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ABSTRACT 
 
 
 
AN NLR GENE LIKELY UNDERLYING RMES1 PROVIDES GLOBAL SORGHUM RESISTANCE 

BOLSTERED BY RMES2 

 

 

 

Breeding for aphid host plant resistance in sorghum has been an area of interest since the 

emergence of Melanaphis sorghi in North America a decade ago. In order to develop durable sorghum 

aphid resistance, breeders must be equipped with tools (trait package) and knowledge (molecular 

mechanisms) of host plant resistance. In this dissertation, I characterize the current state of sorghum aphid 

breeding and propose a genotype to phenotype map for the major source of global resistance, Resistance 

to Melanaphis sorghi 1. Relying on near-isogenic lines, I demonstrate that RMES1 is applying selection 

pressure to sorghum aphid through reduction in fecundity that discriminates among aphid species. In 

global sorghum lines, RMES1 is rare whereas a second resistance source, RMES2, is common and present 

in historic breeding germplasm. I mapped RMES2 in Haitian breeding populations where it contributes 

fitness increases while lacking antagonistic pleiotropy and is selected for alongside RMES1. These results 

suggest breeding programs may unknowingly be deploying both sources of resistance which in 

combination are reducing the likelihood of M. sorghi biotype shifts to overcome RMES1. As aphid 

resistance may rely on phytochemical and/or induction with extended phenotypes regarding aphid 

populations, I used pan-genomic, transcriptomic, and metabolomic resources to describe the molecular 

mechanism of RMES1. Structural variation at the Chr06 locus underlies presence/absence variation of 

several nucleotide-binding leucine-rich repeat receptor (NLR) genes. Two of these candidate genes, 

SbPI276837.06G016400 and SbPI276837.06G016600, are representatives of two orthologous NLR 

groups which have genomic and transcriptomic evidence of underlying RMES1 resistance. The PAL 

branch of the salicylic acid pathway is the primary phytohormone pathway responsible for RMES1-

induced resistance. Finally, metabolome reorganization mirroring transcriptome changes suggest RMES1 
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is inducing multiple downstream mechanisms responsible for reducing aphid fecundity. While the causal 

gene underlying RMES1 remains to be cloned and the eliciting aphid factor is unknown, this research 

suggests that gene-for-gene dynamics could lead to resistance-breaking biotype shifts and combining 

RMES1 with additional resistance genes e.g. RMES2, will help achieve durability. 
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PREFACE 
 
 
 

A third chapter is included but not discussed in the remainder of this dissertation. This work is 

from research done in Stephen Pearce’s wheat genetics lab between 2019 and summer 2021. This work 

was published in Fall 2022 and can be found at https://pubmed.ncbi.nlm.nih.gov/36241895/. 

 

 

 

  

https://pubmed.ncbi.nlm.nih.gov/36241895/


 vi 

TABLE OF CONTENTS 
 
 
 
ABSTRACT	.........................................................................................................................................................................................................	ii	

ACKNOWLEDGEMENTS	..............................................................................................................................................................................	iv	

PREFACE	.............................................................................................................................................................................................................	v	

Chapter	1:	Introduction	...............................................................................................................................................................................	1	

1.1	Importance	of	breeding	for	host	plant	resistance	to	insects	in	sorghum	.........................................................................	1	

1.2	Major	aphid	pests	on	cereals	...............................................................................................................................................................	1	

1.3	HPR	is	a	sustainable	and	equitable	avenue	for	IPM	..................................................................................................................	2	
1.4	Historical	aphid	breeding	for	greenbug	resistance	...................................................................................................................	3	

1.5	Lessons	from	greenbug	breeding	efforts	........................................................................................................................................	4	

1.6	Current	state	of	breeding	for	Sorghum	aphid	resistance	........................................................................................................	5	

1.7	Sorghum	aphid	may	be	held	at	bay	by	at	least	two	HPR	genes	sources	...........................................................................	6	

Chapter	1	Figures	...........................................................................................................................................................................................	8	

Chapter	1	References	....................................................................................................................................................................................	9	
Chapter	2	-	The	globally	deployed	sorghum	aphid	resistance	gene	RMES1	is	vulnerable	to	biotype	shifts	but	

being	bolstered	by	RMES2	.......................................................................................................................................................................	16	

2.1	Summary	...................................................................................................................................................................................................	16	

2.2	Introduction	.............................................................................................................................................................................................	16	

2.3	Material	and	Methods	.........................................................................................................................................................................	19	

2.3.1	Sorghum	genotypes	..............................................................................................................................................................	19	

2.3.2	Whole	genome	resequencing	of	NILs	............................................................................................................................	19	
2.3.3	Aphid	Cultures	........................................................................................................................................................................	19	

2.3.4	Choice	assay	.............................................................................................................................................................................	20	

2.3.5	No-choice	assay	......................................................................................................................................................................	20	

2.3.6	Resequencing-based	GWAS	of	community	association	panels	..........................................................................	20	

2.3.7	Population	genomic	analyses	of	RMES2	in	landraces	and	early	breeding	germplasm	...........................	21	

2.3.8	Association	analysis	in	Haitian	breeding	population	.............................................................................................	22	

2.4	Results	.........................................................................................................................................................................................................	22	
2.4.1	Marker	assisted	back	crossing	isolates	RMES1	in	near-isogenic	lines	...........................................................	22	

2.4.2	Sorghum	aphid	fecundity	is	lowered	by	RMES1	......................................................................................................	23	

2.4.3	Sorghum	aphid	settling	preference	is	not	affected	by	RMES1	...........................................................................	23	

2.4.4	RMES1	does	not	provide	resistance	to	Rhopalosiphum	padi	.............................................................................	24	

2.4.5	GWAS	with	resequencing	finds	quantitative	resistance	in	global	landraces	but	not	RMES1	...............	24	

2.4.6	RMES2	is	common	in	global	diversity	lines	...............................................................................................................	24	
2.4.7	RMES1	and	RMES2	provide	resistance	in	Haitian	breeding	population	.......................................................	25	

2.4.8	RMES1	and	RMES2	are	being	selected	for	in	breeding	program	......................................................................	26	

2.5	Discussion	..................................................................................................................................................................................................	26	

Chapter	2	Tables	..........................................................................................................................................................................................	33	

Chapter	2	Figures	........................................................................................................................................................................................	34	

Chapter	2	References	.................................................................................................................................................................................	39	

Chapter	3	-	Genome	to	phenome	characterization	of	RMES1	resistance	to	sorghum	aphid	indicates	NLR-based	
mechanism	......................................................................................................................................................................................................	46	

3.1	Summary	...................................................................................................................................................................................................	46	

3.2	Introduction	.............................................................................................................................................................................................	46	

3.3	Material	and	Methods	.........................................................................................................................................................................	48	

3.3.1	NIL	development	....................................................................................................................................................................	48	

3.3.2	Aphid	assays	............................................................................................................................................................................	48	
3.3.3	Transcriptome	sequencing	................................................................................................................................................	49	

3.3.4	Sequencing	data	analysis	....................................................................................................................................................	50	

3.3.5	Structural	Variation	and	Orthology	analysis	.............................................................................................................	51	

3.3.6	Phytohormone	and	Metabolome	quantification	......................................................................................................	51	



 vii 

3.4	Results	.........................................................................................................................................................................................................	54	

3.4.1	RMES1	NILs	are	appropriate	for	testing	molecular	mechanism	.......................................................................	54	

3.4.2	Resistant	NILs	undergo	widespread	transcriptomic	changes	after	aphid	infestation	............................	54	
3.4.3	Pangenomes	reveal	structural	variation	at	RMES1	................................................................................................	55	

3.4.4	The	salicylic	acid	pathway	is	differentially	regulated	along	with	phytohormone	accumulation	.......	57	

3.4.5	Metabolite	signatures	are	associated	with	resistance	...........................................................................................	59	

3.5	Discussion	..................................................................................................................................................................................................	59	

Chapter	3	Tables	..........................................................................................................................................................................................	64	

Chapter	3	Figures	........................................................................................................................................................................................	66	
Chapter	3	References	.................................................................................................................................................................................	76	

Chapter	4	-	Transcriptional	signatures	of	wheat	inflorescence	development	..................................................................	84	

4.1	Summary	...................................................................................................................................................................................................	84	

4.2	Introduction	.............................................................................................................................................................................................	85	

4.3	Material	and	Methods	.........................................................................................................................................................................	87	

4.3.1	Plant	materials	and	growth	conditions	........................................................................................................................	87	

4.3.2	RNA-seq	library	construction	and	sequencing	.........................................................................................................	88	
4.3.3	Transcription	factors	...........................................................................................................................................................	89	

4.3.4	Spike-dominant	expression	analysis	.............................................................................................................................	89	

4.3.5	Principal	Component	Analysis	(PCA),	Differential	Expression,	and	GO	enrichment	...............................	90	

4.3.6	Causal	Structure	Inference	Network	.............................................................................................................................	92	

4.3.7	Conversion	of	wheat,	rice,	and	barley	gene	IDs	........................................................................................................	92	

4.3.8	Enrichment	analysis	.............................................................................................................................................................	93	

4.3.9	QTL	proximity	and	definition	of	homoeologous	pairs	..........................................................................................	93	
4.4	Results	.........................................................................................................................................................................................................	93	

4.4.1	Early	wheat	inflorescence	development	is	defined	by	two	major	transcriptional	shifts	.......................	93	

4.4.2	Co-expression	networks	reveal	predominant	transcriptome	profiles	during	inflorescence	

development	.......................................................................................................................................................................................	95	

4.4.3	Inflorescence	meristem	development	is	associated	with	the	down-regulation	of	RAV	and	TCP	

transcription	factors	........................................................................................................................................................................	96	
4.4.4	A	small	number	of	genes	are	transiently	expressed	during	double	ridge	formation	..............................	97	

4.4.5	Inflorescence	transition	and	spike	architecture	genes	are	upregulated	at	W3.0	......................................	97	

4.4.6	Inflorescence	and	spikelet	meristem	formation	is	associated	with	sequential	activation	of	different	

classes	of	TFs	......................................................................................................................................................................................	98	

4.4.7	Gene	regulatory	networks	predict	high-confidence	interactions	between	transcription	factors	......	98	

4.4.8	Identification	of	CLE/WOX	genes	expressed	during	wheat	inflorescence	development	....................	101	

4.5	Discussion	...............................................................................................................................................................................................	102	
Chapter	4	Figures	.....................................................................................................................................................................................	106	

Chapter	4	References	..............................................................................................................................................................................	111	

Chapter	5	–	Conclusion	..........................................................................................................................................................................	118	

5.1	Summary	................................................................................................................................................................................................	118	

 

 
 



 1 

Chapter 1: Introduction 
 

 

 

1.1 Importance of breeding for host plant resistance to insects in sorghum 

Aphids are damaging pests on crops which have historically limited yields. There are more than 

4,000 aphid species within the superfamily Aphidoidea (order Hempitera) with many that can infest 

cereals (Dixon 1997; Blackman and Eastop 2000). Aphids feed on plants by piercing the epidermis with 

specialized mouthparts called stylets which probe for sieve elements and ingesting phloem sap (Nalam, 

Louis, and Shah 2019). In addition to removing photoassimilates from the plant, aphids indirectly impact 

crops by vectoring viral diseases and the excretion of ‘honeydew’, a by-product of nutritional imbalances 

in the phloem sap that can lead to mold and mechanical issues at harvest. Aphids can also modulate host 

responses in order to avoid defense responses and favor infestation. Aphids can reproduce asexually 

(parthenogenesis), have short and prolific generation times, and can produce winged morphs capable of 

long dispersal leading them to be among the fastest colonizers in the world (Wellings 1994; Quisenberry 

and Peairs 1998).  

1.2 Major aphid pests on cereals 

In the Great Plains, cereal production has been heavily impacted by several aphid species over the 

last century. Greenbug, Schizaphis graminum (Rondani), was first reported in 1884 and infests several 

grasses including wheat, barley, and sorghum (Webster and Phillips 1912). Greenbug vectors maize dwarf 

mosaic virus and barley yellow dwarf virus as well as predisposing plants to charcoal rot (Macrophomina 

phaseolina) (G. L. Teetes et al. 1973; Wallin and Loonan 1971; Daniels and Toler 1969). Sorghum aphid, 

Melanaphis sorghi (Zehntner) is a major pest of sorghum that can also infest sugarcane and other grasses 

(Armstrong et al. 2015). A sorghum aphid outbreak in 2011 was the most recent cereal pest to emerge in 

North America and heavily impacted sorghum production. By 2013, sorghum aphid had spread to all 

major growing regions of North America and yield loss could reach 50%-100% (Harris-Shultz, 

Armstrong, and Jacobson 2020; Michael J. Brewer et al. 2017). At the height of the sorghum aphid 
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outbreak in 2015, monetary losses could range between $25 and $175 per acre and regional impact to the 

Lower Rio Grande Valley alone was estimated to be $31.6 million (Zapata et al. 2016; R. D. Bowling et 

al. 2016). 

1.3 HPR is a sustainable and equitable avenue for IPM 

Crop management for aphid pests can involve cultural practices, insecticide use, natural enemies, 

and host plant resistance. Reduced tillage, adjusted planting times, and removal of host-bridges are 

cultural practices designed to reduce pest populations and avoid peak flight windows (Harris-Shultz, 

Armstrong, and Jacobson 2020). These strategies can be effective when implemented but other crop 

production decisions may prevent farmers from doing so. Insecticides are an effective method of 

greenbug and sorghum aphid control and have been used in the Great Plains as seed treatments or applied 

foliarly (Harris-Shultz, Armstrong, and Jacobson 2020). While insecticide use is common in large-scale 

farm settings, it can be cost-prohibitive for small-holder farmers. Finally, natural enemies such as 

entomopathogenic fungi and aphidophagous insects can reduce aphid density but successful cases of their 

use are rare. Bird cherry oat aphid is a pest of wheat that is kept below economic thresholds thanks to 

natural predators like lady beetles, lacewings, hover flies, and parasitic wasps (Michaud 2008). In contrast 

for economically relevant pests, the release of several imported greenbug predators did not result in their 

permanent establishment and aphid control, likewise, entomopathogenic fungi can cause aphid population 

crashes when infestation levels are severe but commercial formulations have been ineffective in field 

environments (M.J. Brewer and Elliott 2004; James et al. 1998). 

Genetic variation for resistance to insects, or HPR, is a consequence of competitive co-evolution 

between crops and pests that has resulted in a multitude of constitutive and induced, biochemical and 

physiological, or direct and indirect mechanisms to plant defense. Breeding for crop improvement under 

aphid pressure has focused on either resistance traits which reduce the amount of injury a plant sustains 

under infestation or tolerance traits which reduce damage (typically quantified in crop yield) despite 

successful infestation (Stout 2013). Tolerance is tractable in theory since it does not select on insect 
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populations, however the genetic basis is poorly understood and its likely polygenic nature makes it 

difficult to breed for (Peterson, Varella, and Higley 2017). Resistance has been characterized as either 

antibiosis which reduces fecundity or antixenosis which deters behavior resulting in infestation using no-

choice and choice assays, respectively. The distinction between antibiosis and antixenosis can be blurred, 

such as a molecular deterrent which discourages settling behavior but also reduces life history traits when 

suitable alternative hosts are unavailable (Stout 2013). A more useful distinction for resistance is induced 

or constitutive defenses which respond to infestation or are pre-formed, respectively (Stout 2013). Host 

plant resistance, either antibiosis or antixenosis which reduces infestation and injury, by definition 

imposes selection pressure on insect populations which can result in biotype shifts to overcome genetic-

based defenses. In this way, HPR and insecticides are vulnerable tools for IPM that can be lost when 

mismanaged or deployed in isolation. For HPR, it is critical to isolate the genetic basis and combine with 

additional HPR sources in order to build durable, oligo-genic resistance in gene-pyramids (MacIntosh 

2019; Mundt 2018). 

The use of multiple HPR sources in released varieties will not only give better crop protection, it 

will positively benefit the lifespan and durability of each HPR source. The current understanding of the 

vulnerability and durability of genetic resistance to biotic pests has largely been informed by breeding for 

plant pathogen resistance. Rust diseases on wheat have shown arms-race patterns of new virulent strains 

developing after corresponding resistance is widely deployed and subsequently overcome (Wan et al. 

2007). The boom-and-bust cycle seen in greenbug breeding suggests some of the deployed HPR were 

contributing to a similar arms-race. 

1.4 Historical aphid breeding for greenbug resistance 

Greenbug has been a recurrent pest of sorghum and small grains in the Great Plains for several 

decades. Large-scale outbreaks occurred roughly every 5-10 years in the southern Great Plains over the 

second half of the 20th century (Kenneth J. Starks and Burton 1977; Harris-Shultz, Armstrong, and 

Jacobson 2020). When greenbug resistance breeding began in wheat in the mid 20th century, aphid 



 4 

populations with differential ability to damage plants were identified as distinct biotypes (Puterka and 

Peters 1990). The first biotype which was identified as injurious to sorghum was biotype C in 1968 

(Harvey and Hackerott 1969; Weng et al. 2010). Biotype C was phenologically distinct from biotypes A 

and B with field populations peaking in late summer as opposed to cool season outbreaks of greenbug and 

the first identified to colonize sorghum and sudangrass (S. sudanese (Piper) Stapf.)(Harvey and Hackerott 

1969). Three other important greenbug biotypes emerged since then with biotype E in 1980, biotype I in 

1990, and biotype K in 1992 (Harvey et al. 1991; K. B. Porter, Peterson, and Vise 1982; Harvey, Wilde, 

and Kofoid 1997). The dominant greenbug biotypes in the southern great plains have shifted over the 

decades from C to E and E to I (Weng et al. 2010). A combination of improved HPR in sorghum varieties 

and cultural practices like natural enemies and insecticide has prevented large outbreaks of greenbug in 

the Great Plains (Michaud 2017; R. Bowling and Wilde 1996). 

Greenbug biotype shifts coincided with the wide deployment of HPR sources in farmer varieties. 

The identification of biotypes E and I were based on their colonization of sorghum with biotype C and E 

HPR, respectively, when those sources of resistance were widespread. Host adaptation and geographic 

isolation appear to be significant drivers of greenbug biotypic diversity, however, whether biotypes are 

pre-adapted and present prior to selection pressure or arise after HPR is deployed via de novo genetic 

diversity is unknown (Weng et al. 2010). It can not be confirmed that biotype K was identified after 

biotype I HPR was released supporting the pre-adaptation hypothesis, and the deployment of HPR is not 

clearly linked to emergence of injurious biotypes (D. R. Porter et al. 1997). Despite the absence of new 

agricultural biotypes in the 21st century, the history of greenbug population shift and increasing sorghum 

acreage means that the potential for new injurious biotypes remains a threat. 

1.5 Lessons from greenbug breeding efforts  

Host plant resistance to aphids can be exceptionally rare and therefore it is critical to maintain 

HPR through proper stewardship (Harris-Shultz, Armstrong, and Jacobson 2020). HPR sources within a 

species can be extremely rare. After the emergence of biotype E, more than 23,000 accessions of sorghum 
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screened for resistance resulted in only six sources (Harvey et al. 1991). Another source of HPR is wild 

relatives which represent a wider diversity pool. Resistance to biotype C was first identified in a handful 

of sorghum lines, all of which were believed to trace from tunis grass (S. virgatum (Hackel) Stapf) (D. R. 

Porter et al. 1997). In wheat breeding for greenbug resistance, a rye (Secale cereale L.) translocation was 

the source of Gb2 providing resistance to biotype B and C. Another source of HPR in wheat (Gb3, 

provides resistance to 6 different biotypes of greenbug) was derived from an Aegilops tauschii Coss. 

landrace (Hollenhorst and Joppa 1983). Screening large numbers of genotypes and introgression from 

wild relatives have been necessary for HPR identification but laborious and time consuming, impeding 

breeding efforts. Therefore, it is important to protect HPR sources that are already in use. 

Genome-level phenotype comparisons have limited the mechanistic understanding of individual 

HPR sources. Aphid resistant genotypes are often described as one or a combination of antibiosis, 

antixenosis, and tolerance but whole-genotype comparisons prevent meaningful insights on the genotype 

to phenotype map. Several mapping studies identified between 8 and 9 QTLs for resistance to various 

biotypes of greenbug (Katsar et al. 2002a; Punnuri and Huang 2017; Nagaraj et al. 2005; Agrama et al. 

2002). These are useful for dissecting the genetic architecture of resistance traits which whole genome 

comparisons cannot provide. Tx2783 also had a QTL for biotype C resistance on SBI-09 suggesting these 

could be shared by descent or the chromosome has more than one aphid resistance gene (Katsar et al. 

2002b). Bloomless sorghum NILs showed nonpreference or antixenosis to greenbug at seedling stages 

(Weibel and Starks 1986).  

1.6 Current state of breeding for Sorghum aphid resistance 

Sorghum aphid was first described in 1904 in Sudan and has been known to cause heavy damage 

on sorghum in Africa (Balfour 1904; Vuillet and Vuillet 1914). The sorghum aphid outbreak originating 

in Beaumont, TX in 2013 was first identified as sugarcane aphid (M. sacchari (Zehntner, 1897)), however 

morphometric and molecular evidence have now distinguished sugarcane aphid from sorghum aphid, and 

identified sorghum aphid as the species in the recent outbreak (Nibouche et al. 2021; Villanueva et al. 
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2014).  M. sacchari and M. sorghii have a host species preference and associated fitness increase for 

sugarcane and sorghum (Boukari et al. 2020; Paudyal, Armstrong, Harris-Shultz, et al. 2019; Nibouche et 

al. 2021). A survey of Melanaphis spp. samples found both M. sorghii and M sacchari present in North, 

Latin, and South America as well as Africa and Asia, however only M. sacchari was present in North and 

Latin America prior to 2013 (Nibouche et al. 2021). By 2016, sorghum aphid had been identified in all 

U.S. sorghum growing regions and Mexico under lining its rapid spread in suitable environments 

(Peterson et al. 2018; R. D. Bowling et al. 2016). North American sorghum production has recovered 

from the significant impact of sorghum aphid. Sorghum production in the Rio Grande Valley saw 

revenues in 2014 and 2015 reduced by $50/acre and total production in Haiti dropped from 100,000 

tonnes to 30,000 between 2015 and 2018 (USDA-FAS 2020; Zapata et al. 2018). The identification of 

HPR to sorghum aphid and deployment in commercial lines has contributed to the rebound of sorghum 

production (Muleta et al. 2022).  

1.7 Sorghum aphid may be held at bay by at least two HPR genes sources 

At least two sources of sorghum aphid HPR have been identified and are likely in use. RMES1 

(Wang et al. 2013; Muleta et al. 2022) and RMES2 (putatively SbWRKY86) (Poosapati et al. 2022) are the 

only QTLs identified which provide sorghum aphid resistance. RMES1 is likely the main source of 

resistance to sorghum aphid in North America as it is the only loci with a publicly available marker 

(Muleta et al. 2022). The Haitian variety Papepichon was released in 2017, while Tx2783 has been 

common in US breeding programs, both of which contain RMES1 (Muleta et al. 2022). Tx2783 and the 

hybrid DKS 37-07 are resistant to sorghum aphid which were relatively common in breeders and farmers 

fields due to having greenbug biotypes C and E resistance as well (Limaje et al. 2018; Peterson et al. 

1984; Szczepaniec et al. 2018). RMES1 is a simply inherited major resistance gene on SBI-06 (Wang et 

al. 2013; Muleta et al. 2022). The resistance allele was traced to Ethiopian landraces, including accession 

PI257599, but was disseminated in US programs via the conversion line SC110, and later Tx2783. 

Tx2783 has a high degree of tolerance and antibiosis to sorghum aphid (Paudyal, Armstrong, Giles, et al. 
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2019; Armstrong et al. 2015). This resistance may be distinct from greenbug HPR (derived from Capbam) 

considering SC110 is also in the pedigree of Tx2783 (Muleta et al. 2022; Harris-Shultz, Armstrong, and 

Jacobson 2020).  

The putative SbWRKY86, or conservatively discussed as RMES2, expression is associated with 

aphid resistance but the extent to which beneficial alleles are used in breeding programs to increase HPR 

is unclear (Poosapati et al. 2022). This source of HPR was identified in germplasm consisting of the 

Sorghum Association Panels and Sorghum Bioenergy Panels and may be widespread in sorghum global 

germplasm. This transcription factor regulated carbon-nitrogen metabolism, callose deposition, and other 

defense mechanisms associated with antibiosis when heterologously expressed in Arabidopsis (Poosapati 

et al. 2022).  
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Chapter 1 Figures 

 

Figure 1.1 - Hypothetical genotype to phenotype map for sorghum aphid resistance 
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Chapter 2 - The globally deployed sorghum aphid resistance gene RMES1 is vulnerable 

to biotype shifts but being bolstered by RMES2 

 

 

 

2.1 Summary 

Durability of host plant resistance (HPR) to insect pests is critical for sustainable agriculture. 

Natural variation exists for aphid HPR in sorghum (Sorghum bicolor) but the genetic architecture and 

phenotype has not been clarified for most sources. To assess the current progress of breeding for sorghum 

aphid (Melanaphis sorghi) resistance we characterized the phenotype of Resistance to Melanaphis sorghi 

1 (RMES1) and contributing HPR architecture in two breeding populations, which are selected under 

strong aphid infestation in Haiti. We developed near-isogenic lines segregating for RMES1 with 83.6% 

genomic similarity. RMES1 reduces sorghum aphid fecundity but not Rhopalosiphum padi fecundity, 

suggesting a discriminant HPR response typical of gene-for-gene interactions. Using whole-genome 

resequencing of a global association panel, we found RMES2 resistant alleles were more frequent than 

RMES1 resistant alleles in landraces and historic US breeding germplasm. RMES2 contributes early and 

mid-season aphid resistance in an segregating population of F2’s, however RMES1 was only significant 

with mid-season fitness. In a fixed population with high aphid resistance, RMES1 and RMES2 were 

selected for demonstrating their value for breeders. Globally, therefore, a vulnerable HPR source 

(RMES1) is likely bolstered by a second common source of resistance in breeding programs (RMES2) 

which may be staving off a biotype shift. 

2.2 Introduction 

Plant breeding indirectly affects insect populations by applying selection pressure via deployed 

host plant resistance (HPR) which deters infestation. It is important for breeders to consider what HPR is 

being deployed in order to reduce the likelihood of population shifts in agronomically important pests or 

their emergence. Insect populations have regularly overcome HPR with genetic or geographical shifts into 

open niches. For example, fall armyworm (Spodoptera frugiperda) which is native to the Americas has 

expanded as far as southeast Asia through long-distance dissemination while agronomically important 
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biotypes of Russian wheat aphid (Diuraphis noxia) and greenbug (Schizaphis graminum) have shifted in 

the Great Plains in the 20th century (Nagoshi et al. 2019; Harris-Shultz, Armstrong, and Jacobson 2020). 

The Nr and Ag1 resistance genes were overcome by resistance breaking aphid biotypes of Pemphigus 

bursarius and Amphorophora agathonica, respectively, in Europe (Keep 1989; Arendt, Ester, and 

Schijndel 1999). Climate change is expected to exacerbate this problem as climate-change-induced 

hybridization and habitable range expansion drive genetic diversity (Arce-Valdés and Sánchez-Guillén 

2022).  

Aphids are economically significant pests which remove photoassimilates and vector viruses. 

Plants have multiple layers of defense against aphids including morphological barriers and chemical 

compositions which can prevent feeding and infestation by deterring aphid behavior (antixenosis) and/or 

reducing fecundity (antibiosis) (Nalam, Louis, and Shah 2019). In contrast to resistance and HPR, 

tolerance allows the plant to maintain fitness under moderate infestation (Painter 1951). The molecular 

mechanisms of relatively few aphid HPR sources are well understood. In one example of monogenic 

constitutive antixenosis, sorghum aphid (Melanaphis sorghi, Theobald 1904) feeding preference was 

affected in choice-assays by a bloomless gene knockout which lacked cuticular wax while reproduction in 

no-choice assays was not (Cardona et al. 2022). Two aphid resistance genes have been cloned, Mi-1 and 

Vat, which encode nucleotide binding leucine-rich repeat (NLR) receptors (Dogimont et al. 2014; 

Nombela, Williamson, and Muñiz 2003). Translational evidence from plant-pathogen dynamics where 

NLR-based resistance suggests that a gene-for-gene arms race could occur in plant-aphid systems, since 

resistance breaking biotypes of Mi-1 and Vat have been identified (Dogimont et al. 2010; Kaloshian 

2004). This is one hypothesis for the boom and bust cycles of greenbug biotype-specific HPR that were 

seen in cereals of the Great Plains. 

Sorghum (Sorghum bicolor L. [Moench]) is among the world’s most important cereals and a 

staple crop for small-holder farmers in semi-arid regions (Rakshit et al. 2014). Sorghum aphid emerged as 

a major pest in North America a decade ago, believed to be due to a range expansion rather than biotype 

shift (Nibouche et al. 2021; Armstrong et al. 2015). Within five years of its introduction, the sorghum 
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aphid was found in all production regions (Harris-Shultz, Armstrong, and Jacobson 2020). One major 

HPR source to sorghum aphid is the globally-deployed Resistance to Melanaphis sorghi 1 (RMES1) on 

chromosome 6 (Chr06) found in African landraces where M. sorghi was first described (Muleta et al. 

2022; Vuillet 1914). The evolution of such HPR sources likely occurs at longer time-scales than the 

breakdown of HPR due to selection pressures in modern agriculture and must therefore be deployed 

judiciously as a finite source of natural variation exists. A second sorghum aphid HPR QTL which we 

will refer to as RMES2 is co-located with a WRKY transcription factor whose functional allele may act as 

a regulatory hub for induced defenses (Poosapati et al. 2022). The prevalence and utility of this second 

sorghum aphid HPR source  in breeding programs has not been established. 

The durability of HPR to emergent aphid populations is also expected to vary between tolerance 

and resistance since tolerance is not expected to apply the same selection pressure as resistance, but study 

systems to test are not tractable (Peterson, Varella, and Higley 2017). The source of greenbug biotype C 

resistance in sorghum was considered tolerance derived from S. virgatum but was overcome by biotype E 

shortly after wide deployment (Hackerott, Harvey, and Ross 1969). A biotype C and E resistant grain 

sorghum breeding line, RTx2783, was identified as having tolerance and antibiosis-resistance to sorghum 

aphid with moderate-high infestation levels but low damage (Armstrong et al. 2015). RTx2783 inherited 

the resistant RMES1 allele from SC110 and was donor for aphid resistance in many cultivars grown on 

the Great Plains (Muleta et al. 2022). Hypothesis testing on whether a RMES1 provides tolerance or HPR 

to sorghum aphid, as well as whether it provides resistance to both species (broad resistance), would 

provide insight on its durability and the likelihood of biotype shifts but have not been tested. 

Sorghum aphid and sorghum is an agronomically relevant system to study HPR and pest 

population dynamics. There are competing hypotheses of what crop protection phenotype is conferred by 

RMES1, resistance, tolerance, and/or broad resistance. The contribution of RMES2 to global breeding is 

unknown and molecular breeding tools have not been developed (Poosapati et al. 2022). It is also unclear 

whether RMES1 and RMES2 act additively or are epistatic. Here, we used NILs to test the hypotheses that 

RMES1 (1) provides antibiosis-based resistance as opposed to a tolerance mechanism, (2) resistance is 
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specific discriminant Aphididae species, and (3) is likely bolstered by a secondary HPR source found in 

global germplasm. 

2.3 Material and Methods 

2.3.1 Sorghum genotypes 

RMES1 near-isogenic lines (NILs) were developed with a donor parent IRAT204 (M. sorghi 

resistant, RMES1 donor) and recurrent backcrossing to RTx430 (M. sorghi susceptible). Single plant 

selections were made at the BCxF2 using a KASP marker for RMES1 (Sbv3.1_06_02892438R, Muleta et 

al. 2022) and homozygous plants were backcrossed to RTx430. Population development was done at 

Kansas State University. BC2F3’s (NIL+, NIL-) and parental genotypes were used for aphid bioassays and 

whole genome resequencing.  

2.3.2 Whole genome resequencing of NILs 

Genomic DNA was collected from leaf tissue of BC2F3 NIL+, NIL-, IRAT204, and RTx430. Four 

plants of each genotype were grown, DNA extracted with Zymo Plant DNA Isolation Kits, and sequenced 

individually. Samples were sequenced at the Genomics Shared Resource Core at the University of 

Colorado Anschutz Medical Campus. Raw reads were trimmed using trimmomatic v0.39 and mapped to 

the RTx430v2 reference with BWA v0.7.17-r1188 (H. Li and Durbin 2009). Duplicate reads were 

identified using Picard v2.26 (McKenna et al. 2010). Finally, variants were called using GATK v4.2.5.0. 

2.3.3 Aphid Cultures 

M. sorghi used in this study were received from Dr. Scott Armstrong at the USDA-ARS 

Stillwater, Oklahoma. Aphids were reared on Tx7000 seedlings under laboratory conditions as described 

in Nalam et al. 2021. Seedlings were grown in 4.5 inch pots with potting soil and top layer of greens 

grade to reduce damping off. Colonies were housed in cages covered with organdy cloth. Rhopalosiphum 

padi cultures were obtained from Dr. Vamsi Nalam at CSU and maintained on Tx7000 seedlings similar 

to M. sorghi cultures. 



 20 

2.3.4 Choice assay 

A choice assay was done to determine aphid settling preference at the seedling stage. A pairwise 

comparison was done with NIL+ and NIL-. Seedlings of each genotype were grown approx. 2 inches 

apart in 1 gallon pots using potting soil and a top layer of greens grade. Seedlings were thinned to one 

plant of each genotype per pot. At 3-4 weeks of age, twenty 3-4 day old apterous M. sorghi aphids were 

placed in the center of a paper bridge between the seedlings. A clear plastic cylinder was placed over the 

plants to prevent aphids from leaving the pot with an organdy cloth covering for ventilation. The number 

of aphids on each plant were counted at 6 hours post infestation (6-hpi), 12-hpi, 24-hpi, and 48-hpi. The 

first replicate (n=9) started 1/6/22 and the second replicate (n=7) started 1/31/22. Statistical analyses were 

done in R to detect differences in M. sorghi preferences between genotypes (R Core Team 2021). A 

Student's t-test was used to compare genotypes at each time point.  

2.3.5 No-choice assay 

No-choice assays were used to compare aphid fecundity on various genotypes. A single seedling 

was grown in 6 inch pots using potting soil and a top layer of greens grade. At 3-4 weeks of age, three 3-4 

day old apterous M. sorghi aphids were placed at the base of the seedlings with a camel hair brush. A 

clear plastic cylinder was placed over the plant to prevent aphids from leaving the pot with an organdy 

cloth covering for ventilation. The number of aphids on each plant were counted daily for a week at 

~12pm. A no-choice assay with R. padi was used to determine broad resistance. NIL+ and NIL- lines 

were infested with three 4-5 day old apterous aphids and counted daily for one week and at two weeks 

after infestation. 

2.3.6 Resequencing-based GWAS of community association panels 

Whole genome resequencing for 665 sorghum genotypes from the Sorghum Association Panel 

(SAP) and Bioenergy Association Panel (BAP) were used for association analyses. Raw reads for the 

SAP were retrieved from the European Nucleotide Archive (RJEB50066) (Boatwright et al. 2022). For 

the BAP, accessions were obtained through the USDA-ARS Germplasm Resources Information Network 
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and from Steven Kresovich and grown to seedlings. Tissue was collected and DNA extracted by Todd 

Mockler’s lab at the Donald Danforth Plant Science Center. DNA was submitted to HudsonAlpha 

Genome Sequencing Center and The Department of Energy Joint Genome Institute for sequencing. Raw 

reads for both association panels were mapped to BTx623 v5.1 (sorghumbase.org/Sorghum_bicolorv5) 

reference using BWA-mem (H. Li and Durbin 2009). Samtools (H. Li et al. 2009) was used to select 

properly paired reads and sort, Picard (http://broadinstitute.github.io/picard) was used to remove duplicate 

reads, Samtools was used to remove low quality reads (“-Q 30”), and VarScan 

(https://sourceforge.net/projects/varscan/) used for variant calling. Variants were filtered using bcftools 

v1.15.1 commands 'F_MISSING < 0.9' and 'MAF > 0.01' (Danecek et al. 2021). Variants were imputed 

with BEAGLE v5.2 using default parameters (Browning, Zhou, and Browning 2018). A random subset of 

500,000 variants was used to estimate population structure using TASSEL 5.0 CLI -

PrincipalComponentsPlugin function. A general linear model was used to determine associations with the 

-FixedEffectLMPlugin using the first three PCs and normalized sorghum aphid phenotypes (Bradbury et 

al. 2007; Poosapati et al. 2022). A second association analysis was performed with the highest associated 

variant at RMES2 (S09_61521444) included as a fixed-effect covariate. Manhattan plots were generated 

in base R (v4.2.2). 

The most recent reference genome version (BTx623v5, Rice et al. 2024) is used throughout this 

paper and coordinates refer to the v5 coordinate system unless otherwise noted. For example 

S09_61433682 refers to the variant at 61,433,682 bp on Chr09 in the BTx623v5 genome while 

S09_57630053.v3 represents a variant at 57,630,053 in BTx623v3 with a different coordinate system. 

2.3.7 Population genomic analyses of RMES2 in landraces and early breeding germplasm 

Whole genome resequencing for 647 sorghum genotypes was used to determine allelic distributions for 

RMES1 and RMES2. Genotypes partially overlapped with the SAP and BAP members, and genomic data 

was generated in the same method as described above. Longitude, latitude, and germplasm origin 
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metadata was manually curated. Geographic distributions and pie charts were generated using r/ggplot2 

(v3.4.1). 

2.3.8 Association analysis in Haitian breeding population 

A diverse Haitian breeding population of F2’s was developed and described in Rice et al, (2023). 

Plants were phenotyped for fitness (alive/dead) at flowering initiation (~6-7 leaf) and booting (~8-9 leaf) 

growth stages. Sorghum is grown year round in Haiti’s tropical climate where sorghum aphid is 

continuously present. No chemical prevention was used in field studies presented here. 

Tissue was collected for genotyping approximately one month after planting and genotyped using Diverse 

Array Technology (Jaccoud et al. 2001). Sequencing was mapped to the BTx623 v3.0.1 reference genome 

(McCormick et al. 2018). Data was processed in R package dartR, and markers which were 

monomorphic, had <50% call rate, or <90% repeatability were removed. Data was converted to VCF 

format using a custom R script and imputation was done using Beagle 5.4 (Browning, Zhou, and 

Browning 2018). Data was converted to numeric representation of reference alleles (0,1,2). After filtering, 

there were 1,172 individuals with 8,195 markers. 

Quantitative genetic analysis was done using AsremlR (Butler et al. 2017). Phenotype data was 

treated as binary and modeled as a linear model with the binomial logit function. A detailed description of 

the models used is given in Rice et al, (2023). A custom script was used to run individual marker 

associations genomewide with the first two principal components and K to estimate population structure, 

computed with rTassel (Monier et al. 2022). 

2.4 Results 

2.4.1 Marker assisted back crossing isolates RMES1 in near-isogenic lines 

Isolating the genetic basis of RMES1 is necessary to characterize the molecular mechanism 

(tolerance, resistance, broad resistance) and phenotype (selection pressure) (Figure 2.1a). To develop 

near-isogenic lines, we backcrossed RMES1-donor IRAT204 to the susceptible RTx430. We then 
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confirmed that marker-assisted backcrossing successfully reduced the donor genome complement in NILs 

using whole-genome sequencing. There was 71.7% and 24.8% of the NIL+ genome fixed for the 

recurrent and donor parent genomes, respectively, and the remaining 3.4% was segregating (Figure 2.1b). 

The NIL- genome was 80.7% and 14.2% fixed for the recurrent and donor parent genomes, respectively, 

and 5.1% segregated (Figure 2.1b). Comparing between NIL+ and NIL- sibling lines, 83.6% of the 

genome was isogenic and the remaining 16.3% was segregating, including the majority of Chr06 (Figure 

2.1c). In the region of RMES1 on Chr06, both NIL lines were fixed however there is a breakpoint in NIL+ 

lines between 2,051,868 and 2,169,917 (RTx430v2 coordinates). The RMES1 region, mapped in BTx623, 

corresponds to 2.9 – 3.1-Mb of the RTx430v2 genome. 

2.4.2 Sorghum aphid fecundity is lowered by RMES1  

To determine whether antibiosis is a component of RMES1 and placing selection pressure on 

aphid populations (Figure 2.1a), we assessed aphid reproduction in a no-choice assay. Differences in 

population growth would indicate the RMES1 mechanism is retarding infestation and placing selection 

pressure on aphids. The number of aphids was lower on NIL+ than NIL- at 7 days post infestation (7-dpi) 

(p < 0.001; Figure 2.2b). A moderately significant difference (p > 0.05) was first seen at 3-dpi and highly 

significant (p > 0.001) at 6-dpi. Overall, the population increased by 3.5 aphids per day on NIL+ and 7.1 

aphids per day on NIL- over one week. 

2.4.3 Sorghum aphid settling preference is not affected by RMES1 

To determine whether RMES1 affects the behavior and settling preference of sorghum aphid, we 

conducted a choice assay. Under the hypothesis that RMES1 HPR includes constitutively present 

mechanisms deterring infestation, we would expect to see aphid feeding choice differences in a choice 

assay. We found that aphid settling was not significantly different between NILs at any time point in the 

first 48 hours of infestation (Figure 2.2c). This indicates that sorghum aphid feeding choice is not 

significantly influenced by RMES1 as well as a lack of constitutively expressed epidermal or volatile 

features that deter aphid settling.  
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2.4.4 RMES1 does not provide resistance to Rhopalosiphum padi 

The presence of RMES1 in the commonly used breeding line RTx2783 with greenbug resistance 

led to the hypothesis that the locus provides broad resistance for other Aphididae species. We tested NILs 

with R. padi and found there was not a significant effect on reproduction over 7 and 14 day infestation 

(Figure 2.2d). Aphid reproduction was lower for R. padi than M. sorghi in previous no-choice assay, with 

an increase of 0.8 aphids per day on NIL+ and 0.7 aphids per day on NIL- over one week. Therefore, 

RMES1 is discriminant and not providing general Aphididae resistance. 

2.4.5 GWAS with resequencing finds quantitative resistance in global landraces but not RMES1 

It was previously shown that the RMES1 SNP with the highest fixation signature in a Haitian 

breeding program (S6_2995581, v3.1 reference) was rare in the global diversity panel. Having used GBS 

data and a breeding population to identify this RMES1 associated SNP, it remains possible that a SNP in 

higher LD with RMES1 exists and is at detectable frequency in association panels. We retested the rare 

RMES1 hypothesis by combining recently published landrace and improved lines (SAP and BAP) 

phenotypes with whole-genome resequencing data and the S. bicolor v5.1 reference and performed 

genome-wide association analyses. No association peak existed at RMES1 on Chr06 (Figure 2.3a). We 

included the major source of resistance, S09_61521444, as a fixed-effect in our GLM model and 

confirmed the Chr06 locus was not significant after controlling for potentially confounding variation 

(Figure 2.3b). Several loci on chromosomes 1, 2, 3, and 10 were apparent in one or both analyses and are 

candidates for additional HPR sources (Table 2.1). 

2.4.6 RMES2 is common in global diversity lines 

RMES2 was previously reported as a source of HPR in two association panels and the candidate 

gene SbWRKY86 was proposed as the causal locus due to the strongest associations falling within the 

gene model (Poosapati et al. 2022). In order to test hypotheses on RMES2 using resequencing data which 

contains ~200 times more variants than previous GBS datatsets, we generated new genome-wide 

associations and reanalyzed Chr09. We found the peak association (p < 10e-14) at S09_61521444 (Figure 
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2.3a) for the resistant associated reference allele (T) and present in 213 of 665 genotypes (32%). A second 

strong association at RMES2 was found 1.1Mb from the peak association at S09_62669680 (p < 10e-14) 

(Figure 2.3c).  The previously reported peak association (S09_57630053.v3 / S09_61433682) located in 

the promoter of SbWRKY86 (Sobic.009G238200) was 88.9 kb from the peak association at 

S09_61521444 (Figure 2.3c) (Poosapati et al. 2022). This previously reported variant remained 

significant (p < 10e-10) in the current analysis.  

The RMES1 allele identified via selection signatures in resistant breeding lines was previously 

shown to be globally rare (Muleta et al. 2022). The presence of the resistant RMES2 allele 

(S09_61521444) in 32% of SAP and BAP genotypes suggested it was globally common relative to 

RMES1. We used resequencing data for genotypes with known landrace or breeding origin to test this 

hypothesis. Of 492 sorghum landraces, the resistant RMES1 (S06_3096975)  present in just 13 (2.6%) 

while RMES2 allele was present in 78 (15.8%) of lines (Figure 2.3d,e). RMES2 did not show a clear 

geographic cline and was present in African and Indian lines. The resistant RMES2 allele was present at a 

very high frequency in historic US breeding lines (35.8%) and sorghum conversion lines (67.3%) than 

landraces, whereas the resistant RMES1 allele was absent in both historic sets. 

2.4.7 RMES1 and RMES2 provide resistance in Haitian breeding population 

RMES1 was mapped in biparental populations for aphid resistance and through fixations 

signatures in an inbred fixed-resistance breeding population, whereas RMES2 has been mapped in 

diversity lines including landraces for aphid resistance (Muleta et al. 2022; B. Wang et al. 2021; F. Wang 

et al. 2013; Poosapati et al. 2022). We tested the hypothesis that both loci are present and increase fitness 

under heavy aphid infestation in a highly-recombinant population of F2s (segregating population). The 

two most significant QTL for mid-season survival were found at RMES2 (S09_61988551, p < 10e-11) 

and RMES1 (S06_2170466, p < 10e-11). There was not a significant interaction between the two loci 

indicating no epistasis detectable in this population. The third most significant mid-season survival QTL 

was on Chr08 at S08_45925614 (p < 10e-10). 
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To determine whether RMES1 and RMES2 contribute resistance at earlier developmental stages, 

we looked at associations with survival at an early-season timepoint. Another RMES2 variant 

(S09_59794306, p < 10e-12) associated with resistance at early time points, however RMES1 was not 

significant (Figure 2.4a). A QTL on Chr01 (S01_1230714, p < 10e-11) was within 1 kb from the 

cyanogenic glucoside biosynthetic cluster (CYP79A1, CYP71E1, UGT85B1). Other early-season fitness 

QTL included Chr01 (S01_73926645, p < 10e-13), Chr03 (S03_59797138, p < 10e-12), and Chr08 

(S08_11501481, p <10e-13) (Table 2.1) indicates HPR is polygenic in architecture at earlier growth 

stages and distinct, aside from RMES2, from oligogenic resistance at later growth stages. 

 

2.4.8 RMES1 and RMES2 are being selected for in breeding program 

Evidence of RMES1 and RMES2 underlying fitness in a population segregating for resistance led 

to the hypothesis that an aphid resistant population will be fixed for resistance alleles at both loci (if 

antagonistic pleiotropy or linkage drag is not present). The fixation scan previously published on the 

resistant Haitian population mapped RMES1 and could be reanalysed with new information about RMES2 

(Muleta et al. 2022). We found that variants at RMES2 were among loci with strongest signatures of 

selection in this inbred population fixed for resistance to aphids. Outliers of fixation signatures 

corresponded to staygreen (Stg3a, S02_58906500, p < 10e-17) and cyanogenic (Dhr2, S08_11535994, p 

< 10e-16) QTL as well as RMES1 (S06_3096975, p < 10e-17) and RMES2 (S09_58038553, p < 10e-10). 

While RMES2 variants were significant, the most significant marker on Chr09 was at S09_49792740 (p < 

10e-14, Figure 2.5). This indicates that RMES2 is beneficial for aphid resistance and suggests it does not 

co-segregate with negative phenotypes that would be selected against for Haitian target population 

environments, supporting its broader use in breeding programs. 

 2.5 Discussion 

Research on aphid resistance and breeding lags behind other crop-pest systems where quantitative 

variation and evolutionary impact of HPR is better understood. Breeding focused research on HPR often 
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identifies genetically dissimilar germplasm differing for traits such as antibiosis or tolerance preventing 

mechanisms from being resolved at the genetic level. It is important to Mendelize traits via NILs, induced 

mutation, or gene-editing in order to test gene-specific hypotheses which untangle the many levels of 

HPR and understand individual mechanisms. The majority isogenic background and single resistance 

locus segregating between the parents of our NILs allowed us to define RMES1 antibiosis-resistance for 

sorghum aphid. Future investigations of the molecular mechanism will benefit from continued population 

development of these NILs. 

The common breeding line RTx2783 contains the resistant allele of RMES1 and showed tolerance 

and resistance to M. sorghi and S. graminum leading to the hypothesis that RMES1 is pleiotropic for these 

traits (Armstrong et al. 2015). RMES1 + NILs had no effect in the R. padi no-choice assay (Figure 2.2d) 

showing that the molecular mechanism (activation or mode of action) of resistance is not shared by all 

RMES1 – Aphididae interactions, however there remains the hypothesis that it is effective to S. graminum 

or a limited number of cereal aphid species. Resistance to S. graminum has not been mapped to the 

RMES1 region further supporting RTx2783 resistance to greenbug is from non-RMES1 sources (Harris-

Shultz, Armstrong, and Jacobson 2020). RMES1 is the only HPR source with breeder-friendly marker 

technology and is widely effective in public and private sorghum breeding programs (Muleta et al. 2022). 

This HPR should be managed by breeders and IPM strategies to avoid being overcome by a new biotype 

of sorghum aphid. New biotypes of greenbug emerged on sorghum varieties in 1979 and 1990 which had 

previously had genetic resistance (Harris-Shultz, Armstrong, and Jacobson 2020). Similarly, Russian 

wheat aphid (Diuraphis noxia) resistance locus Dn4 in wheat was effective until the emergence of the 

RWA2 biotype in 2003 (Haley et al. 2004). To avoid a similar loss of RMES1 resistance to novel 

sorghum aphid biotypes, breeders must proactively develop cultivars with multiple and mechanistically 

diverse sources of HPR. 

Tradeoffs in plant defense strategies such as constitutive and induced mechanisms have impacts 

on resource allocation, development, and ultimately productivity (Kempel et al. 2011, Monson et al. 

2022). In addition, some induced resistance mechanisms are at risk of loss to resistance-breaking biotypes 
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and pathotypes. Candidate genes proposed to underlie RMES1 include Sobic.006G016900, 

Sobic.006G017200, Sobic.006G017400, and Sobic.006G017500 but remain to be tested. Under the 

constitutive hypothesis, SbCAS1 (Sobic.006G016900) is involved in detoxification of HCN produced by 

the cyanogenic glucoside dhurrin (Gleadow et al. 2021). Cyanogenesis is involved in antibiosis resistance 

to Spodoptera frugiperda in sorghum, however involvement in aphid resistance has not been tested 

(Gruss et al. 2022). Under the induced hypothesis, nucleotide-binding leucine-rich repeat (NLR) receptors 

(Sobic.006G017200, Sobic.006G017400, Sobic.006G017500), which recognize molecular patterns of 

infestation and activate host defenses, are predicted in the region of RMES1 in the BTx623 (susceptible) 

and RTx2783 (resistant) genomes (Muleta et al. 2022; B. Wang et al. 2021). Five sorghum genotypes 

(RTx430, RTx2783, RTx436, BTx623, Rio) contained between 319 and 363 predicted NLR genes (B. 

Wang et al. 2021). This is a strong candidate class for causal genes due to numerous reports of NLR 

genes driving resistance in aphids and other pest systems (Snoeck, Guayazán-Palacios, and Steinbrenner 

2022; Dogimont et al. 2014). This class of resistance mechanisms are expected to be less durable if the 

selection pressure is strong and the herbivore associated molecular pattern (HAMP) can withstand 

mutations to evade the host receptor. Such ‘gene-for-gene’ dynamics can lead to boom-and-bust cycles 

similar to those seen in cereal-biotic pest systems (Dogimont et al. 2010; Mundt 2018). 

As future studies establish the relative durability of antibiosis, antixenosis, and tolerance 

mechanisms, knowledge of RMES1-antibiosis will inform how to combine and utilize all HPR available. 

Differences in durability would be expected depending on the target of detection (under induced 

hypothesis, fitness importance of herbivore associated molecular pattern or effector) as well as mode of 

action (fitness importance of an effective site for a toxic compound). RTx2783 appears to harbor 

additional tolerance and HPR sources as it was reported to retain growth despite moderate aphid 

infestation (Limaje et al. 2018). Alternatively, epistatic interactions from RMES1 may contribute 

additional tolerance mechanisms in different backgrounds. Regardless of the epistatic tolerance 

hypothesis, a significant reduction in fecundity of aphids on RMES1 NILs demonstrates a selection 

pressure on M. sorghi and increasing the likelihood of a biotype shift. This HPR source should not be 
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solely relied upon for crop protection as there is precedent for monogenic HPR breakdown in cereal-aphid 

systems (Harris-Shultz, Armstrong, and Jacobson 2020).  

Frequency of a resistance allele may reflect evolutionary selection pressures on plant defense and 

fitness tradeoffs – for example, RPS5 variation for Pseudomonas syringae resistance in Arabidopsis is 

maintained by balancing selection (Tian et al. 2002). The resistant RMES1 allele identified by GBS data 

in a fixation scan is rare in global landraces (Muleta et al. 2022). We retested this RMES1-rarity 

hypothesis using dense genotyping of SAP and BAP lines and found that it was not contributing 

resistance in these diversity lines, even when RMES2 was included in the model (Figure 2.3b). QTLs on 

chromosomes 1, 2, 3, and 10 were detected when controlling for RMES2 and are potential sources of 

quantitative minor-effect resistance to sorghum aphid. The Chr01 QTL (S01_1536310) was 367 kb from 

the dhurrin biosynthetic gene cluster which includes CYP79A1, CYP71E1, and UGT85B1 

(Sobic.001G012300, Sobic.001G012200, Sobic.001G012400) (Gleadow et al. 2021). Interestingly, this 

QTL is also 25 kb and 46 kb from two paralogs of CYP71E1 (Sobic.001G018300, Sobic.001G018600). 

There were no strong candidate genes for aphid HPR QTLs on chromosomes 2, 3, and 10, however QTL 

for physiological traits (sucrose content, photosynthetic rate) were associated nearby and may provide 

tolerance through growth rate (https://aussorgm.org.au/sorghum-qtl-atlas/). 

The two strongest associations with GBS SNPs were inside the gene model of SbWRKY86, a 

transcription factor responsive to aphid infestation (Poosapati et al. 2022; Kiani and Szczepaniec 2018). 

Two regions 88 kb and 1.24 Mb from SbWRKY86 had a higher association than the original SNP in our 

analysis (Figure 2.3c). One methodological hypothesis for discrepancies is differences between the 

previous panel of 697 genotypes and our subset of 665 genotypes with available resequencing. Another 

hypothesis is that genotypic variation at SbWRKY86 is not causal for RMES2 HPR but trans-regulating 

elements modulate this transcription factor (P. Li et al. 2015; Atamian, Eulgem, and Kaloshian 2012). 

Finally, it is possible that SbWRKY86 is not involved in RMES2 resistance and one or both of the QTL 

(S09_61521444, S09_62669680) are in higher LD with the causal gene. This QTL is in a gene-dense 

https://aussorgm.org.au/sorghum-qtl-atlas/
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region of Chr09 with 278 genes annotated between 61–63 Mb, demonstrating the need for fine-mapping 

or gene editing to confirm or exclude the hypothesis that SbWRKY86 underlies RMES2 resistance. 

We determined that RMES2 is globally common in sorghum landraces and breeding lines, 

highlighting its availability for sorghum improvement. While reanalysis of HPR origin highlighted the 

rarity of RMES1, it is notable that previous geographic distribution results indicated RMES1 was confined 

to East Africa (Muleta et al. 2022), however resequencing data suggests that the same variant was present 

in several lines outside East Africa (Figure 2.3d). One explanation is that records of the naming and origin 

of accessions may be incomplete, however it is possible the previous report was under-powered for 

geographic representation or the imputation of the SNP in the GBS data set was inaccurate. Our peak 

RMES2 variant was at higher frequency in global germplasm as well as being dispersed across the African 

continent and India (Figure 2.3e). The resistant allele’s high frequency in breeding and conversion 

germplasm indicates RMES2 is widely available for breeding in diverse and adapted backgrounds, and 

suggests that breeding programs may be unknowingly selecting it during phenotypic selection under 

sorghum aphid infestation.  

With RMES2 resistance observed in diversity panels and at high frequency in early breeding 

germplasm, it may already be providing resistance in current breeding programs where it would be 

selected for sorghum aphid resistance. The Chibas breeding program at the University of Quisqueya in 

Haiti breeds dual purpose (grain and forage) tropical sorghum varieties in high aphid pressure 

environments (Muleta et al. 2022). The historic recombination in the highly-intercrossed founders of the 

F2 segregating HBP for survival under aphid pressure allowed high-power to determine genetic 

associations with fitness (Rice et al. 2024; Cockram and Mackay 2018). RMES1 and RMES2 were the 

most significant QTL for mid-season fitness, however RMES1 was not associated with resistance at the 

earlier stage (Figure 2.4a) suggesting either different stressors determining survival at early-season than 

mid-season or that RMES1 resistance may be developmentally regulated akin to adult plant resistance 

(APR). However, antibiosis-resistance was seen in the 3-4 leaf stage (Figure 2.2b) and therefore 

molecular plant-aphid interactions may be more complex in the field than controlled settings in the 
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greenhouse. Another possibility is that there were abiotic (nutrient, environmental) or biotic factors other 

than M. sorghi pressure determining fitness at early different from late developmental stages. 

Phenotyping of the BAP and SAP was initially done on 9 week-old plants which approximately 

corresponds to flowering stage (Poosapati et al. 2022) and therefore agrees with the observation that 

RMES2 is providing mid-season fitness. RMES2 was among several significant associations at the earlier 

flowering initiation (Figure 2.4a) indicating quantitative resistance determines fitness at earlier life stages. 

There are no known aphid resistance QTL co-located with early-season survival, however other biotic 

resistance QTL have been reported (https://aussorgm.org.au/sorghum-qtl-atlas/). In summary, RMES1 and 

RMES2 have distinct field and phenology dynamics but are not the exhaustive list of sorghum aphid HPR. 

The cyanogenic glucoside dhurrin is known to provide resistance to herbivores and has been  

proposed as a candidate mechanism for aphid resistance (Gruss et al. 2022). However, it has also been 

pointed out that stylet-feeding of aphids may not be expected to cause the tissue disruption necessary to 

bring dhurrin (epidermal cell) and dhurrinase (mesophyll cells) in contact for cyanide release (Thayer and 

Conn 1981). Interestingly, our results show the dhurrin bioactivation Dhr2 loci on Chr08 

(Sobic.008G080400) (Cicek and Esen 1998) is ~1.9 Mb from the peak loci for early-survival 

(S08_11501481, Figure 2.4a). Similarly, dhurrin biosynthesis TCD1 on Chr01 (Sobic.001G012200, 

Sobic.001G012300, Sobic.001G012400) (Blomstedt et al. 2016) is within a kilobase of a QTL on Chr01 

for early-survival (S01_1253672) (Figure 2.5a) . This region also closely coincides with the QTL 

S01_1536310 identified in the association panels when RMES2 was accounted for (Figure 2.3b), 

providing further evidence for variation at the biosynthetic gene cluster on Chr01 to contribute resistance 

to aphid. These findings suggest further investigations are warranted of dhurrin as a mechanism of 

resistance against sorghum aphid. 

In a different HBP population fixed for aphid resistance, a selection sweep was previously used to 

map RMES1, however there were no other known M. sorghi resistance QTL known at that time (Muleta 

et al. 2022). A common HPR source for early and late resistance would be expected to have positive 

selection, if not as significant as globally rare alleles like RMES1. Many variants on Chr09 spanning the 

https://aussorgm.org.au/sorghum-qtl-atlas/
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centromere show selection signatures, including at RMES1. Approximately 1.1-Mb from RMES2 is the 

dwarfing allele dw1 (Sobic.009G229800), which was selected for in the conversion of temperate 

sorghums, and is in a genomic region of low diversity in global landraces (Morris et al. 2013; Hilley et al. 

2016). This and other unknown QTLs spanning Chr09 were likely under selection in the active breeding 

program for other important agronomic traits. 

Host plant resistance sources to insects are valuable agricultural resources that need to be 

understood in order to unlock its full potential and durability. RMES1 is at risk of being overcome by new 

biotypes of sorghum aphid and potentially in gene-for-gene dynamics, however the globally-common 

RMES2 is likely playing a supporting role to increase overall resistance and the durability of RMES1 in 

breeding programs. 
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Chapter 2 Tables 
 

 

 

Table 2.1 - Significant associations in quantitative genomic analyses 

 
 

  



 34 

Chapter 2 Figures 
 

 

 

 

Figure 2.1 - Genotype to phenotype hypotheses for RMES1 can be tested with NILs  
a) The genotype to phenotype map for RMES1 and HPR durability containing several hypothesized 
relationships. b) Donor (IRAT204, 100%) genome contribution in BC2F3 NILs relative to recurrent 
genome (RTx430, 0%). c) Genomic regions segregating between NILs. Red dotted line indicates RMES1 
position.  
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Figure 2.2 - RMES1 NILs define antibiosis sorghum aphid resistance 
a) Aphid infestation on RMES1 NILs. b) No-choice assay (n=9) aphid counts over 7 day infestation. c) 
Choice assay (n=16) aphid counts over 48 hour infestation. d) No-choice assay (n=18) of Rhopalosiphum 
padi at 7-dpi and 14-dpi.  Significant pairwise comparison between NILs (student's t-test) shown with 
asterisks (p<0.05 *, p<0.01 **, p<0.001 ***) 
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Figure 2.3 - Genome-wide associations in two global association panels with M. sorghi resistance show 
RMES1 is globally rare.  
a) Association of resequencing variants in BAP and SAP determined with a general linear model that 
included principal components 1-3 of global population structure as fixed effects. b) Association of 
resequencing variants determined with a general linear model that included principal components 1-3 and 
the peak RMES2 SNP (S09_61521444) from the GLM as fixed effects. c) Distribution of RMES1 
associated SNP previously identified in Haitian fixation scan (Muleta et al. 2022). d) Distribution of 
RMES2 associated SNP identified in the present study. Available resequencing data was used to estimate 
the frequency of alleles in known historic American breeding germplasm (US) and lines from the 
sorghum conversion program (SC). 
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Figure 2.4 - RMES1 and RMES2 provide resistance in Haitian breeding programs. 
Associations with fitness under heavy aphid infestation is shown for an early-generation breeding 
population in which survival (aphid resistance) is segregating. a) Early-season (flowering initiation) 
survival associations. b) Mid-season (booting) survival associations. The two highest associations are 
indicated in red and black dotted lines for RMES1 and RMES2, respectively. c) Fixation scores (Fst) 
determined for the resistant population compared with the global diversity panel. Data published in 
Muleta et al. (2022). Notable signatures are indicated with shaded areas or dashed lines and the 
corresponding candidate region (Stg3a, RMES1, Dhr2, RMES2). 
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Figure 2.5 - Large regions of Chr09 are being selected in breeding population with high aphid selection 
pressure. Fixation scores (Fst) on Chr09 determined for an aphid resistant HBP compared with the global 
diversity panel. Data published in Muleta et al. (2022). 
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Chapter 3 - Genome to phenome characterization of RMES1 resistance to sorghum aphid 

indicates NLR-based mechanism 
 

 

 

3.1 Summary 

Mechanisms of host plant resistance (HPR) to aphids vary and can determine their utility in plant 

breeding for durable resistance. The globally-deployed sorghum aphid HPR locus RMES1 reduces M. 

sorghi reproduction and classical R-gene mediated resistance and cyanogenesis have been proposed as 

causal mechanisms. Structural variation at the Chr06 locus includes a large insertion harboring copy 

number variation of two candidate nucleotide-binding leucine-rich repeat (NLR) genes whereas the β-

cyanoalanine synthase enzyme CAS at RMES1 is structurally conserved and constitutively expressed. 

Large transcriptomic changes were induced by RMES1 including the upregulation of the salicylic acid 

pathway and resistance marker genes e.g. PR1, PAD4, and LOX2. The accumulation of salicylic acid, 

indole-3-acrylic acid, and IA-aspartic acid were significantly increased by RMES1. Diverse classes of 

defense metabolites upregulate in response to infestation, however the cyanogenic pathway and 

metabolite abundance was not altered, supporting one of several NLRs at RMES1 as a master switch for 

broad aphid resistance mechanisms. Taken together, our findings suggest that RMES1 is acting as an R-

gene inducing multiple aphid resistance mechanisms. 

3.2 Introduction 

Plants must deal with diverse insect pests by presenting constitutive defenses or inducing host 

plant resistance (HPR). Constitutive HPR mechanisms are expressed regardless of the presence of a pest 

and examples include physical barriers and metabolic deterrents. In Sorghum bicolor, long-chain fatty 

acid content of epicuticular waxes influences the settling preference of sorghum aphid (Melanaphis 

sorghi) (Cardona et al. 2022). In maize, benzoxazinoids confer resistance to chewing and phloem sucking 

insects, with natural variation existing for a DIMBOA-Glc methyltransferase enzyme responsible for 

variation in constitutive HDMBOA-Glc concentration and corn leaf aphid (Rhopalosiphum maidis) 

resistance (Meihls et al. 2013). Induced HPR involves the expression of defense mechanisms in response 
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to an infestation (Chen 2008). In the Phaseolinae subtribe, oral secretions from armyworm (Spodoptera 

exigua) contain a host-derived protein fragment that induces defenses. A common R-gene mechanism of 

insect-induced defenses involves nucleotide-binding site leucine-rich repeat receptors (NLRs) which 

recognize pattern- or herbivore-associated molecular patterns (PAMPs, HAMPs) and initiate signaling 

cascades (Snoeck, Guayazán-Palacios, and Steinbrenner 2022). The first two aphid-resistance genes 

cloned, Vat and Mi-1.2, were NLRs which induced signaling and defense mechanisms (Dogimont et al. 

2014; Q. Li et al. 2006). Early signaling (oxidative bursts, Ca2+ flux) give rise to transcriptional 

modulation of phytohormone pathways (salicylic acid, jasmonic acid) and expression of defense and 

antinutritive mechanisms (Zebelo and Maffei 2015). 

Sorghum aphid emerged in 2013 in the Americas as a major pest of sorghum that quickly spread 

to all growing regions. The Resistance to Melanaphis sorghi 1 locus (RMES1) on chromosome 6 (Chr06) 

was first reported between 2.67 Mb and 2.80 Mb in the reference genome BTx623v3 which lacks the 

resistant allele (F. Wang et al. 2013). RMES1 was subsequently mapped using selection signatures at 2.99 

Mb in a Haitian breeding population under high sorghum aphid infestation (Muleta et al. 2022). The 

publicly available KASP marker for RMES1 has facilitated widespread deployment and improved 

management of sorghum aphid, however the selection pressure placed on aphid populations through 

antibiosis resistance highlights the potential for a biotype shift to occur. 

The molecular mechanism for RMES1-based resistance is poorly understood and competing 

hypotheses involving cyanogenic toxicity or NLR-induced defenses have been proposed. The cyanogenic 

glucoside dhurrin is an antifeedant to chewing insects and the detoxification gene β-cyanoalanine 

synthase (CAS, Sobic.006G016900) (Gleadow et al. 2021; Gruss et al. 2022) is located adjacent to the 

RMES1 locus (Muleta et al. 2022). Located within the original mapping interval are three predicted NLR 

genes, Sobic.006G017200, Sobic.006G017400, and Sobic.006G017500 (F. Wang et al. 2013). 

Hypotheses on CAS and NLR loci as resistance mechanisms would lead to different predictions on 

molecular phenotypes at the transcriptome and metabolome level. Polymorphisms in the CRE or CDS of 

CAS would predict limited expression changes or accumulation of dhurrin and/or hydrogen cyanide, 
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whereas variation for R-genes would predict larger scale modulation of gene expression, phytohormones, 

and the metabolome. Investigations of sorghum aphid resistance molecular mechanisms have not used 

material that isolates RMES1, such as NILs or mutants. 

Structural variation, such as copy number variation (CNV), underlying important agronomic traits 

can be investigated with the help of pan-genomes (Song et al. 2020). For instance, in Brassica napus, 

only 57% of NLRs were shared by all 50 reference genomes and were more variable in clusters in relation 

to singletons (Dolatabadian et al. 2020), while in sorghum, presence absence variation and large InDels 

correspond to genes selected during domestication such as a 2 kb deletion in Shattering1 (Tao et al. 

2021). The breeding line RTx2783 contains the resistant RMES1 allele and was reported to contain 

several structural variations >3 kb on Chr06, leading to the hypothesis that the causal gene is absent in 

BTx623. Here we use the RMES1 near-isogenic lines (NILs) and the recently developed PI27683 

reference genome to characterize genomic, transcriptomic, phytohormone, and metabolomic variation 

underlying sorghum aphid resistance. 

3.3 Material and Methods 

3.3.1 NIL development 

RMES1 near-isogenic lines (NILs) were developed with a donor parent IRAT204 (M. sorghi 

resistant, donor) and recurrent backcrossing to RTx430 (M. sorghi susceptible). Single plant selections 

were made at the F2 using the KASP marker for RMES1 (Sbv3.1_06_02892438R, Muleta et al. 2022) and 

homozygous +/+ plants were backcrossed. Population development was done at Kansas State University. 

RMES1 homozygous BC3F4’s (NIL+, NIL-) were used for no-choice assay, RNA-sequencing, 

phytohormone quantification, and metabolomic analysis.  

3.3.2 Aphid assays 

M. sorghi were received from Dr. Scott Armstrong at the USDA-ARS Stillwater, Oklahoma. 

Aphids were reared on Tx7000 seedlings under laboratory conditions as described in Nalam et al. 2021. 
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Seedlings were grown in 4.5 inch pots with potting soil and top layer of greens grade to reduce damping 

off. Colonies were grown in a 46 × 46 × 76 cm cage (BioQuip Products Inc., Rancho Dominguez, CA). 

No-choice assays were used to compare aphid fecundity on NILs. A single seedling was grown in 6 inch 

pots using potting soil and a top layer of greens grade. At 3-4 weeks of age, three 4-5 day old apterous M. 

sorghi aphids were placed at the base of the seedlings with a camel hair brush. A clear plastic cylinder 

was placed over the plant to prevent aphids from leaving the pot with an organdy cloth covering for 

ventilation. The number of aphids on each plant were counted at the same time of day for a week. 

Molecular hypotheses were tested using a M. sorghi infestation time course collected for RNA-

sequencing, genotyping, and HPLC. A 2 × 3 factorial design was used with NIL+ and NIL- plants 

infested for 24 (24 hours post infestation, 24-hpi) and 48 hours (48-hpi) as well as an uninfested (control) 

sample collected at the same time as the 48-hpi sample. A 50 ml falcon tube with the conical end cut off 

and a hole with organdy cloth on the cap was placed over the third true leaf of two plants and infested 

with twenty adult apterous aphids. Cotton balls were used to cover the open end of the tube to ensure 

maximum response from aphid feeding. Control samples were handled the same way but were not 

infested. Samples were collected at 12pm after 24 and 48 hours by pooling both leaves. There were 2-4 

replicates collected. The bottom (basal) inch of tissue from both leaves were flash frozen for sequencing. 

The remainder of the sample was flash frozen for HPLC analysis. 

3.3.3 Transcriptome sequencing 

RNA was extracted using Zymo Quick-RNA minipreps (Thermo Scientific) and treated with 

DNAse using Invitrogen Turbo DNA-free kit (Thermo Scientific). RNA quality was checked using a 

NanoDrop 2000 (Thermo Scientific) and ~2 μg was submitted on dry-ice to Novogene Corporation Inc. 

(2921 Stockton Blvd, Sacremento, CA, US, 95817). Samples were sequenced on an Illumina NovaSeq 

6000 Sequencing System with 150 bp paired-end reads with ~6 Gb of data generated per sample. 
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3.3.4 Sequencing data analysis 

Trimmed and quality filtered reads generated by Novogene were aligned to the PI276837 and 

RTx430v2 reference genomes for transcriptome analysis and variant calling, respectively (Deschamps et 

al. 2018). Reference genomes were indexed and mapped to with STAR v2.7.10 using 2-pass mode (Dobin 

et al. 2013). For variant calling, BAM files were processed using the following in GATK v 4.2.5.0 unless 

otherwise noted: Duplicates were marked and read groups were added using Picard, reads were split using 

SplitNCigarReads, variants were called individually using HaplotypeCaller, gVCFs were combined using 

CombineGVCFs, and jointcalled VCF files were produced with GenotypeGVCFs (McKenna et al. 2010). 

Finally, VCFs were filtered using VariantFiltration (QUAL > 30, SQR > 3, FS > 60, MQ < 40). VCFs 

were analyzed in base R with variants summarized over 0.5-Mb windows and segregating markers were 

used to estimate segregation percentage between NILs. 

For transcriptome analysis, transcript abundance was quantified using FeatureCounts v2.0.1 

(Liao, Smyth, and Shi 2014). Differential gene expression was determined using DESeq2 v1.38.1 in R 

v4.2.2 (Love, Huber, and Anders 2014; R Core Team 2021). Principal component analysis was performed 

with R/prcomp and plotted with ggplot2 v3.4.1 (Wickham 2016). Genes were determined to be 

significantly differentially expressed with a Benjamini-Hochberg adjusted p-value < 0.05 and fold change 

greater than 1.5 (L2FC > 0.58).  

Analysis of potential causal gene and pathway candidates were determined a priori through 

literature search and SorghumBase orthology finder (Gladman et al. 2022). Genes involved in aphid 

defense and/or phytohormone signaling in Arabidopsis or other species were searched on SorghumBase 

and all orthologous genes in BTx623v5 were considered as candidate genes (Table 1). Lipoxygenase and 

jasmonate ZIM-domain gene families were characterized in sorghum previously and Sobic IDs were 

already available (Shrestha and Huang 2022; Shrestha, Pant, and Huang 2021). Transcriptome and 

genomic analysis was done in PI276837 in order to identify RMES1 locus differences as it contains the 

resistant allele. In order to convert Sobic IDs to PI276837, orthology groups among the pangenomes were 

determined using OrthoFinder as described in Rice, Spiekerman, Lovell et al, (2024). In the absence of 
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rigorous phylogenetic analysis, all orthologous genes (homologs within the sorghum pangenome) were 

retained as potential candidates (Table 3.1). For analysis of potential causal genes, all 35 PI276837 genes 

between 2.5–3.5 Mb were considered. PI276837 genes are named as such  “SbPI276837.06G016100” 

where Sb = S. bicolor, PI276837 = genotype accession, 06G = chromosome number, 016100 = gene 

number on chromosome where the example is the 161st annotated gene on chromosome 6. 

3.3.5 Structural Variation and Orthology analysis 

The one megabase region centered on 3 Mb from BTx623v5 and PI276837 were aligned using 

MUMMER4 and default parameters (Marçais et al. 2018). Output was converted into a text file for 

plotting in r/ggplot2 (Wickham 2016). RMES1 mapped positions reported in BTx623v3 were converted to 

v5 by blasting the 100-bp flanking sequence of markers. Structural variation annotation was done using 

Synteny and Rearrangement Identifier (SyRI) (Goel et al. 2019). Variants were filtered for highly 

diverged regions (HDR) and size > 100 bp. 

Orthology of sorghum genes was determined using Orthofinder as described in (Emms and Kelly 

2019; Rice et al. 2024). Briefly, protein sequences of 32 sorghum pangenome members and Maize, 

Setaria, Brachypodium, and Panicum were used for phylogenetic comparison to identify orthologous 

groups (OGs) of genes. Copy number variation was identified as genes belonging to the same OG and 

shared in both BTx623v5 and PI276837 but at different copy numbers as defined here Springer et al. 

2009. 

3.3.6 Phytohormone and Metabolome quantification  

As reported by Analytical Resources Core, Bioanalysis and Omic (RRID: SCR_021758) - The 

phytohormone analysis was conducted following reference (Almeida Trapp et al. 2014) with 

modifications described below. Frozen samples were lyophilized. The dried samples were added with 

stainless steel balls and homogenized. The homogenate was added with cold 80% methanol in water, 20 

μL of phytohormone internal standards (SA-d4, ABA-d6, JA-d5, IAA-d5 in 50% methanol), and 10 μL of 

internal standards for untargeted analysis (L-alanine-13C3, L-phenylalanine-13C6, fumaric acid-13C4, L- 
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tryptophan-13C11, and indole-3-acetic-acid-13C6 in 50% methanol). The mixture was vigorously mixed, 

followed by sonication, and another mixing. Then the mixture was centrifuged at 15,000 g and 4°C for 15 

min. Supernatants were recovered, of which 0.1 mL was saved for untargeted analysis and 0.8 mL was 

transferred to a new vial. To the remaining pellets, 80% methanol was added, and the sample was mixed 

for 15 min. The supernatant after centrifugation was combined with first aliquot of 0.8 mL, dried down, 

and resuspended in 50% methanol for phytohormone analysis. A small aliquot (20 μL) was taken from 

each study sample and pooled to generate a quality control (QC) sample. Sample extracts and QCs were 

stored at -80°C until analysis. The authentic standards used in this assay included jasmonic acid-d5 (JA-

D5), jasmonic acid (JA), salicylic acid-D4 (SA-D4), salicylic acid (SA), indole-3-acrylic acid (IACA), 

indole-3-carboxylic acid (ICA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Indole-

2,4,5,6,7-d5-3- acetic acid (IAA-D5) were obtained from CDN Isotopes (Canada). 12-oxo-phytodienoic 

acid (OPDA) was obtained from Cayman (Ann Arbor, MI). IA-aspartic acid (IA-Asp) was obtained from 

Toronto Research Chemicals (Canada). Abscisic acid-D6 (ABA-D6) was obtained from Olchemim 

(Czech Republic). L-alanine-13C3, L-phenylalanine-13C6, fumaric acid-13C4, L- tryptophan-13C11, and 

indole-3-acetic-acid-13C6 were obtained from Cambridge Isotope Laboratories (MA, USA). 

UPLC-MS/MS analysis was performed on a Waters ACQUITY Classic UPLC coupled to a 

Waters Xevo TQ-S triple quadrupole mass spectrometer. Chromatographic separations were carried out 

on a Waters ACQUITY HSS T3 column (2 x 50 mm, 1.7 μM). Mobile phases were (A) water with 0.1% 

formic acid and (B) acetonitrile with 0.1% formic acid. The LC gradient was as follows: time = 0 min, 

1% B; time = 0.65 min, 1% B; time = 2.85 min, 99% B; time = 3.5 min, 99% B; time= 3.55 min, 1% B; 

time =5 min, 1% B. Flow rate was 0.5 mL/min and injection volume was 3 μL. Samples were held at 6°C 

in the autosampler, and the column was operated at 45°C. Mass detector was operated in ESI+ and ESI- 

mode. The capillary voltage set to 0.7 kV. Inter-channel delay was set to 3 msec. Source temperature was 

150°C and desolvation gas (nitrogen) temperature 450°C. Desolvation gas flow was 1000 L/h, cone gas 

flow was 150 L/h, and collision gas (argon) flow was 0.15 mL/min. Nebulizer pressure (nitrogen) was set 

to 7 Bar. The MS acquisition functions were scheduled by retention times. Auto dwell feature was set for 
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each function and dwell time was calculated by Masslynx software (Waters) to achieve 12 points-across-

peak as the minimum data points per peak. The retention time, MRM transitions, cone and collision 

energy of each compound were described in spreadsheet “transitions”. 

All Raw data files were imported into the Skyline open source software package (MacLean et al. 

2010). Each target analyte was visually inspected for retention time and peak area integration. Peak areas 

were extracted for target compounds detected in biological samples and normalized to the peak area of the 

appropriate internal standard or surrogate in each sample. Absolute quantitation (ng/g) was calculated 

using the linear regression equation generated for each compound from the calibration curve. 

Sample run order was fully randomized, with a pooled QC sample injected approximately every 7 

injections. The process (extraction) blank was also injected last. One microliter of each sample was 

injected onto a Waters Acquity UPLC system. Separation was achieved using a Waters ACQUITY UPLC 

Premier T3 1.7μm Column (2.1 x 100 mm), using a gradient from solvent A (0.1% formic acid in water) 

to solvent B (0.1% formic acid in acetonitrile) and a flow rate of 0.5 mL/min. The column and samples 

were held at 45 °C and 6 °C, respectively. The column eluent was infused into a Waters Xevo G2-XS Q-

TOF-MS with an electrospray source in negative ionization sensitivity mode, with MSE data independent 

MS/MS acquisition. The following parameters were used for MS1 scan: 50-1200 m/z mass range with 0.1 

seconds per scan, collision energy 6 V. MSE acquisition occurred at a scan rate of 0.1 seconds, mass 

range 50-1200 m/z, and collision energy was ramped from 15 to 30 V. Calibration was performed using 

sodium formate with 1 ppm mass accuracy. The capillary voltage was held at 700 V in positive mode or 

2200 V in negative mode. The source temperature was held at 150 °C and the nitrogen desolvation 

temperature at 450 °C with a flow rate of 1000 L/hr. Lockspray reference mass was used to correct for 

drift, with 40 seconds interval between scans, 0.1 seconds/scan and signal averaged over 3 scans. LeuEnk 

was used for mass correction, with reference masses of either positive 556.2771 m/z or negative 554.2615 

m/z. 

RAMClustR version 1.2.4 in R version 4.2.2 (2022-10-31) was used to normalize, filter, and 

group features into spectra. MSFinder (Tsugawa 2016) was used for spectral matching, formula inference, 
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and tentative structure assignment. Results were imported into the RAMClustR object. A total score was 

calculated based on the product scores from the findmain function and the MSfinder formula and 

structure scores. A total of 14130 annotation hypotheses were tested for 4306 compounds. Spectra 

matches took precedence over computational inference based annotations. The following database(s) were 

assigned as 'priority': chebi, coconut. The database priority.factor was set to 0.9 to decrease scores for 

compounds which tailed to match priority database(s). The inchikey priority.factor was set to 0.9 to 

decrease scores for compounds with non-matching inchikey(s). The highest total score was selected for 

each compound, considering all hypotheses. 

3.4 Results 

3.4.1 RMES1 NILs are appropriate for testing molecular mechanism 

In order to test hypotheses on RMES1 mechanism, BC3 near-isogenic lines (NIL+, NIL-) were 

derived from IRAT204 (RMES1 donor parent) and RTx430 (susceptible recurrent parent). RNA-

sequencing of NILs mapped to RTx430v2 was used to determine the genotype. We found that 94.7% of 

the genome was isogenic in our NILs with regions segregating on chromosomes 1, 2, 3, 6, 7, and 8 

(Figure 3.2a). NIL+ contained an introgression of 5.16 Mb on Chr06 from 2,126,567 to 7,281,855 (in 

RTx430v2 coordinates). The syntenic region on PI276837 corresponds with 2,061,383 to 7,246,956 

which encompasses the RMES1 QTL at approximately 2.75–3.25 Mb. Phenotyping of the NILs 

confirmed they retained the antibiosis-resistance trait (Figure 3.2b,c). A significant difference in aphid 

population was observed at 5 days post infestation (p < 0.01) and 7 days (p < 2e-4), with a rate of 1.44 

nymphs per day on NIL- where as NIL+ had a rate of 0.73 nymphs per day. 

3.4.2 Resistant NILs undergo widespread transcriptomic changes after aphid infestation 

Several annotated NLR genes near RMES1 in BTx623 have been highlighted as candidate causal 

genes (Wang et al. 2013). The hypothesis that RMES1-resistance is induced by an NLR gene, as opposed 

to constitutive mechanisms, would predict the transcriptome of infested NILs to be significantly altered in 
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NIL+ relative to NIL-. To test for global induced responses, we sequenced the transcriptomes of 

uninfested (control), 24 hours post infestation (24-hpi) and 48-hpi NILs. The NIL+ underwent global 

transcriptional changes relative to the NIL- evident in principal component analysis (Figure 3.3a). 

Principal component 1 (PC1) explained 29% of variance (PVE) and captured transcriptional differences 

in infested NILs at both time points relative to uninfested samples. Differences along PC1 were more 

pronounced in the NIL+ than NIL-. PC2 (PVE = 17%) captured genotype differences. PC3 (PVE = 10%) 

distinguished between 24 hpi and 48 hpi timepoints with control samples intermediate (Figure 3.4b). 

There were 312 and 555 genes significantly up-regulated and down-regulated, respectively, in NIL+ 

relative to NIL- (adjusted p < 0.05, fold change > 1.5) representing constitutive transcriptional 

differences. There were 1,807 and 1,950 genes up-regulated in NIL+ at 24-hpi and 48-hpi relative to 

uninfested controls, respectively, whereas 1,933 and 2,101 genes were down-regulated (Figure 3.4c). 

Only 238 and 66 genes were upregulated in NIL- at 24- and 48-hpi, respectively, and 255 and 24 genes 

were downregulated. 

3.4.3 Pangenomes reveal structural variation at RMES1 

RMES1 was mapped between 2.7–3.1Mb on Chr06 in BTx623v3, which lacks the resistant allele 

(F. Wang et al. 2013; Muleta et al. 2022). In order to generate hypotheses on what specific genomic 

variant(s) underlie resistance, we compared the recently developed reference genome (PI276837v1) 

which possesses the RMES1 resistant allele (Muleta et al. 2022) to the susceptible BTx623v5, referred to 

hereafter as BTx623. We aligned a 1 Mb region centering on RMES1 (Chr06:2500000..3500000) of 

PI276837 to BTx623 and identified several structural variants absent in BTx623 (Figure 3.4a). There 

were nine highly diverged regions (HDRs) > 10 kb near RMES1 including two which correspond to 

insertions (2,929,232 – 2,978,048 and 2,989,720 – 3,176,946) (Figure 3.4b).  Several smaller SVs (<3 kb) 

also existed in the region.  

Next, we evaluated candidate causal loci using genomic and transcriptomic evidence. There were 

35 genes predicted in PI276837 between 2.5–3.5 Mb on Chr06 (Figure 3.4c). Twenty-one genes overlap 
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with HDRs. Candidate loci across the region based on hypothesized function include CAS (cysteine 

synthase C1, SbPI276837.06G016100) and eight tandem NLR loci (SbPI276837.06G016400 – 

SbPI276837.06G017100). CAS1 and 7 of 8 NLR loci were located in HDRs, with the NLR genes in two 

HDRs corresponding to the large insertion. SbPI276837.06G016400 was in a conserved region. We used 

orthology groups (OG) to determine the relationship between the three BTx623 annotated NLRs and eight 

PI276837 NLR loci. In OG0020033 (hereafter, NLR-A), Sobic.006G017200, SbPI276837.06G016400 

and SbPI276837.06G016900 were homologous and represent a CNV. In OG0000032 (hereafter NLR-B), 

Sobic.006G017400 and Sobic.006G017500 were homologous to the remaining six NLR loci and 

represent a second CNV. NLR-A did not have any homologs outside of the RMES1 region of Chr06 and 

was not orthologous to NLRs in other grasses. Genes belonging to NLR-B were more diverse with 

homologs on chromosome 7 and 10, as well as in Brachypodium, Panicum, Seteria, and Zea. 

Transcriptome sequencing and the RMES1+ reference genome allowed hypotheses on CRE-

based mechanisms to be tested. Only 28 of 35 annotated genes were expressed in one or more samples 

(Figure 3.4d). Two NLR-B genes (SbPI276837.06G016500 and SbPI276837.06G016700) were not 

expressed in either genotype. Two genes (SbPI276837.06G015300, SbPI276837.06G018000) were not 

expressed in resistant genotypes, whereas four genes (SbPI276837.06G016800, SbPI276837.06G017000, 

SbPI276837.06G0171000, SbPI276837.06G017700) were not expressed in susceptible genotypes. The 

most strongly expressed gene was CAS1 (SbPI276837.06G016100). Both genes in NLR-A 

(SbPI276837.06G016400 and SbPI276837.06G016900) were expressed in all samples.  

In comparing infested transcriptomes to controls, only NIL+ had differentially expressed genes 

(Figure 3.4e). Two genes were upregulated at both timepoints (SbPI276837.06G018000, 

SbPI276837.06G018400) whereas SbPI276837.06G017400 was downregulated at 24-hpi. To determine 

genetic differences in expression (constitutive), we compared control NIL+ to control NIL- and found 

three genes which were upregulated in resistant NILs relative to susceptible NILs 

(SbPI276837.06G016400, SbPI276837.06G016600, and SbPI276837.06G017700). Low expression of 
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several NLR-B genes led to apparent expression only in resistant NILs but did not result in significant 

genotype differences (Figure 3.4e). 

3.4.4 The salicylic acid pathway is differentially regulated along with phytohormone accumulation 

Phytohormones are a major component of induced HPR signaling. Expression of biosynthesis and 

signaling genes are indicative of a plant response to infestation, typically to mount a defense in ‘resistant’ 

plants. We examined homologs of the salicylic acid pathway in NIL transcriptomes and found strong 

upregulation in response to infestation in an RMES1-dependent manner (Figure 3.5). The chorismate 

mutase homologs were not differentially expressed, however the PAL and ICS biosynthesis pathways 

were significantly altered. Among six PAL homologs, only SbPI276837.06G113360 was significantly 

upregulated at both 24- and 48-hpi in NIL+. A homolog of AIM, SbPI276837.04G112200, was also 

significantly upregulated at both timepoints. In contrast, the single ICS homolog present in sorghum was 

downregulated in NIL+ at both timepoints and NIL- at 24-hpi. Several other pathway homologs (EDS5, 

EPS1) had reduced expression in either genotype. The final step in the ICS pathway involves EPS1, 

which has three homologs in sorghum. SbPI276837.07G011200 expression is reduced after infestation 

but was only significant in NIL+ at 48-hpi. SbPI276837.07G012800 belongs to an orthogroup which is 

only present in 15 of the 32 member pangenome and was significantly upregulated in NIL+ at both 

timepoints. We looked for evidence of salicylic acid accumulation in known receptor and signaling genes 

downstream of phytohormone biosynthesis. We found two PR1 homologs, SbPI276837.01G304400 and 

SbPI276837.10G018500, were significantly less expressed in NIL+ prior to infestation, but upregulated in 

NIL+ in response to aphid infestation. SbPI276837.10G018500 was significantly downregulated in NIL- 

at 24-hpi. 

We next examined other phytohormone signaling pathways for response to infestation. The 

jasmonic acid (JA) pathway response was stronger in NIL+ plants than NIL- (Figure 3.6). Three members 

of the 13-LOX gene family and AOC were significantly upregulated in NIL+ lines. Other members of the 

JA biosynthesis pathway like AOS and OPR7 were expressed higher in NIL+ plants but were not 
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significantly differentially expressed after infestation. Finally, the COI1 gene involved in JA signalling 

was upregulated due to infestation in NIL+ plants. While none were statistically significant between 

control samples, genes involved in JA biosynthesis were lower expressed in NIL+ plants than NIL-. 

Jasmonate ZIM domain (JAZ) family, involved in JA downstream signaling and crosstalk, are 

largely unresponsive to aphid infestation regardless of genotype (Figure 3.6). Only JAZ14 was 

upregulated significantly at 24-hpi in NIL+. Notably, several members of this family were expressed 

lower in NIL+ plants constitutively, including JAZ3, JAZ4, JAZ6, JAZ8, and JAZ9. Finally, we examined 

genes involved in ABA biosynthesis and found positive regulation in NIL+ lines after infestation but not 

NIL-. One homolog of AAO4, NCED9, NAC1, and NAC2 were upregulated significantly at both 

timepoints or 48-hpi in NIL+. 

Host-plant resistance mechanisms proposed or known to negatively affect aphid infestation 

include death acids produced by 9-LOX, WRKY86, PAD4, and the dhurrin pathway. We found that 

LOX5 and LOX9 were downregulated in NIL+ and NIL-, respectively, at 24-hpi (Figure 3.7). LOX2 was 

upregulated significantly in NIL+ lines at both timepoints. WRKY86 was not significantly differentially 

expressed, however its expression was reduced at 24-hpi and elevated at 48-hpi in both genotypes. 

Finally, PAD4 was strongly upregulated at 24-hpi in NIL+ while its constitutive expression was 

significantly lower in NIL+. The dhurrin pathway was generally downregulated after infestation (Figure 

3.7). Two members of the biosynthetic gene cluster on Chr01, CYP79A1 and CYP71E1, and the 

transporter enzyme MATE2 were downregulated after infestation. 

Phytohormone quantification was used to confirm that salicylic acid and other signaling 

molecules were responding to aphid infestation treatment and RMES1 genotype. Salicylic acid abundance 

was significantly different (p < 0.05) between genotype and treatment, and increased over the time course 

in both genotypes. Salicylic acid fold increase was 11.9 and 12.9 in NIL+ relative to the control whereas 

NIL- had a 1.7 and 4.8 fold increase. Jasmonic acid, OPDA, and IAA accumulation responded to the 

treatment only (p < 0.01). Jasmonic acid and OPDA had similar trends of less hormone abundance at 24-

hpi relative to control and 48-hpi. Differences in ICA and IA-asp were significant (p < 0.01) for both 
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genotype and phenotype, both increasing over the time course but always more abundant in NIL+ than 

NIL-. ABA expression was not significantly affected by treatment or genotype. 

 

3.4.5 Metabolite signatures are associated with resistance 

Evidence of induced transcriptional and phytohormone changes depending on RMES1 would 

predict metabolite responses to infestation. In order to generate hypotheses on metabolites involved in the 

RMES1-mechanism, we examined the metabolome of infested NILs. There were 4,306 metabolites 

detected in our time course, however only 202 were significantly altered (fold change > 2, p-value < 0.01) 

after infestation in at least one comparison. There were more metabolites differentially expressed in NIL+ 

than NIL- at both timepoints (Figure 3.9). There were slightly more down-regulated metabolites at 24-hpi 

in NIL+, however there were more up-regulated metabolites at 48-hpi. Whereas the number of 

differentially expressed metabolites increased between 24-hpi and 48-hpi for NIL+, it decreased for NIL-. 

Several metabolites had large fold change due to infestation in NIL+ and are candidates for 

aphid-resistance mechanisms. Six analytes including a putative phenolic glycoside, hydrolyzable tannin, 

and pentose phosphate were among the most strongly responsive metabolites upregulated at both 

timepoints in NIL+ but not NIL- (Figure 3.10). A distinct pentose phosphate was highly upregulated at 

48-hpi in both genotypes. A putative wax monoester and a O-glycosyl compound was downregulated in 

NIL+ lines throughout the time course. 

3.5 Discussion 

Biotic resistance traits can be overcome by evolving pest populations and must therefore be 

characterized and managed, however plant pathogen systems have been much better elucidated than 

insects. In cereal and aphid systems, few HPR mechanisms have been defined and open questions remain 

as to the effectiveness and durability of individual mechanisms (Mou et al. 2023; Harris-Shultz, 

Armstrong, and Jacobson 2020). Here, we show RMES1 induces dramatic changes in the transcriptome 

and metabolome of sorghum and propose a set of candidate NLR loci underlying the QTL. In response to 
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selection pressure since the emergence of M. sorghi in 2013, the RMES1 locus was rapidly swept to 

fixation in the Haitian sorghum breeding program and has since become widely used (Muleta et al. 2022). 

The biotype shifts of several aphid species (S. graminum, D. noxia) on cereals in the Great Plains 

motivates research on the molecular mechanism of RMES1 to establish its durability and how best to 

deploy it. The antifeedant properties of dhurrin to S. frugiperda and genomic variation for the 

detoxification enzyme CAS1 (Figure 3.4a) support its inclusion as an RMES1 candidate (Gruss et al. 

2022). However, the lack of constitutive or induced transcriptional difference (Figure 3.4), or dhurrin 

abundance, do not support dhurrin as a mechanism. Likewise, dhurrin does not have a known signaling 

role that would result in large transcriptomic and metabolomic reorganization as are seen in NIL+ (Figure 

3.3, 3.9). CAS1 is highly expressed in developing sorghum leaves where its function detoxifying released 

hydrogen cyanide would be expected to decrease in order to provide resistance causing auto-toxicity as 

well (Gleadow et al. 2021). Interestingly, RMES1 downregulates biosynthetic and transport steps of the 

dhurrin pathway (Figure 3.7) and may reflect redirection of primary and secondary metabolism 

facilitating plant defense, as seen in Arabidopsis and rice responses of SnRK1 and TOR to biotic pests 

(Margalha, Confraria, and Baena-González 2019; De Vleesschauwer et al. 2018). 

Large genomic variation may be missed when a single, susceptible, reference genome is used to 

analyze HPR molecular mechanisms. Structural variation reported in RMES1 genotype RTx2783 was 

similar to PI276837 with a large insertion that incompasses several NLR genes (B. Wang et al. 2021). 

Both NLR-A and NLR-B orthogroups appear to contain copy number variation in PI276837 with two and 

five homologs, respectively, compared to one and two homologs present in BTx623 (Muleta et al. 2022). 

Plants have extensive genomic variation for NLR gene which often cluster and are found in regions of 

structural rearrangements (Van de Weyer et al. 2019; B. Wang et al. 2021; Dolatabadian et al. 2020). The 

presence of NLR gene SbPI276837.06G016400 in a region largely shared by both reference genomes and 

its constitutive difference in expression suggests this member of the NLR-A orthogroup may provide 

resistance through higher expression of the receptor. The apparent expression of the other NLR-A 

orthogroup member, SbPI276837.06G016900, in susceptible NILs is unexpected as it lies within the 
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insertion and is absent in BTx623v5 and other rmes1- accessions of the pangenome resource. This 

discrepancy could be due to sequence homology between the two homologs confounding read-mapping 

(Robert and Watson 2015). The four expressed NLR-B orthogroup homologs in PI276837 are also 

candidates for RMES1, however transcription of SbPI276837.06G016800 and SbPI276837.06G017100 is 

nearly undetectable and unlikely as candidates (Figure 3.4d). SbPI276837.06G016800 and 

SbPI276837.06G017000 are only expressed in NIL+ similar to SbPI276837.06G016600, however the 

latter is expressed more strongly and a more likely candidate for RMES1. The RMES1 region is likely to 

have undergone more than one structural rearrangement, a common feature of subtelomeric regions (N. Li 

et al. 2023). The BTx623 organization of one NLR-A gene and two NLR-B genes in tandem appears to be 

duplicated in PI276837 as well as a second duplication of one of the NLR-B loci. These two orthologous 

groups at RMES1 are equally likely candidates, with transcriptomic evidence elevating 

SbPI276837.06G016400 and SbPI276837.06G016600 as candidate genes, however positional cloning or 

gene-editing will be required to conclusively determine the causal loci underlying host plant resistance. It 

should be noted that expression differences of four other loci near RMES1 were observed and can not be 

ruled out as candidate loci without further investigations, however unlikely. 

Aphid induced changes to phytohormone pathways have been observed in maize, wheat, and 

sorghum (Batyrshina et al. 2020; Tzin et al. 2015; Huang, Shrestha, and Huang 2022) but their role in 

RMES1 HPR has not been demonstrated. Comparisons between resistant RTx2783 and susceptible 

BTx623 showed JA, ABA, IAA, and ICA abundance, as well as pathway marker gene expression, was 

higher in the resistant genotype at either 1 or 3 day post infestation, supporting their role in antibiosis-

resistance (Huang, Shrestha, and Huang 2022; Limaje et al. 2018). We found RMES1 led to ~2.5 fold 

increase in JA at 48-hpi but was not significantly different between genotypes along with ABA, IAA, and 

ICA. JA and ABA biosynthesis genes (LOX, AOC, NCED9) and marker genes (COI1, NAC2) were 

induced in NIL+ plants only, suggesting these pathways may be modulated by RMES1 over longer 

periods of infestation or they have additional functions that do not increase JA and ABA abundance.  
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SA is a major pathway for aphid resistance in R-gene pathways (Q. Li et al. 2006) and our study 

suggests it is the primary signaling component of RMES1 (Figures 3.5, 3.6, 3.8). SA was reported to 

increase dramatically after infestation but remained upregulated only in RTx2783 at 6 days post 

infestation. The exogenous application of SA induced antibiosis resistance in BTx623 to a higher degree 

than other phytohormones, demonstrating its role in inducing aphid defense (Huang, Shrestha, and Huang 

2022). The induction of the PAL biosynthesis pathway and PR1 marker genes in NIL+ agreed with the 

rapid increase in SA abundance at 24-hpi and its central role in the defense induction (Figure 3.6, 3.8). SA 

is an important signaling mechanism for Mi-1.2 mediate resistance in tomato to M. euphoribae as well as 

proposed in RAG1-resistance to soybean aphid (Q. Li et al. 2006; Studham and MacIntosh 2013). We 

propose that RMES1 is similarly activating defenses through NLR-induced SA signaling. 

The PAL pathway is likely a major SA biosynthesis pathway in cereals like rice and barley, as 

opposed to the ICS pathway which is the most important in Arabidopsis (Qin et al. 2019; Duan et al. 

2014). We found orthologs of both pathways in PI276837 but induction of PAL and AIM coincided with 

down regulation of ICS suggesting that ICS activity is antagonistic for SA accumulation or signaling 

(Figure 3.5b). Of the three homologs with orthology to AtEPS1, an acyltransferase which catalyzes the 

last step in the ICS pathway, two have drastically different responses to infestation and may represent 

diverged function or more complex SA biosynthesis mechanisms which are PBS3/EPS1 independant 

(Torrens-Spence et al. 2019). Downstream of phytohormone accumulation, metabolite responses included 

several metabolite groups known to play roles in aphid defense. Compounds predicted to be 

glucosinolates, alkaloids, and cardenolides were induced by RMES1 and have known roles in aphid 

defense (Züst and Agrawal 2016). Some glucosinolates can elicit callose deposition which can also 

contribute to defense (Clay et al. 2009). Tannins are another compound linked to aphid resistance (Grayer 

et al. 1992) and a candidate hydrolyzable tannin is strongly upregulated only in resistant lines (Figure 

3.9). The identity of these and other compounds detected in the RMES1 NIL metabolome will be further 

investigated, as well as correlated with gene expression to build stronger connections between genotype 

and endophenotypes relevant to resistance (Figure 3.1). 
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NLR genes have been proposed as S. graminum resistance mechanisms in sorghum (Zhang, 

Huang, and Huang 2022) and to underlie RMES1 resistance (Wang et al. 2021) which imply global 

changes to molecular phenotypes characteristic of R-gene resistance (Wang, Song, and Chai 2023). Under 

the R-gene hypothesis supported here (Figure 3.3, 3.4, 3.5, 3.8, and 3.9), an undetermined HAMP is 

leading to effector triggered immunity through a suite of mechanisms (Snoeck, Guayazán-Palacios, and 

Steinbrenner 2022). The lack of transcriptional or metabolic responses in NIL- plants could be due to 

undetected feeding by the aphid where no other induction mechanisms are triggered. Alternatively, the 

aphid may be successfully manipulating host plant responses to maintain feeding site quality (Yates and 

Michel 2018). RMES1 appears to act as a defense master switch that induces responses in an otherwise 

susceptible genomic background (Figure 3.2). R-genes were first associated with hypersensitive response 

(HR) in pathosystems where localized cell-death was observed (Morel and Dangl 1997). However, like 

Mi-1.2 which does not induce HR in tomato to potato aphid Macrosiphum euphorbiae (Martinez de 

Ilarduya, Xie, and Kaloshian 2003), RMES1 also does not induce HR. In the breeding population where 

RMES1 was mapped through selection signatures, many unidentified QTL were also selected for 

suggesting natural variation for downstream defenses could exist which increase the RMES1 phenotype 

(Muleta et al. 2022). WRKY86 was not significantly regulated by RMES1. In susceptible genotype 

BTx623, this putative aphid resistance gene was downregulated immediately after infestation (2-hpi and 

4-hpi) and only moderately upregulated (p < 0.05, L2FC ~ 0.6) at 48-hpi and therefore may still 

contribute to resistance at later stages of infestation (Kiani and Szczepaniec 2018). The large 

transcriptome and metabolome reorganization suggest multiple defense and metabolic pathways respond 

to infestation as opposed to an individual mechanism like cyanogenesis which would involve few genes 

and metabolites. Our proposed genotype to phenotype map should be rigorously tested to confirm or 

propose alternative hypotheses. However, this R-gene mechanism highlights the importance of mindful 

breeding for aphid resistance in order to bolster RMES1 with RMES2 and additional quantitative sources 

of resistance. 
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Chapter 3 Tables 
 

 

 

Table 3.1, a priori candidate loci for signaling and defense pathways. 
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Table 3.1, continued 
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Chapter 3 Figures 
 

 

Figure 3.1 - Hypotheses on the genotype to phenotype (G2P) map for RMES1. Two primary hypotheses 
are shown and the molecular phenotype each would predict. CDS - coding sequence, CRE - cis-regulatory 
variation, CAS - β-cyanoalanine synthase, NLR - nucleotide-binding leucine-rich repeat. 
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Figure 3.2 - RMES1 BC3 NIL genome and phenotype. a) Genotype by RNA-sequencing show genomic 
regions segregating between NIL genotypes. Red dashed line indicates RMES1. b) Sorghum aphid 
infestation on BC3 NILs. c) No-choice assay of NILs over 7 day infestation. (* p < 0.05, ** p < 0.01, *** 
p < 0.001) 
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Figure 3.3 - Resistant NILs remodel their transcriptome in response to infestation. a) Principal 
component (PC) 1 and PC2 of global gene expression for resistant (NIL+) and susceptible (NIL-) 
genotypes under control (uninfested), 24-HPI, and 48-HPI treatments. b) PC2 and PC3. c) Number of 
significantly differentially expressed genes. Res=resistant, Sus=susceptible, hpi=Hours Post Infestation. 
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Figure 3.4 - Candidate genes on insertion present in resistant reference genomes PI276837. a) Chr06 
RMES1 region alignment of PI276837 with BTx623. Previously reported QTL for RMES1 in BTx623 
converted to v5, red dashed line - S06_3096975 fixation-associated SNP, blue region - Chr06:2768472-
2898239 linkage mapping (F. Wang et al. 2013; Muleta et al. 2022). b) Highly diverged regions (HDRs) 
between reference genomes > 10 kb. c) Annotated gene locations shown by grey boxes, forward coding 
strand above line, reverse coding strand below line. Numbers below corresponding genes indicate 
expressed transcripts. d) Heatmap of expression of genes near RMES1 in all treatments. Normalized 
expression from DESeq2 was log transformed. Grey boxes indicate few to no mapped reads. 
Res=resistant, Sus=susceptible, hpi=Hours Post Infestation. e) Heatmap of log2 fold changes of genes 
near RMES1. Significant (fold change > 1.5, p < 0.05) differentially expressed genes are indicated with 
black boxes around corresponding cells. Top four rows correspond to genotype-treatment compared with 
uninfested controls within genotype. Bottom row indicates uninfested controls compared between 
genotype. 
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Figure 3.5 - Marker genes for the salicylic acid pathway are up-regulated by RMES1 in response to 
infestation. a) Conceptual figure of salicylic acid biosynthesis and signaling pathway. b) Heatmap of log2 
fold changes of homologs of pathway. Res=resistant, Sus=susceptible, hpi=Hours Post Infestation. 
Significant (fold change > 1.5, p < 0.05) differentially expressed genes are indicated with black boxes 
around corresponding cells. Top four rows correspond to genotype-treatment compared with uninfested 
controls. Bottom row indicates uninfested controls compared with one another. 
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Figure 3.6 - Induced expression of JA, JAZ, and ABA pathways by RMES1 response to infestation. 

Heatmap of log2 fold changes of genes in pathways of interest. Res=resistant, Sus=susceptible, 
hpi=Hours Post Infestation. Significant (fold change > 1.5, p < 0.05) differentially expressed genes are 
indicated with black boxes around corresponding cells. Top four rows correspond to genotype-treatment 
compared with uninfested controls. Bottom row indicates uninfested controls compared with one another. 
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Figure 3.7 - Candidate defense mechanisms are differentially expressed by RMES1 in response to 
infestation. Heatmap of log2 fold changes of genes of interest. Res=resistant, Sus=susceptible, hpi=Hours 
Post Infestation. Significant (fold change > 1.5, p < 0.05) differentially expressed genes are indicated with 
black boxes around corresponding cells. Top four rows correspond to genotype-treatment compared with 
uninfested controls. Bottom row indicates uninfested controls compared with one another. 
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Figure 3.8 - Salicylic acid, IAA, and IA-asp phytohormones respond in an RMES1-dependent manner. 
Abundance of phytohormones in uninfested (control) and infested (24-hpi, 48-hpi) samples. G (genotype) 
and T (treatment) indicate significance in 2-way ANOVA (* = p < 0.05, ** = p < 0.01). Mean ± standard 
error, n = 2-4. Res=resistant, Sus=susceptible, hpi=Hours Post Infestation. 
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Figure 3.9 - Accumulation of metabolites in response to aphid infestation is RMES1-dependant. Number 
of significantly differentially expressed metabolites. Res=resistant, Sus=susceptible, hpi=Hours Post 
Infestation. 
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Figure 3.10 - RMES1-dependent differential expression of metabolites indicates diversified suite of 
defenses. Log2 fold change of significantly differentially expressed metabolites determined by Student's 
t-test between infested treatment groups and control groups (L2FC > 2, p < 0.01). Plotted bars are colored 
by p-value. Putative parental class of each metabolite is listed, however some analytes were unable to be 
annotated. 
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Chapter 4 - Transcriptional signatures of wheat inflorescence development1 
 

 

 

4.1 Summary 

In order to maintain global food security, it will be necessary to increase yields of the cereal crops 

that provide most of the calories and protein for the world’s population, which includes common wheat 

(Triticum aestivum L.). An important factor contributing to wheat yield is the number of grain-holding 

spikelets which form on the spike during inflorescence development. Characterizing the gene regulatory 

networks controlling the timing and rate of inflorescence development will facilitate the selection of 

natural and induced gene variants that contribute to increased spikelet number and yield. 

In the current study, co-expression and gene regulatory networks were assembled from a temporal wheat 

spike transcriptome dataset, revealing the dynamic expression profiles associated with the progression 

from vegetative meristem to terminal spikelet formation. Consensus co-expression networks revealed 

enrichment of several transcription factor families at specific developmental stages including the 

sequential activation of different classes of MIKC-MADS box genes. This gene regulatory network 

highlighted interactions among a small number of regulatory hub genes active during terminal spikelet 

formation. Finally, the CLAVATA and WUSCHEL gene families were investigated, revealing potential 

roles for TaCLE13, TaWOX2, and TaWOX7 in wheat meristem development. The hypotheses generated 

from these datasets and networks further our understanding of wheat inflorescence development. 

 

 

 

1 This chapter was reproduced verbatim from “VanGessel, et al. Transcriptional signatures of wheat inflorescence 

development. Scientific Reports (2023)”. The text benefitted from writing and editing contributions from 

contributing authors and reviewers selected by the publisher. The ordering of the materials in this dissertation are 

consistent with the content available online but have been renumbered to reflect incorporation into this dissertation. 
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4.2 Introduction 

The world population is expected to exceed nine billion people by 2050, signaling that further 

increases in grain production will be required to ensure food security (Ray et al. 2013). Because there 

remain few opportunities to expand arable land area, increasing the yield of major cereal crops through 

genetic improvement will be critical to meet this goal. In common wheat (Triticum aestivum L.) 

characterizing the genetic pathways regulating grain size and grain number will facilitate the rational 

combination of superior alleles in wheat breeding programs to help drive continued yield improvements 

(Brinton and Uauy 2019). 

Grain number in wheat is determined to a large extent by inflorescence architecture. By 

integrating photoperiod and temperature cues, the vegetative shoot apical meristem (SAM) transitions to 

the reproductive inflorescence meristem (IM), during which the developing spike passes through the 

characteristic double ridge (DR) stage, forming a lower leaf ridge and an upper spikelet ridge 

(Waddington, Cartwright, and Wall 1983). The lower leaf ridge is repressed by the MIKC-MADS box 

transcription factors (TFs) VRN1, FUL2 and FUL3 (Li et al. 2019), whereas the upper ridges develop 

glumes, lemmas, and floret primordia. As the IM elongates, spikelet meristems are added at the growing 

apex, while basal spikelets continue to develop. Wheat spikes are determinate structures and the addition 

of lateral spikelets ends when the terminal spikelet is formed. Therefore, spikelet number is determined 

by the timing and rate of meristem development preceding terminal spikelet formation. Each spikelet has 

the potential to form between three and six grains (Bonnett 1966) and spikelet number is correlated with 

grain number and yield (Rawson 1970; Cao et al. 2020; Würschum et al. 2018). 

Shoot meristems are organized around the organizing center and stem cell maintenance is 

governed by the conserved CLAVATA-WUSCHEL negative feedback loop (Somssich et al. 2016). In 

Arabidopsis, the homeodomain TF WUS induces CLV3, which encodes a secreted peptide that forms 

receptor complexes repressing WUS (Fletcher 2018). Manipulation of this pathway confers variation in 

locule number in tomato (Solanum lycopersicum) and kernel row number in maize (Zea mays) 
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(Rodriguez-Leal et al. 2017; Chen et al. 2021). The wheat genome contains 104 CLAVATA3/EMBRYO 

SURROUNDING REGION (CLE) peptides (Li et al. 2019) and 44 WUSCHEL RELATED HOMEOBOX 

(WOX) TFs (Li et al. 2020), but the specific ones regulating inflorescence meristem development in 

wheat are yet to be identified. 

Inflorescence development is controlled by a complex regulatory network involving multiple 

classes of transcription factors (TFs) which orchestrate rapid and dynamic changes in gene expression. 

The Type ΙΙ MIKC MADS-box TFs play critical roles in flower development across the angiosperms and 

can be divided into A, B, C, D and E-classes that interact mainly as tetrameric complexes in a spatially 

regulated manner to direct sepal (A- and E-), petal (A-, B-, E-), stamen (B-, C-, E-), and carpel 

development (C- and E-class genes) (Honma and Goto 2001; Theißen 2001). This family expanded 

during cereal evolution and the hexaploid wheat genome contains 201 MIKC MADS-box genes, 

classified into 15 phylogenetic subclades (Schilling et al. 2020). 

The SHORT VEGETATIVE PHASE (SVP) subclade members SVP1, VRT2, and SVP3 promote 

the transition from the vegetative SAM to the IM, along with the AP1/SQUA subclade genes VRN1, 

FUL2 and FUL3 (Li et al. 2019; Li et al. 2020). Subsequently, AP1/SQUA genes suppress the expression 

of SVP genes, which may be required to promote interactions between AP1/SQUA proteins and the E-

class MIKC-MADS proteins SEPELLATA1 (SEP1) and SEP3, which are predominantly expressed in 

floral organogenesis during early reproductive growth (Li et al. 2021). The natural VRT2pol allele from 

Triticum polonicum exhibits ectopic expression and is associated with elongated glumes and increased 

grain length (Adamski et al. 2021). VRT2-overexpression lines show reduced transcript levels of B-class 

(PI and AP3) and C-class (AG1 and AG2) MIKC-MADS box genes, although the role of these latter 

subclades in wheat inflorescence development remains to be characterized (Li et al. 2021). 

Although much has been learned about wheat inflorescence development from positional cloning, 

reverse genetics, and comparative genetic approaches, we lack a full understanding of the regulatory 

networks controlling meristem determinacy and developmental transitions. Only a fraction of the 



 87 

hundreds of QTL for thousand kernel weight, kernel number per spike, and spikelet number have been 

cloned and validated to date, indicating that a large proportion of quantitative variation in these traits 

remains uncharacterized (Cao et al. 2020). 

Transcriptomics provides a complementary approach to characterize the regulatory networks 

underlying inflorescence development that is empowered by an expanding set of wheat genomic 

resources (IWGSC 2018; Walkowiak et al. 2020). Co-expression and gene regulatory networks (GRNs) 

are powerful tools to interpret temporal correlation and causal relationships between genes, and to help 

identify critical hub genes that coordinate development (Rao and Dixon 2019; van den Broeck et al. 

2020). Previous transcriptomic studies in wheat inflorescence tissues described the differential expression 

profiles of thousands of genes during vegetative and floral meristem development, including the stage-

specific expression of different TFs and hormone biosynthesis and signaling genes (Feng et al. 2017; Li et 

al. 2018). A population-associative transcriptomic approach was used to identify regulators of wheat 

spike architecture, including CEN2, TaPAP2/SEP1-6, and TaVRS1/HOX1, which were validated in 

functional studies (Wang et al. 2017). 

In the current study, a series of co-expression and gene regulatory networks were assembled to 

characterize the predominant transcriptional profiles associated with the progression of wheat 

inflorescence development, revealing two consecutive regulatory shifts at the DR and TS stages. Core 

regulatory candidate genes were identified including both known TFs and novel candidates with potential 

roles in regulating spike architecture. 

4.3 Material and Methods 

4.3.1 Plant materials and growth conditions 

All experiments were performed in the tetraploid Triticum turgidum L. subsp. durum (Desf.) var. 

Kronos (genomes AABB). Kronos has a spring growth habit conferred by a VRN-A1 allele containing a 

deletion in intron 1 and carries the Ppd-A1a allele that confers reduced sensitivity to photoperiod 
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(Wilhelm et al. 2008; Fu et al. 2005). Plants were grown in controlled conditions in PGR15 growth 

chambers (Conviron, Manitoba, Canada) under a long day photoperiod (16 h light/8 h dark) at 23 ℃ 

day/17 ℃ night temperatures and a light intensity of ~260 µM m-2 s-1. Developing apical meristems were 

harvested under a dissecting microscope using a sterile scalpel and placed immediately in liquid nitrogen. 

All samples were harvested within a one-hour period approximately 4 h after the lights were switched on 

(+/- 30 min) to account for possible differences in circadian regulation of gene expression. Approximately 

20 apices were combined for each biological replicate of samples harvested at stages W1.0 (shoot apical 

meristem, SAM) and W2.0 (early double ridge, EDR) and approximately 12 apices for samples harvested 

at stages W3.0 (double ridge, DR), W3.25 (lemma primordia, LP) and W3.5 (terminal spikelet, TS) 

(Waddington, Cartwright, and Wall 1983). Four biological replicates were harvested at each timepoint. 

4.3.2 RNA-seq library construction and sequencing 

Tissues were ground into a fine powder in liquid nitrogen and total RNA was extracted using the 

Spectrum™ Plant Total RNA kit (Sigma-Aldrich, St. Louis, MO). Sequencing libraries were produced 

using the TruSeq RNA Sample Preparation kit v2 (Illumina, San Diego, CA), according to the 

manufacturer’s instructions. Library quality was determined using a high-sensitivity DNA chip run on a 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Libraries were barcoded to allow 

multiplexing and all samples were sequenced using the 100 bp single read module across two lanes of a 

HiSeq3000 sequencer at the UC Davis Genome Center. 

4.3.3 RNA-seq data processing 

‘Kronos’ RNA-seq reads were trimmed and checked for quality Phred scores above 30 using 

Fastp v0.20.1 (Chen et al. 2018). Trimmed reads were aligned to the IWGSC RefSeq v1.0 genome 

assembly consisting of A and B chromosome pseudomolecules and unanchored (U) scaffolds not 

assigned to any chromosome (ABU) using STAR 2.7.5 aligner (outFilterMismatchNoverReadLmax = 

0.04, alignIntronMax = 10,000) (Dobin et al. 2013; IWGSC 2018). Only uniquely mapped reads were 

retained for expression analysis. Transcript levels were quantified by featureCounts using 190,391 gene 
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models from the ABU IWGSC RefSeq v1.1 annotations (Ramirez-Gonzalez et al. 2018; Liao, Smyth, and 

Shi 2014) and converted to Transcripts Per Million (TPM) values using a custom python script available 

from https://github.com/cvanges/spike_development/ (Supplementary data 1). 

Raw RNA-seq reads for ‘Kenong9204’ and ‘Chinese Spring’ inflorescence development datasets 

were obtained from BioProjects PRJNA325489 and PRJNA383677 (Feng et al. 2017; Lie et al. 2018). 

RNA-seq reads were processed with Fastp as described above and aligned to the hexaploid ABDU 

RefSeq v1.0 genome assembly using the same methods and parameters. Transcript quantification and 

TPM were determined as above using the full ABDU IWGSC RefSeq v1.1 annotations. RNA-seq reads 

and raw count data for each sample is available from NCBI Gene Expression Omnibus under the 

accession GSE193126 (https://www.ncbi.nlm.nih.gov/geo/). 

4.3.3 Transcription factors 

There were 3,838 ABU gene models annotated as transcription factors that were grouped into 65 

TF families per IWGSC v1.1 annotations (Ramirez-Gonzalez et al. 2018). The following families were 

consolidated: “AP2” and “APETALA2”, “bHLH” and “HRT-like”, “MADS” and “MADS1”, “NFYB” 

and “NF-YB”, “NFYC” and “NF-YC”, and “SBP” and “SPL”, as well as “MADS2” and “MIKC”, which 

were consolidated into “MIKC-MADS”. After consolidation, there were 59 TF families. A previous study 

described he annotation of 201 MIKC-MADS box genes placed into 15 subclades (Schilling et al. 2020). 

There were 30 MIKC transcription factors on the A and B genomes absent from the IWGSC TF list, 

which were added to this family. Investigations of the CLE and WOX gene families were based on the 

naming reported in Li et al., 2019b and Li et al. 2020b, with the addition of TaWUSb 

(TraesCS2B02G775400LC) to the WOX family, which was absent from these studies. In total, 3,861 TFs 

were included in this study (Supplementary data 2). 

4.3.4 Spike-dominant expression analysis 

Expression data (TPMs) for two developmental studies were obtained from the Grassroots Data 

Repository (https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-

https://github.com/cvanges/spike_development/
https://github.com/cvanges/spike_development/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/expvip/RefSeq_1.0/ByTranscript/
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06025-Transcriptome-Landscape/expvip/RefSeq_1.0/ByTranscript/) (Choulet et al. 2014; Ramirez-

Gonzalez et al. 2018). The first dataset, in ‘Chinese Spring’, included samples from five tissue types at 

three timepoints (mean of two biological replicates) for 15 total tissue/stages (Choulet et al. 2014). A 

second dataset from the variety ‘Azhurnaya’ comprised 209 unreplicated samples grouped into 22 

“intermediate tissue” groups of various sizes (Ramirez-Gonzalez et al. 2018). Twelve samples 

overlapping with ‘Kronos’ spike samples were removed (tissue groups “coleoptile”, “stem axis”, and 

“shoot apical meristem”). For early spike tissue specificity analyses, the mean TPM expression of 15 

‘Chinese Spring’ tissues (n = 2) or the mean of 22 ‘Azhurnaya’ tissues (n ranging from 3 - 30) were 

compared to the ‘Kronos’ sampling stage with the highest mean expression (n = 4). Comparisons were 

made using the Tau (τ) tissue specificity metric where τ = 0 indicates ubiquitous expression and τ = 1 

indicates tissue specific expression (Yanai et al. 2005; Kryuchkova-Mostacci and Robinson-Rechavi 

2017). A custom R script was used to calculate tissue specificity and is available at 

github.com/cvanges/spike_development. Genes which were expressed predominantly in ‘Kronos’ 

inflorescence tissues (τ > 0.9) were defined ‘spike-dominant’ whereas genes only expressed in ‘Kronos’ 

inflorescence tissues (τ = 1) were defined ‘spike-specific’ (Supplementary data 3). 

4.3.5 Principal Component Analysis (PCA), Differential Expression, and GO enrichment 

PCA was performed in R using prcomp in the r/stats package v2.6.2 including all replications for 

each time point. PCA plots were generated with ggplot2 v3.3.2. Whole transcriptome PCA used read 

counts from all expressed gene models (n = 82,019) and TF PCA used expression of 2,874 expressed TFs. 

Randomized PCA distribution used independent random subsampling of 2,874 expressed genes without 

replacement. Principle component percent variation explained and eigenvalues from prcomp were used 

for comparisons between whole transcriptome PCA and TF-only PCA. 

Pairwise differential expression was determined using both EdgeR v3.24.3 and DESeq2 v1.22.2 

for robustness (Robinson et al. 2010; Anders and Huber 2010). Pairwise comparisons between 

consecutive timepoints were done using raw read counts for four biological replicates at each stage. 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-Landscape/expvip/RefSeq_1.0/ByTranscript/
https://github.com/cvanges/spike_development
https://github.com/cvanges/spike_development
https://github.com/cvanges/spike_development
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Benjamin-Hochberg FDR adjusted P-values ≤ 0.01 was used as a stringent DE cut-off for both tools. Only 

genes DE using both tools were classified as pairwise DEGs (Supplementary data 5). Differential 

expression of ‘Chinese Spring’ and ‘Kenong9204’ inflorescence development datasets was also 

determined with raw read counts and EdgeR and DESeq2 using the same method as for the ‘Kronos’ 

dataset. Adjustments to DE tests were made to compare all four timepoints (6 pairwise comparisons) with 

two biological replicates in ‘Chinese Spring’ as well as the six timepoints (15 pairwise comparisons) with 

two biological replicates in the ‘Kenong9204' datasets. For network analyses, a second DE test was 

included which reinforced longitudinal DE determination, an impulse model (ImpulseDE2, 

https://github.com/YosefLab/ImpulseDE2) was used for ‘Kronos’ data (Fischer et al. 2018; Spies et al. 

2019). Raw counts were used with default parameters and genes with Benjamin-Hochberg FDR adjusted 

P-values ≤ 0.05 considered differentially expressed. Functional annotation to generate GO terms for each 

high-confidence and low-confidence gene in the IWGSC RefSeq v1.1 genome was performed as 

described previously (Pearce et al. 2016). 

4.3.6 Standard and consensus WGCNA network construction 

Genes identified using pairwise differential expression (EdgeR and DESeq2) and ImpulseDE2 

(22,566 genes total) were used for co-expression analyses. A standard co-expression network was built 

using the R package WGCNA v1.66 with the parameters: power = 20, networkType = signed, minimum 

module size = 30, and mergecutheight = 0.25 (Langfelder and Horvath 2008) (Supplementary data 7). 

Parallel coordinate plots were produced in R by normalizing raw read counts and visualized with 

ggparacoord (scale = ‘globalminmax’) in GGally (version1.5.0). 

A consensus network was built using methods described in Shahan et al. (2018). In brief, 1,000 

WGCNA runs were performed with 80% of genes randomly subsampled without replacement and 

random parameters for power (1, 2, 4, 8, 12, 16, 20), minModSize (40, 60, 90, 120, 150, 180, 210), and 

mergeCutHeight (0.15, 0.2, 0.25, 0.3). The final consensus network was built using an adjacency matrix – 

adj = number of times gene i is clustered with gene j / number of times gene i is subsampled with gene j – 
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with parameters power = 6 and minModuleSize = 30 (Supplementary data 7). The consensus100 network 

was built by filtering the adjacency network for adj = 1 prior to network construction. Along with module 

assignments, we used the WGCNA package to find the connectivity of each gene with co-clustered genes 

(intramodularConnectivity.fromExpr()) and summarized module expression patterns 

(moduleEigengenes()). Python and R scripts for creating the adjacency matrix and consensus network are 

available at https://github.com/cvanges/spike_development. The Bioconductor package GeneOverlap was 

used to determine the overlap of module assignments between consensus and standard networks 

(http://shenlab-sinai.github.io/shenlab-sinai/) (Shen 2021). 

4.3.6 Causal Structure Inference Network 

Expression data (TPM) for 970 transcription factors retained in the consensus100 network was 

used to build a gene regulatory network using the Causal Structure Inference algorithm (Penfold and Wild 

2011). Network construction used CSI in Cyverse with default parameters. 

4.3.7 Conversion of wheat, rice, and barley gene IDs 

Genes associated with wheat and rice spikelet number described in Wang et al., 2017b were 

identified from a previous set of annotated wheat gene models 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-28/). To identify the corresponding IWGSC RefSeq 

v1.1 gene ID, each gene model coding sequence was extracted and used as a query in BLASTn searches 

against the IWGSCv1.1 ABU genome. Homologous gene pairs with > 99% identity to each query were 

considered spikelet number associated genes. Two previous studies reported genes DE during H. vulgare 

inflorescence development using IBSC_v2 annotations (Digel, Pankin, and von Korff 2015; Liu et al. 

2020). Each barley gene model coding sequence was extracted and used as a query in BLASTn searches 

against the IWGSCv1.1 ABU wheat genome. Genes with percent identity > 90% were retained and 

considered orthologs of barley DEGs (HvDE). 

http://shenlab-sinai.github.io/shenlab-sinai/
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4.3.8 Enrichment analysis 

Enrichment and depletion of genes among modules or DEG lists was determined using the 

cumulative distribution function of the hypergeometric distribution 

(systems.crump.ucla.edu/hypergeometric/). 

4.3.9 QTL proximity and definition of homoeologous pairs 

Using a previously published meta-analysis of yield component QTL studies, we searched the 

IWGSCv1.1 genome for expressed genes in our timecourse within 500 kbp of 428 loci associated with 

yield component traits (kernel number per spike, thousand kernel weight, spikelet number) (Cao et al. 

2020). Homoeologous gene pairs reported from Ramírez-González et al., (2018) were used to determine 

co-expressed homoeologs. 

4.4 Results 

4.4.1 Early wheat inflorescence development is defined by two major transcriptional shifts 

To characterize the wheat transcriptome during inflorescence development, RNA was sequenced 

from tetraploid durum wheat meristem tissue at five developmental stages; vegetative meristem (W1), 

double ridge (W2), glume primordium (W3.0), lemma primordium (W3.25), and terminal spikelet (W3.5) 

(Figure 4.1A) (Waddington, Cartwright, and Wall 1983). An average of 28.9 M reads per sample (79.6% 

of all reads) mapped uniquely to the A, B and U genomes of the IWGSC RefSeqv1.0 assembly. Of the 

190,391 gene models on these chromosomes, 82,019 (43.1%) were expressed (> zero TPM) and 45,243 

(23.8%) had a mean expression greater than one TPM in at least one timepoint (Supplementary data 1). 

Of the 3,861 gene models annotated as TFs (2.0% of gene models), 2,874 (74.5%) were expressed (> zero 

TPM) and 1,703 (44.1%) had a mean expression greater than one TPM in at least one timepoint 

(Supplementary data 2). 

Comparison of the inflorescence development transcriptome with two whole-plant wheat 

development transcriptome datasets (Choulet et al. 2014; Ramirez-Gonzalez et al. 2018) revealed 3,682 



 94 

genes with spike-dominant expression profiles (τ > 0.9, where zero means constitutive expression and one 

indicates tissue-specific expression) (Supplementary data 3). These genes were most strongly enriched for 

gene ontology (GO) terms relating to histone assembly and chromosome organization (Supplementary 

data 4), but also included 286 genes (7.8%) encoding TFs, including both LEAFY homoeologs, 15 

GROWTH REGULATING FACTOR (GRF) TFs (of 20 expressed during the time course), seven SHI 

RELATED SEQUENCE (SRS) TFs (out of ten), 20 TCP TFs (out of 49) and ten WOX TFs (out of 28, 

Supplementary data 3). Despite their known roles in regulating inflorescence development, only two out 

of 130 MIKC-MADS box and six out of 41 SPL TFs exhibited spike-dominant expression profiles, 

suggesting they play more diverse roles across plant development. There were 86 spike-specific genes 

with zero expression in all other stages of development (τ = 1) (Supplementary data 3). 

Principal component analysis (PCA) using the whole transcriptome grouped the four biological 

replicates of each growth stage closely together and revealed that the majority of the transcriptional 

changes in this time course occur between the vegetative meristem and double ridge formation (Figure 

4.1B). These changes are described by PC1, which accounted for 71.8 percent variation explained (PVE). 

The transition from W1 to W2 was associated with 6,828 DEGs, 58.6% of which were downregulated 

(Figure 4.1C, Supplementary data 5) and most significantly enriched for GO terms relating to “cell wall 

organization”, and lignin and hemicellulose metabolic processes (Supplementary data 6). Surprisingly, the 

2,828 (41.4%) DEGs upregulated between W1 and W2 were most significantly enriched for GO terms 

relating to photosynthesis despite the transition from leaf to floral meristem development (Supplementary 

data 5). 

The transition from W2 to W3.0 was associated with 7,531 DEGs (57.6% downregulated, 

Supplementary data 5, 6). The 3,191 DEGs upregulated between these timepoints were most significantly 

enriched for “meristem maintenance” and “flower development” GO terms (Supplementary data 6), 

suggesting that a number of genes triggering floral meristem formation are first activated at this stage. 
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By contrast, the transcriptomic changes from W3.0 to terminal spikelet formation (Figure 4.1A) 

were distributed across PC2, which accounts for just 7.4 PVE (Figure 4.1B) and were associated with 

12.3-fold fewer DEGs than during the transition from vegetative meristem to stage W3.0 (Figure 4.1C). 

Just 535 DEGs were found between W3.0 and W3.25 (55.3% upregulated) and 628 DEGs between 

W3.25 and W3.5 (48.6% upregulated) (Supplementary data 5). Genes upregulated across these three 

timepoints were most significantly enriched for “floral organ identity” (Supplementary data 6). There are 

fewer developmental changes between W3.25 and W3.5, relative to changes between W1 and W3.0, 

which may be due in part to basal and apical spikelets being at similar developmental stages between the 

latter timepoints (Backhaus et al. 2022). 

Of the 11,669 DEGs in at least one of the four consecutive pairwise comparisons, 899 (7.7%) 

encoded a TF, a 2.2-fold enrichment (hypergeometric P = 2.22 e-62). This enrichment was strongest after 

DR through terminal spikelet formation (5.2-fold enrichment, P = 8.73 e-73) where TFs accounted for 

19.8% and 20.5% of all DEGs in pairwise comparisons (Figure 4.1C). A PCA using only TF expression 

resulted in the same spatial arrangement of biological samples as in the whole-transcriptome PCA but 

with improved resolution between stages (Figure 4.1B), and explained a greater proportion of variation 

for PC2 than when including the whole transcriptome (Figure S4.1). 

Taken together, these analyses show that less than half of the wheat transcriptome but nearly 

three-quarters of TFs are expressed during inflorescence development, including a set of genes which are 

spatially and temporally restricted to early inflorescence tissues. Terminal spikelet formation is associated 

with comparatively less transcriptional variation relative to stages preceding W3.25 and the strong 

enrichment in TFs suggests they play critical roles during this stage. 

4.4.2 Co-expression networks reveal predominant transcriptome profiles during inflorescence 

development 

Co-expression networks were assembled to identify highly correlated modules of genes that 

define the major transcriptional profiles during early inflorescence development. All networks were 
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assembled using a set of 22,566 genes that were differentially expressed in at least one of the ten possible 

pairwise combinations between timepoints (Figure 4.1D) and that were also defined as significantly 

differentially expressed using ImpulseDE2, a package used to analyze longitudinal transcriptomic datasets 

(Supplementary data 5). 

A consensus network constructed with repeated subsampling and randomized parameters with 

WGCNA (see Materials and Methods) assembled these genes into 21 modules with a mean connectivity 

score of 0.485 (Figure 4.2A, Supplementary data 7). A standard WGCNA network was also constructed 

using ‘best practices’ parameters but with no repeated subsampling and randomization and had a 

connectivity score of 0.327 which skewed to zero (Figure 4.2A). In both networks, the majority of genes 

clustered into modules 1 and 2, which contained many of the same genes (Jaccard index > 0.86, Figure 

S4.2). However, other modules exhibited dissimilar expression profiles between networks (Jaccard index 

< 0.5), indicating the consensus network clustered genes into a greater number of modules with distinct 

expression profiles not captured in the standard network. Based on the improved correlation of co-

clustered genes within modules and the detection of distinct regulatory profiles, the consensus network 

was used in all subsequent analyses. 

4.4.3 Inflorescence meristem development is associated with the down-regulation of RAV and TCP 

transcription factors 

Module 1 was the largest in the network and grouped 10,102 genes defined by high transcript 

levels in the vegetative meristem and early meristem transition followed by down-regulation after DR and 

as the spike develops (Figure 4.2B). Several TF families were enriched in this module, including 101 

basic Helix-Loop-Helix (bHLH) TFs, 47 MYB TFs and eight of the nine differentially expressed 

RELATED TO ABI3 AND VP1 (RAV) TFs included in the network (Figure 4.2F). Twenty-six of the 33 

total TCP TFs clustered in this module, nine of which were also spike-dominant expressed (Figure 4.2F). 

Although at the whole family level MIKC-MADS TFs are significantly under-represented in module 1 

(Figure 4.2F, hypergeometric P = 8.6 e-4), all six SVP genes (SVP1, VRT2 and SVP3) cluster in this 



 97 

module, consistent with their specific role regulating early stages of inflorescence development. In 

addition, both AGL12 subclade genes, and three of the six FLC subclade genes clustered in this module 

(Figure 4.2G). 

4.4.4 A small number of genes are transiently expressed during double ridge formation 

Genes which showed a peak at the double ridge stage (W2) followed by a decline in later stages 

were clustered in modules 11 (131 genes), 15 (104 genes), 20 (44 genes) and 21 (42 genes). These 

clusters share broadly similar expression profiles (Figure 4.2C) and were enriched for genes with spike-

dominant expression profiles (between 2.1 and 3.0-fold enrichment). Genes in modules 15 and 20 were 

significantly enriched for development functional terms including “shoot system development” and 

“carpel development” (Supplementary data 8) including three TERMINAL FLOWER1-like genes 

CENTRORADIALIS2 (CEN2), CEN4, and CEN-5A (Supplementary data 7). All three modules were 

enriched for the functional term “response to auxin” and included several auxin-responsive factors (ARF), 

indole-3 acetic acid (IAA), and SAUR-like protein family members, indicating that auxin signaling may 

promote double ridge formation. 

4.4.5 Inflorescence transition and spike architecture genes are upregulated at W3.0 

Modules 6 (267 genes), 8 (211 genes), and 10 (144 genes) share broadly similar profiles defined 

by maximum expression at stage W3.0 and subsequent downregulation (Figure 4.2D). Each of these 

modules was significantly enriched (between 2.3 and 5.3-fold) for spike-dominant genes, indicating they 

likely play highly specific roles restricted to developing meristems and inflorescence initiation. Module 6 

included 18 genes previously associated with variation in spikelet number and five orthologs of rice genes 

with roles in panicle development, including the ERF TF WHEAT FRIZZY PANICLE (WFZP) and KAN2, 

a MYB TF which functions in establishing lateral organ polarity in Arabidopsis (Emery et al. 2003; Shaw 

et al. 2019). 
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4.4.6 Inflorescence and spikelet meristem formation is associated with sequential activation of different 

classes of TFs 

The 8,971 genes in module 2 were defined by the inverse transcriptional profile to module 1, with 

low expression in the vegetative meristem followed by sustained upregulation from the double ridge stage 

onwards (Figure 4.2E). Transcription factors were under-represented in this module, and only the B3 

family (42 of 77 B3 TFs assembled in the co-expression network) was significantly enriched (Figure 

4.2F). There were 18 MIKC-MADS box TFs which were upregulated early in the transition to the 

inflorescence meristem including all genes in the AP1/SQUA subclade (with the exception of VRN-A1) 

and six of the thirteen genes in the SEP1 subclade (Figure 4.2G). Several genes with characterized roles 

in inflorescence development clustered in this module, including FLOWERING LOCUS T2 (FT-A2), Q, 

and RAMOSA2 (TaRA-B2) (Supplementary data 7) (Shaw et al. 2019; Debernardi et al. 2020). 

The 708 genes clustered in module 3 exhibited a similar transcriptional profile to module 2, with 

a delayed upregulation and stronger peak at the terminal spikelet stage (Figure 4.2E). These genes are 

significantly enriched for developmental functional terms including “specification of floral organ 

identity”, suggesting they include floral patterning and developmental genes that regulate spikelet 

meristem formation (Supplementary data 8). This module was significantly enriched for both spike-

dominant expressed genes (106 genes, P < 0.001) and for TFs (86 genes, 12.1%, P < 0.001), consistent 

with pairwise DE analysis between stages W3.0 and W3.5 (Figure 4.1C). These included four members of 

the SRS TF family, four YABBY TFs, and the HD-zip TFs Grain Number Increase 1 (GNI1) and HOX2 

(Supplementary data 7). All members of the MIKC-MADS subclades PI, AGL6 and SEP3 were clustered 

in module 3, as well as two of the three AP3 subclade genes, four of the five AG/STK subclade genes and 

five SEP1 subclade genes (Figure 4.2G). 

4.4.7 Gene regulatory networks predict high-confidence interactions between transcription factors 

To identify the most robust co-expression patterns, the consensus adjacency matrix used for 

previous co-expression analyses was filtered for genes which co-clustered with at least one gene every 
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time they were co-sampled in 1,000 networks assembled with variable, randomized parameters. The 

18,174 genes that met this criterion were assembled into a conensus100 network consisting of 924 

modules with a median size of three (Supplementary data 7). 

Module 9 of this network comprised 167 genes (including 32 TFs) which were most highly 

expressed at the terminal spike stage (Figure S4.3) and significantly enriched for the GO terms 

“specification of floral organ identity” and “flower development” (Supplementary data 9), suggesting it 

may represent a core regulatory network for wheat spikelet and/or floret development. The genes with the 

highest connectivity (Kw, a measure of each gene’s intramodular co-expression) in this module are SEP1-

A2 and SEP1-B2, which may be related with the intermediate position of the SEP genes between the 

meristem identity SQUAMOSA MADS-BOX genes and the anther and carpel development MADS-box 

genes. This module also groups WAPO-A1, that influences spikelet number and stamen identity (Kuzay et 

al. 2022) and a gene encoding an F-box protein that is a component of an SCF ubiquitin ligase that may 

be targeted by TB1 (Supplementary data 7) (Dong et al. 2017). 

To predict interactions between TFs during inflorescence development, a de novo Causal 

Structure Inference (CSI) network was constructed using all 970 TFs from the consensus100 network. 

This gene regulatory network consisted of 704 genes (nodes) with 5,604 predicted interactions (edges) 

with interaction strength (edge weight) > 0.001 (Supplementary data 10). To prioritize the most important 

regulatory candidate genes, the network was screened for interactions with an edge weight ≥ 0.03, leaving 

88 genes with 177 interactions. The majority of these genes were from consensus modules 1 (37 genes, 

42.0%) and 3 (36 genes, 40.9%), with 27 of the latter genes clustered in consensus100 module 9 (Figure 

4.3). 

Most predicted interactions were between genes in the same consensus module, with the majority 

occurring within module 3 and involving MIKC-MADS box TFs, suggesting a closely coordinated 

network during spikelet meristem and terminal spikelet formation (Figure 4.3). Among the genes with the 

highest betweenness centrality, a measure of each gene’s importance in the overall network, were AGL6-
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A1 and AGL6-B1 which were predicted to interact with 31 other TFs in the network, including 13 MIKC-

MADS genes such as PI-1, SEP3-1, AP3-1, SEP1-1 and AG1 (Figure 4.3). Interaction strengths 

implicated a role for AG-D1 as a regulatory hub with strong incoming interactions from other MIKC-

MADS-box genes from the SEP1, SEP3, AG, PI, and AP3 subclades, as well as outgoing interactions 

with genes such as the LOFSEP MIKC-MADS box TF SEP1-1 (Figure 4.3). The BES1 TF BES1/BZR1 

HOMOLOG 2-like had high betweenness centrality and was predicted to have outgoing interactions with 

MIKC-MADS, Trihelix and HD-ZIP TFs (Figure 4.3). 

Cross-module interactions included 16 outgoing edges from module 3 to module 1, including six 

outgoing interactions to a PCF-type TCP TF (Figure 4.3). Although only four TFs from module 5 were 

assembled in the network, they included SEP1-A3 and a C2H2 TF with ten incoming interactions from 

module 3 including AGL6-B1, BES1/BZR1 HOMOLOG 2-like and AG-D1 (Figure 4.3). 

4.4.8 Integrating transcriptomics to prioritize candidate genes underlying natural variation 

The consensus network includes 4,637 high confidence homoeologous gene pairs, the majority of 

which (3,636, 78.4 %) clustered either in the same module, or in modules with highly similar expression 

profiles (Supplementary data 7). We hypothesized that homoeologous genes clustering in different 

modules may have divergent expression profiles resulting from natural variation in one homoeolog. Of 

these 1,001 divergently expressed gene pairs, 221 encoded TFs, including VRN1 (where the dominant 

VRN-A1 spring allele is expressed at an earlier stage of inflorescence development compared to the wild-

type VRN-B1 allele), RHT1 (where the Rht-B1b semi-dwarfing allele is more highly expressed in the 

vegetative meristem than RHT-A1), and TEOSINTE BRANCHED 1 (TB1, where TB-B1 expression is 

maintained at higher levels than TB-A1 during terminal spikelet formation, Figure 4.4A). 

Each of the three genes from Figure 4.4A lies within 250 kb of a QTL for either grain number or 

grain size (Supplementary data 7), so we hypothesized that other differentially expressed homoeologs 

located close to a yield-component QTL might point to natural variation for yield traits in wheat. For 
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example, UPBEAT-A1 is upregulated at the double ridge stage to a much greater degree than UPBEAT-B1 

(Figure 4.4B), is close to a QTL for TKW, and encodes an ortholog of a bHLH TF that regulates cell 

proliferation in Arabidopsis (Tsukagoshi, Busch, and Benfey 2010). Similarly, TRYPTOPHAN 

AMINOTRANSFERASE RELATED-A1 (TAR-A1) is also upregulated at the double ridge stage compared 

to TAR-B1 (Figure 4.4B) and is proximal to a QTL for grain yield (Supplementary data 7). These genes 

encode enzymes in the IAA biosynthesis pathway and their overexpression has previously been shown to 

modify inflorescence development in wheat (Shao et al. 2017). Co-expression networks and observations 

from meta-analysis are available for developing hypotheses on inflorescence development 

(Supplementary data 7). 

4.4.8 Identification of CLE/WOX genes expressed during wheat inflorescence development 

To identify members of the conserved CLAVATA-WUSCHEL pathway that may regulate stem 

cell maintenance in wheat spike meristems, the expression profiles of genes encoding WOX TFs and CLE 

peptides were analyzed. Of 29 WOX TFs, 28 were expressed during early inflorescence development and 

11 were both significantly differentially expressed during the time course and exhibited a spike-specific 

expression profile (Figure 4.5A). Two orthologs of OsWOX4 were co-expressed in module 1 with rapid 

down-regulation before transition to the inflorescence meristem, suggesting they may play a role in 

vegetative meristem maintenance but not in inflorescence development. Seven WOX genes clustered in 

module 2, characterized by rising expression during inflorescence development, including the orthologs 

of AtWUS (TaWUSa and b). The homoeologues TaWOX2a and 2b are both associated with variation in 

spikelet number and are clustered into separate co-expression modules (Supplementary data 7). 

Of the 64 CLE genes, 35 were expressed during inflorescence development and just nine were 

differentially expressed across the time course (Figure 4.5B). Three wheat genes orthologous to 

OsFON2/4 (putatively TaCLV3, TraesCS2A02G329300 and TraesCS2B02G353000) exhibit spike-

dominant DR-peaking expression profiles. 
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4.5 Discussion 

Temporal transcriptomic datasets can help to characterize the regulatory networks controlling the 

development of complex organs such as the wheat inflorescence. One strategy to reduce spurious co-

clustering of genes is to assemble a consensus co-expression network using a matrix of co-clustering 

frequencies from multiple independent networks, each assembled with randomized parameters and gene 

selection (Monti et al. 2003; Wu et al. 2002; Shahan et al. 2018). Co-expression networks have been 

successfully applied to unravel gene function in yeast (Saccharomyces cerevisiae), floral and fruit 

developmental pathways in strawberry (Fragaria vesca), and regulatory networks underlying leaf 

development in maize (Zea mays) (Wu et al. 2002; Shahan et al. 2018; Miculan et al. 2021). In the current 

study, this approach generated a consensus network with a larger number of modules with improved 

intramodular connectivity compared to a standard WGCNA network (Figure 4.2A). A further refinement 

to screen for genes co-clustering in every network assembly that they were both included revealed a 

consensus100 module 9 of 167 genes that likely contribute to spikelet meristem and terminal spikelet 

formation (Figure S4.3), indicating that consensus networks can help improve the accuracy of co-

expression predictions and module assignment.  

Beyond co-expression profiles, context-specific gene regulatory networks provide information on 

the centrality of each gene (a measure of its importance to the flow of information through a network), as 

well as the strength and directionality of interactions between individual genes (Penfold and Wild 2011). 

This network predicts that the MIKC-MADS box TF AGL6 is a critical gene in inflorescence 

development regulatory networks, and functions together with MIKC-MADS TFs from the PI and SEP 

subclades (Figure 4.3). This is consistent with its role in rice, where AGL6 functions as a cofactor with A, 

B, C, and D class proteins during floral development, as well as in wheat, where it interacts with ABCDE 

proteins, likely as a bridge in complex protein-protein interactions to regulate whorl development (Su et 

al. 2019; Li et al. 2011; Kong et al. 2022). This network also revealed novel candidate genes for future 

characterization studies. For example, the BES1 TF BES1/BZR1 HOMOLOG 2-like is predicted to interact 
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with several TFs, including two HD-ZIP TFs with homology to HvVRS1, suggesting a role for 

brassinosteroid signaling in wheat inflorescence development. 

During the inflorescence development time course in tetraploid Kronos presented here, 43.1% of 

genes were expressed in at least one timepoint, comparable to the 40.2% and 42.5% of genes expressed in 

similar inflorescence development time courses in the hexaploid wheat genotypes ‘Chinese Spring’ and 

‘Kenong 9204’ when these reads were reanalyzed using the same mapping parameters and reference 

genome (Feng et al. 2017; Li et al. 2018). Of these genes, 3,682 exhibited spike-dominant expression 

profiles (τ > 0.9). Among these genes were seven of ten SRS TFs, including the wheat ortholog of six-

rowed spike 2 (HvVRS2) that modulates hormone activity in the developing barley spike (Yousef et al. 

2016). Its expression profile in wheat, coupled with its association with spikelet number in an earlier 

study (Li et al. 2018), suggests it plays a conserved role in wheat inflorescence development. It would 

also be interesting to characterize the function of four other SRS TFs that exhibit spike-specific 

expression profiles peaking towards terminal spikelet formation (Supplementary data 7). Ten of fifteen 

GRF TFs were expressed predominantly in spike tissues, including TaGRF4 which improves regeneration 

efficiency in tissue culture when co-expressed with GIF cofactors (Debernardi et al. 2020). The broadly 

similar, spike-specific expression profiles of genes in this family suggest other members may also 

contribute to meristem differentiation and inflorescence development (Supplementary data 7). 

A subset of WOX TFs and CLE peptides exhibited dynamic and spike-dominant expression 

profiles across the time course, consistent with the differential regulation of OsWUS, OsWOX3, OsWOX4, 

and OsWOX12 during panicle development in rice (Cheng et al. 2014). The overexpression of TaWOX5 

(named TaWOX9 in the current study) enhances wheat transformation and callus regeneration efficiency 

(Wang et al. 2022). Several other WOX TFs are co-clustered with this gene and exhibit similar expression 

profiles in the wheat inflorescence (Figure 4.5), suggesting they may also be candidates to enhance 

regeneration efficiency (Figure 4.5). Among CLE peptides, TaCLV3 was negatively associated with 
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spikelet number in a set of Chinese wheat landraces (Wang et al. 2017), consistent with its proposed role 

as a negative regulator of SAM size and activity in rice and maize (Chu et al. 2006; Hu et al. 2021). 

Analyses of principal components and co-expression profiles indicate that the transition from the 

vegetative meristem to the double ridge stage is associated with major reprogramming of the wheat 

transcriptome (Figure 4.1), consistent with an earlier study (Li et al. 2018). Several TF families were 

enriched in module 1, characterized by high expression in the vegetative meristem before rapid 

downregulation after the double ridge stage, including eight of the nine RAV TFs in the consensus 

network. In Arabidopsis, the RAV genes TEMPRANILLO1 (TEM1) and TEM2 repress FT to prevent 

precocious flowering (Hu et al. 2021; Castillejo and Pelaz 2008). In rice, the TEM orthologs OsRAV8 and 

OsRAV9 bind the promoters of OsMADS14 and Hd3a to suppress the floral transition, indicating this 

function is conserved in monocots (Osnato et al. 2020). The rapid downregulation of the wheat orthologs 

of these genes before double ridge formation, as well as homologs of OsRAV11 and OsRAV12 that act in 

reproductive patterning in rice (Osnato et al. 2020), suggests this family may act as local repressors of 

meristem identity genes in the developing wheat spike. 

There were also 26 TCP TFs clustered in module 1, including TaTCP-A9 and TaTCP-B9, 

negative regulators of spikelet number and grain size in durum wheat (Zhao et al. 2018). It is likely that 

other members of the TCP TF family also play roles as negative regulators of grain development. For 

example, TaTCP-A17 and -B17 are both downregulated during inflorescence development, are within 250 

kbp of QTL for grain size, and are orthologous to genes associated with spikelet number variation in rice 

(Supplementary data 7). Eight TCP TFs clustered in different modules and were most highly expressed 

during spikelet meristem formation, including TEOSINTE BRANCHED 1, which integrates photoperiod 

signals to regulate spike architecture in a dosage-dependent manner (Dixon et al. 2018), and a paralogous 

copy on chromosome 5B, BRANCHED AND INDETERMINATE SPIKE, that regulates spike architecture 

in barley (Shang et al. 2020). Four other uncharacterized TCP TFs with homology to RETARDED 
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PALEA1 exhibit spike-dominant expression profiles and would be promising candidates to characterize 

their role in inflorescence development in wheat (Supplementary data 7). 

Although association and linkage mapping studies in wheat have described hundreds of QTL for 

agronomic traits, relatively few causative genes have been cloned and validated (Cao et al. 2020). 

Transcriptomic data can help prioritize candidate gene selection within a mapping interval based on 

spatial or temporal expression profiles (Yang et al. 2021). Furthermore, changes in transcription may 

indicate the presence of dominant or semi-dominant gain-of-function variants in cis-regulatory elements 

or of structural variation that confer changes in phenotype through modified expression profiles. Because 

of the functional redundancy of the polyploid wheat genome, such variants underlie the majority of 

cloned genes to date (Gaurav et al. 2022), including domestication alleles of PPD1, VRN1 and RHT1, 

which clustered in different co-expression modules to their wild-type homoeologous allele (Figure 4.4). 

Such divergent expression profiles, especially for those genes in close proximity to QTL for traits relating 

to grain number and grain size, might be strong candidates for allele mining to explore the extent of 

natural variation in wheat germplasm collections, and to engineer novel variation by targeted editing of 

cis-regulatory regions (Swinnen, Goossens and Pauwels 2016). 
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Chapter 4 Figures 

 

 

 

 

Figure 4.1: The early wheat inflorescence development transcriptome. (A) Sampling stages of Kronos 

apical meristems according to the Waddington development scale3; W1.0 – vegetative meristem, W2 –

double ridge, W3.0 – glume primordium, W3.25 – lemma primordium, W3.5 – terminal spikelet. (B) 

Whole transcriptome and transcription factor expression principal component analysis of samples, PC1 

plotted on the x-axis and PC2 plotted on the y-axis. PVE = Percent Variance Explained. (C) Differentially 

expressed genes (DEGs) in sequential pairwise comparisons (W1 – W2, W2 – W3.0, W3.0 – W3.25, 

W3.25 – W3.5). The total number of genes, the number up- and down-regulated and the proportion 

encoding transcription factors (TF) are described. (D) Venn diagram of DEGs in each consecutive 

pairwise comparison from (C). Each category is shaded according to the number of sequential DEGs 

shared among the four comparisons. 
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Figure 4.2: Co-expression networks showing the dominant transcriptional profiles during wheat 
inflorescence development. (A) Histogram of intramodular connectivity scores for 22,566 genes clustered 
in consensus (blue) or standard (green) network. (B - E) Expression profiles during inflorescence 
development of discussed modules in the consensus network. Lines represent scaled time course 
expression of each gene in the module. Modules with similar expression profiles are grouped together for 
comparison. (F) Number of TF family members clustered in each discussed consensus module. Modules 
enriched (green) or depleted (pink) for TF families are highlighted (P < 0.01). (G) Number of MIKC-
MADS box clade members clustered in each consensus modules. Co-expressed MIKC-MADS box 
groups are shaded relative to the total number of genes in the clade. 
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Figure 4.3: Causal structural inference prediction of interacting transcription factors, filtered for edge 
weight ≥0.03. Nodes (genes) are colored by their consensus network modules, and consensus100 module 
9 genes are highlighted with a yellow border. Node diameter is scaled to betweenness centrality to 
indicate its importance within the network. Directional interactions are indicated by arrows and width is 
scaled to predicted interaction strength. 
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Figure 4.4: Divergent expression of homoeologous gene pairs during inflorescence development. 
Expression profiles of (A) Characterized domestication and adaptation alleles and (B) Genes close to 
QTL for spike architecture or grain size. Expression values are in TPM ± standard error. A-genome 
homoeologs are in orange, B-genome homoeologs are in blue. Paired t-tests were used to indicate 
differences between homoeolog expression at each time point, P values < 0.05 (*), 0.01 (**), 0.001 (***), 
0.0001 (****). 
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Figure 4.5: Expression profiles of WOX TFs (A) and CLE peptides (B) during wheat inflorescence 
development. Stars indicate additional evidence of a possible role in spike regulation (green = differential 
expression in ‘Kronos’ inflorescence, blue = associated with variation in spikelet number, red = spike-
dominant expression profile). Heatmaps show expression (TPM) relative to each gene’s minimum and 
maximum expression. Only genes with TPM ≥ 0.05 are shown. 
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Chapter 5 – Conclusion 
 

 

 

5.1 Summary 

 Breeding for insect resistance in has historically been reactionary and in response to emerged 

pests after they have become economically relevant. This dissertation provides new information about 

sorghum aphid resistance in Sorghum bicolor which has informed pre-breeding and breeding efforts 

which I hope will proactively reduce the likelihood of biotype shifts. 

 The reliance on RMES1 as the primary source of host-plant resistance in breeding programs 

necessitated the need to determine if selection pressure was significant and what other source of HPR may 

exist or are in use. I showed RMES1 is placing selection pressure on M. sorghi but not all aphid species 

and was likely being bolstered by RMES2 in breeding programs. These findings will guide marker 

development for the intentional use and deployment of both sources to reduce the likelihood of a biotype 

shift as expected by antibiosis. To further characterize the threat of RMES1-resistance being overcome, 

we tested hypotheses on the molecular mechanism of RMES1. Genomic, transcriptomic, and metabolomic 

evidence elevated the NLR hypothesis over the HCN hypothesis which has implications for R-gene 

deployment and IPM strategies. 

 


