider forested, or pasture lands as suitable for microalgae 

production will disturb AGB and SOC at higher rates per unit of land area.  Using the methods of 

this study for the baseline scenarios, 1 tonne per hectare of AGB and SOC corresponds to 0.18 

AGB plus 0.37 SOC for a total of 0.55 tonnes of CO2eq per year, per hectare, equivalent to 5% 

of the life cycle GHG emissions savings associated with microalgae production over the 10 year 
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life of the facility.  We use these values of 1 tonne per hectare of AGB and SOC as the limits 

under which DLUC can be considered negligible.   

When considering the construction of microalgae cultivation facilities (>400 Ha facility size) 

on barren lands with slopes of less than 2% as in Quinn et al. (2013), 95.4 % of these facilities 

are located at sites with less than one tonnes AGB per hectare.  The mean AGB across the US 

under this land use scenario is 4.9 tonnes per hectare, the maximum is 1,500 tonnes per hectare.  

Considering SOC under the same land use limitations, 78% of the proposed microalgae 

cultivation land area has less than 1 one tonnes per hectare of SOC.  Under this land use 

scenario, the mean SOC at the proposed microalgae cultivation facilities is 8.6 tonnes per 

hectare.  If forested, pasture, and barren lands are considered available to build potential 

microalgae-based biofuel facilities, then only 64.1% of this land area has AGB of less than 1 

tonne of biomass per hectare, and 88% of these areas have SOC of less than 1 tonne per hectare.   

In summary, the majority of the land area available for microalgae cultivation under the land 

use scenarios proposed in previous research (Barren) has negligible quantities of SOC and AGB.  

Under the baseline land use limitation scenario (>400 ha facility size, US-wide cultivation on 

barren lands with slopes of less than 2%), between 5% and 22% of area under microalgae 

cultivation has greater than negligible GHG emissions due to DLUC.  The fraction of the 

cultivation area with non-negligible DLUC GHG emissions increases under less-restrictive land 

use limitation scenarios as the SOC and AGB increase (see Appendix B).   

3.3.2 Carbon stocks limit the locations available for sustainable microalgae-based biofuel 

cultivation 

By ignoring the contribution of disturbed carbon stocks and DLUC in microalgae-based 

biofuel LCAs, previous researchers have overestimated microalgae productivity potential that 
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can be realized with environmental benefits.  In this section, we combine the area-specific 

DLUC-associated GHG emissions with an area-specific lipid productivity model derived from 

Quinn et al. (2013), to present results in the form of energy-specific GHG emissions (in units of 

gCO2eq MJ-1).   

From the results of this geographical assessment, we find that previously selected barren land 

areas for algae-facilities have DLUC-associated, functional unit-specific, GHG emissions 

ranging from 3 to 802 gCO2eq MJ-1.  Figure B.6 presents the distribution of DLUC-associated 

GHG emissions as a cumulative distribution of land area in the US.  More than 99% of the 

proposed cultivation areas under the baseline land use restriction scenario have DLUC-

associated GHG emissions of less than or equal to 100 gCO2eq MJ-1.  Figure 3.2 presents the 

functional unit-specific, GHG emissions of the 13 LCA studies that posit net GHG benefits for 

microalgae cultivation as reviewed by Quinn and Davis (2015).  The GHG emissions benefits 

from each study can therefore be compared to the fraction of US microalgae cultivation area 

(under the baseline land limitation scenario) to determine the fraction of the US microalgae 

cultivation area where the GHG benefits of microalgae biofuels production including DLUC are 

less than zero.  For example, consider the LCA results documented in Frank et al. (2013), 

wherein microalgae cultivation and fuels production was found to have a net GHG emissions 

benefit of 20 gCO2eq MJ-1, without consideration of DLUC.  Moving vertically along the 20 

gCO2eq MJ-1 line to the intercept with the cumulative distribution function, we can find that on 

83% of the proposed microalgae cultivation area, DLUC GHG emissions are less than the GHG 

emissions benefits of microalgae biofuels production.  Consequently, on 17% of the proposed 

microalgae cultivation area, the GHG emissions benefits of microalgae biofuels production are 

completely negated by DLUC.  
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Figure 3.2 Cumulative distribution of potential US microalgae-based biofuels facilities’ 
DLUC-inclusive GHG emissions (gCO2eq.MJ-1) and well-to-pump (excluding DLUC) GHG 
emissions benefits associated with microalgae biofuels production as represented in literature.  
The modeled algal biofuel scenario is based on a land restriction of barren and slop of <2%. 
 

Using the methods of this study, we can make similar evaluations on a state-by-state level 

with the understanding that microalgae facility siting will perhaps be localized to states with 

particularly amenable climate and geography.  For each case considered here, we restrict 

microalgae production facilities to be sited on >400 Ha sites, on barren land with slope of less 

than 2%.  Figure B.7 presents the DLUC-associated GHG emissions from microalgae production 

in Arizona, where the median GHG emissions due to DLUC is 9 gCO2eq MJ-1, and Figure B.8 

shows that Florida has a median DLUC-associated GHG emissions of 17 gCO2eq MJ-1.  The 

distribution of GHG emissions for these states compared to literature are presented in Figure 3.3. 
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Figure 3.3 The functional unit-specific, well-to-pump GHG emissions (excluding DLUC) of the 
13 LCA studies that suggest net GHG benefits for microalgae cultivation can be compared to the 
cumulative distribution of GHG emissions due to DLUC for the U.S, and the states of Arizona 

and Florida. 
 

These results can be used to assess the tradeoff between microalgae productivity potential 

and DLUC-inclusive GHG emissions.  Many studies of microalgae productivity potential have 

selected locations for production facilities where the disturbance of AGB and SOC can negate 

the GHG benefit from algae biofuels production (Davis et al., 2014; Venteris et al., 2013; 

Wigmosta et al., 2011).  For example, although Venteris et al. (2013) highlighted the state of 

Florida as an ideal place for microalgae-based biofuel technology their models neglected the 

impacts of DLUC on land availability.  This lead to their recommendation to allow microalgae 

cultivation on forested and rangelands, which would have even higher DLUC environmental 

impacts than presented here (see the supplemental material for other land restriction scenarios).  

By neglecting DLUC, previous microalgae productivity potential studies have overestimated the 

amount of microalgae that can be produced while maintaining a net GHG benefit.   
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3.3.3 Including DLUC reduces GHG benefit of microalgae biofuel 

By neglecting the contribution of disturbed carbon stocks to microalgae-based biofuel life 

cycle GHGs, previous research has also underestimated the life cycle GHG emissions of 

microalgae-based biofuels that can be achieved at scale.  In order to understand the effect of 

DLUC on the net GHGs of microalgae biofuels, we can compare the distribution of DLUC-

specific GHG emissions to the GHG emissions of the microalgae biofuels production process in 

the context of the US Renewable Fuel Standards policy.   

The US Renewable Fuel Standard requires that Advanced Biofuels achieve a 50% life cycle 

GHG emissions reduction relative to the life cycle GHG emissions of conventional diesel (50% 

of 92 gCO2eq MJ-1 equals 46 gCO2eq MJ-1) (EPA., 2016).  To allow a direct comparison to the 

well-to-pump results that are presented in the microalgae biofuels literature, we can subtract the 

pump-to-wheels GHG emissions associated with biodiesel of 73.6 gCO2eq.MJ-1.  This 

calculation suggests that any microalgae biofuels facility that is sited such that its DLUC-

inclusive well-to-pump GHG emissions are greater than -27.6 gCO2eq.MJ-1, will be ineligible for 

Low Carbon Fuel Standard credits and its corresponding economic benefits.  This comparison is 

presented in Figure 3.4.  In this case, all of the LCAs from literature that do not meet the RFS 

Advanced Biofuels criteria (without DLCU) are removed from consideration.  Again, we can 

compare the scale of the GHG emissions savings from microalgae biofuels production to the 

GHG emissions produced due to DLUC.  For example, were Florida’s barren land to be 

developed without consideration of its carbon stocks (leading to a statistically average DLUC 

contribution of 17 gCO2eq.MJ-1), then the net DLUC-inclusive GHG emissions of the studies of 

Quinn et al. (2014) and Campbell et al. (2011) would both not be able to meet the requirements 
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of the US Renewable Fuel Standard Advanced Biofuels as their net GHG emissions benefits are 

less than 27.6 gCO2eq.MJ-1 + 17 gCO2eq.MJ-1= 44.6 gCO2eq.MJ-1. 

 

Figure 3.4 The functional unit-specific, well-to-pump GHG emissions (excluding DLUC) of the 
8 LCA studies with net GHG benefits that meet the RFS Advanced Biofuels Criteria (without 

DLUC) for microalgae cultivation can be compared to the cumulative distribution of GHG 
emissions due to DLUC for the U.S, and the states of Arizona and Florida. The limit of -27.6 

gCO2eq.MJ-1 represents the well-to-pump equivalent limit that allows microalgae based biofuels 
to receive Low Carbon Fuel Standard credits. 

 
3.4 Conclusions 

The GHG emissions from DLUC have been demonstrated to be a significant determinant of 

microalgae biofuels GHG emissions and the selection of geographical locations for the 

sustainable production of microalgae-based biofuels.  DLUC should be considered in future 

microalgae-based biofuels LCA and scalability assessments. 

3.5 Answer to Research Question 1.1 

This section of the research effort has allowed us to address Research Question 1.1, which is 

restated here: 

What are the baseline life cycle characteristics of a cyanobacteria-based bio-

product/bio-fuel technology, in terms of sustainability goals? 

Research Question 1 is associated with Hypothesis 1.1:  
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Cyanobacterial derived biofuels, being an emerging technology, requires further research to 

reduce the uncertainties in biomass productivities, mixing energy requirements, and energy 

conversion. DLUC due to construction of photosynthetic-derived biofuel plants in barren 

land areas of the U.S. plays a major role in the sustainability of this technology. 

Chapter 2 and Chapter 3 have developed an LCA framework, applying the methods of ISO 

14040. Key sensitivity parameters and technology gaps were identified in Chapter 2, including 

improved datasets and engineering of cyanobacteria, scalability and process integration, and 

energy and resource requirements. Cyanobacteria-derived ethanol was demonstrated to be more 

sustainable in terms of life cycle net energy and GHG emissions relative to other biofuels, such 

as bisabolane and heptadecane.  Chapter 3 demonstrated that including DLUC in the LCA of 

photoautotrophic based biofuel facilities limits the locations available for sustainable microalgae-

based biofuel cultivation. DLUC, as a result, reduces the net GHG emissions’ benefit from 

microalgae biofuel manufacturing. The results of these studies provide support to the hypothesis 

that results are sensitive to uncertainties in growth and energy conversion stages, and that the 

details of characteristics such as DLUC can have large influence over the metrics of 

sustainability. 
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CHAPTER 4: Scalability of Combining Microalgae-based Biofuels with Wastewater 

Facilities: A Review3 

4.1 Introduction 

Wastewater treatment and microalgae have been linked to each other since ancient times. 

This connection has been extensively researched in wastewater stabilization ponds, which have 

been used for more than 3000 years in the world and employed in the United States since the 

year 1901 [103]. It is stated that in wastewater-systems, microalgae growth is governed by 

photosynthesis, where carbon dioxide is converted to organic compounds as the source of 

chemical energy. Moreover, oxygen required by aerobic bacteria, which oxidizes the organic 

matter, in these stabilization ponds is obtained as a by-product to contribute to the mutualism in 

the system (Figure 4.1). Additionally, nitrogen from wastewater is removed due to the 

assimilation of ammonium in algal biomass or microalgae uptakes nitrogen in the form of nitrate. 

As a result, regardless of the nature of the growth media, wastewater or synthetic nutrients, 

microalgae biomass can be estimated by taking into consideration photosynthesis energy 

respiration energy, and nitrogen uptake energy, as suggested by Quinn et al [153] and others.    

 

Figure 4.1 Microalgae and aerobic bacteria mutualism in wastewater stabilization ponds. 

                                                           
3 This chapter is adapted from a published refereed journal article: Arita, Carlos E. Quiroz, Christie Peebles, 
and Thomas H. Bradley. "Scalability of combining microalgae-based biofuels with wastewater facilities: a review." 
Algal Research 9 (2015): 160-169. 
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Nowadays, there is an increasing interest with regards to the feasibility of growing 

microalgae-based biofuels by taking wastewater as the growth media and the main source of 

nutrients. Research has been conducted in primary and secondary treated municipal wastewater, 

mainly in activated sludge plants, as well as in municipal centrate, which is obtained from the 

sludge centrifuge [114]. Also, raw or untreated wastewater has been researched as the growth 

media for microalgae [106]. However, municipal centrate has been reported as the growth media 

with the most promising productivities in microalgae. Furthermore, microalgae strains able to 

grow in wastewater have been identified, from which the highest net biomass accumulation was 

observed in the genus of Chlorella when centrate was used as the growth media [108]. This 

genus, Chlorella, was reported with the highest lipid productivity in other research that used 

centrate as the growth media, as well (Table 4.1) [128].   

Nevertheless, in the same manner that the latest technologies regarding microalgae 

cultivation systems have been scaled up from laboratory data [82], microalgae-based biofuels 

grown on wastewater may suffer the same destiny. This is because research has been barely 

conducted at a pilot or real scale plant in wastewater facilities. To evaluate the scalability of 

growing microalgae-based biofuels in wastewater, further considerations are taken into account 

in this research. The latest initiatives of the Environmental Protection Agency (EPA) with 

regards to the new regulations for nitrogen and phosphorous discharge from wastewater facilities 

represent an important variable in this analysis. For instance, the State of Colorado has 

established that existing wastewater dischargers should meet an annual median concentration of 

1.0 mg.l-1 and 15 mg.l-1 for phosphorous and nitrogen, respectively, whereas new dischargers 

should accomplish concentrations of 0.7 mg.l-1 and 7 mg.l-1, respectively [96]. In the United 

States, the cost of upgrading wastewater facilities to meet nitrogen and phosphorous regulations 
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have ranged from about 1.5 to 138 million dollars, whereas new plants have invested from about 

0.3 to 1.4 million dollars [30]. As a result, the scalability of cultivating microalgae will be 

assessed in depth by considering the wastewater treatment process as a whole; the presence of 

biological nutrient removal (BNR) operations in the process; the wastewater characteristics and 

flow rates at the different stages of the process; and the potential contaminants that come into the 

facility and that could inhibit the growth of microalgae. Last, the most suitable experimental and 

computational methods used to predict the growth of microalgae will be evaluated.    

4.2 Microalgae-based biofuels grown in wastewater 

4.2.1 Microalgae genera and strains able to grow in wastewater 

Microalgae genera and their strains’ ability to grow in wastewater, their growth media and 

the source of nutrients, has been broadly researched. In research conducted in the 70’s, blue-

green algae, diatoms, flagellate algae, and green algae were identified as the four groups of  

microalgae genera found in wastewater stabilization ponds [154]. The research claimed that 50% 

of the algae were green algae, 25% pigmented flagellates, 15% blue-green algae, and 10% 

diatoms. Chlorella, which is a green algae, was found to be more abundant in the Southeastern 

region in the United States, as well as some ponds in Africa where this algae started to disappear 

in the third stage by the bloom of Spirulina. In another case, Scenedesmus was the most abundant 

algae at Lancaster, California. Additionally, at one stabilization pond in California, 

Chlamydomonas grew at pH between 7.0 – 7.7, while Euglena grew when the pH ranged from 

7.7 – 8.9, and Chlorella and Scenedesmus dominated in growth when the pH ranged from 8.4 – 

9.8 during mid-day. 

Therefore, interest concerning the feasibility of growing microalgae-based biofuels on 

municipal wastewater has led researchers to investigate the potential genera and strains for the 
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production of biofuels. Researchers claimed that microalgae genera such as Chlorella and 

Scenedesmus are tolerant to municipal wastewater, which removed more than 80% of ammonia, 

nitrate, and total phosphorous [114]. Scenedesmus obliquus and Botryococcus brauniiit were 

grown on secondary treated municipal wastewater for biofuels production purposes [114]; 

additionally, Chlamydomonas reinhardtii was grown in municipal centrate [107]. Moreover, in 

research where municipal centrate was used as the growth media, 14 algae strains from the 

genera of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were 

able to grow in the centrate [108]. In this investigation, the highest net biomass accumulation 

measured as total volatile suspended solids (TVSS) was observed with Chlorella kessleri 

followed by Chlorella protothecoides with values of 20143 g TVSS.l-1 and 1.3089 g TVSS.l-1, 

respectively.   

4.2.2 Limiting nutrients’ growth-rate in wastewater for microalgae 

Carbon dioxide (used as the carbon source) and light energy are harvested by microalgae 

cells in an autotrophic metabolism [155]. This research stated that microalgae assimilate nitrogen 

in different forms such as ammonium, nitrate, and urea. The nitrogen’s minimum cell quota is 

recommended to be 0.010 gram per gram of biomass [153]. Research conducted to grow 

microalgae in wastewater has taken into consideration the measurement of the growth-rate 

limiting nutrients, such as nitrogen and phosphorous, in this media. Desmodesmus sp., 

microalgae mixed with cyanobacteria, and microalgae mixed with Desmodesmus sp. were 

cultivated in raw wastewater with concentrations of nitrogen and phosphorous at 42.3 and 35.4 

mg.l-1, respectively [106]. A mixture of municipal and dairy wastewater was used as the growth 

media for green algae in a high-rate algae pond with concentration of nitrogen and phosphorous 

at 51 and 2.1 mg.l-1, respectively [126]. Chlorella sp. was cultivated in municipal raw 
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wastewater, primary treated wastewater, secondary treated wastewater, and centrate with 

nitrogen and phosphorous concentrations at 40.65 and 5.66 mg.l-1; 38.95 and 6.86 mg.l-1; 19.1 

and 0.32 mg.l-1; and 131.5 and 201.5 mg.l-1, respectively [124]. Treated wastewater was used as 

the growth media for Scenedesmus sp. with concentrations of nitrogen and phosphorous at 28.85 

and 3.51 mg.l-1 [111]. Nannochloropsis sp. was cultivated in municipal wastewater, with 

concentrations of nitrogen and phosphorous at 110.2 and 5.3 mg.l-1, which was mixed to sea 

water in a 1:1 ratio [105]. Lastly, different strains of microalgae such as Hindakia sp., Chlorella 

sorokiniana, Auxenochlorella protothecoides, and Scenedesmus sp. were grown in municipal 

centrate with nitrogen and phosphorous concentrations at 134 and 212 mg.l-1 [128]. As 

summarized in the above values and Table 4.1, it can be observed that not only the highest 

nitrogen and phosphorous concentrations are reported for sludge centrate overall in the 

wastewater treatment process, but also the concentrations of these limiting nutrients in the 

centrate provided the best conditions to accomplish the highest microalgae biomass 

concentrations.  

4.2.3 Microalgae growth and lipid productivity in wastewater 

The production of lipids in microalgae cells is governed by growth temperature, pH, age of 

culture, microalgae strain, and nutrients such as carbon, nitrogen, and phosphorous [155]. 

Moreover, when the nitrogen source is depleted, the metabolism of microalgae switches from 

protein to lipid synthesis, which increases the lipid productivity [153].  

Desmodesmus sp., microalgae mixed with cyanobacteria, and microalgae mixed with 

Desmodesmus sp. obtained biomass and lipid productivities at 13 and 1.7 mg.l-1d-1; 17 and 3.4 

mg.l-1d-1; and 17 and 2.4 mg.l-1d-1, respectively, with raw municipal wastewater as the growth 

media [106]. Biomass and lipid productivities at 267 and 15.19 mg.l-1d-1 were obtained in 
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Scenedesmus sp., with treated wastewater as the growth media [111]. Furthermore, Hindakia sp., 

Chlorella sorokiniana, Auxenochlorella protothecoides, and Scenedesmus sp. cultivated in 

municipal centrate obtained biomass and lipid productivities at 275 and 77.8 mg.l-1d-1; 183.3 and 

94.8 mg.l-1d-1; 268.8 and 77.7 mg.l-1d-1; and 247.5 and 74.5 mg.l-1d-1, respectively [128]. 

Additionally, by implementing a two-stage cultivation process, using wastewater as the growth 

media, the maximum biomass concentration and lipid content in microalgae was increased to 

28.90% and 33.22%, respectively [129]. Among the lipid productivities observed in microalgae 

grown in centrate, secondary-treated wastewater, and raw wastewater, the most promising results 

have been obtained when the centrate was used as the source of nutrients (Table 4.1). Here it can 

be observed that as the maximum concentration of limiting nutrients found in sludge centrate are 

utilized, the highest concentration of lipids were built up in microalgae cells once nitrogen and 

phosphorous were depleted. 
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Table 4.1 Microalgae Growth and Lipid Productivity in Wastewater 

Substrate Reactor 
Algae genera / 

species 

Total 

Nitrogen 

(mg.l-1) 

Phosphorous 

(mg.l-1) 

Biomass 

productivity 

(mg.l-1.day-1) 

Lipid 

productivity 

(mg.l-1.day-1) 

Reference 

Centrate 
Erlenmeyer 

flasks and biocoil photobioreactor 

Chlamydomonas 

reinhardtii 

128.6 120.6 2000 505 [107] 

Dairy & municipal wastewater High rate algae pond (Batch pilot) Green algae 51 2.1 NA 17 [126] 

Dairy & municipal wastewater 
High rate algae pond (semi continuous 

pilot) 
Green algae 51 2.1 NA 24 [126] 

Municipal wastewater before primary settling NA Chlorella sp. 40.65 5.66 NA NA [124] 

Municipal wastewater after primary settling NA Chlorella sp. 38.95 6.86 NA NA [124] 

Municipal wastewater after activated sludge tank NA Chlorella sp. 19.1 0.32 NA NA [124] 

Municipal wastewater after sludge centrifuge: 

Centrate 
NA Chlorella sp. 131.5 201.5 NA NA [124] 

Sea water (50%) & municipal wastewater (50%) NA 
Nannochloropsis 

sp. 

110.2 5.3 NA 109 [105] 

Concentrated municipal wastewater (centrate) Laboratory Hindakia sp. 134 212 275 77.8 [128] 

Concentrated municipal wastewater (centrate) Laboratory 
Chlorella 

sorokiniana 

134 212 183.3 94.8 [128] 

Concentrated municipal wastewater (centrate) Laboratory 
Auxenochlorella 

protothecoides 
134 212 268.8 77.7 [128] 

Concentrated municipal wastewater (centrate) Laboratory Scenedesmus sp. 134 212 247.5 74.5 [128] 

Secondary treated wastewater Laboratory Chlorella sp. 19.1 1.2 NA NA [99] 

Treated municipal wastewater Laboratory Scenedesmus sp. 28.85 3.51 267 15.19 [111] 

Municipal wastewater Laboratory Desmodesmus sp. 42.3 35.4 13 1.7 [106] 
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Substrate Reactor 
Algae genera / 

species 

Total 

Nitrogen 

(mg.l-1) 

Phosphorous 

(mg.l-1) 

Biomass 

productivity 

(mg.l-1.day-1) 

Lipid 

productivity 

(mg.l-1.day-1) 

Reference 

Municipal wastewater Laboratory 
Microalgae – 

cyanobacteria 
42.3 35.4 17 3.4 [106] 

Municipal wastewater Laboratory 
Microalgae – 

Desmodesmus 

42.3 35.4 17 2.4 [106] 



57 

 

4.3 The role of municipal wastewater treatment facilities in microalgae growth 

4.3.1 Overview of the treatment process 

Biofuels’ production from microalgae, which fixes carbon dioxide and uptakes nitrogen and 

phosphorous through the bio-treatment of wastewaters, constitutes a potential application in the 

short term [14]. The oxidation of organic matter and the removal of soluble nutrients from 

primary or secondary-treated municipal wastewater could be carried on in High Rate Algal 

Ponds (HRAP) [101]. In this research, organic loading rates to design HRAPs were suggested at 

100–150 kg of BOD5 (Biochemical Oxygen Demand).ha-1.d-1., 24 kg N (Nitrogen).ha-1.d-1, and 3 

kg P (Phosphorous).ha-1.d-1.  Productivities in HRAPs, as well as the selection of suitable 

microalgae strains for this application, have yet to be researched [101]. Furthermore, it has been 

claimed that HRAPs are the most cost-effective alternative for microalgae-based biofuels with 

wastewater; however, carbon dioxide addition, species control, control of grazers and parasites, 

biofloculation, and scalability have not been researched in depth [113].   

Municipal wastewaters obtained at different stages of the wastewater treatment process of 

facilities have been broadly researched at a lab scale. Thus, the scalability of combining 

microalgae-based biofuels with wastewater requires taking into consideration the wastewater 

treatment process in municipal facilities to assess the best approaches to achieve success for this 

emerging technology. Due to the new regulations of the EPA with regards to the discharge of 

nitrogen and phosphorous by wastewater facilities, a typical complete-mixed activated sludge 

(CMAS) plant is reviewed in this research. Essentially, the CMAS process comprises the 

aeration tank, settling tank, solids recycle line, and the sludge wasting line (Figure 4.2). 
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Figure 4.2 Typical complete-mix activated sludge process. Adapted from [120]. 
 

The electron donor in the wastewater, which is the organic matter measured in terms of 

biochemical oxygen demand (BOD), is oxidized in the aeration tank by the recycled activated 

sludge, which are aerobic microorganisms [156]. The author states that the oxygen required as an 

electron acceptor in this activated sludge process is obtained by aeration or mechanical devices. 

Moreover, by maintaining an extended aeration in the basin, nitrification can be achieved by the 

activated sludge process, which is the microbial oxidation of ammonium (NH4
+ - N) to nitrite 

(NO2
-
 - N) and nitrate (NO3

-
 - N) [156]: 

NH4
+ + 1.815O2 + 0.1304CO2 = 0.0261C5H7O2N + 0.973 NO3

- + 0.921H2O + 1.973H+ Eq. 1 

4.3.2 Biological nutrient removal (BNR) process 

Facilities have been upgrading their BNR process to meet the new EPA regulations with 

regards to nitrogen and phosphorous discharges [30]. To accomplish these regulations further 

processes are taken into consideration such as denitrification and enhanced biological 

phosphorous removal. Denitrification is known as the reduction of NO3
- or NO2

- to nitrogen gas 

(N2), where the NO3
- or NO2

- is the electron acceptor and a carbon source or the BOD in the 

wastewater is the electron donor [156]. On the other hand, the enhanced biological phosphorous 

removal is achieved in an anaerobic phase by the sequestration of phosphorous as intracellular 
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polyphosphate (poly P) by the biomass or sludge [156]. There are several processes for BNR, yet 

two of the most effective processes for both, nitrogen and phosphorous removal, are known as 

the Modified Bardenpho (5-stage) and the University of Cape Town (South Africa) treatment 

process (Table 4.2). 

Table 4.2 Treatment performance and comparison of various BNR configurations [30] 

Treatment 

Plant (State) 

Treatment 

Process 

Description 

Nutrient Removal 

Capabilities Flow (mgd) 

Average Effluent 

Concentration (mgl-1) 

Nitrogen Phosphorous TN TP 

Frederick 

(MD)  
A2/O  

Good Good 
7 7.2 1 

Largo (FL)  A2/O  15 2.3 ND  

Annapolis 

(MD)  

Bardenpho 

(4-Stage)  
Excellent None 

13 7.1 0.66 

Palmetto 

(FL)  

Bardenpho 

(4-stage)  
1.4 3.2 0.82 

Medford 

Lakes (NJ)  

Bardenpho 

(5-stage)  
Excellent Good 

0.37 2.6 0.09 

Cape Coral 

(FL)  

Modified 

Bardenpho  
8.5 1 0.2 

Back River 

(MD)  
MLE  

Good None 

180 7.6 0.19 

Cambridge 

(MD)  
MLE  8.1 3.2 0.34 

Cox Creek 

(MD)  
MLE  15 9.7 0.89 
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Treatment 

Plant (State) 

Treatment 

Process 

Description 

Nutrient Removal 

Capabilities Flow (mgd) 

Average Effluent 

Concentration (mgl-1) 

Nitrogen Phosphorous TN TP 

Freedom 

District 

(MD)  

MLE  3.5 7.8 0.51 

Seneca 

(MD)  
MLE  20 6.4 0.08 

Westminster 

(MD)  
MLE-A2/O  NA NA 5 5.3 0.79 

Sod Run 

(MD)  

Modified 

A2/O  
NA NA 20 9.2 0.86 

Bowie 

(MD)  

Oxidation 

Ditch  
Excellent Good 3.3 6.6 0.2 

Cumberland 

(MD)  
Step Feed  

Moderate None 

15 7 1 

Piscataway 

(MD)  
Step Feed  30 2.7 0.09 

NA  
Modified 

UCT 
Good Excellent  NA  NA  NA 

 

The modified Bardenpho process (Figure 4.3) consists in a first anaerobic stage for 

phosphorous removal, a second anoxic stage for additional denitrification of nitrate obtained 

from the aerobic tank, a third aerobic stage for carbon removal and nitrification, a fourth anoxic 

stage for denitrification, and a final aerobic stage used for the stripping of nitrogen gas [120]. In 
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the UCT treatment process (Figure 4.4) the activated sludge is recycled to the anoxic stage to 

eliminate the introduction of nitrate in the anaerobic zone; thus, it prevents the denitrification in 

the anaerobic tank and improves the uptake of phosphorous in such stage [120]. 

Figure 4.3 Biological nutrient removal process (BNR). Modified Bardenpho (5-stage) process 
Adapted from [120]. 

 

 

Figure 4.4 Biological nutrient removal process (BNR). University of Cape Town (UCT) Process  
Adapted from [156]. 
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4.3.3 Sludge dewatering and centrate production 

Dewatering is a physical operation applied to reduce the moisture of sludge to reduce the cost 

of trucking, ease the handling of sludge by machinery, reduce the energy required during 

incineration, prevent bulking in composting, reduce odors, or meet landfill requirements [120]. 

The most widely used techniques for dewatering stated by the author includes centrifuges, belt-

filter presses, recessed-plate filter presses, drying beds, and lagoons. In the centrifuge, the sludge 

is fed at a constant flow rate in the rotating bowl, where the dense cake containing high 

concentration solids and a diluted fluid known as centrate are separated [120]. Due to the 

assimilation of nutrients, such as nitrogen and phosphorous in the biomass or the activated 

sludge, the highest concentrations of such nutrients are observed in the centrate produced by 

centrifugation (Table 4.1). 

4.3.4 The impact of the wastewater discharge permits and their relationship with 

microalgae-based biofuels 

Upgrading of municipal wastewater treatment facilities has led to millions of dollars in 

investments required to meet the new regulations with regards to nitrogen and phosphorous 

discharge. In a study of the EPA concerning the BNR processes and costs, the total capital costs 

are reported by upgraded facilities in the states of Maryland and Connecticut. Additionally, total 

capital costs invested by new and retrofitted small plants are also reported. For the state of 

Maryland, Patuxent facility built an oxidation ditch designed for 6 mgd (Mega gallons per day) 

for more than 2 million dollars, whereas Back River facility invested more than 138 million 

dollars to build a Modified Ludzack-Ettinger (MLE) Process designed at 180 mgd [30]. In the 

state of Connecticut, Greenwich facility incurred in more than 0.7 million dollars in MLE 

Process designed to treat 12 mgd, while Waterbury facility invested more than 22 million dollars 
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in a 4-stage Bardenpho process designed at 25 mgd [30]. Bigger facilities in terms of flow rates 

depicted the lower unit-capital costs (cost/mgd) for BNR removals upgrading (Table 4.3). This 

report developed by the EPA is the only recent cost-oriented BNR research that we are aware of, 

thus, we could not compare other upgrading cases of wastewater facilities located in other 

geographical areas. 

Table 4.3 Average Unit Capital Costs for BNR Upgrades at the States of Maryland and Connecticut 
($) [30] 

Flow (mgd) Cost/mgd 

>0.1 - 1.0 $6,972,000 

>1.0 – 10.0 $1,742,000 

>10.0 $588,000 

 

4.3.5 Potential contaminants that could inhibit the growth of microalgae 

Microalgae inhibition due to inherent chemical compounds and/or constituents in 

wastewater, which potentially would serve as the growth media, has not been sufficiently 

researched. With regards to inhibition of microalgae by surfactants such as linear-alkyl-sulfonate 

(LAS) [120], which may be present in the wastewater, it was reported that the effect levels for 

microalgae ranged from 10.003 to 17.784 mg.l-1 [157]. This research was primarily focused on 

the concentrations that inhibit 50% of microalgae growth relative to the control population. 

Inhibition of photosynthesis affected by heavy metals was researched from laboratory 

experiments [158]. This research established that microalgae has been demonstrated to be 

inhibited by Cd, Zn, Hg and Cu. For instance, the content of chlorophyll in Chlorella sp. was 

decreased by Zn and Hg, whereas the chlorophyll biosynthesis in Euglena gracilis was interfered 

by Zn, Cd or Hg. This report found disorganization of the chloroplast ultra structure in the 
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presence of Cd and Pb in higher plants and in the presence of several heavy metals in algae 

[158]. Additionally, NAD Poxidoreductase at the reducing side of PS1 in microalgae was 

observed to be sensitive to Hg, Zn and Cd. In general, it is claimed that heavy metals inhibit 

photosynthesis at physiological levels such as stomata, pigments, chloroplast structure and 

function, and enzymes [158]. Additionally, Chlamydomonas reinhardtii was reported to be 

inhibited at concentrations greater than 150 µM of Cd2+, Cu2+, Zn2+, Fe2+, and Co2+, which was 

reflected in the reduction of nitrate uptake by 75% [159]. Nevertheless, the effect of cadmium at 

different PO4
-3 levels was researched in Chlorella vulgaris [160]. It was observed that the 

simultaneous increasing of Cd and decreasing of PO4
-3 contributed to reach a higher-degree 

saturated fatty acids in microalgae, concluding that this nutrient limitation and metal stress affect 

the lipid metabolism in a positive way [160].    

4.4 Computational methods to predict the growth of microalgae in wastewater 

4.4.1 Overview 

Experimental and computational methods to predict the growth and productivity in 

microalgae-based biofuels, where wastewater is targeted as the growth media, will be critical 

towards the scalability of these systems for engineering and industrial purposes. Therefore, the 

selection of the most accurate methods are covered in this section, which are intended to be 

applied in further computations by considering real data from wastewater treatment facilities. 

The models covered in this section will take into consideration the growth kinetics limited by 

both light intensity and nutrients uptake, and the bioreactors mathematical models applied to the 

most widely used technologies such as open ponds and closed photobioreactors [14]. Moreover, 

the application of computational fluid dynamics (CFD) as a transcendental tool towards the 

scalability of microalgae bioreactors will be introduced in this section. Lastly, the most common 
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experimental methods used to validate the mathematical and computational models will be 

summarized. 

4.4.2 Growth kinetics of microalgae 

One of the most transcendental works in terms of growth kinetics was accomplished between 

1932 and 1942, when Monod developed a simplified hyperbolic relation from the asymptotic 

nature of the growth dependence on substrate stated by Tessier [161]: 

s

m

Kds

d µ−µ=µ
                 Eq. 2 
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µ−µ=µ
                 Eq. 3 
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+
µ=µ                  Eq. 4 

In this equation µ is the specific growth rate, µm is the maximum specific growth rate, S 

is the substrate, and Ks is saturation constant with dimensions of a concentration.  Moreover, 

Tessier and Monod stated the proportionality of biomass growth and substrate utilization [161], 

with x being the biomass and Y the yield coefficient:  

dt

ds
.Y

dt

dx −=                  Eq. 5 

It has been stated that the rate at which the nutrients are transported throughout the cell 

wall are dependent of the temperature, the light intensity, and the internal and external nutrients’ 

concentrations [162]. Kinetics based on light intensity and nutrients uptake are the primary focus 

in this section. Ogbanna [163] pointed out  that the saturation light required by photosynthetic 

growth varies upon the location and its seasonal characteristic. Moreover, Ogbonna [163] states 

that the incident light is attenuated by dense microalgae cultures, which contributes to low 

efficiencies at the surface and dark sections at the reactors’ bottom. However, microalgae cells 
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continue growing when they move towards the dark area until the energy/intermediate products 

are depleted [163]. These energy/intermediate products are obtained when microalgae are 

exposed to the light area. The Monod growth kinetics by considering the incident light intensity 

(Io) and the light saturation constant (KL) was stated as follows [163]:    

oL

om

IK

I.

+
µ=µ                  Eq. 6 

Here, the maximum specific growth rate (µm) of C. pyrenoidosa and S. platensis were 

decreased from 0.286 and 0.083 h-1 to 0.0052 and 0.0034 h-1 when exposed to dark zones, which 

represents an average reduction of 97.1 % in the specific growth rate. The light saturation 

constants for these microalgae strains were 100 and 81.6 µmol.m-2.s-1, respectively, whereas the 

saturation light intensity (Imax) at which µ equals µm were 350 and 200 µmol.m-2.s-1, respectively. 

Furthermore, Ogbonna [163] concluded to design algal cultivation ponds at incident light 

intensities per volume greater than 2000 µmol.m-3.s-1 to avoid low cell concentrations; however, 

mixing should be taken into consideration since it could decrease the productivity even more. 

Additionally, photoinhibition has been researched in microalgae growth by considering that the 

specific growth rate reaches a maximum specific rate as the irradiance is increased, whereas an 

excess of this irradiance can inhibit photosynthesis [164]. Various models that take 

photoinhibition into account have been reported. One of these models is depicted as follows, 

where the KI is the photoinhibition constant reported at 3,426 µE.m-2.s-1 for P. tricornutum 

[164]:  
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One important issue to be considered is the influence of the internal nutrient storage that 

contributes to the uptake rates, which can overestimate the maximum quota of the limiting 

nutrient if not taken into account [165]. It was recommended to treat this issue by considering the 

maximum uptake rate of nutrients as a decreasing function of its quota. This modeling approach 

is known as cellular equilibrium, which is accomplishable with the Monod theory with the 

appropriate half saturation constant and the variation of the cell quota as a function of the 

external nutrient concentration [162]. This approach has already been solved by computing the 

nutrient uptake rate at steady state (ρss) as a function of the substrate, maximum specific growth 

rate, half saturation constant for growth (Kµ), and maximum and minimum cell quota (Qmax/Qmin) 

[166]: 
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From the rectangular hyperbolae on logarithm graphs the maximum short term uptake 

rates are obtained to solve the following equation. Where Kρ is the half saturation constant for 

nutrient uptake, KµQ is the half saturation constant for steady state, ρhi
max is the upper limit of the 

maximum short term uptake rate under severe nutrient stress at low growth rate and low nutrient 

quotas, and ρlo
max is the lower limit of the maximum short term uptake rate under nutrient satiety 

at high growth rate and high nutrient quotas: 
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When a high substrate concentration is to be modeled, equation (10) is applied, whereas 

equations (11) and (12) are utilized if low substrates concentrations are simulated [166]: 

lo
maxmaxmQ ρ=µ                Eq. 10 
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Lastly, the cellular quota (Q) and the specific growth rate (µ) can be computed by 

equations (13) and (14), respectively. This approach was reported to be applied for micro and 

major nutrients such as Fe, Mn, P and N [166]: 
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Additionally, in a study based on the effect of nitrogen and phosphorous on the growth 

and nutrient uptakes of Scenedesmus sp., it was concluded that high removal efficiencies are 

obtained when the nitrogen/phosphorous ratio is controlled at a range from 5:1 to 8:1 [167]. If 

both nutrients, nitrogen and phosphorous, are considered to be growth limiting, the Monod 

model should then be stated as follows [167]: 

PP,s

P

NN,s

N
m

SK

S
.

SK

S

++
µ=µ              Eq. 15  

4.4.3 Modeling microalgae bioreactors 

4.4.3.1 Challenges in modeling the scalability of microalgae grown in wastewater 

The proper selection of the mathematical models to predict the growth and lipid 

productivities of microalgae bioreactors is a critical task towards the scalability of this 

technology. Additionally, nutrients availability from wastewater facilities not only in terms of 

concentration, but daily flows, should be considered in the application of the mathematical 
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models to estimate the microalgae biomass and lipids to be produced when the systems are 

scaled-up. The scalability of these systems will contribute not only to the engineering design of 

future projects associated with wastewater facilities, but also to the assessment of their 

environmental impacts and cost effectiveness. To accomplish these goals, issues associated to the 

scalability of bioreactors such as productivities decreasing due to light diffusion, mixing and 

dark to light cycling, and residence time distribution must be taken into account. For instance, in 

a research aimed to scale-up a flat plate photobioreactor, it was found that the microalgae growth 

was reduced by about 3.8 times in an area subjected to a diffused light, which was estimated to 

be 10% the intensity of the direct sunlight [11]. By considering that at noon during a summer day 

the incident light intensity is 2000 µmol.m-2.s-1, this research reported a significant increase in 

microalgae growth at light intensities greater than 500 µmol.m-2.s-1 [11]. Further experience with 

regards to scalability was researched in a Solix algae-growth-system (AGS) photobioreactor, 

where a sparge condition of 0.2 VVM (volume of air per volume of culture per minute) and a 

duty cycle (time on compared to time off) of 25% reduced the microalgae growth by 23% [82]. 

With regards to the hydrodynamics of photobioreactors, it has been stated that the scale-up of 

projects still need to resolve issues associated to the optimization of factors for microalgae 

growth such as light intensity and distribution, gas injection and mixing, and flow patterns [168]. 

These hydrodynamic issues will be covered in more detail in the computational fluid dynamics 

(CFD) section.    

4.4.3.2 Scaled-up microalgae growth and neutral lipid synthesis model 

This model takes into consideration that neutral lipids serve as carbon storage in an 

environment with limited nitrogen [169], which is obtained when this nutrient is depleted. This 

model was aimed to solve green microalgae systems. Packer [169] stated four assumptions for 
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the model development with regards to the growth rate, net carbon fixation, chlorophyll 

synthesis, and neutral lipid synthesis. The growth rate of non-lipid algal biomass concentration 

(A, equation 16) is limited by the light or the nitrogen source (equation 17), the first is being 

governed by the Droop cell-quota model whereas the latter is governed by Liebig’s Law, where a 

fixed proportion of accumulated carbon (gC.g-1dw) is maintained for the non-lipid dried weight 

(dw) [169].  
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Packer [169] reported that the carbon fixation is governed by the Poisson single-hit 

model of photosynthesis, where photosynthesis rate (p, equations 18 and 19) is normalized to the 

chlorophyll content (gC.g-1chl.d-1). 
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Also, Packer [169] stated that the chlorophyll synthesis (H, equation 20) is coupled with 

the nitrogen uptake (N, equations 21 and 22), where the proportion of nitrogen provided to 

chlorophyll synthesis is governed by the utilization to uptake ratio of carbon (c) and the nitrogen 

uptake is governed by the maximum nitrogen quota (Q(t), equation 23). 
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The neutral lipid (L, equation 24) model accounts that the lipid synthesis is obtained from 

an excess of carbon fixation with regards to the carbon required for microalgae growth, which is 

obtained where the nitrogen cell quota equals the minimum nitrogen cell quota (Q=q) [169]. 

[ ] )t(A.)N,H,L,A(.c)N,H,L,A(p
dt

dL µ−=            Eq. 24 

Additionally, the Lambert-Beer law was used by Packer [169] to model the attenuation of 

light along the reactor depth as a function of the rate of light absorption by phytoplankton (I, 

equation 24):      
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Table 4.4 depicts a list of the model parameters. It should be noticed that the minimum 

growth rate will be chosen from the computed light-limited growth rate and the nitrogen-limited 

growth rate. Furthermore, in the present research is recommended to compare additional growth-

limiting factors such as photoinhibition (equation 6), cell equilibrium (equation 13), and nitrogen 

and phosphorous as growth-limiting nutrients (equation 14). As a result, the most critical 

scenario for microalgae growth can be evaluated when intended to scale-up a microalgae system 

associated to wastewater treatment facilities. Moreover, scaled-up coefficients that are intended 

to obtain more realistic microalgae growth and lipid synthesis are taken into consideration in this 

research such as a 23% growth reduction due to industrial sparge conditions and light duty cycle 

[82]. 

Table 4.4 Microalgae growth and lipid synthesis model parameters [169] 
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Parameter Description Units 

Io Incident irradiance mol photons m-2.d-1 

Z Light path M 

A Optical cross section of 

chlorophyll a 

m2.g-1chl 

ɸ Quantum efficiency gC.(mol photons)-1 

Q Minimum subsistence 

nitrogen quota 

gN.g-1dw 

qM Maximum nitrogen quota gN.g-1dw 

C C subsistence quota gC.g-1dw 

Ѵm Maximum uptake rate of 

nitrogen 

gN.g-1dw.d-1 

Ѵh Half-saturation coefficient gN.m-3 

Ρ Maximum chlorophyll to 

nitrogen ratio 

gchl.g-1N 

µm Maximum nitrogen-limited 

growth rate 

d-1 

po Maximum photosynthesis rate gC.g-1chl.d-1 

 

4.4.3.3 Modeling and scale-up of computational fluid dynamics (CFD) for microalgae-

bioreactors  

CFD will play a major role in the scalability of microalgae systems where wastewater is 

used as the growth media. Research has already been conducted for the application of CFD to 
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microalgae systems, where hydrodynamics has been addressed by multiphase and turbulent 

models [170]. Furthermore, the importance of CFD in the mass transfer coefficient, mixing, 

liquid velocity, gas bubble velocity, and gas hold-up in photobioreactors was stated by Wu [170]. 

Additionally, Wu [170] reported previous studies where mathematical models, comprised by a 

three-state model and fluid mixing, were applied to predict the performance of photobioreactors 

at different light duty cycles and photon flux density.  

When modeling photobioreactors, three important design aspects have been pointed out 

such as mixing, light penetration, and gas injection [168]. Bitog [168] states that mixing 

contributes to the light intensity distribution, CO2 transfer, and uniform pH. Bitog [168] claimed 

that light penetration governs the biomass composition, growth rate, and product formation. 

Lastly, gas injection not only provides the CO2 required by microalgae, but also contributes to 

enhance the mixing in the photobioreactor and the light duty cycle frequency. Bitog [168] claims 

that most microalgae bioreactors have been simulated by turbulent models. Moreover, the growth 

rates of some microalgae increase when subjected to a higher turbulence in the flow regimen; 

however, the growth decreases with further increase of the gas velocity due to cell damage [168]. 

Hydrodynamics studies are conducted by the application of CFD codes such as ANSYS®. The 

finite volume method, where control volumes are cell centered, is used by this CFD codes to 

solve the transport equation for mass, momentum, energy, and species [171]. The transport of a 

random scalar in a single phase flow, which can be named Øk, can be modeled by Fluent 

ANSYS® by solving the transport equation, where Γ, and -∅ are the diffusion coefficient and 

source term, respectively [172]. 
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4.4.3.4 Validation of mathematical and computational models 

Whether mathematical and/or computational models are implemented to predict the 

performance of photobioreactors, their accuracy must be validated by laboratory approaches. The 

most important parameters to be validated for scalability purposes are microalgae biomass and 

lipids content in a daily basis. Microalgae growth has been reported to be measured by Optical 

Density (OD) using an Optech model ASD19-N absorption probe connected to a fermented 

control hardware, where the datum was logged in a minute time scale, and by OD at 750 nm on a 

Hach DR5000 spectrophotometer, respectively [153]. Also, dried weight (dw) microalgae 

biomass has been measured simply by filtering samples in glass fiber filter paper, which was 

dried overnight at 100 ⁰C [169]. Microalgae growth was also monitored in a daily basis by 

measuring the total volatile suspended solids (TVSS) by the APHA standard methods of the year 

1995 [128]. With regards to lipids content in microalgae, this has been reported to be tested by 

transesterification followed by centrifugation and gas chromatography [153]. Also, neutral lipid 

content has been analyzed by an improved Nile red fluorescence method [169]. Lastly, total lipid 

analysis has been performed by centrifugation and dried by a freeze drier followed by a one-step 

extraction Folch method, filtering in glass fiber filter, and wash-out of water soluble components 

followed by a final centrifugation [128]. Other relevant analysis methods, such as nitrogen and 

phosphorous analysis, towards the validation of the scaled-up mathematical and computational 

models are additionally reported by the above authors. Furthermore, more specific details of the 

laboratory assays to measure microalgae biomass and lipids content can be obtained in the cited 

literature. 
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4.5 Conclusions 

Despite the significant progress made in research associated to microalgae grown in 

wastewater, such as productivities and strains able to grow in this substrate obtained from 

different stages of the treatment process, most of the experiences are at a laboratory scale thus 

limiting the scalability of this technology. Additionally, inhibition of microalgae by potential 

contaminants that could be present in the wastewater such as heavy metals, surfactants, and by-

products has not been sufficiently researched. This could be determinant not only in the biomass 

and lipid productivities but in the fate of contaminants obtained in the final product, biofuels.  

By evaluating the overall wastewater treatment process, previous research experience has clearly 

demonstrated that the most promising substrate in facilities is the centrate obtained from sludge 

dewatering. Also, in spite of the higher concentrations of nutrients present in raw wastewater 

than in secondary or biologically treated wastewater, the higher lipid productivities are obtained 

from the latter, which is contributed by the switched metabolism from protein to lipid synthesis 

upon nitrogen depletion. Consequently, mixed centrate and secondary treated wastewater at 

various ratios should be researched in future work towards the scalability of this technology. 

Moreover, previous research has not taken into consideration the presence or absence of 

biological nutrient removal operations in the process, which can drastically change the 

characteristics of nutrients not only in the final treated effluent, but in the centrate. Additionally, 

since the EPA has established more rigorous nutrients-discharge permits for wastewater 

facilities, such as nitrogen and phosphorous, the implementation of microalgae-based biofuels 

facilities could not only contribute to the sustainability of wastewater facilities but to save 

millions of dollars to the US.  
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Various mathematical and computational models have been researched for ecological 

purposes since the early 20th century, which had the most relevant milestone with the 

development of the growth-kinetics Monod model in 1942. Nowadays, not only microalgae 

biomass models for biofuels purposes but also lipid synthesis models have been developed. 

Nevertheless, these models are more applicable at a laboratory scale since they have not taken 

into consideration the efficiency decrease in ponds and photobioreactors due to light duty cycles, 

mixing, and hydrodynamics of microalgae and gas sparged in the system. Consequently, we 

suggest that future research takes into consideration in photobioreactors modeling the minimum 

growth kinetics obtained from the different models available in the literature such as light-

limiting, photoinhibition, cell equilibrium, nitrogen-limiting, and multiple nutrients-limiting. 

The scalability of microalgae-based biofuels grown in wastewater may require to take into 

account additional considerations that have not been researched such as the competition for 

nutrients with nitrifiers, which could reduce the available levels of nitrogen for microalgae. A 

light-duty-cycle efficiency reduction factor, as reported by previous research, should be taken 

into account as well. However, scattering factors due to the presence of solids and other particles 

in the wastewater that could interfere in the distribution of light should also be researched in 

more depth. Furthermore, future work must take into account the application of computational 

fluid dynamics when research findings at a laboratory scale are intended to scale-up for industrial 

purposes towards the scalability of microalgae-based biofuels grown in substrates obtained from 

wastewater facilities. 

4.6 Answer to Research Question 2.1 

This section of the research effort has allowed us to address Research Question 2.1, which is 

restated and answered in section 5.5 of this dissertation.  
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CHAPTER 5: A Cyanobacterial Sidestream Nutrient Removal Process and its Life Cycle 

Implications4 

5.1 Introduction 

More than 3000 years ago, ancient civilizations utilized photoautotrophic microorganisms, 

including both algae and cyanobacteria strains, for wastewater treatment [37, 173]. There is 

modern interest in these microorganisms due to their high bioenergy productivities (10 times that 

of palm oil and about 131 times that of soybean [5]). The areal equivalent energy productivity of 

cyanobacteria is about 4 times higher than popular microalgae feedstocks [6, 174], and the 

cultivation of algae and cyanobacteria is not limited by the availability of high quality land [136, 

175, 176]. However, the U.S. goal of producing 40 billion gallons of biofuel per year from 

microalgae will be limited by the availability of water and nutrients [18]. Many researchers 

suggested that integrating the cultivation of the photoautotrophs with wastewater treatment 

systems could reduce their need for water and nutrients, and could improve the economics and 

environmental sustainability of photosynthetic bioenergy technologies.   

Wastewater treatment facilities (WWTF) in the U.S. are facing new challenges to meet the 

water quality criteria, controlled by state-level water regulations and the federal Environmental 

Protection Agency (EPA). A major consideration for these facilities is the sidestream wastewater 

treatment for sludge centrate due to its potent nutrient concentration resulting in potential to 

cause eutrophication in surface waters [30]. Several technologies have been developed for 

sidestream wastewater treatment including Biological Nutrient Removal (BNR) processes [31], 

sludge centrate recycling [38], anaerobic ammonium oxidation (Anammox) [33], adsorption 

                                                           
4 This chapter is adapted from a prepared journal article for consideration for publication: Carlos Quiroz - 
Arita, John J. Sheehan, Nawa Raj Baral, Alexander Hughes, Graham Peers, Brock Hodgson, Sybil Sharvelle, 
Thomas H. Bradley. “A Cyanobacterial Sidestream Nutrient Removal Process and its Life Cycle Implications”. 
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[34], ammonia stripping [38], and struvite precipitation [35, 36]. Among these processes, BNR 

processes such as anaerobic/anoxic/oxic (A2/O),  can reduce the total nitrogen (TN) and total 

phosphorous to about  2.3 and 1 mg.l-1, respectively [30, 177]. However, these BNR technologies 

require a high capital cost in the range of 150 to 1,840 $.m-3-wastewater [37] and energy 

consumption of 0.09 kwh.m-3-wastewater [38]  relative to the conventional activated sludge 

wastewater treatment process. While struvite precipitation from sludge centrate can recover 

nitrogen in the form of fertilizer [35, 36], the treated effluents reported in the literature [39] with 

128 ± 5 mg NH4-N.l-1 and 12.3 ± 6.2 mg PO4-P.l-1 do not meet the federal water quality criteria 

for nitrogen and phosphorous to discharge into surface waters.  

The environmental impacts of photosynthetic biorefineries and WWTF can be reduced by 

integrating these technologies for the cultivation of cyanobacteria in sludge centrate and 

remediation of nitrogen and phosphorous from the sludge [30, 37, 96]. Several past studies [40-

46] have extensively investigated the growth of photosynthetic microorganisms in wastewater. 

Some recent studies [37, 47, 48] have shown the potential growth of photoautotrophic 

microorganisms in the sludge centrate obtained from the dewatering processes of a WWTF. 

These studies suggest that the sludge centrate itself could be supplied as the main source of 

nutrients due to its high concentrations of nitrogen and phosphorous. However, ammonia, the 

majority of nitrogen compound present in sludge centrate has been demonstrated to inhibit the 

growth of cyanobacteria [49, 50]. For instance, the biomass productivity of Synechocystis sp. 

PCC6803 is inhibited at high intracellular concentrations of ammonia of 63 mg NH4.l-1 [51] due 

to damage to photosystem II[52]. These efforts suggest that photoautotrophic microorganisms, 

such as cyanobacteria, could potentially solve the challenges associated with the sidestream 

wastewater treatment system once the centrate inhibition can be mitigated or controlled. 
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The proposed integrated process could reduce the operating cost and energy intensity of WWTF 

when compared to the biological nutrient removal process. Conventional activated sludge 

process combined with sidestream cyanobacterial treatment could meet the standard water 

quality criteria and enable discharge of treated wastewater to water bodies [37]. While the 

environmental impacts of microalgae-based biofuel technologies have been extensively 

researched [19-24, 26, 27, 29, 78, 178], there is comparatively limited lifecycle assessment 

(LCA) of photosynthetic biorefineries based on cyanobacteria [17, 174]. These past LCA studies 

have focused on biofuel and bioproducts production, and none of the previous studies have 

investigated the synergistic benefits of combining photosynthetic biorefineries, based on 

Synechocystis sp. PCC6803, and WWTF. These synergistic benefits include improvement in the 

quality of water from the WWTF, energy recovery, and greenhouse gas (GHG) emissions 

reduction due to fossil fuels and commercial fertilizers displacements with bioenergy and co-

products, respectively. 

This study systematically evaluates the synergistic benefits of combining the cyanobacterial 

cultivation system with a municipal WWTF by using an LCA approach, supported by modelling 

and experimental work. 

5.2 Materials and Methods 

5.2.1 Goals and scope 

LCA is a framework for the evaluation of the energy use, the emissions, and other 

environmental impacts of direct, indirect, and supply chain processes in a system [16]. The LCA 

model developed in this study seeks to evaluate the environmental benefits of combining 

cyanobacteria cultivation and nutrients remediation in photobioreactors using the sludge centrate 

produced by a WWTF (Drake Water Reclamation Facility (DWRF)) located in Fort Collins, CO, 
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USA. This WWTF is currently using a BNR process, an A2/O process (Figure 5.1) [31, 37, 177], 

which was considered the base case scenario for analysis in this study. 

 

Figure 5.1 Baseline Anaerobic/anoxic/oxic (A2/O) process. The nitrogen concentrations of 
the treated effluent and sludge centrate correspond to the average values of DWRF for the years 

2011-2014. Figure adapted from: [37, 38, 177]. 
 

 The scope of the LCA model considers the material and energy inputs, the wastewater and 

cyanobacterial bioprocesses, and the bioenergy and products; treated water, fertilizer, and energy 

(Figure 5.2). The material and energy inputs include the raw wastewater feeding an activated 

sludge process for carbon oxidation and the electricity consumption by the facility. Synechocystis 

sp. PCC6803 is cultivated in open raceway ponds using centrate as the source of nutrients, which 

is obtained from sludge dewatering process of the WWTF. The LCA model uses the 

displacement method to account for the credits for displacement of nutrients and energy. The 

primary audience for this LCA includes operators of municipal wastewater treatment facilities, 

scientific researchers, photosynthetic biorefinery operators, policy makers, and wastewater 

engineers. 

5.2.2 System boundary 

The boundary of the combined wastewater treatment facility, cyanobacterial cultivation, 

and resources recovery, including struvite precipitation and biogas electric power generation, is 
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illustrated in Fig. C.2. For the base case scenario, the system considers the indirect and direct 

electrical energy consumptions by the WWTF including the BNR process (Figure 5.1). For the 

combined system, the liquid centrate obtained from the sludge centrifugation serves as the source 

of nitrogen and phosphorous, which are required for the growth of cyanobacteria. This nutrient 

supplement reduces the required commercial/industrial fertilizers commonly used in 

photoautotrophic facilities (conventionally NaNO3, KH2PO4). 

Liquid centrate must be diluted to serve as the cyanobacteria growth media. Three centrate 

dilution scenarios were evaluated in this study: 3% by volume (vol%) solution of centrate, 9 

vol%, and 19 vol%. Life cycle energy use and GHG emissions due to Synechocystis sp. 

PCC6803 cultivation and biomass extraction were included within the system boundary. Carbon 

dioxide obtained from the anaerobic digester-based generation system was recycled back to the 

cyanobacterial cultivation system and the credits due to the displacement of grid electricity by 

the electricity generation through anaerobic digester were taken into consideration in the LCA 

model developed for analysis in this study. 

5.2.3 Functional unit 

The functional unit for this LCA is the treated wastewater volume-specific rate of nitrogen 

uptake or removal by the system (Nr, mgN.m-3.day-1). The nitrogen removal rate is an important 

parameter to compare the effectiveness of wastewater treatment processes, and was 

recommended by the stakeholders at DWRF and city of Fort Collins utilities.  
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Figure 5.2 Scope of a combined cyanobacterial cultivation and nitrogen removal system. 
  

5.2.4 Impacts assessment 

Life cycle net energy and life cycle GHG emissions were used to compare the 

environmental impacts of the proposed combined WWTF and cyanobacteria-based sidestream 

treatment system to the baseline facility at DWRF (Figure 5.1).  Additionally, the total inorganic 

nitrogen annual median value for new WWTF in the State of Colorado of 7 mgN.l-1 [179] was 

used as a water discharge quality criteria. 

The net energy of the system was evaluated as a difference between energy consumed 

(Energyin), and energy produced (Energyout) by the system. The energy consumed by the system 

includes all the life cycle energy for the processes and materials of the wastewater facility and 

for cyanobacteria cultivation in photobioreactors. The energy produced by the system includes 

electrical energy produced through anaerobic digestion and the embedded energy saved by using 

the struvite co-product to displace commercial fertilizers. The net energy was normalized in this 

study by using the volume-specific nitrogen removal rate (Nr) (Eq. 1), which was computed from 

the experimental work and the cyanobacteria growth model. 
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@%@A = BCDEFGHIJ KCDEFGHLMNO
PQ               Eq. 1 

In addition to metrics of energy, reducing wastewater treatment facility GHG emissions 

is encouraged by policies such as The Colorado Climate Plan [180]. The second metric of 

interest, therefore, was the ratio of life cycle GHG emissions to nitrogen removal (Nr) ratio (Eq. 

2). Life cycle GHG emissions (#RS,  TUV) is defined by the Intergovernmental Panel on Climate 

Change (IPCC) as the amount of direct and indirect (embedded) energy consumed by the system, 

multiplied by the emission factor based on the type of energy technology [81].  

WXW = YZ[\,  LMNK Z[\,  IJ]
PQ                Eq. 2 

 

To assess the impact of water quality of the system, the effluent nitrogen concentrations 

resulting from the cyanobacterial cultivation and nutrient uptake were computed from the 

experimental work and growth model. The discharge nitrogen concentrations are obtained by 

homogenizing this cyanobacterial cultivation effluent with the treated wastewater, as computed 

by mass balance in BioWin 5.2 [181]. The discharge water characteristics are compared to the 

regulated limits for annual median nitrogen and phosphorous concentrations established by the 

State of Colorado [179].  

5.2.5 LCA model development 

The baseline BNR DWRF, and the combined wastewater treatment facility with 

cyanobacteria cultivation and nitrogen removal (labelled here as the cyanobacteria-based 

nitrogen removal process, or CNR) were each modeled in GaBi-6, to assess and compare their 

environmental costs and benefits [182]. Three separate LCA models were developed of the CNR 
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system to assess its environmental impacts under three different centrate dilution scenarios. The 

coproducts of the CNR system were struvite, and the electricity generated from the anaerobic 

digestion of cyanobacterial biomass. The credits from these co-products were allocated by the 

displacement method, where struvite is assumed to be used as an alternative to commercial 

nitrogen fertilizer, and the electricity generated from the system is assumed to be used as a 

substitute for commercial grid electricity.  The co-products credits were subtracted from the 

overall life cycle energy use and GHG emissions of the CNR systems. 

5.2.6  Synechocystis sp. PCC 6803 cultivation in sludge centrate  

To inform the model of cyanobacteria growth in sludge centrate, Synechocystis sp. PCC6803 

cells were cultured in media where the level of relative concentration of standard Synechocystis 

culture media (BG-11) and wastewater centrate was set between 0-25%. All liquid media used in 

was filtered through a 0.2 μm filter to remove microorganisms and avoid changes in chemistry 

associated with autoclaving. Cultures were grown at 30°C in constant light fluxes of 150 μmol 

photons m-2.s-1. Growth rates of liquid cultures were monitored using cellular in vivo 

fluorescence with a Turner Instruments Trilogy fluorometer. All culturing took place on site at 

the DWRF in Fort Collins, CO, U.S. 

5.2.7  Cyanobacterial Nutrient Removal Process 

This LCA compares the CNR process developed in this research with the baseline BNR 

process used by DWRF. This section describes the proposed sidestream wastewater treatment 

process using cyanobacterial photobioreactors. The kinetic model used to characterize struvite 

precipitation from sludge centrate is also presented. The thin layer cyanobacteria growth model 

including centrate inhibition presented in this study was developed from the experimental work 

conducted at DWRF. This section also discusses a model of anaerobic co-digestion of the 
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activated sludge and cyanobacterial biomass. The results obtained from the experimental work 

and dynamic system models are inputs to the LCA model developed for analysis in this study.  

5.2.8 Sidestream wastewater treatment by cyanobacterial photobioreactors 

The proposed CNR process, integrated with the conventional activated sludge process, is 

illustrated in Figure 5.3.   

To produce the cyanobacteria growth media, the treated wastewater effluent is utilized to 

dilute the sludge centrate in a homogenization tank. The fraction of the treated wastewater used 

to dilute the centrate for the three scenarios (3 vol%, 9 vol%, and 19 vol%) is 22.2%, 3.3%, and 

1.5%, respectively. Struvite is recovered from the homogenized flow in a settling tank.  A 

microfiltration unit process is removes suspended particles and organisms larger than 0.2 μm 

from the centrate.  Centrate nitrogen and phosphorous uptake by Synechocystis sp. PCC6803 was 

performed in the photobioreactors. Cyanobacterial cultures obtained from cultivation stage are 

then centrifuged and the dried biomass is co-digested with activated sludge in the existing 

DWRF anaerobic digester unit. The nutrient-depleted growth media obtained from 

cyanobacterial culture centrifugation is mixed with the treated wastewater and discharged to the 

environment. 

The system-level performance of the CNR process integrated with a conventional 

activated sludge process at DWRF was evaluated using a calibrated and validated BioWin 

process model of DWRF [183]. The conventional system includes only an aerobic zone and 

achieves negligible nitrogen removal due to the absence of an anoxic zone. The scenarios were 

compared to the baseline BNR process which consists of three stage A2/O process with 

nitrification, denitrification and limited biological P removal (Figure 5.1). 
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The model was modified to represent an aerobic activated sludge process by removing 

the anaerobic and anoxic basins and removing the mixed liquor return from the baseline (Figure 

5.1). The solids retention time (SRT) was reduced from 10 days for the BNR to 1.5 days for the 

activated sludge model considered for analysis in this study. The model included sidestream 

diversion of the centrate and dilution water to the CNR process based on three different dilution 

scenarios considered in this study. The efficiency of the CNR process was evaluated external to 

BioWin, which is discussed in section 2.4.3, and the resulting concentrations were returned to the 

BioWin model to determine the combined effluent concentration from the activated sludge and 

CNR processes. Using the developed models, the scenarios were run to determine the water 

quality impact of the activated sludge process with CNR performed at the three different dilution 

rates relative to the baseline BNR. Struvite precipitation is modeled using the models described 

in section 2.4.2. Synechocystis sp. PCC6803 growth curves at the cultivation stage in 

photobioreactors were developed from the experimental work (described in section 2.3) and the 

cyanobacterial growth models (described in section 2.4.3). Biogas production from 

cyanobacterial biomass and activated sludge are derived from the first order system co-digestion 

model (described in section 2.4.4).  
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Figure 5.3 Cyanobacterial Nutrient Removal (CNR) Process. Dashed line indicates the boundary 
of the sidestream wastewater treatment CNR process. The sidestream wastewater treatment 

system utilizes the treated wastewater and the sludge centrate obtained from centrifugation of the 
wasted sludge, with total nitrogen (TN) concentration of 25.9 mg N.l-1 and 581.5 mg N.l-1, 

respectively. The sidestream wastewater treatment is required due to high concentration of TN in 
the sludge centrate. 

 
5.2.9 Kinetics of struvite precipitation from sludge centrate 

Chemical precipitation of struvite is commonly observed in wastewater systems with 

high concentrations of orthophosphates, NH4-N, and Mg++ ions [184, 185]. Struvite precipitation 

is enhanced at magnesium to phosphorous ratios (Mg:P) of 1.2:1 and carbon dioxide partial 

pressures less than 0.35 atm [185]. Sludge centrate at DWRF is stored under anoxic conditions, 

where carbon dioxide partial pressures could be about 0.35 atm. Struvite precipitation is 

described as a first-order kinetics reaction (Eq.3) [39], where k is the first-order rate constant. 

The rate constants of struvite precipitation from the sludge centrate were obtained by solving a 

first-order differential equation (Eq. 3) for the time rate of change of total Nitrogen (TN) 

concentration.   

 

^[`P]
^V = −b ∙ [d@]          Eq. 3 
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5.2.10 Modelling of Synechocystis sp. PCC 6803 thin layer growth with sludge centrate 

inhibition 

A dynamic cyanobacteria growth model including sludge centrate inhibition was 

developed for analysis in this study. This model incorporates ordinary differential equations 

(ODE) and nonlinear functions representing the effects of nitrogen quota, nitrogen uptake, 

chlorophyll synthesis, light absorption, photosynthesis, growth rate, and cell biomass [37, 186].  

Table C.1 summarizes the required biological inputs for this model of the growth of 

Synechocystis sp. PCC6803 [84, 187, 188]. The model developed in this study is novel in that it 

incorporates the maximum nitrogen-limited growth rate (μmax) including the measured effects of 

centrate inhibition. These parameters were determined from the experimental works described in 

section 2.3. Additionally, a competitive inhibition due to competition with nitrifiers in a 

wastewater environment was included in the model [156]. Competition with nitrifiers is due to 

the availability of an electron-acceptor, oxygen, as a result of photosynthetic activity and 

cultivation of cyanobacteria in a wastewater environment containing an electron-donor, nitrogen  

[38]. The growth inhibition of Synechocystis sp. PCC6803 by centrate is mathematically 

described by Eq. 4 [189], where all the parameters were determined experimentally and 

discussed under results section.    

 

efg = hijk∗g
lmg ∙ Y1 − g

lno
]D

               Eq. 4 

 

KIS is the concentration of centrate where inhibition is observed, S is the substrate (TN) 

concentration, K is the concentration given one-half maximum rate, μmax is maximum specific 

growth rate, and n is the unitless exponent defining the relationship between eIS and S. 
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Cyanobacterial biomass is a function of the growth rate, chlorophyll synthesis, and nitrogen 

(Eq. 5) [169]. The growth limiting factors in the model, nitrogen and light, are governed by the 

Droop cell-quota function and the Liebig’s Law, respectively (Eq. 6) [169]. A fixed fraction of 

accumulated carbon (gC.g-1dw) is maintained for the dried biomass. Carbon fixation is a function 

of the Poisson single-hit model of photosynthesis. The photosynthesis rate (Eq. 7 and 8) is 

normalized by the chlorophyll content (gC.g-1chl.d-1) [169]. Chlorophyll synthesis (Eq. 9) is a 

function of nitrogen uptake (Eq. 10 and 11) [169], which incorporates heterotrophic biomass (Xv) 

and nitrification (Nv) in a wastewater environment (Eq. 14) [31]. The fraction of nitrogen supplied 

to chlorophyll synthesis is a function of the carbon utilization to uptake ratio (c) and the nitrogen 

uptake is a function of the maximum nitrogen quota (Eq. 12) [169]. Light attenuation in the thin 

layer photobioreactor is computed by the Lambert-Beer law, which is a function of the rate of light 

absorption by the culture [153]. 

 

^p
^V = μrs, X, @t ∙ s                Eq. 5 

μrs, X, @t = uvw xefg ∙ 51 − y
zrVt: , {rp,|,Pt

} ~             Eq. 6  

�rs, X, @t = Xr�t ∙ ��rs, @t ∙ 51 − ��� YK�∙∅∙frp,|t
{irp,Pt ]:           Eq. 7 

��rs, @t = [prVt∙zrVt]\∙��
[prVt∙zrVt]\my\∙[prVtm�rVt]\              Eq. 8 

^|
^V = }

{ ∙  μrs, X, @t ∙ � ∙ �rs, @t − Xr�t ∙ μrs, X, @t           Eq. 9 

^P
^V = −�rs, @t ∙ sr�t              Eq. 10 

�rs, @t = y�KzrVt
y�Ky ∙ 5�i∙rPrVtKP�rVtt

rPrVtKP�rVttm��
:            Eq. 11 
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prVt              Eq. 12  
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�rs, Xt = f�
�∙|rVt∙prVt∙� ∙ [1 − ���r−� ∙ Xr�t ∙ sr�t ∙ �t]         Eq. 13 

�P�
�V = ���

�V ∙ �� �GP
��� �G |EVEFTVFT{��} ��T����             Eq. 14 

 

The dynamics of these ODEs is illustrated in Fig. C.3. Biomass growth and nitrogen 

depletion curves for Synechocystis sp. PCC6803 were computed in Matlab® for the three centrate 

dilution scenarios evaluated in this LCA: 3 vol%, 9 vol%, and 19 vol%. The nitrogen removal 

rates were compared with the baseline BNR process used by DWRF, and the output nitrogen 

concentrations at the stationary growth stage could be calculated.   

5.2.11 Modelling of anaerobic co-digestion of activated sludge and cyanobacterial biomass 

The cyanobacteria biomass from the photobioreactors are input (along with activated 

sludge) to the on-site anaerobic digestion system.  Anaerobic digestion reduces the carbon 

content of input organic matter to its most reduced oxidation state [156]. Anaerobic digestion 

processes are carried out in three stages; hydrolysis of organic matter, acidogenesis or 

fermentation of organic matter into organic acids and hydrogen, and final conversion of organic 

acids and hydrogen into methane, known as methanogenesis [190]. Hydrolysis and 

methanogenesis stages can be described by a first order system of carbohydrate, lipid, and 

protein contents degradation as illustrated in Eq. 15 and Eq. 16 [191].  

 

^[g]
^V = −bp� ∙ [-]              Eq. 15 

 

^[Z|�]
^V = � ∙ bp� ∙ [-]          Eq. 16 
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S is concentration of volatile solids (VS) or concentration of chemical organic demand 

(COD), kAD is the first-order rate constant, and α is the conversion coefficient from VS or COD 

to the product (CH4). Municipal sludge is reported to have carbohydrates, proteins, and lipids 

content of 32 wt%, 33 wt%, and 25 wt%, respectively [192]. Cyanobacteria, on the other hand, 

are reported to have 23.3 wt% of carbohydrates, 38.6 wt% of proteins, and 6 wt% of lipids [193]. 

The first order rates constants of these substrates are 0.5-2.0 d-1 and 0.25-0.8 d-1 for 

carbohydrates and proteins [194], respectively, and 0.7-0.76 d-1 for lipids [194-196]. 

The anaerobic digestion model was constructed in pythonTM and validated using the daily 

methane production rate reported by DWRF from the existing anaerobic digester unit. The model 

for anaerobic digestion of cyanobacterial biomass was validated using three methane yields 

reported in the literature for this feedstock. The flowrates and substrate concentrations for co-

digestion of sludge centrate and cyanobacterial biomass were obtained by a mass balance.  

Anaerobic digestion of photoautotrophic microorganisms have been previously 

researched to evaluate methane yield. For instance, Nannochloropsis salina, a microalgae strain, 

could produce about 0.14 m3CH4.kg VS-1 [197] from the lipid extracted algae biomass. 

Cyanobacteria strains, such as  Spirulina maxima yields about 0.15 m3CH4.kg-1  of dry biomass 

[198] and Arthrospira platensis yields about 0.20 m3CH4.kg-1 of dry biomass  [193]. 

The anaerobic digestion unit of DWRF currently produces 4,749 m3 CH4.day-1 from 

anaerobic digestion of the wasted activated sludge of 17,010 kg of volatile solids (VS) per day. 

The literature [38] reports that electrical generating efficiencies of 25 % could be achieved for 

electricity generation only. This study evaluated all such scenarios by considering electric power 

generation from biogas, electrical efficiency of 25%, obtained from co-digestion of the activated 

sludge and cyanobacterial biomass. Using the model proposed here, the daily methane 
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production rate of 4,749 m3 CH4.day-1 for the DWRF baseline BNR process was validated with a 

relative error of 0.08%. The electricity generation from anaerobic digester at DWRF was 

estimated to be 307 kW for the baseline. 

5.2.12 Sensitivity Analysis of Centrate Dilution Scenarios 

In experiments, the cyanobacterial biomass productivity was demonstrated to be inhibited 

by high concentrations of ammonia in sludge centrate (Figure 5.5). Thus, this LCA includes 

single point sensitivity analysis of the resource requirements and co-products characteristics for 

each centrate dilution scenarios considered in this study: 3 vol%, 9 vol%, and 19 vol%. The main 

resources required in the cultivation stage for each scenario includes sludge centrate, treated 

wastewater, supplemental nutrients, land, and mixing energy. These LCA inputs are summarized 

in Table C.2. The sensitivity analysis was performed for each scenario considering the results 

obtained from the cyanobacterial growth model, co-digestion model, and variability present in 

CNR process. 

The baseline wastewater treatment facility with the BNR A2/O process requires about 

1.44 kWh of energy per m3 of treated wastewater, as recorded by DWRF.  For all the scenarios 

in the CNR process system, the required energy for the BNR process (0.09 kWh.m-3 of treated 

wastewater) was subtracted from the wastewater facility energy budget [38]. All the produced 

sludge centrate was supplied to the CNR process for all scenarios.  

The nitrogen taken up by the photobioreactors was modeled at 31.3, 17.6, and 11.0 

kg.day-1 for the three centrate dilution scenarios (3 vol%, 9 vol%, and 19 vol%), respectively. 

Phosphorous uptake rate for Synechocystis sp. PCC6803 of 0.0069 g.l-1.d-1 [10, 84] was assumed 

to be constant for each scenario, since this nutrient was not researched in this study due to its 

lower sensitivity on GHG emissions [174]. Previous studies [83, 174] reported a mixing energy 
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of about 2 W.m-3 for photobioreactors and raceway ponds. This volume-specific energy 

consumption was used for analysis for all the centrate dilution scenarios. 

5.3 Results and Discussion 

The results of analysis of the CNR process for sidestream wastewater treatment and its life 

cycle implications are divided into four components. First, modelling is used to describe the 

kinetics of struvite precipitation from centrate under anoxic conditions. Second, the 

cyanobacterial biomass productivities and nitrogen removal rates obtained from experimental 

work and computational modeling in diluted sludge centrate, are reported. Third, modeling 

results for the anaerobic digestion of activated sludge are presented, which was verified with the 

daily production of methane at the DWRF plant. The modeling results for cyanobacterial 

digestion, and co-digestion of activated sludge with cyanobacterial biomass are compared with 

the results reported in the literature. The benefits of co-digestion for the production of biogas 

electric power are discussed. Lastly, the life cycle implications of the integrated CNR process are 

compared with the baseline WWTF in terms of net energies and GHG emissions per volume-

specific rate of nitrogen removed. 

5.3.1 Struvite precipitation rates are increased in combined cyanobacterial cultivation 

and sidestream wastewater treatment 

As shown in Figure 5.4, some of the nitrogen removal in the CNR process is performed by 

struvite precipitation. The struvite precipitation rates reported in the literature (Nelson et al. 

2003) are 3.7 h-1 at pH of 8.4, 7.9 h-1 at pH of 8.7, and 12.3 h-1 at pH of 9.0. Loewenthal et al. 

(1994) reported that the struvite precipitation rates are increased at partial pressures of carbon 

dioxide less than 0.35 atm. DWRF stores sludge centrate under anoxic conditions, where high 

CO2 partial pressures are expected, unlike conditions in the work performed by Nelson et al. 
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(2003) in well-mixed reactors at atmospheric pressure. Transport of sludge centrate to the 

homogenization tanks and settler in the CNR process abruptly reduces the CO2 partial pressure 

resulting in high struvite precipitation rates. By increasing the struvite precipitation rates, there 

will be substantial reductions in the settling hydraulic retention times (HRT) from 14 days 

required under anoxic conditions to approximately 20 minutes at atmospheric pressure, assuming 

a precipitation rate of 3.7 h-1 (Figure 5.4). The reduction in HRT decreases both the capital costs 

and life cycle energy of the system due to lower reactor volume. 

 

Figure 5.4 Kinetics of struvite precipitation from sludge centrate under atmospheric pressure 
at a precipitation rate of 3.7 h-1 [39]. 

 
5.3.2 Growth of Synechocystis sp. PCC 6803 including sludge centrate inhibition 

In sludge centrate, nitrogen is primarily in the form of ammonia, which inhibits the growth of 

Synechocystis sp. PCC6803 at a concentration of about 49 mg NH4-N.l-1 [51]. This study finds 

that the growth of Synechocystis sp. PCC6803 is completely inhibited when centrate is greater 

than 25 vol% (total nitrogen concentration of >163 mg TN.l-1; Figure 5.5). Experimental results 

show that the highest value of the maximum specific growth rate of Synechocystis sp. PCC6803 
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was obtained at sludge centrate concentration of 9 vol% where TN concentration was 71mg.l-1 

(Figure 5.5). Figure 5.5 depicts the measured and modeled range of maximum growth rates of 

Synechocystis sp. PCC6803 and the kinetic parameters for Eq. 4.  

 

Figure 5.5 Measured and modeled maximum specific growth rates of Synechocystis sp. PCC6803 
including sludge centrate inhibition. 

 
Figure 5 depicts the measured and modeled dynamics of cyanobacterial biomass growth 

and nitrogen uptake in sludge centrate (Eq. 5-13). For comparison, Kim et al. (2010, 2011) and 

Quiroz-Arita et al. (2017) reported Synechocystis sp. PCC6803 biomass productivity in the range 

from 0.12 g.l-1.day-1 to 0.76 g.l-1.day-1 when it is grown in BG 11 media in photobioreactors at 

photosynthetic active radiations (PAR) of above 1,000 μmol photons m-2.s-1. Incorporating 

experimental growth rates of Synechocystis sp. PCC6803 with sludge centrate inhibition, this 

study obtained cyanobacterial biomass productivities of 0.13, 0.17, 0.15, and 0.16 g.l-1.day-1 for 

centrate dilutions of 3 vol%, 9 vol%, 19 vol% (after 7 days of cultivation), and 19 vol% (after 9 

days of cultivation), respectively. These results demonstrate that Synechocystis sp. PCC6803 
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biomass productivity is maximized through experiment and modelling at centrate dilutions of 9 

vol%.  

5.3.3  Nitrogen uptake by Synechocystis sp. PCC 6803 

The modeled concentrations of TN discharged from the sidestream photobioreactors are 

summarized in Table 5.1.  TN concentrations in Table 5.1 are presented as upper, mean, and 

lower concentrations corresponding to the lowest maximum specific growth rates, the mean 

maximum specific growth rates, and the highest maximum specific growth rates, as measured in 

the experiments presented in Figure 5.5.   

For example, under the CNR 3 vol% centrate dilution scenario, the TN concentration of the 

growth media after centrifugation is 0.004 mg.l-1 (Figure 5.6). This CNR sidestream wastewater 

treatment scenario meets the requirements of municipal WWTF, and the water quality criteria of 

the State of CO and the federal EPA. The TN concentration of the treated effluent discharged 

from the facility is 15.2 mg N.l-1 (Figure 5.3, and in Appendix C).  For comparison, the nitrogen 

concentration in the treated effluent from the conventional activated sludge process is 25.9 mg 

N.l-1. These results demonstrate that the combined effluent nutrient concentration and energy 

requirements are notably reduced when compared to the conventional activated sludge process 

and the baseline BNR process, respectively. 
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Figure 5.6 Thin layer growth modeling results for Synechocystis sp. PCC6803 at sludge 
centrate dilutions of 3 vol%, 9 vol%, and 19 vol%. The cultivation times of centrate dilutions at 3 

vol% and vol9% are seven days. The cultivation time of centrate dilution at 19 vol% is nine 
days. DWB stands for dry weight biomass. WQCC stands for the water quality criteria for the 
State of CO, 7 mg TN.l-1. DWB and TN are represented by blue straight lines and red dashed 

lines, respectively. 
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Table 5.1. Results of Synechocystis sp. PCC6803 thin layer growth model under the three centrate dilution scenarios 
 

Parameter 

3% Centrate 

(7 days of cultivation) 

9% Centrate 

(7 days of cultivation) 

19% Centrate 

(7 days cultivation) 

19% Centrate 

(9 days cultivation) 

Mean 
Upper 

Limit 

Bottom 

Limit 
Mean 

Upper 

Limit 

Bottom 

Limit 
Mean 

Upper 

Limit 

Bottom 

Limit 
Mean 

Upper 

Limit 

Bottom 

Limit 

DW biomass  

(g.l-1)a 
0.9 0.9 0.9 1.2 1.2 1.2 1.05 1.3 0.4 1.4 1.6 0.7 

Nr 

(mg.m-3.day-1)b 
3,100 3,100 3,100 10,200 10,200 10,200 13,900 16,700 5,600 13,800 14,000 6,900 

TN effluent 

(mg.l-1)c 
0.004 0.004 0.004 0.2 0.20 0.20 29 9.7 87 2.7 0.1 64 

a DW stands for dry weight at stationary stage 

b Nr stands for nitrogen removal rate 

c TN stands for total nitrogen at stationary stage
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5.3.4 Co-digestion of cyanobacterial biomass with activated sludge 

After centrifugation, the cyanobacteria biomass can be used as a feedstock to the existing 

anaerobic digester unit of a wastewater treatment facility such as DWRF.  

Using the methods of section 2.4.4 and Eq. 14 and 15, the model for anaerobic digestion of 

cyanobacterial biomass provides a yield of 0.15 m3CH4.kg-1 for Synechocystis sp. PCC6803, 

which closely represents the result for cyanobacteria obtained in previous studies [198]. 

Anaerobic digestion of sludge at DWRF, on the other hand, provides a yield three times greater 

than cyanobacteria, 0.48 m3CH4.kg-1. Co-digestion of the activated sludge and cyanobacterial 

biomass simulated by the first order system model resulted in the increase in methane 

productions by 22%, 8%, and 4% for centrate dilution scenarios of 3 vol%, 9 vol%, and 19 vol%, 

respectively. Figure 5.7 depicts the modeling results for the 3% centrate dilution scenario. 

 

Figure 5.7 Model results for anaerobic co-digestion of activated sludge and cyanobacterial 
biomass for 3% centrate dilution scenario. 

 
Methane and energy production are maximized at 3% centrate dilution. Biogas can be 

upgraded in the photobioreactors by carbon dioxide uptake, to close the carbon loop.  For 

example, previous research reported CO2 removal by Chlorella sp. of 23.0 ± 11.8 % [199].  By 
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Henry’s law, we model that 0.067%, 0.012%, and 0.006% of the CO2 produced, for centrate 

dilutions of 3 vol%, 9 vol%, and 19 vol%, respectively, will remain in solution (Table C.2), 

whereas the rest will be released to the environment. By supplying cyanobacterial biomass to the 

existing anaerobic digester unit of DWRF, the energy recovery of the facility can be increased 

without additional capital investments. 

Table 5.2 Methane production and potential electrical and heat power by co-digestion of 
activated sludge and cyanobacterial biomass 

Centrate 

Dilution 

Ratio 

Product of 

Cyanobacteria Biomass 

m3 CH4.day-1 

Product of Co-digestion of Sludge 

and Cyanobacteria Biomass 

m3 CH4.day-1 

Electric 

Power (kW) 

3% 1067 5,812 376 

9% 362 5,107 331 

19%a 186 4,931 319 

19%b 212 4,958 321 

19%c 93 4,838 313 

a Results obtained from the mean growth rate of Synechocystis sp. PCC6803 

b Results obtained from the upper limit growth rate of Synechocystis sp. PCC6803 

c Results obtained from the lower limit growth rate of Synechocystis sp. PCC6803 

5.3.5 Life cycle Net Energy and Greenhouse Gas Emissions  

As illustrated in Figure 5.8, life cycle net energy and GHG emissions can be minimized 

among the options modeled here at centrate dilutions of 3%.  The propagated uncertainty due to 

experimental variability (illustrated in Table 5.1 and Figure 5.6) is negligible.  These results 

show that the life cycle energy and GHG emissions are reduced by 8% and 17%, respectively, 
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relative to the baseline BNR process.  The results from an LCA suggest that the centrate dilution 

of 3 vol% improves the water quality, and reduces the environmental impacts in terms of life 

cycle energy use and GHG emissions normalized by the volume-specific nitrogen removal rate.   

Although the 3% scenario is most preferred using the metrics of this LCA, there are reasons 

to consider the costs and benefits of the other scenarios.  For example, the 9 vol% scenario has 

the lowest net energy normalized by the treated wastewater of 1.42 kWh. m-3, and the lowest 

land requirements of 1.39 ha (Table C.3).  Further research targeting the global optimization of 

sustainability and techno-economic metrics will clarify the potential for tradeoffs among these 

options.   

 

Figure 5.8 Life cycle net energies and GHG emissions of baseline wastewater treatment facility 
and combined system with CNR process for sidestream wastewater treatment. 

 
5.4 Conclusions 

This study presents a novel cyanobacterial nutrient removal process for sidestream 

wastewater treatment. Parameters associated with the cyanobacterial growth and anaerobic co-

digestion models were determined experimentally. Resources recovery was investigated by 



102 

 

experimental and computational modeling of struvite precipitation, electric power, and combined 

heat and power generation. This research demonstrates that among the centrate dilution scenarios 

of 3 vol%, 9 vol%, and 19 vol% assessed in in this study, the system operating at 3 vol% centrate 

dilution was the most sustainable system in terms of nitrogen discharge concentration, net energy 

to nitrogen removal ratio (NENR), and the GHG emissions to nitrogen removal ratio. Next steps 

for this novel technology are to demonstrate scalability at pilot scale in municipal wastewater 

treatment facilities, and to optimize the cost, footprint, operations that would be required by 

integration of photobioreactors and raceways on to WWTF facilities. 

5.5 Answer to Research Question 2.1 

This section of the research effort has allowed us to address Research Question 2.1, which is 

restated here: 

To what extent are the joint achievement of sustainability, scalability, and water quality 

goals assisted by the integration of CBR and WWTF? 

Research Question 2.1 is associated with Hypothesis 2.1:  

Integration of CBR and WWTF provides synergistic lifecycle benefits including the 

displacement of fertilizers for cyanobacteria cultivation by wastewater nutrients, reduction of 

energy consumption to remove nutrients from the treated wastewater, and improvement of 

water quality from wastewater facilities. 

Chapter 4 reviewed the growth and productivity of algae and cyanobacteria grown in 

wastewater resources. This review suggests that sludge centrate obtained from wastewater 

facilities is the most promising resource to grow algae and cyanobacteria due to high 

concentrations of nitrogen and phosphorous. This integration has the potential to contribute to 

the biological nutrient removal in wastewater facilities. 
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Chapter 5 developed a novel integration of wastewater treatment facility and cyanobacterial 

cultivation, modeled and evaluated this proposed system against joint metrics for energy and 

carbon footprint. This chapter demonstrates that cyanobacteria is capable of growing in sludge 

centrate obtained from wastewater facilities, with the potential to contribute to the biological 

nutrient removal and wastewater remediation in wastewater treatment facilities, and to reduce 

WWTF life cycle energy and GHG emissions.  Additional experimental validation of this 

process at large scale is required to enable commercialization of this technology.  

The results of these studies provide support to the hypothesis that synergistic benefits are 

obtained, including displacement of fertilizers for cyanobacteria cultivation by wastewater 

nutrients, reduction of energy consumption to remove nutrients from the treated wastewater, and 

improvement of water quality from wastewater facilities.  

  



104 

 

CHAPTER 6: Sustainability Implications of Mixing Energy for the Industrial Scale Design 

of Cyanobacterial Cultivation in Open Raceway Ponds and Flat-Panel Photobioreactors5 

6.1 Introduction 

Photoautotroph-based biofuels are considered one of the most promising renewable resources 

to meet the global energy requirements for transportation systems [5]. Long-term research and 

development has resulted in demonstrations of microalgae areal oil productivities that are higher 

than crop-based biofuels, about 10 times that of palm oil and about 131 times that of soybean [5, 

74-76]. Cyanobacteria is reported to have ~4 times the areal productivity of microalgae on an 

equivalent energy basis [6]. Downstream of this cultivation process, cyanobacterial biomass and 

bioproducts can be supplied to biorefineries producing feed, biomaterials, biosynthetic 

chemicals, and biofuels [77]. As such, cyanobacterial systems can be a significant contributor to 

more sustainable energy and production systems. 

Turbulent environments are demonstrated to induce physiology responses in 

photoautotrophic microorganisms in open raceway ponds and photobioreactors [200-207]. 

Recent efforts studied the effects of turbulence dissipation rates ranging from 0 to 8.01E−2 m2.s-3 

simulated at laboratory scale conditions (1 liter cultures) [200]. This work concluded that despite 

no alterations of photosynthesis activity and chlorophyll a, there is a systematic increment in the 

growth rates of the strain Microcystis flos-aquae as a function of turbulence dissipation rate and 

a subsequent decay in the growth rate of the strain Anabaena flos-aquae at high turbulence. 

These authors identified a maximum phosphorous uptake rate by these cyanobacteria strains at 

turbulence dissipation rates of  2.26E−2 m2.s-3, suggesting that turbulence plays an important role 

                                                           
5 This chapter is adapted from a prepared journal article for consideration for publication: Carlos Quiroz-
Arita, Kenneth F. Reardon, Pengyu Cao, Peter Chen, Jason C. Quinn, Thomas H. Bradley. “Sustainability 
Implications of Mixing Energy for the Industrial Scale Design of Cyanobacterial Cultivation in Open Raceway 
Ponds and Flat-Panel Photobioreactors”. 
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in the biological adaptation of cyanobacteria by influencing nutrient uptake [200]. In other 

research, the effects of shear environments were studied for the cyanobacteria and microalgae 

strains Synechocystis sp. and Chlamydomonas reinhardtii, respectively, in 150 ml cultures [201]. 

In this study the growth rate of Synechocystis sp. was independent of shear stress (0 to 0.18 N.m-

2) and Chlamydomonas reinhardtii growth rate was linearly dependent on shear stress. These 

laboratory scale environments; however, are not representative of industrial scale conditions.  

Other impacts of turbulent mixing are cell disruption due to shear stress [208-215]. Some 

instances are for hybridoma cells suffering apoptosis at mixing energy inputs of 1.87E3 W.m-3 

[209, 216]. Other studies observed 51% lower recombinant protein production, 42% higher 

glucose uptake, and 50% lower lactate production cells exposed to mixing energy inputs of 6.4E2 

W.m-3 [209, 217]. Inhibitory effects; however, are reported at mixing energy inputs above 1E6 

W.m-3 and Kolmogorov microscales about less than or equal to 2.4 micrometers  for mammalian 

cells [209]. In photobioreactors, small bubbles are reported to cause cell damage [205, 218], 

colliding with photoautotrophic cells and maintaining a sheared environment. The microalgae 

strain Phaeodactylum tricornutum, for instance, presented inhibition at air rates of 0.567 

m3
air.min-1.m-3

reactor , where carboxymethyl cellulose (CMC) and carboxymethyl cellulose were 

supplied into the medium to mitigate shear-induced damage in parallel experiments [205]. Other 

sparged photobioreactors cultivating Dunaliella tertiolecta and D. salina reported increments in 

the decay rates as a function of gas velocity, observing the highest death rates at 8.91 and 13.37 

m3
air.min-1.m-3

reactor [218]. There is no research reported in the literature concerning the biological 

system response due to shear stress on cyanobacteria cells disruption, particularly on 

Synechocystis sp. PCC6803. Moreover, most of the previous research were conducted at mixing 
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energy inputs are 30, 100, or thousands order of magnitudes higher than is considered cost-

effective for industrial cultivation systems.  

Photoautotrophic biomass and biofuels productivity; therefore, are overestimated at 

laboratory scale experiments relative to industrial scale systems. This distinct difference in the 

performance of industrial systems are partially attributed to the light experienced by 

photoautotrophic microorganisms at outdoor conditions. For instance, the light saturation of 

Synechocystis sp. PCC6803 is reported at about 200 μmol photons.s−1.m−2 [10, 84], whereas 

photoautotrophic microorganisms will face incident radiations of about 2000 μmol 

photons.s−1.m−2 at noon in locations such as Colorado [11], impacting in the photo conversion 

efficiency. For the case of algae considering that 46% of the spectrum is in the photosynthetic 

active radiation (PAR) range of 400 to 700 nm, there are losses due to photon transmissions 

efficiency of 95%, photon utilization efficiency ranging from 10% to 30%, biomass 

accumulation efficiency of 50%, and biomass energy content of 21.9 kJ∙g−1, resulting in a total 

photo conversion efficiency from 2.6% (at high light) to 6.3% (at reduced light) [12]. The low 

photo conversion efficiency is attributed to dark and photorespiration biomass losses [62, 219, 

220]. Photorespiration switches the carboxylation step in the Calvin–Benson cycle to 

oxygenation, dissipating photic energy and accounting for 25% reduction in the photosynthesis 

in C3 plants [221] 

Some previous studies have investigated the effects of mixing rates on photoautotroph 

biomass productivities in industrial scale systems [11, 53, 54]. Some of these efforts have 

identified optimum volumes of air flow rates per unit volume (VVM) of photobioreactors that 

might be industrially relevant for microalgae, 0.2 to 1.2 m3
air.min-1.m-3

reactor [11]. Many others 

have considered mixing energy inputs that are far outside the energy consumption that can be 
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considered economic, or industrially relevant, ranging from 8 to 633 W.m-3 [53]. For raceway 

ponds, for instance, energy inputs from 1 to 2 W.m-3 are utilized in the algae cultivation 

demonstrations performed to date [54].  

There is limited research concerning the impacts of mixing energy inputs in the life cycle 

metrics of cyanobacterial derived biofuels [17, 174]. Previous work, for instance, consider robust 

modelling strategies due to the uncertainties in the mixing energy inputs. Other research 

evaluated the implications of mixing on growth rates and biomass productivity [11]. Maximizing 

microalgal and cyanobacterial biomass and bioproducts; however, provide a limited insight into 

the sustainability of these systems. Net Energy Ratios (NER), provide a more meaningful and 

exhaustive understanding of the energy efficiency and sustainable system design. To fill this 

research gap; therefore, we conducted (i) pilot scale experimentation cultivating Synechocystis 

sp. PCC6803 in open raceway ponds and flat-panel photobioreactors at industrially relevant 

mixing energy inputs and high incident radiations, (ii) evaluation of the effects of differences in 

mixing energy input in the growth rates and biomass productivities, and (ii) a holistic life cycle 

assessment modelling integrating the system response in terms of NER due to mixing energy 

inputs. By developing an integrated approach for laboratory experimentation and industrial-scale 

metrics of mixing at photo-inhibited light intensities, we obtain reliable models to quantify the 

sustainability of these novel biotechnology. These capabilities are required to be able to perform 

long-term and industrially relevant assessments of the costs, and benefits of these promising 

technologies, and will serve to inform the biological engineering research and development of 

new organisms. 
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6.2 Materials and Methods 

To evaluate the implications of turbulent mixing in large scale open raceway ponds and flat-

panel photobioreactors from laboratory experimentation, industrially relevant mixing energy 

inputs must be taken into account for cultivation of cyanobacteria and modelling. The workflow, 

illustrated in Figure 6.1, integrates Synechocystis sp. PCC6803 cultures scale-up and acclimation 

at photo-inhibited light intensities, cultivation in flat-panel photobioreactors and open raceway 

pond at industrially relevant mixing rates, and sustainability modelling by an LCA framework. 

By incorporating laboratory experiments at industrially relevant inputs, outdoor relevant light 

intensities and large-scale mixing rates, we developed a holistic bridge and feedback loop 

approach between laboratory and industrial scale experimentation. 

 

Figure 6.1 Workflow for industrial scale cyanobacterial derived biofuel assessment from 
bench and pilot scale experimental and model based analysis. 

 
6.2.1 Scale-up and Acclimation of Cyanobacterial Cultures 

To inform the cyanobacteria growth and the LCA models, Synechocystis sp. PCC6803 

cells were cultured in culture media (BG-11), scaling-up and acclimating at photo-inhibited light 
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intensities for cultivation in 1L flat-panel photobioreactor and 700L open raceway pond, 

respectively. Cells were grown at 29 °C. The inoculum of 250 μL were scaled-up into 30 mL and 

150 mL, grown in constant light fluxes of 60 μmol photons m-2.s-1. For acclimation in 1L flat-

panel photobioreactors, 150mL cultures were inoculated into five replicates, grown in constant 

light fluxes of 1348 (± 84) μmol photons m-2.s-1. 10% of the acclimated cyanobacteria cultures 

were re-inoculated in the flat-panel photobioreactors and grown until stationary stage. For 

cyanobacteria cultivation in raceway ponds, the 150 mL cultures were furtherly scaled-up into 

1L flasks. The 1L cultures were inoculated into 9L glass carboys, which were acclimated by 

using the raceway pond as a water bath at 29 °C., grown in constant light fluxes of 938 (± 46) 

μmol photons m-2.s-1. The 700L open raceway pond was inoculated with the 9L glass carboys 

cultures and grown until stationary stage. 

6.2.2 Configuration for Industrially Scale Experimental Analysis of flat-Panel 

Photobioreactors and Open Raceway Ponds 

For validation purposes of the growth and LCA models, we performed experimental 

work under mixing energy input variability in the flat-panel photobioreactor and open raceway 

pond. As illustrated in the diagram developed in Autodesk® AutoCAD® 2018, Figure 6.2, the 

batch process was carried out in five replicates of 1L flat-panel photobioreactors made in acrylic 

with surface to volume ratio of 112 m2·m− 3. The experiments were performed at cultures depths 

of 20 cm. The carbon system in each flat-panel photobioreactor was normalized by scrubbing 

CO2 from the supplied air with soda lime and adding 0.483 g.day-1 of bicarbonate. Additional 

experiments were performed with sparged air and no addition of bicarbonate, to evaluate the 

mixing energies at which cultures grow limited by carbon. The cultures were grown using a 

high-pressure sodium (HPS) lighting system with a spectrum ranging from 400 to 700 nm at 
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extreme conditions, emulating a sunny day at a constant Photosynthetic Active Radiation (PAR) 

of 1348 (± 84) μmol photons·m−2·s−1. A temperature control system was provided to maintain a 

temperature of 32 (± 2) °C, consisting of cold plates set at the bottom of each photobioreactor 

and chilled water supplied through copper pipelines. In this study we aimed to resemble the light 

attenuation of open raceway ponds in the flat-panel photobioreactors, by providing absorptive 

walls (black plastic corrugated sheets) to simulate a cross section of the culture into the raceway 

pond. Cultures were mixed by sparged air at the bottom of the flat-panel photobioreactors at 

industrially relevant mixing inputs of 0.7, 0.35,  and 0.17 m3 of air per minute per cubic meter of 

reactor, commonly referred as VVM [11]. Additionally, experiments by an order of magnitude 

lower were performed, set at 0.01 VVM. The equivalent mixing energy inputs used in the flat-

panel photobioreactors experiments were 1.94, 0.97, 0.47, and 0.03 W.m-3. 
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Figure 6.2 Instrumentation Diagram of Flat-panel photobioreactors system for industrial scale 
experimental and model based analysis. 

 

As illustrated in the diagram developed in Autodesk® AutoCAD® 2018, Figure 6.3, the 

open raceway pond batch process was carried out in a 700L fiber-reinforced plastic at water 

depths of 20 cm. Three replicates were cultivated for statistical validity purposes. The cultures 

were grown using a high-pressure sodium (HPS) lighting system with a spectrum ranging from 

400 to 700 nm at extreme conditions, a Photosynthetic Active Radiation (PAR) of 938 (± 46) 

μmol photons·m−2·s−1. A temperature control system was provided to maintain the cultures at 29 

°C; consisting of a thermocouple, temperature controller, solenoid valve, stainless steel coil 

submerged into the open raceway pond, and tap water supply pipeline. The culture was mixed 

with a paddlewheel provided with a 90V DC Gearmotor with a rated torque of 33 in.-lb 

controlled by an IronHorse DC Drives. The mixing energy input used in the open raceway pond 
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experiments was 0.10 W.m-3, an order of magnitude lower than reported in the literature for 

industrial systems [54]. 

 

 Figure 6.3 Plan View and Instrumentation Diagram of Open raceway pond system for industrial 
scale experimental and model based analysis. The 3D view of the Open Raceway Pond is 

illustrated in the upper right corner. 
 

6.2.3 Flat-panel photobioreactors and open raceway pond monitoring 

Growth rates of liquid cultures were monitored using SPECTRONIC 20 GenesysTM with a 

frequency of eight hours. Dried weight biomass (DWB) was measured daily with 2.5 μm 

polypropylene prefilters dried at 60 °C and measured with high precision digital scale. The incident 

radiation and light attenuation were measured daily with a LI-250A Light Meter at the water 

surface. The maximum growth rate of Synechocystis sp. PCC6803 was mathematically described 

by Eq. 1 [222], where all the parameters were determined experimentally (Fig. D.1 and D.2) and 

discussed under results section.    

e��  = ¡D r�\ �¢⁄ t
V\KV¢

          Eq. 1 
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X2 and X1 are the final and initial, respectively, optical density (OD) in the exponential stage of 

the growth curve, t2 and t1 are the final and initial, respectively, time in the exponential stage of 

the growth curve, and μmax is the maximum specific growth rate. 

6.2.4 Life cycle Energy Implications of Mixing Energy Inputs 

LCA is a framework for evaluating the energy use, emissions and impacts of direct, indirect, 

and supply chain processes [16]. An LCA model was developed in this study to assess the 

system implications of mixing energy input in cyanobacteria-based biofuel facility. This LCA 

considers biomass productivities from the cyanobacteria growth model described in section 2.3 

and ethanol yields of Synechocystis sp. PCC6803. Cyanobacteria-based ethanol yields were 

computed from the carbon partitioning assimilated, 63%, reported in the literature for 

Synechocystis sp. PCC6803 [79]. In developing the goals and scope of this project, 

cyanobacteria-based ethanol production was chosen because is a near-term and commercially 

promising technology [17, 174], displays the highest productivities and rates of carbon 

partitioning [79], and could potentially meet the environmental goals as for renewable fuels in 

the U.S. [80]. 

6.2.4.1 System boundary and Functional Unit 

The boundaries of the combined growth, extraction and conversion systems researched in 

this LCA are illustrated and summarized in Figure 6.4 [174]. The processes considered for this 

study start with the growth stage of the cyanobacteria, and end at the point of conversion of the 

bioproducts to a biofuel which can displace conventional fuels. The system includes the direct 

energy requirements of the facility. The water and nutrient requirements are supplied by recycled 

commercial water and commercial/industrial fertilizers. Carbon dioxide is assumed to be 

obtained from waste streams from local industrial CO2 facilities including power plants, amine 
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natural gas treatment plants, and fermentation plants. The functional units for this study are the 

energy produced from biofuels to displace petroleum fuels, in MJ. 

 

Figure 6.4 Boundaries and inputs of cyanobacterial derived biofuel LCA model. Adapted from 
Carlos Quiroz-Arita, John J. Sheehan, Thomas H. Bradley. Algal Research 26 (2017): 445-452. 

 

6.2.4.2 Impacts considered 

The sustainability metric and impacts considered in this study is net energy ratio (NER). 

The production of biofuel as an energy carrier is the primary goal of any potential biofuel 

technology [174]; therefore, net energy ratios (Eq. 11) was the metric of interest for this LCA. 

@%A =  C¤LJ¥Mi¦§
C¨QL§M¤¦§

           Eq. 11 

NER are defined in this study by normalizing the energy consumed (Econsumed) in the 

cyanobacteria growth, fuel extraction, and conversion processes by the energy produced 

(Eproduced) by this system as embedded in the lower heating value of the biofuel.  
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6.2.4.3 LCA tools 

The bioenergy system was modeled in the GaBi 6 software by constructing a model as a 

function of mixing energy input in the cultivation stage. GaBi is a tool that allows for the 

estimation of the lifecycle energy and emissions output of a process as a function of the energy, 

material consumed for that process [223]. The GaBi model was used to calculate the lifecycle, 

material consumption, and net energy use for the lifecycle of the cyanobacteria-to-biofuel 

process [174]. 

In evaluating the life cycle energy consumption of the cyanobacteria-to-biofuel process, 

the biomass that is not converted to fuel can be considered as a co-product. For this study, the 

cyanobacteria co-product credits are allocated using the displacement method. The displacement 

method assumes that the co-product displaces a preexisting conventional product. The 

displacement co-product credits represent the lifecycle energy that would be required to produce 

the displaced product. Co-product credits are subtracted from the overall energy of the 

cyanobacteria-to-biofuel process [174]. 

6.3 Results and Discussion 

The results of this research are synthesized into three aspects. First, the biological responses 

of Synechocystis sp. PCC 6803 due to mixing energy input variation in the system are evaluated 

by the experimentally determined maximum growth rates and cyanobacterial biomass 

productivities. The significance of the response is evaluated by a one-way analysis of variance 

(ANOVA) and the physical processes that potentially impact this biological response are put into 

perspective. Second, the influence of turbulence mixing in the light experienced by either single 

Synechocystis sp. PCC 6803 cells or the bulk cyanobacterial biomass is evaluated by a well-

mixed growth model validated with the experimental work in the flat-panel photobioreactors and 
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open raceway pond, respectively. Lastly, the implications of differences in mixing energy input 

in the system design and sustainability of cyanobacterial derived biofuels, particularly ethanol, 

are evaluated by the life energy, in terms of NER. The significance of the NER response due to 

mixing energy input is evaluated by a one-way ANOVA. Propagation of uncertainty in the LCA 

model considers the experimental error in the maximum growth rates of Synechocystis sp. PCC 

6803, error in cyanobacterial biomass productivities, and error in biomass to ethanol conversion 

(0.108 to 0.280 MJEnergy Consumed·MJbiofuel
− 1).  

6.3.1 Industrially relevant mixing energy inputs control physiological responses of 

Synechocystis sp. PCC 6803 

Industrially relevant mixing energy inputs are proven to control the biological responses 

of Synechocystis sp. PCC 6803. While previous efforts evaluated the impact of mixing on 

microalgae growth, most of the research performed up-to-date considered uneconomic energy 

inputs for the industry, and the implications in the cultivation of Synechocystis sp. PCC 6803 in 

flat-panel photobioreactors and open raceway ponds are ignored. By performing experimental 

cultivation of this cyanobacteria strain using high incident radiations and industrially relevant 

mixing energy inputs, we have developed a comprehensive approach to predict the biological 

performance in industrial cultivation systems. 

The maximum growth rates (e�� ) of Synechocystis sp. PCC 6803 and cyanobacterial 

biomass productivities are illustrated in Figure 6.5 and 6.6, respectively. From the experimental 

work performed in this research, cyanobacterial growth is demonstrated to be feasible at the 

lowest mixing energy inputs in flat-panel photobioreactors, 0.03 W.m-3 and 0.47 W.m-3, and at 

higher maximum growth rates and biomass productivities than observed at mixing energy inputs 

of 0.97 and 1.94 W.m-3. The mixing energy input of 0.47 W.m-3 is equivalent to an air mixing 
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rate of 0.17 VVM. The biological metrics at this mixing energy input were measured at 1.29 ± 

0.23 d-1, 0.90 ± 0.15 g.l-1 in a residence time of 3.86 days or a productivity of 0.23 g.l-1.d-1. The 

significance of the biological response due to mixing energy input, particularly at mixing energy 

inputs of 0.47 W.m-3, is confirmed by observing probabilistic values less than 0.05 (Figure 6.5 

and 6). The 0.17 VVM evaluated in this research for Synechocystis sp. PCC 6803, is one third 

the value observed as optimal for Nannochloropsis salina cultivation by J.C. Quinn et al. (2012). 

Moreover, the mixing energy input were the biological metrics for Synechocystis sp. PCC 6803 

are maximized in these experiments, are from 2 to 100 order of magnitudes lower than reported 

for various microalgae strains by Jones et al. (2017). Additionally, the mixing energy input for 

the cultivation of Synechocystis sp. PCC 6803 in open raceway pond was performed from 1 to 2 

order of magnitudes lower, 0.1 W.m-3, than reported in the industry by Sompech et al. (2012). 

The maximum growth rate and biomass productivity obtained from cultivation of Synechocystis 

sp. PCC 6803 in open raceway pond at 0.1 W.m-3 are 0.76 ± 0.07 d-1 and 9.65 ± 1.77 g.m-2.d-1. 

These findings have significant implications for industrial cultivation of cyanobacteria, proven in 

this work to be feasible at lower mixing energy inputs than reported in the literature, potentially 

contributing to reduce operational costs due to energy requirements in this stage of the system. 
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Figure 6.5. Maximum growth rate of Synechocystis sp. PCC 6803 in flat-panel photobioreactors. 
The p-value or probability value was obtained from the one-way ANOVA in Matlab®. The 

horizontal bars and stars link the groups that have means significantly different from each other 
as evaluated by the one-way ANOVA. 

 

 

Figure 6.6 Biomass productivity of Synechocystis sp. PCC 6803 in flat-panel photobioreactors. 
The p-value or probability value was obtained from the one-way ANOVA in Matlab ®. The 

horizontal bars and stars link the groups that have means significantly different from each other 
as evaluated by the one-way ANOVA. 
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A potential driver of the biological responses observed in this work is the shear stress, 

constraining the growth and productivities at certain physical conditions in flat-panel 

photobioreactors and open raceway ponds. The mixing energy inputs were abrupt inhibition were 

observed in the flat photobioreactor, 0.97 and 1.94 W.m-3; however, are yet from 100 to 200 

order of magnitudes lower than the mixing energy where hybridoma cells suffered apoptosis as 

reported by Al⁰Rubeai et al. (1995) and Chalmers (2015). Comparing to the mixing energy 

inputs reported to by Keane et al. (2003) for mammalian cells, these are from 30 to 60 order of 

magnitudes higher than the values used for Synechocystis sp. PCC 6803. Although there is no 

concluding evidence of Synechocystis sp. PCC 6803 cells disruption due to shear stress in this 

research, the VVM where complete inhibition was observed, 0.70 m3
air.min-1.m-3

reactor, is from 

one to two order of magnitudes lower than the air rates reported by Barbosa & Wijffels (2004) 

where the highest death rates were observed for D. tertiolecta and D. salina, a microalgae strain 

lacking of cell wall. However, the air rate where inhibition was reported for the Phaeodactylum 

tricornutum by Mirón et al. (2003) is the same order of magnitude, 0.567 m3
air.min-1.m-3

reactor, of 

the air rate where inhibition is observed for Synechocystis sp. PCC 6803 in this research. This 

strain as a matter of fact, a diatom, contains a cell wall made of silica. Synechocystis sp. PCC 

6803, on the other hand, presents a peptidoglycan layer of bacterial cell wall; therefore, cell 

disruption due to shear-induced damage is likely in turbulent and sheared environments such as 

the sparged flat-panel photobioreactor studied in this research. Nozzle size and bubbles 

formation at the sparger in photobioreactors has been claimed to be the cause of cell disruption 

[218]; therefore, the differences in the configurations used in past and present research limits the 

understanding of shear stress among the studies performed to date. A future direction to 

understand the biological responses of cyanobacteria from turbulence mixing and shear stress is 



120 

 

the application of Mechanomics, an emerging field that explains how external forces in the 

environment are sensed by cells and how they send signals to activate biological responses [208].  

6.3.2 Synechocystis sp. PCC 6803 grows limited by carbon at low mixing energy inputs 

The experimental results of cyanobacterial biomass productivity as a function of mixing 

energy inputs are illustrated in Figure 6.7, 6.8, D.3, D.4, and D.5. The one-way ANOVA results 

of the experimental biomass productivities are included in the Appendix D, Figure D.7, 

demonstrating a significant influence of mixing energy inputs as illustrated in the p-value less 

than 0.05. By incorporating light attenuation into the well-mixed cyanobacterial growth model of 

flat-panel photobioreactors, measured from the mixing energy inputs of 0.47 W.m-3, as a 

function of culture depth and dry weight biomass (DWB) (Figure D.5), the model was valid for 

all the experiments performed at different mixing energy inputs (Figure 6.7, D.3, D.4, and D.5). 

by comparing experimental and computational growth performed with normalized carbon 

content (scrubbed CO2 and bicarbonate addition) relative to experiments performed with sparged 

air (containing atmospheric CO2), under identical mixing energy inputs, carbon was 

demonstrated to be the limiting nutrient for growth of Synechocystis sp. PCC 6803 at the lowest 

mixing energy input in this research, 0.03 W.m-3 (Figure 6.7, D.3, D.4, and D.5). For this mixing 

energy input; for instance, if carbon is constrained to the concentrations contained in the air, 

0.0011 g.l-1.min-1, this would be below the concentrations where growth is inhibited, 0.005 g.l-1, 

as previously published by Kim et al. (2011). 
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Figure 6.7 Flat-panel photobioreactor experimental growth of Synechocystis sp. PCC 6803 at 
mixing energy inputs of 0.01 W.m-3. The error bars denote the upper and lower values from five 

experimental replicates. The cultures were cultivated at 31 ± 1 °C and 1,244 ± 47 μmol 
photons.s−1.m−2. 

 

The biomass of Synechocystis sp. PCC 6803 for the open raceway pond at mixing energy 

input of 0.10 W.m-3 is illustrated in Figure 6.8. The open raceway pond is operated at mixing 

energy inputs of 0.10 W.m-3, an order of magnitude lower than reported by Sompech et al. 

(2012) was used for cultivation. Lower biomass productivities observed in the open raceway 

pond relative to the flat-panel photobioreactors, suggests that open raceway ponds operated in 

ourdoor conditions where carbon supply is not feasible growth limited by this macronutrient. To 

summarize, turbulent mixing more likely impact biological responses due to cell disruption 

induced by shear stress and constraining the carbon in the system controlled by sparged air. 
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Figure 6.8 Open raceway pond experimental growth of Synechocystis sp. PCC 6803 at mixing 
energy inputs of 0.10 W.m-3. The error bars denote the upper and lower values from five 

samples. The cultures were cultivated at 29 °C and 915 ± 79 μmol photons.s−1.m−2. 
 

6.3.3 Low mixing energy inputs for cultivation in open raceway ponds and flat-panel 

photobioreactors reduce the life cycle energy of cyanobacterial biofuels  

The system performance of cyanobacterial derived ethanol, as a function of mixing 

energy inputs in open raceway ponds and flat-panel photobioreactors, is evaluated by an LCA. 

By propagating the experimental uncertainty and the energy conversion, we have developed an 

inclusive model to evaluate the sustainability of cyanobacterial derived ethanol. These results 

will inform biology and engineering researchers, the industry, and policy makers to develop 

strategies to design new strains, bioprocesses, pathways, and incentives towards a more 

sustainable production of photoautotrophic biofuels. 

The life cycle energy results for the open raceway pond and flat-panel photobioreactors, 

measured as the energy consumed that is normalized by the energy produced by the system, 
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NER, is illustrated as a function of mixing energy input in Figure 6.9. The one-way ANOVA 

results of the experimental biomass productivities are included in the Appendix D, Figure 6.9 

and D.8, demonstrating a significant influence of mixing energy inputs as illustrated in the p-

value less than 0.05. The response is more significant at mixing energy inputs of 0.47 W.m-3 

relative to the highest mixing energies studied. The life cycle results demonstrate that despite 

mixing energy inputs of 0.10 W.m-3 used for cyanobacteria cultivation in open raceway ponds, 

an order magnitude lower than reported by Sompech et al. (2012), the lower cyanobacterial 

biomass and ethanol productivities of Synechocystis sp. PCC 6803 relative to the flat-panel 

photobioreactors make this pathway uneconomic and unsustainable as illustrated by the highest 

NER (Figure 6.9). The growth of Synechocystis sp. PCC 6803 in open raceway pond at this 

mixing energy input; however, was limited by carbon, unlike the experiments performed in flat-

panel photobioreactors with normalized carbon content. 

 

Figure 6.9 Net Energy Ratio (NER) of cyanobacterial derived ethanol with cultivation of in open 
raceway pond and flat-panel photobioreactor (PBR). The error bars denote the upper and lower 

values from the LCA model. Model uncertainty propagation is due to experimental error of 
cyanobacterial cultivation and biomass to energy conversion. The p-value or probability value 
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was obtained from the one-way ANOVA in Matlab ®. The horizontal bars and stars link the 
groups that have means significantly different from each other as evaluated by the one-way 

ANOVA. 
 

Likewise, the highest mixing energy inputs used for flat-panel photobioreactors, 0.97 and 

1.94 W.m-3, provided low energy efficiency due to high mixing energy requirements, inhibition 

of Synechocystis sp. PCC 6803, and the resulting biomass and biofuel productivities. At 0.03 

W.m-3, the energy efficiency is significantly improved by roughly 60% relative to the highest 

mixing energy inputs. Moreover, at mixing energy inputs of 0.47 W.m-3, there is a trade-off 

between energy requirements, and biomass and biofuel productivities of Synechocystis sp. PCC 

6803, overcame by the latter as demonstrated by reducing the NER by 77% relative to the 

highest mixing energy requirements experimentation, improving energy efficiency and 

sustainability of the cyanobacterial derived ethanol system (Figure 6.9). This NER, 2.47 ± 0.93 

MJconsumed.MJ-1
produced, minimized at a mixing energy input of 0.47 W.m-3, has the same order of 

magnitude reported in Quiroz-Arita, Sheehan, & Bradley (2017), 1.66 MJconsumed.MJ-1
produced; and 

four to 12 times higher than the NER, 0.20-0.55 MJconsumed.MJ-1
produced, reported by Luo et al. 

(2010). However, the high NER values are in part due to photoinhibition of growth at the high 

light intensities used in this study; therefore, future analysis considering the outdoors daily light 

fluctuations will significantly improve these and other metrics of sustainability. 

6.4 Conclusions 

The mixing energy inputs for cultivation of Synechocystis sp. PCC 6803 in open-raceway 

ponds and flat-panel have been proven to control biological responses and life cycle metrics of 

sustainability in the design of cyanobacterial derived ethanol. The maximum growth rates and 

cyanobacterial biomass productivities were significantly impacted by differences in mixing 

energy inputs, demonstrated by decoupling the carbon from the mixing rate used in the flat-panel 
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photobioreactors experiments. The experimental work performed in this research suggests is 

likely that sheared environments in this turbulent flow contributed to inhibition and cell 

disruption at higher mixing energy inputs. Additionally, carbon was demonstrated to limit the 

growth at lowest sparged air rates in flat-panel photobioreactors and in open raceway ponds 

operated under outdoor conditions. A major contribution in this research is the driving of the life 

cycle energy efficiency in open raceway ponds and flat-panel photobioreactors due to differences 

in mixing energy input. The findings of this study; therefore, should be incorporated into future 

research, industry, and policies strategies for the sustainable design and operation of 

photoautotrophic derived biofuels and co-products systems. 

6.5 Answer to Research Question 3.1 

This section of the research effort has allowed us to address Research Question 3.1, which is 

restated here: 

What are the implications of mixing rates in the life cycle metrics of flat photobioreactors 

and raceways ponds? 

Research Question 3.1 is associated with Hypothesis 3.1:  

Differences in mixing energy change metrics of growth and sustainability for 

photoautotrophic-derived biofuel systems. 

This chapter demonstrates that there is a tradeoff between mixing energy and biomass 

productivity, reducing (improving) the life cycle net energy ratio of cyanobacterial biofuels at 

low mixing rates. Additionally, this chapter provides evidence that carbon limits the growth of 

cyanobacteria at low mixing energy inputs in flat-panel photobioreactors, but especially in open 

raceway ponds under industrially-relevant conditions. High mixing energy inputs in flat-panel 

photobioreactors inhibits the growth of cyanobacteria.  
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The results of these studies provide support to the hypothesis that differences in mixing 

energy inputs change metrics of growth and sustainability, improving growth and life cycle net 

energy ratios at low mixing energy inputs. 
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CHAPTER 7: Pilot scale open raceway ponds and flat-panel photobioreactors maintain 

well-mixed conditions under wide range of mixing energy inputs6 

7.1 Introduction 

Photoautotroph-based biofuels are considered one of the most promising renewable resources 

to meet the global energy requirements for transportation systems [5]. Long-term research and 

development has resulted in demonstrations of microalgae areal oil productivities that are higher 

than crop-based biofuels, about 10 times that of palm oil and about 131 times that of soybean [5, 

74-76]. Cyanobacteria is reported to have ~4 times the areal productivity of microalgae on an 

equivalent energy basis [6]. Downstream of this cultivation process, cyanobacterial biomass and 

bioproducts can be supplied to biorefineries producing feed, biomaterials, biosynthetic 

chemicals, and biofuels [77]. As such, cyanobacterial systems can be a significant contributor to 

more sustainable energy and production systems. 

Turbulent environments are demonstrated to induce physiological responses in 

photoautotrophic microorganisms in open raceway ponds and photobioreactors [200-207]. 

Recent efforts studied the effects of turbulence dissipation rates ranging from 0 to 0.08 m2.s-3 

simulated at laboratory scale conditions (1 liter cultures) [200]. This work concluded that despite 

no alteration of photosynthesis activity on chlorophyll a, there is a systematic increase in the 

growth rates of the strain Microcystis flos-aquae as a function of the turbulent dissipation rate 

and a decay in the growth rate of the strain Anabaena flos-aquae at high turbulence. These 

authors identified a maximum phosphorous uptake rate by these cyanobacteria strains at 

turbulence dissipation rates of  2.26E−2 m2.s-3, suggesting that turbulence plays an important role 

                                                           
6 This chapter is adapted from a prepared journal article for consideration for publication: Carlos Quiroz-
Arita, Myra L. Blaylock, Patricia E. Gharagozloo, David Bark, Lakshmi Prasad Dasi, Thomas H. Bradley. “Pilot 
scale open raceway ponds and flat-panel photobioreactors maintain well-mixed conditions under wide range of 
mixing energy inputs”. 
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in the biological adaptation of cyanobacteria by influencing nutrient uptake [200]. In other 

research, the effects of shear environments were studied for the cyanobacteria and microalgae 

strains Synechocystis sp. and Chlamydomonas reinhardtii, respectively, in 150 ml cultures [201]. 

In this study the growth rate of Synechocystis sp. was independent of shear stress (0 to 0.18 N.m-

2) and Chlamydomonas reinhardtii growth rate was linearly dependent on shear stress. These 

laboratory scale environments; however, are not representative of industrial scale conditions.  

Other impacts of turbulent mixing are cell disruption due to shear stress [208-215]. Some 

instances are for hybridoma cells suffering apoptosis at mixing energy inputs of 1.87E3 W.m-3 

[209, 216]. Other studies observed 51% lower recombinant protein production, 42% higher 

glucose uptake, and 50% lower lactate production cells exposed to mixing energy inputs of 6.4E2 

W.m-3 [209, 217]. Inhibitory effects; however, are reported at mixing energy inputs above 1E6 

W.m-3 and Kolmogorov microscales less than or equal to 2.4 micrometers  for mammalian cells 

[209]. In photobioreactors, small bubbles are reported to cause cell damage [205, 218], colliding 

with photoautotrophic cells and contributing to a high shear environment. The microalgae strain 

Phaeodactylum tricornutum, for instance, presented inhibition at air rates of 0.567 m3
air.min-1.m-

3
reactor , where carboxymethyl cellulose (CMC) was supplied into the medium to mitigate shear-

induced damage in parallel experiments [205]. Other sparged photobioreactors cultivating 

Dunaliella tertiolecta and D. salina reported increments in the decay rates as a function of gas 

velocity, observing the highest death rates at 8.91 and 13.37 m3
air.min-1.m-3

reactor [218]. There is 

no research reported in the literature concerning the biological system response due to shear 

stress on cyanobacteria cells disruption, particularly on Synechocystis sp. PCC6803. Moreover, 

most of the previous research were conducted at mixing energy inputs are 30, 100, or thousands 
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order of magnitudes higher than is considered cost-effective for industrial cultivation systems 

[53, 224]. 

Photoautotrophic microorganisms are cultivated in photobioreactors, the most common 

types being the open raceway ponds and flat panel PBR [225]. Open raceway ponds are 

constructed in a configuration with channels, using paddlewheel mixers that promote a low shear 

environment [8]. Flat-panel photobioreactors are vertically translucent flat plates, illuminated on 

both sides and stirred by aeration [9]. Unlike outdoor raceways and outdoor PBR, laboratory-

scale experiments are most commonly grown under ideal conditions including ideal mixing rates, 

optimum light intensities and optimized media.  Comparison of the laboratory scale literature to 

industrial results demonstrate that photoautotrophic biomass and biofuels productivity are 

overestimated at laboratory scale experiments relative to industrial scale systems. This distinct 

difference in the performance of industrial systems are partially attributed to the light 

experienced by photoautotrophic microorganisms at outdoor conditions. For instance, the light 

saturation of Synechocystis sp. PCC6803 is reported at about 200 μmol photons.s−1.m−2 [10, 84], 

whereas photoautotrophic microorganisms will face incident radiations of about 2000 μmol 

photons.s−1.m−2 at noon in locations such as Colorado [11] Previous studies have estimated that 

the total photo conversion efficiency of algae is from 2.6% (at high light) to 6.3% (at reduced 

light) [12]. These estimations assumed that 46% of the spectrum is in the photosynthetic active 

radiation (PAR) range of 400 to 700 nm, losses due to photon transmissions efficiency of 95%, 

photon utilization efficiency ranging from 10% to 30%, biomass accumulation efficiency of 

50%, and biomass energy content of 21.9 kJ∙g−1. Low photo conversion efficiency in 

photoautotrophic microorganisms is attributed to dark and photorespiration biomass losses [62, 

219, 220]. Photorespiration is well understood in plants, where carboxylation step in the Calvin–
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Benson cycle is switched to oxygenation, dissipating photic energy and accounting for 25% 

reduction in the photosynthesis in C3 plants [221]. Photorespiration is poorly understood in 

photoautotrophic microorganisms. 

Some previous studies have investigated the effects of mixing rates on photoautotroph 

biomass productivities in industrial scale systems [11, 53, 54]. Some of these efforts have 

identified optimum volumes of air flow rates per unit volume (VVM) of photobioreactors that 

might be industrially relevant for microalgae, generally between 0.2 to 1.2 m3
air.min-1.m-3

reactor 

[11]. Many others have considered mixing energy inputs that are far outside the energy 

consumption that can be considered economic, or industrially relevant, ranging from 8 to 633 

W.m-3 [53, 224]. For raceway ponds, for instance, energy inputs from 1 to 2 W.m-3 are utilized in 

the algae cultivation demonstrations performed to date [54]. Additionally, previous research state 

that mixing in industrial photobioreactors induce flashing or dark/light cycles [226-228]. For 

instance, by carrying experimental growth of Chlamydomonas reinhardtii under incident 

radiations fluctuating between 5 Hz and 100 Hz, growth rates were found to be linearly 

dependent on the light frequency. These previous efforts suggest that mixing in photobioreactors 

control the light regimes experienced by single cells, impacting the bulk photosynthesis and 

biomass productivity of photoautotrophic microorganisms. Other efforts; however, demonstrated 

no improvements in algal productivity at light fluctuations from 0.038 Hz to 1 Hz,  modeled 

using a control timer to open and close a mini venetian blind device [229]. The latter frequencies 

(<< 1 Hz), are more consistent when comparing with the circulation velocities studied for 

fermenters with a height to diameter ratio less than 3 (< 60 seconds) and for airlift reactors with 

split-cylinders heights of 6.02 m. (6.5 seconds) [230]. 
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Similarly, many studies have attempted to predict the fluid mechanics of raceway ponds 

and photobioreactors via Computational Fluid Dynamics (CFD) approaches [59, 60, 231]. Some 

raceway ponds CFD models applied to investigate velocity, heat transfer, are weakened because 

they use average velocities as boundary conditions [54, 71], missing the dynamics of these 

systems downstream of the paddlewheel. Additionally, turbulence intensities used in previous 

CFD applications in open raceway ponds are 3.84% [59], and default values recommended by 

commercial CFD codes [60, 62, 71], ranging from 5-10%. For the case of open channel flow, for 

instance, experimental turbulence intensities are reported at 2.8% [232]. Turbulence intensity and 

the impact of difference in mixing energy inputs in open raceway ponds are not fully understood. 

Other previous research studied particle tracking with neutrally buoyant particles in 

photobioreactors [73] , but the statistical and temporal nature of turbulence modeling was not 

considered. Previous efforts have demonstrated well mixed conditions in open raceway ponds; 

however, at paddlewheel speeds ranging from 15 RPM to 28 RPM [231] equivalent to mixing 

energy inputs estimated at 4.5 W.m-3 to 30 W.m-3 or two to 15 times higher than used for 

industrial cultivation [54, 233].  None of the previous studies have analyzed algae/cyanobacteria 

cell motion using modern experimental fluid mechanics, engineering signal processing, 

modeling, and CFD tools at industrially relevant mixing energy inputs.  

Two modern methods for experimental fluid mechanics are particle image velocimetry 

(PIV) and Acoustic Doppler Velocimetry (ADV). PIV correlates the velocity of the fluid from 

the distance traveled in a short period of time by neutrally buoyant particles, captured by laser 

technology and high-resolution cameras [61, 63, 65-67]. Biological applications include; for 

instance, aquatic predator-prey interactions [234], hydrodynamics of fish in aquatic 

environments [64], and fluid transport by plankton aggregations [70]. ADV correlates the 
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velocity of the fluid from the speed of sound of an acoustic pulse [235, 236]. This technique has 

been widely used to understand turbulence in natural and engineered civil works including open 

channels [237-243]. There is previous study that utilized Acoustic Doppler Velocimetry (ADV) 

to describe the velocity field of raceway ponds [72]; however, ignoring the time scales and 

turbulence that describe the physics of these reactors. In general, turbulence of flat-panel 

photobioreactors and open raceway ponds are poorly understood, and today’s evidence of 

turbulence with difference is mixing energy inputs in the light experienced by photoautotrophic 

microorganisms is not conclusive. 

Based on this understanding of the literature we seek to understand the role of turbulent 

mixing on the light experience by photoautotrophic microorganisms; therefore, we conducted (i) 

pilot scale fluid mechanics experimentation in open raceway ponds and flat-panel 

photobioreactors at industrially relevant mixing energy inputs, and (ii) applied computational 

fluid dynamics modelling and validation. By studying turbulence as a function of mixing energy 

input in open raceway ponds and flat-panel photobioreactors, we aim to understand the role 

turbulence plays in the frequency of photoautotrophic microorganisms’ motion in pilot scale 

systems. 

7.2 Materials and Methods 

To evaluate the implications of turbulent mixing on the light experienced by 

photoautotrophic microorganisms in pilot scale open raceway ponds and flat-panel 

photobioreactors, we must understand the connections between fluid mechanics and 

photoautotrophic microorganisms motion under differences in mixing energy inputs. The 

workflow, illustrated in Figure 7.1, integrates parallel but complementary experimental and 

computational fluid mechanics. By incorporating laboratory experiments at industrially relevant 
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inputs, we developed a holistic bridge and feedback loop approach between laboratory and 

industrial scale experimentation. 

 

 

Figure 7.2 Workflow for experimental and computational fluid mechanics (top flow) and 
photoautotrophic growth (bottom flow) to assess the impact of mixing energy inputs. 

 

7.2.1 Flat-Panel Photobioreactors Configuration 

To validate the growth models, we performed experimental work under mixing energy 

input variability in the flat-panel photobioreactor and open raceway pond. As illustrated in 

Figure 7.2, the batch process was carried out in five replicates of 1L flat-panel photobioreactors 

made in acrylic with surface to volume ratio of 112 m2·m− 3. The experiments were performed at 

cultures depths of 20 cm. The systems were mixed by sparged air at the bottom of the flat-panel 

photobioreactors at industrially relevant mixing inputs of 0.7, 0.35,  and 0.17 m3 of air per 

minute per cubic meter of reactor, commonly referred as VVM [11]. The equivalent mixing 

energy inputs used in the flat-panel photobioreactors experiments were 1.94, 0.97, and 0.47 

W.m-3. 
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Figure 7.2 Instrumentation Diagram of Flat-panel photobioreactors system for experimental and 
model based analysis. 

 

7.2.2 Open Raceway Pond Configuration 

As illustrated in Figure 7.3, the open raceway pond batch process was carried out in a 

700L fiber-reinforced plastic raceway at water depths of 20 cm. The system was mixed with a 

paddlewheel provided with a 90V DC Gearmotor with a rated torque of 33 in.-lb controlled by 

an IronHorse DC Drives. The mixing energy input used in the open raceway pond experiments 

were 2.1 W.m-3 and 0.7 W.m-3. Additional experiments were conducted at 0.10 W.m-3, an order 

of magnitude lower than reported in the literature for industrial systems [54]. 
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 Figure 7.3 Plan View and Instrumentation Diagram of Open raceway pond system for industrial 
scale experimental and model based analysis. The 3D view of the Open Raceway Pond is 

illustrated in the upper right corner. 
 

7.2.3 Experimental Fluid Mechanics Methods 

To understand the physics of the open raceway ponds and flat-panel photobioreactors we 

applied a variety of fluid mechanics tools including Particle Image Velocimetry (PIV), Acoustic 

Doppler Velocimetry (ADV), and applied CFD. 

7.2.3.1 Flat-panel photobioreactors fluid characterization by PIV 

The velocity field of flat-panel photobioreactors was measured using PIV. Mixing energy 

inputs at 0.47 W.m-3, 0.97 W.m-3, and 1.94 W.m-3 were used in this study. The study was 

performed with 20 mm PMMA Rhodamine-B particles, Nd:YLF Single Cavity Diode Pumped 

Solid State High Repetition Rate, laser with 0.2 mm thick measurement plane, double frame 

CMOS camera, DaVis software for processing at 1000 hz, and 32x32 double pass followed by a 

12x12 single pass interrogation window.  
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7.2.3.2 Open raceway pond fluid characterization by ADV 

The velocity field in the open raceway pond was measured using ADV. We measure fluid 

velocities at three different cross sections (CS); (i) downstream of the paddlewheel, (ii) at the 

first turn, and (iii) at the straight channel. At each cross section, we collected data in a 5X5 

matrix with a Vectrino plus firmware + NORTEK. At each point, 60,000 samples at 50 Hz were 

collected by ADV. We performed experimentation at mixing energy inputs of 2.1 W.m-3, 0.7 

W.m-3, and 0.1 W.m-3 to evaluate the fluid mechanics and biological implications of reducing 

energy consumption by the industry. 

7.2.3.3 Characterizing cell motion by CFD  

To understand the frequency of photoautotrophic microorganism’s motion in flat-panel 

photobioreactors and open raceway ponds, particle tracking is obtained from the CFD models in 

a Lagrangian representation of the flow. Length and time scales were computed from 

Kolmogorov microscales [69, 244]. The smallest length scales of motion (©) are computed by 

dimensional analysis as a function of the largest length scale (ª) and the Reynolds number (A�) 

(Eq. 1), and, the smallest time scales («) are a function of the largest time scale (d) and the 

Reynolds number (Eq. 2). The viscous sub-layer in contact with a smooth wall is computed from 

a linear relationship between the mean velocity (¬), wall shear stress («­), viscosity (e), and the 

distance from the wall (®) (Eq. 3) [69]. 

© = ¡
¯E°/�           Eq. 1 

« = `
¯E¢/\           Eq. 2 

® = e ±
²³

            Eq. 3 

The characteristic length of the flat-panel photobioreactor and open raceway pond are 

0.20 m. and 0.46 m., respectively. The Reynolds number of the flat-panel photobioreactors for 
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mixing energy inputs of 0.03 W.m-3, 0.47 W.m-3, and 0.97 W.m-3 are 2,913, 3,608, and 4,053, 

respectively. For the case of the open raceway pond, the Reynolds number at 0.1 W.m-3, 0.7 

W.m-3, and 2.1 W.m-3 are 34,605, 67,840, and 93,008, respectively. The wall distance at 0.1 

W.m-3, 0.7 W.m-3, and 2.1 W.m-3 are 0.0009, 0.0005, and 0.0002, respectively. The flat-panel 

photobioreactor and open raceway pond meshes were designed at length scales of 0.0008 m. and 

0.002 m., respectively, in Trelis 16.3. CFD models were developed in ANSYS Fluent 16.1 for 

the flat-panel photobioreactor and open raceway pond. The inlet velocity measured from PIV and 

ADV, and the turbulence intensities, defined as the ratio of the velocity fluctuations (´′) to the 

mean velocity (¬) measured from the experimental data (Eq. 4) [245, 246], were used as 

boundary conditions for the flat-panel photobioreactor and open raceway pond.  

� ≡ U·
±             Eq. 4 

The finite volume method was selected to guarantee conservation of mass and Direct 

Numerical Simulation (DNS) was applied [68, 69]. The time steps used for flat-panel 

photobioreactors CFD simulations were 0.02 seconds for mixing energy inputs of 0.03 W.m-3, 

0.47 W.m-3, and 0.97 W.m-3. For the case of the open raceway pond, CFD simulations were 

performed at 0.1 W.m-3, 0.7 W.m-3, and 2.1 W.m-3 at time steps of 0.2, 0.1, and 0.05 seconds, 

respectively. The CFD results were validated against experimental data and particle tracking 

were computed in the flat-panel photobioreactor and open raceway pond by integrating the 

velocity field [247]. This assumes that photoautotrophic cells are neutrally buoyant and that 

inertial forces are much greater than other forces these microorganisms experience such as 

gravity and buoyancy. The frequency of photoautotrophic cells motion was computed as the 

number of cycles per second with respect to the time average motion of each particle. 
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7.3 Results and Discussion 

The results of this research are synthesized into three aspects. First, the flat-panel 

photobioreactor experimental fluid mechanics results are presented and the forces driving motion 

in these systems is discussed. Second, the open raceway pond experimental fluid mechanics 

results are presented, discussion is particularly focused on novel contributions to the field by 

understanding the turbulence intensities with differences in mixing energy input. Third, the 

impact of differences in mixing energy inputs in the motion of photoautotrophic microorganisms 

is evaluated by applying validated CFD models, based on flat-panel photobioreactors and open 

raceway ponds. 

7.3.1 Flat-panel photobioreactor flow characterization 

The velocity field of the flat-panel photobioreactor at low and high mixing energy inputs 

are illustrated in Figure 7.4. The mean velocity computed from PIV at mixing energy inputs of 

0.47 W.m-3, 0.97 W.m-3 and 1.94 W.m-3 are 0.015 m.s-1, 0.018 m.s-1, and 0.020 m.s-1, 

respectively. For mixing energy inputs of  of 0.47 W.m-3, 0.97 W.m-3 and 1.94 W.m-3 the 

turbulence intensities are 1.4%, 1.2%, and 1.0%, respectively. Lastly, turbulent dissipation for 

these mixing energy inputs are 1.3E-5 m2.s-3, 1.7E-5 m2.s-3, and 1.5E-5 m2.s-3. 

  

 

Figure 7.4 Velocity field (m.s-1) obtained from PIV of flat-panel photobioreactor at mixing 
energy inputs of 0.47 W.m-3 (left figure), 0.97 W.m-3 (middle figure), and 1.94 W.m-3 (right 

figure). 
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These turbulence dissipation rates are from about 100 to 600 order magnitudes lower than 

used by Xiao et al. (2016) where phosphorous uptake rates were maximized and growth decay 

was observed in different cyanobacteria strains. These results demonstrate the significant 

differences in the fluid environments maintained under industrially relevant mixing energy 

inputs relative to laboratory conditions, impacting the biological responses of photoautotrophic 

microorganisms. 

The flow circulation in the pilot flat-panel photobioreactors is driven by the buoyancy of 

air bubbles supplied by the air sparger. Buoyancy only varies with bubble size and the bubble 

sizes are mostly dictated by the orifice size on the air sparger. Therefore, because bubble 

buoyancy and velocity is maintained constant, the velocity of the fluid near the air sparger is 

relatively constant. The flow circulation in the flat-panel photobioreactors, as a result, is 

theoretically constant at industrially relevant mixing energy inputs studied in our research. 

7.3.2 Pilot scale open raceway pond flow characterization 

By applying experimental ADV, we have a better understanding of turbulence as a 

function of industrially relevant mixing energy inputs in pilot open raceway ponds. The 

experimental velocity components (x, y, z) downstream the raceway paddle wheel are illustrated 

for 2.1 W.m-3 mixing energy input as shown in Figure 7.5. The instantaneous velocity measured 

at each point in the cross section is illustrated in the Appendix E (Figure E2). The velocity 

magnitude, turbulence dissipation rates, and turbulence intensities were computed from these 

experimental data. Turbulence intensities, downstream the raceway paddlewheel, are illustrated 

in Figure 7.6. 
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Figure 7.5 First cross section (downstream paddlewheel) velocity components (m.s-1) of open 
raceway pond at mixing energy input of 2.1 W.m-3. The left figure corresponds to the x-velocity, 

the middle figure corresponds to the y-velocity, and the right figure corresponds to the z-
velocity. 

 

   

Figure 7.6 Turbulence intensities (%) of first cross section of open raceway pond at mixing 
energy inputs of 0.1 W.m-3 (left figure), 0.7 W.m-3 (middle figure) and 1.94 W.m-3 (right figure). 
 

Experimental velocities and turbulence intensities were used as boundary conditions of 

the CFD models. The velocity field of the fluid domain in the open raceway pond were 

computed by CFD models at mixing energy inputs 0.1 W.m-3, 0.7 W.m-3, and 2.1 W.m-3 (Figure 

7 and Figure E3).  The velocity field of the CFD model at mixing energy inputs of 0.1 W.m-3 is 

illustrated in Figure 7.7. The CFD models were validated against experimental data measured at 

the second and third cross section of the open raceway pond, located in the first turn and in the 

straight channel as illustrated in the Appendix E (Figure E1 and E5). 
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Figure 7.7. Velocify field (m.s-1) from Direct Numerical Simulation based CFD model of open 
raceway pond at mixing energy inputs of 0.1 W.m-3. 

 

These results demonstrate that turbulence intensities have been overestimated in previous 

studies applying CFD to open raceway ponds. At mixing energy inputs of 0.1 W.m-3, 0.7 W.m-3, 

and 2.1 W.m-3 the velocity magnitudes computed from the experimental ADV data downstream 

the raceway paddlewheel are 0.08 m.s-1, 0.15 m.s-1, and 0.21 m.s-1. Turbulence dissipation rates 

at these industrially relevant mixing energy inputs are 6.1E-4 m2/s-3, 2.8E-3 m2/s-3, and 1.1E-2 

m2/s-3. For example, turbulence dissipation rates at mixing energy inputs of 0.1 W.m-3 and 0.7 

W.m-3 were found to be 1 to 13 order of magnitudes lower than used by Xiao et al. (2016) where 

phosphorous uptake rates were maximized and growth decay was observed in different 

cyanobacteria strains. However, the turbulence dissipation rates Xiao et al. (2016) found to 

maximize phosphorous uptake rate in cyanobacteria strains is twice the turbulence dissipation 

rate computed at mixing energy inputs of 2.1 W.m-3. Turbulence dissipation rates where 

cyanobacterial growth decay was found by Xiao et al. (2016) is seven times higher than observed 
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at mixing energy inputs of 2.1 W.m-3 in our research. Turbulence intensities computed from our 

experimental work for the first time in a pilot open raceway pond at 0.1 W.m-3, 0.7 W.m-3, and 

2.1 W.m-3 are 1.02%, 1.05%, and 1.25%, respectively (Figure 9.6). Low quality data was 

observed in the upper left point at a mixing energy input of 0.1 W.m-3, where a low signal-to-

noise ratio below 10 was recorded with no significant implication in the average value. The 

turbulence intensities used by Labatut et al. (2015) are about three to four times higher than 

measured at industrially relevant mixing energy inputs in our research. The turbulence intensities 

used by Drewry et al. (2015), Pires et al. (2017), and Zhang et al. (2017) are likely four to ten 

times higher than found in our experimental work. Overestimated turbulence intensities, as a 

result, can impact the flow dynamics and turbulence in these open raceway ponds, misleading 

CFD results. By validating our CFD model with ADV data under different mixing energy inputs, 

we found that boundary conditions, including velocity profiles and turbulence intensities, were 

sensitive in the accuracy of the CFD models. The validation of the open raceway pond CFD 

model is illustrated in the Appendix E (Figure E5). 

7.3.3 Frequency of cells motion are not significantly impacted due to differences in mixing 

energy 

The frequency of photoutotrophic microornisms motion in pilot flat-panel 

photobioreactors and open raceway ponds are not significantly impacted due to differences in 

industrially relevant mixing energy inputs. Biological responses reported in previous studies due 

to mixing is inconclusive from laboratory experimentation. By integrating experimental and 

computational fluid mechanics, we have represented the physics in pilot scale environments, 

demonstrating the fluid dynamics in flat-panel photobioreactors and open raceway ponds have no 

influence in the overall light experienced by photoautotrophic microorganisms cultures. We have 
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demonstrated this by computing the frequency of this motion (Figure 7.8) from randomly 

selected particles travelling in the flat-panel photobioreactor and open raceway pond (Figure E4)  

Photoautotrophic microorganisms frequency of motion in flat-panel photobioreactor is driven by 

the buoyancy of air bubbles, in which frequencies of this motion at mixing energy inputs of 0.47 

W.m-3, 0.97 W.m-3 and 1.94 W.m-3 were found to be 0.036 Hz, 0.032 Hz, and 0.038 Hz, 

respectively. By performing an one-way analysis of variance (ANOVA) of these frequencies we 

found they are not significantly impacted by differences in mixing energy inputs (Figure 7.8). 

The frequencies of flashing lights used by Janssen, Tramper, Mur, & Wijffels (2003) and 

Vejrazka, Janssen, Streefland, & Wijffels (2011, 2012) are from about 13 to 300 order of 

magnitudes higher than observed in our experimental work at industrially relevant mixing energy 

inputs. Our frequencies of motion are consistent with the frequencies studied by Grobbelaar 

(1991) at laboratory conditions and the frequencies estimated for fermenters by M. Y. Chisti 

(1989). Our results demonstrate flow circulation in flat-panel photobioreactors is driven by 

buoyancy of air bubbles, maintained constant in this environment regardless variation in mixing 

energy input. 

  

Figure 7.8 Frequency of photoautotrophic microorganism cell motion open raceway pond at 
mixing energy inputs of 0.1 W.m-3 (left figure), 0.7 W.m-3 (middle figure) and 1.94 W.m-3 (right 

figure). 
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Frequency of photoautotrophic microorganisms motion in pilot open raceway pond are 

not significantly impacted at industrially relevant mixing energy inputs. Frequencies of this 

motions at mixing energy inputs of 0.1 W.m-3, 0.7 W.m-3, and 2.1 W.m-3 are 0.272 Hz, 0.364 Hz, 

and 0.358 Hz. By performing an one-way ANOVA of these frequencies we found they are not 

significantly impacted by differences in mixing energy input (Figure 7.8). The frequencies of 

flashing lights used by Janssen, Tramper, Mur, & Wijffels (2003) and Vejrazka, Janssen, 

Streefland, & Wijffels (2011, 2012) are from about 1 to 40 order of magnitudes higher than 

observed in our experimental work at industrially relevant mixing energy inputs. Our frequencies 

of motion are consistent with the frequencies estimated for airlift reactors by M. Y. Chisti 

(1989). Since photoautotrophic microorganisms cells motion are not significantly impacted by 

mixing energy input, our research suggests well-mixed conditions at industrially relevant mixing 

energy inputs in pilot open raceway ponds. 

Our research suggests that previous laboratory scale studies found increments in the growth 

rates and productivities because an increment in the photon flux supplied to the cultures at higher 

flashing frequencies. Moreover, differences in industrially relevant mixing energy inputs studied 

in our research, demonstrated that photoautotrophic microorganisms motion because buoyancy 

and convection have no significant difference from an statistical perspective. We demonstrated 

in our research, as a result, that differences in mixing energy input have no impact in the overall 

light experienced by bulk photoautotrophic cultures in pilot flat-panel photobioreactors and open 

raceway ponds. 

7.4 Conclusions 

Experimental and computational fluid mechanics demonstrated well-mixed conditions in 

pilot flat-panel photobioreactors and open raceway ponds. Our experimental and computational 
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work demonstrated that (i) flat-panel photobioreactors flow circulation is driven by air bubbles 

buoyancy, and (ii) frequency of photoautotrophic microorganisms’ motion is not significantly 

impacted by differences in mixing energy inputs. Experimental and computational fluid 

mechanics and cyanobacterial growth model demonstrated well-mixed conditions in pilot flat-

panel photobioreactor and open raceway ponds at industrially relevant mixing energy inputs. 

Meaning that the light experienced by individual cells have no impact in the light attenuation of 

bulk photoautotrophic cultures and productivity. 

7.5 Answer to Research Question 3.2 

This section of the research effort has allowed us to address Research Question 3.2, which is 

restated and answered in section 9.5 of this dissertation.  
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CHAPTER 8: A Dynamic Lumped Thermal and Well-Mixed Algal Growth Model for Pilot 

Scale Open Raceway Ponds7 

8.1 Introduction 

Microalgae derived biofuels are considered one of the most promising renewable resources to 

meet the global energy requirements for transportation systems to replace fossil fuels and reduce 

greenhouse gas emissions [5, 143, 248]. Long-term research and development has resulted in 

demonstrations of microalgae areal oil productivities that are higher than crop-based biofuels, 

about 10 times that of palm oil and about 131 times that of soybean [5, 74-76]. Open raceway 

ponds, constructed in a configuration with channels using paddlewheel mixers that promote a 

low shear environment [8], are considered today the most cost-effective technology for 

microalgae cultivation relative to other photobioreactor configurations [225, 249]. Algae biomass 

productivities in open raceway ponds, however, are significantly lower than those measured 

under laboratory conditions [250]. Laboratory-scale experiments are most commonly grown 

under ideal conditions including mixing rates, light saturation and optimized media, they thereby 

overestimate the biomass productivities achievable in outdoor conditions. There is a need for 

design and modelling tools to connect this gap between laboratory experimentation and industrial 

performance under outdoor conditions. 

Differences in the performance of industrial systems relative to laboratory 

experimentation are partially attributed to the light and temperature experienced by 

photoautotrophic microorganisms at outdoor conditions. For instance, the light saturation of 

Nannochloropsis oceanica is reported at about 80 μmol photons.s−1.m−2 at temperatures ranging 

                                                           
7 This chapter is adapted from a prepared journal article for consideration for publication: Carlos Quiroz-
Arita, Myra L. Blaylock, Patricia E. Gharagozloo, Thomas H. Bradley, Thomas Dempster, Ryan Davis, John 
McGowen. “A Dynamic Lumped Thermal and Well-Mixed Algal Growth Model for Pilot Scale Open Raceway 
Ponds”. 
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from 25.6 °C to 29.1 °C [251], whereas these microorganisms will face incident radiations of 

about 2000 μmol photons.s−1.m−2 and water temperatures up to 32 °C at noon in locations such 

as Arizona [233], both of these factors have the effect of reducing their photo conversion 

efficiency. For the case of algae, considering that 46% of the spectrum is in the photosynthetic 

active radiation (PAR) range of 400 to 700 nm, there are losses due to photon transmission 

efficiency of 95%, photon utilization efficiency ranging from 10% to 30%, biomass 

accumulation efficiency of 50%, and biomass energy content of 21.9 kJ∙g−1, resulting in a total 

photo conversion efficiency of between 2.6% (at high light) to 6.3% (at reduced light) [12]. 

Additional losses can be attributed to dark and photorespiration biomass losses [62, 219, 220]. 

Photorespiration switches the carboxylation step in the Calvin–Benson cycle to oxygenation, 

dissipating photic energy and accounting for 25% reduction in the photosynthesis in C3 plants 

[221]. Photorespiration is poorly understood in microalgae under outdoors environments. 

There are several ongoing efforts in the literature to predict the performance of 

photobioreactors through modelling. Yet, most of the literature relies on light distribution in 

photobioreactors based on Beer-Lambert law [55, 56, 169]. Although previous efforts measured 

the absorption coefficient of Nannochloropsis sp. in photobioreactors [56], the derived model 

can only be used to describe light distribution for particular validated conditions. None of the 

previous efforts have demonstrated the predictive capability under a wide range of environmental 

conditions. Models have been developed to predict future outputs based on past inputs by 

resolving complex systems models that may integrate physical, chemical, and biological domains 

[252, 253]. Advanced dynamic modelling tools can be implemented to describe the complexity 

of these physical and biological systems. Previous efforts have explored the application of 

dynamic tools to microalgae cultivation systems under the assumptions of nutrient limitation 
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[254, 255] and by mathematical representations of the biological responses [256]. There is 

limited research concerning thermal modelling in microalgae cultivation systems [257, 258], and 

many of these efforts fail to evaluate their predictive capability, or have only been developed and 

validated for specific design and operational conditions and photobioreactors [259].  

None of the previous research have integrated thermal modeling and microalgae growth 

modeling to demonstrate their predictive capability under seasonal variability in open raceway 

ponds. There is a need to develop dynamic growth modelling tools to reduce mispredictions 

through incorporation of input weather conditions and thermal processes, and to understand the 

role of physical, chemical, and biological parameters in the response of the system.  For this 

study, we will validate the developed model using thermal and growth data gathered from the 

ATP3 DOE experiment, in Mesa, AZ.  By developing a dynamic lumped thermal and well-

mixed algal growth model for pilot scale open raceway ponds, and conducting parameter 

estimation, in this research we can identify future efforts that may improve the modeling and 

therefore performance of these bioenergy systems. 

8.2 Dynamic modelling, uncertainty quantification, and parameter estimation methods 

To evaluate their predictive capability, a dynamic thermal model embedded into an algae 

growth model we must understand the physical and biological sources of uncertainty of the 

system. Figure 8.1 illustrates the workflow to evaluate the system, including (i) input weather 

conditions for Mesa, Arizona, (ii) the dynamic thermal subsystem (iii) the dynamic algal growth 

model and (iv) a comparison between cultivation experiments and the algae growth model. This 

set of models includes both biological and engineering perspectives. 
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Figure 8.3 Simulation Architecture for Dynamic Thermal and Algae Growth Model. 
 

8.2.1 Pilot Scale Open Raceway Ponds Configuration and Monitoring at ATP3 

The pilot scale open raceway ponds studied in this research are located at The Arizona 

Center for Algae Technology and Innovation (AzCATI), and the data used for validation and 

calibration was obtained during the ATP3 Unified Field Studies. The open raceway pond 

experiments consist of 6 replicates, where each pond has a surface area of about 4.2 m2, a 

nominal volume of 1000 liters, and the experiments were conducted at a depth of 25 cm [233]. 

The open raceway ponds were provided with a monitoring system that measured pH, dissolved 

oxygen saturation, salinity, a LiCor LI-190R quantum pyranometer (LiCor, Lincoln, NE, USA) 

to measure photosynthetically active radiation (PAR), and water temperature [233]. The open 

raceway ponds were mixed with stainless steel paddle wheel and a CO2 sparge line for pH 

control linked to the YSI online pH probe [233]. The water temperature measured at ATP3 was 

used for validation and calibration of the dynamic thermal model. 

The experimental cultivation of microalgae in the open raceway pond was conducted at 

paddlewheel speeds of 10.88 RPM and a mean surface velocity of the flow of 0.107 m.s-1. The 

open raceway ponds were inoculated with Nannochloropsis oceanica KA32 at concentrations of 
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0.05 g.l-1 ash-free dry weight (AFDW) in salt water (35 g.l-1) with modified f/2 media [233]. Dry 

weight biomass (DWB) and AFDW used for validation and calibration of the dynamic algae 

growth model were measured using a standardized method, including the ATP3 Laboratory 

Analytical Procedure (LAP) and the gravimetric method for determination of DWB and AFDW 

[233, 260].  

The meteorological conditions were collected at the local weather station at Arizona State 

University. The parameters collected by ATP3 that were used as input data for the dynamic 

thermal model include air temperature (°C), relative humidity (RH, %), global light energy (W 

m− 2), and wind speed (km h−1) [233]. Cultivation experiments were performed during the 

seasons of Fall (October to December 2013), Spring (April to May 2014), and Summer (June to 

July 2015). The database is available online at https://openei.org/wiki/ATP3_Data. 

8.2.2 Dynamic Thermal Model 

The temperature of the open raceway ponds effects the response of microalgae cultivation 

in terms of dark- and photo-respiration and growth. To understand the thermal parameters that 

drive the uncertainty of dynamic thermal modelling, we developed a lumped thermal system 

based on a [261] dynamic heat transfer model [252, 253]. The model adapted for the operational 

conditions of the pilot scale open raceway ponds takes into account considerations such as light 

absorption, radiation heat transfer with sky, convective heat transfer, evaporation and water 

control practices, and the bulk thermal capacitance of the algae media. An energy balance was 

carried out using a single thermal node to represent the well mixed (and thermally homogeneous 

reactor), and the resulting ordinary differential equation were solved numerically. This dynamic 

thermal model is described in the following sections.  
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8.2.2.1 Light Absorption  

Total solar energy absorbed by (WD) the photobioreactor media is a function of the total 

incident radiation (WT), transmittance after surface reflection («¯), the portion of visible spectrum 

(estimated at 66% for wavelengths less than 900 nm), number of discretized nodes (@ = 1), non-

visible spectrum mostly infrared estimated at 34%, and transmittance after absorption at nodes 

above («¸) (Eq. 1) [259, 261]. 

WD = WT ∗ «¯ ∗  5�.ºº
P + 0.34 ∗ «¸DK� ∗ r1 − «¸t:      Eq. 1 

Total incident radiation was obtained from the local weather station at Arizona State 

University. Transmittance is a function of the angle of incidence (¾�) and angle of reflection (¾S) 

(Eq. 2, Eq. 3, and Eq. 4). The angle of incidence is a function of the angular position of sun at 

noon with respect to plane equator (¿), latitude (À), hour angle (Á), refractive index of water 

(w�), and refractive index of air (wS) (Eq. 5 and Eq. 6) [262].   

«¯ = �
S ∗  Â�KF¨jQjÃÃ¦Ã

�mF¨jQjÃÃ¦Ã
+ �KF¨¦Q¨¦J§I¤MÃjQ

�mF¨¦Q¨¦J§I¤MÃjQ
Ä       Eq. 2 

Å{�F�¡¡E¡ = ��Å�ªª�ª Å�Æª�Ç�vÈw = V�D\rÉ\KÉ¢t
V�D\rÉ\mÉ¢t      Eq. 3 

Å{EF{ED^�}U¡�F = ��Å��wÊvÇ´ª�Å Å�Æª�Ç�vÈw = ��D\rÉ\KÉ¢t
��D\rÉ\mÉ¢t     Eq. 4 

ÇÈË¾� = Ëvw¿ ∗ ËvwÀ + ÇÈË¿ ∗ ÇÈËÀ ∗ ÇÈËÁ      Eq. 5 

D¢
D\

= ��DÉ\
��DÉ¢

           Eq. 6 

Under the assumption of well-mixed conditions, a single node will represent the 

temperature of the growth media. The second part of equation 1, corresponds to infrared 

wavelength (34% of the light spectrum) which is not absorbed by chlorophyll [263] and can be 

neglected in the heat balance. 
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8.2.2.2 Radiation Heat Transfer with Sky 

The sky and growth media (water) can be treated as two surfaces emitting radiation to 

compute the net radiative heat transfer [261]. Radiation heat transfer with sky is a function of the 

total emissivity of the radiating water surface (Ì), the Stefan-Boltzmann constant (Í =5.67e-8 

W.m-2.K-4), the temperature of the water surface (d�), and the effective sky temperature (dS) (Eq. 

7 and Eq. 8) [253, 259, 264].  

�F�^ = −Ì ∗ Í ∗  Îd�� − dS�Ï         Eq. 7 

ℎÅ = Ì ∗ Í ∗  Îd�S − dSSÏ ∗ [d� − dS]        Eq. 8 

The effective sky temperature (dS, d�ÑH) is a function of the emissivity of the radiating 

sky surface (Ì�ÑH), assumed for clear sky for the state of Arizona, which is modeled as a function 

of the dew point (d̂ E­), the hour of day (�), and the ambient pressure (&) (Eq. 9 and Eq. 10) 

[259, 264].  

d�ÑH� = Ì�ÑH*d�uÒv�w��         Eq. 9 

Ì}¡E�F �ÑH= 0.711+0.56* Y`§¦³
��� ] + 0.73* Y`§¦³

��� ]S + 0.013 ∗ cos YSÕV
S� ] + 0.00012 ∗ r& − 100t 

            Eq.10 

8.2.2.3 Convective Heat Transfer  

Heat is also transported the fluid the local atmosphere through convective heat transfer 

[253, 261]. Convective heat transfer (��) is modeled as the net temperature difference between 

the water surface temperature (d�UF×�}E) and the ambient temperature (d��Ø�EDV) times the heat 

transfer coefficient (ℎ�) (Eq. 11) [261].  

�� = −ℎ� ∗ Bd�UF×�}E − d��Ø�EDVO        Eq. 11 
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The heat transfer coefficient can be estimated from the Nusselt number (@U ), the thermal 

conductivity (b), and the characteristic length or hydraulic ratio (A�) (Eq. 12). The Nusselt 

number, for turbulent flows, is a function of the Reynolds number (A�) and the Prandtl Number 

(&Å) (Eq. 13). The Prandtl number is a function of kinematic viscosity (Ù), thermal diffusivity 

(�), thermal conductivity (�), fluid density (�), and fluid specific heat (#{) (Eq. 14 and Eq. 15). 

The Reynolds number is a function of the fluid velocity (´), the characteristic length or hydraulic 

ratio (A�), and the kinematic viscosity (Ù) (Eq. 16). Lastly, the characteristic length or hydraulic 

ratio is a function of the raceway channel width (Ú) and height (X) (Eq. 17) [261]. 

 ℎ� = PMk∗Ñ
¯�

            Eq. 12 

@U  = 0.0296 ∗ A��/Ý ∗ &Å�/�         Eq. 13 

&F = Þ
ß             Eq. 14 

� = Ñ
à∗Z¨

            Eq. 15 

A� = U∗¯�
Þ             Eq. 16 

A� = �∗­∗|
S­m|             Eq. 17 

8.2.2.4 Conductive Heat Transfer 

Heat can also be transported by conduction from the growth medium to the surrounding 

environment [253, 261]. Conductive heat transfer (�Ñ) is modeled as the net between two nodes 

(dS and d�) of the water bulk, assumed for this case between the water temperature and the 

ambient temperature, times the thermal conductivity (á) and the nodes distance (¸w), assumed to 

be equal to the water depth (Eq. 18) [261].   

�Ñ = − l
�D ∗ rdS − d�t         Eq. 18 
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8.2.2.5 Evaporation and Water Control Practices 

Thermal energy can be lost from the system through evaporation [261].  For the case of 

the open raceway ponds at ATP3, daily evaporation was calibrated to 1.82 cm.day-1 due to 

aleatory uncertainty in modeling this parameter. To compute the thermal energy loss, the specific 

enthalpy due to evaporation was used in the heat balance,  

2257 KJ.kg-1
Evaporated water. Additionally, to maintain the water depth at 25 cm., the open raceway 

ponds are daily refilled with water. To compute the heat supplied to the system by refilling the 

open raceway ponds, the enthalpy of water at 40 °C, 167.53 KJ.kg-1
Refilled water, was used based on 

measurements of the tap water temperature. The mass of refilled water was estimated from the 

water height recorded daily at ATP3. 

8.2.2.6 Capacitance, Energy Balance, and Dynamic Water Temperature Simulation 

By implementing a system analogy approach, the capacitance of the fluid is defined as 

the capacity of the microalgae culture to storage heat (Eq. 19) [252, 253]. The heat balance (âV�) 

was computed by considering light absorption (WD), radiation heat transfer with sky (�F�^), 

convective heat transfer (��), conductive heat transfer (�Ñ), evaporation losses (E) and water 

addition (W), and the open raceway pond area (A) (Eq. 20). Lastly, the dynamic responses of the 

growth media temperature (Eq. 21) were numerically solved by the Dormand–Prince (RKDP) 

method in Matlab® for three seasons: Fall 2013, Spring 2014, and Summer 2015. 

#V� =  � ∗ ã ∗ #{          Eq. 19 

âV� = s ∗ rWD + �F�^ + �� + �Ñ − E + Wt       Eq. 20 

^`
^V = �

ZN�
∗ âV�           Eq. 21 
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8.2.3 Dynamic Algae Growth Modelling 

Microalgae growth rates are responsive to their environment including temperature, 

radiation, and nutrient concentration. To understand the role that the environment exerts to dark- 

and photo-respiration responses and the growth of microalgae, we upgraded a microalgae growth 

model developed by Sandia National Laboratories [62, 220, 256, 265] by incorporating dark- and 

photo-respiration [62, 219, 220] and dynamic thermal modelling [252, 253]. The inputs to the 

dynamic model are the water temperature, incident radiation, and initial nutrient concentrations.  

The dynamic microalgae growth model is described in the following sections.   

8.2.3.1 Temperature Function 

Water temperature impacts the maximum growth rate of microalgae due to photo-

respiration effects. This effect has been mathematically described by a normal or bell-shape 

curve (Eq. 22 and Eq. 23) [62, 220, 256, 265, 266], where algae growth rates are maximized at 

dT{V, and fall away from the maximum at higher and lower temperatures.  This non-dimensional 

temperature function considers the real time water temperature (d), a parameter determining the 

shape (b = 0.009 °C-2) and the optimum temperature of the algae strain (dT{V = 24.05 °#) [220].  

∅` = �KÑ∗B`K L̀¨NO\
   d ≤  dT{V      Eq. 22 

∅` = �KÑ∗B L̀¨NK`O\
   d ≥  dT{V      Eq. 23 

8.2.3.2 Light Function 

Microalgae growth limitations and photoinhibition in a well-mixed layer is described by 

Steele’s equation [62, 265, 267] (Eq. 24). This light function (∅f) considers the light saturation 

for Nannochloropsis oceanica (�� = 20 é. uS) and the attenuation of light (�) in algal cultures 

based on Beer-Lambert Law [265] (Eq. 25). Attenuation of light is itself a function of the 

fraction of solar radiation absorbed at the water surface (ê = 0.1), local incident radiation for the 



156 

 

state of Arizona (��), the attenuation coefficient (�), and the culture height (∆�). The attenuation 

coefficient is a function of attenuation due to sources other than algae (bØ = 0.45) and the 

chlorophyll-a concentration (À�) (Eq. 26) [62]. 

∅f = f
f¥

∗ �K n
n¥m�

          Eq. 24 

� = r1 − êt ∗ �� ∗ �Kß∗∆�         Eq. 25 

� = bØ + 0.0088 ∗ À� + 0.054 ∗ À�S/�       Eq. 26 

8.2.3.3 Nutrients Function 

The nutrient function (∅D) for microalgae growth can be computed from Monod Equation 

by considering the limiting nutrients: nitrogen (w), phosphorous (�), or carbon (Ç), and their half-

saturation constant (b�) (Eq. 27) [265]. Depletion of each of these nutrients can be estimated 

from the Redfield ratio (�{�), growth rate (bG), basal metabolism (íî), and algae biomass (�) 

(Eq. 28) [265]. The Redfield ratio for nitrogen, phosphorous, and carbon are 0.063, 0.0087, and 

0.3583, respectively [265, 268]. Basal metabolism, growth rate and algae biomass will be 

described in the next sections. 

∅D = min ï D
Ñ¥JmD , {

Ñ¥¨m{ , }
Ñ¥¤m}ð        Eq. 27 

^D
^V = −�{�*(bG-íî)*�         Eq. 28 

8.2.3.4 Basal metabolism Function 

Basal metabolism accounts for dark respiration and can be described as a first-order 

reaction (Eq. 29) [220, 266]. This equation has been previously described as a function of 

metabolic rate at a reference temperature (íîÈ = 0.01 ÊK�), the reference temperature for 

metabolism (d� = 20 °#), the water temperature of the open raceway pond, and the effect of 
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temperature on metabolism (á`� = 0.15 ℃K�), computed from experimentation conducted by 

previous authors at inhibiting light intensities and temperatures [219]. 

íî = íîÈ ∗ �lòór`K �̀t         Eq. 29 

8.2.3.5 Dynamic Algae Growth Simulation 

The growth rate (bG) under outdoor conditions is obtained by multiplying the maximum 

growth rate (e�� ) of Nannochloropsis oceanica by the functions of growth limitation and 

inhibition by temperature (∅`), light (∅f), and nutrients (∅D) (Eq. 30) [62, 220, 256, 265]. Lastly, 

the ordinary differential equation of algae biomass is a function of growth rate under outdoor 

conditions and dark- and photo-respiration (Eq. 31). This equation is numerically solved by the 

Dormand–Prince (RKDP) method in Matlab® for three seasons: fall 2013, spring 2014, and 

summer 2015. 

bG = e��  ∗ ∅` ∗ ∅f ∗ ∅D         Eq. 30 

^�
^V = bGrd, w, �t ∗ � − íî ∗ �        Eq. 31 

8.2.4 Uncertainty Quantification 

The predictive capability of dynamic thermal model and the algae growth model are 

evaluated for the season of Fall 2013. Uncertainties can be quantified by the error of the model 

with respect to the experimental data (Eq. 32) [269] and by comparing the cumulative 

distribution function (CDF, Êr", -Dt) of the model ("r�t) and the experimental data (-Dr�t) 

(Eq. 33) [270, 271]. The dynamic thermal model error was quantified by the mean absolute 

relative error (E. 34). The variable considered in this study is the water temperature of the 

dynamic thermal sub-system. The uncertainty of the algae growth model was quantified as the 

mean relative error of the model relative to the experimental data at the stationary stage of the 

algae growth curves. 
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�ÅÅÈÅ = uÈÊ�ª − ����Åvu�w��ª Ê���       Eq. 32 

Êr", -Dt = ô |"r�t − -Dr�t|Ê�ö
Kö         Eq. 33 

î��w sÒËÈª´�� A�ª��v÷� %ÅÅÈÅ =  s÷�BsÒËrîÈÊ�ª� − %���Åvu�w��tO  Eq. 34 

8.2.5 Calibration Procedure 

The thermal parameters of the open raceway ponds that were calibrated are 1) capacitance, 2) 

shading of incident radiation, 3) convective heat transfer coefficients, and 4) radiation heat 

transfer coefficient to the sky. Additionally, because aleatory uncertainty in the measurement of 

evaporation and water addition to maintain constant water depths in the open raceway ponds, 

these parameters were calibrated. Lastly, because dark-respiration and photo-respiration in 

outdoor cultivation systems is poorly understood, the involved parameter were calibrated in the 

algae growth model. The parameters were calibrated using the data from the season of fall 2013, 

including the parameter determining the shape of temperature function (b = 0.009 °C-2), 

attenuation coefficient (α) as a function of algal biomass, and effect of temperature on 

metabolism (á`� = 0.15 ℃K�). The parameters were simultaneously calibrated by minimizing 

the error of the model with respect to the experimental data based on the cost function (Eq. 35) 

by the pattern search Latin Hypercube optimization method with a parameter tolerance of 1e-6 in 

Matlab®. The calibrated parameters were consequently used for validation of the model for the 

seasons of Spring 2014 and Summer 2015, respectively [269-271]. The propagated uncertainty in 

the overall system [270] includes the uncertainty inputs from the validated dynamic thermal 

model, and the dynamic algae growth model. 

#ÈË� "´wÇ�vÈw = ∑ �ÅÅÈÅS         Eq. 35 
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8.3 Results and Discussion 

The results of this research are synthesized into three aspects. First, we present the results of 

the dynamic thermal model. Second, we present the results of the dynamic well-mixed algae 

growth model and discuss the relevance of dark- and photorespiration in the uncertainty of the 

results. Lastly, we propagate the uncertainty of the dynamic thermal model by embedding it into 

the dynamic algae growth model. The system, including the dynamic thermal model and algae 

growth model, is validated for the seasons of Fall 2013, Spring 2014, and Summer 2015. 

8.3.1 The uncertainty of the thermal model is driven by thermal capacitance, 

evaporation, and heat transfer coefficients 

A lumped thermal model was valid to represent pilot open raceway ponds, validating 

well-mixed conditions in these systems. While previous efforts have developed thermal models 

for other photobioreactors configurations, our thermal model is the first effort applied to pilot 

open raceway ponds, quantifying uncertainty, and identifying and estimating epistemic 

parameters. By developing a thermal model system valid under season variability, we can reduce 

the propagated uncertainty when embedding the model into algae growth models. 

The dynamic lumped-thermal model is validated against experimental culture 

temperature to quantify error. Validation of the model for the season of fall 2013 is illustrated in 

Figure 8.2. The model clearly overestimates the water or culture temperature in the system 

relative to the experimental data. By calculating the error between the model and the 

experimental data, this is has an mean abosulute relative error of 3 °C (Figure 8.2).  



160 

 

 

Figure 8.4 Dynamic Thermal Model Result of Open Raceway Pond for Fall 2013. 
 

 

Figure 8.5 Uncertainty Quantification of Dynamic Thermal Model for Fall 2013. Error of the 
model relative to experimental data. 

 

The epistemic and aleatory parameters are calibrated by the pattern search Latin 

Hypercube optimization method. From this parameter estimation method, thermal capacitance is 
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increased 4.973 times than values recommended for water by Bergman, Incropera, Frank, 

DeWitt, and Lavine (2006) in fundamental theory for heat transfer. Calibration of radiation 

shading factors in the open raceway pond was found to be negligible by this optimization 

method. Convective heat transfer coefficient due to paddlewheel mixing was reduced by a factor 

of 0.829, and convective heat transfer coefficient due to wind was reduced by a factor of 1.842e-

34. Radiation heat transfer coefficient with sky was reduced by a factor of 7.459e-4. Aleatory 

parameters, evaporation and water addition, were calibrated by factors of 0.981 and 8.1329, 

respectively. The calibrated lumped-thermal model is demonstrated to be valid for fall 2013 

(Figure 8.4), where the mean absolute relative error is 1.8 °C. The calibrated model for thermal 

parameters of Fall 2013, mispredicts the mean experimental culture temperatures when 

validating for the seasons of Spring 2014 (Figure 8.5) and Summer 2015 (Figure 8.6) with mean 

absolute relative error are 5.1 °C and 6.9 °C, respectively. This uncertainty quantification, 

calibration, and validation approach demonstrate we need a better understanding of epistemic 

thermal parameters under season variability and to reduce the aleatory uncertainties of 

evaporation and water control practices in open raceway ponds systems. 
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Figure 8.6 Validation of Dynamic Thermal Model for Fall 2013. 
 

 

Figure 8.7 Validation of Dynamic Thermal Model for Spring 2014. 
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Figure 8.8 Validation of Dynamic Thermal Model for Summer 2015. 

 

8.3.2 The uncertainty of algae growth modelling is driven by dark- and photo-respiration 

effects  

Weather conditions impact the biological responses of microalgae in terms growth due to 

photo-respiration at high temperatures and radiation, and dark respiration. The functions that 

involve photo- and dark-respiration include the temperature function, the light function, and the 

basal metabolism function. 

The temperature function effects due to water temperature are illustrated in Figure F.1 in 

the Appendix F. In here, a factor of one represents the optimal conditions for Nannochloropsis 

oceanica, 24.05 °C, a factor below one illustrates inhibition at cold temperatures and 

photorespiration effects at high temperatures, and a factor of zero denotes microalgae death at 

extreme temperatures. Incident radiation (Figure F.2a in Appendix F) control the light function 

effects as illustrated in Figure F.2b in the Appendix F. A factor of one represents the light 

saturation of Nannochloropsis oceanica, 20 W.m-3. Incident radiations below this value inhibit 



164 

 

the growth because of light limitation, and incident radiations above this value photo-inhibits the 

growth because of photorespiration, denoted by factors below one. Lastly, basal metabolism loss 

rate due to dark respiration is illustrated in Figure F.3 in the Appendix F, where the higher 

growth losses are represented by the higher rates. 

Well-mixed assumptions in dynamic algae growth modelling are valid for Fall 2013. The 

dynamic algae growth model results, dry weight biomass as a function of time, is illustrated in 

Figure 8.7. The mean relative error of the model (relative to the experimental data at stationary 

stage in the growth curve) is -35% for Fall 2013. 

 

 

Figure 8.7 Dynamic Growth Model for Fall 2013. 
 

By calibrating biological parameters involved in dark- and photo-respiration, the 

propagated uncertainty can be reduced when embedding dynamic lumped-thermal models. The 

calibration of parameters involved in dark- and photo-respiration include the parameter 

determining the shape of temperature function (b = 0.0048049 °C-2), representing 0.53 times the 

original value a factor of 0.58083 acting as a gain for the actual attenuation coefficient (α) 

obtained in the model as a function of biomass; and effect of temperature on metabolism (á`� =
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0.1888 ℃K�), representing 1.23 times the original value. These estimated parameters suggest 

that the biomass losses due to temperature effects in photorespiration and the light attenuation 

computed by Beer-Lambert Law are overestimated, and that the basal metabolism or losses due 

to dark respiration are underestimated in these models. The calibrated dynamic algae growth 

model for Fall 2013, and the validation of the model for Spring 2014 and Summer 2015 are 

illustrated in Figure 8.8. The error of the model relative to the experimental data at stationary 

stage in the growth curve is 8%, 12%, and 16%, for Fall 2013, Spring 2014, and Summer 2015, 

respectively. The case of Summer 2015 was the only at which losses overcame growth because 

algae cultures more likely grew limited by nutrients as the lowest nitrogen and phosphorous 

concentrations were used for the experiments and modelling relative to Fall 2013 and Spring 

2014. Although the calibrated parameters are valid for different seasons, a higher degree of 

uncertainty is observed due to variations in the environment algae experience and impact in the 

biological responses, including photo- and dark-respiration. The parameters calibration in this 

research, however, demonstrate that photorespiration, light attenuation, and dark respiration 

drive the uncertainty of algae growth model and the need to develop more research of this means 

for open raceway ponds. 
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(c) 

Figure 8.8 Calibration of Dynamic Algae Growth Model after Parameter Estimation for Fall 
2013 (a), Validation for Spring 2014 (b), and Summer 2015 (c). 

 

8.3.3 Propagated uncertainty in algae cultivation systems embedding thermal models 

increase the error for summer conditions 

The error in predicting AFDW of the algae includes the error of the dynamic lumped-

thermal model embedded into the dynamic algae growth model. The predictive capability of the 

system is illustrated for the seasons of Spring 2014, and Summer 2015 in Figure 8.9. For 

Summer 2015 the predicted algae AFDW error is -53%. This high error is due to the 

overpredicted water temperatures for summer, which result in dark- and photo-respiration effects 

beyond the threshold where algae is inhibited by light and temperature, reducing growth and 

biomass. This analysis demonstrates the importance of developing a better understanding of the 

error in thermal parameters as the system temperature has a high impact on the growth of the 

algae.   
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(c) 

Figure 8.9 Calibration of System of Algae Growth Model Embedding Dynamic Thermal Model 
for Fall 2013 (a), Validation for Spring 2014 (b), and Summer 2015 (c). 

 

8.4 Conclusions 

Parameter estimation and validation of an open raceway pond cultivation system suggest 

that the uncertainty of integrated well-mixed thermal and algae growth models is very high. Our 

experimentally calibrated models demonstrate that error in the lumped-thermal model drives 

error in the prediction of biomass, impacting dark- and photo-respiration functions and the 

growth of algae. 

8.5 Answer to Research Question 3.2 

This section of the research effort has allowed us to address Research Question 3.2, which is 

restated and answered in section 9.5 of this dissertation. 
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CHAPTER 9: Cyanobacterial biomass productivity in pilot scale open raceway ponds and 

flat-panel photobioreactors is predicted by well-mixed growth modelling under a wide 

range of mixing energy inputs8 

9.1 Introduction 

Photoautotroph-based biofuels are considered one of the most promising renewable resources 

to meet the global energy requirements for transportation systems [5]. Long-term research and 

development has resulted in demonstrations of microalgae areal oil productivities that are higher 

than crop-based biofuels, about 10 times that of palm oil and about 131 times that of soybean [5, 

74-76]. Cyanobacteria is reported to have ~4 times the areal productivity of microalgae on an 

equivalent energy basis [6]. Downstream of this cultivation process, cyanobacterial biomass and 

bioproducts can be supplied to biorefineries producing feed, biomaterials, biosynthetic 

chemicals, and biofuels [77]. As such, cyanobacterial systems can be a significant contributor to 

more sustainable energy and production systems. 

Turbulent environments are demonstrated to induce physiological responses in 

photoautotrophic microorganisms in open raceway ponds and photobioreactors [200-207]. 

Recent efforts studied the effects of turbulence dissipation rates ranging from 0 to 0.08 m2.s-3 

simulated at laboratory scale conditions (1 liter cultures) [200]. This work concluded that despite 

no alteration of photosynthesis activity on chlorophyll a, there is a systematic increase in the 

growth rates of the strain Microcystis flos-aquae as a function of the turbulent dissipation rate 

and a decay in the growth rate of the strain Anabaena flos-aquae at high turbulence. These 

authors identified a maximum phosphorous uptake rate by these cyanobacteria strains at 

                                                           
8 This chapter is adapted from a prepared journal article for consideration for publication: Carlos Quiroz – 
Arita and Thomas H. Bradley. “Cyanobacterial biomass productivity in pilot scale open raceway ponds and flat-
panel photobioreactors is predicted by well-mixed growth modelling under a wide range of mixing energy inputs”. 
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turbulence dissipation rates of  2.26E−2 m2.s-3, suggesting that turbulence plays an important role 

in the biological adaptation of cyanobacteria by influencing nutrient uptake [200]. In other 

research, the effects of shear environments were studied for the cyanobacteria and microalgae 

strains Synechocystis sp. and Chlamydomonas reinhardtii, respectively, in 150 ml cultures [201]. 

In this study the growth rate of Synechocystis sp. was independent of shear stress (0 to 0.18 N.m-

2) and Chlamydomonas reinhardtii growth rate was linearly dependent on shear stress. These 

laboratory scale environments, however, are not representative of industrial scale conditions.  

Other impacts of turbulent mixing are cell disruption due to shear stress [208-215]. Some 

instances are for hybridoma cells suffering apoptosis at mixing energy inputs of 1.87E3 W.m-3 

[209, 216]. Other studies observed 51% lower recombinant protein production, 42% higher 

glucose uptake, and 50% lower lactate production cells exposed to mixing energy inputs of 6.4E2 

W.m-3 [209, 217]. Inhibitory effects, however, are reported at mixing energy inputs above 1E6 

W.m-3 and Kolmogorov microscales less than or equal to 2.4 micrometers  for mammalian cells 

[209]. In photobioreactors, small bubbles are reported to cause cell damage [205, 218], colliding 

with photoautotrophic cells and contributing to a high shear environment. The microalgae strain 

Phaeodactylum tricornutum, for instance, presented inhibition at air rates of 0.567 m3
air.min-1.m-

3
reactor , where carboxymethyl cellulose (CMC) was supplied into the medium to mitigate shear-

induced damage in parallel experiments [205]. Other sparged photobioreactors cultivating 

Dunaliella tertiolecta and D. salina reported increments in the decay rates as a function of gas 

velocity, observing the highest death rates at 8.91 and 13.37 m3
air.min-1.m-3

reactor [218]. There is 

no research reported in the literature concerning the biological system response due to shear 

stress on cyanobacteria cells disruption, particularly on Synechocystis sp. PCC6803. Moreover, 

most of the previous research were conducted at mixing energy inputs are 30, 100, or thousands 
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order of magnitudes higher than is considered cost-effective for industrial cultivation systems 

[53, 224]. 

Photoautotrophic microorganisms are cultivated in photobioreactors, the most common 

types being the open raceway ponds and flat panel PBR [225]. Open raceway ponds are 

constructed in a configuration with channels, using paddlewheel mixers that promote a low shear 

environment [8]. Flat-panel photobioreactors are vertically translucent flat plates, illuminated on 

both sides and stirred by aeration [9]. Unlike outdoor raceways and outdoor PBR, laboratory-

scale experiments are most commonly grown under ideal conditions including ideal mixing rates, 

optimum light intensities and optimized media.  Comparison of the laboratory scale literature to 

industrial results demonstrate that photoautotrophic biomass and biofuels productivity are 

overestimated at laboratory scale experiments relative to industrial scale systems. This distinct 

difference in the performance of industrial systems are partially attributed to the light 

experienced by photoautotrophic microorganisms at outdoor conditions. For instance, the light 

saturation of Synechocystis sp. PCC6803 is reported at about 200 μmol photons.s−1.m−2 [10, 84], 

whereas photoautotrophic microorganisms will face incident radiations of about 2000 μmol 

photons.s−1.m−2 at noon in locations such as Colorado [11] Previous studies have estimated that 

the total photo conversion efficiency of algae is from 2.6% (at high light) to 6.3% (at reduced 

light) [12]. These estimations assumed that 46% of the spectrum is in the photosynthetic active 

radiation (PAR) range of 400 to 700 nm, losses due to photon transmissions efficiency of 95%, 

photon utilization efficiency ranging from 10% to 30%, biomass accumulation efficiency of 

50%, and biomass energy content of 21.9 kJ∙g−1. Low photo conversion efficiency in 

photoautotrophic microorganisms is attributed to dark and photorespiration biomass losses [62, 

219, 220]. Photorespiration is well understood in plants, where carboxylation step in the Calvin–
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Benson cycle is switched to oxygenation, dissipating photic energy and accounting for 25% 

reduction in the photosynthesis in C3 plants [221]. Photorespiration is poorly understood in 

photoautotrophic microorganisms. 

Some previous studies have investigated the effects of mixing rates on photoautotroph 

biomass productivities in industrial scale systems [11, 53, 54]. Some of these efforts have 

identified optimum volumes of air flow rates per unit volume (VVM) of photobioreactors that 

might be industrially relevant for microalgae, generally between 0.2 to 1.2 m3
air.min-1.m-3

reactor 

[11]. Many others have considered mixing energy inputs that are far outside the energy 

consumption that can be considered economic, or industrially relevant, ranging from 8 to 633 

W.m-3 [53, 224]. For raceway ponds, for instance, energy inputs from 1 to 2 W.m-3 are utilized in 

the algae cultivation demonstrations performed to date [54]. Additionally, previous research state 

that mixing in industrial photobioreactors induce flashing or dark/light cycles [226-228]. For 

instance, by carrying experimental growth of Chlamydomonas reinhardtii under incident 

radiations fluctuating between 5 Hz and 100 Hz, growth rates were found to be linearly 

dependent on the light frequency. These previous efforts suggest that mixing in photobioreactors 

control the light regimes experienced by single cells, impacting the bulk photosynthesis and 

biomass productivity of photoautotrophic microorganisms. Other efforts, however, demonstrated 

no improvements in algal productivity at light fluctuations from 0.038 Hz to 1 Hz,  modeled 

using a control timer to open and close a mini venetian blind device [229]. The latter frequencies 

(<< 1 Hz), are more consistent when comparing with the circulation velocities studied for 

fermenters with a height to diameter ratio less than 3 (< 60 seconds) and for airlift reactors with 

split-cylinders heights of 6.02 m. (6.5 seconds) [230]. 
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There are several ongoing efforts in the literature to predict the performance of 

photobioreactors by growth modelling. Yet, most of the literature relies on light distribution in 

photobioreactors based on Beer-Lambert law [55, 56, 169]. Although previous efforts measured 

the absorption coefficient of Nannochloropsis sp. in photobioreactors [56], the derived model 

can only be used to describe light distribution for particular validated conditions. None of the 

previous efforts have demonstrated the predictive capability under wide range of mixing energy 

input. Advanced dynamic modelling tools predict present outputs based on past inputs by 

resolving complex systems integrating physical, chemical, and biological domains [252, 253]. 

Advanced dynamic modelling tools can be implemented to describe the complexity of these 

physical and biological systems. Previous efforts have explored the application of dynamic tools 

to microalgae cultivation systems under the assumptions of nutrient limitation [254, 255] and by 

mathematical representations of the biological responses [256]. Lastly, previous studies have 

recognized photoautotrophic microorganisms plays an important role in the refraction of 

radiation because scattering factors and in the temperature system [57, 58, 272]. None of the 

previous efforts have demonstrated the predictive capability of embedding light attenuation, 

accounting for scattering, and growth rates as a function of photorespiration under differences in 

mixing energy input for photoautotrophic growth modelling. 

Based on this understanding of the literature we seek to understand the role of turbulent 

mixing on the light experience by photoautotrophic microorganisms, therefore, we conducted 

cyanobacterial growth modelling and validation By studying turbulence and growth rate as a 

function of mixing energy input in open raceway ponds and flat-panel photobioreactors, we aim 

to understand the role turbulence plays in the light attenuation in cyanobacterial cultures and 

cyanobacterial growth in pilot scale systems. 
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9.2 Materials and Methods 

To evaluate the implications of turbulent mixing on the light experienced by 

photoautotrophic microorganisms in pilot scale open raceway ponds and flat-panel 

photobioreactors, we must understand growth modelling under differences in mixing energy 

inputs. The workflow, illustrated in Figure 9.1, integrates parallel but complementary 

experimental and computational growth modelling. By incorporating laboratory experiments at 

industrially relevant inputs, outdoor relevant light intensities and large-scale mixing rates, we 

developed a holistic bridge and feedback loop approach between laboratory and industrial scale 

experimentation. 

 

Figure 9.1 Workflow for experimental and computational photoautotrophic growth to assess the 
impact of mixing energy inputs. 

 

9.2.1 Flat-Panel Photobioreactors Cultivation Methods 

To validate the growth models, we performed experimental work under mixing energy 

input variability in the flat-panel photobioreactor and open raceway pond. As illustrated in 

Figure 9.2, the batch process was carried out in five replicates of 1L flat-panel photobioreactors 

made in acrylic with surface to volume ratio of 112 m2·m− 3. The experiments were performed at 

cultures depths of 20 cm. The carbon system in each flat-panel photobioreactor was normalized 

by scrubbing CO2 from the supplied air with soda lime and adding 0.483 g.day-1 of bicarbonate. 
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Additional experiments were performed with sparged air and no addition of bicarbonate, to 

evaluate the mixing energies at which cultures grow limited by carbon. The cultures were grown 

using a high-pressure sodium (HPS) lighting system with a spectrum ranging from 400 to 700 

nm at extreme conditions, emulating a sunny day at a constant Photosynthetic Active Radiation 

(PAR) of 1348 (± 84) μmol photons·m−2·s−1. A temperature control system was provided to 

maintain a temperature of 32 (± 2) °C, consisting of cold plates set at the bottom of each 

photobioreactor and chilled water supplied through copper pipelines. In this study we aimed to 

resemble the light attenuation of open raceway ponds in the flat-panel photobioreactors, by 

providing absorptive walls (black plastic corrugated sheets) to simulate a cross section of the 

culture into the raceway pond. Cultures were mixed by sparged air at the bottom of the flat-panel 

photobioreactors at industrially relevant mixing inputs of 0.7, 0.35,  and 0.17 m3 of air per 

minute per cubic meter of reactor, commonly referred as VVM [11]. Because these VVM are 

demonstrated to reduce the life cycle energy efficiency in photoautotrophic systems [273], we 

conducted additional experiments at 0.01 VVM. The equivalent mixing energy inputs used in the 

flat-panel photobioreactors experiments were 1.94, 0.97, 0.47, and 0.03 W.m-3. 



177 

 

 

Figure 9.2 Instrumentation Diagram of Flat-panel photobioreactors system for experimental and 
model based analysis. 

 

9.2.2 Open Raceway Pond Cultivation Methods 

As illustrated in Figure 9.3, the open raceway pond batch process was carried out in a 

700L fiber-reinforced plastic raceway at water depths of 20 cm. The cultures were grown in 

replicates of three using a high-pressure sodium (HPS) lighting system with a spectrum ranging 

from 400 to 700 nm at a Photosynthetic Active Radiation (PAR) of 938 (± 46) μmol 

photons·m−2·s−1. A temperature control system was provided to maintain the cultures at 29 °C, 

consisting of a thermocouple, temperature controller, solenoid valve, stainless steel coil 

submerged into the open raceway pond, and tap water supply pipeline. The culture was mixed 

with a paddlewheel provided with a 90V DC Gearmotor with a rated torque of 33 in.-lb 

controlled by an IronHorse DC Drives. The mixing energy input used in the open raceway pond 
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experiments was 0.10 W.m-3, an order of magnitude lower than reported in the literature for 

industrial systems [54]. 

 

 Figure 9.3 Plan View and Instrumentation Diagram of Open raceway pond system for industrial 
scale experimental and model based analysis. The 3D view of the Open Raceway Pond is 

illustrated in the upper right corner. 
 

Growth rates of liquid cultures were monitored using SPECTRONIC 20 GenesysTM with 

a sampling period of eight hours. Dried weight biomass (DWB) was measured daily with 2.5 μm 

polypropylene prefilters dried at 60 °C and measured with high precision digital scale. The 

incident radiation and light attenuation were measured daily with a LI-250A Light Meter at the 

water surface, as well as water depths at 5 cm, 10 cm, 15 cm, and 20 cm. 

9.2.3 Predictive capability of well-mixed growth models 

9.2.3.1 Scale-up and Acclimation of Cyanobacterial Cultures 

To inform the cyanobacteria growth and the LCA models, Synechocystis sp. PCC6803 

cells were cultured in culture media (BG-11), scaling-up and acclimating at photo-inhibited light 

intensities for cultivation in 1L flat-panel photobioreactor and 700L open raceway pond, 

respectively. Cells were grown at 29 °C. The inoculum of 250 μL were scaled-up into 30 mL and 
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150 mL, grown in constant light fluxes of 60 μmol photons m-2.s-1. For acclimation in 1L flat-

panel photobioreactors, 150mL cultures were inoculated into five replicates, grown in constant 

light fluxes of 1348 (± 84) μmol photons m-2.s-1. 10% of the acclimated cyanobacteria cultures 

were re-inoculated in the flat-panel photobioreactors and grown until stationary stage. For 

cyanobacteria cultivation in raceway ponds, the 150 mL cultures were further scaled-up into 1L 

flasks. The 1L cultures were inoculated into 9L glass carboys, which were acclimated by using 

the raceway pond as a water bath at 29 °C., grown in constant light fluxes of 938 (± 46) μmol 

photons m-2.s-1. The 700L open raceway pond was inoculated with the 9L glass carboys cultures 

and grown until stationary stage. 

9.2.3.2 Well-mixed Growth Modelling and Validation 

To assess the influence of turbulent mixing in the light experienced by cyanobacterial cells 

in photobioreactors, a well-mixed dynamic cyanobacterial growth model as a function of mixing 

energy input and experimentally determined light attenuation was developed for analysis in this 

study. This model incorporates ordinary differential equations (ODE) and nonlinear function 

embodying nitrogen quote, nitrogen uptake, chlorophyll synthesis, light absorption, 

photosynthesis, growth rate, and biomass [37, 169]. Table G.3 in the Appendix G summarizes the 

required biological inputs for Synechocystis sp. PCC6803 [10, 84, 187]. 

The model developed in this study is novel in that it incorporates the maximum growth rate 

(μm) with photo-inhibition and the light attenuation in Synechocystis sp. PCC6803 as a function of 

dry weight biomass and culture height. These parameters were determined from the experimental 

works described in section 2.2. The maximum growth rate of Synechocystis sp. PCC6803 was 

mathematically described by Eq. 5 [222], where all the parameters were determined 

experimentally (Figure G.1 and G.2) and discussed under results section.    
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          Eq. 5 

X2 and X1 are the final and initial, respectively, optical density (OD) in the exponential 

stage of the growth curve, t2 and t1 are the final and initial, respectively, time in the exponential 

stage of the growth curve, and μmax is the maximum specific growth rate. 

Cyanobacterial biomass is a function of the growth rate, chlorophyll synthesis, and nitrogen 

(Eq. 6) [169]. The growth limiting factors in the model, nitrogen and light, are governed by the 

Droop cell-quota function and the Liebig’s Law, respectively (Eq. 7) [169]. The cyanobacterial 

decay rate (b) used in the growth modelling is 0.06 d-1 [274]. A fixed fraction of accumulated 

carbon (gC.g-1dw) is maintained for the dried biomass. Carbon fixation is a function of the Poisson 

single-hit model of photosynthesis. The photosynthesis rate (Eq. 8 and 9) is normalized by the 

chlorophyll content (gC.g-1chl.d-1) [169]. Chlorophyll synthesis (Eq. 10) is a function of nitrogen 

uptake (Eq. 11 and 12) [169]. The fraction of nitrogen supplied to chlorophyll synthesis is a 

function of the carbon utilization to uptake ratio (c) and the nitrogen uptake is a function of the 

maximum nitrogen quota (Eq. 13) [169]. Light attenuation in photobioreactor cultures is 

commonly computed by the Lambert-Beer law (Eq. 14), which is a function of the rate of light 

absorption by the culture [56]. In this study, however, Light attenuation (I) was experimentally 

determined as illustrated in the Appendix G (Figure G.4 and G.5) for one mixing energy input, 

0.47 W.m-3, and applied to all the growth models with mixing energy variation. Lastly, to evaluate 

the experimental work conducted under carbon limiting conditions, the Monod equation [161] and 

the uptake rate of total inorganic carbon (TIC) were incorporated into the system (Eq. 7 and 15). 

The carbon uptake rates for Synechocystis sp. PCC6803 used in this model are 0.059 gC.l-1.d-1, 

0.380 gC.l-1.d-1, and 0.389 gC.l-1.d-1, for times in growth curve of 0-3 days, 3-9 days, and 9-12 

days, respectively [84]. The carbon concentration at which growth is limited is 0.005 gC.l-1 [84]. 
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For the case of the flat-panel photobioreactors, the source of carbon was either bicarbonate or CO2 

in the sparged air. For the case of the open raceway ponds, there are two sources of carbon in the 

system, alkalinity measured by the city of Fort Collins as an average of 37.1 mg.l-1 in the tap water 

used for cultivation, and the atmospheric carbon dioxide estimated by Henry’s Law at 1.633e-4 

gC.l-1.  These sources of carbon were calibrated for the raceway pond cyanobacterial growth model 

minimizing the sum squared error by the nonlinear least square method and a Levenberg-

Marquardt algorithm. The estimated parameters were 0.25032 gC.l-1 of total inorganic carbon and 

0.0007585 gC.l-1 in equilibrium with atmosphere. The estimated parameters are likely in this open 

system where tap water was daily supplied to compensate evaporation losses. Additionally, water 

in equilibrium with atmosphere is described as H2CO3* in equilibrium with CO2 (gas phase) at 

certain concentrations and additional dissociation at high pH into HCO3
- (pH greater than 6) and 

CO3
2- (pH greater than 10) [275]. 

^p
^V = μrs, X, @t ∙ s          Eq. 6 

μrs, X, @t = uvw xe��  ∙ 51 − y
zrVt: , {rp,|,P[

} , e��  ∙ 5 `fZ
lùm`fZ:~ − Ò   Eq. 7  

�rs, X, @t = Xr�t ∙ ��rs, @t ∙ 51 − ��� YK�∙∅∙frp,|t
{irp,Pt ]:     Eq. 8 
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^|
^V = }
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The biomass growth curve model for Synechocystis sp. PCC6803, validated with 

experimental work, were computed in Matlab ® for the four mixing energy inputs evaluated for 

the flat-panel photobioreactor: 1.94, 0.97, 0.47, and 0.03 W.m-3, and for the mixing energy input 

evaluated for the open raceway pond, 0.10 W.m-3. Details of the model and validation are 

presented in the Appendix G (Figure G.3). 

9.3 Results and Discussion 

The results of this research are synthesized into two aspects. First, the influence of turbulence 

mixing in the light experienced by either single Synechocystis sp. PCC 6803 cells or the bulk 

cyanobacterial biomass is evaluated by a well-mixed growth model validated with the 

experimental work in the flat-panel photobioreactors. Second, by embedding the light 

attenuation, measured in flat-panel photobioreactors in Synechocystis sp. PCC 6803 cultures, into 

the well-mixed growth model based on the open raceway pond, we demonstrated light 

attenuation is not impacted regardless the mixing energy input and reactor configuration. 

9.3.1 The predictive capability of well-mixed growth model is demonstrated under mixing 

energy input variability 

Our contribution suggests that mixing has no impact in the light regimes experienced by 

individual cells of Synechocystis sp. PCC 6803 in flat-photobioreactors and open raceway 

ponds. By constructing a well-mixed cyanobacterial growth model as a function of mixing 

energy input and experimentally determined light attenuation, the model is proven to be valid 

regardless the input energy used for flat-panel photobioreactors and open raceway pond. Our 

research, as a result, demonstrates that well mixed conditions are maintained for flat-panel 

photobioreactors and open raceway ponds at industrially relevant mixing energy inputs, 
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predicting the biomass productivity of Synechocystis sp. PCC 6803 by considering the 

uncertainty of the experimental results. 

The well-mixed cyanobacterial growth model of Synechocystis sp. PCC 6803 validated 

for the flat-panel photobioreactor at mixing energy inputs of 0.03 W.m-3 is illustrated in Figure 

9.4. The validation of this model for mixing energy inputs of 0.47, 0.97 and 1.94 W.m-3 in flat-

panel photobioreactors are included in the Figures 9.5, 9.6, and 9.7. The one-way ANOVA 

results of the experimental biomass productivities are included in the Appendix G, Figure G.7, 

demonstrating a significant influence of mixing energy inputs as illustrated in the p-value less 

than 0.05. By incorporating light attenuation into the well-mixed cyanobacterial growth model 

of flat-panel photobioreactors, measured from the mixing energy inputs of 0.47 W.m-3, as a 

function of culture depth and dry weight biomass (DWB) (Figure G.5), the model was valid for 

all the experiments performed at different mixing energy inputs (Figure 9.4, 9.5, 9.6, and 9.7). 

The DWB and biomass productivities predicted error of the model relative to the average 

experimental results for a mixing energy input of 0.03 W.m-3 were -0.05 g.l-1 and -0.019 g.l-1.d-

1, respectively. For a mixing energy input of 0.47 W.m-3 the errors were -0.22 g.l-1 and -0.053 

g.l-1.d-1. For a mixing energy input of 0.97 W.m-3 the errors were -0.44 g.l-1 and -0.108 g.l-1.d-1, 

the largest observed due to experimental inconsistencies, suggesting that cyanobacterial cultures 

crashed during this particular experiment. Lastly, for a mixing energy input of 1.94 W.m-3 the 

errors were -0.08 g.l-1 and -0.013 g.l-1.d-1. These results suggest that flat-panel photobioreactors 

operated at industrially relevant mixing energy inputs, ranging from 0.03 to 1.94 W.m-3, 

maintain well-mixed conditions as their performance were accurately predicted by a well-mixed 

cyanobacterial growth model incorporating light attenuation in Synechocystis sp. PCC 6803 

cultures. Additionally, by comparing experimental and computational growth performed with 
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normalized carbon content (scrubbed CO2 and bicarbonate addition) relative to experiments 

performed with sparged air (containing atmospheric CO2), under identical mixing energy inputs, 

carbon was demonstrated to be the limiting nutrient for growth of Synechocystis sp. PCC 6803 

at the lowest mixing energy input in this research, 0.03 W.m-3 (Figure 9.4, 9.5, 9.6, and 9.7). For 

this mixing energy input, for instance, if carbon is constrained to the concentrations contained in 

the air, 0.0011 g.l-1.min-1, this would be below the concentrations where growth is inhibited, 

0.005 g.l-1, as previously published by Kim et al. (2011). 

 

Figure 9.4 Well-mixed cyanobacterial growth model in flat-panel photobioreactor validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 0.01 W.m-3. The 

error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 31 ± 1 °C and 1,244 ± 47 μmol photons.s−1.m−2. 
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Figure 9.5 Well-mixed cyanobacterial growth model in flat-panel photobioreactor validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 0.47 W.m-3. The 

error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 33 ± 1 °C and 1,385 ± 25 μmol photons.s−1.m−2. 

 

 

Figure 9.6 Well-mixed cyanobacterial growth model in flat-panel photobioreactor validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 0.97 W.m-3. The 

error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 30 ± 1 °C and 1,323 ± 9 μmol photons.s−1.m−2. 
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Figure 7. Well-mixed cyanobacterial growth model in flat-panel photobioreactor validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 1.94 W.m-3. The 

error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 34 ± 1 °C and 1,440 ± 65 μmol photons.s−1.m−2. 

 

9.3.2 Light attenuation in Synechocystis sp. PCC 6803 cultures is not impacted by mixing 

energy inputs and reactor configuration 

The well-mixed cyanobacterial growth model of Synechocystis sp. PCC 6803 calibrated for 

the open raceway pond at mixing energy input of 0.10 W.m-3 is illustrated in Figure 9.8. By 

performing experimental cultivation of cyanobacterial in flat-panel photobioreactors, providing 

absorptive walls to constrain an incident radiation normal to the water surface, the cross section 

into an open raceway pond should be emulated given well-mixed conditions are maintained in 

both systems. Therefore, the light attenuation in the flat-panel photobioreactor configured in this 

research, as a function of depth and dry weight biomass at 0.47 W.m-3, should resemble the light 

pattern of any well-mixed culture of Synechocystis sp. PCC 6803. From the computational 

growth, the light pattern measured in the flat-panel photobioreactor embedded into the growth 

model predicted the biomass productivity of Synechocystis sp. PCC 6803 performed in the open 
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raceway pond. These results suggest open raceway ponds at mixing energy inputs of 0.10 W.m-3, 

maintain well-mixed conditions regardless that an order of magnitude lower than reported by 

Sompech et al. (2012) was used for cultivation. Additionally, the predictive capability of the 

growth model under either nitrogen or carbon limitation, demonstrated with the flat-panel 

photobioreactors experimental work, provides more evidence that open raceway ponds operated 

in ourdoor conditions where carbon supply is not feasible growth limited by this macronutrient.  

The relevance of these findings supports the previous work published by Grobbelaar (1991), 

suggesting mixing has no implications in the culture productivity due to light regimes 

experienced by single photoautotrophic cells. Turbulent mixing, as a result, more likely impact 

biological responses due to cell disruption induced by shear stress and constraining the carbon in 

the system controlled by sparged air. To summarize, pilot flat-panel and open raceway ponds 

operated at industrially relevant mixing energy inputs maintain well-mixed conditions. 

 

Figure 8. Well-mixed cyanobacterial growth model in open raceway pond validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 0.10 W.m-3. The 

error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 29 °C and 915 ± 79 μmol photons.s−1.m−2. 
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9.4 Conclusions 

In both flat-panel photobioreactors and open raceway ponds, experimental measurements of 

cyanobacterial growth were compared to bulk computational models of growth, at various 

mixing energies. That these results are indistinguishable demonstrates that the light experienced 

by individual cells has no measurable impact on the metrics of Synechocystis sp. PCC 6803 

culture and productivity.   

9.5 Answer to Research Question 3.2 

This section of the research effort has allowed us to address Research Question 3.2, which is 

restated here: 

What is the incident radiation and thermal environment experienced by single cyanobacteria 

cells. How is the bulk thermal system impacted by turbulent mixing? 

Research Question 3.2 is associated with Hypothesis 3.1:  

Fluid flow and mixing in open raceway ponds is hypothesized to strongly influence algae 

growth. Pilot scale open raceway ponds and flat-panel photobioreactors maintain well-

mixed conditions under a variety of operating conditions, and their cyanobacterial growth 

performance is described by well-mixed models. 

Chapter 7 demonstrates that the period of algae and cyanobacteria cell motion is not 

significantly changed under wide range of mixing energy input in pilot photobioreactors. This 

means that differences in mixing energy input have a small impact on the light experienced by 

photoautotrophic microorganisms in flat-panel photobioreactors and open raceway ponds. The 

predictive capability of CFD modeling is demonstrated and validated, providing reliable 

boundary conditions are given as described in this chapter from experimental fluid mechanics 

tools. 
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Chapter 8 demonstrates the predictive capability of lumped-thermal models, suggesting well 

mixed conditions in pilot open raceway ponds operated in outdoors conditions in Arizona.  The 

uncertainty in the growth model results is driven by uncertainty in thermal and biological 

parameters, leading to low predictive capabilities from the growth models. 

Chapter 9 demonstrates the predictive capability of a cyanobacterial growth model in a 

photo-inhibiting environment with differences in mixing energy input. By incorporating photo-

inhibited maximum specific growth rate of cyanobacteria as a function of mixing energy input 

and scattering factors accounted in experimental light attenuation, we demonstrated well mixed 

conditions in pilot flat-panel photobioreactors and open raceway ponds. Additionally, we 

demonstrated that the accuracy of the model is driven by photorespiration, intrinsically 

incorporated in the photo-inhibited maximum specific growth rate of cyanobacteria growth 

modelling. 

These results provide evidence against the hypothesis that fluid mechanics are important.  

When the growth characteristics of the culture can be predicted at various fluid mechanics 

conditions without consideration of the fluid mechanics, the results are demonstrated to be 

independent of the mixing conditions of the culture. The results of Chapter 7, 8, and 9 provide 

evidence that the fluid mechanics of the cyanobacteria culture can be characterized as well mixed 

for all industrially relevant mixing energies surveyed in this study for pilot scale flat-panel 

photobioreactors and open raceway ponds. 
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CHAPTER 10: Conclusions 

10.1 Contributions to the Field 

The overall research objectives of this study are to build a bridge and feedback loop approach 

to connect laboratory-scale and industrial-scale assessments of photoautotrophic based 

biosystems.   

The primary contributions to the field from this research are presented below: 

1. Developed a new assessment approach to predict the performance of industrial scale systems 

from laboratory experimentations for new organisms’ biosynthetic products. 

2. Developed first inclusive geographical assessment of microalgae facilities in the U.S. to 

evaluate the impact of DLUC on life cycle GHG emissions by constructing microalgae 

production systems in barren land areas. 

3. Integrated wastewater engineering and photoautotrophic cultivation technologies to review 

and recommend bioprocesses that improve water quality from wastewater facilities and 

increase growth of photoautotrophic microorganisms. 

4. Evaluation of the synergistic benefits of the integration of wastewater treatment facilities and 

cyanobacterial biorefineries for large scale systems for the first time using novel wastewater-

specific sustainability metrics. 

5. Developed first LCA integrating metrics of sustainability responses into tradeoffs between 

mixing energy inputs and growth. 

6. Developed first flow characterization of pilot flat-panel photobioreactors and open raceway 

ponds by advanced experimental fluid mechanics tools under industrially relevant mixing 

energy inputs. 
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7. Performed first quantification of error of dynamic thermal models embedded into algae 

growth models. 

8. Provided evidence of carbon limiting conditions for cyanobacteria growth at low mixing 

energy inputs in flat-panel photobioreactors and open raceway ponds, and demonstrated 

maximum specific growth rates due to photorespiration drives accuracy of photoautotrophic 

growth models. 

9. Demonstrated well-mixed conditions in pilot scale flat-panel photobioreactors and open 

raceway ponds at industrially relevant mixing energy inputs by performing experimental 

fluid mechanics characterizations with well-mixed thermal and growth modelling. 

10. Rigorous experimental development of scalable models, biological relations, and energy 

consumption models for life cycle energy and GHG emissions. 

10.2 Summary of Answers to Research Questions 

This dissertation has developed a novel approach to assess the sustainability of 

photoautotrophic biorefineries by an LCA, and understanding the effects of the physical 

environment in the growth and productivity of algae and cyanobacteria. In chapter 2, for 

instance, cyanobacterial-derived ethanol was demonstrated to be more sustainable in terms of life 

cycle net energy and GHG emissions relative to other biofuels, such as bisabolane and 

heptadecane. Chapter 3 demonstrated that DLUC reduces the net GHG emissions’ benefit from 

microalgae biofuel manufacturing. The results of these studies provide support to the hypothesis 

that results are sensitive to uncertainties in growth and energy conversion stages, and that the 

details of characteristics such as DLUC can have large influence over the metrics of 

sustainability.  
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Chapters 4 and 5 demonstrates that sludge centrate obtained from wastewater facilities could 

be used for cultivation of algae and cyanobacteria, with the potential to contribute to the 

biological nutrient removal and wastewater remediation in wastewater treatment facilities. The 

results of these studies provide support to the hypothesis that synergistic benefits are obtained by 

integrating cyanobacterial cultivation and wastewater treatment, including displacement of 

fertilizers for cyanobacteria cultivation by wastewater nutrients, reduction of energy 

consumption to remove nutrients from the treated wastewater, and improvement of water quality 

from wastewater facilities.  

Chapter 6 demonstrates that there is a tradeoff between mixing energy and biomass, 

reducing the life cycle energy at low mixing rates. Additionally, this chapter provides evidence 

that carbon limits the growth of cyanobacteria at low mixing energy inputs in flat-panel 

photobioreactors and open raceway ponds. High mixing energy inputs in flat-panel 

photobioreactors inhibits the growth of cyanobacteria. Lastly, Chapters 7, 8, and 9 demonstrate 

well-mixed conditions in pilot flat-panel photobioreactors and open raceway ponds where (i) 

algae and cyanobacteria cells motion are not significantly impacted under wide range of mixing 

energy input, (ii) lumped thermal models are capable to predict the temperature of the system, 

and (iii) well-mixed cyanobacteria growth models predict the biomass productivity, given 

maximum specific growth rates impacted by photo- and dark- respiration. The results of Chapter 

7, 8, and 9 provide evidence that the fluid mechanics of the cyanobacteria culture can be 

characterized as well mixed for all industrially relevant mixing energies surveyed in this study 

for pilot scale flat-panel photobioreactors and open raceway ponds. 
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10.3 Future work 

The future directions of this dissertation research will be to develop a better 

understanding of epistemic and aleatory thermal parameters in algal and cyanobacterial 

cultivation in raceways and photobioreactors. This work has demonstrated that it is very 

important to understand the role of thermal conditions on the performance of biological 

responses. We lack of holistic understanding of the impacts of physical environments in the 

growth and productivity of algae and cyanobacteria cultivation systems, and the sustainability 

implications of producing biofuels in large scale systems, that can be improved by the 

application of experimental and computational fluid mechanics to industrial scale 

photobioreactors and open raceway ponds. These efforts will feed high level LCA and 

technoeconomic models to evaluate sustainability and economics metrics. 

My future research will endeavor to improve the predictive capability of dynamic thermal 

and algae/cyanobacteria growth models, incorporating rigorous experimental characterization of 

the physical environment and the biological effects under industrial and outdoor conditions. I 

will strive to understand the physical and biological connections and sources of uncertainties of 

photobioreactors and open raceway ponds at laboratory, pilot, and industrial scale system 

throughout my career. To gain a better understanding of the impact of the physical environment 

in the biological responses of algae and cyanobacteria, I will expand my efforts studying the flow 

characteristics incorporating additional variables such as fluid viscosity, photoautotrophic 

density, and photobioreactors and open raceway ponds scale. To understand the biological 

implications of the physical environment, I will explore the application of Mechanomics as part 

of my research interests on prediction of microalgae growth responses. 
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As part of my future work, I will continue integrating my civil and mechanical 

engineering expertise by exploring wastewater treatment remediation and bioenergy 

technologies. My efforts will include the integration of algae and cyanobacteria technologies into 

municipal wastewater treatment facilities towards biological nutrient removal processes, 

anaerobic digestion, and energy conversion. In the integration of these and other water and 

energy systems I will study resiliency through scenario modeling and uncertainty propagation. 

Lastly, I will seek to integrate research gaps between laboratory experimentation and industrial 

scale systems by incorporating bioengineering, civil and environmental engineering, and 

mechanical engineering experimentation and toolsets to reduce the uncertainty of sustainability 

assessments by techno-economic and LCA frameworks.  
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APPENDIX A: Cyanobacterial Growth in Baseline LCA 

The genetically engineered cyanobacteria, Synechocystis sp. PCC6803, that are the subject 

of this study, are cultivated in enclosed photobioreactors to protect them from contamination and 

to enable the collection of the biofuel from the photobioreactor media and headspace. The batch 

bioprocess is carried out in flat photobioreactors providing a total culture volume of 126,000 m3. 

For validation purposes of the growth stage subsystem of this LCA, we performed experimental 

work in a bench scale flat photobioreactor with surface to volume ratio of 112 m2.m-3. Cultures 

were mixed by sparged air at the bottom of the photobioreactor at 0.5 m3 of air per minute per 

cubic meter (VVM) (+/- 0.3). Photobioreactors were inoculated with Synechocystis sp. PCC6803 

cells at 0.107 g.l-1 (+/- 0.061). The cultures were grown using a high-pressure sodium (HPS) 

lighting system with a spectrum ranging from 400 to 700 nm at extreme conditions, sunny day at 

noon or a Photosynthetic Active Radiation (PAR) over 1,600 μmol Photons.m-2.s-1. 

Cyanobacterium biomass was harvested upon quasi-steady state conditions, reaching a 

productivity of 0.128 g.l-1.d-1 (+/- 0.033) (Figure A.1). 

 

Figure A.1 Dry weight biomass results of Synechocystis sp. PCC6803 grown in a bench scale flat 
photobioreactor. 
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APPENDIX B: Geographical Assessment of DLUC in Microalgae Facilities 

1 Life cycle assessment (LCA) of Microalgae-based facilities systems 

Our Geographical Information System (GIS) model, where the impact of vegetation carbon 

stocks on the GHG emissions avoided by microalgae facilities due to photosynthesis and fossil 

fuels displacements is assessed, has integrated previous efforts concerning scaled-up growth 

models of Solix Biosystems photobioreactors, Life Cycle Assessments (LCA) in a “strain-to- 

pump” baseline scenario, and geographical selection of potential microalgae facilities as 

illustrated in Figures B.1 and B.2.     

 

Figure B.1 Microalgae-based biofuel facilities Systems (Adapted from Batan et. al., 2010). 
 

These previous efforts have contributed to determine scalability metrics to produce the 40 

billion gallons of microalgae-based biofuels in the U.S. (Table B.1), life cycle water footprints in 

ten different locations in the U.S. (Table B.2), net energy ratios (NER) of microalgae facilities by 

taking into consideration the energy consumption for each feedstock processing stage (Tables 

B.3), and the greenhouse gas (GHG) emissions (Table B.4) evaluated under three energy source 

scenarios including the U.S. electricity mix, the northeast electricity mix, and the California State 
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electricity mix (Table S4). Detailed information of these models incorporated in our GIS model 

can be obtained from Batan et. al.[29, 133] and Quinn et. al.[136, 153]. From these previous 

models, a unit value of GHG avoided by microalgae production of 2.262 tonnes of CO2eq per m3 

of oil extracted was obtained and further utilized in our GIS model. 

Table B.1 Scalability Metrics Derived from Microalgae to Biofuels Process Model [29] 
 

Scalability Metrics Value Resources’ availability in the US (%) 

 

Land required 

 

CO2 consumption 

 

Natural gas 

consumption 

 

Electricity 

consumption 

 

Water consumption 

 

Nitrogen consumption 

 

Algae biodiesel 

production 

 

1.09 x 107 acres 

 

8.17 x 1011 kg.a-1 

 

1.39 x 1011 

kWh.a-1 

 

2.77 x 1011 

kWh.a-1 

 

1.34 x 1012 gal.a-

1 

 

4.71 x 1010 kg.a-1 

 

40 x 109 gal.a-1 

 

16% of Colorado area (0.45% of US) 

 

32% of from US power generation  

 

2% of US production 

 

7% of US production 

 

27% of Colorado river annual flow 

 

1900% of US urea production 

 

18% of US transportation energy sector 

 

7500% of North American production 
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Scalability Metrics Value Resources’ availability in the US (%) 

 

Glycerin coproduct 

production 

 

Algae extract 

coproduct production 

 

2.1 x 1010 kg.a-1 

 

 

6.3 x 108 kg.a-1 

 

11% of protein required for NOAA US 

aquaculture production outlook for 2025 

 

Table B.2 Lifecycle water footprint, coproduct credits and net lifecycle water footprint for the 10 
US sites evaluated for four fuel pathways. All values are presented in m3 · GJ− 1. Negative values 
appear between parentheses [133] 

Locations 

 

Coproduct credits Lifecycle water 

footprint 

With coproduct 

credits 

Energy 

allocation 

Displacement 

allocation 

Min. Max. Min. Max. 

Tempe, AZ 26–

46 

1.0 3.7 5.9 327 (282)–44 

Hayfield Pump Plant, 

CA 

44–

79 

1.0 3.7 5.9 328 (249)–75 

John Martin, CO 30–

53 

1.0 3.7 5.9 327 (274)–49 

Yellowtail, MT 24–

44 

1.0 3.7 5.9 333 (291)–43 
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Locations 

 

Coproduct credits Lifecycle water 

footprint 

With coproduct 

credits 

Energy 

allocation 

Displacement 

allocation 

Min. Max. Min. Max. 

North Platte, NE 21–

41 

1.0 3.7 5.9 327 (291)–40 

Boulder City, NV 46–

83 

1.0 3.7 5.8 325 (241)–80 

State University, NM 34–

60 

1.0 3.7 6.0 333 (274)–56 

Grand Falls, TX 33–

58 

1.0 3.7 6.0 332 (274)–54 

Fish Springs, UT 29–

50 

1.0 3.6 5.8 322 (272)–47 

Farson, WY 25–

44 

1.0 3.6 5.8 324 (282)–43 

 

Table B.3 Net Energy Ratio (NER) in MJ/MJ of Conventional Diesel, Soybean Biodiesel, and 
Microalgae Biodiesel Processes [29] 
 

Stage Conventional Diesel Soybean Biodiesel Microalgae Biodiesel 

Crude oil recovery 0.05   

Growth  0.32 0.73 

Dewater   0.17 
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Stage Conventional Diesel Soybean Biodiesel Microalgae Biodiesel 

Oil extraction  0.46 0.21 

Fuel conversion 0.13 0.17 0.17 

Feedstock input  1.50 0.43 

Transportation and 

distribution 

1.8X10-7 0.01 0.01 

Coproducts credits  (0.83) (0.79) 

Total NER* 0.19 1.64 0.93 

*NER is established as MJ consumed·(MJ produced)-1 

 

Table B.4 Net GHG Emissions of Conventional Diesel, Soybean Biodiesel, and Microalgae 
Biodiesel Processes [29] 
 

GHG Emission Conventional 

Diesel 

Soybean 

Biodiesel 

Microalgae 

Biodiesel 

CO2 (g.MJ-1) 14.69 -72.73 -59.49 

CH4 (g.MJ-1) 2.48 0.42 0.74 

N2O (g.MJ-1) 0.07 0.58 -16.54 

Net “strain to pump” GHG 

(gCO2eq·MJ-1) 

17.24 -71.73 -75.29 
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Table B.5 Analysis of Net GHG per source of Electricity with a LCA boundary of “strain-to-
pump” for the baseline scenario [29] 
 

 

GHG Emission 

Conventional 

Diesel 

U.S. Electricity 

Mix 

Soybean 

Biodiesel 

U.S. 

Electricity 

Mix 

Microalgae Biodiesel 

California 

State 

Electricity 

Mix 

Northeast 

Electricity 

Mix 

U.S. 

Electricity 

Mix 

CO2 (g.MJ-1) 14.69 -72.73 -80.36 -72.34 -59.49 

CH4 (g.MJ-1) 2.48 0.42 0.45 0.45 0.74 

N2O (g.MJ-1) 0.07 0.58 -16.56 -16.54 -16.54 

Net GHG 

(gCO2eq·MJ-1) 

17.24 -71.73 -96.47 -88.43 -75.29 

 

GHG emissions researched in LCA of Open Raceway Ponds (ORP) and Photobioreactors 

(PBR) have a broad range; therefore, increasing the uncertainty concerning the environmental 

benefits or impacts of this technology as illustrated in Table B.6. In our research, as a result, we 

have taken into account this wide range of GHG emissions per unit of produced energy as a 

baseline; then, we can evaluate the uncertainty as for the impact of carbon stocks on these 

emissions researched under different technologies and performances. By considering the broad 

range of GHG emissions as illustrated in Table B.6 and the contributions due to carbon stocks 

we researched, the raw data of the final GHG emissions we have obtained in our research is 

depicted in Table B.7. 
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Table B.6 Summary of LCA of Open Raceway Ponds (ORP) and Photobioreactors (PBR) [18-
21, 23, 24, 26, 27, 29, 90-93, 135, 142-146] 
 
Author Year Technology* Productivity 

g.m-2.d-1 

Lipid 

Percent 

GHG 

gCO2.MJ-1 

Ponnusamy et. al. 

(2014) 

2014 ORP  24% -95.7 

Batan et. al. (2010) 2010 PBR 25 50% -75.29 

Handler et. al. (2014) 2014 ORP 25 25% -60.8 

Frank et. al. (2013) 2013 ORP 25 25% -52 

Quinn et. al. (2014) 2014 ORP 50 25% -41.7 

Campbell et. al. 

(2011) 

2011 ORP 30  -31 

Handler et. al. (2014) 2014 ORP 12 10% -23.7 

Vasudevan et. al. 

(2012) 

2012 ORP 20 25% -20 

Frank et. al. (2011) 2011 ORP 25 25% -19.90 

Vasudevan et. al. 

(2012) 

2012 ORP 20 25% -18 

Collet et. al. (2014) 2014 ORP 20 46% -17.4 

Azadi et. al. (2014) 2014 ORP 21.9 30% 13 

Woertz et. al. (2014) 2014 ORP 20 30% 24.05 

Liu et. al. (2013) 2013    33 

Sills et. al. (2013) 2013 PBR/ORP 25  34 
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Author Year Technology* Productivity 

g.m-2.d-1 

Lipid 

Percent 

GHG 

gCO2.MJ-1 

Azadi et. al. (2014) 2014 ORP 21.9 30% 37 

Shirvani et. al. (2011) 2011 ORP 18.6 30% 47.8 

Adesanya et. al. 

(2014) 

2014 PBR/ORP  40% 51 

Soh et. al. (2014) 2014   9% 64 

Brentner et. al. (2011) 2011 PBR 68 25% 80.5 

Passell et. al. (2013) 2013  25 50% 107 

Sills et. al. (2013) 2013  25  184 

Vasudevan et. al. 

(2012) 

2012 ORP 20 25% 205 

Grierson et. al. (2013) 2013 PBR   230 

Brentner et. al. (2011) 2011 ORP 48 25% 534 

      

Table B.7 Raw data of GHG emissions per unit of energy produced histograms by considering 
the impact of carbon stocks. Adapted from: [18-21, 23, 24, 26, 27, 29, 90-93, 135, 142-146]  

U.S. Electricity 

Mix (Batan et. 

al., 2010) 

Campbell et. al. 

(2011) 

Frank et. al. 

(2011) 

Shirvani et. al. 

(2011) 

Brentner et. al. 

(2011) 

Bins Count Bins Count Bins Count Bins Count Bins Count 

-61.62 25 -17.62 25 -6.62 25 61.38 25 94.38 25 

-36.86 7 7.14 7 18.14 7 86.14 7 119.14 7 

-12.1 0 31.9 0 42.9 0 110.9 0 143.9 0 
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U.S. Electricity 

Mix (Batan et. 

al., 2010) 

Campbell et. al. 

(2011) 

Frank et. al. 

(2011) 

Shirvani et. al. 

(2011) 

Brentner et. al. 

(2011) 

Bins Count Bins Count Bins Count Bins Count Bins Count 

12.66 1 56.66 1 67.66 1 135.66 1 168.66 1 

37.42 16 81.42 16 92.42 16 160.42 16 193.42 16 

62.18 6 106.18 6 117.18 6 185.18 6 218.18 6 

86.94 2 130.94 2 141.94 2 209.94 2 242.94 2 

111.7 1 155.7 1 166.7 1 234.7 1 267.7 1 

136.46 1 180.46 1 191.46 1 259.46 1 292.46 1 

161.22 0 205.22 0 216.22 0 284.22 0 317.22 0 

185.98 0 229.98 0 240.98 0 308.98 0 341.98 0 

210.74 0 254.74 0 265.74 0 333.74 0 366.74 0 

235.5 1 279.5 1 290.5 1 358.5 1 391.5 1 

260.26 0 304.26 0 315.26 0 383.26 0 416.26 0 

285.02 0 329.02 0 340.02 0 408.02 0 441.02 0 

309.78 0 353.78 0 364.78 0 432.78 0 465.78 0 

334.54 0 378.54 0 389.54 0 457.54 0 490.54 0 

359.3 0 403.3 0 414.3 0 482.3 0 515.3 0 

384.06 0 428.06 0 439.06 0 507.06 0 540.06 0 

408.82 0 452.82 0 463.82 0 531.82 0 564.82 0 

433.58 0 477.58 0 488.58 0 556.58 0 589.58 0 

458.34 0 502.34 0 513.34 0 581.34 0 614.34 0 
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U.S. Electricity 

Mix (Batan et. 

al., 2010) 

Campbell et. al. 

(2011) 

Frank et. al. 

(2011) 

Shirvani et. al. 

(2011) 

Brentner et. al. 

(2011) 

Bins Count Bins Count Bins Count Bins Count Bins Count 

483.1 0 527.1 0 538.1 0 606.1 0 639.1 0 

507.86 0 551.86 0 562.86 0 630.86 0 663.86 0 

532.62 0 576.62 0 587.62 0 655.62 0 688.62 0 

557.38 0 601.38 0 612.38 0 680.38 0 713.38 0 

582.14 0 626.14 0 637.14 0 705.14 0 738.14 0 

606.9 0 650.9 0 661.9 0 729.9 0 762.9 0 

631.66 0 675.66 0 686.66 0 754.66 0 787.66 0 

656.42 0 700.42 0 711.42 0 779.42 0 812.42 0 

681.18 0 725.18 0 736.18 0 804.18 0 837.18 0 

705.94 0 749.94 0 760.94 0 828.94 0 861.94 0 

730.7 0 774.7 0 785.7 0 853.7 0 886.7 0 

755.46 0 799.46 0 810.46 0 878.46 0 911.46 0 

780.22 0 824.22 0 835.22 0 903.22 0 936.22 0 

804.98 0 848.98 0 859.98 0 927.98 0 960.98 0 

829.74 0 873.74 0 884.74 0 952.74 0 985.74 0 

854.5 0 898.5 0 909.5 0 977.5 0 1010.5 0 

879.26 0 923.26 0 934.26 0 1002.26 0 1035.26 0 

904.02 0 948.02 0 959.02 0 1027.02 0 1060.02 0 

928.78 0 972.78 0 983.78 0 1051.78 0 1084.78 0 
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U.S. Electricity 

Mix (Batan et. 

al., 2010) 

Campbell et. al. 

(2011) 

Frank et. al. 

(2011) 

Shirvani et. al. 

(2011) 

Brentner et. al. 

(2011) 

Bins Count Bins Count Bins Count Bins Count Bins Count 

953.54 0 997.54 0 1008.54 0 1076.54 0 1109.54 0 

978.3 0 1022.3 0 1033.3 0 1101.3 0 1134.3 0 

1003.06 0 1047.06 0 1058.06 0 1126.06 0 1159.06 0 

1027.82 0 1071.82 0 1082.82 0 1150.82 0 1183.82 0 

1052.58 0 1096.58 0 1107.58 0 1175.58 0 1208.58 0 

1077.34 0 1121.34 0 1132.34 0 1200.34 0 1233.34 0 

1102.1 0 1146.1 0 1157.1 0 1225.1 0 1258.1 0 

1126.86 0 1170.86 0 1181.86 0 1249.86 0 1282.86 0 

1151.62 1 1195.62 1 1206.62 1 1274.62 1 1307.62 1 

 

2 Geographical distribution of lipid productivities of microalgae-based biofuel facilities 

Our research has taken into consideration the various efforts that have quantified productivity 

potential of microalgae considering geographically specific meteorological data, land 

availability, and carbon dioxide (CO2) accessibility, and evaluated the life cycle GHG emissions 

of microalgae-based biofuel facilities in the United States (U.S.) [134] [136] [29] [78] [27, 93] 

[91] [135]. Potential areas of microalgae-based biofuel facilities at minimum farm sizes of 400 

Ha and their lipid productivities were obtained from the research reported by Quinn et. al. [136]. 

The three land cover scenarios reported by Quinn et. al. [136] were taken into consideration in 

this research to model carbon stocks. These scenarios are barren areas with slopes of less than 
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1% and less than 2%, respectively, and forest or pasture or barren areas with slopes of less than 

5%. These lipid productivities maps, illustrated in Figure B.2, were utilized in our research to 

asses above and below ground carbon stocks. 

 

 

Figure B.2 (a) Baseline: Lipid productivity potential of algae facilities located on barren lands 
with slopes of less than 2% (b) Lipid productivity potential of algae facilities located on barren 
lands with slopes of less than 1% (c) Lipid productivity potential of algae facilities located on 

forest-pastures-barren lands with slopes of less than 5% [136]. 
     

3 Above and below ground carbon 

Above Ground Biomass (AGB) dataset was obtained from the Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics of 

the National Aeronautics and Space Administration (NASA) [150]. The AGB, which is 

(b) (a) 

(c) 
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comprised of the dried matter of living organisms above ground [151], was utilized to obtain the 

land cover carbon, which is measured as tonnes of dried matter per hectare. The AGB maps on 

the U.S. and the potential microalgae-based biofuel facilities areas processed in our research are 

illustrated in Figures B.3 and B.4, respectively, for the three scenarios described in the section 2 

of this supplementary material. Additionally, the areal distribution of the AGB for the three 

scenarios of our research is presented in Table B.7. When the U.S. AGB map was limited to the 

potential areas for microalgae-based biofuel facilities on barren lands with slopes of less than 2% 

and less than 1% (Figure B.2), it was observed that in the research conducted by Quinn et. al. 

[136] 95.4 % and 95.0% of these facilities were located at sites with AGB values equal or less 

than one ton per hectare. The remainder of the areas, 4.6% in barren lands with slopes of less 

than 2%, were located at AGB values ranging from 1 to 3,440 tonnes per hectare, whereas the 

maximum U.S. AGB is 4,101 tonnes per hectare (Figure B.3). If forest-pasture-barren lands are 

also included to build potential micro-algae based biofuel facilities, 35.89% of these areas would 

be installed on sites with AGB ranged from 1 to 3,440 tonnes.Ha-1 (Table B.7).  

 

Figure B.3 United States above-ground biomass (AGB) map [150]. 
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Figure B.3 Above-ground biomass (AGB) on potential microalgae-based biofuel facilities 
areas (a) Baseline: barren lands, less than 2% slopes (b) barren lands, less than 1% slopes (c) 

forest-pastures-barren lands, less than 5% slopes. 
Table B.7 AGB on potential microalgae-based biofuels facilities areas 
 

AGB    

(tonnes.Ha-1) 

Land Area (%) 

Barren land, 2% slope 

(baseline) 

Barren land, 1% 

slope  

Forest-pasture-barren land, 

5% slope  

0 – 1 95.40 95.00  64.11  

1 – 190 3.60 3.60  15.52  

190 – 380 0.60 0.90  8.14  

380 – 640 0.30 0.40  8.70  

640 –3440* 0.10 0.10  3.52  

(b) (a) 

(c) 
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AGB    

(tonnes.Ha-1) 

Land Area (%) 

Barren land, 2% slope 

(baseline) 

Barren land, 1% 

slope  

Forest-pasture-barren land, 

5% slope  

*Barren lands at 1% and 2% slopes have a maximum of 1500 tonnesHa-1. 

 

Although most of the previously selected areas for potential microalgae-based biofuel 

facilities depict SOC values lower than 1-tonnes.Ha-1 (Table B.8), this carbon source is an 

important component in the carbon stocks balance [276].The contribution of the disturbed SOC by 

facilities in terms of biomass range from 0 to 1,100 tonnes.Ha-1 for barren lands with slopes of less 

than 2% and forest-pasture-barren lands, whereas barren lands with less than 1% of slope reach a 

maximum value of 360 tonnes.Ha-1 (Figure B.5). 

 

 

 
(b) (a) 
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Figure B.4 Soil Organic Carbon (SOC) on potential microalgae-based biofuels facilities areas (a) 
Baseline: barren lands, less than 2% slopes (b) barren lands, less than 1% slopes (c) forest-

pastures-barren lands, less than 5% slopes [277-324]. 
 

Table B.8 SOC on potential microalgae-based biofuels facilities areas 

SOC 

(tonnes.Ha-1) 

Land Area (%) 

Barren land, 2% slope 

(baseline) 

Barren land, 1% 

slope  

Forest-pasture-barren land, 

5% slope  

0 – 1 78.48 83.47  88.70  

1 – 85 18.97 14.89  9.81  

85 – 1100* 2.60 1.60  1.50  

*Barren lands at 1% have a maximum of 360 tonnes.Ha-1. 

4 Geographical distribution of potential microalgae-based biofuels facilities GHG 

emissions due to direct land use change 

From the results of this geographical assessment, we find that previously selected barren land 

areas for algae-facilities have DLUC-associated, functional unit-specific, GHG emissions 

ranging from 3 to 802 gCO2eq MJ-1.  Figure 2 presents the distribution of DLUC-associated 

GHG emissions as a cumulative distribution of land area in the US.  More than 99% of the 

proposed cultivation areas under the baseline land use restriction scenario have DLUC-

(c) 
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associated GHG emissions of less than or equal to 100 gCO2eq MJ-1. Figure 4 presents the 

DLUC-associated GHG emissions from microalgae production in Arizona, where the median 

GHG emissions due to DLUC is 9 gCO2eq MJ-1, and Figure 5 shows that Florida has a median 

DLUC-associated GHG emissions of 17 gCO2eq MJ-1. 

 

Figure B.5 Geographical distribution of potential US microalgae-based biofuels facilities’ 
DLUC-inclusive GHG emissions (gCO2eq.MJ-1). 

 

 

Figure B.6 Geographical distribution of potential microalgae-based biofuels facilities GHG 
emissions due to DLUC (gCO2eq.MJ-1), for the state of Arizona, US. 
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Figure B.7 Geographical distribution of potential microalgae-based biofuels facilities GHG 
emissions due to DLUC (gCO2eq.MJ-1), for the state of Florida, US. 
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APPENDIX C: Combined Wastewater Treatment Facility and Cyanobacterial 

Biorefinery 

1 Baseline Biological Nutrient Removal Process and Scenarios Combining an Activated 

Sludge Process with Cyanobacterial Nutrient Removal 

The LCA model developed in this study seeks to evaluate the synergistic environmental 

benefits of combining cyanobacteria cultivation and nutrients remediation in photobioreactors 

using the sludge centrate produced by a wastewater treatment facility (Drake Water Reclamation 

Facility (DWRF)) located in Fort Collins, CO, USA. For the base case scenario, the system 

considers the indirect and direct electrical energy consumptions by the wastewater treatment 

facility including the Biological Nutrient Removal (BNR) process. This waste water treatment 

facility is currently using a BNR process, an Anaerobic/Anoxic/Oxic (A2/O) process as 

illustrated in Figure C.1 (Arita et al. 2015, Rittmann and McCarty 2012, You et al. 2003).  

 

Figure C.1 Anaerobic/anoxic/oxic (A2/O) process. The nitrogen concentrations of the treated 
effluent and sludge centrate correspond to the average values of DWRF for the years 2011-2014. 

Figure adapted from: [37, 38, 177]. 
 

The boundary of the combined wastewater treatment facility, cyanobacterial cultivation, and 

resources recovery, including struvite precipitation and biogas electric power generation, is 

illustrated in Figure C.2. For the combined system, the liquid centrate obtained from the sludge 
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centrifugation serves as the sources of nitrogen and phosphorous, which are required for the 

growth of cyanobacteria. This nutrient supplement reduces the required commercial/industrial 

fertilizers commonly used in photoautotrophic facilities (conventionally NaNO3, KH2PO4). 

Three centrate dilution scenarios were evaluated in this study: 3 vol%, 9 vol%, and 19 vol%. 

Life cycle energy use and GHG emissions due to Synechocystis sp. PCC6803 cultivation and 

biomass extraction were included within the system boundary. Carbon dioxide obtained from the 

anaerobic digester-based generation system was recycled back to the cyanobacterial cultivation 

system and the credits due to the displacement of grid electricity by the electricity generation 

through anaerobic digester were taken into consideration in the LCA model developed for 

analysis in this study.

 

Figure C.2 Boundaries of Cyanobacterial Nutrient Removal (CNR) Process for Sidestream 
Wastewater Treatment. 

 
2 Cyanobacterial Growth Model 

A dynamic cyanobacterial growth model with sludge centrate inhibition was developed for 

analysis in this study. This model incorporates ordinary differential equations and nonlinear 
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function embodying nitrogen quote, nitrogen uptake, chlorophyll synthesis, light absorption, 

photosynthesis, growth rate, and biomass (Arita et al. 2015, Packer et al. 2011a).  

Table C.1 summarizes the required biological inputs for Synechocystis sp. PCC6803(Formighieri 

2015, Kim et al. 2010a, Kim et al. 2011). The novelty of the model developed in this study is the 

incorporation of the maximum nitrogen-limited growth rate (μm) with centrate inhibition. These 

parameters were determined from the experimental works described in the section 2.3. 

Additionally, a competitive inhibition due to the potential growth of nitrifiers in a wastewater 

environment was embedded into the model (Rittmann and McCarty 2001). The dynamics of this 

second order system is illustrated in Figure C.3. 

Table C.1. Biological inputs for growth model based on Synechocystis sp. PCC6803 

Parameter Description Units Value Reference 

A 
Optical cross section of 

chlorophyll a 
m

2
.g

-1
chl 17 [84, 188] 

ɸ Quantum efficiency gC.(mol photons)
-1

 1.263 [187] 

Q 
Minimum subsistence nitrogen 

quota 
gN.g

-1
dw 0.0197 [188] 

qM Maximum nitrogen quota gN.g
-1

dw 0.129 [188] 

C C subsistence quota gC.g
-1

dw 0.512 [84, 188] 

Ѵm 
Maximum uptake rate of 

nitrogen 
gN.g

-1
dw.d

-1
 0.156 [84] 

Ѵh Half-saturation coefficient gN.m
-3

 39.2 [84] 
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Parameter Description Units Value Reference 

Ρ 
Maximum chlorophyll to 

nitrogen ratio 
gchl.g

-1
N 0.116 [84] 

po Maximum photosynthesis rate gC.g
-1

chl.d
-1

 47.87 [84] 

 

 

Figure C.3. Dynamic Thin Layer Cyanobacterial Growth Model with Centrate Inhibition and 
Competive Inhibition by Nitrifiers in Wastewater Environments. 

 
3 LCA of Baseline Wastewater Facility and Cyanobacterial Nutrient Removal Process 

The major LCA inputs and outputs of the activated sludge and CNR processes are 

summarized in Table C.2. The inputs include the wastewater and sludge centrate flowrates, 

nutrient requirements for cultivation of cyanobacteria, electricity and heat requirements for the 

activated sludge process and open raceway ponds. The main outputs include cyanobacterial 
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biomass, biogas production from co-digestion of the activated sludge and cyanobacterial 

biomass, and electricity and heat generation from biogas. 

Table C.2. Inputs for LCA scenarios  

Metric Units 

3 vol% 

Centrate 

Dilution 

9 vol% 

Centrate 

Dilution 

19 vol% 

Centrate 

Dilution 

Drake Water Reclamation Facility flowrate L.d-1 44,327,172 44,327,172 44,327,172 

Sludge-centrate flowrate L.d-1  264,979  264,979  264,979  

Required flowrate by open raceway ponds L.d-1 10,107,050 1,741,289  870,645  

Treated wastewater requirements for centrate 

dilution 

% 22.2 3.3 1.4 

Nitrogen requirements kg.d-1 31.33  17.59  11.97  

Phosphorous requirements kg.d-1 69.74  12.01  6.0  

Cyanobacterial biomass kg.d-1 7116.25 2414.784 1240.26 

CO2 available from biogas kg.d-1 9,080.14  8,823.18  8,778.05  

CO2 requirements for photosynthesis kg.d-1 14,857.36  2,559.70  1,279.85  

CO2 in liquid solution from Henrys Law kg.day-1 6.05  1.04  0.52  

Electrical power from biogas combustion KWh.d-1 7657.4 7440.7 7402.7 

Heatfrom biogas MJ.d-1 110,258  107,138  106,590  

Electricity requirements by wastewater facility* KWh.d-1 60,285 60,285 60,285 

Electricity requirements for mixing/cooling KWh.d-1 609   105  52  

Heating requirements for cultivation MJ.d-1 511,215   88,074  44,037  

*The electricity requirements of the wastewater facility with BNR process is 64,274 KWh.day-1 
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The performance of the CNR process integrated with an activated sludge of DWRF was 

evaluated by using a calibrated and validated BioWin process model [183]. The scenarios were 

compared to the baseline BNR process which is three stage A2/O process with nitrification, 

denitrification and limited biological P removal. The model for the activated sludge process was 

modified by removing the anaerobic and anoxic basins and the mixed liquor return (Figure C.1). 

The focus of the BioWin simulations was to estimate the effluent nutrient concentrations with 

and without the sidestream CNR. The effluent TN value for BNR and AS processes are 14.91 

mg-N.l-1 and 25.89 mg-N.l-1, respectively, correlating to a removal rate of 53% and 19%, 

respectively (Table C.3). Based on the three dilution scenarios evaluated by implementing CNR 

and removing the centrate return, a notable improvment to the combined effluent TN 

concentrations are obtained. The TN concentration would be reduced to 15.24, 18.94, and 19.37 

mgN/L for the 3 vol%, 9 vol%, and 19 vol% centrate dilution scenarios, respectively (Table C.3). 

For all of the scenarios, the overall improvment to the combined effluent TN concentrations is 

estimated with the implementation of CNR with the 3 vol% scenarioresulting in the most 

efficient removal process achieving a TN removal rate of 52%. The BioWin results suggest that 

by removing the centrate return and based on the bench scale CNR, the combined effluent 

nutrient concentration and energy requirements are notably reduced when compared to the 

baseline BNR process. 

The results from an LCA suggest that the centrate dilution of 3 vol% improves the water 

quality, and reduces the environmental impacts in terms of life cycle energy use and GHG 

emissions normalized by the nitrogen removal rate. Operational and capital costs; however, are 

minimized at 9 vol% scenario. For instance, the 3 vol% has the lowest NENR and GHG 

emissions of 37.95 kwh/(mgN.m-3.day-1) and 28,755 gCO2-eq/(mgN.m-3.day-1), respectively. The 



258 

 

9 vol% scenario, on the other hand, has the lowest net energy normalized by the treated 

wastewater of 1.42 kwh. m-3, and the lowest land requirements of 1.39 ha (Table C.3). The 

uncertainty of the biological experimental results of the 19 vol% scenario makes the 3 and 9 

vol% more reliable alternatives for the CNR process. 

Table C.3. Summary of metrics of sustainability for centrate dilutions scenarios 
 

Metric 
Drake 

Facility 

3 vol% 

Centrate 

Dilution 

9 vol% 

Centrate 

Dilution 

19 vol% 

Centrate 

Dilution 

CNR Effluent Total Nitrogen (mg.l-1) - 0.004 0.2 2.7 

Combined Effluent Total Nitrogen (mg.l-1) 14.9a 

(25.9b) 

15.24 18.94 19.37 

NENR (kwh/(mgN.m-3.day-1)) 37.95 34.95 41.73 42.82 

GHG emissions (gCO2-eq/(mgN.m-3.day-

1)) 

28,755 23,958 30,479 31,485 

Net Energy Facility (kwh. m-3) 1.45 1.54 1.42 1.41 

GHG emissions (gCO2-eq. m-3) 1,095.64  1,053.01 1,040.27  1,038.68  

Mixed Effluent and Centrate (m3.day-1) -   10,107  1,741   871  

Land (ha)* -  39.09 1.39  0.42  

* Available area at DWRF is 45 ha. 

a BNR process DWRF  

b Activated Sludge process 
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APPENDIX D: Cyanobacteria Growth Under Wide Range of Mixing Energy Inputs 

1 Cyanobacterial Growth 

The maximum growth rates of Synechocystis sp. PCC6803 were determined 

experimentally from Fig. D.1 and D.2. The biomass growth curve model for Synechocystis sp. 

PCC6803 for the four mixing energy inputs evaluated for the flat-panel photobioreactor: 1.94, 

0.97, 0.47, and 0.03 W.m-3, are illustrated in Figures 7, D.3, D.4 and D.5. The experimental results 

for the flat-panel photobioreactors and the open raceway pond are summarized in Tables D.1 and 

D.2. 

Table D.1. Summary of experimental growth of Synechocystis sp. PCC6803 in flat-panel 
photobioreactors 

Metric 

VVM 

 0.7 0.35 0.17 0.01 

μ (d-1) 
0.53 

(±0.17) 

0.76 

(±0.15) 

1.29 

(±0.23) 

1.18 

(±0.28) 

DW Biomass (g.l-1) 
0.30 

(±0.03) 

0.24 

(±0.02) 

0.90 

(±0.15) 

0.43 

(±0.03) 

Productivity (g.l-1.d-1) 0.07 0.05 0.23 0.14 

Water Temp (⁰C) 
34 

(±1) 

30 

(±1) 

31 

(±1) 

33  

(±1) 

PAR (μmolphotons.m-2.s-1) 
1440 

(±65) 

1,323 

(±9) 

1,244 

(±47) 

1,385 

(±25) 
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Table D.2. Summary of experimental growth of Synechocystis sp. PCC6803 in open raceway 
pond 

Metric 

0.1 W.m-3 

Replicate 1 Replicate 2 Replicate 3 

μ (d-1) 0.68 (± 0.12)  0.82 (± 0.08) 0.81 (± 0.09)  

DW Biomass (g.l-1) 0.45 (± 0.04) 0.39 (± 0.02) - 

Productivity (g.l-1d-1) 0.06 0.04 - 

Productivity (g.m-2d-1) 11.4 7.9 - 

Water Temp (⁰C) 29 29 29 

PAR (μmolphotons.m-2.s-1) 990 (± 116) 914.8 (± 79.1) 907.8 (± 79.3) 
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Figure D.9. Optical density of Synechocystis sp. PCC 6803growth in flat-panel photobioreactors. 
The error bars denote the upper and lower values from five experimental replicates  

 

 

Figure D.10. Optical density of Synechocystis sp. PCC 6803 grown in open raceway pond. The 
error bars denote the upper and lower values from five experimental samples 
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Figure D.3 Flat-panel photobioreactor experimental growth of Synechocystis sp. PCC 6803 at 
mixing energy inputs of 0.47 W.m-3. The error bars denote the upper and lower values from five 

experimental replicates. The cultures were cultivated at 33 ± 1 °C and 1,385 ± 25 μmol 
photons.s−1.m−2. 

 

 

Figure D.4 Flat-panel photobioreactor experimental growth of Synechocystis sp. PCC 6803 at 
mixing energy inputs of 0.97 W.m-3. The error bars denote the upper and lower values from five 

experimental replicates. The cultures were cultivated at 30 ± 1 °C and 1,323 ± 9 μmol 
photons.s−1.m−2. 
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Figure D.5 Well-mixed cyanobacterial growth model in flat-panel photobioreactor validated with 
experimental growth of Synechocystis sp. PCC 6803 at mixing energy inputs of 1.94 W.m-3. 

The error bars denote the upper and lower values from five experimental replicates. The cultures 
were cultivated at 34 ± 1 °C and 1,440 ± 65 μmol photons.s−1.m−2. 

 

2 Statistical analysis of experimental growth and metrics of sustainability 

The significance of the growth rates, biomass productivities, and Net Energy Ratios (NER) 

response is evaluated by a one-way analysis of variance (ANOVA), and illustrated at Figures D.6, 

D.7, and D.8. The on-way ANOVA demonstrate a significant influence of mixing energy inputs 

as illustrated in the p-value less than 0.05. 
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Figure D.6. Maximum growth rate of Synechocystis sp. PCC 6803 in flat-panel photobioreactors. 
The central mark is the median and the edges of the box are the 25th and 75th percentiles (1st 

and 3rd quantiles). The whiskers extend to the most extreme data points that are not considered 
outliers. The outliers are plotted individually. The outliers are plotted individually. The p-value 

or probability value was obtained from the one-way ANOVA in Matlab®. 
 

 

Figure D.7. Cyanobacterial biomass productivity of Synechocystis sp. PCC 6803 in flat-panel 
photobioreactors. The central mark is the median and the edges of the box are the 25th and 75th 
percentiles (1st and 3rd quantiles). The whiskers extend to the most extreme data points that are 
not considered outliers. The outliers are plotted individually. The p-value or probability value 

was obtained from the one-way ANOVA in Matlab®. 
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Figure D.8. Net Energy Ratio (NER) of cyanobacterial derived ethanol with cultivation of in 
open raceway pond and flat-panel photobioreactor (PBR). The central mark is the median and 

the edges of the box are the 25th and 75th percentiles (1st and 3rd quantiles). The whiskers 
extend to the most extreme data points that are not considered outliers. The outliers are plotted 

individually. The p-value or probability value was obtained from the one-way ANOVA in 
Matlab®. 
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APPENDIX E: Applied CFD of Flat-panel Photobioreactors and Open Raceway Ponds 

1 Computational Fluid Dynamics of Open Raceway Pond 

To understand the frequency of photoautotrophic microorganism’s motion in flat-panel 

photobioreactors and open raceway ponds, particle tracking are obtained from the CFD models 

in a Lagrangian representation of the flow. The finite volume method was selected to guarantee 

conservation of mass and Direct Numerical Simulation (DNS) was applied to obtain precise 

details of turbulence [68, 69], influencing the motion of photoautotrophic microorganisms. the 

velocity field of the fluid domain in the open raceway pond were computed by CFD models at 

mixing energy inputs 0.1 W.m-3, 0.7 W.m-3, and 2.1 W.m-3 (Figure 7.7 and Figure E3).  The 

velocity field of the CFD model at mixing energy inputs of 0.1 W.m-3 is illustrated in Figure 7.7. 

The CFD models were validated against experimental data measured at the second and third 

cross section of the open raceway pond, located in the first turn and in the straight channel as 

illustrated in the Supplementary material (Figure E1 and E5). By integrating experimental and 

computational fluid mechanics, we have represented the physics in pilot scale environments, 

demonstrating the fluid dynamics in flat-panel photobioreactors and open raceway ponds have no 

influence in the overall light experienced by photoautotrophic microorganisms cultures. We have 

demonstrated this by computing the frequency of this motion (Figure 8) from randomly selected 

particles travelling in the flat-panel photobioreactor and open raceway pond (Figure E4). 

 

 

 

 

 



267 

 

 

 

 

 

Figure E1. Open raceway pond Coordinates. The x-velocity follows the flow direction 
downstream the paddlewheel. The y-velocity points towards the vertical wall of the raceway 

pond. The z-velocity point towards the bottom of the raceway pond. The firs cross section (CS) 
is located downstream the paddlewheel. The second CS is located in the first turn of the channel. 

The third CS is located in the straight channel behind the paddlewheel.    
 

 

Figure E2. Example of instantaneous velocity measured in open raceway pond by ADV. 
 

 

 

 

 

 

Figure E3. DNS based CFD model of open raceway pond at mixing energy inputs of 0.1 W.m-3 
(left figure), 0.7 W.m-3 (middle figure) and 1.94 W.m-3 (right figure). 
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Figure E4. Photoautotrophic microorganism cell motion open raceway pond at flat-panel 
photobioreactor (left figure) and open raceway pond (right figure). 

 

 

 

 

 

 

 

Figure E5. Validation of DNS based CFD model of open raceway pond at mixing energy inputs 
of 0.1 W.m-3 (left figure), 0.7 W.m-3 (middle figure) and 1.94 W.m-3 (right figure). 
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APPENDIX F: Temperature Function, Light Function, and Basal Metabolism  

Weather conditions impact the biological responses of microalgae in terms growth due to 

photo-respiration at high temperatures and radiation, and dark respiration. The functions that 

involve photo- and dark-respiration include the temperature function, the light function, and the 

basal metabolism function. The temperature function effects due to water temperature is 

illustrated in Figure F.1. In here, a factor of one represents the optimal conditions for 

Nannochloropsis oceanica, 24.05 °C, a factor below one illustrates inhibition at cold 

temperatures and photorespiration effects at high temperatures, and a factor of zero denotes 

microalgae death at extreme temperatures. Incident radiation (Figure F.2a) control the light 

function effects as illustrated in Figure F.2b. A factor of one represents the light saturation of 

Nannochloropsis oceanica, 20 W.m-3. Incident radiations below this value inhibit the growth 

because light limitation and incident radiations above this value photo-inhibits the growth 

because photorespiration, denoted by factors below one. Lastly, basal metabolism loss rate due to 

dark respiration is illustrated in Figure F.3, where the higher growth losses are represented by the 

higher rates. 

 

Figure F.1 Temperature function for Fall 2013. 
 



270 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure F.2 Incident Radiation (a) and light function (b) 
for Fall 2013. 

(b) 
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Figure F.3. Basal metabolism Response for Fall 2013. 
 

 

 

 



272 

 

APPENDIX G: Well-mixed Cyanobacterial Growth Model Parameters  

1 Well-mixed Cyanobacterial Growth Modelling 

To assess the influence of turbulence mixing in the light experienced by cyanobacterial 

cells in photobioreactors, a well-mixed dynamic cyanobacterial growth model as a function of 

mixing energy input and experimentally determined light attenuation was developed for analysis 

in this study. This model incorporates ordinary differential equations (ODE) and nonlinear 

function embodying nitrogen quote, nitrogen uptake, chlorophyll synthesis, light absorption, 

photosynthesis, growth rate, and biomass [37, 169]. Table G.1 summarizes the required biological 

inputs for Synechocystis sp. PCC6803 [10, 84, 187]. 

The model developed in this study is novel in that it incorporates the maximum growth rate 

(μm) with photo-inhibition and light attenuation in Synechocystis sp. PCC6803 as a function of 

optical density and depth. These parameters were determined from the experimental works 

described in section 2.2. The maximum growth rates of Synechocystis sp. PCC6803 were 

determined experimentally from Figure G.1 and G.2. The biomass growth curve model for 

Synechocystis sp. PCC6803, validated with experimental work, were computed in Matlab ® for 

the four mixing energy inputs evaluated for the flat-panel photobioreactor: 1.94, 0.97, 0.47, and 

0.03 W.m-3, and for the mixing energy input evaluated for the open raceway pond, 0.10 W.m-3. 

The dynamics of the model is synthesized in Figure G.3. Light attenuation in photobioreactor 

cultures is commonly computed by the Lambert-Beer law, which is a function of the rate of light 

absorption by the culture [56]. In this study; however, Light attenuation (I) was experimentally 

determined as illustrated in Figure G.4 and G.5. 
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Table G.1 Summary of experimental growth of Synechocystis sp. PCC6803 in flat-panel 
photobioreactors 

Metric 

VVM 

 0.7 0.35 0.17 0.01 

μ (d-1) 
0.53 

(±0.17) 

0.76 

(±0.15) 

1.29 

(±0.23) 

1.18 

(±0.28) 

DW Biomass (g.l-1) 
0.30 

(±0.03) 

0.24 

(±0.02) 

0.90 

(±0.15) 

0.43 

(±0.03) 

Productivity (g.l-1.d-1) 0.07 0.05 0.23 0.14 

Water Temp (⁰C) 
34 

(±1) 

30 

(±1) 

31 

(±1) 

33  

(±1) 

PAR (μmolphotons.m-2.s-1) 
1440 

(±65) 

1,323 

(±9) 

1,244 

(±47) 

1,385 

(±25) 

 

Table G.2 Summary of experimental growth of Synechocystis sp. PCC6803 in open raceway 
pond 

Metric 

0.1 W.m-3 

Replicate 1 Replicate 2 Replicate 3 

μ (d-1) 0.68 (± 0.12)  0.82 (± 0.08) 0.81 (± 0.09)  

DW Biomass (g.l-1) 0.45 (± 0.04) 0.39 (± 0.02) - 

Productivity (g.l-1d-1) 0.06 0.04 - 
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Metric 

0.1 W.m-3 

Replicate 1 Replicate 2 Replicate 3 

Productivity (g.m-2d-1) 11.4 7.9 - 

Water Temp (⁰C) 29 29 29 

PAR (μmolphotons.m-2.s-1) 990 (± 116) 914.8 (± 79.1) 907.8 (± 79.3) 

 

 

Figure G.11 Optical density of Synechocystis sp. PCC 6803growth in flat-panel photobioreactors. 
The error bars denote the upper and lower values from five experimental replicates.  
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Figure G.12 Optical density of Synechocystis sp. PCC 6803 grown in open raceway pond. The 
error bars denote the upper and lower values from five experimental samples. 
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Figure G.13 Illustration of well-mixed cyanobacterial growth model based on Synechocystis sp. 
PCC 6803. 

 

Table G.3 Biological inputs for growth model based on Synechocystis sp. PCC6803 

Parameter Description Units Value Reference 

A 
Optical cross section of 

chlorophyll a 
m

2
.g

-1
chl 17 [10, 84] 

ɸ Quantum efficiency gC.(mol photons)
-1

 1.263 [187] 

Q 
Minimum subsistence nitrogen 

quota 
gN.g

-1
dw 0.0197 [10] 

qM Maximum nitrogen quota gN.g
-1

dw 0.129 [10] 
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Parameter Description Units Value Reference 

C C subsistence quota gC.g
-1

dw 0.512 [10, 84] 

Ѵm 
Maximum uptake rate of 

nitrogen 
gN.g

-1
dw.d

-1
 0.156 [84] 

Ѵh Half-saturation coefficient gN.m
-3

 39.2 [84] 

Ρ 
Maximum chlorophyll to 

nitrogen ratio 
gchl.g

-1
N 0.116 [84] 

po Maximum photosynthesis rate gC.g
-1

chl.d
-1

 47.87 [84] 

 

 

Figure G.14 Light attenuation in Synechocystis sp. PCC 6803 cultures in open raceway ponds as 
a function of depth and dry weight biomass. 
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Figure G.15 Light attenuation in Synechocystis sp. PCC 6803 cultures in flat-panel 
photobioreactors as a function of depth and dry weight biomass. 

 

2 Validation of computational growth of Synechocystis sp. PCC 6803 in flat-panel 

photobioreactors 

The well-mixed cyanobacterial growth model of Synechocystis sp. PCC 6803 validated for 

the flat-panel photobioreactor at mixing energy inputs of 0.03, 0.97 and 1.94 W.m-3 are included 

in the Figures 5, 6, and 7. The significance of the growth rates and biomass productivities is 

evaluated by a one-way analysis of variance (ANOVA), and illustrated at Figures G.6 and G.7. 

The on-way ANOVA demonstrate a significant influence of mixing energy inputs as illustrated in 

the p-value less than 0.05. 
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Figure G.6. Maximum growth rate of Synechocystis sp. PCC 6803 in flat-panel photobioreactors. 
The central mark is the median and the edges of the box are the 25th and 75th percentiles (1st 

and 3rd quantiles). The whiskers extend to the most extreme data points that are not considered 
outliers. The outliers are plotted individually. The outliers are plotted individually. The p-value 

or probability value was obtained from the one-way ANOVA in Matlab®. 
 

 

Figure G.7. Cyanobacterial biomass productivity of Synechocystis sp. PCC 6803 in flat-
panel photobioreactors. The central mark is the median and the edges of the box are the 25th and 
75th percentiles (1st and 3rd quantiles). The whiskers extend to the most extreme data points that 
are not considered outliers. The outliers are plotted individually. The p-value or probability value 

was obtained from the one-way ANOVA in Matlab®. 
 


