
THESIS

GEOLENS: ENABLING INTERACTIVE VISUAL ANALYTICS OVER

LARGE-SCALE, MULTIDIMENSIONAL GEOSPATIAL DATASETS

Submitted by

Jared Koontz

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2015

Master’s Committee:

Advisor: Sangmi Pallickara

Shrideep Pallickara

Russ Schumacher

Copyright by Jared Riley Koontz 2015

All Rights Reserved

ii

ABSTRACT

GEOLENS: ENABLING INTERACTIVE VISUAL ANALYTICS OVER

LARGE-SCALE, MULTIDIMENSIONAL GEOSPATIAL DATASETS

With the rapid increase of scientific data volumes, interactive tools that enable effective visual

representation for scientists are needed. This is critical when scientists are manipulating

voluminous datasets and especially when they need to explore datasets interactively to develop

their hypotheses. In this paper, we present an interactive visual analytics framework, GeoLens.

GeoLens provides fast and expressive interactions with voluminous geospatial datasets. We

provide an expressive visual query evaluation scheme to support advanced interactive visual

analytics technique, such as brushing and linking. To achieve this, we designed and developed the

geohash based image tile generation algorithm that automatically adjusts the range of data to access

based on the minimum acceptable size of the image tile. In addition, we have also designed an

autonomous histogram generation algorithm that generates histograms of user-defined data subsets

that do not have pre-computed data properties. Using our approach, applications can generate

histograms of datasets containing millions of data points with sub-second latency. The work builds

on our visual query coordinating scheme that evaluates geospatial query and orchestrates data

aggregation in a distributed storage environment while preserving data locality and minimizing

data movements. This paper includes empirical benchmarks of our framework encompassing a

billion-file dataset published by the National Climactic Data Center.

iii

TABLE OF CONTENTS

ABSTRACT .. ii

TABLE OF CONTENTS ... iii

LIST OF FIGURES ... vi

1 INTRODUCTION .. 1

1.1 Problem Definition.. 1

1.1.1 Scientific Challenges .. 7

1.1.2 Research Questions ... 7

1.2 Motivation and Research Contributions ... 8

1.2.1 Overview of Approach .. 9

1.3 Short Summary of Results .. 10

2 BACKGROUND .. 12

2.1 Galileo ... 12

2.1.1 Network Topology .. 12

2.1.2 Geohashing ... 13

2.1.3 Indexing: The Geoavailibilty Grid .. 14

2.1.4 Metadata and Information Retrieval ... 15

3 RELATED WORKS ... 17

3.1 Traditional Techniques (Visualization Systems): ... 17

iv

3.2 Web Based Analytics .. 17

3.3 Large Scale Visual Data Analytics ... 18

4 METHODOLOGY FOR THE DISTRIBUTED EVALUATION OF VISUAL QUERIES 19

4.1 Self-adjustable Image Tiles and Data Locality ... 19

4.2 Visual Query Input .. 20

4.3 Distributed Query Evaluation ... 20

4.4 Data Aggregation for Visual Analytics ... 22

4.5 Creating the VisGraph .. 23

5 BRUSHING AND LINKING WITH HISTOGRAMS AND GEOHASH TILES 25

5.1 Autonomous Histogram Generation ... 25

5.1.1 Bin Size Prediction ... 26

5.1.1.1 Formal Definitions ... 27

5.1.1.1.1 Nsquare.. 27

5.1.1.1.2 Freedman-Diaconis Rule ... 28

5.1.1.1.3 Optimal Bin Size ... 28

5.1.2 Comparison of Histogram Generation Methods ... 29

5.2 Heat Maps ... 31

5.2.1 Minimum Acceptable Geohash Size ... 31

5.2.2 Creating the Geohash Dictionary .. 32

5.2.3 Linking Between Heat Maps and Histograms .. 32

v

6 PERFORMANCE EVALUATIONS .. 33

6.1 Experimental Configuration.. 33

6.2 Performance Evaluation .. 33

7 CONCLUSION AND FUTURE WORK ... 36

7.1 Conclusions ... 36

7.2 Future Work .. 36

8 REFERENCES ... 38

vi

LIST OF FIGURES

Figure 1 ... 4

Figure 2 ... 5

Figure 3 ... 6

Figure 4 ... 13

Figure 5 ... 20

Figure 6 ... 24

Figure 7 ... 29

Figure 8 ... 30

Figure 9 ... 34

1

1 INTRODUCTION

Higher resolution visualization displays are useful to understand and analyze complicated

natural phenomena. However, as the scale of the dataset reaches human perceptual or cognitive

limits, traditional data visualization tools are not efficient enough for the task of providing an

intuitive and interactive sketch of the dataset. This is especially true for scientific datasets often

used in simulations and analyses. Interactive explorations are a critical tool to develop scientific

hypotheses, explore validity of models, and to reduce the time between further experiments.

1.1 Problem Definition

Many datasets are too large to fit in memory or to even be stored on a single machine.

Current data centers comprise large numbers of machines and the data is dispersed over them. At

this scale, interactive visual analytics is often limited by the data access capability. Interactive

visual analytics encompasses efficient query evaluation, effective data transfer, as well as,

distributed data processing for implementing visualization algorithms.

In this thesis, the problem of scalable and interactive explorations of voluminous,

distributed datasets using an integrated approach is addressed, encompassing visualization

algorithms and efficient evaluation of queries. Our approach also enables interactive visual

analytics techniques such as brushing and linking over distributed raw datasets. Brushing and

linking refers to the visualization technique that combines different visualization methods to

overcome the shortcomings of using a single approach exclusively and in isolation. Users can

select a subset of the data item using the brushing technique, and the user’s brushing actions are

connected via linking. [1, 2] To support this feature, the query should be expressive enough to

2

represent the relations between the visual components, and allow for immediate traversal between

multiple views. The system should also cope with the perceptual limit of the data visualization

autonomously. The visual acuity with high-resolution display has imposed a perceptual scalability

limit [3]. If the resolution of image is so high that an individual pixel cannot be seen, an even

higher resolution is unlikely to be beneficial, regardless of how close a user is to a display.

Since the targeted dataset is customizable, several dataset properties, such as the maximum,

minimum, or frequency counts, are not available until the query result is ready. Likewise, the scale

of dataset has a wide range: from few kilobytes to multiple terabytes. In many cases, the pixel

representation is much more compact than the raw data formats.

GeoLens is a framework for the scalable interactive visual analytics. To address perceptual

scalability over geospatial datasets, we have developed algorithms for geohash based self-

adjustable data tiles and autonomous histogram generation. The geohash based self-adjustable data

tiles enable the system to access the required dataset based on the effective resolution of the display

and query size automatically. With autonomous histogram generation, the histogram of a feature

will be generated without having any pre-computed data properties or user input. We have included

comparisons of several well-known histogram creation algorithms and how effective and scalable

each algorithm is when they are applied in a distributed storage setting. Our results show that

GeoLens provides sub-second latency to generate histograms for millions of data points with a

reasonable accuracy.

To address the scalability for evaluating this advanced query in a distributed file system,

we have developed a visual query coordinator. The visual query coordinator generates query

results that are translated into visual components on the server-side. The visual query coordinator

3

is selected from the set of available storage nodes and it is responsible for aggregating values,

tracking visualization algorithms, and ensuring load balancing within the storage cluster.

A typical workflow for a user working with GeoLens is depicted in Figure 1, Figure 2, and

Figure 3. As depicted in Figure 1, a user indicates their area of interest to the software by drawing

their polygon query on the map. The polygon they draw represents the query area they are

interested in. After the time period of interest as well as the wanted features have been specified

and after the query has been evaluated, we explored the brushing and linking over heat maps and

histograms of features in multiple different ways. As depicted in Figure 2, the user can easily

navigate through the query results by clicking on the wanted time period. The histograms and

image tiles will be changed to reflect the user’s choice. This way, different time periods can be

easily contrasted between each other.

We have implemented brushing and linking further between the histograms and image tiles

after query evaluation by linking the colors between histograms and image tiles. A user can select

a histogram bar and the resulting geohash tiles of the same color will be highlighted. If the user

selects a geohash tile, the corresponding histograms will also be highlighted. This is depicted in

Figure 3.

We evaluated our approach in the context of our Galileo system [4-7]. Galileo is a scalable

storage framework for managing multidimensional geospatial time-series data for scientific

applications. Galileo stores blocks of multi-dimensional arrays with temporal and geospatial

metadata alongside the attributes. Users are allowed to query these datasets by specifying multi-

dimensional queries that specify bounds or wildcards for one or more dimensions corresponding

to the observations/features stored within the system. Queries supported by Galileo include exact

match queries, range queries, and approximate queries.

4

Figure 1 - A user of GeoLens indicates their area of interest to the software by drawing their

polygon query on the map.

5

Figure 2 - Different time periods can be easily contrasted between each other in GeoLens by allowing users to navigate through query

results by clicking on the wanted time period. The top image shows the histograms and geohash tiles for September of 2013, while the

bottom image depicts February of 2014 image tiles and histograms.

6

Figure 3 - The colors of the histograms and image tiles are linked. A user can select a histogram bar and the resulting geohash tiles

of the same color will be highlighted.

7

1.1.1 Scientific Challenges

This thesis addresses the problem of interactive visual analytics over voluminous

geospatial datasets. The challenges involved in accomplishing this task include the following:

1. The datasets are voluminous and must be dispersed over a number of distributed storage

nodes.

2. The use of traditional data visualizations over such voluminous datasets can incur high

latency.

3. Existing visualization applications are limited in their ability to facilitate perceptual

understanding of datasets at this scale.

4. Dataset properties such as distribution of features are unknown and may continuously

evolve.

5. For the integrated visual analytics technique such as brushing and linking, the relation

between visual components is complicated and must be customizable based on the design

of the application.

6. Costly preprocessing of datasets cannot be used in a system capable of streaming inputs.

1.1.2 Research Questions

Major research questions that we explore in this thesis include the following:

1. How can we ensure fast visual query evaluations over distributed datasets so that we can

support interactive visual analytics?

2. How can we adjust the resolution of the image tile within the user’s perceptual limit?

8

3. How can we provide flexible and expressive system data structures so that they are

amenable for interactive visual analytics techniques?

4. How can we avoid large amounts of data transfers during visualization and processing?

5. Given the data volumes involved, the transfer costs can introduce considerable delays.

6. How can we maximize data locality during visual query evaluations?

7. How can we effectively balance query workloads so that a large number of visual query

evaluations can be performed concurrently?

1.2 Motivation and Research Contributions

This thesis presents the design of the GeoLens visual analytics framework for voluminous,

multivariate, geospatial datasets. In this thesis we will explore the use of the brushing and linking

technique along heat maps and histograms of the features using GeoLens. Our approach addresses

the scalability in terms of the visual perception and distributed processing. Our distributed

algorithm can generate histograms of dispersed datasets without pre-computed data properties.

Our Geohash based self-adjustable image tiles algorithm addresses visual perceptive scalability by

keeping the size of the final results minimum and constant. Our visual query coordinator approach

preserves data locality while minimizing data movements; allowing for interactive visualization

and results. Our evaluations target latency for performing visual queries at various scales of query

results to demonstrate its feasibility in various settings.

9

1.2.1 Overview of Approach

The approach described in this paper is based on the distributed storage framework, Galileo

[4]. Galileo is a hierarchical distributed hash table (DHT) that provides support for high-

throughput management of voluminous, multidimensional observational data streams. Datasets

managed by Galileo are partitioned and dispersed over a large cluster of commodity machines

using the geohash encoding scheme to preserve geospatial proximity of data points. Query

evaluations are assisted by memory-resident metadata graphs at each storage node.

To support perceptual scalability for the geospatial dataset, GeoLens provides geohash

based self-adjustable data tiles. In the geohash algorithm, the length of the corresponding geohash

code represents the resolution of the geospatial region: a longer code has higher resolution, and

correspondingly a smaller geospatial grid. No matter what resolution the client selects, the final

volume of data delivered to the user will be approximately the same in GeoLens. This feature is

directly related to data locality, because Galileo disperses and stores the dataset based on the

geohash values associated with the data points. In general, the resolution of geohash used for the

data dispersion tends to be lower than the one used for the image tile. Generating a single image

tile requires minimal data movements between the storage nodes.

Our autonomous histogram generation is a distributed algorithm that generates histograms

from the dataset without any pre-computed or preserved data properties. A histogram is a data

representation showing frequency distribution using rectangles. The width of these rectangles

represent class intervals and the areas of these rectangles are proportional to the corresponding

frequencies [8]. Providing meaningful widths based on the complete data distribution is critical to

achieving an effective histogram display. Since the targeted data is available only after the initial

query result is ready, the algorithm cannot be performed offline. We have considered three types

10

of algorithms: the N-Squared rule [9], the Freedman–Diaconis' choice (Freedman) [10], and

Histogram Bin-width Optimization [11] to find an algorithm that scales well with acceptable

latency and accuracy. GeoLens utilizes the Freedman algorithm and to provide sub-second latency

for millions of data points.

In GeoLens, we define a visual query as a query that generates results that are processed

by interactive data visual analytics tools. This involves data query evaluations, data aggregation,

and transforming results to interoperate with the visual components. The query also involves

distributed data processing such as autonomous histogram generation. To perform visual query

evaluations at scale, we have devised a visual query coordinator. As soon as the user’s visual query

arrives at Galileo, one of the nodes (usually, the node containing the largest amount of data points)

will act as a proxy for the client to collect the query results that are image tiles being generated by

the other nodes. This architecture allows for dispersion of processing loads since the data is

processed at the nodes that hold the data. Data movements between the storage nodes are reduced

because of data locality during processing. The server-side processing also reduces the amount of

data that needs to be transferred between client and server while minimizing the amount of data

processing in the client application.

1.3 Short Summary of Results

In order to test our software we conducted several experiments using real world data from

the National Oceanic and Atmospheric Administration (NOAA) North American Mesoscale

Forecast System (NAM) [12]. We sampled from this dataset to create test data of one billion

(1,000,000,000) files. The features we indexed included the spatial location of the samples, the

11

initialization time they were recorded, the surface temperature (Kelvin), total precipitation

(meters), and wind speed (meters per second).

In order to test the performance of GeoLens, we looked at the total time to create a snapshot

for three different geographic areas. We then analyzed the time taken at each step of creating the

VisGraph, including: the time to find points in the Geoavailability grid, the amount of time it takes

to create the image tiles and histograms, and the length of time takes to display these on the client’s

computers. These results are shown in Section 6, and show that GeoLens is extremely quick at

giving a snapshot of the data, regardless of data size, or geographic size.

These results show that GeoLens is not limited by the size of data or the geospatial area that

is required.

12

2 BACKGROUND

2.1 Galileo

For our storage requirements, we utilize Galileo, a distributed data storage framework for

voluminous multi-dimensional, geospatial, time-series datasets. Data can be streamed to Galileo

from any sort of device designed to observe facets of our environment, such as sensors or satellites,

and Galileo will handle dispersion and indexing.

2.1.1 Network Topology

Galileo is modeled as a distributed hash table (DHT). However, unlike standard DHTs such

as Tapestry [13] or Chord [14], Galileo employs a two tier hashing scheme for block distribution

among multiple machines, or nodes. Galileo is a zero-hop DHT, a feature seen in other

implementations such as Amazon’s Dynamo [15], meaning requests are sent directly to their

destination, rather than visiting intermediate nodes.

Galileo is well suited for storing and processing voluminous, multivariate datasets

containing spatial and temporal information, and additional features of interest. Galileo can

support a variety of common data formats, such as NetCDF [16], and can handle a variety of query

types, including both exact-match and range-based queries. However, unlike other DHTs, Galileo

does not use a generic hashing scheme for data distribution, and instead exploits geospatial

characteristics in the data for distribution.

13

2.1.2 Geohashing

By employing a generic hashing scheme, we can achieve the desired result of distributing

the data evenly across our nodes. However, we can preserve the geospatial information in the data,

and achieve data dispersion, while grouping similar points, if we employ a geohash algorithm [17]

as our first-tier hashing scheme. The purpose of the geohash algorithm is to divide the earth into

an arbitrary sized grid, dependent on the desired precision. Each of the boxes in this grid is

identified with a string. The longer the string, the higher-level resolution we will have.

 For example, the latitude longitude pair of 39.5997° N, 105.0108° W would be bounded

by the box 9XJ362VKZ. If we added more characters to this string and subdivided even further,

we would be narrowing the area of the bounding box around this point. A geohash of only 12

characters would have a bounding box smaller than a meter [17], so we can be as precise as we

desire and the geohash algorithm gives us a deterministic mechanism of data dispersion within the

same group. An example of sub diving a geohash is demonstrated in Figure 4.

Figure 4 - An illustration of the recursive subdivision of a geohash bounding box.

14

This scheme, while giving the desired effect of grouping data with similar features, leads

the probability of storage imbalances across nodes in the system [5]. However, if we use a second

hashing scheme for dispersion within the group chosen by the geohash, we can achieve a balance.

We do this second tier hashing scheme on a feature of the data. While the geohashing algorithm is

going to present imbalances in data placement within nodes, the dispersion between the geohash

and SHA-1 algorithm is only 1% [5].

2.1.3 Indexing: The Geoavailibilty Grid

Indexing blocks in a distributed environment poses many interesting challenges. If we use

a central index server, this quickly becomes our single point of failure and contact. However, if

the index is shared across all nodes, this can lead to increased communication between nodes as

they compare and update state involving the index among themselves. There are offline solutions

such as R-trees[18] available, but these would leave a large memory footprint if they are indexing

a billion files, not to mention the large amount of traffic that would be generated after every

rebalance. Instead of these solutions, Galileo employs a Geoavailability grid for indexing. This

grid translates points in space into a coarser resolution coordinate system. It is described by a

vector of bits, or bitmap, where a bit is set to 1 if information has been stored in that location, and

it is set to 0 otherwise.

Each node in the system keeps a Geoavailability grid of the location it is responsible for;

however, any node in the system must be able to service any request to any node, regardless of

failures in the system. Geoavailability grids are gossiped between all nodes. However, they are

compressed before being sent and processed, and have the added bonus of not needing to be

decompressed before being processed. [7]

15

After spatial information has been indexed in all of the Geoavailability grids, the system

can then evaluate user-defined geospatial queries in the form of polygons encapsulating areas of

interest. These polygons can be of any size, and are comprised of a list of latitude and longitude

coordinates. These polygons are then consulted against the Geoavailability grids to find if data

may be available and to eliminate nodes that cannot possibly service this query. Queries are also

evaluated against other local metadata structures, the metadata graph and feature graph.

2.1.4 Metadata and Information Retrieval

Galileo allows users to query the system using features and feature values, rather than files

or directories. This is accomplished using two data structures that each node contains in memory,

a low-resolution feature graph detailing the global dataset, and a high-resolution metadata graph

used for local evaluations of data stored on that node.

The low-resolution feature graph is used to reduce the overall search space when issuing a

query. With this feature graph, queries can be issued to any node in the system, and it provides a

coarse-grain view of all the dataset. This allows the node to have a global view of where to issue

sub-queries throughout the system that will answer this query.

Nodes that receive this more directed sub query evaluate it against their local metadata

graph. The high-resolution metadata graph instance at each node is populated with feature

information that this node is currently holding in files on the hard disk. It follows a hierarchical

tree-like structure where each level of the tree corresponds to an indexed feature, and the leaves of

the tree contain the data matching this path. Traversing this metadata graph from root to leaves

allows nodes to narrow down queries to the relevant files that have these values along this certain

path. However, traversing from leaf to root tells the node that this certain block has the feature

16

values described by the path. This tree like structure allows us to group paths and sub-paths from

root to leaf and hide duplicated data. This graph can be restructured or re-oriented, such that any

query can be answered and the relevant data files matching this query are acquired, without ever

having to go to disk.

The typical data flow involving these structures is as follows: A query is sent to any node

in the system, and that node consults its respective feature graph to construct a set of candidate

nodes to evaluate this query. This query is then forwarded to these nodes where they further

evaluate the query on their local high-resolution metadata graph.

17

3 RELATED WORKS

In order to further understand the contributions of GeoLens, we must visit various projects

for visual analytics.

3.1 Traditional Techniques (Visualization Systems):

There exist many tools available now for visualizing geospatial data. One such tool is the

Integrated Data Viewer, published by Unidata [19]. This tool, like many other tools, streams data

to a client from a database and plots every point. Prior to release of progressive resolution, there

was no upper bound on the size of the visualization, and no data reduction techniques. These tools

also provide very vivid and rich visualizations, which take time to render. Scientists do not always

want to wait on rich visualizations. Sometimes they want to get a quick snapshot of the data, and

to do this, there must be some aggregation to save time when preparing the visualization as well

as time in transit.

3.2 Web Based Analytics

There exist a variety of general purpose tools for visual analytics, such as IBM’s Many

Eyes [20] and Google Fusion Tables [21]. These tools give anyone the ability to visualize data.

However, these tools are not tailored to our specific needs. Our data is multivariate and contains

various features, along with a geospatial location and time stamp. Also, to reduce data size, these

tools use sampling, and visualize the sampled data rather than the entire dataset, thus incurring the

sampling penalties descried earlier.

18

There are web-based tools that do aggregation such as Microsoft’s Pivot [22]. This tool has

a notion of a collection, and can aggregate collections along various dimensions that data would

share. This allows the user to gain new insights by moving data around and allowing a user to look

at certain bits and pieces at a time. Unfortunately this tool is not tailored to our needs, because

preprocessing is involved to visualize any data.

3.3 Large Scale Visual Data Analytics

There are existing products, such as AT&T’s Nanocubes [23] or Stanford’s imMens [24],

that allow for visualization of large geospatial time series datasets. These products allow for real-

time queries on the particular data sets. However, imMens requires users to predefine widths for

aggregation. They do this to save time when creating data cubes, and because they have no reason

not to. In addition, the data they use only have attributes for a timestamp and geographic data.

The data we desire to visualize contains an additional dimension as well as the geospatial time

series aspect for each feature. For example, our data is not only about Colorado in October, it also

contains the snowfall at that specific point, as well as any other feature involved. These different

features require different bin sizes, and we do not expect our user to provide those values, as we

can find a more precise value for them. Our work is also strongly related to Nanocubes.

However, Nanocubes is not suitable for the frequently updated dataset such as climate

datasets. Since Nanocubes supports only read-only back-end data structure, a new nanocube would

need to be created every time an update occurs. GeoLens is also capable of polygon queries

covering any sized area, whereas both Immens and Nanocubes can only support bounding box

queries.

19

4 METHODOLOGY FOR THE DISTRIBUTED EVALUATION OF VISUAL QUERIES

GeoLens allows users to specify their query over raw datasets stored in Galileo. To support

visual analytics over voluminous datasets in a timely fashion requires an efficient scheme to first

retrieve, and then aggregate, and finally, navigate query outputs. To support these distinctive

requirements, we evaluate visual analytics queries and process the corresponding query results on

the storage nodes prior to delivery to the application. Our concurrent data processing allows the

visual analytics application to interact directly with the dataset, rather than limit interactions to the

pre-processed dataset.

4.1 Self-adjustable Image Tiles and Data Locality

As depicted in Figure 4, Galileo uses the Geohash algorithm to partition the dataset over

multiple storage nodes. Each storage node is responsible for a set of geohashes; portions of the

dataset corresponding to the same geohash are stored on the same machine. Finer resolution image

tiles are represented by finer resolution geohashes and this naturally aligns data dispersion in

Galileo. Therefore, data processing, such as aggregation, involves reduced data movements

between storage nodes.

Adjusting the resolution of the image tile relies on the Geohash algorithm. Applications

can increase this resolution by increasing the length of Geohash string. The longer the string, the

smaller the size of the image tiles. With a Geohash string of 12 characters, the image tile represents

1 meter x 1 meter area. This enables the application to provide an effective minimum image tile

size to the users.

20

4.2 Visual Query Input

We are faced with the need for geocoding, which is the process of translating a human

readable name, such as Fort Collins, Colorado, United States, into its location on the earth. There

are many geolocation services available such as geonames [25]. However, this is an online

database and we do not want to rely on someone’s network we have no control over. There are

some offline solutions such as the NGA earth-info [26] but these are large files and require

processing. Additionally, the output of these processes is a latitude and longitude pair, denoting

the center point of this area. We would need additional software to then find the series of latitude

and longitude coordinates that bound this area.

To overcome this problem, and to receive a query area, we allow the user to draw their area

they want directly on the map. GeoLens can also save polygons users have submitted so they do

not need to be drawn again.

The features a user is interested should be included in the visual query. Galileo provides

all of the features it is currently indexing, and the user can select all of the features they would like

to examine. This polygon and the list of features are then sent to any node in Galileo to be

examined.

4.3 Distributed Query Evaluation

As depicted in Figure 5, when a query arrives at any node, it follows the usual protocol of

first consulting its Geoavailability grid and feature graphs to find potential groups that contain the

information about this query.

21

Figure 5 - A graphic depicting the message and data flow within Galileo and GeoLens showing data structures within a node, as

well as evaluation at the Visual Query Coordinator.

22

This visual query is then distributed to all groups that have data that falls within this query

area. This can be one group if that area is small, or multiple groups if the area is large; it depends

on the size of the polygon and the volume of the data currently stored. The sub-polygons are

generated, and these sub polygons are sent to the respective groups.

GeoLens instructs Galileo to select a visual query coordinator to evaluate a visual query.

In most cases, the receiving node in the group plays the role of the coordinator. If the memory

consumption and CPU utilization of the receiving node are higher than the configured thresholds,

the receiving node pushes the request to the next node in the group. In Galileo, for a degree of

replication N, there are N-1 other nodes in the group that are responsible for storing a copy of the

same data item. This allows data locality to be preserved within the group.

The coordinator evaluates the user’s query, orchestrates data aggregation and builds a

VisGraph that is the representation of the visual query results. VisGraph is the set of all sub features

such as heat maps and histograms. The coordinator issues the user’s query to Galileo as if it is a

regular Galileo query. The result of the query (a metadata graph) is used for planning further data

processing. The coordinator retrieves the data locations from the result metadata graph and

determines the node that will perform the partial data aggregation.

4.4 Data Aggregation for Visual Analytics

GeoLens provides several data reduction methods. Users can specify their own data

reduction algorithms by using UDF (User Defined Function). Galileo has support for the sampling

operator as a part of regular query. The most popular data reduction techniques include filtering

[27], sampling [28], and binned aggregation [29]. Filtering and sampling techniques are effectively

used on the entire dataset to give us a more manageable subset in which to visualize. However,

23

there is no native guarantee in the sampling algorithm that the sample we get is small enough to

fit within our visualization, so additional sampling might need to be done unless we are intelligent

about our sampling.

Another issue with sampling is it may omit outliers. Since every point has the same

probability of being sampled, [28] we might omit important structures from the data simply

because we got unlucky during our sampling. We can use some other form of sampling besides

random sampling such as stratified sampling, or systematic sampling. However, these methods

require prior knowledge of the structure of the data, and costly pre-processing.

Another data reduction technique is aggregation, or the creation of histograms describing

the data. A histogram represents frequency distribution using rectangles whose widths represent

class intervals and whose areas are proportional to the corresponding frequencies [8]. We support

aggregation because it shows global patterns through spike height, and still preserves local outliers

because it takes into account the entire data set. We include detailed information about our

autonomous data aggregation scheme in the following major section.

4.5 Creating the VisGraph

A VisGraph is a metadata graph of the visual query results. As depicted in Figure 6, the Galileo

metadata graph of a regular query contains pointers to the actual file location in its leaf nodes. The

GeoLens coordinator transforms the metadata graph into a VisGraph. Unlike the metadata graph

in a regular query result, the VisGraph includes aggregated values and histogram summaries that

simplifies image rendering.

Visual analytics applications are required to render related images rapidly. For example, for a

user who views and contrasts daily heat maps of temperatures in the US for March-2015, the

24

application might need to render heat maps for any of the 31 days in March of 2015. To allow the

users to traverse daily heat maps, the application will need to traverse among leaf nodes of the

VisGraph. In general, the cost of traversal between the leaf nodes is O(log N), where N is the

number of nodes in the VisGraph. To reduce the traversal cost, we organize the VisGraph based

on the probability of leaf nodes being co-visited. The leaf nodes that have the highest chance to be

visited together will share the same parent node. Finally, internal nodes closer to the root node

indicate that traversal to those nodes is the result of a major feature change in the application.

The first step in creating a VisGraph from a metadata graph is to first split the paths based

on date. Our separation technique is first to separate the data based on year, and then month, and

then day of the month. Then, for every day of the month in every year, a histogram and geohash

tile set are created for every feature. This is achieved by simply traversing the metadata graph and

simply populating the new VisGraph with values that are in this particular month.

Figure 6 - An illustration of the transformation of a metadata graph to a VisGraph.

25

5 BRUSHING AND LINKING WITH HISTOGRAMS AND GEOHASH TILES

Brushing and linking combines different visualization methods to overcome shortcomings of

using a single approach over large, complex datasets. In this thesis, we have explored brushing

and linking over heat maps and histograms of features using visual queries and VisGraph.

In order to enable brushing and linking on the client side, we created two different

aggregations the data matched by the query. We aggregate the data in two different dimensions,

and create two data structures sketching different facets of the data: feature histogram and heat

maps

5.1 Autonomous Histogram Generation

Aggregation, or binning, is the process of organizing the data into defined bins, and then

counting each data point that falls into each bin. All of the features we examine in this paper are

numeric, which leads to our aggregation technique being a set of uniform width bins, from the

minimum value to the maximum value.

The biggest challenge here is bin width selection for the unknown dataset. The data is

voluminous, and new data is continuously being added to the existing dataset. Users specify

portions of the dataset to be visualized interactively. Information such as data distribution

(including density of values) of the dataset is not known to the system.

There are a variety of ways we could obtain a bin width with which to aggregate data. A

simple way would be to prompt the user. This would not be ideal because different features will

have different widths, and the user might not know a good width for all of these features. In

26

addition, the same features, but in different areas, could require different bin sizes. For example,

an area that regularly experiences cold climates might not need the same guidelines as an area that

experiences warm weather. Lastly, the same area might have different optimum bin widths,

depending on the time of year. For these reasons, coupled with the importance of the correct bin

size described earlier, we do not leave it up to the user to supply our system with a value. Instead,

we derive a bin width based on the data.

In order to create our histograms from the data, we need to establish two variables: the

number of bins, and the width of those bins. The width of the bin is crucial to creating a histogram

that best represents the data.

5.1.1 Bin Size Prediction

Our goal is to establish a histogram that best captures the underlying rate of our data. If we

choose a width that is too wide, there are not enough bins to accurately portray the data. On the

other hand, if the bin width is too narrow, we do not achieve the desired effect of reducing the data

size. We need to find a width that both represents the peaks in our data, and gives us sufficient

data reduction.

This issue has been addressed at smaller scales; however, when data is voluminous, the

turnaround times for bin size prediction should be rapid enough so that it is applicable to interactive

applications such as GeoLens.

Our goal is to achieve a bin size that provides approximately optimal width and also scales

well with voluminous data stored in the distributed storage cluster. In order to find this algorithm,

we compared and contrasted three different methods of obtaining the number of bars for a

27

histogram: the N-Square method [9], the Freedman-Diaconis rule [10], and the Optimal Bin Size

algorithm from Shimazaki [11]

These algorithms are vastly different in how they arrive at the number of bars and their

complexity, however, they all share the attribute of being able to autonomously derive a value for

the number of bars, k.

Two of the algorithms first compute a bin size h, before using this bin-size to derive the number

of bars, by using the formula:

� = �max � − min �
ℎ

5.1.1.1 Formal Definitions

In all of these definitions, we find a value ℎ, the number of bars in the histogram, or

compute the number of bins directly, by finding the value �.

5.1.1.1.1 Nsquare

To find the number of bins we can use the formula:

� = √�

In this equation, � is the number of data points in this set. This is the most efficient method,

but does not consider any aspect of the data other than the size.

28

5.1.1.1.2 Freedman-Diaconis Rule

The Freedman-Diaconis rule takes into account properties of the data when creating the

histogram. It does not simply look at the size of the data, but also considers the distribution of the

data. It does this by considering the interquartile range of the dataset, and is based off of Scott’s

normal reference rule [30], but is less sensitive to outliers because it uses the IQR rather than the

standard deviation. The Freedman rule is,

ℎ = 2 ���(�)
��/�

Where IQR denotes the interquartile range of the set. The interquartile range is the

difference between the third and first quartiles of the data, giving a sense of how spread out the

data is.

5.1.1.1.3 Optimal Bin Size

Shimazaki’s optimal histogram algorithm attempts to calculate the peaks of the underlying

data, and then pick a histogram that most resolves that peak. It does this by minimizing an

estimated L2 risk function.

arg ���
�

2�� − �
ℎ

�� = 1
� " �#

$

#%�

� = " (�# − ��) $

#%�

29

Where �� and v are the respective mean and variance of a histogram with a bin-width h.

This algorithm finds the histogram that best describes the data, however, it is very expensive.

5.1.2 Comparison of Histogram Generation Methods

In order to decide which one of these generation methods we would use for our histogram

creation, we looked at two different factors: their scalability with large data sizes, and the

similarities in their output. The optimal histogram generation algorithm picks a bar width that best

describes the spikes in the underlying rate. It shows the smallest error between the underlying rate

and its histogram. It gives the best value for the number of bars. The Freedman method does not

do this, however it gives similar results, as depicted in Figure 7. The optimal histogram algorithm

Figure 7 - The creation time of the three different methods. Even with only 5000 points, the

scalability of the optimal histogram generation comes into question, but the other two

methods scale.

30

gives us the best results, however, we have discovered that this algorithm is not useable in the

realm of big data. It is extremely expensive as shown in Figure 7.

One way we could mitigate the cost of this algorithm is by sampling from our larger dataset.

However, this algorithm depends on three different variables, the minimum x, the maximum x,

and the number of data points in the dataset n. In our sample, we would need to make sure to

sample the maximum and minimum values, which would no longer make it a random sample. In

addition, since this algorithm is dependent on the size of the data set, our sample can, and very

likely will, generate a different bin size than it would if it worked on the entire dataset. Since this

value is different than the optimal one for the entire dataset, it is no longer optimal.

 The Freedman algorithm produced very similar bin sizes to the optimal bin-size algorithm.

This is demonstrated in Figure 8. Even though the Freedman does not pick the same bin-sizes as

Figure 8 - The number of bars each method creates, dependent on the number size of the

data. As the square root method soars off, the optimal and Freedman methods remain very

similar.

31

the optimal one, it oscillates around its values. That is why for its speed over time, coupled with

the fact it chooses similar bin sizes, regardless of data size, we have chosen to use the Freedman-

Diaconis rule as the method to autonomously generate histograms.

5.2 Heat Maps

The geospatial aggregation process benefits from the strategy used in the self-adjustable

data tile scheme. Merging and separating geohash boxes are done by adjusting the length of hash

code string. Geospatial aggregation in heat maps requires minimum data transfers between the

storage nodes because the data partitioning that happens in the storage system is closely aligned to

the image tiles that will be displayed.

5.2.1 Minimum Acceptable Geohash Size

When a query is submitted into any node in Galileo, the geospatial coverage is specified

as a form of a polygon. If this polygon covers more than one geohash area rectangle at the current

resolution, the polygon is split into different polygons for evaluation at different nodes. After these

sub-polygons are sent to the correct nodes, GeoLens harnesses this sub-polygon by first finding

all of the geohashes that are inside of this polygon, and are two characters (configurable value)

longer than the current global resolution. In this way we have a bounded size on the geospatial

aspect of our geospatial visualization. It is bounded both in the max amount of geohash tiles we

create, and is guaranteed to give us enough geohash boxes, without overloading the user’s ability

to perceive it.

32

5.2.2 Creating the Geohash Dictionary

After all the geohashes that reside inside of this polygon are found, GeoLens creates a

dictionary with geohash values, and populates it with values from the data that are inside of this

box. We already have a sketch of all the data values in this entire area surrounded by the polygon,

so we need to create one for just the values inside of this polygon. This is done by averaging the

values in this box, and reporting this average as the value for this geohash area. This creates a

dictionary of the geohashes in this area, and a snapshot of those values in that area.

5.2.3 Linking Between Heat Maps and Histograms

Brushing and Linking requires real-time interactions between different summarized views of

the same dataset. When a user changes one of their views, the other view associated with the

modified view should be immediately rendered. GeoLens links different views of dataset through

VisGraph. Heat maps and histograms are linked by sharing ancestor nodes in a VisGraph.

33

6 PERFORMANCE EVALUATIONS

6.1 Experimental Configuration

For the data in this study, we used real world data from the National Oceanic and

Atmospheric Administration (NOAA) North American Mesoscale Forecast System (NAM) [12].

Using Galileo’s NetCDF plugin, we sampled from this dataset to create test data of one billion

(1,000,000,000) files, each around 8 KB, spanning three months. The features we indexed included

the spatial location of the samples, the time they were recorded, the surface temperature (Kelvin),

total precipitation (meters), and wind speed (meters per second).

Galileo was executed in our heterogeneous 77-node cluster composed of 47 HP DL160

servers (Xeon E5620, 12 GB RAM, 15000 RPM Disk) and 28 Sun Microsystems SunFire X4100

servers (Opteron 254, 8 GB RAM, 10000 RPM Disk). However, only 13 of these HP nodes were

utilized for these experiments. GeoLens was run on a single HP-Z220-XeonE3-12230 machine

with 8GB RAM. The software providing the map of the world and the image tiles comprising the

map were created by the OpenStreetMap community [31].

6.2 Performance Evaluation

In order to test the performance of GeoLens, we looked at the total time to create a snapshot

for three different geographic areas. We then analyzed the time taken at each step of creating the

VisGraph.

34

The steps taken into account are: the time to find points in the Geoavailability grid, the

amount of time it takes to create the image tiles and histograms, and the length of time it takes to

display these on the client’s computers. Finding the correct node in which to do the VisGraph

creation on never takes more than two messages in the system, due to Galileo’s zero-hop nature,

and each node’s feature graph. These values are averaged over 100 runs and are shown in Figure

9.

The values for searching the GeoGrid, as well as VisGraph creation, come from a single

node within the network. The timer begins when a node gets a query, and the timer stops when

that node sends its VisGraph to the coordinator to be merged. Different nodes were considered

throughout the 100 runs. The final aspect, the time to display the visualization, is the time to

Figure 9 - The time taken during various phases of GeoLens.

35

unmarshal the network representation of the VisGraph into the final image displayed on the users

screen.

As this graph shows, GeoLens is extremely quick at giving a snapshot of the data,

regardless of data size, or geographic size. A point of interest in this graph one might notice is the

amount of time to locate data takes longer than in the larger cases.

This is because we are looking for points with a higher resolution in this case. We

demonstrate the data reduction capabilities in Table 1.

These results show that GeoLens is not limited by the size of data or the geospatial area that is

required.

Original Size Reduced Size

15.4688 MB .684 KB

178.219 MB 1.806 KB

2316.84375 MB 3.736 KB

Table 1 - Data Reduction in GeoLens

36

7 CONCLUSION AND FUTURE WORK

7.1 Conclusions

Quick and effective visualization is a challenging problem when datasets are multivariate

and voluminous, and providing brushing and linking capabilities with the visualized data provides

additional challenges. For these issues, we have developed GeoLens, a framework built over an

existing DHT framework, Galileo. GeoLens enables data search, retrieval, and aggregation on

Galileo with sub-second response times to support interactive visual analytics. The system

preserves data locality during visualization by means of aligning image tiling to the data

partitioning (geohash resolutions) within the storage framework. We have incorporated brushing

and linking into our distributed visual query scheme and also our data aggregation algorithms. Our

autonomous histogram generation scheme is scalable and fast enough to support interactive visual

analytics.

7.2 Future Work

At the time of this publication, we are currently developing a method for the ability to

handle multiple resolutions automatically within our geohash tiles. The length of a geohash string

relates to the size of the bounding box that geohash covers. When a query is evaluated, GeoLens

creates geohash tiles for geohashes that are two characters longer than the enclosing hash. We can

easily adapt this to create geohash tiles that are longer than this two character value, and then

merge the lower resolution into higher resolutions. When the user zooms in on our map, we use

37

the data for the lower resolution. However, we cannot fetch all possible resolutions based on the

query, as that would lead to large transfer times to move all the data.

Another aspect we could examine is when a part of a polygon is barely contained within a

geohash, we visualize it in the same manner as if the entire geohash was covered. Instead, we could

divide this one geohash box further, and get a more precise geo tile. This way, the visualization is

more precise in the exact area it is showing.

Another area we could expand on is our autonomous histogram generation. Some of the

features in the dataset we are using are categorical, rather than numerical, and if we try to aggregate

these values using a numeric scheme, we are not going to have good results. Instead of creating a

histogram spanning a series of numbers, we want to have counts of different categories. The

research problem lies with deciding whether a set of numeric data is categorical or not.

38

8 REFERENCES

[1] D. A. Keim, "Information Visualization and Visual Data Mining," IEEE Transactions on

Visualization and computer graphics, 2002.

[2] R. Voigt, "An Extended Scatterplot Matrix and Case Studies in Information

Visualization," Master's thesis, Hochschule Magdeburg-Stendal, 2002.

[3] Y. H. Beth Yost, and Chris North, "Beyond visual acuity: the perceptual scalability of

information visualizations for large displays," In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI '07). ACM, New York, NY, USA, , pp.

101-110, 2007.

[4] Sangmi Pallickara, Matthew Malensek, and Shrideep Pallickara, "Geometry and

Proximity Constrained Query Evaluations over Large Geospatial Datasets Using

Distributed Hash Tables," (To appear) IEEE Computing in Science and Engineering

(CiSE). Special Issue on Extreme Data., 2014.

[5] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Expressive Query

Support for Multidimensional Data in Distributed Hash Tables. Proceedings of the

IEEE/ACM Conference on Utility and Cloud Computing. pp 31-38. Chicago, USA. 2012.

[6] S. P. Matthew Malensek, and Shrideep Pallickara, "Galileo: A Framework for Distributed

Storage of High-Throughput Data Streams," Proceedings of the IEEE/ACM Conference

on Utility and Cloud Computing. Melbourne, Australia., 2011.

[7] Matthew Malensek, Sangmi Pallickara and Shrideep Pallickara. Polygon-Based Query

Evaluation over Geospatial Data Using Distributed Hash Tables. Proceedings of the

IEEE/ACM Conference on Utility and Cloud Computing. Dresden, Germany. 2013.

[8] D. Anderson, D. Sweeney, and T. Williams, Essentials of Statistics for Business and

Economics, Revised: Cengage Learning, 2011.

[9] Microsoft. (2014). Explore histograms: Office 2003. Available:

http://office.microsoft.com/en-us/excel-help/explore-histograms-HA001110948.aspx

[10] D. Freedman and P. Diaconis, "On the histogram as a density estimator:L 2 theory,"

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 57, pp. 453-476,

1981/12/01 1981.

[11] H. Shimazaki and S. Shinomoto, "A method for selecting the bin size of a time

histogram," Neural computation, vol. 19, pp. 1503-1527, 2007.

[12] NOAA. (2013). The NAMNOAA. . Available:

http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,

"Tapestry: A resilient global-scale overlay for service deployment," Selected Areas in

Communications, IEEE Journal on, vol. 22, pp. 41-53, 2004.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A scalable

peer-to-peer lookup service for internet applications," ACM SIGCOMM Computer

Communication Review, vol. 31, pp. 149-160, 2001.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, et al.,

"Dynamo: amazon's highly available key-value store," SIGOPS Oper. Syst. Rev., vol. 41,

pp. 205-220, 2007.

39

[16] R. Rew and G. Davis, "NetCDF: an interface for scientific data access," Computer

Graphics and Applications, IEEE, vol. 10, pp. 76-82, 1990.

[17] W. Contributors. (2013, July 10). Geohash. Available:

http://en.wikipedia.org/wiki/Geohash

[18] A. Guttman, R-trees: a dynamic index structure for spatial searching vol. 14: ACM,

1984.

[19] D. Murray, J. McWhirter, S. Wier, and S. Emmerson, "13.2 THE INTEGRATED DATA

VIEWER–A WEB-ENABLED APPLICATION FOR SCIENTIFIC ANALYSIS AND

VISUALIZATION," in 19th International Conference on Interactive Information and

Processing Systems for Meteorology, Oceanography, and Hydrology, 2003.

[20] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon, "Manyeyes: a site

for visualization at internet scale," Visualization and Computer Graphics, IEEE

Transactions on, vol. 13, pp. 1121-1128, 2007.

[21] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, et al.,

"Google fusion tables: web-centered data management and collaboration," presented at

the Proceedings of the 2010 ACM SIGMOD International Conference on Management of

data, Indianapolis, Indiana, USA, 2010.

[22] Microsoft. (2014). PivotViewer. Available:

http://www.microsoft.com/silverlight/pivotviewer/

[23] L. Lins, J. T. Klosowski, and C. Scheidegger, "Nanocubes for real-time exploration of

spatiotemporal datasets," Visualization and Computer Graphics, IEEE Transactions on,

vol. 19, pp. 2456-2465, 2013.

[24] Z. Liu, B. Jiang, and J. Heer, "imMens: Real‐time Visual Querying of Big Data," in

Computer Graphics Forum, 2013, pp. 421-430.

[25] GeoNames. (Retrived 2014). GeoNames. Available: http://geonames.org/

[26] N. G. I. Agency. (Retrived July 2014). NGA GEOnet Names Server (GNS). Available:

http://earth-info.nga.mil/gns/html/

[27] S. B. Ahlberg C., "Visual information seeking: Tight coupling of dynamic query filters

with starfield displays," In Proceedings of CHI (1994), , pp. 313-317, 1994.

[28] E. Bertini and G. Santucci, "Give chance a chance: modeling density to enhance scatter

plot quality through random data sampling," Information Visualization, vol. 5, pp. 95-

110, 2006.

[29] O. Rübel, K. Wu, H. Childs, J. Meredith, C. G. Geddes, E. Cormier-Michel, et al., "High

performance multivariate visual data exploration for extremely large data," in

Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, p. 51.

[30] D. W. Scott, "Scott's rule," Wiley Interdisciplinary Reviews: Computational Statistics,

vol. 2, pp. 497-502, 2010.

[31] M. Haklay and P. Weber, "OpenStreetMap: User-Generated Street Maps," Pervasive

Computing, IEEE, vol. 7, pp. 12-18, 2008.

