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Abstract 

When two incompressible homogeneous fluids in relative motion are 

superimposed in a gravitationally stable configuration and are sub­

jected to rotation about a vertical axis, the interface and the free 

surface slope away from the horizontal. Such a system possesses 

rotational modes of oscillation in addition to the external and in­

ternal gravitational modes. The dynamic stability of small amplitude 

motions superimposed on this system is studied. For unstable modes, 

the values for the phase speed and the growth rates are presented as a 

function of wavelength of the perturbations and shear of the basic flow. 

In particular, it was shown that the instability occurs in this model 

as a result of an interaction between an internal gravitational mode 

and a rotational mode. 

iii 



I. Introduction 

We are concerned here with the dynamic stability of the equil­

ibrium eonfiguration shown in Figure 1 with respect to small amplitude 

perturbations. This configuration consists of two incompressible 

homogeneous fluids of densities PI and P2 superimposed one on top of 

another with the heavier fluid (PI) at the bottom to insure gravi­

tational stability of the system. These fluids are laterally bounded 

by rigid walls at y = 0 and y = Wand each fluid is moving in the 

positiv4:! x-direction with a constant translational velocity ul and u2 

( Ul ::f ~~2 in general). In the absence of rotation, the fluids will 

have un:i.form depths (Dl and D2 as shown by the dotted lines in 

Figure 1). In this case, the system is only capable of exhibiting 

gravitational (external and internal) modes of oscillation and any 

dynamic instability that is realized is purely a manifestation of the 

Kelvin-Helmholtz instability. As is well known, this instability is 

usually restricted to rather small wavelengths of the perturbations. 

If, however, we now assume that the system is rotating about a vert­

ical axis with angular speed Q, the depths of the fluids can no longer 

be uniform. The translational velocities Ul and ~2 bring into play the 

Coriolis forces which would then require balancing pressure gradients. 

These are generated by the interface and free surface sloping away from 

the horizontal as shown in Figure 1. Under these conditions, the sys­

tem exhibits an additional mode of oscillation--the rotational mode 

which is normally referred to as the Rossby mode in meteorology--in 

addition to the gravity modes. The features of these rotational modes 

normally resemble the characteristics of me·teorologically important 

1 
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Figure 1. Equilibrium configuration of the physical model. 



3 

wave motions that are observed on synoptic weather maps. Our primary 

concern here is to investigate the stability of the basic state which 

possesses both the gravitational and rotational modes. 

The study of the above stability problem has an approximate 

applicability to the problem of frontal instability in meteorology. 

The Bergen school of Norway has demonstrated that instability asso­

ciated with narrow transition zones between warm and cold air masses 

is a possible factor in determining the initial growth of a pertur­

bation in the middle latitudes. In an idealized situation, one can 

represent each of these air masses by a homogeneous incompressible 

fluid and the transition zone by a surface of zero-order discontinuity 

-called the front-with respect to density and tangential velocities. 

The dominant characteristics of the frontal model are that the frontal 

surface is inclined at an angle to the horizontal and intersects the 

ground at some point. These two features together complicate the 

necessary mathematical analysis to determine the stability character­

istics of the model. One of the earliest attempts at a mathematical 

analysis of this model is that of Solberg (1928). His model consisted 

of a rigid top and bottom both of which are inclined at the same angle 

to the horizontal as the frontal surface. In spite of this simplicity, 

Solberg's results showed that it is indeed possible to have unstable 

waves whose wavelengths are approximately in the range of incipient 

cyclones when the frontal surface is no longer horizontal. It may be 

recalled that without the sloping front, the only instability the two­

fluid system can give is the Kelvin-Helmholtz instability, which is 

usually confined to wavelengths much smaller than the scale of the 

incipient cyclones for reasonable values of'shear ( ~2 - ~l)' 
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Subsequent to Solberg, the mathematical analysis of the frontal problem 

was done by Kotschin (1932) and E1iasen (1960) with rigid top models 

in which the frontal surface intersects the ground. Recently Orlanski 

(1968) made a more elaborate analysis of the Kotschin model. 

Most of the traditional stability analyses in meteorology are made 

for the long planetary waves for which the so-called quasi-geostrophic 

approximation is introduced. This approximation, first introduced by 

Charney (1947), effectively filters out the gravity waves leaving only 

the rotational waves in the system. Use of this approximation greatly 

simplifies the necessary mathematical analysis. However, when one is 

concerned with the stability of perturbations of a smaller scale--as 

those on a frontal surface--this approximation can no longer be justi­

fied. Consequently, one has to deal with a non-geostrophic system 

containing both gravitational and rotational modes. There have been 

some studies of this ageostrophic stability problem (Arnason 1963, 

Derome and Wiin-Nielsen 1966, Stone 1966, Sela and Jacobs 1968) but the 

precise nature of the stability character and the interaction between 

the gravitational and rotational modes, if any; is not properly brought 

out. In the previously mentioned studies on frontal stability, the 

analysis of the problem was quite complicated in view of the frontal 

intersection with the ground and the role of the ageostrophic effects 

introduced by the presence of the gravity waves is not clearly brought 

out either. It is with a view to investigate this aspect while trying 

to keep the necessary analysis simple, that we selected the lnodel des­

cribed earlier. Since the characteristic feature of the frontal theory 

is the inclination of the front, rather than its intersection with the 

ground, the results obtained here may still. be applicable in an 
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approximate sense to a frontal situation. 

2. Dynamical Equations 

The physical model is described in the preceding section. As 

mentionE~d there, we are dealing with motions whose scales are much 

smaller than the radius of the earth. Consequently, these motions may 

be described using a Cartesian x,y-plane with a constant Coriolis par-

ameter f = 2Q sin ~, Q being the angular speed of rotation and ~ is the 

goegraphical latitude. 'We further assume that the scale of the motions 

is such that the hydrostatic-or the long wave-approximation is valid. 

Then the motion in each layer can be described by the shallow water 

equations: 

(2.1) 

dhL + h IJ. \VI 
d t: I 

o (2.2) 

(2.3) 

dh2. + h IJ. \V
2 dt 2 

o (2.4) 

In these equations, the subscript 1 refers to the quantities in the 

lower layer and subscript 2 to those in the upper layer. \V = (u,v) is 

the horizontal velocity vector, h is the depth of a layer. The vector 

[\V] denotes a rotation of\V through ninety degrees in the negative 

sense of the x,y-plane. E == P2/Pl is the density ratio and for a 

gravitat.ionally stable configuration 0 < E < 1. The system of equa-

tions (2.1) to (2.4) has an exact solution corresponding to the basic 

state 



dh) _ 
dy -

where we have defined 

EU2 - ul 
g (1 - E) 
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(2.5) 

(2.6) 

We now assume that the translational velocities ul and u2 in the 

basic state are constant (UI ~ U2) and that the domain of interest is 

bounded by rigid boundaries at y o and y = W. The depths of the 

lower and upper fluid layers are then given by (for y>O): 

(2.7) 

where D1 and D2 are the layer depths at y ~ W/2. They are also the 

uniform depths that the fluid layers will have in the absensE! of ro-

tation. 

The dynamical equations (2.1-4) are now linearized about the state 

of equilibrium expressed through equations (2.5,2.7) for the examina-

tion of the stability problem. The linearized equations are 

L.u. fv. + ~ ~) 0 (2.8) 
J J J 

g(ax +Y j ax 

L.v. + fu. + (~+ lli..) 0 (2.9) 
J J J g ay Y j ay 

L.h. 
-- - dU dV 

0 (2.10) + a. fv . + h. (-L + -..i) 
J J J J J ax ay 

where j 1 or 2 and uj,vj,hj 
are perturbation quantities. 

We have defined 

Y - E and Y - 1 
1 2 

Cl Cl 
L. - Clt + u. ax (2.11) 

J J 

The equations (2.8-10) represent a coupled set of six homogeneous 
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equations in as many unknowns. The necessary boundary conditions to be 

adjoined in order to complete the specification of the problem are: 

u., v., h. are periodic in x 
J J J 

and. v. = 0 at y = 0 and W 
J 

(2.12) 

In the next section we outline the method of solution for the boundary 

value problem (2.8-12). 

3. Method of Solution: 

ThE~ coefficients in the dynamical equations (2.7-10) are constants 

in x so that a solution of the form 

ikx ikx 
u. = U. (y, t) e , v. ::; V. (y, t) e 

J J J J 

ikx 
h. = H. (y, t) e 

J J 

j 1,2. (3.1) 

automatically satisfies the equations and the boundary condition in x. 

Substitution of this into the equations yields 

au. 
--1+ iku.U. - fV. + ikg(H1+ y.H2) ::; 0 at J J J J 

av. 
(.£!!.J... + aH2~ --,1 + iku.V. + fU. + Yj 

0 at J J J g ay ay 

aH. ~ _____ 1+ 
iku.H. + CljfVj + hj(ikUj + 3y) = 0 at J J 

with boundary conditions V. ::; 0 at y = 0 and W 
J 

(3.2) 

(3.3) 

(3.4) 

This system of equations has been solved by spectral and by finite 

difference methods. Considering first the spectral solution, we seek 

solutions of the form 

00 

V.(t,y) = l: 
J Q.=o 

VQ.. (t) . ~ J s~n W 

in order to satisfy the lateral boundary conditions. 

(3.6) 

Since now V. is 
J 

an odd function of y, it follows from the equations that U. and H. are 
J J 
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even functions of y, thus 

U
j 

(t,y) 
co 

V~(t) !!x. (3.7) = L cos 
J/.=o W 

Hj (t,y) 
00 

H~(t) !!x. = E cos 
J/.=o W 

and further f is an odd function and h
j 

is an even function of y to 

satisfy the appropriate parities of all quantities in a mathematical 

sense. Again on a mathematical plane, if all integrations are per-

formed over an interval -W < Y < W, then sines and cosines are ortho-

gonal and all odd functions integrate out. 

Substituting the expansions (3.6,3.7) into the dynamical equations 

(3.2, 3.3, 3.4), multiplying the Uj' H
j 

- equations by cos nW'. and the 

Vj - equation by sin n;y, and integrating over the interval 0 < y < W, 

we obtain the spectral equations 

dUn .=1 . - n co R.n J/. n n 
dt + ikUjUj - E 0nf V j + ikg(Hl + Yj H2 ) ... 0 

R.=o 
(3.8) 

dVn 

~ - n 00 fnR.UJ/. _ n~g(Hn + Hn) = d t + iku j V j + L j W 1 Yj 2 0 
J/.=o 

(3.9) 

dHn 

~ + ikUjHn
j +! 0 [a.fR.nv: + hj~n(ikU7 +- ~~ VjR.)] = 0 

R.=o n J J J 
(3.10) 

where n = 0,1,2, •••.• , 0 = 1 for n" 0 and 0 = ~ for n = 0, and the 
n n 

coefficients are defined as follows:. 

fR.n =! fW f i !!!x. . n~y d - W 0 s n W cos W y 
(3.11) 

- Jl.n _! W - .!!1.. n~y 
hj - .W of hj cos W cos W dy 

which can be computed once f and hj have been specified as functions 

of y. 

For computational purposes the series must be truncated, say at 

n = N. We have then a system of 6 (N+l) prediction equations, but 
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since (3.9) can be discarded for n = 0, we have only 6 N + 4 cou.pled 

equations. The system can be cast into the form 

-+ 
da + ik /A ~ = 0 
dt 

0.12) 

-+ where a is the column vector consisting of the 6N + 4 time-dependent 

variab1E~s and fA is a matrix of order (6N + 4) x (6N + 4) with time-

independent elements. The solution of (3.12) is of the form 

-+ -ikct 
a "" e (3.13) 

Substitution of 0.13) into 0.12) yields the equation: 

(/A - cll ) 
-r 
a = 0 (3.14) 

which shows that the c's are the characteristic values of the matrix 

IA. Combining this time-dependent part of the solution with the x-

dependent part given by (3.1) we see that the p~rturbation quantities 

u., v., h. are proportional to exp[ik(x-ct)]. Thus a positive real 
J J J 

value for c represents waves progressing in the positive x-direction. 

If c is complex then a positive imaginary part will give an exponen-

tia1 growth in time for the perturbations, which are then considered 

unstab1E~. In the present problem complex roots occur in conjugate 

pairs, thus any growing root is accompanied by a decaying root. 

Hmvever in the Fourier integral representation of an arbitrary 

disturbance, this decaying wave would not make any significant con-

tribution. 

For an independent test of the spectral solution we have also 

obtained the solutions to the system (3.2) through (3.5) by finite 

difference methods. The boundary conditions (3.5) suggest the use of 

a staggered grid system. The channel width W is subdivided into 

(N + 1) strips, the variables Uj and Hj are defined at the centers of 
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the strips, the variables V. are defined at the boundaries (where they 
J 

are zero) and between the strips. Derivatives with respect to yare 

replaced by central differences. Again we obtain a system of 6N + 4 

variables which are only time-dependent and the system can be written 

in the form (3.12). 

The stability calculations discussed in the following section have 

been computed by both methods. The results were essentially the same, 

but the spectral method showed somewhat better convergence and there~ 

fore only the spectral results are presented in the following. Table 

1 shows a typical convergence pattern for both methods. The occurr-

ence of the two pairs of complex roots will be explained in the fo11ow-

ing section. 

4. Results 

In determining the characteristic values c of equation (3.14), it 

is necessary to prescribe the values of the following parameters: Dl, 

D2,E:,Ul;;'~·2,W,k. In most of the cases, the numerical values .assigned to 

the various parameters are: 

Ul = 10 m/sec 

E: = 0.98 

W 500 km 

Then the values of the wave number k and speed of the upper layer u2 

were varied while determining the characteristic values c. The numeri-

cal values for complex CIS are presented in Table 2 for a truncation of 

the spectral series at N = 9 in terms of the phase speed c and the e­
r 

folding time l/kc. of the perturbations. This then gives a matrix of 
]. 
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Table 1. Convergence test for complex eigen values: Wave speeds c 
r 

and e-fo1ding times l/kc. as a function of truncation, N. k = wave 
1 

number, FD = finite difference method, SP = spectral solution. In this 
_1 _ _1 _ _ 

table Ul. = 10 m sec, u2 = 40 m sec, e: = .98, W = 500 km, D1 = D2 = 5 km. 

kW = 1 kW = 2 

FD SP FD SP 

N c 1/kc. - r 1 

1 12.92 + 2.493 14.14 + 1.878 12.86 + 1.529 14.01 + 1.124 - -
37.09 + 2.530 35.86 + 1.905 37.17 + 1.526 36.02 + 1.124 - - -=- -

3 14.34 + 2.018 14.73+1.928 14.33 + 1.264 14.72 + 1. 206 - - -

35.69 + 2.060 35.30 + 1.973 35 .73 + 1. 260 35.35 + 1. 205 -

5 14.62 + 1.964 14.81 + 1.927 14.63 + 1.237 14.82 + 1.215 - -
35.Lf1 + 2.008 35.22 + 1.973 35 .44 + 1. 233 35.25 + 1. 212 - - -

7 14.72 + 1.946 14.84 + 1.926 14.73 + 1. 228 14.85 + 1.217 - -
35.31 + 1.992 35.20 + 1.973 35.34 + 1.225 35.23 + 1. 214 - -

9 14. n + 1.938 14.85 + 1.926 14.78 + 1. 225 14.86 + 1.218 - -
35.26 + 1.985 35.19 + 1.973 35.29 + 1.221 35.21 + 1.215 - - -
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the size 58 x 58 for A. The values of c and c. shown in this table 
r 1. 

have converged quite well. This can be seen by an examination of 

Table 1, in which c and e-folding time are presented as a function 
r 

of the size of the matrix A. The bars in table 2 represent computa-

tions which gave stable roots only. 

A rather curious feature of the results presented in Table 2 is 

that when instability occurs, we seem to obtain two pairs of complex 

roots c = c + iC
i 

and c~ = c~ + ic~1.' and they are located symmetrically r- r-

about the mean speed ~ (~I + ~2) as far as the phase speeds are con­
I 

cerned. This situation holds for u2 < 45 m.sec. Then we obtain a small 

stable region before passing on into another region of instability 
1 

around ~2 = 47.5 m.sec. Further, the instability seems to be bounded 

on the long-wave and short-wave side of the speetrum. 

The symmetry of the c 's of the two pairs of roots with respect to 
r 

the mean speed-as well as the occurrence of two pairs of complex roots-

is rather an accident and is due to the choice Dl = D2. If Dl # D2 

this symmetry is no longer realized as will be shown later and one of 

the two sets of complex roots may sometimes disappear as a consequence. 

The implications of the existence of two unstable roots when they occur 

together are important in the considerations of the representation of 

an arbitrary disturbance. In the conventional stability analysis, the 

existence of an unstable normal mode implies that any arbitrary dis-

turbance will start growing at a rate essentially determined by this 

mode. However, if two unstable normal modes are present with approxi-

mately the same growth rates, whether an arbitrary disturbance starts 

to grow initially-:-and if so, at what rate--depends very much on the 

phase of these two normal modes relative to one another. 



Table 2 Spectral model, N = 9, W =500km., £ = .98, Dl = D2 = 5 km., ul = 10 m.sec. 

Values of c in m/sec and e-folding time in days (in parentheses) are as a function of (~2-~1) and wave 
r number. 

u2-ul kW 1 1.2 1.5 2 - 3 4 - 6 - -

37.5 28. 8 <:~. 62) 28.9(±-53) 28.9(±.45) 29.0(±.43) 29 _O(±_ 75) 44.5(±1.1) 

36.5 28.4 (±. 72) 
13.2(±2.2) 

35.5 27.9(±3.09) 
27.9(±1.9) 

35.0 10.8(±2.0) 
- - - - - -

44.6(+18.0) 

32.5 35. 4(±1. 89) 35. 4 <,:~1. 67) 35.4(±1.52) 35.5(±1.80) - -
l7.2(±1.88) 17.2(±1.68) 17 .2 (±1. 56) 17.2(±2.14) 

30.0 35.2 (±l. 97) 35.2(±1.69) 35.2(±1.42) 35.2 (±l. 22) 35.2(±.l.66) - -
14.9 <:t1. 93) 14.8(±1.65) 14.8(t1.40) 14.9 (t1. 22) 14.9(t2 • 21 ) 

27.5 34.8(±4.04) 34.8(+3.28) 34.8(+2.54) 34.7 (±1. 86) 34.7(±1.38) 34 .6 (±1. 75) -
12.8(±3.43) 12.8(±2.83) 12.8(±2.24) 12.8(±1. 70) 12.9(±1.33) 13.0(+2.44) 

25.0 10.2(±35.) 10.7(±4.00) 11.1 (±2. 81) 
- - - -

34.6(±6.42) 34.1(+2.62) 
22.5 - - - - - -
20. - - - - - -
15. - - - - -
10. - - - - -
1. - - - - -

12. 

-

I-' 
W 
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Let us now examine the. mechanism that is responsible for pro-

ducing the instability. Information on the mechanism can be obtained 

by tracing the change in the value of the roots as u2 is increased. 

As mentioned earlier, there are basically three types of modes in 

the model. 

(I) external gravitational modes 

(II) internal gravitational modes 

(III) rotational modes 

When the secular determinant/A is truncated at a size M x M, we get 

M roots which can then be assigned into each one of the above cate-

gories. Tracing the changes in the values of these roots as the shear 

is increased--or what is the same, Uz is increased--helps us identify 

the mechanism initiating the instability. To keep the matters simple, 

instead of tracing the changes in all the M roots, we will ·restrict 

our attention to only those roots which eventually cause instability 

when the shear has become sufficiently high. It turns out that these 

roots are partly rotational and partly gravitational (inter~al). The 

nature of these roots can be ascertained by comparison with exact 

solutions for simple cases. Tables 3 shows these potentially unstable 

roots as a function of ~2 for a specific wave number kW ~ 1.5. In 

this table, we have also included for comparison the quasi-geostrophic 

rotational modes, and the internal gravitational modes for f = O· 

("filtered solutions"). These results show that each pair of roots 

is symmetrically located with respect to the mean speed U = ~ (~1+U2). 

We notice from Table 3 that the c 's for the rotational modes are in 
r 

the range ul < c < U2 and the c 's for the gravitational modes are in 
r r 

the range c < ul and c > ~2 when the shear is small. As the shear-
r r 
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Table 3: The Mechanism of mixed-mode instability 

k = 1.5/500 km., W = 500 km, € = .98, D1 = D2 = 5km, U1 = 10 m/sec, 

upper table: cl and c2 quasi-geostrophic rotational modes. c3 

and c4 basic internal gravity modes for f = O. Lower table: Basic 

rotational and internal gravitational modes of the spectral solution. 

e-folding time in parentheses. U = ~(~l + ~2) 

30 
32.5 

35 

37.5 

40 

42.5 

43.5 

44.5 

45 

45.5 

46.5 

47.5 

30 

32.5 

35 

37.5 

40. 

42.5 

43.5 

44.5 

45. 

45.5 

46.5 

47.5 

-19.8 
-19.0 

-18.3 

-17.4 

-16.3 

-15.0 

-14.4 

-13.9 

-13.6 

-13.2 

-12.5 

-11.8 

-17.2 

-15.4 

-13.6 

-11.0 + 1. 72i 

-10.2 + 2.76i 

- 9.1 + 2.47i 

- 8.5 + 1.57i 

- 9.9 

-10.4 

-10.9 

-11.6 

-12.2 

CI-U 

-6.5 

-7.3 

-8.1 

-8.9 

-9.7 

-10.5 

-10.8 

-11.1 

-11.3 

-11.5 

-11.8 

-12.1 

-6.8 

-7.9 

-9.1 

(2.24) 

(1. 40) 

(1.56) 

(2.46) 

-5.5 

-3.6 

6.4 

7.2 

8.0 

8.8 

9.6 

10.4 

10.7 

11.0 

11;2 

11.4 

11. 7 

12.0 

6.7 

19.8 

19.0 

18.3 

17.4 

16.3 

15.0 

14.4 

13.9 

13.6 

13.2 

12.5 

11.8 

17.3 

7.8 15.5 

8.9 13.8 

11.0 + 1.52i (2.54) 

10.2 ± 2.72i (1.42) 

9.1 + 2.54i (1.52) 

8.5 + 1.74i (2.21) 

5.7 9.8 

3.8 

.1 ± 1.25i(3.09) 

.1 ± 5.36i(.72) 

.1 ± 7.33i(.53) 

10.3 

10.8 

11.5 

12.2 
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Figure 2. Illustration of the confluence of gravitational and rotational modes to initiate 
instability. Curves labelled C4-U and C2-U are the filtered gravitational and rotational modes. The 
unlabelled curves correspond to the non-filtered situation. The dashed curves represent c., whose magnitude 
is given by the vertical distance between the solid line and the dashed line. ~ 
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-or u2-increases one member of the internal gravitational mode pair 

approaches one of the members of the rotational mode pair while the 

other member of the gravitational mode pair approaches the second 

member of the rotational mode pair. This process is illustrated in 

Figure 2. In this figure, the dash-dot-line shows the behaviour of 

the "filtered" solution labelled C2 and c4 in Table 3 - that is, the 

pure internal gravity wave solution with f = 0 and the quasi-geos-

trophic rotational wave-individually as a function of u2' The other 

two filtered roots cl, c3 are in the lower half of the diagram form-

ing a mirror reflection and consequently are not shown in Figure 2. 

When filtering is not used and the rotational and gravitational modes 

exist together, the behaviour of the roots is shown by the solid lines. 

It is seen that the modified roots c2 and C4 com~ together at a criti-

cal value of U2 and instability is then initiated. The magnitude of 

c, is then given by the vertical distance between the solid and dashed 
1 

lines. The instability persists until another critical value of ~2 

is reached and represents the primary region of instability shown in 

Table 2. At the second critical value of ~2 the modes separate and 

we get a stable region. By a comparison with the filtered solutions, 

vIe see that for further increase in u2 the value of c-U decreases for 

the gravitational mode c4 and increases for the rotational mode C2' 

This situation continues until another critical value of u2 is reached 

when the gravitational mode c4 meets its counter part c3 coming from 

below thl~ axis c - U O. At this point, the instability occurring 

for highl~r values of u2 in Table 2 is obtained. The instability now 

is generated by gravitational modes alone and hence is of the Kelvin-

Helmholtz type modified by effects of rotation. The Kelvin-Helmholtz 
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instability in the presence of rotation occurs for a lower shear (or 

U2) than in the case of f = 0, as shown in Figure 3 where the filtered 

gravitational modes c3, c4 come together at a much larger value of 

u2 to generate instability. Thus rotation, in addition to introducing 

the primary instability region, also seems to increase the Kelvin-

Helmholtz instability. In any case, the primary instability is the 

result of an interaction between a wave of the internal gravitational 

- -
type and a wave of the rotational type. The choice Dl = D2 in the 

present example produces the result that when c2 and c4 merge together, 

50 do the roots cl and c3 yielding the second complex mode. When 

Dl f D2, one of the two sets of complex modes may be eliminated. This 

is due to the fact that the c 's of the gravitational and rotational 
r 

modes are no longer symmetric with respect to tlie mean speed and when 

a confluence of the above type occurs between say c2 and c4 the other 

members cl and c3 are still far apart. This will be discussed in more 

detail in connection with Table 4. 

The instability mechanism generated by an interaction between a 

gravity mode and a rotational mode is a rather unique one. This 

mechanism straddles the fence--so to say--between the instability 

mechanisms for the large scale motions and the small scale motion. In 

the case of the large scale motions, one can study the dynamics of 

instability in the framework of a filtered system of equations in which 

the gravity waves are no longer present. Hence the instability, when 

obtained, must be brought about purely by the rotational modes. On 

the other hand, earth's rotation is relatively unimportant for small 

scale motions and their instability, like the Helmholtz instability 

for example, is purely governed by the spectrum of the gravity modes. 
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For medium scale motions, as the ones considered here, the spectrum 

of the gravitational and rotational modes are equally important and 

elimination of either one of these classes of modes would eliminate 

any possible instability that the system is capable of exhibiting. 

Even though in the model considered so far, the free surface is 

supposed to represent the tropopause, in reality the atmosphere ex-

tends far above the tropopause. To simulate this, we have superim-

posed a third layer of infinite depth on top of the second layer. In 

order to keep the slope of the second surface unchanged, the third 

layer is assumed to have the same constant translational speed as the 

second layer under equilibrium conditions; that is, u3 = u2' The 

dynamical equations formally look the same as those given by (2.8-10) 

except for a slight re-definition of the pressu~e gradient terms and 

the method of analysis of the preceding section goes through without 

any modifications. The results for c and the growth rate for the 
r 

case with infinitely deep third layer are shown in Table 4 as a func-

tion of E'= P3/P2 for a wave number kW = 1.5 and U2 = 40 m/sec. It 

is seen from this that when E' is less than about 0.9, there does not 

appear to be much effect of the third layer on the stability character. 

However, when E' = 0.98, one of the two unstable pairs has disappeared 

and we now have only one unstable normal mode. This mode propagates 

with a phase speed closer to the speed of the upper layer. The 

mechanism of instability may be shown to be still the same as before. 

The presence of the upper layer has a slight tendency to reduce the 

stability. 

Continuing with the effects of upper layers on the stability, let 

us now consider the effect of increasing the depth of the upper layer 
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Table 4. Effect of increasing depth of second layer or adding a third 

layer of infinite depth. U3 = U2, E - P3/P2. Values of the para­

meters k = 1.5/500km, W = 500 km, E = .98, ul = 10 m/sec, ~2 

40 m/sec, Dl = 5 km 

.. -
E = 0 D2 = 5 

.. 
D2 c l/kc. E c l/kc. r 1 r 1 

5 35.2 + 1.42 0 35.2 + 1.42 - -

14.8 + 1.40 14.8 + 1.40 

6 35.6 + 1.56 .9 35.3 + 1.44 -
11.9 + 4.37 16.3 + 1.56 - -

10 36.2 + 2.40 .98 35.5 + 1.58 - -

15 36.5 + 43. .99 35.7 + 1.77 - -

20 stable 1.0 stable 
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Figure 3. Structures of the two unstable modes in terms of hI in 
the primary instability region. 
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while keeping the lower layer depth the same as before. The results 

of this are also given in Table 4. As one would expect from elemen-

tary re.asoning, the increase in the depth of the upper layer tends to 

stabili.ze the configuration. It may also be noticed that once the 

uniform depths Dl and D2 are quite different, one of the unstable 

modes is eliminated. 

We next consider the effect of different depths on the 

stability. Table 5 shows these results. It is clear from this table 

that instability is initiated at a smaller value of the shear (U2 -

Ul) if Dl is small. Further, the region of stability that is ob-

tained in Table 2 for higher values of shear is decreased for Dl = 4 km 

and altogether disappeares for Dl = 3 km. As before, the presence of 

a third layer of different density or making DI/D2 f 1, eliminates one 

of the two unstable pairs. 

The structures of the unstable modes are shown in Figures 3 and 

4. The top picture in Figure 3 corresponds to the mode which is 

- -eliminated by having either a third layer or an unequal Dl and D2' 

The bottom picture in Figure 3 shows the height distribution for the 

mode with its phase speed closer to the upper layer speed. It shows 

that development takes place closer to the y = 0 boundarY or the low 

levels. Figure 4 shows the structure of the unstable normal mode at 

u2 = 47.5 m.sec. 

5. Other cases of mixed-mode instability. 

In this section we will compare the two-fluid system with 

lateral boundaries with simpler systems for which exact solutions 

exist. For that purpose we write first the linearized equations (3.2)-

(3.4) in terms of a stream-function and flow potential (\V = 9X - [V~J) 
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Table 5. Effect of different uniform depths for the case of kW = 1.5, 

U1 = 10 m/see, E = 0.98. Given in the table are e and l/ke .. 
r 1 

u2-u1 

17.5 stable stable stable 

20.0 stable stable 13.5(±- 1.95) 

26.7(± 2.26) 

22.5 stable l1.l(± 7.29) l6.1(± 1.37) 

31. 7(±10 .20) 26.5 (± 1.44) 

25. stable 14 .0 (± 1. 59 ) Max U2-U1 =23.5 

31.l(± 1.68) 

27.5 34.8(:!::. 2.54) 16.3(:!: 1.36) 

l2.8(± 2.24) 31.3(± 1.38) 

29. l8.l(± 2.00) 

31.0(± 1.96) 

30. 35.2(± 1.42) stable 

14 .8 (± 1. 40) 

31. 25.6(± 0.78) 

Max. (\12 - \11) 31.3 m/sec 

32.5 35.4(± 1.52) 

17.2 (± 1.56) 

33.5 35.3(± 2.21) 

l8.3(± 2.46) 

35 stable 

35.5 27 .9(± 3.09) 

36.5 28.4(± 0.72) 

37.5 28.9(± 0.53) 

Max.(u2-Ul) = 39.2 m/see 
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and form the divergence and vorticity equations 
222 2 

(d + ik~.) V X. - fV ~. + gV H} + gyV H2 = 0 
at J J J J 

(5.1) 

d 2 2 

(at + ik~.) V ~. + fV Xj 0 
J J 

(5.2) 

d • _. 2 ax 
(at + 1kuj )Hj + ik~.fI¥. + h. V Xj +;-f~=O 

J J J j ay 
(5.3) 

where we have assumed periodicity in x as in (3.1) and therefore 
2 2 2 2 

~. 1J.'.(y,t), x. = X.(y,t), and V = -k + a lay. 
J J J J 

Let us first consider the simplified system where h = D = con-

stant and the non-geostrophic advection (the last term) in the last 

equation is negligible. 

a -- - 2 
(~ + iku.)H. + ika.f~. + Dj V X

J
' = 0 

at J J J J 
(5.3b) 

The system allows for trigonometric or periodic solutions in y, such 
222 

that the operator V becomes simply -(k + ~ ) where ~ is the y-wave 

number. Except for the first term of (5.1) the equations are those of 

the familiar quasi-geostrophic system. 
./' .. c, 

However, the equations allow 

for internal and external gravitational modes in addition to the ro-

tationa1 modes, and therefore we have here a possibility for the mixed 

mode instability to occur. Indeed this type of instability is found 

at the short end of the wavelength spectrum (Simons and Rao, 1970). If 

the gravity modes are filtered out. eg., by the quasi-geostrophic 

approxima.tion, then short waves are always stab1e--the equivalent of 

the short wave cut off in the Eady (1949) model. This cut-off takes 

place at wavelengths of the order of 1000-2000 km, depending on the 

y-wave number Q,. On the other hand, if the rotational modes are 

filtered out by setting f = 0 we can only have the Kelvin-Helmholtz 

type instability which occurs only at very short wavelengths, at least 
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* for the shears here considered. The non filtered system (5.1), (5.2), 

and (5.3b), however, often produces two pairs of complex roots in the 

region between the Helmholtz-and the geostrophic instability. The 

wave speed of the first pair is close to the mean zonal velocity of the 

lower layer and the second pair moves with nearly the upper layer mean 

speed. Their growth rates tend to be almost equal, and the e-folding 

times are in many cases less than one day. The mixed mode instabilities 

occur in patches in a shear-wavelength diagram and disappear if we go 

to higher or lower wave number or higher or lower shear. The y-wave 

number has only a slight influence on these short waves (below 1000km) 

but the required shear is of the order of 30 m/sec which can only be 

reached for channel widths less than about 650 km if the interface is 

not to touch the ground or the free surface (assuming Dl = D2 = 5km.). 

It has been suggested in the meteorological literature (Phillips, 

1964) that the non-geostrophic effect represented by the ratE~ of change 

of divergence in (5.1) may not be the most important one, and that 

y-dependent terms such as the last term of (5.3) should also be re-

tained. Although the simplified system (5.1), (5.2), (5.3b), does 

indeed produce the above discussed mixed-mode instability for the 

geostrophically-stable shorter wavelengths, the system seems to allow 

for only one pair of unstable roots for longer wave lengths, and this 

instability is quite similar to that obtained from the geostrophic 

* It turns out that the Kelvin-Helmholtz instability for a two-fluid 
system with a free surface is quite different from what one obtains 
in the case of the classical two-infinite fluid system or in the case 
of a two fluid system bounded at top and bottom by rigid boundaries. 
This is described elsewhere (Simons and Rao 1970). 
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equations. We have therefore investigated the effects of the non-

geostrophic terms in (5.3) in some more detail, in particular at the 

short wave end of the quasi-geostrophic instability region. 

Choosing as before E = .98, D1 = D2 = 5 km, we find that quasi­

geostrophic instability can only occur for~k2 + /: 5 x lC)~;-l Consid-

ering no~y a wavelength of 2100 km (k = 1.5/500 km) we see that this 

wave is geostrophically stable in the 500 km channel (as are all wave-

lengths) while the wave becomes just unstable in a 1000-km channel and 

is well in the unstable part of the spectrum for a 2000 km channel. 

The condition that the interface should not touch the ground nor the 
_ _1 

free surface requires that the shear 
_1 

be less than 3920 D/W m.sec. 

Assuming again u1 = 10 m.sec we have the conditions u2 
_ _1 _ 

for W 500 km, u2 < 29.6 m.sec for W = 1000km and U2 < 

_1 
< 49.2 m.sec 

_1 
19.8 m.sec 

for W :2000 km. The first column of table 6 shows the quasi-geostro-

phic instabilities for these channel widths and for a few vertical 

shears. The second column shows the solution of the simplified system 

with (5 • .3) replaced by (5.3b). No mixed-mode instability occurs for 

these values of the basic parameters. 

At first glance it would seem as if the approximation (5.3b) is 

not necessary to obtain an exact solution. If we only treat h as 

a constant in (5.3), the system allows for an exact periodic solution 

in y. In the meteorological literature a similar approach has been 

followed in solving the non-geostrophic Eady problem. It follows 

immediately from the character of the coefficient matrix that such an 

approach can only produce complex wave speeds. Actual computations 

show that generally the external gravity modes (with wave speeds over 

300 m/sec) show the largest growth rates. ·From physical considerations 
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Table 6 Comparison of channel solutions with exact solutions 

L = 2095 km (k = 1.5/500 km), E = .98, Dl = D2 = 5 km, ~l = 10 m/sec. 

A: exact quasi-geostrophic solution for the channel 

B: exact solution of system (5.1), (5.2), and (5.3b) periodic in y, 
1T 

for 2W 

C: Channel solution for system (5.1-3) for h = D = constant 

D: Channel solution for system (5.1-3) (C and D are spectral solutions) 

c given without parentheses and e-fo1ding time i/kc. given within 
r 1 

parentheses. 

w u? A B C D 

500km 40.0 stable stable stable 14.8 (±1.40) 

35.2 (±1.42) 

49.0 stable stable 16.8 (±.87) 

42.1 (±.87) 
29.6 (± .41) 

1000km 20.0 14.9 (±4.74) 14.9 (±4.70) 14.9 (±6.85) 14.9 (±4.69) 

29.0 19.4 (±2.41) 19.4 (±2.32) stable 13.9 (±2.19) 

25.7 (±2.59) 

2000km 5.0 12.4 (±2.98) 12.4 (+2.97) 12.4 (±11.66) 12.4 (±.6 .37) 

* (±10.53) 12.4 (±10.58) 12.4 12.4 (± 2.97) 12.4 (±3.20) 

~9.5 14.6 (+1.56) 14.6 (+1.54) 14.7 (±7.05) 15.5 (±2.27) 
- * 

(±4.98) 14.7 (±4.53) 14.7 14.6 (±1.54) 13.6 (±2. 37) 

* exact solutions for second harmonic, ie., for W = 1000km 
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we may discard this instability as spurious. We have, therefore, 

solved the particular system (5.1-3) with h = D = constant for the 

channel, using the spectral technique. The results are shown in 

column C of table 6. Comparison with column B indicates that the last 

term of (5.3) could be important for higher shears and small channel 

widths. The two pairs of unstable roots for W = 2000km simply reflect 

the fac,t that the spectral solution also includes the geostrophically 

unstable wave corresponding to W = lOOOkm. 

The last column of table 6 presents the spectral solution of the 

complete system (5.1-3) which is equivalent to system (3.2-5). It is 

seen that the mixed-mode instability slowly changes to the quasi-

geostrophic instability as the channel width increases. Nevertheless 

another type of mixing seem to occur between the two pairs of unstable 

geostrophic modes for W = 2000, U2 
-1 

19.5 m.sec. This is suggested by 

comparison of these roots with the corresponding ones in column C. It 

can be verified that no gravitational modes are involved here, since 

the gravity waves can be traced to be stable. In general comparing 

the two last columns of table 6, which only differ in that h is treat-

ed as a constant or a function of y, we must conclude that the varia-

tion of h in (5.3) tends to favor the occurrence of mixed mode 

ins tab ili ty • 

6. Summary and Conclusions 

The problem of non-geostrophic instability of a two-fluid system 

in a channel has been considered. It was shown that the primary in-

stability in this model is realised as a result of an interaction be-

tween a gravitational and rotational mode. It is possible to obtain 
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