THESIS

SEDIMENTOLOGY AND DIAGENESIS OF THE LOWER LODGEPOLE FORMATION,

WILLISTON BASIN, NORTH DAKOTA

Submitted by

James Mackie

Department of Geosciences

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2013

Master's Committee:

Advisor: Sven Egenhoff

Derek Schutt Monique Rocca

ABSTRACT

SEDIMENTOLOGY AND DIAGENESIS OF THE LOWER LODGEPOLE FORMATION, WILLISTON BASIN, NORTH DAKOTA

The Scallion and overlying False Bakken intervals represent the lowermost portion of the Mississippian Lodgepole Formation, a predominantly carbonate unit located in the Williston Basin of North Dakota (ND) and Montana (MT) in the US, and Saskatchewan and Manitoba in southern Canada. Macroscopic and microscopic observations allow a subdivision of these mostly fine-grained sediments into five carbonate and two siliciclastic facies. These facies form distinct stratigraphic units that can be traced through western ND and easternmost MT with nodular skeletal wackestones and packstones of the Scallion interval at the base showing a distinct coarsening-upward trend, overlain by between one and three black siliciclastic mudstones with interbedded carbonate mudstones of the False Bakken unit. This lowermost part of the Lodgepole Formation represents mid-ramp to basinal settings of a low-inclination carbonate platform system within the half-enclosed intracratonic Williston Basin. The observed stacking patterns reflect relative sea-level changes that influenced facies distribution within the basin throughout its evolution: the coarsening-upward observed within the Scallion interval shows a general shoaling of the setting during progradation, representing a lowstand systems tract. The False Bakken interval consisting of up to three shale beds with intercalated carbonate mudstones shows a significant fining within the lower Lodgepole Formation depositional system and is interpreted as representing the transgressive systems tract. The subdivision into a maximum of three mudstone units reflects three backstepping parasequences during relative sea-level rise. The subsequent renewed onset of finegrained carbonate deposition on top of the False Bakken interval reflects deposition during highstand conditions. During burial, the Lodgepole Formation experienced a complex series of diagenetic events with nodule formation, dolomitization, and pressure dissolution being the most prominent. The results

of these processes are irregularly distributed both stratigraphically and geographically and play a significant role in reservoir quality of the formation.

TABLE OF CONTENTS

1. Introduction
2. Geologic Setting
3. Sedimentology
3.1 Facies Descriptions
3.1.1 Carbonate Facies
3.1.2 Siliciclastic Facies
4. Vertical Facies Arrangement
5. Depositional Model
6. Sequence Stratigraphic Interpretation
7. Diagenesis
7.1 Chert
7.2 Dolomitization
7.3 Glauconite
7.4 Internal Sediment
7.5 Microcrystalline Carbonate Nodules27
7.6 Microstylitization/ Dissolution Seams
7.7 Porosity Formation
7.8 Pyrite
7.9 Sparry Cement
7.10 Relative Timing of Diagenetic Events
8. Discussion
8.1 False Bakken Deposition
8.2 Distribution of Diagenetic Processes

9. Outlook	48
10. Conclusions	49

1: Introduction

The Williston Basin in North Dakota and Montana has recently seen a significant resurgence in interest as a location for intense hydrocarbon exploration along with associated scientific studies (Anna et al., 2008, Chen et al., 2009, Gaswirth et al., 2010). Overlying the well-known Bakken Formation is the lesser studied Lodgepole Formation, which forms the basal unit of the Madison Group (Gaswirth et al., 2010, Peterson, 1987, Montgomery, 1996). The Lodgepole Formation was deposited on a westward dipping carbonate ramp system showing shale facies towards the basin center (Young and Rosenthal, 1991, Kerr, 1988). The lower Lodgepole Formation, which is the focus of this study, represents the transition between the carbonate mud-rich mid-distal ramp facies and the basinal siliciclastic-dominated shale facies. Although ramps make up a significant portion of carbonate depositional systems throughout the geologic record, the processes that occur in outer ramp to basinal environments are still poorly understood (Burchette and Wright, 1992).

Several studies have been completed on Waulsortian-type mounds (see Cotter, 1965, 1966, Smith, 1972, Longman, 1996) but detailed and comprehensive studies of the Lodgepole Formation's much more widely distributed non-mound facies are sparse within the published literature (Heck, 1978). The presence of high quality source rocks within the Bakken Formation and the Lodgepole itself make understanding the sedimentology and thus the position of potential reservoir facies economically important (Chen et al., 2009, Jarvie, 2001). The two primary aims of this study therefore are: (1) to understand the sedimentological processes operating at the distal ends of carbonate ramps and (2) to investigate the possibility for Lodgepole facies to serve as unconventional reservoirs in order to better understand the general hydrocarbon potential of basinal carbonate mudstone successions in intracratonic settings. In addition, this study will highlight the diagenetic overprint both the ramp and basin deposits underwent and its implication on reservoir quality. Forty-four cores were measured at both the USGS Core Library in Lakewood, Colorado and the NDGS Laird Core Laboratory in Grand Forks,

North Dakota. The location of these cores can be seen in Fig. 1. Representative samples were selected for later thin section preparation from many of the cores. In total, 54 thin sections were described from these cores. Using detailed core and petrographic observations, this report will describe the facies, stratigraphy, depositional processes, and diagenetic suite of the lower Lodgepole Formation from both a scientific and an exploration perspective.

Figure 1. Location of observed lower Lodgepole Formation cores in North Dakota and Montana integrated into the present study

2: Geologic Setting

The Lodgepole Formation occurs in the Williston basin of North Dakota, South Dakota, and Montana, in the United States, and Saskatchewan and Manitoba in Canada. It was deposited in an intracratonic setting located on the western edge of the Canadian Shield Province (Gerhard et al., 1982). The basin underwent episodic subsidence attributed to a wrench style fault system with a primary northeastsouthwest shear direction (Brown, 1978). One of these episodes of subsidence occurred around 365 Mya during the Late Devonian, just prior to the onset of Lodgepole deposition (LeFever and Crashell, 1991). Several low relief anticlinal structures are found in the Williston Basin, although the Lodgepole formation thins over only the Cedar Creek anticline indicating that it was the only one of these anticlines with positive relief at the time of Lodgepole deposition (Gerhard et al., 1982, Heck, 1978). During the Mississippian, the basin may have been connected to the Cordilleran foreland basin by either the Central Montana Trough or a seaway located further northwards (Bjorlie and Anderson, 1978; J. LeFever, personal communication 2011). The Williston Basin was isolated from major orogenic events during the Paleozoic which is reflected in the lack of thick siliciclastic sequences and the abundance of carbonates in the basin fill (Kerr, 1988).

The Lodgepole Formation forms part of the Mississippian Madison Group along with the overlying Mission Canyon and Charles Formation and is part of the Kaskaskia sedimentary sequence (Sloss, 1963; Kent, 1987, Kerr, 1988). This carbonate unit was deposited on a generally westward dipping carbonate ramp system with sedimentation that indicates mostly relatively shallow, subtidal, open water conditions (Young and Rosenthal, 1991). Carbonate mud is abundant in most of the facies in this formation, and the skeletal grains represent open water benthic marine organisms like crinoids, brachiopods, bryozoans, and solitary and colonial corals (Young and Rosenthal, 1991). Dark gray to black siliciclastic shales and argillaceous carbonate mudstones are intercalated in the basin's deepest parts in northwest North Dakota and represent deep shelf facies (cf. Peterson, 1987). According to most accepted models, Waulsortian-type mud-mounds occur at the shelf break on the eastern side of the basin and in the Central Montana Trough (Cotter 1965, Johnson 1995). Their location appears to be

dependent on the position of paleotopographic highs formed by tectonic activity or differential salt dissolution (Shurr et al., 1988, Gaswirth et al., 2010).

3: Sedimentology

The sedimentological observations summarized in this report are based on both the macroscopic and microscopic study of a total of forty-four cores focusing exclusively on the lower portion of the Lodgepole Formation. Eight of these cores are from the Core Research Center at the USGS in Denver, Colorado, and the remaining thirty-six of the cores were documented at the North Dakota Geologic Survey's Laird Core and Sample Library in Grand Forks, North Dakota. Illustrated sections of these cores can be found in Appendix 1. In total, 54 thin sections were described from the lower Lodgepole allowing for detailed microfacies analysis. The core and thin section observations from the lower Lodgepole interval allow the subdivision of the section into five carbonate and two siliciclastic facies. The Dunham (1962) classification scheme was used in describing these facies.

3.1: Facies Descriptions

3.1.1: Carbonate Facies:

Facies 1: Massive Carbonate Mudstone

Description: This facies is characterized by a medium gray carbonate mudstone(Fig. 2.A) with rare carbonate and siliciclastic grains occurring in abundances of 1% or less. Typical grains are brachiopod and ostracod shells ranging in size from 0.2mm to 0.5mm, calcispheres, and detrital quartz grains with diameters around 0.02mm (Fig. 2.B). Rarely, larger brachiopod shells and crinoid ossicles (up to a few cm long) occur. Grains in this facies are usually randomly oriented and distributed throughout the matrix although in some intervals, shells may be mostly aligned parallel to bedding. This facies is devoid of well-defined sedimentary structures and burrows. In core samples, this facies sometimes varies in color vertically between lighter and darker gray on a decimeter scale.

Interpretation: The abundance of mud and lack of carbonate grains suggest that this facies was deposited in a low energy environment that may have been episodically influenced by high energy storm events. The organisms found in this facies may have either lived there (or higher in the water column in the case of the ostracods) or were transported basinward from their habitat during higher energy events. The quartz grains were either transported to this depositional site by eolian processes or were originally arranged in laminae that were later affected by intense bioturbation. The lack of sedimentary structures and frequently random orientation of grains suggests that this facies underwent extensive diffuse bioturbation. It is therefore more likely that the silt sized quartz grains in this facies do indeed represent a detrital not an eolian component. This environment was most likely well oxygenated at and below the sediment water interface based on the interpreted amount burrowing. The color variations between intervals of this facies probably represent slight changes in the influx of clay into the system.

Facies 2: Carbonate Mudstone with Burrows

Description: Facies 2 is a carbonate mudstone with abundant burrows that are visible in both hand sample and thin section. As with facies one, the primary grains are fine brachiopod shells (0.5-1mm long), calcispheres (around 0.1mm in diameter) and detrital quartz grains (around 0.1mm in diameter). These grains make up one percent or less of the material in this facies. Occasionally, micritic pellets, larger crinoid ossicles, and brachiopod shells are present. Grains are typically randomly distributed throughout the matrix and elongate grains may or may not be horizontally oriented. Distinct laminations are not present, but in places this facies has laterally discontinuous, dark grey-brown clay rich layers. These layers are between 0.1 and 0.3mm thick and extend around 1 mm in length parallel to bedding. The defining characteristic of this facies is the burrows (Fig. 2.C). These burrows are typically less than 1 cm in diameter and can have any orientation ranging from horizontal to vertical. Burrow fills

are dark grey or brown in color and may be richer in organic material or clay than the mudstone matrix. The fill of most burrows is homogenous although some display clear backfilling or spreiten (Fig. 2.D).

Interpretation: This facies was deposited in a low energy environment based on the rare presence of large carbonate grains and the extensive amount of carbonate mud. The environmental conditions at the time of deposition must have been favorable for burrowing organisms based on the numerous preserved ichnofossils. The massive texture and lack of laminations and other sedimentary structures suggest considerable diffuse bioturbation. The random orientation of the sparse grains found also indicates extensive bioturbation since elongate grains like brachiopod shells would have been most likely originally deposited laying horizontally. The clay-rich layers probably represent short periods of time with a very high influx of clay that was able to settle from suspension or bedload transport (c.f. Schieber et al. 2007). These layers were then later disrupted and burrowed by infaunal benthic organisms.

Facies 3: Nodular Skeletal Wackestone

Description: This facies is composed of tan to medium grey carbonate mud with interdispersed skeletal fragments that compose anywhere from 10 to 25% of the material. The tan colored rock is slightly more brittle in hand sample than intervals where the matrix is pure grey carbonate mud. Primary grains in order of abundance are: crinoid ossicles, brachiopod shells and shell fragments, and ostracod shells. Less common grains include gastropod shells, rugose corals, and bryozoan fragments. Most grains are in the 0.2-1mm size range and many are broken and disarticulated although some appear to be intact. The valves of ostracods in particular are often still articulated. The large grains generally have random orientations although in several cases grains appear to be aligned along the margins of burrows. Grains can be randomly distributed throughout the matrix or concentrated into patches of higher grain density (Fig. 2.E). This facies is generally devoid of any sedimentary structures. Burrow traces are often visible

in thin section and do not have a preferential orientation (Fig. 2.F). Burrow fills are generally finergrained than the surrounding material. The nodular texture of this facies is made up of lighter gray or tan colored round, irregular- shaped, carbonate-rich concretions surrounded by darker gray material. The nodules range in size from 0.5cm to 3-4cm in diameter. They tend to be longer on their horizontal axis than their vertical axis. Grains appear to be mostly evenly distributed across both the nodules and the surrounding material. In some places, the nodular texture becomes dominated by dark gray, clearly defined anastamosing microstylolites. Where microstylolites are present, the nodular texture is less apparent and the facies instead appears more massive. Grains tend to be more concentrated in close proximity to the microstylolites.

Interpretation: This facies was deposited in a low to moderate energy environment that was capable of transporting larger carbonate grains, at least at times, yet not capable of winnowing away carbonate mud. The carbonate mud settled from suspension likely sourced from the micritization of larger carbonate grains closer to shore. The grains in this facies probably have both an allochthonous and authochthonous origin. Much of the skeletal material in this facies can be attributed to bed load transport from shallower water environments based on the fact that many of the organisms are broken and disarticulated. On the other hand, some shells appear still intact and in the case of many ostracods, still articulated. These organisms likely lived at or near the location where they were deposited. Bioturbation may have then separated brachiopod and ostracod valves after the organism died. The lack of bedding or other well defined sedimentary structures suggests that this facies experienced extensive diffuse bioturbation. This point, combined with the burrow traces that are visible in places, indicates that the environment was hospitable to burrowing organisms and was oxygenated at and below the sediment-water interface. The nodular texture of this facies is an early diagenetic effect (cf. Möller and Kvingan, 1988) as a result of early cementation and later pressure solution (Wanless, 1983).

Areas where microstylolites are more dominant than nodules are a result of more extensive pressure solution (Wanless, 1983).

Facies 4: Nodular Skeletal Packstone

Description: This facies is a skeletal packstone with a nodular texture. The most important grains are crinoid ossicles, brachiopod shells, and ostracod shells. Each of these grains usually consist of 15-25% of the total material and the dominant grain varies between samples. Fenestrate bryozoan fragments, gastropods, trilobites and rarely cephalopods and conodonts are present in some samples and are usually found in concentrations of 5% or less in total. Most grains are 0.5-1mm in length but can be up to a few centimeters. Elongate carbonate grains are generally randomly oriented. In total, skeletal grains make up anywhere from 40-50% of the material in this facies. The matrix material is mostly medium gray carbonate mud but can be tanner in places. This facies is devoid of sedimentary structures (Fig. 2.G) although grains are often concentrated in patches. In some locations, dolomite is also a major constituent in this facies. Fine-grained dolomite rhombs (0.02mm in length) can be found in percentages of up to around 30% locally but usually make up closer to 15% of the total material. The dolomite occurs in patches and is often concentrated along fluid-flow pathways like cracks and dissolution seams or in internal voids in the skeletons of large carbonate grains. The dolomite appears to mostly replace matrix material leaving larger carbonate grains unaltered (Fig. 2.H). This facies has a nodular texture made up of light-medium gray to tan, irregularly shaped concretions that are surrounded by medium to darker gray material. The nodules are 1-3cm in diameter and do not show any internal structure. The distribution and abundance of grains within the nodules and the surrounding material appears to be the same. Swarms of anastomosing microstylolites are present throughout this facies. Moldic, interparticle, and intraparticle porosity (nomenclature according to Choquette and Pray, 1970) can be found in some samples and can be either minus-cement or open. Porosity only appears to occur in this facies when dolomite is present as well.

Interpretation: This facies was deposited in a moderately agitated environment. Conditions were capable of transporting carbonate grains and winnowing much of the carbonate mud. The lack of bedding or any other sedimentary structures and the random orientation of grains suggests that this facies has experienced extensive diffuse bioturbation even though well-defined burrows are absent. This indicates that environmental conditions were favorable for burrowing organisms during deposition of this facies. Bioturbation may have also contributed to the patchy distribution of grains (e.g. Kidwell et al., 1986). What may have originally been well defined coarse laminations of skeletal grains could have been disrupted by burrowing, leaving coarse patches of concentrated grains. This facies has experienced significant diagenesis in the form of both dolomitization and the formation of the nodular texture. The abundance of dolomite in this facies also contributes to how coarse it appears in thin section even though this is unrelated to the energy conditions at the time of deposition. The nodular texture and microstylolites are a result of early differential cementation and is discussed in further detail in chapters 7.7 and 8.

Facies 5: Laminated Skeletal Packstone

Description: This facies is composed of fine-grained skeletal material and carbonate mud of varying abundance organized into thin laminations. It generally appears in discrete intervals that up to 10 cm in thickness. The two major grain types in this facies, in order of importance, are crinoid ossicles and recrystallized shell material likely from brachiopods and ostracods. These grains are typically around 0.5 mm long but can be up to a few millimeters in size. Trilobite, bryozoan, rugose coral, and gastropod fragments are also found but each of these typically makes up less than 5% of the grains. Most of these grains are also around 0.5mm in length but occasionally can be larger. In several places, authigenic glauconite grains and glauconitic replacement of the carbonate grains dominate this facies. Grains can form up to 70% of this facies in the coarsest portions and around 30% in the more carbonate mud-rich parts (Fig. 2.1). The matrix of this facies is a medium gray carbonate mud. The coarse grains within this

facies are concentrated within laminations that are horizontal or inclined at low angles and are typically around 1mm in thickness (Fig. 2.J). In places, laminations are less well defined and grains may have a more patchy distribution. Darker, discontinuous clay-rich stringers occur in places intercalated into the laminations. Elongate grains are usually aligned parallel to bedding. Poorly defined burrow traces are visible in some places and grains adjacent to these burrows appear to be aligned along burrow margins.

Interpretation: Facies 5 represents an environment characterized by high energy events like storms that were capable of mobilizing the skeletal debris to deposit the coarse beds. These high energy time intervals must have been separated by quiet water periods that allowed fine-grained carbonate mud to be deposited before another high energy event deposited another coarse bed. Based on the implied higher energy conditions, the discontinuous clay stringers may have been reworked clay clasts. Alternatively, these clay rich laminae may have been deposited as clay drapes that settled from suspension as quiet water conditions resumed after a storm and were later bioturbated. Although burrow traces are occasionally visible, bioturbation appears to be mostly insignificant in this facies based on the generally well defined beds and horizontal orientation of elongate grains. The lack of bioturbation throughout much of this facies is probably due to a substrate that was generally too coarse to be suitable for burrowing organisms or was deposited and buried too quickly to be bioturbated extensively (Wheatcroft and Drake, 2003).

3.1.2 : Siliciclastic Facies:

Facies 6: Massive Black Siliciclastic Mudstone

Description: Facies 6 is a silt-rich siliciclastic mudstone that only occurs within the False Bakken interval of the lower Lodgepole Formation (Fig. 2.K). The most important grain type within this facies is subangular silt-sized quartz grains which are typically around 0.02mm in diameter. These occur in percentages ranging from 10-20% of the facies (Fig. 2.L). Very fine-grained skeletal debris is sparsely

distributed throughout this facies in percentages of 1% or less. These skeletal grains are mostly brachiopod shells and are typically up to 0.5mm long and may be fragments or whole shells. Occasionally, larger recrystallized brachiopod fragments are found in sizes up to a few centimeters. The grains are all randomly distributed throughout the matrix and elongate grains are generally horizontally oriented. The matrix material is composed of dark brown-black clay minerals and organic matter. Elemental observations taken from SEM analysis at the USGS Laboratory in Lakewood, Colorado generally are consistent with the composition observed under the standard petrographic microscope. Most grains are composed of either quartz or clay minerals (Fig. 3.A). The clay minerals tend to be more elongate and parallel to bedding while the quartz grains are more equant in shape and do not have a preferred orientation (Fig. 3.B). Additionally, minor amounts (1% or less) of dolomite, phosphate, and calcitic grains occur. Laminations or any other sedimentary structure are not preserved in this facies. *Planolites* burrows are visible in some samples and are typically about 0.5mm in width.

Interpretation: Facies 6 represents a low energy environment where fine-grained siliciclastic deposition dominated. The massive nature of this facies makes it hard to determine whether a majority of the sedimentation was due to settling from suspension or bedload transport. Although there is a significant amount of silt in this facies, it does not appear to have been deposited in discrete laminations. It is possible, however, that the silt may have originally been arranged in laminations formed by currents or suspension that were later destroyed by bioturbation. Rare high energy events could have transported the occasional larger brachiopod fragment into this facies or they may have simply lived there in the case of unbroken shells. The almost entirely siliciclastic composition of the matrix material as supported by the SEM data shows that carbonate deposition was mostly absent from this facies aside from sporadic calcite and dolomite material that was occasionally washed basinward from a more marginal position. Although this is a black mudstone, some level of oxygen must have been present at and below the sediment-water interface due to the presence of *Planolites* and diffuse bioturbation.

Facies 7: Black Siliciclastic Shell-Rich Mudstone

Description: This facies is comprised of fine-grained siliciclastic mud with interbedded laminae of skeletal grains. Brachiopod shells are the most abundant grain type and they are typically around 0.5mm in length but can be up to a few centimeters in size. Less abundant grains include crinoid ossicles and undifferentiated skeletal debris mostly 0.5mm and smaller. The overall abundance of these carbonate grains is about 10-20% but within individual coarse beds as high as 50-60%. Most of the elongate grains are horizontally aligned although some are randomly oriented. Silt sized (0.01-0.02mm) quartz grains are also an important constituent and can be found in concentrations between 5-15%. The silt grains are dispersed throughout the facies and their distribution appears to be independent of the carbonate grains which are mostly found in thin beds. The matrix is very dark gray to black siliciclastic mud (Fig. 3.M). Skeletal material is organized into laminations that are typically around 0.5-1mm thick separated by finer-grained material with scattered large grains (Fig. 2.N). These laminations can be discrete and well defined or discontinuous. Poorly defined tube-shaped burrows with a darker, fine-grained fill are found in places and are typically 0.5mm in width. These burrows do not show a preferential orientation and can be vertical or horizontal.

Interpretation: This facies was deposited during alternating high and low energy conditions with the mudstones representing the low energy, quiet water conditions and the shell beds representing intermittent high energy events. The shells were most likely concentrated at the bases of currents winnowing away finer material, and thereby preferentially accumulating coarse grains in lags. During quiet water periods when these beds were deposited, energy conditions were much lower, only capable of depositing fine, clay sized material through bed load transport (c.f. Schieber et al. 2007) or suspension- settling. The environment at the time of deposition must have been somewhat hospitable for burrowing organisms based on the presence of the poorly defined burrows. Areas where the coarse shell beds have a patchier, discontinuous distribution represent places where bioturbation was likely

Figure 2 - Facies Photos

Figure 2 - Facies Photos (Continued)

Figure 2 Captions

- 2.A EOG Sidonia 1-06H at 8654 ft. Massive carbonate mudstone (facies 1). (Pencil for scale)
- 2.B Maxus Energy Carus Fee 21-19 at 11271.5 ft. Massive carbonate mudstone. The visible white grains are calcispheres (facies 1).
- 2.C Pennzoil Spring Creek 27X-31 at 10767.9 ft. Carbonate mudstone with burrows (facies 2) The darker areas are burrows and evidence of backfilling is visible in some places. The visible white grains are calcispheres.
- 2.D Amerada Hess State ND 1-11H at 9411.5 ft. Carbonate mudstone with burrows (facies 2). Note the well-defined spreiten visible in some of the burrows. (Pencil for scale)
- 2.E Conoco Skarphol D #5 at 8913 ft. Nodular skeletal wackestone (facies 3). The lighter gray areas are nodules while the darker areas are the surrounding matrix material. (Pencil for scale)
- 2.F Helis Oil and Gas Co. Linseth 4-8H at 10768.3 ft. Nodular skeletal wackestone (facies 3) Grains include skeletal debris mostly from brachiopods. Note the random orientation of grains likely due to bioturbation.
- 2.G Meridian Oil Co MOI Elkhorn #33-11 at 10400.5 ft. Nodular skeletal packstone facies (facies 4). It is important to note that the distinction between facies 3 and 4 is not readily distinguishable in core. The corresponding thin section from this interval is seen below in photo H. (Centimeter scale on right)
- 2.H Meridian Oil Co MOI Elkhorn #33-11 at 10400.5 ft. Nodular skeletal packstone (facies 4). Note the randomly oriented grains made of mostly brachiopod and crinoid debris. The fine white material is sucrosic dolomite. (Red calcite dye)
- 2.I Maxus Energy Carus Fee 21-19 at 11278.3 ft. Laminated skeletal packstone facies (facies 5). The visible grains are fine crinoid material. Note how the distribution of grains is slightly more patchy lower in the photo. (Pencil for scale)
- 2.J Stephens Energy BR 21-29 at 10661.9 ft. Laminated skeletal packstone facies (facies 5) Laminations of skeletal material consisting of mostly crinoid and brachiopod debris are separated by finer intervals of carbonate mud.
- 2.K Whiting Oil and Gas Teddy 44-13 TFH at 10495.5 ft. Massive black siliciclastic mudstone (facies 6)
- 2.L Stephens Energy BR 21-29 at 10660.0 ft. Massive black siliciclastic mudstone (facies 6) The visible white grains are detrital quartz.
- 2.MFlorida Exploration Federal 34-1 at 10479.0 ft. Black siliciclastic shell-rich mudstone. The visible grains are pyritized brachiopods (facies 7). (Inch scale on left)
- 2.N Astral Oil Company Stenehjem 43-27 at 10887.5 ft. Black siliciclastic shell-rich mudstone (facies
 7) The coarser intervals consist of fine crinoid and brachiopod debris as well as some detrital quartz.

Figure 3. A BSE SEM image of the first False Bakken intervalfrom EOG Liberty 2-11 H well . The equant grains represent quartz while the more platy grains represent clay minerals. The white fromboidal grain is phosphate. (note that this photo is rotated 90 degrees from horizontal)

Figure 3. B BSE SEM image of the second False Bakken Intervalfrom Stephens Energy Co. BR-21-29 well. Note that the composition is similar to that of the First Bakken interval seen in Figure 5.A. Elongate grains, particularly clay minerals are aligned parallel to bedding.

Figure 3. False Bakken SEM Imagery

more significant. This bioturbation destroyed well-defined laminations and intermingled mud with the coarse shell beds.

4: Vertical Facies Arrangement

The facies of the lower Lodgepole Formation shows the same general succession in each of the investigated cores. Above the base of the Upper Bakken Shale member the lowermost Lodgepole interval consists of nodular skeletal wackestones or packstones (facies 3 and 4) that mark a sharp contact with the underlying siliciclastic mudstones. This lower portion of the Lodgepole Formation, called the "Scallion" interval (LeFever and Anderson, 1984), varies between nine and fifteen feet (3-5m) in thickness across the basin. The nodular wackestone and nodular packstone facies (facies 3 and 4) are usually found in close association although the relationship between the two is not always well defined by meter- or decimeter-scale coarsening or fining upward sequences. Thin intervals of laminated skeletal packstones (facies 5) are intercalated within the nodular facies in beds that do not exceed a few centimeters. The skeletal packstones become more frequent and thicker as the dominant nodular facies coarsen towards a maximum and subsequently fine upward over the whole thickness of the Scallion interval. The Scallion interval is overlain by the False Bakken mudstones, which are represented by one, two, or three intervals of black to very dark gray siliciclastic mudstones (facies 6) with coarser shell bedded siliciclastic mudstone (facies 7) intervals intercalated in some locations. These dark False Bakken facies are separated by intervals of gray to dark-grey massive carbonate mudstone (facies 1). In some cores, the lowermost False Bakken mudstone interval is replaced by a bed of glauconite-rich bedded skeletal packstone (facies 5). The total thickness of the False Bakken interval, defined by the black siliciclastic mudstone beds (or the glauconitic laminated skeletal packstone interval where it is present) and the carbonate mudstone in between, is typically around six to ten feet (2-3m) with the individual black siliciclastic mudstone intervals usually being a foot thick or less (0.3m). Within the False Bakken facies, thin intervals (1-2 cm thick) of non-glauconitic bedded skeletal packstones (facies 5) are sometimes found in close proximity to the black mudstone facies. The Lodgepole Formation directly overlying the False Bakken interval consists of a thick succession of massive carbonate mudstones (facies 1) and bioturbated carbonate mudstones (facies 2) that show variations of lighter and darker grey bands on a decimeter scale, likely reflecting slightly varying clay content.

5: Depositional Model

The entire lower Lodgepole Formation represents the low-energy part of a carbonate ramp at its distalmost end where carbonate transitioned into siliciclastic basinal deposition. A ramp setting is indicated by generally gradual facies changes and a lack of features suggesting steep inclinations such as synsedimentary deformation or coarse reef debris (e.g. Burchette & Wright 1992). The depositional energy reflected in the facies allows the sedimentary environment to be subdivided into three distinct facies belts. A schematic diagram indicating the distribution of facies and processes is shown below in Fig. 4.

The most proximal facies belt, facies belt 1, is equivalent to a mid-ramp setting (c.f. Burchette and Wright, 1992) and includes facies 1,3,4, and 5. It is especially well developed in the Scallion interval inbetween the upper Bakken shale member and the False Bakken mudstones. This belt experienced intermittent high energy conditions during storms that deposited coarser deposits such as those of the bedded skeletal packstone facies (facies 5). During fair-weather conditions, the dominant processes were the deposition of carbonate mud, likely from suspension, and subsequent burrowing and homogenization of the uppermost sediment. The variations in the amount of large grains within facies belt 1 are minor and can be possibly attributed to slight differences in energy or proximity to sediment sources such as water depth and distance to shore or mud mounds.

The transition from facies belt 1 to facies belt 2 marks the point where storm-induced currents were no longer able to regularly transport skeletal grains basinward and carbonate mud instead makes up nearly

all of the sedimentation. Facies belt 2 consists therefore largely of carbonate mudstones that are overall devoid of macroscopic fossils showing exclusively facies 1, 2, and rarely facies 5. The lack of large carbonate grains and the predominance of carbonate mud suggest deposition in deeper, calmer water than the more shoreward packstone and wackestones that dominate facies belt 1. However, rarely this calmer environment was interrupted by higher energy events depositing thin intervals of bedded skeletal packstone (facies 5). In facies belt 2, these beds are typically thinner than those found intercalated in facies belt 1. In facies belt 1, they are generally around 5 centimeters in thickness, while in facies belt 2 they often fluctuate around 1-2 centimeters in thickness. The majority of the mud in this facies belt most likely originated from sediment suspended during storms in the upper portions of the ramp that settled out on the distal ramp during calmer fair-weather conditions (Wendte and Uyeno, 2005). The presence of extensive diffuse and well-defined bioturbation in the distal portion of the ramp suggests that even the deeper Lodgepole environments were well oxygenated, even though the substrate or other factors may not have been favorable for large brachiopods or echinoderms to thrive. Alternatively, remnants of large invertebrates may have originally been present in the sediment but degraded over time through boring and decay from acidic nutrient-rich waters entering this halfenclosed basin (cf. Peterhänsel and Pratt 2001).

The onset of facies belt 3 basinward of facies belt 2 is marked by the transition from carbonate mudstone facies to siliciclastic mudstone facies. This facies change represents the outermost limit of abundant carbonate mud transport from shallow water areas, and the shift to distal basin facies with predominantly siliciclastic mud deposition. The presence of thin shell beds within the siliciclastic mudstones (facies 7) shows that high energy events still were capable of occasionally depositing small amounts of larger carbonate grains in this distal setting. Since many of the grains here are fragmented and distributed in laminations, it is likely that most of the shell debris in this facies belt is allochthonous although the occasional isolated intact brachiopod probably lived and perished within this environment.

This most basinward facies belt represents the deepest water environment at the most distal end of the carbonate ramp. However, even in these distal sediments bioturbation is abundant throughout indicating that the entire Williston Basin was oxygenated also in its most remote parts during the entire duration of Lodgepole deposition.

Figure 4. Depositional Model for the middle to distal ramp facies of the Scallion and False Bakken Intervals of the Lodgepole Formation.

6: Sequence Stratigraphic Interpretation

The investigated portion of the lower Lodgepole Formation is interpreted to consist of three systems tracts. The Scallion interval represents a lowstand systems tract based on the abundance of larger grains that are otherwise not as common in the lower portion of the Lodgepole Formation. The

lowstand systems tract indicates a significant shift of mid-ramp facies basinwards; however, the transition from the basal Upper Bakken Shale is conformable, indicating a gradual progradation of carbonate over basinal mudstone facies. The top of the Scallion interval is marked by a distinct transgression indicated by a sharp contact of mid-ramp facies and overlying deep shelf False Bakken siliciclastic mudstones. This transition marks the onset of the transgressive systems tract. However, the onset of an increase in accommodation space and initial retrogradation of facies is already notable in the uppermost Scallion interval where most of the measured sections show a well-defined fining-upward trend, and a transition from carbonate wacke- and packstones to mudstones prior to False Bakken deposition.

Figure 5. Sequence stratigraphic interpretation of the Lower Lodgepole Formation.

With rising sea level, carbonate production was successively shifted marginwards onto the craton, and therefore carbonate was less likely to reach the most distal portions of the basin. This allowed for the deposition of fine-grained siliciclastic sediment of facies 6 and 7. The stratigraphic level where the lithology shows the finest grain size within these black siliciclastic mudstone facies where sedimentation rates were at their lowest represents flooding surfaces. This transgression appears to have occurred in at least three separate pulses as evidenced by the presence of three separate False Bakken intervals in most cores. One of these False Bakken pulses is sometimes substituted by an interval where glauconite replacement occurred representing a condensed section where very little to no deposition occurred (Amorosi, 1995). In places, there is only one False Bakken interval, most likely in slightly shallower locations where one of the two transgressive pulses did not shift the facies distribution shoreward enough for carbonate deposition to cease. These intervals of False Bakken and glauconite deposition that represent individual transgressive pulses as well as the carbonate mudstone facies intervals in between them are interpreted to be the transgressive systems tract. Fig. 8 below shows the distribution of cores with these variations in the transgressive systems tract. The thick carbonate mudstones overlying the transgressive systems tract represent the renewed onset of prolonged carbonate deposition as the ramp prograded after sea level ceased to rise. The lack of large grains in this interval suggests that sea level was higher at this time than during Scallion interval deposition and lower energy conditions did not permit the transport of these larger grains. The upper carbonate mudstones are therefore interpreted to represent the highstand systems tract. A comparable stratigraphic architecture is observed in the mid-outer ramp deposits of the Upper Jurassic in northeast Spain (Aurell et al., 1998).

7: Diagenesis

The lower Lodgepole Formation shows a number of diagenetic phases and events such as cementation and formation of porosity that have altered the original depositional fabric of the rock and influenced its reservoir characteristics. Most of the data rely on thin section observations, and because of the small

scales of cements and porosity only little is based on direct core observations. Nineteen of the thin sections were prepared using UV fluorescent dye in order to detect micro-scale porosity not recognizable with just blue epoxy. Diagenetic phases observed in the Lodgepole Formation are described below.

7.1: Chert

Chert nodules and, less commonly, thin chert beds occur in many of the Lodgepole cores particularly in the carbonate mudstones above the Scallion interval (facies 1 and 2). The nodules are typically rounded and slightly more elongate in a direction parallel to bedding. In hand sample, the nodules appear to be a very light grey to white color that can be either slightly translucent to opaque (Fig. 6.A). The size of the nodules is around 3-5 cm across. Larger carbonate grains are absent within the nodules although some appear dirty due to included carbonate mud. They typically occur in horizons where several nodules are found within a few centimeters of each other. The margins of the nodules may be either smooth or irregular but they are usually well defined from the surrounding carbonate material (Fig. 6.B). A thin, discontinuous bed of chert was observed in one thin section from the E.O.G. Sidonia 1-06H core close to larger nodules chert nodules as described above (Fig. 6.C).

The chert found in the lower Lodgepole formation represents localized supersaturation of quartz in pore waters creating the conditions necessary for microcrystalline quartz to replace microcrystalline calcite cement (Maliva and Siever, 1989). The source of the silica in solution can likely be attributed to dissolved sponge spicules (Noble and Van Stempvoort, 1989). Since the chert is mostly found in the carbonate mudstones overlying the False Bakken Interval, it may be that the source for silica was more abundant during this carbonate mudstone deposition than during the deposition of the underlying Lodgepole Formation intervals. The lone thin bed of chert likely represents a depositional feature where an abundance of silica rich skeletal material was deposited and recrystallized (Maliva and Siever, 1989).

7.2: Dolomitization

Dolomite is often found in abundance within the Scallion interval of the Lodgepole in the nodular skeletal wackestone and packstone facies (facies 3 and 4). Isolated dolomite rhombs are also present within the False Bakken facies (facies 6 and 7). Geographically, the distribution of the dolomite is patchy across the basin (see chapter 8.2). Cores where the nodules of the Scallion interval are more tan than grey have more dolomite that is visible in thin section. The dolomite can comprise of up to 15% of the total rock volume and localized patches of about 1-3mm can consist of 30% dolomite or more. Two distinct types of dolomite are found within the lower Lodgepole Formation. Dolomite I has a sucrosic texture and individual dolomite rhombs range from 0.01-0.03 mm in diameter with most on the smaller end of that range. The rhombs are mostly cloudy and do not show any zonation. Some of the rhombs have clearly defined edges while others overgrow each other and remnant carbonate grains. Where the rhombs have irregular edges, they also tend to be less clear and some dark matrix material appears to be included within the crystals. It is generally found in poorly defined small areas that have varying concentrations of dolomite rhombs (Fig. 6.D). In some cases, the dolomite is focused along cracks, and when this occurs, the margins of the dolomitization are often well defined (Fig. 6.E). Dolomite I appears to exclusively replace matrix material while larger carbonate skeletal grains remain unaltered.

Dolomite II rhombs are usually around 0.1mm across and are noticeably clearer than dolomite I with no visible inclusions. Dolomite II fills large internal voids in bioclasts such as the space in between the septa of rugosan corals, and the central channels of crinoids (Fig. 6.F). In a similar fashion dolomite II also occasionally fills what was formerly shelter porosity underneath brachiopod shells with significant curvature (Fig. 6.G). Where this occurs, there is also a fine calcitic internal sediment below the dolomite crystals (see Section 7.4).

Since it occurs exclusively in the matrix and does not replace carbonate grains, dolomite I likely replaces micrite or fine crystalline calcite cement. Alternatively, the clear, coarse rhombs of dolomite II found in intragranular voids do not replace matrix material and instead likely replace sparry calcite cement (see Section 7.8) that originally filled these spaces or filled pores that were open. Since the sparry calcite cement does not have impurities or incorporated insoluble material, this allowed the dolomite to form as large, clear rhombs. Dolomite formation requires magnesium-rich pore waters to migrate through the rock; the source for the magnesium remains unclear. As clay minerals such as illite and chlorite contain abundant magnesium, some of the magnesium-rich water may have originated in the Bakken Formation shales. This water then migrated into the Lodgepole Formation through fractures and along faults and caused the dolomitization. The variable distribution of these conditions is discussed further in Section 8.2.

7.3: Glauconite

Glauconite replacement of carbonate grains is present within the laminated skeletal packstone facies (Facies 5) substituting the stratigraphically lowest False Bakken interval in eight of the measured sections. Glauconite most commonly occurs as roundish to oval grains measuring about 0.5 to 1 millimeter in diameter. It can also form part of biogenic particles, most commonly crinoid ossicles in which the internal structure is still visible in some of the cases. Some of the biogenic grains are partially composed of glauconite, and partially of carbonate. Stratigraphic intervals containing abundant glauconite are generally in the range of 1 to 3 centimeters thick, and besides the glauconite, these intervals can show some carbonate shell material (Fig. 6.H). Nevertheless, within beds containing glauconite grains, typically all grains are composed of glauconite (Fig. 6.I), and only occasionally carbonate material is present within the form of other grains (Fig. 6.J).

In the Lodgepole Formation, glauconite occurs as primary precipitations in the form of roundish to oval aggregates, likely formed on the sea floor (cf. Odin and Matter 1981). However, the presence of grains that still contain remnants of carbonate and are known to be originally made of carbonate, such as crinoid ossicles, represent a secondary replacement of primary calcitic or aragonitic lithologies. These secondary glauconite occurrences can either have completely changed the original composition of the particles, or only replaced smaller or larger portions of it. The presence of glauconite is believed to indicate condensation (Amorosi 1995) and is therefore often used as an indicator for transgressive conditions (Loutit et al. 1988) when sediment delivery to the deep shelf is strongly reduced.

7.4: Internal Sediment

Internal sediments fill the bottom portion of what was originally open porosity under brachiopod shells. Shelter porosity (Choquette and Pray 1970) that shows internal sediments is rare in the Scallion interval. However, it occurs in both cases where originally open space was present within this unit. The internal sediment consists of calcite. Unlike the surrounding carbonate mud matrix, the internal sediment shows larger and granular-looking grains that are typically about 0.01 mm across (Fig. 6.G). Within shelter pores, internal sediment takes up between 40 and 60% of the total original open porosity with coarse, clear dolomite II cement filling the remaining portion. In places, a few small (~0.01mm) dolomite rhombs are included within the calcitic internal sediment.

The position of the internal sediment on the bottom of shelter pores indicates that this calcitic material was deposited within originally open pore spaces. It did not completely fill them, however, as the leftover portion was occluded by dolomite cement and must have been still open during sedimentation of the internal sediment. The form of the calcite grains as well as their size argues for a formation mechanism distinctly different from the surrounding finer-grained matrix material. It has been suggested (Wilbur and Neumann, 1993) that the clear granular appearance of the internal sediment

components reflect precipitation from calcite oversaturated sea-water within pore spaces that were gravitationally laid down in contrast to other cement types that grow attached to pore walls. Internal sediments are not restricted to a distinct water depth but occur in shallow-water platform interior sediments (Egenhoff et al., 1999) as well as on carbonate slopes, e.g. in the Bahamas (Wilber and Neumann, 1993).

7.5: Microcrystalline Carbonate Nodules

The presence of carbonate nodules is prevalent within the Scallion interval of the lower Lodgepole Formation. These nodules are found specifically within the nodular skeletal wackestone and nodular skeletal packstone facies (facies 3 and 4). The nodules are typically medium grey or tan in color and 1-5 cm across. Where the nodular facies are tan, hand samples tend to be more brittle than the purely grey areas. The nodules are usually slightly elongated parallel to bedding but in some cases, their orientation is more random. The margins of the nodules may be well defined or more nebulous (Figs. 6.K and 6.L respectively). The matrix material surrounding the nodules is usually dark grey in color and it does not show any of the tan/brown appearance of the nodules. Within the facies of the Scallion interval (facies 3, 4, 5), there is a continuum stratigraphically between a more nodular Scallion interval texture and a less nodular texture that is instead dominated by microstylolites/dissolution seams. Where the Scallion interval is more nodular (Fig. 10), the color variation between light and dark grey, and in some locations light brown, is pronounced.

The presence/absence of carbonate nodules is generally attributed to differences in cementation during compaction, often relatively early during diagenesis (Choquette and James, 1987). The original cement composition in the nodules is likely microcrystalline calcite that precipitated along distinct layers. Elongation parallel to bedding suggests that ion transport in solution occurred along bedding planes. Precipitation of this cement would have occurred in small open spaces in between carbonate mud

particles prior to compaction. Dolomitic replacement of this microcrystalline calcite cement was responsible for the increased resistance to pressure dissolution/microstylitization where present. Jenkyns (1974) suggested that the amount of nodularity is dependent on the amount of clay content with lower amounts of clay yielding less well defined nodules. This aligns well with observations from the Lodgepole Formation because the amount of clay is generally very limited (and not readily visible in core or thin section) causing the nodules to generally be poorly defined relative to surrounding material when compared with other nodular limestone units (Jenkyns, 1974; Möller and Kvignan, 1988; Wanless, 1979).

7.6: Microstylolites/ Dissolution Seams

Swarms of microstylolites occur in all of the carbonate facies of the lower Lodgepole Formation. These swarms are most prominent in the Scallion interval but are less commonly found in the overlying carbonate mudstone facies. Where dissolution seams are more prevalent, the surrounding carbonate mud is a consistent medium grey color (Fig. 6.M) rather than varying between light grey, dark grey, and tan like the more nodular texture. The microstylolites are dark- very dark grey in hand sample and appear black in thin section (Fig. 6.N). Individual microstylolites are about 0.2mm thick and the overall thickness of the swarms is around 1-5 cm. Each stylolite shows sinuosity on two separate scales: a finer scale with wavelengths of 2-3mm and amplitudes of about 1 mm and a larger scale with a wavelength around 5-10 cm and an amplitude of around 5cm. The larger amplitude of sinuosity is less regular in form and can sometimes bound well-defined, isolated carbonate nodules. They are typically anastamosing and can overlap or truncate against other nearby microstylolites. Carbonate grains such as skeletal debris are often more abundant around the swarms but stylolites were never observed to cut through any grains.

The presence of microstylolites is inversely related to the presence of the nodular/early cementation of carbonates. The fact that grains are more concentrated near swarms of microstylolites affirms the fact that they are in fact dissolution structures. Grains such as crinoids and shells are more resistant to pressure dissolution than the fine grained carbonate mud matrix and therefore were excluded from the dissolution that removed the micrite (Wanless, 1983). The darker material that makes up the laminations is insoluble material such as clay minerals that was left behind after the microcrystalline carbonate dissolved (Wanless, 1983). The fact that pressure dissolution structures (microstylolites) are not often found in close proximity to the nodular facies suggests that these areas were more resistant to pressure dissolution than less nodular facies where microstylolites are abundant (Bathurst, 1987). The distribution of microstylitized intervals is patchy within individual cores and across the study area and does not show any clear trends.

7.7: Porosity Formation

The open porosity in the lower Lodgepole Formation is directly connected to the presence of dolomite in the nodular skeletal wackestone and packstone facies (facies 3 and 4) of the Scallion interval. Porosity is not visible macroscopically and is only observable in thin section (Fig. 6.O). Although dolomite can be found without associated porosity, porosity is restricted to only where dolomite is present. In areas where the dolomite concentration is high but porosity is absent, micrite is still prevalent in between the dolomite rhombs and skeletal grains. The porosity associated with the dolomite is intercrystalline in nature and is concentrated locally in patches where the amount of dolomite relative to other carbonate grains is high (30% or more). This condition only occurs in a very limited number of investigated cores (Amerada Hess State ND 1-11H and EOG Resources N & D 1-05H, EOG Sidonia 1-06H; Porosity does not exceed 5-6% overall but in localized millimeter scale patches of dolomite, it can be as high as 20% (Figs. 6.P, 6.Q, 6.R). The dolomite rhombs bordering pores are usually around 0.01-0.02 mm across and so inherently the pores in between the rhombs are this size

or smaller. Moldic porosity, mostly in the form of dissolved fine brachiopod/ostracod shell fragments, occurs in minor amounts (Fig 6.S). As with the dolomitic porosity, it was only found in a few samples and it accounted for a maximum of about 1-2% and was usually less than 1% porosity by volume. Moldic porosity was only visible using UV dye under fluorescent light so it is possible that it is more widespread than was actually observed.

The fact that most of the porosity is associated with dolomite occurrence suggests that porosity formation is most likely dependent on dolomitization. The reduction in volume from calcite to dolomite (up to 13%) is responsible for creating the space necessary for open porosity to form (Weyl, 1960). In the lower Lodgepole Formation, the dolomite must have completely replaced carbonate mud where porosity is present because micrite is not found directly adjacent to any pores. The relative lack of dolomite within this part of the formation also explains why porosity values related to dolomitization in the lower Lodgepole are relatively low. Porosity observed in molds were caused by the dissolution of shell material that could have been aragonitic and was therefore more susceptible to slightly acidic pore waters than the calcite of the surrounding matrix (Flügel 2004). However, as this type of porosity is overall rare it indicates that this process did not play a major role in porosity formation within the Scallion interval of the Lodgepole Formation.

7.8: Pyrite

Pyrite is found throughout the lower Lodgepole Formation and typically makes up between one and five percent of the total volume. The pyrite typically has a framboidal form that can either occur independent of any obvious parent grain or replace some or all of carbonate skeletal grains. When pyrite replaces shell fragments, it can either replace the entire grain (Fig. 6.T) or replace the grain in patches independent of internal structure in widely varying percentages. When it replaces a skeletal grain, the size of the pyrite present is dependent on the size of the grain. This type of pyrite appears

most commonly around the False Bakken interval where isolated shells or shell beds occur within the siliciclastic and carbonate mudstone facies (Facies 1,2,6,7). Within the Scallion Interval (facies 3,4,5), pyrite also often replaces the internal structure of crinoid ossicles that was formerly composed of organic matter surrounding individual calcite crystals and preserves it in great detail (Fig. 6.U).

The pyrite that occurs independent of skeletal grains ranges in size from silt sized framboids around 0.2mm to aggregates of numerous framboids that can be up to 10mm across These irregular masses of pyrite occur throughout the observed interval of the Lodgepole Formation but are most common in the area immediately above (~10 cm) the contact with the Upper Bakken Formation.

Pyrite likely represents sulfidic conditions in the fluid within the formation due to the decomposition of organic matter in the Upper Bakken and False Bakken or, in the case of the pyritized internal structure of crinoids, within the grain itself (Flügel, 2004). Microbial breakdown of organic matter is a key catalyst for creating the reducing conditions necessary for pyrite precipitation (Raiswell and Berner, 1986). It is likely that amorphous organic matter facilitated the pyrite precipitation that is independent of skeletal grains while organic matter within skeletal material facilitated the precipitation of pyrite associated with these grains.

7.9: Sparry Calcite Cement

Irregular sparry calcite cement occurs in limited amounts throughout the lower Lodgepole Formation. It can be found in any of the carbonate facies but is most common in the carbonate mudstone (facies 1 and 2) and nodular skeletal wackestone and packstone facies (facies 3 and 4). The cement is usually composed of euhedral, blocky crystals that are around 0.1-0.2mm across. These cements are most commonly observed in veins that do not have a preferential orientation and may be vertical or horizontal. Some of these veins show signs of compaction and are slightly contorted towards bedding (Fig. 6.V). The same cement also fills rare shelter porosity that existed underneath brachiopod shells.
The rare sparry calcite veins formed where localized calcite supersaturated pore waters allowed the veins to grow and expand through the force of crystallization (Watts, 1978). This force allowed the cement to expand and displace surrounding micrite. Where the sparry calcite cement fills shelter porosity, the calcite crystals were able to grow uninhibited in open space, allowing for larger crystal sizes than where microcrystalline calcite cement filled micro-pore space in between carbonate mud grains. It is also possible that the calcite precipitated in cracks that were already open as it did in the open voids underneath brachiopod shells.

7.10: Relative Timing of Diagenetic Phases

The eight diagenetic phases described above occur either superimposed in a position to each other that reflects their relative temporal relationship or occur in positions isolated from other diagenetic phases making their relative timing difficult to establish (Fig. 7). This is especially obvious in large open pore spaces that contain several cement and/or pore phases such as shelter porosity, but also holds true for the carbonate matrix that may show earlier carbonate micro-cements that are replaced by dolomitic, glauconitic, and other mineral phases.

From the eight phases observed within the cores selected for in this study the earliest diagenetic phases seems to be the glauconite. While not in contact with other diagenetic phases making relative timing difficult, glauconite formation generally occurs within the uppermost sediment layer before any significant addition of overlying sediment (Odin and Matter, 1981) and hence before burial has even started. Approximately time-equivalent, also occurring within the uppermost sediment layers, but within a carbonate and not a glauconite-forming environment, the calcitic internal sediments formed. Relative timing with respect to (temporally and environmentally restricted) glauconite formation, however, remains speculative as both phases have not been found together. The sparry calcite cement fills the remaining pore space below brachiopod shells and overlies the internal sediment which

consequently makes it younger than the calcitic grains accumulated gravitationally at the bottom of larger pore spaces. It remains unclear, however, if the sparry calcite underneath brachiopod shells is time-equivalent with local microcrystalline nodule cement, or whether the latter represents a later stage locally enhanced calcite precipitation within very small pore spaces of the matrix. The fact that calcitic cements observed in fractures within the lower Lodgepole Formation are equivalent in form and size to the calcitic cements fillings shelter pores either suggests that both phases formed around the same time, or that these two calcite cements are indeed similar looking but temporarily different phases that can only be differentiated by their geochemistry, and/or by cathodoluminescence investigations which are beyond the scope of this study.

Nevertheless, the two dolomite phases replace both calcitic matrix and earlier cement and therefore must have formed after all the calcite precipitation in voids and cracks occurring within the lower Lodgepole Formation

Since nodular intervals appear to be more resistant to the pressure dissolution based on the absence of microstylolites in these facies relative to non-nodular facies, the microcrystalline calcite precipitation must have occurred prior to when the pressure dissolution that formed the microstylolites occurred. If the nodular texture that formed as a result of the microcrystalline calcite cement did not provide any resistance to pressure dissolution, then microstylolites would be found in both nodular and non-nodular facies since the overburden pressure that drove the microstylitization would likely be similar where both of these textures are found. This relationship makes determining the temporal relationship between dolomitization and pressure dissolution difficult because the dolomite forms in the intervals with nodular texture where microstylolites are absent. Since it does not appear adjacent to any of the other diagenetic phases, the timing of the chert nodule formation is unclear. Malivas and Siever (1989) suggest that chert nodule formation can occur during both shallow and deep burial, the chertification

Figure 6. Diagenesis Photos

Figure 6. Diagenesis Photos (Continued)

Figure 6. Diagenesis Photos (Continued)

Figure 6 Captions

- 6.A EOG Sidonia 1-06H at 8695.3 ft. Chert nodule surrounded by carbonate mudstone (facies 1 and 2) above the Scallion and False Bakken Intervals. (Pencil for scale)
- 6.B EOG Sidonia 1-06H at 8698.9 ft. Margin of chert nodule (tan) and surrounding carbonate mudstone (dark grey).
- 6.C EOG Sidonia 1-06H at 8675.5 ft. Irregular discontinuous chert bed. This feature was not observed outside of this instance.
- 6.D Brigham Exploration 36-1 2H at 10742.6 ft. Patchy sucrosic dolomite in the nodular skeletal packstone facies. Not how the dolomite is replacing matrix material and leaving larger carbonate grains unaltered.
- 6.E Pennzoil Spring Creek 27X-31 at 10786.5 ft. Intense dolomite along a vertical crack. Diffuse dolomite rhombs in matrix material on the right side of the image. (Red calcite dye)
- 6.F Meridian Oil Co. MOI Elkhorn #33-11 at 10394.5 ft. Coarse dolomite filling internal voids in rugosans skeletons. (Red calcite dye)
- 6.G Stephens Energy BR 21-29 at 10668.0 ft. Geopetal calcite sediment fill with overlying coarse dolomite in umbrella void. (Red calcite dye)
- 6.H Clarion Resources Slater 1-24 at 7878.8 ft. Glauconitic grains in laminated skeletal packstone facies(facies 5). (Pencil for scale)
- 6.I Amerada Hess State ND 1-11H at 9412.0 ft. Photomicrograph of glauconitic replacement of crinoid ossicles and other carbonate grains in laminated skeletal packstone facies (facies 5).
- 6.J EOG Resources N & D 1-05H at 9394.1 ft. Glauconitic replacement of the interior of a crinoid ossicle.
- 6.K Clarion Resources Slater 1-24 7888.5 ft. Nebulous tan carbonate nodules surrounded by medium-dark grey matrix. (Pencil for scale)
- 6.L Socony Vacum Oil Company Angus Kennedy F-32-24-P at 10508 ft. Well defined tan-grey nodules with dark grey matrix material surrounding. (CM scale on right)
- 6.M Florida Exploration Federal 34-1 at 10486 ft. Horizontal and subvertical microstylolites in nodular skeletal wackestone facies (facies 3). Note the concentration of crinoid ossicles within the swarms. (CM scale on right)
- 6.N Florida Exploration Federal 34-1 at 10489.5 ft. Microstylolite swarm in nodular skeletal packstone facies. (Red calcite dye)
- 6.0 Amerada Hess State ND 1-11H at 9420.5 ft. Limited intercrystalline porosity associated with dolomitization along cracks. Locally 5% porosity, overall 1% porosity or less.
- 6.P EOG Resources N & D 1-05H at 9408.5 ft. Maximum porosity observed in the lower Lodgepole Formation. Patchy intercrystalline dolomitic porosity in nodular skeletal packstone facies (facies 4) - approximately 15%.
- 6.Q EOG Resources N & D 1-05H at 9408.5 ft. Dolomitic porosity from photo F at a larger scale. Note the patchy distribution of porosity. Carbonate mud is absent where porosity exists but is abundant elsewhere in thin section. Overall porosity at this interval is 3-5%.

- 6.R Florida Exploration Federal 34-1 at 10486 ft. Intercrystalline porosity associated with dolomite viewed with fluorescent light. (Blue fluorescent dye)
- 6.S Florida Exploration Federal 34-1 at 10489.5 ft. Moldic porosity resulting from the dissolution of skeletal material viewed with fluorescent light. (Blue fluorescent dye)
- 6.T Socony Vacum Oil Company Angus Kennedy F-32-24-P at 10493.1 ft. Pyrite replacing an entire skeletal grain (center) and smaller patches of pyrite that formed irrespective of grain or matrix.
- 6.U Pennzoil Spring Creek 27x-31 at 10779.0 ft. Pyrite replacement of the internal structure of crinoid ossicles.
- 6.V Maxus Exploration Carus Fee 21-19 at 11271.5 ft. Calcitic vein/concretion in massive carbonate mudstone (facies 1).

inherently occurred after glauconitization but coeval with some or all of the other diagenetic phases. The relationship of the pyrite to the other phases is also somewhat unresolvable but was likely being precipitated throughout the deposition and burial of the Lodgepole Formation so long as decomposable organic matter, dissolved sulfate, and reactive iron minerals were present in association with the pore waters moving through the Lodgepole Formation (Berner, 1984).

Figure 7. Relative timing of Diagenetic Phases

8. Discussion

8.1: False Bakken Deposition

The distribution and internal makeup of the False Bakken interval varies in character geographically across the Williston Basin (Fig. 8). Understanding the processes that control the stratigraphic expression and the aerial variations of the False Bakken are important to reconstruct the influence of sea-level variations on the deposition of this unit, and will allow predictions regarding the thickness, internal stacking and facies expression of this potential source rock and unconventional reservoir within the Lodgepole petroleum system. Depending on the location in the basin, the False Bakken can be represented by one, two, or three, black siliciclastic mudstone intervals and/or a glauconitic laminated skeletal packstone bed that in certain areas replaces the stratigraphically lowermost black mudstone bed. The character of each of the siliciclastic mudstone beds reflects a transgressive pulse with facies belts being moved outwards towards the basin margins. The facies of the glauconite horizon that is laterally equivalent to one or several of the mudstones also reflects condensed conditions characteristic for transgressions (e.g. Loutit et al., 1988).

The stratigraphic and aerial expression of the False Bakken interval with varying numbers of mudstone units and laterally equivalent glauconite beds may just be a function of the depositional site relative to siliciclastic sediment supply into the basin. Glauconite is overall more abundant in the northern to central part of the study area whereas the siliciclastic mudstones become more abundant towards the southern margin of the basin in southwestern North Dakota and eastern Montana (Fig. 8). This general pattern suggests that the siliciclastic input during False Bakken deposition must have preferentially come from the southern to southwestern basin margin. A sediment source in the southern portion of the study area would distribute silt- and clay-sized sediment preferentially in relative vicinity to its entry point. In such a scenario, the large relative distance of the glauconite-bearing sections to the presumed entry point of sediment reflect sediment-starved conditions during a transgression, but at the same time basin positions far enough away to be sheltered from the relatively higher siliciclastic input originating from the southern basin margin.

Figure 8. Distribution of False Bakken mudstone intervals and glauconite across the basin.

Another factor influencing depositional patterns in the Lodgepole depositional system are the large mound systems recognized in various parts of the basin (Cotter, 1965; Burke and Diehl, 1993). These mounds, likely located on structural highs, shed carbonate sediment, preferentially carbonate mud, into the adjacent basin areas. The mounds are thought to be located in mid-ramp settings, and in contrast to rimmed shallow-water carbonate platforms (Schlager et al., 1994) their sediment production capacity is not influenced by regular-scale third-order sea-level fluctuations when located below normal wave base (Schlager, 2003). It is therefore most likely that the cores that lack siliciclastic mudstone intervals but show one glauconite layer were supplied with carbonate mud during most of the transgressive False Bakken interval. Only during the most extreme sea-level rise, conditions must have also changed for the mounds themselves. They must have stopped shedding significant amounts of carbonate mud into the surrounding basinal areas, and thereby led to starved conditions within the distal parts of the Williston

Basin, allowing for glauconite deposition. The location of cores with glauconite must therefore have been far enough removed from the siliciclastic sediment source and/or sheltered from siliciclastic input through inner-basin highs thereby preventing detrital material to be delivered to the site of deposition.

The model proposed for glauconite versus siliciclastic mudstone distribution in the False Bakken interval also explains the observed one, two or even three siliciclastic and/or glauconite intercalations into the fine-grained carbonates. The maximum of three mudstones and glauconite units makes it most likely that the False Bakken interval does encompass three short-term trans- and regressions, probably of the parasequence-type. The diminished number of recognizable parasequences or "transgressive pulses" in the other sections are most likely caused by a dilution effect of the fine-grained siliciclastic material with carbonate mud from adjacent mounds: with increasing distance from the siliciclastic source and closer vicinity to one of the sources of carbonate mud the carbonate signal could have been entirely diluted by the carbonates shed into the basin during the same time. Furthermore, the high bioturbation rates present throughout the basin most probably would have helped obliterating the sedimentary signal by mixing the siliciclastic material with the surrounding carbonate mud.

From the three mudstone/glauconite intervals that occur in the False Bakken, the stratigraphically lowest one is generally the thickest and most distinct unit. It is therefore suggested here that this basal mudstone/glauconite interval is most likely the one that can be correlated laterally through the basin, whereas the overlying, less distinct mudstone and glauconite beds most likely correlate with some of the mud-rich carbonates directly overlying the False Bakken.

8.2: Distribution of Diagenetic Processes

Although they are significantly different in appearance in core samples, the more nodular skeletal wackestone and packstone facies (facies 3 and 4) were grouped together with the microstylitized wackestone and packstone facies as two facies rather than four separate ones. This was done because

the amount of skeletal grains and matrix material as well as the position within the lower Lodgepole section is the same whether nodules or microstylolites are more prevalent. Therefore it is assumed that within facies 3 and 4, both depositional processes and burrowing types are the same and do not warrant further subdivision. Nevertheless, it remains unclear what caused differential diagenetic evolution with the development of early cements and subsequent dolomite in some of the core localities while others do not show these diagenetic phases. Unraveling this phenomenon has important economic implications as significant porosity values within the lower Lodgepole interval are restricted to parts of the succession that have a nodular appearance.

The source of the calcite cement that allowed for the nodule formation may help to determine why the nodular texture formed in some places while it is absent in others. Based on observations on Early Paleozoic limestones in Scandinavia, Möller and Kvingan (1988) suggest that the calcite found in nodules generally stems from either pressure solution or the redistribution of carbonate from early dissolution of surface-near carbonate. In case of the Lodgepole Formation, if pressure solution was forming the source of the carbonate forming the nodules, this dissolution must have occurred in a unit other than the Lodgepole itself, most likely situated stratigraphically below. The reason is that the dissolution seams in the Lodgepole Formation most likely originated after the nodules formed and therewith could not have supplied calcium or carbonate ions to precipitate these carbonate concretions. If the calcite within the nodules indeed stems from units underlying the lower Lodgepole Formation it is most likely that the occurrence of calcite concretions is tied to pathways from stratigraphically lower units such as the middle Bakken member or underlying carbonate units such as the Three Forks and Duperow Formations. These pathways would be probably fracture zones, or large-scale faults. If this were true, then the occurrence of carbonate concretions would indicate the presence of fractures or faults within the succession. Alternatively, the source for the calcite that precipitated as cements in the Scallion interval nodules may be from early dissolution and subsequent precipitation around nucleation points in

the shallow subsurface. This process is caused by acidic conditions in the reduction zone due to NH_4 and H_2S rich pore waters followed by burial into the oxidation zone (Gründel and Rösler 1963). This process would explain some of the geographic variability in the nodule formation if the thickness variations in the Scallion interval are in fact depositional as higher sedimentation rates and thickness would yield a slightly greater source for this early dissolved calcite possibly causing the observed variable amount of cementation laterally.

Since microstylolites are found in varying levels of abundance in nearly every core, it is difficult to make a binary distinction between nodular Scallion intervals and microstylitized Scallion intervals. This makes determining a geographic relationship between the two variations challenging. One would suspect that the intense pressure dissolution and the associated microstylolites would result in a thinner Scallion interval. As can be seen in Fig. 9, the Scallion interval is slightly thinner in the southern portion of the basin than in the northern area of the basin where the porosity is found. This may be because early cementation was slightly more intense here, making it more resistant to later pressure dissolution and allowing it to retain more thickness than areas further to the south. Alternatively, these areas might have seen higher levels of sedimentation and were therefore thicker prior to burial. This may have been due to the distribution of Waulsortian-type mounds, which were more abundant in the southern portion of the basin, as is discussed in the previous section (Burke and Diehl, 1993). A precise quantitative study based on the number and amplitude of the microstylolites may yield more insight on this possible variation pressure dissolution/microstylitization and associated volume loss and help to predict its geographic distribution.

There are several possible sources for the presence of dolomite within the lower Lodgepole Formation. Pressure solution has been attributed as a source for dolomite during limestone burial (Wanless, 1979, Mattes and Montjoy, 1980). Due to the abundance of microstylolites in the lower Lodgepole Formation,

this may be considered as a factor in the formation of the dolomite in the nodular facies at first glance. Wanless (1983) states that dolomite rhombs formed during pressure dissolution are usually larger than 0.03mm and show strong zonation and are typically closely associated with the microstylolites. This does not coincide with the dolomite observed in the lower Lodgepole Formation, which is mostly smaller than 0.02mm and shows no zonation within individual dolomite rhombs. Also, dolomite in the Lodgepole Formation is rarely in direct proximity to the microstylolites. It is however possible that formation fluids capable of forming dolomite resulting from pressure dissolution migrated laterally into the more resistant nodular areas from the microstylitized areas where the insoluble material in the microstylolites served as a barrier to fluid flow.

The other applicable model for how dolomite formed in the Scallion interval is the burial compaction model. As a thick shale unit compacts, Mg²⁺ rich pore water is expelled, supplying the necessary ions for dolomitization (Morrow, 1987). In the case of the Lodgepole Formation, the underlying Upper Bakken (and maybe even the Lower Bakken) would serve as the source for the magnesium ions. One of the constraints on this model is the amount of shale required to supply enough magnesium for dolomitization. Assuming the pore water has the composition of sea water, it would take 32 cm³ of shale to make 1cm³ of dolomite (Morrow, 1987). Since the dolomite in the Lodgepole does not make up a huge percentage of the volume of the Scallion interval (around 15% on average) and is not even found everywhere in the basin, there is likely enough shale in nearby intervals to have provided sufficient magnesium to source the dolomite. Since a shale source is present throughout the basin, this explanation for the origin of the magnesium ions fails to explain the patchy distribution of the dolomite. It may be possible that more fractured areas had increased communication with the upper Bakken Formation causing the influx of shale related magnesium to vary geographically.

The source for the ionic constituents, in this case carbonate, is also an important factor in determining if dolomitization will create porosity. If the carbonate is locally sourced, then dolomitization is much more likely to create porosity than if it comes from an external source (Moore, 2001). If the carbonate ion of the dolomite is not derived from the calcite material it replaces, then it must have originated from another dissolution event that occurred throughout the basin (Moore, 2001). Moore (2001) listed exposure and meteoric phreatic dissolution as a method for this to occur but evidence for this is completely absent from the observed portion of the Lodgepole. Pressure-solution could be a possible source for ex situ CO_3 ions but microstylolites are generally absent in the tan nodular portion of the Lodgepole where dolomite is found suggesting that this was not the source. Also formation of the

nodules where the dolomite is found likely occurred before the Lodgepole was buried enough for pressure solution to occur. This suggests that instead the dolomitization used the calcite from in situ microcrystalline calcite cement as well as the surrounding micrite within the Lodgepole Formation to form, which allowed significant porosity to develop. On a similar note, where micrite is still present in the interstitial spaces between dolomite rhombs and carbonate grains, porosity is not found suggesting that more complete dolomitization of the micrite matrix has to occur in order for dolomitic porosity to exist. Murray (1960) suggests that the concentration of dolomite has to be at least 50% of the total volume in order for the dolomite to create porosity and this seems to be the case although the number seems to be slightly lower within the Lodgepole at about 40%.

Figure 10. Distribution of dolomite and porosity across the study area.

When dolomite is mapped across the basin using a brown/tan Scallion interval as the indicator of its presence, there is a general trend showing that dolomite is more prevalent to the northern part of the study area, while pure grey calcitic nodules (indicating less dolomitization) are more common to the south. Along with this, it is also important to note that of the three cores that showed porosity with standard thin sections, all occurred in the northern side of the study area (Fig. 10). This coincides with the generally greater thickness of the Scallion interval across the same area (Fig. 9). The microcrystalline calcite cement associated with nodule formation may serve, at least partially, as the material that the dolomite replaces. If, in fact more intense cementation does result in a thicker Scallion Interval, then thickness can be used as a proxy for where dolomitization might be more common. Where there was more of this nodule-forming fine calcite cement, the amount of dolomite replacement can be higher creating the potential for more porosity. It is important that the geographic trend of the dolomite be considered cautiously. The well control from core is sparse in the northern part of the study area (Mountrail, Burke, Divide, and Williams County) so it may just be coincidental that all wells in this area contain dolomite.

9: Outlook

There were several questions addressed in this study that could be answered in greater detail after further study. Since many of the cores were taken to observe the underlying Bakken Formation, they often do not allow for a complete observation of the False Bakken interval or the overlying carbonate mudstone. A remedy for this issue would be to integrate petrophysical data and compare this to the facies observed in core. This would also enable a more detailed study of the variations in thickness in the Scallion interval as well as the distribution of the False Bakken mudstones. The spatial variation of the dolomite remains an important unanswered question. Since its presence would probably be difficult to discern on petrophysical logs, it would also be helpful to take a thin section sample of the Scallion Interval in every core to try to get a better picture of where dolomite is found throughout the basin.

10: Conclusions

This study recognized and described seven facies in the lowermost Lodgepole Formation. There are five carbonate facies, massive carbonate mudstone, a bioturbated carbonate mudstone, a nodular skeletal wackestones, a nodular skeletal packstone and a laminated skeletal packstone, and two siliciclastic mudstone facies, a massive black siliciclastic mudstone and a black siliciclastic shell-rich mudstone. The "Scallion" Interval directly overlying the upper Bakken Shale consists of nodular skeletal wackestones and nodular skeletal packstones with intercalated beds of laminated skeletal packstones. These facies represent a depositional environment characterized by carbonate mud deposition that was hospitable to benthic filter feeding and burrowing organisms. This environment was impacted by intermittent storms bringing in and concentrating skeletal carbonate grains in distinct centimeter scale beds. Overlying the Scallion interval are the black siliciclastic mudstones and interbedded carbonate mudstones of the "False Bakken" interval. These facies represent quiet water deposition isolated from a carbonate mud source under dysoxic conditions. Higher energy events occasionally deposited thin beds of shell material during the time of False Bakken deposition. Up to three separate pulses of False Bakken deposition were observed and in places the lowermost pulse of siliciclastic mud deposition is replaced by a glauconite-rich carbonate interval. Overlying the False Bakken is a thick succession of massive and burrowed carbonate mudstones representing the return to carbonate dominated sedimentation albeit at a greater depth isolated from the deposition of skeletal material.

All of these facies represent depositional environments located on a low-inclined ramp system with the nodular skeletal wackestone, nodular skeletal packstone, and laminated skeletal packstones reflecting deposition in a mid-ramp environment, whereas all the massive and bioturbated mudstone carbonate facies record a distal ramp setting. The two siliciclastic mudstones are interpreted as being deposited in a basinal environment in this study. The lower Lodgepole succession consists of the basal Scallion interval characterized by an overall slight fining-upward trend, the False Bakken unit showing up to three distinct mudstone beds or equivalent glauconite-rich strata, and overlying massive monotonous carbonate mudstones. The Scallion interval is interpreted as representing a Lowstand Systems Tract (LST) because relatively coarse facies are found throughout the basin at this interval. The up to three mudstones of the False Bakken and equivalent glauconite bed most likely represent individual transgressive pulses forming the Transgressive Systems Tract (TST). The sediment starvation indicated by glauconitization and lack of any significant carbonate deposition suggests that sedimentation in the Williston Basin at this time was pushed significantly marginward by sea level rise. The monotonous mudstones marking the top of the investigated succession show the lower part of the overlying Highstand Systems Tract (HST). The return of carbonate deposition in this interval suggests that distal carbonate ramp facies were able to prograde over the rocks of the TST as sea level rise ceased.

Eight major diagenetic phases altered the original depositional fabric of the Lodgepole Formation. Porosity in the lower Lodgepole Formation is almost exclusively secondary and is directly related to the presence of dolomite. Although visible porosity can be as high as 20% in small localized areas, overall porosity does not exceed 5-6% and is usually closer to 0%. The distribution of dolomite is patchy both geographically and in individual samples. The dolomite occurs in two forms, cloudy sucrosic dolomite (dolomite I) and coarser, clear dolomite (dolomite II). These dolomite phases replace nodule forming microcrystalline calcite cement and coarser sparry calcite cement respectively. Pressure dissolution structures in the form of microstylolites are another abundant diagenetic feature in the Lodgepole and their presence is directly controlled by the amount of dolomite; where dolomite is abundant, microstylites become less common. The irregular distribution of dolomite and the restricted associated porosity limit the potential for lower Lodgepole formation as a hydrocarbon reservoir despite its

position next to a world class source rock in the Bakken Formation. In addition, pyrite, chert nodules, calcitic internal sediments, and glauconitization occurred in varying amounts.

References

- Amorosi, A., 1995, Glaucony and Sequence Stratigraphy: A Conceptual Framework of Distribution in Siliciclastic Sequences: Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies, v. 65B, p. 419-425.
- Anna, L. O., R. M. Pollastro, S. B. Gaswirth, M. D. Lewan, P. G. Lillis, L. N. R. Roberts, C. J. Schenk, R. R. Charpentier, T. A. Cook, T. R. Klett, 2008, Assessment of Undiscovered Oil and Gas Resources of the Williston Basin Province of North Dakota, Montana, and South Dakota: National Assessment of Oil and Gas Fact Sheet, p. 1-2.
- Aurell, M., B. Bádenas, D. W. J. Bosence, D. A. Waltham, 1998, Carbonate production and offshore transport on a Late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from outcrops and computer modeling: Geological Society, London, Special Publications, v. 149, p. 137-161.
- Bathurst, R. G. C., 1987, Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction: Sedimentology, v. 34, p. 749-778.
- Berner, R. A., 1984, Sedimentary pyrite formation: An Update: Geochemica et Cosmochimica Acta, v. 48, p. 605-615.
- Bjorlie, P. F., S. B. Anderson, 1978, Stratigraphy and Depositional Setting of the Carrington Shale Facies (Mississippian) of the Williston Basin: The Economic Geology of the Williston Basin: Williston Basin Symposium, Montana Geological Society 24th Annual Conference, p. 165-176.
- Brown, D. L., 1978, Wrench Style Deformational Patterns Associated with a Meridonal Stress Axis
 Recognized in Paleozoic Rocks in parts of Montana, South Dakota, and Wyoming: The Economic
 Geology of the Williston Basin: Williston Basin Symposium, Montana Geological Society 24th
 Annual Conference, p. 17-31.
- Burchette, T. P., V. P. Wright, 1992, Carbonate Ramp Depositional Systems: Sedimentary Geology, v. 79, p. 3-57.
- Burke, R., P. Diehl, 1993, Waulsortian Mounds and Conoco's New Lodgepole Discovery: NDGS Newsletter, v. 20, no. 2, p. 6-13.
- Chen, Z., K. G. Osadetz, C. Jiang, M. Li, 2009, Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin: AAPG Bulletin, v.93, p. 829-851.
- Choquette, P. W., N. P. James, N.P., 1987, Limestones- The Sea-Floor Diagenetic Environment, in I. A. McIlreath, D. W. Morrow, eds., 1990, Diagenesis: Ottawa, The Runge Press Ltd., Geoscience Canada Reprint Series, v. 4, p. 13-34.
- Cotter, E., 1965, Waulsortian-Type Carbonate Banks in the Mississippian Lodgepole Formation of Central Montana: The Journal of Geology, v. 73, p. 881-888.

- Cotter, E., 1966, Limestone Diagenesis and Dolomitization in Mississippian Carbonate Banks in Montana: Journal of Sedimentary Petrology, v. 36, p. 764-774.
- Dunham, R. J., 1962, Classification of Carbonate Rocks According to Depositional Texture, in W. E. Ham, ed., 1962, Classification of Carbonate Rocks: Tulsa, The American Association of Petroleum Geologists, AAPG Memoir, v. 1, p. 108-121.
- Egenhoff, S. O., Peterhänsel, A., Bechstädt, T., Zühlke, R., Grötsch, J., 1999, Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar (Middle Triassic, northern Italy): Sedimentology, v. 46, p. 893-912.
- Gaswirth, S. B., P. G. Illis, R. M. Pollastro, L. O. Anna, 2010, Geology and Undiscovered Oil and Gas Resources in the Madison Group, Williston Basin, North Dakota and Montana: The Mountain Geologist, v. 47, p. 71-90.
- Gerhard, L. C., S. B. Anderson, J. A. LeFever, C. G. Carlson, 1982, Geological Development, Origin, and Energy Mineral Resources of Williston Basin, North Dakota: AAPG Bulletin, v. 66, p. 989-1020.
- Gründel, J., H. J. Rösler, 1963. Zur Entstehung der oberdevoschen Kalkknollengesteine Thüringens: Geologie, v. 16, p. 1009-1038.
- Heck, T., 1978, Depositional Environments of the Bottineau Interval (Lodgepole) in North Dakota: The Economic Geology of the Williston Basin: Williston Basin Symposium, Montana Geological Society 24th Annual Conference, p. 191-199.
- Jarvie, D. M., 2001. Williston Basin Petroleum Systems: Inferences from Oil Geochemistry and Geology: The Mountain Geologist, v. 38, p. 19-41.
- Jenkyns, H. C., 1974, Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model, *in* K. J. Hsü, and H. C. Jenkyns, eds., v. Special Publication 1, IAS, p. 249-271.
- Johnson, M. S., 1995, Dickinson Field Lodgepole Reservoir: Significance of This Waulsortian-Type Mound to Exploration in the Williston Basin: The Mountain Geologist, v. 32, p. 55-79.
- Kent, D. M., 1987, Mississippian Facies, Depositional History, and Oil Occurrences in Williston Basin,
 Manitoba, and Saskatchewan: Rocky Mountain Association of Geologists 1987 Williston Basin
 Symposium, p. 157-170.
- Kerr, S. D., 1988, Overview: Williston Basin Carbonate Reservoirs, in S. M. Goolsby and W. M. Longman, eds, Occurrence and Petrophysical Properties of Carbonate Reservoirs in the Rocky Mountain Region: RMAG, p. 251-274.
- Kidwell, S.M., F. T. Fürsich, T. Aigner, 1986, Conceptual framework for the analysis and classification of fossil concentration: Palaios, v. 1, p. 228-238.

- LeFever, J. A., S. B. Anderson, 1984, A little known carbonate reservoir within the lower Lodgepole Formation, northwestern North Dakota: Oil and Gas in Saskatchewan, Saskatchewan Geological Society Special Publication, p. 31-43.
- LeFever, R. D., J. J. Crashell, 1991, Structural Development of the Williston Basin in Southwestern North Dakota: Sixth International Williston Basin Symposium; proceedings of a symposium held in Regina, Saskatchewan, 7,8,9 October 1991, p. 222-233.
- Longman, M. W., 1996, Did the Mississippian Lodgepole Buildup at Dickinson Field (North Dakota) Form as a Gas Seep ("Vent") Community?: The Mountain Geologist, v. 33, p. 105-114.
- Loutit, T.S., J. Hardenbol, P. R. Vail, G. R. Baum, 1988, Condensed sections: the key to age determination and correlation of continental margin sequences: in C.K. Wilgus, B. S. Hastings, C. G. St.C. Kendall, H. W. Posamentier, C. A. Ross, J. C. Van Wagoner, eds., Sea-level changes - an integrated approach, SEPM Special Publication 42, p. 183-213.
- Maliva, R. G., Siever, R., 1989, Nodular Chert Formation in Carbonate Rocks: The Journal of Geology, v. 97, p. 421-433.
- Mattes, B. W., E. W. Montjoy, 1980, Burial Dolomitization of the Upper Devonian Meitte Buildup, Jasper National Park, Alberta, in D. H. Zenger, J. B.Dunham, R. L. Ethington, eds., 1983, Concepts and Models of Dolomitization: Tulsa, Society of Economic Paleontologists and Mineralogists, Special Publication No. 28, p. 259-297.
- Möller, N. M., K. Kvingan, 1988, The genesis of limestones in the Ordovician and Silurian of the Oslo Region (Norway): Sedimentology, v. 35, p. 405-420.
- Montgomery, S. L., 1996, Mississippian Lodgepole Play, Williston Basin: a review: AAPG Bulletin, v. 80, p.795-810.
- Moore, C. H., 2001, Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework: Amsterdam, Elsevier, Developments in Sedimentology, v. 55, 444 p.
- Morrow, D. W., 1987, Dolomite- Part 2: Dolomitization Models and Ancient Dolostones, in I. A. McIlreath, D. W. Morrow, eds., 1990, Diagenesis: Ottawa, The Runge Press Ltd., Geoscience Canada Reprint Series, v. 4, p. 13-34.
- Murray, R. C., 1960, Origin of porosity in carbonate rocks: Journal of Sedimentary Petrology, v. 30, p. 59-84.
- Noble, J. P. A., D. R., Vam Stempvoort, 1989, Early Burial Quartz Authigenesis in Silurian Platform Carbonates, New Brunswick, Canada: Journal of Sedimentary Petrology, v. 30, p. 59-84.

Odin, S. G., Matter, A., 1981, De glauconarium origine: Sedimentology, v. 28, 611-641.

- Peterhansel, A., B. R. Pratt, 2001, Nutrient -triggered bioerosion on a giant carbonate platform masking postextinction Famenian benthic community: Geology, v. 29, p. 1079-1082.
- Peterson, J. A., 1987, Subsurface Stratigraphy and Depositional History of the Madison Group (Mississippian), U.S. Portion of the Williston Basin and Adjacent Areas: Rocky Mountain Association of Geologists 1987 Williston Basin Symposium, p. 171-191.
- Raiswell, R., Berner, R.A., 1986, Pyrite and organic matter in Phanerozoic normal marine shales: Geochemica et Cosmochimica Acta, v. 5, p. 1967-1976.
- Schlager, W., J. J. G. Reijmer, A. Droxler, 1994, Highstand Shedding of Carbonate Platforms: Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies, v.64B, p. 270-281.
- Schlager, W., 2003, Benthic carbonate factories of the Phanerozoic: International Journal of Earth Sciences, v. 92, p. 445-464.
- Schieber, J. S., J. Southard, K. Thaisen, 2007, Accretion of Mudstone Beds from Migrating Floccule Ripples: Science, v. 318, p. 1760-1763.
- Schurr, G. W., A. C. Ashworth, R. B. Burke, P. E. Dielhl, 1995, Tectonic Controls On the Lodgepole Play in Northern Stark County, North Dakota - Perspectives from Surface and Subsurface Studies: Seventh Annual Williston Basin Symposium; Proceedings of a Symposium Held in Billings Montana, July 23-25, 1995, p. 203-208.
- Sloss, L. L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 74, p. 93-114.
- Smith, D., 1972, Stratigraphy and Carbonate Petrology of the Mississippian Lodgepole Formation in Central Montana: University of Montana PH.D. Dissertation, 143 p.
- Watts, N. L., 1978, Displacive calcite: evidence from recent and ancient calcretes: Geology, v.6, p.699-703.
- Wanless, H. R., 1979, Limestone response to stress: pressure solution and dolomitization: Journal of Sedimentary Petrology, v. 49, p. 437-462.
- Wanless H. R., 1983, Burial Diagenesis in Limestone, in A. Parker, B. W. Sellwood, eds., 1983, Sediment Diagenesis: Dordrecht, D. Reidel Publishing Company, NATO ASI Series: Series C: Mathematical and Physical Sciences, v. 115, p. 379-417.
- Weyl, P. K., 1960, Porosity Through Dolomitization: Conservation-Of-Mass Requirements: Journal of Sedimentary Petrology, v. 30, p. 85-90.
- Wheatcroft, R. A., D. E. Drake, 2003, Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation: Marine Geology, v. 199, p. 123-137.

- Wilber, R.J., Neumann, A.C., 1993, Effects of submarine cementationon microfabrics and physical properties of carbonate slope deposits, northern Bahamas, in R. Rezak, D. L. Lavoie, eds., Carbonate Microfabrics, New York, Springer, pp. 79-94.
- Wendte, J. and T. Uyeno, 2005, Sequence stratigraphy and evolution of Middle to Upper Devonian Beaverhill Lake strata, South-Central Alberta: Bulletin of Canadian Petroleum Geology, v. 53, p. 250-354.
- Young, H. R., L. R. Rosenthal, 1991, Stratigraphic Framework of the Mississippian Lodgepole Formation in the Virden and Daly Oilfields of Southwestern Manitoba: Sixth International Williston Basin Symposium; proceedings of a symposium held in Regina, Saskatchewan, 7,8,9 October 1991, p. 113-122.

Appendix 1: Measured Sections

Sample #	Operator	Name	Lat	Long	County	Loc.	Pg. #
8251	Jerry Chambers	USA #1-24	47.1839266	-103.5481397	Billings	NDGS	59
12873	Maxus Exploration Co	Rausch Shapiro Fee	47.134897	-103.611171	Billings	NDGS	60
12072	Meridian Oil Co	MOI Elkhorn #33-11	47.216223	-103.566714	Billings	NDGS	61
12886	Shell Western E & P	Connell 24-27H	47.2567	-103.597082	Billings	NDGS	62
15716	Stephens Energy Company LLC	BR 12-29	47.17309315	-103.3856688	Billings	NDGS	63
7887	Tenneco Oil Co.	Mee USA 3-17	47.120931	-103.379412	Billings	NDGS	64-66
10803	Florida Exploration	Federal 34-1	46.990218	-103.335058	Billings	NDGS	67-68
18502	Whiting Oil and Gas	Teddy 44-13TFH	47.1116417	-103.4153847	Billings	NDGS	69-70
8638	Clarion Resources Inc.	Slater 1-24	48.751046	-102.433563	Burke	NDGS	71
13167	Conoco Inc.	SKARPHOL "D" #5	48.708913	-102.898789	Divide	NDGS	72
12785	Maxus Exploration Co	Carus Fee 21-19	47.542727	-102.963685	Dunn	NDGS	73
18355	Simray GP, LLC	Roberts Trust 1-13H	47.63474778	-102.6072548	Dunn	NDGS	74
607	Socony Vacuum Oil Company, Inc.	Angus Kennedy F-32-24-P	47.711593	-102.522114	Dunn	NDGS	75
12772	American Hunter Exploration LTD	Ahel et al Grassy Butte	47.485595	-103.234115	Mckenzie	NDGS	76
14947	Astral Oil Compnay, LLC	Astral Stenehjem 43-27	47.780575	-103.071758	Mckenzie	NDGS	77-78
9793	Exeter Exploration Co.	Schmitz 8-30	47.960366	-103.523677	Mckenzie	NDGS	79
17067	Headington Oil Company LLC	Sakakawea Federal 12x-35	48.11512996	-102.8687514	Mckenzie	NDGS	80
16652	Helis Oil and Gas Company, LLC	Levang 3-22H	47.80306811	-102.8260918	Mckenzie	NDGS	81
16689	Helis Oil and Gas Company, LLC	Linseth 4-8H	47.74549339	-102.8757536	Mckenzie	NDGS	82
12983	Pennzoil E and P Co.	Spring Creek 27X-31	47.615417	-103.658421	Mckenzie	NDGS	83-84
15889	Amerada Hess Corporation	Sara G. Barstad 6-44H	48.18393253	-102.8258589	Mountrail	NDGS	85
15986	Amerada Hess Corporation	J. Horst 1-11H	48.18138581	-102.6103593	Mountrail	NDGS	86
16160	Amerada Hess Corporation	State ND 1-11H	48.53077511	-102.6663559	Mountrail	NDGS	87
17676	EOG Resources, Inc.	Sidonia 1-06H	48.53303243	-102.3443921	Mountrail	NDGS	88-89
18101	EOG Resources, Inc.	Liberty 2-11H	47.90653945	-102.2797244	Mountrail	NDGS	90
16532	EOG Resources, Inc.	N & D 1-05H	48.02185641	-102.229529	Mountrail	NDGS	91
17043	Hess Corporation	St Andes-151-89-2413H-1	47.87729922	-102.001518	Mountrail	NDGS	92
13598	Conoco Inc.	Dickinson State A 83	46.888727	-102.82887	Stark	NDGS	93-94
9800	Arco Exploration	No. 1 Simpson	48.47947229	-103.197669	Williams	NDGS	95
18257	EOG Resources, Inc.	Round Prairie 1-17H	48.16786178	-103.9685497	Williams	NDGS	96
17015	Headington Oil Company LLC	Nesson State 42x-36	48.29136544	-102.8284633	Williams	NDGS	97
16405	Pogo Producing Co	Pegasus 2-17H	48.5046546	-103.1221075	Williams	NDGS	98
E358	Florida Exploration	11-4 Federal	47.31096	-103.56845	Billings	USGS	99
E383	Florida Exploration	12-1 Federal	47.30137	-103.54544	Billings	USGS	100
E349	Texaco Inc	5-1 Thompson Unit	47.229268	-103.26013	Billings	USGS	101
R658	Whiting Oil and Gas	31-3 Short Fee	47.149989	-103.588055	Billings	USGS	102-103
E967	Duncan Raymond T	1-24 Patterson	46.838244	-102.86002	Stark	USGS	104-108

Facies Key

Massive Carbonate Mudstone (facies 1)

Carbonate Mudstone With Burrows (facies 2)

Nodular Skeletal Wackestone/Nodular Skeletal Packstone (facies 3 and 4)

Laminated Skeletal Packstone (facies 5)

Massive Black Siliciclastic Mudstone (facies 6)

Black Siliciclastic Shell Rich Mudstone (facies 7)

Symbol Key

- Rugosan
- ⊙ Crinoid
- -₩ Stylolite
- Microstylolite Laminae
- Core Photo
- √ Burrow

	vv	en	_		. y	CII	ann	Del3 03A 1-24	-		County_bii	inigs		State_10	State_ND							
	Stratigraphic Interval 10366-10388											I	.og	ged by _JM Date11/18/11								
	Lithology											erm	Γ									
cies		Grain S	Pack S		testone	udstone	of Conta	Structures	; 	Т	exture	ig Patt		Notes								
Fac		oarse SS/	Sand S/ I	L C AND -	It S/Wack	shale/ Mu	Nature	Туре	Size			itackin										
		1		0	2	•,						0,										
		- I - I		I I																		
		T T		I I																		
		I		 																		
		I I		I I																		
		I		I I																		
		I		I	I																	
		I		I	1																	
66		I		I																		
		1		1																		
	-	1		ļ																		
68	T	1		-				vfg shell bed														
	1	į		ļ						ma: carl	ssive dark gray conate ms			Darker								
	I I I	Ì		i									•									
70		i								ma	ssive black ms		Į)									
		i		i									S	False Bakken 2								
	1	i		i	Ī		1						ľ									
72		i		i T										Darker								
	I	T				-							'									
		T		1				patchy pyritized shell bed														
74	-	1		I L			<u> </u>															
	-	I I						shell beds		Dar	k gray			1 solitary rugosan								
		I	(4	-					Pyri	tized fine shells		b	All shells horizontally aligned								
76	-	1		I	+		┝			mu	dstone		5	raise bakken i								
	- -	1	,	$\scriptscriptstyle \!$	4					Pvri	tized fine shell			A								
	÷	1		!	1		1			deb	ris			Î								
78_	- -			T	+								\vdash									
	i I I	Ì		ļ				Mostly massive		V. s grai	oarse pyritized ns			Clay content increases								
	1 1 1	I			Ľ					FG	skeletal debris +			cold pyrite replacement of crinoids and burrows								
80	HHH	- - -	_	F			\vdash	Muddier, fewer lami	inae	bla Glo	k grains bular pyrite		\vdash									
	THT H			6) 	0		ľ						Crinoids focused around laminae								
	THTHT	Ì			•	0		Micritized concretion Discontinuous lamin	ns nae			IX										
82	H H H H	1			•	•		vugs 2-3cm														
	HHH	i I			•	-		Calcite filled crack	te													
	HHH	Ì		0		0		sindous lant, stylon				\mathbb{N}										
84	THTH	1		Ľ	0	~						Ň										
	THAT	T		e l		2		3-4 cm thick sin. laminae beds		Sca	ttered black pyr	e V										
86	HHHH	I I		0	 ©_	0		Sinuous laminae		rep Mo	acement stly 1-2mm crine	ds		Less denned nodules than most Scallion Intervals, average grain size and abundance								
	THAT	I		ſ				No laminae		(soi	ne larger 3-4mm			Nodular brown and gray facilies								
5 55	T.	I I		\langle	$\frac{1}{4}$	$\tilde{\sim}$	ļ	Erosional contact at	base of	LP				Nousan ordern and gray racies								
388		T T		I I										Upper Bakken								
		ain S	ik S		tone	stone		•	•				•									

	Well Maxus Exp	loration Shapiro Fee	#32-9 County_Bill	ingsState_ND							
	Stratigraphic Inte	erval 104490-10509		L	ogged by _JM Date_3/14/11						
Facies	ree SS/Grain S Ind S/ Pack S S/Wadkestone Audotone Audoto	Structures	Texture	acking Patterm	Notes						
				Sti							
89											
91		Chips									
			FG Crinoid Debris								
93		Ft laminations									
95		Massive			Dark gray, does not appear to have a False Bakken facies						
97		Glauconite									
		FG crinoid beds									
99		Large concretions									
			Rugosan								
01											
		Sinuous Laminae		$ \nabla $	Average color and nodularity for Scallion Interval, larger than average grain size, average abundance						
03		Sinuous lamiae									
05			Sparse crinoids	V							
		tan, nodular with dark laminae									
10507		Nodules on contact	Recrstallized crinoids		Upper Bakken						
	oarse SS/Grai Sand S/ Pack ilt S/Wackestc Shale/ Mudstc				Page <u>1</u> of <u>1</u>						

	V	Vel		Me	ridia	an M	1OI Elkhorn 33-	11	County	Bi	Billings State_ND
	S	tra	tig	rap	hic	Inte	erval_10388-10	401		L	Logged byJM Date11/20/11
acies		i/Grain S	thc Sades	ketone 00	Indstone	e of Contacts	Structures	5	Texture	ng Patterm	Notes
		oarse SS	Sand S	ilt S/Wae	Shale/ A	Natur	Туре	Size		Stacki	
		 			- - - -						
		 			- - - - -						
88		 									
90							Mostly massive lighter grey		Pyritized shells 1-5m -all horizontally aligr	m ed	Staft OF Palse Bakkeri 2?
92						-	Lighter grey Horizon of pyritized	l shells	Dark black ms <1% crinoids and sh	ells	False Bakken 1
94		 		1	/** 9< - -	0 NN 0	Globular pyrite VFG bed Rip-ups Patchy coarse spots 3x5 cm vert. burrov Bed of fg skel. mate	v v rial & cri	noids		Grains all replaced by black material Brown rip up clasts 3cm backfilled side burrows
96			6	0 0			Patchy, lighter grey areas- cement? Sinuous laminae Calcite filled cracks		Fewer laminae, more nodular	∇	Darker grey
	HEREFERENCE	 	(Z - Z - Z	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		Sinuous laminae		Patchy crinoid rich areas, most cri's 1-2n some up to 5mm Increasing nodularity	∏	7 Lighter grey
00) () ()	- ° ° { _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	(/ 2 2 1)	Sinuous laminae		Not nodular, more laminated	V	Lighter grey Laminae concentrated in bands with more massive intervals in between
10402	HEREE HEREE			0	- 0 0 - 0) Nodular, 1-2mm crinoids	∇	7 Average color, nodularity for scallion interval, coarser, larger grains than average Upper Bakken chips
		Coarse SS/Grain S	Sand S/ Pack S	Cit+ C AM advantance	Shale/Mudstone						Page <u>1</u> of <u>1</u>

		Well Tenneco Oil Mee USA 3-17 County											Billings State N								
		Stra	tig	rapl	nic l	nter	rval_1	0731-10	759			Logged by _JM						Date	3/13/1	1	-
		Li	thc	olog e	y e	intacts	S	tructures				atterm									
Facies		e SS/Grain	d S/ Pack 9	Vackestor	e/ Mudsto	ture of Co		Type	ze		Texture	:king Pa			Ν	lotes					
31	-	Coarse	San	Silt SA	Shale	Na			Si			Stac									
			' 	- 																	
3 3			1	 																	
35			1	I																	
37			 	i I																	
			' 	i I I			Patche	s of bioturbat	bel												
39				I T	[-		lamina	e T													
			 	 							Dark grey										
41			I	I I	_		Sub pa	rallel laminae	6												
			 	 	\subset		Lamina	ae set			lighter grey										
			I I	I I			lamina	e sets		lighter grey											
43	i.	-	 	T T	E	-															
			 	i I	Γ																
45			1	1			Lamin	ae sets													
			 	 			Slightl	y sinuous e			Light grey										
			1	I I																	
47			 	 			Faint la	aminae-		╟	Dark grey Scare crinoids/										
			1	I I			bioturi	bated		¥	shell debris Lightest grey										
49			 	I I						ľ	Lighter grey										
			I	I I	_						Dark grey-black vf shell debris, crinoi	ds	False Bakken 3?								
51			 	 																	
53			' 	1							Lightest grey										
				 				Т													
			 	 							Lighter grey										
55			1	1	>		Ft sinu	ous laminae			Brown-dark grey										
57			1	1	_		Faint la	aminations													
			 	r I I																	
10759				I I			Massiv	e			Dark grey										
		S/Grain S	/ Pack S	ckestone	Audstone																
		Coarse S.	Sand S.	Silt S/Wa	Shale/A												Page	2_0f			

г		Jua		api		пе	vai			E	oggeu by	
	cies	Grain S	tho sype	estone estone	y dstone	of Contacts	Structures		Texture	g Pattern	Notes	
	Fac	Coarse SS/(Sand S/ F	Silt S/Wack	Shale/ Mu	Nature	Туре	Size		Stackin		
				 	1 1 1							
1				 	1							
				1	i I							
+				 								
+				 	 							
+				I T	1							
				 	i I							
-				 	1							
				 	1 1 1							
04				 	1							
					 		Darker gray	Most				
06				 	Ĕ							
				 			Light gray nodules thin laminae	fewe	t Sparse large crinoid	s		
00				 								
00 _				 	ŕ		Dark gray shale				False Bakken 1	
							Most glauconite					
10					1		Start of gluaconite		1-2mm crinoids			
					\leftarrow		nodules		Coarse skeletal			[
12 _									material			
I				\sim	$\downarrow \sim$							
14 _				\cap		-	l aminae less		It gray			
I			F		<u>}</u>		discontinuous		Dark brown			
16				-	1				Horizontal brachs			
					~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Dark patches					
18) 	ر م کر ہ		BT or laminae?		Lt gray			
				•	0		Irregular contact		Small cri's, brachs Dark gray-brown Globular pyrite			
20				 							Upper Bakken	
		Grain S	Pack S	testone	dstone							

	1 i+i		ייזיר	,	n				E	
acies	S/Grain S	/ Pack S	destone	Mudstone	e of Contact	Structures		Texture	ing Patter	Notes
	Coarse St	Sand S	Silt S/Wa	Shale/ A	Natur	Туре	Size		Stacki	
	i I	i I		I						
	1			1						
		1		 						
	1	1		 					-	
		1		 						
	- 1 - 1	1		I I						
		1		 						
		1		 						
		1		 						
	1			 					<u> </u>	
	- I - I	1		I I						
		1		 						
	1	1		 						
		1		 						
50	i	i		i I		Nodular limestone, N	s		-	
		1				w/ peculiar structure	s within	nodules		
55	I I	I								
						Nerites				
		I	F			Noduar limestone, M				
70						MS, structureless/ma w/a abundant shell d	ssive ebris	Transition between the	two-ca	cite filled bioturbation (diagenetic effect)
	i I	I				Largely massive, som	e faint la	iminations (not laterally	contin	uous) 70.9 -71.7: bioturbated and shells
75			-			shale w/ shell debris	and lam	inations		71.7-73.8: black shale 73.8-75: shale w/ shell debris
)(Black shale xcm thick shell accun PS w/ shell debris	nulation	5		75-76.5: black shale
		¥ ۱ ۱	7	~ - -		WS-PS nodular carbo	nate, sh	ell debris and many sub	mm pa	ticles Top: slight fining
				1		w more snale interlay highly bioturbated	ers thar	DelOW	1	
		-	11)) 		WS-PS nodular carbo Highly bioturbated	nate: cri	noids, shell debris and s	ub mm	particles
35		İ		 					\vdash	
		Ĺ		 		Contact in pieces, de	troyed	during coring process?		
						,				Upper Bakken
	I I	I		I I						
95	in S	S I	one	one						

Stra	thol sysed /s pues		Nuclean And Shale/ Mudstone	Nature of Contacts	val_ <u>110635-1</u> Structures Type	Size	Texture	Stacking Patterm	ogged by <u>SE</u> Date <u>3/15/2011</u> Notes
Coarse SS(Galin S	Sand S/ Pack S	Silt S/Wackestone	Shale/ Mudstone	Nature of Contacts	Structures Type	Size	Texture	Stacking Patterm	Notes
Coarse	Sand	Silt S/W	Shale	Nati	iype	Siz		Stac	
		 	1	1					
1			 						
_			I						
-			1						
			1						
			1						
			l						
			l I						
		 	- 	\vdash					
			I						
			1						
HHHH		0	• 		Crinoids, shells, som	e corals			Random orientation of shells/grains because of intense bioturbation
ANNA.				-	Zone of more shale "	dissolut	ion" laminae		
	U		0	\vdash	Shell bed 1 cm thick				
MANA			- 1/	-			Crinoids, shells		
			0		Nodular Is but relativ	ely com	pact		
HTHT.)©					Crinoids, shell frags (brachio	pods), trilothites
					Dark vaguely lamina	led mud	stone with carbonate co	ncretio	ns
		۹ ۹	e e						иррег ваккеń
SS/Grain	S/ Pack 5	'ackestor	/ Mudstoi						
		Coarse SSGrain S Coarse				I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>I I</td> <td>Image: Strategy of the strategy</td>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I	Image: Strategy of the strategy

	Well Soco	ony \	/acı	um Angus Keni	nedy	County	D	unn State_ND
	Stratigrap	hic Ir	nter	val_10483-105	09		L	ogged byJM Date11/17/11
cies	Fitholog	udstone A	of Contacts	Structures		Texture	ng Patterm	Notes
Fa	Coarse SS Sand S/ Silt S/Wad	Shale/ M	Nature	Туре	Size		Stackir	
83						Very brittle		
		-						
85		-						
		-				Sparce puritized		rdse bakken 3
87						brach shells 2-4mm		
				Recrystallized				Dark grey to black
		D		rugosan -1cm		Very brittle, high cla	conte	nt
89				Some pyritized shell		<u> </u>		
				debris and cri's		Nodular Clay rich, black		False Bakken 2
91		, ,				Dark-grey-black		
		Ň				Sparse brach shells and crinoids		
		/ >>=		Well-defined concre	tions	Crinoids 1-2mm		
93		P		Dark laminae around	l concre	tions		Crinoids focused in Iaminae
						1 pyritized shell		False Bakken 1
95								
		¢ ^				Pyritized othroceras and brach shell		
		$\uparrow \uparrow$		Massive		Occasional brach		
97						Nodular with <1%		
						small crinoids	m	Lao, black grains? calcite cemented carbonate mud rin-uns
99				Muddy horiz, lamina	ie i	Fromboidal pyrite	-	Clay in uses w/ diagenetic halo
						Τ		
		 0				Scattered larger crin	oids	
		- 0		Sinuous laminae				More grey, grains concentrated in laminae
藤		' ¦⊚ 						
03		 					Å	
						1	H	Brown, most nodular looking
05		þ~					V	More grey
		 						¥
		0						More arey
07		 						
		© ©				Nodular 1-3mm crinoids		Lighter grev-brown nodules in dark grev matrix
509		0						signed grup brown rodules in ourk grey maark
	SS/Grain S S/ Pack S 'ackestone	/Mudstone						
	Coarse Sand Silt S/W	Shale/						Page <u>1</u> of <u>1</u>

							iner et ar orass	y but	te county <u>ine</u>		
		Str	atig	rap	hic l	nter	rval 11214-112	242		L	ogged by _JM Date <u>11/18/11</u>
Γ		L	itho	log	у	£	Church			erm	
	ies	irain S	ack S	stone	dstone	of Conta	Structures		Texture	g Patt	Notes
	Fac	se SS/G	A /S br	Wacke	le/ Mu	ature c	Туре	ize		icking	
14		Coar	Sai	Silt S	Sha	z		S		Sta	
				1			Laminae more cinuc				
			i	i	F		Laminae more sindo				
16			l I	1							
10			1	1	٢		Dk hz burrows w/ lig	hter rim			
			l	Ì	Y		Short vertical burrow	vs			
			1	1							
18_			1	T	0				Recrystallized cri - 5r	nm	
			1	1							
			i.	į.							
20			I I	1	Ŷ		Short vertical burrov	vs - Choi	drites		Alternating light/dark layers
			 	1	r		Lenses of BT				
				1			Hz burrows w/ dark	611			
1			i i	į			mosuy massive				Madium anu carbonate mud
22		-	1	T	+	-					
			l I	1							
				1							
24			1		h		Sinuous laminae				Scattered small crinoids <1mm focused in laminae
			I.	i	h		Synsedimentary cra	ks into	arbonate mud -hard gro	und?	
			l I	 	1		Sinous laminae band	2-3cm	thick		
				1	8		Black replaced solita	ry rugos	an		
26			1		- -		Vertical burrow				
			I I	1	Ľ		Ft horizontal cracks	w/ white	fill		
			1	1			Massive				
28			1	1	-						Very brittle/clay rich, massive
			l	Ì							
	a sela ante legas		-	+	+		Thin lag or shell bed				
30			I I	1							False Bakken 1
	44 4		1				Mostly massive				
				1	1		wosty massive		Vf recrystallized brac	h and	rinoid fragments
				Ĵ	0	-					
32			I T	-	0	-	Bands of dark sinuo	s lamin	ae Crinoids and vf (<1m	m) bla	:k grains
HHH			l I		h		Sinuous laminae		Crinoids and brach fi	ags 1-:	mm
HH					1		Bioturbated mud				
34				iľ	ř		Small vertical burrow	vs	No nodular texture		Burrows focused in mud, grains focused in sinuous laminae
нн			1	I I	1						
H H L			l I	1	o 		Burrow traces in ligh	ter gray	mud		•
HH				5			Sinuous laminae		1 15		
36				6	1	\vdash	Dark grains -phosph	ate or d	ead oil?	∇	Scattered replacement pyrite
H M			I I	0			Sinous laminae			ľ	
H			 	6					Larger crinoid grains		
38			- 6		¦°				up to 2cm	V	
H H H			i (0	~		Bands of dark sinuo	ls lamin	ae Gastropod 2-3 cm lo	ng	
H H			l I	1^	۲ -						
			¦	/	÷					ЦД	Noticeably high crinoid abundance for Scallion interval
4U_F			: (@		1			Nodular-medium-dk	\mathbb{H}	
			; \ ;	Č	- •		Sharp but irregular o	ontact	gray and brown Abundant crinoids 1	2mm	•
			l	`	1				Pyritized grains 1-2m	m	
					1	1	1	1	1		Upper Bakken
42			I	1	e						and the second

	We	II <u>A</u>	stra	ll Ste	eneł	njem 43-27		(County_ <u>N</u>	<u>lcKe</u>	nzie			State_	ND			-
	Stra	atig	Irap	hic l	nter	rval <u>10872-10</u>	900			L	.ogge	d by _JM				Date_3	/11/11	
acies	S/Grain S	itho	polo polo	Audstone A	re of Contacts	Structures	0	Te	xture	ing Patterm				Notes				
72	Coarse S	Sand S	Silt S/Wa	Shale/ /	Natur	Туре	Size			Stacki								
			 		-	Ripple Sinuous laminae												
74		 	 			Vertical BTs												
			 	0	-	Some faint laminae		Spars Gray	e crinoids									
76		 	 	\vdash				Black) Fal	se Bakken 2						
		 	4	E														
78		 	<u> </u>															
		 	 			Massive												
80			 								Gra	iy						
		 	 	X		Faint laminae												
		 	 	k		Vertical fracture Subhorizontal fractu	e											
		 	 	þ	-	Nodule/laminae												
		 	 								Gra	у						
		 	 			Sub bz fractures		V spa	rse brachs			<u>.</u>						
			I I			Massive		Gray-l	brown		Bro	wn here - diagenetic? drilling	mud?					
80		1	T I	V		Burrows? BT		Gray			1							
臺		 	I I I	~		Horizontal shell beds Less BT	5	Dark s	shale, calcareo	JS	Fal	se Bakken 1						
88				₩ 0														
								V. sma	all crinoids									
90	CH H HD		- - -	- -														
	CHORDROH		; ()) (****		Laminae in nodule		Rugo	san									
*/	KUHUHUH	 		o		Dark laminae												
			¦/.	, 'ट्रिट्र'		Branching nodule												
	н нола	 	h	- - -				Some	larger crinoid									
	CHURCHUR		F	 							Cri	noids focused in Iaminae						
	HHHH	 	K	- °		Dark sinuous lamina												
	HHHHH			- +⊘ ⊥							Da	rk gray carbonate mud						
20	CHORDER	 		-	:	Sub hz fractures		Small	crinoids-1mm									
	¢		L L	r		Irregular contact					Up	per Bakken						
700	i S	k S	one	stone		1												

		We	II <u>H</u>	elis	Lev	ang	3-22H		County <u>Mc</u>	Kenz	ie Stat	te <u>ND</u>
		Stra	atig	rap	hic l	nter	val <u>10614-106</u>	33		L	ogged by <u>SE</u>	Date <u>3/12/2011</u>
	~	Li	tho	log	y e	ontacts	Structures			atterm		
	Facie	rse SS/Grain	and S/ Pack !	S/Wackestor	ale/ Mudsto	Nature of Co	Туре	Size	Texture	acking Pa	Notes	
_		Coa	3	E I	- S					St		
_			 	 	 							
					I I							
_					1							
			 	 	I I I							
_			 	 	1							
					I I							
_			I	 	i I							
			 	 	I I							
_			 	 	 							
					I I							
_			 	T I								
			 	I I	I I							
_			 	I T I								
_			 	1	 							
			 	 	i I							
10_			 	I T	I							
15_		;					Lamina w/ crinoid pa	rticles				٠
			I I I	; F			Slightly greenish sha In places vaguely hz More carbonate rich.	e rich c aminat	arbonate ed Crinoids corals		Some elongate components -Tasmanites?	
20			 			-	more shale rich inter 6-10 cm thick carbor	vals ate laye	rs w/ dark shale (dissolut	on sea	Small phosphate grains? ms) in between	
			 	۵	 		Corals, echinoderms,	phosph	ate clasts (small)			
25				6	» 		Shale/ dissolution se	ams eve	ry 2-5 cm		Lots of crinoids, small shells	
25			1		0		Relatively massive, fe	w distir	Crinoids -typical lowe	rLodg	epole facies	
			I I	0	' ©							
30_		-	 	0					Crinoids			
10635_		in S	ks I	ue I	tone							
		arse SS/Gra	and S/ Pad	· S/Wackest	hale/Mudst							Page <u>1</u> of <u>1</u>
		Ő	5	Sit	S							

		Stra	tigr	apł	nic I	nter	val <u>10752-10</u>	760		L	.ogged byM Date11/18/11
		Li	ho	log	y e	ntacts	Structures			tterm	
	Facies	SS/Grain	S/ Pack S	Vackeston	/ Mudstor	ure of Coi	Type	e.	Texture	king Pa	Notes
_	_	Coarse	Sand	Silt S/M	Shale.	Nat	type	Siz		Stac	
		I									
		1									
_		1			 						
					l I						
_					1						
					i I						
_					1						
		1			 						
_					1						
					1						
_		1			1						
		I			i I I						
					1						
_		1			 	\vdash					
		I			i I						
		I		l							
					1						
		I			 						
_		1			1						
		1			1						
_					I						
52_		1									
					Y		Calcite and phospate	? filled	track		
					l.						
5 <u>4</u>		1	_		X						
		I			10		Well defined nodules	/ concr	etions		
56		I									
<u> </u>					F						
					P		Thick dark laminae la	yer, lots	ot globular and replacen	ient py	inte
58_		1							Highly nodular		
		I			F		Sub horizontal dark l	iyers			
							Dark horizontal layer	5	Very sparse shells up	to 2 cn	h- phosphatized or replaced by dead oil>
1076 <u>0</u>		ain S	ck S	tone	stone						<u> </u>
		arse SS/GI	and S/ Pa	S/Wackes	vale/Mud.						Page <u>1</u> of <u>2</u>
		õ	S	Silt	S						

State__ND

Well <u>Pennzoil Spring Creek 27</u>x-31BN County <u>McKenzie</u>

		Stra	atig	rap	hic	Inte	rval_10760-107	88		L	ogged byM	Date_11/18/11
	cies	Grain S	itho sype	polo kestone	dstone A	of Contacts	Structures	1	Texture	ng Patterm	Notes	
60	Fa	Coarse SS	Sand S/	Silt S/Wad	Shale/ M	Nature	Туре	Size		Stackir		
			 		Y		Vertical burrow w/ pyritized fill		Tan and grey nodula texture w/no grains			·
62			1	T T	2		Concretion of gray	fferenti	l compaction around it			
				 		-	Pyritized shell frags u	p to 10	nm			
64_			1	1	Y	┢	Burrow horizon					
			I I	I I	Y		Darker bands					•
66					r		Dense horizontal bu	row pat	ches		^	
							Rimmed hurrows				Lighter gray Bands close to regularly spaced	
68			1	1	Ŷ		Abundant horizonta	burrow	s Dk hz laminae zones	1-2 cm	thick laminae bands may be just be darker depositional lit	nology
			 	i I I			Mostly massive		No grains			
70		9		- -			Dark sub-hz layer Dk hz thin laminae		Small shell frags in la (<1mm)	iminae		
				¦ ∈ 	>	F	Dk sinuous laminae				Fine bioclasts in laminae	
72			1	1	F		Faint bedding/lamin	ations	V sparse small brach	frags		
74			 				Massive		Med gray carb ms no	grains		
74_					<u>)</u> , (Fine hz filled cracks		More carbonate, less	clay	Darker gray	
76			1	1					Clay-rich, very dk gray mudstone		False Bakken 1	
			 (Γ Γ Γ	/ 	, r	Lighter gray filled bu	rrows 3-	Scattered hz shells		Darker	
78_						-	Dark gray sinuous lar Pyrite horizon	ninae in	terval Patchy crinoids		Darker gray	
				5		ł	Vertical cracks calcite	and bla	Scattered lg crinoids ck fill -dead oil or phosp	1+cm ate rep	lced grains	
80_			- 	F	10		Sinuous laminae aro	und mic	ite clasts Bioturbat	d		
			 	\mathcal{D}	 0		Massive		<1% crinoids			
82			i I	0	Ý	1	Sinuous laminae					
)°/	Ý L - º	-	Thick laminae- micrit High # of laminae	e clasts	n laminae Highly nodular		Scattered pyrite replacement Crinoids concentrated in dissolution laminae	•
84			1	2	<u> </u>	1	Patchy concentration	soferin	oids			
				201	· 		Thicker sinuous lami 2-4mm thick	nae	Crinoids 1-4mm			
86_			 	20 2 ¢	-΄ 	-	Sinuous15+cm vertio	al burro	w Gray-gray-brown no Crinoids 1-2mm	ular te	xture	
0788						-					Possibly some dead oil filling voids at base of Scallion Upper Bakken chips	•
., 00		ain S	ck S	tone	stone							

	Well <u>Amerada He</u>	ess State ND 1-11H	County_D	unn	State <u>ND</u>	
	Stratigraphic Inte	rval_9365-9425		L	ogged by <u>SE</u> Date <u>3/11/201</u>	2
ies	ritain S ack S Batone Batone Contacts f Contacts	Structures	Texture	g Patterm	Notes	
Fac	Coarse SS/C Sand S/ P, Sift S/Wacke Shale/ Muu Nature c	Type 🕺		Stacking		
65		Shale rich carbonate w/ Neri	ies			
		Contains little more carbona Thin carbonate rich shale la	ate ver w/ Nerites			•
70		Spreiten in calcareous mdus	tone			
		Several stacked MS with Ner Carb. w/ spreiten and Nerite	ites slayer below			•
75		Bed w/ Nerites and a little m	ore carbonate content			
		Lenticular MS				•
80		M·W w/ echinoderms			Nerites burrows present below the carbonate beds	
		MS, a little nodular, fossil fra Shale rich carbonate	gments, bioturbations		Mb: 815-832	
85						
90		WS w/ crinoids, possible rip MS w/ greenish shale/muds	up clasts w/ phosphatized tone intercalations	l rims		•
		Vertical crack, calcite filled, i Greenish clay	n concretion that is not ca	lcite		•
95		Massive to nodular limestor Bioturbations sometimes sh Ammonite fragment	e w/ crinoids, rare corals, w through decoloration	and an	imonite fragment Vertical calcite filled cracks in carbonate nodules	
	、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	Black shale MS w/ vertical bioturbation: Shale rich massive carbonat	rip up clasts w/ phospha e. verv few echinoderms.	ite∆ri some r	m pup clasts in lower part	
00		Hardground w/ rip up clasts MS: vertical bioturbations, s Shale rich x cm irregular bed	on top ica nodules MS, some echinoderms,	shell d	ebris, bioturbation	
		Largely carbonate, MS Nodular carbonate NIS w/ si Crinoids, trilobite remains	lca nodules			•
05		Intercalations, shales interva Vaguely laminated shaley ca	as w/ carbonate nodules			•
		Nodular M-W, some echinoc MS (carbonate), relatively m	lerms, cracks in nodules, l assive, some echinoderm	ioturb s, some	lations trilobite debris, starts to get nodular at top	
10.		Black shale Hardground Massive MS-WS MS-Ws w/ crinoids, trilobite	bioturbations w/ spreite	n .		•
		Black shale w/ glauconite ar Glauconite sand layers in lin Sediments contain less carb Crinoids stay abundant	d cm size carbonate rip u lestone, below crinoid onate up section	p cla	sts cumulations	•
		WS w. crinoids, trilobites, br Nodular limestones	achiopod shells			
20		Bioturbated In places, PS w/ high amour	rs of shell debris			•
25		Nodular limestones	Increases in carbona content up section Increase in # of crino	ds up	tection	•
		Upper Bakken				
9430	rain S add stone					
	Coarse SS/G Sand S/ Pa Silt S/Wacke Shale/ Mud				Page <u>1</u> of <u>1</u>	

		Str	tratigraphic Interval <u>8663-8691</u>					rval <u>8663-8691</u>			L	ogged byJM	Date 3/12/11
	ies	rain S	ith	olo	stone	dstone	of Contacts	Structures		Texture	g Patterm	Notes	
63	Fac	oarse SS/G	Sand S/ P		ilt S/Wacke	Shale/ Mu	Nature c	Туре	Size		Stacking		
			1	Ì		8		Concretion					
			I	I									
65			l	I		8		Concretion					
			1					Conc.					
			I I	I I		8		Conc.					
67			I I	I		K		Conc.					
			I	I		~		Dark laminae					
			I I	I									
69			I I	I I				Small cherty nodul	e layer				
			I	I		R		White layers				Concretions not calcite- chert?	
			I I	I		Ľ		White layer					
71			I I	I		8		Conc. It gray					
			1	I		\sim		Laminae					
			I I	I I		hm	·	Bioturbations		Dk gray Lt gray			
73			I I	I I									
			I	I				Bioturbations		Dk gray			
			I I	I I		÷.,		Debris layer		Crinoids, rip ups			
75			I I	I				Laminae					
			I	I									
			I I	I I			1	Chert layer on top of white layer					
77			I I	I I									
			1	I			1	White layer		crinoids		White layers, do not fizz, ash beds?	
			I I	I									
79			I I	I				Parallel laminae					
			I	I		÷:		Calcite nodules					
			ļ	I		\varkappa							
81			I.	I						Darker gray			
				1				Conc					
			1	I		V		Vertical burrow					
83			1	1									
				Ţ	1								
			ļ	ļ			-	Lt gray concretion					
85			1	1									
1			ļ	1		\sim		Small gray-white nodules					
			į.	Ì		\geq		Gray laminae w/ tan in between		Burrows			
87			i	i		-							
			i.	i i j		$\begin{array}{c} \end{array}		Laminations Back filled burrow					
			į.	1	4								
89			i	1		_							
			i.	Ì		5		Laminae Chert					
			i I	i j		V		Tan nodule Vertical burrow					
691 _			i	i		8		Laminae					
		, ci		2	oné	tone							

		8601-8710				B . 3/12/11
	Stratigraphic Interv	al_8691-8719		L	ogged byM	Date_3/12/11
s	Lithology	Structures	Texture	Patterm	Notos	
Facie	rse SS/Gra and S/ Pad S/Wackest ale/ Muds Nature of (Type 🕴	lexture	acking l	Notes	
91		Gray concretions		St		
93		Rioturbations				
		biotalbations				
95		Chert nodule	Cri's, small rugosans			
		Alternating tan/gray beds				
97			Tan w/ dark gray cond	retions		
		Sinuous laminae			Irregular tan coloration	
8699						
		Chert nodules			lt tan	
01		BT- burrows	Green shale			
			Small crinoids		Dark gray	
03		Concretions			Concretions - It gray/brown	
		Crinoid bed			Darker gray	
05		Faint laminae				
07_		Glauc beds-			Lighter gray	
			Glauconite			
09		т	Small rugosan (1cm)			
		Darker, thicker			More gray, less tan	
11		laminae				
13		Sinuous Laminae				
15						
		Sinuous Laminae	Small crinoids			
17			(1mm) Nodular LS,	$\left - \right $	Gray-tan Globular pyrite	
			Gray-green-tan		т	
8719					Upper Bakken	
	vGrain S Pack S kestone ludstone					

		We	II <u>E</u>	OG	N &	D 1	-05 H		County_Mo	ounti	trail State ND		
		Stra	atig	rap	hic	Inte	rval_9393-9410)		L	Logged by _JM Date <u>11/17/11</u>		
ſ	ies	rain S	ithc š	polog	lstone KI	fContacts	Structures		Texture	J Patterm	Notes		
	Fac	Coarse SS/G	Sand S/ Pa	silt S/Wacke	Shale/ Muc	Nature o	Туре	Size		Stacking			
			1 	1	1								
			I I	I I	i T								
+			 	 									
			I I	i I	i T								
4			 	1									
			I I	I I	i T								
			 	1	1								
+			 										
			 	1	1								
+			1	i T	i T								
			 	1	1								
92			i I	i I	i T								
72_			1	1	1								
			 	 	<u>^</u>				Lt gray conc or rip up				
94_				/	\mathbb{N}		Dark gray drapes 2m	n thick	crinoids 2+ mm brachs 2-3 mm		calcite filled hz cracks, scattered vf glauc grains, pyrite filled burrows tan		
			: 2	•			Dense sinuous lamin	ae, carb	mud filled burrows		_		
96_2					R		Sinuous laminae	uous lan	pinae		Iron staining.		
2			- 	1							ΙŢ		
			 	1		-	Fromboidal pyrite -5r	nm					
98			 	 		-	lag w/ crippide		sparse crinoids		vf glauconite grains -scattered		
			1	1		-	rexstylized brachs						
9400			1	i T	}		burrow w/ backfilling		No grains other than				
ННН			1	:/	/:				few crinoids in lamina	6			
02			I I	K	 	1	Clay rich laminae Thick sinuous lamina	e	2-3mm crinoids	∇	Crinoids concentrated around laminae		
			1	1		-	Sinuous laminae				Т		
			i I		1								
04			1	1/	+				C1 11 00				
ННР			i I		" ∣ ∘ ⊥ ∘		Sinuous laminae		Brach shells 5-8 mm	V	Glauconite replacement of small (Imm) shells- glauconite horizon?		
06			1	6	◎ ◎ ◎						Nodular facies lighter tan more color variation than other cores		
L H H H				1			Sinuous laminae Coase lag						
			1	0	 0		Sinuous laminae						
08_			- 	6	/ · · · ·					\forall			
HHH				ľ	0 0		Sinuous laminae		Small cri's 1-2mm Lt tan nodules in dark	er gray	ıy matrix		
9410_			1	1			Erosional contact				Upper Bakken		
9410		Coarse SS/Grain S	Sand S/ Pack S	Silt S/Wackestone	Shale/ Mudstone	_		1	1	1	Page <u>1</u> of <u>1</u>		

	Well_	Conoco	Dic	kinson State A	#83	County_S1	tark	State_ND		
	Ctuati	ava a bia l		9966-999	94			arread by IM	Data 3/15/11	
	Strati	graphic i	nter	val			L	ogged by	Date	
	Lith	ology	2				E L			
sa	ain S	tone tone	Conta	Structures		Texture	Patte	Notes		
acie	SS/Gra	ackest 'Auds	ureof	Tupe	e.	lexture	king	Notes		
66 L	oarse	shale/	Natu	Type	Siz		Stack			
		101								
		0 0				crinoids				
						carbonate sand grains	∇			
	H L					crinoids	Δ			
	K LAKE	1 1								
			1							
	I !			Cherty layers/nodule	ts					
70										
/0_202502						Carbonate sand grain	-			
		2		Cherty nodules						•
	I I	1								
				White shale/ash bed		unsorted scatted cri g	rains			
						sand sized carbonate				•
						grains, no skeletal det	ris			
74		a Ala		Microbial lamination		carb sand grains lo rug	osans	Mound sheddings 9974-9982		
		<u></u>				crinoids		indund sincutarings 557 1 5562		
		• •				fine sand sized grains				
		° 🛞 °								
76		° 6' 0 6 8				Med- fine skeletal deb	ris			
		W	-	Brach bed		w/ lg rugosans Vfg debris- brachs and	cris			
		hurr	1	Stylolite		Some crinoid grains				
78										
		^ی ¦۵¦								
		0				Sand sized grains w/				•
		a 2				microbial laminations				
80										
		°¦ • ¦ •				Sand sized grains				
		o		Diagenetic chert		Sand grains and				
				Blagenetic ellert		cri frags				•
82			-	Diagonatic chart						
		• • ·		Diagenetic chert						
	ž i	0								
		00		Chert						
84_			-	Sinuous laminae			-			
				Chert nodule						
				Chert bed						
	Š ¦			Chert nodules		Rugosans				
86_		<u>/ @</u>	-			-9				
	a :/	' ♥ @								
		\sim		Sinuous laminae						
88		$\forall $	-							
	H !	<u> </u> •		Unsorted, massive		Rexstlyzed brachs and	cris			
				Globular pyrite						
		¦/•¦ _		Chert nodule laver						
90		<u>'/)0 ~8</u>	\vdash							
							V			
				No laminae						
	H !						V			
92		~~~	⊢	Sinuous laminae		Black skeletal debris Gray-brown patchy co	loratio	h		
		0 0 0 0		Pyrite filled vertical cr	acks at 4	ontact				
			1					Upper Bakken		
9994		- e e	<u> </u>	1						-
	Grain	Pack 5 keston udstor								
	rse SS/	and S/ S/Wac. sle/Mv						Pao	ge_2 of 2	
	Coa	Sit: S								

		Wel	I <u>A</u>	RCC) No	0.1S	impson		County	nty <u>Williams</u> State <u>ND</u>			
		Stra	tigı	rapl	hic l	nter	val <u>9755-9790</u>)		L	ogged by <u>SE</u> Date <u>5/25/2011</u>	_	
	ies	rain S	tho S ^{yp}	stone DO	1stone A	of Contacts	Structures		Texture	3 Patterm	Notes		
	Fac	Coarse SS/G	Sand S/ Pa	silt S/Wacke	Shale/ Muc	Nature o	Туре	Size		Stacking			
		1			1 								
				 	i I I								
-		1		 	 								
_				r l									
-				 	T I								
				' 									
_				 	 								
_				- 	 								
				 	i I I								
_		1		 	 								
55_					ד 		Verticaly filled crack	s, not co	mpacted, 2 generations	of cem	ent inside	•	
60					 		Thick calcite filled c	rack @59	in MS and surrounding	drark n	aterial	•	
60_		2 ș					Irregular cm thick P Star like calcite crac	S shell la	aver (bioturbated)			•	
		1			X		Core broken up, san	ne as ab	ove and below				
65_			-₩	+	1		Bioturbated siltston Dark WS regularly la	e event minate	beds and Chondrites				
			-₩		\downarrow		Black fine-grained n	naterial	overlying limestone (style	olite)		•	
70_				-	 		Lenses of pyritized o Chondrites Chondrites	arbona	le siltstones				
			-144		, 1 1		Healed vertical fract Chondrites	tures in	carbonate MS			•	
			**		1		Fractures in carbona	ate MS-\	VS, straight (=late_			•	
75_		-			1		Intercalations of MS Folded fracture	WS w/	shell fragments and Chor	drites (ight) w/ dark vaguely laminated carb. siltstone	-	
			₩		1		Scouring of dark car	popate	siltstone into laminated	and bir	rurbated light carbonate siltstone-MS w/ rin-up clasts	_	
				ſt	L	1	MS-WS, PS patches	or thin l	ayers (cm-scale) w/ shell t	agme	nts (no echinoderms)		
80					í		Chondrites abundan	1	160			•	
					1	1	Some laminated silt	stones- ed dark	ncs? fracture			•	
							Planar laminated (ir MS-WS w/ PS shell c X cm thck (3-4 cm) s WS w/ PS lenses (sh	regular) debris le shell deb ell debri	darker MS w/ higher clay nses and layers ris w/ sharp base s)	conte	rt- this is the material in between nodules 9781:S: photo possible carbonate siltsone w/ HCS This is where Brigham sampled (shell unit)	•	
85_					-		MS w/ substantial c MS nodules, in place	rack fille es surro	d w/ calcite? also triangu und more clay rich mudst	ar crac ones, v	<u>ks w/ calcite? fil</u> aguely laminated	•	
							MS homogenous, w WS w/ PS lenses and PS-WS	/ vertica layers,	a cracks, some faint lamir x mm thick -shell debris a	ations nd sor	and biotubations he echinoderms	•	
90_											Lenticular siltstone laminae, irregular, ripples probably also some shell debris on top		
		parse SS/Grain S	Sand S/ Pack S	It S/Wackestone	Shale/Mudstone						Page <u>1</u> of <u>1</u>		
		0		S									

	۷	Well _EOG Resources Round Prairie 1-17H CountyWilliams										ns State <u>ND</u>
	Stratigraphic Interval 10582-10594											orged by SE Date 05/25/2011
		- uu	ug		////c			10382-103	24			
		Lit	ho	loc	<u>jy</u>	tacts		Structures			term	
cies		Grain S	Pack S	ectone	dston	of Con	_			Texture	ig Pat	Notes
Fac		rse SS/	I /S pui	SWack	ale/ Mt	Vature		Туре	Size		ackin	
	_	Coa	ŝ	ŧ	ЧS	-	_				St	
		1		1	1							
		i		i.	i							
		1		1	1							
	╉	1		Ì	İ	+	+					
		1		1	Ì							
		1			1							
		i		i.	i.							
		1										
		i		i	Ì							
		1		 	I I							
		1		1	1							
		i		i.	i							
				1	T T							
		I		i I	Ì							
+	+	1		I T	1	+	+				<u> </u>	
		I			I.							
		1		1	I.							
		1		1	T T							
	+	1		T	1	+	╈					
		1		 	I							
					1							
		1		1	i.							
		1		1	T							
		i		i.	i.							
		1		1	1							
		I		i	i							
		Ì		1	Ì							
		1		1	1							
		i		i	i.							
	_	1		1	1	-						
		1			I.							
		i		I	I							
				1	1							
+	+	T		, T	, T	+	+				-	
				 	I I							
		ļ		1	I.							
		1		I.	T T							
1		1		1	1		Τ					
		I		i I	Ì							
		1		l I	T T							
80		1		1	1							
		1		I.	+		Bla	ack siliciclastic mud	stone v	/ shell debris parallel be	1	
		1		-	ŧ	1	GI	auconite-shell?		PS streaks of glaucor	ite and	shell
	H	I		Ľ	9 G)	w	'S w/ echinoderms a	ind she	debris in black matri: I debris	(shale	
85	H	1		╞	1	+	+				$\left \right $	
	H			0	4	-	St	ylonodular ws w/ e	chinode	rms, biot. and shell debr	is	
	× H	1		6	\downarrow		Lie	ghter stylonodular				
	Ê	1		F	- -		D	ark stylonodular we	biot. ค	chinoderms, shell debris		
90	Ŧ	1		0	0	╀	PS St	lense, shell debris, ylonodular ws, darl	surrou	ding ws lighter colored derms and shell debris.	han bo roundis	hoioturbations
	H	1			+		М	-W		Carb clasts, rounded, interbedded in black	on top silicicla	of m-w layer stic mudstone
	THE PARTY	ļ		1	Γ							Upper Bakken
0595	-	1		r I		1						
~~~ <u>~</u>		ain S	k S	000.	tone						-	•
		SS/Gr	S/ Pac	Inchart	/Muds							
		Coarse	Sano	CIH CAA	Shale,							Page <u>1</u> of <u>1</u>

	,	Well_	He	ad	ing	ton	Oil Nesson Sta	te 42	k-36 County_W	illiam	lliams State ND				
		Strati	gra	ph	ic I	nter	val10284-10	294		L	ogged by _JM Date _3/13/11				
	Facies	rse SS/Grain S		5/Wackestone	ale/ Mudstone	Vature of Contacts	Structures Type	Size	Texture	acking Patterm	Notes				
-		Coar	8	Silts	She	~		0,		Sta					
		     	     	1											
_		1	1												
		I I I	   												
_		1		1											
-		-													
				1											
_		1	1	1											
_			1	1											
_		-   	- - - -		 										
84		   		1											
					•				Orthoceras Rugosans						
86_										Π					
00		I I I		•	•		More defined								
00			ſ	0	~		1			Å					
90				0	0										
				0   	0		Sinuous laminae								
92				•	0				1-2mm crinoids						
		 					Occasional globular pyrite		Nodular - tan matrix,						
10294		s 		ie /	e.		Upper Bakken		5.09 minude		LS Nodules in darker matirx on contact				
		Coarse SS/Grain	Sand S/ Pack	Silt S/Wackestor	Shale/Mudstor						Page <u>1</u> of <u>1</u>				





		Well: F	lorio	da E	xplc	ration 12-1 Fe	deral		Cou	inty	y: I	Billings		State: North Dakota			
		Stratio	grap	hic l	nter	val; 10799-107	777 ft.		Log	ge	d I	by: James	Mackie	Date: 11/10/10, 2/9/11			1
	s	Litho	olog	y au	ontacts	Structures	5	Taut		Se Se							
	Facie	oarse SS/Grai Sand S/ Pack	ilt S/Wackesto	Shale/ Mudst	Nature of C	Туре	Size	lext	ure	Facies Tvn				NO	tes		
_		1	10	1													
			I I I	I I I													
_		   		   													
			   	1													
10777_		1	1	1													
			   					No shell	s								
10779_		1	1			Lots of faint											
						laminae											More fissile, higher clay content
10781_		i	i i								las	sive black mud	stone				
			1			No laminae		Small bra	ichs			Very dark sł	ale- False Bakker	1		-	-
10783_		   	1														
	- 11/2-207-1 202-11/2-20							Lots of tin	w brach frag	Fi	- ine	-grained skelet	al packstone				High organic content
10785	19420-215	I C						Lots of th	iy brach frag:	+	-						
						Faint laminae		Lots of tin	iy brachs,			Dar	kest, 1st max trar	nsgression, False Bakk	ken		
10787			   					flat lying		Ň	las	sive carbonate Muc	mudstone I gets darker			_	-
10/0/_								Rare brac crinoids	hs, no								
10789			   			Lt gray, brown bed	1					Large recry:	allized brach (3 c	m long)			
10/02			   	~		Rare laminae		Rare crine	oids			Onset of tra	negration				
10791				m				Thospital	area sheri na	95		onsecorde	ngicolon				
10/ 7 (			-			$\square$											
10793			: [									Some pyrite	, fromboidal				
107.5.2				$\downarrow$													
10795				$\sim$		-Thickest,				Si	inu	ously laminate	d mud-wackestor	ne			
				*		Log Mest			Gets large up	*							
10797		¦[	~  ~	$\sim$								Browner, da	irker matrix				
			- 0 -		-												
10799				Ť	1	 Sinuous laminae		Small crir random c	l noid frags, prientatio		-						
		ārain S ack S	estone	dstone							-						
		oarse SS/	ilt S/Wack	Shale/ Mu											Page 1	of 1	

		Well:	Te>	kac	o In	ic. 5	-1 Thompson			C	County: Billings	State: North Dakota			
		Strati	gra	aph	ic l	nter	val: 11030-110	940		L	ogged by: James Mackie	Date: 2/15/11, 2/22/11			
		Lith	nolo	ogy e	/ e	ntacts	Structures			atterm					
	Facies	oarse SS/Grain	Sand S/ Pack S	It S/Wackestor	Shale/ Mudstor	Nature of Co	Туре	Size	Texture	Le INOTES					
_		- 3	-	17	0,					0					
			I												
_		   	1	1											
		I I	I I	I											
_		1	1												
				1											
		I I	i	1											
_			1												
		I. I.	I												
_			T												
_		i	1	1											
_		I I	I	1											
				1											
11030			T						No shells	Ma	False Bakken ssive black mudstone				
										ΙT					
11032		1							Darker mud Rugosan		Lots of pyrite Thin horizantal brach shells				
			1				Discontinuous patches of skeletal			Ma	ssive carbonate mudstone				
11034		I I	1				debris		Few to no crinoids						
		I I	Ę	7	$\sim$		Thinner laminae			+	Few to no crinoids in mudstone between wavy beds				
		n_n		)7(	22/		Weise herde full of			Fin	e grained skeletal packstone and massive carbonate mudstone				
11036		- 4	Ť				crinoid frags								
			ł	$\sim$	$\sim$		↓								
11038		1	ţ	~	$\sim$	G	Most laminae (3-4 mm thick)		2mm						
		I I I	I						Î	Sin	uously laminated mud-wackestone				
11040			1	$\uparrow$					Scarce Crinoids~1mm						
		i I	i	Ë	$\succeq$		Sinuous laminae		Crinoids ~1 mm		Globular pyrite Crinoids concentrated in laminae				
11040							Pyrite filled burrows				Globular pyrite				
11042			- - - -	╞	-7		Disrupted mud		Bioturbated		Mud-wackstone				
				L		s	thick)		~1mm	$ \bot $					
11044		in S	5 I	one	one						Upper Bakken				
		rse SS/Grai	ind S/ Pack	S/Wackest	ale/Mudst-						Рас	e 1 of 1			
		Coal	ß	Silt 5	Shi						1 49				

	V	Vell	: WI	hitii	ng C	)il ar	nd Gas 31-3 Sh	ort Fe	e	Coun	ty: E	Billings State: North Dakota				
	9	Strat	igra	ph	ic In	terv	al: 10449-1042	27	Logge	ed by : .	Jam	mes Mackie Date: 10/13/10, 1/24/11				
	cies	Grain S	itho Sype	estone estone	y dstone	of Contacts	Structures	;	Textu	ire	ypes	Notes				
	Fac	Coarse SS/C	Sand S/ P	Silt S/Wacke	Shale/ Mu	Natured	Туре	Size			Facies T					
			   	   	1											
			 	 	1											
_		t	1	   	1											
_		$\vdash$	1	i T	1											
			I I I	   	I I I											
10427			1	1												
			 	i I												
10420			   	   	ALL H											
10429_			1	1					Sparse she	ell frags						
				   	HUH											
10431			   	   			Massive				Mas	assive carbonate mudstone				
			1	1												
10433_			   	I I T	HER		Beds of laminae Sinuous laminae					Stylolites				
					Huni							a yong				
10435				i I	FILLE											
			   	   					<b>1</b>	<b>`</b>						
			1		- Ling						Sin	in ously laminated carbonate mud-wackestone				
10437			   	   	HHH.		Dis continuous laminae (1-2cm									
			   	 			Sinuous Fractures	?			+	Sinuous fractures filled with a lighter material				
10439			1	i T												
			   	   			Massive				Mas	assive carbonate mudstone				
10441_			1	1												
			i I	i I	FILTH				No visible	e grains	Ť					
			   	   	THEFT											
10443			1	1			Faint discontinuou	s	Very rares	shell frags						
			I I I	   	<b>HHH</b>		laminae		(~1cm lon	ng)						
10445			 	   			1				Sinu	nupusly laminated mud-wackestone				
			 	 	THE PLAN							Laminae -slightly darker gray (S-10mm)				
10447			   	1   					Con-II. 1	frage						
									Smail shell f (< 1mm)	irags						
10449			-   	   	<b>FRH</b>		Discontinuous Iaminae									
		/Grain S	Pack S	kestone	udstone	-										
		Coarse SS	Sand S/	Silt S/Wad	Shale/ M							Page <u>1</u> of <u>2</u>				

		Well : Whi	ting	Oil a	nd Gas 31-3 Sl	hort F	ee Cou	Int	<b>y:</b>	Billings	State: North Dakota	
		Stratigrap	hic l	nterv	al: 10477-104	49	Logged by	: Ja	m	nes Mackie	Date: 10/13/10, 1/24/11	
		Litholog	ly le	ntacts	Structures				,			
	Facie	e SS/Grair d S/ Pack ( Wackestor	e/ Mudsto	ture of Co	Туре	ze	Texture	or Tuno	201	Notes		
10449		Coars San Silt S/	Y Shal	ž	Discontinuous	Si		ŝ	3	•		
					laminae							
10451			F		Coarser beds		Small skeletal frags (2-3cm)	_	-	Becomes lighter gray		
10451			<u></u>	-			Small shell frags					
10453_									Mas	sive black mudstone		
					Massive					False Bakken, dark gray to black shale		
10455					Shell frags			-	-			
										Darker carbonate mud, pyritization		
10457					Discontinuous Iaminae							
				Shar					lar	Contact w/ darker fine unit, no bioturbation? ar laminated carbonate siltstone		
					Finely laminated							
10459_				•								
							V. sparse shell frags, echino frags					
10461			-:				Shell frags (2-3mm)					
		2	F					-	Ma:	sive black mudstone Shaley carbonate? False Bakken?		
			P	1			Brach shell					
10463_			-				Chall for an		_			
							Rare shell frags					
10115				Shar	Some darker lamin Coarse bed	ae	Shell frags, echino, crinoid frags	1	۸as	sive carbonate mudstone w/ skeletal packstone interbedded		
10403												
					Massive					Carbonate Mudstone		
10467_												
							Shell frags-pyritized					
10460					Massive					pyrite occasionally		
10403			-					-	-			
				Sharp			Shell frags Phosphate grains			Bioturbated		
10471_			1				Fewer crinoids			Sandy Beds (1-2cm thick), coarser units-dark gray, finer unit	s, light gray	
			-		Faint laminae							
			+	onal	<u>+</u>		Small crinoids,			Phosphate grains?		
104/3_		- 2	-	gradat		5-20 mr	sand sized shell trags.					
			   						Sin	uously laminated mud-wackestone		
10475_			1		Laminae thicker and more frequent	3-4 mm	Larger crinoid frags (3-4mm)			Pyrite		
			\ \		Sinuous distorted	1-2mm	Small cri. frags.(1-2mi	n)				
									-	Bakken		
10477	I	irain S sck S	Istone	1				L				
		Coarse SS/G Sand S/ Pi Silt S/Wacke	Shale/ Muc								Page <u>2</u> of <u>2</u>	
		Well: D	uncan	Ray	mond T 1-24 Pa	tterso	on Cou	unty:	Sta	ark	State: North D	akota
-------	------	--------------------------------------------------------------------------	-------------------------	-----------------	------------------	--------	------------------------	------------	-----------	-----------------------	-----------------	---------
		Stratigraphic Interval: 9798-9770							by:	James Mackie	Date: 11/5, 2/8	/11
	spth	Coarse SS/Grain S Sand S/ Pack S Silt S/Wackestone Silt S/Wudstone		of Contacts	Structures		Texture	1g Patterm			Notes	
_	ð			Nature	Туре	Size		Stackin				
_												
_												
_												
9750												
				-1	Planar laminae				:	Sparse small crinoids		
				HITH								
9752_												
				다 다 다	Bioturbation							
9754_							Some small shell frags		$\square$			
				김머리						Shallowing		
9756_					Planar laminae				H			
				<u>- 14</u>	Mudstone nodules							
9758_				1 - 1 - 1					L			
				귀부 다 귀부	Small grav							
9760_		1			nodules							
0762				및 HIH 및								
9702_												
9764_									-			
				CH CH								
9766					Sinuous laminae				┝			
				H 비 비								
9768_									-			
				HIH C'H			Scattered brach and					
9770_					No laminae		Faint nodules					
		SS/Grain S S/ Pack S	Vackestone 'Mudstone									<i></i>
		Coarse Sand	Silt S/M Shale/								Page 1 d	it 5

		Well: Dui	Rayr	nond T 1-24 Pa	tterso	on Co	ounty:	Stark	State: No	rth Dakota		
		Stratigra	phic Ir	nter	val: 9798-9770		Lo	gged l	by: James Ma	ckie Date: 11/	'5, 2/8/11	
	Jepth	Litholo	SiGrain S Pack S Audstone Audstone		Structures		Texture	ing Patterm		Notes	Notes	
9770 <u></u>		Coarse Sand :	Silt S/Wa	Natu	lype	Size		Stack				
					No laminae							
9772_							1 crinoid ossicle					
9774					No laminae							
					Small nodules (1cm dia.)							
9776												
9778												
5770_												
9780_									Black biogenic (	lehris		
					Lt gray nodules							
9782_												
					Sinuous Iaminae							
9784_												
0796					Sinuous Iaminae							
9780_					Irregular fractures		Few crinoids		Crystalline carb Carbonate mud	onate nodule with pyrite lining stone		
9788_												
									Darker gray 🗸			
9790_					No laminae							
9792_							Crinoid and brach frags					
9794_												
9796					Faint discontinuou	5	Lighter gray		Occasional smal	l crinoids		
9798												
		Coarse SS/Grain S Sand S/ Pack S	Silt S/Wackestone Shale/Mudstone							Pa	ge 2 of 5	





	Well: Duncan Raymond T 1-24 Patterson									Stark State: North Dakota
		Stratigraphic Interval: 9976-9945							ged l	by: James Mackie Date: 10/28/10, 1/25/11
		Depth	rithology	lature of Contacts	Structures Type	ize	Texture		acking Patterm	Notes
9945	+	•	Coar Saith Saith S	V	1	0,			Sta	
9947										
							5-10mr	n		
9949	+									
				Sharp						
9951	t				Sinuous laminae					
9953		•			Lt gray masses (anhydrite?)		Crinoid ossicles			
							Brach, crinoid frags			
					Irreuglar laver					V light grav-anhydrite?
9955 [	•	•			Inclined laminae		Fossil fra	gs (1cm long)		Brachs, rugosan Start of mound flanks
					Lt gray concretions					
9957 9960	≯				No laminae Crinoid ossicles		Crinoid frags			9960-9957 missing Appears Porous, very light gray in color
					dominate, brach frags					
9962	+				<u> </u>		Smaller o	rinoids (1mm	-	Sheddings
9964							Sparse larger crinoids			
		•			Laminae every 2-3 cm (2mm thick Lt gray concretions (2-5cm)					
9966	+				Sinuous laminae		Very fe	w fossils		
9968					Lt gray concretions					
0070					Sinuous dark Iaminae #increases up		Sparse ossicle	crinoid s		Diagenetic pyrite
99/0	T						1			More mud/fewer crinoids
		•			Sinuous laminae		Number of crinoids decreases up			Patches continue
9972	+				Well defined	$\left  - \right $			$\left  - \right $	Crinoids fractured
0074				Sha Fine	laminae/fractures p s up		No mud	1		25-30 degree inclined mud layer, fine grained mud-rich laminae are rich in organic material
<i>JJ</i> /4	T	•		sharp			Small cri ossicles Size increases up			Pyrite just above contact
9976				51			Black sh	ale		Bakken
			Coarse SS/Grain S Sand S/ Pack S Silt S/Wackestone Shale/ Mudstone							Page 5 of 5