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ABSTRACT OF DISSERTATION 

 

ISOLATION AND CHARACTERIZATION OF DENGUE VIRUS MEMBRANE-

ASSOCIATED REPLICATION COMPLEXES FROM AEDES AEGYPTI 

 

 Ultrastructural studies of flavivirus replication have long observed proliferation of 

host membranes.  Membrane-bound replication compartments have recently been isolated 

and characterized from flavivirus-infected mammalian cells, providing insight into the 

morphology, organelle of origin, and protein components of the flavivirus membrane-

associated replication complex.  Our laboratory has proposed that a balance exists 

between dengue virus (DENV) replication in Aedes aegypti and the mosquito’s RNA 

interference (RNAi) based antiviral response.  Here, we have isolated and characterized 

membrane-bound replication compartments from mosquito cell culture and Ae. aegypti to 

evaluate the role that these membranes may play in shielding DENV double-stranded 

RNA (dsRNA) from RNAi.  

 Membrane isolation techniques and immunofluorescent staining techniques for 

dsRNA identification were developed to isolate and characterize membrane-associated 

replication complexes in DENV-infected mosquito cell culture and Ae. aegypti.  Here we 

show that double-membrane vesicles arise from the endoplasmic reticulum (ER) and are 

associated with DENV dsRNA in mosquitoes.  These data suggest that DENV dsRNA 

replicative intermediates may be shielded from the RNAi response in the mosquito. 
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 DENV membrane-associated replication complexes were characterized in 

mosquito cell culture and Ae. aegypti using immunofluorescent staining for dsRNA, 

confocal microscopy, sucrose gradient cellular fractionation, and electron microscopy.  In 

addition, we compared immunofluorescent staining for dsRNA between DENV and 

Sindbis virus (SINV).  We also evaluated replication of DENV mutants in the DENV-

resistant transgenic mosquito strain known as Carb77 and whether mutations in DENV 

genome sequence lead to evasion of the enhanced RNAi response of Carb77 mosquitoes.  

This is the first isolation of membrane-associated replication complexes and first 

characterization of dsRNA staining from DENV-infected mosquito cell culture and Ae. 

aegypti, providing knowledge which can be used to develop improved RNAi-based 

control strategies for DENV in mosquitoes. 
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Introduction 

In modern times, dengue is a major re-emerging disease that afflicts 50-100 

million individuals with 22,000 deaths annually (NIAID, 2008).  In spite of the 

importance of dengue disease, we still have many gaps in our knowledge of dengue 

viruses.  We, as researchers, still have much work to do to develop safe and efficacious 

vaccines, animal models, promote and enforce control measures, and promote sharing of 

clinical and epidemiological observations to prevent disease transmission (CDC, 2008; 

Halstead, 2008; NIAID, 2008).  In spite of the many researchers working on these goals, 

there are still many basic research questions to be answered regarding all aspects of 

dengue disease.  Our laboratory is focused on understanding the interaction between 

dengue virus (DENV) and the mosquito host at the molecular level.  In this pursuit, we 

study the mosquito’s most important antiviral response to DENV infection, RNA 

interference (RNAi).   

In the past, research in our laboratory has shown that mosquitoes have a robust 

RNAi response and that suppression of the RNAi response leads to increased replication 

of arboviruses in the mosquito host (Keene et al., 2004; Sanchez-Vargas et al., 2004).  

More recent research suggests that there is a fine balance between replication of DENV 

and the antiviral RNAi response in Aedes aegypti mosquitoes (Sanchez-Vargas et al., 

2009).  In an effort to further understand how this balance between DENV replication 

and mosquito immunity is maintained, the goal of this project is to evaluate mechanisms 

by which DENV is able to evade the RNAi response.   
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DENV Taxonomy 

DENV is a member of the taxonomic family Flaviviridae, genus Flavivirus.  

Flaviviridae includes other pathogenic mosquito borne viruses: yellow fever 

virus (YFV), West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Japanese 

encephalitis virus (JEV).  There are four serotypes of DENV, each of which likely 

emerged separately from the sylvatic cycle (Vasilakis and Weaver, 2008).   Although the 

four serotypes of DENV could be considered different viruses based on 62-67% amino 

acid homology, the differences between the viruses were originally based on serologic 

analysis and the viruses were assigned to the same antigenic complex and deemed 

different serotypes instead of different viruses (Calisher et al., 1989; Kyle and Harris, 

2008). 

 

DENV replication 

DENV has a positive sense genome with a 5’ 7-methylguanosine cap and no 

polyadenylic acid.  DENV replicates in a variety of cells in the human host including 

monocytes, hepatocytes, and dendritic cells (DCs), which the virus enters via receptor-

mediated endocytosis through interaction with possible receptors including CD4,  DC-

SIGN, mannose receptor, and possibly integrins (Bartenschlager and Miller, 2008)  Once 

inside the endosome, the envelope (E) protein trimerizes due to conformational changes 

mediated by the acidic environment, causing fusion between the virion envelope and 

cellular membranes (Modis et al., 2004).  The viral genome is uncoated and released into 

the cytoplasm.  As the genome is translated, the viral polyprotein is co- and post-

translationally cleaved by cellular proteases and NS2B/NS3 (Figures 1.1 & 1.2).  The 
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replication complex consisting of the RNA-dependent RNA polymerase (RdRp) NS5, 

other NS proteins, positive strand RNA, and probably host cellular factors associates with 

the host cell rough endoplasmic reticulum (rER).  All flaviviruses including DENV have 

inverted complementary regions at the 3’ and 5’ ends and the genome circularizes during 

replication (You and Padmanabhan, 1999).  Replication occurs in association with 

membranes, and genomic length negative or antisense strand RNA is synthesized, then 

serves as a template for positive strand RNA synthesis. The positive or sense strand RNA 

when base-paired with the negative strand is called the replicative form (RF) (Uchil and 

Satchidanandam, 2003).  The RF serves as the template for positive RNA synthesis and 

this is called the replicative intermediate (RI).   As positive strand RNA is released from 

the RI it is either translated by ribosomes or packaged into virions in the rER.  The viral 

glycoproteins undergo maturation in the Golgi, becoming glycosylated, prM is cleaved 

by furin, and the E protein homodimerizes.  Finally, the mature virion exits the infected 

cell.   

       During DENV replication there are three points at which double-stranded viral RNA 

(dsRNA) has the potential to be exposed to the host immune response (Figure 1.2).  The 

first point at which DENV dsRNA is exposed occurs after the virion enters the cell and 

secondary structure of DENV genome produces regions of dsRNA.  Next dsRNA is 

produced as the anti-genome strand RNA is transcribed from the DENV genome and 

again as the anti-genome strand is used as a template to transcribe DENV genomes. If the 

viral RNA is recognized by the host at any of these points, the virus may need to combat 

the RNAi response to establish a productive infection. 
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Protein Roles     References 

Structural 

C  forms nucleocapsid with + RNA (Sangiambut et al., 2008) 

PrM  prevents fusion by E during   (Li et al., 2008b) 

  maturation 

E  virus-cell binding and fusion with (Nayak et al., 2009) 

  pH change   

 

Non-structural 

NS1  unknown, possible role in   (Chen et al., 2009) 

pathogenesis 

NS2a  anchors replication complex  (Mackenzie et al., 1998)  

  blocks IFN α/β   (Munoz-Jordan et al., 2003) 

NS2b  proteolytic processing   (Falgout et al., 1991) 

       (Amberg et al., 1994) 

NS3  proteolytic processing   (Falgout et al., 1991) 

       (Amberg et al., 1994)  

  enhances NS4b helicase  (Umareddy et al., 2006) 

  serine protease activity (NS2b   

cofactor) 

nucleotide triphosphatase 

NS4a  membrane rearrangement  (Miller et al., 2007) 

  anchors replication complex 

  block interferon α/β   (Munoz-Jordan et al., 2003) 

  interacts with NS1   (Lindenbach and Rice, 1999)  

NS4b  anchors replication complex  (Mackenzie et al., 1998) 

  blocks interferon α/β   (Munoz-Jordan et al., 2003) 

  colocalizes with NS3 and dsRNA (Puig-Basagoiti et al., 2007) 

NS5  viral RdRp    (Yap et al., 2007) 

  N-terminal methyltransferase  (Egloff et al., 2007) 

 

 

Figure 1.1 Dengue virus polyprotein 
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Figure 1.2 DENV replication: three points of vulnerability. During DENV replication, 

there are three points at which double-stranded viral RNA could be at risk for degradation 

by Dicer, 1 at initial uncoating the secondary structure of the genomic RNA forms 

dsRNA, 2 during replication production of the negative strand template of RNA from the 

positive or genomic strand of RNA, and 3 during production of the positive strand of 

RNA from the negative template. 
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DENV natural cycle 

 DENV is an arbovirus (arbo: arthropod borne) which has two transmission cycles.  

The urban cycle of DENV consists of virus transmission between humans by 

anthropophilic mosquitoes.  In the sylvatic cycle, DENV is transmitted between non-

human primates by Aedes species mosquitoes (Diallo et al., 2003).  Although humans are 

periodically infected by sylvatic strains of DENV, unlike many other arboviruses DENV 

does not require a sylvatic cycle for maintenance because of the high titer viremia, 10
5
–

10
6
 infectious units per ml)  that occurs in the human host (Cardosa et al., 2009; 

Whitehead et al., 2007).  This work will focus on the urban cycle of DENV.  

DENV exists in an urban cycle throughout the neotropics and a sylvatic cycle in 

Africa (de Thoisy et al., 2004).  The major vector of urban dengue is Aedes aegypti, an 

anthropophilic mosquito that has readily adapted to thrive in major urban areas 

throughout the tropics.  Ae. aegypti breed in or near houses and feed frequently and 

almost exclusively on humans, behavior which makes them quite effective disease 

vectors in densely populated urban areas (Getis et al., 2003; Harrington et al., 2001).  

Once infected with DENV, humans have a 5-7 day incubation period, then a high titer 

viremia develops and lasts up to 12 days (McBride and Bielefeldt-Ohmann, 2000).  

During this viremic period, mosquitoes feeding on an infected individual will most likely 

become infected unless the mosquito is resistant to virus infection and dissemination 

(Bennett et al., 2005; Bennett et al., 2002).  After an 8-12 day extrinsic incubation period 

(EIP), the mosquito is capable of infecting another human host and the cycle continues 

(Black et al., 2002).  In addition to DENV transmission by Ae. aegypti, Aedes albopictus 
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is a secondary vector for dengue and was spread from Southeast Asia around the world 

with tire shipments (Moore et al., 1988; Rudnick and Chan, 1965). 

 

History of dengue disease 

Dengue is a mosquito-borne, virally induced illness that was first described as 

early as 992 A.D. in China (Kyle and Harris, 2008).  Dengue disease existed as basic 

dengue fever until after World War II (WWII) (Snowden, 2008).  Not until the 1950s, 

with the possible exception of cases in Japan, were the more severe forms of dengue that 

we know as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) 

observed (Kuno, 2007; Kuno, 2009).  DHF and DSS will be discussed in more detail 

later. 

 

DENV resurgence  

 The Pan American Health Organization (PAHO) project to eradicate Aedes 

aegypti (1946-1970s) from the Americas using larval control and 

dichlorodiphenyltrichloroethane (DDT) had profoundly reduced dengue disease (Gubler, 

2005).   The success of the eradication campaign resulted in a disbandment of the 

program and government funding for vector control in the early 1970s (Gubler, 2005; 

Snowden, 2008).  Unfortunately, the abandonment of vector control programs led to the 

rebound of Ae. aegypti populations, and from 1970 to the early 1980s Ae. aegypti had re-

infested all of the countries from which it had been eradicated (Gubler, 1989).  This 

rebound of Ae. aegypti populations coincided with increased global population growth, 

travel, and trade, all which combined to cultivate the emergence and spread of severe 
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forms of dengue.  Movement of commercial goods and transport of viremic humans 

continues to spread both vectors and serotypes of DENV today (Kitchener et al., 2002 ; 

Moore et al., 1988; Shu et al., 2005). 

Post WWII, there has been a five hundred-fold increase in DHF and DSS cases, 

so now one-third of the worldwide population is at risk for dengue and the only available 

prevention method for dengue is mosquito control (Kyle and Harris, 2008; Rothman, 

2004).   There are no licensed vaccines or antiviral drugs for dengue.   Based on global 

warming predictions and the effects of temperature change and rainfall on vector 

populations, it is unlikely that dengue cases will diminish without our intervention 

(Vezzani and Carbajo, 2008).   

 

Dengue fever, dengue hemorrhagic fever, and dengue shock syndrome 

 There is a range of illness caused by infection by DENV from unapparent 

infection to severe shock and death.  Classic dengue fever (DF) consists of symptoms 

including retro-orbital pain, myalgia, arthralgia, and usually rash (CDC, 2003).  

According to the WHO, DHF cases are defined by fever, thrombocytopenia (reduced 

platelet count), hemorrhagic tendencies, and plasma leakage.  DSS cases have all of the 

symptoms of DHF plus weak pulse, low blood pressure, clammy skin, and confusion 

(WHO, 2008). 

 

Severe disease: antibody-mediated or determined by virus genotype? 

 There are two major theories as to the cause of the more severe forms of dengue, 

DHF and DSS: antibody-dependent enhancement and strain specific virulence.  The 
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antibody-dependent enhancement (ADE) theory is based on observations that secondary 

dengue infections are associated with increased severity of disease.  An epidemiologic 

study of occurance of DHF in children admitted to hospitals in Thailand in the early 

1960s noted a bimodal distribution of DHF cases by age with the first peak before 1 year 

of age and again at 4 years of age (Halstead, 1970).     Based on serologic testing of the 

children in this study, Halstead et al. (1970) noted that presence of maternal antibody or 

secondary infections increased the risk of DHF.   From this data, Halstead et al. (1970) 

presented the hypothesis that antibodies from the initial infection are cross-reactive with a 

second DENV serotype but instead of neutralizing the infection, they aid infection of Fc 

receptor-bearing cells leading to higher titer viremia. This prediction was also supported 

by testing in cultured human monocytes and non-human primates (Halstead, 1979).  

Secondary dengue infection was also found to be a major risk-factor, especially if the 

infecting serotype in the second infection was DENV-2, for the development in DSS 

during a prospective study of DSS in Myanmar (Thein, 1997).   More recent research on 

T cells associated with dengue infection modifies the ADE hypothesis slightly.  A 

synergistic effect caused by the interaction interferon gamma (IFN γ), interferon alpha 

(IFN α), and activation of complement causes a “cytokine storm” which creates the 

capillary leakage which leads to DHF (Rothman and Ennis, 1999).  Another group of 

researchers found that cross-reactive memory T cells from primary dengue infection 

dominate the response to a secondary infection and they determined that magnitude of the 

T cell response correlated with dengue disease severity and DHF (Mongkolsapaya et al., 

2003). 
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 The virulence theory points out that not all of the predictions of ADE are 

supported by epidemiological evidence and that severe infections could also be explained 

by the introduction of more virulent strains of DENV (Rosen, 1977).  Research 

evaluating the displacement of DF-causing viruses by DHF-causing viruses, have found 

that Southeast Asian (SEA) virus strains grow to higher titers in mosquito midguts and 

SEA virus strains have a shorter extrinsic incubation period (EIP) both which explain 

how these virus strains are replacing less virulent strains (Anderson and Rico-Hesse, 

2006; Armstrong and Rico-Hesse, 2001; Armstrong and Rico-Hesse, 2003; Cologna et 

al., 2005). There continue to be new cases to support the virulence theory as evidenced by 

the sudden occurance of DHF and DSS cases associated with new genotypes of DENV 

being introduced into Sri Lanka, or Central America, Peru, Mexico, Cuba, etc. (Messer et 

al., 2003). 

 Although there is much data to support both the ADE and virulence theories, there 

are also data that cannot be explained by the predictions of either theory alone.  In the 

case of ADE, the prediction of higher titer viremia in secondary infections is not always 

correct (Rothman and Ennis, 1999).  Researchers who modeled dengue outbreaks based 

on the assumptions of ADE or virulence found that neither theory alone predicts actual 

case data, and that seasonal variation in vector distribution and short-lived cross-reactive 

immunity better predict dengue cases (Wearing and Rohani, 2006).  It seems the real 

mechanism of severe disease is complex and might involve both the ADE and virulence 

theories, as neither theory can explain every outbreak of severe disease. 
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Cost of dengue disease 

  In addition to being the primary cause of pediatric morbidity and mortality in 

many countries, dengue is a costly disease in terms of missed schooling and work days 

(Gubler, 1998).  A prospective study of eight countries in South and Central America and 

Asia estimated the costs in 2005 US dollars to be $514 per ambulatory case and $1,394 

per hospitalized case of dengue (Suaya et al., 2009).  Based on this calculation, the total 

cost of dengue for these countries was $1.8 billion.  On a global scale, the cost of dengue 

is several billion dollars per year.  A study to determine the cost of a dengue vaccine in 

1999 US dollars found that vaccination costs would be $150/1000 members of the total 

population but the net cost would be US $17/1000 if the savings in healthcare costs were 

taken into account (Shepard et al., 2004).  Research leading to the reduction in the 

number of worldwide dengue cases will have a huge impact on the economic well-being 

of dengue endemic countries. 

 

Vaccine 

 Currently there are no licensed dengue vaccines available.  There are unique 

difficulties in the production of a dengue vaccine because of the concerns about antibody-

dependent enhancement and increased severity of secondary infections.  Immune 

response to heterologous dengue antigens has the potential to tilt the balance of immunity 

from protection to immunopathology (Huisman et al., 2009; Rothman, 2004).  A 

successful dengue vaccine will need to meet many requirements: to produce balanced 

immunity to all four serotypes, to cause minimal vaccine-induced illness, to provide 

lifelong protection, and be economically feasible (Whitehead et al., 2007).  In spite of the  
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Figure 1.3 Opportunities to disrupt the dengue host-pathogen cycle.  Researchers are 

looking to disrupt the dengue cycle at all points: 1 by preventing mosquito infection with 

transgenic mosquitoes or release of insects carrying a dominant lethal (RIDL), 2 

preventing human infection with dengue vaccine, 3 preventing survival of bloodfed 

mosquitoes with mosquitocidal vaccines, 4 limiting chance of mosquito infection with 

antiviral drugs to decrease titer and duration of viremia and, 5 source reduction and 

mosquitocidal bacteria to minimize vectors. 
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barriers to control discussed, researchers are pursuing opportunities to disrupt the 

pathogen at every stage of the cycle (Figure 1.3).  

 

Insect immunity 

 Insects have several layers of protection from pathogens.  The first line of defense 

is passive, consisting of structural defenses such as the exoskeleton, chitin lining of the  

trachea, and peritrophic matrix to protect the midgut (Dimopoulos, 2003).  The next layer 

of immunity is a rapid response to pathogen threats that is the insect correllary to the 

vertebrate innate immune system.  Much of our knowledge of insect immunity is based 

on research on Drosophila innate immune response, which identified the Toll receptor  

and immunodeficiency (Imd) intracellular signaling pathways (Barillas-Mury et al., 

2000).  The Toll pathway responds to gram positive bacteria and fungi while the Imd 

pathway responds to gram negative bacteria.   

The first step in an insect’s response to a pathogen involves recognition of 

pathogen associated molecular patterns (PAMPs) by an insect’s pathogen recognition 

receptor (PRR).  Different pathogens have different PAMPs as in the following 

examples: gram negative bacteria have lipopolysaccharides, gram positive bacteria have 

teichoic acids, viruses have dsRNA, and yeasts have mannans.  Upon recognition of a 

bacterial PAMP, immune organs including the fatbody, midgut, and salivary glands 

synthesize antimicrobial peptides.  In mosquitoes, these antimicrobial peptides are 

defensins for gram positive bacteria and cecropins for both gram negative and positive 

bacteria (Levashina, 2004).  In addition to the Toll and Imd pathways, insects have a 

melanization reponse which is mediated by phenyloxidases and occurs within the first 
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twenty-four hours to filarial worms and Plasmodium (Ho et al., 1982; Paskewitz et al., 

1988; Sidjanski et al., 1997).  There are variations between different insects in 

antimicrobial peptide concentrations, how specific proteins are used, and exactly how 

immune response is extended (Dong et al., 2006; Kurtz, 2004).  The success of insects in 

exploiting a wide variety of ecological niches has been attributed to this rapid innate 

response (Lowenberger, 2001). 

Insects have long been said to lack an acquired immune or “memory” response; 

however, this concept is being revisited based on evidence that the invertebrate innate 

response may have a type of memory (Kurtz, 2004).   Research over the last decade on 

autophagy and RNA interference (RNAi) may now be considered to be part of the insect 

response to viral infection.  Autophagy has recently been suggested as an antiviral 

mechanism in insects (Shelly et al., 2009).   However, the validity of the insect-virus 

pairing of Drosophila and vescicular stomatitis virus (VSV) used to test his theory is 

questionable, as it is unlikely that Drosophila would encounter and support VSV 

infection in nature.  The support for RNAi as an antiviral immune response is much more 

robust.  Researchers have repeatedly demonstrated that RNAi in mosquitoes aids in virus 

control (Adelman et al., 2002; Campbell et al., 2008; Keene et al., 2004; Sanchez-Vargas 

et al., 2009)   

The seeming thoroughness of insect immune response begs the question, how do 

pathogens survive to transmissible levels in vector insects?  Malaria and,  more recently, 

DENV researchers have suggested that there is a fine balance between host vector and 

pathogen, which maintains the lowest possible parasite or virus load that permits 
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pathogen transmission (Cirimotich et al., 2009; Dimopoulos, 2003; Myles et al., 2008; 

Sanchez-Vargas et al., 2009). 

 

Host reactions to dsRNA 

 DsRNA can occur naturally from heterogeneous nuclear riboprotein particles 

(hnRNPs) which arise from aberrant bidirectional transcription and complementary 

transcripts in prokaryotic and eukaryotic cells (Kumar and Carmichael, 1998).  However, 

dsRNA is typically recognized as a threat by host cells because it is associated with viral 

infection.  Viruses that have DNA or RNA genomes both produce dsRNA during 

replication or expression of their genomes.  There are a variety of host defense responses 

to dsRNA including: the interferon pathway (IFN), 2’5’ oligoadenylate synthestase 

pathway (2’5’ OAS), RNA dependent protein kinase pathway (PKR) and RNA silencing.  

Since we are interested in the interaction between the virus and the mosquito host, and 

only the RNA silencing pathway exists in mosquitoes, we will focus on RNA silencing. 

 

History of RNA silencing 

 RNA silencing was first observed by researchers who overexpressed chalcone 

synthase (CHS), an enzyme that produces flavonoids, in an attempt to intensify the color 

of a petunia flower.  Unexpectedly, the petunia flowers were white and the reversible 

phenomenon was associated with a 50-fold decrease in CHS mRNA expression by an 

unknown mechanism (Napoli et al., 1990).  Caenorhabditis elegans researchers also 

observed anomalous results during an attempt to express RNA homologous to a C. 

elegans gene.  The resulting phenotype resembled that of a null mutation (Fire et al., 
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1991).  More detailed experimentation revealed that this phenomenon was dsRNA-

mediated, gene specific, and likely catalytic in origin because the signal seemed to 

amplify and the signal appeared to travel (Fire et al., 1998).  Now these two phenomena, 

post-transcriptional gene silencing (PTGS) in plants and RNA interference in C. elegans, 

are considered to be related mechanisms that are known as RNA silencing (Ding et al., 

2004). 

 

 

General mechanism of RNA silencing 

 There is a wealth of research on RNA silencing but for the purpose of 

understanding the mosquito, we will focus on the si- and miRNA producing pathways.  

RNA silencing is triggered by double-stranded RNA (dsRNA) from sources including 

hairpin transcripts, virus replicative intermediates, and transposable element transcripts.  

DsRNA is recognized by a RNase III family protein called Dicer that contains a dsRNA 

binding domain (dsRBD).   Dicer cleaves long dsRNA into smaller duplex RNAs known 

as small interfering RNAs (siRNAs).  Next, Argonaute cleaves one strand of the duplex 

si/miRNA.  The remaining strand, known as the guide strand, is incorporated into an 

RNA induced silencing complex (RISC) that contains both Dicer and Argonaute.  The 

guide strand binds to messenger RNAs (mRNAs) with complementary sequence and 

Argonaute cleaves the transcript, leading to specific silencing (Figure 1.4). 

 



18 

 

 
 

Figure 1.4 RNA silencing: 1 miRNA and 2 siRNA pathways 
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Details of RNA interference 

 RNA silencing is effective in plant, mammalian, insect, and tick cells (Garcia et 

al., 2006; Li and Ding, 2006).  Several possible outcomes of RNA silencing in insects 

have been discovered in Drosophila: chromatin modification, mRNA cleavage and 

translational repression (Meister and Tuschl, 2004).  However, since we are focusing on 

si- and miRNA pathways, we will only be discussing the mRNA cleavage outcome of 

RNA silencing.  Dicer-1 generates miRNAs from hairpin precursor RNAs known as pri-

mRNAs, and Dicer-2 generates siRNAs from long dsRNAs (Lee et al., 2004).  These si- 

and miRNAs have characteristic ends consisting of a 5’ phosphate and a 2 nucleotide 3’ 

overhang (Elbashir et al., 2001; Nykanen et al., 2001).  A protein called R2D2 guides the 

passage of small RNAs in combination with Dicer to RISC (Liu et al., 2003).  Analysis of 

siRNAs in plants found siRNAs that could not be derived directly from input RNA.  

These secondary siRNAs also had a 5’ to 3’ orientation on the antisense strand suggesting 

that they had been primed by existing siRNAs and amplified by RdRp activity (Sijen et 

al., 2001).  Plants possess RdRp genes but no homologous RdRp genes are found in 

insects. There are some data that suggest that siRNAs may be able to travel between cells 

in mosquito cell culture but whether this occurs in mosquito tissues is still unknown 

(Attarzadeh-Yazdi et al., 2009).  

 

RNAi is an antiviral response  

  Dicer-2 mutant Drosophila have increased susceptibility to viral infection but not 

to bacteria or fungi, indicating that the RNAi pathway is a virus-specific mechanism  
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(Galiana-Arnoux et al., 2006).  There is some debate as to whether RNAi also could be 

an antiviral response in mammalian cells (Bennasser et al., 2005; Schutz and Sarnow, 

2006).  It seems unlikely that the mammalian RNAi response is active against viruses 

naturally, as this would make the IFN response redundant, unless this is another example 

of redundancy in biological pathways.  

 There is evidence for a strand-specific bias in the RNAi response to virus 

infection in plants, suggesting that the major trigger for RNAi is secondary structure in 

ssRNA (Molnar et al., 2005; Szittya et al., 2002).  However, it does not appear that this 

pattern of bias holds true for flaviviruses, and so far, in the case of DENV it appears that 

both strands are represented among siRNAs while reports on alphaviruses indicate a 

positive strand bias (Brackney et al., 2009; Campbell et al., 2008; Myles et al., 2008; 

Sanchez-Vargas et al., 2009; Scott, 2009).  Recent evidence indicates that certain regions 

of the West Nile virus (WNV) genome that are highly targeted by the mosquito RNAi 

response are more likely to mutate (Brackney et al., 2009).  Since the RNAi response is 

highly sequence specific, point mutations like those observed in the WNV study could be 

sufficient to evade the RNAi response. 

 

Virus versus host: viral suppressors of RNAi 

 Suppressors of RNA interference or RNA silencing have been discovered for 

many plant and insect pathogenic viruses (Table 1.1).  Many suppressors were originally 

identified as determinants of pathogenicity or host range (Qu and Morris, 2005).  Many 

of the originally discovered suppressors were found in plants using Agrobacterium 

tumefaciens.  Since the Agrobacterium method is rather complicated, requiring the 
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Table 1.1: Well-known virus-encoded suppressors of RNA silencing  

 

 

Host  Protein  Virus          Mechanism of    References 

organisms      suppression   

Plant HC-Pro potyvirus  inhibits Dicer processing   (Yelina et al., 2002) 

 2b  cucumoviruses inhibits Ago1 cleavage   (Zhang et al., 2006)  

 p19  tombusvirus  direct binding of siRNAs   (Koukiekolo et al., 2007) 

 p25  potato virus X  inhibits accumulation of 24 nt RNAs  (Bayne et al., 2005) 

 

Animal B2  Flock House virus prevents dsRNA processing by binding (Lingel et al., 2005) 

      dsRNA 
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creation of transgenic plants, several other methods have been developed by researchers 

interested in viral suppressor activity in insects (Takeda et al., 2002).  Drosophila S2 

cells can be used to evaluate suppressors by transfecting the cells with green fluorescent 

protein (gfp) or gfp-suppressor fusion construct.  One day post transfection with gfp, 

dsRNA to gfp is introduced.  If gfp is still expressed, the construct contains an active 

suppressor; if gfp is knocked down then no suppressor is present (Li et al., 2004).  More 

recently, a tick cell assay has been developed in which tick cells are infected with a 

Semliki Forest virus (SFV) replicon that expresses firefly luciferase.  Normally, the SFV 

replicon will induce RNAi because dsRNA is produced during replication (Garcia, 2005).  

To test potential RNAi silencers, plasmids containing potential RNAi silencers are 

expressed in cells infected with the SFV replicon containing luciferase, and luciferase 

expression level is monitored.  Suppressors will cause an increase in luciferase levels by 

inhibiting RNAi which is triggered by the replicon (Garcia et al., 2006).  In addition to 

the cell culture assays, a strain of Ae. aegypti mosquitoes has been developed that can be 

used to evaluate potential arbovirus suppressors of RNAi (Adelman et al., 2008). 

 Some suppressors of RNA interference, or silencing, have been shown to have 

broad activity in both plants and vertebrate animals and insects (Cirimotich et al., 2009; 

Li and Ding, 2006; Myles et al., 2008; Scott, 2009).  Research on dsRNA binding 

proteins (dsRBPs) suggests that this broad spectrum suppressor activity may be a 

characteristic of any protein with RBP domains simply because they inhibit access to the 

RNA (Lichner et al., 2003).  Suppressors play a crucial role in the interaction of the host 

immune response with viruses, shifting the balance to allow establishment of a systemic 
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infection (Vance and Vaucheret, 2001).  When viruses lose their suppressor proteins, 

viral infectivity is poor (Galiana-Arnoux et al., 2006). 

 LaCrosse virus NSs protein has been shown to be a suppressor of RNAi in 

mammalian cells, but no evidence of suppressor activity was observed in mosquito cells 

(Blakqori et al., 2007; Soldan et al., 2005).  It could be argued that arboviruses may have 

no need for suppressors of RNAi if their replicative intermediates are shielded from the 

RNAi machinery. 

 

Other methods of evading RNAi 

 In addition to encoding suppressors that block steps of the RNAi pathway, RNA 

viruses have other methods of evading RNAi, specifically sequestering their RNA so that 

it is inaccessible to host anti-dsRNA responses.   RNA of rabies virus and vesicular 

stomatitis virus (indeed, all negative strand RNA viruses) associate very tightly with their 

nucleoproteins during replication.  Structural analysis of these nucleoprotein-RNA 

complexes has shown that two lobes or domains of the N protein clamp so tightly around 

the RNA that a conformational change in the protein would be required to gain access to 

the RNA (Figure 1.5)  (Albertini et al., 2006; Green et al., 2006).  Albertini et al. (2006) 

suggest that this nucleoprotein-RNA complex exists to protect viral RNA from the innate 

immune response in human cells.  Additionally, an arbovirus with a negative-sense 

genome, La Crosse virus (LACV), is known to replicate in tight association with its 

nucleocapsid (Knipe, 2005).  Researchers surveying dsRNA in virus-infected cells via 

immunofluorescent assay with a dsRNA antibody could not detect dsRNA in mammalian  
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Figure 1.5  Structure of the nucleoprotein-RNA complex in A. vesicular stomatitus 

virus, RNA in yellow (Green et al., 2006) and B. rabies virus, RNA in black (Albertini et 

al., 2006) 
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cells actively replicating LACV; dsRNA is not produced during LACV replication 

(Weber et al., 2006). 

During positive-sense RNA arboviral replication, dsRNA intermediates are 

formed that should trigger RNAi.  However, in spite of the existence of a robust RNAi 

system in mosquitoes, arboviruses are still able to replicate to transmissible titers in  

mosquitoes (Sanchez-Vargas et al., 2004).  Flavivirus replication complexes have been 

shown to be sequestered in membrane-bound compartments in mammalian cells  

(Uchil and Satchidanandam, 2003).  Similar sequestration of dsRNA in replication 

compartments could potentially allow dengue virus to evade RNAi in mosquito cells. 

 

Viral replication-associated membranes: co-opting existing cellular pathways 

 Viruses are completely dependent on their host cells for replication.  Cells have 

two major directional transport pathways that involve membrane rearrangement: 

endocytosis to bring in required nutrients and exocytosis to remove waste materials.  In 

addition to these methods of cellular transport, there are additional cellular processes 

leading to membrane rearrangement, autophagy, and the unfolded protein response 

(UPR) that could be the source of virus-induced membrane rearrangement (Figure 1.6).  

Both RNA and DNA viruses benefit from or even co-opt these existing cellular pathways 

to increase replication.  Autophagy is a cellular process of degradation that allows cells to 

reallocate nutrient resources by engulfing and degrading surplus proteins or organelles 

during starvation or growth.  Autophagy was first observed as a phenomenon occurring in 

rapidly growing cells (De Duve and Wattiaux, 1966).  Autophagy can also be triggered 

by cellular stressors such as nutrient deprivation, which results in the formation of a  
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Figure 1.6 Generalized membrane-associated cellular pathways A endosome brings 

in particles, fuses with the lysosome, particles are digested then exocytosed B autophagy 

is induced by a stress signal inducing double membrane formation around proteins or 

organelles, then the double membrane vesicle fuses with lysosome C UPR is triggered by 

misfolded protein in the ER, IRE1/PERK/ATF6 inhibits mRNA translation 
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double-membraned vesicle of ER origin around organelles or proteins (Dunn, 1990a). 

This membrane fuses with the prelysosome, acidifies, and fuses with the lysosome,  

serving to aid cellular survival in times of stress by minimizing the number of proteins 

and organelles that are not in active use (Dunn, 1990b; Klionsky and Emr, 2000; Reggiori 

and Klionsky, 2002).   The similarities between the double membrane structures observed 

during autophagy and the double membrane vesicles (DMVs) observed during positive 

RNA virus replication has led some researchers to suggest that these viral membranes 

arose from the autophagy pathway.   Membrane-bound vesicles that arise from autophagy 

are typically 500-1000 nm in diameter and contain microtubule-associated protein 1 light 

chain 3 (LC3).   

Positive sense RNA viruses, like coronaviruses and polioviruses, have been 

shown to induce and benefit from the cellular autophagy pathway (Jackson et al., 2005; 

Prentice et al., 2004).  Additionally, DENV infection of mammalian cell culture has 

been shown to trigger the production of the double-membrane structures and 

rearrangement of LC3 protein that are characteristic of autophagy (Lee et al., 2008b).  

Recent research has shown co-localization of the LC3 marker of autophagy and dengue 

virus NS1 protein and dsRNA (Panyasrivanit et al., 2009).  While these data are 

interesting, there is a discrepancy between the size of typical autophagic membrane-

enclosed vesicles 500-1000 nm, and the observed diameter of dengue virus-induced 

vesicles of approximately 75 nm (Welsch et al., 2009).  Also, the co-localization of LC3 

and markers of dengue virus replication could be a correlation, not causation.  Autophagy 

is a response to cellular stress leading to resource reallocation, so it is plausible that LC3 
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would localize to regions of virus replication where dengue virus is co-opting cellular 

resources for RNA replication (Jackson et al. 2005). 

 The unfolded protein response (UPR) is triggered by the defective folding of 

proteins, nutrient stress or pathogen infection.  Once the UPR is triggered, three 

transmembrane signal transducers are activated: inositol-requiring enzyme 1 (IRE1)  

phosphorylated extracellular signaling-regulated kinase (PERK), and activating 

transcription factor 6 (ATF6).  A signaling cascade is induced that halts translation of 

mRNA by inhibiting translation initiation (Malhotra and Kaufman, 2007).  The UPR also 

controls enzyme genes that are involved in phospholipid synthesis (Federovitch et al., 

2005).  Phospholipid synthesis may be induced to increase the capacity of the ER, and 

ER proliferation has been observed in dengue virus infected cells (Niwa, 2006).  DENV 

has been shown to induce and regulate the UPR in mammalian cells, leading to increased 

viral titers (Umareddy et al., 2007).  Perhaps DENV uses the UPR to increase the 

capacity of the ER for RNA replication. 

 

Membranes associated with viral replication 

Scientists studying viral pathogenesis have long observed proliferation and 

rearrangement of host cellular membranes associated with viral replication.  These early 

observations noted similarities in morphology between virus-induced membrane 

structures and membranes associated with natural cellular processes.   Electron 

microscopy of SLEV-infected Culex pipiens pipiens showed “intravesicular cylindrical 

membranous structures” and proliferation of the endoplasmic reticulum but no virus 

associated with the Golgi (Whitfield et al., 1973).  A study of virus maturation in C6/36 

http://www.ncbi.nlm.nih.gov/pubmed/19703270?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
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Aedes albopcitus cells that were infected with DENV-2 at an extremely high multiplicity 

of infection (MOI) of 50-60 noted membrane proliferation later followed by membrane 

loss (Hase et al., 1987).   

These early studies noted infected cell-specific membranes that were named 

convoluted membranes (CMs), double membrane vesicles (DMVs), and smooth 

membrane structures (SMSs).  Convoluted membranes are electron dense groupings of 

membranes, DMVs are vesicles of a variety of sizes that are enclosed by two closely 

associated membranes, and SMSs are proliferated membranes that do not contain 

ribosomes.  Although membrane proliferation in association with virus replication has 

long been observed, the details and mechanisms of these membrane modifications are 

still not well understood.   

 

Modern methods of studying viral membranes 

Most of the research on intracellular processes that cause membrane 

rearrangement has been carried out in mammalian cells.  In trying to determine what 

cellular pathway a virus is utilizing, it is important to note certain details, including the 

trigger for membrane rearrangement, the morphology, and especially the intracellular 

membrane from which the structure arose.   

Researchers studying the mechanisms by which viruses co-opt cellular pathways 

have made great strides in the last ten years (Table 1.2).  Recent studies of viral 

replication consider protein markers of cellular organelles, timing of cellular processes, 

and cellular membranes with similar morphologic characteristics to understand the origin 

of membranes associated with viral replication.  To tease out these details, in addition to  
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Table 1.2: +RNA viral membranes in mammalian cells & their characteristics 

 

Family   Virus       Vesicle         Membrane    Mechanism of  References 

        Dia. (nm)      of origin  formation 

 

Togaviridae  SFV  150  lysosome  interaction of nsP1 and (Kujala et al., 2001)  

          RNA replication complex 

 

Coronaviridae  SARS         200-300 ER and and   unknown   (Knoops et al., 2008) 

   CoV      (8 nm neck) unidentified membrane 

 

Flaviviridae       KUNV          50-100    Golgi   unknown   (Mackenzie et al., 1999) 

                          YFV          80-100  unknown  unknown   (Deubel and Digoutte, 1981) 

                         HCV           varies       web from ER  NS4b forms membrane           (Quinkert et al., 2005)  

      vesicles not ER web    (Gouttenoire et al., 2009) 

 

Nodaviridae       FHV             50  mitochodria       viral protein A forms shell      (Kopek et al., 2007) 

           (10 neck) 

Arteriviridae  EAV              80  ER   formed by ORF1a encoded  (Pedersen et al., 1999)  

                       (10 neck)    replicase components 

 

Picornaviridae PV                70-400  lysome or rER  COPII proteins interact  (Suhy et al., 2000) 

          with 2BC     (Egger et al., 2000)  

               (Cho et al., 1994) 

____________________________________________________________________________________________________________ 

 

Key: Dia. = Diameter, SARS CoV = severe acute respiratory syndrome coronavirus, KUNV = Kunjin virus, HCV = hepatitis C virus, 

EAV = equine arteritis virus, PV = poliovirus  

Note: A comparison of viral vesicle sizes suggests that genome RNA must circularize during replication (Salonen et al., 2005).
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electron microscopy, modern researchers studying viral replication use fluorescent 

microscopy with antibodies to organelle markers, confocal microscopy, and electron 

tomography (ET).  Fluorescent microscopy can be used to locate proteins within cells by 

using a fluorescently labeled antibody specific for the protein of interest.  In combination 

with other types of microscopy, proteins can be located to specific subcellular 

compartments (Giepmans, 2008).  Fluorescent microscopy can be used to determine 

whether structures that arise in association with virus replication can be labeled with 

markers for cellular organelles.  Confocal microscopy produces images consisting of light 

from only one plane of the sample through the use of a pinhole lens that excludes out-of-

focus light.  This exclusion of light from all other planes of focus results in crisply 

focused images with better resolution than standard fluorescent microscopy.  When these 

high resolution images are coupled with computer software-controlled focusing, a series 

of optical sections can be taken by focusing through a specimen.  These images can be re-

built by computer software to yield three-dimensional visual data of cellular structures 

(Dailey et al., 1999).  Confocal microscopy is useful in the study of viral replication 

compartments because it allows colocalization of cellular organelle markers and viral 

antigen or genome in three-dimensional space.  Electron tomography takes a series of  

two-dimensional images of a specimen tilted by a one or two degree angle between 

images via electron microscopy.  These images are weighted using computer software 

used to generate three-dimensional images that are 40-100 times higher resolution than 

confocal microscopy because electron microscopy allows for thinner slices, resulting in 

an average resolution of 4nm (McIntosh et al., 2005). 
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Arbovirus-associated membranes 

Several studies on flavivirus pathology in mosquitoes and flavivirus replication in 

mammalian cells using fluorescent microscopy in combination with electron microscopy 

have provided some important insights into arbovirus replication.  Ultrastructural studies 

of WNV replication in Culex pipiens quinquefasciatus using transmission electron 

microscopy (TEM) noted membrane proliferation in midgut tissues, midgut associated 

muscles, and salivary glands after infection via artificial bloodmeal (Girard et al., 2004; 

Girard et al., 2005; Girard et al., 2007).  Aedes albopictus injected in the thorax with 

Sindbis virus (SINV) showed antigen localization in the salivary glands and midgut 

associated muscles as well as gross pathology in the lateral lobes of the salivary glands 

via fluorescent microscopy and TEM (Bowers et al., 2003).  Electron microscopic in situ 

hybrization showed labeling of genomic RNA in association with SMS in the ER of 

mosquito cells (Grief et al., 1997).   

All of these studies noted membrane rearrangement in the major tissues where 

arboviruses are known to replicate: the midgut and salivary gland.  Membrane 

rearrangement occurred within known timeframes for virus replication for each virus-host 

pair and RNA association with novel membranes was established.  All of these insights 

are consistent with the theory that viral RNAs are sequestered within compartments 

formed by novel membranes during replication of arboviral genomes. 
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Electron tomography: three-dimensional insights into formation of replication 

compartments 

Electron tomography (ET) studies of SARS CoV, FHV, and DENV have 

confirmed stalk-like structures associated with double membrane vesicles (DMVs) that 

had only been noted once previously, in PV-infected cells (Knoops et al., 2008; Rust et 

al., 2001; Welsch et al., 2009).  These stalk-like structures were designated “necks” or 

“collars.”  The necks are 8-10 nm in diameter and suggest that the replication 

compartments are not completely isolated from the rest of the cell.  In the case of DENV 

and PV, the necks provide a connection between the viral replication compartments and 

the cytoplasm, allowing import of materials needed for viral replication and possibly 

export of RNA.  In the case of SARS CoV, it appears that these structures do not allow 

access to the cytoplasm, but this could be an artifact of the fixation.  In fact, Welsch et al. 

(2009) noted that the necks were visible in some of their dengue virus samples but not in 

others, depending on fixation method.   Also, Welsch and colleagues’ ET study of DENV 

replication in mammalian cells demonstrated the CM, ER, and the outer membrane of the 

DMVs. 

 

Models of virus–induced membrane rearrangement 

There are many theories as to how viral replication membranes may be formed, 

and these theories seem to be influenced by observations based on the model system the 

researcher studies.   Flavivirus researchers hypothesize that viral proteins cause 

rearrangement of host membranes based on structural and functional properties of the 

viral proteins.   A conical shaped viral protein can cause membrane bending around the 
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protein, while viral proteins that contain amphipathic helixes or are able oligmerize may 

pull membranes together, forming a curved structure (Miller and Krijnse-Locker, 2008).  

Arterivirus researchers suggest that double membrane structures are formed by budding 

through two tightly associated membranes; into the ER and again to exit the ER 

(Pedersen et al., 1999).  Poliovirus researchers suggest that viruses co-opt either 

anterograde or retrograde vesicle pathways (Rust et al., 2001). 

 

Which viral proteins induce membrane rearrangement? 

 In an effort to discover the mechanism of viral-induced membrane rearrangement, 

many researchers studying replication compartments have attempted to reproduce the 

membrane structures by expression of individual viral proteins.  Hepatitis C virus 

researchers have shown that expression of nonstructural protein 4b (NS4b) is sufficient to 

reproduce the membranous web that is characteristic of HCV replication (Gouttenoire et 

al., 2009).  Expression of DENV NS3 was shown to cause membrane rearrangement, but 

the pattern was not consistent with the membrane rearrangement observed in a typical 

infection via fluorescent microscopy (Chua et al., 2004).  Expression of DENV NS4b in 

mammalian cells was more successful, recreating membrane rearrangement characteristic 

of DENV infection as observed via electron microscopy (Miller et al., 2007).  The 

flaviviral NS4a and NS4b nonstructural proteins are transmembrane proteins that cross 

the membranes they interact with multiple times, which is consistent with the theory that 

membrane rearrangement is caused by membrane-bending amphipathic helices.  
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What is the purpose of viral-induced membranes? 

A variety of purposes for membrane proliferation have been suggested: to 

concentrate materials and coordinate replication to increase replication efficiency, to 

provide structural support for replication, to provide lipids necessary for replication, and 

to prevent host reaction to viral replication (Knoops et al., 2008; Lyle et al., 2002; Miller 

and Krijnse-Locker, 2008; Salonen et al., 2005).   In mosquitoes, viral replication within 

membrane-bounded structures could protect dsRNA from RNAi. 

 

Transgenic mosquitoes: a history 

Development of genetically modified or transgenic insects that are resistant to 

disease has been a scientific goal for many years.  The first transgenic insect was 

developed in 1982 (Rubin & Spradling, 1982).  This original transgenic insect was a 

strain of Drosophila that was transformed with P transposable element and had a 

transformation success rate of 20-50%.   There were many early problems with 

production of transgenic insects: remobilization of transposable elements, lack of control 

over insertion location, and lack of specific promoters.   The remobilization problem was 

solved by careful selection of transposable element for minimal remobilization and 

molecular manipulation of the element to separate the transposase from the insert 

(O'Brochta et al., 2003; Sethuraman et al., 2007; Wilson et al., 2003).  Additionally, the 

transposon-based development of transgenic mosquitoes may be a cause for concern 

since RNAi has been shown to naturally silence transposons in the germline (Sijen and 

Plasterk, 2003).  Precise insertion of transgenes is still difficult but the phi C31 and 
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CRE/lox systems show promise (Nimmo et al., 2006).  In addition, many specific 

promoters have been identified for use in mosquito systems (Olson et al., 2002).   

 

How to engineer a transgenic mosquito 

In the last ten years, technology for developing transgenic insects has matured 

greatly, and several transgenic mosquito lines have been created.  After careful selection 

of transposable element, promoter, and effector gene, the basic method for creation of 

transgenic mosquitoes begins with microinjection of preblastoderm embryos, collection 

of individuals expressing a reporter gene, creation of single female families that are 

backcrossed with a genetic background strain, and screening for the desired phenotype or 

genotype (Jasinskiene et al., 1998). 

 

Engineering resistance: transgenic mosquitoes with enhanced immunity 

As a proof of principle, the first transgenic Aedes mosquito was developed in 

1998, a white-eyed Aedes aegypti line transformed with Hermes to express the cinnabar 

eye gene, thus restoring a wildtype eye phenotype (Jasinskiene et al., 1998).  Two years 

later another transgenic Ae. aegypti strain was developed, this mosquito expressed the 

immune gene Defensin under the control of a vitellogenin promoter, rendering it resistant 

to bacterial infection (Kokoza et al., 2000).  During the next few years, RNAi was used 

both to study immunity via knockdown in a mosquito and enhance virus resistance in 

mosquito cells (Adelman et al., 2002; Levashina et al., 2001).  In 2002, another 

transgenic mosquito strain was reported, an Anopheles stephensi strain expressing SM1, 

an antiparasitic gene under a carboxypeptidase promoter that rendered it resistant to 
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Plasmodium parasite infection (Ito et al., 2002).   In addition to these insects engineered 

to increase pathogen resistance, there have been several reports of insects that have 

natural integration of viral sequences into their genome, which may lead to virus 

resistance (Crochu et al., 2004; Maori et al., 2007).   

 

Transgenic mosquitoes with enhanced RNAi 

 Since RNAi has been successfully used to create viral resistance in transformed 

mosquito cells and RNAi affects viral titers in mosquitoes, the next step was to create 

transgenic mosquitoes that are pathogen resistant due to RNAi (Adelman et al., 2002; 

Keene et al., 2004).  Transgenic mosquitoes, known as the Carb77 strain, were 

transformed to express hairpin RNA containing DENV sequences that enhance the 

natural antiviral RNAi  response (Franz et al., 2006).  Carb77 mosquitoes express a virus-

specific dsRNA when the mosquito under control of a carboxypeptidase promoter after  

an infectious bloodmeal and the virus is at the beginning of replication and therefore most 

vulnerable (Franz et al., 2006).  With few individual exceptions, these Carb77 mosquitoes 

are resistant to infection with DENV-2 via an RNAi-mediated mechanism. 

 

Prospects for use of transgenic mosquitoes 

 Although transgenic mosquitoes are promising in the laboratory, there are many 

hurdles to overcome before transgenic mosquito strains could be released in the wild.  

Two major concerns for viability of transgenic mosquitoes in the wild are fitness and 

gene drive.  Fitness is defined as the success of a genotype in promoting its genes into the 

next generation (Marrelli et al., 2006).  Testing of transgenic mosquito strains 
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transformed with hermes or Mos TEs to express eGFP showed reduced fitness relative to 

laboratory stains.  Specifically, fitness evaluation of the transgenic strains revealed 

fecundity, increased sterility, and sex ratio distortion in the Mos strain (Irvin et al., 2004).    

 Modeling predicts that transgenic mosquitoes require either a very minimal fitness 

load or strong genetic drive to be competitive in natural populations (Lambrechts et al., 

2008).  Cage experiments involving crosses of transgenic mosquitoes with wildtype 

mosquitoes confirm the requirement for a driver and emphasize the importance of 

outbreeding of transgenic lines to increase fitness (Catteruccia et al., 2003; Li et al., 

2008a).  With the possible exception of Plasmodium resistant mosquitoes, which have a 

distinct loss of fitness when infected with Plasmodium so the transgene is highly 

beneficial, a strong genetic drive mechanism will be required for the success of 

transgenic mosquitoes in the wild (Marrelli et al., 2007). 

 The most promising or strong genetic drive mechanisms are maternal effect 

selfish genetic elements, transposable elements, and Wolbachia.  All of these genetic 

drive mechanisms have been shown to move though insect populations extremely rapidly 

by giving their carriers a distinct advantage during breeding.  Maternal effect genetic 

elements, like Medea, are strong enough to cause population replacement in Drosophila 

(Chen et al., 2007).  Medea is a selfish genetic element that kills offspring that do not 

inherit the element.  Some transposable elements, like P elements, are promising genetic 

drive mechanisms because of their ability to overcome large geographic barriers and 

reach isolated populations (Silva and Kidwell, 2004).  P elements spread by causing 

mating incompatibilities, so viable offspring only result from matings that produce 

offspring carrying the P element.  P elements have been shown to spread rapidly through 



 39 

populations of Drosophila.  Wolbachia bacterial infection shows promise as a genetic 

drive mechanism because it reaches fixation at very high levels fairly quickly in 

populations of mosquitoes (Rasgon and Scott, 2003).  However, there are technical 

difficulties coupling Wolbachia drive to a transgene.  These strong genetic drive 

elements, if they can be successfully adapted to mosquito systems, seem to be the key to 

successful population replacement by transgenic mosquitoes in the future. 

 

Can pathogens develop resistance to transgenic mosquitoes? 

 The development of resistance by the pathogen is a concern for all methods of 

controlling vector-borne diseases.  Naturally occurring resistance develops when 

selective pressure acts on pre-existing phenotypic variants, selecting the variant that has 

greater fitness under the new conditions.  There is a risk that pathogen resistance will 

develop more rapidly when under selection pressure in transgenic insects with enhanced 

immune systems.  In the case of malaria parasite- and virus-resistant mosquitoes, 

antigenic variance is inherent in the pathogen’s development.  Plasmodium, the pathogen 

that causes malaria, naturally undergoes antigenic variation; moreover, this can lead to 

rapid development of drug resistance (Dzikowski and Deitsch, 2009; Khatoon et al., 

2009).  In the case of RNA viruses, the error rate of the RdRp is naturally 10
-3

 per 

nucleotide per round of replication, which for DENV means at least one mutation per 

replication cycle (Domingo and Holland, 1997). 

 RNA viruses exist in a quasispecies state or a distribution of non-identical but 

closely related genomes (Domingo, 2002).   Theoretically, an RNAi-based transgenic 

mosquito could lead to selection for a resistant arbovirus.  La Crosse virus researchers 
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have reported development of viruses resistant to siRNA treatment after 72 hours in cell 

culture (Soldan et al., 2005).  There is also evidence for increased mutation rates in viral 

sequences that are RNAi “hotspots” (Brackney et al., 2009). 

 

Summary and hypotheses 

 Previous research has shown that DENV replication occurs in membrane-bound 

compartments in mammalian cells.  Isolation and characterization of these membrane-

bound vesicles has shown that these replication compartments have a double-membrane 

morphology and are tightly sealed enough that they should exclude effector proteins 

produced by the host immune response (Uchil and Satchidanandam, 2003; Welsch et al., 

2009).  RNAi is known to be active in mosquito cell culture and mosquito tissues and 

likely plays a role in modulating the balance between viral replication and mosquito 

health (Sanchez-Vargas et al., 2009).  If membrane-bound compartments of similar 

morphology are created during DENV replication in mosquitoes, these membranes may 

prevent Dicer from accessing the replicative intermediate (Figure 1.2).   The existence of 

membrane-bound replication in mosquito cells could explain how DENV evades the 

mosquito RNAi response to replicate successfully. 

 We hypothesized that DENV replication in mosquito cells occurs within 

membrane-bound vesicles with many of the same characteristics of DENV-associated 

vesicles observed in mammalian cells:  originate from the ER, are double-membrane 

bound, contain DENV dsRNA, and are induced by the expression of DENV NS4a-2k.  

We also hypothesized that the morphology of these membranes should prevent Dicer 

from accessing replicative intermediates, allowing DENV-2 to escape RNAi in the 
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mosquito.  Finally, we hypothesized that DENV-2 would mutate to evade the 

complementary base-pairing required for RNAi in transgenic mosquitoes designed to 

target DENV-2 immediately after entry to the cell prior to formation of replication 

vesicles.  

            The work discussed in the following chapters set out to localize and characterize 

the association between viral double-stranded RNA and membranes in mosquito cells and 

tissues.  In addition to this goal, we attempted to determine whether the dengue NS4a and 

NS4b proteins played any role in the formation of the replication-associated membranes.  

Also, viruses that successfully replicated to high titers in transgenic mosquitoes with an 

enhanced RNAi response were characterized to determine whether mutation of the 

targeted viral sequence could be another mechanism that allows DENV to evade the 

RNAi response. 

 We found DENV dsRNA to be initially localized in punctuate perinuclear 

patterns then spread throughout each mosquito cell.  DsRNA was observed in close 

association with viral envelope and capsid proteins in both mosquito cells and midgut 

tissues.  Isolation and microscopic examination of membrane fractions from DENV- 

infected cells and midguts revealed double-membrane structures with similar size and 

other characteristics to those isolated from mammalian cells.  The attempt to induce 

membrane rearrangement via expression of DENV NS4a and NS4b proteins was largely 

unsuccessful.  Characterization of DENV isolates that escaped the enhanced RNAi 

response of transgenic mosquitoes revealed no mutations within the targeted viral 

sequence that could account for RNAi escape or mutations in other regions of the genome 

associated with enhanced replication phenotypes.  Overall, this work suggests that there 
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may be a point in the dengue viral life cycle where the replication complex of viral RNA 

is protected from the mosquitoes’ RNA interference pathway. 
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Chapter 2 

Evaluation of dengue virus replication-associated membranes in mosquito cell 

culture 
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Introduction 

 

 Rearrangement and proliferation of intracellular membranes has long been 

observed in association with flavivirus replication, as discussed in Chapter 1.  Replicative 

forms of viral RNA have been isolated from these membranes (Mackenzie et al., 1999; 

Uchil and Satchidanandam, 2003).  Most of our knowledge of flavivirus replication-

associated membranes has been gathered from experiments in mammalian cells.  In 

addition to the primary purpose of concentrating replication components to increase 

replication efficiency, many researchers have speculated that replication of viruses within 

membrane-enclosed compartments may serve to protect the viral genome from detection 

by the host immune response.  Endoplasmic reticulum-derived double-membrane bound 

vesicles that could serve this purpose have been described in association with flavivirus 

replication in mammalian cells (Uchil and Satchidanandam, 2003).  The hypothesis 

examined in this chapter is that, as in mammalian cells, DENV replicates in association 

with membranes in mosquito cells and these membranes are derived from endoplasmic 

reticulum (ER).   

 If this hypothesis is correct, double-stranded RNA (dsRNA) should be detected in 

sites of DENV replication, specifically in association with the ER.  An additional 

hypothesis tested in this chapter is that the morphology of these vesicles should be similar 

to the double-membrane vesicles isolated from mammalian cells.  If the vesicles are 

indeed of ER origin, then viral dsRNA should co-localize with ER markers. 

 DsRNA has been detected via immunofluorescent assay (IFA) with a highly 

specific dsRNA antibody in mammalian cells infected with a wide variety of positive 
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sense RNA and DNA genome viruses but not from cells infected with negative strand 

RNA viruses such as La Crosse and influenza viruses (Schonborn et al., 1991; Weber et 

al., 2006).  Electron microscopic studies of DENV replication in mammalian cells have 

shown that genomic RNA localizes to proliferated membranes of ER origin and that 

replicating RNA can be isolated from vesicles 75-100 nm in diameter that are resistant to 

a non-ionic detergent (Grief et al., 1997; Uchil and Satchidanandam, 2003).  An electron 

tomographic (ET) study reconstructed three-dimensional images of DENV replication in 

mammalian cells, which revealed that the several types of proliferated membranes, 

smooth membrane structures (SMSs), double membrane vesicles (DMVs) and convoluted 

membranes (CMs), are interconnected and serve as sites of RNA replication and viral 

assembly (Welsch et al., 2009).  Additionally, this study provided precise measurements 

of the DMVs as 87.5 nm in diameter with an 11.2 nm pore and noted that the vesicles 

showed correlation with ER markers and no observed colocalization with markers of 

autophagy. 

 Previous research in this laboratory has shown that RNA interference (RNAi) is 

an active antiviral response in mosquito cells and tissues (Adelman et al., 2002; Keene et 

al., 2004; Sanchez-Vargas et al., 2004).  In addition to this evidence that RNAi is active 

in mosquitoes, these data suggest that there is a fine balance between DENV replication 

and the mosquito’s RNAi-based immune response (Sanchez-Vargas et al., 2009).  These 

results are consistent with the hypothesis that replication within membranes may play a 

role in protecting viral genomes from detection by the host immune response.  In the case 

of DENV in mosquitoes, replication within membranes should protect the dsRNA 

replicative intermediates from RNAi. 
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 To test the hypotheses outlined here, the localization of dsRNA associated with 

DENV replication was characterized via immunofluorescent assay.  DENV-specific RNA 

and virions were isolated from fractionated mosquito cells and characterized via reverse-

transcription polymerase chain reaction (RT-PCR), strand-specific northern blots, and 

infectivity assays. Co-localization of dsRNA with antigenic markers of mature DENV 

and ER markers was examined via immunofluorescent microscopy and confocal 

microscopy.  Additionally, DENV-associated dsRNA localization in mosquito cells was 

compared to alphavirus and bunyavirus replication associated dsRNA.  Also, isolated 

fractions of detergent-treated mosquito cells infected with DENV were examined via 

transmission electron microscopy to verify the presence of vesicles associated with 

DENV replication. 

 The experiments discussed here were designed to establish a link between DENV  

replication within vesicles and the exclusion of the mosquito RNAi response.  The data 

presented here established a link between DENV replication and production of DMVs.  

Exclusion of DENV-specific dsRNA from the mosquito RNAi response was not clearly 

established but based on similarities in size and morphology between vesicles isolated 

from mosquito and mammalian cells, we can speculate that if the vesicle pore size is 

consistent between mammalian and mosquito cells, the pore size might exclude Dicer 

from accessing the DENV dsRNA replicative intermediates.  
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Materials and Methods 

 

Cell culture lines 

C6/36 (Aedes albopictus) cells were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA).  C6/36 cells were grown in Leibowitz 15 (L-15) medium 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 

100 U/mL streptomycin, and 0.2 mM L-glutamine (growth medium) at 28°C. 

Aag2 (Aedes aegypti) cells were a gift from Dr. Alexander Raihkel at University of 

California, Riverside.  Aag2 cells were grown in Schneider’s medium supplemented with 

10% heat-inactivated FBS, 100 U/mL penicillin, 100 U/mL streptomycin, and 0.2 mM L-

glutamine at 28°C. 

FB9.1 (Aedes albopictus) cells are a clonally selected cell line made by Dr. Zach 

Adelman from C6/36 cells by transformation with a plasmid to express an inverted repeat 

RNA derived from the DENV-2 genome under the control of the baculovirus Immediate 

early 1 (Ie1) promoter and selected by expression of a hygromycin B resistance gene 

(Adelman et al., 2002; Gaines et al., 1996).  The inverted repeat sequence in FB9.1 cells 

is derived from Mnp, a non-translatable prM gene from DENV-2 (New Guinea C) RNA 

(Gaines et al., 1996).  When this inverted repeat sequence is transcribed, it produces a 

290 bp hairpin RNA that can trigger RNAi.  H9.1 cells were transformed with the same 

plasmid lacking the DENV-2 RNA sequence.  To maintain the expression of the plasmid, 

these cell lines were grown at 28°C with L-15 medium with 10% FBS supplemented as 

above with the addition of 300 U/mL hygromycin B (Calbiochem, EMD Biosciences, 

Inc., San Diego, CA) and changed every 3 days.  The particular FB9.1 and H9.1 cell lines 
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used in these experiments were obtained from frozen cell culture stocks made by Dr. 

Emily Travanty. 

 

Viruses  

All virus stocks were obtained from the AIDL core support program with the exception 

of the La Crosse virus (LACV) prototype strain.  All titrations were performed via the 

AIDL core support program using the protocol described in Chapter 5 except that plaques 

were counted instead of picked at the end. 

DENV-2  For preparation of working virus stocks, 4 mL of DENV-2 strain Jamaica 1409 

(JAM1409) (Genbank #M20558) were inoculated onto subconfluent C6/36 cells in a  

75 cm
2
 tissue culture flask at a multiplicity of infection (MOI) of 0.01 and rocked at room 

temperature for 1 hr before adding 20 mL of medium.  Infected C6/36 cells were 

maintained in  L-15 medium supplemented with 2% FBS, 100 U/mL penicillin, 100 

U/mL streptomycin, 1x MEM non-essential amino acids, and 0.2 mM L-glutamine 

(maintenance medium) at 28°C for a total of 14 days with a medium change at 7 days 

post-infection (dpi).  At the end of the 14 day incubation, virus was harvested by using a 

cell scraper to detach cells, then cells and virus were resuspended and divided into 0.5 

mL aliquots and stored at -80°C. 

For immunofluorescent assay (IFA) experiments, DENV-2 was inoculated onto 

subconfluent C6/36 cells grown on 18 mm, No.1, sterile glass coverslips in 12-well tissue 

culture plates, at an MOI of 0.1.  Infected C6/36 cells were maintained in L-15 

maintenance medium at 28°C for a total of 14 days with a medium change at 7 dpi.  For 
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cellular fractionation experiments, DENV-2 was inoculated into C6/36 cells grown in a 

75 cm
2
 tissue culture at an MOI of 0.1 and used for experiments at 5 dpi. 

Sindbis viruses MRE16 (Klimstra et al., 1998; McKnight et al., 1996) and TE3’2J (Hahn 

et al., 1992; Lustig et al., 1988) stocks were prepared as follows.  Two milliliters of 

Sindbis virus (SINV) were inoculated onto C6/36 cells in 75 cm
2
 tissue culture flasks at 

an MOI of 0.01 and rocked at room temperature for 1 hr before adding 10 mL of 

medium.  Infected C6/36 cells were maintained in L-15 maintenance medium and virus 

was harvested at 4 days.  Cells were detached from tissue culture flasks using a cell 

scraper, then cells and virus were resuspended and divided into 0.5 mL aliquots and 

stored at -80°C. 

 For IFA, SINV was inoculated onto C6/36 cells at an MOI of 0.01.  Infected 

C6/36 cells were maintained in L-15 maintenance medium for a total of 4 days. 

LACV  Prototype strain was obtained from Dr. Mark Hughes (AIDL, Colorado State 

University).  For IFA, LACV was inoculated onto C6/36 cells at an MOI of 1.0.  Infected 

C6/36 cells were maintained in L-15 maintenance medium for a total of 4 days. 

 

Cellular fractionation 

Sucrose solutions  Sucrose solutions were made as described by Uchil et al. (2003, 2006) 

with sucrose dissolved in a buffer consisting of 10 mM Tris (pH 8.8), 10 mM sodium 

acetate, and 1.5 mM magnesium chloride in distilled water called TNMg.  Solutions 

contained 75%, 55%, and 5% sucrose by weight, which are equivalent to 8.7 M, 3.6 M, 

and 153 mM concentrations respectively.  A 75% sucrose solution was substituted for the 
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80% sucrose solution used by Uchil et al. (2003), which repeatedly precipitated out of 

solution in Colorado.  

Isolation of vesicles  Viral replication-associated vesicles were isolated based on the 

technique used by Uchil et al. (2003) with mammalian cells.  C6/36 cells were infected 

with DENV-2 (JAM1409) at an MOI of 0.1.  Infection was verified via IFA with 3H5-21 

monoclonal antibody at 4 dpi by a method described in more detail later in the chapter 

(page 54).  Infected cells were harvested by centrifugation (2500 rpm, 5 min) at 5 dpi.  

The pellet was incubated in 1% Triton X100  (TX100) on ice for 1 hr to disrupt cellular 

plasma membranes, then the heavy membrane fraction (S16) was sedimented at  

16,000 x g, 15 min.  A discontinuous sucrose gradient was prepared in 14 x 89 mm 

polyallomer ultracentrifuge tubes (Beckman Coulter, Fullerton, CA) as follows: 0.5 mL 

75% sucrose, followed by a layer consisting of the S16 pellet resuspended in 0.5 mL 

TNMg and mixed with 4 mL 75% sucrose, followed by 4 mL 55% sucrose, and topped 

with 0.5 mL 5% sucrose. The S16 fraction was separated by sucrose density gradient 

centrifugation in a Beckman L8-80 model ultracentrifuge (18 hr, 35,000 rpm, 4C).  Ten 

1 mL fractions were collected from the top of the gradient with the top fraction 

designated 1, etc. 

This cellular fractionation method uses sucrose gradient centrifugation to separate 

subcellular components based on buoyant density.  More buoyant subcellular components 

rise to the top of the gradient while dense components sink lower within the gradient. 

Localization of virions  To determine location of non-ionic detergent-resistant (TX100) 

membranes and virions within the sucrose gradient fractions, the medium from pelleted 

infected cells was loaded onto separate tubes of the discontinuous sucrose gradient and 
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treated as described for cell fractionation.  Fractions were collected, washed and analyzed 

as described for vesicles. 

Washing and concentrating fractions  Sucrose was washed out of all fractions by 

resuspending each 1 mL fraction in 50 mL ice cold  RNase-free PBS (Ambion, Austin, 

TX) and centrifuging for 30 min, 30,000 rpm, 4˚C  to concentrate samples before further 

analysis via RT-PCR, strand specific northern blot, and infectivity assay.  

 

Characterizing RNA in gradient fractions 

RNA extraction  All solutions were obtained from Amresco (ISC Bioexpress, Kaysville, 

UT) except the RNase-free phosphate buffered saline (PBS), which was obtained from 

Ambion as a 25x solution and diluted in nuclease-free water. 

 Concentrated fractions obtained from cell fractionation gradients were analyzed 

for presence of DENV-2 RNA.  Fractions were resuspended in 0.5 mL RNase-free PBS 

and extracted once using saturated 5:1 phenol-chloroform, once with 24:1 chloroform-

isoamyl alcohol followed by precipitation in one-tenth volume of 5 M ammonium acetate 

and two volumes 100% ethanol.  RNA pellets were washed once in 70% ethanol and air 

dried.  Pellets were resuspended in nuclease-free water. 

RT-PCR  Viral RNA was detected via RT-PCR using the SuperScript III One-Step RT-

PCR System with Platinum Taq kit (Invitrogen, Carlsbad, CA) using the following 

primers to amplify DENV-2 NS1 cDNA: 5'GATAGTGGTTGCGTTGTGAG3' and 

5'TCCAAGCTCTGTTTGTGTTG3'.  The RT-PCR conditions were: 60C 30 min, 94C 

2 min, 40 cycles of 94C 15 sec, 60C 30 sec, and 68C 30 sec, followed by a final 

incubation of 68C 5 min.  Each sample had a PCR control, in which the RT enzyme was 
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omitted from the reaction to verify that amplification was occurring from RNA template 

during the RT step instead of from possibly contaminating cDNA in the PCR step.  

Amplification product size of 500 base pairs was verified via gel electrophoresis. 

Strand-specific northern blot  Gradient fractions from four cellular fractionation 

experiments were pooled and stored at -80C were combined and washed.  RNA was 

extracted as described above. 

RNA probe preparation 

 Briefly, probe preparation involved three amplification steps: RT-PCR to generate 

a 500 bp cDNA template from the DENV-2 NS3, followed by a separate PCR reaction 

which amplified a 200 bp product and added a T7 promoter, and T7-specific transcription 

to generate a labeled RNA probe.   The second PCR reaction added strand-specfic T7 

promoters to the transcription templates.  One PCR reaction added a 5’ T7 promoter to 

the genome sense strand and a separate reaction added a 5’ T7 promoter to the anti-

genome sense strand. 

RNA was extracted from 2 (0.5 mL) aliquots of DENV-2 JAM1409 stock 

(approximately 10
6
 pfu/mL) with phenol-chloroform as described above.  A 50 µL RT-

PCR to amplify the region of the DENV-2 NS3 gene was performed with the SuperScript 

III One Tube RT-PCR with Platinum Taq kit (Invitrogen).  The RT-PCR program to 

prepare the cDNA template consisted of one RT reaction at 50C 30 min, followed by 

denaturation at 94C 2 min, and 40 PCR cycles of 94C 15 sec, 55C 30 sec, 68C 30 

sec, and a final incubation at 72C 10 min.  Product size was verified to be 500 bp via gel 

electrophoresis and cDNA concentration determined via absorbance at 260 nm.  The 

cDNA product was further amplified and T7 promoter sequences added at the 5’ end of 
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each to create transcription templates using the following primer pairs: KP13  

5’ TAATACGACTCACTATAGGGCACAAGAAAGCCACCTACGAGAC3’ and  

KP 14 5'CTGTGTCACCATAGGGACGACGTC3' for anti-genome sense probe to detect 

genome sense strand RNA, KP 15 5'TAATACGACTCACTATAGGGCTGTGTCA 

CCATAGGGACGACGTC3' and KP 16 5'CACAAGAAAGCCACCTACGAGAC3' for a  

genome sense probe to detect anti-genome sense strand.  PCR conditions were:  1.5 mM 

MgSO4, 0.8 mM dNTPs, 10x PCR buffer at a final concentration of 1x, 2 µL of the 

cDNA from the RT-PCR reaction, 0.2 µM forward primer, 0.2 µM reverse primer, 1 unit 

Platinum Taq, nuclease-free water (Invitrogen) to 100 µL.  PCR amplification was 

carried out under the following parameters: 94C 2 min; 35 cycles, 94C 30 sec, 50C 30 

sec, 68C 1 min, followed by a final incubation of 68C 10 min.  Product size was 

verified to be 200 bp via gel electrophoresis and DNA concentration determined via 

absorbance at 260 nm. 

 Transcription of the strand specific northern blot probes used Megascript T7 High 

Yield Transcription Kit.  Following the directions in the kit, a 20 µL reaction, using 

biotin-labeled UTP to give 9% of total UTP and 1 µg template cDNA, was incubated 

overnight at 37C.  The transcription product was treated with the provided DNase as 

instructed in the kit to remove template DNA and purified by phenol-chloroform 

extraction followed by isopropanol precipitation at -20C for 15 min.  Transcription 

product was collected by centrifugation for 15 min at 14,000 rpm at 4C, and 

resuspended in nuclease-free water, aliquoted and stored at -80C.  Biotin labeling of 

probe was verified by pipetting 1 and 2 µL drops of the transcription product onto blot 

paper, cross-linking by UV irradiation twice, then detecting as directed with the 
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BrightStar Biodetect Nonisotopic Detection kit (Ambion).  Blot was exposed to Blue Lite 

Autoradiography film (ISC Bioexpress) until labeling could be detected. 

Gel electrophoresis, blotting, and detection of RNA 

 Gel electrophoresis materials including sample buffer, gels, and loading buffer 

were obtained from Invitrogen.  Each fraction was run in duplicate on identical gels.  

RNA extracted from gradient fractions were resuspended in 10 µL nuclease free water, 

split in half, and then mixed with 2x Novex TBE-UREA sample buffer to 1x.  Each 

fraction was loaded onto one well of a 12-well Novex 6% TBE-UREA polyacrylamide 

gel in 1x Novex TBE running buffer, which had been pre-run for 3 min at 180 V and urea 

flushed from wells with running buffer.  Gel electrophoresis was run at a constant 180 V 

for 90 min.   

RNA was transferred from gel to Brightstar Plus positively charged membrane 

(Ambion) via electroblotting at a constant 30 V for 1 hr.  RNA was cross-linked to the 

membrane by 2x treatment with a UV Stratalinker (Stratagene, La Jolla, CA).  Blot was 

pre-hybridized for 30 min in 0.7 mL/cm
2
 UltraHYB (Ambion) at 68C in a rotating 

hybridization oven.  Probe was added at a concentration of 10 ng/mL directly to the pre-

hybridized blot.  Blots were hybridized overnight.  Biotinylated probe hybridized to blots 

was detected as directed using the BrightStar Biodetect Nonisotopic Detection kit 

(Ambion).  The blot was then exposed to X-ray film as described above. 

 

Infectivity assay 

Fractions obtained from sucrose gradient centrifugation were resuspended in  

0.2 mL RNase free PBS (Ambion) and transferred to microcentrifuge tubes.   
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Concentrated fractions plus 1 mL of L-15 maintenance medium were filtered using  

0.2 μm Acrodisc syringe filters (Pall, Port Washington, NY) and placed into sterile 

microcentrifuge tubes.  Filtrate from each fraction diluted in 1 mL medium was 

inoculated onto one well of a 12-well plate of subconfluent C6/36 cells grown on circular 

glass coverslips.  Cells were maintained to support possible virus growth for 14 days with 

a change of medium at 7 days. Cells were fixed at 14 days in cold acetone and processed 

for IFA. 

Immunofluorescent assay  IFAs for DENV envelope (E) antigen were performed with 

monoclonal antibody 3H5-21 (1:400) as the primary antibody (1 hr), biotinylated sheep 

anti-mouse IgG (1:400) as secondary (1 hr), and finally with strepavidin-fluorescein and 

Evan’s blue (1:400) counterstain (30 min).  Coverslips were washed three times 

following each incubation in PBS.  After the final incubation with strepavidin-fluorescein 

and Evan’s blue, coverslips were washed with distilled water and mounted on glass slides 

in Vectashield with 4',6-diamidino-2-phenylindole (DAPI) (VWR) and scored as positive 

or negative by observation with a Leica DM4500B fluorescent microscope. 

 

Dicer exclusion trial 

 To determine whether dsRNA in cell fractions was susceptible to Dicer cleavage, 

sucrose gradient samples were prepared and washed as described above.  Samples were 

tested for access of Dicer to RNA using the Recombinant Human Dicer Enzyme Kit 

(Genlantis, San Diego, CA).  Ten microliter enzymatic reactions containing 1 unit of 

recombinant Dicer enzyme were set up for each fraction and incubated for 18 hr at 37°C.  

Controls included extracted genomic DENV-2 RNA in buffer without enzyme and 
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genomic RNA with enzyme.  RNA was extracted from samples at the end of 18 hr using 

the phenol-chloroform method described previously.  RNA was detected via RT-PCR 

with the Superscript III kit as previously described.  RT-PCR products were analyzed by 

gel electrophoresis. 

 

Optimization of antibodies 

All antibodies used for single and double-staining experiments were optimized to 

minimize non-specific background staining prior to usage in experiments.  Typical 

samples used for optimization consisted of DENV-2, SINV, or LACV-infected C6/36 

cells, as described previously.  Antibodies were initially tested at the dilution 

recommended by the manufacturer and two additional 10-fold dilutions, one more 

concentrated and one less concentrated than recommended.  Optimal staining dilution 

was defined as the dilution that showed the expected staining pattern described by the 

manufacturer with little to no background in experimental samples or non-specific 

staining in negative controls. 

 If needed, antibody optimization was repeated an additional two times, with new 

dilutions being tested each time based on the most promising staining from the previous 

test as a starting dilution.  If the results of a third test were non-optimal but promising, 

additional optimization was initiated.  ER tracker red (Molecular Probes, Carlsbad, CA), 

anti- Drosophila calnexin antibody (Abcam, Cambridge, MA), and J2 anti-dsRNA and 

3H5-21 anti-flavivirus E protein labeled with a rhodamine labeling kit (Pierce, Rockford, 

IL), were not used experimentally because staining could not be optimized. 
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 ER marker testing was also done using Aag2 cells and C6/36 cells treated with  

(4-2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) to promote cell attachment 

and spreading to evaluate concerns that non-optimal ER staining was an artifact due to 

spherical shape of C6/36 cells.  

 

Antibodies for single label immunofluorescence assays 

J2 antibody  A commercial antibody used for detection of dsRNA was obtained from 

Scions (Scions/English and Scientific Consulting, Hungary, http://www.engscicons.de).  

J2 antibody is a mouse monoclonal antibody (IgG2a) that is highly specific for dsRNA.  

Research to characterize the antibody showed that dsRNA of length ≥40 bp is recognized 

in a non-sequence specific manner (Schonborn et al., 1991).  Lyophilized preparations of 

J2 were reconstituted in 0.5 mL sterile distilled water as recommended by the 

manufacturer, then divided into 10 µL aliquots and frozen at -20˚C for longer term 

storage. 

Biotinylated sheep anti-mouse IgG  A commercial secondary anti-mouse IgG antibody 

and strepavidin-fluorescein were obtained from Pierce (Pierce/Thermo Fisher, Rockford, 

IL). 

3H5-21  Mouse ascites fluid containing monoclonal antibody 3H5-21 to DENV E protein 

was prepared by and obtained from Dr. Irma Sanchez-Vargas (AIDL, Colorado State 

University). 

30.11a  Mouse ascites fluid containing monoclonal antibody to SINV E1 protein was 

prepared by and obtained from Dr. Irma Sanchez-Vargas (AIDL). 
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807-13αN  A directly FITC-conjugated mouse polyclonal antibody reactive to all LACV 

structural proteins was obtained from Cynthia Meredith (AIDL). 

 

Immunofluorescence assay for dsRNA 

IFA to detect dsRNA in DENV-2 infected cells  Samples were prepared by seeding 

C6/36 cells onto sterilized 18 mm diameter No.1 coverslips in 12-well tissue culture 

plates and infecting with DENV-2 (JAM1409) at an MOI of 0.1.  Predetermined fixation 

timepoints were every 24 hr post infection, as needed for the experimental design, in 4% 

electron microscopy grade paraformaldehyde (Electron Microscopy Sciences, Hatfield, 

PA) in RNase free PBS (Ambion).  Plates containing coverslips in PBS were stored at 

4°C wrapped in parafilm.  Samples were checked periodically so they were not allowed 

to dry, which leads to increased background fluorescence. 

Experimental IFAs consisted of incubation with 1:1000 antibody J2 (2 hr), 

followed by 1:400 biotinylated sheep anti-mouse IgG (1hr) then 1:400 strepavidin-

fluorescein (1hr) at 28˚C with gentle rocking (Weber et al., 2007).  All antibodies were 

diluted in PBS with 0.2% bovine serum albium (BSA) (Sigma, St. Louis, MO) and 0.5% 

TX100 (Sigma).  Each incubation was followed by three washes in PBS (Ambion).  

Coverslips were mounted on glass slides using Vectashield with DAPI (VWR) and 

observed with a Leica DM4500B fluorescent microscope.  Control IFAs were as 

described for J2 antibody except the primary antibody was 3H5-21 at a dilution of 1:400.  

SINV-infected cells  Samples were prepared by seeding C6/36 cells onto sterilized 

coverslips in 12-well tissue culture plates and infecting with MRE16 or TE3’2J at an 

MOI of 0.01.  Cells were fixed every 24 hr post infection in 4% paraformaldehyde in 
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PBS at 4˚C for 15 min, then rehydrated in PBS for 5 min.  Protocol was as described 

above except the primary antibody was 30.11a at a dilution of 1:150. 

LACV-infected cells  Samples were prepared by seeding C6/36 cells onto sterilized 

coverslips in 12-well tissue culture plates and infecting with LACV prototype strain at an 

MOI of 1.0.  Cells were fixed 4 dpi in 4% paraformaldehyde in PBS at 4˚C for 15 min, 

then rehydrated in PBS for 5 min.  Experimental and control IFAs were as described 

above for SINV except for use of primary antibody 807-13αN (1:150) dilution, a directly 

labeled antibody, so no secondary antibody was required.   

 

Detection of dsRNA in transformed cell lines 

DENV challenge and dsRNA IFA of FB9.1 cells  FB9.1 cells and C6/36 cell controls 

were challenged with DENV-2 as previously described (Adelman, 2000; Adelman et al., 

2002).  Briefly, cells were seeded onto glass coverslips in 12-well tissue culture plates as 

described for IFA experiments.  When cells were approximately 90% confluent, they 

were challenged with DENV-2 (JAM1409), MOI 0.01 in 300 µL L-15 medium.  Cells 

were incubated at room temperature with rocking for 30 min, medium was removed and 

replaced with 10% FBS-containing growth medium containing 300 U/mL hygromycin 

and incubated overnight.  Then growth medium was removed and replaced with L-15 

maintenance medium plus 300 U/mL hygromycin.  At 7 days post challenge, cells were 

fixed in paraformaldehyde as described for dsRNA IFAs.  FB9.1 and C6/36 cells were 

stained with fluorescent antibodies specific for dsRNA or DENV E protein as described 

previously. 

RT-PCR to test transformed cell lines FB9.1 and H9.1 for LACV contamination 



 60 

RNA was extracted from 1 mL medium from FB9.1 and H9.1 cell culture flasks using the 

RNeasy Mini kit (Qiagen, Valencia, CA).  Controls consisted of extraction of 1 mL 

medium from uninfected cultured C6/36 cells and from 50 µL of LACV prototype stock 

using the same kit.  Extracts were tested for the presence of LACV RNA via RT-PCR 

with reaction and program conditions as described above for RT-PCR analysis of cellular 

fractionation samples using the Invitrogen SuperScript III One-Step RT-PCR System 

with Platinum Taq kit (Invitrogen).  The following primers specific to LACV S segment 

(AF528167) were designed and used to detect LACV RNA: LACVFWD (KP 105) 

5’TGCAGGGTATATGGACTTCTGTG3’ and LACVREV (KP 106) 

5’AGCAGTATCGCTCAGGCCTCC3’.  RT-PCR products were analyzed via gel 

electrophoresis. 

 

Biotinylation of J2 antibody 

IFAs for localization of dsRNA and DENV E and capsid (C) antigens used 

biotinylated monoclonal antibody J2 prepared with ProtON Biotin Labeling Kit (Vector 

Laboratories Inc., Burlingame, CA), which creates a stable linkage between biotin and 

terminal amino groups on lysine residues of the antibody.  Antibody labeling was carried 

out using kit instructions with a few exceptions as noted below. 

 Solutions were prepared as described in the kit. Labeling reagent plus 15 µL 

dimethylsulfoxide (DMSO) was vortexed to mix.  This mixture was divided into 2 µL 

aliquots in 0.2 mL PCR tubes and stored at -20˚C for no longer than 1 yr. 

Approximately 0.1 mg monoclonal antibody J2 was dissolved in 100 µL 

manufacturer’s protein solution.  The labeling reaction was initiated by the addition of  

https://www.idtdna.com/orderstatus/SpecSheet.aspx?OrderNum=070000007E6128A1E784D600DECD961BBBFC6698&MfgID=080000007D606EDC0C1B3D9D1411E01D6811F881&MfgLocID=2&ProdID=1213&position=0
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2 µL of biotin labeling reagent and mixed by pipeting up and down gently.  The reaction 

was incubated at room temperature.  Departing from the protocol provided with the kit, 

reactions were incubated in the dark for 1 hr to increase labeling efficiency.  The labeling 

reaction was halted by adding 2 µL of manufacturer’s stop solution and incubated for  

5 min at room temperature.   

 Labeled antibody was purified by a gel filtration step provided with the kit.  

Labeled J2 antibody was divided into 10 µL aliquots and stored at -20˚C for no longer 

than 1 month prior to use.  (Note that J2 antibody batch J2-0702 was used for preparation 

of biotin-labeled antibody.  Scicons advised that this batch of antibody was determined to 

be half as concentrated as previous batches used for single IFAs as determined by their 

internal quality testing.) 

 

IFAs for colocalization of dsRNA and DENV proteins 

Primary antibodies 

J2.  For all assays, biotinylated mouse monoclonal J2 antibody prepared as described 

above was reacted with Streptavidin Alexa Fluor 546 conjugate as described below. 

PDI.  Mouse monoclonal antibody reactive to Drosophila protein disulfide isomerase 

(PDI), a microsomal enzyme that localizes to the endoplasmic reticulum (ER) was used 

to define location of ER in mosquito cells (Abcam). 

3H5-21.  Mouse ascites fluid containing monoclonal antibody to DENV E protein was 

prepared by and obtained from Dr. Irma Sanchez-Vargas (AIDL). 

1A2A-1.  Mouse monoclonal antibody specific for DENV capsid protein was obtained 

from Dr. John Roehrig at DVBID-CDC (Fort Collins, CO). 
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Secondary antibodies and labels 

Streptavidin Alexa Fluor 546 conjugate.  To label biotinylated J2 antibody, Streptavidin 

Alexa Fluor 546 was incubated with biotinylated J2 antibody to allow the strepavidin to 

react with biotin, forming a stable bond (Molecular Probes). 

FITC antimouse IgG antibody.  A goat polyclonal antibody to mouse heavy and light 

chain IgG conjugated with fluorescein isothiocyanate (FITC) (Abcam) was used as the 

secondary antibody to viral antigen specific antibodies (3H5, 30.11a, 1A2A-1) and PDI 

antibodies. 

Localization of DENV E antigen, C antigen, or cellular PDI with dsRNA  

To determine relative locations of E antigen and dsRNA, samples were prepared as 

described for dsRNA IFAs using DENV-2 infected C6/36 cells at 1-14dpi.  Experimental 

IFAs consisted of incubation of infected cells with 1:400 mAb 3H5-21 (2 hr) followed by 

1:400 FITC conjugated sheep anti-mouse IgG (1hr), then 1:250 biotinylated J2 mAb 

(2hr) followed by 1:250 streptavidin Alexa Fluor 546 conjugate (1hr).  All incubations 

were at 28˚C with rocking.  Control IFAs were with single monoclonal antibody J2 or 

3H5-21.  All antibodies were diluted in PBS containing 0.2% BSA (Sigma) and 0.5% 

TX100 (Sigma) except the Strepavidin Alexa Fluor 546 conjugate, which was diluted in 

PBS alone.  Prior to antibody incubations, all samples were washed in PBS with 0.01% 

Tween20 (PBST).  Between antibody incubations, all samples were washed three times 

with PBST, and after the final incubation, an additional wash with distilled water was 

included.  Coverslips were mounted on glass slides in Vectashield with DAPI (VWR) and 

observed initially with a Leica DM4500B fluorescent microscope to verify labeling.  
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Localization of dsRNA and E protein staining was analyzed using confocal microscopy 

as described below. 

To determine relative locations of dsRNA and DENV C protein, samples were 

prepared as described for dsRNA IFAs using C6/36 cells infected with DENV-2 

(JAM1409) at 1-14 dpi.  Experimental IFAs consisted of incubations of infected cells 

with 1:250 mAb 1A2A (2 hr) followed by 1:250 FITC conjugated sheep anti-mouse IgG 

(1hr), then 1:250 mAb biotinylated J2 (2hr), followed by 1:250 streptavidin Alexa Fluor 

546 conjugate (1hr) at 28˚C with rocking.  All washes between and after incubations, 

mounting, control IFAs, and microscopy were as described above. 

To localize dsRNA and PDI as a marker of ER, samples were prepared as 

described previously at 1-12 dpi.  Experimental IFAs consisted of incubation of infected 

cells with 1:30 anti-PDI (2 hr), followed by 1:30 FITC-conjugated sheep anti-mouse IgG 

(1hr) then 1:250 biotinylated J2 mAb (2hr), followed by 1:250 streptavidin Alexa Fluor 

546 conjugate (1hr) at 28˚C with rocking.  All washes between and after incubations, 

final washes, mounting, control IFAs, and microscopy as described above.  

 

Confocal microscopy 

All three-dimensional imaging and analysis were carried out using the Zeiss Laser 

Scanning Axiovert Confocal Microscope in the Infectious Diseases Annex (IDA) on the 

Foothills campus (Colorado State University).  The LSM510 Meta software was used for 

all imaging.  Original confocal microscope training was provided by a Zeiss 

representative and training on updated confocal microscope software was provided by the 

confocal technician, Eric Lee, M.S. 
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Confocal microscope settings  Confocal settings were optimized for each set of samples 

using unstained and singly stained positive and negative control slides prior to imaging 

experimental samples. 

Three-dimensional localization  Three-dimensional localization of dsRNA in mosquito 

cells was determined by examining optical Z sections of samples prepared for IFA as 

described above.  Sections were selected manually between the apical and basal planes of 

each sample and by choosing an optical section thickness from the recommended optimal 

thickness as calculated by the LSM510 Meta software.  Sections were reconstructed and 

animated as three-dimensional images using the LSM Image Examiner software. 

Differential contrast microscopy  Differential contrast microscopy (DIC) is a high 

resolution method of visualizing transparent materials when brightfield microscopy 

produces no observable contrast.  DIC uses two prisms and a polarized light beam to 

create contrast.  One prism splits the illuminating light beam before it enters the sample 

and an additional prism recombines after passing through the sample (Frohlich, 2008).  If 

the light beam passes through the sample without refraction, that region of the sample 

will appear gray.  However, if the beams encounter regions with different refractive 

indices as they pass through the sample, when the beams are recombined they can 

interfere either destructively, producing a dark area, or constructively, producing a bright 

area.  DIC was used in combination with confocal microscopy to help delineate the edges 

of the mosquito cells being imaged.  Where DIC increased the clarity of the image, it was 

included in the data figures.  If DIC added no information to the image, the DIC images 

were not shown in results. 
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Electron microscopy 

All electron microscopic imaging was carried out with the assistance of  

Dr. Suzanne Royer, operating the JEOL JEM 2000 EXII transmission electron 

microscope (TEM) in the Anatomy and Zoology building (Colorado State University).  

All grid preparation was performed by the author, and embedding after the initial fixation 

steps was carried out by Dr. Royer.  

Sample preparation: controls  For positive controls, DENV-2 was inoculated at a 0.1 

MOI onto subconfluent C6/36 cells grown in a 75 cm
2
 cell culture flask, and infected 

C6/36 cells were maintained in L-15 maintenance medium at 28°C for 5 dpi.  Negative 

controls were prepared as described excluding the addition of virus. 

To verify that any structures observed in TEM observations of sucrose gradient 

fractions were not artifacts introduced by fixation, mosquito cell culture samples were 

divided for fractionation on sucrose density gradients or fixed as follows for whole tissue 

controls.  Cells in a 75 cm
2
 tissue culture flask were harvested with a cell scraper and 

resuspended in 1 mL medium and centrifuged at 1,500 rpm, 1 min at 4°C.  Cells were 

washed by pipetting off supernatant, resuspending in ice-cold PBS, and centrifuging at 

14,000 rpm, 5 min.  Fixative consisting of 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate buffer (pH 7.2), was added dropwise down the side of the microcentrifuge 

tube and samples were allowed to incubate for 10 min at room temperature.  Pellet was 

loosened from the bottom of the tube with a sterile pipette tip and allowed to incubate in 

fixative for an additional 20 min at room temperature before transferring to 4°C for 

storage until embedding and sectioning. 
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Pre-fixed samples were post-fixed, embedded, and sectioned by Dr. Royer as 

follows.  Fixed cell pellets were secondarily fixed in 1% osmium tetroxide in 0.1 M 

sodium cacodylate for 1 hr at room temperature then dehydrated with graded ethanol 

solutions: 50%, 60%, 70%, 80%, 90%, and 100%.  Dehydrated samples were transferred 

from 100% ethanol to 50:50 ethanol:acetone, and finally to 100% acetone before being 

infiltrated with Eponate 12 resin (Ted Pella Inc., Redding, CA), and polymerized 

overnight at 60
o
C.  Ultra-thin sections (70-90 nm in thickness) were cut on a Reichert 

Ultracut E ultramicrotome using a Diatome diamond knife, mounted on Formvar-coated 

slot grids, and post-stained with 5% uranyl acetate, and stored in a 0.08 M solution of 

lead citrate in distilled water. 

Sample preparation: isolated vesicles  Vesicle samples were prepared as described 

previously in the cellular fractionation protocol and mounted on EM grids as described 

below. 

Grid preparation  Samples were concentrated as described for cellular fractionation in  

0.2 mL TNMg buffer.  Samples were transported on ice to the EM center for preparation. 

Samples for TEM were prepared and stained based on the methods of Uchil and 

Satchidanadam (2003), exposing Formar coated copper grids to 20 µL drops on parafilm 

starting with a drop of sample (1 min) then a drop of negative stain (3 min)(Harris, 1999).  

Grids were blotted with a point of filter paper between drops and after staining, then 

allowed to dry resting on parafilm for 15 min.  The negative stain was 2% uranyl acetate 

in distilled water.  Samples were examined and images recorded after grids were dry. 

Characterization of isolated vesicles: detergent sensitivity  To determine the detergent 

sensitivity of vesicles, samples were prepared by the cellular fractionation protocol, 
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except samples were incubated in 1.5% sodium deoxycholate (DOC) on ice instead of 

TX100.  Grids were prepared as described above.  TX100-treated samples from upper 

fractions likely to contain buoyant vesicles were compared with DOC-treated equivalent 

fractions. 

Imaging  Samples were examined by Dr. Royer and the author by TEM as described 

above.  Images were taken at a magnification of 100,000x and 100 kV unless otherwise 

noted.  Vesicles were imaged as a through-focal series consisting of three images of each 

vesicle.  Negative control and DOC-treated sample grids were scanned for five times the 

average time required to identify the vesicles on TX100-treated sample grids to ensure 

that adequate time was allowed to be reasonably certain that such grids contained no 

vesicles.  All images were taken with Kodak electron microscopy 4489 film (Electron 

Microscopy Sciences). 

 

Prediction of DENV RNA secondary structure  

 The mFold webserver for RNA folding available through the Rensselaer 

bioinformatics web server (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) was used 

to analyze the 5’-terminal 6000 nt and 3’ 4723nt of the DENV-2 (JAM1409) genome 

(Genbank #M20558) under the statistical nucleic acid predictions described by Zuker 

(2003).   
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Results 

 

Characterization of sucrose-gradient fractions: analysis of viral RNA via RT-PCR 

 RT-PCR amplification of viral RNA from fractions of sucrose gradients showed 

two major regions containing DENV-2 RNA: buoyant upper fractions (1 and 2) and 

dense lower fractions (8, 9, and 10) of the gradient.  When RT-PCR was used to compare 

cellular fractions to equivalent fractions from cell culture, medium cDNA amplicons 

were observed from many fractions, but the major cDNA amplicon differed between 

DENV-infected cell culture and medium from these cells.  The major DENV cDNA 

amplicon was found in buoyant upper fraction 2 from cellular fractionation (top panel, 

Figure 2.1), and the major cDNA amplicon was found in dense lower fraction 7 in 

medium gradients (bottom panel, Figure 2.1).   

 

Characterization of sucrose gradient fractions: analysis of viral RNA via strand- 

specific northern blot 

 The northern blot analysis of samples, from gradient fractions of detergent-treated 

cellular material hybridized with an anti-genome sense probe showed genome sense RNA 

at ~10.7 Kb in several buoyant upper fractions (2-3) and a similar-sized band in dense 

lower fractions (5-8) (Figure 2.2a, left panel).  The equivalent northern blot hybridized 

with a genome sense probe showed a 10.7 Kb band of anti-genome sense RNA only in 

buoyant upper fraction 2 of the sucrose gradient (Figure 2.2a, right panel).  There was 

little or no detectable RNA in the middle fractions with either probe. 
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Figure 2.1  RT-PCR of sucrose gradient fractions  The top panel shows agarose gel 

electrophoresis of RT-PCR products amplified from cell fractionation gradient fractions 

of DENV-2 infected C6/36 cells, and the bottom panel shows analysis of equivalent 

fractions from a gradient separation of medium from infected cells. Each sample had a 

PCR control (A) and RT-PCR (B).  The left-most lane contains the DNA size markers, 

and the next two lanes contain the PCR and positive control RT-PCR from extracted 

DENV-2 RNA.  Remaining lanes contain products from top to bottom fractions, and the 

final two lanes contain controls without template RNA.  In the top panel, fractions 1, 2, 7, 

and 8 had amplified cDNA from DENV-2 infected C6/36 cells.  In the bottom panel, 

fractions 2, 3, 4, 5, 7, and 9 contain amplified cDNA products from infected cell culture 

medium. 
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Figure 2.2 Strand-specific northern blots and infectivity assay  DENV-infected 

mosquito cells were treated with detergent and separated into subcellular components via 

density-dependent sucrose gradient fractionation.  Samples were taken as one mL 

fractions from the top of this gradient and the top-most fraction was labeled 1, etc. To 

determine which fractions of the sucrose gradient contained DENV RNA resembling the 

genome sense and anti-genome sense RNA found in DENV replication compartments, 

fractions were analyzed via strand-specific northern blot.  To determine which fractions 

contained infectious virions, each fraction was inoculated onto C6/36 cells, which were 

analyzed via IFA for DENV E protein. 

 

 

 

 

 

 
 

Figure 2.2a.  Strand-specific northern blots.  The left-most lane contains DNA size 

marker. Numbers correspond with gradient fractions: 1 at the top and 10 at the bottom. 

 

 

 

 

 

 
 

 

Figure 2.2b.  Infectivity assay.  IFA of C6/36 cells 14 days after inoculation with top 

fractions (2-3) of sucrose gradient on left and exposed to lower fractions (7-8) on the 

right (40x, fluorescent microscope). 

size               antisense probe    

marker   1  2  3  4  5  6  7  8  9  10 

size                sense probe 

marker   1  2  3  4  5  6  7  8  9  10 

10.7  

Kb 

 

k 



 71 

Characterization of sucrose gradient fractions: analysis of infectious DENV 

To determine which fractions from sucrose gradient centrifugation contain 

infectious DENV, fractions were concentrated, mixed with medium, and applied to 

mosquito cell cultures.  Immunofluorescent detection of DENV envelope (E) antigen as a 

marker of viral replication showed few to no positive cells via IFA after exposure to 

samples from the upper (1-3) and middle (4-6) fractions  of the sucrose gradient and a 

large proportion of positive cells via IFA after exposure to lower (7-10)  sucrose gradient 

fractions (Figure 2.2b). 

 

Characterization of sucrose gradient fractions: Dicer exclusion trial 

To determine whether viral RNA in sucrose gradient fractions that were suspected 

to contain DENV replication complexes enclosed in vesicles was protected from Dicer, 

concentrated gradient fractions were incubated with Dicer, then RNA was extracted and 

subjected to RT-PCR and gel electrophoresis to detect protected genomic RNA.  The 

positive controls indicated that the Dicer enzyme kit was functional in digesting long 

dsRNA.  Viral RNAs were not detected by RT-PCR in any of the samples.  We had 

expected to find viral RNA in the upper (1-3) fractions and in the lower (7-10) fractions 

where viral RNA would be protected from Dicer by vesicles or C protein respectively.  

We suspect that lysis of the occurred as vesicles were transferred from concentrated 

sucrose gradient fractions in pH 8.8 TNMg buffer used in cellular fractionation to the 

more neutral buffer used in the Dicer reactions.  Researchers working on SARS-

coronavirus replication-associated vesicles have also noted the fragility of the vesicles 

and how easily they can be accidentally lysed during experiments (Knoops et al., 2009). 
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Localization of dsRNA in mosquito cells: DENV 

To visualize where virus-associated dsRNA localized in mosquito cells, DENV- 

infected cells were stained with antibodies for dsRNA or DENV E protein and examined 

via fluorescent microscopy.  DsRNA associated with DENV replication was observed in 

a diffuse pattern throughout the cytoplasm in C6/36 cells that were infected with DENV-

2 (JAM1409) at an MOI of 0.1 and fixed at 5 dpi.  DENV E protein was observed 

primarily along the plasma membrane or in larger foci than dsRNA in the cytoplasm in 

C6/36 cells that were infected with DENV-2 and fixed at 5 dpi (Figure 2.3B).  Mock-

infected C6/36 cells had no staining for dsRNA or DENV E protein (Figure 2.3A).   

 

Localization of dsRNA in mosquito cells: SINV 

To determine where virus-associated dsRNA localizes in mosquito cells infected 

with SINV (strains MRE16 and TE3’2J), infected cells were fixed at 3 dpi and stained 

with fluorescent antibodies for dsRNA or SINV E1 protein and examined via fluorescent 

microscopy.  DsRNA staining was observed in large foci throughout the cytoplasm in 

both MRE16 and TE3’2J infected cells, and the intensity of staining for dsRNA appeared 

to be slightly greater in MRE16 than TE3’2J infected cells (Figure 2.4, B and C).  Mock-

infected cells showed no staining for SINV envelope 1 (E1) protein or dsRNA (Figure 

2.4).  Cells infected with each strain of SINV showed localization of E1 protein in large 

foci throughout the cytoplasm.  There were only minor differences in staining intensity of 

dsRNA or E1 antigen in agreement with observations of similar growth curves of the two 

strains in C6/36 cells (Myles et al., 2008) (Figure 2.4). 
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Figure 2.3  Localization of viral antigen and dsRNA in DENV-infected mosquito 

cells 5 dpi  C6/36 cells A mock-infected, and B DENV-infected in left panels were 

stained for DENV or E antigen (green) and counterstained with DAPI nuclear stain 

(blue).  The right panels were stained for dsRNA (green) and counterstained with DAPI 

nuclear stain (blue) (4 micron bar) (100x oil, fluorescent microscope). 
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Figure 2.4  Localization of viral antigen and dsRNA in SINV-infected mosquito cells 

at 3 dpi  C6/36 cells: A mock-infected, B MRE16-infected, and C TE3’2J-infected, in 

the left panels were stained for SINV E1 protein (green) and counterstained with DAPI 

nuclear stain (blue).  The right panels were stained for dsRNA (green) and counterstained 

with DAPI nuclear stain (blue) (4 micron bar) (100x oil, fluorescent microscope).  
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Localization of dsRNA in mosquito cells: LACV 

No dsRNA associated with LACV replication was observed via IFA at 4 dpi in 

C6/36 cells infected with LACV at an MOI of 1 (Figure 2.5).  Mock-infected C6/36 cells 

also had no staining for dsRNA.  Cells infected with LACV and mock-infected cells were 

stained for LACV structural proteins to verify infection.  Mock-infected cells showed no 

staining for LACV structural proteins and cells infected with LACV prototype strain 

showed structural proteins in large foci throughout the cytoplasm. 

 

Localization of dsRNA in transformed mosquito cell lines: FB9.1 cells 

To determine whether dsRNA outside the context of viral infection could be 

detected in mosquito cells, FB9.1 cells, a C6/36 cell line transformed to express a 290 bp 

hairpin RNA, were challenged with DENV-2, fixed, stained with fluorescent antibodies 

for dsRNA or DENV E protein, and examined via fluorescent microscopy.  DsRNA in 

mock-infected FB9.1 cells appeared to localize primarily to the nucleus and in both the 

nucleus and the cytoplasm after DENV-challenge.  Unprotected dsRNA is rapidly 

degraded in the cytoplasm, so transgene derived dsRNA would be destroyed (Houseley 

and Tollervey, 2009).  DsRNA in C6/36 cells localized as previously observed for both 

mock-infected and DENV-infected cells (Figures 2.3 and 2.6).  Unexpectedly, DENV E 

antigen staining was observed in approximately 10-30% of the DENV-challenged FB9.1 

cells, 25% shown.  Mock-infected C6/36 and FB9.1 cells showed no staining for DENV 

E protein.  C6/36 cells infected with DENV-2 (JAM1409) and some DENV-challenged 

FB9.1 cells had E protein in large foci at the plasma membrane of some cells and in other 

cases, near the nucleus (Figure 2.3).  There were a great percentage of cells,   
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Figure 2.5  Staining for viral antigens and dsRNA in LACV-infected mosquito cells 

at 4 dpi  C6/36 cells A mock-infected and B LACV-infected in left panels were stained 

for LACV structural proteins (green) and counterstained with DAPI nuclear stain (blue). 

The right panels were stained for dsRNA (green) and counterstained with DAPI nuclear 

stain (blue) (bar 4 microns) (100x oil, light microscope). 
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Figure 2.6  Localization of dsRNA in mock-infected and DENV-2 challenged FB9.1 transformed mosquito cells and C6/36 

mosquito cells at 7 dpi  In A mock-infected and B DENV-infected cells, first and third panels in each row were stained for DENV E 

protein (green); the second and fourth panels were stained for dsRNA (green).  All panels were counterstained with DAPI nuclear 

stain (blue) (bar 4 microns) (100x oil, fluorescent microscope).  
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approximately 90% C6/36 versus 25% FB9.1 stained for dsRNA and DENV E protein in 

infected C6/36 cultures than in DENV-challenged FB9.1 cultures, suggesting that some 

of the FB9.1 cells were still resistant to DENV infection (Figure 2.6).  The number of 

FB9.1 cells staining with DENV antigen after challenge with DENV had increased from 

the originally reported 1% to an estimated 10-30% based on counts of imaged cells 

(Figure 2.6).  The FB9.1 cells that showed dsRNA staining in the cytoplasm had probably 

lost resistance and were infected with DENV.  We planned to further evaluate the 

hypothesis that some FB9.1 cells had lost resistance by staining for co-localization of 

dsRNA and DENV E protein.  At the time the IFA experiments were performed, the 

FB9.1 cell line was believed to be free of viral contamination.  In preparation for co-

localization studies for dsRNA and DENV E protein, both the FB9.1 and H9.1 cell lines 

were found to be positive for LACV RNA via RT-PCR (Figure 2.7). 

 

Time course of localization of DENV E antigen and dsRNA in infected cells 

 To determine whether DENV E protein and dsRNA localize throughout 

replication, DENV- infected C6/36 cells were fixed at 1-14 dpi, stained for DENV E 

protein and dsRNA, and examined via fluorescent microscopy.  At all timepoints, dsRNA 

and DENV E appeared to co-localize in the cytoplasm of C6/36 cells infected with 

DENV-2 (JAM1409) via fluorescent microscopy (Figures 2.8a and 2.8b).  There was no 

visible staining of either dsRNA or E protein at 1 dpi and there was little variation in the 

observed levels of dsRNA and E protein staining at 2-14 dpi except a slight decline in 

both by 14 dpi.  Both dsRNA and E protein staining were found throughout the  
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Figure 2.7  Gel electrophoresis of RT-PCR products from LACV RNA  RT-PCR 

products from FB9.1 and H9.1 transformed mosquito cell lines indicate both are 

contaminated with LACV.  Lane 1 contains markers, lane 2 is empty, lane 3 is the 

amplicon from H9.1 cells, lane 4 is the amplicon from FB9.1 cells, lane 5 empty, lane 6 

positive control, and lane 7 negative control, and lane 8 empty. 
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Figure 2.8a  Time course of localization of dsRNA and DENV E protein  A  Mock-infected C6/36 cells stained for dsRNA and 

DENV E protein.  B  DENV-infected cells stained for dsRNA and DENV virus E protein (merged C & D).  DENV-infected cells 

stained for C dsRNA, and D DENV E protein. The nuclei are stained with DAPI (blue), (100x oil, fluorescent microscope). dpi = days 

post infection 
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Figure 2.8b  Time course of localization of dsRNA and DENV E protein  A Mock-infected C6/36 cells stained for dsRNA and 

DENV E protein.  B DENV-infected C6/36 cells stained for dsRNA and DENV E protein (merged C & D). DENV-infected cells 

stained for C dsRNA, and D DENV E protein. The nuclei are stained with DAPI (blue), (100x oil, fluorescent microscope). dpi = days 

post infection 
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cytoplasm with more intense staining foci scattered throughout the cytoplasm.  On 

examination at higher magnification of a fluorescent microscopic image of infected 

C6/36 cells at 7 dpi, it appeared that co-localization of dsRNA and DENV E protein may 

not be complete as there appeared to be some red (dsRNA) staining not overlaid with 

green (E protein) (Figure 2.9). 

Examining infected cells via confocal microscopy confirmed that there may be 

dsRNA not co-localized with E antigen and that dsRNA may be closer to the nucleus 

than the E protein (Figures 2.10, 2.11, 2.12). 

 

Localization of DENV C antigen and dsRNA over time 

 To determine whether DENV C antigen and dsRNA co-localized during DENV 

replication, DENV- infected mosquito cells were prepared for IFA to both antigens at 1-

12 dpi.  DENV C protein and dsRNA did not consistently localize in C6/36 mosquito 

cells infected with DENV-2 (JAM1409).  From 1-6 dpi, both dsRNA and C protein 

staining was faint and diffuse and was difficult to observe at 1, 2, and 4 dpi, but slightly 

more intense and more easily observed at 3, 5, and 6 dpi (Figure 2.12).  C protein and 

dsRNA staining did not show the same localization patterns 7-12 dpi, dsRNA staining 

was diffuse and C protein staining was intense and localized to one side of the nucleus.  

Recently translated C protein was near RNA replication sites as in 1-6 dpi, but viral C 

protein accumulated at virion assembly sites at 7-12 dpi.  Confocal microscopic analysis 

of cells stained with monoclonal antibodies for dsRNA and C protein at 10 dpi showed 

diffuse dsRNA staining with single intense C protein foci typically on one side of the 

nucleus (Figures 2.13 and 2.14). 
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Figure 2.9  Is dsRNA completely co-localized with DENV E protein?  Fluorescent 

microscopic image of C6/36 cells infected with DENV-2  (JAM1409) 7 dpi, nucleus 

stained with DAPI (blue), E antigen stained with FITC-conjugated 3H5-21 (green), 

dsRNA stained with biotinylated J2 and Streptavidin-Alexa 546 conjugate (red) (100x 

oil, fluorescent microscope). 
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Figure 2.10  Localization of DENV-2 E protein and dsRNA in C6/36 mosquito cells  

Imaging of the same field of C6/36 cells infected with DENV-2 at 7 dpi stained for A, E 

protein antigen (green), B, differential interference contrast DIC (gray) to delineate 

plasma membrane of cells, C dsRNA (red), D DNA (blue), and E merged  (63x oil, 

confocal microscope).  Merged red and green staining appears yellow. 
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Figure 2.11  Localization of DENV E protein and dsRNA in mosquito cells  Images 

of C6/36 cells A-D DENV-infected, and E mock-infected at 7 dpi.  A, stained for E 

protein (green), B,  dsRNA (red), C, DNA (blue), and  D merged A, B, and C.  Please 

note that E is also a merged image but because the cells are mock-infected there is no 

observable staining for E protein (green) or dsRNA (red) (cropped 63x oil, confocal 

microscope).  Merged red and green staining appears yellow.
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Figure 2.12a  DsRNA and DENV C protein do not co-localize in infected C6/36 cells  Fluorescent microscopy images of A mock-

infected C6/36 cells and B DENV-infected C6/36 cells stained for both dsRNA and DENV C protein. The nuclei are stained with 

DAPI (blue), dsRNA with biotinylated J2 antibody (red), and DENV C protein antibody (green) (100x oil, fluorescent microscope). 

dpi = days post infection. 
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Figure 2.13  Localization of dsRNA and DENV C protein 10 dpi  Images of A-D, 

DENV-infected, and E, mock-infected C6/36 cells stained for both dsRNA and DENV C 

protein. The stains are A, DENV C protein (green), B, dsRNA with biotinylated J2 (red), 

C, nuclei stained with DAPI (blue), and D, merged A, B, and C.  E is also a merged 

image but because the cells are mock-infected there was no observable staining for C 

protein (green) or dsRNA (red) (63x oil, confocal microscope).   
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Figure 2.14  Localization of dsRNA and DENV C protein 10 dpi in single cell  

Images of A-E, DENV-infected and F-G, mock infected C6/36 cell stained for both 

dsRNA and DENV C protein.  The stains are A, DENV C protein (green), B, DIC (gray), 

C, dsRNA with biotinylated J2 (red), D & F, nuclei stained with DAPI (blue), and E, 

merged A, B, C, and D.  G is also a merged image but because the cells are mock-

infected there is no observable staining for C protein (green) or dsRNA (red) (cropped 

63x oil, confocal microscope). 
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Localization of ER marker protein and dsRNA 

 To determine whether DENV replication causes proliferation of the ER, mosquito 

cells infected with DENV were stained for a protein marker of the ER, PDI, and 

examined via fluorescent and confocal microscopy.  Fluorescence microscopy images of 

cells stained with antibodies specific for dsRNA and PDI showed minimal staining for 

PDI in C6/36 cells.  Confocal microscopic analysis was sensitive enough to detect faint 

staining of the ER in mock-infected C6/36 cells at 7 dpi (data not shown).  Confocal 

microscopic analysis revealed co-localization of dsRNA and PDI as well as an increase in 

intensity of staining for ER in the DENV-infected C6/36 cells at 7 dpi (Figure 2.15). 

 

Electron microscopy 

 To visualize membranes associated with DENV replication, mosquito cells were 

infected, treated with detergent, cell fractions were separated via sucrose gradient density 

centrifugation, and concentrated material from fractions was examined via TEM. 

Electron microscopy imaging showed membrane bound vesicles that were 50-75 nm in 

diameter in samples from buoyant upper (1-3) fractions of sucrose gradients and through-

focal imaging series confirmed that the structures were approximately spherical (Figure 

2.16).  Membrane-bound vesicles were sparse but consistently found in fraction 2 of the 

gradient.  Detergent sensitivity testing further confirmed the likelihood that the structures 

were derived from membranes because they were not visible after treatment with DOC.  

The fact that the structures were resistant to treatment with TX100 but not DOC provides 

biochemical evidence that the structures were derived from ER (Figure 2.17). 
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Figure 2.15  Co-localization of dsRNA and ER marker protein PDI in DENV-2 

infected mosquito cells at 7dpi  Images of A-D, DENV-infected, and E-G, mock-

infected C6/36 cells stained for both dsRNA and PDI.  The stains are A & E, ER marker 

protein PDI (green), B,  dsRNA with biotinylated J2 (red), C & F, nuclei stained with 

DAPI (blue), and D & G, merged (cropped 63x oil, confocal microscope).   
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Figure 2.16  Transmission electron micrograph through-focal series of Trition-X100 resistant vesicle isolated from 

DENV-infected mosquito cells  Images ranging through vesicle from fraction 2 of cell fractionation sucrose gradient of 

detergent-treated C6/36 cells.  All images use the same size bar (100,000x, 100 kV, TEM). 
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Figure 2.17  Transmission electron micrographs of detergent-treatment of isolated vesicles  A vesicle from Triton-X100 

treated DENV-infected mosquito cells, B no vesicles from Triton-X100 treated mock-infected mosquito cells, C no vesicles 

from sodium deoxycholoate treated DENV-infected cells (100,000x, 100 kV, TEM). 
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Membranes, like ER, which are enriched in sphingomyelin and cholesterol are TX100 

resistant and DOC sensitive. 

 To ensure that vesicle-like structures observed in the cellular fractionation 

samples were not artifacts of sample preparation for TEM, infected and mock-infected 

cells from the same cell cultures used to prepare cellular fractionation samples were 

fixed, embedded, sectioned, and examined via TEM.  Sections of DENV-infected C6/36 

cells were thoroughly scanned via TEM and both vesicles and viral particles were 

observed.  A representative image of a DENV-infected cell is shown in Figure 2.18 (A).  

Sections of mock-infected C6/36 cells were thoroughly scanned via TEM and no vesicle-

like structures were observed.  A representative image of a mock-infected cell is shown 

in Figure 2.18 (B).  Vesicles ranged in size from 50 to 75 nm in diameter and virions 

within vacuoles were slightly smaller than 50 nm in diameter.  Vesicles were observed 

within the cytoplasm of cells while virions were observed both within cells and just 

outside the plasma membrane. 

 

In silico prediction of secondary structure of DENV genome 

Forty-eight possible secondary structure configurations were produced and these 

results were enlarged and examined for dsRNA regions ≥40 bp in length.  Several 

predicted structures had dsRNA regions ≥40 bp in length (Figure 4.19), but base-pairing 

of these structures was imperfect (Figure 2.20), and this imperfect base-pairing likely 

affects the binding of the J2 antibody.  Schonborn et al. (1991) characterized the J2 

antibody and found that it did not bind to naturally occurring dsRNA with imperfect 

base-pairing and short such as transfer RNAs (tRNAs). 
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Figure 2.18  Transmission electron micrographs of mosquito cell thin sections at 5dpi  C6/36 cells A DENV-infected B mock-

infected C6/36 cells from which the sucrose gradient cellular fractionation samples shown in figures 2.16 and 2.17 were derived.  

Arrow = viral particle, arrowheads = vesicles, m = mitochondria, l = lysosome (30,000x, 100 kV, TEM).
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Figure 2.19  One prediction of secondary structure of DENV-2 (JAM1409) genome  
One of the forty-eight possible secondary structures produced from first 6000 nt (input 

limit of the software) of DENV-2 RNA from mFold a software program used to predict 

nucleic acid folding.  Mfold structures were used to determine whether genomic DENV 

could produce ≥40 bp dsRNA capable of detection by the J2 dsRNA antibody, which 

specifically detects dsRNAs  ≥40 bp in length.  Arrow indicates region ≥40 bp. 
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Figure 2.20  Enlarged area of predicted secondary structure of DENV-2 (JAM1409) 

genome  Enlargement of Mfold structure predicted for genomic DENV showing 

imperfectly paired  ≥40 bp dsRNA which would probably not be detected by the the J2 

dsRNA antibody, which specifically detects dsRNAs  ≥40 bp in length.   
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Discussion 

 

 We hypothesized that DENV replicates in association with ER-derived 

membranes in mosquito cells, and these membranes might protect replicative dsRNA 

from RNAi.   We isolated DENV RNA-associated vesicles and examined their 

morphology, detergent sensitivity, and association with PDI.  To determine whether 

vesicles we isolated could protect DENV dsRNA from RNAi, we compared vesicle size 

and Dicer dimensions and determined the vesicles might be sufficient to prevent Dicer 

from accessing the DENV dsRNA. 

 

Detection of viral RNA species via RT-PCR 

 In a discontinuous sucrose gradient, sample materials that are placed in the middle 

of the gradient will be separated according to their buoyant density during centrifugation.  

RT-PCR detection of viral RNA in cellular fractions was consistent with the existence of 

the two expected intracellular forms of viral RNA associated with DENV replication, 

membrane bound replication complexes and virions.  Membrane bound replication 

complexes would be predicted to be buoyant due to their higher lipid content, and virions 

would be denser because of their compact, protein-dense composition (Kuhn et al., 2002).  

RT-PCR results were consistent with the prediction that both the upper more buoyant 

fractions likely to contain the buoyant membrane-associated replication complexes and 

lower denser fractions likely to contain virions contained DENV-RNA (Figure 2.1).  

However, further characterization of viral RNA polarity and infectivity characteristics 

were needed to confirm this prediction.  
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Characterization of viral RNA species via strand-specific northern blot 

hybridization 

 Further characterization of viral RNA collected from cellular fractionation of 

detergent-treated DENV-infected mosquito cells via strand-specific northern blot 

hybridization revealed a broad distribution of genomic sense RNA in the upper fractions 

and a less intense band of anti-genome sense RNA in the same fraction.  This is 

consistent with the composition of the replicative intermediate as discussed in Chapter 1, 

which is composed of paired genome sense and anti-genome sense strands during 

positive RNA synthesis.  The compact band of full-length genome sense RNA with no 

corresponding anti-genome sense RNA found in the lower fractions is consistent with the 

genomic RNA expected in mature DENV virions (Figure 2.2).  The intensity of the 

genome sense strand RNA detected was greater than the intensity of anti-genome sense 

RNA, which is consistent with the estimated 1 to 10 ratio of anti-genome sense to 

genomic sense strand in DENV replication intermediates observed by Richardson et al. 

(2006) at 5 dpi in Aedes aegypti mosquitoes.  These results further support the hypothesis 

that the DENV-specific RNA detected in the buoyant upper fractions might be associated 

with membrane bound replication complexes and that the RNA from the denser lower 

fractions might be from virions. 

 The ratio of background to signal in these strand-specific northern blots for 

detection of anti-genome sense RNA, even after pooling samples from multiple 

experiments, suggests that this method might not be optimal for analyzing viral RNA 

species isolated via cellular fractionation.  For this reason, in Chapter 4, strand-specific 

RT-PCR replaced strand-specific northern blot hybridization for RNA analysis. 



99 

 

 Other researchers studying flavivirus membrane-associated replication complexes 

used radioisotopes to label viral RNA in mammalian cells instead of RT-PCR or strand-

specific northern blot to track the location of flaviviral RNA (Uchil et al., 2003; 

Mackenzie et al., 1999).  In our hands, attempts to directly label replicating viral RNA 

were unsuccessful, so we used RT-PCR and strand-specific northern blot analysis 

instead; there are no published data using RT-PCR or strand-specific northern blots to 

compare with our data.  However, Westaway et al. (1999) localized newly synthesized 

Kunjin viral RNA to cytoplasmic foci that were imaged via TEM and resemble the 

vesicles observed in our micrographs of infected mosquito cells (Figure 2.18). 

 

Characterization of gradient fraction contents via infectivity assay 

To further characterize gradient fractions from sucrose gradient fractionation of 

detergent-treated DENV-infected mosquito cells, fractions were inoculated onto C6/36 

cells and subsequently stained for DENV antigen to assay for the presence of infectious 

virus.  This infectivity assay showed infectious material in lower fractions and minimal 

infectious material in the upper fractions, consistent with the hypothesis of buoyant 

replication compartments and dense virions (Figure 2.3).  Combined with results from the 

RT-PCR and strand-specific northern blot hybridization, these data provide convincing 

evidence that we have isolated buoyant membrane-associated DENV replication 

complexes and dense virions in the cellular fractionation sucrose gradient. 
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Localization of dsRNA in infected mosquito cells: DENV 

 The perinuclear localization of dsRNA associated with DENV replication at 5 dpi 

in mosquito cells is consistent with the viral dsRNA localization patterns observed in 

mammalian cells (Figure 2.4) (Weber et al., 2006; Welsch et al., 2009).  This suggests 

that, like DENV replication in mammalian cells, dsRNA as a marker of DENV 

replication in mosquito cells is associated with endoplasmic reticular membranes. 

DsRNA spatial localization in DENV-infected mosquito cells changes over time and will 

be discussed in more detail later in the discussion.  The observation that DENV E protein 

is found throughout the cytoplasm is consistent with expectations for an antibody, 3H5-

21, that recognizes a linear epitope and thus binds the DENV E protein, as it is post-

translationally modified and matures in association with cytoplasmic membranes 

(Roehrig et al., 1998). 

 

Localization of dsRNA in infected mosquito cells: SINV 

The cytoplasmic localization of dsRNA associated with SINV replication, both 

MRE16 and TE3’2J strains, is consistent with published accounts of alphavirus 

replication compartments in cytoplasmic vacuoles (Kujala et al., 2001).  The minimal 

intensity differences observed between dsRNA or antigen patterns for the two strains of 

SINV is consistent with published reports comparing replication of MRE16 and AR339-

based strains like TE3’2J showing similar growth curves in mosquito cell culture (Figure 

2.4) (Myles et al., 2004).  Based on Myles et al.’s (2004) observations of titer differences 

in the mosquito midgut, we predict that differences between the two virus strains, 
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MRE16 and TE3’2J, will be readily observable in the mosquito midgut.  Chapter 4 will 

address this possibility in more detail. 

 

Localization of dsRNA in infected mosquito cells: LACV 

As expected from literature on detection of  dsRNA by IFA of LACV-infected 

mammalian cells, no dsRNA was observed in association with LACV replication 

mosquito cells; since LACV does not have a dsRNA replicative intermediate (Weber et 

al., 2006) (Figure 2.5).  This lack of staining for dsRNA could not be attributed to lack of  

replication as infection was verified by staining for LACV structural proteins.  LACV 

resembles other negative strand RNA viruses, which are known to replicate and 

transcribe RNA in tight association with their nucleocapsid protein (Albertini et al., 2006; 

Green et al., 2006).  This tight association of nucleocapsid and template RNA could 

render replicating RNA completely inaccessible to antibody detection; alternatively, the 

extent of the dsRNA regions might have been too short to be detected by J2 monoclonal 

antibody which detects ≥40 bp regions (Schonborn et al., 1991). 

Short regions of LACV dsRNA are not detectable by IFA staining in mammalian 

cells (Weber et al. 2006) or in mosquito cells (Figure 2.5).  These data have implications 

for the role of LACV NSs protein as a viral suppressor of RNAi or interferon (IFN) 

suppressor (Blakqori et al., 2007; Soldan et al., 2005).  Virus-specific Small RNAs are 

produced during LACV infection of mosquito cells, but no LACV specific dsRNA is 

detectable by IFA staining (Blakqori et al., 2007; Weber et al., 2006).  These two facts 

raise the question of whether the LACV small RNAs were derived from secondary 
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structure of LACV genomic or messenger RNA because no dsRNA replicative forms are 

present. 

 

Comparison of localization of dsRNA in mosquito cells: DENV, SINV, and LACV 

 In spite of significant differences in replication strategies, there are minimal 

differences in localization of dsRNA associated with DENV and SINV replication in 

mosquito cells.  In both cases, dsRNA is located where replication complex components 

are known to be assembled, perinuclear foci for DENV and cytoplasmic vacuoles for 

SINV.  LACV-associated dsRNA could not be detected by IFA using the dsRNA 

monoclonal antibody discussed here.  Perhaps comparison of dsRNA localization using 

confocal microscopy in three-dimensions or dsRNA localization within the mosquito 

midgut, as discussed in Chapter 4, will be more enlightening about localization 

differences of dsRNA, as a marker of arbovirus replication.  The experiments described 

in this chapter provided the methodological basis for the imaging of dsRNA in 

mosquitoes. 

 

Localization of dsRNA in transformed mosquito cell lines: FB9.1 cells 

FB9.1 cells are C6/36 mosquito cells that have been transformed with a plasmid 

that constitutively expresses an inverted repeat RNA derived from the DENV-2 genome.  

The observation that dsRNA in FB9.1 cells appears to localize primarily to the nucleus 

prior to DENV challenge confirms that the prM RNA hairpin is not transported out of the 

nucleus.  DsRNA in the nucleus has been described previously in LT C-7 Aedes 

albopictus cells and was attributed to heterogeneous nuclear RNA (Stollar et al., 1978).  
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There is no evidence to suggest that the dsRNA observed in the FB9.1 cells is 

heterogeneous nuclear RNA as it has not been observed in IFAs for dsRNA in non-

transformed C6/36 cells or H9.1 cells that did not express inverted repeat RNA. 

Staining of DENV E antigen by IFA in approximately 25% of the DENV- 

challenged FB9.1 cells, which should be resistant to DENV infection, suggests that FB9.1 

cells had partially lost their resistance at the time of challenge (Figure 2.6).  Adelman et 

al. (2002) reported that their cell lines transformed to produce prM foldback RNA 

typically retained resistance, defined as less than 1% of cells expressing DENV E antigen 

via IFA, for 40-50 passages.  The FB9.1 cell lines used for dsRNA staining were at 

passage 29 according to Dr. Travanty’s records.  According to Adelman et al. (2002), 

FB9.1 cells at this passage should still be resistant.  However, if the passage number was 

re-initiated at zero when the cells were transferred from Dr. Adelman to Dr. Travanty, the 

actual passage number may have been higher than 29 and the inverted repeat plasmid 

may have had more time to develop mutations leading to a loss of resistance.  We could 

have tested this by extracting the RNA from FB9.1 cells, amplifying the prM region via 

RT-PCR, sequencing the prM region, and analyzing the FB9.1 prM region for mutations.  

This loss of DENV resistance may have foreshadowed the loss of resistance that 

occurred in the Carb77 transgenic mosquito line.  However, the Carb 77 transgenic 

mosquito line lacked a gene drive mechanism while the FB9.1 cells were under 

hygromycin selection pressure.  So the mechanism of resistance loss in the FB9.1 cells 

was probably different from the Carb77 mosquitoes in which the transgene was found to 

be present but inactivated by an unknown mechanism (Franz et al., 2009).  However, 10-

30% FB9.1 cells that had lost resistance to DENV were surviving in the presence of 
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hygromycin, so perhaps the prM sequence was lost, suppressed, or dissociated from the 

hygromycin resistance marker.  Loss of the prM sequence in FB9.1 cells could occur 

from a random deletion or mutation that disrupted the expression or function of the prM 

region or otherwise separated the prM region from the hygromycin selection sequence by 

an unknown mechanism.  Additionally, the FB9.1 cells were found to have a high copy 

number of the prM expression transcript from plasmid in Dr. Travanty’s Southern blot 

testing, so perhaps the fitness cost of expressing the plasmid was too high for C6/36 cells 

to maintain for many passages (Travanty, 2005).  These questions could have been 

resolved by Southern blot detection of the prM transcript in FB9.1 cells which have lost 

resistance to DENV-2. 

We had planned to further evaluate the FB9.1 cells that had lost resistance to 

DENV by comparing DENV-challenged FB9.1 and H9.1 cells via virus titration and IFA.  

Since both the FB9.1 and H9.1 cell lines were shown to be positive for LACV RNA via 

RT-PCR, we did not do further experiments involving DENV challenge (Figure 2.7).  

The LACV infection could also explain why FB9.1 cells lost resistance to DENV. 

 

Temporal and spatial co-localization of DENV E antigen and dsRNA  

The observation that DENV E protein and dsRNA are in temporal and spatial 

close proximity in mosquito cells (Figures 2.8 - 2.11) is not surprising in light of the 

three-dimensional structure of the DENV replication compartment in mammalian cells as 

seen by EM tomography (Welsch et al., 2009).  This EM tomography model of DENV 

replication reveals that virus particles are found in a region of the ER that is contiguous 

with replication vesicles. In immuno-EM staining, this same group found that antibody to 
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the E protein did not label the vesicles or convoluted membranes (CM); however, it did 

label the ER, confirming the EM tomography data.  Although the greater resolution of 

electron microscopy used by Welsch et al. (2009) allows for more precise observations 

about the localization of dsRNA and E protein than confocal microscopy, our confocal 

microscopic images showing large foci of E protein near dsRNA could also support a 

model of DENV replication and assembly in a network of membranes. The co-

localization of dsRNA and DENV E protein was confirmed by three-dimensional 

sectioning by confocal microscopy of the samples used in the timecourse experiments. 

 It is unclear whether the J2 dsRNA antibody recognizes secondary structure of 

single-stranded viral genomic RNA or dsRNA associated with viral replication.  This 

could have been determined by an antibody-RNA association or “pull-down” experiment.  

It is possible that the fairly constant level of dsRNA detection and localization throughout 

the entire cytoplasm may indicate that both forms of viral dsRNA are being recognized 

by the J2 antibody. 

 

Localization of DENV C antigen and dsRNA 

 DENV C protein and dsRNA did not consistently co-localize in DENV-infected 

C6/36 mosquito cells.  DsRNA staining was diffuse from 1-12 dpi while C protein was 

diffuse 1-6 dpi  and from 7-12 dpi dsRNA C protein staining was intense and localized to 

one side of the nucleus.  Our C protein localization pattern of an intensely stained focus 

on one side of the nucleus is consistent with previous observations of DENV C protein 

staining in DENV-infected C6/36 cells (Sangiambut et al., 2008).   
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The nuclear magnetic resonance (NMR) structure of the DENV C protein 

homodimer suggests that there is a fold in the structure where the C protein interacts with 

the genomic viral RNA (Ma et al., 2004).  The small area of overlap between locations of 

DENV C protein and dsRNA could correspond with where C protein and newly-

synthesized viral genomes associate in the cytoplasm, and if the dsRNA being recognized 

at this point is the secondary structure of the genomic RNA.  The J2 antibody can detect 

completely complementary dsRNA duplexes  ≥40 bp but doesn’t detect naturally 

occurring dsRNAs with basepair mismatches like transfer RNAs (tRNAs).  Predictions of 

secondary structure of DENV-2 (JAM1409) using mFold software did not predict 

perfectly matched dsRNA regions of  ≥40 bp (Figure 2.19).  Instead the predicted 

secondary structures of genomic DENV RNA more closely resemble a more complicated 

tRNA-like structure.  Transfer RNAs have shorter regions of perfect dsRNA pairing 

rather than a simple perfectly paired dsRNA such as would be produced by pairing of 

genome sense and anti-genome sense RNAs during replication.  The affinity of J2 for 

short dsRNAs ≤11 bp is very low, but it seems plausible that  secondary genomic RNA 

structures like those in Figures 2.19 and 2.20 might be detected but at lower affinity than 

perfectly matched dsRNA regions of  ≥40 bp (Schonborn et al., 1991). 

 

Co-localization of ER marker protein and dsRNA 

 The co-localization of an ER marker protein and dsRNA was expected based on 

many reports of ER proliferation associated with flavivirus infection (Chu and Westaway, 

1992; Girard et al., 2005; Grief et al., 1997; Ng, 1987).  The faint  PDI staining in 

uninfected cells and increase in staining intensity in DENV-infected C6/36 cells (Figure 
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2.15) was consistent with previously published attempts to stain for ER markers during 

flavivirus replication in mammalian cells, which noted the pattern of PDI staining 

undergoes rearrangement and an increase in intensity in flavivirus-infected cells 

(Mackenzie et al., 1999; Welsch et al., 2009).  In agreement with our results, Welsch et 

al. found that replication vesicles were immunolabeled with PDI, but in contrast to our 

results, they observed ER staining at lower levels in DENV-infected cells than non-

infected ER in mammalian cells, which they suggested indicates that PDI is partially 

excluded from the structures.  A similar observation in poliovirus research found no co-

fractionation of poliovirus vesicles with ER, Golgi, lysosomal, or mitochondrial protein 

markers.  Suhy et al. (2000) proposed this loss of intracellular markers might be due to a 

vesicle budding mechanism in which the clustering of viral proteins on the ER led to an 

ER-derived vesicle that excluded the typical cellular protein markers of ER.  Overall, 

these confocal images of increased intensity of PDI staining in DENV-infected mosquito 

cells suggest that ER membranes proliferate in DENV-2 infected mosquito cells. 

 

Electron microscopy 

 Electron microscopic imaging of subcellular fractions suggested that the viral 

specific RNA observed in more buoyant samples of cellular fractionation experiments 

was associated with membrane-enclosed structures that resemble the membrane-bound 

replication compartments observed in mammalian cells (Uchil and Satchidanandam, 

2003) (Figure 2.16).  Additionally, the through-focal EM series of material concentrated 

from gradient fractions and detergent sensitivity testing support a model of  ER-derived, 

spherical membrane vesicles of 50-75 nm diameter that are sensitive to strong non-ionic 
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detergent, which are formed in association with DENV replication in mosquito cells 

(Figure 2.17). 

 The TEM images of thin sections of DENV-infected mosquito cells showed that 

the vesicle structures are not an artifact of the cellular fractionation method and that they 

were specific to DENV-infected cells, as vesicles were not found in mock infected cells 

(Figure 2.18).  We did not observe the paracrystalline arrays noted by Grief et al.( 1997)  

or the large quantities of virions observed by Hase et al. (1987).  This discrepancy could 

be explained by differences in infecting MOIs.  The infecting MOI used by Hase et al. 

was 50-60 compared to our MOI of 0.1.  In situ hybridization electron microscopy by 

Grief et al. (1997) on DENV-infected mosquito cells localized single-stranded RNA 

(ssRNA) to smooth membrane structures (SMS).  Mackenzie et al. (1999) localized 

dsRNA to vesicle packets on Kunjin virus-infected mammalian cells via immunoEM.  

The Grief and Mackenzie groups looked at different parts of the replication complex 

described by Welsch et al. (2009).  The ssRNA in Grief et al. (1997) probably localized 

to the virion assembly region as suggested early in infection when overlap of our DENV 

C protein and dsRNA staining was observed.  Mackenzie et al. (1999) observed buoyant 

vesicle packets that localized with NS proteins and dsRNA that was consistent with our 

isolation of buoyant vesicles from fractions that typically contain dsRNA, and Welsch et 

al. (2009) recently reported immuno-EM localization of viral NS proteins to vesicle 

packets. 

 Based on the work of Uchil and Satchidanadam (2003), the detergent sensitivity 

of our vesicles suggested that the vesicles are ER derived.  Membranes that are enriched 

in sphingomyelin and cholesterol, such as the ER membrane, cannot be disrupted in cold 
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non-ionic detergent, like the ice cold TX100 we used to isolate vesicles from DENV-

infected mosquito cells before sucrose gradient fractionation (Jacobson and Dietrich, 

1999; Uchil and Satchidanandam, 2003).  Since DENV DENV replication-associated 

vesicles are resistant to cold TX100, they  may be enriched in cholesterol and 

sphingolipids.  Cholesterol and sphingolipids have been shown to be required for both 

fusion and budding of alphaviruses, but less data is available as to whether flaviviruses 

require these lipids for replication (Lu and Kielian, 2000; Smit et al., 1999).  However, a 

recent study suggested that disruption of detergent-resistant membranes in Japanese 

encephalitis or DENV-infected mammalian cells inhibits replication (Lee et al., 2008a).  

Lee et al. (2008) used a method similar to our cellular fractionation on sucrose gradients 

and showed that NS3 localizes to bouyant fractions in sucrose gradients of DENV-

infected mammalian cells.  These data fit with our hypothesis that our detergent resistant 

membranes are replication compartments as they would be likely to contain NS proteins. 

 Vesicle structures and virions were observed in thin sections of  DENV-infected 

cells via TEM but not in mock-infected cells (Figure 2.18).  This further confirms that 

vesicles are specific to DENV infection.  The observed diameters of vesicles (50-75 nm) 

and virions (approximately 50 nm) were consistent with the observations of Welsch et al. 

(2009).  This size range is also similar to the vesicle size range reported for other 

flaviviviruses such as Kunjin (50-100 nm) and yellow fever (80-100 nm) (Deubel and 

Digoutte, 1981; Mackenzie et al., 1999).  This raises the question of whether conserved 

vesicle size may indicate a conserved mechanism of vesicle-production in flaviviruses. 

Overall, the observed vesicle structure was in agreement with data from Uchil and 

Satchidanadam (2003) but not Welsch et al. (2009), due to the lack of observation of a 
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pore; however, Welsch et al. noted that the observation of a pore was dependent on the 

method of fixation used in their experiments.  The presence of the vesicles raises the 

question of how DENV RNA exits through the pore of the replication vesicles?  Uchil 

and Satchidanadam (2003) speculated that “viroporins” could extrude the RNA from the 

vesicles, but they did not observe pores.  Welsch et al. (2009) suggest that the pore would 

allow nucleotides in and RNA out but did not suggest a possible mechanism.  Perhaps a 

viral or host RNA binding protein could be used as a chaperone.  Future research into the 

mechanism of vesicle formation and pore composition should include experiments to 

determine how RNA movement in and out of the replication vesicles is regulated. 

 

Can Dicer access the dsRNA of replicating DENV in mosquito cells? 

 After finding that replicating hepatitis C virus (HCV) RNA is mostly resistant to 

experimental nuclease treatment, Quinkert et al. (2005) proposed a model of HCV 

replicative complex vesicles with a pore size that excludes proteinase K (29 kD) and S7 

nuclease (17 kD).  Unfortunately, our experiments to address the corresponding 

hypothesis in DENV replication, that Dicer cannot access the dsRNA of DENV 

replicative intermediates, were inconclusive.  Uchil and Satchidanadam (2003) had 

similarly inconclusive results when they found that after ionic detergent was used to 

disrupt membranes associated with flavivirus RNA, the exposed RNA was not vulnerable 

to RNase treatment.  They suggested that this indicated that flaviviral RNA was 

surrounded by a protein coat.   However, when they sequentially treated RNA-associated 

membranes with detergent, then trypsin, RNA was still resistant to RNAse treatment, and 

this discrepancy was attributed to incomplete trypsin digestion.  Our data showing DENV 
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dsRNA staining with J2 does not support their hypothesis that DENV RNA is protected 

by proteins.  If DENV RNA was protected by protein, we might expect the dsRNA of 

DENV-infected cells staining to resemble LACV-infected cells in which replicating RNA 

is likely to be protected by nucleoprotein like other negative-strand RNA viruses 

(Albertini et al., 2006; Green et al., 2006).  We compared dsRNA staining between 

LACV-infected cells and DENV-infected cells and detected no dsRNA staining in 

LACV-infected cells and dsRNA staining in DENV-infected cells, suggesting that DENV 

dsRNA should be vulnerable to RNases.   

Based on the comparison of our electron microscopy results with the Welsch et al. 

(2009) EM tomography model, it is reasonable that ER-derived vesicles created during 

DENV replication in mosquito cells should have a pore size of approximately 10 nm.  So 

what size is Dicer?  The crystal structure of mosquito Dicer 2 is not available, but the 

structure has been solved for Dicer from Giardia intestinalis (http://www.rcsb.org/pdb 

/results/results.do?tabtoshow=Current) and is approximately 65 angstroms by 100 

angstroms (6.5 nm x 10 nm) (MacRae et al., 2006).  If the mosquito Dicer 2 protein is 

similar in size, it would be difficult but not impossible for Dicer to access the dsRNA 

through a 10 nm pore. 

 Overall, the RT-PCR, northern blot data, infectivity assay, fluorescent microscopy 

data, co-localization of DENV E protein with dsRNA throughout replication and lack of 

co-localization of C protein with dsRNA at 7-12 dpi, is consistent with the electron 

tomography model proposed by Welsch et al. (2009).  The electron microscopy data 

reported in this chapter suggest that DENV replication occurs in association with vesicles 

in mosquito cells.  These vesicles are 50-75 nm in diameter, of ER origin, and 

http://www.rcsb.org/pdb
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specifically associated with DENV replication as they cannot be isolated from mock-

infected cells.  

This is the first isolation of DENV replication-associated membranes from 

mosquito cells.  These vesicles have similar characteristics to vesicles isolated from 

DENV-infected mammalian cells.  Replication of DENV RNA within a vesicle, which 

may make it difficult for Dicer 2 to reach dsRNA replicative intermediates, has 

implications for the antiviral activity of RNAi in the mosquito cell and implications for 

the development of an RNAi-based DENV-resistant transgenic mosquito.  Since small 

RNAs from the anti-genome strand of DENV are produced and anti-genome strand is 

likely protected by membranes during replication, the question of where Dicer accesses 

anti-genome strand remains.  Is the anti-genome sense strand vulnerable to Dicer before 

replication-associated membranes are formed or after it has served as a template for 

transcription of DENV genomes. The next chapter will discuss possible mechanisms for 

the formation of these DENV replication associated membranes. 
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Chapter 3 

Does expression of dengue virus nonstructural proteins 4A and 4B cause membrane 

rearrangements in transformed mosquito cell lines? 
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Introduction 

 

 One of the major questions for researchers studying viral replication 

compartments is how viruses orchestrate the rearrangement of host intracellular 

membranes.  Many non-structural (NS) proteins from positive-strand RNA genome 

viruses have hydrophobic regions, which suggests that they may interact with or become 

embedded in cellular membranes (Salonen et al., 2005).  Miller and Krijnse-Locker 

(2008) have suggested three different ways that viral NS proteins may cause membrane 

rearrangement: proteins with amphipathic helices cause membranes to bend and curve as 

the helices pull across the lipid bilayer, proteins with a conical structure cause 

membranes to curve around them, and oligomerization of  proteins can distort or curve 

membranes. 

 Studies of membrane-bound viral replication complexes (RC) look at the 

interactions of viral NS proteins with host membranes, host proteins, and viral RNA.  To 

begin to examine viral RCs, typically researchers investigate the roles of NS proteins or 

localization of replicating viral RNA.  To study NS proteins outside of natural virus 

infections, researchers often use protein expression plasmids and then track the 

localization of the proteins by fluorescent or confocal microscopy.  Further experiments 

typically seek to co-localize NS proteins with replicating RNA or membranous organelles 

like the Golgi or ER via immunofluorescent microscopy and immunoEM.  Once the NS 

proteins that comprise the viral RC are known, yeast two-hybrid (Y2H) or co-

immunoprecipitation techniques are used to identify interactions beween host proteins 

and NS proteins.   These experiments have led to the suggestion of various cellular 
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membrane-associated processes that viruses could co-opt to form RC-associated 

membranes.  Various cellular membrane-associated processes have been suggested as the 

mechanism that flaviviruses or other +RNA viruses could co-opt to use for RC 

compartment membranes.  Mechanisms of RC compartment membrane formation include 

co-opting autophagy, unfolded protein response (UPR), or lipid raft formation.  We will 

briefly explain the mechanisms of RC compartment membrane formation, review the 

literature on RCs of +RNA genome viruses here, then discuss how we investigated the 

role of DENV NS proteins in RC compartment membrane formation. 

Autophagy is typically triggered by starvation and leads to the breakdown and 

recycling of cellular organelles (Dunn, 1990a).  How the starvation or other autophagy 

initating signal is relayed to the autophagic membrane forming mechanism is not 

understood but autophagy related gene 6 (Atg6), also known as Beclin-1, initiates the 

formation of the autophagosome.  The vesicle elongates, engulfing foreign material, and 

Atg proteins 4, 5, 6 and 12 recruit Atg8 or microtubule-associated protein 1 light chain 3 

(LC3) as the double membrane bound autophagosome formation is completed.  LC3 

becomes lipidated and associates with the membrane (Orvedahl and Levine, 2008).  The 

autophagosome fuses with the lysosome, which contains lysosome associated marker 

proteins (LAMP), and forms a single membrane bound autolysosome that degrades its 

contents.  

The membrane-bound form of LC3-II is the only universally accepted and 

experimentally demonstrated accepted marker of autophagy in mammalian cells (Kabeya 

et al., 2000).  Lysosomal-associated membrane protein (LAMP) is also used as a marker 

of autophagy since the protein is essential for early autophagic vacuoles to become 
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degradative vacuoles (Tanaka et al., 2000).  However, since lysosomes may also contain 

LAMP as a marker, LAMP alone is not considered an infallible marker of autophagy. 

The unfolded protein response (UPR) is triggered by ER stress due to unfolded or 

misfolded proteins.  The UPR can both halt translation and increase production of 

chaperone proteins to increase the capacity to fold translated proteins.  There are three 

UPR pathways: (1) the protein ER resident kinase (PERK), which stops translation by 

phosphorylating initation factor 2 alpha (eIF2α); (2) the inositol-requiring kinase (IRK), 

which activates transcription factor XBP1 mRNA by promoting an alternate splice site 

and XBP1 migrates to the nucleus and upregulates stress genes and can increase the 

capacity of the ER; and (3) ATF6, which also upregulates stress genes (Harding et al., 

1999; Molinari et al., 2002; Sriburi et al., 2004).  Immunoblot detection of 

phosphorylated eIF2α, RT-PCR showing XBP1 splicing, and immunoblots showing 

increased levels of ATF6 protein are all used as experimental markers of the UPR.  

Lipid rafts are characterized by sphingomyelin and saturated phospholipids that 

are resistant to extraction by cold TritonX-100 (Jacobson and Dietrich, 1999).  The 

mechanism of lipid raft formation is unclear but lipid rafts are generally unstable unless 

the lipids interact with proteins.  The presence of lipid rafts can be experimentally 

determined by fluorescent resonance energy transfer (FRET) which shows clustering 

(Anderson and Jacobson, 2002).  There are two types of lipid rafts, planar and caveolae, 

which appear as concave areas on the plasma membrane and contain caveolin protein 

markers (Pietiainen et al., 2005). 

The mechanism of  +RNA virus RC-associated membrane rearrangement is 

probably best understood for poliovirus (PV).  Doedens et al. (1997) expressed PV 
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protein 3A and showed via immuno EM that 3A localized to the ER and caused the 

organelle to dilate, which they suggested was the result of 3A-mediated inhibition of ER 

to Golgi trafficking.  A study using strand-specific FISH and IFA to proteins 2C and 2B 

found that PVRNA co-localizes with 2C and 2B to the periphery of the nucleus (Bolten et 

al., 1998).   Using cellular fractionation and immuno EM, Schlegel et al. (1996) 

suggested a mechanism similar to autophagy for the origin of PV replication 

compartment membranes.  Continued investigation of the mechanism of PV RC 

compartment formation has produced data supporting both the autophagy and secretory 

pathways of vesicle origin. 

 Suhy et al. (2000) found that transfection of plasmids expressing PV 3BC and 3A 

produced vesicles that resembled vesicles in PV-infected cells via buoyancy gradients 

and immunoEM.  Since no ER proteins or other organelle proteins colocalized with these 

membranes, Suhy et al. (2000) argued that they must arise from the autophagy pathway.  

In an effort to evaluate the role of autophagy in PV infection, Jackson et al. (2005) found 

that chemical stimulation of autophagy increased PV titers.  Taylor et al.  (2007) looked 

at artificial expression of the LC3 marker of autophagy and found that it became lipidated 

and membrane-associated during PV infection just as in natural autophagy.  Taylor et al. 

(2009) found artificially expressed LC3 localizes in vesicles during PV infection that 

resemble autophagosomes except that unlike autophagosomes, which move along 

microtubules, they are immobilized.  Additionally, using a microtubule disrupting agent, 

nocodazole, and mutant PV with reduced interactions with the host cytoskeleton, Taylor 

et al. (2009) found that extracellular virus increased with increased vesicle mobility, so 
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they suggested that an autophagy-like mechanism may provide an additional exit 

pathway for PV.  

Meanwhile, Dodd et al. (2001) showed through characterization of PV 3A 

mutants that PV 3A causes disruption of normal cellular secretion, thus reducing cytokine 

secretion and the host immune response to the virus.  Rust et al. (2001) used confocal 

imaging to show co-localization of plasmid-expressed PV 2BC with Sec 13 and 31, 

cellular coat protein complex (COP II) components which are involved in vesicle 

transport between the ER and Golgi.  Based on this evidence, Rust et al. (2001) argued 

for a COP II-mediated anterograde transport pathway origin for PV vesicles.  Belov et al. 

(2007) have taken a closer look at host proteins involved in PV membrane formation and 

found that 3A and ACD directly interact with ADP-ribosylation factors (Arf) proteins 

that control membrane rearrangement for COPII-mediated ER to Golgi trafficking.  

Belov et al. (2008) evaluated a Brefeldin A (BFA) sensitive step of RC formation, which 

they hypothesized meant PV replication was dependent on the cell secretory pathway and 

found mutations in host Arf proteins that allowed production of RC-associated vesicles in 

the presence of BFA.  However, these RC compartments formed in the presence of BFA, 

which inhibited the cell secretory pathway, so that infected cells were unable to produce 

PV (Belov et al. 2008).   

 Current consensus is that PV definitely uses a cellular membrane rearrangement 

pathway, and the mechanism is analogous to autophagy and uses COP II pathway 

components.  Experiments to test both hypotheses have limitations.  LC3 experiments to 

test the autophagy hypothesis use artificial expression of LC3, which may not be 

representative of natural LC3 localization.  Experiments to test the COPII hypothesis use 
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artificially expressed PV proteins or mutant viruses, which may not be representative of 

mechanisms occuring during natural infections. 

 The most well understood RC of the family Flaviviridae is the Kunjin virus RC.  

KUNV is now considered to be a subtype of West Nile virus, but will be referred to here 

as KUNV for ease of discussion (Hall et al., 2001).  In studying the DENV RC, it is 

helpful to review the KUNV RC literature to learn useful techniques for the study of viral 

RCs and gain a broader understanding of flavivirus membrane-associated RCs by 

comparing the two viruses.  Using IFA to NS proteins, confocal microscopy, and 

immunoEM, the KUNV NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5 proteins were 

shown to localize mainly within the vesicle packets in the cytoplasm as well as colocalize 

with each other and dsRNA (Mackenzie et al., 1996; Mackenzie et al., 2007; Mackenzie 

et al., 1998; Westaway et al., 1997a; Westaway et al., 1997b).  Newly synthesized RNA 

was shown to be located near genomic dsRNA via bromouridine labeling and BFA 

experiments (Westaway et al., 1999).  IFA and immunoEM staining for trans-Golgi, 

where secretory vesicles exit the Golgi, and the intermediate compartment, a possible 

intermediate between the ER and Golgi in cellular trafficking, showed changes in 

staining patterns with KUNV replication, implicating these compartments as the 

membrane source for the RC compartments (Mackenzie et al., 1999; Marie et al., 2009).  

Experiments using KUNV packaging mutants and Brefeldin A, which blocks the 

secretory pathway indicated that RNA replication and virion packaging were coupled 

(Khromykh et al., 2001; Mackenzie and Westaway, 2001).  Immunoblot analysis of 

components of buoyant sucrose gradient used to separate membranes showed that there 

are two sets of KUNV replication induced membranes: vesicle packets containing NS3,  
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RNA dependent RNA polymerase (RdRp), and dsRNA as well as the convoluted 

membranes and paracrystalline arrays containing NS3 helicase (Kim et al., 2004).  EM 

imaging of cells transfected with plasmids expressing KUNV NS4a-4b and NS2b-NS3-

NS4a showed that full-length NS4a caused membrane rearrangement and NS4a-2K 

region did not (Roosendaal et al., 2006).  EM studies of KUNV replication mutants 

implicated NS2a as a viroporin, a viral protein that spans the lipid bilayer of host cells 

and can create hydrophobic pores in oligomeric form promoting release of virions from 

cells, based on its characteristic hydrophobic residues and interaction with dsRNA 

(Gonzalez, 2003; Leung et al., 2008).  Based on their observations and some of the 

KUNV observations described above, Leung et al. (2008) also proposed a model in 

which KUNV RNA replication occurs in close association with virus assembly, with 

NS2a acting either as a chaperone to move viral RNA between replication and assembly 

sites or a viroporin allowing RNA to exit the vesicle packets where nascent strand 

replication occurs.  Much less is known about membrane-associated RCs for other 

flaviviruses than for KUNV replication. 

 For DENV, co-immunoprecipitation and immunoblot experiments have shown 

that NS3 interacts with the viral replicase NS5 (Kapoor et al., 1995).  Experiments using 

digoxigenin strand-specific probes have localized ssRNA near DENV-replication 

associated vesicles (Grief et al., 1997).  Chua et al. (2004) used a plasmid-based 

expression system to express DENV NS3 and found NS3 caused cellular membrane 

rearrangement, as observed by confocal microscopy, and interacted with nuclear receptor 

binding protein (NRBP) via yeast two-hybrid (Y2H).  The Y2H technique uses the dual 

properties of transcription factors to discover protein-protein interactions.   Transcription 
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factors have two domains: the binding domain (BD) which binds to an upstream 

activating factor (UAF), and the activation domain (AD) that activates transcription of a 

downstream gene.  To determine whether proteins interact using Y2H, proteins of interest 

are expressed as fusion proteins with the BD and AD in yeast.   The protein-BD will bind 

an UAF and if the protein-AD interacts with the protein-BD, the AD will be brought into 

contact with the reporter gene and activates transcription of a reporter gene.  However, 

one flaw in the experiments of Chua et al. is that membrane rearrangement was not 

confirmed via EM.   Umareddy et al. (2006) found that DENV NS4b also interacts with 

NS3 via yeast two-hybrid experiments and suggested that DENV NS4b may play a role 

in DENV replication.  Miller et al. (2006) found by artificially expressing DENV NS4b 

and confocal microscopy that NS4b is membrane-associated and localizes to ER-derived 

cytoplasmic foci.  Contradicting Chua et al. (2004), Miller et al. (2007) found that 

expression of NS4a caused ER-derived membrane rearrangement via confocal 

microscopy and EM.  After the experiments described in this chapter had been designed 

and begun, Welsch et al. (2009) described extensive co-localization of DENV NS 

proteins, confocal microscopic fluorescent staining for organelles, and EM tomography 

of DENV-infected mammalian cells, revealing a physical connection between the DENV 

replication and assembly sites.  DENV RC-associated membranes originate from the ER, 

and pores from the RC vesicles are in close proximity to where virions are budding from 

the ER according to Welsch et al (2009).  From these observations, Welsch et al. (2009) 

proposed a model for DENV replication, which in brief, begins with association of 

genomic viral RNA with ribosomes of the RER, translation, and co- and post-

translational cleavage of the polyprotein.   After cleavage, NS4a and unknown host 
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proteins cause formation of vesicles, RNA is synthesized within the lumen of these 

vesicles, and nucleocapsids form around the RNA and bud from the ER near the RNA 

exit site. 

 In general, very little is known about the role of NS proteins in the formation of 

viral RCs for other members of the family Flaviviridae.  From the genus Hepacivirus, 

hepatitis C virus (HCV) researchers expressed individual NS proteins as well as the 

whole polyprotein in cells.  NS4b expression created a membranous web and other NS 

proteins were found to localize to this NS4b generated web via immuno EM (Egger et al., 

2002).  Gosert et al. (2003) confirmed that the HCV membranous web contained the RC 

by localizing viral RNA to this membrane via bromouridine labeling of RNA in the 

presence of actinomycin D.  Additional work suggests that HCV replication may require 

association with lipid droplets during replication for virion infectivity, which we 

speculate may be required for the formation of RC-associated membranes (Boulant et al., 

2007).  Expression of HCV NS4b activates the unfolded protein response (UPR) by 

XBP1 splicing and ATF6 cleavage as shown by RT-PCR and confirmed by immunoblot 

(Li et al., 2009) 

 For the Pestivirus genus of the family Flaviviridae, one study examined the role of 

viral NS protein, and  chemical cross-linking experiments showed that NS3, NS4b, and 

NS5a interact during bovine diarrheal virus (BVDV) replication (Qu et al., 2001). 

Additionally, Qu et al. (2001) found that the NS4b amino acid residues that mediate 

association with the ER are highly conserved in otherwise divergent cytopathic and non-

cytopathic forms of BVDV, which they suggested indicates these residues may be crucial 

for replication.  We speculate that these amino acid residues, like the NS4 residues of 
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DENV, may integrate BVDV NS4b into membranes, helping to form the vesicles that 

protect the BVDV RC from the host innate immune response. 

 To test the hypothesis that DENV NS4 expression creates DENV RC-associated 

vesicles, four different DENV NS4 constructs: NS4a, NS4a-2k, NS4b, and NS4b+2k 

coding regions (Figure 3.1) were tagged with six histidine residues, inserted into 

plasmids, and expressed under control of the baculovirus derived immediate early 1 

promotor (ie1)  (Adelman et al., 2002; Huynh and Zieler, 1999). This method was 

unsuccessful in protein expression, so a commercial plasmid designed for expression of 

fluorescently tagged proteins was modified by excision of the original cytomegalovirus 

(CMV) promoter.  The CMV promoter has poor activity in insect cells, so we replaced it 

with an ie1 promoter, and the four NS4 constructs were inserted.  This method was also 

unsuccessful in protein expression, so a Sindbis virus (SINV) (family Togaviridae) 

replicon system was used to express NS4a-2K (Geiss et al., 2007).  Unfortunately, 

mosquito cells infected with this SINV replicon could not be used to evaluate whether 

expression of DENV NS4a-2K causes membrane rearrangement because alphavirus 

replication is also known to cause membrane rearrangements (Kujala et al., 2001). 

 Overall, the experiments discussed in this chapter did not establish whether 

expression of DENV NS4 causes membrane rearrangement in mosquito cells.  

Expression of NS4 via commercial protein expression systems was unsuccessful, leading 

to the hypothesis that expression of DENV NS4 was either unstable or toxic to mosquito  

cell culture outside of a natural infection.  Attempts to co-express NS4 constructs in 

mosquito cell culture or express NS4 in DENV-infected cell culture did not increase NS4 
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Figure 3.1 DENV NS4a and NS4b constructs NS4a has a C-terminal region known as 

the “2K” or 2 kDa region. Note that the 2K region in NS4a diagram is labeled as 

“pTMS4.”  During DENV gene expression, this region is cleaved, resulting in NS4a 

minus 2K (NS4a-2K).  The 2K region associates with the N terminus of NS4b as a signal 

peptide, resulting in NS4b plus 2K (NS4b+2K).  The four constructs used for cloning 

were full length NS4a, NS4a-2K, NS4b, and NS4b+2K.   (Miller et al., 2007; Miller et 

al., 2006).   
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expression from the experimental plasmids, leading to the hypothesis that expression of 

NS4 constructs under a constitutive promoter was overwhelming or toxic to mosquito 

cells.  Possible reasons for the failure of the these experiments will be discussed in more 

detail at the end of this chapter in the context of recently published information on DENV 

NS proteins triggering the cellular unfolded protein (UPR) pathway. 
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Materials and Methods 

 

Cell lines 

C6/36 (Aedes albopictus) cells were grown in Leibowitz’s 15 (L-15) medium 

supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 U/mL 

streptomycin, and 0.2 mM L-glutamine (L-15 growth medium) at 28°C.     

Aag2 (Aedes aegypti) cells were a gift from Dr. Alexander Raihkel at University of 

California, Riverside.  Aag2 cells were grown in Schneider’s medium supplemented with 

10% heat-inactivated FBS, penicillin, streptomycin, and L-glutamine (Schneider’s 

growth medium) at 28°C.   

BHK-21 (Mesocricetus auratus) baby hamster kidney cells were obtained from the 

American Type Culture Collection (ATCC) (Manassas, VA).  BHK-21 cells were grown 

in Dulbecco’s modified minimum essential medium (DMEM) (Mediatech, Arlington 

Heights, IL) supplemented with 10% heat-inactivated FBS, penicillin, streptomycin, and 

L-glutamine (DMEM growth medium) at 37°C with 5% CO2. 

 

Viruses 

DENV stocks were originally obtained from the AIDL CORE support system and 

all titrations were performed via the AIDL CORE support system using the protocol 

described in Chapter 5, except that plaques were counted instead of picked at the end of 

the assay. 

DENV-2  For preparation of working virus stocks,  4 mL medium containing DENV 

(JAM1409) (Genbank #M20558) was inoculated onto subconfluent C6/36 cells in a 150 
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cm
2 

cell culture flask at an MOI of 0.01 and rocked at room temperature for 1 hr before 

adding 20 mL of medium.  Infected C6/36 cells were maintained in L-15 medium 

maintenance medium, at 28°C for a total of 14 days, with a medium change at 7 dpi.  At 

the end of the 14 day incubation, virus was harvested by using a cell scraper to detach 

cells, then cells and medium were suspended and divided into 0.5 mL aliquots and stored 

at -80°C.  These aliquots were used for extracting RNA used in cloning steps described 

below. 

 

Cloning 6His tagged DENV NS4a and NS4b inserts using pIE plasmid with 

hygromycin selection marker  

pIE HYG plasmid  The pIE HYG plasmid was constructed by Dr. Zachary Adelman 

while at AIDL (Adelman et al., 2002).  Full sequence data are not available for this 

plasmid but it is known to contain a baculovirus ie1 promoter, XbaI non-directional 

insertion site, and a selectable hygromycin resistance marker. 

RNA extraction  RNA  to be  used for RT-PCR was extracted from 0.5 mL working virus 

stocks described above using the RNeasy Mini kit (Qiagen, Valencia, CA). 

RT-PCR  The NS4a, NS4a-2k, NS4b, and NS4b+2k coding regions of DENV RNA were 

amplified via high-fidelity RT-PCR using Superscript III One Step RT-PCR High 

Fidelity kit (Invitrogen, Carlsbad, CA).  The NS4a and NS4b inserts were amplified using 

the following primer pairs: KP59 and KP63, KP59 and KP62, KP60 and KP64, KP61 and 

KP64 (Table 3.1).  Primers were used to add XbaI restriction enzyme sites at both 5’ and 

3’ ends for insertion into pIE HYG plasmid and 3’ tags consisting of 6 histidine codons 

(6His) to aid later detection of protein expression.  Amplification product size was 



128 

 

verified via gel electrophoresis and RT-PCR products were purified to remove template 

RNA using QIAquick PCR Kit (Qiagen).    

Sequencing  Purified cDNAs of all 4 NS4a and NS4b constructs with added restriction 

sites and 6His tags were sequenced in both forward and reverse directions by the 

Proteomics and Metabolics Facility (Colorado State University). 

Intermediate cloning  Sequenced cDNAs were first inserted into a TOPO plasmid using 

the TOPO TA cloning kit (Invitrogen) for reliable amplification of inserts.  Colonies 

expressing TOPO clones were selected with ampicillin, PCR was used to identify 

positive colonies based on manufacturer’s instructions, then several colonies containing 

clones of each insert were cultured overnight and plasmid DNA was purified using the 

QIAprep Spin Miniprep kit (Qiagen).  Purified plasmid was sequenced to verify inserts 

by the Proteomics and Metabolics Facility. 

Colony PCR  Colonies were screened by touching a sterile pipette tip to each colony and 

swirling tip in a PCR reaction as follows: 2 mM MgSO4, 0.2 mM each dNTP, PCR buffer 

at a final concentration of 1x, 0.2 µM forward primer, 0.2 µM reverse primer, 1 U  

Platinum Taq, nuclease-free water to 10 µL (Invitrogen).  PCR amplification was carried 

out under the following conditions: 94°C 10 min; 30 cycles 94°C 1 min, 55°C 1 min, 

72°C 1 min, followed by a final extension at 72°C 10 min.  Product size was verified via 

gel electrophoresis.
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Table 3.1 Primers for amplification of 6His tagged DENV NS4a and NS4b for insertion into pIE HYG expression plasmid 

 

 

Primer   Purpose            Sequence             

   (sequence added)              

 

 

 

KP59   NS4a fwd            GATCTCTAGATATGTCTTTGACCCTGAACCTAATC      

 

KP60   NS4b+2k fwd           GAT CTC TAG ATA TGC CAG AAC CAG AAA AAC AGA GAA C    

 

KP61   NS4b fwd            GATCTCTAGATATGGAGATGGGTTTCCTGGAAAAAACC    

   

KP62   NS4a full rev           GATCTCTAGACTAGTGATGATGGTGATGATGGTTTGCCATGGTTGCGGCCAC  

  (NS4a 6His Stop XbaI) 

    

KP63    NS4a-2k rev            GATCTCTAGACTAGTGATGATGGTGATGATGAATGAGCAGAACTATGAG              

  (NS4a w/o 2k 6His Stop XbaI) 

 

KP64 NS4b rev            GATCTCTAGACTAGTGATGATGGTGATGATGGTTCCTCTTCTTGTGTTTGTTGTG  

  (NS4b 6His Stop XbaI) 
 

 

pIE = plasmid with baculovirus derived immediate early 1 (ie1) promoter, fwd = forward primer, rev = reverse primer, 6His = tag 

coding for 6 histidine residues, Stop = stop translation site, XbaI = restriction site for XbaI
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Insertion of histidine-tagged NS4a and NS4b cDNA into pIE-HYG  NS4a and NS4b 

inserts with added 3’ and 5’ XbaI restriction enzyme sites were excised from the 

intermediate TOPO plasmid with XbaI (New England Biolabs, Ipswich, MA) after 

amplification.  Digested plasmids and inserts were separated by agarose gel 

electrophoresis and inserts were extracted using the QIAquick gel extraction kit (Qiagen).  

Plasmid pIE-HYG was digested with XbaI.   Inserts were ligated into pIE-HYG using T4 

DNA ligase (New England Biolabs), electroporated into XL1 E. coli cells and plated onto 

Luria broth plates containing 50 µg/mL ampicillin.  Plates were checked for growth and 

colonies screened via colony PCR.   

Preparation of plasmids from colonies containing correct insert size  as shown via colony 

PCR  Colonies with PCR amplification products of the appropriate size were grown for 

no more than 16 hr in Luria broth with 50 µg/mL ampicillin.  Plasmids from overnight 

cultures were purified using QIAprep spin miniprep kit (Qiagen).  Presence of 

appropriate size insert was again verified via PCR as for colony PCR except 1 µL liquid 

culture was used for the template.  Samples were sequenced by the Proteomics and 

Metabolics Facility and sequences analyzed using Contig Express from Invitrogen’s 

VectorNTI Advance 10 (Invitrogen).    

Determination of insert orientation in pIE-HYG  Since the pIE HYG expression plasmid 

has a non-directional insertion site, orientation of the NS4 insertions had to be determined 

prior to expression in mosquito cells. 

Directional PCR  To determine the orientation of the NS4a and NS4b inserts in pIE-

HYG, PCR as described above was used with the KP20 primer specific to the ie1 

promoter sequence, KP20 5’TGGATATTGTTTCAGTTGCAAG3’, with one of the 
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reverse primers KP63, KP62, and KP64 (Table 3.1) or KP 65-68 (Table 3.2) as needed 

for the specific insert being tested (Figure 3.2). Product size was verified via gel 

electrophoresis. 

Directional sequencing  To determine the orientation of NS4a and NS4b inserts in 

plasmids extracted from colonies positive via PCR, the primers designed for orientation 

PCR were used for sequencing.  Samples were sequenced by the Proteomics and 

Metabolics Facility and sequences analyzed using Contig Express from Invitrogen’s 

VectorNTI Advance 10.    

Transfection to evaluate expression  To determine whether NS4a and NS4b inserts 

determined to have correct orientation could be expressed, plasmid DNA was purified 

from overnight cultures as described previously and was transfected into C6/36 cells 

using Mirus 293T (Mirus, Madison, WI).  To transfect cells, 0.5 mL serum free L-15 

medium was incubated with 10 μL transfection reagent for 5 min at room temperature, 

then 1 µg of plasmid DNA was added and incubated for an additional 20 min at room 

temperature.  Medium was removed from one well of a 6-well tissue culture plate 

containing 60% confluent C6/36 cells and transfection mixture was added in dropwise 

manner.  After 30 min, L-15 growth medium was added.  Cells were allowed to grow for 

3 days to express the plasmid.  At the end of 3 days medium was removed from the tissue 

culture plate and RNA was extracted from medium and cells using Trizol LS 

(Invitrogen). 

All chemicals used for RNA extraction were obtained from Ameresco (ISC 

Bioexpress, Evans, UT) except the Trizol LS.  RNA extraction using Trizol was carried
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Table 3.2 Orientation primers for checking directionality of NS4a and NS4b inserts 

 

Primer Purpose      Sequence  

 

           

KP 65  NS4a fwd dir ck  CTTCTTATTCTTAATGAGCGGAAAAGGTATAGAA 

 

KP 66   NS4a rev dir ck TTCTCTGTGACTGTGGCCAGGAGTGTCAGTAAAAGG 

 

KP 67  NS4b fwd dir ck  GCACATTATGCCATTATAGGGCCAGGACTTCAAGC 

 

KP 68   NS4b rev dir ck TGCTACCAATAAAGAAGAGCTGTGAGAGTTATAGG 

 

 

fwd = forward primer, rev = reverse primer, dir ck = insertion orientation check 
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Figure 3.2 Directional PCR  To determine the orientation of DENV NS4a and NS4b constructs inserted into the pIE HYG plasmid, 

combinations of primers were used to amplify the inserts.   

 

    NS4a/b insert 

Reverse primer: KP62, 

KP63, or KP64 

iel promoter 

primer: KP20 

Directional PCR forward KP20 & reverse KP62, KP63, or KP 64 = PCR product = correct orientation 

   forward KP20 & reverse KP62, KP63, or KP 64 = no PCR product = incorrect orientation 

 

forward KP 20 & reverse KP 65 or KP 67 = PCR product = reverse orientation 

  forward KP 20 & reverse KP 66 or KP 68 = PCR product = desired orientation 

 

 

 KP65 or KP67     KP66 or KP68 
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out according to the manufacturer’s instructions.  Two milliliters of Trizol LS were added 

to each well and incubated at room temperature for 5 min, and then Trizol treated 

samples were transferred to microcentrifuge tubes.  Next 0.4 mL of chloroform was 

added to each tube and samples were shaken for 15 sec followed by incubation at room 

temperature for 2 min.  Phases were separated by centrifugation at 12,000 x g for 15 min 

at 4°C.  The aqueous phase was transferred to a new microcentrifuge tube, 1 mL 

isopropanol was added and samples incubated at room temperature for 10 min to allow 

RNA to precipitate.  RNA was concentrated by centrifugation at 12,000 x g for 10 min at 

4°C.  Supernatant was removed and samples were washed by the addition of 2 mL 75% 

ethanol and centrifuged 7,500 rpm for 5 min at 4°C.  Pellets were air-dried briefly.   

 Expression of NS4a and NS4b constructs was detected via RT-PCR with the 

SuperScript III One-Step RT-PCR System with Platinum Taq  kit (Invitrogen) using the 

appropriate forward primer and an 18 mer oligdT reverse primer (Integrated DNA 

Technologies, Coralville, IA) (Table 3.1)  in 20 µL reactions exactly as described in the 

kit.  The RT-PCR conditions were: 45°C 30 min; 94°C 2 min, 40 cycles of 94°C 15 sec, 

60°C 30 sec, and 68°C 30 sec, followed by a final incubation of 68°C 5 min. Product size 

was verified via gel electrophoresis. 

 

Cloning and expression of DENV NS4a and NS4b inserts using commercial 

fluorescent tagged protein expression plasmid  

Construction of pIE-dsRed plasmid  The pDsRed-monomer-HYG-N1 plasmid (Clontech, 

Mountain View, CA) was modified to contain a baculovirus ie1 promoter by removing 

the CMV promoter via excision at the 5’ PciI and 3’ XhoI restriction enzyme sites.  The 
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baculovirus immediate early promoter region was amplified out of the pIE-3 plasmid 

obtained from Dr. Alexander Franz (Colorado State University) with the following 

primers: ie1 FWD with RE  5’ATGCACATGTACGCGTAAAACACAATCAAGTA 

TG3’ and ie1 REV with RE 5’GCATGCTAGCTGGTACTTGGTTCACGATC3’, which 

added 5’ PciI and 3’ XhoI restriction enzyme sites.  Size of amplification product was 

verified via gel electrophoresis, and product was digested with PciI and XhoI (New 

England Biolabs, Ipswich, MA) to create ligation sites.  Digested plasmids and inserts 

were separated by agarose gel electrophoresis and inserts were extracted using the 

QIAquick gel extraction kit (Qiagen).  Inserts were ligated into pDsRed-monomer-HYG-

N1 plasmid using T4 DNA ligase (New England Biolabs).  Ligation products were 

electroporated into XL1 E. coli cells and plated onto Luria broth plates containing  

50 µg/mL ampicillin.  Plates were incubated, checked for growth and colonies screened 

via PCR.  Colonies with PCR amplification products of the appropriate size to contain the 

dsRed plasmid with the new ie1 promoter were grown for no more than 16 hr in Luria 

broth with 50 µg/mL ampicillin.  Plasmids from overnight cultures were purified using 

QIAprep spin miniprep kit (Qiagen).  

The NS4a and NS4b inserts were amplified from DENV-2 (JAM1409) RNA via 

RT-PCR with the primer sets that added 5’ PciI and 3’ XbaI restriction enzyme sites 

(Table 3.3).  Additional cloning and sequencing steps were as for the promoter region.  

Presence of appropriate size NS4a or NS4b insert was again verified via colony PCR  and 

gel electrophoresis, as previously described.  Samples were sequenced by the Proteomics 

and Metabolics Facility and sequences analyzed using Contig Express from Invitrogen’s 

VectorNTI Advance 10.   
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Table 3.3 Primers for modifying commercial plasmid promoter and inserting NS4a/b 

 

Primer Purpose      Sequence  

 

 

KP69  ie1 fwd w/ RE  ATCCACATGACGCGTAAAACACAATCAATCAAGTATG 

KP70  ie1 fwd w/o RE CGCGTAAAACACAATCAAGTATG 

KP71  ie1 rev w/ RE  GCATGCTAGCTGGTACTTGGTTGTTCACGATC 

KP72  ie1 rev w/o RE GGTACTTGGTTGTTCACGATC 

KP85  A fwd w/ RE  ATGCCTCGAGATGTCTTTGACCCTGAACCTAATC 

KP86  B fwd w/ RE  ATGCCTCGAGATGGAGATGGGTTTCCTGGAAAAAACC 

KP87  A - rev w/ RE  GCATGGTACCTAATGAGCAGAACTATGAG 

KP88  A rev w/ RE  GCATGGTACCCTGTTTGCCATGGTTGCGGCCACC 

KP89  B rev w/ RE  GCATGGTACCCTCCTCTTTTGATGCCTTCTTTTGC 

KP90  B+ fwd w/ RE  ATGCCTCGAGATGATTCCAGAACCAGAAAACAGAG 

KP91  B+ rev w/ RE  GCATGGTACCCCCTCCTCTTTTGATGCCTTCTTTTGC 

KP92  A fwd   ATGTCTTTGACCCTGAACCTAATC 

KP93  B rev   ATGGAGATGGGTTTCCTGGAAAAAACC 

KP94  A- rev   CTAATGAGCAGAACTATGAG 

KP95  A  rev   TGTTTGCCATGGTTGCGGCCACC 

KP96  B rev   CTCCTCTTTTGATGCCTTCTTTTGC 

KP97  B fwd   ATGATTCCAGAACCAGAAAAACAGAG 

KP98  B+ rev   CCCTCCTCTTTTGATGCCTTCTTTTGC 

 

____________________________________________________________________________________________________________ 

 

ie1 = immediate early 1 promoter, fwd = forward, rev = reverse, w/ = with, w/o = without, RE = restriction enzyme 
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Establishment of transformed cell lines  Plasmids pIEdsRed (no insert control), 

pIEdsRedNS4a, pIEdsRedNS4a-2k, pIEdsRedNS4b, and pIEdsRedNS4b+2k were 

transfected into C6/36 cells using Mirus 293T (Mirus, Madison, WI).  To transfect cells, 

0.5 mL serum free L-15 medium was incubated with 10 μL transfection reagent for 5 min 

at room temperature, then 1 µg of plasmid DNA was added and incubated for an 

additional 20 min.  Medium was removed from T-25 cell culture flasks containing 60% 

confluent C6/36 cells, and transfection mixture was added in dropwise manner.  After 30 

min, growth medium was added.  After 24 hr recovery period, this medium was replaced 

with maintenance medium containing 300 U hygromycin B/mL (Calbiochem, EMB 

Biosciences, Inc., San Diego, CA) (Adelman, 2000).  Medium was changed every 3 days 

to maintain hygromycin selection.  Cells were screened with an inverted fluorescent 

microscope for red fluorescence as a marker of NS4a or NS4b expression (Olympus 

inverted microscope, AIDL). 

Co-transfection of NS4a and NS4b constructs  To determine whether co-expression of 

NS4a and NS4b would increase stability of protein expression, all possible pairwise 

combinations of plasmids expressing NS4a, NS4a-2K, NS4b, and NS4b+2K were co-

transfected into C6/36 cells as described for establishing transformed cell lines.  The 

quantity of transfected DNA consisted of 0.5 µg of each plasmid for a total of 1 µg of 

DNA. 

Infection and transfection of cells  To determine whether expression of NS4a or NS4b 

would be more stable in the context of a natural infection, C6/36 cells were infected with 

DENV and transfected with NS4a or NS4b constructs.  Briefly, batches of cells were 
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infected and then transfected at 24, 48, and 72 hr post infection.  Other batches of cells 

were transfected then infected at 24, 48, and 72 hr post transfection.   

For infection, C6/36 cells in 12-well tissue culture plates were infected with 

DENV (JAM1409) at an MOI of 0.1, 0.01, or 0.001 and rocked at room temperature for  

1 hr in 0.5 mL/well before adding 1.5 mL more medium.  Infected C6/36 cells were 

maintained in L-15 maintenance medium at 28°C.  For transfection, C6/36 cells grown in 

12-well tissue culture plates were transfected as described above.  After transfection, 

medium containing 300 U/mL hygromycin was used to maintain the cells and medium 

was changed every 3 days. 

Transfection of Aag2 cells  To determine whether expression of NS4a and NS4b was 

more stable in Aag2 cells, Aag2 cells were grown in 12-well tissue culture plates and 

transfected using Effectene (Qiagen).  Transfection methods followed the manufacturer’s 

guidelines.  One microgram of plasmid DNA was mixed with Buffer EC in a 

microcentrifuge tube for a volume of 150 µL, then 8 µL of enhancer solution was added 

and the mixture was vortexed for 1 sec.  The mixture was incubated at room temperature 

for 5 min and briefly centrifuged to collect mixture at the bottom of the tube.  Twenty-

five microliters of Effectene was added to the tube and pipetted up and down five times 

to mix, and then the mixture was incubated at room temperature for 5 min.  Meanwhile, 

medium was removed from the Aag2 cells, cells were rinsed with PBS, and fresh 

maintenance medium was added to the cells.  One milliliter of medium was added to the 

transfection mixture and the mixture was pipetted up and down twice to mix.  Mixture 

was added dropwise to cells and dish was swirled to mix transfection reagents and fresh 

medium.  Cells were incubated for 18 hr before medium was changed. 
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Infection and transfection of Aag2 cells  Infection and transfection of Aag2 cells was 

identical to methods used for C6/36 cells except transfection used Effectene as described 

above.  Infected cells were maintained in Schneider’s maintenance medium at 28°C.  

After transfection, medium containing 300 U/mL hygromycin was used to maintain the 

cells and medium was changed every 3 days. 

 

Cloning using recombination-ready SINV replicon expression vectors  

To determine whether NS4a and NS4b constructs could be expressed in mosquito 

cells, the constructs were inserted into a SINV replicon expression vector using a system 

designed by Dr. Brian Geiss (Geiss et al., 2007).  In brief, inserts were amplified via 

PCR, purified and cloned into an intermediate vector, sequenced to verify insert, 

recombined into a replicon plasmid, and transfected into BHK-21 cells with a packaging 

plasmid, then the replicon-containing supernatant from transfected cells was used to 

infect C6/36 cells. 

RT-PCR amplification of NS4 inserts  To test the replicon method, only two insert 

constructs were designed initially, NS4a-2k tagged with V5 at either the 3’ or 5’ ends 

(Figure 3.3).  V5 tag is a protein encoding sequence derived from simian virus five RNA  

(Southern et al., 1991).  RNA  to be  used for RT-PCR was extracted from 0.5 mL DENV 

(JAM1409) stocks prepared as described above using the RNeasy Mini kit (Qiagen).  The 

inserts were amplified via high-fidelity RT-PCR using the Superscript III One Step RT-

PCR High Fidelity kit (Invitrogen).  The NS4a and NS4b inserts were amplified using the 

following primer pairs: KP103 and KP104, KP105 and KP106 (Table 3.4).  Primers were 

used to add CACC sequence needed for recombination and translation 5’ start sites and  
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Figure 3.3 Cloning of NS4-2K using recombination-ready SINV replicon expression 

vectors  A. A V5 tag was added to DENV NS4a-2k in either the 5’ or 3’ ends, then NS4a 

was cloned into an intermediate plasmid and recombined in vitro into a SINV replicon 

plasmid, the replicon plasmid and packaging plasmid were co-transfected into B. BHK-

21 cells, showing expression of GFP from control GFP containing plasmid, then medium 

was transferred to C. C6/36 cells, showing expression of GFP from control GFP 

containing plasmid, then cells were harvested and proteins were separated by 

polyacrylamide gel electrophoresis and D.  immuno-blotted to detect V5-tagged proteins 

or fixed and stained to detect V5-tagged proteins. 
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Table 3.4 Primers for amplification of inserts for recombination-ready SINV replicon expression vectors  

 

Primer Purpose     Sequence 

  (site added) 

 

KP103  fwd NS4a-2K SINV w/ 3' V5  CACCATGTCTTTGACCCTGAACCTAATC   

  (translation start) 

 

KP 104 rev NS4a-2K SINV w/ 3' V5  TCAGGTGCTATCCAGGCCCAGCAGCGGGTTCGGAATCGGTTTGCC  

  (V5, translation stop)   GGAATGAGCAGAAC ATGAG 

 

KP105  fwd NS4a-2K SINV w/ 5' V5  CACCATGGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAG  

  (translation start, V5)   CACCTCTTTGACCCTGACCTAAT C 

 

KP106  rev NS4a-2K SINV w/ 5' V5  TCAGGAATGAGCAGAACTATGAG 

  (translation stop) 

 

 

 

V5 = a protein encoding sequence derived from simian virus five RNA 
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3’ stop sites.  The RT-PCR was done in 20 µL reactions  as described in the kit.  The 

reaction parameters were: 45°C 30 min, 94°C 2 min; 40 cycles of 94°C 15 sec, 60°C 30 

sec, and 68°C 1 min, followed by an extension of 68°C 5 min.  Amplification product 

size was verified via gel electrophoresis and RT-PCR products were purified to remove 

template RNA using the QIAquick PCR Kit (Qiagen). 

TOPO cloning  The constructs were inserted into the Gateway Directional TOPO vector 

(Invitrogen, Carlsbad, CA) using a 2:1 molar ratio of the PCR product to the TOPO 

vector as recommended in the kit.  The ligation reaction and transformation of chemically 

competent cells was as recommended by the manufacturer.  The transformed cells were 

grown overnight on Luria Broth (LB) plates with 50 mg/mL Kanamycin. 

Colony PCR  Transformed colonies were evaluated via colony PCR as described above 

using M13 primers, forward primer 5’GTAAAACGACGGCCAG3’ and reverse primer 

5’CAGGAAACAGCTATGAC3’.  Amplification product size was verified via gel 

electrophoresis.  Colonies with the appropriate size NS4 insert were cultured overnight 

and plasmids were purified using the QIAprep Spin Miniprep kit (Qiagen) and sequenced 

using the M13 primers by the Proteomics and Metabolics Facility. 

Recombination  The NS4a-2K insert tagged with V5 was recombined in vitro using the 

Gateway LR Clonase II Enzyme kit,  into the replicon plasmid described by Dr. Geiss 

(Geiss et al., 2007).  The Gateway LR Clonase II enzyme kit uses bacteriophage lambda 

recombination proteins and an Escheria coli integration factor for in vitro recombination 

designed recombine inserts from the TOPO vector described above into another vector, 

like the replicon plasmid based on att-recombination sites.  After recombination, 

plasmids were electroporated into E. coli, and transformed colonies were evaluated via 
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PCR with M13 primers.  Overnight cultures of colonies with the proper size product were 

grown and plasmids purified as described above.  In addition to these replicon plasmids 

containing NS4a-4k tagged with V5, the BG25 packaging plasmid (previously known as 

pBG256), as described by Dr. Geiss, was grown and purified.  The packaging plasmid 

expressed the SINV structural proteins from TE 3’2J under a CMV protein.    

Transfection  The replicon plasmids and packaging plasmids were transfected into  

BHK-21 cells grown to 70% confluency in 6-well tissue culture plates using 

Lipofectamine LTX (Invitrogen).  The packaging and replicon plasmids were transfected 

in a 1:1 ratio.  A total of 2.5 µL of DNA was diluted in 2.5 mL DMEM without serum, 

mixed gently, then 2.5 µL of Plus reagent was added, and after mixing gently, incubated 

for 5 min at room temperature.  After the incubation, Lipofectamine LTX was mixed and 

6.25 µL was added to the DNA mixture then incubated for 30 min at room temperature, 

added to the BHK-21 cells, and gently rocked and incubated at 37°C.  At 24 hr post 

transfection, medium was removed from cells, added to 2 wells of C6/36 cells grown in 

12-well tissue culture plates on coverslips and incubated for 30 min at 37°C before 

removing DMEM and returning C6/36 cells to the L-15 medium and 28°C.   

 A green fluorescent protein (GFP) expressing replicon, BG78, and a V5-tagged 

protein-expressing replicon, BG156, were obtained from Dr. Brian Geiss and transfected 

alongside the experimental NS4a-2K inserts as transfection and V5 detection controls, 

respectively.  Untransfected BHK-21 cells were maintained as negative controls. 

Detection of NS4a-2K expression  To determine whether NS4a-2k was being expressed 

from the SINV replicon, samples of BHK-21 and C6/36 cells were used for IFA and 

immunoblot. 
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IFA  C6/36 cells were fixed  at 72 hr post infection in 4% electron microscopy grade 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) diluted in RNase-free  

PBS (Ambion).  All antibodies were diluted in phosphate buffered saline with 0.2% 

bovine serum albumin (Sigma) and 0.5% Triton X-100 (Sigma).   IFA to detect V5-

tagged NS4a-2K used anti-V5 monoclonal antibody (1:400) (Invitrogen) as the primary 

(1 hr), FITC-labeled antimouse IgG (1:400) as secondary antibody (1 hr).  All 

incubations were at 28°C with gentle rocking.  Coverslips were washed three times 

following each incubation in PBS.  After the final incubation, coverslips were washed 

with distilled water and mounted on glass slides in Vectashield with 4',6-diamidino-2-

phenylindole (DAPI) (VWR) and scored as positive or negative by observation with 

Leica DM4500B fluorescent microscope. 

Immunoblot  All reagents and antibodies used for immunoblot procedure were acquired 

from Invitrogen.  Medium was removed from BHK-21 and C6/36 cells and they were 

washed three times in PBS and scraped off tissue culture plates into 20 µL of PBS and 

stored at -20°C.   Ten microliters of each thawed infected cell sample was mixed with  

5 µL of 6x NuPage LDS sample buffer.  Five microliters of See Blue Plus 2 protein 

marker were loaded into the first well of a NuPAGE Bis Tris gel.  Then paired samples 

for each plasmid from BHK-21 and C6/36 cells were loaded.  Positive control consisted 

of V5 tagged R2D2-expressing plasmid, and negative control was GFP-expressing 

plasmid without V5 tag as described above in transfections. 

 Proteins were separated via polyacrylamide gel electrophoresis at a constant  

200 V for 35 min.  Proteins were transferred to a nitrocellulose membrane at a constant 

30 V for 1 hr.  Membrane was blocked for 1 hr at room temperature in a blocking buffer 
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consisting of PBS plus 0.1% Tween-20 (PBS-T) and 5% nonfat dry milk.  Expression of 

V5 tagged NS4a-2K inserts was detected with mouse anti-V5 antibody (1:5000) in 

blocking buffer at 4°C overnight.   The blot was washed three times with PBS-T between 

incubations.  The blot was rocked in horseradish peroxidase-conjugated goat anti-mouse 

IgG secondary antibody (1:1000) in blocking buffer at room temperature for 30 min.  The 

Novex ECL Plus Chemiluminescent Reagent Kit was used for detection according to the 

manufacturer’s instructions.  Chemiluminescence was detected by briefly exposing blot 

to Blue Lite Autoradiography film (ISC Bioexpress) until labeling could be detected. 
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Results 

 

Cloning 6His tagged DENV NS4a and NS4b inserts using pIE plasmid with 

hygromycin selection marker 

The 6His tagged NS4a and NS4b constructs were successfully inserted in pIE 

HYG plasmid, but orientation and expression could not be verified.  Attempts to 

determine orientation via directional PCR using primers at the ends of the NS4 inserts 

produced faint product bands that appeared to be slightly smaller than predicted for the 

correct inserts (data not shown).  The directional PCR with primers within the NS4 

inserts revealed that some inserts were in the reverse orientation and produced some 

unexpectedly large PCR products (data not shown).  Attempts to verify expression of 

mRNA from the NS4a and NS4b containing plasmids in transfected cells via RT-PCR 

amplification yielded no PCR bands.  

 

Cloning DENV NS4a and NS4b inserts using commercial fluorescent tagged protein 

expression plasmid  

The second method used to express DENV NS4a and NS4b proteins by 

modifying a commercial plasmid to contain an ie1 promotor and selection of transformed 

mosquito cells using hygromycin resistance was also unsuccessful.  The NS4a and NS4b 

constructs were successfully inserted.  The ie1 promotor driven expression of dsRed from 

the altered commercial plasmid without an insert was observed, but no expression of 

NS4a or NS4b from inserts could be detected (data not shown).  This led to the question 
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of whether expression of the NS4 genes was unstable without the expression of other 

DENV proteins or if the experimental NS4 constructs could be toxic. 

In an attempt to determine whether NS4 expression could be stabilized, NS4a and 

NS4b constructs were co-transfected or expressed singly in the background of infected 

cells.  Neither of these methods led to expression of dsRed-tagged NS4 protein.  

Sequencing of experimental NS4 constructs revealed no mutation of inserts or the dsRed 

tag, no stop codons, or any other mutations that could explain the observed lack of 

protein expression.  This led us to consider that constitutive expression of NS4a or NS4b 

could be toxic in mosquito cells, perhaps by overwhelming the protein folding capacity of 

the ER, triggering the UPR, and if the UPR could not upregulate protein folding, 

eventually leading to cell death.  This hypothesis is plausible, because the transformed 

C6/36 cells rounded and detached from the flask more readily than normal, and in fact 

there were extremely few viable cells in the NS4 transfected flasks.  This cell death was 

initially attributed to low transfection efficiency combined with the typical cell death 

observed with hygromycin selection; however, NS4-dsRed experimental cell lines never 

showed signs of recovery and growth as did cells transfected with the control plasmid 

expressing only dsRed. 

 

Cloning of NS4a-2K using recombination-ready SINV replicon expression vectors  

To force expression of NS4a-2K, both 5’ and 3’ V5-tagged NS4-2k constructs 

were cloned into SINV replicon vectors.  GFP expression from expression control 

plasmid was observed by fluorescent microscopy but expression of NS4a-2K was  
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Figure 3.4 GFP expression from SINV replicon control plasmid To verify that V5-

tagged NS4-2K expression from recombination-ready SINV replicon expression vectors 

should be detectable, a GFP expression replicon was transfected into A. BHK-21 cells, 

top panel phase contrast image, bottom panel fluorescent image, B. C6/36 cells, top panel 

phase contrast image, bottom panel fluorescent image (40x, fluorescent microscope).  
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not detected via IFA with V5-specific monoclonal antibody (Figure 3.4) nor was 

expression of V5 could be detected via V5-specific immunoblot when overexposed 

(Figure 3.5).  
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Figure 3.5  Immunoblot of attempted expression of V5 tagged NS4-2K expression 

from recombination-ready SINV replicon expression vectors Paired protein samples 

from BHK-21 cells transfected with SINV replicon expression vectors and C6/36 cells 

infected with packaged replicons were separated by gel electrophoresis and immuno-

blotted to detect V5-tagged proteins.  Lane 1 contains size markers, lanes 2 and 3 the 5’ 

V5 NS4-2k (arrow indicates 16.5 kDa NS4a-2k + 1.5kDa V5)   BHK-21 and C6/36  

samples, Lanes 4 and 5 another clone of 5’ V5 NS4-2k  the  BHK-21 and C6/36 samples, 

lanes 6 and 7 contain the 3’ V5 NS4-2k  BHK-21 and C6/36  samples, lanes 8 and 9 the 

transfection and infection control GFP-expression  plasmid BHK-21 and C6/36 samples, 

lanes 10 and 11 the immunoblot control V5-tagged R2D2 BHK-21(arrow indicates 

40kDa R2D2 + 1.5kDa V5) and C6/36 samples, and lane 12 is empty. 
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Discussion 

 

Cloning and expression of DENV NS4a and NS4b inserts in C6/37 cells 

Although cloning NS4a and NS4b inserts into the pIE HYG plasmid appeared to 

be successful when evaluated via PCR, evaluation of directionality of the insert revealed 

some possible problems with the pIE HYG plasmid.  The cells transfected with the NS4a 

and NS4b containing plasmids did not contain mRNA corresponding to transcripts from 

the inserts detectable by RT-PCR, which could have been attributable to poor transfection 

efficiency.  Unfortunately, we did not have a pIE HYG plasmid with confirmed protein 

expression to use as a transfection control. 

 The directional sequencing data revealed repetitive sequences around the XbaI 

insertion site of the pIE HYG plasmid which differed from the information known about 

the plasmid from Dr. Adelman’s dissertation  (Adelman, 2000).  This sequence 

discrepancy suggests that the pIE HYG plasmid had mutated from original construct.   

Additionally, discussion of use of the pIE HYG plasmid with Dr. Alexander Franz 

revealed that he also had great difficulty working with this plasmid.   His attempts to 

sequence the plasmid revealed that it appeared to have multiple insertions of the ie1 

promoter  (Franz, 2008).  Overall, the difficulty working with this pIE HYG plasmid and 

unsuccessful attempts to evaluate the problems encountered, led to abandoning this 

method of expressing DENV proteins NS4a and NS4b.  

Cloning and expression of DENV NS4a and NS4b inserts using commercial 

fluorescent-tagged protein expression plasmids was also unsuccessful but led to 

hypothesis that constitutive expression of NS4a or NS4b could be toxic after we 
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evaluated stability issues by trying to stabilize NS4 expression by co-transfection of 

constructs and transfecting DENV infected cells.  The stability hypothesis was further 

pursued by cloning NS4a-2K in a replicon system to force expression of NS4a-2k, which 

resulted no detectable expression of tagged protein via immunoblot (Figure 3.5).  We 

found that DENV-2 NS4a-2k might be expressed from the SINV replicon but because 

alphavirus infection also causes membrane rearrangement we felt this method of 

expressing DENV NS4 was not optimal.  It now appears that to successfully express 

DENV proteins NS4a or NS4b, the proteins should be cloned and expressed under an 

inducible promoter, cells selected for expression of proteins, and membrane 

rearrangement visualized via electron microscopy. 

 

Mechanisms of membrane rearrangement  

Once the viral proteins that induce replication complex-associated membrane 

rearrangement are discovered, the next major experimental question is the mechanism by 

which viral proteins cause membrane rearrangement.  Miller and Krisjie-Locker (2008) 

have suggested that viral NS proteins may cause membrane rearrangements by insertion 

of amphipathic helices or oligomerization of conical membrane proteins.  At an 

ultrastructural level these mechanisms are hypothesized to resemble double-membrane 

budding or protrusion and detachment as observed when equine arteritis virus (EAV) 

nsp2-7 are expressed (Miller and Krijnse-Locker, 2008; Pedersen et al., 1999) 

 Membrane rearrangements associated with viral replication could be attributed to 

de novo viral processes, like the replication of the RNA genome by a virally encoded 

RNA-dependent RNA polymerase (RdRp).  However, since +RNA viruses are 
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completely dependent on their host cells for other processes such as translation of  viral 

proteins it seems plausible that viruses are also dependent on the membrane generating 

processes of host cells.  Researchers studying viral replication complexes have noted 

ultrastructural similarities between infection-induced membranes and membranes arising 

from typical host cell processes.  We had planned to evaluate ultrastructure of membrane 

rearrangements caused by DENV-2 NS4 proteins via confocal and EM microscopy after 

expressing NS4 in mosquito cells to provide some insight into what cellular processes 

might be co-opted by DENV-2 to provide membranes for the replication complex.  

Cellular processes including autophagy, the unfolded protein response (UPR), and the 

formation of lipid rafts have been proposed as possible sources for viral RC-associated 

membranes. 

Autophagy 

 Autophagy can be triggered by cellular stress and results in the formation of 

double membrane bound vesicles of ER origin (Dunn, 1990a).  The double membrane 

vesicles produced by autophagy and those induced by replication of  +RNA genome 

viruses have led many researchers to hypothesize that viral RC-associated membranes 

arose from autophagy.   Hypotheses suggesting autophagy as a source of viral RC-

associated membranes are typically based on morphological observations of RC-

associated membranes, without biochemical markers of autophagy, so these membranes 

may or may not be autophagosomes (Lee and Iwasaki, 2008).   To examine the role of 

NS proteins in RC-associated membrane formation, Pedersen et al. (1999) expressed 

nsp2-nsp7 of equine arteritis virus (EAV) (family Arteriviridae) and observed RC-

associated membrane formation by a protrusion and detachment mechanism that 



 154 

resembled autophagy.  Poliovirus (PV) researchers initially suggested an autophagic 

origin of PV RC-associated membranes because they found no markers of  any other 

cellular organelles  that co-fractionated with RC-associated membranes and the 

membrane morphology resembled the DMVs formed during autophagy (Suhy et al., 

2000).  Jackson et al. (2005) presented more convincing data for an autophagic origin of 

PV-induced vesicles, showing co-localization of the RC with LC3 via IFA.  In addition, 

Jackson et al. (2005) stimulated and inhibited autophagy with taxomoxfin and 3-

methyladenine respectively, and used RNAi to knockdown autophagy components and 

showed the predicted increase and decrease of PV yields. 

 Research on other +RNA genome viruses has generated conflicting data on the 

role of autophagy in the formation of RC-associated membranes.  Prentice and colleagues 

(2004) co-localized  LC3 with the mouse hepatitis virus (MHV) (family Coronaviridae) 

RC via IFA, so they suggested an autophagic origin for the RC-associated membranes.   

Zhao et al. (2007) further examined the role of autophagy in MHV replication and found 

that MHV was able to replicate in two cell lines impaired for autophagy, an ATG5 

deletion cell line and a primary murine cell line that lacked ATG5.  However, this 

discrepancy as to whether autophagy is required for MHV replication could be explained 

by redundancy in the autophagy pathway like the Dicer redundancy observed in plants 

(Deleris et al., 2006). 

 Some researchers have suggested a role for autophagy in the antiviral response.  

Liang et al. (1998) found that SINV encephalitis in mice could be reduced by 

upregulating autophagy through enhanced expression of Beclin 1.  Lee et al. (2007) 

found an impaired interferon alpha (IFNα) antiviral response to vesicular stomatitis virus 
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(VSV) (family Rhabdoviridae) in the absence of ATG proteins and suggested that 

autophagy may mediate detection of negative-strand ssRNA viral genomes and secretion 

of IFNα.    

 The literature discussing the possibility of autophagic membranes for DENV RC-

associated membranes is relatively new.  Lee et al. (2008) expressed a GFP-linked form 

of LC3 in mammalian cells, infected the cells with DENV, and observed LC3 

aggregation, which they argued could be used as a marker of autophagy.  When DENV 

infected cells were treated with chemical inhibitors of autophagy, Lee et al. (2008) found 

that LC3 aggregation and DENV titers both decreased, so they suggested that DENV 

induces autophagy.  Panyasrivanit et al (2009) took Lee and colleagues’ hypothesis a step 

further and argued for presence of DENV RC in autophagic vacuoles based on 

fluorescent co-localization of DENV-2 NS1 or LC3 with dsRNA.  Based on their 

fluorescent microscopic observations that NS1 and LC3 co-localize, Panyasirvant et al. 

(2009) suggested DENV uses amphisomes or autophagosomes, autophagic membranes 

prior to fusion with lysosomes as sites for viral replication.   Interestingly, Panyasirvant’s 

colleagues published very similar experiments using LC3-GFP and DENV-3 in 

mammalian cells and observed that DENV-3 localized with autophagolysomes, 

autophagic vesicles after fusion with lysosomes (Khakpoor et al., 2009).  Khakpoor et al. 

(2009) suggested the difference in data between the DENV-3 experiments and the 

DENV-2 could be explained by the difference in DENV serotype used.  It seems unlikely 

that two different virus serotypes would evolve different mechanisms for induction of 

membranes when KUNV and DENV have very similar RC-associated membranes.   
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After reviewing the literature on DENV RC-associated membranes and 

autophagy, we would like to propose an alternative explanation for colocalization of the 

DENV RC and autophagic vesicles.  Autophagy is one of several antiviral responses, 

with autophagic vesicles serving as a viral clearance mechanism.  Since viral RCs are 

engulfed by autophagosomes during an antiviral response, this could also explain co-

localization of LC3 and components of viral RCs and dsRNA.  In the future researchers 

studying the role of autophagy in the DENV RC should consider evaluating the effects of 

enhancement of autophagy on DENV titers as well as evaluating other markers of 

autophagy such as XBP-1 splicing to make a more convincing argument for the role of 

autophagy in the formation of DENV RC-associated membranes. 

Unfolded Protein Response 

The unfolded protein response (UPR) is a response to ER stress caused by 

improperly folded proteins, nutrient stress, or pathogen infection.  As discussed in 

Chapter 1, one of the UPR-mediated responses to ER stress is to increase the capacity of 

the ER by enlarging the ER, since ER proliferation is observed in +RNA virus infected 

cells, researchers have speculated that viruses may be co-opting the UPR.  Bechill et al. 

(2008) used RT-PCR and immunoblot of MHV-infected cells to show that MHV 

replication triggers UPR transducers like IRE1 and ATF6  but downstream UPR-targeted 

genes are not induced, suggesting that MHV can modify the UPR.  Instead of viral 

protein translation overwhelming the ER, thus triggering the UPR, MHV may modify the 

UPR to evade the host immune response  (Bechill et al., 2008).   

Research on the interaction between viruses from the family Flaviviridae and the 

UPR is not as advanced as the MHV and UPR studies.  Plasmid based expression of 
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HCV envelope glycoproteins causes ER stress and HCV NS4b has been shown to induce 

the UPR by RT-PCR and immunoblot-monitoring of XBP1 mRNA splicing and ATF6 

cleavage (Chan and Egan, 2009; Li et al., 2009).  For the genus Flavivirus, WNV has 

been shown to activate the UPR using RT-PCR showing XBP1 mRNA splicing and 

immunoblot-monitoring of ATF6 cleavage and phosphorylation of EIF-2α (Medigeshi et 

al., 2007).  Medigeshi et al. (2007) also showed that WNV triggered UPR can eventually 

lead to apoptotic cell death.  Yu et al. (2006) used an XBP1 slicing reporter system to 

show that JEV and DENV-2 interact with the UPR differently; DENV-2 NS2B-3 induces 

XBP-1 splicing but JEV does not.  The reason for the discrepancy in XBP1 splicing 

between these two flaviviruses is not understood.  Umareddy et al. (2007) used 

immunoblot to show phosphorylation of eIF2α, nuclear localization of ATF-6 via IFA, 

and splicing of XBP-1 via RT-PCR in DENV-infected mammalian cells, showing that 

DENV globally activates the UPR.  The mechanism by which DENV activates the UPR 

is unclear and Umareddy et al. (2007) suggest that the mechanism may involve up- and 

down-regulation of the UPR since unsuccessful UPR leads to apoptosis. 

Since most of the UPR and virus work has been done in mammalian cells, this 

raises many questions as to whether the UPR plays a role in DENV replication in 

mosquito cells.  Plongthongkum (2007) showed that the UPR is active in Drosophila 

melanogaster S2 cells and mediates XBP1 mRNA splicing.  A more recent RNAi screen 

of insect host factors associated with DENV infection in D. melanogaster cells identified 

two components of the UPR as essential host factors (Sessions et al., 2009).   It is 

currently unclear whether the UPR plays a role in membrane formation for enclosure of 

DENV RCs in mosquitoes.  We think that interaction of DENV NS proteins with the 
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UPR to enhance ER capacity is a plausible hypothesis  for the origin of DENV RC-

associated membranes, perhaps by a mechanism similar to what Bechill (2008) observed 

for MHV.  One of the next experimental steps to evaluate this possibility might be a 

crosslinking or co-immunoprecipiation experiment in DENV-infected mosquito cells and 

tissues to identify interactions between DENV NS proteins and UPR proteins. 

Lipid Rafts 

Since lipid rafts contain cholesterol and sphingomyelins, making them resistant to 

extraction with cold non-ionic detergent, and flavivirus RC-associated membranes are 

resistant to extraction with cold TritonX-100, researchers suggested that lipid rafts could 

be involved in formation of flavivirus RC-associated membranes (Jacobson and Dietrich, 

1999; Uchil and Satchidanandam, 2003).  Van der Goot et al. (2001)  proposed that lipid 

rafts could serve as concentration sites for viruses and other pathogens, and one of the 

major purposes of viral RC-associated membranes is believed to be concentration of RC 

(Salonen et al., 2005).  Shi et al. (2003) used membrane flotation and IFA co-localization 

of newly synthesized viral RNA with incorporated bromouridine and caveolin markers of 

lipid rafts to show that HCV replication occurs on detergent-resistant membranes, which 

might be lipid rafts.  Cherry et al. (2006) conducted a genome-wide RNAi screen for host 

factors required for Drosophila C virus replication (family Picornaviridae) in D. 

melanogaster cells, revealing that fatty acid biosynthesis is required for viral replication.  

Ng et al. (2008) showed that SINV requires cholesterol and sphingelomyelins for proper 

replication, using cholesterol depleted fibroblasts.  Noiskarama (2008) found that DENV 

and JEV NS1 co-localize with lipid raft markers in TX100 resistant cellular lysates.  

Depletion of cholesterol, resulting in the disruption of lipid raft formation, also resulted 
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in decreased JEV and DENV titers, so lipid raft components appear to be required for 

flavivirus replication (Noisakran et al., 2008).  The hypothesis of a lipid raft origin of 

RC-associated membranes needs further evaluation.  The available data to support this 

hypothesis are minimal.  Also these data, suggesting that the DENV RC localizes to lipid 

rafts, conflict with Welsch and colleagues’ (2009) EM tomography images of an ER 

origin of the DENV RC.  The hypothesized lipid raft origin of the RC-associated 

membranes seems more plausible for HCV.  Shi et al. (2003) showed co-localization of 

newly synthesized viral RNA and caveolin markers of lipid rafts.  A useful follow-up 

experiment to confirm the HCV RC lipid raft hypothesis would be to determine whether 

caveolin localizes with HCV NS proteins as a marker of the RC versus structural proteins 

as markers of virus packaging.   

 

What do the proteins that cause membrane rearrangement have in common? 

A literature search of proteins that cause RC-associated membrane 

rearrangements found that many different NS proteins are involved in membrane 

rearrangement, leading to the hypothesis that rather than a conserved amino acid 

sequence being required for membrane association, a conserved protein structure or 

characteristic is needed.  In fact, several positive-strand RNA virus NS proteins contain 

amphipathic helices that are alpha helical structures in which one side of the helix 

contains hydrophobic amino acids and the other side of the helix contains hydrophilic 

amino acids.  Amphipathic alpha helices are characteristic components of lipid-associated 

proteins including hormones and HIV glycoproteins (Segrest et al., 1992).  Hepatitis A 

virus (HAV) (family Picornaviridae) protein 2C, HCV NS4b, and SFV nsp1 all contain 
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amphipathic helices (Gouttenoire et al., 2009; Kusov et al., 1998; Spuul et al., 2007).  In 

fact, the common characteristic of positive-strand RNA genome virus encoded proteins 

involved in membrane rearrangements is most likely hydrophobicity.  In support of this 

hypothesis, a comparison of NS4b proteins from the family Flaviviridae found that HCV 

NS4b is only 23% homologous to other family members at the amino acid sequence 

level, but all of the NS proteins have four or five transmembrane regions (Welsch et al., 

2007).  We would like to note that  DENV-2 NS3, which Chua et al. (2004) suggested 

was causing membrane rearrangements that Miller et al. (2007) attributed to NS4a-2K, 

lacks long stretches of hydrophobic regions like the other NS proteins that have been 

shown to cause membrane rearrangments (Chua et al., 2004; Miller et al., 2007). 

 

Comparison of the replication complexes of arboviruses 

Comparison of membrane rearrangements associated with the replication 

complexes of arthropod-borne flaviviruses and alphaviruses reveals few structural 

commonalities other than the size vesicle immediately surrounding the RC.  For example, 

expression of Semliki Forest virus (SFV) nsp1-4 produces the 600-2000 nm cytoplasmic 

vesicles (CPVs) that are characteristic of alphavirus infections (Kujala et al., 2001).  

These CPVs contain single membrane enclosed 50 nm spherules along the periphery of 

the CPV that are the equivalent of the flavivirus RC-containing double membrane 

vesicles (DMVs) observed with DENV, JEV, and KUNV infected cells (Uchil and 

Satchidanandam, 2003).  In comparison, the DENV RC-containing membranes imaged 

by Welsch et al. (2009) are located close to the nucleus and very tightly packed with 

DMVs instead of the RC-associated vesicles arranged along the periphery of a larger 
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CPV like alphaviruses.   Overall, alphavirus and flavivirus RC-associated membranes 

differ as to size of the packet enclosing the vesicles that contain the RCs, number of 

membranes surrounding the RC, location within the cell, and how many small vesicles 

are contained within the outer membranes.  

 

After formation of replication-associated membranes: how do materials flow to and 

from of the replication complexes? 

 Several researchers have suggested that RC-associated membranes are completely 

closed vesicles.  Knoops et al. (2008) and Uchil et al. (2003) suggested that SARS 

coronavirus and DENV RCs are sealed off from the cytoplasm.   If this hypothesis is true, 

how do materials enter and exit the RC-associated membranes?  In the case of PV, 

replication “rosettes” are closed, but the replication complex faces outward, so the 

replication complex is accessible to the cytoplasm (Bolten et al., 1998).  HCV 

replication-associated membranes have “necks” that are open to the cytoplasm but protect 

the RC from proteinases and nucleases (Quinkert et al., 2005).  SARS coronavirus DMVs 

appear to be closed and Knoops et al. (2008) offered no suggestions to explain how these 

might be functional.  Welsch et al. (2009) noted that DENV replication-associated 

vesicles were open or closed depending on the EM preparation method, but concluded 

that a 10 nm “neck” or pore existed to allow substrates into the replication complex.  

Uchil et al. (2003) observed closed vesicles and proposed that the JEV genome could exit 

via a viroporin. 

 Both alphaviruses and flaviviruses have viroporins, which are small, very 

hydrophobic viral proteins that can oligomerize to form pores that are involved in the 
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release of virus particles from cells as well as other functions (Gonzalez, 2003).   Many 

of the +RNA viruses discussed in this chapter have viroporins: PV 2B, SINV 6k, and 

HCV 7 (Griffin et al., 2003; Lama and Carrasco, 1992; Sanz et al., 2003).  More study is 

needed to determine whether viroporins might play a role in regulating movement of 

proteins and nucleotides into viral RC-associated membranes. 

 

Re-evaluation of experimental methods  

 All of the groups used inducible promoters that published detailed methods of 

how they expressed NS proteins that were suspected to cause virus-associated membrane 

rearrangements (Egger et al., 2002; Miller et al., 2007; Miller et al., 2006; Westaway et 

al., 1997a).  We speculate that other research groups experienced the same difficulties 

with constitutive expression that we did.   

Umareddy et al. (2007) presented very convincing evidence that in a natural 

DENV infection, DENV promotes transcription of the eukaryotic initiation factor 2 alpha 

(eIF-2α) effector protein of the UPR by an unknown mechanism.  This up-regulation of 

eIF-2α prevents the accumulation of the prM, E and NS1 proteins in the ER from 

triggering the UPR.  Perhaps our attempts to express the experimental NS4 constructs 

outside of a natural virus infection induced ER stress without the up-regulation eIF-2α to 

counterbalance the ER stress and triggered the UPR.  If the UPR is unsuccessful in 

relieving ER stress, apoptotic cell death is triggered (Paschen, 2003).  If expression of 

DENV NS4 upregulates the UPR outside of a natural infection, this could lead to 

apoptosis, which could thus explain our observation of almost no viable cells after we 

transfected mosquito cells with NS4 plasmids and selected with hygromycin.  Recently 
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published guides to the production of recombinant proteins in mammalian cells consider 

the ER folding limitations and UPR to be major rate limiting factors in protein production 

(Khan and Schroder, 2008). 

Intriguingly, two groups of researchers expressed viral proteins from alphavirus 

replicons and then evaluated membrane rearrangement via EM.  Roosendahl et al. (2006)  

expressed Kunjin virus NS4a-2k and NS4b from a SFV replicon and observed the 

membrane rearrangements known as convoluted membranes and paracrystalline arrays.  

Pedersen et al. (1999) also used an alphavirus expression vector to express equine 

arteritis virus (EAV) (family Arterivivirdae) nsp1-4 and observed membrane 

rearrangements.  Instead of being concerned that alphavirus induced protein expression 

would confound the membrane rearrangements caused by the viral proteins, Roosendahl 

et al. (2006) thoroughly characterized the alphavirus membrane rearrangements without 

expression of other viral proteins, then examined intracellular membranes again when 

other viral proteins were expressed.  

We initially decided that expression of viral proteins from an alphavirus 

expression vector was less useful for our experimental purposes than creating protein 

expressing cell lines like Miller et al. (2006, 2007) because of the confounding membrane 

rearrangements caused by the alphavirus vector.  Unfortunately, we were unable to 

express DENV NS4 proteins outside of an alphavirus system.  So, we reconsidered use of 

alphavirus expression and used the SINV replicon system to determine whether it was 

possible to express DENV proteins outside of a natural DENV infection in mosquito cell 

culture.  As discussed earlier, we were unable to express NS4a-2K from the SINV 

replicon system and we were unable to track V5-tagged NS4a-2k localization in C6/36 
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cells via IFA.  In the end, we decided against examining the possible DENV NS4a-2K 

induced membrane rearrangement in C6/36 cells after expression from a SINV replicon 

via EM because we were hesitant to undertake an EM imaging experiment without some 

preliminary indication of membrane or organelle changes via IFA, and IFA and 

immunoblot detection of V5-tagged NS4a-2k was unsuccessful. 

 

Future research 

 As mentioned previously, Cherry et al. (2006)  carried out a genome-wide RNAi 

screen of Drosophila host factors that are required for replication of Drosophila C virus 

(family Dicistroviridae), and they found that COPI coatamer and fatty acid biosynthesis 

were required for viral replication.  These requirements are consistent with the 

biochemical data from other +RNA virus RC compartments studied such as PV, which is 

known to interact with COPII coatamer proteins for virus replication, and SINV, which 

requires lipids for replication (Belov and Ehrenfeld, 2007; Ng et al., 2008).  Further 

evaluation of such mosquito host factors for DENV replication by Sessions et al. (2009) 

found two UPR proteins were crucial for DENV replication in mosquitoes.  In the future, 

thorough biochemical evaluation of mosquito host factors suggested by genome screens 

like those by Cherry et al. (2006) and Sessions et al. (2009) may lead to new models of 

the RC compartment and how NS proteins interact with host proteins. 

Overall, the experiments described in this chapter did little to increase our 

understanding of the role of NS proteins in membrane rearrangement in mosquito cells. 

In the next chapter, we evaluated whether similar patterns of dsRNA localization, 
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detection of viral RNAs from gradient fractions of disrupted cells, and EM visualization 

of vesicles described in Chapter 2 could be repeated in mosquito tissues. 

(Belov et al., 2008; Cherry and Silverman, 2006; Dodd et al., 2001; Gosert et al., 

2003; Jackson et al., 2005; Knoops et al., 2008; Lee et al., 2007; Liang et al., 1998; 

Panyasrivanit et al., 2009; Plongthongkum et al., 2007; Prentice et al., 2004; Rust et al., 

2001; Schlegel et al., 1996; Shi et al., 2003; Taylor et al., 2009; Taylor and Kirkegaard, 

2007; Umareddy et al., 2006; van der Goot and Harder, 2001; Yu et al., 2006; Zhao et al., 

2007)  



 166 

 

 

 

Chapter 4 

Evaluation of dengue virus replication-associated membranes in Aedes aegypti 

mosquito midgut cells 
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Introduction 

 Although membrane rearrangement associated with flavivirus replication has long 

been observed, there are few studies that have looked at this membrane rearrangement in 

the context of the mosquito host.  Arboviruses vary in their ability to induce membrane 

rearrangements in mosquitoes.   Researchers studying encephalitic arboviruses such as 

western equine encephalitis (family Togaviridae) observed severe cytopathology in 

mosquito midguts (Weaver et al., 1992; Weaver et al., 1988).  St. Louis encephalitis virus 

(family Flaviviridae) caused proliferation of ER in intact cells in the midgut of infected 

mosquitoes via electron microscopy (EM) (Whitfield et al., 1973).  A recent 

ultrastructural study of West Nile virus (family Flaviviridae) in Culex pipiens 

quinquefasciatus mosquito tissues observed ER membrane proliferation and vesicles 

similar to those seen in mammalian cells infected with flaviviruses (Girard et al., 2005; 

Uchil and Satchidanandam, 2003).     

The hypothesis examined in this chapter is that vesicles like those isolated from 

DENV-infected mosquito cell culture can also be isolated from midguts of Aedes aegypti 

mosquitoes infected with DENV.  Experiments in this chapter also tested the hypothesis 

that differences in flavivirus replication and alphavirus replication, as represented by 

localization of dsRNA that were not apparent in mosquito cell culture, will be observed 

in mosquito tissues.  

In Chapter 2, perinuclear localization of dsRNA was described in mosquito cell 

culture.   Cellular fractionation of detergent-treated cultured mosquito cells revealed 

DENV RNA in two regions of the gradient, and transmission electron microscopic 

(TEM) examination of the more buoyant upper fractions of sucrose gradients revealed 
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50-75 nm membrane structures likely to have originated from the ER.  To determine 

whether these observations were unique to DENV replication in cell culture or relevant to 

the mosquito, Ae. aegypti mosquito midguts were dissected and stained with fluorescent 

antibodies for dsRNA localization.  DsRNA was also examined in the context of DENV 

envelope and capsid proteins via immunofluorescent microscopy.  Temporal and spatial 

localization patterns of DENV dsRNA and antigens were compared to SINV localization 

patterns via fluorescent and confocal microscopy.  Cellular fractionation experiments and 

TEM experiments performed on samples from mosquito cell culture in Chapter 2 were 

repeated on mosquito midgut samples. 

 In Chapter 2, immunofluorescent microscopic localization of dsRNA was 

unsuccessful in evaluating replication differences between DENV and SINV.  After 

examining these data, we speculated that differences in replication between DENV and 

SINV represented by dsRNA staining might be more readily apparent in mosquito 

tissues.  In fact, immunofluorescent microscopic analysis of viral antigen in whole 

mosquitoes has been used to confirm differences in dissemination between strains of 

yellow fever virus (McElroy et al., 2008).   

The experiments discussed in this chapter were designed to establish a link 

between DENV replication and proliferation of ER membranes in the mosquito midgut.  

The data presented here established a link between DENV replication and production of 

double-membrane vesicles in mosquito tissues, confirmed a vesicle size range including 

the 50-75 nm diameter range observed in vesicles from mosquito cell culture, verified 

probable ER origin of the vesicles, and showed ER proliferation in DENV-infected 

mosquito midguts.  Comparison of dsRNA temporal localization between a flavivirus and 
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two strains of an alphavirus in mosquito midguts revealed temporal differences in 

replication that were not obvious in mosquito cell culture.   The results presented here 

have implications for the development of an RNAi-based DENV-resistant transgenic 

mosquito. 
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Materials & Methods 

 

Cell culture lines 

C6/36 (Aedes albopictus) cells were obtained from the American Type Culture Collection 

(ATCC; Manassas, VA).  C6/36 cells were grown in Leibowitz 15 (L-15) medium 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 

100 µg/mL streptomycin, and 0.2 mM L-glutamine at 28°C (growth medium).   

 

Mosquito rearing 

Rexville D strain (Aedes aegypti) mosquitoes, originally from Puerto Rico, were reared at 

28˚C and 80% humidity, with a photoperiod of 12 hr light and 12 hr darkness by the 

AIDL CORE support program in the insectary of the Virology suite of BRB.  Mosquitoes 

were maintained prior to bloodfeed on sugar cubes and water ad libitum.  

 

Viruses  

All virus stocks were obtained from the AIDL CORE support system.  All 

titrations were performed via the AIDL CORE support system using the protocol 

described in Chapter 5 except that plaques were counted instead of picked at the end. 

DENV-2  For preparation of virus for artificial bloodmeals, 2 mL DENV-2 strain Jamaica 

1409 (Genbank #M20558) were inoculated onto subconfluent C6/36 cells in a  

75 cm
2 

flask at a multiplicity of infection (MOI) of 0.01 and rocked at room temperature 

for 1 hr before adding 10 mL of medium.  Infected C6/36 cells were maintained in L-15 

medium supplemented with 2% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 1x 
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MEM non-essential amino acids, and 0.2 mM L-glutamine at 28°C (maintenance 

medium) for a total of 14 days with a medium change at 7 dpi.  At the end of the 14 day 

incubation, virus was harvested by using a cell scraper to detach cells, and infected cells 

suspended in medium were used as the virus component of bloodmeals.  The average 

bloodmeal titer used in these experiments was 1 x 10
7 

pfu/mL. 

SINV  Strains MRE16 (Klimstra et al., 1998; McKnight et al., 1996) and TR339 

(Klimstra et al., 1998; McKnight et al., 1996) were grown as follows.  For preparation of 

virus stocks used for artificial bloodmeals, 2 mL virus was inoculated onto C6/36 cells in 

75 cm
2
 tissue culture flasks at an MOI of 0.01 and rocked at room temperature for 1 hour 

before adding 10 mL of medium.  Infected C6/36 cells were maintained in L-15 

maintenance medium for a total of 4 days.  Cells were detached from tissue culture flask 

using a cell scraper, then infected cells suspended in medium were divided into 0.5 mL 

aliquots and stored at -80°C. 

 Aliquots of SINV stocks were thawed and used for artificial bloodmeals as 

described next.  The titer of the SINV (MRE16) stock used in the experiments described 

in this chapter was 7.43 log pfu/mL and the titer of the SINV (TR339) stock was 7.3 log 

pfu/mL. 

 

Artificial bloodfeed 

DENV  DENV-2 (JAM1409) was cultured for bloodmeals as described above.  Infectious 

bloodmeals consisted of equal volumes of freshly harvested virus and defibrinated sheep 

blood (Colorado Serum Company: Boulder, CO) supplemented with a final concentration 

of 1 mM adenosine triphosphate to stimulate feeding.  Control bloodmeals consisted of 
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the same mixture except mock infected cells and their medium were used.  Bloodmeals 

were provided in water-jacketed feeders with sausage casing membranes warmed by a 

waterbath set at 37°C and mosquitoes were allowed to feed for no more than 1 hr.  At the 

end of the hour, mosquitoes were briefly cold-anesthetized and sorted.  Engorged 

mosquitoes were maintained on sucrose and water at normal rearing conditions.  Every 

24 hr post bloodmeal for 14 days, 40 mosquitoes from the infected group and 10 

mosquitoes from the mock-infected group were randomly selected, dissected, and 

prepared for IFA or cellular fractionation.   

SINV  SINV strains MRE16 and TR339 were cultured for bloodmeals as described 

above.  Bloodmeals were prepared as for DENV except frozen stock virus was used in 

place of freshly cultured virus.  Sorting and maintenance of mosquitoes was as described 

for DENV bloodmeals.   Every 24 hr post bloodmeal for 5 days, 60 mosquitoes from the 

SINV-infected group and 10 mosquitoes from the mock-infected group were randomly 

selected, dissected, and prepared for IFA. 

 

Cellular fractionation 

Sucrose gradient solutions  Sucrose solutions and TNMg buffer were made as described 

in Chapter 2.  

Isolation of vesicles  Viral replication-associated vesicles were isolated based on the 

technique used by Uchil and Satchidanadam with mammalian cells (2003).  Ae. aegypti 

(RexD) mosquitoes were fed DENV-containing artificial bloodmeals as described above.  

An IFA using mAb 3H5-1 was used to verify successful DENV-infection prior to vesicle 

isolation.  At 7, 10, or 14 days post bloodmeal (d pbm) midguts were dissected from 400 
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infected mosquitoes and placed immediately into TNMg buffer on ice.  Midguts were 

gently harvested by centrifugation (2500 rpm, 5 min) after dissection.   Then as described 

in Chapter 2 for C6/36 cells, the pellet was resuspended and incubated in 1% Triton X100 

(TX100) on ice for 1 hr to disrupt cellular plasma membranes, then the heavy membrane 

fraction, the equivalent of the S16 used by Uchil and Satchidanadan, was sedimented at 

16,000 x g for 15 min (2003).  Sucrose gradient was prepared using the resuspended S16 

pellet and fraction collection was as described in Chapter 2. 

Washing fractions  Sucrose removal and sample concentration was as described in 

Chapter 2. 

 

Characterizing RNA in gradient fractions 

RNA extraction  All solutions were obtained from Amresco (ISC Bioexpress: Kaysville, 

UT) except the RNase-free PBS, which was obtained from Ambion (Ambion: Austin, 

TX) as a 25x solution and diluted in nuclease-free water.    

Washed fractions obtained from midgut cellular fractionation gradients were 

analyzed for presence of DENV-2 viral RNA.  After concentration by centrifugation, 

fractions were resuspended in 0.5 mL RNase-free PBS and extracted once using saturated 

5:1 phenol-chloroform, and once with 24:1 chloroform-isoamyl alcohol followed by a 

precipitation in one-tenth volume of 5M ammonium acetate and 2 volumes 100% 

ethanol.  RNA pellets were washed once in 70% ethanol, air dried, and then resuspended 

in 20 μL nuclease free water.  

Strand-specific RT-PCR  Viral RNA was detected via strand-specific RT-PCR (ssRT-

PCR) using a method developed by Peyrefitte et al. (2003) to minimize false priming 
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results (Figure 4.1) (Peyrefitte et al., 2003).  RNA samples were treated with Turbo 

DNase (Ambion: Austin, TX) for 30 min as instructed in the kit to remove DNA then 

stopped using the provided EDTA-containing buffer.  RNA was purified by one round of 

phenol-chloroform extraction followed by an isopropanol precipitation at -20C for 15 

min.  RNA was collected by centrifugation for 15 min at 14,000 rpm at 4C, supernatant 

was removed, RNA was resuspended in nuclease free water, then used as a template for 

RT.   RNA was transcribed to cDNA via RT using the tagF for anti-genome sense strand 

and R for genome sense strand (Table 4.1).  The RT was carried out using the Invitrogen 

Superscript III Reverse Transcriptase (Invitrogen: Carlsbad, CA).   The conditions were 

50C for 30 min, followed by 70C for 15 min.  The cDNA was purified using a PCR 

Purification kit (Qiagen: Valencia, CA) to remove RT primers.   The cDNA was PCR 

amplified using the primer pairs tag and R (anti-genome sense), F and R (genome sense).  

The PCR mixture was as follows:  1.5 mM Mg sulfate, 0.8 mM dNTPs, 1x final 

concentration of PCR buffer, 2 µL of the cDNA from the RT reaction, 0.2 µM forward 

primer, 0.2 µM reverse primer, 1 U  Platinum Taq, nuclease-free water (Invitrogen: 

Carlsbad, CA) to 25 µL.  PCR parameters were 94C 2 min, 30 cycles 94C 30 sec, 60C 

30 sec, 72C 1 min, followed by a final incubation of 68C 10 min.  Expected product 

size of 100 bp was verified via agarose gel electrophoresis.
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Figure 4.1  Strand-specific RT-PCR (ssRT-PCR) method  The ssRT-PCR method designed by Peyrefitte et al. (2003) was used to 

distinguish between genome sense and anti-genome sense DENV RNA from midguts of mosquitoes infected with DENV.  The 

presence of anti-genome sense RNA was assumed to be indicative of DENV replication.  The ssRT-PCR to detect genome sense 

strand method consists of an initial RT amplification with a reverse (R) primer followed by column purification to remove residual 

primers and the final PCR step used a forward and reverse primer.  The ssRT-PCR to detect anti-genome sense method consists of 

initial RT amplification with a tagged forward (tagF) primer followed by column purification and finally PCR.  The PCR step used a 

primer specific to the added tag sequence and reverse primer to detect anti genome sense strand.  The tagged RT primer and column 

purification steps increase the specificity of detection of anti-genome sense RNA by reducing false priming. 
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Table 4.1  Strand-specific RT-PCR primers  Primers used for detection of genome sense or anti-genome sense DENV RNA from 

fractions of cellular fractionation gradient fractions of mosquito midgut tissue, using primers designed by Peyrefitte et al. (2003).  

____________________________________________________________________________________________________________ 

Primer  Purpose Genomic location Sequence 

 

KP 99 (tag)  PCR of   none                        CGGTCATGGTGGCGAATAA 

   - strand 

KP100 (tagF)  RT of   tag, 10565-10541     CGGTCATGGTGGCGAATAAAAGGACTAGAGGTTAGAGGAGACCC 

   - strand   

KP101 (F)  PCR of   10565-10541           AAGGACTAGAGGTTAGAGGAGACCC 

   + strand 

KP102 (R)  RT of + strand 10648-10628            CGTTCTGTGCCTGGAATGATG 

   and PCR of +/- strand            
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Verifying strand specific RT-PCR product Gel electrophoresis of RT-PCR products 

yielded unexpected bands sized 200 bp and 400 bp in addition to 100 bp expected 

product with the genome sense primers, so products from strand-specific RT-PCR were 

excised from the agarose gel and extracted using a Gel Extraction kit (Qiagen: Valencia, 

CA).  DNA concentration was determined via absorbance at 260 nm and products 

sequenced in both forward and reverse directions by the Proteomics and Metabolomics 

Facility at Colorado State University using an ABI 3130 Genetic Analyzer.  We were 

unable to consistently obtain well separated 400 bp products from genome sense RT-PCR 

from the anti-genome ssRT-PCR, so these products were not sequenced.  Product identity 

for the 200 bp and 400 bp products from genome sense RT-PCR was verified using the 

National Center for Biotechnology Information (NCBI) basic local alignment search tool 

(BLAST). 

After examining the BLAST results from the 200 bp and 400 bp PCR product 

sequences, we decided to check the specificity of the primers via BLAST with automatic 

adjustment for short input sequence.  We also repeated the BLAST search for 400 bp 

product sequenced with the F primer adjusted for short input sequence.  Briefly, the short 

input sequence adjustments suggested by NCBI were word size 7, expect value 1000, 

blastn, and removal of the low complexity filter.    Next we repeated the 400 bp product 

sequenced with the F primer BLAST query with the adjustment for short sequence and 

limited the query to the Ae. aegypti genome as this would be the other RNA template 

present during RT.  Since the BLAST of genome sense ssRT-PCR 400 bp PCR product 

with the F primer with short adjustment and limited to Ae. aegypti yielded a few short 

matches, we reconsidered what primer mismatch would have to occur to give false 
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primed 400 bp product.  Reasoning that to produce a false PCR product, the primer 

would have to first anneal in the RT, we repeated our query against the Ae. aegypti 

genome using the appropriate RT primer, the R primer, using a BLAST query adjusted 

for short sequences.  The reported primer matches were limited to sequences ≥15 bp 

since the 200 bp band reported by Peyrefite et al. resulted from a 15 bp upstream primer 

match, so we knew that 15bp matches were capable of producing unexpected ssRT-PCR 

products. 

 

Optimization of antibodies 

All antibodies used for single and double-staining experiments were optimized on 

cell culture samples prior to usage in midgut experiments as described in Chapter 2.  

Occasionally, additional optimization using midguts was required because optimal 

antibody dilutions or incubation conditions were not identical between cultured cell 

samples and midgut tissues. 

 

Antibodies for single-label immunofluorescence assays 

J2 antibody for detection of dsRNA was obtained from Scions (Scions/English and 

Scientific Consulting: Hungary http://www.engscicons.de).  J2 antibody is a mouse 

monoclonal antibody (IgG2a) that is highly specific for dsRNA.  Research to characterize 

the antibody showed that dsRNA of length ≥40 bp is recognized in a non-sequence 

specific manner (Schonborn et al., 1991). 
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Biotinylated sheep anti-mouse IgG used as secondary antibody and Strepavidin-

fluorescein used to detect biotinylated IgG were obtained from Pierce (Pierce/Thermo 

Fisher Rockford, IL).   

 

Immunofluorescent assay (IFA) for dsRNA   

Lyophilized preparations of J2 antibody were reconstituted in 0.5 mL sterile 

distilled water as recommended by manufacturer, then divided into 10 µL aliquots and 

frozen at -20˚C for long term storage. 

Fixation timepoints were designated as every 24 hours post infection, for as long 

as needed for the experimental design.  Dissected mosquito midguts were immersed in 

4% electron microscopy grade paraformadehyde (Electron Microscopy Sciences: 

Hatfield, PA) diluted in RNase free PBS (Ambion: Austin, TX).  Samples were stored at 

4°C for 24 hr then centrifuged at 2,500 rpm for 1 min and transferred to microcentrifuge 

tubes containing RNase-free PBS and stored at 4°C until all timepoints were completed.   

Experimental IFAs consisted of incubation with 1:1000 J2 mAb (2 hr) followed 

by 1:400 biotinylated sheep anti-mouse IgG (1 hr) then strepavidin-fluorescein (1 hr) at 

28˚C with gentle rocking (Weber et al. 2007).  All antibodies were diluted in PBS with 

0.2% bovine serum albumin (BSA) (Sigma: St. Louis, MO) and 0.5% Triton X-100 

(TX100) (Sigma: St. Louis, MO).  Each incubation was followed by three washes in PBS 

with 0.01% Tween20 (PBST) (Sigma: St. Louis, MO).  All incubations and washes were 

performed in PCR purification columns with filters removed (Qiagen: Valencia, CA).  

Midguts were mounted on glass slides using 24 x 60 mm no. 11/2 coverslips (VWR.: 
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Arlington Heights, IL) using Vectashield with DAPI nuclear stain (Vector Laboratories 

Inc.: Burlingame, CA) and observed with a Leica DM4500B fluorescent microscope. 

 

Biotinylation of J2 antibody 

IFAs for colocalization of dsRNA and DENV envelope and capsid antigens used 

biotinylated monoclonal antibody J2 prepared with the ProtON Biotin Labeling Kit 

(Vector Laboratories Inc, Burlingame, CA), which creates a stable linkage between biotin 

and the antibody.  Antibody labeling was carried out as described in Chapter 2. 

 

IFA for localization of dsRNA and DENV proteins  

Primary Antibodies 

J2  For all assays, biotinylated monoclonal antibody J2 was prepared as described above, 

then reacted with Streptavidin Alexa Fluor 546 conjugate as described below.  

3H5-. Mouse ascites fluid containing monoclonal antibody 3H5-1 to DENV envelope 

protein was prepared by and obtained from Dr. Irma Sanchez-Vargas (AIDL, Colorado 

State University). 

1A2A-1 Monoclonal antibody specific for DENV capsid protein was obtained from Dr. 

John Roehrig of CDC DVBID (Fort Collins, CO). 

30.11a  Mouse ascites fluid containing monoclonal antibody to 30.11a SINV envelope 

protein was prepared by and obtained from Dr. Irma Sanchez-Vargas (AIDL, Colorado 

State University). 
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Secondary antibodies and labels 

Streptavidin Alexa Fluor 546 conjugate reacts with biotin to form a stable bond 

(Invitrogen: Molecular Probes, Eugene, OR).  Streptavidin Alexa Fluor 546 conjugate 

was divided into 50 µL aliquots and stored at -20˚C protected from light. 

FITC antimouse IgG antibody was used as the secondary antibody for viral antigen-

specific monoclonal antibodies (3H5-1, 30.11a, 1A2A-1) and protein disulfide isomerase 

PDI antibodies.  The FITC antimouse antibody used is a goat polyclonal antibody to 

mouse IgG heavy and light chain (Abcam: Cambridge, MA). 

Localization of DENV envelope antigen and dsRNA  

Samples were prepared as described for dsRNA IFAs using Aedes aegypti RexD 

midguts from mosquitoes fed infectious bloodmeals containing DENV-2  (JAM1409) at 

1-14 dpi.  To ensure that bloodmeals contained infectious virus, a sample of the 

bloodmeal was titrated by the AIDL CORE support system using the protocol described 

in Chapter 5 except plaques were counted instead of picked at the end.  Experimental 

IFAs consisted of incubation of infected midguts with 1:400 mAb 3H5-1 (2 hr) followed 

by 1:400 FITC sheep anti-mouse IgG (1hr) then 1:250  biotin-conjugated mAb J2 (2hr) 

followed by 1:250 streptavidin Alexa Fluor 546 conjugate (1 hr).  All incubations were at 

28˚C with rocking.  Control IFAs were with monoclonal antibody J2 or 3H5-1 alone and 

the first two incubations were with PBS with 0.5% TX100 and 0.2% BSA.  All antibodies 

were diluted in PBS with 0.2% BSA (Sigma) and 0.5% TX100 (Sigma); the Strepavidin 

Alexa Fluor 546 conjugated was diluted in PBS alone.  After incubation, samples were 

washed three times in PBST and distilled water wash after the final incubation.  Midguts 

were mounted on glass slides using 24 x 60 mm no. 11/2 coverslips in Vectashield with 
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DAPI (Vector Laboratories Inc.: Burlingame, CA) and observed with a Leica DM4500B 

fluorescent microscope to verify labeling.  Relative localization of dsRNA and envelope 

protein staining was analyzed using confocal microscopy as described below. 

 

Localization of DENV capsid antigen and dsRNA  

Samples were prepared as described above for dsRNA.  Experimental IFAs 

consisted of incubations with 1:100 monoclonal antibody 1A2A at 4˚C overnight 

followed by 1:100 FITC-conjugated sheep anti-mouse IgG (1 hr) then 1:250 monoclonal 

antibody J2 (2 hr) followed by 1:250 streptavidin Alexa Fluor 546 conjugate (1 hr).  All 

incubations except the initial incubation were at 28˚C with rocking.  All washes between 

and after incubations, mounting, control IFAs, and microscopy were as described above. 

Localization of SINV envelope and dsRNA.  Mosquitoes were infected as described with 

SINV-containing artificial bloodmeals.  Samples were prepared as described for DENV 

midgut IFAs, and midguts from RexD mosquitoes fed MRE16, TR339, or mock-

infectious bloodmeals were dissected at 1-5 dpi.  Experimental IFAs consisted of 

incubations with 1:150 monoclonal antibody 30.11a (2 hr) followed by 1:100 dilution 

FITC sheep anti-mouse IgG (1 hr),  then 1:250 monoclonal antibody J2 (2 hr) followed 

by 1:250 Streptavidin Alexa Fluor 546 conjugate (1 hr) with all incubations at 28˚C with 

rocking.  All washes, mounting, control IFAs, and microscopy as described above. 

 

Confocal Microscopy 

As in Chapter 2, all three-dimensional imaging and analysis were carried out 

using the Zeiss Laser Scanning Axiovert Confocal Microscope in the Infectious Diseases 
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Annex (IDA) on the Foothills campus (Colorado State University).  The LSM510 Meta 

software was used for all imaging. 

Confocal settings  Confocal settings were optimized for each set of samples as described 

in Chapter 2.  Also, as in Chapter 2, differential interference contrast (DIC) images were 

only included in results if they added information about the structure of the midgut 

tissues. 

Three-Dimensional Localization  Three-dimensional localization of dsRNA within 

mosquito midguts was as described in Chapter 2.  Orthogonal views for analysis were 

reconstructed from optical Z sections used for three dimensional localization using the 

LSM510 Meta software orthogonal option. 

 

Electron Microscopy 

All electron microscopic imaging was carried out with the assistance of Dr. 

Suzanne Royer, operating the JEOL 2000 Transmission Electron Microscope in the 

Anatomy and Zoology building (Colorado State University).  All grid preparation was 

carried out by myself, and embedding after the initial fixation steps was carried out by 

Dr. Royer.  

Sample preparation  RexD mosquitoes were fed DENV-2 containing artificial bloodmeals 

as described above.  For vesicle isolation, midguts were dissected from mosquitoes at 7 

dpi.  Negative controls were prepared from mock infected mosquitoes. 

Samples were divided for cell fractionation on sucrose density gradients or 

microscopy as follows.  Fifty midguts were harvested by gently pelleting at 1,500 rpm,  

1 min at 4°C.   Supernatant was removed and midguts were resuspended in ice-cold PBS 
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and pelleted at 14,000 rpm, 5 min.  Fixative consisting of 62 mM paraformaldehyde with 

1 mM glutaraldehyde was added dropwise down the side of the microcentrifuge tube, and 

samples were allowed to incubate for 10 min at room temperature (RT).  Pellet was 

loosened from the bottom of the tube with a sterile pipette tip and allowed to incubate in 

fixative for an additional 20 min at RT before transferring to 4°C for storage until 

embedded and sectioned. 

Pre-fixed samples were post-fixed, embedded, and sectioned by Dr. Royer as 

described in Chapter 2. 

Sample preparation: isolated vesicles  Vesicle-containing samples were prepared as 

described previously in the cellular fractionation protocol and mounted on EM grids as 

described below. 

Grid preparation  Samples were concentrated as described for cellular fractionation in  

0.2 mL TNMg buffer.  Samples were stored on ice for transport to the EM center for 

preparation.  Samples were prepared and stained as described in Chapter 2.  Samples 

were immediately examined for imaging after grids were dry. 

Characterization of isolated vesicles: detergent sensitivity  To determine the detergent 

sensitivity of vesicles, samples were prepared by the cellular fractionation protocol, 

except samples were incubated in 1.5% sodium deoxycholate (DOC) on ice instead of 

TX100 prior to the S16 centrifugation as described in Chapter 2.  Grids were prepared as 

described in Chapter 2.  TX100-treated samples from fractions likely to contain vesicles 

were compared with DOC-treated equivalent fractions. 

Imaging  Samples were examined by Dr. Royer and myself on the TEM described above.  

All vesicle images were taken at a magnification of 100,000x, 100 kV.  Vesicles were 
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imaged as described in Chapter 2.  Embedded control midgut samples were examined and 

imaged at a magnification of 30,000, 100 kV for gross morphology changes. 
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Results 

 

Characterization of sucrose gradient fractions: analysis of viral RNA via strand- 

specific RT-PCR 

DsRNA replicative intermediates consisting of annealed genome sense and anti-

genome sense strands of RNA are produced during DENV replication, so if DENV 

replication occurs within membrane bound compartments, these isolated compartments 

should contain both genome sense and anti-genome RNAs.  To determine whether the 

viral RNA in the top, more bouyant fractions of cellular fractionation gradients consists 

of both genome sense and anti-genome sense RNA, a strand-specific RT-PCR method 

was used.   

Anti-genome sense DENV RNA could be amplified from only fractions 1 and 2 

of the sucrose gradients used to fractionate mosquito midgut cells at 7 d pbm (Figure 

4.2A top row) and from fractions 1-3 in cellular fractionation gradients at 10 and 14 d 

pbm (Figure 4.2B & C top row).  No anti-genome sense strand DENV RNA was 

amplified from fractions 3-10 of the sucrose gradients used to fractionate mosquito 

midgut cells at 7 d pbm (Figure 4.2A top row) nor from fractions 4-10 in cellular 

fractionation gradients at 10 and 14 d pbm.  Genome sense ssRT-PCR resulted in 

observation of genome sense RNA in fractions corresponding with anti-genome sense 

RNA amplification and in fractions 8-10 at all three timepoints (Figure 4.2A-C bottom 

row).  The strand-specific RT-PCR procedure yielded triplet product bands from cellular 

fractionation samples (Figure 4.2).  Peyrefitte et al. (2003) observed both 100 bp and  

200 bp bands after RT-PCR of DENV RNA using the same primers.  In addition to the
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Figure 4.2  Agarose gel electrophoresis of strand-specific RT-PCR products from sucrose gradient fractions of Aedes aegypti 

mosquito midguts post DENV (JAM1409) containing bloodmeal  A 7 dpi B 10 dpi C 14 dpi, top panels contain fractions amplified 

using primers specific to anti-genome sense DENV RNA and the bottom panels contain samples amplified with primers specific to 

genome-sense DENV RNA.  Each gel shows DNA size markers, fractions 1-10 (top to bottom of sucrose gradient) left to right.
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200 bp product we observed a faint band at 400 bp with the genome sense primers and 

sometimes an indistinct smear with the anti-genome sense primers.  To determine 

whether each of these bands represented specific detection of DENV RNA, the 200 bp 

and 400 bp product bands were extracted and sequenced by the university sequencing 

facility using primers F and R.  We were unable to sequence the indistinct product 

amplified with the anti-genome sense primers.  Using BLAST alignment, we found that 

the approximately 200 bp product amplified with F and R primers was DENV-specific 

and matched the DENV genome from 10603 bp to 10513 bp (Table 4.2a).  The 400 bp 

product amplified with the R primer from the genome sense RT-PCR, resulted in a 

sequence less than 400 bp in length that was specific to the DENV genome from 10647 

bp to 10493 bp.  The 400 bp product amplified with the F primer from the genome sense 

RT-PCR was not found to match the DENV genome.  Surprised that the 400 bp sequence 

did not match the DENV genome, we double-checked all four primers for matches to the 

DENV genome.  Analysis of the BLAST results of the F primer showed a match 

beginning at 10548 bp and 10493 bp of the DENV genome.  BLAST of R showed the 

intended match at approximately beginning at 10650 bp to the DENV genome and short 

matches, from 3504 to 3493 and from 3493 to 9301 to 3494 , unlikely to prime synthesis 

of the 400 bp product.  We found short matches between the tag primer and the DENV 

genome, and matches for either tag or F matches but not both contiguously for the tagF 

primer which is composed of linked tag and F sequences (Table 4.2b).   
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Table 4.2a  DENV RNA sequence matches for 200 bp and 400 bp unexpected products from strand-specific RT-PCR of 

sucrose gradient fractions of Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal 

PCR product    GenBank Match  Matching Bases  Notes 

(primer used for sequencing)  JAM1409 (acc. # M20558) (match ratio) 

200 bp (F)    10603-10645  plus                  78/78            confirms Peyrefitte et al.’s 

                  observation that the unexpected 

             200 bp band is strand specific              

200 bp (R)    10646-10513 minus  151/154              confirms Peyrefitte et al.’s 

             observation that the unexpected 

             200 bp band is strand specific  

 

400 bp (F)    no significant similarity               attempted to sequence 3 times, 

             poor quality sequence, sequencing 

                                                                                                                                                 facility noted 2 possible templates  

             once             

 

400 bp (R)    10647-10493    152/154             also aligns with 200bp (R) sequence 

___________________________________________________________________________________________________________              

 

Acc# = GenBank accession number.  Matching base numbers are the subject nucleotide numbers not the query nucleotide numbers. 
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Table 4.2 b  DENV RNA sequence matches for primers used for strand-specific RT-PCR from sucrose gradient fractions of 

Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal 

Primer   GenBank Match  Matching Bases Notes 

    JAM1409 (acc. # M20558) (match ratio) 

KP99 / tag   3652-3658 plus  7/7   Peyrefitte et al. (2003) states that there was no  

           homology to DENV RNA by BLAST, our results  

           are consistent    

KP100 / tagF   10578-10602 plus  25/25   designed to match here 

    10493-10515 plus  22/23    mismatch for F region 

      7411-7403 minus      9/9   short mismatch 

            

KP101 / F   10548-10602 plus   25/25      designed to match here 

    10493-10515 plus  22/23   mismatch for F region 

KP102 / R   10685-10665 minus  21/21       designed to match here 

_________________________________________________________________________________________________________ 

Matching base numbers are the subject nucleotide numbers not the query nucleotide numbers.  In notes, match indicates homology as 

intended by primer design and mismatch indicates that match was not intended by primer design.  
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Table 4.2 b continued  DENV RNA sequence matches for primers used for strand-specific RT-PCR from sucrose gradient 

fractions of Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal 

 

 

 

5’ cap                 3’UTR 
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200 bp product 

400 bp product 

   R 

Location of primer mismatches which produce 200 bp and 400 bp products 
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Since the 400 bp product amplified with the F primer yielded only very short 

sequence matches to the DENV genome via BLAST analysis, and the sequencing facility 

noted the possible presence of two templates, we hypothesized that the F primer matched 

unintentionally to another location within the DENV genome besides the 200 bp product 

yielding mismatch.  An adjustment of the BLAST parameters for short query sequences 

resulted in approximately 50 bp discontinuous matches within the 3’ UTR of the DENV 

genome (Table 4.2c).  To identify the possible second template suggested by the 

sequencing facility, we repeated the BLAST query with limitation to the Ae. aegypti 

genome, based on the hypothesis that mRNA from Ae. aegypti would also be present in 

our samples and observed only short, approximately 22 bp, matches between the 400 bp 

sequence amplified with the F primer and the Ae. aegypti genome (Table 4.2d).  We 

reasoned that a primer mismatch with Ae. aegypti mRNA to produce a 400 bp product 

would have to initially occur during the RT,  so we performed a BLAST query with the R 

primer with automatic adjustments for short sequences and limited the search to the Ae. 

aegypti genome (Table 4.2e).  This BLAST search resulted in many short matches to Ae. 

aegypti genome; the reported results were limited to sequences ≥15 bp based on the 

observation that the 200 bp band found by Peyrefitte et al. (2003) resulted from a 15 bp 

primer match upstream of the intended site so the ssRT-PCR conditions could result in a 

product from a 15 bp primer match.  This data filter yielded a list of Ae. aegypti enzyme 

mRNAs including acetyl-CoA oxidase, glycogen synthetase, and 

methylenetetrahydrofolate dehydrogenase. 
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Table 4.2c  DENV RNA Sequence matches for 400bp, F-primed unexpected product bands from of strand-specific RT-PCR 

products from sucrose gradient fractions of Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal  

BLAST alignment was adjusted for short sequences.  

Product (primer) GenBank Match      Matching Bases  Notes 

   JAM1409 (acc # M20558) 

400 bp (F)  10662-10685        22/24    all matches in 3’UTR 

____________________________________________________________________________________________________________ 

Matching base numbers are the subject nucleotide numbers not the query nucleotide numbers. 

 

 

 

 

Table 4.2d Aedes aegypti genome sequence matches for 400bp, F-primed unexpected bands of strand-specific RT-PCR 

products from sucrose gradient fractions of Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal  

BLAST alignment was adjusted for short sequences and limited to Aedes aegypti. 

Product (primer) GenBank Match      Matching Bases    

           (match ratio) 

400 bp (F)  Aedes aegypti hypothetical protein partial mRNA  554-575 (22/24) 

   (XM_001659297.1 and XM_001648663.1) 

____________________________________________________________________________________________________________ 

Matching base numbers are the subject nucleotide numbers not the query nucleotide numbers. 
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Table 4.2e  Aedes aegypti genome sequence matches for R primer for strand-specific RT-PCR of sucrose gradient fractions of 

Aedes aegypti mosquito midguts post DENV (JAM1409) containing bloodmeal  BLAST alignment was adjusted for short 

sequences and limited to Aedes aegypti genome.  Only matches ≥15 bp are listed based on the observation that Peyrefitte et al. (2003) 

noted that their spurious 200 bp band was the result of a 15 bp upstream primer match.   

Primer GenBank  Match      Matching Bases  Notes 

          (match ratio) 

R   Aedes aegypti hypothetical protein partial mRNA  74-55 (18/20) 

  (XM_001662311.1) 

  Aedes aegypti acyl-CoA oxidase partial mRNA  2258-2275 (16/18)  enzyme involved in fatty acid 

  (XM_001653267.1)          metabolism 

  Aedes aegypti Gustatory receptor28b partial mRNA  1095-1080 (15/16)  G protein coupled receptor 

  (XM_001658686.1)          family member 

  Aedes aegypti glycogen synthetase partial mRNA  2282-2267 (15/16)  enzyme that converts  

  (XM_001648654.1)          glycose to glycogen 

  Aedes aegypti aldehyde oxidase partial mRNA  78-96 (17/19)   enzyme that uses aldehyde 

  (XM_001662355.1)          to make carboxylic acids 

  Aedes aegypti aldehyde oxidase partial mRNA  141-159 (17/19)  enzyme that uses aldehyde 

  (XM_001654463.1)          to make carboxylic acids 

  Aedes aegypti hypothetical protein partial mRNA  1723-1707 (15/17) 

  (XM_001649518.1) 

                        methylenetetrahydrofolate dehydrogenase [Aedes aegypti] 394-409 (15/16)  oxidoreductase family 

  (XM_001662311.1)          member 

Matching base numbers are the subject nucleotide numbers not the query nucleotide numbers. 



 

 

 195 

Localization of dsRNA in midguts of DENV-infected mosquitoes 

To determine the pattern of dsRNA in mosquito midgut tissue, we dissected 

midguts from RexD mosquitoes fed a DENV bloodmeal 7 d pbm, stained for dsRNA, and 

examined via fluorescent microscopy.  DsRNA IFA showed a pattern similar to the 

infected foci observed in mosquito midguts stained for DENV envelope protein antigen.  

Staining for dsRNA in midguts of mosquitoes that had been fed a non-infectious 

bloodmeal showed no immunofluorescence (Figure 4.3).  As for midguts stained for 

DENV envelope protein using 3H5-1, dsRNA foci size observed varied between 

individual midguts in location, number, and size.  Staining for dsRNA with mAb J2 in 

DENV-infected midguts was less intense than for DENV envelope protein with 3H5-1 

but more intense than SINV E1 protein staining with mAb 30.11a in SINV-infected 

midguts (Figures 4.9 & 4.10). 

 

Localization of dsRNA and DENV E protein in infected mosquitoes  

 To evaluate whether dsRNA and DENV envelope protein antigen temporally and 

spatially co-localize in the mosquito midgut, midguts were dissected from Ae. aegypti 

mosquitoes fed infectious or non-infectious bloodmeals at 1-14 d pbm, stained for 

dsRNA and DENV envelope protein, and examined via fluorescent microscopy.  Images 

from 4-11 dpi that best illustrated changes in DENV envelope and dsRNA staining are 

shown in Figure 4.4.   

There was no staining for DENV envelope protein or dsRNA in mock-infected 

midguts at any timepoint, indicating that all staining was DENV-specific (Figure 4.4).   
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Figure 4.3  DsRNA IFA of  Aedes aegypti (RexD) midguts at 7 days post bloodmeal 

Figure 4.3  DsRNA IFA of Aedes aegypti (RexD) mosquitoes at 7 days pbm 

containing DENV (JAM1409)  Midguts from A mosquito fed non-infectious bloodmeal 

and B mosquito fed infectious bloodmeal were stained with dsRNA antibody J2 (green) 

and counterstained with Evans blue (red) (10x, fluorescent). pbm = post bloodmeal 
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Figure 4.4a  Localization of dsRNA and DENV E protein in mosquito midguts 

(Aedes aegypti) 4-7 days pbm  Midguts of A. mock infected and B-D infected 

mosquitoes were stained for C DENV envelope protein (green), D dsRNA (red), and B C 

and D merged, A and B were also stained for nuclei (DAPI) (blue) (10x, fluorescent 

microscope).  DsRNA and DENV envelope protein are visible and approximately co-

localized at 4-7days pbm.  pbm = post bloodmeal. 
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Figure 4.4b  Localization of dsRNA and DENV E protein in mosquito midguts 

(Aedes aegypti) 8-11 days pbm  Midguts of A mock infected and B-D infected 

mosquitoes were stained for C DENV envelope protein (green), D dsRNA (red), and B 

C, and D merged, A and B were also stained for nuclei (DAPI) (blue) (10x, fluorescent 

microscope).  DsRNA and DENV envelope protein co-localize 8-11 dpi and intensity of 

both increases from until 10dpi then begins to wane.  pbm = post bloodmeal. 
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From 1 to 3 days pbm, there was no staining for dsRNA or DENV envelope protein in 

midguts of mosquitoes fed an infectious bloodmeal.  From 4 to 10 days pbm there was an 

increase in staining for both dsRNA and DENV envelope protein in DENV-infected 

midguts, followed by a decline in intensity of staining beginning at 11 days pbm and 

continuing through the end of the timecourse at 14 days pbm.   The number of foci and 

total area of each focus in DENV-infected midguts increased from 4 to 10 days pbm and 

declined from 10 to 14 days pbm, indicating that there is a tight correlation between 

production of structural proteins as represented by staining for envelope protein and 

dsRNA during DENV replication in the mosquito midgut.  Antibodies for dsRNA and 

DENV envelope protein stained similar areas at all timepoints, which is consistent with 

observations of dsRNA and DENV envelope staining in mosquito cells in Chapter 2.  As 

in Chapter 2, we were unable to see any localization differences between dsRNA and 

DENV envelope protein via fluorescent microscopy. 

 Confocal microscopy was used to more closely examine the localization of 

dsRNA and envelope protein in the midgut of a DENV-infected mosquito.   Two regions 

of a focus of infection in a midgut at 10 d pbm were imaged.   The center of the focus 

was assumed to contain the cells that were first infected by DENV and the edge of the 

focus was assumed to contain the cells most recently infected by DENV based on 

observations by Salazar et al. (2006) that DENV moves laterally from the initially 

infected cells.  Figure 4.5 A-E shows the center of the focus of infection and Figure 4.5 

F-J shows the edge of the same focus.  The DENV envelope antigen staining for entire 

focus at 10 day pbm resembled a doughnut-like structure with a decrease in intensity of 

envelope antigen staining in the middle of the focus compared to the outer edge.   
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Figure 4.5  Localization of dsRNA and DENV E antigen in 2 regions of a focus of 

infection in mosquito midgut (Aedes aegypti) at 10 days pbm Midguts were stained 

for A & F DENV envelope protein (green), B & G DIC (gray), C & H dsRNA (red), D 

& I nuclei, DAPI (blue), and E & J A, B, C, and D and F, G, H, and I merged.  In 

merged images, co-localization of dsRNA and E protein appears yellow.  Note Image K 

is also merged but because the midgut was mock-infected, there is no observable staining 

for DENV envelope protein (green) or dsRNA (red).  Images A-E are at the center of the 

focus of infection; images F-J are on the expanding edge of the focus and represent the 

most recent DENV infection.  Image K (40x confocal) is the uninfected control for the 

DENV infected midgut shown in A-I (20x confocal). pbm = post bloodmeal 
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Unfortunately, an entire focus was not imaged.  This observation of a decline in viral 

antigen at 10 dpi is consistent with the observations of Salazar et al. (2007), who also 

noted a decline in viral antigen staining in mosquito midguts from Ae. aegypti colonized 

from Chetumal, Mexico, at 10 d pbm.  Perhaps this decline in viral antigen represents 

maturation and release of virus into the hemocoel.  Again, no temporal or spatial 

differences were observed between DENV envelope protein and dsRNA localization.  

This observation is consistent with our observations of DENV envelope protein and 

dsRNA in mosquito cell cultures in Chapter 2 as well as the observation by Welsch et al. 

(2009) who noted of tightly associated DENV envelope protein and dsRNA synthesis 

within mammalian cells. 

 

Localization of dsRNA and DENV capsid antigen in midguts of infected mosquitoes  

To determine the temporal expression patterns of dsRNA and DENV capsid 

protein in mosquito midgut tissue, midguts were dissected from RexD mosquitoes 8-14 

days post infectious bloodmeal, stained for dsRNA and DENV capsid, and examined via 

fluorescent microscopy.  We selected the range 8-14 d pbm based on testing to optimize 

capsid staining in mosquito midguts, which found less variation than in the size of the 

region stained for DENV capsid antigen at 1-7 d pbm.  Observations of capsid staining 

from 1-7 d pbm were very similar to envelope protein staining in the mosquito midgut, so 

to broaden our understanding of viral structural protein synthesis relative to dsRNA 

synthesis in mosquito midguts, we focused our study of capsid antigen staining on 

timepoints 8-14 d pbm.   The size of the area stained for capsid antigen and intensity of 

staining appeared to peak at 8 d pbm and then wane in both area and intensity by 14 days 
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(Figure 4.6).  The merged image B at day 10 days pbm shows the most representative 

image of decreased area and intensity of capsid antigen staining.  Staining for capsid 

protein appeared to be slightly more intense on the edges of the stained regions, perhaps 

because these regions would be the most recently infected and had yet to package and 

release virus into the hemocoel thus depleting the capsid protein present to form mature 

DENV virions.  This hypothesis is investigated in more detail via confocal microscopy 

(Figure 4.7).   

To more closely examine whether dsRNA and DENV capsid protein co-localize 

in the midgut of DENV-infected mosquitoes, mosquito midguts stained for both dsRNA 

and capsid were examined via confocal microscopy.  Observations of a focus of DENV 

infection showed complete co-localization of dsRNA and DENV capsid protein at 20x 

magnification (Figure 4.7A-E).  There was a decrease in intensity of antigen staining in 

the middle of the focus of infection, which was assumed to be the result of release of 

mature virions into the hemocoel depleting the capsid protein being produced by the 

midgut cells.  Imaging the same focus at higher magnification, 40x, in an attempt to 

further investigate the decrease in intensity of staining caused the tissue to tear in the 

middle of the focus (Figure 4.7F-I).  In two-dimensional microscopy, investigation of the 

torn focus of DENV infection provided no additional insight as to the cause of the 

decrease in intensity of staining.  In midguts of mosquitoes fed mock-infectious 

bloodmeals, there was slight background fluorescence but no staining for either DENV 

capsid or dsRNA (Figure 4.7J).  A trachea is detectable as a dark area with irregularly 

shaped edges in the middle of the negative midgut tissue, focusing through the tissue 

revealed taenidia, confirming the identity of the dark area as a trachea (data not shown).   
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Figure 4.6  Co-localization of dsRNA and DENV capsid protein via IFA in Aedes 

aegypti (RexD) mosquito midguts at 8-14 days pbm  Midguts of A mock infected and 

B-D infected mosquitoes were stained for C DENV capsid protein (green), D dsRNA 

(red), and B C and D merged A and B were also stained for nuclei (DAPI) (blue) (10x, 

fluorescent microscope).  Staining for capsid protein appears to be slightly more intense 

on the edges of stained regions.  pbm = post bloodmeal. 

 

 

 

A 

 

 

 

 

B 

 

 

 

 

 

C 

 

 

 

 

D 

         d pbm            8                  10      12              14  



 

 

 204 

 

 
Figure 4.7 Localization of DENV capsid antigen and dsRNA in a viral infected focus 

at 10 days pbm  Infected and mock-infected midguts were stained for A & F, DENV 

capsid protein (green), B DIC (gray), C & G dsRNA (red), D & H nuclei, DAPI (blue), 

and E & I A, B, C, and D and F, G, and H merged.  Image J is from a mock-infected 

midgut and is also merged but because the midgut was un-infected, there is no observable 

staining for DENV capsid protein (green) or dsRNA (red) (40x, oil confocal).  Images A-

E are from the intact focus (20x, confocal), images F-I are from the same focus as the 

tissue began to tear (40x, oil confocal).  Images A-E show a focus of infection in the 

midgut and images F-I show a close-up of the center of the focus.  pbm = post bloodmeal 
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Overall, the temporal and spatial staining for capsid and dsRNA in the midguts of 

mosquitoes fed infectious bloodmeals (Figure 4.6) was similar to that observed when 

midguts were stained for DENV envelope protein and dsRNA (Figure 4.5).  

Further analysis of the torn midgut tissue, imaged in Figure 4.7 via an optical 

series focusing through the tissue via confocal microscopy (Figure 4.8), showed a gradual 

change in staining intensity of DENV capsid protein and dsRNA.  A computer-generated 

orthogonal view allowed us to visualize the Z positioning of each image within the three-

dimensional structure of the midgut as indicated by the blue line (top and right panels, 

Figure 4.8A).  Figure 4.8A is a lumen-side view of the focus from Figure 4.7 that shows 

minimal capsid staining on the lumen-side of the midgut.  Examination of the side view 

of the midgut tissue shows a distinct bias in DENV capsid antigen staining for the 

hemocoel side of the midgut compared to the lumen side.   Figure 4.8B shows a midline 

view of the same DENV-infected midgut tissue, between the lumen and hemocoel sides. 

Figure 4.8C is a hemocoel-side view of the focus, which shows more intense capsid 

antigen staining and a lattice-like structure.  Capsid staining is mainly associated with 

epithelial cells on the hemocoel side of the midgut, suggesting at this 10 day pbm 

timepoint DENV is being released into the hemocoel coinciding with the timing of what 

was previously described by Salazar et al. (2007) as a decrease in DENV antigen 

observed in the midgut.  Based on several descriptions of the midgut-associated 

musculature, which runs both circularly and longitudinally in what Bowers et al. (2003) 

describe as a “grate work-like banding pattern” around the midgut, it appears that capsid 

antigen is associated with epithelial cells between the midgut-associated musculature 

(Bowers et al., 1995; Bowers et al., 2003; Myles et al., 2004).  An enlargement of Image  
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Figure 4.8a  Localization of DENV capsid antigen and dsRNA in sections through a 

focus of DENV infection in a mosquito midgut (Aedes aegypti) at 10 days pbm 

(orthogonal view)  Infected midguts were stained for DENV capsid protein (green), 

dsRNA (red), and nuclei, DAPI (blue) and these images are shown merged here.  This is 

the same focus of infection that was imaged in Figure 4.7.   Blue lines indicate the Z-axis 

location of the tissue section and sections are shown moving from the hemocoel- side of 

the midgut to the lumen side of the midgut.  Image A hemocoel-side of midgut tissue, 

Image B midline of  midgut tissue, Image C lumen-side of midgut tissue.   White box in 

image C indicates area that is enlarged and shown in Figure 4.8b (40x, oil confocal). 

pbm = post bloodmeal 
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Figure 4.8b Enlargement of DENV capsid antigen and dsRNA staining in lumen-

side section of a focus of DENV infection in a mosquito midgut (Aedes aegypti) at 10 

days pbm  Image D is an enlargement of the lumen side image shown in Figure 4.8a, 

Image C  The checkerboard pattern resembles the pattern made by the the midgut 

associated musculature which runs longitudinally and transversely around the midgut.  

The DENV capsid antigen appears to be primarily localized in the epithelial cells 

between the midgut associated musculature which appears as dark bands at this time post 

bloodmeal (enlargement of 40x, oil confocal). pbm = post bloodmeal 
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Figure 4.8c  Lack of staining of DENV capsid antigen and dsRNA in a section of a 

mosquito midgut (Aedes aegypti) at 10 days post non-infectious bloodmeal 

(orthogonal view)  Mock-infected midguts were stained for DENV capsid protein 

(green), dsRNA (red), and nuclei, DAPI (blue) and these images are shown merged here.  

Note because the midgut was non-infected, there is no observable staining for DENV 

capsid protein (green) or dsRNA (red).  Image E midline of midgut tissue.  This midgut 

was the control for the midgut imaged in Figures 4.8a and 4.8b (40x, oil confocal). 
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C shows capsid antigen between the lattice-like pattern characteristic of the midgut 

associated musculature (Figure 4.8, Image D).  This observation supports observations by 

Salazar-Sanchez (2006), who stated that DENV-2 antigen was never observed in 

association with the midgut associated musculature (Salazar-Sanchez, 2006).  Mock-

infected midguts showed no staining of capsid or dsRNA indicating that all capsid and 

dsRNA staining was specific to DENV-infection (Figure 4.8c).    

 

Localization of dsRNA and SINV envelope 1 protein in infected mosquito midguts  

 Spatial and temporal localization of dsRNA relative to SINV E1 envelope protein 

was examined by feeding Aedes aegypti (RexD) mosquitoes infectious bloodmeals 

containing SINV MRE16 or SINV TR339, dissecting midguts at 1-5 d pbm, and 

examining them via fluorescent microscopy.  In the midguts of the mosquitoes fed the 

MRE16 strain there was no staining at 1 d pbm, small foci of stained cells at 2-3 days, 

larger foci at day 4, and by 5 days the intensity of E1 antigen staining in foci had begun 

to decline (Figure 4.9).   In the midguts of the mosquitoes fed the TR339 strain of SINV, 

there was no staining a 1-3 d pbm, small foci of stained cells at 4 days, and no staining at 

5 days (Figure 4.10).   Our data are consistent with Myles et al. (2004) who observed that 

MRE16 and TR339 have similar growth curves in mosquito cell culture, but TR339 titers 

are much lower than MRE16 titers mosquitoes.  The decline in intensity of staining for 

E1 antigen at 5 d pbm in both the MRE16 and TR339 infected midguts may coincide 

with release of mature virions into the hemocoel as hypothesized for DENV-infected 

mosquitoes.  No staining for dsRNA or E1 envelope protein was observed in un-infected 

midguts at any time point, indicating that staining for dsRNA and E1 envelope protein 

were specific to SINV-infected midguts.  
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Figure 4.9  Localization of dsRNA and SINV envelope protein in mosquito midguts (Aedes aegypti ) at 2-5 days pbm  A mock 

infected and B-D SINV (MRE16)  infected midguts were stained for C. SINV E1 envelope protein (green), D dsRNA (red) and B C 

and D E merged, A and B also stained for nuclei, DAPI (blue),  (5x, fluorescent microscope). DsRNA and SINV protein co-localize 

and area stained of both increases from 2-5 days pbm.  d pbm = days post bloodmeal 
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Figure 4.10  Localization of dsRNA and SINV envelope protein in mosquito midguts (Aedes aegypti) at 4 and 5 days pbm  A 
mock infected and B SINV virus (TR339) infected midguts were stained for C SINV virus E1 envelope protein (green), D dsRNA 

(red) and B C and D merged, A and B were also stained for nuclei, DAPI (blue) (5x, fluorescent microscope).  DsRNA and SINV viral 

protein co-localize and presence of both decreases from 4-5 days pbm.  d pbm = days post bloodmeal.
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   There were more foci observed in MRE16-infected mosquito midguts than in 

TR339-infected midguts.  The staining intensity for E1 envelope protein was greater in 

MRE-16 infected midguts than in TR339 midguts.  Also the proportion of total midguts 

that had infected foci was greater from the MRE16 midguts than the TR339 midguts.  

These observations of fewer and less intensely stained foci in TR339-infected midguts 

compared to MRE16-infected midguts is consistent with observations by Myles et al. 

(2004), who made similar comparisons of number of infected foci via IFA between the 

two SINV strains.  

 To determine where dsRNA and SINV envelope proteins localized in mosquito 

midguts, the midguts above were further examined via confocal microscopy.  There was 

complete colocalization of dsRNA and SINV E1 envelope protein in midguts of 

mosquitoes fed SINV strains MRE16 or TR339 and again, the foci from TR339-infected 

mosquitoes were less intensely stained than the foci observed in MRE16-infected 

midguts (Figure 4.11 A-E and F-H).  As seen previously, midguts of mosquitoes fed non-

infectious bloodmeals and stained for dsRNA and SINV E1 envelope protein showed 

only background levels of staining (Figure 4.11I).  As noted for Figure 4.10, there is a 

qualitative difference in E1 protein staining between MRE16-infected and TR339- 

infected midguts.  TR339-infected midguts stain less intensely for E1 protein antigen. 

Overall the intensity of dsRNA staining relative to background dsRNA staining in SINV-

infected midguts was less than for DENV-infected.  
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Figure 4.11 Localization of dsRNA and SINV envelope protein in infected cell foci in 

mosquito midguts (Ae. aegypti) at 4 days pbm  Midguts infected with MRE16 A-D or 

TR339 E-H or mock-infected I stained for A & E SINV E1 envelope protein (green), B 

& F, dsRNA (red), D & G, nuclei, DAPI (blue), and D & H, A, B, and C & E, F, and G 

merged.  Note Image I is also merged but because the midgut was mock-infected, there is 

no observable staining for SINV E1 protein (green) or dsRNA (red)  DsRNA and SINV 

protein co-localize and the patterns of intensity of staining correlate between envelope 

protein and dsRNA (40x oil, confocal).  pbm = post bloodmeal 
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Transmission electron microscopy 

 To determine whether detergent-resistant vesicles like those observed in Chapter 

2 could be isolated from DENV-infected mosquito midguts, mosquitoes were fed DENV-

containing bloodmeals or mock-infected and both groups of midguts were dissected at 7 

d pbm, treated with Triton-X100, then fractionated on a sucrose gradient.  Fractions from 

the top of the sucrose gradient were collected, concentrated, and examined via 

transmission electron microscopy (TEM).  Examination of DENV-infected midgut 

fractions revealed an oval-shaped vesicle with an average diameter of 100 nm and images 

were taken focusing through vesicle, confirming that the structure was spherical (Figure 

4.12).   These observations of approximately 100 nm sized vesicles that are specific to 

DENV-infected materials are consistent with previous work in which detergent-resistant 

vesicles were isolated from flavivirus-infected mammalian cells and the isolation of 

infection-induced vesicles from mosquito cell cultures in Chapter 2 (Uchil et al., 2003). 

 To determine the subcellular origin of the vesicles isolated from infected 

mosquito midgut tissues, midguts from mosquitoes that had been fed infectious or mock-

infectious bloodmeals were dissected and treated with TX100 or DOC.  TEM imaging of 

these materials showed vesicles in TX100-treated DENV-infected midguts but no 

vesicles in TX100-treated mock-infected midguts, DOC-treated DENV-infected nor 

DOC-treated mock-infected midguts.  These results were consistent with our 

observations from Chapter 2 and those of Uchil et al. (2003) that DENV RC-associated 

vesicles were TX100-resistant but DOC-sensitive, which led them to conclude that 

vesicles associated with flavivirus replication originated from the ER (Figure 4.13).    
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Figure 4.12  Transmission electron micrograph through-focal series of Triton-X100 resistant vesicle isolated from DENV- 

infected Aedes aegypti mosquito midguts  A vesicle from fraction 2 of cell fractionation gradient of TX100-treated mosquito 

midguts showed the characteristic spherical structure of DENV-associated replication vesicles.  All images have the same size bar.  

(100,000x, 100kV, TEM). 
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Figure 4.13  Transmission electron micrographs of effects of  detergent-treatment of vesicles isolated from DENV (JAM1409) 

infected Aedes aegypti mosquito midguts at 7 days pbm  A vesicle from Triton-X100-treated infected mosquito midguts, B no 

vesicles from equivalent gradient fractions of Triton-X100 treated mock infected mosquito midguts, C no vesicles from equivalent 

gradient fractions of sodium deoxycholate  treated infected mosquito midguts (100,000x, 100kV, TEM).  Resistance to TX100 

treatment and lysis caused by DOC treatment suggested an ER origin for vesicles.  pbm = post bloodmeal
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TEM examination of sucrose gradient fractions from TX100-treated mosquito midguts 

from showed a variety of sizes of vesicles.  The extremes of the vesicle size range were 

120 nm (Figure 4.14A) to 50 nm (Figure 4.14 B).  Vesicles were only observed in 

fractions 2 and 3, near the top of the gradient, and not in fractions 1 or 4-10.  There was 

less variation in vesicle sizes from mosquito cell culture described in Chapter 2, 50-75 

nm, than in vesicle sizes originating from mosquito midguts.  However, the overall 50-

120 nm size range encompasses the 50-75 nm range observed by Uchil et al. (2003) using 

the same methods we used to isolate vesicles.  Our TEM vesicle measurements are also 

consistent with the 87.5 nm average diameter of vesicles from the EM tomography study 

by Welsch et al. (2009).  A wider range of vesicles sizes was observed in TEM images of 

cellular fractions of mosquito midgut tissues. 

To determine where DENV replication-associated vesicles occurred in midgut 

cells and to confirm that vesicles existed in the original DENV-infected tissues and 

weren’t an artifact of isolation, embedded and sectioned mosquito midguts were 

examined via TEM.  No vesicles were observed from control samples containing mock-

infected mosquito midguts, confirming that there were no vesicles in the original mock-

infected material.   

Unexpectedly, no vesicles were observed in DENV-infected midguts either.  

However, comparison of images showed differences in the average area covered by ER 

membranes between infected and mock-infected midguts.  Representative sections 

showed an average of 70% of the imaged area covered by maze-like ER membranes in 

the DENV- infected mosquito midguts compared to 20% of the area covered by ER 



 

 

 219 

 

 

 

 

 

 
Figure 4.14  Transmission electron micrographs: Size range of vesicles isolated from 

DENV (JAM1409) infected Aedes aegypti mosquito midguts at 7 days pbm  Vesicles 

isolated from Triton-X100 treated DENV- infected mosquito midguts fractions that are 

approximately A 120nm diameter and B 50 nm diameter (100,000x, 100kV, TEM).  pbm 

= post bloodmeal 
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membranes in the mock-infected mosquito midguts (Figure 4.15).  This difference in 

quantity of ER was consistent in all sections observed via TEM from 100 DENV-infected 

mosquito midguts.  These observations are consistent with the observation of Girard et al. 

(2005) of WNV-infection-induced ER proliferation and the immunofluorescent and 

immunoEM imaging by Welsch et al. (2009) of ER associated with DENV RC 

membranes in mammalian cells. 
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Figure 4.15  Transmission electron micrographs of sections of DENV (JAM1409) infected and mock-infected Aedes aegypti 

mosquito midguts at 7 days pbm   A section from infected mosquito midgut, B section from mock-infected mosquito midguts, 

(30,000x, 100kV, TEM).  Note larger area of sectioned material covered by contiguous ER membranes in midguts of mosquitoes fed 

infectious bloomeals compared to mosquitoes fed non-infectious bloodmeals.  This observation suggests proliferation of ER 

membranes. (v = microvilli, m = mitrochondria, ER = endoplasmic reticulum, pbm = post bloodmeal) 
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Discussion 

 

Characterization of sucrose gradient fractions: analysis of viral RNA via strand 

specific RT-PCR 

We used ssRT-PCR to examine DENV-specific RNA from sucrose gradient 

fractions of detergent-treated mosquito midguts and amplified genome sense DENV 

RNA from both buoyant top and dense bottom fractions of the gradients (Figure 4.2, 

bottom panels).  We detected anti-genome sense DENV RNA only in the bouyant top 

fractions of the sucrose gradients (Figure 4.2, top panels).  This pattern of DENV-specific 

RNA detection in both buoyant top fractions and dense lower fractions is consistent with 

the RT-PCR results from detergent-treated infected mosquito cell culture fractionation 

(Chapter 2).  The similar localization patterns of DENV RNA between midgut and 

mosquito cells argues that data from cultured mosquito cells is relevant to the whole 

mosquito, making the cellular fractionation method useful for the study of DENV RCs 

because of the timeframe for mosquito cell culture-based experiments is one week versus 

four weeks for mosquito midgut-based experiments.  The use of the ssRT-PCR technique 

on mosquito midgut samples provided the additional information not available from the 

RT used in Chapter 2, that DENV-specific RNA in the top fractions was both genome 

and anti-genome sense.  This was a novel use of the method of Peyrefitte et al. (2003) 

method to evaluate membrane-associated DENV RCs.  Overall, the ssRT-PCR data 

support the hypothesis proposed in Chapter 2 that buoyant fractions contain membrane 

associated RCs, which contain both genome sense and anti-genome sense DENV RNA 

and lower, more dense fractions likely contain virions.   
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The strand-specific RT-PCR method devised by Peyrefitte et al (2003) and used 

to characterize DENV specific RNAs from mosquito midgut fractions yielded 

inconsistent results, the yield of the 100 bp product ranged from almost undetectable to 

clearly observable via agarose gel electrophoresis.  The method involved many 

purification steps, each of which reduced product yield and increased the likelihood of 

cross-contamination between samples.  An interesting follow-up experiment would have 

been to determine whether these DENV RCs were still active, but this would have 

required a method of labeling viral RNA and our attempts to directly label DENV RNA 

for the cellular fractionation experiments in Chapter 2 were unsuccessful. 

In trying to optimize the ssRT-PCR assay for detection of anti-genome and 

genome strand DENV RNA, we found that adjustments in salt and PCR cycle 

temperature and time parameters that detected anti-genome sense increased the non-

specific products from the genome sense RNA.  Unfortunately, in using ssRT-PR, we and 

other researchers have found no data in the literature on the tradeoffs of sensitivity and 

specificity of this ssRT-PCR technique using tagged primers for detection of arboviruses 

(Plaskon et al., 2009).  Plaskon et al. (2009) used a version of the method of Peyrefitte et 

al. (2003) for quantitative ssRT-PCR and found that they could minimally detect between 

80 and 800 copies of anti-genome RNA from Onyong-nyong virus (ONNV) (family 

Togaviridae) infected cells.  Other researchers have argued that ssRT-PCR methods are 

still a non-specific method of detection of anti-genome sense RNA because of a snap-

back phenomenon in which RNA templates form a transient fold onto themselves, 

creating an RT primer (Tuiskunen et al., 2009).  Tuiskunen et al. (2009) argued that the 

tagged primer method doesn’t overcome this problem and discussed the loss of template 
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material with the method of Peyrefitte et al. (2003), then offered alternative methods of 

strand-specific RNA detection which have not been experimentally tested.  The critique 

by Tuiskunen et al. (2009) of Peyrefitte et al. (2003) and other ssRT-PCR techniques was 

published after these experiments were completed, so we did not have the opportunity to 

try alternative methods.  We agree that ssRT-PCR methods for arbovirus RNA detection 

need to be improved, but our experimental optimization yielded no evidence for an 

improved method other than use of different RT and PCR cycling parameters for genome 

sense versus anti-genome sense detection. 

BLAST analysis of unexpected products from strand-specific RT-PCR 

 BLAST analysis of the 200 bp sized product band ssRT-PCR to detect genome 

sense RNA of TX100-treated DENV-infected mosquito midguts found that the 200 bp 

product was completely specific to the DENV genome while the 400 bp product yielded 

matches to both the DENV genome and mRNAs coding for Ae. aegypti enzymes (Table 

4.2).   This unexpected 400 bp product from ssRT-PCR indicates specificity problems 

with the ssRT-PCR parameters used for detection of genome sense DENV RNA.   

 

Comparison of methods used to study of DENV RNA replication  

 A variety of methods, including gradients and chemical inhibitors of protein and 

RNA synthesis, have been used to study DENV replication in cell culture.  An early 

study of DENV replication in mammalian cells used a cesium chloride gradient to 

concentrate virus and found RNA that was associated with plaque forming ability in the 

lower fractions of the gradient (Stevens and Schlesinger, 1965).  These data from Stevens 

and Schlesinger (1965) are consistent with the hypothesis that we proposed in Chapter 2, 
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that DENV virions were the source the of viral specific RNA in lower fractions of our 

gradients  as well as the ssRT-PCR data that showed only genome sense RNA in the 

lower fractions.   

 We found two polarities of DENV-specific RNA in our bouyant sucrose gradients 

using samples derived from mosquito midguts.  Researchers using radiolabeled DENV 

RNA in mammalian cells typically found 2 sizes of RNA associated with DENV-

replication and occasionally a third in gradient fractions: 20S, 26S, and 45S (Stollar et al., 

1967).  They hypothesized that the 20S RNA was the replicative form of DENV RNA 

because they only found it early in infection; 26S was an unknown rare form; the 45S 

RNA was infective.  Intriguingly, they found that the 20S RNA descended lower in the 

sucrose gradient when treated with dimethyl sulfoxide (DMSO), which dissolves polar 

and non polar compounds.  We speculate that the 20S RNA that Stollar et al. (1967) 

found lower within the sucrose gradient after DMSO-treatment was the membrane-

associated RNA that we have been working to characterize.  Another study of 

radiolabeled DENV RNA in mammalian cells found RNA localized to the rough 

endoplasmic reticulum (rER), which is consistent with our hypothesis for the origin of 

our bouyant vesicles and our TX100-resistance data (Stohlman et al., 1975).  Boulton and 

Westaway (1976) also gradient fractionated radiolabeled KUNV RNA in mammalian 

cells, then examined each fraction via EM to discover that KUNV RNA localized with 

both rough and smooth ER membranes that floated high in the gradient.  While the 

association of RNA with rough and smooth membranes suggests that KUNV RNA may 

be associated with smooth ER or Golgi membranes as well as rER membranes, it is 

useful to note that even using a different sucrose gradient method, rER membranes are 
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buoyant, which is consistent with our observations (Boulton and Westaway, 1976).  Uchil 

et al. (2003) radiolabeled flaviviral RNA in mammalian cells and found the replicative 

form (RF) or dsRNA of DENV, JEV, and WNV localized to fractions containing 

buoyant, TX100-resistant membranes in a sucrose gradient.  Using quantitative real-time 

RT-PCR, genome sense and antigenome sense DENV RNA has been detected in Ae. 

aegypti midguts, consistent with our ssRT-PCR detection of both polarities of vRNA at 7, 

10, and 14 d pbm (Richardson et al., 2006). 

 

Localization of dsRNA in midguts of DENV-infected mosquitoes via immuno-

fluorescent assay 

The staining pattern for dsRNA in midguts of RexD mosquitoes 7 days after 

being fed a bloodmeal containing DENV resembled the staining pattern for DENV-

infected foci stained for viral envelope antigen.  The similarities between the dsRNA 

staining pattern and the envelope protein staining pattern we observed in mosquito 

midguts was intriguing (Figure 4.3).  This novel use of mAb J2 to detect dsRNA in 

mosquito midguts led to the double-staining experiments to determine whether there was 

complete co-localization between dsRNA and envelope protein staining in the DENV-

infected midguts.   

Staining mosquito midguts for dsRNA and DENV envelope protein detected no 

dsRNA or envelope protein antigen 1-3 days pbm, increased staining at 4-10 days pbm, 

and a decline in staining from 11 to 14 days pbm.  This observation of increased antigen 

staining for DENV envelope protein in mosquito midguts from 4 to 10 days pbm 

followed by a decline from 11 to 14 days pbm is consistent with the observations of 
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DENV envelope antigen staining differences between DENV-infected and mock-infected 

mosquito cells in Chapter 2.  Complete co-localization of staining between dsRNA and 

DENV envelope protein is consistent with the observation by Welsch et al. (2009) that 

DENV dsRNA replicates in close proximity to virus assembly.  The fluorescent 

microscopy used for these observations lacks the resolution to distinguish between the 

replication and assembly locations.  Confocal microscopic examination of staining for 

both DENV envelope protein and dsRNA showed that antigen was fading in the center of 

focus of infection in a mosquito midgut at 10 d pbm (Figure 4.5).  Complete co-

localization and similar intensities of staining between DENV envelope protein and 

dsRNA suggested that dsRNA staining is an accurate marker of active DENV replication 

in mosquito midguts. 

It has been shown that virus-specific small RNAs are produced in flavivirus-

infected mosquitoes (Sanchez-Vargas et al., 2004); however, because the J2 antibody to 

dsRNA only detects dsRNA longer than 41 bp in length, we were unable to observe the 

small RNA markers of the RNAi response via IFA (Brackney et al., 2009; Sanchez-

Vargas et al., 2004; Schonborn et al., 1991).  Perhaps an EM in situ hybridization (ISH)  

method, like that of Grief et al. (1997), if it could be adapted to detect small RNAs, 

would allow us to compare to viral dsRNA as stained by the J2 antibody.  A next step 

would be to compare the viral dsRNA stained with the J2 antibody to ISH-labeled small 

RNAs between DENV susceptible versus non-susceptible strains of mosquitoes to 

determine whether the midgut escape barrier (MEB), in which DENV replication is 

limited to the mdigut and does not disseminate, described by Bennett et al. (2005) could 

have an RNAi basis.  The Carb77 mosquito strain, an RNAi-based DENV-resistant 
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transgenic mosquito, will be discussed in Chapter 5 as an example of how such DENV 

resistance in a mosquito might function.  

 Since there are no other reports of using dsRNA IFA in mosquitoes to compare 

our data with, we reviewed the immune EM and in situ hybridization studies.  EM in situ 

hybridization using dioxigenin-labeled anti-genome sense DNA probe to genome sense 

RNA in DENV-infected Ae. albopictus cells found RNA in association with the rER and 

SMS (Grief et al., 1997).  Additionally, Grief et al. (1997) observed  paracrystalline 

arrays of virions near SMS in agreement with the model of Welsch et al. (2009) of virus 

assembly near RNA replication sites.  ImmunoEM studies of DENV envelope protein in 

mosquito and mammalian cell cultures have found envelope protein associated with 

vacuoles, vesicles, in the rER and around SMS with no spatial differences in localization 

between cell lines (Barth, 1999; Rahman et al., 1998).  Salazar et al. (2006) observed 

DENV envelope antigen via IFA in mosquito midguts at 3 days post infection, peaking 7-

10 days pbm, beginning to fade by 14 days pbm, with some antigen still present as long 

as 21 dpi in the Chetumal strain of Ae. aegypti.  The data of Salazar et al. (2006) are very 

similar to our observations, and they also used the 3H5-1 antibody to DENV envelope as 

well as a polyclonal human anti-DENV antibody.  Franz et al. (2006) observed 

approximately half of the mosquito midgut was stained for envelope antigen using the 

3H5-1 antibody in DENV-infected Higgs’ white eye (HWE) strain of Ae. aegypti at 7 

days pbm.  Our data on dsRNA and envelope antigen temporal and spatial localization in 

DENV-infected Ae. aegypti midguts is consistent with published observations in spite of 

some differences in mosquito strains studied. 
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Localization of dsRNA and capsid protein in midguts of infected mosquitoes  

Staining mosquito midguts for dsRNA and DENV capsid protein showed the 

same pattern of antigen localization and a decrease in staining from 8 to 14 d pbm which 

is consistent with the observations of Salazar-Sanchez et al. (2007).   Stohlman et al. 

(1975) also observed a decline in capsid antigen, from 24 hr to 72 hr, isolated from ER-

proteins isolated from DENV-infected mammalian cells by gradient fractionation, which 

they attributed to depletion of capsid protein due to viral maturation.  Also the edges of 

the capsid foci were more intensely stained than the interior of the foci (Figure 4.6).  The 

most recently infected cells would be localized around the edge of  foci.  These cells in 

the early stages of DENV infection would have recently begun translation of capsid 

protein but may have not yet begun packaging and release of mature virus.  Viral 

packaging and release would lead to a reduction of DENV capsid protein available for 

staining via IFA which could explain why the interior/longer infected cells at the center 

of foci have less capsid staining.   

 Confocal microscopic examination of mosquito midguts fed an infectious 

bloodmeal and stained for DENV capsid and dsRNA  showed complete co-localization of 

the two antigens.  The DENV infection appeared to be primarily localized on the 

hemocoel side of the midgut.  Since the midgut sample was at 10 d pbm, this is an older 

focus of infection, and this localization pattern was consistent with DENV infection 

beginning on the luminal side of the midgut, then budding through the basal lamina to the 

hemocoel-side where mature virus would be released into the hemocoel (Figure 4.8 9F to 

1A).  Other researchers, studying DENV capsid localization via IFA in mammalian cells 



 

 

 230 

noted that capsid localized to the ER and also observed a decline in capsid antigen, which 

they suggested was depleted by viral maturation (Stohlman et al., 1975). 

 In agreement with Salazar (2006) we observed DENV capsid antigen localized to 

the midgut epithelial cells but not associated with midgut-associated musculature (Figure 

4.8).  Salazar et al. (2007) reported that DENV antigen never associated with midgut-

associated musculature in a study of DENV tropisms in Ae. aegypti midguts.  A review of 

arbovirus antigens that have been found in association with the mosquito midgut found 

reports of both flavivirus and alphavirus antigens localized to midgut-associated 

musculature.  A confocal microscopy study by Girard et al. (2004) of WNV in Culex 

quinquesfasciatus found WNV antigen localized to the circular and longitudinal muscles 

associated with the midgut, using mouse hyperimmune ascites fluid (MHIAF) to WNV 

by 6 and 8 dpi.  An EM study of WNV in Cx. quinquesfasciatus noted the membrane 

proliferation in midgut-associated musculature, which was interpreted as evidence of 

WNV-replication in these muscles (Girard et al., 2005).   Alphavirus researchers have 

observed SINV antigen in a “grate work-like banding pattern” in intrathoracically 

inoculated SINV-infected Ae. albopictus (Bowers et al., 2003).  Myles et al. (2004) 

observed TR339-infected circular and longitudinal muscles of the posterior midgut of Ae. 

aegypti.  Additionally, green fluorescent protein-expressing Venezuelan equine 

encephalitis virus (VEE) (family Togaviridae) replicons localized to muscle fibers in 

intrathoracically inoculated Ochleratatus taeniorhynchus (Romoser et al., 2004).  

However, DENV antigens and dsRNA do not associate with the midgut-associated 

musculature in DENV-infected mosquito midguts. 
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Localization of dsRNA and SINV envelope protein in infected mosquito midguts  

 SINV-infected mosquito midguts were stained for dsRNA and SINV envelope 

protein and examined via fluorescent microscopy.  Complete temporal co-localization of 

dsRNA and SINV envelope protein antigens was observed within samples.  However, 

there were differences in staining between the two strains of SINV, MRE16 and TR339.  

The larger number of foci in MRE16 infected mosquito midguts compared to the few 

small, faint foci observed in TR339 infections, is not a novel observation.  The 

localization patterns observed in this experiment were consistent with previous 

observations of replication differences between the MRE16 and TR339 strains of SINV 

(Myles et al., 2004). 

 Comparison of midguts of mosquitoes fed SINV strains MRE16 and TR339 and 

examined via confocal microscopy showed complete co-localization of dsRNA and 

envelope protein 1.  The differences in staining for SINV E1 antigen between the TR339 

and MRE16 stains has been well characterized.  In spite of qualitative differences in foci 

between TR339 and MRE16 in the midgut, Myles et al. (2004) observed no significant 

difference in titers between the two viruses grown in both mosquito and mammalian cell 

cultures but did observe significant differences in dissemination between the viruses in 

mosquitoes. 

There was no apparent difference in staining patterns for dsRNA and viral 

envelope proteins between DENV and SINV at the cellular level in our experiments.   

Although there were differences in timing and intensity of staining, the known cellular 

localization differences between flaviviruses and alphaviruses could not be readily 

evalulated via dsRNA IFA even with the increased resolution of confocal microscopy 



 

 

 232 

(Figures 4.7 & 4.11).  The phenomenon of viral antigen localized to the midgut 

associated musculature seems to be widespread in SINV-infected mosquitoes as Bowers 

et al. (2004) and Myles et al. (2004) found viral antigen throughout the midgut-associated 

musculature.  It is unclear why this localization difference of SINV antigen with midgut 

associated musculature and DENV not associated with musculature would occur. 

 

Transmission electron microscopy: through-focal series, detergent resistance, size, 

localization, and ER proliferation 

 TEM examination of subcellular fractions from detergent treated mosquito 

midguts showed non-ionic detergent-resistant spherical structures (Figure 4.12).  

Comparison of infected and mock infected mosquito midguts treated with TX100 or 

DOC found vesicles only in infected materials that had been treated with TX100 (Figure 

4.13).  The lysis of vesicles when treated with DOC is consistent with the biochemical 

evidence presented by Uchil et al. (2003) and the EM tomography by Welsch et al. 

(2009) that vesicles in DENV-infected cells originated from the ER.  Vesicles were only 

observed in buoyant fractions near the top of the gradient, and range of vesicle size 

observed was 50 nm to 120 nm.  The gradient position of vesicles coincided with 

detection of both anti-genome sense and genome sense viral RNA ssRT-PCR results 

(Figure 4.2).  The vesicle size range was similar to observations made from DENV-

induced vesicles in mammalian cells and tissues infected with other flaviviruses (Girard 

et al., 2005; Uchil and Satchidanandam, 2003; Welsch et al., 2009; Westaway et al., 

1997b). 
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 As discussed earlier, Uchil and Satchidanadam (2003) found that radiolabeled 

replicative forms of WNV, DENV, and JEV in mammalian cells correlated with fractions 

containing vesicles.  Also an older study of radiolabeled DENV RNA found replicative 

forms of viral RNA that were DMSO-sensitive (Stollar et al., 1967).  Our data are 

consistent with published data and expand the observations to mosquito midguts, 

indicating that DENV replication-associated membranes are relevant to any control 

measures targeting DENV RNA in mosquito midguts such as the Carb77 transgenic 

mosquito strain with an enhanced RNAi-response to DENV. 

 

Transmission electron microscopy: ER proliferation 

TEM images of embedded and sectioned DENV-infected mosquito midguts 

showed approximately a 50% increase in area covered by ER membranes compared to 

mock-infected midguts (Figure 4.15).   This observation is consistent with the increase in 

intensity of PDI-staining observed in infected cells in Chapter 2, which also suggested 

that DENV replication was associated with proliferation of intracellular membranes in 

mosquito cells (Figure 2.15).  We did not observe evidence of DENV virions in the ER. 

Many EM observations of ER involvement in flavivirus replication have been 

made from cell cultures over the years and fewer observations have been made from 

mosquito tissues.  Ng et al. (1987) observed what they described as ER lengthening 

during EM imaging of Ae. albopictus cell cultures infected with KUNV.  Hase et al. 

(1987) observed virions in the rER of mosquito cells and mammalian cell cultures 

infected with JEV.  Barth et al. (1999) observed SMS in the rER of DENV-infected 

mammalian and mosquito cell cultures.  
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  Based on the many published records of ER proliferation and virions localized in 

the ER in flavivirus infected cell cultures, we expected to observe ER proliferation and 

virions in the ER in DENV-infected mosquitoes.   Instead, we observed ER proliferation 

and no virions in the ER of the midguts of DENV-infected Ae. aegypti.  Consistent with 

our EM observations, Whitfield et al. (1973) observed ER proliferation at 6 d pbm in 

SLE-infected Cx. quinquefasciatus and no virions in the ER. 

Girard et al. (2005) observed SMS in the rER of midgut cells of Cx. 

quinquefasciatus infected with WNV.  We were unable to observe virus or SMS in the 

midguts of Ae. aegypti infected with DENV, but we did see SMS in the ER of infected 

cultured mosquito cells (Chapter 2), as Barth (1999) observed.  In an effort to determine 

why Girard et al. (2005) observed SMS in the rER and we did not, we compared our 

sample preparation methods to Girard’s methods.  Girard et al. (2005) fixed midguts 

separately and immediately post dissection while our midguts were held on ice and 

processed as a group of 50, since this was our standard procedure for preparation of 

cellular fractionation samples, and our goal was to see if vesicles were present in the 

materials at the beginning of cellular fractionation and not a processing artifact.  Another 

explanation for the differences between our observations and Girard et al. (2005) is that 

we used DENV-infected mosquito materials and Girard et al. (2005) used WNV-infected 

materials. 

 

Comparison of electron microscopy observations in arbovirus-infected mosquitoes 

 Other researchers studying DENV replication in mosquitoes via EM 

intrathoracically injected Ae. albopictus with DENV and followed the morphological 
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changes over 14 days in negatively stained thin sections and found DENV virions and 

vesicles in the rER in the midgut, salivary glands, and fat body (Sriurairatna and 

Bhamarapravati, 1977).   Sriurairatna and Bhamarapravati (1977) observed most DENV 

replication in the SG and less DENV replication in the midgut and fatbody.  Perhaps we 

would have observed more vesicles in our mosquitoes had we examined the salivary 

glands as Sriurairatna and Bhamarapravati (1977) did.  Alternately, the intrathoraric 

injection technique used may have biased their observations, leading to more evidence of 

replication, virions and vesicles, in the salivary glands than in the midgut because DENV 

was not following the natural route of infection and the dose of virus received by the 

salivary glands was artificially high compared to the natural route of infection.   

Comparing the data on DENV to other flaviviruses, researchers studying yellow 

fever virus (YF) (family Flaviviridae) in intrathoracically injected Ae. aegypti mosquitoes 

found rearrangement of the ER membranes and virions in the salivary glands at 20 days 

pbm (Bergold and Weibel, 1962).  Japanese encephalitis researchers found virus and 

vesicles localized perinuclearly in the salivary gland cells of  intrathoracically injected 

Culex pipiens and Culex tritaneoniorhychus (Takahashi and Suzuki, 1979).  Whitfield et 

al. (1973) studied  Saint Louis encephalitis virus (SLE) in Cx. quinquefasciatus fed on 

viremic mice and observed ER proliferation, virions in the Golgi body, and more virions 

in the salivary glands than the midgut late in infection with formation of large 

paracrystalline arrays observed in the salivary glands after 25 days pbm.  The EM study 

of Girard et al. (2005) of WNV in Cx. quinquefasciatus showed membrane proliferation 

in midgut cells, including a distended ER and virions in the rER.  Our observations of ER 

proliferation are consistent with the SLE and YF studies.  We did not see virions in the 
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ER, Golgi body, or perinuclearly as in the YF, JEV, SLE, or WNV studies but this could 

be due to timing, dose, route of infection, or tissue differences.  The observations of 

Takahashi and Suzuki (1979) of perinuclear JEV are intriguing because this is consistent 

with our observations of DENV in mosquito cell culture at early timepoints, but we did 

not observe this perinuclear localization of DENV antigen in mosquito midguts and had 

initially attributed it to differences between cell culture and whole tissues.  The 

perinuclear localization of DENV dsRNA was observed in mosquito cell cultures at early 

timepoints, and our samples were taken from midguts at 7 days pbm.  

EM studies of some arboviruses in mosquitoes have observed much more 

pathology than we did in DENV-infected mosquitoes.  A TEM study of WNV in the 

midguts of a Cx. pipiens strain that was found to be resistant to infection with WNV, 

found apoptotic cells in the midgut.  After confirming the hypothesis of apoptosis by 

acridine orange staining, they suggested that apoptosis may help limit WNV infection of 

midgut cells.  Our midgut cells did not show the level of damage seen in these apoptotic 

cells. 

Weaver et al. (1988) provided Culesita melanura a bloodmeal from eastern 

equine encephalitis virus (EEEV) (family Togaviridae) infected birds and found a great 

deal of cytopathology in the mosquito midgut.  Proliferation of the rER, intracellular 

virus, and sloughing of the midgut brush border was observed in EEEV-infected Cs. 

melanura, which they argued might modulate EEEV infection (Weaver et al., 1988).  A 

later study of Cx. tarsalis allowed to feed on WEEV infected chicks also found midgut 

lesions and sloughing of the midgut brush border only with higher titer bloodmeals 

(Weaver et al., 1992).  Based on WNV, WEEV, and EEEV observations, DENV 
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infection is much less pathogenic to midguts than other alphaviruses and flaviviruses.  

We have proposed the idea that there is a fine balance between DENV replication and the 

mosquito RNAi defense.   As discussed in Chapter 2, Umareddy et al. (2007) proposed 

that DENV modulates the UPR, so it appears that DENV has co-evolved to a fine balance 

with the Ae. aegypti vector in several different pathways. 

  

Conclusions 

 The data presented in this chapter suggest that DENV replication occurs in 

association with vesicles in mosquito midguts.  These vesicles are 50-120 nm in 

diameter, of ER origin, and specific to midgut tissues, which show ER proliferation from 

DENV- infection.  This is the first isolation and characterization of DENV replication-

associated membranes from mosquito midguts.  These vesicles have similarities to the 

vesicles observed in Chapter 2 and isolated from DENV-infected mammalian cells.  As 

discussed in Chapter 2, replication of DENV within vesicles may exclude access of 

Dicer-2 to the dsRNA replicative intermediates.  The next chapter will discuss whether 

genomic mutations allow DENV to thwart an RNAi-based DENV-resistant transgenic 

mosquito.  

  



 

 

 238 

 

 

 

Chapter 5 

Evasion of RNA interference mediated resistance in transgenic mosquitoes: 

evaluation of virus escape mutants via sequencing and transgenic mosquito 

challenge 
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Introduction 

 

 Carb77 is a line of genetically modified Aedes aegypti mosquitoes that have 

reduced vector competence for DENV-2.   The Carb77 strain of mosquitoes expresses an 

inverted repeat sequence from the premembrane (prM) gene of DENV-2.   The inverted 

repeat is expressed under the control of a carboxypeptidase promoter and the transcript 

forms virus-specific dsRNA at the time DENV acquired in a bloodmeal is initiating 

replication and therefore most vulnerable (Franz et al., 2006).  Carb77 mosquitoes were 

challenged to test resistance to DENV-2 infection by comparing the DENV-2 titers 

between Carb77 and the parental white eye strain of Ae. aegypti Puerto Rico Rexville D 

at 7, 10, and 14 days post infection.  The results from the challenge experiments showed 

a small number of Carb77 mosquitoes became infected with DENV (Figure 5.1).  The 

viruses that infected and replicated in the Carb77 mosquitoes were termed “escape 

variants” in Franz et al. (2006).  In this chapter, the “escape variants” will be called 

“virus escape mutants” because we hypothesized that the escape variants were due to 

mutations in the DENV genome.   

 It is unclear why DENV-2 replicated in some individual Carb77 mosquitoes to a 

significantly higher titer than in other individuals.  Reasons for the discrepancy in titers 

between individual mosquitoes may include variation in virus genome sequence, 

physiological variation between individual mosquitoes, or physiological damage caused 

by artificial bloodmeals.  Regarding variation in virus genome sequence, viruses exist as 

quasispecies or a group of genomic sequences which are under constant selection, so the 

DENV-2 used to challenge the Carb77 mosquitoes exists as a population of varying  
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Fig 5.1  Virus escape mutants  Whole body plaque titration of DENV-2 in Carb77 and 

Higgs white eye (HWE) mosquitoes at 7, 10, and 14 days post infection, modified from 

figure 3 of Franz et al. (2006).  Arrows indicate examples of virus escape mutants. 
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genomic sequences (Domingo et al., 1985; Holland et al., 1982).  The prM-primed RNAi 

response in Carb77 mosquitoes could be exerting a greater than normal selection pressure 

on DENV-2, leading to the selection of genomes with prM mutations.  As for the 

possibility of variation in physiological state between individual Carb77 mosquitoes, 

variation in body size, due to larval rearing, has been correlated both positively and 

negatively with susceptibility to infection with arboviruses in different sudies (Grimstad 

et al., 1980; Paulson and Hawley, 1991; Schneider et al., 2007; Sumanochitrapon et al., 

1998), so variation in body size of individual Carb77 mosquitoes could affect virus titer.  

Since the Carb77 strain was based on the Higgs white eye (HWE) strain of Rexville D 

Ae. aegypti, which has been reared in the laboratory for many years, it is likely that any 

genetic variance in body size of the Carb77 family is already constrained.  Another 

possibility as to why some DENV-2 replicates to higher titers in some mosquitoes is 

physiological damage caused by excessively large bloodmeals taken during artificial 

bloodfeeding.  This leaky midgut theory is used to explain the presence of virus in the 

hemocoel immediately after a bloodmeal, much faster than the virus could escape from 

the midgut via replication (Woodring et al., 1996).  In fact, EM studies of Culex 

taeniopus have shown that uptake of unusually large bloodmeal volumes allows VEEV to 

reach the fat body within 1 hr post bloodmeal (pbm) (Weaver, 1986).   In the case of the 

Carb77 mosquitoes, a leaky or bypassed midgut would allow the virus to completely 

avoid the enhanced RNAi response in the midgut.  

 We chose to test the hypothesis that variation in virus genome sequence was 

responsible for the high titer DENV-infections observed in some Carb77 mosquitoes.  

RNA viruses exist as a quasispecies, so the original DENV-2 containing bloodmeal fed to 
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the Carb77 mosquitoes would have contained DENV genomes with nucleotide sequence 

variations differing from the consensus sequence.  The DENV genomes with the most 

nucleotide mutations in the prM region would be less affected by the Carb77 mosquitoes’ 

enhanced RNAi-response directed to the prM region, which could give these viral 

genomes a fitness advantage.  DENV genomes with such a fitness advantage might be 

observed to replicate to a higher titer in Carb77 mosquitoes as observed in Franz et al. 

(2006), infect a higher proportion of mosquitoes, and maintain mutations within the prM 

region of the genome. 

 Other RNA viruses including poliovirus (PV) (family Picornaviridae), Hepatitis C 

virus (HCV) (family Flaviviridae), and human immunodeficiency virus-1 (HIV-1) 

(family Retroviridae) have “escaped” or acquired the ability to replicate in the presence 

of RNAi-based siRNA or dsRNA therapies (Gitlin et al., 2005; Konishi et al., 2006; 

Pusch et al., 2003; ter Brake et al., 2008; Westerhout et al., 2005).  Gitlin et al. (2005) 

observed point mutations in the siRNA targeted region of poliovirus, which led to 

resistance to siRNA treatment in cell culture.  Konishi et al. (2006) studied how rapidly 

HCV mutants would arise in siRNA treated cell culture and found partial resistance to 

siRNA treatment arose within four weeks.  HIV-1 researchers found that point mutations 

reduced the efficiency of siRNA silencing, mutations that affected the secondary RNA 

structure of the viral genome affected HIV-1 susceptibility to RNAi, and genome regions 

that are targeted by siRNAs have an increased frequency of mutation (ter Brake et al., 

2008; Westerhout et al., 2005).  A recent report by Brackney et al. (2009) used massively 

parallel sequencing to demonstrate that regions of the WNV genome that are more highly 
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targeted by RNAi in mosquitoes, as indicated by a greater number of siRNA sequences, 

are more likely to have imperfect matches between siRNAs and the WNV genome. 

 The hypothesis tested in this chapter is that mutations in the DENV prM gene 

allowed the virus escape mutants to replicate to a higher titer in the RNAi-based DENV-

resistant transgenic Carb77 mosquitoes.  This hypothesis will be referred to as the 

“escape mutant hypothesis” for ease of discussion.  To determine whether the escape 

mutants evaded RNAi-mediated resistance due to mutations in the targeted prM region of 

DENV RNA, we analyzed the prM gene sequence of the escape mutant viruses’ 

genomes.  Results from this analysis led to further investigation of mutants via full-length 

genome sequencing and artificial bloodmeals to re-challenge Carb77 mosquitoes with the 

isolated mutant viruses. 
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Materials and Methods  

 

Cell culture lines  

C6/36 (Aedes albopictus) cells were grown in Leibowitz’s L-15 medium supplemented 

with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin,  

0.2 mM L-glutamine (growth medium).   

LLC-MK2 (rhesus monkey kidney cells, Macaca mulatta) cells were grown in MEM 

supplemented with 8% FBS, 0.2 mM L-glutamine, 1x MEM non-essential amino acids, 

100 U/mL penicillin, 100 µg/mL streptomycin, and 1.25 mM Amphotericin B. 

 

Mosquito rearing  

All mosquitoes, Aedes aegypti, were reared at 28˚C and 80% humidity, with a 

photoperiod of 12h light and 12h darkness by the AIDL CORE Support program in the 

insectary of the Virology suite of BRB.  Mosquitoes were maintained prior to bloodfeed 

on sugar cubes and water ad libitum.  All transgenic mosquito strains were sorted under 

fluorescent microscope for enhanced green fluorescent protein (egfp) eye marker 

expression to verify transgenic status prior to use in experiments. 

Higgs white eye (HWE)  The HWE mosquitoes are a white eye variant derived from the 

Rexville D strain, originally from Puerto Rico.  The basis of the white eye phenotype of 

the HWE mosquitoes is a mutation in the kynurinine hydroxylase gene that affects eye 

pigment (Cornel et al., 1997).   Lack of eye pigment allows for the visible expression of 

fluorescent markers in HWE mosquitoes making this mosquito strain uniquely useful for 

easily screened transgenic mosquitoes. 
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Carboxypeptidase 77 (Carb77)  The Carb77 mosquitoes are the genetic family derived 

from the original transgenic female mosquito designated number 77.  These transgenic 

mosquitoes were genetically engineered from the HWE strain with a transgene as 

described previously (Franz et al., 2006).  The Carb77 mosquitoes used in this chapter 

were from generations (G) 9-11, and the mosquitoes used in the challenge experiment 

reported in this chapter were G11.  Note that Carb77 loss of resistance to DENV-2 over 

G14-G17, as reported by Franz et al. (2009), was not suspected at the time these 

experiments were designed.  

 Vitellogenin 40 (Vg40)  The Vg40 mosquitoes are another line of transgenic mosquitoes 

with the same transgene described previously for Carb77 but now under the control of the  

vitellogenin 1 (Vg1) promoter so that the transgene is expressed in the fatbody (Franz et 

al., 2009). 

   

Viruses  

All virus seed stocks were initially prepared from laboratory stocks maintained by 

the AIDL CORE support system.  All stock titrations were performed by the AIDL 

CORE support system using the protocol described below. 

DENV-2  For preparation of virus for artificial bloodmeals, 2 mL DENV-2 strain Jamaica 

1409 (Genbank #M20558) was inoculated onto subconfluent C6/36 cells in a 75 cm
2
 

tissue culture
 
flask at a multiplicity of infection of 0.01 and rocked at room temperature 

for 1 hr before adding 10 mL of medium.  Infected C6/36 cells were maintained in L-15 

medium supplemented with 2% FBS, 100 U/mL penicillin, 100 µg/ mL streptomycin, 1x 

MEM non-essential amino acids, and 0.2 mM L-glutamine at 28°C for a total of 14 days 
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with a medium change at 7 dpi.  At the end of the 14 day incubation, virus was harvested 

using a cell scraper to detach cells, and cells plus medium were used as the virus 

component of bloodmeals. 

 

Plaque purification of virus escape mutants  

Twenty DENV samples termed “virus escape mutants” were obtained from Dr. 

Irma Sanchez-Vargas (AIDL) (Table 5.1).   Dr. Sanchez-Vargas originally obtained 

viruses from bodies of transgenic Carb77 mosquitoes challenged with artificial 

bloodmeals containing DENV-2 (JAM1409) that were ground and filtered.  Mosquitoes 

were ground in 0.5 mL MEM using disposable pestles, filter sterilized using 0.2 µm 

Acrodisc syringe filters (VWR) and mixed with 0.5 mL MEM.  The samples we received 

prior to plaque isolation were the filtered mosquito homogenates used for determining 

titers of individual mosquitoes in Franz et al. (2006).   Prior to sequence analysis, virus 

escape mutants were cloned using three rounds of plaque isolation in mammalian cells 

followed by amplification in mosquito cell cultures.  Three plaques were picked for each 

virus at each round, to ensure that isolates were not lost during the process. 

Initial plaque isolations consisted of titration of viruses from DENV-challenged 

Carb77 mosquitoes by infection of barely confluent LLC-MK2 cell monolayers in  

12-well cell culture plates with serial 10-fold dilutions of mosquito homogenates.   Virus 

dilutions were incubated on LLC-MK2 plates for 1 hr then overlaid with equal parts agar 

mixture and 2x medium.  Agar mixture consisted of sterilized 2% low melting 

temperature agar in distilled water.   Medium consisted of 2x medium 199, 20% FBS,   
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Table 5.1  Key to origination information for virus escape mutant viruses 

 

 

Working name Virus escape mutant source 

of mutant (Mosquito, days post infection, dates: month day year, mosquito #) 

 

 

A Carb77 7dpi 101305 #12 

B Carb77 7dpi 101305 #22 

F Carb77 13dpi 0626-0628-071106 #3 

G Carb77 13dpi 0626-0628-071106 #5 

H Carb77 7dpi 101305 #17 

I Carb77 7 dpi 0626-0628-07506 #1 

J Carb77 7 dpi 0626-0628-07506 #8 

K Carb77 7dpi 100906-101106-101806 #3 

L Carb77 7dpi 100906-101106-101806 #15 

M Carb77 7dpi 100906-101106-101806 #18 

N Carb77 14dpi 0824-090706 #8 

O Carb77 14dpi 0824-090706 #9 

P Carb77 14dpi 100906-101106-102306 #4 

R Carb77 14dpi 100906-101106-102306 #8 

S Carb77 14dpi 100906-101106-102306 #16 

T Carb77 14dpi 100906-101106-102306 #18 

U Carb77 14dpi 101305 #8 

V Carb77 14dpi 101305 #23 

W Carb77 14dpi 101305 #19 

X Carb77 14dpi 0824-090706 #10 

 

 

Note: Several HWE control isolates were originally selected for plaque isolation and 

sequence analysis, but there was a miscommunication regarding labeling of virus stocks, 

and Carb77 isolates were inadvertently used in place of the HWE isolates.  The switch 

was not discovered until after completion of the experiment. 
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71 mM sodium bicarbonate, 2% DEAE-Dextran/Hanks balanced salt solution (BSS) 

mixture made by dissolving 2 g of DEAE-Dextran in 100 mL of 1x Hanks BSS sterilized 

by filtration, 1x MEM vitamins, 1x MEM amino acids, and 1.25 mM Amphotericin B.  

All agar and medium components were obtained from Sigma except sodium bicarbonate, 

MEM vitamins and MEM amino acids, which were obtained from Cellgro, and FBS, 

which were obtained from Atlas Biologicals, Fort Collins, CO.  Once agar solidified, 

plates were inverted and incubated at 37˚ C for 12 days.  Plaques were visualized by 

staining with 12 mM thiazolyl blue tetrazolium bromide in phosphate buffered saline 

(PBS) for 4 hr at 37˚C, followed by no more than 4 hr at 4˚C to minimize effect of stain 

chemicals on virus viability.  After plaques were visible, three well-isolated plaques were 

selected and removed in a plug of agar over the plaque with a sterile Pasteur pipette.  

Plugs were incubated in 1 mL of L-15 medium supplemented with 10% fetal bovine 

serum, penicillin, streptomycin, and L-glutamine on ice for 1 hr.  Then medium was 

transferred to one well in a 12-well cell culture plate containing C6/36 cells at 

approximately 80% confluency.  Virus was amplified by growth in C6/36 cells for a 

period of 7 days (Eckels et al., 1976).  At the end of 7 days, medium was collected from 

C6/36 cells and frozen at 80˚C for use in the next round of plaque purification.  One 

plaque per virus was used for the next round of isolation.  Plaque titration and C6/36 cell 

amplification were repeated twice more. 

To confirm that each plaque contained infectious virus, remaining C6/36 cells 

were stained for DENV E protein.  C6/36 cells were scraped off the 12-well culture plates 

using a sterile pipette tip and placed dropwise onto glass slides.  Scraped cellular material 

was allowed to dry in a cell culture hood for approximately 1 hr then fixed in cold 



 

 

 249 

acetone and air dried.  Immunofluorescent assays (IFA) consisted of incubation with 

1:400 anti-DENV E protein monoclonal antibody 3H5-21 (2 hr) followed by biotinylated 

sheep anti-mouse IgG (1hr), and finally with 1:400 streptavidin-fluorescein (1 hr).  Each 

incubation was followed by three washes in PBS.  Cells were scored as positive or 

negative by observation with a Leica DM4500B fluorescent microscope. 

 

Sequencing of prM gene RNA   

The prM gene of 3x plaque purified DENV RNA was amplified via high-fidelity 

RT-PCR using Invitrogen’s SuperScript III One-Step RT-PCR System with Platinum Taq 

High Fidelity kit (Carlsbad, CA) and the following primers (designed by Dr. Alexander 

Franz): Mnp-antisense-FWD GCAGGCGTGATTATTA and Mnp-antisense-REV 

AGTCTCTATTTGATATT.  Expected amplification product size of 1000 bp was 

verified via gel electrophoresis and RT-PCR products were purified to remove template 

RNA using Qiagen’s QIAquick PCR Kit (Valencia, CA).  The resulting cDNA was 

TOPO cloned using the Invitrogen TOPO TA cloning kit.  TOPO clone transformed 

colonies were selected with 50 µg/mL ampicillin, PCR was used to determine colonies 

with prM inserts, and three to four colonies per virus were cultured overnight.  Plasmids 

were purified using Qiagen’s QIAprep Spin Miniprep kit and sequenced by the 

Proteomics and Metabolomics Facility.   

 

Full-length genome sequencing  

RNA from virus escape mutants was obtained by extracting total RNA from 

infected C6/36 cells in 12-well cell culture plates after the third round of purification 
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according to the manufacturer’s instructions using the RNeasy mini kits (Qiagen).  To 

obtain DNA for sequencing, cDNA was transcribed and amplified via high fidelity RT-

PCR using Invitrogen’s SuperScript III One-Step RT-PCR System with Platinum Taq 

High Fidelity kit.  The DENV-2 (JAM1409) genome was divided into 12 segments 

consisting of approximately 1000 bp each with 100 bp overlap at the 3’ end of each 

segment for optimal sequencing (Table 5.2).  Amplification product sizes were verified to 

be approximately 1000 bp via gel electrophoresis and RT-PCR products were purified for 

sequencing using Qiagen’s QIAquick PCR Kit (Qiagen).  Viral cDNA was sequenced in 

both forward and reverse directions by the Proteomics and Metabolomics Facility.  

 

Sequence Analysis  

Sequences obtained from the prM genes of the virus escape mutants were 

analyzed using the CLUSTALW – Multiple Sequence Alignment feature from Biology 

Workbench (San Diego Supercomputer Center, http://workbench.sdsc.edu/).   

Overlapping sequences from full-length virus escape mutant genomes were analyzed 

using Contig Express from Invitrogen’s VectorNTI Advance 10. 

 

Challenge assay  

To determine variation in mosquito disseminated infection between parental 

DENV-2 (JAM1409) and putative virus escape mutants, Ae. aegypti mosquitoes, Carb77 

and HWE strains, were provided artificial bloodmeals containing JAM1409 or the virus 

escape mutant of interest.  After three rounds of plaque isolation and amplification in 

C6/36 cells, escape mutants were sequenced.  DENV-2 for infectious bloodmeals was 
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Table 5.2  Primers for full-length sequencing of virus escape mutants 

 

 

Primer Sequence Genome location (nt) 

 

 

KP26 AGTTGTTAGTCTACGTGGACCG 1- 22 

KP27 CAACCAGCTTCCTCCTGAAACC 1000-978 

KP28  TTCATCTTACTGACAGCTGTCG 900-922 

KP29 TAACTATTGTTCCATGTTGTG 1900-1879 

KP30 ATGGACAAACTACAGCTCAAAG 1800-1822 

KP31 CTGTGGAGAGCATTTTCGCC 2800-2780 

KP32 AAAGGAATCATGCAGGCAGG 2700-2720 

KP33 TTCCCAGGTCTCTAAAGGACATG 3700-3677 

KP34 ACATTGATTACTGGGAACATG 3600-3621 

KP35 GCTTGATTCTATAGGCTCCATC 4600-4578 

KP36 TGGGAAGTGAAGAAACAACGG 4500-4522 

KP37 GAGGAAATGGGTCTCTACTTCC 5500-5478  

KP38 ATAGCAGCTAGAGGATACATTTC 5400-5423 

KP39 GTGCCAGTGGGTCAGAATAG 6400-6380 

KP40 AGATGGTTGGATGCTAGGATC 6300-6321 

KP41 CTGCTGCTCTTTTCTGAGCTTC 7300-7278 

KP42 CAAGCAAAAGCAACCAGAGAAG 7200-7222 

KP43 TGACTGAGGGCATATATGGGTTG 8200-8178 

KP44 TTTTGCATAAAGGTTCTCAACC 8100-8122 

KP45 CTTCTCCTTCCACTCCACTCAGG 9100-9077 

KP46 TGGCTTGGAGCACGCTTCTTTAG 9000-9022 

KP47 TTGTTGGAACCCAATGTGAC 10000-9980 

KP48 GCTATTTGCTCGGCAGTCCC 9900-9920 

KP49 AGAACCTGTTGATTCAACAGC 10723-10703 
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prepared by growth in C6/36 cells as described above.  Bloodmeals consisted of equal 

parts virus-containing cell-medium suspensions and defibrinated sheep blood 

supplemented with 1 mM adenosine triphosphate to stimulate feeding.  Bloodmeals were 

provided in sausage casing membranes on water-jacketed feeders at 37˚C and mosquitoes 

were allowed to feed for no more than one hour.  At the end of the hour, mosquitoes were 

cold-anesthetized and sorted.  Fully engorged mosquitoes were maintained on sucrose 

and water at normal rearing conditions.  Mosquitoes were collected at 7, and 14 days pbm 

and stored at -80˚C until individual analysis by plaque assay for infectious virus.  

Plaque assay  Mosquitoes from the challenge assay were prepared for plaque titration by 

grinding in 0.5 mL MEM supplemented with 8% FBS, L-glutamine, MEM non-essential 

amino acids, penicillin, and streptomycin.  After grinding, 0.5 mL of medium was added 

and the suspension was filtered using 0.2 μm Acrodisc syringe filters (VWR).  Plaque 

assay consisted of titration of ten-fold serial dilutions on LLC-MK2 cells in  

24-well cell culture plates.   Infected LLC-MK2 plates were incubated for 1 hr then 

overlaid with agar as described above.  Plates were inverted and incubated at 37˚C for 12 

days.  Plaques were visualized as described above and counted. 

Statistical analysis  To determine whether there were any statistically significant 

differences in proportion of infected mosquitoes or mean titers between mosquito and 

virus strain combinations, proportions of infected mosquitoes and mean titers were 

calculated using Microsoft Excel for all mosquito strain and DENV-2 virus strain 

combinations at 7 and 14 days pbm.  Data was further analyzed using Statistical Analysis 

Software (SAS) (SAS Institute Inc. Cary, NC).  Proportions of infected mosquitoes were 

analyzed by Fisher’s exact test (α = 0.05).  Proportions of infected mosquitoes were 
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compared between multiple groups after logit transform and Tukey’s error adjustment.  

Mean virus titers of infected mosquitoes were log-transformed and analyzed by one-way 

ANOVA (α = 0.05) with the Tukey-Kramer error adjustment for unequal sample size.  

Statistician Dr. James Zumbrunnen (CSU) was consulted regarding appropriate statistical 

analysis for unequal sample size. 

. 

Characterization of a large plaque phenotype virus via RT-PCR, sequencing, and 

midgut IFA   

To determine the characteristics of the large plaque-producing escape mutant 

virus, midguts were dissected from mosquitoes that had been re-challenged with virus 

escape mutant “P” (VEM P) and fixed with 4% paraformaldehyde in phosphate buffered 

saline for 24 hr.  IFAs were carried out with 1:150 SINV-specific monoclonal antibody 

30.11a (2 hr) followed by 1:400 biotinylated sheep anti-mouse IgG (1 hr) then 1:400 

strepavidin-fluorescein (1 hr).  Midguts were washed three times in PBS after fixation 

and following each incubation.  Midguts were mounted on slides in Vectashield with 

DAPI (Vector Laboratories: Burlingame, CA) and scored as positive or negative by 

observation with a Leica DM4500B fluorescent microscope.  IFA with DENV 

monoclonal antibody 3H5-1 as described in Chapter 2 was performed on a subset of 

midguts from mosquitoes which had been fed infectious bloodmeals containing the large 

plaque mutant virus. 

 The RNA of the large plaque phenotype virus escape mutant was characterized 

via RT-PCR using the SuperScript III One Tube RT-PCR kit (Invitrogen) with SINV 

specific primer pairs: TE3 E1 FWD 5’CGCAGGCCGCATGAGGATTT3’, TE E1 REV 
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5’GGCTTGAAATTCTTGGTCAT3’, MRE16 E1 FWD 5’CTCAAGCTGCATCTGGG 

TT3’, MRE16 E1 REV 5’TGCCTGGAACTCCTGGTGGT3’.  Expected product size 

using these primers was 500 bp.  Amplification products were separated via gel 

electrophoresis and extracted using the QIAquick gel extraction kit following the 

manufacturer’s instructions (Qiagen).  Products were sequenced in both forward and 

reverse directions by the Proteomics and Metabolomics Facility.  Sequences were 

analyzed using the CLUSTALW – Multiple Sequence Alignment feature from Biology 

Workbench (San Diego Supercomputer Center, http://workbench.sdsc.edu/).   

 

Midgut IFA for dsRNA  

To determine whether dsRNA originating from a transgene could be observed in 

mosquito midguts as it was in FB9.1 cell culture in Chapter 2, midguts were dissected 

from Carb77 (G9 - G10) and HWE mosquitoes.  Transgenic mosquitoes with RNAi-based 

DENV-2 resistance phenotype provided a unique opportunity to examine potential 

interactions between transgene expressed dsRNA and membrane associated RNA as 

examined in mosquitoes in Chapter 4.  Mosquitoes were provided bloodmeals containing 

DENV JAM1409 or without virus and at 24, 48, and 72 hr pbm, fixed in 4% 

paraformaldehyde in PBS at 4˚C for 24 hr.  IFAs consisted of incubations with 1:1000 

dsRNA specific antibody J2 (2 hr) followed by 1:400 biotinylated sheep anti-mouse  

IgG (1 hr) then 1:400 streptavidin-fluorescein (1 hr).  Midguts were washed three times 

in  phosphate buffered saline with 0.2% bovine serum albium (BSA) (Sigma) and 0.5% 

Triton X-100 (TX100) (Sigma) after fixation and following each incubation.  Midguts 

were mounted on slides in Vectashield with DAPI (Vector Laboratories) and scored as 
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positive or negative by observation with a Leica DM4500B fluorescent microscope.  

Note that at this time, the double-staining techniques used to visualize dsRNA and virus 

antigen in Chapter 4 had not yet been optimized. 

The dsRNA IFA experiment was repeated with the Vg40 mosquitoes at 10, 24, 

and 48 hr pbm.  Timepoints were selected based on what is known of the expression of 

the transgene in the fatbody (Franz et al., 2009).  The Vg1 promoter initiates expression 

of the transgene by 10 hr, peaks at 24 hr, and expression halts by 48 hr (Franz et al., 

2009).  Fatbody tissue was dissected and fixed by soaking in approximately 100 µL drop 

of 4% paraformaldehyde in PBS, allowed to dry almost completely in a chemical hood, 

then slides were stored in PBS at 4˚C.  IFAs were as described for midguts. 
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Results 

 

Sequencing of prM gene RNA 

To test the escape mutant hypothesis, a total of 20 virus escape mutants were 

isolated and the targeted prM genes were sequenced after the final round of three rounds 

of plaque isolation.  Of these virus genomes, two contained the same single, synonymous 

point mutation (T540C) (Figure 5.2).  One of these mutations appeared to be associated 

with a large plaque phenotype. 

 

Full-length genome sequencing  

To determine whether mutations outside the prM region could be responsible for 

the enhanced replication of the escape mutant viruses in Carb77 mosquitoes, we 

sequenced the entire genome of virus escape mutant I (VEM I) after the final round of 

three rounds of plaque isolation.  The VEM I genome which contained the T540C 

mutation in the prM gene.  The genome sequences revealed several additional 

synonymous mutations and several non-synonymous mutations (Table 5.3).   A literature 

search found none of the non-synonymous mutations in the VEM I genome have been 

correlated with enhanced DENV replication.   

The genome of virus escape mutant P was not successfully sequenced and will be 

discussed in more detail in the discussion of characterization of the large plaque 

phenotype virus, VEM P.  How plaque isolation methods may have biased sequencing 

results for VEM I will be discussed in detail.   
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cloneIreverse ATGTTGATTCCAACAGCGATGGCGTTCCATTTAACCACACGTAATGGAGAACCACACATG 

clonePreverse ATGTTGATTCCAACAGCGATGGCGTTCCATTTAACCACACGTAATGGAGAACCACACATG 

cloneIforward ATGTTGATTCCAACAGCGATGGCGTTCCATTTAACCACACGTAATGGAGAACCACACATG 

clonePforward ATGTTGATTCCAACAGCGATGGCGTTCCATTTAACCACACGTAATGGAGAACCACACATG 

JAM1409* ATGTTGATTCCAACAGCGATGGCGTTCCATTTAACCACACGTAATGGAGAACCACACATG 

 

cloneIreverse ATCGTTGGTAGGCAAGAGAAAGGGAAAAGTCTTCTGTTCAAAACAGAGGATGGTGTTAAC 

clonePreverse ATCGTTGGTAGGCAAGAGAAAGGGAAAAGTCTTCTGTTCAAAACAGAGGATGGTGTTAAC 

cloneIforward ATCGTTGGTAGGCAAGAGAAAGGGAAAAGTCTTCTGTTCAAAACAGAGGATGGTGTTAAC 

clonePforward ATCGTTGGTAGGCAAGAGAAAGGGAAAGTCTTCTGTTCAAAACAGAGGATGGTGTTAAC 

JAM1409 ATCGTTGGTAGGCAAGAGAAAGGGAAAAGTCTTCTGTTCAAAACAGAGGATGGTGTTAAC 

 

cloneIreverse ATGTGCACCCTCATGGCCATAGATCTTGGTGAATTGTGTGAAGATACAATCACGTACAAG 

clonePreverse ATGTGCACCCTCATGGCCATAGATCTTGGTGAATTGTGTGAAGATACAATCACGTACAAG 

cloneIforward ATGTGCACCCTCATGGCCATAGATCTTGGTGAATTGTGTGAAGATACAATCACGTACAAG 

clonePforward ATGTGCACCCTCATGGCCATAGATCTTGGTGAATTGTGTGAAGATACAATCACGTACAAG 

JAM1409 ATGTGTACCCTCATGGCCATAGATCTTGGTGAATTGTGTGAAGATACAATCACGTACAAG 

 

cloneIreverse TGTCCCCTCCTCAGGCAAAATGAACCAGAAGACATAGATTGTTGGTGCAACTCTACGTCC 

clonePreverse TGTCCCCTCCTCAGGCAAAATGAACCAGAAGACATAGATTGTTGGTGCAACTCTACGTCC 

cloneIforward TGTCCCCTCCTCAGGCAAAATGAACCAGAAGACATAGATTGTTGGTGCAACTCTACGTCC 

clonePforward TGTCCCCTCCTCAGGCAAAATGAACCAGAAGACATAGATTGTTGGTGCAACTCTACGTCC 

JAM1409 TGTCCCCTCCTCAGGCAAAATGAACCAGAAGACATAGATTGTTGGTGCAACTCTACGTCC 

 

Figure 5.2  Alignment of prM gene sequences of virus escape mutants I and P  Sequences were aligned with DENV-2 JAM1409  

accession #M20558 (415-654nt).  Arrow indicates T540C point mutation.
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Table 5.3  Non-synonymous mutations in DENV escape mutant I mutations are 

compared to parental DENV JAM1409 strain 

 

 

Genome viral gene nucleotide amino acid substitution 

nt position  published virus number within genome 

 

 

935 E A G L311 M 

 

3915 NS2a C T L 1305 S 

 

3916 NS2a T C L 1305 S 

 

4540 NS3 T C V 1513 A 

 

7067 NS3 C G I 2355 M 

 

7068 NS3 C G H 2356 D 

 

8223 NS5 T A S 2741 T 
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Challenge assay   

To evaluate whether VEM I had a replication advantage in mosquitoes relative to 

JAM1409 as predicted by our escape mutant hypothesis, we challenged Carb77 (G11) and 

HWE mosquitoes with artificial bloodmeals containing DENV JAM1409 or VEM I. 

Bloodmeal titers were less than 10-fold different at 5.14 logs pfu/mL and 5.40 logs 

pfu/mL respectively.  We collected mosquitoes at 7 and 14 d pbm and compared the 

proportion infected mosquitoes and mean titer between JAM1409 and VEM I (Figures 

5.3 and 5.4).  Proportions of infected mosquitoes were compared between multiple 

groups after logit transform and Tukey’s error adjustment.  Mean virus titers of infected 

mosquitoes were log-transformed and analyzed by one-way ANOVA (α = 0.05) with the 

Tukey-Kramer error adjustment for unequal sample size. 

Proportion of mosquitoes infected 

At 7 d pbm the proportion of mosquitoes infected for all mosquito strain and 

DENV-2 strain combinations was 100%, except for Carb77 mosquitoes fed JAM1409 in 

which 93.3% of the mosquitoes were infected (Table 5.4A).  At 14 d pbm 100% of all 

mosquito strain and DENV-2 strain combinations were infected except 75% HWE 

mosquitoes fed strain JAM1409 were infected (Table 5.5A).  There were no statistically 

significant differences in the proportions of infected mosquitoes for any of the individual 

or pairwise comparisons (Tables 5.4 and 5.5).   The values for proportion infected 

comparisons were different for our challenge of Carb77 (G11) and HWE from the  
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Figure 5.3  Comparison of titers of DENV-2 JAM1409 and virus escape mutant I 

in Carb77 (G11) and Higgs white eye mosquitoes at 7 days post bloodmeal 

 

Table 5.4A  Raw data and analysis for comparison of titers of DENV-2  JAM1409 

and virus escape mutant I in Carb77 (G11) and Higgs white eye mosquitoes at 7 

days post bloodmeal  Fisher exact test (α = 0.05) analysis reported for the proportion 

of infected vs. non-infected females and ANOVA (α = 0.05) value reported for the 

mean virus titers of infected females.  Data in table corresponds with titration data 

above; Carb77 & JAM1409 corresponds with n = 15, 93.3% infected, mean titer 78 

pfu/mL and P-value p** 0.9834 and P-value t = 0.0002 compare the proportions 

infected and mean titers between Carb77 and HWE fed JAM1409. 

n 15 15 19 19 

% infected 93.3 100 100 100 

mean titer*            78 12917 7788 17730 

 

P-value p** 0.9834 1.0000 

P-value t***              0.0002 0.2803 

* = infected mosquitoes only, ** = proportions of infected vs. non-infected 

mosquitoes, *** = titers of infected mosquitoes 
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Table 5.4B   ANOVA (α = 0.05) table for mean titers of infected females in Carb77 

(G11) and Higgs white eye mosquitoes at 7 days post bloodmeal DENV-2 JAM1409 

and virus escape mutant I. 

 Carb77 

JAM1409 

Carb77 

VEM I 

 

HWE 

JAM1409 

HWE 

VEM I 

 

Carb77 

JAM1409 

 0.0003 0.0002 <0.0001 

Carb77 

VEM I 

0.0003  0.9764 0.2803 

HWE 

JAM1409 

0.0002 0.9764  0.5757 

HWE 

VEM I 

<0.0001 0.2803 0.5757  

Pairwise comparison of mean titers of infected females HWE and Carb77 (G11) across 

virus strains <0.0001 and pairwise comparison of mean titers of JAM1409 and VEM I 

across mosquito strains 0.0002. 

 

 

 

 

 

Table 5.4C  Fisher’s exact test (α = 0.05) was used to make individual and pairwise 

comparisons for proportion of infected females in Carb77 (G11) and Higgs white eye 

mosquitoes at 7 days post bloodmeal with DENV-2 JAM1409 and virus escape mutant I. 

The comparisons presented in the table are those most relevant for VEM I escape mutant 

hypothesis. 

Sample 1 Sample 2  P-value t 

Carb77 fed JAM1409 Carb77 fed VEM I 0.9813 

HWE fed JAM1049 HWE fed VEM I 1.000 

VEM I (both mosquitoes) JAM1409 (both mosquitoes) 0.9897 

 

 

 

 

 

Table 5.4D  Fisher’s exact test (α = 0.05) was used to make individual and pairwise 

comparisons for proportion of infected females in Carb77 (G11) and Higgs white eye 

mosquitoes at 7 days post bloodmeal with DENV-2 JAM1409 and virus escape mutant I. 

The comparisons presented in the table are those most relevant for determining resistance 

of Carb77 (G11) mosquitoes. 

Sample 1 Sample 2  P-value t 

Carb77 fed JAM1409 HWE fed JAM1049 0.9834 

Carb77 fed VEM I HWE fed VEM I 1.0000 

Carb77 (both virus strains) HWE (both virus strains) 0.9897 
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Figure 5.4  Comparison of titers of DENV-2 JAM1409 and virus escape mutant I 

in Carb77 (G11) and Higgs white eye mosquitoes at 14 days post bloodmeal  

 

Table 5.5A  Raw data and analysis for comparison of titers of DENV-2 JAM1409 

and virus escape mutant I in Carb77 (G11) and Higgs white eye mosquitoes at 14 

days post bloodmeal.  Fisher exact test (α = 0.05) analysis reported for the proportion 

of infected vs. non-infected females and ANOVA (α = 0.05) value reported for the 

mean virus titers of infected females. Data in table corresponds with titration data 

above; Carb77 & JAM1409 corresponds with n = 18, 100% infected, mean titer 4456 

pfu/mL and P-value p** 1.0000 and P-value t = 0.0041 compare the proportions 

infected and mean titers between Carb77 fed JAM1409 and HWE fed JAM1409. 

n 18 17 20 15 

% infected 100 100 75.0 100 

mean titer*            4456 32102 7253 13525 

 

P-value p** 1.0000 0.9814 

P-value t***              0.0041 0.0053 

* = infected mosquitoes only, ** = proportions of infected vs. non-infected mosquitoes 

*** = titers of infected mosquitoes 
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Table 5.5B  ANOVA (α = 0.05) table for mean titers of infected females in Carb77 (G11) 

and Higgs white eye mosquitoes at 14 days post bloodmeal with DENV-2 JAM1409 and 

virus escape mutant I. 

 Carb77 

JAM1409 

Carb77 

VEM I 

 

HWE 

JAM1409 

HWE 

VEM I 

 

Carb77 

JAM1409 

 0.0943 0.0041 0.6712 

Carb77 

VEM I 

0.0943  <0.0001 0.0053 

HWE 

JAM1409 

0.0041 <0.0001  0.1060 

HWE 

VEM I 

0.6712 0.0053 0.1060  

Pairwise comparison of mean titers of infected females HWE and Carb77 (G11)  across 

virus strains <0.0001 and pairwise comparison of mean titers of JAM1409 and VEM I 

across mosquito strains 0.0015. 

 

 

 

 

 

Table 5.5C  Fisher’s exact test (α = 0.05) was used to make individual and pairwise 

comparisons for proportion of infected females in Carb77 (G11) and Higgs white eye 

mosquitoes at 14 days post bloodmeal with DENV-2 JAM1409 and virus escape mutant 

I. The comparisons presented in the table are those most relevant for VEM I escape 

mutant hypothesis. 

Sample 1 Sample 2  P-value t 

Carb77 fed JAM1409 Carb77 fed VEM I 0.9797 

HWE fed JAM1049 HWE fed VEM I 1.0000 

VEM I (both mosquitoes) JAM1409 (both mosquitoes) 0.9887 

 

 

 

 

 

Table 5.5D  Fisher’s exact test (α = 0.05) was used to make individual and pairwise 

comparisons for proportion of infected females in Carb77 ( G11) and Higgs white eye 

mosquitoes at 14 days post bloodmeal with DENV-2 JAM1409 and virus escape mutant 

I. The comparisons presented in the table are those most relevant for determining 

resistance of Carb77 (G11) mosquitoes. 

Sample 1 Sample 2  P-value t 

Carb77 fed JAM1409 HWE fed JAM1049 1.0000 

Carb77 fed VEM I HWE fed VEM I 0.9814 

Carb77 (both virus strains) HWE (both virus strains) 0.9887 
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proportion of mosquitoes infected reported by Franz et al. (2009).  These data will be 

discussed for relevance to our hypothesis of an RNAi escape mutant virus and to the 

Carb77 loss of resistance that was recently reported by Franz et al. (2009). 

Mean titer of infected mosquitoes 

 We did not find significant differences in the proportions of mosquitoes infected 

when fed JAM1409 versus VEM I as discussed above.  We have arranged our results to 

present the mean titer comparisons of interest for the Carb77 resistance phenotype first.   

To determine whether the Carb77 (G11) mosquitoes were resistant to challenge with 

DENV-2, we have presented comparisons of Carb77 and HWE mosquitoes fed the same 

virus strain.   For the escape mutant hypothesis, we have presented comparisons of 

Carb77 fed JAM1409 versus VEM I as well as HWE fed JAM1409 versus VEM I.      

Resistance phenotype 

Mean titers for all mosquito and virus combinations at 7 and 14 d pbm are 

reported in Tables 5.4 and 5.5.  For the loss of resistance of Carb77 (G11), the mean titer 

comparisons of interest at 7 day pbm, are the individual comparisons between HWE fed 

JAM1409 versus Carb77 fed JAM1409 (p = 0.0002), individual comparisons between 

HWE fed VEM I versus Carb77 fed VEM I (p = 0.2803), and the pairwise comparison of 

mean titer of HWE versus Carb77 across virus strains (p < 0.0001).   The mean titer 

comparison between HWE and Carb77 mosquitoes fed JAM1409 and the pairwise 

comparison of mean titer of HWE versus Carb77 across virus strains were statistically 

significant at 7 d pbm with lower DENV titers in Carb77 mosquitoes than HWE 

mosquitoes.  The mean titer comparison of HWE and Carb77 mosquitoes fed VEM I at  
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7 d pbm was not statistically significant, however the titer of VEM I was still lower in 

Carb77 mosquitoes (Table 5.4A & B). 

For the loss of resistance of Carb77 (G11) the mean titer comparisons of interest at 

14 d pbm are the individual comparisons between HWE fed JAM1409 versus Carb77 fed 

JAM1409 (p = 0.0041), individual comparisons between HWE fed VEM I versus Carb77 

fed VEM I (p = 0.0053), and the pairwise comparison of mean titer of HWE versus 

Carb77 across virus strains (p < 0.0001).  All comparisons of mean titer of HWE versus 

Carb77 across virus strains were statistically significant at 14 d pbm with lower titers of 

both DENV strains in Carb77 than HWE (Table 5.5A & B).   

At 7 d pbm, mean titer difference between between HWE versus Carb77 fed 

VEM I was not statistically significant, but the titer of VEM I in Carb77 is lower than the 

titer of VEM I in HWE, so titer comparisons were consistent with intact resistance of 

Carb77 mosquitoes to VEM I.  At 14 d pbm, mean titer differences between Carb77 and 

HWE with all viruses were statistically significant with lower titer DENV in Carb777 

than HWE, consistent with intact resistance of Carb77 mosquitoes.  Overall, the mean 

titer of both JAM1409 and Carb77 was lower in Carb77 mosquitoes than in HWE 

mosquitoes, consistent with Carb77 resistance to DENV-2.  Our proportion infected data 

and mean titer data were not consistent with the data from Franz et al. (2009), which 

noted that the basis of Carb77 (G9-G13) resistance was a lower proportion of mosquitoes 

infected, not a lower mean titer.  This discrepancy will be discussed in more detail later in 

the chapter. 

 

 



 

 

 266 

Escape mutant hypothesis 

At 7 day pbm the individual comparisons between Carb77 fed JAM1409 versus 

Carb77 fed VEM I (p = 0.0003) and the pairwise comparison of mean titer of VEM I 

versus JAM1409 across mosquito strains (p = 0.0002) were significantly different with 

higher mean titers of VEM I than JAM1409 in Carb77 and higher mean titers of VEMI 

than JAM1409 across mosquito strains (Table 5.4B).  

The comparisons of interest for the escape mutant hypothesis at 14 d pbm, are the 

individual comparisons between Carb77 fed JAM1409 versus Carb77 fed VEM I (p = 

0.0943), and the pairwise comparison of mean titer of VEM I versus JAM1409 across 

mosquito strains (p =  0.0015).  The pairwise comparison of mean titer of VEM I versus 

JAM1409 across mosquito strains was statistically significant at 14 d pbm with higher 

titer in VEM I than JAM1409.   The comparison between Carb77 fed JAM1409 versus 

Carb77 fed VEM I was not statistically significant at 14 days pbm but VEM I titer was 

higher than JAM1409 titer in Carb77 mosquitoes. 

Overall, the 7 d pbm and 14 d pbm mean titer comparison between Carb77 fed 

JAM1409 and VEM I were consistent with the hypothesis that DENV-2 strain VEM I 

may be evading the enhanced RNAi response of the Carb77 mosquito strain.  The 

implications of these comparisons will be discussed in detail later in the chapter. 

 

 

 



 

 

 267 

Characterization of a large plaque phenotype virus via RT-PCR, genome 

sequencing, and IFA 

A ground mosquito filtrate from Carb77 mosquitoes infected with DENV 

described as exhibiting a “large plaque phenotype” was included in the initial samples 

provided by Dr. Sanchez-Vargas.  This virus became known as virus escape mutant “P” 

(VEM P) and was difficult to isolate, as the virus several times produced no plaques upon 

passage in LLC-MK2 cells and required a return to the initial isolate to recommence the 

plaque purification procedure.  Attempts to obtain a full-length genome sequence of this 

virus escape mutant using DENV RNA specific primers were unsuccessful.  Titers were 

at least one log higher than the DENV-2 (JAM1409) grown under the same conditions 

(Table 5.6).   

RT-PCR on RNA from VEM P with primers specific for SINV strains TE3’2J 

and MRE16 yielded an amplification product with TE3’2J primers (Figure 5.5).  The 

amplification product shown in Figure 5.5 was sequenced and alignment of that product 

with SINV TE3’2J genome is shown in Figure 5.6.  There were minimal mismatches 

between the VEM P amplification product and SINV TE3’2J RNA.  Midgut IFAs with 

30.11a monoclonal antibody showed low levels of infection and a single faint IFA focus 

was observed on one midgut out of twenty stained (not shown). 

 

Midgut IFA for dsRNA  

To determine whether we could detect the dsRNA transcribed from the transgene, 

IFAs comparing staining of dsRNA in midguts of Carb77 (G10) and HWE mosquitoes 

after both DENV-2 (JAM1409) infectious and non-infectious bloodmeals were examined  
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Table 5.6  Titers of DENV-2 JAM1409 and virus escape mutant P, grown under the 

same conditions 

 

 

Date grown DENV JAM1409 titer  virus escape mutant P titer  

 

 

Stock 6/17/07 4.67 log pfu/mL 8.03 log pfu/mL 

 

Stock 10/4/2007 3.43 log pfu/mL 4.43 log pfu/mL 

 

Bloodmeal 2/22/08 4.67 log pfu/mL 6 log pfu/mL 

 

Bloodmeal 3/25/08 6.27 log pfu/mL inconclusive 

 

Bloodmeal 4/2/08 4.82 log pfu/mL 6 log pfu/mL 
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             Lanes   1      2     3     4    5     6    7     8 

 

 
 

 

Figure 5.5  RT-PCR of VEM P RNA with primers specific for SINV strains MRE16 

and TE3’3J  (Lanes 1, 3, 5, 7, and 8 were empty) Lane 2 contained an Invitrogen size 

marker ladder, lane 4 contained virus escape mutant P amplified with MRE16 specific 

primers, and lane 6 contained virus escape mutant P amplified with TE3’2J specific 

primers (3175 – 3674 nt). 
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TE 3' 2J TACACGCAGG CCGCATCAGG ATTTGAGATG TGGAAAAACA ACTCAGGCCG 

VEMP rev ---TCGCAGG CCGCATCAGG ATTTGAGATG TGGAAAAACA ACTCAGGCCG 

VEMP fwd   ---------- ---------- ---------- ---------A AAGTCGGCCG 

 

TE 3' 2J CCCATTGCAG GAAACCGCAC CTTTCGGGTG TAAGATTGCA GTAAATCCGC 

VEMP rev CCCACTGCAG GAAACCGCAC CTTTCGGGTG TAAGATTGCA GTAAATCCGC 

VEMP fwd   CCCACTGCAG GAA-CCGCAC CTTTCGGGTG TAAGATTGCA GTAAATCCGC 

 

TE 3' 2J TCCGAGCGGT GGACTGTTCA TACGGGAACA TTCCCATTTC TATTGACATC 

VEMP rev TCCGAGCGGT GGACTGTTCA TACGGGAACA TTCCTATTTC TATTGACATC 

VEMP fwd   TCCGAGCGGT GGACTGTTCA TACGGGAACA TTCCTATTTC TATTGACATC 

 

TE 3' 2J  CCGAACGCTG CCTTTATCAG GACATCAGAT GCACCACTGG TCTCAACAGT 

VEMP rev  CCGAACGCTG CCTTTATCAG GACATCAGAT GCACCACTGG TCTCAACAGT 

VEMP fwd   CCGAACGCTG CCTTTATCAG GACATCAGAT GCACCACTGG TCTCAACAGT 

 

TE 3' 2J  CAAATGTGAA GTCAGTGAGT GCACTTATTC AGCAGACTTC GACGGGATGG 

VEMP rev  CAAATGTGAA GTCAGTGAGT GCACTTATTC AGCAGACTTC GGCGGGATGG 

VEMP fwd   CAAATGTGAA GTCAGTGAGT GCACTTATTC AGCAGACTTC GGCGGGATGG 

 

TE 3' 2J  CCACCCTGCA GTATGTATCC GACCGCGAAG GTCAATGCCC CGTACATTCG 

VEMP rev  CCACCCTGCA GTATGTATCC GACCGCGAAG GTCAATGCCC CGTACATTCG 

VEMP fwd   CCACCCTGCA GTATGTATCC GACCGCGAAG GTCAATGCCC CGTACATTCG 

 

TE 3' 2J  CATTCGAGCA CAGCAACTCT CCAAGAGTCG ACAGTACATG TCCTGGAGAA 

VEMP rev  CATTCGAGCA CAGCAACTCT CCAAGAGTCG ACAGTACATG TCCTGGAGAA 

VEMP fwd   CATTCGAGCA CAGCAACTCT CCAAGAGTCG ACAGTACATG TCCTGGAGAA 

 

TE 3' 2J  AGGAGCGGTG ACAGTACACT TTAGCACCGC GAGTCCACAG GCGAACTTTA 

VEMP rev  AGGAGCGGTG ACAGTACACT TTAGCACCGC GAGTCCACAG GCGAACTTTA 

VEMP fwd   AGGAGCGGTG ACAGTACACT TTAGCACCGC GAGTCCACAG GCGAACTTTA 

 

TE 3' 2J  TCGTATCGCT GTGTGGGAAG AAGACAACAT GCAATGCAGA ATGTAAACCA 

VEMP rev  TCGTATCGCT GTGTGGGAAG AAGACAACAT GCAATGCAGA ATGTAAACCA 

VEMP fwd   TCGTATCGCT GTGTGGGAAG AAGACAACAT GCAATGCAGA ATGTAAACCA 

 

TE 3' 2J  CCAGCTGACC ATATCGTGAG CACCCCGCAC AAAAATGACC AAGAATTTCA 

VEMP rev  CCAGCTGACC CAAT------ ---------- ---------- ---------- 

VEMP fwd   CCAGCTGACC ATATCGTGAG CACCCCGCAC AAAAATGACC AAGATTTCAA 

 

 

Figure 5.6 Alignment of virus escape mutant P RNA Virus escape mutant P RNA was 

amplified with TE3’2J specific primers aligned with SINV TE3’ 2J genomic RNA (3175- 

3674 nt).  Sequence in yellow differs from the TE3’ 2J genomic sequence. 
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(Figure 5.7).  There was higher fluorescence in midguts of Carb77 mosquitoes fed a 

DENV-infectious bloodmeal compared to either Carb77 fed a non-infectious bloodmeal 

or HWE fed infectious or non-infectious bloodmeal.  The significance of these 

observations will be discussed later.   

Based on results from the Carb77 mosquito IFAs, we wanted to determine 

whether difficulties with dsRNA IFAs were due to difficulties dissecting midguts soon 

after bloodmeal or some complication of detecting transgene RNA in whole mosquitoes.   

We repeated our IFA for dsRNA on the fatbodies of Vg40 mosquitoes.  We found more 

obvious differences in dsRNA fluorescence levels between HWE and the Vg40 

mosquitoes than comparison of dsRNA in the midguts of Carb77 and HWE mosquitoes.  

Also there was variation in dsRNA detection between timepoints in Vg40, with little to 

no dsRNA detection at 10 hr, detection at 24 hr, and no detection at 48 hr (Figure 5.8).  

However, it is still unclear where dsRNA from the transgene is localized at the cellular 

level within the fatbody (Figure 5.9).  We observed that fatbody tissues were more 

difficult to image via fluorescent microscopy than other mosquito tissues such as midguts 

due to unusually high background fluorescence.  We hypothesize that this high 

background fluorescence may be due to the greater fat content and readily observed lipid 

droplets.   
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Figure 5.7 DsRNA detection by IFA in midguts in transgenic mosquitoes  Carb77 

mosquitoes compared to Higgs white eye mosquitoes after DENV-containing or non-

infectious bloodmeals. pbm = post bloodmeal 
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Figure 5.8 DsRNA detection by IFA in fatbodies of transgenic mosquitoes   Carb77 

mosquitoes compared to Higgs white eye mosquitoes after non-infectious bloodmeals 

(fluorescent microscope, 20x).  hours pbm = hours post bloodmeal 
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Figure 5.9 DsRNA detection by IFA in fatbody  Vg40 mosquitoes 24 hr after non-

infectious bloodmeal; higher magnification of 24 hr Vg40 panel in Figure 5.8. 

(fluorescent microscope, 100x) 
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Discussion 

 

Sequencing of prM gene RNA  

Analysis of the prM gene RNA sequences from virus escape mutants detected 

non-synonymous mutations in the RNA of only 2 viruses out of 20 tested.   

Unfortunately, the plaque isolation and amplification of viruses in mosquito cells to 

increase titers prior to TOPO cloning methodology, modeled on previously published 

techniques (Chao et al., 2005; Eckels et al., 1976), may not have been the best method to 

detect mutations in the virus escape mutants.   Other researchers have noted that cell 

culture or animal passage of arboviruses to increase titers to levels useful for further 

study can lead to changes in virus virulence (Taylor and Marshall, 1975a; Taylor and 

Marshall, 1975b).  Serial passage of DENV in mammalian cell lines or mosquitoes has 

been shown to cause genotypic changes associated with increased virulence that were 

attributed to enhanced replication (Cologna et al., 2005; Erb, 2010).  Studies have shown 

that mutations in serially passaged DENV occur rapidly, with most of the mutations 

occurring within the first five passages, so the three rounds of plaque isolation may have 

resulted in loss of any original mutations (Lee et al., 1997).   Other researchers suggested 

that arboviruses undergo cell type specific adaptations in mammalian versus mosquito 

cell cultures, so plaque isolation in LLC-MK2 cells may have resulted in loss of original 

mutations acquired in mosquitoes (Hanley et al., 2003).  The most accurate picture of the 

mutations in the DENV escape mutants probably would have been obtained by directly 

sequencing the genomes of viruses isolated from the DENV-challenged Carb77 

mosquitoes.   
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If we could repeat the experiments to analyze possible sequence changes in the 

virus escape mutant isolates and their potential to escape the Carb77 enhanced RNAi 

response in nature, we would design an experiment similar to Steve Erb’s serial passage 

experiments of DENV-2 strain 16681 in mosquitoes.  We would initially feed Carb77 

mosquitoes bloodmeals containing VEM from initial plaque assays in mammalian cells, 

then grind infected Carb77 mosquitoes and grow the virus in mammalian cells.  Carb77 

mosquitoes would be provided bloodmeals containing DENV-2 grown in mammalian 

cells to mimic the alternation of hosts which would occur if Carb77 were to released into 

the wild thus allowing us to better mimic selection pressure on DENV-2 and better 

predict genomic mutations.   During the experiment we would sequence the VEM after 

every mosquito passage and evaluate the proportion of mosquitoes infected and mean 

titers to monitor for increased VEM replication in mosquitoes.  Since we cannot re-design 

the experiment, it would still be informative to sequence the VEM I viruses after each 

plaque isolation to determine if the isolate mutated during the plaque purification 

procedure.  

Although our methodology might have altered the mutations present in our  

VEM I sequence, based on our data it does appear that the so-named “virus escape 

mutants”  may have been DENV-2 mutants selected for ability to evade the Carb77 

mosquitoes’ enhanced RNAi system.  VEM I titers in Carb77 mosquitoes were higher 

than the parental JAM1409 strain, indicating an “escape” of the enhanced RNAi 

response.  Intriguingly, VEM I also replicated to higher titers than JAM1409 in HWE 

mosquitoes.  So, perhaps VEM I is a DENV mutant with increased replication. Of the 

non-synonymous mutations found in full-length genome sequencing of virus escape 



 

 

 277 

mutant I, a search of current literature found none of these mutations to be associated 

with previously indentified enhanced replication phenotypes (Table 5.3).  However, 

based on Holmes’ study of nonsynonymous mutations in DENV genomes, the level of 

nonsynonymous mutations within the VEM I genome sequence is typical in quasispecies 

and the majority of the mutations would be expected to be removed by purifying 

selection (Holmes, 2003). 

Another explanation for unusually high titer of virus in individual Carb77 

mosquitoes could be that the artificial bloodmeals result in uptake of an abnormally large 

bloodmeal or virus dose (Woodring et al., 1996).  An abnormally large bloodmeal could 

create micro-tears in midgut or “leaky midgut,” which could result in artificially high 

titers in individual mosquitoes or “escape viruses.”  A larger bloodmeal could result in 

tears in the midgut, allowing DENV-2 to bypass the midgut similar to EM observations 

of VEE reaching fatbody 1 hr pbm after particularly large bloodmeals (Weaver, 1986). 

Bloodmeals containing larger doses of virus have been shown to result in greater 

dissemination rates in mosquitoes than lower volume bloodmeals (Watts et al., 1987).  

The genomic mutations seen in viruses associated with abnormally high titers are likely 

related to natural variation in virus sequence due to error-prone replication rather than the 

result of selection pressure by the Carb77 RNAi response.   

 

Challenge assay 

 We will first discuss the resistance of the Carb77 (G11) mosquitoes before 

considering the escape mutant data.  Regarding the Carb77 loss of resistance, Franz et al. 

(2009) noted that Carb77 (G12-G15) resistance was due to lower infection rates, not lower 
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titers.  Our data for Carb77 (G11) showed no statistically significant differences in the 

proportion of mosquitoes infected, and observable but not always statistically significant 

differences in mean DENV-2 titers between Carb77 and HWE mosquitoes with lower 

DENV titers for JAM1409 and VEM I in Carb77 than HWE.  We consistently observed a 

high mosquito infection rate with all mosquito and virus strain combinations.  Adelman et 

al. (2002) found low level infection in DENV-2 resistant transgenic mosquito cell lines in 

which at least 1% of the cells in every transgenic cell line created were DENV-2 antigen 

positive via IFA.   No DENV-2 resistant transgenic mosquito cell lines were completely 

resistant to DENV-2 infection.  We found that many of the Carb77 (G11) mosquitoes we 

tested had low titer DENV-2 infections, suggesting that like Dr. Adelman’s DENV-2 

resistant transgenic mosquito cell lines our Carb77 (G11) mosquitoes were not completely 

resistant to DENV-2.  At 7 d pbm, the mean titer comparison between HWE and Carb77 

fed VEM I was not statistically significantly different; however, VEM I titers were lower 

in Carb77 than HWE.  At 14 d pbm mean titer comparisons between HWE and Carb77 

fed VEM I were statistically significantly different with lower titers in Carb77  than 

HWE.  The mean titers of HWE and Carb77 mosquitoes fed JAM1409  at 7 and 14 d 

pbm were statistically significantly different with lower JAM1409 titers in Carb77 than 

HWE.   

Overall, there were observable, if not always statistically significant, differences 

in mean viral titers between Carb77 and HWE, indicating that, as determined by Franz et 

al. (2009), Carb77 (G11) mosquitoes were still resistant to infection with DENV-2.  In 

contrast to Franz et al. (2009), we found that the Carb77 (G11) resistance was due to 

differences in mean titer, not infection rate.  Our data more closely resemble those of 
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Franz et al. (2009) from challenging Carb77 mosquitoes with heterologous strains of 

DENV-2.  Possible reasons for the discrepancy between our data and Franz et al. (2009) 

include differences in mosquito rearing conditions and different mosquito sorting 

methods post bloodmeal.  To support the hypothesis that differences in mosquito rearing 

conditions may have affected the proportion of Carb77 mosquitoes infected with  

DENV-2, few Carb77 (G11)  mosquitoes were available at the time of re-challenge assay, 

and BRB CORE support staff observed that the egg hatch rate was poor due to age of 

eggs.   Regarding sorting mosquitoes after the challenge bloodmeal, if we used only fully 

or over engorged mosquitoes while Franz et al. (2009) used partially engorged 

mosquitoes, we would have a higher infection rate than Franz et al. (2009).    

  Since we concluded that the Carb77 (G11) mosquitoes were resistant at the time 

of challenge, we will proceed to discuss the implications of the virus escape mutant 

results.   We found lower mean titers of VEM I and JAM1409 in Carb77 mosquitoes than 

HWE mosquitoes but no significant differences in proportions of Carb77 mosquitoes 

infected compared to HWE mosquitoes.  We observed a few high titer individual 

mosquitoes in the Carb77 fed both JAM1409 and VEM I at 7 and 14 d pbm, similar to 

the high titer mosquitoes observed by Franz et al. (2006).    

We also noticed an unusual pattern to the mean titers.   In the Carb77 mosquitoes 

fed JAM1409, the mean titers were as follows: 78 pfu/mL (7 d pbm), 4456 pfu/mL (14 d 

pbm).  In the HWE mosquitoes fed JAM1409, the mean titers were as follows: 12917 

pfu/mL (7 d pbm), 32102 pfu/mL (14 d pbm)    In the Carb77 mosquitoes fed VEM I, the 

mean titers were as follows: 7788 pfu/mL (7 d pbm), 7253 pfu/mL (14 d pbm).  In the 

HWE mosquitoes fed VEM I, the mean titers were as follows: 17730 pfu/mL (7d pbm),  
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13525 (14d pbm).  In retrospect, it would have been informative to compare the growth 

curves of JAM1409 and VEM I in both HWE and VEM I mosquitoes, because it appears 

that mean VEM I titers (7d pbm) peaked earlier than JAM1409 titers (14d pbm).   This 

pattern of differences in mean titers may indicate a difference in growth kinetics between 

the virus strains within Carb77 (G11) mosquitoes.  Since Hanley et al. (2008) observed 

DENV mutations that were associated with enhanced replication in mosquitoes that were 

not readily apparent in cell culture, a growth curve comparison of VEM I and Jam1409 in 

HWE and Carb77 mosquitoes would be more helpful than a growth curve in cell culture 

to verify this observation.   

Ideally, this challenge experiment should be repeated; however, during the 

timeframe of these experiments the resistance phenotype of the Carb77 family was lost.  

Recent work by Franz et al. (2009) demonstrated a loss of DENV-2 resistance in Carb77 

mosquitoes (G14-G17), and the loss of the resistance phenotype could be due to loss of 

expression of the transgene.  Franz et al. (2009) found no mutations in the transgene; 

instead expression of the transgene was lost due to some unknown mechanism. 

 Based on the RNAi escape hypothesis, we would predict one or more mutations in 

the prM encoding region of the DENV-2 genome and this mutation or mutations would 

disrupt the complementary base pairing between the inverted repeat transcript and the 

DENV-2 genome, resulting in corresponding high titer phenotypes.  Although we did 

observe a mutation in the prM sequence, it was only at one nucleotide of the prM gene in 

two VEM isolates, VEM I and VEM P.  The prM region used in construction of the 

Carb77 mosquito strain is 578 nt long and the total mutation rate for DENV-2 RNA is 

0.62 x 10
-3

 (95% confidence interval 0.49-0.74) substitutions/site/year (Jenkins et al., 
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2002).  For the prM region, 0.35 nt in the 578 nt sequence would occur based on this 

natural mutation rate.  We observed 2 DENV-2 virus escape mutants with mutations in 

the prM out of 20 possible virus escape mutants when we would predict 7 virus escape 

mutants could have mutations based on the mutation rate determined by Jenkins et al. 

(2002).  Our observations are well within the predicted number of mutations for natural 

mutation rate in DENV RNA, not indicative of the increased rate of mutation that would 

be predicted for flavivirus RNA under selection by RNAi (Brackney et al., 2009; Holmes, 

2003).  However, we did observe what appeared to be an increased replication phenotype 

as represented by a large plaque phenotype virus, VEM P.  This observation led us to 

hypothesize that a DENV-2 isolate might have a high titer phenotype in individual 

Carb77 mosquitoes due to a mutation outside the prM region.  So we attempted to 

sequence the entire genome of VEM I and VEM P and discovered that VEM P was not 

DENV-2 but perhaps a DENV and SINV mixture (Table 5.6, Figure 5.5 & 5.6).  None of 

the mutations observed in sequencing of full-length VEM I has been associated with 

enhanced DENV replication in mosquitoes (Table 5.3).  Other arbovirus researchers have 

observed mutations in viral genomes associated with enhanced replication and 

transmission in mosquitoes.  Chikungunya (CHIK) (family Togaviridae) envelope protein 

I mutation (E1-A226V), which was associated with the 2005-2006 Reunion Island 

outbreak, allowed adaptation of CHIKV to Aedes albopictus (Tsetsarkin et al., 2007). 

West Nile virus sequences from the first 5 years post introduction to New York revealed 

mutations leading to a reduction of extrinsic incubation period (EIP) or time from 

mosquito infection to transmission (Ebel et al., 2004).  Increased DENV replication in 

mosquitoes has been shown to play a role in DENV-3 strain replacement in Sri Lanka, as 
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a less virulent strain of DENV-3 was replaced with a more virulent strain (Hanley et al., 

2008).   

 As for the increased infection rate prediction of the RNAi escape hypothesis, the 

mean infection rate for our Carb77 (G11) challenge experiment was higher than the 

infection rate shown by Franz et al. (2009) for Carb77 (G12).  At 7 day pbm Franz et al. 

(2009) reported 56.3% HWE and 7.2% Carb77 infection rates, whereas we reported 

100% and 93.3% infection rates respectively.  At 14 day pbm, infection rates were 100% 

for all mosquito and virus strain combinations except Carb77 fed VEM I, which was 75% 

compared to infection rates of 46.7% HWE mosquitoes and 20% Carb77 (G12) 

mosquitoes at 14 d pbm observed by Franz et al. (2009).  The mean titers were 

consistently different, if not statistically significantly different, between VEM I and 

JAM1409 in individual comparisons.  However, the pairwise differences in mean titers 

across mosquito strains were statistically significant, which shows overall that VEM I 

replicated to higher titers than JAM1409 in both mosquito strains at all timepoints.  

 Overall comparison of DENV viral titers in Carb77 (G11) mosquitoes to HWE 

mosquitoes, we determine that Carb77 (G11) mosquitoes were still resistant to DENV-2 

based on lower mean DENV titers.  After determining that Carb77 (G11) mosquitoes were 

resistant to DENV-2, we evaluated whether VEM I escaped the enhanced RNAi-response 

of Carb77 mosquitoes.  Since VEM I titers are higher than JAM1409 in Carb77, it 

appears that VEM I may have escaped the enhanced RNAi response of Carb77.  

Additionally, all comparisons of VEM I titers were higher than JAM1409 titers, except 

HWE fed VEM I at 14 d pbm compared to HWE fed JAM1409.  So, an alternative 

explanation to the escape mutant hypothesis is that VEM I simply replicates to higher 
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titer than JAM1409 and a growth curve comparison in mosquitoes is need to verify this 

observations. 

 

Identification of a large plaque phenotype virus via RT-PCR, sequencing, and 

midgut IFA 

The large plaque phenotype observed in association with virus escape mutant P 

was attributable to contamination with a SINV, TE3’2J.  This contaminant explains the 

observation of the large plaque phenotype relative to DENV isolates.  Since VEM P was 

initially described as a large plaque phenotype prior to plaque isolation in this study, it is 

possible that the initial DENV-2 (JAM1409) stock may have been contaminated.  The 

ability to amplify and sequence the DENV prM gene from this escape mutant suggests 

that the initial VEM P isolate may have been a mixture of DENV and SINV (Figure 5.2).  

Experiments to identify the large-plaque variant were undertaken because the virus not 

only made abnormally large plaques but also routinely replicated to a higher titer than 

DENV in cell culture.  However, VEM P was not the DENV with enhanced replication 

phenotype due to mutations outside the prM region that we had hypothesized.  

Brackney et al. (2009) reported an increase in mutation frequency in regions of 

the WNV genome sequence that were highly targeted by the mosquito RNAi response.  

So, it is still plausible that DENV RNAi escape mutants could arise from selection 

pressure of the Carb77 prM-targeting RNAi system.  Researchers studying poliovirus 

offered a solution to RNAi escape viruses, recommending either an increase in the 

number of siRNAs or use of a dsRNA greater than 1 Kb in length (Gitlin et al., 2005).  In 

the Carb77 mosquito, the prM inverted repeat sequence is 578 nt.  While a longer effector 
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sequence may be practical for a DENV-2 resistant mosquito like Carb77, a chimeric 

inverted repeat targeting all four DENV serotypes may not be practical for production of 

transgenic mosquitoes.   

 

Midgut IFA for dsRNA 

Presumably the inverted repeat RNA was still being expressed in the Carb77 

mosquitoes examined in Figure 5.8; however, Franz et al. (2009) found that Carb77 (G17) 

was not expressing the inverted repeat RNA as detected by northern blot hybridization.  

To determine whether detection of dsRNA expression from a transgene was possible in 

Carb77 mosquito midguts post-bloodmeal, we used J2 monoclonal antibody IFA to 

dsRNA.  Attempts to stain for dsRNA in infected and uninfected Carb77 and HWE 

midguts shortly after a bloodmeal were less successful than hoped.  The J2 dsRNA 

antibody has previously been used to show dsRNA in foldback RNA-expressing cells 

(Figure 2.6).  Theoretically, the prM foldback expressed by induction of the 

carboxypeptidase promoter immediately after a bloodmeal should have been detectable in 

Carb77 mosquitoes with the J2 antibody at 24, 48, and 72 hr pbm.  Removal of the 

bloodmeal from midguts dissected so soon after feeding was difficult and more 

frequently resulted in midgut fragments rather than intact midguts, making localization of 

dsRNA to a specific region of the midgut difficult to discern.  Additionally, in the case of 

midguts in which the bloodmeal was not completely removed the residual blood appeared 

to interfere with fluorescent signal.   In the case of the Carb77 mosquitoes, in which 

dsRNA production is under the control of a bloodmeal induced promoter and is expressed 

in the midgut, the information gained on location of transgene expression from dsRNA 
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staining with the J2 antibody is minimal due to the difficulty of removing the bloodmeal 

without destroying the midgut.  Difficulty detecting transgene expression in the mosquito 

midgut via IFA at early timepoints pbm seems to be a common problem.  Researchers 

studying Plasmodium-resistant transgenic mosquitoes expressing salivary gland and 

midgut peptide (SM1) also had high background fluorescence and torn midgut in IFA 

images (Ito et al., 2002). 

Since we have shown in Chapters 2 and 4 that monoclonal antibody J2 detects 

dsRNA from inverted repeat-RNA expressing transgenes as well as from DENV 

replication in mosquito midguts, we might question whether the source of this dsRNA 

was DENV or transgene transcript.  However, based on Chapter 4 timecourse of dsRNA 

staining in mosquitoes, the source of the fluorescence in the Carb77 samples 32 hrs post 

bloodmeal should be dsRNA expressing transgene.  In retrospect, to confirm that the 

dsRNA in the Carb77 samples 32 hrs post bloodmeal were expressed from the transgene, 

we should have used a midgut sample in which we consistently observed dsRNA 

staining, as a positive control.   A 7 day pbm HWE midgut infected with DENV-2 would 

have been a better positive control for dsRNA staining.   

We had planned to develop double-staining for dsRNA or to show early 

expression of dsRNA (IR) and later no expression viral antigen in bloodfed Carb77 

compared to HWE.   If we had been able to compare staining for dsRNA and DENV-2 

antigen in Carb77 transgenic mosquito midguts, versus HWE midguts then we would 

have had an interesting model system for evaluating the timing of RNAi and detection of 

secondary structure of the DENV genome and replicative intermediates as well as 

exclusion of Dicer from membrane bound replication compartments in whole 
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mosquitoes.  Brackney et al. (2009) and Scott (2009) studying WNV in mosquito midguts 

and DENV-2 in mosquito cells, observed no bias in which sense, genome or anti-genome, 

of WNV RNA siRNAs were derived from massively parallel sequencing, indicating that 

both the viral replicative intermediates and secondary structure are being targeted by 

RNAi. 

 Localization of dsRNA in Vg40 transgenic mosquitoes was more successful, 

confirming the expected temporal and spatial patterns of transgene expression by 

showing an increase in dsRNA staining in the fatbody at 24 hrs pbm.  Imaging tissue with 

high background fluorescence, such as mosquito fatbody would benefit from careful 

controls that allow narrowing of the emission window used in confocal microscopy to 

subtract background.  However, the need to use confocal microscopy to image dsRNA in 

fatbody, may diminish the utility of dsRNA IFA for rapid screening of transgenic 

mosquitoes.  

Overall, dsRNA IFA techniques are potentially a useful addition to the tools used 

to evaluate expression of transgenes.  IFA provides spatial and temporal information 

about transgene expression.  Other research groups who have developed transgenic 

mosquitoes resistant to malaria via protein effectors such as SM1 and bee venom, have 

used immunoblot and IFA to provide temporal and spatial data on transgene expression 

(Ghosh et al., 2001; Ito et al., 2002).   Until we began using the J2 dsRNA antibody, we 

relied mainly on temporal data on effector expressionn based on Northern blot data.  Use 

of the J2 dsRNA antibody helps evaluation of spatial expression of transgenes. 
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Conclusions 

 Overall, the results from these experiments suggest that viruses with mutations in  

RNA are not selected due to pressure from the enhanced RNAi system of the Carb77 

family of mosquitoes.  Instead, we propose that VEM I is a virus with a increased 

replication phenotype in both Carb77 and HWE mosquitoes.  Repetition of the challenge 

experiment and sequencing mutant viruses at every isolation step or preferably 

sequencing immediately after initial isolation would allow us to draw stronger 

conclusions as to whether the selection of hyper-replicating DENV-2 should be a concern 

for release of transgenic mosquitoes that are resistant to DENV. 

 Although these experiments showed no hyper replicating viruses that could be 

definitively stated to escape the Carb77 enhanced RNAi response, the methods used were 

not optimal.  The deep sequencing study of West Nile virus associated small RNA by 

Brackney et al. (2009), which provided evidence that RNAi targets viral hotspots leading 

to increased virus mutation rates, is a cause for concern in design of a RNAi-based 

DENV virus-resistant transgenic mosquito.  The loss of resistance in the Carb77 

mosquitoes by an unknown mechanism as discussed by Franz et al. (2009) is also 

worrisome.  While RNAi based resistance in transgenic mosquitoes is promising based 

on DENV resistance in G8 through G13 of Carb77, these transgenic mosquito systems still 

require optimization.  
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Chapter 6 

Summary 
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 Although arbovirus replication in the mosquito host has been studied for many 

years, we still have many unanswered questions.  Previous research in our laboratory has 

shown that arbovirus replication in mosquitoes triggers an RNA interference (RNAi) 

response, and when RNAi is suppressed, an increase in arbovirus replication is observed 

(Keene et al., 2004; Sanchez-Vargas et al., 2004).  Since there are no approved vaccines 

or antiviral drugs for the treatment of dengue infections, our laboratories have developed 

molecular control strategies.   Study of dengue virus (DENV) replication in mosquito cell 

culture and Aedes aegypti suggests that there is a fine balance between DENV replication 

and the antiviral RNAi response (Sanchez-Vargas et al., 2009).  A greater understanding 

of the interaction between DENV and RNAi, enables us to improve molecular control 

strategies for DENV.   

 The research described in the previous chapters was based on the hypothesis that 

DENV replicative RNA may be protected from the RNAi response in the mosquito.   

Rearrangement and proliferation of intracellular membranes has long been observed in 

association with flavivirus replication, and replicative forms of viral RNA have been 

isolated from these membranes in mammalian cell culture (Mackenzie et al., 1999; Uchil 

and Satchidanandam, 2003).  We evaluated the association between viral dsRNA and 

membranes in mosquito cell culture.  DsRNA was observed throughout the cytoplasm in 

DENV-infected mosquito cell culture.   DENV dsRNA co-localized completely with 

DENV envelope (E) protein via confocal microscopy while DENV capsid (C) protein and 

dsRNA did not completely co-localize.  These observations suggest that dsRNA and E 

protein are produced in close proximity with mosquito cells while C protein localizes to 

sites of viral packaging.  Our observations are consistent with EM tomography models of 
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DENV RNA replication in close proximity of viral protein production (Welsch et al., 

2009).  Additionally, DENV-specific dsRNA was isolated from buoyant fractionations of 

mosquito cell culture which contained double-membrane vesicles (DMVs) of 50-75 nm 

when examined by electron microscopy (EM).  Observations of increased intensity of ER 

staining via immunofluorescent microscopy in DENV-infected mosquito cell culture and 

that DMVs were resistance to treatment with cold non-ionic detergent indicated that 

DMVs isolated from buoyant fractions probably originated from the endoplasmic 

reticulum (ER).  These observations were consistent with descriptions of ER origin and 

the morphology of DMVs observed in flavivirus infected mammalian cells (Uchil et al., 

2006).  Exclusion of DENV-specific dsRNA from the mosquito RNAi response was not 

clearly established, but we can speculate based on similarities in DENV-induced DMV 

morphology and size in mammalian and mosquito cell culture that DMV pore size might 

be sufficient to exclude Dicer from accessing the DENV dsRNA replicative 

intermediates. DMVs observed in mosquito cell culture are likely to protect dsRNA 

replicative intermediates from RNAi. 

DsRNA localization in mosquito cells was compared between DENV-infections 

and infection with other arboviruses.  DENV dsRNA staining localized throughout the 

cytoplasm in cell culture and co-localized with ER staining, confirming previous reports 

of DENV dsRNA replication in the ER.  Previous research has shown than SINV 

replicates within cytoplasmic vacuoles (CPVs) (Gliedman et al., 1975).  Like DENV, 

staining for SINV dsRNA was consistent with published observations of of SINV 

replication and SINV dsRNA staining localized to large clusters in the cytoplasm.   
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Expression of DENV NS4a-2K in mammalian cell culture has been shown to 

cause membrane rearrangements that resemble DENV infection (Miller et al., 2007).  To 

further characterize the DMVs isolated from mosquito cell lines, we attempted to express 

DENV NS4a and NS4b proteins in mosquito cell culture to determine if they induced 

DMVs like those observed in DENV-infected mosquito cells.  We did not establish 

whether expression of DENV NS4 causes membrane rearrangement in mosquito cells.  

We hypothesize that expression of NS4 constructs under a constitutive promoter was 

overwhelming or toxic to mosquito cells.  Future expression studies of DENV NS4a and 

NS4b in mosquito cells should use inducible expression methods to avoid problems with 

toxicity.  Further studies such as RNAi-based genome screens for host factors involved in 

virus replication and yeast two hybrid screening are needed to fully understand how 

DENV NS proteins and host proteins interact to form DMVs. 

We isolated DMVs from midguts of DENV-infected Aedes aegypti mosquitoes 

similar to the DMVs that we isolated from DENV- infected mosquito cell culture.  We 

observed a greater variation in the diameter of the DENV associated vesicles isolated 

from midguts, 50-120 nm in midguts versus 50-75 nm in cell culture.  Similar to the 

DMVs isolated from cell culture, these DMVs were associated with ER proliferation and 

were resistant to cold non-ionic detergent, suggesting that the membranes originated from 

the ER.  The DENV envelope and SINV envelope 1 proteins both co-localized 

temporally and spatially with dsRNA in Ae. aegypti midguts but SINV viral antigen and 

dsRNA were observed earlier than DENV.  Differences in temporal and spatial 

localization between flavivirus and alphavirus RCs, as represented by localization of 

dsRNA and viral antigen, that were not apparent in mosquito cell culture were observed 
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in mosquito tissues.  This discrepancy between observations in mosquito cell culture and 

mosquitoes may be because C6/36 cells were selected to be extremely permissible to 

arbovirus replication, whereas arboviruses may encounter midgut escape barriers in 

mosquitoes (Igarashi, 1978; Myles et al., 2004). 

The presence of DENV dsRNA within DMVs has implications for the 

development of an RNAi-based DENV-resistant transgenic mosquito.  To effectively 

target DENV dsRNA, antiviral responses must either be timed to act on the secondary 

structure of freshly uncoated viral RNA or as viral RNA moves between DMVs and sites 

of mature virus packaging.  To completely inhibit DENV replication using RNAi, future 

studies will need to determine the timeframe in which vRNA moves between DMVs to 

packaging locations or find a method of accessing dsRNA within DMVs.  

We isolated viruses that replicated to high titer in the DENV-resistant Carb77 

mosquitoes, and determined that the virus escape mutant I (VEM I) replicated to a higher 

titer than the parental strain. We hypothesized that DENV-2 replicated to a significantly 

in some individual Carb77 mosquitoes than other individuals due to variation in the prM 

region targeted by the Carb77 enhanced RNAi response.  Since RNA viruses exist as a 

quasispecies, the original DENV-2 (JAM1409) bloodmeal received by the Carb77 

mosquitoes would have contained DENV genomes with nucleotide sequence variations 

differing from the consensus sequence.  The DENV genomes with the most variation, as 

represented by the nucleotide mutations, in the prM region of their genome would be less 

affected by the Carb77 mosquitoes’ enhanced RNAi-response directed to the prM region, 

which could give these viral genomes a fitness advantage.  A increased fitness phenotype  

virus might replicate to higher titer in Carb77 mosquitoes, infect a higher proportion of 
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mosquitoes, and have mutations within the prM region of the genome.  However, we 

found only two VEMs out of twenty viruses sequenced that had mutations in the prM 

region compared to JAM1409.  We sequenced VEM I which did not infect a higher 

proportion of mosquitoes, replicated to higher titers in Carb77 mosquitoes, and had a 

single mutation in the prM region.  Since the prM region expressed by the Carb77 

mosquitoes is 578 nt in length and many siRNAs should be produced from this region 

minimizing the impact of a single mutation, we hypothesized that a 1 nt mutation could 

not be responsible for this increase in titer.  We sequenced the entire VEM I genome and 

found no mutations known to be associated with increased replication. 

 RNA viruses including poliovirus, Hepatitis C virus, and HIV-1 have “escaped” 

or acquired the ability to replicate in the presence of RNAi-based siRNA or dsRNA 

therapies (Gitlin et al., 2005; Konishi et al., 2006; Pusch et al., 2003; ter Brake et al., 

2008; Westerhout et al., 2005).  However there is minimal data available on flavivirus 

mutations and evasion of RNAi.  Brackney et al. (2009) used massively parallel 

sequencing to demonstrate that regions of the WNV genome that are more highly 

targeted by RNAi in mosquitoes, as indicated by a greater variation in siRNA sequences, 

are more likely to have imperfect matches between siRNAs and the WNV genome.  

Overall, our evaluation of DENV virus escape mutants is inconclusive because the plaque 

isolation method used could have introduced more mutations than were in the original 

viruses.  Future research should sequence directly from the original isolate. 

DsRNA IFA was used to evaluate spatial localization of transgene hairpin RNA 

with mixed results.  DsRNA staining in transgenic mosquitoes with dsRNA expressed in 

the midgut expression was minimally informative while dsRNA staining for transgenes 
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expressed in the fatbody were consistent with northern blot data of transgene expression.  

Prior to use of the J2 dsRNA antibody, we relied mainly on Northern blot data to verify 

temporal transgene expression.  Now the J2 dsRNA antibody can be used to evaluate 

spatial and temporal information about transgene expression simultaneously. 

The research described in this dissertation increased our knowledge of DENV 

membrane-associated replication complexes and the role they play in the balance 

between DENV replication and RNAi.  In Chapter 2, we studied DENV dsRNA in 

mosquito cell culture and found dsRNA was be briefly localized perinuclearly then 

spread throughout the cytoplasm and observed 50-75 nm diameter DMVs of ER origin 

similar to those isolated from mammalian cells. Comparison of dsRNA localization 

alphaviruses and flaviviruses in mosquito cell culture found few temporal and spatial 

differences in dsRNA staining.   In Chapter 3, our attempt to induce membrane 

rearrangement via expression of dengue NS4 and NS4b proteins was largely 

unsuccessful, but we learned that overexpression of NS4a and NS4b appears to be 

detrimental to mosquito cells. Future studies of NS4a and NS4b in mosquito cell culture 

should use inducible expression methods.  In Chapter 4, we observed that DENV dsRNA 

temporally and spatially co-localized with E protein and C protein, and does not localize 

to midgut associated muscles.  Additionally, we observed ER proliferation and isolation 

of DMVs similar to those isolated from mosquito cell culture.  Comparison of dsRNA 

between SINV and DENV found temporal and spatial expression of dsRNA is closely 

tied to production of viral antigen.  In Chapter 5, methodologically flawed 

characterization of viruses that escaped the enhanced RNAi response of transgenic 

mosquitoes revealed no mutations within the targeted viral sequence that could account 
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for RNAi escape.  We also found no mutations in other regions of the genome that could 

explain the enhanced replication phenotype of VEM I.  The increased titer of VEM I 

relative to the parental JAM1409 stain requires further characterization.  Overall, this 

work suggests that there may be a point in the dengue viral life cycle where the 

replication complex of viral RNA is protected from the mosquito RNAi response.  Since 

no bias in strand polarity has been observed in flavivirus siRNAs, Dicer must be 

accessing the DMV-protected anti-genome sense RNA at some point during DENV 

replication.  Future studies of DENV membrane-associated RC will need to characterize 

movement in and out of RC-associated membranes and whether this can be exploited to 

find another DENV dsRNA vulnerability for development of transgenic mosquitoes.  
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