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ABSTRACT

UNDERSTANDING EXTREME BEHAVIOR BY OPTIMIZING

TAIL DEPENDENCE WITH APPLICATION TO GROUND LEVEL

OZONE VIA DATA MINING AND SPATIAL MODELING

This dissertation presents novel work in statistical methods for extremes. Our underlying

modeling procedure identifies the linear combination of covariates that is associated with

extreme values of a response variable, and is based on the framework of bivariate regular

variation. We propose a data mining strategy that is suitable for an analysis of ground level

ozone, and spatially model the primary drivers of extreme ozone over a large study region.

In this dissertation, we first review statistical methods for univariate and multivariate

extremes. We then discuss tail dependence parameters and their estimators and introduce γ,

a tail dependence metric which is better suited for optimization than other existing metrics.

We also introduce the idea of tail dependence estimators that utilize a smooth threshold

rather than the ‘hard’ threshold common to extremes. A smooth threshold is necessary to

perform optimization, which has not previously been considered in extremes studies. We

also show consistency of estimators with smooth thresholds.

Subsequently, we outline our procedure for optimizing tail dependence and discuss pa-

rameter estimation. We also propose a model selection procedure that is based on cross-

validation. Then we give a simulation study where we demonstrate our method’s ability to

detect complicated conditions which lead to extreme behavior and compare our approach to

competing methods.

Next, we propose a data mining procedure that can be used to find the set of covariates

that produces the linear combination that has the highest degree of tail dependence with a

response variable. Our data mining procedure is a model selection exercise where the model

space is too large to be searched exhaustively. We use an automated model search procedure

based on simulated annealing. We also give an analysis of ground level ozone, applying our
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data mining procedure to data from Atlanta, Georgia and Charlotte, North Carolina. We

discuss how our method can be modified to deal with non-continuous covariates such as

precipitation.

Lastly, we seek to model how a set of primary drivers varies spatially over a study region.

We utilize data from 160 EPA stations in 13 US states plus the District of Columbia. We

model the parameters in our extreme value procedure spatially using a hierarchical modeling

technique. For inference, we utilize a two-step procedure.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Background

Although extreme events occur infrequently, they typically carry a high cost to society.

Analysts in a variety of applied fields recognize the need to better understand such extreme

events. Examples of disciplines that utilize extremes analyses include hydrology (model-

ing floods), the atmospheric sciences (understanding extreme precipitation events), finance

(modeling extreme losses), insurance (modeling extreme claims), and engineering (designing

structures to withstand extreme events).

Extreme Value Theory (EVT) is the branch of probability that attempts to model these

types of extreme events. It is being utilized in an expanding number of applied fields.

Extremes is also an active area of statistical research, and many of the recent advances have

been made in multivariate and spatial extremes.

Most traditional extremes analyses tend to be descriptive in nature. In univariate ex-

tremes, analysts are often interested in estimating the upper tail of a univariate probability

distribution function. Return level and value-at-risk analyses are univariate extremes meth-

ods that rely on properly estimating the upper tail of a distribution. Multivariate extremes

has also seen these types of descriptive analyses. For example, it is common for an analyst

to estimate the probability associated with a predetermined risk region. A risk region is a

set in the multivariate space that has a small probability of occurance but a high degree of

consequence.

The work in this dissertation advances the field of extremes, but these newly developed

methods can be described as exploratory and explanatory as opposed to descriptive in na-

ture. Instead of attempting to describe some attribute of a distribution, we seek to find the
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function of covariates that has the highest possible degree of tail dependence with a contin-

uous response variable. In this work we quantify tail dependence using a tail dependence

metric that is well-suited for optimization. In addition, we propose a data mining method

to decide which subset of a large number of covariates best describes extreme behavior of

the response. We then perform a spatial analysis using our extreme value method in order

to understand how the tail dependence relationship with covariates changes over a study

region.

Others have developed methods to link covariates with extreme behavior, but our meth-

ods are new and are better suited for our data and objectives. Extreme value regression

methods allow the parameters of an extreme value distribution to be linear combinations of

explanatory variables (Beirlant et al., 2004, Ch. 7). Other methods allow for the threshold

to change based on the value of covariates (Davison and Smith, 1990). Preprocessing meth-

ods attempt to create a stationary series whose residuals can be modeled using an extreme

value distribution (Eastoe and Tawn, 2009). Our tail dependence method is fundamentally

different than these aforementioned approaches, and is based on the framework of regular

variation which is central to multivariate extremes. We feel our approach is better suited

to situations where the covariates vary on the same time scale as the response (e.g., when

the covariates and the response are recorded daily). We also feel that our approach is better

suited for a data mining application where a large number of possible covariates exist and

the analyst wishes to find those which are important to extreme values of the response.

1.1.1 Ozone Application

Although the method described in Chapter 3 of this dissertation is applicable to any con-

tinuous response variable, this dissertation is motivated by an application to understanding

ground level ozone. Ozone is a secondary pollutant, meaning that it is not emitted directly

into the atmosphere. Rather, it is created through a series of chemical reactions, when ni-

trogen oxides (NOx) and volatile organic compounds (VOCs) in the atmosphere are exposed

2



to ultraviolet radiation from sunlight. Consequently, the meteorological drivers which are

associated with high ozone levels (high temperature, low wind speed, high solar radiation)

are well known (Jacob and Winner, 2009). However, it is less well known what meteoro-

logical conditions distinguish an extreme ozone day from one with merely high ozone levels.

The novel methods presented in this dissertation have two main goals: to attempt to find

the linear combination of meteorological covariates which maximizes tail dependence with

ozone, and to model the primary drivers of ozone over a spatial study area.

Figure 1.1 partially illustrates this idea. Ground level ozone is plotted versus air tem-

perature for Atlanta, Georgia from 1992 to 2010 (April-October). This scatterplot shows

that extreme levels of ozone occur when the air temperature is high; however, days with the

highest ozone readings do not correspond to the days with the highest temperatures. This

study aims to better understand the meteorological drivers of extreme ozone, and is part of

an interdisiplinary project that brings together statisticians and atmospheric scientists. This

project, entitled Using advanced statistical techniques to identify the drivers and occurrence

of historical and future extreme air quality events in the United States from observations

and models, is funded by EPA STAR Grant RD-83522861-0. In addition to Brook Russell

and Dan Cooley of the Colorado State University Statistics Department, project members

include Brian Reich (North Carolina State University Department of Statistics), William

Porter (Massachusetts Institute of Technology Department of Civil and Environmental En-

gineering), Colette Heald (Massachusetts Institute of Technology Department of Civil and

Environmental Engineering and Department of Earth, Atmospheric and Planetary Sciences),

Alma Hodzic (National Center for Atmospheric Research), Eric Gilleland (National Center

for Atmospheric Research), and Barbara Brown (National Center for Atmospheric Research).

We aim to find functions of meteorological covariates that have a high degree of tail

dependence with ground level ozone. That is, we want to find functions of covariates which

tend to be very large when ground level ozone is extreme. As is typical for an extreme

value analysis, we only analyze data which are considered to be extreme and disregard that

3
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Figure 1.1: A scatterplot of daily high surface air temperature versus peak daily maximum
eight-hour surface ozone in Atlanta, Georgia from 1992 to 2010 (April-October days only).

which is non-extreme. We restrict ourselves to linear combinations of (possibly transformed)

meteorological covariates. We think of these functions as helping to describe the ‘perfect

storm’ of meteorological covariates which lead to extreme ozone conditions.

We develop several novel methods which are used to describe and model the conditions

of this perfect storm. The first is an optimization problem: given a set of covariates, we want

to find the coefficients in the linear combination of meteorological covariates that optimize

tail dependence with ozone. The second is a data mining problem: we aim to find which of

the possible meteorological covariates are associated extreme ozone conditions. These two

methods are used in conjunction to search a large number of possible meteorological covari-

ates to determine which are the drivers of extreme ozone levels in Atlanta and Charlotte.

We then extend the study to a large number of stations, and we develop methodology to

spatially model the parameters which describe the tail dependence between the response and

the covariate functional.
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This dissertation is organized in the following manner. In the remainder of Chapter 1

we provide the necessary background on EVT. We begin by reviewing classical univariate

Extreme Value Theory. We then introduce multivariate extremes and develop the concepts

of multivariate regular variation and tail dependence.

In Chapter 2 we discuss tail dependence parameters and their estimators. We introduce γ,

a tail dependence metric which is better suited for optimization than other existing metrics.

Additionally, we introduce the idea of tail dependence estimators that utilize a smooth

threshold rather than the ‘hard’ threshold common to extremes. A smooth threshold is

necessary to perform optimization, which has not previously been considered in extremes

studies. We show consistency of estimators with smooth thresholds.

In Chapter 3 we outline our procedure for optimizing tail dependence and discuss parame-

ter estimation. We also propose a model selection procedure that is based on cross-validation.

We close this chapter with a simulation study where we demonstrate our method’s ability

to detect complicated conditions which lead to extreme behavior and compare our approach

to competing methods.

Chapter 4 proposes a data mining procedure that can be used to find the set of covariates

that produces the linear combination that has the highest degree of tail dependence with a

response variable. Our data mining procedure is a model selection exercise where the model

space is too large to be searched exhaustively. We use an automated model search procedure

based on simulated annealing. We also give an analysis of ground level ozone, applying our

data mining procedure to data from Atlanta, Georgia and Charlotte, North Carolina. We

discuss how our method can be modified to deal with non-continuous covariates such as

precipitation.

Rather than data mining to tease out all the contributors to extreme behavior, Chapter

5 seeks to model how a set of primary drivers varies spatially over our study region, which

is made up of EPA Regions 3 and 4. We utilize data from 160 EPA stations in 13 US states

plus the District of Columbia. Our extreme value procedure does not use a likelihood, so we
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model the parameters in our extreme value procedure spatially using a hierarchical modeling

technique. For inference, we utilize a two-step procedure. In Chapter 6, we summarize our

results and discuss the possible consequences of our work. We also discuss possible extensions

of this method and ozone analysis.

The work presented in Chapters 2, 3, and 4 essentially make up the article “Data Mining

for Extreme Behavior with Application to Ground Level Ozone”, which is currently submit-

ted for publication. Chapter 5 largely corresponds to a manuscript entitled “Investigating

the Spatial Effects of Meteorological Covariates on Extreme Ground Level Ozone”, which is

in preparation.

1.2 Statistical Methods for Extremes

As the methods in this dissertation rely on extremes, we first review classical statistical

methods for extremes. The two most common approaches to modeling univariate extremes

are the block maxima approach and the threshhold excess approach. We begin by giving

a brief review of these two approaches. There are a number of books that cover univariate

extremes (see Beirlant et al. (2004), Coles (2001), and De Haan and Ferreira (2007)).

1.2.1 Block Maxima Approach

Assume that we have a sequence of independent random variables X1, X2, X3, . . . with

common distribution function F . In the block maxima approach, define

Mn = max{X1, X2, . . . , Xn}.

If there exist sequences an > 0 and bn such that

P

(
Mn − bn
an

≤ z

)
→ G (z) as n→∞, (1.1)
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for some nondegenerate G, then G belongs to one of the following three families:

I : G(z) = exp
{
− exp

[
− (z)

]}
,−∞ < z <∞

II : G(z) =


0 if z ≤ 0

exp
{
− (z)−1/ξ

}
if z > 0

III : G(z) =


exp

{
−
[
− (z)1/ξ

]}
if z < 0

1 if z ≥ 0.

Families II and III have an additional parameter, the shape parameter ξ > 0. Families I, II,

and III are commonly known as the Gumbel, Fréchet, and Weibull families (respectively).

This theorem is due to Fisher and Tippett (1928) and Gnedenko (1943).

The Fréchet is a family of max stable probability distributions that have the distribution

function P (Z ≤ z) = exp
{
−
(
z−b
a

)−1/ξ
}
I{z>b}. The Fréchet is a location scale family with

location parameter, b, and scale parameter, a. Its probability density function is right skewed,

and the scale parameter ξ > 0 determines how ‘heavy’ the tail will be. The mth moment

exists if and only if m < 1/ξ.

The Gumbel is a location scale family that is defined by its distribution function P (Z ≤

z) = exp
{
− exp

[
−
(
z−b
a

) ]}
and has support over all of R. The Weibull family described

above is sometimes known as the ‘reverse Weibull’ or ‘negative Weibull’ and is characterized

by its distribution function

P (Z ≤ z) = exp

{
−
[
−
(
z − b
a

)1/ξ ]}
I{z<b} + I{z≥b}.

It is also a location scale family and should not be confused with the Weibull described

in Casella and Berger (2002), although negating this type of Weibull random variable will

result in a ‘reverse Weibull’ random variable. If Equation (1.1) holds, then G will have the

Generalized Extreme Value distribution (GEV ) with parameters µ ∈ R, σ > 0, and ξ ∈ R.
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In this parameterization µ is the location parameter, σ is the scale parameter, and ξ is the

shape parameter. The GEV , defined as

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

(1.2)

for {z : 1 + ξ(z − µ)/σ > 0)}, can be interpreted as a generalization of the three families:

the Gumbel, Fréchet, and the Weibull. In extreme value analyses, the shape parameter ξ, is

critical as it characterizes the distribution to which the process will converge. If ξ < 0 then

the tail is bounded and G is Weibull. If ξ = 0 then G will be Gumbel, and for ξ > 0 the tail

is considered heavy and G is Fréchet.

In reality, the sequences an and bn in Equation (1.1) will not be known. In practice n is

fixed and this issue can be resolved by reparameterizing to absorb an and bn into the µ and

σ parameters, labeling this GEV G∗ (Coles, 2001).

P

(
Mn − bn
an

≤ z

)
≈ G (z) =⇒ P (Mn ≤ z) ≈ G

(
z − bn
an

)
= G∗(z) (1.3)

In practice, the analyst divides his or her data into non-overlapping “blocks” of large

n and uses the maximum of each block of data as an independent realization of a GEV

random variable. Analysts often use likelihood based methods to make inference on the

GEV parameters. Other estimation methods exist, such as probability weighted moments

(Hosking et al., 1985). As the annual maximum is often a meaningful quantity, in many

analyses a useful block size is one year.

The main disadvantage of the block maxima approach is that it may discard many ob-

servations that could help in modeling the tail behavior. For example, if a researcher is

analyzing daily data using blocks of one year, he or she would end up discarding ‘extreme’

observations whenever two or more such observations occur in the same year. The threshold

exceedance approach attempts to resolve that issue.
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1.2.2 Threshold Exceedance Approach

In the threshold excess approach, all of the observations above a particular threshold

are retained. If the block maxima can be well approximated by a GEV , then the excesses

above a high threshold can be modeled by a Generalized Pareto Distribution (GPD) with

parameters ξ and σ̃ (Coles, 2001). It is important to note that the GPD ξ parameter is that

same as the GEV ξ parameter.

The GPD is defined in the following way. If Mn converges to G∗ as in (1.3), then for a

large enough threshold u the distribution function of the excesses is approximately given by

P (X − u < y|X > u) ≈ 1−
(

1 +
ξy

σ̃

)−1/ξ

. (1.4)

Note that σ̃ = σ + ξ(u− µ) and that the function is defined on the set

{y : y > 0 and (1 + ξy/σ̃) > 0}.

One challenge of the threshold excess approach is that a suitable threshold must be

chosen. In practice there are a number of diagnostic techniques designed to assist in selecting

an appropriate threshold. Scarrott and MacDonald (2012) discuss the challenge of threshold

selection and summarize several commonly used methods.

1.3 Multivariate Extremes Statistical Methods

Modeling univariate extremes is relatively straightforward as it essentially involves esti-

mating the parameters in Equation (1.2) or Equation (1.4). Modeling multivariate extremes

is more challenging. In this section we begin by introducing the componentwise block max-

ima approach and conclude with the ideas of multivariate threshold excess and multivariate

regular variation.
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1.3.1 Componentwise Block Maxima

Consider the d dimensional random vector X with distribution function F . Assume we

have n iid realizations X i = (Xi,1, Xi,2, . . . , Xi,d)
T and define the vector of componentwise

maxima

Mn = (
n∨
i=1

Xi,1,

n∨
i=1

Xi,2, . . . ,

n∨
i=1

Xi,d)
T .

Then Mn is a d dimensional vector that includes the maximum of each component in the

iid sample from X. Note that Mn will not necessarily be an observed data point. Now,

assume that there exist vectors of renormalizing sequences an ∈ Rd and bn ≥ 0 such that

P

(
Mn − an

bn
≤ x

)
= F n(bnx+ an)

d→ G(x),

where all operations here are componentwise. G(x) is defined to be a multivariate extreme

value distribution (MVEVD). Since a sequence of random vectors can converge only if all

marginals converge,

F n
j (bnx+ an)

d→ Gj(x),

for j = 1, . . . , d and where Fj and Gj are the jth univariate marginals of F and G (respec-

tively). This implies that Gj is univariate EVD. However, it should be noted that not every

multivariate distribution with univariate EVD marginals will be MVEVD.

It can be shown that every MVEVD has the form G(x) = exp
(
−µ[−∞,x]C

)
(Resnick,

1987). The measure µ is known as the exponent measure and contains all of the information

regarding marginal transformations.

The marginal distributions for a MVEVD must be univariate EVD, so it makes sense to

assume common marginals to better characterize µ. For convenience, we choose to transform

marginals to unit Fréchet using probability integral transformations. Resnick (1987) shows

that the domain of attraction is preserved under such transformations. MVEVDs with unit

Fréchet marginals are called ‘simple’ and G∗j(zj) = exp(−z−1
j ). Then G∗ is a MVEVD with
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unit Fréchet marginals such that

G∗(z) = G(G−1
1 (exp(−z−1

1 )), G−1
2 (exp(−z−1

2 )), . . . , G−1
d (exp(−z−1

d )))

for z ∈ (0,∞). Let µ∗ denote the measure of the simple MVEVD. It can be shown that for

any s > 0, µ∗ has the scaling property µ∗(sA) = s−1µ∗(A). For any norm, let Sd−1 be the

unit sphere, i.e. Sd−1 = {z ∈ Rd
+ : ||z|| = 1}. Now, consider sets in the form of

A(r, B) = {z ∈ Rd
+ : ||z|| > r, z/||z|| ∈ B}

for B ⊂ Sd−1. For fixed B ⊂ Sd−1 define the angular (spectral) measure

H(B) := d−1µ∗(A(1, B)).

Due to the scaling property of µ∗,

µ∗(A(r, B)) = r−1µ∗(A(1, B)) = dr−1H(B). (1.5)

This suggests the transformation T : Rd
+ → R+ × [0, 1]d−1 such that

T (Z) = (||Z||,Z/||Z||) =: (R,W ).

R is called the radial component and W is called the angular component. The right hand

side of (1.5) is a product measure, revealing that the radial and angular component become

independent in the limit. The exponent measure function, V∗, is defined

V∗(z) := − log(G∗(z)) = µ∗([0, z]C).
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Thus, G∗ can be expressed as

G∗(z) = exp(−µ∗([0, z]C)) = exp(−V∗(z)).

When utilizing the L1 norm: ‖Z‖1 = Z1 + . . .+ Zd, V∗ can be expressed as

V∗(z) = d

∫ ∫
(r,w)∈T ([0,z]C)

r−2drH(dw)

= d

∫
Sd−1

∫ ∞
r= min

i=1,...,d

(
wi
zi

) r−2drH(dw)

= d

∫
Sd−1

[−r−1]∞
min

i=1,...,d

(
wi
zi

)H(dw)

= d

∫
Sd−1

(
min
i=1,...,d

(
wi
zi

))−1

H(dw)

= d

∫
Sd−1

max
i=1,...,d

(
wi
zi

)
H(dw).

This definition shows the difficulty involved in expressing G∗ (and V∗) in Cartesian coordi-

nates and indicates that the polar coordinate transformation, T , may be convenient.

Building on the characterization of the MVEVDs, we next describe the threshold excess

approach provided by the regular variation framework where we will further describe H.

1.3.2 Threshold Excesses

One challenge of multivariate threshold exceedance approaches is that one must define

what is meant by a threshold exceedance. The multivariate GPD (Rootzen and Tajvidi,

2006) is a model which can be used when thresholds are defined in terms of each univariate

marginal. Our approach is to utilize the multivariate regular variation framework which can

be used when a threshold is defined in terms of a vector norm.
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1.3.3 Regular Variation and Multivariate Exceedences

Multivariate regular variation (MVRV) is a probabilistic framework for modeling multi-

variate extremes. MVRV implies that the joint tail decays like a power function and is defined

only in terms of the joint tail. There are a number of equivalent definitions of MVRV. A

random vector Z ∈ [0,∞)d is regularly varying if there exists a sequence b(n) such that

nP

(
Z

b(n)
∈ ·
)

v→ ν(·), (1.6)

where v denotes vague convergence on E = [0,∞]d\{0} and ‖·‖ is any norm (Resnick, 2007).

For α = 1, the measure ν described in (1.6) is equivalent to the exponent measure µ∗ in

the previous section. If we choose a set A ∈ E and s > 0, the limit measure ν also has the

scaling property, ν(sA) = s−αν(A). This scaling property shows the heavy-tailed nature of

the MVRV framework. The tail index α determines the power-law behavior of the tail.

The scaling property leads to an equivalent and useful definition in terms of psuedo-

polar coordinates, where we transform Z from Cartesian to psuedo-polar coordinates using

T . Then there exists a finite measure H on Sd−1 such that for any H−continuity Borel

subset B of Sd−1

nP
(
b(n)−1R > r,W ∈ B

) v→ r−αH(B) as n→∞. (1.7)

The measure H described in (1.7) is equivalent to the measure H in the previous section.

Because the right hand side of (1.7) is a product measure, we are again reminded that the

radial and angular components become independent in the limit. We can characterize the

tail behavior through knowing α and the angular measure H, which completely describes

dependence. b(n) can be chosen so that H is a probability measure.

Although the regular variation framework implies that the univariate marginal distribu-

tions are each heavy-tailed with tail index α, the framework can be used to model multivari-

ate data with differing tail behavior, which may or may not be heavy-tailed. Resnick (1987)
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shows that monotone transformations of the univariate marginal distributions do not change

the fundamental nature of the tail dependence, in the sense that the domain of attraction

is preserved. If the data come from Y which is not regularly varying, we assume that there

exist probability integral transformations Ti, such that Ti(Yi) = Zi, and Z = (Z1, . . . Zd)
T is

regular varying.

Statistical practice for multivariate extremes typically requires transforming marginals

to a common, convenient distribution under which the dependence structure is more easily

described. When dealing with real data, the appropriate transformation Ti will be unknown.

An analyst will typically transform each margin using T̂i, where T̂i is a probability integral

transformation based on an estimated distribution function. Copula approaches (Nelsen,

2006), which model dependence after marginal transformation to Uniform[0,1] are similar in

spirit. However, unlike copula approaches, our approach aims only to describe the tail.

We choose to transform our marginals to the unit Fréchet distribution. The unit Fréchet

is regularly varying with α = 1, therefore our transformed data will be very heavy-tailed.

Since α = 1, we find it convenient to use the L1 norm. Although the Fréchet is max-stable,

this is unimportant for our purposes as we model threshold exceedances rather than block

maxima.

After marginal transformation, α is assumed known, and one needs to model H in (1.7)

to describe the dependence in the tail. In this dissertation, we only need to consider tail

dependence for bivariate vectors. Let Z = (Z1, Z2)T be a bivariate regular-varying α = 1

random vector with common marginal distributions. To begin to understand H, consider

the limit

χ := lim
z→∞

P (Z2 > z|Z1 > z). (1.8)

If χ = 0, then the variables are termed asymptotically independent, whereas if χ > 0, the

variables exhibit asymptotic (tail) dependence. The two extreme cases for χ, asymptotic

independence and perfect dependence, yield specific forms for H. In the asymptotic inde-

pendence case, H puts all of its mass on the axes, placing mass of .5 at (0,1) and (1,0). In
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the case of perfect asymptotic dependence, H places all of its mass at (.5,.5). In general,

as H puts more mass towards the center of the distribution the amount of tail dependence

increases.

When exploring data, a scatterplot after transformation to a heavy tailed distribution

can help one to understand tail dependence. Figure 1.2 gives a scatterplot of air temperature

versus ozone in Atlanta, where both variables are transformed to have unit Fréchet marginals

via rank transformations. Notice that the majority of the points have congregated near the

origin, and one is left to view the behavior of the large points. As there are points in the

interior of the plot, this suggests that this data does not exhibit asymptotic independence.

However, as many of the large points occur near the axes, it also seems to indicate that the

level of tail dependence is relatively weak; that is, that temperature alone does not describe

extreme ozone conditions.
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Figure 1.2: A scatterplot of daily high surface air temperature versus peak daily maximum
eight-hour surface ozone in Atlanta, Georgia from 1992 to 2010 (April-October) after trans-
forming to the unit Fréchet scale via rank transformations.
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1.4 Utilizing Regular Variation

Our method relies on the MVRV framework, but does so differently than typical MVRV

methods. A typical problem in multivariate extremes is to estimate the probability of seeing

observations in a risk region. The risk region has a small probability of occurance yet often

has great consequences. Figure 1.3 illustrates this problem. As there are no observations

in the risk region, it is difficult to esimate the probability associated with it. A parametric

framework such as MVRV can be useful, as it allows for extrapolation beyond the observed

data.
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Figure 1.3: Estimating the probability of getting realizations in a predetermined risk region
is a typical utilization of the MVRV framework. MVRV can be especially useful in this case
as it allows the analyst to extrapolate beyond the observed data set.

The methods in this dissertation utilize MVRV, but do so in a very different way. One

primary goal of this dissertation is to develop a procedure to estimate the coefficients in the

linear combination of continuous covariates that has the highest degree of tail dependence

with a continuous response variable. Changing the coefficients in the linear combination

has no effect on the response variable. However, such an adjustment causes the points in

the Unit Fréchet transformed scatterplot to shift horizontally, as seen in Figure 1.4. We
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seek to find the parameter estimates that put as many points as possible with large radial

component in the interior, away from the axes. Informally, the goal is to get the points with

large radial component as close as possible to the 45◦ line, thus maximizing tail dependence.

In the next two chapters we introduce tail dependence metrics and then discuss optimization

of tail dependence.

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

0 10 20 30

0
10

20
30

X**(β)

Y
**

Figure 1.4: An illustration of a possible scatterplot of the linear combination of covariates,
(X∗∗(β), versus the response variable, Y ∗∗. Changing the parameter vector, β, causes the
points to shift horizontally. As the red arrows indicate, the points will shift different distances
to the left or right. Our method seeks to find the β that produces the linear combination
that has the highest degree of tail dependence with the response variable.
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CHAPTER 2

TAIL DEPENDENCE

2.1 Tail Dependence Metrics and Estimators

In Chapter 1 we introduced statistical methods for extremes and the idea of MVRV

which can be used to model multivariate threshold exceedances. We also made the claim

that our objective is unique for a MVRV analysis. Instead of describing dependence within

the MVRV framework, we wish to find the linear combination of covariates that has the

highest degree of tail dependence with a continuous response variable. This requires us to

outline a new tail dependence metric and to consider alternatives to traditional extremes

thresholding techniques.

In this chapter we introduce γ, the tail dependence metric we utilize in this work. We also

propose, γ̂
(S)
n , its corresponding estimator that utilizes a ‘smooth’ threshold. We conclude

this chapter by showing the consistency of γ̂
(S)
n under certain conditions.

In ‘traditional’ statistics, it is common for analysts to utilize correlation metrics such as

Pearson’s, Kendall’s, and Spearman’s to describe association. While these metrics do well

at describing association in the bulk of the data, they are poorly suited for describing tail

dependence. This is because dependence in the tail can differ from dependence in the bulk

of the distribution. For example, any bivariate Gaussian random vector with correlation

parameter less than one can be shown to be asymptotically independent (Sibuya, 1959).

As its definition is strictly in terms of tail behavior, the regular variation framework pro-

vides a method for describing tail dependence. Within this framework, the angular measure

H introduced in Chapter 1 completely describes tail dependence, but is not easily summa-

rized. In order to perform a numerical optimization later, we need to be able to summarize

tail dependence with a single value. Several tail dependence metrics have been suggested.
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Coles et al. (1999) describe χ, as given in Equation (1.8). Schlather and Tawn (2003) propose

the extremal coefficient and Davis and Mikosch (2009) propose the extremogram, which can

be viewed as a generalization of χ.

We introduce a new tail dependence metric γ, which is a particular instance of an extremal

dependence measure (Resnick (2004) and Larsson and Resnick (2012)). Important for our

purposes, γ has a natural estimator γ̂ which is well suited for optimization. Furthermore, we

will propose employing a smooth threshold for estimation. These tail dependence parameter

estimation issues have not been previously encountered in extremes work as optimizing

tail dependence has not previously been attempted. At the end of this chapter, we show

consistency of γ̂
(smooth)
n , our estimator with smooth threshold.

2.1.1 Metrics with Counting-type Estimators

We begin by describing some tail dependence metrics and their estimators. Coles et al.

(1999) describe the parameter χ, given in Equation (1.8), which could serve as a tail depen-

dence summary measure. Note since we assume Z is bivariate regularly varying, χ can also

be defined in terms the limit measure ν:

χ =
ν([u,∞]× [u,∞])

ν([u,∞]× [0,∞])
.

Clearly χ is the ratio of the measures of two sets. Figure 2.1 depicts these two sets graphically.

Let Zt = (Zt,1, Zt,2) for t = 1, . . . , n be iid copies of Z. An estimator of χ can be obtained

by replacing ν with the observed counts:

χ̂(u) =

∑n
t=1(I{Zt,1 > u})(I{Zt,2 > u})∑n

t=1 I{Zt,1 > u}
. (2.1)

This estimator is typically calculated for an increasing sequence of values of u, and then χ̂(u)

is plotted versus u or F̂n(u). If χ̂(u) approaches zero as u gets larger the bivariate vector

shows asymptotic independence, whereas if χ̂(u) does not approach zero the bivariate vector

19
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Figure 2.1: In the regular variation framework, the tail dependence parameter χ = ν([u,∞]×
[u,∞])/ν([u,∞] × [0,∞]) can be described as the ratio of the measure of two sets. Here,
A (the gray ‘criss-crossed’ region) has measure ν(A) = ν([u,∞]× [u,∞]) and B (the entire
gray region) has measure ν(B) = ν([u,∞]× [0,∞]).

shows asymptotic dependence. Figure 2.2 gives this plot for the Atlanta ozone and temper-

ature data. The plot indicates that air temperature and ozone appear to be asymptotically

dependent as χ̂(u) does not appear to become 0 as u increases, but the degree of dependence

is rather low.

Coles et al. (1999) give an estimator for χ which is symmetric in the sense that it also

considers Z1 conditioned on Z2 exceeding u. The extremogram (Davis and Mikosch, 2009),

can be viewed as a generalization of χ̂. Like the estimator in Equation (2.1), the estimators

proposed by Coles et al. (1999) and Davis and Mikosch (2009) are ratios of sums of indicators.

We call such estimators ‘counting estimators’ for obvious reasons.

For a fixed u, χ̂(u) gives the number of points that exceed u in both components divided

by the number of points that exceed u in the first component. Counting estimators have

proven useful for describing tail dependence, but they cannot serve as the objective function

in numerical optimization. This is because many unique arrangements of points can result in
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Figure 2.2: Daily high surface air temperature and peak daily maximum eight-hour surface
ozone in Atlanta, Georgia from 1992 to 2010 (April-October) are transformed to the unit
Fréchet scale via rank transformations. We plot of χ̂ using a sequence of quantiles for the
threshold (with 95% confidence bands).

identical values of χ̂. This idea is illustrated in Figure 2.3. As the number of points in each

respective region is the same, both scatterplots will produce identical values of χ̂ despite

being distinct arrangements of points.
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Figure 2.3: Although the data sets used to create the scatterplots in the (L) and (R) panels
are not identical, they produce identical values of χ̂. This illustrates the fact that χ̂ is poor
for use as an objective function.
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2.1.2 Tail Dependence Metrics from H

If Z is bivariate regularly varying with angular measure H, tail dependence metrics can

be created by integrating with respect to H. Larsson and Resnick (2012, subsection 2) show

that any tail dependence metric based on ν in the form
∫
E f(x)dν(x) can be written as an

integral with respect to the angular measure H. Larsson and Resnick (2012) describe these

dependence summary parameters based on H in the form

ρκ =

∫
S1

κ(w)dH(w) (2.2)

for κ : S1 → [0,∞). In earlier work, Resnick (2004) proposed the extremal dependence

measure (EDM), a specific case of (2.2) where κ(θ) = (4/π)2θ(π/2− θ) and H is defined on

the unit ball given by the L2 norm.

Others have utilized the EDM in analyses intending to describe tail dependence in specific

applications. Hernandez-Campos et al. (2005) use this EDM in an analysis of internet file

sizes and rate of transfer and D’Auria and Resnick (2008) make use of the EDM in modeling

inputs to data networks.

Resnick (2004) and Larsson and Resnick (2012) propose estimators and show consistency

by relying on the intermediate asymptotics common to EVT. Let k := k(n) be a sequence

such that k →∞ and k/n→ 0. Begin with the empirical estimator for ν:

ν̂(·) :=
1

k

n∑
t=1

ε Zt
b(n/k)

(·),

where εx(A) = 1 if x ∈ A and 0 otherwise, and b is defined as in (1.7). It can be shown that

ν̂ ⇒ ν (Resnick, 2007, Theorem 4.1). Then, for sets in S1, define

Ĥ(hard)(·) :=
ν̂{z | ‖z‖ > 1, z‖z‖−1 ∈ (·)}

ν̂{z | ‖z‖ > 1}
=

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

) ,
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where δ(hard) : R+ 7→ [0, 1] is defined as

δ(hard)(z) =

 0 for z < 1;

1 for z ≥ 1.

The superscript (hard) denotes the standard ‘hard’ threshold at 1 which is standard for

extremes. Letting W t = Zt/‖Zt‖, we obtain the estimator for the tail dependence measure

ρ̂(hard)
κ =

∫
S1

κ(w)Ĥ(hard)(dw) =

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
κ(W t)∑n

t=1 δ
(hard)

(
‖Zt‖
b(n/k)

) . (2.3)

As they are functions of ν̂, Ĥ(hard) ⇒ H and ρ̂κ
p→ ρ follow from the continuous mapping

theorem. Resnick 2007, p. 301 further states that b(n/k) can be replaced with an estimator

b̂(n/k), and so long as b̂(n/k)/b(n/k)
p→ 1, the above convergences will hold.

As mentioned in Chapter 1, we choose to work with the L1 norm, thus we use a de-

pendence summary parameter based on the distance |Z1 − Z2|. When assuming common

marginal distributions, |Z1 − Z2| informally represents the distance to the 45◦ line. This

makes sense heuristically as the 45◦ line is where all points with large radial component

would reside under perfect dependence. The madogram (Cooley et al., 2006) is a tail depen-

dence metric also based on an L1 distance, but in the context of block maxima rather than

threshold exceedances.

After converting to psuedo-polar coordinates, we get |Z1 − Z2| = |RW − R(1 −W )| =

R|2W−1|. We require a function that is not dependent upon R, so we choose κ(w) = |2w−1|,

noting

|Z1 − Z2|
Z1 + Z2

=
R|2W − 1|

R
= |2W − 1|.

Define the parameter

γ =

∫
S1

|2w − 1|dH(w). (2.4)

Note that 0 ≤ γ ≤ 1, and that a smaller value of γ implies a higher degree of tail dependence.
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For illustrative purposes, we now calculate γ for three specific forms for H. In the case of

asymptotic dependence γ = 1, whereas perfect tail dependence yields γ = 0. If the angular

component is uniformly distributed over S1,

γ =

∫ 1

0

|2w − 1|dw =

∫ .5

0

(1− 2w)dw +

∫ 1

.5

(2w − 1)dw = .25 + .25 = .5.

The tail dependence between air temperature and ground level ozone is fairly weak, evidenced

by Figure 2.4 where γ̂ is approximately .65 when using a threshold at the .95 quantile.
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Figure 2.4: Daily high surface air temperature and peak daily maximum eight-hour surface
ozone in Atlanta, Georgia from 1992 to 2010 (April-October) are transformed to the unit
Fréchet scale via rank transformations. We plot of γ̂ using a sequence of quantiles for the
threshold (with 95% confidence bands).

We could estimate γ with an estimator of the form (2.3), however, the hard threshold

does not lend itself well to performing optimization, and we explore using a smooth threshold

in the next section.
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2.1.3 Tail Dependence Estimation with a Smooth Threshold

As we wish to optimize tail dependence in terms of our tail dependence estimator, the

hard threshold typically used in EVT is problematic. This has to do with the nature of our

procedure. During optimization, points will likely move back and forth across the threshold,

and ultimately cause the optimizer not to converge. This is illustrated in Figure 2.5. When

using the ‘hard’ threshold typical of extremes analyses, points in region A are given a weight

of 1 and all other points are given a weight of 0. As the parameter vector changes during

the course of the optimization, points are shifted horizontally and the subset of points over

which we are optimizing can change from iteration to iteration.
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Figure 2.5: When using the ‘hard’ threshold typical of extremes analyses, points in region
A are given a weight of 1 and all other points are given a weight of 0. As the parameter
vector changes during the course of the optimization, points are shifted horizontally. This
underscores the need for a smooth threshold that gradually increases the weight from 0 to 1
as the distance from the origin increases.
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Chaudhuri and Solar-Lezama (2010 and 2011) propose using ‘smooth interpretations’ of

discontinuous functions in numeric optimization. We use these techniques for extremes by

replacing the hard threshold with a smooth one, which gradually increases the weights from

0 to 1 as the radial component increases.

Let

Ĥ(smooth)
n :=

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
κ(W t)∑n

t=1 δ
(smooth)
n

(
‖Zt‖
b(n/k)

) , (2.5)

where δ
(smooth)
n is a function which converges pointwise to δ

(hard)
n on (0, 1) ∪ (1,∞). At the

end of this chapter, we show that sufficient conditions on δ
(smooth)
n for H

(smooth)
n ⇒ H are:

1. δ
(smooth)
n : R 7→ [0, 1] is non-decreasing,

2. there exists an a ∈ (0, 1) such that n δ
(smooth)
n (a)→ 0 as n→∞,

3. dP |Z1|
b(n/k)

(z) ∼ k
n
z−2 for z > a,

4. k
∫ 1

a
δ

(smooth)
n (z)z−2dz → 0 and k

∫∞
1

(1− δ(smooth)
n (z))z−2dz → 0.

Consistency of

γ̂(smooth)
n :=

∫
S1

|2w − 1|Ĥ(smooth)(dw)

=

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
|2Wt − 1|∑n

t=1 δ
(smooth)
n

(
‖Zt‖
b(n/k)

)
=

(
n∑
t=1

δ(smooth)
n

(
‖Zt‖
b(n/k)

))−1 n∑
t=1

δ(smooth)
n

(
‖Zt‖
b(n/k)

)
|Zt,1 −Zt,2|
|Zt,1 +Zt,2|

(2.6)

follows by the continuous mapping theorem from the weak convergence of H
(smooth)
n to H.

Before going through the consistency proof, we first develop some intuition for conditions

1-4. The sufficient conditions for δ
(smooth)
n can be understood by considering the sequence

of processes given by
∑n

t=1 εZt/b(n/k). Informally, as n→∞, points with radial components

near 0 pile up with rate n, and points pile up with rate k for regions bounded away from

0. Ĥ(hard) behaves nicely since all points with radial components less than 1 get weights
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of zero because of the hard threshold. When considering the smooth threshold, one needs

δ
(smooth)
n to go to zero fast enough to keep mass from accumulating near zero (thus requiring

condition 2), and one needs δ
(smooth)
n to go to zero or one less rapidly for regions bounded

away from 0. As condition 2 is more stringent than 4, it is more critical. For example, the

function δ
(smooth)
n (z) = π−1 arctan(an(z − 1)) + 1/2 will meet condition 2 if n−1an → ∞ as

n→∞.

In practice, since n is fixed, the convergence rate of δ
(smooth)
n is irrelevant. In the simulation

study in Chapter 3, we test the optimization procedure’s sensitivity to different degrees of

smoothness. Also, as is typical of extremes procedures, in Equations (2.5) and (2.6) b(n/k)

is replaced by a suitably chosen threshold r.

2.2 Consistency of Ĥ
(smooth)
n

Lemma 1. Let Ĥ
(smooth)
n be defined as in (2.5). If

∑n
t=1

∣∣∣δ(hard)
n

(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

)∣∣∣∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) p→ 0, (2.7)

then Ĥ
(smooth)
n ⇒ H.

Although this condition is not easily interpretable, it does have meaning. Since the

denominator grows at rate k, (2.7) will hold if the sum of the absolute differences in the

numerator grows slower than k.
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Proof: Our approach is to first show that |Ĥ(hard)
n − Ĥ(smooth)

n | p→ 0.

|Ĥ(hard)
n (·)− Ĥ(smooth)

n (·)|

=

∣∣∣∣∣∣
∑n

t=1 δ
(hard)

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

) −

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑n

t=1 δ
(hard)

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

) −

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)


−

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

) −

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑n

t=1

(
δ(hard)

(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

))
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
−

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}(∑n

t=1 δ
(hard)

(
‖Zt‖
b(n/k)

)
−
∑n

t=1 δ
(smooth)
n

(
‖Zt‖
b(n/k)

))
∑n

t=1 δ
(smooth)
n

(
‖Zt‖
b(n/k)

)∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
∣∣∣∣∣∣

≤

∑n
t=1

∣∣∣δ(hard)
(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

)∣∣∣ I{ Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
+

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{

Zt

‖Zt‖ ∈ ·
}

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

) ∑n
t=1

∣∣∣δ(hard)
(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

)∣∣∣∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

)
≤ 2

∑n
t=1

∣∣∣δ(hard)
(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

)∣∣∣∑n
t=1 δ

(hard)
(
‖Zt‖
b(n/k)

) .

Thus, by assumption |Ĥ(hard)
n − Ĥ(smooth)

n | p→ 0. Knowing that Ĥ
(hard)
n ⇒ H, we then employ

Slutsky’s theorem (Resnick, 2007, Thm. 3.4) giving Ĥ
(smooth)
n ⇒ H.

The Lemma’s condition for consistency is not very satisfying as it tells us little about

the behavior of δ
(smooth)
n . The theorem below provides sufficient conditions on δ

(smooth)
n such

that (2.7) holds.
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Theorem 1. If

1. δ
(smooth)
n : R 7→ [0, 1] is non-decreasing,

2. there exists an a ∈ (0, 1) such that n δ
(smooth)
n (a)→ 0 as n→∞,

3. dP |Z1|
b(n/k)

(z) ∼ k
n
z−2 for z > a,

4. k
∫ 1

a
δ

(smooth)
n (z)z−2dz → 0 and k

∫∞
1

(1− δ(smooth)
n (z))z−2dz → 0.

then (2.7) holds.

Proof: Notice

∑n
t=1

∣∣∣δ(hard)
n

(
‖Zt‖
b(n/k)

)
− δ(smooth)

n

(
‖Zt‖
b(n/k)

)∣∣∣∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) =

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

< a
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

)
+

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

∈ [a, 1)
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

)
+

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

≥ 1
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) .

We consider the three terms individually and use the law of large numbers for triangular

arrays. The law of large numbers for triangular arrays states that for µ′n = E[S ′n] and

σ2′
n = V ar[S ′n], if (a′n)−2σ2′

n → 0 then (a′n)−1(S ′n − µ′n)
p→ 0 (Durrett, 2010, Theorem 5.4).

Consider the first term

∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

< a
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) ≤
δ

(smooth)
n (a)

∑n
t=1 I

{
‖Zt‖
b(n/k)

< a
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) .

Define

a′n :=
n∑
t=1

δ(hard)
n

(
‖Zt‖
b(n/k)

)
and

S ′n := δ(smooth)
n (a)

n∑
t=1

I
{
‖Zt‖
b(n/k)

< a

}
.
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Also, note that limn→∞ = k. Notice

µ′n = E [S ′n]

= E

[
δ(smooth)
n (a)

n∑
t=1

I
{
‖Zt‖
b(n/k)

< a

}]

= δ(smooth)
n (a)nP

(
‖Z1‖
b(n/k)

< a

)
≈ δ(smooth)

n (a)(n− ka−1)

→ 0

by assumption 2. Also notice

σ2′

n = V ar [S ′n]

= V ar

[
δ(smooth)
n (a)

n∑
t=1

I
{
‖Zt‖
b(n/k)

< a

}]
∼

(
δ(smooth)
n (a)

)2
(ka−1 − k2n−1a−2).

Consider

(a′n)−2σ2′

n =

(
n∑
t=1

δ(hard)
n

(
‖Zt‖
b(n/k)

))−2

V ar

[
δ(smooth)
n (a)

n∑
t=1

I
{
‖Zt‖
b(n/k)

< a

}]
∼

(
δ(smooth)
n (a)

)2(
(ka)−1 − (na2)−1

)
→ 0.

This implies that (a′n)−1(S ′n − µ′n)
p→ 0. Now, consider

P

(∣∣∣∣S ′na′n
∣∣∣∣ > ε

)
= P

(∣∣∣∣S ′n − µ′na′n
+
µ′n
a′n

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣S ′n − µ′na′n

∣∣∣∣+

∣∣∣∣µ′na′n
∣∣∣∣ > ε

)
≤ P

(∣∣∣∣S ′n − µ′na′n

∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣µ′na′n
∣∣∣∣ > ε

2

)
→ 0,
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thus
δ

(smooth)
n (a)

∑n
t=1 I

{
‖Zt‖
b(n/k)

< a
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) p→ 0.

Note that

P

(∣∣∣∣S ′n − µ′na′n

∣∣∣∣ > ε

2

)
→ 0

because (a′n)−1(S ′n − µ′n)
p→ 0, and

P

(∣∣∣∣µ′na′n
∣∣∣∣ > ε

2

)
≤ P

(
|µ′n| >

ε

2

)
→ 0.

For the second term, define

S ′′n :=
n∑
t=1

δ(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

∈ [a, 1)

}
.

We apply law of large numbers for triangular arrays for µ′′n = E[S ′′n] and σ2′′
n = V ar[S ′′n],

where if (a′n)−2σ2′′
n → 0 then (a′n)−1(S ′′n − µ′′n)

p→ 0 (Durrett, 2010, Theorem 5.4). Note that

µ′′n = E [S ′′n]

= E

[
n∑
t=1

δ(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

∈ [a, 1)

}]

= n

∫ 1

a

δ(smooth)
n (z)dP ‖Z1‖

b(n/k)

(z)

∼ k

∫ 1

a

δ(smooth)
n (z)z−2dz

→ 0
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by assumption 4. Also note that

(a′n)−2σ2′′

n = (a′n)−2V ar

[
n∑
t=1

δ(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

∈ [a, 1)

}]

= n(a′n)−2

(∫ 1

a

(
δ(smooth)
n (z)

)2
dP ‖Z1‖

b(n/k)

(z)−
(∫ 1

a

δ(smooth)
n (z)dP ‖Z1‖

b(n/k)

(z)

)2
)

∼ k−1

(∫ 1

a

(
δ(smooth)
n (z)

)2
z−2dz −

(∫ 1

a

δ(smooth)
n (z)z−2dz

)2
)

≤ k−1

∫ 1

a

(
δ(smooth)
n (z)

)2
z−2dz

≤ k

∫ 1

a

δ(smooth)
n (z)z−2dz

→ 0

by assumption 4. Hence, (a′n)−1(S ′′n − µ′′n)
p→ 0. Now, consider

P

(∣∣∣∣S ′′na′n
∣∣∣∣ > ε

)
= P

(∣∣∣∣S ′′n − µ′′na′n
+
µ′′n
a′n

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣S ′′n − µ′′na′n

∣∣∣∣+

∣∣∣∣µ′′na′n
∣∣∣∣ > ε

)
≤ P

(∣∣∣∣S ′′n − µ′′na′n

∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣µ′′na′n
∣∣∣∣ > ε

2

)
→ 0.

Therefore ∑n
t=1 δ

(smooth)
n

(
‖Zt‖
b(n/k)

)
I
{
‖Zt‖
b(n/k)

∈ [a, 1)
}

∑n
t=1 δ

(hard)
n

(
‖Zt‖
b(n/k)

) p→ 0.

The third term follows a similar argument to the second.
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CHAPTER 3

OPTIMIZING TAIL DEPENDENCE

3.1 Introduction

In this chapter, we develop a method to estimate the coefficients in the linear combination

of covariates that optimizes tail dependence with a continuous response variable. When

modeling a single response variable using a linear combination of covariates, it is common

for researchers to consider a type of regression analysis such as standard linear regression,

logistic regression, or quantile regression. Standard linear regression, which models the

expected response, tends to be a poor method for describing extremes since it describes the

behavior in the center of the distribution. Approaches such as quantile regression or logistic

regression can be tailored to focus on large values of the response.

Logistic regression and quantile regression can do well in terms of describing the covariates

that are associated with high values of the response; however, our approach of optimizing tail

dependence is fundamentally different from both logistic regression and quantile regression.

Although our approach is different, one can make an analogy between our approach and

standard regression. Standard regression aims to find the linear combination of covariates

which optimizes correlation with the response (in terms of R-squared), and our approach

aims to find the coefficients which optimize our measure of tail dependence, γ.

Rather than using a regression approach, our method relies on the framework of bivari-

ate regular variation, explained in Chapter 1. To model the relationship between a linear

combination of covariates and ozone the framework allows us to model bivariate threshold

exceedences, thus focusing only on extreme behavior. We use the framework of regular

variation to define a measure of bivariate tail dependence which is used to measure the

dependence between the function of covariates and the response. Tail dependence is then
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optimized subject to a constraint which imposes a required marginal condition. Our method

also differs from conditional or regression approaches for extremes (Beirlant et al., 2004, Ch.

7) which model the parameters of a univariate extremes model (e.g., generalized extreme

value (GEV) or generalized Pareto distribution (GPD)) as functions of covariates.

Conditional models have often been applied when the covariate is measured on a longer

time scale (e.g. annual) than the response, thus allowing the researcher to extract data (e.g.

annual maxima or threshold exceedances) which are considered extreme for the given the

covariate. Conditional models for extremes have been used in atmospheric science to study

trends by conditioning on year or to study the relationship with slowly-evolving climato-

logical regimes (Sillmann et al., 2011; Maraun et al., 2011). However, threshold exceedance

approaches have successfully been applied when the covariates vary on the same time scale

as the response (e.g., Reich et al. (2013)), and we will compare the conditional approach to

our approach in Section 3.4.5. Our approach is specifically designed for covariates which vary

on the same time scale as the response, and would not seem well suited to modeling ‘non-

random’ covariates such as a time trend. Importantly, there is a subtle difference between

the questions answered by a conditional extremes approach and our proposed approach.

Because it models the tail conditional on the covariates, the conditional approach answers

the question “Given certain conditions, what is the extreme behavior?” By optimizing tail

dependence, our approach answers a slightly different question of “What conditions are most

strongly associated with the extreme observations?”

3.2 Maximizing Tail Dependence

Our first goal is to be able to estimate the parameter vector in the linear combination

of continuous covariates that has the highest degree of tail dependence with a continuous

response variable. In our particular application the covariates are meteorological variables

and our response variable is ground level ozone.
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3.2.1 Method

We now formalize the method to find the linear combination of covariates that optimizes

tail dependence with the response variable in terms of our tail dependence measure γ as in

Equation 2.4. Let the response at time t ∈ N be given by the continuous random variable

Yt (on its original scale). Also, assume (for now) that its distribution function FY (y) is

known. Furthermore, assume that there exists a k−dimensional random vector of continuous

covariates (on their original scales) at time t given by

X t = (Xt,1, Xt,2, Xt,3, . . . , Xt,k)
T .

Assume (for now) that the distribution function for the ith covariate, FXi
(x), is known.

To make use of the bivariate regular variation framework, we would like the response

variable and the linear combination of covariates to have unit Fréchet marginal distributions.

We can easily transform Yt to the unit Fréchet scale. We define

Y ∗∗t = G−1[FY (Yt)],

where G is the unit Fréchet distribution function.

To ensure that our linear combination of covariates has a unit Fréchet marginal, we do

a two-step transformation procedure. We first transform each covariate to the N(0, 1) scale

using the probability integral transformation,

X∗t,i = Φ−1[FXi
(Xt,i)],

where Φ represents the Gaussian distribution function with mean 0 and variance 1. Define

the vector

X∗t = (X∗t,1, X
∗
t,2, . . . , X

∗
t,k)

T ,

letting Σ∗ denote its covariance matrix.
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For any β = (β1, β2, . . . , βk)
T ∈ Rk, construct the linear combination of covariates

X∗Tt β = β1X
∗
t,1 + . . .+ βkX

∗
t,k. (3.1)

Note that E[X∗Tt β] = 0 and V ar[X∗Tt β] = βTΣ∗β. Furthermore, we make the modeling

assumption that X∗Tt β is approximately Gaussian. If X∗t were multivariate Gaussian then

X∗Tt β would be exactly N(0,βTΣ∗β).

We would like to transform X∗Tt β to be unit Fréchet using a probability integral trans-

formation, but its variance is a function of β. By imposing the constraint βTΣ∗β = 1, we

ensure that X∗Tt β ∼ N(0, 1). Thus the probability integral transformation

X∗∗t (β) = G−1[Φ(X∗Tt β)]

will be distributed as unit Fréchet.

We now have the bivariate sequence {(X∗∗t (β), Y ∗∗t )}t∈N which we assume is a bivariate

regularly varying process with unit Fréchet marginals for all β ∈ Rk such that βTΣ∗β = 1.

Next, we wish to find the β that optimizes the tail dependence in terms of γ. The angular

measure H is dependent upon the choice of β, and as a reminder, we denote the angular

measure as Hβ. Define the constrained optimum

β∗ = argmin
β∈Rk

∫
S1

|2w − 1|dHβ(w) subject to βTΣ∗β = 1,

recalling that the linear combination X∗Tt β
∗ will have the highest degree of tail dependence

with the response in terms of γ.

In practice, we observe (xt, yt) for t = 1, 2, . . . , n without any knowledge of the un-

derlying distribution functions. We proceed by using the procedure described in Section

3 using estimated marginal distributions. To transform the response variable we use a

rank transformation y∗∗t = G−1[F̂Y (yt)] where F̂Y (a) = n−1
∑n

t=1 I{yt ≤ a} is the empir-
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ical distribution function for Y . To transform each covariate to the N(0, 1) scale, we

perform a rank transformation using each corresponding empirical distribution function:

x∗t,i = Φ−1[F̂Xi
(xt,i)] for i = 1, 2, . . . , k. To transform the linear combination to the unit

Fréchet scale, we use the probability integral transformation x∗∗t (β) = G−1[Φ(βTx∗t )], sub-

ject to the constraint βT Σ̂∗β = 1 and where Σ̂∗ is the observed covariance matrix of the

transformed covariates. Then, letting z∗∗t = (x∗∗t (β), y∗∗t ),

β̂
∗

= argmin
{β∈Rk:βT Σ̂∗β=1}

(
n∑
t=1

δ(smooth)(‖z∗∗t ‖/r0)

)−1 n∑
t=1

δ(smooth)(‖z∗∗t ‖/r0)
|z∗∗t,1 − z∗∗t,2|
z∗∗t,1 + z∗∗t,2

We use

δ(smooth)(‖z‖/r0) := Φ

( ‖z‖
r0
− 1

r0σ

)
= Φ

(
‖z‖ − r0

σ

)
(3.2)

as our weight function, where σ determines the amount of smoothness and r0 is the hard

threshold. As σ → 0, δ(smooth) becomes a degenerate Gaussian distribution function and

δ(smooth) → δ(hard). Chaudhuri and Solar-Lezama (2011) comment that a large standard

deviation will help with convergence, but can cause the optimizer to converge to a local

optimum that is far from the global optimum. We explore the sensitivity to the choice of σ

in the simulation study.

3.2.2 Numerical Optimization

Even with the implementation of the smoothed threshold, the optimization is non-trivial.

We use the statistical computing environment R (R Development Core Team, 2011) for nu-

meric optimization. We find the constrained optimizer in the ‘alabama’ package (Varadhan,

2011) to work well when given good starting values. However, we suggest using more robust

optimization algorithms.

We find that the differential evolution algorithm in the ‘DEoptim’ package (Mullen et al.,

2011) and the generalized simulated annealing algorithm in the ‘GenSA’ (Yang Xiang et al.,

2013) package to be effective and to work equally well in most cases. Unfortunately, neither of
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these optimizers offers the user a way to implement constraints except simple box constraints.

To use DEoptim and GenSA we impose the constraint via a transformation to spherical

coordinates.

The motivation for a spherical transformation is that the constraint βTΣ∗β = 1 is equiv-

ilant to the statement that the optimum β∗ ∈ Rk will occur on the k−dimensional el-

lipse βTΣ∗β = 1. We consider θ = (θ1, θ2, . . . , θk−1)T and r > 0 where θj ∈ (0, π) for

j = 1, 2, . . . , k − 2 and θk−1 ∈ (0, 2π). We note that the constraints on the θ are simple

box constraints which nearly all optimizers are able to handle. To ensure that (θ, r) is on

the ellipse, we constrain r = (βTΣ∗β)−1/2. Once θ is chosen and r is determined, we can

transform back to rectangular coordinates using

β1 = r cos θ1

β2 = r sin θ1 cos θ2

β3 = r sin θ1 sin θ2 cos θ3

...

βk−1 = r

(
k−2∏
i=1

sin θi

)
cos θk−1

βk = r

(
k−1∏
i=1

sin θi

)
.

Doing the optimization in spherical coordinates reduces the problem to a k−1 dimensional

optimization problem with upper and lower bounds on the parameters as opposed to a k

dimensional optimization with a quadratic constraint.

3.2.3 Understanding the Optimization Surface

In order to better understand how this method works, we use a relatively simple model to

examine the optimization surface and how the choice of β affects the scatterplot of X∗∗(β)
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versus Y ∗∗. The model we choose has two covariates: X1 and X4. Since this model has

just two covariates, we can attempt to visualize the optimization surface. Figure 3.1 plots

contours of γ̂ given βX1 and βX4 . The constraint we impose means that we are restricted to

combinations of βX1 and βX4 on the ellipse. This restriction is to ensure that X∗∗(β) will be

unit Fréchet.

Next, we examine three points on the ellipse more closely. In Figure 3.1 Point A is the

constrained optimum, point B is a somewhat poor choice for β, and point C is one of the

worst choices for β. Figure 3.2 plots X∗∗(β) versus Y ∗∗ for the three choices of β implied

by points A, B, and C in Figure 3.1. Figure 3.2 also gives the corresponding histograms for

the angular component for each of the three choices of β.
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Figure 3.1: For a model with two covariates, we give the value of γ̂ (the contours) for values
of β̂X1 and β̂X1 between -1 and 1. The points on the ellipse give the region satisfying the
constraint βT Σ̂∗β = 1. We consider three points on the ellipse: point A is the constrained
optimum, point B yields a moderate degree of tail dependence, and point C yields an ex-
tremely low degree of tail dependence. We give the scatterplots and histograms estimating
H generated using these three βs in Figure 3.2.
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Figure 3.2: In Figure 3.1 we choose three βs in the constrained region. We then apply the
βs to the simulated data on the Unit Fréchet scale. The top two panels give the scatterplot
and histogram of w, the angles of the top 5% of points in terms of radial component, for the
constrained optimum (point A in Figure 3.1). The bottom two panels give analogous plots
for a choice of β that produces a low degree of tail dependence (point B in Figure 3.1). The
middle two panels give analogous plots for a choice of β that produces a moderate degree of
tail dependence (point C in Figure 3.1).
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The scatterplot and histogram implied by point C indicate something close to asymptotic

independence based on the fact that the points with large radial component hug the axes.

Using the β at point B shows a higher degree of asymptotic dependence. This is seen by the

fact that there are some points with large radial component in the interior. However, many

of the large points are still near the axes. The constrained optimum, at point A, shows a

higher degree of tail dependence as there are a large number of points in the interior.

In examining the scatterplots, it is important to point out that the values on the vertical

axis are fixed. Choosing a different β shifts the points in the scatterplot horizontally, while

maintaining unit Fréchet marginal distributions forX∗∗(β) and Y ∗∗. To see a higher degree of

tail dependence than we see at the constrained optimum, we may need to consider additional

covariates. We pursue this in the model fitting section.

3.3 Model Comparison Using Cross Validation

For model comparison, we need a criterion to compare two subsets of covariates in terms

of their ability to optimize tail dependence with ozone. Using γ̂ as a criterion could lead

to overfitting as models would not be penalized for including unnecessary covariates. We

employ the following 10-fold cross-validation procedure.

Given a particular set of covariates, we first obtain y∗∗t and x∗t,i as described in Section 3.1.

We then randomly partition these transformed observations into 10 equally sized subsets.

Let the observation numbers corresponding to the ith partition be given by Γi ⊂ {1, 2, . . . , n}.

Similarly, let the indices corresponding to all observations except the ith partition be given

by Γ−i = {1, 2, . . . , n}\Γi. At the ith iteration (for i = 1, . . . , 10), we obtain the parameter

estimates using all observations except those in the ith partition:

β̂
(−i)

= argmin
β∈Rk

∑
t∈Γ−i

δ
(smooth)
t;n

−1 ∑
t∈Γ−i

δ
(smooth)
t;n

|x∗∗t (β)− y∗∗t |
x∗∗t (β) + y∗∗t

subject to βT Σ̂∗β = 1.
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After obtaining β̂
(−i)

, we calculate γ̂(−i) by applying β̂
(−i)

to the held out data:

γ̂(−i) =

(∑
t∈Γi

δ
(smooth)
t;n

)−1∑
t∈Γi

δ
(smooth)
t;n

|x∗∗t (β̂
(−i)

)− y∗∗t |

x∗∗t (β̂
(−i)

) + y∗∗t

.

After iterating over the 10 partitions, we define

CV = 10−1

10∑
i=1

γ̂(−i).

We also note that CV ∈ [0, 1] and that a smaller CV value implies a higher degree of tail

dependence.

3.4 Simulation Study

In order to illustrate and test our method we undertake a simulation study.

3.4.1 Description of Simulated Data

We randomly generate 5,000 iid realizations of five covariates, X1, X2, X3, X4, X5. The

first four covariates are four-dimensional Gaussian with non-identity covariance matrix. The

fifth covariate is drawn independently of the first four covariates uniformly on the unit

interval, i.e. X5 ∼ U(0, 1). The response, Y , is a linear combination of functions of the five

covariates plus noise:

Yt = −.3Xt,1 +Xt,2 − .75Xt,4 − (Xt,2)2 + 6Φ[(Xt,1 −X1;.95)/.35]Xt,5 + εt, (3.3)

where X1;.95 represents the .95 quantile of X1 and εt ∼ iid N(0, .00125). The idea is to

create a response which has a nonlinear relationship with the covariates, and which only

appears when conditions are extreme. Specifically, the term 6Φ[(Xt,1 −X1;.95)/.35]Xt,5 only

contributes to Yt when Xt,1 is extremely large.
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Figure 3.3 shows scatterplots of the response variable versus each of the five covariates;

we focus on the relationships driving the large response values.. Large values of Yt are clearly

associated with large values of Xt,1. The quadratic term causes large values of the response

to occur when Xt,2 is between 0 and 1.5. Xt,3 does not seem to be related to large response

values and the relationship between Xt,4 and the large values of Yt seems slight. Finally, the

evidence of Xt,5’s influence on the extreme behavior is slight, and its interaction with Xt,1 is

not apparent from these plots.
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Figure 3.3: Scatterplots for each of the five covariates versus the response in the simulation
study. All variables are on their original scales.

3.4.2 Model Selection

To analyze the simulated data, we consider the models M1-M6 listed below. The first

model includes all five covariates. The models M2-M4 each leave out a single covariate:

X3, X2, X1 respectively. Model five leaves out X3 but adds an interaction between X1 and
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X5. Model six adds (X2)2 to model five. Note that none of these models corresponds exactly

to Equation (3.3), but that M6 is closest that it includes some type of interaction between

X1 and X5 and the quadratic behavior of X2.

M1: x∗∗t = [X∗t,1, X
∗
t,2, X

∗
t,3, X

∗
t,4, X

∗
t,5]β1

M2: x∗∗t = [X∗t,1, X
∗
t,2, X

∗
t,4, X

∗
t,5]β2

M3: x∗∗t = [X∗t,1, X
∗
t,3, X

∗
t,4, X

∗
t,5]β3

M4: x∗∗t = [X∗t,2, X
∗
t,3, X

∗
t,4, X

∗
t,5]β4

M5: x∗∗t = [X∗t,1, X
∗
t,2, X

∗
t,4, X

∗
t,5, X

∗
t,1 ×Xt,5]β5

M6: x∗∗t = [X∗t,1, X
∗
t,2, X

∗
t,4, X

∗
t,5, X

∗
t,1 ×X∗t,5, (X∗t,2)2]β6

We optimize the tail dependence with a smooth threshold where r0 = 40, the .95 quantile

of the radial components ‖zt‖ = zt,1 + zt,2 t = 1, . . . , n and σ = 1.25. Marginal transforma-

tions from the original scale were based on the rank transform.

Table 3.1 gives γ̂ and the CV value for each of the six models. Comparing models M1 and

M2 shows that the CV method is effective in selecting covariates which influence extreme

responses. The overall score γ̂ is higher (worse) for M2 as it is a submodel of M1; however, the

CV score for M2 is better indicating that Xt,3 is not useful for describing extreme response

values. The CV score for M4 shows that leaving out X1 is clearly not a good idea as the CV

value is by far the highest of the six models. M5, which adds the interaction of X1 and X5,

gives a noticeably improved CV value, and M6, which is closest to the generating model has

the best CV score.

Table 3.1: The score (the optimized value of γ̂) and the 10-fold cross-validation value for
each of the six models considered in the simulation study.

M1 M2 M3 M4 M5 M6
γ̂ 0.4930 0.4950 0.5125 0.6053 0.4603 0.4060
CV 0.5052 0.5017 0.5240 0.6196 0.4703 0.4120

The plots in Figure 3.4 give a visual approach to assess how well each model is capturing

the tail dependence. For each model, x∗∗t (β̂
∗
) is plotted versus y∗∗t . Note that the large points
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for the models with lower γ̂ scores and CV values, like M5 and M6, occur in the interior of

the positive orthant, whereas models with higher values of γ̂ (M4) have more points near

the axes.
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Figure 3.4: For each of the six models we consider in the simulation study, the scatterplot
of x∗∗t (β̂

∗
) versus y∗∗t is given. Models that yield a linear combination with a higher degree

of tail dependence with the response will result in a scatterplot with large points closer to
the identity line.

3.4.3 Parameter Estimates: Interpretation and Uncertainty

For a given model, the parameter estimates that we obtain can be useful, however care

needs to be taken with respect to their interpretation. Due to the constraint and the marginal

transformations, only the relative magnitude and sign of the parameter estimates are inter-

pretable. Table 3.2 reports the parameter estimates for M6, with standard errors in paren-

theses. Standard errors are calculated using the nonparametric paired bootstrap (Givens

and Hoeting, 2005, p. 257), where (xi, yi) are resampled, and utilizing 640 bootstrap repli-
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cations. The estimate with largest magnitude corresponds to X1, indicating that it plays an

important role in describing extreme levels of the response. Standard errors indicate that

the β̂X1 , β̂X4 , β̂X1X5 and β̂(X2)2 terms are significant, and the signs of these agree with the

behavior shown in Figure 3.3.

Table 3.2: The parameter estimates for M6 in the simulation study with bootstrap standard
errors in parentheses. We utilize the nonparametric paired bootstrap (Givens and Hoeting,
2005, p. 257), where (xi, yi) are resampled, and 640 bootstrap replications.

Coefficient β̂X1 β̂X2 β̂X4 β̂X5 β̂X1X5 β̂(X2)2

Estimate .61 (.12) .10 (.10) -.22 (.07) -.19 (.14) .47 (.15) -.17 (.08)

3.4.4 Smooth Threshold Sensitivity Analysis

To explore sensitivity to the smoothing parameter, we fit M6 with σ = .3125, .625,

1.25, 2.5, and 5.0. Table 3.3 gives the parameter estimates for M6 for the various smoothing

levels, and the optimization seems to be robust to the choice of standard deviation for values

close to σ = 1.25.

Table 3.3: The parameter estimates for M6 using .3125, .625, 1.25, 2.5, and 5.0 as the
standard deviation of the Gaussian cdf in the smoothed threshold.

β̂X1 β̂X2 β̂X4 β̂X5 β̂X1X5 β̂(X2)2

σ = .3125 0.6489 0.1070 -0.1978 -0.1322 0.4138 -0.1595
σ = .625 0.6356 0.1006 -0.2035 -0.1497 0.4322 -0.1621
σ = 1.25 0.6319 0.0965 -0.2079 -0.1497 0.4349 -0.1673
σ = 2.5 0.5922 0.1005 -0.2141 -0.1990 0.4864 -0.1751
σ = 5.0 0.5480 0.0921 -0.2245 -0.2394 0.5446 -0.1780

3.4.5 Comparison to Other Methods

We compare our tail dependence method to several other approaches: (standard) multiple

regression, logistic regression, quantile regression, a conditional extremes approach, and

the preprocessing approach of Eastoe and Tawn (2009). For each of the three regression

procedures, we use M6 and obtain parameter estimates (β̂mr, β̂lr, and β̂qr respectively). For
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logistic regression we transform the response such that it takes on the value 1 for the top

5% of Y values and 0 otherwise. For quantile regression, we model the .95 quantile.

The conditional extremes approach employs a covariate-varying threshold with a condi-

tional GPD model for threshold exceedances. The threshold model is a quantile regression

fit to the .90 quantile (chosen to have an adequate sample of exceedances), and the con-

ditional GPD models the log-scale parameter as a function of covariates. To follow the

preprocessing approach of Eastoe and Tawn (2009), we perform a Box-Cox transformation

of the response using λ = 3.5, which is suggested by the plot of the profile log-likelihood

versus λ. We define y∗t := (yλt −1)/λ and use Gaussian maximum likelihood to obtain param-

eter estimates for the functions µ(xt) = (1,xTt )µpr and σ(xt) = exp((1,xTt )σpr) where µpr

and σpr are the corresponding parameter vectors. The preprocessed response is obtained by

defining ztpr := (y∗t − µ(xt))/σ(xt). A conditional GPD model is then fit to the preprocessed

responses, a threshold of 2 (.97 empirical quantile) was suggested by diagnostic plots. For

both the conditional extremes and preprocessing approaches, AIC results suggested using

M6 for the initial fit (quantile regression or preprocessing) and also M6 for the conditional

modeling of the GPD’s log-scale parameter.

Because it is invariant to marginal transformations, we employ Kendall’s τ to assess

dependence between the various methods’ predicted values and the response. For the

regression models, predicted values are obtained in the usual way: ŷtmr = (1,xTt )β̂mr,

ŷtlr = logit−1
(

(1,xTt )β̂lr

)
, and ŷtqr = (1,xTt )β̂qr. There is not an obvious way to obtain

predicted values for the conditional extremes and preprocessing approaches. However, as

only order matters for Kendall’s τ , we obtain predicted values from the .5 quantile of the

fitted GPD, with the final predicted values ŷtcond and ŷtpr obtained by adding the thresh-

old or undoing the preprocessing step. As we wish to focus only on the tail behavior, we

only use points which exceed the .97 empirical quantile in either marginal in our calcula-

tion. Our tail dependence method exhibits positive concordance among these large values

with τ = .35. Standard regression, logistic regression, quantile regression, the conditional
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extremes approach and the preprocessing methods yield values of τ = -.21, -.14, -.17, -.10,

and -.21 respectively.

Figure 3.5 shows scatterplots for the response versus predicted values for logistic regres-

sion, the conditional extremes approach, the preprocessing method, and our tail dependence

method. Points which exceed the .97 quantile in either marginal are marked with black cir-

cles, while nonexceedances are marked with gray crosses. A method which does a good job

of describing tail dependence will produce large predicted values that correspond with large

values of the response. Logistic regression only does a fair job modeling the most extreme

events, as the 0/1 coding yields no information about the actual response values above the

.95 quantile. The scatterplots for standard multiple regression and quantile regression (not

shown) are similar. The conditional extremes approach offers an improvement over logistic

regression as presumably the conditional GPD helps to further describe the behavior of the

response given the covariate conditions. The preprocessing approach shows an increased

number of ‘false alarms’: points whose predicted values are large when the actual response

is not. Contrary to the previous methods which all do a fair job of modeling the bulk of the

distribution even though the methods themselves are extremes-focused, our tail dependence

method only models the relationship between the covariates and the response at extreme

levels.

Obviously, the generating function (3.3) was designed to have interesting extreme be-

havior, which would tend to favor our approach over methods which model the entire dis-

tribution. Although inference for the tail dependence approach is involved, it is a one-step

process, and two step procedures such as the conditional extremes or preprocessing methods

could be challenging for a data-mining application as we describe in the next section.
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Figure 3.5: Scatterplots of y vs. the predicted values for logistic regression (top left), the
conditional extremes approach (top right), the preprocessing method (bottom left), and our
tail dependence method (bottom right). The points which exceed the .97 quantile in either
marginal are marked with black circles, while nonexceedances are marked with gray crosses.
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CHAPTER 4

DATA MINING FOR EXTREME BEHAVIOR

4.1 Application to Ground Level Ozone Pollution

We now employ our method in a data mining capacity in order to better understand

the meteorological drivers of extreme ground level ozone. We analyze ozone data for At-

lanta, Georgia and Charlotte, North Carolina because of their geographical proximity and

consistent data records for ground level ozone.

Previous studies have used EVT to model ground level ozone. Smith (1989) describes

a method to model extremes for non-stationary sequences of ozone data, allowing for the

parameters of the extreme value distribution to depend on covariates. Tobias and Scotto

(2005) analyze extreme ozone in Barcelona, Spain using a method similar to Smith (1989).

Heffernan and Tawn (2004) utilize a conditional approach to model the multivariate dis-

tribution of several air pollutants, including ozone. Essentially, this allows the analyst to

define what is extreme based on temporal or meteorological covariates, using the variables on

their original scales. Eastoe and Tawn (2009) introduce a preprocessing method to account

for non-stationarity time series and apply this to ground level ozone. They describe this

method as analogous to the common approach of preprocessing a non-stationary time series.

Ali et al. (2012) describe a variation of the preprocessing method proposed by Eastoe and

Tawn (2009) and give an analysis of extreme ozone in Malaysia.

4.1.1 Data

An EPA website1 provides ground level ozone data as well as data on other pollutants. We

select station 13-121-0055 in Atlanta and station 37-119-1005 in Charlotte because of their

1See http://www.epa.gov/airdata/ad maps.html.
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long data records and relative lack of missing values. Although the ozone level is measured

hourly at each station, the response variable we use is the maximum eight hour average ozone

as it is a value on which United States National Ambient Air Quality Standards are based.

The EPA-defined ozone season for North Carolina is April through October while the ozone

season for Georgia is March through October. In our analysis, we use daily responses from

April through October for both locations. Our analysis is based on data from the years 1992

through 2010, providing a total of 4,037 observations for Atlanta and 4,055 observations for

Charlotte.

Ground level ozone readings have been decreasing over most of the United States in recent

years. On its website, the EPA reports that “nationally, average ozone levels declined in the

1980s, leveled off in the 1990s, and showed a notable decline after 2002.”2 This is a trend that

we notice in our exploratory data analysis. To account for non-stationarity, we transform

the response variable by partitioning the data into nonoverlapping four-year blocks. In

each block, we fit a gamma distribution to the observations below the .95 quantile and a

generalized Pareto distribution for observations above the .95 quantile. We then use these

estimated distribution functions to transform the response to unit Fréchet via a probability

integral transformation. We employ a parametric model for marginal transformation as a

rank transform resulted in common values in the tail if blocks have the same number of

observations.

Not surprisingly, a seasonal effect is also apparent in the ozone data. Because our aim

is to link extreme ozone levels to meteorological conditions, we do not deseasonalize the

ozone data. Rather, we assume that by conditioning on the relevant meteorological variables

by including them in the model, we are able to account for the seasonal behavior in the

ozone response. Meteorological covariates are obtained from the North American Regional

Reanalysis (NARR)3 (Mesinger et al., 2006). The data are in gridded cells, approximately

2See http://www.epa.gov/airtrends/ozone.html.
3NARR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at

http://www.esrl.noaa.gov/psd/

51



30km by 30km in size, differing from our ozone data which correspond to point locations.

Understanding the relationship between ozone and meteorological variables of large spatial

scales is motivated by the larger project’s goal of investigating the simulation of air quality

extremes in atmospheric chemistry models. The NARR provides a large number of mete-

orological variables. Based on guidance from the atmospheric chemists collaborators, we

initially use 18 NARR covariates in our models; however, we also consider these variables

on different spatial scales and transformations of these variables leading to a longer overall

list of possible covariates. We expect that many of these variables will be irrelevant in terms

of explaining extreme ozone behavior. Furthermore, we aim to explore whether any inter-

actions between covariates are useful to explain extreme ozone behavior. Hence, covariate

selection is a primary goal of this study.

We do not include information about the ozone precursors NOx and VOCs among our

covariates. The EPA monitors NO and NO2, and although the NOx data record is not as

extensive as it is for ozone, many studies (e.g., Eastoe (2009)) have found NOx measurements

to be helpful when modeling ozone. The larger aim of our project is to provide information

to improve atmospheric chemistry models which require information about NOx emissions,

rather than measurements. NOx emissions are not known at the daily level, and are presumed

by modelers to be relatively constant. Our aim is to link extreme ozone to meteorological

conditions, and we believe that the daily variability found in NOx measurements is largely

attributable to meteorology rather than fluctuations in emissions.

4.1.2 Handling a Non-continuous Covariate: Precipitation

The method described in Section 3 requires continuous covariates to perform the two-step

marginal transformation leading to X∗∗t (β). We wish to investigate precipitation’s effect on

extreme ozone, but precipitation has a positive probability of being exactly zero. Exploratory

analysis indicates that the presence of precipitation likely affects extreme ozone, but the

amount of precipitation may not be important. Thus, we extend the method to account for
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variables like precipitation by including a precipitation indicator and interactions with this

indicator.

In Chapter 2, it was critical that the distribution of X∗t
Tβ be known for any β, which

we achieved with the constraint. Let Xt,P be the amount of precipitation at time t, where

P (Xt,P = 0) > 0. Assume there are k + l −m total covariates included: k ‘main effects’ as

before, and l effects to be included in the precipitation interaction term, m of which were

already included as main effects. Including the precipitation covariate and interactions and

letting Xt,1, . . . , Xt,m be the overlapping covariates changes Equation (3.1) to

X∗Tt β = β1X
∗
t,1 + . . .+ βmX

∗
t,m + βm+1X

∗
t,m+1 + . . .+ βkX

∗
t,k + (4.1)

I{Xt,P>c}(β
(P )
0 + β

(P )
1 X∗t,1 + . . .+ β(P )

m X∗t,m + β
(P )
m+1X

∗
t,k+1 + . . .+ β

(P )
l X∗t,k+l−m),

for β = (βT(PC),β
T
(P ))

T = ((β1, . . . , βk), (β
(P )
0 , β

(P )
1 , . . . , β

(P )
l ))T . As before, if X∗Tt β|(Xt,P ≤

c) ∼ N(0, 1) under the constraint βT(PC)Σ
∗β(PC) = 1. However, given Xt,P > c, (4.1) becomes

X∗Tt β|(Xt,P > c) = (β1 + β
(P )
1 )X∗t,1 + . . .+ (βm + β(P )

m )X∗t,m +

βm+1X
∗
t,m+1 + . . .+ βkX

∗
t,k + β

(P )
0 +

β
(P )
m+1X

∗
t,k+1 + . . .+ β

(P )
l X∗t,k+l−m, (4.2)

which is distributed N(β
(P )
0 ,λTΨ∗λ) where Ψ∗ is the covariance matrix of the continuous

covariates and λ = ((β1 + β
(P )
1 ), . . . , (βm + β

(P )
m ), βm+1, . . . , βk, β

(P )
m+1, . . . , β

(P )
l )T . X∗Tt β has

a distribution which is a known mixture of Gaussians for any β and we can proceed with

the second transformation as before, employing sample covariance matrices and the observed

mixture proportion.
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4.2 Data Mining Procedure and Results

To describe the model space, we consider binary strings ω in the space {0, 1}k′ , where

k′ is the total number of covariates (including interactions and transformations). In these

strings, a 1 (or 0) in the jth position indicates the presence (or absence) of the jth covariate.

Thus, ω corresponds to the unique representation of one particular model. We denote the

CV value for the model given by ω by CV (ω) and want to find models for which CV (ω)

is small. We believe that ozone readings are conditionally independent given the value of

meteorological covariates. However, general cross validation methods require independence.

We address this issue by considering a block cross validation method. Analysis reveals that

the block cross validation method produces results that are very similar to traditional cross

validation. For this reason we use traditional cross validation methods in this work.

As we are not able to fit all possible models, we approach the task of data mining in

a multiple-step procedure, and we will discuss results at each step. We begin by obtaining

CV scores for all possible models with up to four covariates. From this we obtain some

understanding of the main effects which influence extreme ozone. We then explore all possible

models that are generated by adding up to four additional variables to our best four covariate

model. We then perform an automated model search procedure over {0, 1}k′ using a discrete

optimization technique, using the preliminary results to give us starting values. We use

the Yellowstone computing system (Computational and Information Systems Laboratory,

2012) to perform computations. Also, based on exploratory analysis, we employ a smooth

threshold with mean equal to the .95 quantile of the radial components and σ = 1.25.

We note that others have proposed variable selection methods for high dimensional prob-

lems. For example, Fan and Lv (2008) propose Sure Independence Screening (SIS) as a

method to filter out poorly performing explanatory variables. To the best of our knowledge,

SIS has not been utilized in an extremes setting. To use SIS, the analyst filters out un-

necessary variables based on bivariate correlations between each predictor variable and the

response. He or she then utilizes a method that is more appropriate for lower dimensional
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problems, such as the LASSO (Tibshirani, 1996). Fan and Lv (2008) indicate that SIS is

especially well suited for problems where the number of predictor variables is larger than

the sample size. Our data mining strategy is somewhat similar in spirit, in the sense that

we initially use an exhaustive approach to gain understanding of potential covariates. Our

model search proceeds in three stages which increase in complexity and in the extent of

the model space which we searched. We feel that our data mining approach is an effective

strategy given our problem and goals.

Fan and Lv (2008) also propose Iterative Sure Independence Screening (ISIS) to “over-

come some weak points” of SIS. This iterative adaptation of SIS models the residuals at each

step. Fan and Lv (2008) claim that ISIS is able to utilize the joint information contained in

the explanatory variables, whereas SIS only takes advantage of marginal information. Fan

et al. (2009) extend ISIS to be used in a general psuedo-likelihood framework. However, it

is not clear how ISIS could be applied to our modelling procedure.

4.2.1 Model Exploration: Four Variable Models

As a first step, we fit all possible models with up to four covariates because an exhaus-

tive search of such models is possible. There are nearly 35,000 models of this type, and we

fit all of the approximately 10,000 models that do not include highly correlated covariates.

We allow the models to include the precipitation indicator and interactions between con-

tinuous covariates and the precipitation indicator, but do not consider interactions between

continuous covariates. We define the precipitation indicator to be I{Xt,P > .01in.}.

Table 4.1 reports the covariates in the five models with the lowest CV scores for Atlanta

and Charlotte. In Atlanta, variables such as temperature, wind speed, downward shortwave

radiative flux (dswrf, a measure of sunshine), the precipitation indicator, height of the plan-

etary boundary layer (hpbl) at different times of day, and relative humidity seem to be in

the best fitting models. In Charlotte, similar variables appear along with northwest or west

(shown as a negative coefficient on east) wind directions. Most of these variables are not
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surprising, as one would suspect high ozone to be associated with hot sunny days with low

wind speeds. We view the results from this first step mostly as confirmatory: the approach

is choosing sensible covariates when limited to only four variables at a time. That the pre-

cipitation indicator appears is somewhat interesting as Jacob and Winner (2009) noted that

precipitation has little effect on ground level ozone pollution. While precipitation may have

little effect on mean levels of ground level ozone, it seems reasonable that the most extreme

ozone levels do not occur on days where there is precipitation.

We also note that the four-covariate models with the best CV scores are identical for

Atlanta and Charlotte, and this allows us to compare the parameter estimates for these

common models. Table 4.1 also gives the parameter estimates and bootstrap standard errors

for the top model, using the nonparametric paired bootstrap (Givens and Hoeting, 2005,

p. 257), where (xi, yi) are resampled, and utilizing 640 bootstrap replications. We note that

the corresponding parameter estimates are similar and the signs of the parameter estimates

are sensible. Both locations show that air temperature and downward shortwave radiation

flux have positive relationship with extreme ozone while wind speed and precipitation have

negative relationships. Standard errors show there is large uncertainty associated with the

parameter estimates, but our CV-based model selection procedure should protect us from

identifying irrelevant covariates.

We also note that our simple (non-block) bootstrap could underestimate variability due

to temporal dependence. However, we believe that the magnitude of the underestimation

is likely small since we assume that (Yt0|X t0) is independent of Yt,X t for t < t0, the βs

estimate the conditional relationship of Yt|X t, and the temporal dependence is short-lived.

It is clear that since we are able to include only four variables at a time, we have limited

ability to explore the model space. However, results from this first step suggest a method

for further exploration of the model space.
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Table 4.1: Covariates for the top five models containing four covariates for Atlanta and Char-
lotte are given along with their respective CV scores. Parameter estimates with bootstrap
standard errors are reported for the top model at each location. We use the nonparamet-
ric paired bootstrap (Givens and Hoeting, 2005, p. 257), where (xi, yi) are resampled, and
utilize 640 bootstrap replications.

Model CV
Atlanta 1 .5398 temp wnd spd dswrf precip

.45 (.25) -.44 (.36) .53 (.64) -5.82 (.20)
Atlanta 2 .5508 temp wnd spd rel hum precip

.59 -.46 -.28 -5.46
Atlanta 3 .5512 temp wnd spd dswrf cape

.80 -.39 .34 -.35
Atlanta 4 .5513 temp wnd spd hpbl 7am cape

.87 -.36 -.24 -.28
Atlanta 5 .5519 temp hpbl 7am rel hum precip

.53 -.39 -.48 -5.10

Charlotte 1 .5452 temp wnd spd dswrf precip
.44 (.33) -.50 (.42) .53 (.61) -5.86 (.43)

Charlotte 2 .5770 temp wnd spd NW wind dswrf
.54 -.50 .12 .38

Charlotte 3 .5772 temp wnd spd dswrf rel hum
.52 -.44 .34 -.19

Charlotte 4 .5774 temp wnd spd E wind dswrf
.54 -.46 -.10 .45

Charlotte 5 .5781 temp wnd spd dswrf tcdc
.55 -.51 .46 .15

4.2.2 ‘Core Plus Four’ Model Search

The main result from the first model search stage is that necessary conditions for extreme

ozone are high temperature, high sunshine, low wind speed, and lack of precipitation. These

conditions are largely explained by the four ‘core’ variables which appear in the best fitting

models for Atlanta and Charlotte: temperature, wind speed, dswrf, and the precipitation

indicator. We continue our model search by fitting all possible models which include these

four variables, plus up to four additional main effects. A total of 534 models were fit at this

stage.

Results from the first stage also suggested slightly altering our list of covariates. One

change that was made was to include only the minimum and maximum hpbl values rather
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than the 8 values recorded throughout each day. We also introduce a new cloud covariate

that is a linear combination of cloud variables from the NARR. Looking at a longer list of

good-fitting four variable models showed that many of these models would swap out dswrf

and replace it with one of several cloud variables. The various cloud variables and dswrf

were mutually strongly correlated. As we will include dswrf as one of our core variables,

we seek to define a variable which captures information in the cloud variables and which is

residual to the information in dswrf. We define the new variable as a linear combination of

five of the cloud variables in the NARR: x = [xcdcon, xcdlyr, xlcdc, xmcdc, xhcdc]
T . Specifically,

we find the parameter vector of unit length, a such that V ar(aTx) = aTΣa is maximized

and Cov(xdswrf,a
Tx) = 0. We estimate a via constrained optimization at several locations

in the East and Southeast United States (including Atlanta and Charlotte) and find a to be

similar at all locations. Thus, we define the new cloud variable:

xnew.cloud = .47xcdcon − .45xcdlyr − .37xlcdc + .46xmcdc + .48xhcdc. (4.3)

Table 4.2 compares the top five ‘core-plus-four’ models at Atlanta and Charlotte to the

core-only model. In Atlanta, we see a convincing drop in the CV scores of the best fitting

core-plus-four models compared to the core-only model. The top models tend to include

minimum planetary boundary layer height (in 5 of the top 5 and 9 of the top 10), relative

humidity (5/5 and 9/10), tropospheric height (3/5 and 5/10) and NE wind direction (3/5

and 4/10). The negative coefficients indicate that lower levels of planetary boundary layer

height and relative humidity tend to be associated with extreme ozone, and the negative

coefficient of the NE wind direction would indicate that extreme ozone tends to occur in

Atlanta when wind is from the southwest. In Charlotte, we see a less convincing drop in the

CV scores when we compare the best fitting core-plus-four models to the core only model.

However, there are some variables which are associated with most of the best fitting models.

The top models in Charlotte tend to include the new cloud variable (in 3 of the top 5 and 7

of the top 10), tropospheric height (3/5 and 6/10), and E wind direction (3/5 and 6/10).
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The differences in the two cities’ variables may illustrate that different factors lead to

extreme ozone in the two cities, and the difference in the predominant wind direction may

illustrate local differences in emissions sources. That the tropospheric height variable has a

negative coefficient in Charlotte and a positive coefficient in Atlanta illustrates some of the

difficulty in interpreting the parameter estimates. The difference in sign between the two

cities may be due to the fact that in Atlanta, tropospheric height appears in models which

also include planetary boundary layer height, whereas this was not the case in Charlotte.

Table 4.2: CV scores for the core only model and the top five ‘core-plus-four’ models for
both Atlanta and Charlotte. We also include the parameter estimates for the four non-core
covariates.

Rank CV Covariates
Atl Core 0.5398 Core
Atl 1 0.5046 Core hpbl min rel hum pres ht tropo

-0.34 -0.19 -0.12 0.22
Atl 2 0.5075 Core hpbl min rel hum NE wnd ht tropo

-0.30 -0.17 -0.16 0.15
Atl 3 0.5083 Core hpbl max hpbl min rel hum ht tropo

-0.10 -0.32 -0.35 0.16
Atl 4 0.5090 Core hpbl min rel hum NE wnd pres

-0.39 -0.10 -0.19 -0.06
Atl 5 0.5097 Core hpbl min rel hum NE wnd lwrf

-0.36 -0.17 -0.17 0.08

Char Core 0.5452 Core
Char 1 0.5412 Core E wnd pres lwrf ht tropo

-0.11 0.08 0.13 -0.12
Char 2 0.5415 Core cloud E wnd pres chng pres

-0.11 -0.09 -0.04 0.14
Char 3 0.5415 Core cloud E wnd ht tropo

-0.14 -0.10 -0.11
Char 4 0.5420 Core hpbl max NW wnd lwrf ht tropo

-0.10 0.06 0.04 -0.05
Char 5 0.5421 Core cloud rel hum N wnd pres chng

-0.06 -0.21 0.04 -0.07

Table 4.3 gives bootstrap standard errors, using the nonparametric paired bootstrap

(Givens and Hoeting, 2005, p. 257) where (xi, yi) are resampled, and utilizing 640 bootstrap

replications, for the best fitting models in Atlanta and Charlotte. Because we are using a
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small subset of extreme data, and because these models include a large number of covariates

which are likely dependent, it is not surprising that the standard errors are quite large.

Because our aim is to uncover possible covariates for further exploration rather than to give

a definitive model, we are not overly concerned with the large standard errors.

Table 4.3: Parameter estimates of the best ‘core plus four’ models for Atlanta and Charlotte
with bootstrap standard errors in parentheses. We use the nonparametric paired bootstrap
(Givens and Hoeting, 2005, p. 257), where (xi, yi) are resampled, and utilizing 640 bootstrap
replications.

Atlanta temp wnd spd dswrf precip
.40 (.27) -.31 (.29) .29 (.50) -2.12 (.96)

hpbl min rel hum pres ht ropo
-.34 (.47) -.19 (.28) -.12 (.26) .22 (.28)

Charlotte temp wnd spd dswrf precip
.46 (.31) -.41 (.34) .55 (.48) -4.35 (.89)

E wnd pres lwrf ht tropo
-.11 (.39) .08 (.17) .13 (.24) -.12 (.27)

4.2.3 Automated Model Search Procedure

Our model search procedure thus far has been limited to at most eight main effects. We

would like to further explore the model space to investigate whether interactions or a larger

number of covariates would show even stronger tail dependence. Because a systematic model

search becomes infeasible, we perform an automated model search.

We implement a slightly modified version of the simulated annealing procedure utilized

in the R optim function (using the SANN method). Simulated annealing is a well known

stochastic global optimization method. Kirkpatrick et al. (1983) give an interesting intro-

duction to simulated annealing and Goffe et al. (1994) discuss simulated annealing in the

context of parameter estimation for statistical models.

The simulated annealing procedure we employ works in the following manner. We begin

with an initial value, ω0 ∈ {0, 1}k
′

and rely on a function f : {0, 1}k′ → {0, 1}k′ to choose

a new string. We can construct f to exclude certain undesired models, such as models
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with highly correlated covariates. At the ith step we calculate CV (f(ωi−1)). If CV (ωi−1) >

CV (f(ωi−1)) then we define ωi := f(ωi−1) and proceed to the next iteration. If CV (ωi−1) ≤

CV (f(ωi−1)) then

ωi :=


f(ωi−1) with probability exp{−∆CV/Tempi}

ωi−1 with probability 1− exp{−∆CV/Tempi}

where Tempi is the current global temperature in the simulated annealing process and

∆CV = CV (f(ωi−1)) − CV (ωi−1). The global temperature is a parameter that is lowered

throughout the optimization according to a cooling schedule. As in the R function optim

using the SANN method, we use the logarithmic cooling schedule outlined in Bélisle (1992).

When the global temperature is high the process is more likely to move to ωs with higher

CV values, reducing the chances of finding a local optimum. When the global temperature

is low, the process is unlikely to move to ωs with higher CV values.

Possible covariates include all the main effects considered in the previous ‘core plus four’

exploration, 77 interactions between continuous covariates, and 15 interactions between con-

tinuous covariates and the precipitation indicator. We include the four core variables in all

considered models, as this reduces the search to a region of the model space where extremes

are known to occur. Starting values are chosen by using the best core plus four models at

each location. We perform 640 runs at each location.

The covariates in the top five models at each location are given in Table 4.4. In Atlanta,

and to a greater extent in Charlotte, we see a convincing drop between the CV scores of

the best fitting models found during the model search and the best core-plus-four model

from the previous section. In both cities, we see relative humidity appears in many of the

top models, although in Charlotte it tends to appear in an interaction. We further notice

that many of the interactions in these top models include include a core variable such as

wind speed or downward short wave radiative flux, and a planetary boundary layer height

or pressure variable. Interestingly, few of these interactions include air temperature. We
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also notice that just one of these top models contains an interaction with the precipitation

indicator, which may suggest that the presence of precipitation, regardless of other variables,

is enough to discourage the most extreme ozone events.

Table 4.4: The covariates and interactions in the best five models in the automated model
search applied to the Atlanta (top) and Charlotte data (bottom). Interactions between
continuous covariates are indicated with a ‘×’. The four core main effects were also included
in all models, but do not appear in the covariate list.

Rank CV
Atl C+4 0.5046 best core-plus-four model

Atl 1 0.4812 rel hum wnd spd×pres chg wnd spd×ht tropo
dswrf×NE wnd dswrf×pres dswrf×hpbl.max

Atl 2 0.4823 hpbl min rel hum ht tropo
dswrf×NE wnd wnd spd×hpbl min N wnd ×precip

Atl 3 0.4836 pres wnd spd×NE wnd wnd spd×pres
wnd spd×ht tropo dswrf×pres rel hum×NW wnd

Atl 4 0.4837 wnd spd×ht tropo dswrf×ht tropo hpbl min×NE wnd
wnd spd×hpbl min dswrf×hpbl min hpbl min×rel hum

Atl 5 0.4868 rel hum wnd spd×pres chg wnd spd×ht tropo
new.cloud×pres temp×hpbl max dswrf×hpbl max

Char C+4 0.5412 best core-plus-four model
Char 1 0.5085 hpbl.max pres chg rel hum×lwrf

wnd spd×hpbl min dswrf×hpbl.max hpbl.max×rel hum
Char 2 0.5172 hpbl min rel hum hpbl.max×NW wnd

wnd spd×hpbl min dswrf×hpbl.max dswrf×hpbl min
Char 3 0.5175 dswrf×NE wnd rel hum×lwrf temp×hpbl min

wnd spd×hpbl min dswrf×hpbl min dswrf×rel hum
Char 4 0.5177 dswrf×pres hpbl.max×pres hpbl.max×ht tropo

rel hum×lwrf wnd spd×hpbl min dswrf×new.cloud
Char 5 0.5181 dswrf×NE wnd dswrf×pres hpbl min×pres

hpbl min×ht tropo new.cloud×E wnd wnd spd×hpbl min
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CHAPTER 5

MODELING THE SPATIAL BEHAVIOR OF THE METEOROLOGICAL

DRIVERS OF EXTREME OZONE

5.1 Introduction

In Chapter 4 we learned a great deal about the primary meteorological drivers of extreme

ground level ozone in two locations: Atlanta, Georgia and Charlotte, North Carolina. We

were able to identify a core set of four covariates that begin to explain extreme ozone. We

refer to this set of variables (air temperature, wind speed, downward shortwave radiative flux,

and the presence/absence of precipitation) as the ‘core four’ covariates. We also learned that

other variables, such as the minimum height of the planetary boundary layer and relative

humidity, play a role in extreme ozone at these two locations. In this chapter, we have a

different goal. Here we wish to understand how the primary drivers of extreme ground level

ozone change over a large study area.

We take the following approach. We begin by performing a model selection exercise at

a number of locations throughout the study area. Although extensive, this model selection

exercise will not be as large in scope as the data mining procedure done for Atlanta and

Charlotte in Chapter 4. As we build on our knowledge from Chapter 4, our aim is to use

the results of this exercise to construct a ‘common’ model for our study area. This common

model will contain covariates that include the primary drivers of ozone throughout the region.

After determining this common model, we will spatially model the parameter estimates for

these covariates.

The primary products of the spatial analysis will be maps of the study region which relate

the driving meteorological variables to extreme ozone. For each parameter estimate, we will

produce two maps: one that models the point estimate and one that gives the amount
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of variability. Additionally, we aim to reduce the amount of uncertainty associated with

the parameter estimates. For example, exploratory analysis suggests that air temperature

should be at least somewhat important in terms of describing extreme ground level ozone.

The parameter estimates for air temperature in the models that contain only the four core

covariates in Atlanta and Charlotte are .45 and .44 respectively. However, the standard

errors are .25 and .33 respectively. These standard errors make it difficult to gain a clear

understanding of the primary meteorological drivers of extreme ground level ozone. Although

estimators with a high degree of variability are not necessarily unusual in extremes analyses,

our spatial method is able to borrow strength across multiple stations which will hopefully

reduce variability and increase understanding of the primary drivers of extreme ozone.

Our model is hierarchical; however as our inference method in Chapter 3 is not likelihood-

based, we do not employ Bayesian inference. Instead, we use a two-step inference approach

which accounts for uncertainty in the initial estimates. Our approach models the parame-

ters in the common model as a function of geographical covariates plus spatially correlated

Gaussian random effects. To build our multivariate spatial model, we use the method of

coregionalization.

As our method aims to explain how the drivers of extreme behavior vary over the region, it

differs fundamentally from other spatial extremes studies. Previous spatial extremes studies

can roughly be divided into two categories. The first type aims to understand how the

marginal extreme behavior varies over a region. A popular approach for this type of study

is to build a hierarchical model in which the parameters of the GEV or GPD vary spatially

(Cooley et al. (2007), Sang and Gelfand (2009), Dyrrdal et al. (2015)). This approach is

useful when one is interested in quantities that can be expressed as a function of these GEV

or GPD parameters, such as return levels. A second type of spatial extremes study seeks to

model the spatial extent of extreme events, such as storms. The leading approach is to fit a

max-stable process to block maximum data (Kabluchko et al., 2009) or a Pareto process to

threshold exceedances (Ferreira et al., 2014). When observed at a finite number of locations,
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the dependence structure of either a max-stable process with unit Fréchet marginals or a

Pareto process with regular-varying α = 1 tails can be described with the angular measure

we introduced in Section 1.3.3. Although our approach is hierarchical, and since we aim

to spatially model the meteorological drivers of extreme ozone rather than the behavior of

ozone itself, it is different in both aim and procedure from these other methods.

In this chapter, we begin by defining the study region we will use and the data that we

use for estimation. We also describe the process that we use to select the common model.

Next, we formalize the spatial hierarchical model that we use for analysis. The following

section describes the method we use for estimation and gives results of inference on our

model. We conclude by using our parameter estimates to interpolate over the study area.

5.2 Study Area and Common Model

Before describing the details of our spatial model, we need to formalize our study area

and decide which meteorological variables need to be included in the common model. We

begin by describing the study area.

5.2.1 Study Area and Data

Since our project involves air quality in general and ground level ozone in particular, we

feel that it is natural to consider regions designated by the EPA. The EPA has 10 regional

offices, each serving one or more US states and/or territories. In addition to Georgia and

North Carolina, EPA Region 4 includes Florida, Alabama, Mississippi, Tennessee, Kentucky,

and South Carolina. This makes it a natural choice to be included in our study area. In

order to make the study area slightly larger and more geographically diverse, we also include

EPA Region 3. EPA Region 3 includes Virginia, West Virginia, Maryland, Pennsylvania,

Delaware, and the District of Columbia.

We use data from 160 EPA air monitoring stations spread throughout the study area

described above. Figure 5.1 shows the locations of these stations which are selected for
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their spatial coverage and temporal records. Ozone data is obtained via the EPA website

(http://www.epa.gov/airdata/ad maps.html). Because different stations will have different

lengths of data records, we alter the method we use to remove the downward trend in ozone.

Rather than transforming the data in non-overlapping blocks as described in Chapter 4, we

transform in the same way but utilize five-year moving windows.

As in Chapter 4, the meteorological covariates we use are downloaded from the NARR4

(Mesinger et al., 2006). We expect that the primary meteorological drivers of extreme ozone

will vary over the study region. To make comparisons, we wish to spatially model the

parameter estimates from the modeling procedure in Chapter 3. It is important to recall

that these types of comparisons only make sense when exactly the same model is fit. Thus,

we need to select a single common model that includes all of the primary drivers throughout

the study region.

5.2.2 Detemining the Common Model

In order to make sure that we include the primary drivers in our common model, we

first utilize data from 18 stations spread throughout the study area. The analysis of Atlanta

and Charlotte indicates that the four core covariates (air temperature, downward shortwave

radiative flux, wind speed, and precipitation as an indicator variable) should be included in

any model. To decide which other covariates need to be included, we fit all possible ‘core plus

four’ models at each of the 18 locations. Recall from Chapter 4 that core plus four models

always include the four core covariates, and also include up to four additional covariates. We

then consider the top 50 core plus four models at each location and compare the variables

in the best models. Figure 5.2 gives bar charts showing the number of times that variables

added to the core four are included in the best 50 core plus four models for four locations.

The top left panel of Figure 5.2 shows that relative humidity is present in nearly all of the

top 50 models in Washington, D.C. Exploratory analysis finds that relative humidity appears

4NARR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/
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Figure 5.1: Our study area consists of EPA Regions 3 and 4. Here, we plot the locations of
the 160 stations we use in our spatial analysis.

in many of the top models in many of the locations in the northern portion of the study

area. We find that the minimum height of the planetary boundary layer is an important

covariate in large portions of the study area, but especially in the Western portion. The top

right and bottom left panels of Figure 5.2 show that the minimum height of the planetary

boundary layer is present in most of the best 50 models in Memphis, Tennessee and Knoxville,

Tennessee.

The bottom right panel of Figure 5.2 gives the covariates in the top 50 core plus four

models in Jacksonville, Florida. This figure reveals that our cloud variable (described in

Section 4.2.2) and downward long wave radiative flux are most important. We also notice

this type of pattern in other Southeastern locations such as Daytona, Florida, Tallahassee,

Florida, and Jackson, Mississippi. Wind direction variables show up in a few of the top

models in some locations, exploratory analysis suggests that wind direction effects are quite
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local, and may be related to the direction to emissions sources. We choose not to include

wind direction in our spatial analysis.

We wish to limit the number of covariates in our common model to a manageable number.

Including too many variables in the common model could make convergence increasingly

difficult. The exploratory analysis described here suggests that we can meet our objective

by including three additional covariates in our common model: the daily minimum height

of the planetary boundary layer, relative humidity, and our cloud variable described in

Equation (4.3). We do not include downward longwave radiative flux in our common model,

as find it to be correlated with the other two cloud/sunlight variables, and find adding it

to a model with downward shortwave radiative flux and the cloud variable adds little. We

believe that this common model includes the primary drivers throughout the region and we

aim to understand how these drivers vary spatially.

We next fit this seven covariate model to each of the 160 locations in our study area.

Figures 5.3 and 5.4 show the parameter estimates at each location. Some interesting patterns

seem to be evident in the plots. As evidenced by the magnitude of the parameter estimates,

air temperature seems to be more important in the Carolinas and the Mid-Atlantic regions.

Air temperature looks to be less important in Southern Georgia and Northern Florida.

Although its parameter estimate is not significantly different from 0, we note that one outlier

in Southern Georgia has a negative parameter estimate for air temperature.

Wind speed looks to be most important in North Georgia, North Alabama, and Western

North Carolina. Unexpectedly, wind speed appears to be much less important in the far

Western portion of our study area and in Virginia and West Virginia. The minimum value

of the height of the planetary boundary layer looks to be an important covariate, but moreso

in the Western portion of the study area. Relative humidity seems to be an important

covariate throughout the region, but the sign of its parameter estimate seems to change in

different portions of the study area. Higher values of relative humidity are associated with

extreme ozone in North Georgia, the Carolinas, and Pennsylvania whereas lower values of
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Figure 5.2: We fit all possible core plus four models at 18 locations in the study area. Here,
we give bar charts showing the number of times each covariate is added to the core four is
included in the best 50 core plus four models for Washington, D.C., Memphis, TN, Knoxville,
TN, and Jacksonville, FL.

relative humidity are associated with extreme ozone in the rest of the study area. We also

see this type of interesting behavior in the cloud variable. However, there is large uncertainty

associated with these point estimates and the aforementioned spatial patterns are noisy.

The parameter estimate for the precipitation indicator seems to be nearly the same

throughout the study region, indicating that precipitation plays a similar role everywhere in

the region. Recall that including the precipitation indicator in the model (as described in

Chapter 4) allows for the linear combination of transformed covariates to have a distribution
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described by a mixture of Gaussians. If precipitation is important, the parameter estimate

for the precipitation indicator variable will be large enough for the two Gaussians overlap

minimally. Practically speaking, this means that the most extreme ground level ozone events

tend to occur on days without precipitation. As the precipitation indicator’s parameter

estimate varies little spatially, we exclude it from subsequent analysis.

5.3 Statistical Model

For each of the remaining six parameters in the common model and location s in the

study area D ⊂ R2, we assume that

β1(s) = XT
1 (s)α1 + η1(s),

β2(s) = XT
2 (s)α2 + η2(s),

...

β6(s) = XT
6 (s)α6 + η6(s), (5.1)
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where XT
i (s) (i = 1, . . . , 6) are vectors of covariates. We use the coregionalization model for

the random spatial effects (Wackernagel, 2003),



η1(s)

η2(s)

...

η6(s)


= A



δ1(s)

δ2(s)

...

δ6(s)



=



a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a33 0 0 0

a41 a42 a43 a44 0 0

a51 a52 a53 a54 a55 0

a61 a62 a63 a64 a65 a66





δ1(s)

δ2(s)

...

δ6(s)


,

where δi(s) (i = 1, . . . , 6) are independent second-order stationary Gaussian processes with

mean 0 and variance 1. We assume isotropy, and use the exponential covariance function

Cov(δj(s), δj(s
′)) = exp(−||s− s′||/ρj) for s, s′ ∈ D. The lower triangular formulation of A

is suggested by Finley et al. (2008).
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For fixed location s ∈ D we calculate the covariance matrix of (β1(s), . . . , β6(s))T ,

Cov


β1(s)

...

β6(s)

 = Cov


η1(s)

...

η6(s)



= Cov

A


δ1(s)

...

δ6(s)




= ACov


δ1(s)

...

δ6(s)

AT

= AIAT

= AAT . (5.2)

For fixed i, j ∈ {1, . . . , 6} and s, s′ ∈ D the cross covariances of the random effects is

Cov(ηi(s), ηj(s
′)) = Cov

(
i∑

k=1

aikδk(s),

j∑
l=1

ajlδl(s
′)

)

=
i∑

k=1

j∑
l=1

aikajlCov(δk(s), δl(s
′))

=

min{i,j}∑
k=1

aikajkCov(δk(s), δk(s
′))

=

min{i,j}∑
k=1

aikajk exp (−||s− s′||/ρk) . (5.3)

If i = j and s = s′ Equation (5.3) reduces to
∑i

k=1 a
2
ik and corresponds to the diagonal

elements in AAT from (5.2). When i 6= j and s = s′ Equation (5.3) reduces to
∑min{i,j}

k=1 aikajk

and corresponds to the off diagonal elements in AAT from (5.2). For i = j and s 6= s′

Equation (5.3) simplifies to
∑i

k=1 a
2
ik exp (−||s− s′||/ρk).

72



5.4 Estimation and Inference

5.4.1 Two Stage Inference for Spatial Model Parameters

Of course, we do not observe βi(s) (i = 1, . . . , 6) in Equation (5.1). Instead, we have

estimates of βi(s) (i = 1, . . . , 6) and we wish to account for the uncertainty in these estimates.

At the first stage of inference we obtain parameter estimates, β̃i (i = 1, . . . , 6), at each of

the 160 stations individually, using the optimization method described in Chapter 3. We

assume

β̃1(sl) = β1(sl) + ε1(sl),

β̃2(sl) = β2(sl) + ε2(sl),

...

β̃6(sl) = β6(sl) + ε6(sl),

where (ε1(sl), ε2(sl), . . . , ε6(sl))
T represents estimation error. We assume that

(ε1(sl), ε2(sl), . . . , ε6(sl))
T ∼ N(0,Σ(sl)),

and that (ε1(sl), ε2(sl), . . . , ε6(sl))
T is independent of (ε1(sl′), ε2(sl′), . . . , ε6(sl′))

T for all sl 6=

sl′ . We also assume that (ε1(sl), ε2(sl), . . . , ε6(sl))
T is independent of ηi(sl). At location l we

estimate Σ(sl) via the nonparametric paired bootstrap (Givens and Hoeting, 2005, p. 257),

where (xi, yi) are resampled and utilizing 640 bootstrap replications, obtaining Σ̃(sl). Define

β̃i = (β̃i(s1), β̃i(s2), . . . , β̃i(sn))T

for i = 1, . . . , 6.
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In stage two, we use β̃i to estimate αi, A, and ρi (for i = 1, . . . , 6). Denote

βi = (βi(s1), βi(s2), . . . , βi(sn))T

for i = 1, . . . , 6. Similarly, let

Xi = (X i(s1)T ,X i(s2)T , . . . ,X i(sn)T )T

be the matrix of covariates for the ith parameter. We also let K be the covariance matrix of

(βT1 ,β
T
2 , . . . ,β

T
6 )T . Finally, we define

X =



X1 0 0 0 0 0

0 X2 0 0 0 0

0 0 X3 0 0 0

0 0 0 X4 0 0

0 0 0 0 X5 0

0 0 0 0 0 X6


and α =



α1

α2

α3

α4

α5

α6


.

This implies that

(β̃
T

1 , β̃
T

2 , . . . , β̃
T

6 )T ∼ N(Xα, K + Σ).

In order to estimate αi (for i = 1, . . . , 6), A, and ρi (for i = 1, . . . , 6), we use sequential

maximum likelihood. At each iteration we first maximize αi (for i = 1, . . . , 6), then A, then

ρi (for i = 1, . . . , 6).

5.4.2 Interpolation of βi(s)

Consider s0 ∈ D, that may or may not be an observed location. Our main interest is

in estimating β1(s0), β2(s0), . . . , and β6(s0) along with the corresponding uncertainty es-

timates. These estimates are obtained via universal co-kriging based on the fitted pro-
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cess and β̃1, . . . , β̃6. Let K12 be Cov((β̃
T

1 , . . . , β̃
T

6 )T , (β1(s0), . . . , β6(s0))T ). The estimate of

(β̂1(s0), . . . , β̂6(s0))T = wT (β̃
T

1 , . . . , β̃
T

6 )T where

w = (K + Σ)−1K12 + (K + Σ)−1X(XT (K + Σ)−1X)−1(XT
0 −XT

0 (K + Σ)−1K12)

and where

X0 =



X1(s0)T 0 0 0 0 0

0 X2(s0)T 0 0 0 0

0 0 X3(s0)T 0 0 0

0 0 0 X4(s0)T 0 0

0 0 0 0 X5(s0)T 0

0 0 0 0 0 X6(s0)T


.

We obtain the universal kriging mean squared prediction error by

K22−KT
12(K+Σ)−1K12+(XT

0 −XT (K+Σ)−1K12)T (XT (K+Σ)−1X)(XT
0 −XT (K+Σ)−1K12)

where K22 = Cov((β1(s0), . . . , β6(s0))T , (β1(s0), . . . , β6(s0))T ).

5.5 Analysis of EPA Regions 3 and 4

5.5.1 Interpreting Parameter Estimates

Using AIC as the model selection criterion, we choose to use the model where Xi = 1 for

i = 1, . . . , 6. Using sequential maximum likelihood, we estimate

α̂ = (0.46, 0.40,−0.39,−0.14,−0.13,−0.06)T ,

ρ̂ = (129.54, 87.97, 113.50, 21.00, 9.45, 43.81)T ,
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and

Â =



0.166 0.000 0.000 0.000 0.000 0.000

0.032 0.054 0.000 0.000 0.000 0.000

0.030 0.079 0.101 0.000 0.000 0.000

0.104 0.100 −0.040 0.048 0.000 0.000

0.024 −0.045 0.012 −0.044 0.066 0.000

0.011 −0.037 −0.014 0.037 0.062 0.078


.

Although these estimates do not have a great deal of meaning by themselves, they can be used

to estimate various attributes of the spatial process we are modeling. For example, we can

use the parameter estimates to estimate the covariance matrix of β(·) = (β1(·), . . . , β6(·))T

Ĉov(β(s)) = ÂÂT =



0.028 0.005 0.005 0.017 0.004 0.002

0.005 0.004 0.005 0.009 −0.002 −0.002

0.005 0.005 0.017 0.007 −0.002 −0.004

0.017 0.009 0.007 0.025 −0.005 −0.000

0.004 −0.002 −0.002 −0.005 0.009 0.004

0.002 −0.002 −0.004 −0.000 0.004 0.013


.

We can then use this estimated covariance matrix to calculate the estimated correlation

matrix,

Ĉor(β(s)) =



1.000 0.510 0.228 0.661 0.256 0.099

0.510 1.000 0.631 0.884 −0.277 −0.229

0.228 0.631 1.000 0.335 −0.131 −0.270

0.661 0.884 0.335 1.000 −0.304 −0.011

0.256 −0.277 −0.131 −0.304 1.000 0.390

0.099 −0.229 −0.270 −0.011 0.390 1.000


. (5.4)
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This sample covariance matrix is interesting to interpret. It suggests that air temperature

is positively correlated with each of the other six covariates, which seems to contradict our

constraint on the parameter estimates. Closer inspection reveals that this does not violate

the constraint on the parameter estimates. Since the constraint effectively deals with the

magnitude of the parameter estimates, the sign of the estimate makes a large difference. The

first two covariates (air temperature and downward shortwave radiative flux) tend to have

positive parameter estimates while the last four covariates (minimum height of planetary

boundary layer, relative humidity, wind speed, and the cloud variable) tend to have negative

parameter estimates. As the air temperature parameter estimate increases, it is associated

with an increase in the parameter estimate for wind speed (for example). Since wind speed

tends to have a negative parameter estimate, an increase would likely result in a parameter

estimate that is smaller in magnitude.

5.5.2 Sill and Effective Range

The parameter estimates for α, A, and ρ can also be used to estimate the sill and

the effective range for our model. Let d = ||s − s′|| and define the function Ci(d) :=∑i
k=1 a

2
ik exp{−d/ρk}. The sill for βi will be Ci(0), which we estimate with Ĉi(d) where

Ĉi(d) :=
∑i

k=1 â
2
ik exp{−d/ρ̂k}. This yields the estimated sill, Ĉi(0) =

∑i
k=1 â

2
ik. Table 5.1

gives the estimated sills for β1, . . . , β6 based on Â.

Table 5.1: We report the estimated sills for β1(·), . . . , β6(·) based on Â.

Estimated Sill
β1(·) 0.028
β2(·) 0.004
β3(·) 0.017
β4(·) 0.025
β5(·) 0.009
β6(·) 0.013
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We estimate the effective range for βi(·) by finding smallest d such that Ĉi(d)/Ĉi(0) ≤ .05.

To the nearest tenth of one kilometer, the estimated effective ranges for β1(·), . . . , β6(·) are

displayed in Table 5.2. It is interesting to note that the estimated effective ranges for air

temperature, downward shortwave radiative flux, minimum height of the planetary boundary

layer, and relative humidity seem to be similar. The estimated effective ranges for wind speed

and the cloud variable also seem to be similar, but smaller than the first four.

Table 5.2: We report the estimated effective ranges for β1(·), . . . , β6(·) (to the nearest tenth
of one kilometer).

Effective Range
β1(·) 388.10 km
β2(·) 300.20 km
β3(·) 317.90 km
β4(·) 323.50 km
β5(·) 177.20 km
β6(·) 138.80 km

5.5.3 Reducing Uncertainty

A secondary goal for this spatial analysis is to reduce the uncertainty associated with

individual station parameter estimates. In order to explore the degree to which the spatial

model is able to accomplish this, we select four locations spread throughout the study region

and report the parameter estimates and standard errors. Tables 5.3, 5.4, 5.5, and 5.6 give

the parameter estimates and standard errors based on the extreme value model described in

Chapter 3, as well as the parameter estimates and standard errors based on the spatial model

outlined in this chapter. As anticipated, the standard errors are reduced significantly at each

of these four locations. We also note that in this spatial model, Σ acts as a multivariate

nugget effect. This means that at a fixed location s′ ∈ D, β̂i(s
′) 6= β̃i(s

′).
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Table 5.3: We report the parameter estimates and standard errors based on the extreme
value model from Chapter 3 and the parameter estimates and standard errors based on the
spatial model from this chapter for EPA station number 13-135-0002 in Gwinnett County,
GA.

β̃EV SE(β̃EV) β̂spatial SE(β̂spatial)
Air Temp 0.23 0.35 0.23 0.07
DSWRF 0.56 0.15 0.41 0.03

Min HPBL -0.44 0.25 -0.40 0.07
Rel Hum -0.24 0.17 -0.18 0.07

Wind Spd -0.00 0.14 -0.18 0.07
Cloud -0.59 0.38 -0.17 0.10

Table 5.4: We report the parameter estimates and standard errors based on the extreme
value model from Chapter 3 and the parameter estimates and standard errors based on the
spatial model from this chapter for EPA station number 21-043-0500 in Carter County, KY.

β̃EV SE(β̃EV) β̂spatial SE(β̂spatial)
Air Temp 0.20 0.39 0.32 0.09
DSWRF 0.15 0.20 0.35 0.04

Min HPBL -0.61 0.20 -0.51 0.09
Rel Hum -0.17 0.15 -0.22 0.07

Wind Spd -0.40 0.18 -0.20 0.07
Cloud -0.09 0.32 -0.08 0.10

5.5.4 Analysis

Utilizing our method for interpolation, we obtain estimates for each of the six parameters

at each location on the NARR grid. Figure 5.5 plots these values over the entire study area.

Figure 5.6 gives the square root of the mean squared prediction errors for each of the six

variables in the model.

When looking at the maps in Figure 5.5, one of the first things that stands out is the

difference between parameter estimates in the Carolinas and the Mid-Atlantic versus the

rest of the study area. This is most obvious in the air temperature map (top left panel of

Figure 5.5), but seems to be present to a lesser degree for the estimated parameter surfaces.

The portions of the region where air temperature is most important roughly corresponds
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Table 5.5: We report the parameter estimates and standard errors based on the extreme
value model from Chapter 3 and the parameter estimates and standard errors based on the
spatial model from this chapter for EPA station number 11-001-0041 in Washington DC.

β̃EV SE(β̃EV) β̂spatial SE(β̂spatial)
Air Temp 0.39 0.22 0.51 0.06
DSWRF 0.17 0.19 0.36 0.03

Min HPBL -0.49 0.20 -0.41 0.07
Rel Hum -0.45 0.22 -0.18 0.07

Wind Spd -0.12 0.16 -0.08 0.06
Cloud -0.00 0.22 0.05 0.08

Table 5.6: We report the parameter estimates and standard errors based on the extreme
value model from Chapter 3 and the parameter estimates and standard errors based on the
spatial model from this chapter for EPA station number 12-095-2002 in Orange County, FL.

β̃EV SE(β̃EV) β̂spatial SE(β̂spatial)
Air Temp 0.12 0.19 0.32 0.06
DSWRF 0.40 0.15 0.34 0.03

Min HPBL -0.60 0.21 -0.68 0.06
Rel Hum -0.13 0.17 -0.19 0.06

Wind Spd -0.27 0.14 -0.18 0.07
Cloud -0.23 0.35 -0.04 0.09

to the areas where emissions are highest. In general, higher local emissions should lead to

higher temperature sensitivities. We also observe differences between Florida and other parts

of the region. For example, the minimum height of the planetary boundary layer seems to

play a large role in extreme ozone events in the central part of the state, even moreso than

the rest of the region. Air temperature and downward shortwave radiative flux seem to play

less of a role compared to other parts of the study area. As a peninsula, it is not unexpected

that the primary drivers are different in Florida.

We also notice that the several of the estimated parameter surfaces have a ‘doughnut

hole’ effect South of Charlotte, NC to Columbia, SC. We see this behavior in all of the

surfaces except air temperature.
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In Chapter 4 we felt strongly enough about the importance of wind speed that we included

it in our core set of covariates. The bottom left panel of Figure 5.5 shows that wind speed

is most important in central and North Georgia. Although wind speed seems to play a

significant role throughout the remainder of the study area, its effect seems to be lessened

somewhat.

The minimum height of the planetary boundary layer tends to have large negative pa-

rameter estimates throughout the study region, indicating its importance in extreme ozone.

The reason for this is not entirely clear, but a low planetary boundary layer height may

suggest the presence of an inversion, which could act to trap air pollutants near the ground.

The results of this analysis suggest that the minimum height of the planetary boundary layer

may be every bit as important to extreme ozone as the four core covariates.

Relative humidity and the cloud variable are interesting in the sense that the sign of their

parameter estimates seems to change over different parts of the region. The cloud variable

tends to be slightly positive in portions of Alabama, Florida, Maryland, and Pennsylvania

as well as the doughnut hole in South Carolina. The reason for this is not clear, but the

parameter estimates in these locations are likely not significantly different from 0 based

on the estimates of variability in Figure 5.6. Relative humidity tends to have a positive

parameter estimate in the Carolinas (except for the doughnut hole) and portions of West

Virginia and Pennsylvania. Again, we do not know the reason for this behavior, but we wish

to point out that the spatial surface appears remarkably similar to the estimated surface for

downward shortwave radiative flux. This is reinforced by the fact that the corresponding

estimated correlation in Equation 5.4 is larger than any other correlation estimate.

Not surprisingly, the square root of MSPE tends to be larger in places that are farther

away from the 160 station locations. However, we again wish to point out that the standard

errors are reduced significanly when compared to the standard errors from the extreme value

model. Tables 5.3, 5.4, 5.5, and 5.6 show this for four locations.
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5.6 Conclusion

The spatial analysis given here is very different from a typical spatial extremes analysis.

Often, spatial extremes analyses have one of two main goals: estimating marginal effects

via a hierarchical model, or understanding the spatial extent of extreme events through a

max-stable process. Our goal is to understand how the primary drivers of extreme ozone

vary spatially. We accomplish this goal by first fitting a common model extreme value model

(relying on the model described in Chapter 3) at a large number of locations in our study

area. We then utilize the vectors of parameter estimates and estimated covariance matrices

at each location to fit a spatial surface for each parameter in the common model. The spatial

surfaces are fit using a hierarchical model that uses the coregionalization method for random

effects.

We have found out that the minimum height of the planetary boundary layer is even

more important in extreme ozone than we initially believed. We also are able to determine

that air temperature, a variable that is commonly understood to play a large role in ground

level ozone, may be less important in certain parts of the region. We are also able to uncover

additional questions to which there are not clear cut answers. For example, we do not

completely understand the reason for the doughnut hole over South Carolina.
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CHAPTER 6

CONCLUSIONS

This dissertation presented novel work in statistical methods for extremes. Although the

application in this dissertation focused on ground level ozone, the methods introduced here

could also be applied to any other field where understanding extremes is important.

In Chapter 2 we introduced γ, a tail dependence metric based on the angular measure H.

We also introduced its corresponding estimator, which is well suited for use as an objective

function in optimization. Additionally, we proposed the idea of tail dependence estimators

that utilize a smooth threshold as opposed to the hard threshold typically used in extremes

analyses. A smooth threshold is necessary to perform optimization, which has not previously

been considered in extremes analyses. We also showed consistency of our estimator with a

smooth threshold.

In Chapter 3 we outlined our procedure for finding the linear combination of covariates

that optimizes tail dependence with a continuous response variable. We also proposed a

model selection procedure that is based on cross-validation. We concluded the chapter

by introducing a simulation study, where we demonstrate our method’s ability to detect

complicated conditions which lead to extreme behavior. We also utilized the simulation

study to compare our approach to competing methods.

In Chapter 4, we proposed a data mining procedure that can be used to find the set

of covariates the produces the linear combination with the highest degree of tail dependece

with a response variable. We gave the results of an analysis of ground level ozone based on

our data mining procedure using data from Atlanta, Georgia and Charlotte, North Carolina.

We began by comparing cross validation scores for all possible four variable models, and

found that the best model in both locations contained air temperature, downward shortwave

radiative flux, wind speed, and precipitation. Next, we continued the search procedure by
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adding up to four more covariates to this core model. Since the model space is too large

to be searched exhaustively, as a final step, we used an automated model search procedure

based on simulated annealing. We also discussed how our method can be modified to include

non-continuous covariates such as precipitation.

Instead of using our data mining procedure to find all of the drivers at fixed locations,

in Chapter 5 we modeled the primary drivers of ozone spatially over EPA Regions 3 and

4. We began by performing exploratory analysis to find a common model that included

the primary drivers for all locations in the study area. We then modeled the parameters of

this common model spatially using a heirarchical modeling technique, and for inference, we

utilized a two-step procedure. This spatial analysis yielded interesting results. For example,

we found that air temperature was less important than expected in the Gulf Coast region

and that the minimum height of the planetary boundary layer was more important than

expected over the Western and Southern portions of the study region.
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Figure 5.3: We plot the parameter estimates for four of the seven variables in the common
model (air temperature, downward shortwave radiative flux, minimum height of the plane-
tary boundardy layer, and relative humidity) at each of the 160 locations. The parameter
estimates for the remaining three variables are given in Figure 5.4
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Figure 5.4: We plot the parameter estimates for three of the seven variables in the common
model (wind speed, the cloud variable, and the precipitation indicator) at each of the 160
locations.
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Figure 5.5: Using universal co-kriging, we plot the parameter estimates for each of the six
variables in the spatial model. We note that each plot has its own scale.
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Figure 5.6: Using universal co-kriging, we plot the square root of the mean squared prediction
errors for each of the six variables in the spatial model. We note that each plot has its own
scale.
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