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ABSTRACT

A mathematical model of sedimentation transients in straight
alluvial channels is presented for subcritical flow. Both the bed
load and suspended load components of the transport are separately
accounted in the model. A coupled solution of the momentum and sedi-
ment continuity equations enables the numerical solution with longer
time steps than are possible for uncoupled models. The model is partic-
ularly suitable for long-term simulations in sand-bed channels. In view
of the markedly slow nature of the sedimentation transients, the water
discharge is considered invariant at the time scale used to model the
sedimentation transients. For the upstream boundary condition, either
the depth of flow or bed elevation can be specified in time. A practi-
cal alternative is to specify the bed material transport in time, since
it can be directly related to the depth of flow. For the downstream
boundary condition, the model requires that the stage be specified in
time.

A linearized implicit numerical scheme is used to solve the
governing equations. The linearization assumes that during a discrete
time step At, the proportional change in depth of flow, Ah/h is
less than 0.10. The stability and convergence of the numerical scheme
are given careful consideration, and criteria are developed to assess
the convergence properties. Theoretically optimum values of the
weighting factor § and a sedimentation Courant number cr are
presented, where c¢ 1is the celerity of small bed level perturbations
and 1 = 2At/Ax.

Results of test runs derived from hypothetical examples are

presented. The numerical model effectively simulates the formation of
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a bed wave in the upstream reach of a straight alluvial channel due to
a nonequilibrium sediment inflow hydrograph. There is no limitation
to the shape of the sediment hydrograph that can be modeled, provided
the linearization is valid (Ah/h < 0.10) and cr is equal to or
slightly greater than 2. Experience with this model shows that in order
to insure stability of the numerical scheme, a value of 6 # 0.7 is
necessary.

Various types of aggradation and degradation problems can be
simulated by this model. Examples of the following problems are
presented: (1) the formation and migration of bed waves in alluvial
channels, (2) the change in channel bed configuration caused by the
change in tail water elevation, and (3) the transient effect of local

sediment removal by means such as dredging and sediment ejection.
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CHAPTER 1
INTRODUCT ION

The morphologic and bed material transport relations in alluvial
channels are generally based on equilibrium flow conditions. An
equilibrium flow through a finite reach of a channel is defined as a
flow that possesses sediment inflow-outflow balance over a sufficiently
long but finite time interval. Flow in natural and man-made alluvial
channels is generally unsteady both in water and in sediment discharge.
Therefore, a channel that is in equilibrium over longer time intervals
may experience significant deviation from the equilibrium over shorter
intervals. Deviations from equilibrium conditions in an alluvial
channel may also occur when the base level has been changed due to
man-made or natural causes and the channel is in the process of
adjusting to the new boundary conditions. The regime associated with
these deviations, pertaining to oscillations around an equilibrium
state or to the transition from one equilibrium state to another, is
herein called a "Sedimentation Transient'" or in short a "Transient."

The transients in alluvial channels are primarily caused by the
unsteady inflow-outflow conditions and the lag in channel response.
They may develop during the passage of a discharge wave, due to a
change in the base level and particularly when a large concentration
of sediment is introduced into a channel. The sedimentation transients
can relate to one or more sedimentation quantities, such as the
channel bed-level, suspended load, bed material size, etc. Sand-bed
channels exhibit transients more frequently due to a greater mobility

of their beds than the coarse material or cohesive boundary channels.



A number of phenomena in sand-bed channels occur as related to transients.
For example: (1) the average sediment transport rate in a channel with
bed level transients is larger than the transport without a transient
and the larger the amplitude of the bed-level transient, the larger is
this difference; (2) the minimum available depth of flow in a channel
is related to the amplitude of the existing largest positive bed-level
transient; (3) bed-level transients phenomenologically reflect the time
lag between the precipitation and the resulting sediment yield along a
drainage basin, and (4) more importantly, the bed-level transients in
straight sand-bed canals can introduce bed instability due to the
effect of locally accelerated flow [1].

This report is related to the mathematical modeling of bed-level
transients in sand-bed canals. It is inspired by the sedimentation
transients that are experienced in large sand-bed link canals in
Pakistan. The transients in the link canals are formed under a
combination of the following conditions. During flood flows in their
parent rivers, the link canals receive large bed material concentrations
that cause bed aggradation. As the concentrations recede to their
equilibrium levels, the bed-level at the head of the canal lowers and
a bed wave is formed. This wave travels down the canal and is generally
damped in amplitude. However, at any time there may be a number of
waves in the channel that may coalesce and form larger waves. The
water level at the tail regulator of a canal (the base level) also
varies seasonally. When the level is above its equilibrium value, the
bed in the reach under the backwater is aggraded. As the base level

is lowered below the equilibrium value a negative wave is formed that

%*
Numbers in brackets [ ] refer to Appendix I--References.



travels downstream. The combination of these factors gives rise to
significant transients of different shapes and sizes.

The governing equations for the transients in sand-bed channels
comprise the momentum equation for the water-sediment mixture, and the
continuity equations for the water and sediment phases. These equations
constitute a set of nonlinear hyperbolic partial differential equations
for which an analytical solution is generally unavailable. In unsteady
water-sediment routing in channels, these equations or their simplified
forms are therefore numerically solved by using appropriate finite
difference schemes. The solution techniques so far developed are
restricted to the bed-load mode of sediment transport and mostly use an
uncoupled model in which the hydraulic and sedimentation phases are
studied sequentially.

When applied to bed-level transients in sand-bed channels, these
techniques are generally deficient, because: (1) in sand-bed channels,
most of the bed material load is transported in suspension and realistic
results cannot be expected when this mode of transport is neglected;

(2) the uncoupled models have to use a smaller time step than the
coupled model and therefore increase the total computational time;

(3) the bed waves in frictional flow systems undergo dispersion and
damping. The numerical schemes can introduce dispersion and damping of
their own so that the representation of the transients is distorted.

It is not possible to analytically determine the bed wave dispersion and
damping characteristics for uncoupled models and so the accuracy of
their results is uncertain unless rather small space and time steps

are used and finally; (4) models that neglect the suspended load or the

models that are uncoupled cannot realistically represent the formation



of bed waves due to the influx of large sediment concentration at the
head of a channel.

A mathematical model is developed herein that is especially suited
for the study of bed-level transients in sand-bed channels. This model
is based on a coupled solution of the hydraulic and sedimentation
phenomena. It also accounts for the suspension mode of sediment transport.
The governing equations for sedimentation transients are presented in
Chapter II and the numerical solution based on a linearized-implicit-
coupled scheme is presented in Chapter III. Chapter IV deals with the
stability and convergence characteristics of the numerical scheme
presented in Chapter III. Specifically, the damping and dispersion
characteristics of the scheme are considered, and criteria for the
errors introduced by the numerical scheme are developed. Chapter V
presents the results of some numerical experiments that simulate the
phenomena observed in the link canals. Chapter VI contains the
conclusions of this study and recommendations for future research in
this field. The computer program developed for using this model is

presented in Appendix II along with a user's manual.
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CHAPTER II
BASIC EQUATIONS

2.1 Introduction

The flow in sand-bed channels involves a three-dimensional
two-phase flow, many aspects of which are not as yet fully understood.
However, in solving practical problems related to alluvial channels,
simplifying assumptions have been successfully used in the past.
For example, the mass and momentum diffusion characteristics of clear
water turbulent flows have been used in developing the sediment
transport functions [2,3]. These simplifications are useful inasmuch
as solutions can be obtained that otherwise are not possible. In
this study of sedimentation transients, three basic assumptions are
made with regard to the character of alluvial channel flow. These are:

1. The cross-sectional shape of the channel is constant,
so that the hydraulic and sedimentation phenomena can be
described as functions of average flow parameters such as
the hydraulic depth, water surface width and the average
velocity of flow.

2. The flow is one-dimensional and the channel phenomena can
be modeled as functions only of the linear dimension
along the direction of flow.

3. The hydraulic transients travel much faster than the
sedimentation transients, so that the water flow can be
considered as steady compared to the time scale of the
sedimentation phenomena and over a given computational time
step the sedimentation phenomena can be represented by the

time averaged flows parameters.
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The cross-sectional shape of sand-bed canals is determined by
the flow and sediment characteristics [4]. The sedimentation
characteristics such as the mineralogy and quantity of wash load are
fairly constant regionally, so that a unified pattern of channel
behavior is recognized (regime theory is a good example of regional
pattern). For such channels the cross-sectional shape follows a
uniform pattern, and the flow and sedimentation phenomena can be
described in terms of average channel parameters.

Flow in wide and straight sand-bed channels exhibits three-
dimensional flow patterns to some extent. For example the straight
sand-bed canals form alternate bars of varying height (see Figure 2.1).
However, the degree of asymmetry in their cross-section is generally
small, so that the one-dimensional assumption is considered valid.
The relative speeds of water and sedimentation transients on sand-bed
channels and their effect on the governing equations has been specif-
ically studied in the past. As a result, Iwagaki [5], de Vries [6]
and Cunge and Perdreau [7] showed that the water discharge can be

considered steady in the study of sedimentation transients.

2.2 Governing Equations

With the preceding assumptions and the usual assumptions of
shallow water flow [8], the governing equations of flow through a wide
rectangular channel with a variable bed level and bed width are:

Equation of Motion:

2
1 29 9
g 5%'(%%)*5;(—%-2- *Y)*Sf”’ (2-1)



Fig. 2.1 Alternate Bars in the Taunsa-Panjnab Link Canal in Pakistan.



Equation of Continuity of Water-Sediment Mixture:

3
3¢ [pQ] = 0 (2-2)
Equation of Continuity of the Bed Material:

aGb BGS

-0 2

3 - -
st 3t ar (CBR) + (1-p)S_y, 3+ (Bz) = 0 (2-3)

where

Q = the constant discharge in the channel,

g = the gravitational acceleration,

y = the water surface elevation,

Sf = the energy gradient assumed to be equal to the energy
gradient for a representative average discharge,

p = the mass density of the sediment water mixture,

the bed load,

= the suspended bed material load,

i

o WP F
]

the average spatial bed material concentration in the
cross-section,
p = the porosity of the channel bed,

v = the density of water

W
Ss = specific gravity of solids

z = the bed elevation,

B = the deformable bed width, assumed equal to the width of

the rectangular cross-section,

h = the depth of flow (h=y-z),

x = the distance along the channel bed measured in the downstream
direction and,

t = the time.



The geometrical quantities defined above are also shown in Figure 2.2.
All the terms in Equation (2-1) have units of slope and transport
rates Gb and GS in Equation (2-3) are expressed in units of weight
per unit time. It is assumed that the mass density of the sediment
water mixture in Equations (2-1) and (2-2) is the same as that of
water and the width B is invariant in time. The governing equations

then reduce to:

g2

- yj+S,=20 (2-4)

3% \ 248202 £

3 3 3 3z 1 3B _

ax (&) * 3x (&) * 5p (Ch) + pu 57+ (gy*8y) Fox = 0
(2-5)

where the local acceleration term has been dropped in Equation (2-4)
because its magnitude is much smaller than the other terms and its
effect on the transient can be ignored [9]. In Equations (2-4) and
(2-5), g and g, are the suspended bed material load and the

bed load, respectively, per unit width of the channel, defined as

g = GS/B and g, = Gb/B, and p, = (l-p)Ssyw.

s
In alluvial channel flow the quantities Sf, 85> 8 and CS
used in Equations (2-4) and (2-5) are functions of the local velocity
V, depth of flow h and bed material size D, besides the properties
of water such as temperature, kinematic viscosity, etc. If the bed
material size along a channel is initially known and is considered

invariant in time (as in the case of the channel width) then these

quantities can be expressed as functions of h(x,t) alone, so that
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Sc = Sc(h) (2-6)
g = (g, + g) =g, (h) (2-7)

and
f.Cg = C (h) (2-8)

Using these expressions, Equations (2-4) and (2-5) become:

-y X P 25 s Lo (2-9)
X X £
gB h
cr A, + (pyCl) = - g 2o %t g (2-10)
sat * Bt ax Py at 8t 3x B

where the Froude number F = Q//@EEQEL the mass density of the sand
bed p, = Ssyw(l—p) and prime superscript represents derivative
with respect to h.

Equations (2-9) and (2-10) form a set of nonlinear first order
partial differential equations for the dependent variables, water
stage y and the bed elevation z with the two independent variables,
distance along the direction of flow x and time t. These are

hyperbolic equations with the characteristic equation
2 2
g'dt” + [p,(1-F7) - C;] dt dx = 0 (2-11)
Equation (2-11) has two roots,

02 = ( )2 = - (2-12)

and ot
8¢

- 2 .
[P*(I‘F ) - CS]

dx
3= (393 (2-13)

(2]
I

The characteristic curves, ¢y and c., for subcritical flow are shown

3
in Figure 2.3. These characteristic directions indicate that: (1) the
effect of a small disturbance in y within the domain or at the down-

stream boundary will instantaneously extend to the upstream boundary
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Fig. 2.3 Characteristic Curves for Subcritical
Flow in Sand-Bed Channels.
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and (2) a small disturbance in bed level 2z, will travel with celerity
Cse Equations (2-12) and (2-13) also indicate that for the mixed value
problem (Equations (2-9) and (2-10)) to be well posed the following
conditions need to be specified for the subcritical flow F < 1:
1. Initial Condition
y(x,0) and 2z(x,0), 0 <x <L
2. Boundary Conditions
One boundary condition on the upstream boundary as
z(0,t), 0 <t <T
and one boundary condition on the downstream boundary as
y(L,t), 0 <t <T
where L is the length of the channel reach and T is the time span

over which the governing equations are to be solved.

2.3 Supplementary Equations

Equations (2-4) and (2-5) contain S_, the energy gradient of the

£
flow, and quantities 85> 8 and Cs, associated with the transport of
sediment by flow. In alluvial channel flow these quantities are
functionally related to the bed material size and water discharge by
resistance and transport functions.

The experience with resistance to flow in alluvial channels
indicates that the resistance varies with the flow rate and that at
least different resistance functions are applicable to different
bed form regimes [3]. There is also a variety of resistance functions
available for modeling that differ in their approach and range of

applicability. For the purpose of modeling, it is not necessary to

follow a particular resistance function. Rather, a functional form
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that covers the range of conditions anticipated in the study and that
has been validated by experience, can be conveniently used to relate
Sf with other flow quantities. On the other hand, the sediment trans-
port function used to model the sand-bed channel transients has to
satisfy a few specific conditions. One, the transport function must
have a sound phenomenological structure. This is necessary because

in following sedimentation transients, a wide range of transport
conditions from small to high transport rates is covered and to model
the transients, it is necessary to realistically represent the change
in transport associated with the change in hydraulic quantities.

Two, the transport function should be able to separately compute the
suspended and bed-load phases. This is important in sand-bed channels,
because in these the suspension phase accounts for a major portion of
the transport.

Based on the preceding consideration and the writers' experience,
the following set of resistance and transport functions has been
adopted. Essentially, the resistance function follows the empirically
derived behavior of sand-bed channels [4], while the transport
function is modeled for a unigranular material after Einstein's

Bed-Load function and Mahmood's transport function [2,3].

2.4 Resistance Function

In wide, straight sand-bed channels, the resistance to flow varies
with the change of bed form dimensions. However, over a given range,
such as the dune to antidune bed form regime, the resistance varies
monotonically so that for a constant Q, the Manning's n decreases

with an increase in Froude number of the flow. This behavior has been
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observed in laboratory recirculating flumes and in the large sand-bed
irrigation canals operating under equilibrium conditions [4|. It is

stated as follows:

n = — (2-14)

where n = Manning's roughness coefficient for the flow, D = a
representative bed material size in feet, F = Froude number of the
flow, and kl’ a and b are real numbers. Equation (2-14) is
dimensionally nonhomogeneous and for a given model kl’ a and b
are determined by calibration or from the available equilibrium data.

Part of the resistance to flow in Equation (2-6) is due to the
grain roughness [2,3] and part due to the form roughness caused by
the bed form and the presence of the sediment transport. It is
necessary to calculate these components explicitly for later use in
the transport functions. For the grain roughness, the Manning-

Strickler equation is used as follows:
n' = 0.0342 p1/® (2-15)

where n' = grain-associated component of Manning's roughness coefficient.
Using the functional form of Manning's roughness equation the component

of the channel depth associated with the grain roughness is:
1
h' = n(2y*/?2 (2-16)
The following hydraulic parameters of the flow can then be

defined in terms of the constants of Equations (2-14) and (2-15).

h' 1 g1 (2-17)

il
©
=
[# ]

Se =% h“B (2-18)



16

U, = v‘ghSf
Uy = /gh's,
where
3/2
b - [0.0342 D(;;§°3)Q€}
k1 g
. 9
ml-l--4~b
3b
5 Ml
a_(1-b) b/2)?
le Q g
%, = 1.486
. 10
m2~3b-—3—
and
t, = 2(b-1) .

2.5 Velocity Distribution

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

(2-25)

(2-26)

The velocity distribution in the vertical is assumed to follow

a power-law as

(2-27)

where the shear velocity U! is the grain-associated shear velocity,

exponent b2

= 1/6 and coefficient a

can be determined by equating

the grain-associated resistance factor from Equation (2-15) and from

the integration of Equation (2-27):

1/6
a, = D

6BULh’/©

or

(2-28)

(2-29)
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where

1/6
=776 ¥ (2-30)

¢g21£2

o
[

m m
_o.1 2 7

T A RS (2-31)
and

t t

12

t, = —(—2-+ 5 +1) . (2-32)

2.6 BPed Load Function
The bed load function used herein is modeled after Einstein's
bed load function. This function is developed for a single representative

bed material size D. For this condition,

] ()
b = ¢ = — — (2-33)
* SsYw LPsPs g03
p_-p
f D
Y, = ¢ = [_.5."_...___]___~ (2-34)
* pe Dh'Sg
and
bl
b, = a1 Y, (2-35)

where ¢, = the bed load transport intensity parameter, y, = the shear
intensity parameter and a;, b1 = the coefficient and the exponent
respectively obtained from Einstein's bed load function (Figure 9,
reference [2]) to represent the ¢,-y, relation over the range of
interest. It is understood that 4 to 5 sets of (al’bl) define

the complete range of ¢,-y, from the smallest to the largest
practical transport rate. It is also possible to adjust the bed load
function in a particular model by obtaining a,, b1 from calibration

or from equilibrium data applicable to the channel.
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From Equations (2-33) through (2-35) and using the expressions

for h' and Sf in Equations (2-17) and (2-18), the bed load per

unit width is:

m, t
g, = 4h B 4 (2-36)
3

where b -Pe bl+1/2 Db1+§‘ssyw

by =2y B b sv, (2-37)

f (2,2,)°1

m, = —bl(m1+m2), (2-38)
and

t, = -b (t,+t)). (2-39)

2.7 Suspended Load Function

The vertical distribution of bed material concentration is not
very sensitive to the underlying assumption of the distribution of
sediment diffusion coefficient € (or the shear distribution) in
the depth of flow. The major uncertainty in the computation of suspended
load comes through the selection of an appropriate value of the Rouse
number, Z [3]. For simplicity, it is assumed herein that the turbulent

diffusivity €g» varies linearly in the depth of flow as follows:
g, =K U,y (2-40)

where «k = Von Karman's constant and y = distance from the local

bed level. The resulting bed material concentration profile is:

C
Z= G (2-41)
a

with

Z = (2-42)
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where Cy and Ca are the bed material concentration at distance Yy
and distance a from the bed level, respectively, and w is the fall
velocity of the representative size, D. Note that the total shear
velocity, U, 1is used in Equation (2-42) to define Z in keeping with
the writers' personal experience.

Following the bed material transport functions used herein [2,3],
the reference concentration Ca is defined in a bed layer of thickness
2D. It is assumed that the bed load is moving with a velocity of

11.6 U} in the bed layer, so that

&p
Ca = T 6 TN (2D) (2-43)

The suspended bed material load, g, can then be evaluated as:
h h yA

2D y b2
g = £D Cudy = go C,(F) Uia, () “ dy (2-44)

Simplifying Equation (2-44)

m. t m t
_ 5.°5 6, 6
g, = %h "B 7 + 24h B (2-45)
where b2
2% 8,8,
11.6(b,-Z+1) (2D)
me = mg +m, + (b,-Z+1), (2-47)
te =ty +t, (2-48)
b
2 2 L2,
e = - I1.6(b,-Z+1) (2-49)
mg = My + M, (2-50)
and
tg =tz +t, (2-50a)



20

The average spatial concentration Cs in the vertical can be

calculated as:

h h z

1 2D
J cay =% [ c (3 ay (2-51)
ap Y~ ho3p Yy

1]
=

Simplifying Equation (2-51)

m., t m, t
_ 7 %7 3 8
Csh = £7h B '+ zsh B (2-52)
where
2
., = 4 — (2-53)
11.6(1-2) Yga %, (2D)
m m
= .1 __2 - -
m, = - 5ot m, t 1-Z (2-54)
t t
R
t7—---§--—2—‘* t4 (2-55)
A
b = - 4 (2-56)
11.6(1-2) /g2 %,
m m
.1 _ 2 -
Mg=-2 -7 ™M (2-57)
and tl t2
t8=~—2—"——2—°4‘ t4 (2-58)

2.8 Summary

In this chapter, the governing equations of one dimensional
sedimentation transients, Equations (2-4) and (2-5), have been developed.
These equations assume that: (1) the channel shape is constant,
(2) the channel phenomena can be modeled as functions only of the
linear dimension along the direction of flow and (3) the hydraulic
transients travel much faster than sedimentation transients, so that
for the time scale of the latter transients the flow can be considered

as steady.
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The governing equations form a set of hyperbolic, nonlinear
partial differential equations. It is shown that their characteristic
equation has two roots, one relating to the travel of small surface
disturbances and the other relating to the travel of small bed waves.
Consideration of the characteristics show that to be well posed, the
problem of sedimentation transients, as defined by Equations (2-4) and
(2-5), should have specified the initial conditions, the water-surface
level in time at the downstream boundary and the sand-bed level in time
at the upstream boundary. The governing equations separately consider
the bed load and suspended bed material phases of sediment transport in
the channel. These equations involve quantities relating to the
resistance and transport phenomena such as Sf, gb, gs, and Cs' It
is further assumed that the bed material size distribution in the
channel is constant during a time interval and is specified a priori,
so that the resistance and transport quantities are functions alone of
the local depth of flow, h.

Supplementary equations have been developed expressing these
quantities as explicit power functions of h. These are Equations (2-18),
(2-36), (2-45) and (2-52). All the coefficients and power indices
in these equations are determined from parameters kl’ a, b, a, and b1
that are specified for the alluvial channel flow. The supplementary

equations are later used in this report to develop the numerical solution

of the governing equations.
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CHAPTER III
NUMERICAL SOLUTION

3.1 Finite Difference Scheme
Equations (2-4) and (2-5) governing the sedimentation transients
in sand-bed channels are nonlinear hyperbolic partial differential
equations. Herein these equations are numerically solved with a
linearized implicit scheme, which is an extension of the implicit
scheme described by Richtmyer and Morton [10] and Liggett and Cunge [11].
In this scheme, the functions and their derivatives are defined

in the rectangular grid in the x-t plane as follows:

£(x,t) = & [f?:i f“”] a8 [ Tt f';] (3-1)
b g[8 (58] o

a foot) = o (81 - 27+ Q) [, - €] (3-3)

Ax |7+l 7§

where f(x,t) 1is a function of x and t (e.g. the local bed level 1z);
Ax and At are the discretization interval along the x and t axes,
respectively; 8§ is the weighting factor of the scheme, the superscript
n refers to the time step and the subscript j to the space step
(see Figure 3-1).

To linearize the difference equations, the functions at time step

(n+1) are expressed as

57 = 5 o (3-4)

where

Af, /Y << 1
J/ ]

so that
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‘t

(n+1)At

At

t
nA A

jAX (j+1)Ax

Fig. 3.1 Definition Sketch for the Finite Difference Scheme.
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o 0, a-1
51 (8] (%) -
( i 3 +a 3 Afs (3-5)
where o 1is an exponent.

3.2 Discretization of the Equation for Bed Material Continuity
Equation (2-5) together with the supplementary equations developed
in Chapter II, can be expressed as

3 ( ) m; ti) 2 (g m; b
- 2.h "B + --( 2.h B )
% \i=4,5,6 * 9t \i-7,8 1

m, t.
3z =1 9B ( i1
+p, =42 Y &.h B ) =0 (3-6)
* 9t B 3x i=4.5,6 i
The discretization of Equation (3-6) according to Equations (3-1)

through (3-5) results in:
A*. ij + B*. ij+1 + C*. Azj + D*. Azj+1 - Q*. =0 (3-7)
J J J ] J
where

B!
+g.§l( I oH o+ ] on +J5) (3-8)
j\i=4,5,6 7j i=5,6 j j
B, = i%-( z H + Z Ii + JS )
j i=4,5,6 “j+1 i=5,6 Tj+1 j+1
1
73 UL DR TR S )
i=7,8 7j+1  i=7,8 “j+l j+l
Bl
N g-igi;-( AR D N S ) (3-9)
j+1 \i=4,5,6 ~“j+1 i=5,6 “j+l j+1
Py
Co =5r - A (3-10)
J
Pa
D*. = 3%F - B*. (3-11)
J J
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1
Q = - ——-( L, - ) L )
*5 Ax \i=4,5,6 1js1  i=4,5,6 5
) B!
+
- %_[( j )( I o1 )4-(§l)( IoL )] (3-12)
Bis1/\i=a5,6 j+1 j/\i=4,5,6 7j
n n mij-1 t,
j i
- = t.
I, = (2, ) (h)) I Byt (3-14)
: g j
j j
ny t
J; = (Vmi“)(zi“)(h?) TG ICD B (3-14a)
j i i
n, ,n mi‘ ti
L, = (2,00 1B (3-15)
. . J J
j j
3B, B. .-B.
o3 _ 31 3 -
B = 5t = g (3-16)
zsn z?
sz“ = ———-—l————-[(b +1-2" ) 1n @) + 1] (3-17)
j h (b,y+1-Z7 )
m Zr.‘
Vmsn = -2 (3-17a)
j h
j
m L n Z?
o 6. j
vz6“ A R (3-18)
i hi(by*1-Z3)
. n 2'.n
vz7“ = —-——l—~— [(1-Z] ) In (2D) + 1] (3-19)
j h (1-Z; )
vm," = vm " (3-19a)
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m 28 Zj
L (3-20)
h.(1-2))
J
m t

n n, o o

Z, = & (h, B, 3-21
5= Mm% @) (3-21)
g = LJ (3-22)
o 172

k(g2,)
mo=-1@@ +1) (3-23)
[ 2 2
t = - l-t (3-24)
o 2 72
3.3 Discretization of the Equation of Motion
Equation 2-4 can be expressed as

2 m, t
Q 2 -2, 3y 22 .
28 3% (Bh) ~ + ax * %2 h™B 0 (3-25)

The discretization of Equation (3-25) according to Equations (3-1)

through (3-5) results in:

E, ij + F, ijq-l + G, Azj + H, A:’.j“.1 - R, = 0 (3-26)
] J J J J
where
§ 2 )
E, =-3c01- (F‘j‘) ] +5H, (3-27)
J J
$ n .2 §
F, = —1[1-(F. )] +=H (3-28)
*j Ax j+1 2 2j+1
=8 ™y L8
G*' = AX [ (Fj) ] 2 Hz‘ (3"29)
] J
I P B N1
He =35 [+ (Fj)71 -7 Hy (3-30)
j i+l
_ 1 n .2 .n n2 .n
R*. = - [ZAX {(Fj"'l) (hj"'l) - (F]) (hj)}
1 n n 1
+ —A?(— (Yj+1 - Yj) + '2" (Lz + LZ.)] (3'31)

i+l j
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n _ -
ERC R veay o5
j j
m,~-1 t
sz = zzmz(h?) 2 (8,) 2 (3-33)
m t
L, = zzch?) 2 (8,) 2 (3-34)
j

Equations (3-7) and (3-26) form a set of simultaneous linear

equations in four unknowns ij, ij+1, Azj and Azj+ relating to

1
spatial points j and j+1. All the coefficients in these equations
are functions of quantities explicitly known for spatial point j and

j+1 at time step n. Evaluation of Ay., Ay.

f 417 Azj and Az.+ at

j+1

time step n, allows the solution at points j and j+l1 to be
advanced to time step n+l1 through Equation (3-4). If the channel
reach being modeled is divided into (N-1) segments, there are N
spatial points and there are 2N unknown Ay's and Az's as Ayi,

Azi, i=1,2,...,N. The number of equations (3-7 and 3-26) available
for the discretized channel reach is 2(N-1). Two additional equations
connecting Ay's and Az's are therefore required to evaluate the

2N Ay's and Az's. These additional equations are provided by the

two boundary conditions.

3.4 Boundary Conditions
As discussed in Section 2.3, the mathematical problem of sedimenta-
tion transients in subcritical flow should have the following boundary
conditions specified in addition to the initial values:
1. At the upstream boundary
2(1,t), 0 <t <T
2. At the downstream boundary

y(N,t), 0 <t <T
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As shown subsequently, the change in the bed and water surface

levels at a vertical j, over one time step nAt to (n+l1)At can be

related as
Ay, =8, Az, + T, (3-35)
J . J .
] J
n+l n n+l n
where Ay. = vy, -vy., Az, = 2, -2, and S and T are
YJ )'J YJ, j j j * *

j j
constants for a given time step. Equation (3-35) with appropriate

values of S*. and T*. for j=1 and N provides the two boundary
conditions, ! ’

In practice the upstream boundary condition is generally available
as the bed material load hydrograph or less frequently as the bed level
hydrograph. The downstream boundary condition, however, depends on
the physical constraint of the problem. For example, the downstream
control may be the water surface level of the channel. The treatment
of Equation (3-35) for these cases is illustrated below.

Upstream bed material load hydrograph: At any point in the

channel, 0 < x < L, supplementary equations (2-36) and (2-45) give
= = i i ™~
g, = (gtg) = 1 &, h’B (3-36)

It is assumed that at the upstream boundary the flow depth
instantaneously adjusts itself so that the transport past the boundary

is equal to the bed material inflow. At two consecutive time steps,

n
m. t.
n n n, 1 1
g = Y ) *(B) (3-37)
toaeayse b0
and n+l .
n+l n+l n+l mi i
g, = L & ()T (B (3-38)

i=4,5,6
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where 8¢ is the bed material inflow at the upstream boundary and

superscripts n and n+l relate to the time step nAt and (n+l)At,

n+l

respectively. In Equation (3-38), h1 can be solved by iterative

procedures, so that

_ N+l n _
Ah1 = h1 - h1 = Ay1 - Az

1

The boundary condition, Equation (3-35) is then specified with
S, =1
1
and

T, = Ah
1 1
Upstream bed level hydrograph: If the upstream bed level is

specified as the boundary condition,

_ n+l n
Az1 = z1 - z1

is known at every time step. Then, Equation (3-35) is specified for

this condition with S, = a very large number, say 106 and
1

Downstream water surface-level hydrograph: The problem of
specifying the downstream boundary condition is somewhat simpler. As
shown subsequently (refer Equations (3-40), (3-41)), the values of
S, and T, are available in the solution algorithm. The value
ofN AyN is ﬁnown at each time step from the water surface-level

hydrograph available at the downstream boundary. Equation (3-35) is

then specified for the calculated S, and T, and the available
N N

AyN.
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3.5 Solution Algorithm

The following system of 2N linear equations is available to
solve for 2N unknowns:

Equation 3-35 Upstream Boundary Condition 1 grid point

Equation 3-7 Equation of Bed Material Continuity N-1 grid spaces

Equation 3-26 Equation of Motion N-1 grid spaces
Equation 3-35 Downstream Boundary Condition 1 grid point
Unknowns: ij, Azj, j = 1,2,...,N.

The coefficient matrix for this set is a sparse diagonal matrix
and is economically solved by the double sweep algorithm.
In the first sweep, the algorithm calculates three internal

vectors T, , S, and U, , j=2,3,...,N with the following recursive

) ioj j
equations:
E*' 1 S*‘ 1 + G*. 1
R L S - .
A W S oy (3-39)
(. 5 G TS SR B8
(R* - E* T* ) - U*.(Q*. - A* T* )
T, = —d-1 j-1  j-1 j_ j=1  §-1 -1 (340
A F, - U, B,
) -1 3 31
H, -U, D,
- - _J-1 i _j-1 -
Se = - T TU W, (3-41)
J -1 31

where the vectors A,, B,, C,, D,, E,, F,, G,, H,, Q, and R, are
coefficients defined for Equations (3-7) and (3-26) and elements

S, and T, are available from the upstream boundary condition,
Eqiation (3—;5).

In the second sweep, Az and Ay are calculated from J = (N-1),

to J =1 by the following equation:
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(Q* - A* T* ) - (B* Ay- + D* AZ. )
i AR R A

L]

J -
Azj A Sj Ty (3-42)
J J
and

il
wn

AYj x 0% * (3-43)

where AyN and Az are available from the downstream boundary
condition, Equation (3-35).

Equations (3-42) to Equation (3-43) enable the calculation of
the solution vectors of the system, Ay(N) and Az(N) and the water
surface and bed levels at time step (n+1)At are calculated by
Equation (3-4) as

n+l n

. =y, +Ay., j =1,2,...,N 3-44

Y5 Y5 Yss J ( )
n+l n .

z, =2z, + Az, =1,2,...,N 3-45
3 j . R , ( )

The solution can then be advanced to time (n+2)At by using

values (3-44) and (3-45) as the initial conditions.
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CHAPTER IV
STABILITY AND CONVERGENCE

4.1 Introduction

The numerical solution of the set of nonlinear partial differential
equations, Equations (2-4) and (2-5), raises valid questions of stability
and convergence. Stability is the property of the numerical scheme that
assures that no part of the solution will grow in time without limit
until it destroys the calculations. Convergence is tested by the
ability of the scheme to reproduce the terms of the differential
equations without introducing extraneous terms which are large enough
to affect the solution.

There is no existing theory for analyzing the stability and
convergence of numerical schemes for nonlinear partial differential
equations., However, the experience of other workers and results of
their numerical experiments [11] show that the small perturbation
analysis may be applied to the system of linearized partial differential
equations and its finite difference analog. This allows the estimation
of the domain of stability and the convergence properties of the scheme.

In this chapter, the diffusion and dispersion characteristics of
the governing equations (2-4) and (2-5) are studied for small amplitude
perturbations. This is followed by a similar analysis of the finite
difference equations based on the difference scheme adopted in Chapter
III. The comparison of the two systems is used to study the convergence

of the finite difference scheme,
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4.2 Linearization of the Governing Equations

Equation (2-4) can be written as:

_F%) 3y , g% 32 _ g2 (y-z) 3B - -
a-Fy L+ 2o B B85 - (4-1)

Similarly Equation (2-5) taken together with the supplementary equations

developed in Chapter II, can be written as:

ti mi-l t1 ml az ts m om 5] sn
[ Y (B gmh o) o+ Y (B'h h) + B %h SInh)—=> 8h]
i=4,5,6 i=536

z ti mi-l Z ti mi azi

+ (B "2.m.h ) + (B *h & —=
[i=7,8 1 i=7,8 oh
t m, om

7 7 7 | oh 9z

+ B 27h 1n{(h) —~——] + (1- p)S W 3t
ty-1 my 2
+[ Yy B s ;(1#tOh 7} =0 (4-2)
i=4,5,6
Defining
- ti mi-l
Hi =B L,m h (4-3)
. t, m 3%,
I1 =B "h B (4-4)
. ti mi ami
Ji =B 2ih In(h) Sh (4-5)
t.-1 m,
K. =B 2.(1+t.)h?t (4-6)
i i i

Equation (4-2) can be stated as



. 3 . 23
Y A, + § I +3 ] X, [ y} O OH, o+ ] I+ ] 2L 4
[1=7,8 1 3278 7] %  |i-4)5,6 * i=5,6 > )%
- = = \]oz
1-p)s_y, - ( Y H + ) I,+J )]-——
[ S'W i=7,8 i 478 i 7] ]at

-~ ~ -~ az -~ aB
- 7 H o+ J I.+J)]——+[ ) K.]—-so (4-7)
[ (i=4,5,6 i1 45,6 1 5/)% Liaa)5,6 1%

Equations (4-1) and (4-7) are nonlinear in h. They are linearized

around the uniform flow by writing:

y = yO +n (4-8)
z=2z2 +1 (4-9)
h = ho s - (4-10)

where subscript o refers to the uniform flow condition and perturbations
n<<y.&<<z,and (n-2g)<<h.

In the general case of a variable coefficient Pi operating on a
partial derivative, say 9y/dt, the perturbations defined in Equations (4-8)

through (4-10) will result in the following:

ay
3y _ o, on -
Pi 3t [pio + il e+ 3l (4-11)
ay ay
- ) an —o an -
= Pio ot " Tiat T "iat T Pio a3t (4-12)

where Pi is the value of Pi associated with uniform flow and ™
is the pegturbation in Pi due to n and 7. The first term in the
expansion represents the uniform flow, and it drops out together with
the uniform flow components of other terms in the perturbed equation.
The second and third terms are dropped because they are of negligible
magnitude compared to the remaining terms (1ri << Pi ). Thus the only

o
remaining term on the right hand side in Equation (4-12) is
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P In/3t. Similar reasoning will apply to P, dy/3x, P, 9z/9t,
o
P, 3z/9x and the only terms remaining in the perturbed equations

corresponding to these will be Pi an/ax, Pi 3z/ot and Pi ag/ax.
o o o
Substituting Equations (4-8) through (4-10) into Equations (4-1)

and (4-7), and considering the foregoing simplification based on an

order of magnitude analysis, the following system is obtained:

oo -

n
ot
an
Pl Pz PS-P1 -Pz X ~P4
§£ = (ﬂ‘C)
0 P5 0 l-Ps at -P6—P7
3z
| 9x | (4-13)
where:
p.=| Y B + ) I, +3J (4-14)
1 li=7,8 o i=7,8 Yo o]
P, = i, o+ I, +3J (4-15)
2 i=4,5,6 1 i=5,6 1 50]
Pz = p. = (1-p)Syvy (4-16)

Py = [%' %%‘( ) (1+ti)(ﬁi ) + ) (1+ti)(ii ))] (4-17)

i=4,5,6 o i=5,6 o
P = 1-F (4-18)
5 ~ o -
P = H, (4-19)
(o}
p, =1 32-(zFZ) (4-20)

and the subscript o refers to values of the subscripted quantities

related to the equilibrium flow condition.
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4.3 Diffusion and Dispersion Properties of the Differential System

For small perturbations, the linearized system (Equation (4-13))
approximates the behavior of the differential system (Equations (2-4)
and (2-5)). The diffusion and dispersion properties of the differential
system are therefore inferred in the following from a consideration
of the linearized system.

The solution of n(x,t), ¢t(x,t) of Equation (4-13) is assumed to be
differentiable at least once for all x and t including the boundaries.

The solution can be written as a Fourier series:

n(x,t) = mzl nomeXP[i(GmX-Bmt)] (4-21)
t(x,t) = | t_ expli(o x-8 t)] (4-22)
m=1 m

where i = /-1, o, = 2n/L_, L~ is the spatial wavelength, B = 2m/T ,
Tm is the wave period, and subscript m refers to the mth component.
Considering one such component and dropping the subscript, the
substitution of Equations (4-21) and (4-22) into Equation (4-13)

provides the following homogeneous system:

1]

(4-23)

(P61*P 1—P50) (Pso~o—P 1-P71) Co 0

7 6

For a nontrivial solution the determinant of the coefficient
matrix of homogeneous Equation (4-23) must vanish. Accordingly:

2 . 2
U[PZ(PSPS—Pl)U +P3P4(P6+P7)] + io [PZPS(P6+P7)-P4(P3P5-P1)]

B = -
22 2 2
(PSPS-PI) (V] +P3(P6+P7) (4-24)
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Equation (4-23) shows B 1is a complex number with the real part

2
-0[P, (P,P P )0 + PP, (P +P.)]

B, = (4-25)
R 22 2 2
(PsPg-Py)70" + Py(Pc+P,)
and the imaginary part
-02[9293(p6+p7) - P, (P;P-P)]
g, = (4-26)

22 2 2
(PPg-P1) 0" + P (Pg+P,)
Considering Equations (4-21) and (4-22), the amplification factor of

Equation (4-13) is exp[BI] and the celerity of the mth Fourier

component is [BR/G]m. Equation (4-26) indicates that generally

3B
X

Equations (2-4) and (2-5), has a nonvanishing amplification factor.

BI # 0 unless = 0 and Sf = 0. That is the frictional system,

It is relevant to consider the celerity of a small perturbation in

the system (Equations (2-4) and (2-5)) as affected by the frictional
term and the nonprismatic channel shape. From Equation (4-25), one

can define the small perturbation celerity for a frictionless prismatic

channel,

_pz

C = ot
o (P3P5~P1)

(4-27)

For a prismatic channel (§§-= 0) with nonzero frictional term

2
-P_(P,P.-P,)o
¢ - 2V'3'57"1 (4-28)

£ 22 2.2
(PSPS—PI) " + P3P6
or
c
Ce = °2 (4-29)
1+€f
where
PP

P IR T (4-30)
£ 7 PP-P )0
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In subcritical sand-bed channel flow generally, e < 0. For a

nonprismatic channel (B' # 0), with nonzero frictional term,

c
— o -
“e8 T, 2 [1 + egpepl (4-31)
fB
where
P

€ep = ef[l + 5;? (4-32)
and p4

EB = “l;;-&' (4—33)

From Equations (4-27) through (4-33), the following conclusions can
be derived about the celerity of a small perturbation in the differential
system (Equations (2-4) and (2-5)):

1. The celerity <, in a prismatic, frictionless system
increases as the rate of change of transport with the
depth of flow (g{), increases in absolute magnitude
(smaller bed material size, etc.). Also co is
independent of wave length.

2. The effect of frictional term (Sf) is to decrease the
celerity of a small perturbation. The correction €e
(Equation (4-29)) depends on the wave length of the
perturbation and is larger in absolute magnitude for
longer waves than for the shorter waves.

3. For a nonprismatic channel, the effect of B' # 0 is to
change € as well as to introduce another correction
(Equation (4-31)). For a contracting subcritical flow
sand-bed channel (B' < 0), the celerity will generally

be greater than for a corresponding prismatic channel.
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4. In a frictionless system, small perturbations will travel
without dispersion (Equation (4-27)). However in a
frictional and nonprismatic system, dispersion of the
waves is experienced. The absolute magnitude of both
€e and €3 increase with increasing wavelength of
the component wave.

The effect of frictional and nonprismatic terms on the damping

factor exp{BI] can be similarly studied by considering Equation (4-26).

Rewriting this equation

B = (4-34
(81 5 e )

where all these terms have been previously defined. For a prismatic

channel, P, = 0, P 0, e, =0, and sz = €f, so that

4 77" B
C O€
f
B = — (4-35)
1+ef

and for a nonfrictional, prismatic channel, €g = 0,

Equations (4-34) through (4-36) show:

1. 1In a prismatic nonfrictional system the perturbations
n and % will not be amplified or damped.

2. For a subcritical flow in a prismatic sand-bed channel,
eg < 0 and therefore BI is negative, so that all wave
components of the perturbations will be damped. The damping
factor exp[BI] also depends on the wavelength, so that
shorter wavelength components will be damped more than

the longer wavelengths.
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3. For a large enough positive value of B' (expanding
channel), (BI)fB could become positive, so that the

perturbation n and ¢ will be amplified.

4.4 Diffusion and Dispersion Functions for the Difference System

Using the small perturbation linearized approximation
(Equation (4-13)) to the differential system (Equations (2-4) and (2-5))
the diffusion and dispersion functions are developed for the difference
scheme used herein. The discretization scheme of Equations (3-1)

through (3-5) applied to Equation (4-13) yields:

P P
1 n+l n n+l n 2 n+l1 n+l n n
m [nj+1 - ﬂj+1 + ﬂj - nj] + Z; [6(n5+1 - ﬂj ) + (1'6) (ﬂj+1- T\j)]

(P,-P.)
31 n+l n n+l n
M7 LTS TR OIS LY
! o el - h s a-e i, - o]
- 541 " 1 " 5
. Eﬁ-{[S( L L -l + ]
2 nj+1 n3+1 j
n+l n+1 n _ -
- (855, + ) + (- 6)(:J+1 * 1 =0 (4-37)
%5 o™l - a4 (1) (R - )
Ax °WM541 T “3+1 3

(1-p.)
5 n+1
+ [6(£j+1

e a-eal, - i

(P_+P.)
6 7 n+1 n+1 n n
{[5( J""l j ) + (1'6) (nj"'}- + ﬂj)]

S LR A IR e RO TGN ) PR (4-38)
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Let the solution of Equations (4-37) and (4-38) be expressed

as a Fourier series for a time and space grid point t = nAt and

X = jAx as:

-
P
]

[
Cde
i

mzl n,, expli(o. jox - B nat)] (4-39)

mzl ¢, expli(o, jox - B nAt)] (4-40)

In Equations (4-39) and (4-40) cn(= 2w/Lm) and Bm(= Zn/Tm) are

the wavelength and wave period for the mth Fourier component and in

general Bm is complex. Considering one such component and dropping

the subscript m, substitution of Equations (4-39) and (4-40) into

(4-37) and (4-38) yields:

where

and

{Pl[exp(-iBAt)—I] + Pzri.tana[éfexp(~iBAt)~1}+l]

+ P4At[6{exp(—iBAt)~1} + 1]} n,

+ {(PS—PI)[exp(-iSAt)-1]~P2ri.tana[s{exp(-iBAt)-l} + 1]

- P4At[6{exp(~iBAt)-1} + 11} g, =0 (4-41)
(P +P,) Ax (Pg+P,) Ax

[1P5tana + __~_5_--qno + [1(1~P5)tana - ~———§--Jgo = 0
(4-42)

o = 38X (4-43)

2
2At
r = *A—'}E‘ (4 "44)

Equations (4-41) and (4-42) constitute a homogeneous system of

algebraic equations in n, and o For a nontrivial solution, the
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determinant of the coefficient matrix should identically vanish. This

condition yields:

exp(-iBAt) = 1 - (N‘iQ)(M*ng - i‘"“iQ%(P'QG) (4-45)
(M+N§)© + (P-Q5)
where
P, (P_+P.)Ax
M= _é__éi_z_._ (4-46)
N = P,r tanzu (4-47)
P = (PgP - P,)tana (4-48)
Q = P,At tana (4-49)

Dividing Equation (4-45) by (P-Q8)2:

(ST-U) -~ i(US+T)

exp(-igAt) =1 - 3 (4-50)
1+8
where
_ M+N§ -
S =5 (4-51)
N
T = T (4-52)
=3 -
u P-Q3 (4-53)
Expressing the complex B as
B = By + iB; (4-54)

and separating Equation (4-50) into the real and imaginary components:

2
exp(BIAt)cos(BRAt) =1+8S- §T+IJ (4-55)
‘ (1+8%)
and
exp(BIAt)Sin(BRAt) = - Qg%ﬂ (4"56)

1+S
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From Equations (4-55) and (4-56),

-(US + T)

tan(B At) = 4-57
an (B 1+82-ST+U =57
. _ - (US+T)
(B.At) = (4-58)
TR [(1e52-sTe0) 2 (UseTy?]/2
and
exp(8,8t) = [1+s2-sT+)? + (Us+Ty?1Y/2 (4-59)

1+S2

Equations (4-57) and (4-59), express the dispersion and diffusion
functions for the finite difference analog of the linearized system
(Equation (4-13)). The celerity of a Fourier component of solution
Equations (4-39), (4-40) is given by BR/c and the amplification
factor at time At is given by exp[BIAt]. These functions are next

used in studying the convergence ratios of the difference analog.

4.5 Convergence Ratios

In the previous two sections, the diffusion and dispersion
characteristics of the differential system (Equations (2-4) and (2-5))
have been developed for its linearized version (Equation (4-13)) and for
the finite difference analog of Equation (4-13) based on the implicit
difference scheme (Equations (3-1) through (3-5)). It is of considerable
interest to study the closeness with which the finite difference analog
represents the diffusion and dispersion characteristics of the differential
system. Of necessity, this study can only be made approximately, in
terms of the linearized system (Equation (4-13)) that is valid for small
perturbations only. Two convergence ratios for one time step At

are defined as:
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. Wave damping in the finite difference system
1 ~ wave damping in the linearized differential system

and

_ wave celerity in the finite difference system

RZ ~ wave celerity in the linearized differential system

From the results developed in Section 4.2 and 4.3, these ratios are:

exp (B At)

e ICcON (4-60)
By/o

R, = — (4-61)

where t = At.

Substituting Equations (4-34) and (4-59) into Equation (4-60):

_ [a+s?-sTs)? + (use)?1/?
c oAt

2 o
(1+8 )eXP[ (e i]
(1+ef§) £B° B

(4-62)

Similarly substituting Equation (4-31) and (4-57) into Equation (4-61):

tan-l[ - (US+T) ]

2
- 1+S~-ST+U (4-63)

RZ CogAt
( )(1+efB )

1+efB

These ratios are next analyzed for frictional and nonfrictional systems.

4.6 Convergence Ratios for Prismatic Frictionless Systems

The simplest case of the differential system is that of a
prismatic, frictionless channel, that does not experience any dissipation
or dispersion of the bed and water surface perturbations. For such a
system:

€ =€ =0 (4"64)
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P, =P =P, =0 (4-65)

=
"

o
"
c
n
=]

(4-66)

and Equations (4-62) and (4-63) simplify to:

1/2
N262 N26 2 N 2
A+ =—-) + &
P P
R, = (4-67)
1 2.2
a+X3
P2
_N
1 -1 P
R, = —— tan (4-68)
2 oAtco N252 NZS
L+ —— -
P | 4
From Equations (4-27), (4-47) and (4-48):
N. ¢ r tana (4-69)
P o

so that

{[1 + 8(6-)(c_r tancz)z]2 + (c r tamon)z}ll2
R, = ° ° (4-70)

1 1+ (Gcor tana)2
-1 cor tana
R, = == tan 5 (4-71)
o 1+ 6(6-1)(cor tana)

Equations (4-70) and (4-71) indicate that the convergence ratios are
functions of dimensionless parameters Cols @ and 6. Also these
ratios are expressed in terms of one time step At. As parameters
coT and o vary with a varying At, it is necessary to adopt a

fixed typical time span over which the convergence ratios are studied.
After Leendertse [12], the time TL required for a wave to travel its
original wavelength, is taken as such a time span. The number of time
is

steps, N, contained in ’I‘L
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4-72)

Based on the values of parameters cor, o and & wused at the first
time step, the cumulative product of the convergence ratios at time

TL are given as
- N
Rl* = (Rl) (4-73)

and

RZ*

®)" (4-74)

Inspection of Equations (4-70) and (4-71) shows that for coT = 2

and 6 = 0.5, the convergence ratios R and R are identically

1*
and R

2%

equal to 1. The variation of R 2% with parameters c,T>

1*
8 and o is shown in Figure 4.1(a) through (c) for o = w/40, ©/100
and w/400. The results of these figures can be interpreted as:
1. The convergence ratio Rl* is greater than 1.0 for
0 <8 < 0.5 for all values of c,T and a. Any perturbations
resulting from truncations errors, etc., will therefore grow in
time for this range of &§. The finite difference analog is thus
unstable for & < 0.5 and this range should be avoided. In
practice, the nonlinear systems always generate some high
frequency perturbations [10] that can lead to instabilities
unless some damping (RI* < 1) is provided in the finite dif-
ference analog. Therefore, a value of § > 0.5 1is necessary
to assure the stability of the scheme.
2. A value of c,T = 2 provides a value of Rl* =Ry = 1 for
§ = 0.5 and for all values of a« 1less than w/2. For other
values of c,T» ratios Rix and Ry, are closest to 1 at

different values of §. Physically, CT = 2 amounts to

following the perturbation along a characteristic direction.
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(a) a=w/40
~\\ R'*
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Curve Parameter,
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o
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Fig. 4.1 Variation of Convergence Ratios R,, and Ry, with
Discretization Parameters in a FriCtionless System.
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4.7 Convergence Ratios for Frictional Prismatic Channels
A more realistic case than the frictionless channel considered in
the last section is that of a frictional channel. For a prismatic

frictional channel,

ey =0 (4-75)
°fB = °f (4-76)
P, =P, 20 (4-77)
and
Q=uUz0 (4-78)

Equations (4-62) and (4-63) can be accordingly simplified. The

simplified equations indicate that the convergence ratios R1 and RZ

are functions of terms pertaining to the resistance and transport

functions such as P,, P,, P and P_, as well as parameters

1> P20 P53 Ps 6
Cel, a and 6. Therefore, parameters cfr, o and & in frictional

systems do not completely define the convergence ratios by themselves

as they did in the nonfrictional systems. These ratios for frictional
prismatic channels are not as simple as they were for the nonfrictional
channels. However for a given problem, where values of Pl, PZ’ Ps, PS
and P, are fixed, it is possible to define the variation of R1 and

6

R2 with the basic discretization variables Ax, At and 6.

Another problem with the study of cumulative convergence ratios

Rw and RZ* in frictional systems arises from dispersion of waves.

The celerity cf (Equation (4-28)) depends on the wave number o of
a sinusoidal perturbation and o changes continuously in time due to
diffusion and dispersion. Ratios Ris and R in a frictional
system are herein defined as

Rjw = (R)) (4-79)
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Ne
Rye = (R)) (4-80)
where 2
L 2n(1 + ef)
N, = = (4-81)
f cfAt acor

In Equations (4-79) through (4-81), Rl’ RZ’ L and g pertain to the
initial values of channel and wave parameters. It can be shown that
in subcritical flow in prismatic sand-bed channels, these equations
represent the upper bounds of ll-Rl*l and Il~R2*l calculated from
updating the values of L and ce at each time step At with new
values of o, 6§ and CeT.

The variation in Ris and R)w with a, § and Cer is shown in
Figures 4.2(a) through (c). These graphs pertain to the numerical

problem studied in Chapter V. For this problem the equilibrium data are:

Q = 15000 cfs (424.752 m>/sec)

B = 300 ft (91.44 m)

F =0.20

Sf = 0.0001

g, = 0.1030 1bs/ft/sec (1.50 N/m/sec)

g = 0.2528 1bs/ft/sec (3.68 N/m/sec)
and

g = 0.3558 1bs/ft/sec (5.18 N/m/sec)

The value of resistance and transport parameters are:

P. = -0.002565 1bs/cu. ft.

1
P, = -0.015862 1bs/sec/ft?
P3 = 107.484 1bs/cu. ft.
P, = 0.96021

P = -0.0000019344 ft !
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Fig. 4.2 Variation of Convergence Ratios R,,

Discretization Parameters in a Frictional SyStem.
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Figures 4.2 show:
1. For all values of o and cer, § = 0.5 gives Riw = 1.0.
However, for reasons discussed in nonfrictional system,
it may be necessary in practice to use § > 0.5.
2. Only for c¢ and R

=2, and § = 0.5 both R are

£7 1* 2%
equal to 1 for all values of o < w/2. For Cer Z 2, the

values of R and R depart from 1. Note that a value

1* 2*
of Cgl = 2 corresponds to following a perturbation along
the characteristic.
3. For all values of & and Cet the values of Rix and
R,, closest to 1 are found for the smallest values of a.
Apparently, the number of discretization points per wave-
length are more important in determining the convergence
ratios than the choice of & and CeT-
The variation in Rl* and RZ* was also studied by increasing
the resistance and sediment transport values used in Figure 4.2.
Figure 4.3 shows the variation in convergence ratios for the channel in
Figure 4.2, if the Manning's n is increased by 50 percent for all
values of the Froude number. Similarly, the variation in the convergence
ratios for the same channel is shown in Figure 4.4 if the bed material
load is increased threefold at all values of F. These figures show
1* and R,, are somewhat affected

by these variations but the general conclusions stated above remain

that the individual values of R

valid.

4.8 Convergence Ratios for Frictional Nonprismatic Channels
In natural and man-made channels, the channel width may be

contracting or expanding along the direction of flow. The general
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Discretization Parameters (effect of increased bed
material load).
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problem treated in Chapters II and III therefore provided for a
linearly varying channel width. For such a case, Equations (4-62)
and (4-63) apply in full.

The celerity of a small disturbance in a frictional, nonprismatic

channel, c is given by Equation (4-31). One can therefore define

fB

the convergence ratios R1 and R2 in terms of parameters CepTs @

and 6§ as well as the resistance and transport parameters Pl’ PZ’

P,, P, P., P, and P,. The cumulative values of convergence ratios

3> "4 '5’ 6 7
Riw and Ry, are defined as
N
_ fB
Rie = (R)) (4-82)
N
_ fB
Ryw = (Rz) (4-83)
where
L 2w
N, = = (4-84)
fB Cepht  acepr

and celerity Cep is defined by Equation (4-31).

The variation in Rl* and Ryu with o, 6§ and CepT is
shown in Figures 4.5(a) and (b). These graphs pertain to the channel
used in Section 4.6 and with B' = 0.01. Similar graphs for B' = -0.01
are shown in Figures 4.6(a) and (b). The scales in these two figures
are different from the scales used in Figures 4.1 through 4.4. The
following conclusions can be drawn from Figures 4.5 and 4.6 regarding
the convergence ratios in nonprismatic frictional channels.

1. The behavior of R is qualitatively similar for prismatic

1*

and nonprismatic channels.

2. The behavior of R for nonprismatic channels departs

2*

considerably from that for prismatic channels, as shown by

Figures 4.5 and 4.6. In general, it is more difficult to
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Fig. 4.6 Variation of Convergence Ratios R,, and R,, with
Discretization Parameters for a Nonprismatic Channel,
dB/dx = -0.01.
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maintain R,, close to unity than with the prismatic channel.

Gross inaccuracies may result for values of 6 not in the

vicinity of 0.5, for all values of chr'

4.9 Summary

The stability and convergence properties of the numerical scheme

developed in Chapter III have been analyzed by using linearized versions

of both the system of partial differential equations, Equation (4-13),

and its finite difference analog, Equation (4-37) and (4-38). These

properties have been expressed as the aggregate values of the dispersion

and damping ratios over the time required for a wave to travel its own

length.

1.

The following conclusions are drawn from this analysis:

Frictionless Prismatic Systems: the convergence ratios
are functions of the dimensionless parameters CoTs @
and 8. Ideally, for c,r = 2 and 6§ = 0.5, the
convergence ratios Rl* and Ry, are identically equal
to 1, regardless of the value of a. For 0 < 6 < 0.5,

R is greater than 1, and the numerical scheme is

1*

unstable. For 0.5 < § <1.0, R is less than 1, and

1*
artificial damping results in a stable scheme. In
practice, however, high frequency perturbations are
generated by the nonlinear system. Therefore, a value
of & near 0.70 may be necessary to provide numerical
damping required for stability.

Frictional Prismatic Systems: the convergence ratios are
functions of the dimensionless parameter cor, o and &,
and of the resistance and transport functions. The
variation of R« and Ryws

similar behavior as that observed for ideal frictionless systems.

however, show qualitatively
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3. Frictional Nonprismatic Systems: the convergence ratios
are functions of the dimensionless parameters cor, o
and &, the resistance and transport functions, and the
specified width variation. Rl* shows qualitatively

similar behavior as that observed for prismatic systems.

However, the behavior of R represents a considerable

2*
departure from that observed for prismatic channels, and
large amounts of dispersion and damping can occur for values
of & not in the neighborhood of 0.5.

The preceding conclusions on the convergence ratios are of a
qualitative nature and the actual magnitude of damping and dispersion

can only be obtained through model verification based on experimental

data.
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CHAPTER V
NUMERICAL EXPERIMENTS

5.1 Introduction

The numerical model developed in Chapter III was simulated on the
Colorado State University CDC 6400 digital computer. This chapter
presents the results of numerical experiments carried out to assess the
capabilities and limitations of the model.

In this phase of testing, various physical phenomena were
hypothetically simulated with the numerical model, and the results are
judged primarily on the realism of results obtained. The following

test runs were carried out:

Test Run Objective and Description
1 (a) The formation and migration of a bed wave in
the upstream reach of a channel due to a
nonequilibrium sediment inflow hydrograph
imposed on the upstream boundary.

(b) The migration of a bed wave specified as initial
condition on the channel bed.

2 (a) The phenomena posed by two bed waves of different
celerity coalescing to form a larger wave.

(b) The effect of the variation of the tail water
elevation on the evolution of the channel bed
configuration.

3 The formation of a negative bed wave in the
upstream reach of a channel due to a nonequilib-

rium sediment inflow hydrograph.
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4 The effect of local sediment removal mechanisms
(dredging, sediment ejectors, etc.) on the
configuration of the channel bed.

In these test runs particular attention was given to the practical
value of the dimensionless discretization parameters &, cr and a.
The following were given due consideration:

1. Selection of 6 to provide sufficient numerical damping to
preclude instability caused by high frequency perturbations
generated by the nonlinear system.

2. Selection of At and Ax to ensure a value of cr consis-
tent with the convergence criteria developed in Chapter IV.

3. Selection of o to avoid the errors due to insufficient
amount of discretization.

In addition, the accuracy of the linearized version was assessed by

testing the satisfaction of the governing equations for all space

intervals at every time step.

5.2 Test Reach
A simulated test reach was used for all test runs. The equilibrium

properties of the test reach are the following:

Discharge 15,000 cfs
Average width 300 ft
Average depth 12.5 ft
Froude number 0.20
Energy gradient 0.0001

Bed material transport 114 ppm,

0.3558 1bs/sec/ft

Median bed material size 0.25 mm
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The resistance function was expressed as follows:
n = 0.00380/F! 03 (5-1)

following Equation (2-14), where

Kl = 0.00380
a=0
b=1.03

For the transport function, the bed load function ¢-y is used as

given by Einstein (Figure 9, reference [2]) except the coefficient a

1
was multiplied by a factor of 2.0, so that the bed material load is
increased by the same factor. For the equilibrium data,

a; = 21.104
b1 = -1.67
in Equation (2-35).
The length of the channel is 12 miles. The celerity of small
perturbations is 0.00049 fps or 0.008 miles/day. From Chapter IV,
a value cr = 2 is indicated to minimize the convergence error.
Expressed in terms of At and Ax the condition is:
c &y (5-2)

Ax

Taking At = 10 days, it follows that Ax = 0.08 miles if
Equation (5-2) is to be satisfied. Note that a smaller value of At
will require a smaller value of Ax to maintain the same values of
convergence ratios.

For Ax = 0.08 miles, the number of computational reaches in the
12 mile-long channel is 150.

The simulation can be carried out for any number of time steps.
However, for this particular example, a small wave will travel the whole

length of the channel in 1500 days or a total number of 150 time steps.
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In test runs 1 and 2 the simulation was carried over 100 time steps.
Note here that by fixing Ax the value of o has already been fixed.

In effect,

a = L;Lx (5-3)

and since L, the wavelength of the disturbance is a characteristic of
a given problem and independent of the discretization parameters,
fixing Ax is tantamount to fixing «. Caution should be used, however,
to avoid values of o greater than 5%3 since this could introduce
wave distortion and damping due to insufficient amounts of discretization
(refer to Figure 4.1).
A summary of the discretization characteristics for the test
reach follows:

Ax 0.08 mi

At = 10 days
c = 0.008 mile/day
cr = 2

number of computational reaches = 150

number of time steps = 100

5.3 Test Run 1: Formation and Migration of a Bed Wave

Two problems were simultaneously studied as part of Test Run 1:

1. The migration and dissipation of a bed wave specified as
initial condition on the channel bed. This wave was made
trapezoidal in shape, with an amplitude of 2 ft and
wavelength of 2.4 miles. The initial value of « for this
test run is w/30.

2. The formation of a bed wave in the upstream reach of the

channel due to a nonequilibrium sediment inflow hydrograph
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imposed on the upstream boundary. For test run 1, the
nonequilibrium sediment hydrograph was made triangular in
shape, with an amplitude of 2.25 times the equilibrium
transport rate and a duration of 100 days.

Figure 5.1 shows the bed elevation of the channel at 20, 40, 60,

80, 100, 120, 250, 750 and 1000 days.

The following observations are made regarding test run 1:

1. The theoretical analysis of stability and convergence made
on a linearized version of the system has focused on the
necessity of keeping & equal to or greater than 0.5 to
avoid instability. In practice, however, a value of §
in the neighborhood of 0.70 appears to be the smallest value
that will numerically dampen the instabilities of the
nonlinear system. Trial runs with a value of § of
0.60 showed a marked tendency to instability, as shown
in Figures 5.2 and 5.3.

2. The accuracy of the linearized numerical scheme has been
studied by testing the satisfaction of the governing
equations at every time step. This was done by using the
values of y and 2z for time steps nAt and (n+l)At
to calculate the various terms of the governing equations
for every time and space interval. These discrete values

were used in Equations (2-4) and (2-5) as follows:

0.5

- 0.5 n+l  n+l n n, _ _
3 By = ax [, 8. *8 "8 1=4 (5-4)
i+l j j+l ]
3 . 0.5 n+l n+l n n, _
3 8) = 5o lgg -8 o o-¢ -8, 1=24, (5-5)

1% 1%
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) _0.5 n+l n+l_ n n, _
5t (Gl = [(C L)+ (ChTT - (€ hyy, - (Ch)T = 8y

j+l j+l
(5-6)
9 . 0.5 n+l n+¥l _ n _  ny _ -
P& 5’{ (z) = At p*[zj‘i'l + zj zj*'l Z]] A4 -7
B' 1 ,.B' n+l B' n+l
(gb+gs) _B'_ = 4 {[ B (gb+g5)]j"'1 + [B (gb"'gs)]j
B! n B! n, _

+ ['—B_' (gb+gs)]j+1 + [‘B— (gb*gs)]j} = AS (5"8)
2L,y .05 ptn M et o = (5-9)
ax 2gB2h2 Ax j41 3 j+1 5 6
3 0.5 n+l n+l n n
— (S5p) = /— [S - S + S -S.]1=24 (5-10)
ox - f Ax fj+1 fj fj+1 f5 7

The errors in satisfying the sediment continuity and momentum

equations were then expressed as:

AL+ A+ A+ A + A

m
72}
1]
o
N
(%]
=N
w

Ideally, in a discretization scheme that introduces no errors,
€, = € = 0. However, the linearized numerical scheme always
introduces truncation errors. These errors are taken as a
measure of the inaccuracy of the numerical scheme.

This test run showed that the linearized version is an
accurate representation of the governing equations. However,
at points of discontinuity in the first derivative of the
dependent variable, the governing equations may not be rigor-
ously satisfied. This effect is likely to be of a secondary

nature because it occurs only at local points and it is

counteracted by the numerical damping provided in the scheme.
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The existing bed wave travels downstream, and it is subject
to damping and dispersion as will also occur in a natural
system. However, the damping and dispersion of the simulated
bed wave have two components: (1) a physical (natural)
component, governed by the value of €¢ (see Chapter 1V,
Equation (4-30)), and (2) a numerical (artificial) component,
governed by the discretization parameters 6, cr and ao.

The amount of physical damping in the linearized equations
can be assessed by calculating the value of the amplitude
logarithmic decrement after one period of propagation. From
Equation (4-35), for a prismatic channel:

c aeft

exp[ (By) ;] = exp :+62 (5-11)
£

For t = T, and using Equation (4-29)

exp[(BI)fT] = exp[cfcefT] (5-12)
Since ch = L, and Lo = 2m,

exp[(BI)fT] = exp[Znef] (5-13)

And the amplitude decrement after one period of propagation

can be related by the following equation:

Z

1, _ -

ln(z—) = Znef (5-14)
)

where z; is the bed elevation after one period of

propagation, z, is the bed elevation at the beginning of the
period, and FY the frictional parameter given by Equation
(4-30), is a function of the channel flow and wave

characteristics.
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The numerical damping in the linearized system can be
estimated from Figure 4.1. This figure gives the value of
Riw for one period, for given 6, cr and a. Since the
convergence ratios are based on linearized equations and cr
and o vary in time, the value obtained from Figure 4.1
represents only a qualitative indication of the actual
amount of numerical damping.

In the absence of closed form solutions of the governing
equations it is difficult to separate the physical and
numerical components of damping except by a qualitative
estimation of the latter. For this reason, it is necessary
to verify the model with data obtained from physical systems.
A bed wave is generated in time in the upstream reach of the
channel, due to a sediment inflow hydrograph that exceeds
the equilibrium transport rate for a given time period
(see Figure 5.1). A significant feature of the nonlinear
formulation of the upstream boundary condition is that the
channel bed at the upstream boundary recedes to its
equilibrium value as the inflow hydrograph recedes to
equilibrium. This feature, that otherwise would be considered
normal, has shown not to be possible with a strictly linear
formulation of the boundary condition, see for instance
Cunge and Perdreau [7].

In modeling the formation of a bed wave caused by a non-
equilibrium sediment inflow values of cr 1less than 2 are
not practical. With cr < 2, local oscillations are

generated that may not preclude stability but are of
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sufficient magnitude to render the solution meaningless.

In practice, both for convergence purposes and for eliminating
oscillations when modeling nonequilibrium sediment inflow

into a channel, a value of cr equal to or slightly greater
than 2 is indicated.

The bed wave generated at the upstream boundary travels
downstream subject to damping and dispersion. The foregoing
comments regarding natural and artificial damping are also
applicable to the bed waves.

The linearized numerical scheme is based on the assumption
that over a time step At the change Ah in a quantity h

is small enough so that second and higher order terms in

Ah/h  can be neglected without considerably impairing the
accuracy of the solution. In general, a limit of Ah/h < 0.10
is indicated. Larger values of Ah/h for any given time

step will generate local instability that may or may not be
dissipated by the numerical damping provided in the system.
Maximum local values of Ah/h for test run 1 are of the

order of 0.10.

In this respect, the shape of the sediment inflow
hydrograph may impose a significant limitation on the
discretization parameters. In theory, any shape of
sediment inflow hydrograph can be modeled provided At can
be adjusted to keep Ah/h within a specified tolerance,
say 0.10. In practice, however, it is also necessary to
keep cr > 2 to avoid oscillations and to improve convergence.

Thus, reducing At should be accompanied by a decrease in
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Ax, and this may extend computer time and core requirements.
When core requirement is a limitation and large values of
Ah/h are anticipated, the modeling may be carried out in
two sequential stages: (1) modeling the formation of the
bed wave, and (2) modeling the migration of the bed wave.

In modeling the formation of the bed wave, the total length of
the channel need not be taken. Instead, only a fraction of
it, corresponding to an upstream reach of suitable length
can be modeled as a first stage. This enables the decrease
of Ax and At, thus distributing Ah over several time
steps. Once the bed wave has formed on the upstream reach,
its migration over the total length of the channel can be
modeled as the second stage, with correspondingly larger

values of Ax and At.

5.4 Test Run 2: Coalescing of Bed Waves and Variation of Tail Water
Elevation

Test run 2 was carried out using the discretizing parameters of
Section 5.2, and a value of &6 of 0.70. Two problems were simultaneously
studied:

1. The coalescing of two bed waves of different celerity: one
specified as initial condition in the bed, and the other
formed by a nonequilibrium sediment inflow hydrograph. For
this problem, the nonequilibrium sediment inflow hydrograph
was made trapezoidal in shape with an amplitude of 2.5 times
the equilibrium transport rate and a duration of 120 days
(see Figure 5.4). The maximum value of Ah/h was 0.14.

2. The effect of the variation of the tail water elevation on

the channel bed configuration. For this problem, the tail
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water elevation was increased 1 foot in the 250-500 day
simulation interval, and decreased 1 foot in the 750-1000
day interval.

Figure 5.4 shows the bed elevation of the channel at
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, 600, 800
and 1000 days.

The following observations are made on test run 2:

1. Two waves of different celerity can coalesce and form larger
waves (Figure 5.4).

2. The effect of the cyclical variation of the tail water level
on the channel bed level is manifested by a cyclical change
in the bed level. This change is qualitatively the same as
caused by a cyclical variation in the sediment inflow.

In this run a decrease of 1 foot in the tail water level
caused a readjustment of the bed level to reflect that
decrease. In the long run, the channel would have achieved
a new equilibrium with the bed level lowered by 1 foot
throughout.

3. The local instabilities shown are attributed to the high value
of Ah/h, 0.14. At such a value, some high frequency
perturbations are still being amplified, even though damping

is provided.

5.5 Test Run 3: Formation of a Negative Bed Wave

Test run 3 was carried out using the discretizing parameters of
Section 5.2, and a value of & of 0.70. In this test run, the
degradation of the channel and formation of a negative bed wave following

a decrease in the equilibrium sediment inflow hydrograph was modeled.
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Figure 5.5 shows the results of bed elevation for 20, 40, 60, 80, 100,
120 and 140 days. The results are physically realistic and show the

versatility of the scheme for modeling bed waves of sinusoidal shape.

5.6 Test Run 4: The Effect of Local Sediment Removal

Test run 4 was carried out using the discretizing parameters of
Section 5.2, and a value of § of 0.70. In this test run, the
degradation of the channel bed following localized sediment removal
was modeled. An amount of sediment equal to one-half of the equilibrium
transport rate was removed at a distance of 3.2 miles from the upstream
boundary. This was accomplished by balancing the sediment continuity
equation at x = 3.2 miles to reflect a distributed sediment sink over
the length Ax. Figure 5.6 shows the results of bed elevation for
20, 40, 60, 80, 100, 120 and 140 days. The following observations are
made on the results of this run:

1. The localized sediment removal causes local degradation that
propagates downstream in time. If the rate of sediment
removal is kept constant, new equilibrium conditions are
reached at the point of removal.

2. The disturbance originated in the bed does not travel upstream.
A theoretical explanation for this behavior lies in the fact
that there is only one characteristic direction for the
propagation of a bed discontinuity in subcritical flow,

and this is in the downstream direction.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

A mathematical model of sedimentation transients in straight
alluvial channels has been developed for subcritical flow. The model
has a sound phenomenological structure inasmuch as it is based on
widely accepted bed material transport functions and separately
considers the bed load and suspended load components of the transport.
It has considerable versatility and can successfully simulate various
transients yielding realistic solutions. The model uses the momentum
and sediment continuity equations in a coupled mode with the result
that it can use rather long time steps. This represents a significant
advantage because sedimentation transients are exceedingly slow
phenomena.

Underlying assumptions: The mathematical model is based on the

following simplifying assumptions. It is assumed that the sedimenta-
tion transients are a very slow process when compared to the water
transients. Therefore, for the time scale used for these transients,
the water discharge is considered invariant. This is a realistic
assumption. On the upstream boundary, it is assumed that the bed level
instantaneously adjusts to the flow depth and the prevailing transport
rate. In actual channels, there is a developing flow region extending
over some tens of hydraulic depth. However, in the length span of

the channel, it represents a small segment and the physical dissipation
evens out the conditions in time and space. This assumption is very
convenient and enables the modeling of a sediment inflow hydrograph.

Boundary conditions: The implicit numerical scheme can be solved

by resorting to a double sweep algorithm, provided the boundary
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conditions are well posed. It is shown here that for the upstream
boundary, either h or 2z need to be specified at every time step.
Alternatively, since the bed material transport g, is directly
related to the depth of flow h, a hydrograph of g, can be specified
at the upstream boundary in lieu of h. For the downstream boundary,
the model requires that stage y be specified at every time step.

Numerical analog: The governing equations for sedimentation

transient are nonlinear. In the model presented herein, the resistance
and sediment transport functions are expressed as power functions of
the flow depth and the nonlinear character of the governing equation

is maintained. A linear numerical analog of these equations is used in
the model. This analog is based on the assumption that the proportional
increment in the depth of flow, over one time step is small enough

(say under 10 percent) so that second and higher order terms in Ah/h
can be ignored. In the course of this study, a nonlinear numerical
solution was also developed, using the Newton-Raphson technique. This
solution has not been presented herein. Experience with the nonlinear
solution shows that for similar space and time spans of simulation it

is considerably more expensive in computational time than the linearized
solution.

Convergence ratios: The convergence ratios, as criteria of the

stability and convergence of the numerical analog, have been derived
herein. These are also based on linearized equations. General
expressions are developed for the convergence ratios Rl* and RZ*
for frictional nonprismatic channels. A study of these ratios shows

that for the simplified case of nonfrictional prismatic channels

convergence is a function of three dimensionless discretization
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parameters: §, c,T and o. Both Rl* and RZ* are identically

equal to 1 for &6 = 0.50 and c,T = 2 for all a < %a As § and c,r
depart from 0.5 and 2.0, respectively, the value of o becomes
increasingly relevant for convergence. Very low values of a(a < w/100)
assure a high degree of convergence even though ¢ might not be in

the neighborhood of 0.5 and c,r may differ from 2.0.

Convergence for frictional prismatic channels is a function of
s, CeT and o, as well as of the resistance and transport parameters.
A sensitivity study of Rl* and RZ* shows that variations in the
resistance and transport parameters do not affect them to a significant
degree.

Convergence for frictional nonprismatic channels is a function of
8, CepT and o, as well as of the resistance and transport parameters
and the specified chamnel width variation. Although Riu does not
seem to be appreciably affected by the width variation effect, Rz* for
nonprismatic channels differ considerably from that of its prismatic
counterpart, and it is difficult to generalize its behavior.

In nonprismatic channels, it will be necessary to study the values of
Riu and RZ* for the selection of discretization parameters.

The results of actual test runs carried out to test the performance
of the model indicate that a value of & of 0.70 is necessary to
provide sufficient numerical damping to counteract the high frequency
perturbations introduced by the nonlinearity of the system.

Test runs: The numerical model presented herein effectively
simulates the formation of a bed wave due to a nonequilibrium sediment
inflow hydrograph. There is no limitation to the shape of the sediment

hydrograph that can be modeled, provided the linearization is valid

(Ah/h < 0.10) and cr is equal to or slightly greater than 2.
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The numerical model presented herein can be used to model the
transient phases of various types of aggradation and degradation
problems. The examples presented herein relate to: (1) the formation
and migration of positive and negative bed waves, (2) the effect of
the variation of the tail water elevation on the channel bed configura-
tion, and (3) the transient effect of local sediment removal.

Model limitations: The suspended bed material model cannot

effectively account for values of the Rouse number Z equal to 1.1667
and 1.0. Coefficients 25, zs, 27 and 28 (Equations (2-46), (2-49),
(2-53) and (2-56), respectively) contain terms such that they increase

unbounded as Z -+ 1.1667 for &. and & and as Z -+ 1.0 for &, and

5 6’ 7
28. In practice, this condition will need to be monitored in the numerical
solution, and if present, it will be necessary to modify the transport
function to circumvent the numerical instability.

The linearized model is based on Ah/h < 0.10. In general, the
discretization can be arranged so that this condition is satisfied. In
certain cases of rapid change, it may be necessary to isolate different
reaches and progress the solution sequentially in time with a small
enough At in the region of rapid change.

Although the mathematical model presented herein has a sound
phenomenological structure and the hypothetical test runs have yielded
realistic results, it is necessary to verify it over some transient
phenomena. This is needed more so because the governing equation of the
phenomena are nonlinear and the convergence ratios are particularly
sensitive to the discretization parameters. Data are now being
especially collected on the Alluvial Channels Observation Project in

Pakistan on sedimentation transients for the verification of the

mathematical model developed herein.
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APPENDIX II
DESCRIPTION OF PROGRAM SETRAN

Program SETRAN calculates the sedimentation transients in alluvial
channels, according to the mathematical model presented in this report.
A description of the structure of the program follows. Input-output

examples are also given.

1. Program SETRAN
SETRAN is the name of the main program. It reads the input data
and executes the main steps in the calculation. Program SETRAN calls

ten subroutines for the execution of various aspects of the calculation.

2. Input Description
The input to SETRAN consists of the following:
Card No. 1, Format (2110)
This card reads in the integer indicators INDU and INDT that provide
for alternative choices in the upstream boundary condition and transport
function, respectively. The following values of the indicators are used:
a) INDU = 1: the inflow sediment hydrograph gt(t) is specified
as the upstream boundary condition, at every time step.
b) INDU = 2: the bed level hydrograph zl(t) is specified as
the upstream boundary condition, at every time step.
c) INDT = 1: the ¢ - ¢ relationship from Einstein's transport
function, Figure 9, reference [2], will be used.
d) INDT = 2: the user has the option of specifying one set of

transport parameters a. and b1 (Equation 2-35), obtained

1
from experimental data. This set should cover the total

range of transport experienced in a particular problem.
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Card No. 2, Format (6F10.0)
This card reads in the following real variables: viscosity of water,
bed material properties, and the resistance parameters kl’ a and b

(Equation 2-14).

Variable Units FORTRAN NAME
Kinematic viscosity v sq ft/sec VNU
Channel bed porosity p -- POR
Median bed material size D ft DIA
Coefficient kl in Equation 2-14 (Empirical) CK
Exponent a in Equation 2-14 -- CA
Exponent b in Equation 2-14 -- CB

Card No. 3, Format (2F10.0)

This card reads in the minimum and maximum values of the Froude number
to be expected at the upstream boundary. These values are needed

in the calculation of the upstream depth of flow from the specified

inflow sediment hydrograph.

Variable Units FORTRAN NAME
Minimum Froude Number - FRMIN
Maximum Froude Number - FRMAX

Card No. 4, Format (3F10.0, 2I10)

This card reads in the information related to the discretization.

Variable Units FORTRAN NAME
Weighting factor 6 -- DEL
Reach length miles RLENGTH
Total time days TTIME
Number of space intervals -- NL

Number of time intervals - NT
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Card (Sequence) No. 5, Format (4F10.0)

The next input is a sequence of (NT + 1) cards with the information
related to the boundary conditions at every time step. The following
variables are read in:

Variable Units FORTRAN NAME

Water discharge
(upstream boundary) cfs Q)

Bed material concentration
(upstream boundary) ppm cu()

Bed elevation
(upstream boundary) ft Zu(J)

Water surface elevation
(downstream boundary) ft YD(J)

Note 1: Depending on the available boundary conditions (refer to
Card No. 1) either CU or ZU will be known in a problem. The field
for variable unavailable in a problem should be left blank on every
card.

Card (Sequence) No. 6, Format (5F10.0)

The next input is a sequence of (NL + 1) cards with the information
related to the initial conditions at every space grid point. The

following variables are read in:

Variable Units FORTRAN NAME
Horizontal relative distance mile X
Channel width ft BZ(J)
Water surface elevation ft YO(J)

Bed elevation ft 20(J)
Reference bed elevation ft ZREF (J)

The reference bed elevation is the elevation to which the bed
level will be referenced at every time step. Either the initial bed
elevation or any other suitable reference elevation should be read

in as reference bed elevation.
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Card No. 7, Format (2F10.0)

If INDT = 2, an additional card which constitutes the last card in

the input logical record should be read in. This card contains the

values of a, and b, in Equation 2-35; Format (2F10.0)

1 1
Variable Units

a, --

b1 --

3. Description of the Main Program

FORTRAN NAME

EA

EB

A flow chart shown in Figure A-1 depicts the structure of the

main program. A brief description of the subroutines is given in the

following section.

4. Description of Subroutines

Subroutine ULMT

This subroutine calculates variables zi, mi, and ti, for

i=0,1,2,3.
Variable Units

L m t -
o) o,

41s Mps Yy

22, mz, tz

A m

3’ 73 73

Subroutine VLMT

FORTRAN NAME

UL(4), UM(4), UT(4)
UL(1), UM(1), UT(1)
UL(2), UM(2), UT(2)

UL(3), UM(3), UT(3)

This subroutine calculates variables zi, m. and ti’ for

i=5,6,7,8. It also calculates the local value of the shear

intensity parameter ¢ and the Rouse number 2.
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B, mg, to
6> Mg> Cg
L,y M, t
bgs Mg, tg

v
Z

Subroutine VARI
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FORTRAN NAME

VL(5), VM(5), VT(5)
VL(6), VM(6), VT(6)
VL(7), VM(7), VT(7)
VL(8), VM(8), VT(8)

PSI

ROU

This subroutine calculates the following variables at each space

grid point, and prints them out at every

Variable
Referenced bed elevation
Average velocity
Froude number
Bed load transport
Suspended load transport
Bed material concentration x h
p*AZj
Total energy

Energy gradient

time step.

Units FORTRAN NAME
ft ZPLOT(J)
fps \'

- FR
1bs/sec/ft GBE(J)
1bs/sec/ft GSU(J)
1bs-ft/ft> CSH(J)
1bs-ft/£t> PZ(J)

ft HT (J)

ft/ft SF(J)
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Subroutine MOMENT

This subroutine computes the statistical parameters of the first

bed wave from the upstream boundary.

Variable Units FORTRAN NAME

Mode mile XMD
Z plot - mode ft ZMD
Mean X mile XMN
Standard deviation o -- SD

Coefficient of variation <, - cv

Skewness coefficient Y, - SKC
Kurtosis coefficient Yy - CKU

Subroutine HZUP

This subroutine calculates the value of the depth of flow at the
upstream boundary corresponding to the specified inflow sediment
hydrograph, (INDU = 1). It uses successive interpolations starting
with two extreme values provided by FRMIN and FRMAX. The maximum
number of iterations provided is 20, which is sufficient for most
cases. If the Rouse number is near 1.00 or 1.1667 (see Chapter 6,

Limitations), subroutine HZUP may not converge in 20 iterations.

Variable Units FORTRAN NAME
Trial h1 ft H3TRY
Trial 841 lbs/sec/ft2 G3TRY

Interpolated h1 ft HZB
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Subroutine COEF

This subroutine calculates the values of the entries to the
coefficient matrix. It also calculates the value of the bed wave

celerity at the upstream boundary, to be used as a guide for the

discretization.
Variable Units FORTRAN NAME
Parameter P1 1bs/cu ft P1
Parameter P2 lbs/sec/ft2 P2
Parameter P3 lbs/cu ft P3
Parameter P5 -- PS
Parameter P, £l P6
Bed celerity Ce ft/sec CNF
A*j lbs/sec/ft3 AS(J)
By 1bs/sec/ft> BS(J)
. 1bs/sec/ft> cs ()
D*j lbs/sec/ft3 DS(J)
Eyj £l ES(J)
F*J. £l FS(J)
Gy £e7! GS(J)
H, £t HS(J)
Q*j lbs/sec/ft2 QS (J)
R ft/ft RS(J)
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Subroutine DSWP

This subroutine calculates the values of ij and Azj for
j=1,2,...(NL + 1), by a double sweep algorithm. In a first
sweep, the upstream boundary conditions are picked up, and inter-
mediate vectors S*j’ T*j’ and U*j are calculated. In a second
sweep, the downstream boundary conditions are picked up, and ij

and Azj are calculated based on the intermediate vectors.

Variable Units FORTRAN NAME
S*j -- SS(J)
T*j -- TS(J)
U*j -- Us(J)
ij ft DY (J)
Azj ft DZ(J)

Subroutine TEST2

This subroutine checks the solution vector at each time step by
testing the balance achieved on the governing equations, using
the values of the variables at time steps nAt and (n + 1)At,

for all space intervals. It is based on Equations 5-4 to 5-10.

Subroutine GT

This subroutine calculates the local value of the bed material

transport for the specified values of Kl, a, b, a, and bl'

Subroutine BACKW

This subroutine calculates a backwater curve for the new value of
water discharge, thus readjusting the water surface level to the

change in water discharge at every time step.
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List of Variables (Arrays) in SETRANS

FORTRAN Variable Symbol Units

BZ channel width B ft

BZP dB/dx B! ft/ft

CSH concentration xh (Csh) lbs/ft2

CSHO concentration xh (Csh)o lbs/ft2

Cu concentration upstream c ppm

DY change in y Ay ft

DZ change in z Az ft

GBE bed load transport g, 1bs/sec/ft

GBEO bed load transport (gb)0 1bs/sec/ft

GSB upstream bed material 81 1bs/sec/ft
transport

GSU suspended load 8 1bs/sec/ft

GSUO suspended load (gs)o 1bs/sec/ft

HT total energy HT ft

HTO total energy (HT)0 ft

HZ flow depth h ft

HZO flow depth ho ft

Pz p*zj p*zj lbs/ft2

PZO PaZ; PaZjo lbs/ft2

Qu water discharge Q cfs

SF energy gradient %f ft/ft

SFO energy gradient Sfo ft/ft

X horizontal relative X ft
distance

YD downstream stage YN ft

YO stage y ft
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Z bed level z ft
* Z0 bed level z, ft
ZU upstream bed level z; ft
ZPLOT plot bed level -- ft
ZREF reference bed level -- ft

*
Subscript o refers to conditions at the previous time step nAt.

6. Input and Output Examples

Follows a sequence of cards as an example of an input logical

record, with the corresponding output.
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k lhl!!)l!ll!!l!!!llll!!!!!!!!!!!!!!l!!!!l!I!!!il!!3!!!!!!ll!!!llll!l!!!!lL!!!!ll!J)
l'!un1lsnuumusununanxwmnnmmnlunnxnn:uauamnuuumuuﬂnmus PR X 11} S8 n nun
e 0TSl
1 if Tr jf
. 000820 . 00830 0. 00 1.03
| | | |

€444¢
55555
éscts
ﬁr:rv

¥
.P.lll.'.lllll.l"l.l'l‘lll.'l.ll
]
IR RE ERRRRERRERRERRRERRERRARRRE)
dizesfs[Tesmnununsuunannannsnnnanen
€

GLOBE 807847

INi)U INDT
1 |

FORTRAN STATEMENT

IDENTIFICATION

- 0D

212222222222222222222222221212 TRVIC 1222222202222222222222220222222 22
3333333333333333333333303 ( §;é>‘? 3333333333333333333333(333333133
AR 0N i I 440484034400 0044 000004000044
5155555555955 85355555555555 §555555555555555555555;555555485

L L L L O L oo onooonnnnomyonn
TNNRUUB R AN NS AT AN RN RUU SR RN NG QAN BRI GANN AU ST UNBIRAHBERONENN NIRRT NN
1

I RRRRRER

FORTRAN STATEMENT

IDEMTIFICATION

sofeasogogovacoocofosoacosonanaesiaoig

3P3PI33333333333333333
L R R RN RN RN Y

1eenesn
nuUBNNRAN
[ERRRRRR
22222222
13331333

4444444

5
SEEOCEEECEEEEEEOERE0E000ES5SE (3 5 GEGEEEEEEE0C506666566668

UiRE RRRRERRARRRARRARERERRE

55555855
SE6E6E6SE
11111111

111
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s
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Card ITI-A
FRMIN
A
0.75 ~N
|}
A IDENTIFICATION
srreon FORTRAN STATEMENT
GIoIenacuciooraannonaoacanuaesoseaasacendondcoecvoscnostodosonasusessaen
|:!ll! TLSHHNBUBENUNRNNANRSRIAIRN NN USRI BBBSQQUSEVUBRNNPANSHIAPBRAURBUEROBBIININBRBEENIANN
(A RRIIRE R R AR R R R R R R R R R R RRRRR R SRR ARREAR R R R R R R R R R R R R AR I RRRRRR ]
2&222221212222222121222222221222 222222222222222222222212222222222
3.333333333'33333!333333333333 33333313
AU 000004048 D( (RN REY Y
5:5555/5/55555555555555555555555 5555554585
GEGOEB/S6EHEECEREOROGOCEEEEE06EE S666666¢6
InAREIUIRRRAR] ERARRERRRRAREREERD] 1111103010008 511111111}
' UNIVE TER
l‘illllllllltllllllllllllllllll sISEBBBEBRRRRNRRSRIRRILAILIIRIIRMGS
l ﬁl!!!!!!l!!!!l!!!ll!!’!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!J;;!!!!I!‘)
1234 SB[ 1 1 S UNRUUBKUUNBANDANDEIADNYN ANNNBBIVABINUUEBURSHI NN Y I TSI NN
OLOBE SOTS4T o
Card IV-A
DEL  RLENGTH  TTIME 111. rlr
0.80 50.0 10 5 ™\
1 |
FORTRAN STATEMENT e
i UL LD Sovsieaoennaveconcannooaoneonansoscecsnascasnesnaaoneosessasen
|:1nsiHlnuuuuulmuuanunuuununmlnnuu:nlmuwuumuuumsls:s:sasmuuutmuusuuunnunnuunnunu
(AR AR I R R R R R R R R R R AR RN AR R R R R R R R R R AR R R RN R I N RR R R
ﬁ!lll!l!l2!222212222222221222222 22222222222222222222222122222221212
3‘333333!33'3133333313'!333333 3333333333333333333333(33333133
ﬁll(ttl‘tl&&‘0444‘l44444l4444t Cl( A4 0000044400
ﬂsssss5sssssssssssss|sssssssss 5955555555555 555555555/55555555
i
SEGEE[S/60GEREEEE066G056CREE686668 P OECEGEOCOGECEROCEOGEROEHGEEEEEEES
TRt 111111111111 1) TT11T01 0101000000000 01111111
: UNIVERSITY COMPUTER CENTER
i.l!lllllllllllllllllllltllll SESBRBOBRUBRRRORBORRRRRBOCOBORROTBORRUBOOUUTBjRRRROIINTSISTS
ﬁ!l!l!!l!lll!!!lI!ll!!!!!l!!!!!!!!!!!!!!l!!!!!!!l!!!!3!°!!!!!!!!!!!!l!!!L!!!!!!!
234 5(8{1 8 e MU RAUBBTURAN D NNNS T AANN VUSRI BIGUNSCUBEURNRSI IR NIRRT OHB R nn )

GLOBE SOTSAT
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Card Sequence V

Qu(1) cu(1) Zu(1) (1)

114, 1 0?8

FORT RAN STATEMENT

IDENTIFICATION
qilllllll
nuBRNINNN
ERRRRRE]
2222222222222222222222 222222222
3333333333333333313331321381332133)
A44444440408040 0040000000000
5555555559555 9559555585,355555359
EESECEEEbUGEEUCEEEOOREEGCEEETTES

R AR R AR AR R R R R R R A R AR I RRARRAR
UNIVERSI COMPUTER CENTER

:
)

1

L}

1
ﬂ‘lll sssasssfosunnsnasaneassasasuoossssnsnnssrssarasossansIsIRIRIINILIIIIOINYL
1

SRR CER R ER R R AR R R R RN R R R R R R R R R R R R R RN R R R R R R R R R RN RE RN R R RRRRRRRRRRRRRRN
U saslsli s s mnnouB NI I N AR I I NN U NI NN RY NN NOOUGEN AR UNUR SN HYROOONB GO RN RN NN

Card V-B
Qu(2) cu(2) 2u(2) m(2)

150. i 132.’0‘?‘8

FORTRAN STATEMENT e
' LD liliillIllliillllll'lllllrllllll!
NERONS RN RN IR A NN H NN BRI RBN U RGN TRENNIDUR NN RN RO BUS R NN AN SR ANN

;;; ;:lllllllll!l!lllllllllll!l LR R R RN R R R R R R R R R R RN I RN R R AR
1?!222221112!2222!2212!!!21!!11! :e Y 221122112
l?l!!.!!l!ll!l!33833!3)33!3!!3 . : 33331333
lgllll‘N‘l‘ill“ll‘tll‘lll4444 °< o jo 4444444

5’558555555'555555555555555555
LIli!iilll“l'!ll(lillllili

IR R R R R R R R RN RRRRRRRRARRRSRE IR AR AR R R R R A R AR RN ARRERRE]
: IVERS OMPUTER

L llllllillllllllllll%‘Illlil};llllillltlllllllll%llll'll.lllltlllllllllllll
Wl!'l!lllll!l'.lllllill!ll!l!ll!!llll!!l!lll!'!lllll!ll!lll!lllllllll!!!L!j}i}i;;)

0O
ﬂ!
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Card V-C
Qu(z)  cu(3) zu(3) (3)
114, 132.078 A
|
FORTRAN STATEMENT me—
geteeocoscocovntanaonocosaonoooovsoosococeonooocecencoosooossossoNoEoRoRNnd
1234 SI8{I S I NUNUNDBRUHEBANONSRNANRANNUBRIABAUQABUSBT ARSI UDASEIABINIRBUBSHUBIBIRNUBEINNN
Fhllllllll'llllllllIllllIIllll'lll RARRRERR R R R R R R R RN RIIEERERE R
!ﬁl!l2212212222212!2221222222212 2222222222222222222222222222122122
JQ!S!F:333333'3333333333333333 3333333333333333333333133333333
Chlll444!644'444444“444444444 A4 4444442400000 0404400004040 04
5'5555555555555555555555555555 555555595555 555555559555:558555585
]
tﬁi‘GGLSGEGGiiitiiit&ﬁﬁiiiiﬁiﬁii P 6666666 66CECEG6E6666566666666666
1%11111111!111111111111111111111111 IR AR AR AR R R R R R R R NN R R RN
UNIVERSITY COMPUTER CENTER

lilll seasnsofentsoacasassesssusBoajesaasusonsasaseaaaesasasnsaetnsnststnn
ﬂ!!!!!l!!!l!l!!l!ll!!!!!!ll!!!!!!!!!!!!!!!l!!! 99999998999999999989999999/909899498
l',tHsl!lannnmmlinIluannnuﬂﬂnuuununuuﬁ:nuunuuuusu NN NUSHNAINIRAMGUTEINNRNUBETI NN

GLOBE SOTBAT

Card V=D
QuU(l) cxi(h) Zuls) ml(h)
114. 132.078

|

s@sssls
SEEESs

FORTRAN STATEMENT

1DENTIFICATION

TS MW 67NN D22 IS MM 2030 30 223034 35363730 35 48 41 4243 40 45 46 47 44 49 50 51 52 53 54 55 % 57 50 59 60 6162 83 64 65 6 67 6 69 M 71 13
ARRR R R R R RR R R R R R

2222222222222222122212121122
333333333333333331333133
A4 444000040400 0440 4
5555395539555 55555555555§

F EG6666656C66686666665666

uulnuunuluuuluaniuuennuueeannlnnwuunnanTo'iauuu

nusKIANN
it

122222122
333333133
XX RN NN
58555558
G6E66666
1mrnmm

WINPT I IR T IRt II91111111111 TIRTI11971110311101911781 1

i UNIVERSITY COMPUTER CENTER

vesssssnsasafennannsesaasuscoseseslononannnasuneescaasnrssssnsIsIsIny
k 99 90(y/s099089898998999880900983999899

H2L a4 S[e1 s sMuRUuBBUBENARONSRUNNNI RIS NI 1] seuasnst

i

S0T84AT

=

99999999999999999903999999859999999918/9999918389
ANBURUUERNAU A RINANSUIUBREROUSEUaan R R .
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Card V-E
Qu(s)  cu(5)  zu(s) (5)
114, 132.078 N\
| | 1
FORTRAN STATEMENT IDENTIFICATION

TITITiIITnrn NI Tencacooocsocosooacnascedcaasnoacasadsnasniaeisenan

"
TESHIHARBBENIEINNDNARTANNHADNUBANBNAGQQUESLTSBINNNNUBUIUSUNQRBURBRARIRNIRINT IR
11

I ERRRRARARRRRARREREEL RRE [RRRERRN

D2T22222222222222222222222022222 2222221212
35333'33333!3'1333!33333333333 3133331333
é‘tll4“4484.44“4(4&144(6(4#4 O« ' " 4444444
5*5355555555555555555355555555 585555458

§6GEE6SEGEEECGEEESEEEEECEG656668
IR R R R R R R R R SRR RN R Y]

]
. UNI
Y

ﬁ’sssF

{Illlltl'llililll!llll
\ [lrsesfefrasunnnusunnnannnnnnn

—~
m
b - X

SESGSEGS
11111 nmimnnInnmIIIpInInNn
ERSI
'
L]

1
COMPUT
SoQocfessnsesansnasonannanseRaeERRRBBLNBERAILNY
(IRERRARERERERRRERE ll!!!!!!lll!!!!!!!!!!l!!!!l!!fJ/
HUNUBHUBHUUQOUORI USRI INH TSI UARUDPUU B RO ISR RN RURNN

-

LR
099885998808 80958898548838
nnn

Card V-F
Qu(6) CUF) 211(6) 1(6)
114, 132.078 ™
| E— 1
FomRAN sTATEMENT 10ENTIFICATION

1 llllll!l!lllil’l!llil.ll!'!liiiitl!lllll!!lllﬂllillBl!!l.Blll‘llg;::::::g
(ARRERRRERER R R R R R R R R R R RIIRRRRERR]

222222222222222222222222Q2222221212
33333333333333333333323333331333
FA4434244 0444408004000 0000400404
TS558 03955505355555/58555555
Eﬁitiiitii556666685‘58L85688i5

TTITRRIRTRIRII I IIIIITIITI Y

&
nrry

) UN
spsselsrnasashensassansenss

! R R R R R R R R R R R R R R RRLRRRRREL)
)
I KRR RN i RERERERREERRRERRREAE) $999999589099999939999/998939998
drsesfsftesmnnnussununanannan SRUNE RN BRBO QUG nonwnsgnnnw
SLOBE 507547

o .- -
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Card Sequence VI

Card VI-A
Xil) Bz(1) Yo(1) 20(1) ZREF(1)
. 300.0 132.500 i20. 000 {20,000
| 1 1 i |

ﬁzzzz
aisas
44444
55555
§566s
ﬁ1111

FORTRAN STATEMENT

MIIIIIIIIIIIIIIIIIIIn 1111171111111 1117

aill 00

l

sssanialennnsassssenssesnngasgy
11238 58T S EMNBUBBDHENUNNNNSNINDY l

averiffigeconearonaorcoceogyvoceogogNiceceaondoovansovonanaoaosenarane

ST INUNBUBHTNBNAANBNBIRANABNNBUSATNANUABUESTUORNRDUNBSRIRVSIVNQNUEENRABNNBUBIEIANN

IR R R RN ERARER] IRRRRER R R RN [RERRERR]
22222222222222222022222222 <> eRV? T 21222122122
33333 3303333333 3333333 333333233
AAAA4 44044040040 00040004 (REERYNY
5555955555555555555[55555 555555855

[ARERRER]

[ RN R RN R RN R RN RN R RN ICNRRNRRY
URHBHUBBNUDOUBRE nanuswn e

2y

Card VI-B
x(f) le(z ) Iol(z) zci ZREF(2)
300. 0 132,458 119 a5g 119 958
| 1

IHRRR
ﬂzzzz
3h33:
44444
55555
éssss
1%111

FORT RAN STATEMENT

IDEMTIFCATION

1]
sfras
(RERRREARRRRERE RRRERRRRRY | BRI

-
1 .

ST e v o s o a o nn e o e a s oo R eaaonaanoocontsooonnoneasascronaososodng
BHRUBUBHNTUNANNBNEANAANANNBUNANABAAMQQUEESETRUNNNNUBSTUIBHCRUBKIRABINYNIHRINTIANN

IRRRRRER

22222222222222222222122122022222222
3333333333333333333333/333333133
A44444440044 400400000000 400 004
IP55555555555555555555555/55555555

EOGOGOGOEEEE6GCGOGOGOEEG66566566
[N RN R R RIIARERRRE]

SesssBBRBRBIBIBRIROILUICLISISILS
AERIUARG U DUBSIRE RN YNNI BT NS

99089899999805808888/9995831393

Y
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Card VI-C
x(3) Bz(3) Yo(3) Z0(3)  ZREF(3)

|

R 300.0 132.416 119.916 119.918
/T Iy 1 1 i
FORTRAN STATEMENT v

tirtTIoRivaavassaenannecnoacaderansaadiecoaneaonccoanconsnsstnsfenennang

IS N R NN I ONS NN AN NN R NUS AT B AN AOUBRN GOSN VAU BUTHARVCNUBEI NS RN YO NN AN
LR] KR ; [RR RN R R R R R R R R R R R RRIIRERERRE

2@112 v 22222222222220222222222220222221222
!’1!3 33333333333333333333333333313133
InEyy L4434 4400400004400 04{4004840414
5&5555 5555555555555555555555535555555
5§(|ss GEEOEOCSSEOOOOCEEOEEOEREEOERGERESTS
TITTIIIIIIIIIIITIIIIIIINIIIN TITITTITIIII I 0011111111111 111
. UNIV ENTER
lill!ll!ltll!lllllttlllllllllt R R R RN R RERRRRRRRNRRRRI RRERRZ])
ﬁl!ll!!lll!!!!!!l!t!l!l!!!!l!! §9598299998899989898991890819919%§
IHERRINIREEI R LT AR 322K R 2108 3 ] SNNRUUNBBNUOUUBEUOIRDN nlgum_uyngg

N _SLOSE B0T847

Card VI-D
X&) Bz (4) Yo(k) Zo(l) ZREF ()

132.373 119.673 119.573
| | | - |
FORTRAN STATEMENT e

1L R
BUEHUTHERUIDNBSENARARNADNUBBNARNNBIQUUHLESCABHNANUNSISINCORHESRNBRNNINDINBNTIANN

RRREERR R R RN R R AR R RN RRE (RERRERE
2422 TRVIC 222222222222222222222222022222222
:h:a: 3333353333323333333333(333233333
4§¢|4 BEALIRLaeatiaaatatabadianaanss
55555
5568
ﬂrr:r
i

55555555555555555555555/55555555

F S GGCEEEEE566E0GOGEEECEEEE066646
l111111111!1111111111111711)1111111

COMPU‘E CENTER

st llillllllllll!llllrllilltl

] L]
) 9889099099983 998999999/1899881949
28

I XEERY ERRRE] L]
BROURAUBEIAY pusNsEEBOUBSIuENnRinu s

2 - -

SOTSAT
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Bz(5) Ya(s) 20(5) ZREF(5)
300.0 132.331 119.831 119.831
1 1 |

FORTRAN STATEMENT

IDENTIFICATION

N

Teojiecocoococccaavoncnanonoonsnsssossscocasanoncosonseoseee

BUHRBUBBDUNANARNNBRTBARNNDUANRIABRHQCUSETAUNNLNUERITARBHIRDUSRE B AN N

i
104
RRRRRRRRARRRAI RRRRRI IRRI TIR

GEGEECERECE60CEE56E6666666
IR R R R R R R R REEEERREREE

(XX ]
99999999858 089839539993883¢
IS HUNRNNBHTBIRNNRINDRTHNN N

ll?!ﬂ‘ﬂﬂﬂﬂlﬁ 4

1111 111 1
UNI E.RSITY COMPUTEI} CEN'I;
LER ]
.

|

RERRNEN
CEET SR T

[RERRERR

2222221212
3331333133
44444444
53558583
§66G6666
IRREERER]
ss888818

99998909989 8995313989998 /)
tuguegnussosannpnussu e

Bz(é) YO(6) 20(6) ZREF (6)

L

300 0 i32.289 119.789 119 789
|} 1

FORTRAN STATEIVIENT

IDENTIFICATION

oo afogrococoscenaaon0aco0o080000000080000800008080000008000000088
TEEHUNBUBBUNNBANDNSANBABRNNNNUBSNIBBANLDUGETEOANNINUSETAINNRBUEETRO NN N

555555895555555555555553%
SESESHEEGEEEEOCFBO6066G666

IARRRRERERRRERRRRRRRERERAR] J111 (R RERERERRRERERERRR R ERERERE]
NIVER PUTER CENTER
sesoesefossnunsasouceacocQafoesssacgofosacanasnsansaoansanunesrssne
$9999909999993090090 a9 oonas oo e089909989988999099899/99998889
TEI NN UBAN NS RNANNN RN U RN BANURCUSCTHONN QYNSRI AANY QOUUBS R RN IR I RN

sesacsNn?
nunKnNNANN
[RERRERR]
2222212122
1333133133
(EXERYNE’
55555555§

L
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x(7) BZ(7) Y0(7) 20(7) ZREF(7)
1 2
300.0 132.24 119.747 119.747
| | |

FORTRAN STATEMENT B
' [} [ SEtcoNnRNRREN RO oo RRRRRRRRRORRCOYROOBROOQRCRORORIROBRBNROTRRRONTINTOTYODNTY
|:l IERINIAR R EE Y TR AR R ER SRR R AR R R-RRRRRRL R R EREEREEEELIALEL LR EEEBEET ]
[ARRRILIRRRRE 11!!11.1!!%!1!1!.'!! ARRARERRE R R R R R AR R R R R R R ERRIRRRRRER
ﬂz:zzz:zzzzzzzzzzzzzzzlzlzzzzzzz 2222222222222222222222220221222122
3’33!33333.33.3333333.3.333333 3333333333333333333333133333333
GAfaaiesaataaasatiteiiiaaesie JOi § 4444444404004 04400 00040044044
' o
S 555555555559 5555935559338554§6§3% Y 5555555555555555555555/55555555
1
ﬁi‘itiiiiliiiiliiﬁiﬁ‘iiiiiﬁiiiﬁi CEECEORRGOEROGREOEEOEEROORGOOE00S6SE
ﬂ1111111111171111111111!115&1 e g111111711117!)1111!7111711
DU DERNRRRRRY LANRRRRNE] £ R R AR R R R R R R R AR RN RRRRRRRR RRRRRN])
ﬁl!l!!lilll!!!!ll’l!!!!lilill!l!l!!!!!!!!!l!!ll!l!!!l!!ﬁ!!!!!!!!!!ll!!!l!!!!l!i!
V23 a5 E IMURNNBRITRNBANANSNUABNNNDUNNIANRKUQBUSEURARINBUBANNARIDVBOBUIRENTY ssunne

Y

Card VI-H
x(8) BzZ(8) Y0(8) 20(8) ZREF(8)
300. 0 132.204 119 ?04 i19.704
L - |

l=1CDIFl1rIiLlllhl STATEMENT

IDENTIFICATION

; 1L
I:I'li“.’
i
1§zzzzzzz
Wasffras
§4444¢444
ssP5sisisss
i seemelsloss
1?1111111

1 | U OO0 OO DO OO D OO
BHUBHB BB ANNABNARITANRNNRUUBINIBIBRUQBUESEIUURNLUNSUSINIRUROUSHIRINNRT
RRREERRRRRI RRRRRRRRRI T IR
2222222222222 22222222
T EE] EREEEER] EI EREERE
YYYRYRRRRRRrRIeL Iy
555555555555555555655

5955559595555 5555558585855
SECECEOOEEEGEERRG66666680

TITI17111R12071010110111 111111
UNIVERS ENTER
RRRE LARRRRRRER] LOE) siertesassuBRIBRERIRTRRIlNRRRENIS

] 1
§58982039999398988810993¢
PEREE]

1" :
ll!!!!!!!!!]sssssss
NN ] jjgsusnuusuanan

BEEUBBANQNUSKTRY

(R ]
$89898098893983818343%
ann

HunuBEIEINARINSSY St

ssssese
nunKnNNN
[RRERRRR
1222221212
333333133
4444444

55555559

171711711117111171“1111717
!

25989888

BRLETIANN

l,'lltlll
| :iz:::Hs::
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Card VI-I
Xi9) BZ(9) Y0(9) 20(9) ZREF(9)
300. 0 132. 162 119.662  119.662 AN
1 | 1 |
FORTRAN STATEMENT L”
8 sRessssnnancnnnnaecengsednooeonsoeaoscecescconcennonesnnenenNee
v‘t:AsnHl|l||ﬂmusnlm\nmnuan:numlnnnu:sxnnunuuuauauuumlszsmssusmsnnmnuamllnnunnunnnnnl
ht||liIlllllllll!lllllllllllll'lll \RERRRRRRER R R R R R R R R R R R R R R IR REREE]
2?22211221222222212122[211'21221 22222222222222222222222222222222
3]33333!33.33.1333333'3]333333 3333333333333333333333{33313131333
4?4.444!4444444!!444444!‘44#44 Q4444444004004 00040401
ﬁsssss555555555555555555555555 AP 5555555555555555555555/55555555
1
sﬁltliSIiiiiliititiiisiilliittss W EEGeEEERO0CE0O0CCO60CCECG666666656
IR R R AR R AR AR R AR R AR R RERRRRRRARE 1 [11111177111111711111117111171111
' UNIVERSITY COMPUTER CENTER
l‘llll!lllllt]tllllll!!ll!ltlI!ll sosseacosoocaesadsnsesnsasssansnnaiasosgy
!hli!!!!!!l!l!!l!l!!9!!!!!!!!!!!l!!!!!!!!!I!!!!!!!!!9!!!!!!!9!!!!!!!!!!!!!!!!!!!AJ
|'1uillliununulsnuunmmuuuﬁnanxnuuunsnuaummuuuuuuuslsmuﬁmmummuuuuuunnltnujm_u_
\a_ul;swrur
Card VI=J
x(10) BZ(10) Yo(10) Z0(10) ZREF(10)
Y
.72 300. 0 132.120 119.620 119.620 M\
o | 1 | 1
| &7 COMMEN? 1F
srarcu 2 FORTRAN STATEMENT
Iﬁﬁtllllitliilillﬂlll!l.lliillllI!lllllIlIll!liiIuﬂllInlﬂlllll!allllilllisllllli
|;ls¢sclt9uunumsuuuunﬂunauununxnnnusunnnnnuuu«uuuumns:swsssnusunnnuannuaaunmusmnnnl
IABARILIEERERRREREERRT RRRE ARRERRI | RN 111
v2f22ie2222222222222220220222222 12222122
] RERIURRE] BRI EREREEE] R RRERER 33333333
Q444444414l444(‘14414414444144 (XERRYRY]
sbs55ssssssssssss&ssssssssssss 55595585
8?‘6655iGsttistiiiiisﬁiiiiiESSBi 666686665
IRl RRIUIRRRRRERRRRARRARRERRERRRRRARA IRR R AR R R E R R R R R R R R R R R R R R AR R R R R R
: UNIVERSITY COMPUTER CENTER
l’lllllllllllllllllltlllllllllltllll!llltllllallllllll!lllil!!ll!l!lllllllalalll
ﬁ!!!ll!!!!ll!!!9!3!ll!!9!!!!!!99'!!!!!!!!!'!!9 9998999999999 9989999899958/2999848389
\ ;L:;“::“s‘:rtlluuuuulunnlllnunmnunnnunlunuxunnaunuwutmnu«usls!suussmslmnlnmnsunwunnnlnuugnn»l)
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Card VI-K
X(11) BZ(11) Yo(i1) Z0(11)  ZReF(11)
0 300, 0 132.078 119.578 119.578
| 1 | [ ]

FORTRAN STATEMENT emeATIox
NADER 5
O OO N DO O D O O O N NN oo
1::uso1tiuuuuuummnmnnnaauuanaalnuassnsuuﬂcuuauvu«auunsausmsunnnnrsusunnnnnutsnnnnu
AR EREERRERRE] RRRRRRERR] | R \RRERE R R R R R R R R R R R R R R R AR R R R R IR AR AR
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Description of the Output: The following is a list and explanation of
the output from Setran. Some of the output is self-explanatory.

First Page: Initial Data and Calculations.

Variable Description

Kl, A, B Empirical coefficients of resistance equation,
see Equation (2-14)

NL, NT Number of intervals of space and time

J Grid point in the space discretization

X Distance in miles from upstream end of reach

ZPLOT Referenced bed elevation, ft

BZ Channel width, ft

Y Water surface elevation, ft

A Bed elevation, ft

HZ Channel depth, ft

Vv Velocity, ft/sec

FR Froude number

GBE Bed load transport, lbs/sec/ft

GSU Suspended load transport, 1lbs/sec/ft

CSH Spatial concentration of bed material times depth,
1bs/£t>

PZ P, times bed elevation, lbs/ftz, see Equation (2-4)

HT Total head above selected datum, ft

SF Energy gradient

If INDU = 1, subroutine HZUP is used to calculate the upstream
depth from the given sediment hydrograph. The number of iterations

to achieve this is printed.
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Following Pages: Data and calculations at each time step

Variable Description
Parameter P1, P2 Calculation of parameters given in Equations (4-14)
P3, P5, P6 through (4-19) at the upstream grid point.

Bed Wave Celerity Celerity at upstream grid point, given by
Equation (4-27)

D1, D2, D3, D4, D5 Accuracy of terms of continuity equation, see
Equations (5-4) through (5-8)

ES €gs given on page 66

D6, D7 Accuracy of terms of equation of motion, see
Equations (5-9) and (5-10)

EM €n’ given on page 66

The root mean square of € and €n summed over all grid points
is also given.

The shape of the bed wave is defined by the following moments of
ZPLOT. For this purpose values of ZPLOT > 0.01 ft only are considered.

If there are not at least five such grid points, the moments are not

calculated.

Variable Description

XMODE Distance in miles from upstream boundary to
ZMODE

ZMODE Greatest value of ZPLOT along the reach

XMEAN Distance in miles from upstream boundary to
center of gravity of the wave

STAND. DEV. Standard deviation of the wave description

COEFF. VAR. Coefficient of variation of the wave
distribution

SKEW COEFF. Skew coefficient of the wave distribution

KURTOSIS COEFF. Kurtosis coefficient of the wave distribution

Note: This problem was set up as an example only. For more accurate

modeling of the wave, a lower value of a should be chosen (see page 61).



MATHEMATICAL MODELING OF SEDIMENTATION TRANSIENTS

KINEMATIC VISCOSITY= ,00000927 SQ.FT./SEC.

POROSITY=

MEDTAN RED SI1ZE=
Kl=

A=

8=

FROUDE NO MINIMUM=
FROUDE NO MAXTMUM=
WEIGHT F, DELTA=
REACH LENGTH=
TOTAL TIME=

NL=

NT=

INDU=

INDT=

J X ZPLOT

1 0,000 0.000
2 «080 0,000
3 «160 0.000
L3 + 240 0.000
5 320 0.000
6 «400 0.000
7 480 0,000
A «560 0,000
9 «640 0,000
0 «720 0,000
1

1
1 +800 0.000

+350
001 FT,

«003803

0
1

HZ

300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000

«000
.030
100
« 750
«700
«800 MILE
50. DAYS
10
5
1
1

Y

132,500
132,458
132.416
132.373
132,331
132,289
132,247
132,204
132.162
132,120
132,078

NUMBER OF ITERATIONS IN SUBROUTINE

S

z

120,000
119,958
119,916
119,873
119.831
119.789
119,747
119,704
119.662
119.620
119.578

HZUP= 7

HZ

12,500
12,500
12,500
12.500
12,500
12,500
12,500
12,500
12,500
12,500
12,500

4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00

FR

20
.20
20
'20
20
.20
.20
.20
20
«20
«20

GBE

«10304E+00
«10304F+00
«10304F+00
+10304F+00
«10304F«00
«10304E400
«10304E+00
«10304F+00
«10304F+00
«10304F+00
«10304F«+00

65U

«252THE+00
«25278E+00
.25278E+00
«25278E+00
S 25278E+00
<25278E+00
«25278F+00
.25278E+00
+25278E+00
+2527BE+00
«25278E+00

CSH

«16032F+00
«16032€E+00
«16032€+00
«16032F+00
«16032F+00
«16032E+00
«16032E+00
+«16032E+00
«1A032E+00
«16N32F+00
«16032E+00

PZ

+1289BE+05
«12R94FE+05
+17R89E+05
«12BB4E+05
«12880E+05
«12875F+05
«12R71€+05
+12R66F+05
«12862E+05
»12857E+08
+12R53E+05

HT

«13275E+03
«13271E403
« 132665403
« 132625403
«13258€403
«13254E+03
«13250E+03
«13245E4+03
«13241E+03
«13237€+03
«13233E4+03

SF

«10000E=-03
.10000F-03
«10000E-03
«10000E~03
+10000E-03
+«J0000E~03
+10000E~03
«10000E-03
«10000E~03
+10000£~-03
«10000E~03

LoT



TIME STEP= 1

WATER DISCHARGE= 15000,00 CFsS

PARAMETER Pl= -.86R58628E-02
PARAMETER P2= -+50567238E-01
PARAMETER P3= «10748400€+03
PARAMETFR PS5= «96021138E+00
PARAMETER Pé= ~+19466672E~05
RED WAVE CELERITY= +489916458~03 FT,/SEC,

801

NUMBER OF ITERATIONS IN SUBROUTINE WZUP= 7
J X ZPLOT Bz Y z HZ v FR GRFE 6SY CSH Pz HT SF
1 0.000 +000 300,000 132,500 120.000 12,500 4.00 .20 ,10304E+00 .25278E+00 L16032€+00 L12H98E+05 13275E+03 .10000E-03
2 «080 «000 300,000 132,458 119,958 12,500 6,00 ,20 ,10304F+00 .25278F+00 ,16032F«00 ,12R94E+05 ,L13271€+03 .10000E-03
3 «160 =s000 300,000 132,416 119,916 12,500 4.00 .20 ,10304E+00 ,25278F+00 L16032F«00 L12RB9E+05 ,13266€+03 ,.10000€-03
4 «240 =+000 300,000 132.373 119.873 12,500 4.00 .20 L10304E+00 L25278E+00 L16032E+00 L12RB4AE+05 L13262E+03 .10000E-03
S +320 -.000 300,000 132,331 119,831 12,500 4,00 .20 L10304E+00 ,25278E+00 ,16032€+00 ,12880F+05 ,.13258E+03 ,)0000E~03
[ «400 =.000 300,000 132,289 119,789 12,500 4,00 .20 L10304E+00 ,25278E+00 ,16032F«00 L12875E+05 ,13254E+03 ,.10000E-03
7 «480 ~+000 300,000 132,247 119,747 12,500 4,00 ,20 ,L10306E+00 L,25278F+00 L16032F+00 L12871E+05 .13250E+03 ,10000E~03
8 «560 -+000 300,000 132,204 119,704 12,500 4,00 ,20 L10304E«¢00 ,252TAF¢00 L16032F+00 J12R66F+05 L13245E+03 ,10000E~03
9 «640 ~s000 300,000 132,162 119.662 12,500 4,00 .20 L10304E+00 J25278E«00 .16032F+00 .1284K2E+05 L13241€+03 ,10000F-03
10 «720 ~.000 300,000 132,120 119,620 12,500 4,00 ,20 ,L10304€E+00 ,25278F+00 ,16032€+00 ,12857E+05 ,13237€+03 ,10000€~03
11 +800 =e000 300,000 132,078 119.578 12,500 4,00 .20 L10304E+00 L25278E+00 ,L16032F+00 ,12853F€+05 L13233€+403 ,10000E-03
J Dl e 03 D4 ns ES D6 07 EM

1 =.44698AF-1]1 ~,604998E~1] ~,631012E~15 ,105204€~10 O, =~o652849E~16 ~,100000€~03 ,L100000E~03 ,406793F-15

2 »e278055E~12 =,376338E~12 ~.13012RE~14 .655712E~12 0. ¢179323€~16 ~,100000E~03 ,L,100000€~03 ,300194F~14

3 L424015F=12 ,STIBI2E~12 ~,128067F~14 ~,996739E~12 0. ~+112666E~15 =,1000006-03 L,100000E~-03 ~,195677E~14

4 J541985€-12 L733582E~12 ~.114430E~-14 ~,127447E~11 O, ~o4BT659E~16 ~,100000E~03 ,100000E-03 ,B09682F~15

5 +562112F~12 ,760809€E~12 ~,.988435FE~15 ~,132200€~11 0. ~s681512F~16 ~,100000€-03 ,100000E~03 ,L169743F~14

6  +S65R90F-12 .T765926E~12 ~.B29203F~15 =,133096F-11 0. «253790E~16 ~,100000€E-03 ,L100000E~03 ,673506F~15

T +S6K89TE~12 TRTI2SE~12 ~.669286FE~15 =-.133359E~11 0. ~4368604E~16 ~,100000E-03 ,100000E~03 ~,4T4013F~15

8 o 567524F~12 .768145E~12 ~,509131E~15 ~,133527F~11 0. «e112723F~1% ~,100000E~03 ,L100000E-03 ~,513478E~15

9  +56T997E-12 ,768763E~12 ~,348830€~15 ~,133652E~11 0. «e107363€~15 ~.100000E-03 ,L100000E-03 ,248239F-14

10 +568487€~12 LT769455E~12 ~,188401E~15 =,133770E~11 0, «559113€~16 ~,100000E~03 L100000E-03 ,113624F~15

ROOT MEAN SQUARE e T32545E~16 «153818F=14



TIME STEP=
WATER DISC

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
RED WAVE C

2

HARGE=

Pl=
p2=
P3=
PS=
Péb=

15000,00 CFS

~.86858628E~02
~+50567238€~01
«1074R400E+03
«96021138€+00
~«19466672E~05

ELERITY=

«4B99]1645E-03 FT./SEC,

NUMBER OF ITERATIONS IN SUBROUTINE HZUP=

[

X

0.000
+080
160
o240
«320
«400
«480
«560
«640
« 720
«B00

OOPNINRPWN -

-

COOE~NPONP DN~

[y

ZPLOT

1.654
277
046
008
«001
«000
«000
+000
«000
000
000

Bz

300,000
300,000
300,000
300,000
300,000
300.000
300,000
300,000
300,000
300,000
300.000

Y

132,433
132,446
132,414
132,373
132,331
132,289
132,247
132,204
132.162
132,120
132,078

z

121.65%4
120,235
119,962
119,881
119,832
119.789
119,747
119,704
119,662
119,620
119,578

S

HZ

10,779
12,212
12,452
12,492
12,499
12,500
12,500
12.500
12,500
12.500
12,500

‘.6‘
4,09
4,02
44,00
4.00
‘.oo
4,00
4,00
4,00
4,00
4,00

FR

«25
21
20
«20
.20
«20
20
«20
.20
.20
.20

01

=+ 69TT32E=04
~+B897120E-05
~e144145F =05
~e239662€-06
~e400725E~07
~«670621E-08
~«112208£~08
=+ 187359€~09
~+308908F-10
~e469842E~11

nz

-e910778BE~04
~s120745€=04
«+194919E-05
~+324332E-06
~e542367E~-07
~:sQ07682E-08
-+ 151RT4E~0B
-« 253590E~09
-«41H10BE~10
-.635930E=11

ROOT MEAN SQUARE

D3

«120190E-07
«173773€~-08
«+2B84293F~09
«474092E~10
«793126€~-11
«132766E~11
«222331€-12
«372496E~13
+621045E~14
+957148€6~15

D4

+120076E=-03
«201001E~04
+336467E~05
«563230E~06
«942811E-07
«157811E~07
«264058F~08
«4460912E~-09
«726953E<-10
«110566E~10

GBE

«15160E+00
«10949€+00
+10408E«00
«10321F+00
«10307E+00
«10304£+00
«10304F+00
«10304E+00
«10304€+00
«10304E4+00
«10304E+00

05

0.
0.
0.
0.
0.
0.
[+ I
0.
0.
Oe

GSU CSH PZ HT SF
+31644E+00 L17R51E+400 L13076E+05 ,L13277€+03 ,10367E~03
+26148E400 L16291F+00 .12923E+0% L13271F+03 ,10057€-03
+25420E+00 L16074F+00 L12894E+05 ,13266E+03 ,10009E~03
«25302E+400 ,L16039F+00 J128B5FE+05 .13262E+03 ,L10002E-03
+25282E+00 L1A034E+00 L128B0E+05 L1325RE+03 .10000€E-03
+25279E+00 L16033F+00 ,L12875€+05 ,L13254E+403 ,L10000E-03
«25279E+00 o16032F+00 .12871E+05 L13250E+403 ,10000€E~03
«25279E+00  L16032F«00 ,12866E+05 (13245403 ,L10000E~-03
«252TBE«00 L16032E+00 .12862E+05 L132641E+03 ,L10000E~03
«2527BE+00 L,16032E+00 ,L12857E+05 L13237E+03 ,10000E-03
«25278BE+00 L16032F+00 L12853E+05 ,13233F«03 .10000E~03

ES né b7 EM
«e407633E~04 ~,129319E~03 ,101484F~03 -,278355F-04
~+943801E-06 ~,1008B8E~-03 L100232E~03 ~,656124F~06
~+s256B39€-07 ~-,100056E~03 ,100038E-03 ~,179016F~07
~e716231E=09 ~,100007E~03 ,100006E~03 ~,499425E~09
~e200542€-10 ~,100001E~03 ,L100001E~03 ~,139820F~10
~e562009€~12 -,100000F~03 ,100000E~03 ~,391431F~12
~+157736E~13 ~,100000E~03 ,100000F~-03 ~,T468B5FE~14
~e593293E~15 ~,100000E~03 .100000E-03 .277209F~14
~s739202E~16 -,100000E~03 L.100000€-03 ,130408F~14
~¢136583F~15 ~,100000€~-03 ,L,100000F~03 ,L177592F~14

+128939F~04 +8R0482F-05

601



TIME STEP=
WATER DISC

PARAMETER
PARAMETER
PARAMETER
PARAMFTER
PARAMETER
RED WAVE C

3

HARGE =

Pl=
P2=
P3=
PB=
P6=
ELERITY=

15000.,00 CFS

~e12774362E~01
~o83382962E~01
«1074R400F+03
«93794635€+00
~223403616E-05

«82699041E~03

NUMRFR OF ITERATIONS IN SUHROUTINE

J X

1 0,000
2 080
3 .16“
4 «240
5 «320
6 <400
7 «480
8 +560
9 «640
0 «720
1 +800

[

QORXNPU P WA

7PLOT

<015
+«875
.315
« 098
«022
« 005
«001
«000
«000
.ooo
.ooﬂ

HZ

300,000
300,000
300.000
300,000
300,000
300.000
300,000
300,000
300,000
300.000
300,000

Y

132,515
132,420
132,400
132,369
132,330
132.289
132,247
132,204
132.162
132,120
132,078

HZUP=
z

120.015
120.833
120.291
119,971
119.853
119,793
119,747
119,704
119.662
119.620
119.574

7

FT./SEC,

HZ

12,500
11.587
12,110
12,398
12.477
12,495
12,499
12,500
12.500
12,500
12,500

4.00
4,32
4.13
4,03
4401
4,00
4,00
44,00
4400
44,00
‘.oo

FR

20
.22
21
20
20
«20
«20
20
20
20
«20

ni

«743615F =05
-~ o 2645TSE~04
~e116704E-04
~e29637TF~05
~e660445F~06
~+138200E~06
~e2TTTBAF =0T
~+542R07E~08
-+ 103854F~08
~e195203F~09

n2

«107018E~04
~+351092€~04
~.156723E~-04
= 400348E~05
~+893518E~06
-,187036E~06
~+375974E-07
-o T34687E~08
~+140567€-08
-+ 26420RE~-09

ROOY MEAN SQUARE

D3

~+694042F~-08
+538864F~08
«228014F-08
+583818E~-09
+130559€-09
+2T3452E~10
«549720E~11
«107381€-11
+205040F~12
¢381491E~13

Ne

~«64T052E~04
«ST6TROE~04
«26038BE~04
«6BT153E~05
«154889E~05
«324987E-06
»653612E-07
«127735€~07
¢ 2464399E-08
«459372E~09

GBE

«10304F 00
«12557€+00
«11192F+00
+10525E+00
+10353F«00
«10314E400
«10306F+00
«10304F+00
«10304E+n0
«10304K+09
«10304£4+00

0s

6SU CSH L4 HY SF
«2527BE+00 L16032F+00 L12900E+05 L132T76E+03 ,10000€-03
+2B8280E+00 L16910F+00 L129RBE+05 L13271E+03 ,10186E~-03
«264T73E+00 .1A386E+00 L12929E+05 ,L13267E+03 ,10078E-03
«2RSTRE+00 L16122F+00 ,12895E+05 L13262E+03 ,10020E-03
«25345E400 L16052F+00 L128B2E+05 L13258E+03 .10004E-03
«25292E+00 J16036F+00 L12876E+05 L13254E+03 ,10001E~03
«252R1E+00 L16033F+00 L128T71F+0S ,13250E+03 ,10000€E-03
+25279E+00 L,16033F+00 ,L12BA6E+0S ,L13245€+03 ,10000€~013
«25279F+00 ,16032F+00 L12R62E+05 L13241E+03 ,10000€~03
«25279E+00 J16032F+00 L12857E¢05 L13237E+03 ,)0000€~-03
«25278E+00  L16032F«00 ,12853E+05 ,13233E+03 ,.10000E-03
ES n& D7 EM

~o465T42E~04 -,132383E~03 ,1012B8E~03 =,310946€-04
~e388331E~05 =,103670F-03 ,101023E~03 ~-,.264695E~05
~¢130170€-0% -,101260E~-03 ,100357E£-03 ~,902453F£-06
~e951269F =07 =~,100154E~03 ,L100088E-03 -,662382F~07
~+495338£~08 ~,100023E~-03 ,100019E~03 =,345280F~-0R
«e221807€~09 ~-,100004E~03 L,100004E~03 ~,154651F~09
~e907951E=~11 ~,100001E~03 ,L100001E~03 ~-,632884F~11
~e349708E~12 ~,100000€~-03 L100000F~03 ~,240409F~12
~+128892€~13 -,100000F«03 ,100000E-03 ~,738212F~14
«s573209€-15 «,100000E«03 ,L100000E-03 ,944557¢~15

«14TRAGE-04 «987270F~05

or1t1



TIME STEP=

WATER DISC

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
RED WAVE C

LS

HARGE=

Pl=
P2=
P3=
PS=
P6=

15000.00 CFS

~.86858628E~
~e50567238E~

02
01

«1074B8400E+03
«96021138E+00

=e19466672E~

05

ELERITY=

«48991645€6~03 FT,/SEC,

NUMRER OF ITERATIONS IN SUBROUTINE

J X

0,000
+080
«160
.2‘0
«320
+400
«480
«560
640
«720
«800

O ORNIN P WN -~

et st

ZPLOT

-,005
« 174
620
+398
141
+«039
.010
2002
«001
«000
«000

RZ

300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000
300,000

Y

132,495
132.454
132,389
132.357
132.32%
132.287
132,246
132,204
132,162
132,120
132,078

HIUP=
b4

119.995
120.132
120,535
120,271
119.972
119.828
119.756
119,707
119,663
119.620
119,578

7

HZ

12,500
12.322
11.853
12,08%
12,353
12,459
12,490
12,498
12,499
12.500
12,500

4,00
4,06
4,22
4,14
4405
4,01
4,00
4,00
4.00
4,00
4,00

FR

.20
'zo
22
21
20
520
«20
.20
.20
20
.20

D1

«225115€=-04

«915468F-05
=¢143954E~04
~«115R812F =04
=e414833€E~05
~«116253F~05
=+291307€-06
~+681558F =07
~+151957¢-07
~+326778E~-08

D2

+300990E~04

«123251E~04
~«192003E-04
=.155407€~-04
~+S559R30E~05
~+157221E-05
~+394205E~06
~e922646E-07
~e205672E~07
~e442293E-08

ROGT MEAN SQUARE

n3

~e416584F~08
~4272485E-08
«310497E-08
«229926E-08
«B18422€-09
«229751€~09
«576214€E~10
«134791£-10
«299872E~11
«637987F~12

D&

~+448133E-0¢
~,283902€E~04
¢339048E-04
+261064E~-04
+958281€-05
«272054E-05
«684539E-06
«160335E-06
+357573€-07
+T68996E-08

GRE

«10304E+00
«10696E+00
«11834E+00
«11251E+00
«10626F+00
«10392F+00
'10326F000
+10309E+00
«10305E+00
«10304E+00
+10304E+00

DS

+331170F-05

GSU CSH ¥4 HT SF
+25278F+00 L16032F+00 ,12R98E+05 ,13274E+03 ,10000F-03
«25809E+00 L16190F+00 ,L12912F+05 L13271E+03 ,10035E-03
«2T7326E+00 L16635E+00 L12956E+05 L132ATE+03 ,10130F~-03
«26552E+00 L16409FE+N0 L1292T7E+05 L13262E+03 ,L100R2E~03
«25T14F+0D  ,16162E+00 L12R95F+05 L,1325RE+03 .10029E-03
«25398F+00 L1606RF+00 L12RRO0E+05 ,L13254E+03 L1000RE~03
«25308E+00 ,16041F+00 ,12B72E+05 L13250E+03 ,10002E~03
«252BSE+00 L,16034F+00 L12R67E+0S .13245€+03 ,10000E~03
«25280E+00 L16033F+00 ,12862F+N5 ,13241E+03 ,)0000E-03
«25279E+00 J16032E+00 .12857F+05 L13237E+03 ,L10000E-03
«25279F+00 L16N32E+00 L12RS3E+05 ,13233E+03 ,L10000F~03

ES né D07 EM

¢779301€~05 =,950424F 046 L100602F-03 ,535957€~05
~e691317E~05 «~,105683F=-03 ,100974F=03 ~,470929F~05

«312233€~06 ~,100662E~-03 L100R90E~03 L22B42RF=06
=+101323€~05 =,101126E-03 ,100426E-03 -,700573F~06
~+163003E~-06 ~,100250E-03 ,L100137€-03 ~,113368£-06
~+139654£~07 ~-,100046F-03 ,1N0037€~03 ~,973010€~08
~e916103E=09 ~,100010€-03 ,100009E-03 =,638597F~09
~+514601F~10 ~-,100002E~03 L100002E~03 ~,358757fF~10
~+259841€~11 ~,100000E-03 ,100090E-03 -,180906E~11
~s120471E~12 -,100000E~-03 ,100000F~03 ~,805970F~13

«226R44F =05

111



TIME STEP= L]

WATER DISCHARGE= 15000,00 CFS
PARAMETER Pl= ~,86858628E-02
PARAMETER P2x ~+50567238€-01
PARAMETER P3= «10748400F+03
PARAMETER PS= +96021138E+00
PARAMETER Pé= -« 1946K672E~05

BED WAVE CELERIYY=

NUMBFR OF ITERATIONS IN SUBROUTINE

X

[

0,000
+0R0
- lbo
.2‘0
«320
«400
+480
.560
«640
« 120
«800

-
MO ODDNPNS N -

o«

QO®~NPUNE N -

-

XMONF= .2
COEFF . VAR,

ZPLOT Rz

«004
<027
220
«491
«389
173
«058
017
<004
«001
«000

300,000
300,000
300,000
300,000
300,000
300,000
300.000
300,000
300,000
300,000
300,000

Y

132,504
132,457
132,408
132,352
132,315
132.282
132,244
132.204
132,162
132.120
132.078

HZUP= 7
4

120.004
119,985
120,135
120.365
120.220
119.962
119.804
119.721
119,666
119.621
119.578

«4B991645E~03 FT,/SEC,

HZ

12,500
12.472
12,273
11,988
12,094
12,320
12,440
12,483
12,495
12,499
12,500

4,00
4,01
‘007
4,17
4,13
4,06
4,02
4,01
4,00
4,00
4,00

FR

.20
20
.21
.21
.2‘
20
«20
«20
020
«20
«20

0l

«378909F~-05

+154393F~04

+« 718154 =05
=+879037E~05
“e104020€6~04
~e4R99]11F =05
~e166263F~05
=+ 484A0TF=06
~s129115F~06
~e32277RE=-07

ROOT

400E+00
= L3295F+00

ne

«511672E-05
«207031E~04
+«963041E~05
~e11751BE~04
-+ 139569€E~04
~+s66065TE-VS
~o224T66E=05
- 655962E~06
~o1TAT42E-06
~a436R6RE-0T
MEAN SNUARE

ZMODE=

03

=« TT1778F~09
=~«309025€~08
~e177554E~08
«19235TE~-08
«209733E-08
+96986TE~0Y
«328626F =09
+958061E~10
«254528E-10
«629118E~-11

«4913E+00
SKFW L COFFF .=

Dé

-~ 863RLTF~05
~e340202E~04
~e190691E~04
«212354€~04
2 237611E~04
¢113074E~04
+«IRB402E-05
«113832E~-05
«303658E-06
«7594T1E~07

XME AN®

«4550E+00

GRE

+10304€+00
«10364€4+00
+10808F«00
«11491E+00
«11229E«C0
«10701F+00
+ 10634400
+103641E+00
«10316F+00
«10306F+00
«10304E+00

0s

«2B0RE+00

KURTOSIS COEFF.=

GSU CSH Pz HT SF
+252TBE+00 L16032F+00 L12R98E+05 L,13275€+03 ,10000F-03
«25360E+00 (160STE+00 L12R96E+05 L13271€+03 ,10005E-03
«25959E+00 L16235F«00 L12913E«05 L13267E«03 ,10045E-03
«268T2E+00 L16503E+00 L12937E+05 ,L13262E+03 .,.10102€~-03
«26522E+00 L16401F«00 ,12922€+405 L1325RE+03 ,1008l€-03
+25815€+400 L16192E+00 L12HR94E+05 L13254E+03 ,1003S5E£-03
+25455E+00 L160B5E+00 ,L12B77E+05 ,L,13250E+03 ,10012E-03
+25329E+00 J1604TE+00 L1286RE+05 L,13245E+03 ,L10003F-03
«25292E+00 L16036F«00 L12862€+05 L13241E+03 .10001E~03
+252B2E+00 J16033F+00 L12R57F+0% ,L13237€+03 ,10000€-03
«252T9E«00 J16033F+00 L12853E+05 L13233E+03 ,10000E~03

ES L o7 Em
«266559F-06 ~.99AA4BE~04 L100072E~03 ,L186736E~06
«211909E~05 ~,9R9582E~04 L100423E-03 .146503F-05

-9 225RRTE=0S =~,102383E=03 L100R34E~03 ~,154940F=05
«695158E-06 ~,100321E~03 L100807E~03 ,486621F~06
~s595T760F~06 ~,100872E~03 L100461FE=03 ~,410&4T7T7F=06
~e197324E-06 =,100317€~03 L1001R0E~03 ~,13705AF=06
~e259505E=-07 ~.100075E~03 ,100057E«03 ~,.1R0699¢-07
«+235605E~08 -,100017E~03 L100016E~03 ~,164191F-0R
*s173416E=09 ~,100004€~03 L100004E~03 -,120886E~09
«s110069€E=-10 ~,100001E~03 ,L100001E=-03 «,T767475F~11
«102674F~0% «TOT547F =06
STANDNFV,.= ,9253E~01]
«3180F+01

eIt
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APPENDIX III

PROGRAM FLOWCHART AND LISTING
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l
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INDT-2

TIME =

Call ULMT

Call VARI

Y

Call MOMENT

l

Call HZUP

Figure A.1

Program SETRAN Flow Chart

TIME = TIME + 1
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l
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PROGRAM SETRAN

1UINPUT9OQUTPUTsPUNCHe TAPES=INPUT s TAPE6=0UTPUT » TAPET=PUNCH)

PROGRAM SETRAN CALCULATES THE SEDIMENTATION TRANSIENTS IN ALLUVIAL
CHANNELSs ACCORDING TO THE NUMERICAL MODEL DEVELOPED BY K, MAHMOOD
AND V, M. PONCE

COMMON/A/ GRAV9GAMsSS

COMMON/B/ PORsDIA+CKsCA9CBsVNUSIWL 9sBRyMP

COMMON/C/ DEL

COMMON/D/ RLENGTHoNL sDXeNX9s TTIME+NT9DTsNZ

COMMON/E/ TIME

COMMON/F/ FRMIN+FRMAX

COMMON/G/ INDT.EAJEB

COMMON/H/ INDU

COMMON/VC/ UL(4)sUM(4) sUT (4) VL (B)9VM(B) VT (8)

COMMON/VA/ X(151)+BZP(151)+ZREF (151)+ZPLOT(151)

DIMENSION QU(151)+CU(151)+2U(151)+YD(151)

DIMENSION HZO(151)9HZ(151)9Z0(151)9Z(151)+DY(151)4DZ(151)+BZ(151)
DIMENSION YO (151)

DIMENSION GSB(151)

DIMENSION GBE (151) 9GSU(151)+CSH(151)9PZ(151)sHT(151)¢SF(151)

1GBEDO(151)+96SU0(151)+sCSHO{151)+PZ0(151)+HTO(151)+SFO(151)

WRITE(6,200)

GRAV= 32,17

GAM = 62,40

SS = 2.65

READ(5+105) INDUs INDT

READ(55100) VNUsPORsDIASCKsCA+CB

READ(5+100) FRMINoFRMAX

READ(5+102) DEL+RLENGTHy TTIMEoNLoNT

WRITE(6¢110) VNUsPOReDIAICKsCA9CBIFRMINIFRMAX9DELsRLENGTHs TTIME,

INLoNT+ INDUS INDT

DX= RLENGTH/FLOAT(NL)#® 5280,

DT= TTIME /FLOAT(NT)#86400,

NX= NL+1

NZ= NT+1

DO 2 J=19NZ

READ(50100) QU(J) oCULUI) 2ZULCJ) s YD ()
DO 3 J=1oNX

READ (54100) X(J)eBZ(J)9sYO(J)sZ20(J) +ZREF (V)
DO 10 JU=1eNX

HZO(J)= YO(J)=20(J)

RZP(1)= (RZ(2)~BZ (1)) /DX

DO 15 JU=2«NL

RZP(J)= (RZ(J¢1)=RZ(J=1))/(2.%#DX)
RZP(NX)= (BZ(NX)=BZ (NL))/DX

DO 20 JU=1eNZ

GSB(J)= CU(JI*QU(J)/BZ (1) #GAM/10,8u46,
IF(INDT,EQ.1l) GO TO 9

READ(S+100) EA+EB

WRITE(6+112) EAJER

CONTINUE

N=0

TIMF= 0,

EQ= QU(1)

CALL ULMT(EQ)

CALL VARI(HZO0sZ0OsBZ+GBEOYGSUO+CSHOPZOsHTOsSFOLEQ)
CALL MOMENT

CALL HZUP (HZBO+BZ (1) sGSBeNsEQ)

DO AQ0 N=1oNT
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TIME= TIME+l,
WRITE(6+150) NsEQ
CALL ULMT(EQ)
CALL COEF(HZ0+Z0+BZyEQ)
CALL HZUP (HZB+BZ (1) +GSBeNIEQ)
CALL DSWP(HZBsHZBO+ZUsYDeNsDY$D2Z)
DO 40 J=1eNX
Z(J)= 20(J)+DZ(V)
HZ (J)= HZO(J)+DY(J)=DZ ()
40 CONTINUFE
CALL VARI(HZsZ+BZ+GBE+sGSUICSHIPZsHTsSFIEQ)
CALL TEST2(GBEsGBEQO+GSUIGSUOICSHeCSHOIPZsPZOIHToHTO«SFsSFOsRZ+BZP)
41 CONTINUE
CALL MOMENT
HZBO= HZB
DO S50 J=1leNX
HZO(J)= HZ(J)
20(0)= Z{))
GBEO(J)= GBE(UN)
GSUO ()= GSULtY)
CSHO(U)= CSH(V)
PZ0(J)= PZ(J)
HTO(J)= HT(J)
SFO(J)= SF(J)
S50 CONTINUE
EQ= QU(N+1l)
CALL BACKW
60 CONTINUE
100 FORMAT (8F10,0)
101 FORMAT (I10)
102 FORMAT(3F10,0+2110)
105 FORMAT (2110)
110 FORMAT(# KINEMATIC VISCOSITY=#oF10,8s% SQ.FT,/SEC.%*/

1 * POROSITY= “9F10e39/

2 # MEDIAN BED SIZE= #oF 10308 FT %/
3 ®* Kl= *9F10e60/

4 & A= #9F10e39/

5 * 8= #9F10e30/

6 * FROUDE NO MINIMUM= #3F10,3+/

7 # FROUDE NO MAXIMUM= #43F104,39/

8 # WEIGHY F. DELTA= #9F10439/

9 # REACH LENGTH= #9F10e30% MILES®/
9 #* TOTAL TIME= #9F10.00% DAYSH/
1 # NL= #9110+/

2 # NT= #91100/

3 # INDU= #91100/

4 # INDT= #91107)

111 FORMATI(7E15.8)
112 FORMAT (# TRANSPORT PARAMETER Al= #4F15,54/

e # TRANSPORT PARAMETER Bl= #,F15,5/)
150 FORMAT(///% TIME STEP= #I5+//
1 # WATER DISCHARGE= #9F10.29% CFS#/)

200 FORMAT(1H19///9+10Xe® MATHEMATICAL MODELING OF SEDIMENTATION TRANSI
1ENTS ®#/7/)
STOP
END
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SUBROUTINE GT(HsB+G)

COMMON/VC/ UL(4) sUM(4)9UT (4) o VL(B)9sVM(8)sVT(8)
G= VL (4) #H#RYM(4) #R#2VT (4)

1  «VL(S) #H#BVM(5) #Ba#VT (5)

1 +VL(6) #HRaVM(6) #B=eVT (6)

RETURN

END

SUBROUTINF VARI(HZ+ZeRZ+GREsGSUsCSHIPZsHT+SFEQ)
COMMON/A/ GRAVsGAMeSS

COMMON/R/ PORDIASCKsCA9CReVNUIWL +BReMP
COMMON/C/ DEL

COMMON/D/ RLENGTHeNL ¢sDXoeNXoTTIME+NT9DToNZ
COMMON/E/ TIME

COMMON/VA/ X(151)eBZP(151)+ZREF (151)+ZPLOT(1S])
COMMON/VC/ UL (4)sUM(4)sUT(4) VL (B)9oVM(B) VT (8)
DIMENSION HZ(1)9Z2(1)sRZ(1)eGBE(]1)9GSU(1)+CSH(1)sPZ(1)sHT(1)sSF (1)
WRITE(64+300)

DO 10 J=1lsNX

V= EQ/ (HZ{J)*BRZ(J))

FR= V/{GRAV#HZ (J))##0,5

CALL VLMT(HZ(J)eBZ ()

GRE(J)= VL(4)RHZ (J) ##VYM(4)BBZ(J)##VT (4)

GSU(J)= VL(S)®HZ (J) #2VM(S) *BZ(J) #4VT(5)

1 +VL(6) #HZ (J) ##VYM(6) #BZ (J) #¥VT (6)
CSH{J)= VL(T)HHZ (JY) #2VM(T)#BZ(J) ##VT(T)
1 +VL(B)®HZ (J) ##VM(B) #BZ (J) #8VT (8)

PZ(J)= (1.,~POR)#SS#GAM®Z ()
Y= Z(J)+HZ(J)
HT(J)= VRV/(2,%GRAV)+Y
SF(J)= UL(2)8#HZ (J)#2UM(2)#BZ (J) ##UT(2)
ZPLOT (U)= Z(J)=ZREF (J)
WRITE(69400) JeX(J)eZPLOT(U)eBZ{U)sYsZ(J)sHZ(J) sVeFRIGBF (J) +GSULY)
1«CSH{JYsPZ(J) o HT (J) o SF (J)
300 FORMAT (% J X ZPLOT BZ Y ¥4 WZ v
1 FR GRE GSU CSH P2 HT
2 SF#/)
400 FORMAT(1XoI3eFTe395F8,392F5,2+6E12.5)
10 CONTINUE
RETURN
END
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SUBROUTINE ULMT(EQ)

COMMON/A/ GRAVsGAMsSS

COMMON/B/ PORsDIAICKeCAsCBsVNUIWL +BRsMP

COMMON/C/ DEL

COMMON/VC/Z UL(4)sUM(4) sUT(4) o VL (B)9sVM(B) s VT (B)

VSSE ((2+/3,%CGRAVH(SS=1,)%DIA##3,036,#YNUS#R2,) 880 ,5=-6,%VNU)/DIA
XKAPPA= 0,4

UL(1)= ((0.0342%DIA##(0,1667=-CA)*EQ#**CB)/ (CK*GRAV®# (CB/2,)))##],5
UM(1)= 1.,-2.25%CB

UT(1)= =]1,5%CR

UL(2)= ((CK#DIA##CA®EQ®#(],-CB) #GRAV*#(CB/2,))/]1.486)#2,
UM(2)= 3.%CB~10.73,

UT(2)= 2.%#(CB~-1.)

UL(3)= (T.*EQ*DIA#R(1,/64))/7(6.,#(GRAVH#UL(1)%UL(2))#20,5)
UM(3)= «=(UM(1)/72.4UM(2)/2.4T7./64)

UT(3)= =(UT(1)/2.4UT(2)/724¢1,)

UL (4)= VSS/(XKAPPA® (GRAV®UL (2))#%0,5)

UM(&)= «0,5#(UM(2)+1,)

UT(4)= =0,5%UT(2)

RETURN

END
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SUBROUTINE VLMT(HZDBZD)

COMMON/A/ GRAVeGAMsSS

COMMON/B/ PORsDIAsCK«CAsCBsVNUIWLIBReMP

COMMON/G/ INDTSFALER

COMMON/VC/ UL (4)sUM(4)sUT(4) 9 VL (B) o VM(B) VT (8)

DIMENSION EINSA(B) EINSB(8)

DATA(EINSA(I) 91=198)/TeT1497¢357910,552¢25.668+138,263+1610,638.
136020496,9139500000000000,/

DATA(EINSR(I) 9I=198)/=10010"1e199~1,679=24309=3e239=4,269~T7,81,
1'12066/

IF(INDT.EQ.2) GO TO 10

PSI=(SS«1,)#DIAZ (UL (1) #UL (2)#HZD## (UM(1) +UM(2) ) *#BZD##(UT(1)+UT(2))
1)

IF(PST.LE.0,77) IRANGE= 1

IF(PSIeGTe0.7T.ANDPSI4LEL2.12) IRANGE=2
IF(PS]eGTe2e12.ANDPSIeLE.4.1C) IRANGE=3
IF(PSTeGT 4010, ANDPSI<LE.6.10) IRANGE=4
IF(PSTeaGTe6.10.,AND.PSTeLEL1140) IRANGE=S
IF(PSIeGToall140,AND«PST1.LEL16.,T) IRANGE=6
IF(PST4GTal6.ToANDPSToLE.22.5) IRANGE=7

IF(PST1.GT.22.5) IRANGE=R

EA= EINSA (IRANGE)

EB= EINSB (IRANGE)

EA= 2,.%EA

10 CONTINUE

VL(4)= EARGRAVH#0,5%#(SS=]1,)## (EB+0,5)#DIA##(EB+]1,.5) #SS*#GAM/
UL (1) #UL (2) ) #%EB

VM({4)= =EB#(UM(1)+UM(2))

VT (4)= =EB#(UT(1)+UT(2))

ROU= UL (&) #HZD##UM(4) #BZD##yUT (4)

VLIS)= (2.%20,1667%UL(3)#VL(4))7/(11.,6%#(1.166T7=ROU)S(2.,#DIA)#E(],16
167-R0OU))

VM(S)= UM(3)+VM(4)+ 1,1667-ROU

VT(S)= UT(3) + VT (&)

VL(B)= =(2,880,166THUL(3)I#VL(4))/(11.6%()1,1667~R0OU))

VM(6)= UM(3)+VM(4)

VT(6)= VT(S)

VLIT)= VL(&)/7(1]1.,6%(]1,=ROU)#(GRAVHUL(1)#UIL(2)) 880, ,568(2,8DIA)#s
l‘lc‘ROU)’

VM(T)= =0,5#(UM(1)+UM(2))+VM(4)+],=-ROU

VT(T)= =0,5%#(UT(1)+UT(2))+VT(4)

VL(B)z =VL(4)/(11,6%(]1.=ROU)®(GRAVH®UL (1)RUL(2))#%0,5)

VM(B8)= =0,5#(UM(1)eUM(2)) + VM(4)

VT(8)= VT (T7)

RETURN

END
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SUBROUTINE COEF(HZ+ZsRZ4EQ)

COMMON/A/ GRAVsGAMsSS

COMMON/B/ PORsDIA+CKeCA9sCBIVNUIWL +BReMP
COMMON/C/ DEL

COMMON/D/ RLENGTHINL sOXosNX9 TTIMESNT9DToNZ
COMMON/VA/ X(151)+BZP(151)9¢ZREF (151)+ZPLOT(151)
COMMON/VC/ UL(4)9oUM(4)sUT(4)sVL(B) s VM(B) VT (8)
COMMON/VD/ AS(150)+BS(150)9CS(150) eNS(150)+ES(150)+FS(150)+GS(150)
19HS(150)+0S(150) sRS(150)

DIMENSION HZ(1)+sZ(1)sBZ (1)

CALL VLMT(HZ(1)sBZ(1))

VL4L= VL(4) S VM4L= VM(4) S8 VT4L= VT (4)
VLSL= VL(5) $ VM5L= VM(5) $& VTS5L= VT(5)
VL6L= VL(6) $ VM6L= VM(6) § VT6L= VT (6)
VLTL= VL(T) 8 VMTL= VM{T) $& VTTL= VI(T)
VLBL= VL(8) $ VMBL= VM(8) $ VvT8L= VvT(8)

HZL= UL (2) B#UM(2) #HZ(1)##(UM(2)=1,)#RZ(1)#8UT(2)
HéL= VLALPVMAL#HZ (1) 88 (VMLL=1,)RBZ (1) #aVT4L

HSL= VLSL®#VMSL#HZ (1) 88 (VMSL=1,)%BZ(]1)#*VT5L

HO6L=E VLOLHVMOL#HZ (1) ## (VMOL=-1,)4#RZ(1)#2VT6L

HTL= VLTLAVMTL#HZ (1) 88 (VMTL=1,)%3Z(1)#aVTTL

HBL= VLBL#VMBL#*HZ (1) #8(VMBL=1,)#BZ(1)%eVT8L

FRL= EQ/(BZ(1)®#(GRAVH*HZ (1)#83,)#80,5)

ZRL= UL(&)BHZ (1) a8UM(4)*BZ (1) #eyUT (4)

DL5L= UM(4) #VLSL#ZRL*((1.1667~ZRL)*ALOG(2.,*DIA)+1,)/(HZ(1)®*(1.166
17-ZRL))

DL6L= UM(&4)#VLOLB*ZRL/(HZ(1)#(1.166T7=ZRL))

DLTL= UM{Q)RVLTLHZRL®((1.0000~ZRL )#ALOG(2.,%#DIA)+1.)/(HZ(1)#(1,000
10=ZRL))

OLBL= UM(4)#VLBL#ZRL/(HZ(1)#(1,0000-ZRL))
XISL=DLSLAHZ (1) ##VMSL#BZ (1) ##VTS5|
XIOGL=DLOL#HZ (1) #avMEL#*BZ (1) ##VT6L
XTTL=DLTL#HZ (1) #ayMT_#BZ (1) #eVTTL
XISL=DLBL#HZ (1) #oVMBL#BZ (1) ##VTBL

XL2L= UL(2)8HZ(1)#2UM(2)#BZ (1) ##UT(2)

XLOL= VLAL®HZ (1) aVMLL *BZ (1) ##VT4L

XLSL= VLSL®#HZ (1) ##yM5 #BZ (]) #aVT5]

XL6L= VLOL®HZ (1)®ayMeL*BZ(])#2VT6L

DMSL= «UM(4)#ZRL/HZ(])

DMTL= DMSL

XJSL= DMSLABZ (1) #evT5 #VLSL*HZ (1) ##YMSL*ALOG(HZ(]))
XJTL= DMTL#BZ (1) #VTTLRVLTLHHZ (1) #4VMTL*ALOG(HZ (1))
XKéL= XLAL®#(VT4L+1,)

XK5L= XLSL®#(VTSL+1,)

XK6L= XL6L®#(VT6L+1l.)

CONTINUE

Pl HTLeHBLeXITLoXIBLeXJTL

P2= HGL+HSLeHOL +XISL+XI6L +XJUSL

P3= (1.=-POR)#SS#GAM

PS= 1.-FRL*FRL

P6= H2L

PB= P3#pS~p]

CNF= -P2/P8

WRITE(6+4100) PleP29P3¢PSeP6+CNF

DO 20 J=1.NL

CALL VLMT(HZ(J*1)eBZ(U+1))

H2 2z UL(2)2UM(2) RHZ (Jo1) 88 (UM(2)=1,)#BZ (Je]l)#2UT (2)
H4 = VLIA)BVM(G)RHZ (J+]1) 22 (VM(4)=]1,)%#B2(J+]1)28VT (4)
HS 2 VL(S)BVM(S)SHZ (Je]l) B (UM(S)=],)#BZ (Je]1) #2YT(5)
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H6 = VLI6)#VM(6)HHZ (J+1)##(VM(6)=1,)#BZ(Je1) ##VT (6)
HT = VL(T)RVM(T)HHZ (J+1) ##(VM(T)=1,)#BZ(J+1)#8VT(T)
H8 = VL(8)RVM(B)HHZ (J+]1) #2(VM(B)=]1,)#BZ(Je+]1) #8#VT(8)

FR= EQ/(BZ{(J+1)#(GRAVH#HZ (J+]l )83, )##0,5)

ZR = UL (4)#HZ(J+1) #uUM(4)#RZ (J+1) #2UT(6)

DLS= UM{4)#V (S5)#ZR# ((1.166T=ZR) %A 0G(2.#DIA)+1,.)/7{(HZ(J*1)%(1,166
17=-ZR))

DLE= UM(4)BVL(6)#ZR/ (HZ(JU+1)%(1,166T7-2R))

DLT= UML) #VL(T)I#ZR%# ((1e0000~ZR)#ALOG(2:.#DTA)+14)/(HZ(J+1)#(1,000
10-2ZR))

DLB= UM(4)#VL(B)#ZR/(HZ(J+1)%#(1,0000-2ZR))

XIS= DLS#HZ (J+1) #2yM(S5)#RZ(J+]1)##VT(5)

XI6= DLOMHZ(J+1)#8VYM(B)HRZ (J+l)a8VYT(6)

XIT= DLT#HZ (J+)l)#aVM(T)H#RZ(J+]l)88VT(T)

XIB= DLB#HZ (J+1)#2YM(B)RBZ(Jel)##VT(8)

XL2= UL(2)#HZ (J+1)2aUM(2)#BZ2(Jel) #2yT (2)

XLa= VL(4)HHZ(J+]1)#8VM(L)#RZ (J+]1) 8#VT (&)

XLS= VL(S5)#HZ (U] ) #2YM(S5)#RZ(J+]1)#RVYT(5)

XL6= VL (6)HHZ (Je])##VM(6)#BZ(Je]1)22VT (6)

DMS5= =UM(4)#ZR/HZ (J+1)

DM7= DMS

XJS= DMS#BZ(J+]1)##VT(S)#VL(S5)RHZ(J+1)#RYM(5) #ALOG(HZ (J+1))
XJT= DMS#BZ(J+1)#aVT (T)RVL(T)HHZ(J+1)2BYM(T) HALOG(HZ (J+1))
XKé= XL&# (VT (4)e¢l.)

XKS= XLS#(VT(S)+l.)

XKO= XL6# (VT (6)+l,)

AS(J)= =« (H4L+HSL+HOL+XISL+XI6L+XJUSL) #DEL /DX

1 +( HTL*HBL+XITL+XIBL+XJTL)#0,.5/DT
2 +(BZP (J)/BZ (J) ) # (HAL+HSL+HOL+XISL+XI6L+XJUSL) #DEL/2.
BS(J)= ¢ (H4+HS+HE+ XIS+ X16+XJUS) #DEL/DX

+{ HT+HB+ XTI T+ XIB+XJT)#0,5/DT
+(BZP(JU+1)/BZ(J+1) ) # (HA+HS+H6+ XIS+ X16¢XJS) #DEL /2.

TEM=0,5%(] =POR) #SS*GAM/DT

CS(J)= TEM = AS(J)

DS(J)= TEM = BS(J)
QS (J)= ={(XL& +XLS +XL6&6 )/DX
1 + (XLA4L*XLSL+XL6L) /DX

ES(J)= = (lo=FRL#%#2,)#DEL/DX + H2L*DEL/2.

FS(J)= «(l.~FR##2,)#DEL/DX ¢ HZ2 #DEL/2.

GS(J)= +{0.,=FRL##2,)#DEL/DX = H2L*DEL/2.

HS(J)= +(0.¢FR 282 ) #DEL/DX - H2#DEL/2,

RS(JU)= «(FR##2 ,8H7 (J+1)=FRLE2#2,#HZ(J) )/ (2.%DX)

N -

1 =(HZ(J+1)+Z(J+1)=HZ (N =Z(J)) /DX
e -(XL2+XL2L) /2.
H2L=H? § XxreL=xea

HeL=H& $ ZRL= ZR $ FRL= FR $ XLa4L=XL4

HSL=HS $ DLSL=DLS $ XISL=XI5 $ XLSL=XLS $ OMSL=DMS $ XJ5L=XJ5
H6L=H6 & DL6L=DL6 $ XI6L=XI6 $ XL6L=XL6
%
$

H7L=H7 & DL7L=DL7 XI7L=XIT $ DMTL=DM7 $ XJT7L=XJ7
HBL=H8 $ DLBL=DLS8 X18L.=xI8
XK4L= XK4&
XKSL= XKS
XK6L= XK6
20 CONTINUE
100 FORMAT (/% PARAMETER Pl= #E15,8/7
1 # PARAMETER P2= #£15.8/7
2 # PARAMETER P3= *E15.8/
3 * PARAMETER PS= *E15.87
4 # PARAMETER P6= #E£15.8/
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5 ® BED WAVE CELERITY= #E1S5,8% FT,/SEC.%//)

10

20

30

70

RETURN
END

SUBROUTINE DSWP(HZRsHZBO+ZUsYDeNsDYsD2)

COMMON/D/ RLENGTHoNLsDXoNXsTTIMENTsDTsNZ

COMMON/H/ INDU

COMMON/VD/ AS(150)¢BS(150)+CS(150)9DS(150)+ES{150)9FS(150)+65(150)
1+HS(150)+QS(150) «RS(150)

DIMENSION SS(151)TS(151)US(15])

DIMENSION ZU(1)9YD(1)eDY(1)sDZ (1)

IF (INDU.EQ.2)G0 TO 10

TS(l)= HZIB-HZBO

SS(l1)= 1.

GO 70 20

CONTINUE

DZ(1)= ZU(N+1)=ZU(N)

SS(1)= 1000000,

TS(1l)= «SS(1)#DZ (1)

CONTINUE

DO 30 J=2¢NX

US(J)= (ES(J=1)#SS(U~1)+GS(JU~1) )/ (AS(J=1)#SS(J=1)e+CS(JU=1))
TS(J)= ((RS(J=1)=ES(U=1)#TS(J=1))=US(J)#(QS{J=1)=AS(U=1)#TS(U=1)))
17(FS(J=1)=US(J)#BS (J~1))

SS(J) == (HS (U=1)=US(J)#DS(J=1)) 7 (FS(JU=1)=US(J)#BS(J=1)}
CONTINUE

DY (NX)= YD(N+1)=YD(N)

DZ(NX)= (DY (NX)=TS(NX))/SS(NX)

NO 70 J=2+NX

K= NX=Jel

DZ(K)= ((QS({K)=AS(K)®TS(K))=(BS(K)#DY(K+1)+DS(K)#®DZ(K+1)))/(AS(K)*
1SS(K)+CS(K))

DY(K)= SS(K)®DZ(K)+ TS(K)

CONTINUE

RETURN

END
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SURROUTINE HZUP (HZB+BZ+GSBaNIEQ)
COMMON/A/ GRAV+GAM4SS

COMMON/C/ DEL

COMMON/F/ FRMINsFRMAX
COMMON/VC/ UL (4) sUM(4)sUT(4)sVL(8)9sVM(B) VT (8B)
DIMENSION BZ(1)+GSRBR(1)

HZMIN= (EQ/(BZ (1) #*FRMAX#GRAV##0,5))##(2./3,)
HZMAX= (EQ/(BZ (1) #*FRMINSGRAV##0,5))##(24/3,)
CALL VLMT(HZMINSBZ (1))

CALL GT(HZMINsBZ (1) +GSBMAX)

CALL VLMT(HZMAXsBZ (1))

CALL GT(HZMAXeBZ (1) ¢+GSBMIN)
KOUNT=0

Hl= ALOG (HZMAX)

H2= ALOG (HZMIN)

Gl= ALOG(GSBMIN)

G2= ALOG(GSBMAX)

G3= ALOG(GSB(N+1))

ToL= 0,000001%G3

TOL= ABS(TOL)

FORMAT (2 (6E15.8/))
FORMAT(10X+E15.8)

KOUNT= KOUNTe]

IF (KOUNT.EQ.20) GO TO 40

H3TRY= Hl=(H1~-H2)#(G3-Gl)/(62-Gl)
H3ITRY= EXP(H3TRY)

CALL VLMT (H3TRY.BZ (1))

CALL GT(H3TRYsBZ(1)9+G3TRY)
G3TRY= ALOG(G3TRY)

TEMP= G3=G3TRY

IF(ABS(TEMP) (LT.TOL) GO TO 40
IF(TEMP,LT.0) GO TO 20

Hl= ALOG(H3TRY)

Gl= G3TRY

GO TO 30

CONTINUE

H2= ALOG(H3TRY)

G2= G3TRY

CONTINUE

GO 7O 10

CONTINUE

HZ8= H3TRY

WRITE(65100) KOUNT

CONTINUE

FORMAT (/* NUMBER OF ITERATIONS IN SUBROUTINE HZUP= #12/)

RETURN
END
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SUBROUTINE MQMENT
COMMON/B/ PORsDIAICKsCAsCBoVNUIWL sBRIMP
COMMON/D/ RLENGTHoNLsDXosNXsTTIMEsNToDTeNZ
COMMON/VA/ X(151)+RBZP(151)+ZREF (151)+ZPLOT(151)
DIMENSION XME (151)+ZM(151)
BR= 0,01
MP=5
N= 0
DO 10 J= 1eNX
ZPLOT (J)Y= ZPLOT(J) =~ RR
IF(ZPLOT(J) LE.O.) GO TO 10
N= N+l
XME(N)= X (J)
ZIM(N)= ZPLOT(J) + BRR
10 CONTINUE
IF (N.LE.MP) RETURN
SuUMa= 0,
sSumMB= 0,
D0 20 J= 1N
SUMA= SUMA + XME (J)#ZM(J)
SUMB= SUMB + ZM(J)
20 CONTINUE
XMN= SUMA/SUMB
NN= N-1
DO 30 J= 1¢NN
CC= ZM(J+1)
pD= ZM(J)
IF(CC.LT.DD) GO TO 40
30 CONTINUE
40 ZMD= DD
XMD= XME (J)
SSD= 0.
SSK= 0,
SKU= 0.
DO S50 J= 1N
UuU= XME (J) =XMN
SSD= SSD + UUs#2#7ZM(J) /SUMB
SSK= SSK + UU##3#ZM(J)/SUMB
SKU= SKU + UU#s48ZM(J) /SUMB
S50 CONTINUE
SD= SQRT(SSD)
CV= SD/XMN
SKC= SSK/SD##3
CKU= SKU/SD##4
PRINT 100s XMD9eZMD s XMNsSDsCVeSKCyCKU
100 FORMAT (1Xo#XMODE=#4E11,4910Xe#ZMODE=#4E1]1,4910X o XMEAN=®#9E1]l,4010
IXo#STANDDEV=#4E11 .49/ 9 1 X o #COEFF VAR =#9E11 40 10X9*SKEW,COEFF =8,
2F11.4310Xe#KURTOSIS COEFF=#9F11,4)
RETURNMN
END



125

SUBROUTINE TEST2(AsReAl9BlsA2¢B29CeDIEIFGIHIBZHIBZP)
COMMON/C/ DEL
COMMON/D/ RLENGTHsNL sDXsNXs TTIMEINTsDToNZ
DIMENSION A(1)oB(1)9A1(1)eBl(1)9A2(1)eB2(1)sC(1)eD(1)sE(L)sF (1)
16(1)eH (1)
DIMENSION BZ(1)BZP (1)
SR= 0,
su= 0,
XL= NL
PRINT 200
DO 10 J= 1eNL
P= DEL/DX#(A(J+1)=A(JU))+(1.=DEL)/DX#(B(J*1)=B(J))
Pl= DEL/DX#(Al(J+1)=A1(J))+(l.~DEL)/DX#(Bl1(U+1)=Bl(J))
P2z 0,5/DTH(A2(J+1)+p2(J)=-B2(J*1)=-B2(N))
0= 0.S/DT#(C(J+1)+C(J)~=D(J+1)=D(J))
P3= P+P1+P2
P4z DEL/2.%(BZP(JU+1)/BZ(J+]1)#A(J+]1)+BZP(U)/BZ(J)®*A(J))+(1.=-DEL) /2.
1#(BZP(J+1)/BZ(J+1)#B(U+]1)+BZP(J)/RZ(J)*B(J))
PS= DEL/2.%#(BZP(J+1)/BZ(Je1)#ALl(J+1)+BZP(J)/BZ(J)#AL1(J))*(]l.=-DEL)/
12.#(BZP(J+1)/BZ(J+1)#R1(J+]1) +BZP(J)/BZ(J)#B1(J))
P6= P4+PS
R= P3+Q+P4+P5
SR= SR + R®*R
S= DEL/DX®(E(J*1)=E(J))+(1.-DEL)/DX®#(F(J+1)=F(J))
T= DEL/2%(G(JU*1)+G(J))+(1le=DEL)/2.%(H(J*1)eH(J))
U= SeT
SU= SU + U%U
PRINT 100sJsPoeP1sP2+QeP6EIR9ISTHU

10 CONTINUF
V= SQRT(SR/XL)
W= SQRT(SU/XL)
PRINT 1209 VoW

100 FORMAT(I10+9E13.6)

120 FORMAT (20X s#ROOT MEAN SQUARE#437X¢E15,6924X9E15.6/)

200 FORMAT (//+ J D1 D2 D3 n
14 DS ES pe D7 EM
2%/)

RETURN

END
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