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ABSTRACT  

 

DISAMBIGUATNG AMBIGUITY: INFLUENCE OF VARIOUS LEVELS OF 

UNCERTAINTY ON NEURAL SYSTEMS MEDIATING CHOICE. 

 

Previous studies have dissociated two types of uncertainty in decision making: 

risk and ambiguity.  However, many of these studies have categorically defined 

ambiguity as a complete lack of information regarding outcome probabilities, thereby 

precluding the study of how various neural substrates may acknowledge and track levels 

of ambiguity.  The present study provided a novel paradigm designed to address how 

decisions are made under varying states of uncertainty, ranging from risk to ambiguity.  

More important, the present study was designed to address limitations of previous studies 

looking at decision making under uncertainty: explore neural regions sensitive to hidden 

but searchable information by parametrically controlling the amount of information 

hidden from the subject by using different levels of ambiguity manipulations instead of 

just the one, as used in previous studies, and allowed subjects to freely choose the best 

option. 

Participants were asked to play one of two lotteries, one uncertain and one certain.  

Throughout the task, the certain lottery offered to participants was always a 100% chance 

of winning $1.  This was contrasted by the uncertain lottery in which various 
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probabilities of winning (20%, 33%, 50 % or 80%) were combined with different 

potential gains (2$, 3$, 5$, or 8$) so that expected values ranged from being better, equal 

or worse than the expected value of the certain lottery.  In our lotteries, the probability of 

winning or losing any given amount of money was indicated along the borders of the 

wheel, increasing from 0% to 100% in a clockwise direction starting at the 12 o’clock 

position.  For some uncertain lotteries and all certain lotteries, a “dial” explicitly 

indicated the probability of winning.  For some uncertain lotteries, there was no dial to 

indicate a specific probability.  Instead, a blinder that covered a portion of the wheel 

occluded the dial.  This occlusion represented the possible range of percentages in which 

the actual probability of winning lay.  Finally, the blinder covered 15%, 33%, 66%, 80% 

or 100% of the wheel in order to vary the level of ambiguity.  By manipulating the level 

of ambiguity, we were able to explore neural responses to different types of uncertainty 

ranging from risk to full ambiguity.  Participants completed this task while BOLD 

contrast images were collected using a 3T MR scanner. 

 Here, we show that both risk and ambiguity share a common network devoted to 

uncertainty processing in general.  Moreover, we found support for the hypothesis that 

regions of the DLPFC might subserve contextual analysis when search of hidden 

information is both necessary and meaningful in order to optimize behavior in a decision 

making task; activation in the DLPFC peaked when the degraded information could be 

resolved by additional cognitive processing.  Our results help to underscore the 

importance of studying varying degrees of uncertainty, as we found evidence for different 

neural responses for intermediate and high levels of ambiguity that are easy to ignore 

depending on how ambiguity is defined.  Additionally, our results help reconcile two 
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different accounts of brain activity during ambiguous decision making, one suggesting 

that uncertainty increases linearly and another suggesting ambiguity processing is greater 

at intermediate levels.  The graded coding of uncertainty we reported may reflect a 

unified neural treatment of risk and ambiguity as limiting cases of a general system 

evaluating uncertainty mediated by the DLPFC which then recruits different regions of 

the prefrontal cortex as well as other valuation and learning systems according to the 

inherent difficulty of a decision. 
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CHAPTER 1 - INTRODUCTION 

Making decisions is an integral part of everyday life, yet, the parameters that determine 

our decisions are not fully known.  From simple decisions such as what to eat for lunch or 

which route to take to work to complex decisions such as who to marry or how which 

stocks to buy, we constantly have to determine what the optimal decision is among a list 

of seemingly infinite options.  Unfortunately, choices can vary greatly in the level of 

information available to the decision-making agent, as the probability distributions of 

outcomes for many decisions cannot always be fully known.  In some choices, such as 

gambling on the outcome of a roulette game, probability can be easily determined from 

relative frequencies, or past outcomes.  On the other hand, there are choices in which 

probabilities are based on incomplete or missing information, such as in deciding whether 

or not to bring an umbrella in case of rain.  In economics, these conditions are termed 

"risk" and "ambiguity" respectively (Ellsberg, 1961; Knight, 1921), which have been 

dissociated behaviorally and (very recently) neurally. 

This section will focus primarily on decision making under states of ambiguity 

and how neural correlates associated with this type of uncertainty differ from those 

associated with other states of uncertainly – mainly risk.  We will first discuss different 

theories of optimal and rational decision making developed in the fields of behavioral 

economics, then discuss theories of choice behavior under states of uncertainty.  Then we 

will discuss the neural architecture supporting simple decision making and explore the 
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additional neural structures that are recruited when uncertainty is introduced into a 

decision making environment.  Finally, we will discuss open questions regarding 

uncertain decision making, and propose a novel task designed to better distinguish 

between risk and uncertainty.  

 

1.1. Theories of Decision Making  

One way to optimize decision making is to make decisions based solely on value.  

For decades, insights into this evaluation process centered on Expected Value (EV) 

Theory, first proposed by Blaise Pascal.  Pascal (1670/1966) argued that an uninformed 

agent could make the most optimal choice by treating all available actions as an option.  

The decision making agent should then rank the desirability of each option by assigning 

value to it: that is, determine how much the chooser could stand to gain or lose, whether 

it is money or other incentive, should that option be chosen.  Additionally, the decision 

making agent should assess the probability of obtaining the desired outcome associated 

with each option.  Thus, the optimal choice can be selected from multiple options by 

simply multiplying the value of each option by the likelihood of the desired outcome 

occurring (EV = Probability X Value).  The chooser simply selects the option with the 

highest EV.  For example, consider a game of chance with two options.  The first option 

is a payoff of $50 if a 5 appears on the roll of a single die and no money if any other 

number is rolled.  The second option is a payoff of $320 if two 5s appear on the roll of 

two six-sided dice and no money if any other number is rolled.  According to Expected 

Value Theory, option 2 is the better option, since it has an associated EV of 8.8, whereas 

the first option only has an associated EV of 8.3. 
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 Unfortunately, EV is often a poor predictor of actual choices; people often make 

choices that have a lower expected value than other options.  This is highlighted by the 

St. Petersburg paradox.  This paradox is based on a game of chance in which a player 

pays a fixed fee to enter a lottery in which a fair coin is repeatedly tossed until “heads” 

comes up which ends the game and the player wins the pot.  The pot starts with $2 and is 

doubled every trial in which “heads” does not come up so that the pot is $4 on the second 

trial, $8 on the third and so on.  Thus, the payoff depends on the trial at which the first 

“heads” comes up.  First, the player would have to calculate the EV in order to determine 

how much he should pay to play, which is the sum of the expected payoffs of all the 

consequences: 1/2 probability of winning $2 on the first trial, 1/4 probability of winning 

$4 on the second trial, 1/8 probability of winning $8 on the third trial, etc.  Since the 

expected payoff of each possible consequence is $1, and there are an infinite number of 

them, this sum is an infinite number of dollars.  In order to maximize the payoff, the 

player should enter the game only if the entry fee he pays is less than the expected value.  

In the case of the St. Petersburg game with infinite EV, any finite price is lower than the 

EV.  Therefore, this means that it should not matter how much the player pays to enter.  

However, people are only willing to pay a very small fee ($2-$4) to play when offered 

the choice (Aumann, 1977). 

 To resolve the St. Petersburg paradox, Daniel Bernoulli (as cited in Glimcher, 

2008) postulated that humans do not base decision based solely on a constant value 

assigned to each option, but rather tend to select the option whose probability distribution 

has the highest subjective value, or utility, compared to all other options. Like Pascal’s 

model of expected value, Bernoulli’s model of expected utility (Expected Utility = 
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Probability X Utility) accounts for the likelihood of any given outcome occurring, but 

also suggests that personal preference is a powerful decision parameter even when the 

likelihood of various options is 100% certain.  One observation made regarding the St. 

Petersburg paradox is that it does not take into account how various states of wealth 

affect choices.  Bernoulli argued that money and other incentives diminish in value at 

higher levels.  In other words, a gain of $1000 is worth more to a man with a net worth of 

$0 than it is to a man whose net worth exceeds $1 million.  This principle later became 

know as the Principle of Decreasing Marginal Utility, which states that value is no longer 

linear, but “concave”, in that each additional good consumed or unit of wealth gained is 

less satisfying or valuable than the previous one. 

Thus, Bernoulli postulated that a more realistic measure of the value of something 

like money might be better estimated via a logarithmic scale.  Similar to using Expected 

Value Theory, a decision-making agent can make an optimal decision using Expected 

Utility Theory by determining the probability of a desirable outcome occurring.  Rather 

than multiplying the likelihood of a favorable outcome with a value, Bernoulli suggested 

that one must first take into consideration total objective wealth of the decision making 

agent, and then take the log of this number to yield the total “subjective wealth”.  The 

decision making agent can then evaluate which option yields the biggest increment to 

subjective wealth, and choose accordingly.  This results in choices that violate Expected 

Utility Theory.  Using the earlier example of the game of chance with two options based 

on dice rolls (either $50 if a 5 is rolled with one die or $320 if two 5s are rolled with two 

dice), a person with an initial subjective wealth of $1 would likely choose to bet on the 

option with lower EV, but higher marginal utility ($50 on the roll of one die) since this 
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choice represents a lower probability of remaining relatively poor (1/6 chance vs. 1/36 

chance). 

Bernoulli’s theory of expected utility has become very influential in several 

academic fields studying decision making, including economics and neuroscience, 

because it converts the various aspects of available options into a single measure that 

allows for comparison across different dimensions.  In other words, utility (subjective 

value) is what allow us to compare apple to oranges based on personal preference.  

Furthermore, work by von Neumann and Morgenstern (1947) expanded Expected Utility 

Theory to account for a wider range of phenomena observed in decision making 

scenarios.  To do so, von Neumann and Morgenstern (1947), and later Savage (1954) 

proposed a set of axioms that characterize choice behavior when one or more options are 

available, which include principles such as completeness, transitivity and independence, 

among others.  According to this axiomatic model of decision making, the completeness 

and transitivity axioms establish that decision making agents can order preferences on an 

ordinal scale.  For example a decision making agent could show he/she obeys the 

completeness axiom by showing a marked preference for apples compared to oranges, 

and a preference of oranges to pears.  Additionally, the decision making agent could 

show adherence to the transitivity axiom if one chooses an apple when asked to choose 

between an apple and a pear.  Axioms were included in EU Theory as a simple way to 

classify a set of behaviors that one should exhibit if one is trying to maximize net utility 

above all else. 

Finally, EU has proven a powerful theory to describe choice behavior because it assumes 

that the value of different options, as represented by utility, can be ranked on an ordinal 
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rather than cardinal scale.  In our above examples of a decision making agent that prefers 

apples to oranges to pears, the utility associated with each object is not associated with a 

particular numerical value.  That is to say, one does not necessarily value apples twice as 

much as oranges, but only half as much as pears.  Utility allows for a unit-free way to 

assess the preference of options during choice.  The usefulness of utility becomes more 

apparent when we introduce a new option, bananas, to the available options.  If 

preference or value was to be ranked cardinally, and the decision making agent now 

prefers bananas to apples, the scale would have to be regenerated to accommodate the 

new option. 

 

1.2. Neural Substrates of Decision Making 

In order to understand how we make decision under conditions of uncertainty, it is 

important to understand the basic neural substrates that underlie simple, unambiguous 

decision making.  In most cases, a decision is the act of choosing one option from several 

discrete options presented to us.  We can break down decision making into two separate 

stages: the valuation stage, where we evaluate the merit of each option and assign an 

arbitrary level of desirability to it, and a choice stage, where we select the option with the 

highest value by making overt motor responses.  Growing evidence suggests that the 

basic network responsible for producing choices in humans and non-human primates 

does in fact involve a two-stage process that is housed in different regions of the brain.  

Valuation is associated with activity in ventral parts of the frontal cortex and sub-regions 

of the striatum, whereas choice is associated with activity in lateral prefrontal and parietal 

cortices. 
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1.2.1. Valuation 

As stated previously, most theories of decision making require a valuation stage 

in which the various dimensions of a single option are converted into a single dimension 

which can then be associated with a subjective value.  It is this measure of value that 

serves as a sort of common currency that allows us to compare seemingly different 

choices.  Several studies have found that activity in the orbitofrontal cortex (OFC) and 

striatum is positively correlated with behavioral measures of value.  Refer to Table 1 for a 

list of studies looking at neural correlates of valuation. 

Some of the first studies to demonstrate value-related activity in the brain were 

carried out using single-unit recordings in the OFC of non-human primates.  Thorpe et al. 

(1983) found that the response of specific neurons in the OFC to a visual stimuli 

depended on whether the previous stimuli was associated with a reward (apple juice) or 

no reward (saline). Similar findings were reported by Rolls and colleagues (1989) who 

reported increased activity in OFC neurons associated with gustatory stimuli that could 

be modulated by varying hunger and satiety.  Importantly, this modulation of activity was 

not found in primary gustatory cortex, suggesting that activation reported in the OFC was 

associated with stimuli associated with a rudimentary value function and not just sensory 

processing.  These findings have since been replicated in studies using advanced 

recording techniques and experimental paradigms (Roesch & Olson, 2005; Wallis, 2007). 

 Although these classical studies demonstrate that neurons in the OFC can encode 

simple forms of value or preference, these experiments were devoid of choice; the 

animals in these studies only passively attended to stimuli.  More concrete evidence of 
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preference-based value in the OFC came from studies in which animals were allowed to 

freely choose based on preference.  For example, Padoa-Schioppa and Assad (2006) 

demonstrated that a small population of neurons in the OFC encoded subjective value.  In 

this experiment, monkeys were presented with pairs of different types of juice in varying 

amounts.  The experimenters found that when the two stimuli were presented in equal 

amounts, monkeys chose based on subjective preference, and that monkeys chose the 

less-preferred juice only when it was offered in sufficiently large amounts.  Based on this 

pattern, experimenters were able to infer the value of each type of juice and calculate the 

amount of juice needed so that each type of juice would be chosen equally often.  Cell 

recordings were found to match the various assignments of value in each monkey, and 

the firing patterns reported were independent of the spatial arrangement of the stimuli and 

of the motor response made by each animal (Padoa-Schioppa & Assad, 2006). 

 Finally, it is important to note that value signals observed in the OFC represent 

absolute value rather than relative value.  Again Padoa-Schioppa and Assad (2008) 

recorded activity from a population of OFC neurons in monkeys performing a choice 

preference task in which subjects were offered the option to drink different types of juice.  

Padoa-Schioppa and Assad (2008) demonstrated that activity in the OFC is “menu 

invariant”; as patterns of the OFC neurons showed consistent firing associated with 

specific stimuli and matched behavioral responses.  This finding is important, in that it 

demonstrates that even neurons in certain regions of the brain obey axioms.  In this study, 

the firing pattern in OFC neurons was consistent with the transitivity axiom: a neuron that 

encoded the value of grape juice did so in the same manner whether the other option was 

apple juice or water (Padoa-Schioppa & Assad, 2008). 
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These findings showing value-related signals in the OFC have also been 

replicated in humans using various methods of neuroimaging, providing converging 

evidence that the OFC is crucial for the calculation of value.  Though it is always difficult 

to exactly match the neural substrates of choice across human and animal models, there is 

strong agreement between regions observed to be active using electrophysiological 

recordings in animals and neuroimaging in humans, leading us to believe we are 

discussing directly homologous structures.  As in animal studies, value-related signals in 

the OFC have been observed in the absence of choice, and activity is consistent with 

tracking or predicting objects and outcomes associated with high value and/or reward 

(Knutson & Cooper, 2005; J. O'Doherty et al., 2004).  More importantly, in studies which 

directly compared conditions of passive stimulus presentation and choice, activity in the 

OFC was associated with trials in which subjects were allowed to choose based on 

preference (Arana et al., 2003). 

Mirroring animal work, several studies have been conducted on preference based 

value signals in the OFC.  For example, Plassman and colleagues (2007) showed food-

deprived participants various images of food while inside an fMRI scanner.  Subjects 

were then asked to bid hypothetical money for the right to eat one of these foods based on 

preference.  Thus, the value of each food item was inferred by the amount of money 

subjects were willing to pay to acquire and consume each item.  A positive correlation 

was found between the subjective valuation of the food items and BOLD activity in the 

OFC (Plassmann et al., 2007).  Similarly, Hare and colleagues (2008, 2009) performed a 

similar set of studies in which hungry subjects were given a monetary budget that they 

could spend on various food items they wanted to eat.  These studies again showed 
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activity in the OFC was associated with the valuation of individual items, and not due to 

other possible signals, such as outcome and reinforcement values (Hare, Camerer, & 

Rangel, 2009; Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008). 

 Finally, studies using human subjects with damage to the OFC show that value 

computation is impaired across various tasks.  However, many of the studies looking at 

human lesions have investigated valuation and decision making in the brain using the 

Iowa Gambling Task (IGT) (Bechara, Damasio, Damasio, & Anderson, 1994).  The IGT 

requires subjects to search for monetary rewards by selecting cards from among several 

decks.  The proportion of winning cards within each deck is varied and subjects learn 

through exploration which are the “good” decks that pay the most over a period of time 

and which are the “bad” decks that are associated with losing money, essentially forming 

a 4-armed bandit task (a task in which each “arm” represents an independent lottery with 

its own reward schedule).  Using the IGT, Bechara and colleagues (1994) demonstrated 

that while healthy subjects were able to make successful choices by choosing the good 

decks and avoiding the bad ones, one particular patient with damage to the ventromedial 

prefrontal cortex was not able to distinguish optimal from suboptimal choices.  Although 

previously discussed studies have used the anatomical term OFC, the ventromedial 

prefrontal cortex as discussed by human lesion studies includes the same regions of 

cortex often referred to as the OFC, such as medial Broadmann’s areas (BA) 10, 11, 12, 

and the lower BA 24, 25 and 32.  Consequently, this study provided some of the first data 

in humans indicating that the ventromedial prefrontal cortex is crucial for valuation; 

patients with ventromedial prefrontal cortex damage fail to place a higher value on 

certain decks.  Subsequently, more studies have been carried out using patients with 
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ventromedial prefrontal cortex lesions and have replicated these initial findings showing 

sub-optimal decision making in the Iowa Gambling Task (Bechara, Damasio, & 

Damasio, 2000; Bechara, Damasio, Damasio, & Lee, 1999; Bechara, Damasio, Tranel, & 

Anderson, 1998; Bechara, Tranel, & Damasio, 2000), the ultimatum game (Koenigs & 

Tranel, 2007), and fail to show any consistent patterns of valuation in other choice 

preference tasks (Fellows, 2006; Fellows & Farah, 2007). 

In addition to the OFC, regions of the striatum have also been shown to play a 

role in valuation of choices during decision making.  In one such study, monkeys were 

taught to associate lever turns, either to the right or left, with varying amounts of fruit 

juice.  The firing patterns of neurons in the putamen seemed to track the value of actions; 

neurons that tracked the value of a turn in either direction would always exhibit a 

consistent response, even if the animal chose a different direction associated with a larger 

reward (Samejima, Ueda, Doya, & Kimura, 2005).  This finding implies that neurons in 

the striatum are capable of encoding value to a certain extent, and that the value encoded 

is also absolute and not relative, like the menu-invariant value signals in the OFC.  In a 

more recent study by Lau and Glimcher (2008), monkeys were required to perform an 

occulomotor choice task in order to receive reward dependant upon the different reward 

schedules for each stimulus.  In this study, monkeys displayed the ability to adjust 

saccadic movements such that the proportion of their responses to each stimulus matched 

the relative magnitude of reward associated with each stimulus based on the reward 

schedules; animals responded more often to stimuli that had achieved higher value via a 

more generous reward schedule and responded significantly less to stimuli that had 

acquired a lower value.  More importantly, their recordings from neurons within the 
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caudate closely resembled the pattern of activity reported by Padoa-Schioppa and Assad 

(2006, 2008) in the OFC and Samejima and colleagues (2005) in the putamen.  Since 

then, striatal activity consistent with these findings has been demonstrated in other 

studies using different paradigms and species (D'Ardenne, McClure, Nystrom, & Cohen, 

2008; Kable & Glimcher, 2007; Knutson, Adams, Fong, & Hommer, 2001; Knutson, 

Fong, Adams, Varner, & Hommer, 2001; McClure, Li et al., 2004; Tom, Fox, Trepel, & 

Poldrack, 2007; Waelti, Dickinson, & Schultz, 2001). 

Taken together, the findings mentioned above indicate that regions of the striatum 

are involved in the computation of value.  However, most of the activity in the striatum 

may not be directly attributed to the process of assigning subjective value per se, but 

rather learning the value of objects and choices.  In many experiments using both animals 

and humans, subjects have to learn the value of different actions throughout the course of 

the experiment.  Many times, this must occur in situations in which the consequences of 

each action cannot be communicated verbally.  Overwhelming evidence suggests that 

dopaminergic neurons in the midbrain encode a teaching signal that can be used to learn 

the subjective value of actions (see Schultz, 2002 for review).  In particular, the ventral 

striatum has been typically associated with dopamine-dependent learning and reward 

processing -- unexpected reward particularly.  In the reinforcement learning framework, 

dopamine activity signals reward prediction error in which a reward that is better than 

expected will elicit a phasic burst of dopamine, a fully expected reward elicits no activity, 

and a reward that is worse than expected will produce a depression of dopaminergic 

firing (Schultz, Dayan, & Montague, 1997).  Moreover, the prediction error response is 

sensitive to the time of reward delivery, meaning that a delayed reward will produce a 
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depression at the original time of reward delivery and a shift in activation towards the 

new time of reward.  Overall, this suggests that reward prediction error is used as a 

teaching signal by cells within the ventral striatum, which we will briefly discuss. 

More recent studies have explored the reward prediction error hypothesis using a 

variety of experimental paradigms and have provided solid support for Schultz and 

colleagues (1997) work.  For example, Bayer and Glimcher (2005) recorded from 

dopaminergic neurons in the ventral striatum while monkeys performed an occulomotor 

(saccade) task.  In this experiment, monkeys were rewarded for making specific saccadic 

movements.  However, the reward associated with each moment varied in a continuous 

manner from trial-to-trial, so that even the same movement executed in succession did 

not necessarily result in equal reward.  Bayer and Glimcher (2005) found that 

dopaminergic firing rates in the ventral striatum were linearly related to a previously 

modeled reward prediction error.  Additionally, studies investigating the reinforcement 

properties of dopamine have demonstrated that when conditioned cues predict rewards 

with different magnitudes or probabilities, the observed dopamine response also scales 

with magnitude and probability, which is expected if dopamine activity in this region of 

the striatum truly represents a cue-elicited prediction error (Fiorillo, Tobler, & Schultz, 

2003; Tobler, Fiorillo, & Schultz, 2005).  Similar electrophysiological studies using non-

human primates have demonstrated that if different cues predict rewards after different 

delays, the cue-elicited response decreases as the delay-to-reward increases, consistent 

with a prediction that incorporates discounting of future rewards (Fiorillo, Newsome, & 

Schultz, 2008; Kobayashi & Schultz, 2008; Roesch, Calu, & Schoenbaum, 2007).  
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Despite the large body of work investigating the reinforcement learning 

hypothesis in animals, there is little direct evidence regarding the activity of 

dopaminergic neurons in humans.  This lack of evidence is mostly attributed to the spatial 

resolution in many of the available neuroimaging methods and the size of the various 

dopamine-producing regions of the midbrain.  However, several studies have been 

successful in using functional magnetic resonance imaging (fMRI) to show reward 

prediction error-related signals in targets of the dopaminergic neurons, mainly the ventral 

striatum (McClure, Li et al., 2004; J. P. O'Doherty, Dayan, Friston, Critchley, & Dolan, 

2003).  All these studies are in agreement with previous animal work and help highlight 

the ventral striatum’s role in reinforcement learning (Berns et al., 2001; McClure et al., 

2003).  Recent advancements in neuroimaging have allowed us to obtain more direct 

evidence from dopamine-producing regions of the midbrain by using smaller voxel sizes 

and different normalization procedures (D'Ardenne et al., 2008).  In these studies, BOLD 

activity in the ventral tegmental area (VTA) has been reported to be significantly 

correlated with positive, but not negative, reward prediction errors. 

Beyond neuroimaging, some studies have successfully obtained direct recordings 

from populations of midbrain neurons in humans (Zaghloul et al., 2009).  Zaghloul and 

colleagues (2009) were the first to report electrophysiological recordings in human 

substantia nigra during learning.  These investigators recorded neuronal activity while 

individuals with Parkinson’s disease underwent surgery to place electrodes for deep brain 

stimulation therapy.  Subjects had to learn which of two options provided a greater 

probability of a hypothetical monetary reward, and their choices were fit with a reward 

prediction model.  In the subset of neurons that were thought to be dopaminergic, they 
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found an increase in firing rate for unexpected positive outcomes, relative to unexpected 

negative outcomes, while the firing rates for expected outcomes did not differ (Zaghloul 

et al., 2009).  Such an encoding of unexpected rewards is again consistent with the 

reward prediction error hypothesis. 

Using patients with neurological conditions has also provided insights as to how 

the midbrain dopamine system helps in reinforcement learning.  For example, Pessiglione 

and colleagues (2006) demonstrated a causal role for dopaminergic signaling in both 

learning and striatal BOLD prediction error signals.  During an instrumental learning 

paradigm, they tested subjects who had received L-DOPA (a dopamine precursor), 

haloperidol (a dopamine receptor antagonist), or placebo (Pessiglione, Seymour, Flandin, 

Dolan, & Frith, 2006).  Consistent with other findings from Parkinson’s patients (Frank, 

Seeberger, & O'Reilly R, 2004), L-DOPA (compared to haloperidol) improved learning 

to select a more rewarding option, but did not affect learning to avoid a more punishing 

option. In addition, the BOLD reward prediction error in the striatum was larger for the 

L-DOPA group than for the haloperidol group, and differences in this response, when 

incorporated into a reinforcement learning model, could account for differences in the 

speed of learning across groups. 

 

1.2.2. Choice 

 After computing and learning value in a manner that allows different options to be 

compared on the same scale, one must still select the most desirable or appropriate option 

from the set of available alternatives.  Although it is well understood that the motor 

system is necessarily involved in choice as a physical response typically signifies choice, 
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the following section will instead focus on the cognitive processes associated with the 

selection of an optimal option that precede motor execution.  Like the previous section on 

the neural substrates of valuation, the following section will focus heavily on studies 

using electrophysiological recordings of neurons in non-human primates.  Although there 

exist studies on the neural correlates of choice in humans, the saccadic control system in 

non-human primates has been extensively studied and mapped for decades, and has 

provided the most detailed model of sensory-motor control we have to date (Glimcher, 

2003; Gold & Shadlen, 2007).  Additionally, electrophysiological recordings in animals 

allows us to invasively study the decision making network in a manner not possible with 

humans.  Overall, the data suggest that regions of the parietal cortex and dorsolateral 

prefrontal cortex play a role in helping select the best choice.  Table 2 lists empirical 

studies that highlight the neural architecture of choice selection.  

 Traditionally, the parietal cortex has been associated with linking sensory signals 

with motor commands as well as supplementary sensory processing and guiding attention 

processes (Colby, Duhamel, & Goldberg, 1996; Gnadt & Andersen, 1988).  The notion 

that regions of the parietal cortex could also potentially bias action came from studies 

carried out by Basso and Wurtz (1998) and Dorris and Munoz (1998), who found 

evidence using non-human primates suggesting that a winner-take-all computation 

occurred in the colliculus, in which the patterns of activity in the collicular neurons 

effectively selected one movement from the two options for execution (Basso & Wurtz, 

1997; Dorris & Munoz, 1998).  These studies indicated that if the probability that a 

saccade would yield a reward was increased, firing rates associated with that saccade 
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increased, and if the probability that a saccade would yield a reward was decreased, then 

the firing rate was decreased. 

Based on these findings, Platt and Glimcher (1999) recoded in a region of the 

parietal cortex, the lateral intra-parietal area (LIP), down-stream of the colliculus in the 

visuomotor system.  Platt and Glimcher (1999) systematically manipulated the expected 

value of specific saccadic movements by either altering the probability or the magnitude 

of reward yielded by making a movement oriented towards a specific target, which were 

cued by the color of a fixation stimulus.  They found that firing rates in the LIP before the 

collicular burst occurred were a nearly linear function of both magnitude and probability 

of reward, suggesting that these pre-movement signals encode the subjective value of 

movements.  In a second study, Platt and Glimcher (1999) repeated the previous 

experiment with one major change: the monkeys were not given an overt visual cue to 

initiate a specific movement.  Behaviorally, the frequency of the monkeys’ responses 

proportionally matched the expected value of each movement so that monkeys made 

significantly more high value movements than low value ones.  Again, the firing patterns 

of neurons in the LIP also matched expected value.  Given these experiments by Platt and 

Glimcher, it is plausible that the LIP plays a role in the selection of highly rewarding 

actions based on the value computations carried out in the OFC and striatum. 

 Many subsequent studies have since been carried out that support the conclusion 

that the LIP plays a large role in biasing decisions based on value.  This body of work 

includes studies demonstrating that various manipulations that increase and decrease the 

subjective value of a given saccade also modulate increases and decreases in the firing 

rate of neurons within this region of the parietal cortex in non-human primates (Dorris & 
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Glimcher, 2004; Janssen & Shadlen, 2005; S. Kim, Hwang, & Lee, 2008; Leon & 

Shadlen, 1999, 2003; Wallis, 2007; Yang & Shadlen, 2007).  More importantly, the LIP 

has been shown to track small fluctuations of value over time, suggesting that activity in 

the LIP is dynamic and varies according to environmental demands.  For example, 

Sugrue and colleagues (2004) recorded activity in the LIP in an unstable decision making 

environment using a foraging task.  In this study, the likelihood of reward associated with 

each of two stimuli fluctuated over time based on preceding response made, and monkeys 

were free to choose the stimulus most appealing to them.  This led monkeys to match the 

rate of choosing each target to the relative reward probabilities of each stimulus over both 

short and long time scales.  Electrical activity in LIP neurons associated with selecting a 

particular target was significantly correlated with the history of relative reward, 

indicating that more recent trials were weighted more (Sugrue, Corrado, & Newsome, 

2004).  Similarly, Dorris and Glimcher (2004) found using a similar foraging task that 

LIP neurons reflected a value weight in which the activity of individual LIP neurons was 

modulated by the relative value of an option compared to similar options in preceding 

trials.  Together, these results suggest that decisions may be formed in the LIP by scaling 

neuronal responses according to expected value, and action selection depends critically 

on the modulation of neurons to reach a certain threshold. 

 This threshold model of action selection has been also been demonstrated in 

similar perceptual decision making studies.  In a series of studies, Shadlen and colleagues 

(1996, 2001) used an ambiguous visual stimulus to indicate which of two saccades would 

yield a reward, and the monkey was reinforced if he made the indicated saccade 

(Shadlen, Britten, Newsome, & Movshon, 1996; Shadlen & Newsome, 2001).  
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Researchers found that the activity of LIP neurons in the decision-making process 

resembled an accumulation signal, in which the firing rate of LIP neurons increased prior 

to the selection of a particular action.  Subsequent studies have also demonstrated similar 

dynamics of this decision making process.  During these kinds of perceptual decision-

making tasks the firing rates of LIP neurons show the similar pattern of neuronal firing 

increase as the evidence that a saccade into the response field will be rewarded 

accumulates, and once firing rates cross a maximal threshold a saccade is initiated 

(Churchland et al., 2008; Roitman and Shadlen, 2002).  A closely related series of studies 

also shows a similar pattern of neuronal firing in the frontal eye fields, and lead to the 

similar conclusion where the most appropriate or desired option or behavior is the one 

that reaches a certain threshold the fastest (Gold & Shadlen, 2000; J. N. Kim & Shadlen, 

1999). 

 In humans, perceptual decision making tasks have also been used to demonstrate 

that certain regions of the parietal cortex are involved in action/choice selection.  

However, it should be noted that there is no LIP in the human brain.  Rather, the 

presumed human homologue of the primate LIP is considered to be the intraparietal 

sulcus (IPS), including middle IPS.  For example, Ploran and colleagues (2007) found 

specific regions of the parietal lobe showed increased BOLD activity that was 

characteristic of an evidence accumulation function.  Using a perceptual decision making 

task, subjects were presented with a series of visual stimuli which, as an ensemble, 

corresponded to a specific motor response.  Subjects were encouraged to make a response 

as quickly as they had reached a decision as to what the required motor response was.  

Increased activity was reported in the IPS beginning with the presentation of a stimulus, 
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which continued to increase as subsequent stimuli were presented until a decision was 

made.  Once a decision had been reached, activity in the IPS sharply decreased to 

baseline levels.  This pattern was notably different from a more tonic activation reported 

in regions of the prefrontal cortex also involved in decision making or regions of the 

striatum that showed an increase in activity after a decision was made (Ploran et al., 

2007).  Numerous other studies have also shown that the increased rate of neural activity 

in the IPS of humans matches that of the LIP in non-human primates, which may 

represent the accumulation of sensory evidence as one reaches a specific decision 

(Astafiev et al., 2003; Heekeren, Marrett, Ruff, Bandettini, & Ungerleider, 2006; Ho, 

Brown, & Serences, 2009; James & Gauthier, 2006; Noppeney, Ostwald, & Werner, 

2010; Philiastides & Sajda, 2007; Ploran, Tremel, Nelson, & Wheeler, 2011; Sereno, 

Pitzalis, & Martinez, 2001; Stark & Zohary, 2008; Tosoni, Galati, Romani, & Corbetta, 

2008; Wheeler, Petersen, Nelson, Ploran, & Velanova, 2008). 

Along with the parietal cortex, several lines of evidence indicate that the 

dorsolateral prefrontal cortex (DLPFC) also plays a role in the decision making process.  

Traditionally, the DLPFC has been associated with a wide range of cognitive processes 

such as working memory (R. Levy & Goldman-Rakic, 2000; Petrides, 2000), cognitive 

control (Milham, Banich, & Barad, 2003; Miller, 2000; Miller & Cohen, 2001; Wallis & 

Miller, 2003) and emotional regulation (Delgado, Gillis, & Phelps, 2008; Ochsner & 

Gross, 2005).  In addition, there is now evidence that DLPFC activity changes according 

to whether or not a reward is expected in a given state in simple decision making tasks 

(Kobayashi, Lauwereyns, Koizumi, Sakagami, & Hikosaka, 2002; Leon & Shadlen, 

1999; Watanabe, 1996).  These findings suggest that the DLPFC plays an important role 
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in decision making by encoding a particular state, along with the desirability of the 

outcome expected when the decision-making agent is in the same state (Lee, Rushworth, 

Walton, Watanabe, & Sakagami, 2007).  For a task that demonstrates this phenomenon 

that better approximates decision making in the real world outside of a laboratory setting, 

researchers have employed games such as the matching pennies game.  In this mixed-

strategy game, one player attempts to match the sides of a coin with that of a fellow 

player or computer.  If the two sides match, the player keeps both coins, whereas the 

player loses the coin if both sides do not match.  The results from these experiments 

closely mirror previous studies investigating DLPFC function during choice and decision 

making.  Activity of many neurons in the DLPFC was reported to correspond not only the 

upcoming choice, but also the choices made in the previous trials; activity of the DLPFC 

neurons during the feedback period was correlated to whether or not a choice was 

rewarded in previous trials (Barraclough, Conroy, & Lee, 2004; Seo, Barraclough, & Lee, 

2007).  These findings suggests that the activity in the DLPFC might be influenced by 

reward history and therefore by the context in which a particular reward was delivered or 

omitted and match similar studies looking at prefrontal cortex function and decision 

making (Camus et al., 2009; Domenech & Dreher, 2010; Forstmann et al., 2008; Hanes 

& Schall, 1996; J. N. Kim & Shadlen, 1999; S. Kim et al., 2008; Mullette-Gillman, 

Detwiler, Winecoff, Dobbins, & Huettel, 2011).   

 Besides maintaining information of previous reward state that can influence 

current choices, the DLPFC, like the LIP/IPS, appears to also be involved in helping 

influence choice based on value calculated elsewhere (presumably the striatum and 

OFC).  As previously stated, specific regions of the parietal cortex seem to play a key 
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role in mediating choice based on value.  However, evidence suggests that the DLPFC 

may play a similar role during decision making tasks.  That is, activity in the DLPFC 

shows an increase prior to a decision or selection/execution of a choice that sharply drops 

off once a decision is made (Ivanoff, Branning, & Marois, 2008; Kayser, Buchsbaum, 

Erickson, & D'Esposito, 2009; van Veen, Krug, & Carter, 2008).  This indicates that 

there exists a fronto-parietal network that mediates choice based on subjective value.  

Heekeren and colleagues (2004) demonstrated in a perceptual decision making task that 

the DLPFC helps integrate choice signals in the parietal cortex with other sensory cues.  

In their experiment, Heekeren and colleagues (2004) asked human subjects to categorize 

images as either houses or faces.  The images were clear on half of the trials, but were 

masked by noise on the remaining trials.  Researchers found that the DLPFC was more 

active when the decision was easy (e.g. not distorted).  Additionally, DLPFC activity was 

greater on trials for which the sensory evidence was substantial (clear images) than on 

trials for which the sensory evidence was weak (Heekeren, Marrett, Bandettini, & 

Ungerleider, 2004).  This finding is important, in that it directly matches patterns of 

activity reported in the parietal cortex (Roitman & Shadlen, 2002; Shadlen et al., 1996; 

Shadlen & Newsome, 2001).  Based on these lines of evidence, the DLPFC seems to 

have an integrative role in decision making, in which it links decision making outcomes 

from previous trials with selection strategies for the upcoming choice in a given trial. 

One important observation that must be noted is that unlike firing rates in OFC 

and striatum, firing rates in LIP and IPS (and presumably other frontal-parietal regions 

involved in choice rather than valuation such as the DLPFC) are not “menu-invariant.”  

This suggests an important distinction between activity in the parietal cortex and activity 



23 

in the OFC and striatum.  Orbitofrontal and striatal neurons appear to encode absolute 

(and hence transitive) subjective values.  Parietal neurons, presumably using a 

normalization mechanism like the one studied in visual cortex (Heeger, 1992), transform 

absolute values into relative values in order to maximize the differences between all 

available options before a choice is selected. 

 

1.3. Decision Making Under Uncertainty 

 Two-step models of decision making that assume separate stages for valuation 

and choice can be adequate for studying simple decisions; however, they often ignore the 

fact that decisions made by both humans and animals can be modulated by environmental 

and intrinsic variables.  These decision variables include reward magnitude (Delgado, 

Locke, Stenger, & Fiez, 2003), reward quality, various needs or motivational states 

(Balleine, 2005; Balleine & Killcross, 2006), time spent (Niv, Daw, Joel, & Dayan, 

2007), time remaining (Kable & Glimcher, 2007; Schweighofer et al., 2006), and 

uncertainty.  Additionally, decision variables can also independently influence decision 

making or be transformed or combined with any number of other variables.  One 

common, and important factor across decision variables is that they are subjective, and 

express the decision making agent’s estimation of the attractiveness of the available 

options.  Essentially, these extraneous factors constitute the very idea of what economists 

call utility.  Though it is important to acknowledge other decision variables, an in-depth 

discussion of each is outside the scope of this section, and we will instead focus on how 

uncertainty modulates choice behavior. 
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 Given its ubiquitous nature in decision making, uncertainty presents a special 

problem in the study of decision making across several areas of research.  A wide range 

of studies throughout the past decades have confirmed that uncertainty contributes 

crucially to the valuation of options during decision making in such diverse situations as 

animals engaging in foraging, making medical diagnoses, buying into stock markets, and 

companies pricing insurance (Bossaerts & Plott, 2004; McNamara & Houston, 1980; 

Pauker & Kassirer, 1980; Real, 1991).  Therefore, one must evaluate both the values, as 

well as the uncertainty associated with the options in order to make optimal decisions.  

As pointed out at the beginning of this chapter, choices can vary greatly in the level of 

information available to us at any given time, as the probability distributions of outcomes 

for many decisions cannot always be fully known.  In the following sections we will 

explore differences in uncertainty, using Knight’s (1921) definitions of “risk” and 

“ambiguity”.   

 

1.3.1. Risk 

 Risk is a type of uncertainty that Knight (1921) defined as “knowable” 

uncertainty.  That is, the probability of a given outcome that is less than certain is 

available to the decision making agent.  Risk is often discussed in terms of risk aversion, 

which is a well-documented phenomenon that describes subjects’ dislike for risky 

choices given safe alternatives, and usually leads to sub-optimal choices (e.g. taking a 

sure bet that has lower EV or subjective utility rather than betting on an uncertain 

outcome).  Generally, people tend to be risk seeking for large gains and risk-averse for 

large loses.  This is similar to evidence showing people overweight large probabilities 
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and underweight small probabilities, leading people to place disproportionate attention on 

the best and worst possible outcomes.  For example, buying insurance and playing the 

lottery at the same time (Kahneman & Tversky, 1979; Quiggin, 1982).  However, the 

observation of risk-seeking for gains behavior reverses when gains and loses are small, 

leading people to be risk averse for gains and risk seeking for losses (Tversky & 

Kahneman, 1991).   

 Previous research reveals another interesting phenomenon associated with 

decision making under states of uncertainty: risk aversion is inherently intertwined with 

loss aversion.  Like risk aversion, loss aversion is the observation that when given the 

option people will take measures to avoid a loss rather than seek a gain (Tversky & 

Kahneman, 1981). Tversky and Kahneman proposed loss aversion as an explanation for 

the “endowment effect,” in which people place a higher value on a good that they own 

than on an identical good that they do not own (Kahneman, Knetsch, & Thaler, 1990). 

Tversky and Kahneman demonstrated the effects of framing on decision making by 

asking subjects to imagine that the United States is preparing for the outbreak of an 

unusual Asian disease expected to kill 600 people.  Participants were asked to choose 

between two pairs of programs to address the problem.  In the gain condition, participants 

were told that if they chose option A, 200 people would be saved.  If subjects chose 

option B, there is a 1/3 probability that 600 people would be saved and a 2/3 probability 

that no one would be saved.  In the loss condition, participants were told that if they 

chose option C, 400 people would die.  If they chose option D, there was a 1/3 probability 

that nobody would die and a 2/3 probability that 600 people would die.  Most people 

presented with these decisions preferred option A to B and option D to C, which is 
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surprising because option A is identical to option C, and B to D, just framed differently 

(Tversky & Kahneman, 1981).  Combined with risk aversion, loss aversion can help to 

explain various phenomena that can be described as being risk averse, such as the 

tendency to reject symmetric bets, the preference for investing in bonds over stocks, and 

the tendency to hold on to depreciating property such as stocks and houses (Benartzi & 

Thaler, 1995; Genovese & Mayer, 2001; Gneezy & Potters, 1997). 

 Recently, the focus of research dealing with risky decision making has been on 

finding regions of the brain that code specifically for risk.  Neurally, the coding of risk-

related signals in humans is similar to the activity of dopamine neurons recorded across 

various species of non-human mammals performing various instrumental learning tasks.  

These studies demonstrate that dopamine neurons can encode two very different pieces of 

information about reward outcomes, and these separate signals operate along different 

time scales.  One signal is associated with a phasic burst of activity at the onset of the 

stimulus, and is thought to carry information about reward value prediction and error.  A 

second signal gradually increases from the time the stimulus is removed and then ends 

prior to the delivery of the reward; it is thought to encode reward risk (Fiorillo et al., 

2003; Tobler et al., 2005).  Fiorillo and colleagues (2003) found that when reward 

magnitude was held constant and reward probability ranged from 0 to 1, the risk signal 

followed an inverted U function: It peaked when reward probability was 0.5, when there 

was the highest chances of either obtaining or missing a reward.  This slow dopamine risk 

signal is then believed to provide an input to brain structures dealing with the assessment 

of risk. 



27 

 In humans, there is a similar distinction between reward prediction and risk 

assessment in regions heavily influenced by dopamine activity.  To investigate the risk 

response in humans, Tobler and colleagues (2007) used the same manipulation of reward 

probability as in Fiorillo et al. (p = 0, 0.25, 0.5, 0.75, and 1), and found activity in the 

orbitofrontal cortex modulated by risk that was negatively correlated with individual 

measures of risk aversion.  Additionally, work by Preuschoff et al. (2006) found activity 

in the striatum, midbrain, anterior insula and subregions of the medial orbitofrontal cortex 

that matched the slow, risk-related response reported in animals.  Together, these studies 

were some of the first to indicate the possibility of two distinct neural signals, a fast 

reward-related signal and a slower risk-related signal, underlying choice behavior 

(Preuschoff, Bossaerts, & Quartz, 2006; Tobler, O'Doherty, Dolan, & Schultz, 2007).  

However, it is possible that these two signals overlapped in these studies given the slow 

nature of the BOLD response compared to the millisecond resolution available with 

single-cell recording.  In addition to these regions, there are several regions that are 

reported to be increasingly active in risky situations, but it is not known if the activity 

reported in these regions reflects a pure risk signal.  For example, the insula is often 

implicated in risk processing (Huettel, Stowe, Gordon, Warner, & Platt, 2006; Paulus, 

Rogalsky, Simmons, Feinstein, & Stein, 2003; Preuschoff, Quartz, & Bossaerts, 2008) 

along with regions in the posterior parietal lobe (Huettel, Song, & McCarthy, 2005; Platt 

& Glimcher, 1999). 

 

1.3.2. Ambiguity 
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Unlike decisions under risk, in decisions under ambiguity information regarding 

the probability of specific outcomes is unavailable.  Knight (1921) defined ambiguity as 

“immeasurable uncertainty.”  Due to ambiguity’s similarity to risk, people often show 

behavior similar to risk aversion; that is, people prefer options with certain probabilities 

to options with ambiguous probabilities, even when these choices contradict expected 

utility theory predictions (Heath & Tversky, 1991; Lauriola & Levin, 2001).  The 

phenomenon of ambiguity aversion was first described by Daniel Ellsberg (1961), who 

argued that people treat ambiguous probabilities differently from unambiguous ones, 

using a hypothetical experiment.  Here Ellsberg asked readers to imagine being presented 

with two urns, each containing a mixture of red and black balls.  Urn 1 contains 100 red 

and black balls, but in an unknown ratio.  Urn 2 contains exactly 50 red and 50 black 

balls.  Drawing a ball of a designated color from an urn wins $100.  Ellsberg argued that 

people should be indifferent between betting on red or black from Urn I, which implies 

that they believe that each has a 50% chance of occurring.  Similarly, people should 

indifferent to betting on red or black from Urn II, which has the equivalent interpretation.  

However, most people prefer betting on red from Urn II to betting on red from Urn I and 

betting on black from Urn II to betting on black from Urn I, which cannot occur unless 

people hold distinct and asymmetrical probabilities for each event (Ellsberg, 1961).  This 

can be taken as evidence for ambiguity aversion that cannot be accounted for in expected 

utility theory; however, it should be noted that this phenomenon occurs only when the 

task permits comparison of the ambiguous option to another option with more explicit 

information regarding reward outcome (Fox & Tversky, 1995). 
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Although ambiguity aversion has received much attention since Ellsberg's seminal 

work in 1961, the explanation for the anomaly has itself remained ambiguous.  Many 

explanations have been proposed, but can be divided into three major classes.  One type 

of explanation assumes that people react pessimistically to ambiguous probabilities, as if 

they assume that when the odds are unknown they will be stacked against the decision 

maker; this is also known as a sense of incompetence (Heath & Tversky, 1991).  Ellsberg 

himself offered such an account.  A second class of explanation assumes comparative 

ignorance, where subjects weigh heavily the information that they do not know when 

compared to a choice with more information (Fox & Tversky, 1995).  A third explanation 

assumes that ambiguity aversion arises when the subject believes he is playing against an 

informed opponent (such as the experimenter) who could observe the choices made by 

the subject (Kühberger & Perner, 2003). 

Curley, Yates and Abrams (1986) tested several proposed explanations 

behaviorally using the Ellsberg paradox.  They found that even participants who said the 

ambiguous urn could not be biased against them were still ambiguity-averse, suggesting 

ambiguity aversion is not driven by pessimism about a “hostile” generation of outcomes.  

The authors also found that ambiguity aversion was uncorrelated with risk aversion, 

casting doubt on the second class of explanations discussed above.  Finally, Curley et al. 

(1986) found that participants were significantly more ambiguity-averse when they were 

told that the chosen gamble would be played and the urn's contents revealed in front of 

other participants than when the gamble was resolved privately.  The authors thus 

surmised that ambiguity aversion is due to social presentation concerns.  However, their 

findings offer a limited explanation of ambiguity aversion. 
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Neurally, decisions under ambiguity have been demonstrated to recruit certain 

neural regions also activated by risky decision making, including the medial prefrontal 

cortex, amygdala and striatum (Knutson, Taylor, Kaufman, Peterson, & Glover, 2005; 

Kuhnen & Knutson, 2005; I. Levy, Snell, Nelson, Rustichini, & Glimcher, 2010).  Given 

the similarity of risk and ambiguity as two types of uncertainty, it is reasonable that there 

should exist a common network for processing uncertainty.  To distinguish between risk 

and ambiguity, Hsu et al developed tasks that presented different amounts of information 

for choices across separate conditions, most notably: 1) a card game, in which the 

uncertain option involved either a risky gamble (known probabilities) or an ambiguous 

option (unknown probabilities), and 2) a knowledge estimation game, in which the 

uncertain options involved events and facts that fell along a spectrum from risk to 

ambiguity, such as temperature judgments for more (risk) or less well-known cities 

(ambiguous) (Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005).  Hsu and colleagues 

(2005) found that activation in areas of the orbitofrontal cortex, amygdala and 

dorsomedial prefrontal cortex (DMPFC) was positively correlated with ambiguity.  In 

addition, this study found that striatal activation was negatively correlated with ambiguity 

(but positively correlated with risk) and operated on a slower time course compared to 

those of the orbitofrontal cortex or amygdala (Hsu et al., 2005).  

A similar study was conducted that looked at both risky and ambiguous decisions 

within the same task (Huettel et al., 2006).  In their study, Huettel and colleagues (2006) 

showed areas in the lateral prefrontal cortex (specifically the posterior inferior frontal 

gyrus) were activated for ambiguous choices and not risky ones.  Alternately, risk was 

shown to activate regions of the ventral striatum and parietal cortex (Huettel et al., 2006).  
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Further studies looking at neural differences of risk and ambiguity processing have also 

corroborated these findings; increased activation in the posterior inferior frontal gyrus 

and amygdala for ambiguity, and increased activation in the striatum and posterior 

parietal cortex for risky choices (Huettel et al., 2006; Krain, Wison, Arbuckle, 

Castellanos, & Milham, 2006; Rustichini, Dickhaut, Ghirardato, Smith, & Pardo, 2005). 

 

1.4. Aims 

Despite studies contrasting decision making under conditions of either risk or 

ambiguity, it is still unclear whether these types of uncertainty are two distinct processes 

or one process operating along a qualitative continuum, given the lack of data for 

decisions made under states of partial ambiguity.  Additionally, there is also a lingering 

question regarding which neural structures mediate a transition from ambiguity to risk 

processing that occurs in a constantly changing environment, and how they may interact 

and function in relation to one another.  The proposed study is aimed at exploring neural 

activity associated with decision making in states of partial ambiguity in both cortical and 

sub-cortical regions. 

The patterns of neural activation discussed above for both risk and ambiguity 

certainly suggest that these two types of uncertainty may be coded differently in the 

brain.  On one hand, some brain structures show stronger BOLD responses to ambiguous 

compared with risky gambles, such as in parts of frontal cortex (Hsu et al., 2005; I. Levy 

et al., 2010).  If levels of activation are influenced by the level of uncertainty within the 

same regions, that would be consistent with the notion of a continuum in uncertainty 

between ambiguity and risk.  On the other hand, there are brain structures that show 
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distinct patterns of activation for risk and ambiguity, mainly the striatum and parietal 

cortex for risk, and orbitofrontal cortex, dorsolateral prefrontal cortex and amygdala for 

ambiguity (Hsu et al., 2005; Huettel et al., 2006).  This dissociation is consistent with the 

idea that these regions process risk and ambiguity as qualitatively different and distinct 

phenomena.  

The studies mentioned above (i.e. Hsu et al., 2005; Huettel et al., 2006) have 

made significant breakthroughs in understanding the neural processing of uncertainty in 

decision making.  Unfortunately, previously mentioned findings contrasting risk and 

ambiguity are limited by the fact that ambiguity has been categorically defined as an all-

or-none variable; that is, ambiguity has been typically been presented to subjects as a 

complete lack of information regarding reward probabilities.  Although this treatment of 

ambiguity has proven powerful in identifying mutually exclusive neural substrates 

mediating different types of uncertainty, it precludes the study of decision making across 

varying amounts of ambiguity.  Moreover, it can be argued that one rarely experiences 

real-life situations where information regarding the probability of reward is an absolute 

unknown; therefore, it is important to also investigate neural responses associated with 

“partial” ambiguity. 

In a recent study, Bach and colleagues (2009) designed a decision-free task that 

introduced partially ambiguous states.  In this task, human subjects were trained via 

Pavlovian conditioning to associate a painful electric shock to the hand (US) with visual 

patterns (a series of triangles and squares) representing various types of uncertainty (CS): 

risk, ambiguity, and ignorance.  In the risk condition, the color of the border surrounding 

the stimuli indicated different probabilities of receiving the shock (P = 0.25, 0.50, 0.75).  
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In the ambiguous condition, the same CS was used, except the frame around the CS was 

gray, signaling to the participants that ambiguity was added to the previously learned 

risky CS configurations.  Through the addition of this noise, the US probability was only 

partially predictable according to the previously learned CS–US contingencies (based on 

the arrangement of the stimuli).  In the third condition called "ignorance," a completely 

new set of CSs were used and each CS was presented infrequently to avoid full learning 

of the outcome contingencies; thus the subjects remained ignorant of the probabilities of 

the shock (Bach, Seymour, & Dolan, 2009).  

Bach and colleagues (2009) found an increase in activation in the dorosolateral 

prefrontal cortex and posterior parietal cortex for the partially ambiguous condition 

compared to the risk and ignorance conditions.  Activation for risk and ignorance was 

limited, but similar for both conditions.  This finding corroborates findings of Huettel and 

colleagues (2006), but the study by Bach and colleagues also found that the dorosolateral 

prefrontal cortex was active for risk.  This work by Bach et al (2009) is extremely 

valuable because it measures neural responses to uncertainty without the confound of 

choice/motor responses.  More importantly, this study provides insight as to how varying 

degrees of uncertainty are processed within prefrontal and parietal cortices (as opposed to 

just where).  With this in mind, it is possible that regions associated with ambiguity, 

especially the posterior inferior frontal gyrus are more likely involved in extracting 

tractable information from learning context; however, this novel concept requires further 

study. 

If regions of the brain are sensitive to hidden but searchable information masked 

by uncertainty, it can be further tested by parametrically controlling the amount of 
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information provided to subjects.  This study aims to extend Bach and colleagues’ (2009) 

study by introducing a novel paradigm that relies on varying levels of ambiguity to study 

the underlying neural processes of choice behavior.  To date, no previous study has 

shown a parametric modulation of the hemodynamic response associated with different 

levels of uncertainty in the same task.  Though Levy and colleagues (2010) used 3 levels 

of ambiguity, their study focused exclusively on isolating neural signals related to utility 

functions in the ventrolateral prefrontal cortex.  This study is intended to address the 

limitations of Hsu et al. (2005) and Huettel et al. (2006), in which we will ask subjects to 

make simple economic decisions under different levels of either risk or ambiguity while 

we measure neural activity using functional magnetic resonance imaging (fMRI). 

 

1.5. Predictions 

1.5.1. Neural Activity Associated With High Levels of Uncertainty 

 Based on the previous discussion of neural regions involved in decision making 

and specific studies investigating decision making in states of uncertainty mentioned 

above, we can make tentative predictions regarding patterns of activity as uncertainty 

increases.  First, we are interested in the activity in the DLPFC.  Not only is this region of 

the prefrontal cortex linked to value-based choice, but also this is the main region that 

showed increased activation for ambiguity in previous studies (Bach et al, 2009; 2011; 

Huettel et al., 2006, Hsu et al., 2005).  Additionally, this region of the DLPFC (referred 

to as the posterior inferior frontal gyrus by both Bach and colleagues (2009) and Huettel 

and colleagues (2006)) is implicated in cognitive control and executive function 

(Sakagami & Watanabe, 2007; Tanji, Shima, & Mushiake, 2007).  We hypothesize that if 
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the DLPFC reflects an increased search for tractable contextual information, then we 

should see a pattern very similar to that of Bach et al., (2010), where our 0% and 100% 

ambiguity conditions should elicit little activity in the posterior inferior frontal gyrus, 

whereas other levels of ambiguity (15, 33, 66 or 80%) should be associated with an 

increase in the posterior inferior frontal gyrus.  According to this hypothesis, “easy” 

decisions with either too much or not enough information should be mediated by simple 

sensorimotor activation and not require too much intervention from the DLPFC.  

However, as decisions become “harder” the DLPFC should provide supplemental 

processing along with activity in premotor areas for intermediate levels of ambiguity as 

the demands to extract contextual information increase. 

 Although not previously discussed, the anterior insula should also see an increase 

in activity as ambiguity increases.  Insula activation occurs in a wide variety of tasks and 

conditions.  There is, however, an emerging consensus that insula activation is frequently 

associated with aversive states, such as a potential loss resulting from a risky decision 

(Paulus et al., 2003).  While there is no existing theory of insular activation in decision 

making, several studies have found greater activation in the insula for decisions involving 

uncertainty when compared to certain choices (Huettel et al., 2005; Krain et al., 2006); 

therefore, we expect to see insula activation for high levels of uncertainty in our 

categorical analysis. 

 

1.5.2. Neural Activity Associated With Valuation of Choices 

 Because many studies investigating valuation processes in the brain have not 

included conditions of uncertainty, this study is in a unique position to explore how the 
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brain assigns value to choices in various states of uncertainty.  We hypothesize that 

uncertainty modulates activity in neural regions associated with value in a manner that 

value-related activity is decreased as a function of increased uncertainty.  As discussed 

previously, cross-species evidence shows that the orbitofrontal cortex is one of the neural 

regions responsible for assigning subjective value to stimuli (i.e. Padoa-Schioppa & 

Assad, 2006; Plassman, O'Doherty, & Rangel, 2007).  Given these results, we would 

expect the orbitofrontal cortex to be recruited for trials that allow for subjects to develop 

clear preferences; the OFC should show a graded response that is greater for ambiguity-

free trials and decreases for fully ambiguous trials.  Previously, greater activity has been 

shown for risk than ambiguity in the orbitofrontal cortex (Huettel et al., 2005), and this 

activation is correlated with individual measures of risk aversion (Tobler et al., 2007).   

 Another region linked to value related processing is the dorsal striatum; the dorsal 

striatum has been reported to signal both value and risk in specific populations of 

dopaminergic neurons. Within the putamen, activity has been shown to be associated 

with value representations of actions.  More specifically, activity in the putamen has been 

shown to 1) code for subjective value for actions, regardless if they’re executed or not, 2) 

code for the actual response, and 3) code for the experienced subjective value of a choice 

once a response has been made (Lau & Glimcher, 2008).  Within the caudate, there is 

also evidence that this region supports representations of value for specific actions, in 

conjunction with regions linked to frontal eye fields (Samejima et al., 2005).  

Additionally, Hsu and colleagues (2005) found that regions of the caudate were sensitive 

to EV.  These findings suggest that we would expect to see greater activation for trials in 

which it was advantageous to choose the variable lottery.  Additionally, this would be 
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reflected in a categorical contrast (Advantageous > Disadvantageous) showing greater 

activity in the dorsal striatum for trials in which it was optimal to choose the variable 

lottery. 

 Along with the orbitofrontal cortex, the superior parietal cortex has long been 

implicated in mediating value-based responses in decision making tasks (Churchland, 

Kiani, & Shandlen, 2008; Wang, 2008), especially regions of the superior parietal lobule 

extending to the precuneus (Broadmann’s Area 7). While certain studies report parietal 

activation for decisions involving low ambiguity (i.e. Huettel et al., 2005), there is 

evidence to suggest that highly ambiguous decisions also recruit this region (Krain et al., 

2006).  Thus, we expect to observe increased activation in the posterior parietal lobe for 

low levels of ambiguity, where expected value can potentially be calculated, as opposed 

to trials with greater ambiguity.  Here, Knight’s (1921) notion of immeasurable risk 

seems to be reflected in BA 7; the parietal lobe is sensitive to tractable information.  

 Finally, we expect to see value-related activity in dorsal regions of the dorsal 

medial prefrontal cortex, including the anterior cingulate gyrus.  Like the insula, we did 

not discuss this region at length as activity in the dorsal medial prefrontal cortex has been 

typically associated with various processes, not just decision making.  Levy et al. (2010) 

report that dorsal medial prefrontal cortex was activated when they looked at subjective 

value signals associated with both risky and ambiguous decisions, suggesting that this 

region may be part of a common system for mediating uncertain decisions.  However, 

previous studies have reported this region as being sensitive to expectation of reward 

(Knutson, Fong, Bennett, Adams, & Hommer, 2003).  Given the dopaminergic inputs 

into the dorsal medial prefrontal cortex, activity in the dorsal medial prefrontal cortex 



38 

should be greater when anticipating reward and lower for conditions in which the 

expectation of reward is unclear.  Similarly, Xue et al. (2009) reports increased activity in 

the ventromedial prefrontal cortex was associated with prediction of rewarding outcomes.  

These studies suggest that we could expect to see a linear decrease in activation in ventral 

regions of the dorsal medial prefrontal cortex as the amount of ambiguity in a given 

lottery grows, with greatest activation for ambiguity-free trials where information is 

explicit and more definite reward predictions can be made, and lower levels of activity 

for fully ambiguous trials where there is no information regarding reward probability on 

which to base an expectation.  Additionally, Knutson et al. (2005) also found that the 

ventromedial prefrontal cortex was sensitive to EV, suggesting that there could 

potentially be a scaling of activation in the ventromedial prefrontal cortex associated with 

our EV manipulation.  We expect to see greater activation for trials in which it is 

advantageous to choose the variable lottery and the least amount of activation for trials in 

which it is disadvantageous to play the variable lottery. 

 

1.5.3. Neural Activity Associated With Monetary Gains and Losses 

 Activity in the ventral striatum is highly linked to value-related processes, as 

discussed earlier.  However, our paradigm is not well suited for investigating valuation in 

the ventral striatum in detail such as in the work of Fiorillo et al. (2003), Tobler et al. 

(2005; 2007) and Preuschoff et al. (2006).  Instead, we can look at this regions response 

to the receipt of various types of rewards, as this region is typically associated with 

dopamine-dependent learning and reward processing, particularly unexpected rewards 

(Berns et al., 2001; McClure et al., 2003).  In the reinforcement learning framework, 
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dopamine activity signals reward prediction error in which a reward that is better than 

expected will elicit a phasic burst of dopamine, a fully expected reward elicits no activity, 

and a reward that is worse than expected will produce a depression of dopaminergic 

firing (Schultz, 2002).  Thus, we should expect to see increased activity in the ventral 

striatum associated with winning money but not losing money.  Given this region’s 

affinity to respond to deviations from expectation, we can also expect to see increased 

activity in the ventral striatum for unexpected wins (e.g. money won via the variable 

lottery) compared to expected wins (money won via the safe lottery).   
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 CHAPTER 2 - METHODS 

2.1. Participants 

 fMRI participants included 14 normal, right-handed  adults (age range = 22-36, 

mean age = 26.8 years) recruited from the Colorado State University (Fort Collins, CO) 

and School of Medicine, University of Colorado, Denver, (Aurora, CO) communities.  

We based our exclusion criteria on studies of cognitive aging showing that frontal lobe 

development is complete in the early 20s and begins to decline in the late 20s (see 

Hedden & Gabrieli, 2004).  All participants were fluent speakers of English and were 

screened for a history of neurological and psychiatric disorders, and contraindications to 

MRI (i.e. no metallic implants, no claustrophobia, head size compatible with RF coil).  

Additionally, participants were screened for uncertainty preference by using a shortened 

version of our task, in order to exclude potential subjects who showed either too much or 

too little uncertainty preference.  For this study we excluded participants who exhibited 

increased uncertainty preference and chose to play the variable lottery 75% of the time or 

those who displayed too much uncertainty aversion and played the uncertain lottery less 

than 20% of the time.  The Colorado State University institutional review board approved 

the experimental protocol, and written informed consent was obtained from all subjects. 

 

2.2. Task 
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In this experiment, participants performed a simple, two-alternative, forced-

choice gambling task.  In this task, subjects were asked to choose to play one of two 

lotteries: one variable lottery that was always presented, and a constant, or reference, 

lottery that was not presented.  The construction of the stimuli was crucial so that the 

variable lottery varied in the amount of information, or ambiguity, it represented.  First, 

each lottery circle was associated with an outcome (in this case, the amount of money 

that could be either won or lost) presented in the center of the circle.  The probability of 

winning the specified amount of money was represented on the outer edge of the circle, 

which started at 0% in the 12 o'clock position and increased to 100% in a clockwise 

direction.  A "dial" was then used to indicate a specific probability of winning the 

specified amount of money (Figure 1a); however, this dial was hidden from view on 

certain trials.  The size of the occlusion hiding the dial varied in size to occlude 15%, 

33%, 66%, 80% or 100% of the lottery circle (Figure 1b).  

 Subjects were told that although they could not see the dial, the dial was hidden 

somewhere inside the occlusion, thereby representing a range of probabilities.  By 

occluding the actual probability of winning, information needed to calculate expected 

value was incomplete, introducing ambiguity, per the classical economic definition, to 

choice.  This manipulation allowed us to have trials in which there was no ambiguity 

(risk) as well as trials in which there was full ambiguity within the same task, as in Hsu et 

al. (2005) and Huettel et al. (2006).  More importantly, this allowed us to more carefully 

manipulate ambiguity and examine behavioral and neural responses to parametrically 

increasing levels of uncertainty. 
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 Finally, the amount of money and probability of winning on the variable lottery 

was combined so that it varied in terms of expected value in relation to the constant 

lottery, which was 100% chance of winning $1.00 (EV = 1).  On certain trials, the 

variable lottery was constructed in a manner where the expected value of the variable 

lottery was greater than the certain lottery, making these trials ambiguity advantageous 

(AA trials).  These included: 33% chance of winning $5 and 50% chance of winning $3 

(EV = 1.55).  On specific trials, the certain lottery had a higher expected value than the 

variable lottery making these trials ambiguity disadvantageous (AD trials).  These 

included: 20% chance of winning $3 and 33% chance of winning $2 (EV = .66).  Finally, 

some trials were set up in a manner in which the expected value of the variable lottery 

matched the expected value of the constant lottery (EQ trials).  These included: 20% 

chance of winning $5, 33% chance of winning $3, or 50% chance of winning $2.  

Including trials in which expected value was equal was a crucial part of this study, since 

they provide a quick, simple and objective measure of uncertainty sensitivity without 

explicitly modeling behavior.  In this task, trials were balanced so that each manipulation 

of EV was equally represented: 1/3 trials AA, 1/3 trials AD and 1/3 trials EQ. 

 Subjects were compensated at a base rate of $25 USD/hour.  Subjects were also 

given the opportunity to add to their total pay based on performance.  Before the scanning 

session, subjects were asked to choose 12 numbers between 1 and 180 (the number of 

trials in the study, unbeknownst to the subject) and told that certain trials would be 

chosen at random to be  played for real money.  After the scan, subjects were informed 

that these numbers corresponded to a specific trial number, and they would receive the 

cumulative sum of their winnings from these trials as additional pay.  Choosing a limited 
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number of trials to play for real money was necessary because playing each and every 

trial for real money would have become unfeasibly expensive.  This payment mechanism 

ensured that subjects treated every trial as if they would be paid according to the outcome 

of that trial because they did not know they had already chosen in advance which trials 

would be real.  Providing real monetary incentive was a key part of this study given 

evidence that shows subjects can behave differently when they are making real decisions 

for real money versus when they are making “as-if” decisions that have no financial 

impact on their lives (Smith & Walker, 1993). 

 For analysis, experimental trials were broken into conditions on the basis of 

ambiguity level of the variable lottery, yielding 6 conditions: 0% ambiguity (a0), 15% 

ambiguity (a15), 33% ambiguity (a33), 66% ambiguity (a66), 80% ambiguity (a80) and 

100% ambiguity (a100).  Each ambiguity condition was presented for 30 trials.  Trials 

were also separated into conditions based on the expected value of the variable lottery in 

comparison to the constant lottery, yielding 3 conditions: ambiguity advantageous (Adv), 

ambiguity disadvantageous (Disadv) and neutral trials.  Adding to these three conditions 

of EV, we further separated our data based on whether or not subjects chose to play the 

variable lottery (Uncert) or play the constant lottery (Cert) yielding 6 possible conditions: 

Adv-Uncert, Adv-Cert, Neutral-Uncert, Neutral-Cert, Disadv-Uncert and Disadv-Cert.  

Finally, we divided our data according to the outcome of the lottery so that we could 

compare trials in which subjects won or lost money, and then further subdivided the wins 

depending on the type of lottery the money came from to compare expected and 

unexpected wins. 
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2.3. Design 

For this task, subjects performed 180 trials, divided evenly into 3 scans (60 trials 

per scan).  In our pilot studies, we were able to obtain significant behavioral results with 

as little as 120 trials; however, we only included three ambiguity conditions for most of 

these pilot studies.  On each trial, the variable lottery was presented for 5 s, during which 

participants were required to make a response whether they chose to play the displayed 

lottery, or if they wanted to play the certain (not shown) lottery.  Following the response, 

there was a short, 1.5 s window before participants were given feedback as to the 

outcome of their choice (either winning or losing $2, $3, or $5 dollars) for 1.5 s.  After 

feedback, a jittered inter-trial interval, ranging between 2 s and 10 s randomly sampled 

from a geometric distribution, was presented.  This experiment used a rapid event-related 

fMRI design.  Trials were arranged pseudo-randomly to control for any sequential 

effects, and ‘null’ jittered ITI provided a measure of baseline activation (Bandettini, 

2007; Donaldson, 2004).  All timing elements in this study summed up so that total trial 

length was limited to multiples of the TR, (i.e. 2 s, 4 s, etc), so as to keep trial onset 

synchronized with TR onset.  In total, the task required approximately 40 minutes of 

scanning time. 

In order to make the task fMRI compatible, visual stimuli were presented to 

participants using magnet-compatible goggles (Resonance Technology Inc., Los Angeles, 

CA).  A computer running E-Prime experiment software (Psychology Software Tools 

Inc., Pittsburg, PA) was used to control stimulus presentation and interface with a magnet 

compatible response box.  Earplugs were provided to protect the participants’ hearing.  
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Head movement was minimized using a custom-fitted head holder, consisting of 

polyurethane foam beads inflated to tightly mold around the head and neck. 

 

2.4. fMRI image acquisition 

 Images were obtained on a research-dedicated 3.0T whole-body MRI scanner (GE  

Healthcare, Milwaukee, WI) located on the campus of the University of Colorado Health  

Sciences Center, Aurora, CO.  The scanner was equipped with an 8-channel, high-

resolution phased array head coil using GE’s Array Spatial Sensitivity Encoding 

Technique (ASSET) software.  A trial scan of whole-brain EPI was acquired before the 

functional scans.  Functional images were reconstructed from 31+5 axial oblique slices 

obtained using a T2*-weighted, volume-selective z-shim pulse sequence (TR, 2000 ms; 

TE, 26 ms; FA, 77°; FOV, 220-mm; 64*64 matrix; 4.0-mm slices; no inter-slice gap) 

adapted from the EPI-Gradient-Echo sequence.  The z-shim pulse sequence was 

developed to address signal loss in neural regions adjacent to air cavities, such as the 

OFC.  This protocol acquires additional volumes with a compensation gradient that are 

then combined with the original volume data to compensate for regions of signal dropout.  

Recently, Du and colleagues (2007) developed a sequence that minimized signal dropout 

in the OFC, in which the z-shim compensation is applied only to volumes that show 

significant signal loss, thereby substantially decreasing scanning time (Du, Dalwani, 

Wylie, Claus, & Tregellas, 2007).  Echo-planar images from the initial trial scan were 

used to determine the number and location of the z-shim slices in which the OFC showed 

intermediate or severe SFG signal loss.  Overall, five continuous slice locations were 

typically sufficient to cover the regions affected by the susceptibility artifacts.  
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Anatomical images were then collected using a T1-weighted SPGR sequence (minimal 

TR; TE, 3.95 ms; TI, 950 ms; FA, 10°; FOV, 220-mm; 256*256 coronal matrix; 166 1.2-

mm slices).  This set of structural images was used to verify proper slice selection and to 

determine the sites of functional activation, (i.e., voxels that were found to be 

significantly activated during the functional scan were overlaid on the high-resolution 

structural images).  Finally, functional data from the inferior cerebellum was not 

collected because it was necessary to adjust slice acquisition angle and the field of view 

(FOV) to obtain the best possible signal-to-noise ratio in the frontal lobe. 

 

2.5. fMRI Image Analysis 

 Before preprocessing, functional images with and without z-shim compensation 

were combined using MatLab (The Mathworks, Inc. Houston, TX) using a specially 

written z-shim toolbox.  The intensity in the composite images was multiplied by a factor 

of 1.33 to reduce signal discontinuity between image sets (Du et al., 2007). 

 Image analysis was performed using BrainVoyager QX V1.10 (Brain Innovation,  

Maastricht, The Netherlands).  Functional data was first subjected to preprocessing, 

consisting of 1) three dimensional motion correction using trilinear interpolation, 2) slice 

scan time correction using cubic spline interpolation, 3) temporal data filtering with a 

high-pass filter of 3 cycles in the time course and 4) linear trend removal.  Each subject’s 

high-resolution anatomical image was then normalized to the Tailarach & Tournoux 

(1998) brain template.  The normalization process consisted of two steps: an initial rigid 

body translation into the AC-PC plane, followed by an elastic deformation into the 

standard space performed on 12 individual sub-volumes.  The resulting set of 
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transformations was applied to the subject's functional image volumes to form volume 

time course representations to be used in subsequent statistical analyses.  Finally, the 

volume time course representations were spatially smoothed using a Gaussian kernel, 

full-width at half maximum (FWHM) of 4.0 mm. 

In order to identify brain regions that showed significant signal changes in 

response to a task demands, imaging data was analyzed using two main statistical 

methods.  Although many techniques have been developed, most analysis approaches for 

fMRI have been integrated into the general linear model (GLM) framework (Friston, 

Frith, Frackowiak, & Turner, 1995).  First, a whole brain analysis was performed to 

identify striatal and cortical regions involved in decision making under risk and 

ambiguity by separating trials into separate conditions based on level of ambiguity (risk 

(a0), partial ambiguity (a15, a33, a66, and a80), or complete ambiguity (a100)), and then 

using the general linear model (GLM) provided by Brain Voyager QX.  In the GLM 

model, the amplitude for each time point of the BOLD response can be estimated, 

resulting in an approximation of the shape of the BOLD response for each event type.  

Additionally, we used parametrically weighted predictors to model the effects of 

ambiguity within the GLM (Buchel, Holmes, Rees, & Friston, 1998).  We assigned 

weights to each ambiguity condition and then convolving the resulting boxcar functions 

with our BOLD data.  Different functions were used to fit our data based on various 

levels of uncertainty.  First, we fit a linear function that placed greater weight on higher 

levels of ambiguity, so that trials with zero ambiguity were associated with a weight of 0 

and trials with full ambiguity were associated with a weight of 1.  Additionally, we tested 

parabolic “inverted U” function that weighted intermediate levels of ambiguity greater.  
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Trials with zero and full ambiguity were assigned a weight of 0, trials with 15% 

ambiguity were assigned a weigh of .5.  Trials with 33% and 66% ambiguity were 

assigned a weight of .9.  Trials with 80% ambiguity were assigned a weight of .6, slightly 

higher than a15 trials.  A weight of 1 was not used, as it would correspond to trials with 

50% ambiguity not present in the study.  Finally, for comparison purposes we tested 

functions in which predictor weights were chosen at random. 

This study controlled for multiple comparisons using the cluster-size thresholding 

procedure developed by Forman et al. (1995) extended to 3D maps, and implemented in 

the Brain Voyager Cluster Threshold plug-in (Goebel, Esposito, & Formisano, 2006).  An 

initial map was formed using an uncorrected p value of p < .005.  The minimum cluster 

size (based on an alpha level of .05) was then set by MonteCarlo simulation using 1000 

iterations, simulating the stochastic process of image generation.  Afterwards, spatial 

correlations between neighboring voxels were calculated, before voxel intensity 

thresholds were finally calculated and the corrected map was formed and displayed. 
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CHAPTER 3 - RESULTS 

3.1. Behavioral Results 

 In order to quantify behavior as a function of uncertainty, choices were defined in 

terms of the proportion of trials in which subjects chose to play the variable lottery, rather 

than defining behavior based on the outcome (as monetary gains or losses) of each trial.  

First, we separated trials according to expected value, in order to determine whether or 

not subjects could, in fact, determine a “good” lottery (advantageous trials in which EV > 

1) from a “bad” lottery (disadvantageous trials in which EV < 1).  A one-way analysis of 

variance (ANOVA) with factors of EV (Advantageous, Neutral and Disadvantageous) 

revealed a main effect of EV (F(2,39) = 15.56; p < 0.001).  As shown in Figure 2, post hoc 

tests using a Games-Howell correction revealed that subjects chose to play the variable 

(uncertain) lottery when its EV was greater than the constant lottery significantly more 

than when the variable lottery was equal in EV to the constant lottery (p < .05) or when 

the variable lottery was lower in EV compared to the safe lottery (p < .05).  Additionally, 

our data show that when subjects decided to play the variable lottery, they did so 

significantly more when the variable lottery was equal in EV to the constant than when 

the variable lottery was lower in EV compared to the safe lottery (p < .05). 

 As shown in Figure 3, we also separated trials according to the amount of 

ambiguity indicated in the variable lottery in order to determine the effect of various 

amounts of ambiguity on choice behavior.  A one-way ANOVA with ambiguity level as a 
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factor (0%, 15%, 33%, 66%, 80%, 100%) revealed no significant differences in choice 

behavior across the various different levels of ambiguity.  A single sample t-test against 

.50 shows that overall, subjects showed avoidance of all types of uncertainty, regardless 

of whether it was risk or full ambiguity. 

 We then separated trials according to EV and level of ambiguity.  A 3 (EV) x 6 

(ambiguity level) repeated measures ANOVA showed a main effect of EV (F(1.23,15.92) = 

48.82; p < 0.001) and a significant interaction of EV and level of ambiguity (F(4.18,54.31) = 

13.50; p < 0.001).  Maluchy's test indicated that the assumption of sphericity had been 

violated for EV, ambiguity and the EV by ambiguity interaction (chi-square = 12.03, 

62.05, and 80.43 respectively), which required us to adjust degrees of freedom using a 

Greenhouse–Geisser estimate of sphericity (epsilon = 0.61, 0.41 and 0.42 respectively).  

Further analysis via a one-way ANOVA with ambiguity as a factor for advantageous 

trials revealed significant differences in responses associated with different levels of 

ambiguity (F(5,78) = 2.96; p = 0.02).  As shown in Figure 4, post hoc tests using a 

Bonferroni correction showed that subjects chose the variable lottery significantly less in 

trials with 100% ambiguity compared to trials with 30% (p = .01) and 80% (p = .04) 

ambiguity.  Similarly, a one-way ANOVA for disadvantageous trials using ambiguity as 

a factor also showed significant differences in choice behavior (F(5,78) = 6.43; p < 0.001).  

Although Levene’s test indicated that variances were not homogeneous for this group, 

both Welch and Brown-Forsythe tests showed significant differences in responses across 

different ambiguity levels.  Post hoc tests using a Games-Howell correction revealed that 

subjects chose the variable lottery significantly more in trials with 100% ambiguity 
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compared to trials with 0% or 15% ambiguity as shown in Figure 4.  No significant 

differences were found for neutral trials when broken down by ambiguity levels. 

Finally, we compared behavioral data from our pre-test session and the scanning 

session to determine whether or not choice behavior significantly differed between 

sessions.  A 2 (session) X 6 (ambiguity level) repeated measures ANOVA showed a main 

effect of session (F(1,13) = 14.44; p = 0.002), but no main effect of ambiguity or 

significant interaction.  Additionally, a 2 (session) X 3 (expected value) repeated 

measures ANOVA showed a main effect of session (F(1,13) = 10.30; p = 0.007), a main 

effect of EV (F(1.36,17.64) = 53.81; p < 0.001), and no significant interaction.  Again, 

Maluchy's test indicated that the assumption of sphericity had been violated for EV (chi-

square = 7.72), so degrees of freedom were adjusted using a Greenhouse–Geisser 

estimate of sphericity (epsilon = 0.68).  For both pre-testing and scanning sessions, post 

hoc tests using a Bonferroni correction revealed that when subjects chose the variable 

lottery, they did so significantly more in advantageous trials than neutral (p < .05) or 

disadvantageous trials(p < .05), and selected the variable lottery more for neutral trials 

compared to disadvantageous trials (p < .05).  Overall, these results suggest that subjects’ 

choices were more conservative during the scanning session than they were during our 

pre-test session. 

 

3.2. Functional, Whole-brain Analysis 

3.2.1. Uncertain vs. Certain Choices 

 To examine the overall pattern of neural activity associated with uncertainty, we 

combined all trials in which subjects chose to play the variable lottery, regardless of 
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outcome and contrasted that against trials in which subjects chose to play the safe lottery 

(Uncertain > Certain).  Using this contrast, we observed increased activity associated 

with uncertain choices bilaterally in the insula, superior parietal cortex, and DMPFC.  We 

also observed increased activity in the right supplementary motor area and right frontal 

pole. 

Furthermore, we decided to examine different types of uncertainty (risk or 

ambiguity) by comparing each type against all other trials.  For example, we compared 

trials with very little to no uncertainty (a0 + a15) trials against all other levels of 

ambiguity (a33, a66, a80, a100).  We found regions of increased modulation bilaterally in 

the putamen and insula and primary motor cortex, posterior parietal lobe and superior 

cuneus.  Alternately, we compared trials with high levels of ambiguity (a80 + a100) with 

trials with low ambiguity (a0, a15, a33, a66) in an attempt to simulate previous studies’ 

treatment of ambiguity as a complete lack of information.  Here, we find increased 

activations associated with high levels of ambiguity bilaterally in the premotor cortex, 

left superior parietal cortex, including intraparietal sulcus, and left anterior cingulate 

gyrus.  Additionally, we find bilateral modulation of activity in the amygdala as well as 

left parahippocampal gyrus.  See Table 3 for a full list of activated regions.  and Figure 5 

 

3.2.3. Risk vs. Ambiguity 

 Next, we were interested in exploring differences in neural activity associated 

with specific types of uncertainty, categorically defined as risk or ambiguity in previous 

papers.  First, we compared trials with 100% ambiguity (a100 trials) against trials with 

0% ambiguity (a0 trials) resulting in our a100 > a0 contrast.  Using this contrast, we 
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observed increased activity associated with high levels of ambiguity in the left DLPFC, 

right putamen, right head of the caudate, left intraparietal sulcus, and bilateral activation 

in the premotor.  Additionally, we expanded this previous contrast to include more trials 

at either range of the uncertainty spectrum.  We compared trials with high levels of 

ambiguity (a80 + a100) to trials with low levels of ambiguity (a0 + a15) resulting in our 

a100 + a80 > a0 +a15 contrast.  As shown in Figure 6, we observed clusters of increased 

activation associated with high ambiguity bilaterally in the putamen extending into the 

insula, DLPFC and both frontal poles.  Overall, the pattern we found in both the a100  

>a0 and a100 + a80 > a0 +a15 contrasts were similar, but the latter contrast resulted in 

more robust and symmetrical patterns of activity, likely due to the inclusion of a larger 

number of trials.  See Table 4 for a full list of activated regions. 

 

3.2.2. Wins vs. Losses 

 We examined the general pattern of activation associated with either winning or 

losing money.  Here, our main contrast compared trials in which subjects gained money, 

regardless if they chose to play the uncertain or safe lottery, against trials in which 

subjects lost money.  We observed increased activity bilaterally in the ventral striatum, as 

shown in Figure 7, hippocampus, superior temporal gyrus, posterior cingulate gyrus and 

cuneus, as well as right body of the caudate, left intraparietal sulcus, left orbitofrontal 

cortex and left DLPFC.  Additionally, we found modulation of activity associated with 

losing money in the right insula, right frontal pole, right dorsomedial prefrontal cortex, 

and right middle temporal gyrus, right posterior parietal cortex and right inferior temporal 

gyrus.   



54 

Next, we looked more closely at wins, and separated them according to reward 

expectancy so that trials in which the outcome was uncertain (unexpected wins) were 

contrasted against trials in which the outcome was certain (expected wins).  This contrast 

revealed that unexpected wins recruited many of the regions typically defined as the 

fronto-parietal decision-making network discussed in the first chapter, including 

intraparietal sulcus, posterior cingulate, superior colliculi, orbitofrontal cortex, DLPFC 

and primary motor cortex.  Additionally, we observed increased activity in the putamen 

and body/tail of the caudate, left head of the caudate and bilateral insula.  The only active 

region associated with expected feedback was the ventromedial prefrontal 

cortex/orbitofrontal cortex.  Because this task did not allow for a condition in which the 

subjects were ever faced with a certain loss, we did not look at differences between 

expected and unexpected losses.  See Table 5 for a full list of activated regions. 

 

3.2.4. Expected Value 

 Like our behavioral analysis, we were interested in investigating neural responses 

associated with “good” versus “bad” responses.  Thus, we separated trials according to 

our expected value manipulation.  Here, we compared trials in which the expected value 

of the variable lottery was greater than that of the safe, or constant, lottery against trials in 

which the expected value of the variable lottery was lower than that of the constant 

lottery (Adv > Disadv).  We observed activation bilaterally in pre-motor cortex, superior 

parietal cortex, and insula.  Additionally, we observed increased activity in the left 

DLPFC.  Finally, we observed increased modulation in the left ventromedial prefrontal 

cortex associated with making disadvantageous choices.   
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Next, we compared types of trials according to EV and what type of lottery 

subjects chose to play.  For example, we compared trials in which subjects chose the 

variable lottery over the constant lottery for only advantageous trials (Uncertain Adv > 

Certain Adv).  Based on this contrast, we observed bilateral activation throughout the 

lateral orbitofrontal cortex, posterior cingulate and frontal poles, as shown in Figure 8a.  

Additionally, we observed increased activation in regions of the right DLPFC, right 

dorsal medial prefrontal cortex, right posterior parietal lobe, and left tail of the caudate.  

Increased activity associated with choosing the constant lottery for advantageous trials 

was observed bilaterally in the motor cortex, left hippocampus and right parahippocampal 

gyrus.  Conversely, we also examined trials in which subjects chose the variable lottery 

over the constant lottery for only disadvantageous trials (Uncertain Disadv > Certain 

Disadv).  Using this contrast, we observed increased activation throughout the anterior 

insula, frontal poles and posterior parietal cortex, as shown in Figure 8b.  See Table 6 for 

a full list of activated regions. 

 

3.3. Parametric Whole-Brain Analysis 

Table 7 shows a complete list of activated regions associated with each parametric model. 

 

3.3.1. Linear Scaling of Uncertainty 

 In our first parametric analysis, we used our original manipulation of ambiguity as 

a model in which greater weights were assigned to trials associated with high levels of 

ambiguity.  In order to examine neural regions that are characterized with increased 

processing as uncertainty increases, risk trials (trials with no ambiguity) were not 



56 

weighted, whereas trials with complete ambiguity were given the maximum weight of 

one (Figure 9a).  We observed regions of the anterior insula and DLPFC in both 

hemispheres that showed increased activation.  Additionally, we found activity in the 

right putamen and head of the caudate, and left intraparietal sulcus, was consistent with 

this parametric manipulation.   

 

3.3.2. Parabolic Scaling of Uncertainty 

 For this analysis, we based our parametric weighs on previous research suggesting 

that the frontal cortex should be more active for trials with intermediate levels of 

ambiguity (Bach et al., 2009).  Here, we did not assign weights to either conditions of 

risk or complete ambiguity, but assigned increased weights to trials with intermediate 

levels of ambiguity instead.  We found areas of increased activation that matched this 

function bilaterally in the DLPFC (Figure 9b), premotor cortex, intraparietal sulcus, 

posterior parietal cortex, and putamen.  Additionally, we observed increased activity 

consistent with an inverted-U function in the left insula, and left body of the caudate. 

 

3.3.3. Random Scaling of Uncertainty 

 Finally, we decided to examine if any neural region would show activity 

consistent with a function in which parametric weights were randomly assigned.  

Surprisingly, we found regions of increased activity bilaterally in the anterior putamen as 

well as a small region of modulated activity in the left primary motor strip.   
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 CHAPTER 4 - DISCUSSION 

4.1. Summary 

The present study demonstrated changes in regional brain activation as a function 

of varying levels of uncertainty.  First, we identified a set of brain regions that showed an 

increase in activation in response to increased uncertainty compared to situations of low 

uncertainty.  We demonstrated that both risk and ambiguity modulate activation in a 

subset of regions generally activated by economic decision making: the DLPFC, IPS and 

anterior insula.  More importantly, we demonstrated that ambiguity processing in regions 

of the prefrontal cortex does not necessarily scale linearly with the level of ambiguity, but 

rather the inherent difficulty of the decision.  We found novel evidence to suggest that 

while activity in the DLPFC is sufficient for the successful processing of contextual 

information during uncertain decision making, recruitment of anterior regions of the 

prefrontal cortex is maximal during conditions of partial ambiguity.  Finally, we showed 

that learning and valuation processes are modulated by expectancy and uncertainty; 

activity in regions related to the valuation of stimuli or options increased in situations 

where the decision making environment was uncertain. 

 

4.1.1. Risk vs. Ambiguity 

Although our study makes use of a novel paradigm to manipulate ambiguity, it is 

not unique in its aim of comparing different forms of uncertainty within a decision 
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making context.  Previous research, ranging from behavioral economics to more recent 

cognitive neuroscience studies of decision making, has put forth the idea that risk and 

ambiguity are two distinct forms of uncertainty linked with activity in different regions of 

the brain.  For example, a study conducted by Smith and colleagues (2002) explored 

brain activity as a function of making either ambiguous or risky decisions and found 

qualitative and quantitative differences between decisions made under risk and decisions 

made under ambiguity.  Specifically, they found that the effects of monetary domain 

(either winning or losing money) modulated activity in the VMPFC more under risky 

conditions than under ambiguous conditions, and that these decisions made under risk do 

not recruit regions of the lateral frontal lobe active during ambiguous decisions (Smith et 

al., 2002).  These results were important in the field of neuroeconomics for two main 

reasons.  First, they served as evidence that the theories of rational decision making 

developed by behavioral economists could also be used to successfully predict brain 

activity along with behavior.  More importantly, they provided solid evidence for 

Knight’s (1921) theory of uncertainty, which proposed separate types of uncertainty. 

 Unfortunately, data from more recent studies do not match these previous results 

in which there is a marked difference in activation patterns across the brain for risk and 

ambiguity.  For example, Huettel and colleagues (2006) conducted a study that 

manipulated both risk and ambiguity and compared these conditions against a control 

condition with no uncertainty.  Here, Huettel and colleagues (2006) found that risk and 

ambiguity share many of the same neural substrates.  However, they did find a notable 

difference between risk and ambiguity when they correlated individual measures of either 

risk or ambiguity preference with activity in several regions of interest throughout the 
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brain.  In particular, Huettel and colleagues (2006) found that regions of the prefrontal 

cortex, DLPC (-41,18,26) especially, were highly correlated with ambiguity preference 

whereas regions of the posterior parietal cortex and IPS were instead correlated with 

individual risk preferences. 

 Similarly, our current data do not support previous conclusions that risk and 

ambiguity are two distinct processes mediated by separate and dissociable neural 

substrates.  Overall, we reported a clear effect of uncertainty, where many regions 

previously associated with either risk or ambiguity were active for all levels of 

uncertainty.  First, we observed this pattern when we simply compared all trials in which 

subjects chose to play the risky lottery over the safe lottery.  Here we note that regions of 

the DLPFC, anterior insula and IPS were recruited for uncertainty processing in general.  

Second, we note that these regions remained significantly active when we individually 

compared either risk (0% ambiguity) against all other conditions or ambiguity (100% 

ambiguity) compared against other conditions.  Finally, we observed that activity in 

regions such as the anterior insula and DLPFC remained elevated when lotteries 

associated with high levels of uncertainty were directly compared to trials in which 

lotteries had little or no uncertainty.  Together, these results suggest that there is a general 

network for uncertainty processing, and risk or ambiguity are treated as a single type of 

uncertainty along one continuum.   

 Although we observed a different pattern of activation in these regions compared 

to Hsu et al (2005) and Huettel et al. (2006), it is important to note that our study was not 

focused on correlating specific behavioral measures of uncertainty preference with neural 

activation, but rather to observe potential changes in neural activation as a function of 



60 

increased uncertainty in a simple decision making task.  Given our particular paradigm, it 

was difficult to directly infer participants' attitudes towards risk and ambiguity as 

parameters derived from formalized neuroeconomic models that incorporate individual 

risk and ambiguity preferences.  That said, our results do not offer contradictory 

evidence, but rather complement these earlier studies by supplementing information 

regarding choice behavior in states of partial uncertainty.  We fully acknowledge that 

provided more sophisticated measures of individual risk or ambiguity preference like the 

ones used in these studies, it is possible that more nuanced effects could be identified. 

 

4.1.2. Ambiguity and the DLPFC 

 Our manipulation of ambiguity allowed us to more carefully explore neural 

responses to varying levels of uncertainty ranging from risk to ambiguity.  One of our 

hypotheses was that specific regions of the lateral prefrontal cortex are not necessarily 

involved in uncertainty processing or ambiguity detection, but rather mediate a search for 

contextual information in environments where information regarding outcome probability 

is degraded, which describes making decisions under states of uncertainty.   

First, we regressed our BOLD data against a function in which ambiguity 

processing was assumed to increase in a linear fashion in order to explore if any cortical 

regions behaved in this manner, and found that the activity in a specific region of the 

DLPFC conformed to this model.  This was the same region we found to be active for 

uncertainty processing in general, and the same region, the inferior posterior frontal 

gyrus, other studies have previously associated with ambiguity processing (Bach et al., 

2009; Huettel et al., 2006).  This result is certainly consistent with studies suggesting that 
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cognitive processes related to ambiguity or uncertainty processing increase linearly.  

However, we also regressed BOLD data against a model that put a greater emphasis on 

intermediate levels of ambiguity, as proposed by Bach and colleagues (2009), and found 

that not only were the same regions of DLPFC active under this kind of model, but that 

regions of the posterior parietal cortex, premotor cortex and anterior prefrontal cortex 

were also active.  This pattern of results is consistent with claims that activity associated 

with ambiguity processing in the DLPFC is greater only for intermediate levels of 

uncertainty. 

 The prefrontal cortex has long been associated with executive functions such as 

planning (Lee et al., 2007; Tanji et al., 2007; Sakagami and Watanabe, 2007), abstract 

reasoning, working memory and cognitive control.  Because of this wide range of 

functions attributed to the prefrontal cortex, it is understandable that this functional 

heterogeneity is reflected in the architecture of the prefrontal cortex.  One popular 

framework of frontal lobe function suggests that the prefrontal cortex is organized in a 

hierarchical manner in which different regions support various aspects of cognitive 

control (Koechlin & Summerfield, 2007).  In this framework illustrated in Figure 11, 

contextual control (maintenance of task rules and structure) is associated with posterior 

regions, whereas episodic control (maintenance of information in a temporal domain) is 

associated with activity in more anterior regions.  In other words, as task demands 

increase or tasks become more complex, regions of the prefrontal cortex can be recruited 

in a posterior to anterior fashion to provide the necessary neural processing.  For 

example, Koechlin and colleagues compared task cuing, which was presumed to be 

primarily contextual, and response cuing, which was presumed to be primarily episodic 
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(Koechlin et al., 2003).  Activation to the contextual cuing was observed in posterior 

lateral prefrontal cortex.  Similarly, Brass and von Cramon (2004), investigated regions 

of the PFC necessary for contextual processing and found activation in the lateral parts of 

the prefrontal cortex.  Together, these results suggest that specific portions of the 

prefrontal cortex play a particularly important role in assessing the context for decision 

making. 

Like the anterior to posterior functional gradient previously discussed, there is 

also a reported superior to inferior division of labor within the prefrontal cortex, where 

the ventral area is more involved in processing specific, object-related information, while 

the dorsal prefrontal cortex is involved in more general functions of monitoring strategic 

behavior.  This puts the DLPFC in prime position to mediate contextual processing across 

a wide variety of situations.  Indeed, research suggest that this region of the PFC is 

involved in maintaining representations of learning across various states, a.k.a. context in 

both humans and animals (Sakagami & Watanabe, 2007; Tanji et al., 2007).  Moreover, if 

we are to assume hierarchical processing in the prefrontal cortex, as in Koechlin and 

Summerfield’s (2007) cascade model, then simple S-R associations can be mediated by 

just premotor regions of the prefrontal cortex, whereas ambiguous/conflicting 

information, requiring additional processing, recruits more anterior regions of the frontal 

lobes.  In ambiguous economic decisions, it can be argued that there is an increased 

search for contextual cues (probability of reward, in this case) to aid in making a final 

choice.  

Given these functional divisions, activity in the DLPFC reported by both Bach et 

al. (2009) and Huettel et al. (2006) may represent an increased search for contextual cues 
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that requires greater cortical involvement than just sensorimotor cortex activation.  Our 

results are consistent with Bach and colleagues’ (2009) interpretation of DLPFC function 

in decision making tasks involving varying levels of uncertainty, which suggests that the 

DLPFC mediates a search for context when faced with uncertainty.  Additionally, this 

view states that neural computational demands change as a function of the level of 

ambiguity, with greater activity being associated with situations involving intermediate 

ambiguity when compared to situations with no ambiguity (risk) or full ambiguity 

(ignorance).  This is precisely what our parametrically weighted data suggest, as we 

observed that using a more “complex” function that places a greater demand on 

ambiguity processing for intermediate levels of ambiguity results in activity in more 

anterior regions of the prefrontal cortex along with the DLPFC.  Similarly, our results 

using a more “simple” linear function also elicited activity in the DLPFC, suggesting that 

DLPFC function alone can resolve can resolve comparatively easy decisions without the 

need to recruit more anterior regions of the PFC.  Thus, we can explain the increased 

activity in the DLPFC reported by both Huettel and colleagues (2006) and Hsu and 

colleagues (2005), as their tasks used a relatively simple “all or none” manipulation of 

ambiguity that did not require additional processing from regions of the prefrontal cortex 

associated with cognitive control. 

Overall, our findings of ambiguity processing in the DLPFC make an important 

addition to the existing literature investigating uncertainty and decision making.  Previous 

studies have provided differing accounts regarding ambiguity processing in the DLPFC.  

Whereas studies such as Huettel and colleagues (2006) and Hsu and colleagues (2005) 

have advanced the notion that activity in the DLPFC increases linearly as a function of 
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ambiguity, other studies such as Bach and colleagues (2009; 2001) propose that activity 

in the DLPFC is greatest when ambiguity is intermediate.  Although we certainly 

observed lateral regions of the prefrontal cortex were implicated in uncertainty 

processing as discussed above, we also observed specific regions in the frontal cortex 

exhibit a greater response in situations of partial ambiguity that leads us to believe that 

areas of the lateral prefrontal cortex are involved in the search for meaningful 

information.  Figure 10 sums up results across three different studies showing ambiguity-

related processing in the brain compared to risk-related processing, and shows that when 

we discuss ambiguity processing in the prefrontal cortex, we are talking about the same 

specific region. 

However, our results provide direct support for Bach and colleagues (2009) who 

argue that the functional pattern associated with an “inverted U” function reflects not just 

the search for information (context), but rather a search for useful information which is 

best represented in trials that contain only intermediate levels of ambiguity.  For risky 

decisions (decisions with no ambiguity), it can be argued that one does not need to search 

for context, as all necessary information regarding possible outcomes is readily available.  

Conversely, it may be inefficient to search for context during fully ambiguous decisions 

given the complete lack of information regarding possible outcomes, which is nearly 

impossible.  It is only during situations involving partial ambiguity where it is beneficial 

to try to maximize utility, which can be done by evaluating what Huettel and colleagues 

(2006) call the “multiplicity of all possible interpretations” for each option.  This requires 

not only contextual control, as one integrates various decision variables from the current 

stimulus, but also episodic control, as one integrates outcomes for previous decisions.  
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Again, our results showing greater recruitment of anterior regions of the frontal cortex 

given an inverted-U function are consistent with this notion.  Moreover, this 

interpretation of DLPFC function accounts for results in previous studies showing 

activity in the posterior inferior frontal gyrus during outcome prediction when contextual 

cues implied uncertainty in both economic (Li et al., 2006) and non-economic tasks 

(Huettel et al., 2005). 

 

4.1.3. Ambiguity and the Insula 

Previous neuroimaging studies have found that the anterior insula is recruited for 

decision making under conditions of uncertainty, including both risk and ambiguity 

(Huettel et al., 2005; Kuhnen & Knutson, 2005; Paulus et al., 2003; Sanfey, Rilling, 

Aronson, Nystrom, & Cohen, 2003).  First, we considered the possibility that the insula is 

in fact associated with uncertainty processing in decision making.  Our results show 

significantly elevated levels of insula activity for trials in which there was high levels of 

uncertainty.  Specifically, our contrasts comparing risk versus ambiguity (a100 > a0, and 

a100+a80 > a0 + a15) show high levels of insula activity.  Additionally, we observed 

bilateral insula activation when we collapsed trials across all levels of uncertainty and 

compared trials in which subjects chose to play the variable lottery versus the constant 

lottery.  This pattern of results matches that found by Paulus and colleagues (2003) who 

also found increased activity in the anterior insula when subjects chose to place safe bets 

as opposed to risky ones.  Finally, we found insula activity in our parametric analysis 

using a linear function. 
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Increased insula activation during risk-taking decision making is consistent with 

the function of the insula in linking cognitive and affective components (Sawamoto et al., 

2000).  Anatomical studies in rhesus monkeys show that the insula receives input from 

both dorsolateral prefrontal and posterior parietal cortex (Selemon & Goldman-Rakic, 

1988), regions highly linked with decision making processes.  In particular, the anterior 

part of the posterior parietal lobe, including the IPS, sends efferent projections to the 

insula (Cavada & Goldman-Rakic, 1989a).  Moreover, tracing studies in animals show 

that the insula also receives projections from the amygdala (McDonald, Shammah-

Lagnado, Shi, & Davis, 1999).  Therefore, it is understandable that we observed activity 

in the insula as well as DLPFC associated with high levels of ambiguity. 

However, there is also the possibility that the insula activity that we observed was 

not associated with uncertainty, but rather other cognitive processes linked to the 

processing of aversive situations.  First, we noted more pronounced activation in the 

insula for trials associated with uncertainty; the insula was more active in trials in which 

subjects chose to play the uncertain lottery than in trials in which subjects chose to play 

the safe lottery.  Second, we observed increased activity in the anterior insula in 

situations in which subjects lost money; however, the anterior insula was also active in 

trials where the win was unexpected.  That is, we observed increased insular activity for 

trials in which subjects chose to play the uncertain lottery and won compared to trials in 

which subjects chose to play the certain lottery and, of course, received a reward.  

Finally, we observed robust insula activity when we compared trials in which it was 

advantageous to play the variable lottery against trials in which it was advantageous to 

play the safe lottery.  These lines of evidence, as well as our previous observation that 
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activity in the anterior insula is present as uncertainty increases, seems to suggest that 

activity in the anterior insula may not reflect uncertainty processing or other similar 

decision making variable.  Rather, insular activation is modulated by the potential of 

negative or adverse outcomes, such as not being able to predict whether a future outcome 

will be rewarding or punishing, as observed for unexpected wins, or being able to 

recognize bad decisions, as observed for variable lotteries with low EV.  

 Insula activation occurs in a wide variety of task conditions.  There is, however, 

an emerging consensus that insula activation is frequently associated with reactions to 

aversive stimuli or situations.  Previous neuroimaging studies have shown increased 

insula activation during the processing of stimuli associated with negative affective 

properties such as fear (Morris et al., 1998) or disgust (Phillips et al., 1998).  

Additionally, studies show increased insula activity when anticipating physical distress, 

via an electric shock (Chua, Krams, Toni, Passingham, & Dolan, 1999; Ploghaus et al., 

2001; Sawamoto et al., 2000), as well emotional distress (Liotti et al., 2000).  In fact, 

insula activation appears to be critical for linking cognitive and affective processing.  For 

example, both aversive pavlovian conditioning (Buchel, Morris, Dolan, & Friston, 1998) 

and aversive trace conditioning (Buchel, Dolan, Armony, & Friston, 1999) were 

associated with increased insula activation.  Moreover, insula activity was modulated by 

perceptual awareness of threat (Critchley, Mathias, & Dolan, 2002), penalty (Elliott, 

Friston, & Dolan, 2000), or error-related processes (Menon, Adleman, White, Glover, & 

Reiss, 2001).  Finally, previous research links insula activation to adverse environmental 

stimuli (Becerra et al., 1999; Davis, 2000; Tracey et al., 2000). 
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4.1.4. Expected Value 

Along with our behavioral data that show subjects were successfully able to 

distinguish good lotteries from bad ones based on our simple manipulation of EV, we 

found several regions across the brain that exhibited value-related activity.  These regions 

included regions of both ventral medial prefrontal cortex (particularly the medial and 

lateral parts of the orbitofrontal cortex comprised of BAs 11 and 32) and dorsal medial 

prefrontal cortex (specifically BAs 8 and 24), striatum and posterior parietal cortex (BA 

7) that were active when we compared brain activity on trials with high EV against trials 

with low EV.  In other words, these regions were found to be more active when subjects 

were presented with a “good” lottery.  Additionally, we found increased activity in the 

ventral striatum as a function of winning money, regardless of uncertainty.  Together, 

these findings suggest that subjects were able to track the current rewards, but also 

predict rewarding outcomes.  These results are compatible with findings from human and 

primate studies that find value-related regions throughout the brain, which we will 

discuss separately.  One limitation that we faced was caused by the fact that exploring 

neural responses to changes in EV was a secondary aim of the study.  As a result, the 

number and composition of trials were not ideal to investigate neural responses to EV as 

a function of increasing ambiguity.  Separating trials so that we could look at both EV 

and ambiguity would have resulted in too few trials and not enough statistical power to 

tease apart more nuanced effects. 

 

 

4.1.4a. Value-Related Signals in the Striatum 
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Most notably, we observed value-related activity in the ventral striatum when we 

divided trials according to outcome.  As expected, we saw increased activity in the 

ventral striatum when subjects received a reward, as activity in this region has been 

shown to be crucial for reward-mediated learning.  Additionally, we observed a robust 

response in the ventral striatum when we separated trials in which subjects won money 

depending on whether the win was unexpected (the outcome of playing a variable lottery) 

or fully expected (the result of playing a certain lottery).  Together our results match 

results from both animals and humans showing the striatum’s role in reward-guided 

learning. 

Activity in the striatum has been linked to the anticipation of reward in studies in 

which the anticipatory phase and delivery of reward were carefully analyzed (McClure, 

Laibson, Loewenstein, & Cohen, 2004; J. P. O'Doherty, Deichmann, Critchley, & Dolan, 

2002).  This anticipatory signal in the striatum is modulated by various factors such as 

amount (Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Delgado et al., 2003), 

probability (Hsu, Krajbich, Zhao, & Camerer, 2009) and expected value of the predicted 

outcome (Hsu et al., 2005; Luhmann, Chun, Yi, Lee, & Wang, 2008; Preuschoff et al., 

2006; Tobler et al., 2007; Tom et al., 2007).  More importantly, activity in the striatum 

has been shown to be correlated with behavioral preferences across different domains, 

similar to the activity of certain populations of orbitofrontal cortex (OFC) neurons 

thought to code for value or utility (Knutson, Rick, Wimmer, Prelec, & Loewenstein, 

2007; J. P. O'Doherty, Buchanan, Seymour, & Dolan, 2006; Small et al., 2003).  Finally, 

it should be noted that although regions of the striatum can signal a predicted reward, 

other regions of the striatum are also able to respond to both immediate (McClure, 
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Laibson et al., 2004) as well as delayed rewards, implying that this region is necessary for 

temporal discounting of reward value (Kable & Glimcher, 2007; McClure, Ericson, 

Laibson, Loewenstein, & Cohen, 2007). 

 

4.1.4b. Valuation and the Medial Prefrontal Cortex 

Like the striatum, we also observed increased activity in dorsal portions of the 

medial prefrontal cortex when subjects’ choices resulted in wins.  The dorsal medial 

prefrontal cortex is thought to have similar value-related functions similar to those 

observed in ventral regions of the striatum.  Studies have shown that the dorsal medial 

prefrontal cortex can track both receipt of current reward as well as expected reward 

(Knutson, Fong et al., 2001; Knutson et al., 2003; Kuhnen & Knutson, 2005).  Moreover, 

studies show that activity in regions of the dorsal medial prefrontal cortex is modulated 

by the level of EV of the expected reward (Knutson et al., 2005; Luk & Wallis, 2009).  

Activity in the dorsal medial prefrontal cortex is also correlated with behavioral 

preferences, reflecting each individual's valuation of different options (Hare et al., 2009; 

McClure, Li et al., 2004).  Like the striatum, it should be noted that recent studies have 

also reported overlapping representations of both action and stimulus values in the dorsal 

medial prefrontal cortex (Chib, Rangel, Shimojo, & O'Doherty, 2009; Glascher, 

Hampton, & O'Doherty, 2009). 

Further ventrally along the medial prefrontal cortex, one important finding was 

that although we observed increased activity in the orbitofrontal cortex as a result of 

receiving a reward, we did not observe any activity associated with valuation in the 

orbitofrontal cortex, as predicted, when we compared all trials with high EV against trials 
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with low EV.  As discussed previously, the orbitofrontal cortex is one region of the brain 

whose function is highly linked to the valuation of stimuli in decision making contexts in 

both humans and primates (Paddoa-Schioppa & Assad, 2008; 2009).  Neurons in the 

orbitofrontal cortex have been shown to reflect subjects’ willingness to pay to consume 

presented goods (FitzGerald, Seymour, & Dolan, 2009; Plassman et al., 2007) as well as 

self-reported experiences of pleasantness (Plassman, 2008).  Thus, we expected to find 

increased activity throughout the orbitofrontal cortex for trials in which subjects were 

presented with a variable lottery of high EV like we did in the striatum and MPFC.   

Instead we found activation in the OFC when we separated trials not only 

according to EV, but also according to subjects’ choice; trials were separated based on 

whether subjects chose to play the variable lottery (uncertain) versus the constant lottery 

(certain).  First, we compared trials in which the variable lottery had a greater EV than 

the constant lottery and found increased OFC activity for trials in which subjects chose to 

play the variable lottery over the safe lottery.  Additionally, we found OFC activity 

associated with playing the variable lottery even when its EV was lower than the constant 

lottery.   

One factor to consider is that this task was not novel to subjects by the time they 

entered the scanner, unlike other studies looking at value and uncertainty in decision 

making tasks.  It is possible that subjects previously developed general representations of 

what an advantageous lottery was versus a disadvantageous one based on value and 

preference, and only had to refine these representations once in the scanner.  Further 

support for this claim comes from our observation of activity in regions of the parietal 

cortex that are also linked to value-based decision making, such as the posterior parietal 
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cortex and posterior cingulate gyrus.  Thus, we argue here that activity in the 

orbitofrontal cortex was likely modulated by a process of valuation that is more likely to 

occur when under states of uncertainty, as subjects must constantly try to assign value 

with only partial information regarding reward.  This explanation would account for why 

we did not observe orbitofrontal cortex activity associated with playing the safe lottery, 

as this option was always available to be previously valued. 

 

4.1.4c. Valuation in the Parietal Cortex 

One region we found to be active when we contrasted trials with high EV and 

Trials with low EV was the intraparietal sulcus (BA 7).  Furthermore, we found evidence 

of valuation processes in the parietal cortex when trials were separated based on whether 

subjects chose to play the variable lottery (uncertain) versus the constant lottery (certain).  

As stated earlier, evidence suggests that the abstract value of goods is computed and/or 

represented in regions of the orbitofrontal cortex (J. P. O'Doherty, 2004; Padoa-Schioppa 

& Assad, 2006, 2008; Wallis & Miller, 2003) and that regions of the parietal cortex, 

specifically LIP in monkeys and intraparietal sulcus in humans, use value representations 

calculated in the orbitofrontal cortex to drive choice selection (Astafiev et al., 2003; 

Dorris & Glimcher, 2004; Heekeren et al., 2006; Platt & Glimcher, 1999).  

Along with activity in the posterior regions of the lateral parietal lobe, we found 

increased activity in a region we did not predict to reflect value-related signals: the 

posterior cingulate  (BAs 23 and 31).  Evidence suggests that the posterior cingulate is 

crucial for linking value representations to events and actions to adaptively influence 

behavior.  The posterior cingulate is interconnected with brain areas known to be 
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involved in learning and motivation or that are sensitive to reward and reinforcement 

such as the thalamus (Gabriel, Vogt, Kubota, Poremba, & Kang, 1991), caudate 

(Baleydier & Mauguiere, 1980; Yeterian & Van Hoesen, 1978) and orbitofrontal cortex 

(Baleydier & Mauguiere, 1980).  Additionally, the posterior cingulate is connected to the 

anterior cingulate, which is thought to also play a role in reward-mediated learning (Ito, 

Stuphorn, Brown, & Schall, 2003; Niki & Watanabe, 1979; Shidara & Richmond, 2002).  

Finally, given its anatomical location, the posterior cingulate gyrus also receives input 

from areas involved in vision, action and attention from the parietal cortex (Andersen, 

Asanuma, Essick, & Siegel, 1990; Baleydier & Mauguiere, 1980; Blatt, Andersen, & 

Stoner, 1990; Cavada & Goldman-Rakic, 1989a, 1989b; Morecraft, Geula, & Mesulam, 

1993; Pandya, Van Hoesen, & Mesulam, 1981; Vogt & Pandya, 1987), DLPFC (Barbas 

& Mesulam, 1985; Barbas & Pandya, 1989; Selemon & Goldman-Rakic, 1988), and 

frontal eye fields (Barbas & Mesulam, 1981; Vogt & Pandya, 1987).  Indeed, studies 

show activity in the posterior cingulate is linked to both attention processes as well as 

motivational ones in decision making tasks, suggesting that the posterior cingulate carries 

information that could be used to link events and outcomes in a context-dependent 

fashion (Dean, Crowley, & Platt, 2004; McCoy, Crowley, Haghighian, Dean, & Platt, 

2003). 

 

4.1.4d. EV and Learning 

Finally, our analysis of EV according to choice revealed increased activation 

across a series of regions sensitive to maximum choice probability such as the putamen 

and the caudate nucleus.  First, this pattern of activation fits with studies showing that the 
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putamen and premotor cortex are activated specifically during action selection (Gerardin 

et al., 2004) and are involved in linking stimulus-action associations (Ashby, Turner, & 

Horvitz, 2010; Daniel & Pollmann, 2010; Seger, Peterson, Cincotta, Lopez-Paniagua, & 

Anderson, 2010). Studies in non-human primates have suggested that neurons in this area 

are intimately involved in linking reward and motor behavior (Ikeda & Hikosaka, 2003; 

Kawagoe, Takikawa, & Hikosaka, 1998; Kobayashi et al., 2007; Lauwereyns, Watanabe, 

Coe, & Hikosaka, 2002).  Additionally, lines of evidence suggest that the anterior caudate 

nucleus is involved in acquiring and updating S-R associations that lead to reward (J. 

O'Doherty et al., 2004; Seger et al., 2010; Tricomi, Delgado, & Fiez, 2004) via 

interactions with cortical reward centers (Knutson et al., 2003; Kringelbach, 2004).  

Moreover, activity in regions of the posterior caudate has been linked with successful 

learning of probabilistic reward-outcome associations (Foerde, Knowlton, & Poldrack, 

2006; Nomura et al., 2007; Seger & Cincotta, 2005, 2006). 

This pattern of activation makes intuitive sense in terms of corticostriatal 

interaction: the anterior caudate nucleus is thought to be strongly connected to anterior 

regions of the prefrontal cortex while the putamen is thought to be linked to premotor 

regions of the prefrontal cortex, and function in the posterior caudate is connected to the 

temporal and occipital lobes(Alexander, Crutcher, & DeLong, 1990; Haber, Fudge, & 

McFarland, 2000; Haber, Kim, Mailly, & Calzavara, 2006; Lawrence, Sahakian, & 

Robbins, 1998; Seger, 2008).  Our results suggest that while subjects were assigning 

value to various lotteries, they were also attempting to learn the most rewarding stimulus-

response-outcome associations in a probabilistic learning environment.  This is important 
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for understanding our pattern of results and potentially explains why we did not see 

striatal activity for trials associated with deterministic and certain choices.  

 

4.2. Conclusions 

Throughout our lives we make decisions ranging from seemingly simple to 

complex, such as which mode of transportation to take to work or deciding whether to 

pursue a career in academia or industry.  A common problem we face in most decisions is 

uncertainty, which economic decision theory classifies as either “risky,” in which 

outcomes are uncertain but their probabilities are known, or “ambiguous,” in which the 

probabilities of uncertain outcomes are unknown.  Understanding how the brain 

processes various neural representations of uncertainty, especially ambiguity, is one of 

the central motivating problems of the emerging discipline of neuroeconomics (Glimcher 

and Rustichini, 2004).   

Defining what is meant by “ambiguity” has been, and remains, a challenge for 

economic theorists and neuroeconomists because no two individuals necessarily perceive 

the same ambiguity in a decision problem (Ghirardato et al., 2004).  Whereas risk can be 

defined in terms of certainty equivalents and expected values, there is no analog in 

ambiguous choice.  In previous studies attempting to dissociate risk from ambiguity, 

ambiguity was defined differently: in the ambiguous condition designed by Hsu et al. 

(2005) and Huettel et al. (2006) the probabilities were completely hidden and thus 

unknowable.  More recently, Bach and colleagues introduced a task with three 

uncertainty conditions: risk, ambiguity, and ignorance, where the ignorance condition 

was directly comparable to the ambiguity manipulation used by Hsu et al. (2005) and 
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Huettel et al. (2006) and the ambiguity condition represented a form of uncertainty 

between risk and full ambiguity.  Unfortunately, the Bach and colleagues (2009) study 

does not allow for the study of choice behavior, as it opted to use classical conditioning 

to train subjects. 

The present study provided a novel paradigm designed to address how decisions 

are made under varying states of uncertainty, ranging from risk to ambiguity.  More 

important, the present study was designed to address limitations of previous studies 

looking at decision making under uncertainty: explore neural regions sensitive to hidden 

but searchable information by parametrically controlling the amount of information 

hidden from the subject by using different levels of ambiguity manipulations instead of 

just the one, as used in previous studies (Bach et al., 2009; Hsu et al., 2005; Huettel et al, 

2006), and allowed subjects to freely choose the best option.  Although our results do not 

support the existence of a distinct cognitive process for ambiguity, we cannot make a 

positive and definitive statement about what processes together constitute decision 

making under ambiguity.  Here, we show that both risk and ambiguity share a common 

network devoted to uncertainty processing in general.  Moreover, we found support for 

the hypothesis that regions of the DLPFC might subserve contextual analysis when 

search of hidden information is both necessary and meaningful in order to optimize 

behavior in a decision making task; activation in the DLPFC peaked when the degraded 

information could be resolved by additional cognitive processing.   

Our results help to underscore the importance of studying varying degrees of 

uncertainty, as we found evidence for different neural responses for intermediate and 

high levels of ambiguity that are easy to ignore depending on how ambiguity is defined.  
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Additionally, our results help reconcile two seemingly incompatible accounts of brain 

activity during ambiguous decision making, one suggesting that uncertainty increases 

linearly and another suggesting ambiguity processing is greater at intermediate levels.  

The graded coding of uncertainty we reported may reflect a unified neural treatment of 

risk and ambiguity as limiting cases of a general system evaluating uncertainty mediated 

by the DLPFC which then recruits different regions of the prefrontal cortex as well as 

other valuation and learning systems according to the inherent difficulty of a decision. 
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Figure 1.  Examples of the stimuli presented to subjects.  A) Risky lottery (a0) showing a 
dial pointing to a specific probability of obtaining the sum of money in the center of the 
circle, and should be interpreted as 50% chance of winning $2.00.  B) Here, we show a 
partially ambiguous lottery (a33).  Subjects are told that the dial is hidden within the 
green field, suggesting a range of outcome probabilities. 

 
 

$2.00 $2.00 
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Figure 2.  Behavioral data showing the proportion of ambiguous lotteries chosen 
according to expected value (EV).  Our data suggests that subjects successfully learned to 
distinguish “good” from “bad” lotteries using EV for choice evaluation.  Subjects played 
the variable lottery significantly more when its EV was higher than the constant lottery.  
Conversely, subjects chose to play the constant lottery significantly more when the 
variable lottery was associated with low EV. 
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Figure 3.  Subjects’ behavioral preferences of playing the variable lottery across different 
levels of ambiguity.  Although we found no statistical differences in ambiguity aversion 
across our various manipulations of ambiguity, a one-sample t-test against chance (.5) 
reveals that subjects significantly preferred constant lotteries when compared to uncertain 
ones. 



81 

 
 
 
 

 
 

 
 
Figure 4.  For trials in which it was advantageous to play the variable lottery, subjects 
demonstrated ambiguity aversion as ambiguity increases.  For trials in which it was 
disadvantageous to play the variable lottery, subjects showed an increase in ambiguity 
preference likely caused by the difficulty of distinguishing “good” from “bad” lotteries.  
For neutral trials, subjects showed ambiguity aversion for the risky option throughout the 
length of the task. 
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Figure 5.  Behavioral preferences of playing the variable lottery with different levels of 
ambiguity across two sessions.  Subjects demonstrated significant aversion to uncertainty 
during the scanning session for all manipulations of ambiguity. 
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Figure 6.  Comparison of BOLD responses associated with ambiguous decisions 
compared to risky decisions.  Functional maps are overlaid on a T1-weighted average of 
all 14 participants’ anatomicals.  Cluster size threshold based on uncorrected voxelwise p 
< 0.005 and cluster size alpha < 0.05 as indicated in the methods section.  Upper left 
panel shows bilateral activation of the DLPFC and insula.  Both top right and bottom left 
panels show bilateral putamen activation.  Finally, bottom right panel shows bilateral 
activation of the parietal lobe, including right intraparietal sulcus. 
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Figure 7.  Neural responses associated with winning money compared to losing money. 
Again, functional maps are overlaid on a T1-weighted average of all 14 participants’ 
anatomicals.  Cluster size threshold based on uncorrected voxelwise p < 0.005 and cluster 
size alpha < 0.05 as indicated in the methods section.  Left panel shows reward-related 
activity in the orbitofrontal cortex while middle and right panels show increased activity 
in the ventral striatum associated with winning money. 
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Figure 8.  BOLD responses showing interaction of expected value and uncertainty.  A) 
Neural activity associated with subject’s choice of the uncertain lottery over the certain 
lottery in situations where the uncertain lottery was greater in EV than the certain lottery 
based on a Uncertain Adv > Certain Adv contrast.  Top panels show activity in the 
orbitofrontal cortex, DLPFC and parietal cortex.  B) Neural activity associated with 
subject’s choice of the uncertain lottery over the certain lottery in situations where the 
uncertain lottery was lower in EV than the certain lottery based on a Uncertain Disadv > 
Certain Disadv contrast.  Bottom panels show bilateral activation of the orbitofrontal 
cortex and parietal cortex.  Both contrasts illustrate how uncertainty continuously 
modulates activity in regions previously implicated in only the initial valuation of 
stimuli/options. 
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Figure 9.  BOLD activity associated with various parametric models.  Left column (A) 
shows areas of activity associated with parametric regressors emphasizing trials with high 
levels of ambiguity over trials with low ambiguity.  Middle column (B) shows areas of 
activity associated with an “inverted U” function in which parametric weights emphasize 
trials with intermediate levels of ambiguity.  Right column (C) shows regions of activity 
associated with random assignment of parametric weights.  Although we see activity in 
the DLPFC associated with both the linear and parabolic models, the inverted U model 
recruits more anterior regions of the frontal cortex as well as posterior parietal cortex, 
suggesting that decisions associated with intermediate levels of ambiguity require more 
cognitive processing throughout the frontoparietal decision making network. 
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Figure 10.  Comparison of results from three different studies investigating ambiguous 
decision making.  A) Left column shows results from the current study.  B) Middle 
column shows functional maps from Huettel and colleagues (2006).  C) Right column 
shows functional maps from Bach and colleagues (2009).  Our results match those of 
both Huettel et at. (2006) and Bach et al. (2009) when looking at categorical definitions 
of ambiguous decisions compared against risky decisions.  All three studies find 
increased activity in the same region of the DLPFC and posterior parietal cortex, 
including the intraparietal sulcus, associated with choices under ambiguity. 
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Figure 11.  Simplified overview of Koechlin and Summerfield’s model of cognitive 
control.  Cognitive control is composed of various levels of control processes: sensory, 
contextual, episodic and branching, which are implemented from posterior to polar 
prefrontal regions. Sensory control is generally linked to activity in the premotor cortex 
and is associated with processing bottom-up information conveyed by the stimulus.  
Contextual control is linked with activity in posterior regions of the DLPFC and is 
associated with processing bottom-up and top-down information conveyed by the context 
in which a stimulus occurs.  Episodic control is associated with the processing of 
information conveyed by a past event in the anterior DLPFC, whereas branching control 
is associated with processing information conveyed by events preceding the current trial 
and maintained in a pending state until completion of the ongoing episode in the most 
anterior regions of the prefrontal cortex.  This model suggests that simple S-R 
associations only require sensory control and are mediated by the premotor cortex, while 
more complex associations requiring more cognitive control recruit more anterior regions 
of the prefrontal cortex. 
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Table 1.  Areas of activation associated with choice selection in studies of decision making  

 

Region of Activation Task Method Reference

Caudate Saccade Primate Electrophysiology Lau & Glimcher, 2008
Caudate Lever Press Primate Electrophysiology Samejima et al., 2005
MPFC Probabilistic Learning Human fMRI Knutson et al., 2003
MPFC Choice Preference Human fMRI Kable & Glimcher, 2007
MPFC Gambling Human fMRI Tom et al., 2007
OFC Choice Preference Human fMRI Anderson et al., 2003
OFC Choice Preference Human fMRI Gottfried et al., 2003
OFC Choice Preference Human fMRI Hare et al., 2008; 2009
OFC Choice Preference Human fMRI Kim et al., 2006
OFC Choice Preference Human fMRI O'Doherty et al., 2001
OFC Choice Preference Human fMRI O'Doherty et al., 2003
OFC Choice Preference Human fMRI Plassman et al., 2007
OFC Choice Preference Human fMRI Valentin et al., 2007
OFC Gambling Human fMRI Knutson et al., 2005
OFC IGT Human Lesion Bechara et al., 1996
OFC Ultimatum Game Human Lesion Koenigs & Tranel, 2007
OFC IGT Human Lesion Manes et al, 2002
OFC IGT Human Lesion Rahman et al., 1999
OFC Choice Preference Human PET Arana et al., 2003
OFC Probabilistic Learning Human PET Rogers et al., 1999
OFC Choice Preference Human PET Small et al., 2001
OFC Choice Preference Primate Electrophysiology Padoa-Schioppa & Assad, 2006
OFC Choice Preference Primate Electrophysiology Padoa-Schioppa & Assad, 2008
OFC Saccade Primate Electrophysiology Roesch & Olson, 2005
OFC Saccade Primate Electrophysiology Rolls et al, 1989
OFC Saccade Primate Electrophysiology Thorpe et al., 1983
OFC Saccade Primate Electrophysiology Tremblay & Schultz, 1999
OFC Gambling Primate Electrophysiology Noonan et al., 2010
OFC Stimulus Devaluation Primate Lesion izquierdo, Suda & Murray, 2004
OFC Stimulus Devaluation Primate Lesion izquierdo, Suda & Murray, 2005
OFC Primate Lesion Raleigh & Steklis, 1981
OFC, DLPFC Saccade Primate Electrophysiology Wallis & Miller, 2003
SNr Probabilistic Learning Human Electrophysiology Zaghloul et al., 2009
Ventral Striatum Probabilistic Learning Human fMRI Breiter et al., 2001
Ventral Striatum Probabilistic Learning Human fMRI Knutson et al., 2001a
Ventral Striatum Probabilistic Learning Human fMRI Knutson et al., 2001b
Ventral Striatum Probabilistic Learning Human fMRI McClure et al., 2003
Ventral Striatum Probabilistic Learning Human fMRI O'Doherty et al., 2003
Ventral Striatum Probabilistic Learning Human fMRI Pessiglione et al, 2009
Ventral Striatum Probabilistic Learning Human Pharmacology Frank et al., 2004
Ventral Striatum Saccade Primate Electrophysiology Bayer & Glimcher, 2005
Ventral Striatum Saccade Primate Electrophysiology Fiorillo et al., 2003
Ventral Striatum Saccade Primate Electrophysiology Fiorillo et al., 2008
Ventral Striatum Saccade Primate Electrophysiology Kobayashi & Schultz, 2008
Ventral Striatum Saccade Primate Electrophysiology Roesch et al., 2007
Ventral Striatum Saccade Primate Electrophysiology Schultz et al., 1997
Ventral Striatum Saccade Primate Electrophysiology Tobler et al., 2003
Ventral Striatum Saccade Primate Electrophysiology Tobler et al., 2005
Ventral Striatum Saccade Primate Electrophysiology Waelti et al., 2001
VMPFC Decision Making Human fMRI Kahnt et al., 2010
VMPFC Decision Making Human fMRI Hare et al., 2010
VMPFC Gambling Human fMRI Levy et al., 2010
VMPFC Choice Preference Human fMRI Paulus & Frank, 2003
VMPFC IGT Human Lesion Bechara et al., 1994
VMPFC IGT Human Lesion Bechara et al., 1998
VMPFC IGT Human Lesion Bechara et al., 1999
VMPFC IGT Human Lesion Bechara et al., 2000
VMPFC Choice Preference Human Lesion Fellows, 2006
VMPFC Choice Preference Human Lesion Fellows & Farah, 2007
VMPFC Saccade Primate Electrophysiology Watanabe, et al., 1996
VTA Probabilistic Learning Human fMRI D'Ardenne et al., 2008
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Table 2.  Areas of activation associated with choice selection in studies of decision making 

 

Region of Activation Task Method Reference

DLPFC Perceptual Decision Making Human fMRI Forstmann et al., 2008
DLPFC Perceptual Decision Making Human fMRI Donemech & Dreher, 2010
DLPFC Gambling Human fMRI Mullette-Gillman, 2011
DLPFC Choice Preference Human fMRI Camus et al., 2009
DLPFC Perceptual Decision Making Human fMRI Kahnt et al., 2010
DLPFC Perceptual Decision Making Primate Electrophysiology Kim et al., 2008
DLPFC Perceptual Decision Making Primate Electrophysiology Leon & Shandlen, 1999; 2003
DLPFC Perceptual Decision Making Primate Electrophysiology Hanes & Schall, 1996
DLPFC Perceptual Decision Making Primate Electrophysiology Kim & Shandlen, 1999
Frontal Eye Fields Saccade Primate Electrophysiology Gold & Shandlen, 2000
Frontal Eye Fields Saccade Primate Electrophysiology Kim & Shandlen, 1999
IPS Perceptual Decision Making Human EEG Philastides et al., 2007
IPS Perceptual Decision Making Human fMRI Tosoni et al., 2008
IPS Perceptual Decision Making Human fMRI Stark & Zohary, 2008
IPS Perceptual Decision Making Human fMRI Astafiev et al., 2003
IPS Perceptual Decision Making Human fMRI Sereno et al., 2001
IPS Perceptual Decision Making Human fMRI Ploran et al., 2007
IPS Perceptual Decision Making Human fMRI Ploran et al., 2011
IPS Perceptual Decision Making Human fMRI Heekeren et al., 2006
IPS Perceptual Decision Making Human fMRI Ho et al., 2009
IPS Perceptual Decision Making Human fMRI James & Gauthier, 2006
IPS Perceptual Decision Making Human fMRI Noppeney et al., 2010
IPS Perceptual Decision Making Human fMRI Wheeler et al., 2008
IPS, DLPFC Perceptual Decision Making Human fMRI Heekeren et al., 2004
IPS, DLPFC Perceptual Decision Making Human fMRI Ivanoff et al., 2008
IPS, DLPFC Perceptual Decision Making Human fMRI van Veen et al., 2008
IPS, DLPFC Perceptual Decision Making Human fMRI Kayser et al, 2009
LIP Saccade Primate Electrophysiology Churchland et al., 2008
LIP Foraging Primate Electrophysiology Dorris & Glimcher, 2004
LIP Saccade Primate Electrophysiology Dorris & Munoz, 1998
LIP Saccade Primate Electrophysiology Glimcher & Sparks, 1992
LIP Perceptual Decision Making Primate Electrophysiology Janssen & Shandlen, 2005
LIP Saccade Primate Electrophysiology Kiani et al., 2008
LIP Saccade Primate Electrophysiology Roitman & Shandlen, 2002
LIP Saccade Primate Electrophysiology Shandlen & Newsome, 2001
LIP Saccade Primate Electrophysiology Shandlen et al., 1996
LIP Perceptual Decision Making Primate Electrophysiology Yang & Shandlen, 2007
LIP Perceptual Decision Making Primate Electrophysiology Newsome et al., 1989
LIP Saccade Primate Electrophysiology Colby et al., 1996
LIP Saccade Primate Electrophysiology Deaner et al., 2005
LIP Saccade Primate Electrophysiology Gnadt & Andersen, 1988
LIP Saccade Primate Electrophysiology Gold & Shandlen, 2001
LIP Saccade Primate Electrophysiology Goldberg et al., 1990
LIP Saccade Primate Electrophysiology Hayden et al., 2007
LIP Saccade Primate Electrophysiology Klein et al., 2008
LIP Saccade Primate Electrophysiology Platt & Glimcher, 1997
LIP Saccade Primate Electrophysiology Platt & Glimcher, 1999
LIP Foraging Primate Electrophysiology Surgue et al., 2004
Superior Colliculus Saccade Primate Electrophysiology Basso & Wurtz, 1997
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Table 3.  Areas of activation associated with various levels of uncertainty 
 

 
 

Contrast Region of Activation # of Voxels BA x y z

Uncertain > Certain Cuneus-L 345 17 -9 -61 15
DLPFC-R 96 46 39 20 37
DMPFC-Bi 2256 8 2 19 50
Frontal Eye Fields-R 1027 6 39 7 48
Frontal Pole-R 132 10 33 61 11
Inferior Occipital Cortex-R 58 19 46 -73 -24
Insula-L 65 13 -32 21 4
Insula-R 1312 13 34 20 5
Middle Temporal Gyrus-L 91 21 -60 -32 -6
Middle Temporal Gyrus-R 484 21 61 -31 -3
Occipital Cortex-L 625 18 -14 -87 -19
Occipital Cortex-R 156 18 14 -96 1
Occipitotemporal Junction-R 67 37 51 -49 9
Posterior Cingulate-L 391 33 4 -29 25
Putamen-L 56 - -27 2 -4
Superior Parietal Cortex-L 2195 7 -46 -57 44
Superior Parietal Cortex-R 4417 7 33 -66 48
Superior Temporal Gyrus-R 52 38 47 9 -9
Supramarginal Gyrus-R 271 39 47 -53 33
Ventral Striatum-Bi 380 - -1 11 2
VMPFC-L 190 32 -3 42 -4

Low > High Uncertainty DLPFC-L 196 46 -46 17 35
(a0+a15 > a33+a66+a80+a100) DLPFC-R 270 46 44 42 15

DLPFC-R 207 9,46 39 36 32
DLPFC-R 199 8 27 22 51
Frontal Pole-R 208 10 21 60 11
Fusiform Gyrus-R 150 20 28 -44 -20
Inferior Temporal Gyrus-R 162 21,37 64 -39 -13
Insula/Putamen 2325 13 -26 0 10
Insula/Putamen-R 4789 13 24 6 9
Intraparietal Sulcus-L 203 39 -37 -55 36
Intraparietal Sulcus-R 251 39,40 28 -46 34
Motor Cortex-L 273 4 -25 -8 57
Motor Cortex-L 180 4 -33 -7 39
Putamen-R 599 - 27 -17 6
Superior Parietal Cortex-L 352 7 -27 -70 34
Superior Parietal Cortex-R 517 7 14 -71 40
Supramarginal Sulcus-L 647 39 -47 -46 30
Supramarginal Sulcus-R 385 39 38 -42 28

High > Low Uncertainty Hippocampus-L 2068 - -26 -26 -11
(a80+a100 > a0+a15+a33+a66) Hippocampus-R 358 - 24 -34 -8

Hippocampus-R 368 - 24 -14 -15
Middle Temporal Gyrus-L 280 21 -52 1 -5
Occipital Lobe_r 302 18 32 -85 20
Posterior Cingulate Gyurs-L 210 23 -10 -24 35
Putamen/Anterior Caudate 678 - 21 10 7
Superior Parietal Cortex-R 295 1,3 44 -33 59

BA = Broadmans areas. x,y,z, = Talairach coordinates (Talairach & Tournoux, 1988) of central voxel in activated cluster. Bold= negative t -values.  Cluster size threshold based on uncorrected
voxelwise p < 0.005 and cluster size alpha < 0.05
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Table 4.  Areas of activation associated with ambiguity 
 

 

Contrast Region of Activation # of Voxels BA x y z

a100 > a0 DLPFC-L 100 46 -45 20 37
Inferior Temporal Gyrus-L 395 20,21 -57 -29 -16
Lingual/Fusiform Gyrus-L 2242 19,37 -41 -53 -17
Middle Temporal Gyrus-L 176 21 -50 -25 -9
Occipital Cortex-L 1318 17,18,19 -26 -77 -14
Occipital Cortex-R 956 17,18 25 -68 -5
Post-Central Gyrus-R 1127 2,40 44 -19 23
Premotor Cortex-Bi 444 6 0 -3 50
Putamen/Caudate-R 495 - 21 14 5
Putamen-R 389 - 28 3 12
Superior Parietal Cortex-L 256 7 -18 -33 59

a100 + a80 > a0 + a15 Anterior Cingulate Gyrus-R 27 24 9 23 35
DLPFC-L 317 46 -45 17 37
DLPFC-R 495 9,46 34 21 47
Frontal Pole-L 34 10 -26 51 24
Frontal Pole-R 531 10 41 48 14
Hippocampus-L 692 - -26 -30 -10
Hippocampus-R 98 - 27 -33 -4
Inferior Temporal Gyrus-R 743 20,21 53 -25 -12
Middle Temporal Gyrus-L 211 21 -52 1 -5
OFC 107 11 18 61 -2
Parietal Cortex-L 92 39 -51 -50 27
Parietal Cortex-R 294 39 27 -50 33
Posterior Parietal Cortex-L 333 7 -13 -77 36
Premotor Cortex-R 78 6 51 9 26
Putamen/Caudate/Insula-L 1026 13 -26 2 8
Putamen/Caudate/Insula-R 3021 13 24 7 8
Superior Parietal Lobe--R 334 7 2 -80 35

BA = Broadmans areas. x,y,z, = Talairach coordinates (Talairach & Tournoux, 1988) of central voxel in activated cluster. Bold= negative t -values.  Cluster size threshold based on uncorrected
voxelwise p < 0.005 and cluster size alpha < 0.05
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Table 5.  Areas of activation associated with winning money 
 

 

Contrast Region of Activation # of Voxels BA x y z

Wins > Losses Angular Gyrus-R 562 40 49 -33 25
Cuneus-R 166 19 10 -88 30
DLPFC-L 1921 46 -26 23 36
DMPFC-R 682 8 4 35 38
Frontal Eye Fields-R 769 8 4 20 55
Frontal Pole-L 354 10 -8 59 21
Frontal Pole-R 6227 10 30 61 12
Fusiform Gyrus-L 1343 37 -30 -48 -16
Hippocampus-R 1930 - 32 -11 -14
Inferior Frontal Gyrus-R 568 45 42 19 7
Insula-L 334 13 -39 -8 6
Middle Temporal Gyrus-R 417 21 58 -31 -2
Occipital Cortes-L 118 17 -26 -81 10
Occipital Cortex-L 359 18 -6 -70 -7
Occipital Cortex-R 3965 17,18,19 19 -56 -3
Occipital Cortex-R 104 17 5 -88 3
Occipitoparietal Junction-R 1453 22,39 44 -68 10
OFC-L 217 11 -28 38 -1
Parahippocampal Gyrus-L 263 - -23 -15 -7
Parahippocampal Gyrus-R 281 - 30 -29 -15
Post-Central Gyrus-R 168 1,2 62 -26 26
Posterior Caudate-R 1558 - 22 -20 31
Posterior Cingulate Gyrus-R 1386 23,31 11 -37 47
Posterior Cingulate/Precuneus-L 5643 23,30,31 -15 -58 14
Pre-Central Gyrus-R 259 4 55 2 11
Superior Parietal Cortex-L 8150 2,7,40 -23 -36 51
Superior Parietal Cortex-R 2977 7,40 49 -62 42
Superior Parietal Cortex-R 402 7 16 -35 62
Superior Temporal Gyrus-L 3315 40,42 -56 -25 16
Superior Temporal Gyrus-R 540 41,42 51 -18 9
Supplementary Motor Area-R 146 6 38 7 54
Ventral Striatum-Bi 1126 - 0 12 -1
VMPFC-L 182 32 -11 48 9

Unexpected Wins > Expected Wins DLPFC-L 968 9,46 -39 45 28
DLPFC-R 476 9 26 33 53
Frontal Eye Fields-R 1367 8 14 15 65
Frontal Pole-R 1508 10 34 54 28
OFC-L 881 11 -34 47 4
Posterior Caudate-L 2572 - -19 -18 21
Posterior Cingulate Gyrus-Bi 4131 23,31 -1 -29 28
Premotor Cortex/DLPFC-R 4667 6,46 40 8 41
Premotor Cortex-L 731 6 -47 6 52
Putamen/Insula-L 850 13 -28 -3 -3
Putamen/Insula-R 3032 13 30 14 4
Superior Colliculi-Bi 340 - 0 -33 -2
Superior Parietal Cortex-Bi 8985 7,40 8 -64 44
VMPFC-L 812 32 -4 30 -1

BA = Broadmans areas. x,y,z, = Talairach coordinates (Talairach & Tournoux, 1988) of central voxel in activated cluster. Bold= negative t -values.  Cluster size threshold based on uncorrected
voxelwise p < 0.005 and cluster size alpha < 0.05
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Table 6.  Areas of activation associated with EV 
 

 
 

Contrast Region of Activation # of Voxels BA x y z

Adv. Trials > Disadv. Trials DLPFC-L 215 45 -47 16 17
Fusiform Gyrus-L 849 20 -31 -21 -22
Inferor Temporal Gyrus-L 171 21 -46 -67 -11
Insula-L 305 13 -36 20 6
Insula-R 768 13 37 21 4
Middle Temporal Gyrus-L 1772 21 -56 -42 3
OccipitoParietal Fissure-L 218 31 -18 -59 22
Superior Parietal Cortex-L 2759 7 -34 -63 55
Superior Parietal Cortex-R 2350 7 36 -63 49
Supplementary Motor Area-L 371 6 -52 5 48
Supplementary Motoro Area-R 658 6 43 9 50
VMPFC-L 935 32 -13 31 10

Disadv. Uncertain > Disadv. Certain Frontal Pole-L 262 10 -32 57 11
Frontal Pole-R 2561 10 41 54 14
Frontal Pole-R 512 10 14 66 10
Insula-L 272 13 -27 21 -4
Insula-L 711 13 -42 14 6
Insula-R 2704 13 32 19 2
Occipital Cortex-L 322 19 -38 -74 -14
SMA-R 484 6 15 13 62
SMA-R 372 6 4 3 67
Superior Parietal-L 257 7 -30 -58 41
Superior Parietal-L 253 7 -34 -62 53
Superior Parietal-R 2336 7,40 26 -67 51

Adv. Uncertain > Adv. Certain DLPFC-R 302 9 40 12 50
DLPFC-R 525 9 24 18 59
DLPFC-R 228 9 23 34 56
DMPFC-R 501 8 3 35 42
Frontal Pole-L 181 10 -26 68 2
Frontal Pole-R 2521 10 34 59 21
Hippocampus-R 327 - 31 -10 -15
Middle Temporal Gyrus-L 211 21 -58 -29 -5
Occipital Lobe-R 220 18 25 -89 -13
Occipital-Parietal Junction-R 783 39 45 -59 32
OFC-L 386 11 -38 47 -2
OFC-R 1185 11 39 51 4
OFC-R 806 11 18 67 6
Parahippocampal Gyrus-L 236 36 -29 -34 -18
Posterior Cingulate-Bi 1700 23 1 -28 32
Pre-Central Gyrus-L 422 4 -61 -24 26
Pre-Central Gyrus-R 399 4 54 -10 22
Superior Parietal-L 607 2 -50 -31 53
Tail of Caudate-L 232 - -19 -23 26

BA = Broadmans areas. x,y,z, = Talairach coordinates (Talairach & Tournoux, 1988) of central voxel in activated cluster. Bold= negative t -values.  Cluster size threshold based on uncorrected
voxelwise p < 0.005 and cluster size alpha < 0.05
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Table 7.  Areas of activation resulting from parametric manipulation 
 

 
 

Model Region of Activation # of Voxels BA x y z

Linear DLPFC-L 246 46 -46 19 37
DLPFC-R 283 9,46 33 21 47
Inferior Temporal Gyrus-L 776 20,21 -58 -28 -16
Insula-L 230 13 -31 12 6
OFC-L 33 11 -2 36 -10
Parahippocampal Gyrus-L 216 36 -26 -31 -11
Parietal Cortex-L 179 7 -13 -77 37
Precuneus-L 257 17,18,31 -25 -70 26
Putamen/Insula-R 2271 13 24 11 11
Superior Parietal Cortex-L 174 40 -26 -53 44

Inverted U Anterior Cingulate Gyrus-L 204 24 -5 33 21
Body/Tail of Caudate-R 2588 - 17 -14 20
DLPFC-R 1744 9,46 46 24 34
DLPFC-R 1486 9 30 41 43
Frontal Pole-R 164 10 9 60 3
Middle Temporal Gyrus-R 209 37 58 -56 -6
MPFC-L 467 24,32 -8 37 12
Parietal Cortex-L 1194 39 -41 -45 33
Parietal Cortex-R 9419 7,39,40 19 -64 36
Pre-Central Gyrus-L 1119 4 -27 -7 64
Pre-Central Gyrus-R 4440 4,6 29 0 54
Pre-Central Gyrus-R 183 4 15 -3 57
Premotor Cortex-L 491 6 -32 1 33
Putamen-L 643 - -23 -1 17
Putamen-L 315 - -28 -4 2
Putamen-R 1882 - 27 -8 2
Superior Parietal Cortex-L 1398 7 -17 -71 55
VLPFC-R 256 45 40 30 8

Random Hippocampus-R 206 - 27 -31 -4
Middle Temporal Gyrus-L 235 22 -53 2 -5
Parietal Cortex-R 261 7 2 -82 35
Pre-Central Gyrus-R 437 4 27 -18 69
Putamen-L 1096 - -26 4 8
Putamen-R 1785 - 24 7 9

BA = Broadmans areas. x,y,z, = Talairach coordinates (Talairach & Tournoux, 1988) of central voxel in activated cluster. Bold= negative t -values.  Cluster size threshold based on uncorrected
voxelwise p < 0.005 and cluster size alpha < 0.05
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