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ABSTRACT 

A mathematical model of sedimentation transients in straight 

alluvial channels is presented for subcritical flow. Both the bed 

load and suspended load components of the transport are separately 

accounted in the model. A coupled solution of the momentum and sedi­

ment continuity equations enables the numerical solution with longer 

time steps than are possible for uncoupled models. The model is partic­

ularly suitable for long-term simulations in sand-bed channels. In view 

of the markedly slow nature of the sedimentation transients, the water 

discharge is considered invariant at the time scale used to model the 

sedimentation transients. For the upstream boundary condition, either 

the depth of flow or bed elevation can be specified in time. A practi­

cal alternative is to specify the bed material transport in time, since 

it can be directly related to the depth of flow. For the downstream 

boundary condition~ the model requires that the stage be specified in 

time. 

A linearized implicit numerical scheme is used to solve the 

governing equations. The linearization assumes that during a discrete 

time step ~t, the proportional change in depth of flow, ~h/h is 

less than 0.10. The stability and convergence of the numerical scheme 

are given careful consideration, and criteria are developed to assess 

the convergence properties. Theoretically optimum values of the 

weighting factor 0 and a sedimentation Courant number cr are 

presented, where c is the celerity of small bed level perturbations 

and r = 2~t/~x. 

Results of test runs derived from hypothetical examples are 

presented. The numerical model effectively simulates the formation of 
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a bed wave in the upstream reach of a straight alluvial channel due to 

a nonequilibrium sediment inflow hydrograph. There is no limitation 

to the shape of the sediment hydrograph that can be modeled, provided 

the linearization is valid (6h/h ~ 0.10) and cr is equal to or 

slightly greater than 2. Experience with this model shows that in order 

to insure stability of the numerical scheme, a value of 0 Z 0.7 is 

necessary. 

Various types of aggradation and degradation problems can ~e 

simulated by this model. Examples of the following problems are 

presented: (1) the formation and migration of bed waves in alluvial 

channels, (2) the change in channel bed configuration caused by the 

change in tail water elevation, and (3) the transient effect of local 

sediment removal by means such as dredging and sediment ejection. 
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CHAPTER I 

INTRODUCTION 

The morphologic and bed material transport relations in alluvial 

channels are generally based on equilibrium flow conditions. An 

equilibrium flow through a finite reach of a channel is defined as a 

flow that possesses sediment inflow-outflow balance over a sufficiently 

long but finite time interval. Flow in natural and man-made alluvial 

channels is generally unsteady both in water and in sediment discharge. 

Therefore, a channel that is in equilibrium over longer time intervals 

may experience significant deviation from the equilibrium over shorter 

intervals. Deviations from equilibrium conditions in an alluvial 

channel may also occur when the base level has been changed due to 

man-made or natural causes and the channel is in the process of 

adjusting to the new boundary conditions. The regime associated with 

these deviations, pertaining to oscillations around an equilibrium 

state or to the transition from one equilibrium state to another, is 

herein called a "Sedimentation Transient" or in short a "Transient." 

The transients in alluvial channels are primarily caused by the 

unsteady inflow-outflow conditions and the lag in channel response. 

They may develop during the passage of a discharge wave, due to a 

change in the base level and particularly when a large concentration 

of sediment is introduced into a channel. The sedimentation transients 

can relate to one or more sedimentation quantities, such as the 

channel bed-level, suspended load, bed material size, etc. Sand-bed 

channels exhibit transients more frequently due to a greater mobility 

of their beds than the coarse material or cohesive boundary channels. 
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A number of phenomena in sand-bed channels occur as related to transients. 

For example: (1) the average sediment transport rate in a channel with 

bed level transients is larger than the transport without a transient 

and the larger the amplitude of the bed-level transient, the larger is 

this difference; (2) the minimum available depth of flow in a channel 

is related to the amplitude of the existing largest positive bed-level 

transient; (3) bed-level transients phenomenologically reflect the time 

lag between the precipitation and the resulting sediment yield along a 

drainage basin, and (4) more importantly. the bed-level transients in 

straight sand-bed canals can introduce bed instability due to the 

effect of locally accelerated flow [1]. 

This report is related to the mathematical modeling of bed-level 

transients in sand-bed canals. It is inspired by the sedimentation 

transients that are experienced in large sand-bed link canals in 

Pakistan. The transients in the link canals are formed under a 

combination of the following conditions. During flood flows in their 

parent rivers, the link canals receive large bed material concentrations 

that cause bed aggradation. As the concentrations recede to their 

equilibrium levels, the bed-level at the head of the canal lowers and 

a bed wave is formed. This wave travels down the canal and is generally 

damped in amplitude. However, at any time there may be a number of 

waves in the channel that may coalesce and form larger waves. The 

water level at the tail regulator of a canal (the base level) also 

varies seasonally. When the level is above its equilibrium value, the 

bed in the reach tmder the backwater is aggraded. As the base level 

is lowered below the equilibrium value a negative wave is formed that 

* Numbers in brackets [ ] refer to Appendix I--References. 
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travels downstream. The combination of these factors gives rise to 

significant transients of different shapes and sizes. 

The governing equations for the transients in sand-bed channels 

comprise the momentum equation for the water-sediment mixture, and the 

continuity equations for the water and sediment phases. These equations 

constitute a set of nonlinear hyperbolic partial differential equations 

for which an analytical solution is generally unavailable. In unsteady 

water-sediment routing in channels, these equations or their simplified 

forms are therefore numerically solved by using appropriate finite 

difference schemes. The solution techniques so far developed are 

restricted to the bed-load mode of sediment transport and mostly use an 

uncoupled model in which the hydraulic and sedimentation phases are 

studied sequentially. 

When applied to bed-level transients in sand-bed channels, these 

techniques are generally deficient, because: (1) in sand-bed channels~ 

most of the bed material load is transported in suspension and realistic 

results cannot be expected when this mode of transport is neglected; 

(2) the uncoupled models have to use a smaller time step than the 

coupled model and therefore increase the total computational time; 

(3) the bed waves in frictional flow systems undergo dispersion and 

damping. The numerical schemes can introduce dispersion and damping of 

their own so that the representation of the transients is distorted. 

It is not possible to analytically determine the bed wave dispersion and 

damping characteristics for uncoupled models and so the accuracy of 

their results is uncertain unless rather small space and time steps 

are used and finally; (4) models that neglect the suspended load or the 

models that are uncoupled cannot realistically represent the formation 
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of bed waves due to the influx of large sediment concentration at the 

head of a channel. 

A mathematical model is developed herein that is especially suited 

for the study of bed-level transients in sand-bed channels. This model 

is based on a coupled solution of the hydraulic and sedimentation 

phenomena. It also accounts for the suspension mode of sediment transport. 

The governing equations for sedimentation transients are presented in 

Chapter II and the numerical solution based on a 1inearized-imp1icit­

coupled scheme is presented in Chapter III. Chapter IV deals with the 

stability and convergence characteristics of the numerical scheme 

presented in Chapter III. Specifically, the damping and dispersion 

characteristics of the scheme are considered, and criteria for the 

errors introduced by the numerical scheme are developed. Chapter V 

presents the results of some numerical experiments that simulate the 

phenomena observed in the link canals. Chapter VI contains the 

conclusions of this study and recommendations for future research in 

this field. The computer program developed for using this model is 

presented in Appendix II along with a user's manual. 



2.1 Introduction 

5 

CHAPTER II 

BASIC EQUATIONS 

The flow in sand-bed channels involves a three-dimensional 

two-phase flow, many aspects of which are not as yet fully understood. 

However, in solving practical problems related to alluvial channels, 

simplifying assumptions have been successfully used in the past. 

For example, the mass and momentum diffusion characteristics of clear 

water turbulent flows have been used in developing the sediment 

transport functions [2~3]. These simplifications are useful inasmuch 

as solutions can be obtained that otherwise are not possible. In 

this study of sedimentation transients, three basic assumptions are 

made with regard to the character of alluvial channel flow. These are: 

1. The cross-sectional shape of the channel is constant, 

so that the hydraulic and sedimentation phenomena can be 

described as functions of average flow parameters such as 

the hydraulic depth, water surface width and the average 

velocity of flow. 

2. The flow is one-dimensional and the channel phenomena can 

be modeled as functions only of the linear dimension 

along the direction of flow. 

3. The hydraulic transients travel much faster than the 

sedimentation transients, so that the water flow can be 

considered as steady compared to the time scale of the 

sedimentation phenomena and over a given computational time 

step the sedimentation phenomena can be represented by the 

time averaged flows parameters. 
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The cross-sectional shape of sand-bed canals is determined by 

the flow and sediment characteristics [4]. The sedimentation 

characteristics such as the mineralogy and quantity of wash load are 

fairly constant regionally, so that a unified pattern of channel 

behavior is recognized (regime theory is a good example of regional 

pattern). For such channels the cross-sectional shape follows a 

uniform pattern, and the flow and sedimentation phenomena can be 

described in terms of average channel parameters. 

Flow in wide and straight sand-bed channels exhibits three-

dimensional flow patterns to some extent. For example the straight 

sand-bed canals form alternate bars of varying height (see Figure 2.1). 

However, the degree of asymmetry in their cross-section is generally 

small, so that the one-dimensional assumption is considered valid. 

The relative speeds of water and sedimentation transients on sand-bed 

channels and their effect on the governing equations has been specif-

ica1ly studied in the past. As a result, Iwagaki [5], de Vries [6J 

and Cunge and Perdreau [7] showed that the water discharge can be 

considered steady in the study of sedimentation transients. 

2.2 Governing Equations 

With the preceding assumptions and the usual assumptions of 

shallow water flow [8], the governing equations of flow through a wide 

rectangular channel with a variable bed level and bed width are: 

Equation of Motion: 

+ Y) + Sf = 0 (2-1) 



Fig. 2.1 Alternate Bars in the Taunsa-Panjnab Link Canal in Pakistan. 



where 
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Equation of Continuity of Water-Sediment Mixture: 

a - [pQ] = 0 at 

Equation of Continuity of the Bed Material: 

aGb aGs --+--+ ax ax 

Q = the constant discharge in the channel, 

g = the gravitational acceleration, 

y = the water surface elevation, 

Sf = the energy gradient assumed to be equal to the energy 

gradient for a representative average discharge, 

p = the mass density of the sediment water mixture, 

~ = the bed load, 

G = the suspended bed material load, s 

C = the average spatial bed material concentration in the 
s 

cross-section, 

p = the porosity of the channel bed, 

Yw = the density of water 

S = specific gravity of solids s 

z = the bed elevation, 

B = the deformable bed width, assumed equal to the width of 

the rectangular cross-section, 

h = the depth of flow (h=y-z), 

(2-2) 

(2-3) 

x = the distance along the channel bed measured in the downstream 

direction and, 

t = the time. 
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The geometrical quantities defined above are also shown in Figure 2.2. 

All the terms in Equation (2-1) have units of slope and transport 

rates Gb and Gs in Equation (2-3) are expressed in units of weight 

per unit time. It is assumed that the mass density of the sediment 

water mixture in Equations (2-1) and (2-2) is the same as that of 

water and the width B is invariant in time. The governing equations 

then reduce to: 

(2-4) 

(2-5) 

where the local acceleration term has been dropped in Equation (2-4) 

because its magnitude is much smaller than the other terms and its 

effect on the transient can be ignored [91. In Equations (2-4) and 

(2-5), gs and gb are the suspended bed material load and the 

bed load, respectively, per unit width of the channel, defined as 

gs = Gs/B and gb = Gb/B, and p* = (l-p)Ssyw· 

In alluvial channel flow the quantities Sf' gs' gb and Cs 

used in Equations (2-4) and (2-5) are functions of the local velocity 

V, depth of flow h and bed material size D, besides the properties 

of water such as temperature, kinematic viscosity, etc. If the bed 

material size along a channel is initially known and is considered 

invariant in time (as in the case of the channel width) then these 

quantities can be expressed as functions of h(x,t) alone, so that 
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Equivalent 
Rectangulor 
Section --_ ..... 

Width B 

Depth h 

h=(y-z) 

----------~--~----------------------------~--x 

Fig. 2.2 Definition Sketch. 
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(2-6) 

(2-7) 

and 
it c = C (h) - s s 

(2-8) 

Using these expressions, Equations (2-4) and (2-5) become: 

(2-9) 

av av az az gt C. .::.L. + g t ::...L. + (p -C') - _ g f - = - - B' s at t ax * s at t ax B 
(2-10) 

where the Froude number F = Q/lgB
2h3

, the mass density of the sand 

bed p* = S Y (l-p) and prime superscript represents derivative s w 

with respect to h. 

Equations (2-9) and (2-10) form a set of nonlinear first order 

partial differential equations for the dependent variables, water 

stage y and the bed elevation z with the two independent variables, 

distance along the direction of flow x and time t. These are 

hyperbolic equations with the characteristic equation 

and 

2 2 g'dt + [p*(l-F ) - C'l dt dx = 0 s 

Equation (2-11) has two roots, 

c = 2 
dx 

(dt)2 = _co 

(2-11) 

(2-12) 

(2-13) 

The characteristic curves, c2 and c3 for subcritical flow are shown 

in Figure 2.3. These characteristic directions indicate that: (1) the 

effect of a small disturbance in y within the domain or at the down-

stream boundary will instantaneously extend to the upstream boundary 



t 

Upstream 
Boundary 

12 

Downstream 
Boundary 

-----c2 

Fig. 2.3 Characteristic Curves for Subcritical 
Flow in Sand-Bed Channels. 
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and (2) a small disturbance in bed level z, will travel with celerity 

c3• Equations (2-12) and (2-l3) also indicate that for the mixed value 

problem (Equations (2-9) and (2-10)) to be well posed the following 

conditions need to be specified for the subcritical flow F < 1: 

1. Initial Condition 

y(x,O) and z(x,O), ° < x < L 

2. Boundary Conditions 

One boundary condition on the upstream boundary as 

z(O,t), ° ~ t ~ T 

and one boundary condition on the downstream boundary as 

y(L,t), ° ~ t ~ T 

where L is the length of the channel reach and T is the time span 

over which the governing equations are to be solved. 

2.3 Supplementary Equations 

Equations (2-4) and (2-5) contain Sf' the energy gradient of the 

flow, and quantities g, gb and C , associated with the transport of s s 

sediment by flow. In alluvial channel flow these quantities are 

functionally related to the bed material size and water discharge by 

resistance and transport functions. 

The experience with resistance to flow in alluvial channels 

indicates that the resistance varies with the flow rate and that at 

least different resistance functions are applicable to different 

bed form regimes [3]. There is also a variety of resistance functions 

available for modeling that differ in their approach and range of 

applicability. For the purpose of modeling, it is not necessary to 

follow a particular resistance function. Rather, a functional form 
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that covers the range of conditions anticipated in the study and that 

has been validated by experience, can be conveniently used to relate 

Sf with other flow quantities. On the other hand, the sediment trans­

port function used to model the sand-bed channel transients has to 

satisfy a few specific conditions. One, the transport function must 

have a sound phenomenological structure. This is necessary because 

in following sedimentation transients, a wide range of transport 

conditions from small to high transport rates is covered and to model 

the transients, it is necessary to realistically represent the change 

in transport associated with the change in hydraulic quantities. 

Two, the transport function should be able to separately compute the 

suspended and bed-load phases. This is important in sand-bed channels, 

because in these the suspension phase accounts for a major portion of 

the transport. 

Based on the preceding consideration and the writers' experience, 

the following set of resistance and transport functions has been 

adopted. Essentially, the resistance function follows the empirically 

derived behavior of sand-bed channels [4), while the transport 

function is modeled for a unigranular material after Einstein's 

Bed-Load function and Mahmood's transport function [2,3]. 

2.4 Resistance Function 

In wide, straight sand-bed channels, the resistance to flow varies 

with the change of bed form dimensions. However, over a given range, 

such as the dune to antidune bed form regime, the resistance varies 

monotonically so that for a constant Q, the Manning's n decreases 

with an increase in Froude number of the flow. This behavior has been 
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observed in laboratory recirculating flumes and in the large sand-bed 

irrigation canals operating under equilibrium conditions [41. It is 

stated as follows: 

(2-14) 

where n = Manning's roughness coefficient for the flow, D= a 

representative bed material size in feet, F = Froude number of the 

flow, and kl , a and b are real numbers. Equation (2-14) is 

dimensionally nonhomogeneous and for a given model kl , a and b 

are determined by calibration or from the available equilibrium data. 

Part of the resistance to flow in Equation (2-6) is due to the 

grain roughness [2,3] and part due to the form roughness caused by 

the bed form and the presence of the sediment transport. It is 

necessary to calculate these components explicitly for later use in 

the transport functions. For the grain roughness, the Manning-

Strickler equation is used as follows: 

n' = 0.0342 Dl / 6 (2-15) 

where n' = grain-associated component of Manning's roughness coefficient. 

Using the functional form of Manning's roughness equation the component 

of the channel depth associated with the grain roughness is: 

(2-16) 

The following hydraulic parameters of the flow can then be 

defined in terms of the constants of Equations (2-14) and (2-15). 

h' R.l 
ml tl 

= h B (2-17) 

Sf R.2 

m2 t2 
= h B (2-18) 



where 

and 

16 

= [0.0342 D(1/6-a)Qb]3/2 
11 k b/2 

1 g 

9 
m1 = 1 - 4* b 

10 
m2 = 3b - 3 

t2 = 2(b-1) · 

2.5 Velocity Distribution 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

The velocity distribution in the vertical is assumed to follow 

a power-law as 

where the shear velocity U: is the grain-associated shear velocity. 

exponent b2 = 1/6 and coefficient a2 can be determined by equating 

the grain-associated resistance factor from Equation (2-15) and from 

the integration of Equation (2-27): 

(2-28) 

or 

(2-29) 
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where 

13 
gDl / 6 

= 7/6 
{g1

l
12 

(2-30) 

ml m2 !..) m3 = -(- + - + 2 2 6 (2-31) 

and 
tl t2 

1) t = -(- + - + . 3 2 2 (2-32) 

2.6 Bed Load Function 

The bed load function used herein is modeled after Einstein's 

bed load function. This function is developed for a single representative 

bed material size D. For this condition, 

(2-33) 

= = [PS-PfJ_D-
~* ~ P h'$ 

f f 
(2-34) 

and 

(2-35) 

where ~* = the bed load transport intensity parameter, ~* • the shear 

intensity parameter and aI' bl = the coefficient and the exponent 

respectively obtained from Einstein's bed load function (Figure 9, 

reference [2]) to represent the '*-~* relation over the range of 

interest. It is understood that 4 to 5 sets of (al,b
l
) define 

the complete range of ~*-~* from the smallest to the largest 

practical transport rate. It is also possible to adjust the bed load 

function in a particular model by obtaining aI' bl from calibration 

or from equilibrium data applicable to the channel. 
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From Equations (2-33) through (2-35) and using the expressions 

for h' and Sf in Equations (2-17) and (2-18), the bed load per 

unit width is: 

(2-36) 

where 

(2-37) 

(2-38) 

and 

(2-39) 

2.7 Suspended Load Function 

The vertical distribution of bed material concentration is not 

very sensitive to the underlying assumption of the distribution of 

sediment diffusion coefficient £ (or the shear distribution) in s 

the depth of flow. The major uncertainty in the computation of suspended 

load comes through the selection of an appropriate value of the Rouse 

number, Z [3]. For simplicity, it is assumed herein that the turbulent 

diffusivity es ' varies linearly in the depth of flow as follows: 

where K = Von Karman's constant and y = distance from the local 

bed level. The resulting bed material concentration profile is: 

with 

c Z 
J... - (!.) C

a 
- y 

Z w 
= KU* 

(2-40) 

(2-41) 

(2-42) 
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where Cy and Ca are the bed material concentration at distance y 

and distance a from the bed level, respectively, and w is the fall 

velocity of the representative size, o. Note that the total shear 

velocity, U* is used in Equation (2-42) to define Z in keeping with 

the writers' personal experience. 

Following the bed material transport functions used herein [2,3], 

the reference concentration C is defined in a bed layer of thickness 
a 

20. It is assumed that the bed load is moving with a velocity of 

11.6 U! in the bed layer, so that 

gb 
Ca = (11.6 U!)(20) 

The suspended bed material load, g can then be evaluated as: 
s 

Simplifying Equation (2-44) 

where 

and 

m t m t 
= 1 h 58 5 + 1 h 68 6 gs 5 6 

b -Z+l 
11.6(b2-Z+l)(20) 2 

t5 = t3 + t4 

b2 
2 1314 

(2-43) 

(2-44) 

(2-45) 

(2-46) 

(2-47) 

(2-48) 

(2-49) 

(2-50) 

(2-50a) 
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The average spatial concentration C in the vertical can be s 

calculated as: 

1 h 1 h 20 Z 
Cs = -h I C dy = h J C (--) dy 

20 Y 20 a y 
(2-51) 

Simplifying Equation (2-51) 

(2-52) 

where 

(2-53) 

(2-54) 

(2-55) 

(2-56) 

(2-57) 

and 

(2-58) 

2.8 Summary 

In this chapter, the governing equations of one dimensional 

sedimentation transients, Equations (2-4) and (2-5), have been developed. 

These equations assume that: (1) the channel shape is constant, 

(2) the channel phenomena can be modeled as functions only of the 

linear dimension along the direction of flow and (3) the hydraulic 

transients travel much faster than sedimentation transients, so that 

for the time scale of the latter transients the flow can be considered 

as steady_ 
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The governing equations form a set of hyperbolic, nonlinear 

partial differential equations. It is shown that their characteristic 

equation has two roots, one relating to the travel of small surface 

disturbances and the other relating to the travel of small bed waves. 

Consideration of the characteristics show that to be well posed, the 

problem of sedimentation transients, as defined by Equations (2-4) and 

(2-5), should have specified the initial conditions, the water-surface 

level in time at the downstream boundary and the sand-bed level in time 

at the upstream boundary. The governing equations separately consider 

the bed load and suspended bed material phases of sediment transport in 

the channel. These equations involve quantities relating to the 

resistance and transport phenomena such as Sf' gb' gs' and Cs • It 

is further assumed that the bed material size distribution in the 

channel is constant during a time interval and is specified a priori, 

so that the resistance and transport quantities are functions alone of 

the local depth of flow, h. 

Supplementary equations have been developed expressing these 

quantities as explicit power functions of h. These are Equations (2-18), 

(2-36), (2-45) and (2-52). All the coefficients and power indices 

in these equations are determined from parameters 

that are specified for the alluvial channel flow. 

kl , a, b, a l and bl 

The supplementary 

equations are later used in this report to develop the numerical solution 

of the governing equations. 
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CHAPTER III 

NUMERICAL SOLUTION 

3.1 Finite Difference Scheme 

Equations (2-4) and (2-5) governing the sedimentation transients 

in sand-bed channels are nonlinear hyperbolic partial differential 

equations. Herein these equations are numerically solved with a 

linearized implicit scheme, which is an extension of the implicit 

scheme described by Richtmyer and Morton [10] and Liggett and Cunge [11]. 

In this scheme, the functions and their derivatives are defined 

in the rectangular grid in the x-t plane as follows: 

o [~+l ~+l] (1-0) [ n ~] f(x,t) = 2 ~j+l + ~j + 2 f j +l + ~j (3-1) 

(3-2) 

a 0 [~+l ~+l] (1-0) [~ ~] ax f(x,t) = ~x ~j+l - ~j + ~ ~j+l - ~j (3-3) 

where f(x,t) is a function of x and t (e.g. the local bed level z); 

~ and ~t are the discretization interval along the x and taxes, 

respectively; 0 is the weighting factor of the scheme, the superscript 

n refers to the time step and the subscript j to the space step 

(see Figure 3-1). 

To linearize the difference equations, the functions at time step 

(n+l) are expressed as 

where 

so that 

~ + ~f. 
J J 

~f./f?: « 1 
J J 

(3-4) 
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t 

(n+1)6t 

6t 

n6t 
6x 

.. x 

Fig. 3.1 Definition Sketch for the Finite Difference Scheme. 
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(3-5) 

where a is an exponent. 

3.2 Discretization of the Equation for Bed Material Continuity 

Equation (2-5) together with the supplementary equations developed 

in Chapter II, can be expressed as 

~ 1 ~B ( m. t.) oz 0 ~ nih 1.B 1. -_ 0 +p-+-- L AI 

• at B ax i=4,5,6 
(3-6) 

The discretization of Equation (3-6) according to Equations (3-1) 

through (3-5) results in: 

A. 6y. + B. 6y_ 1 + C. 6z, + D. 6z. 1 - Q. = 0 (3-7) 
j J . J+ j J j J+ j J 

where 

A. =_-2-( X H + I I. + J Sj ) 
j 6x . -4 5 6 i. i=5,6 1.. 

1.- " J J 

+ 2~ ( I H. + I 11.'. + J 7.) 
ut '-7 8 1.. '7 8 1.-, J 1.=, J J 

+ §. ~ ( I H + I I
iJ

. + J
5J

.) (3-8) 
2 Bj i=4,5,6 i j i=5,6 

B. = 6& ( I H. + I I + J ) 
j x i=4,5,6 1.j+l i=5,6 i j +l 5j +l 

+ _1 ( I H. + I I. + J
7 

) 
26t i=7,8 1.j+l i=7,8 1.j+l j+l 

+ ~ :j~ ( I H. + L I. + J 5 ) (3-9) 
j+1 i=4,5,6 1.j+l i=5,6 1j+l j+l 

P. 
C. = 26t - A.. (3-10) 

j J 

P. 
D. = 26t - B. (3-11) 

j j 
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- - ~ l L. + ~ l L. 1 [(B! 1)( ) ( B!)( )] 
2 Bj +1 i=4,5,6 1j+l Bj i=4,5,6 1j 

m. -1 
n 1. 

H. = (1. )(m. )(h~) J 
1j 1j 1j J 

m. 
1. t. 

L. = (1.n)(h~) J (B.) 1 
1j 1j J J 

aB. B. I-B. B! = --1- = J+ J 
J ax Ax 

n n 
m 15 Z. 

t. 
(B.) 1 

J 

o . J 
V1 n = J [(b +1-Z~) In (20) + 1] 

5. h~(b2+1-Z~) 2 J 
J J J 

n 
Vm = 5. 

J 

n 
m Z. 

o J 

h~ 
J 

1 n Z~ mo 6 . J 
V1 n = J 

6j h~(b2+1-Z~) 
J J 

n n 
m 17 Z. o . J 

V1 n = J [(I-Z~) In (20) + 1] 
7j h~(I-Z~) J 

J J 

(3-12) 

(3-13) 

(3-14) 

(3-14a) 

(3-15) 

(3-16) 

(3-17) 

(3-17a) 

(3-18) 

(3-19) 

(3-19a) 



m t 
z~ = 1 (h~) 0 (B.) 0 

J 0 J J 

1 w 
o = K(g1

2
)1/2 

1 
mo = - "2 (m2 + 1) 

1 
to = - "2 t2 
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3.3 Discretization of the Equation of Motion 

Equation 2-4 can be expressed as 

2 m t 
Y.:.. 1- (Bh) - 2 + !r. + 1 h 2 B 2 = 0 
2g ax ax 2 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

The discretization of Equation (3-25) according to Equations (3-1) 

through (3-5) results in: 

E* fly. + F* Ay. 1 + G* Az. + H* Az. 1 - R* = 0 
j J j )+ j J j J+ j 

(3-26) 

where 

E* _ .i.. [1 _ (F~) 2] 0 
= + "2 H2. 

j Ax ) 
J 

(3-27) 

0 ... (F~ )2] 0 
F* = - [1 + '2 H2 

j flx )+1 j+1 
(3-28) 

G* = ..L [_ (F~)2] 0 --H Ax J 2 2. j ) 

(3-29) 

0 n 2 0 
H* = - [+ (F j+1) ] --H Ax 2 2. 1 j J+ 

(3-30) 

1 n 2 n _ (F~)2 (h~)} R* = - [2AX {(Fj +1) (hj +1) 
j J ) 

1 n n 1 
+ Ax (Yj+1 - Yj ) + '2 (L2 + L2 )] 

j+1 j 
(3-31) 
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F~ = g (3-32) 
J [g(h~)3]172 B. 

J J 
m -1 t 

H2 . = 12m2 
(h~) 2 (B.) 2 (3-33) 

J J J 

(3-34) 

Equations (3-7) and (3-26) form a set of simultaneous linear 

equations in four unknowns AYj' Ayj +l , AZj and AZ j +l relating to 

spatial points j and j+l. All the coefficients in these equations 

are functions of quantities explicitly known for spatial point j and 

j+l at time step n. Evaluation of Ay., Ay. l' Az. and Az. 1 at J J+ J J+ 
time step n, allows the solution at points j and j+l to be 

advanced to time step n+l through Equation (3-4). If the channel 

reach being modeled is divided into (N-l) segments, there are N 

spatial points and there are 2N unknown Ay's and Az's as Ay. , 
1 

Az., i=I,2, ... ,N. The number of equations (3-7 and 3-26) available 
1 

for the discretized channel reach is 2(N-I). Two additional equations 

connecting Ay's and Az's are therefore required to evaluate the 

2N Ayts and Az's. These additional equations are provided by the 

two boundary conditions. 

3.4 Boundary Conditions 

As discussed in Section 2.3, the mathematical problem of sedimenta-

tion transients in subcritical flow should have the following boundary 

conditions specified in addition to the initial values: 

1. At the upstream boundary 

z (1, t), 0 ~ t ~ T 

2. At the downstream boundary 

y(N,t), 0 < t < T 
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As shown subsequently, the change in the bed and water surface 

levels at a vertical j, over one time step n~t to (n+l)~t can be 

related as 

~y. = S. ~%. + T. 
J j J j 

(3-35) 

n+l n n+l n where ~y. = y. - y., ~z. = z. - z. and S. and T. are 
J J J J J J j j 

constants for a given time step. Equation (3-35) with appropriate 

values of S. and T. for j=l and N provides the two boundary 
j j 

conditions. 

In practice the upstream boundary condition is generally available 

as the bed material load hydrograph or less frequently as the bed level 

hydrograph. The downstream boundary condition, however, depends on 

the physical constraint of the problem. For example, the downstream 

control may be the water surface level of the channel. The treatment 

of Equation (3-35) for these cases is illustrated below. 

Upstream bed material load hydrograph: At any point in the 

channel, 0 ~x ~ L, supplementary equations (2-36) and (2-45) give 

I 
i=4,5,6 

m. t. 
R..hl.B 1 

1. (3-36) 

It is assumed that at the upstream boundary the flow depth 

instantaneously adjusts itself so that the transport past the boundary 

is equal to the bed material inflow. At two consecutive time steps, 

n m. t. 
gn = I R.~ (hn) 1.(8 ) 1 (3-37) 

t '-4 5 6 1. I I 1- , , 

and 

= (3-38) 
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where is the bed material inflow at the upstream boundary and 

superscripts nand n+l relate to the time step nAt and (n+I)At, 

respectively. In Equation (3-38), hn+l can be solved by iterative 
I 

procedures, so that 

Ah = hn+l - hn = Ay - Az I I I I I 

The boundary condition, Equation (3-35) is then specified with 

and 

=Ah 
I 

Upstream bed level hydrograph: If the upstream bed level is 

specified as the boundary condition, 

is known at every time step. Then, Equation (3-35) is specified for 

this condition with 5* = a very large number, say 106 and 
I 

T* = -5* Az i . 
1 1 

Downstream water surface-level hydrograph: The problem of 

specifying the downstream boundary condition is somewhat simpler. As 

shown subsequently (refer Equations (3-40), (3-41)), the values of 

T* are available in the solution algorithm. The value 
N 

is known at each time step from the water surface-level 

hydrograph available at the downstream boundary. Equation (3-35) is 

then specified for the calculated 5* 
N 

and T* and the available 
N 



30 

3.5 Solution Algorithm 

The following system of 2N linear equations is available to 

solve for 2N unknowns: 

Equation 3-35 Upstream Boundary Condition 1 grid point 

Equation 3-7 Equation of Bed Material Continuity N-l grid spaces 

Equation 3-26 Equation of Motion 

Equation 3-35 Downstream Boundary Condition 

Unknowns: 

N-l grid spaces 

1 grid point 

The coefficient matrix for this set is a sparse diagonal matrix 

and is economically solved by the double sweep algorithm. 

In the first sweep, the algorithm calculates three internal 

vectors T. , s. and U. , j = 2,3, ..• ,N with the following recursive 
j j j 

equations: 

E. S. + G. 

U. = j-l j-l j -1 
j A. s. + C. 

j-l j-l j-l 

(3-39) 

(R. - E. T. ) - U. (Q. -A. T. ) 

T. = j-l j-l j-l j j-l j -1 j-l 
j F. - U. B. 

j-l j j -1 

(3-40) 

(3-41) 

coefficients defined for Equations (3-7) and (3-26) and elements 

S. and T. are available from the upstream boundary condition, 
1 1 

Equation (3-35). 

In the second sweep, ~z and ~y are calculated from J = (N-l), 

to J = 1 by the following equation: 
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(Q* - A* T*) - (8* Ay. 1 + D* Az. 1) 
!J.z. = _-"J_. __ ..c.j_-"J_' ::----:::---,j ~J_+ ___ ,,-j __ J_+_ 

J A* S. + C* 
j J j 

and 

where !J.YN and !J.zN are available from the downstream boundary 

condition, Equation (3-35). 

(3-42) 

(3-43) 

Equations (3-42) to Equation (3-43) enable the calculation of 

the solution vectors of the system, !J.y(N) and !J.z(N) and the water 

surface and bed levels at time step (n+l)!J.t are calculated by 

Equation (3-4) as 

n+l y. 
J 

n+l z. 
J 

n = y. + !J.y., j = 
J J 

1,2, ••• ,N 

= z~ + !J.z., j = 1,2, •••• N 
J J 

The solution can then be advanced to time (n+2)!J.t by using 

values (3-44) and (3-45) as the initial conditions. 

(3-44) 

(3-45) 
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CHAPTER IV 

STABILITY AND CONVERGENCE 

The numerical solution of the set of nonlinear partial differential 

equations, Equations (2-4) and (2-5), raises valid questions of stability 

and convergenceo Stability is the property of the numerical scheme that 

assures that no part of the solution will grow in time without limit 

until it destroys the calculations. Convergence is tested by the 

ability of the scheme to reproduce the terms of the differential 

equations without introducing extraneous terms which are large enough 

to affect the solution. 

There is no existing theory for analyzing the stability and 

convergence of numerical schemes for nonlinear partial differential 

equations. However, the experience of other workers and results of 

their numerical experiments [11] show that the small perturbation 

analysis may be applied to the system of linearized partial differential 

equations and its finite difference analog. This allows the estimation 

of the domain of stability and the convergence properties of the scheme. 

In this chapter, the diffusion and dispersion characteristics of 

the governing equations (2-4) and (2-5) are studied for small amplitude 

perturbations. This is followed by a similar analysis of the finite 

difference equations based on the difference scheme adopted in Chapter 

III. The comparison of the two systems is used to study the convergence 

of the finite difference scheme. 
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4.2 Linearization of the Governing Equations 

Equation (2-4) can be written as: 

(4-1) 

Similarly Equation (2-5) taken together with the supplementary equations 

developed in Chapter II, can be written as: 

[ 

t. m.-l 
L (B 1 1.m.h 1 ) + 

i=4,S,6 1 1 
L 

i=5,6 

t. m. a1. ts mS amSJ~h 
(B 1h 1~, B" h 1 (h) a ah") + )ItS n ah ax 

Defining 

[ 

t. m.-l 
+ L (B 1 1.m.h 1 ) + 

'-7 8 1 1 1- , 
I 

i=7,8 

t. m. a1. 
(B 1h 1 ~) 

ah 

[ 
t. -1 m. ] a8 

+ I {8 1 1. (1 +t. ) h 1} ~ = 0 
'-4 5 6 1 1 aX 1- , , 

t. m.-l 
- 1 1 H. = 8 1.m.h 
111 

t. m. a1. 
I- -81h1~ 

i - ah 

Equation (4-2) can be stated as 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 
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[ I H. + 
i=7,8 1 

[ (l-P)S y - ( I H. + 
s w • 7 8 1 1= , 

[- ( ~ H. + 
i=4,S,6 1 

Ii" + js)] ;z + [ I K.] ;8 == 0 
i=S,6 1 X i=4,S,6 1 X 

(4-7) 

Equations (4-1) and (4-7) are nonlinear in h. They are linearized 

around the uniform flow by writing: 

y = Y + n o 

z = z + I; o 

h = h + n - I; o 

(4-8) 

(4-9) 

(4-10) 

where subscript 0 refers to the uniform flow condition and perturbations 

n « y , I; « Z ,and (n - 1;) « h . 
000 

In the general case of a variable coefficient P. operating on a 
1 

partial derivative, say ay/at, the perturbations defined in Equations (4-8) 

through (4-10) will result in the following: 

ay 
p U [P ] [~+ an] 

1" at = l' + 'IT i at at 
o 

(4-11) 

(4-12) 

where P. is the value of P. associated with uniform flow and w. 
1 1 1 

o 
is the perturbation in P. due to n and 1;. The first term in the 

1 

expansion represents the uniform flow, and it drops out together with 

the uniform flow components of other terms in the perturbed equation. 

The second and third terms are dropped because they are of negligible 

magnitude compared to the remaining terms ('IT. « P.). Thus the only 
1 1 o 

remaining term on the right hand side in Equation (4-12) is 
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p. an/at. Similar reasoning will apply to P. ay/ax, P. az/at, 
10 1 1 

P. az/ax and the only terms remaining in the perturbed equations 
1 

corresponding to these will be P. an/ax, P. at/at and P. at/ax. 
111 
000 

Substituting Equations (4-8) through (4-10) into Equations (4-1) 

and (4-7), and considering the foregoing simplification based on an 

order of magnitude analysis, the following system is obtained: 

an 
at 

!!l 

[-P4 ] (n-~) [:1 
P2 P3-Pl -P ] ax 

I-P: 
= 

P5 0 l ~; -P6-P7 

at 
ax (4-13) 

where: 

(4-14) 

P 2 = [ l: H. + 
i=4,5,6 10 

(4-15) 

(4-16) 

P - [1 aB ( l: (l+t.) (H. ) + l: (l+ti ) (li
o
))] (4-17) 

4 - B ax i=4,5,6 1 10 i=5,6 

2 
P = 1- F 5 0 

(4-18) 

(4-19) 

(4-20) 

and the subscript 0 refers to values of the subscripted quantities 

related to the equilibrium flow condition. 
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4.3 Diffusion and Dispersion Properties of the Differential System 

For small perturbations, the linearized system (Equation (4-13» 

approximates the behavior of the differential system (Equations (2-4) 

and (2-5». The diffusion and dispersion properties of the differential 

system are therefore inferred in the following from a consideration 

of the linearized system. 

The solution of n(x,t), ~(x,t) of Equation (4-13) is assumed to be 

differentiable at least once for all x and t including the boundaries. 

The solution can be written as a Fourier series: 

00 

n(x,t) = I n exp[i(a x-B t)] 
m=l Om m m 

(4-21) 

00 

t(X,t) = I ~ exp[i(a x-B t)] o m m m=l m 
(4-22) 

where i = 1=1, am = 2v/Lm, Lm is the spatial wavelength, Bm = 2v/Tm, 

Tm is the wave period, and subscript m refers to the mth component. 

Considering one such component and dropping the subscript, the 

substitution of Equations (4-21) and (4-22) into Equation (4-13) 

provides the following homogeneous system: 

(4-23) 

For a nontrivial solution the determinant of the coefficient 

matrix of homogeneous Equation (4-23) must vanish. Accordingly: 
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Equation (4-23) shows B is a complex number with the real part 

(4-25) 

and the imaginary part 

(4-26) 

Considering Equations (4-21) and (4-22), the amplification factor of 

Equation (4-13) is exp[BI ] and the celerity of the mth Fourier 

component is [BR/o]m. Equation (4-26) indicates that generally 

aB BI ; 0 unless ax = 0 and Sf = o. That is the frictional system, 

Equations (2-4) and (2-5), has a nonvanishing amplification factor. 

It is relevant to consider the celerity of a small perturbation in 

the system (Equations (2-4) and (2-5)) as affected by the frictional 

term and the nonprismatic channel shape. From Equation (4-25), one 

can define the small perturbation celerity for a frictionless prismatic 

channel, 

For a prismatic channel (;! = 0) with nonzero frictional term 

2 
-P2(P3P5-Pl)o 

c f = 2 2 2 2 
(P3P5-Pl ) 0 + P3P6 

or 

where 

(4-27) 

(4-28) 

(4-29) 

(4-30) 
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In subcritical sand-bed channel flow generally, ef < O. Por a 

nonprismatic channel (B' ; 0), with nonzero frictional term, 

where 

and 

(4-31) 

(4-32) 

(4-33) 

Prom Equations (4-27) through (4-33), the following conclusions can 

be derived about the celerity of a small perturbation in the differential 

system (Equations (2-4) and (2-5)): 

1. The celerity Co in a prismatic, frictionless system 

increases as the rate of change of transport with the 

depth of flow (gt)' increases in absolute magnitude 

(smaller bed material size, etc.). Also c is o 

independent of wave length. 

2. The effect of frictional term (Sf) is to decrease the 

celerity of a small perturbation. The correction ef 

(Equation (4-29)) depends on the wave length of the 

perturbation and is larger in absolute magnitude for 

longer waves than for the shorter waves. 

3. For a nonprismatic channel, the effect of B'; 0 is to 

change ef as well as to introduce another correction 

(Equation (4-31)). For a contracting subcritical flow 

sand-bed channel (Bt < 0), the celerity will generally 

be greater than for a corresponding prismatic channel. 
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4. In a frictionless system, small perturbations will travel 

without dispersion (Equation (4-27)). However in a 

frictional and nonprismatic system, dispersion of the 

waves is experienced. The absolute magnitude of both 

Ef and EB increase with increasing wavelength of 

the component wave. 

The effect of frictional and nonprismatic terms on the damping 

factor exp[8I ] can be similarly studied by considering Equation (4-26). 

Rewriting this equation 

c a o 
(8I )fB = 2 [EfB - EB] (4-34) 

I + EfB 

where all these terms have been previously defined. For a prismatic 

channel, P4 = 0, P7 = 0, EB = 0, and EfB = Ef , so that 

(4-35) 

and for a nonfrictional, prismatic channel, Ef = 0, 

(4-36) 

Equations (4-34) through (4-36) show: 

1. In a prismatic nonfrictional system the perturbations 

n and ~ will not be amplified or damped. 

2. For a subcritical flow in a prismatic sand-bed channel, 

Ef < ° and therefore 81 is negative, so that all wave 

components of the perturbations will be damped. The damping 

factor exp[8I ] also depends on the wavelength, so that 

shorter wavelength components will be damped more than 

the longer wavelengths. 
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3. For a large enough positive value of Bf (expanding 

channel), (61)fB could become positive, so that the 

perturbation nand t will be amplified. 

4.4 Diffusion and Dispersion Functions for the Difference System 

Using the small perturbation linearized approximation 

(Equation (4-13» to the differential system (Equations (2-4) and (2-5» 

the diffusion and dispersion functions are developed for the difference 

scheme used herein. The discretization scheme of Equations (3-1) 

through (3-5) applied to Equation (4-13) yields: 

n+l n n n. ) + (1-0) (n o +1- n.)] 
J J J 

p 
_ -l [o( n+l n+l) (1 0)( n _ r~)] 

~x tj+l - tj + - tj+l ~J 

P4 n+l n+l n n 
+ T {[0(nj +1 + nj ) + (1-0) (nj +1 + nj )] 

- [O(t~:~ + tj+l) + (l-o)(t~+l + tj)]} = 0 

P5 0 n+l 
~x [ (nj +1 

+ (IA-xPs) [0(rn
j

++ l
1 

_ rn
j
+l ) (1 0) ( n n)] 

u ~ ~ + - tj+l - tj 

+ 

(4-37) 

(4-38) 
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Let the solution of Equations (4-37) and (4-38) be expressed 

as a Fourier series for a time and space grid point t = nAt and 

x = jAx as: 

co 

n~ = I n exp[i(a jAx - B nAt)] 
J om m m m=l 

(4-39) 

co 

~~ = I ~ exp[i(a jAx - B nAt)] 
J m=l om m m 

(4-40) 

In Equations (4-39) and (4-40) a (= 2n/L ) and B (= 2Tf/T ) are n m m m 

the wavelength and wave period for the mth Fourier component and in 

general B is complex. m Considering one such component and dropping 

the subscript m, substitution of Equations (4-39) and (4-40) into 

(4-37) and (4-38) yields: 

where 

and 

{Pl[exp(-iBAt)-l] + P
2
ritana[o{exp(-iBAt)-1}+1] 

- P4At[o{exp(-iBAt)-1} + I]} ~o = 0 (4-41) 

(P6+P7)Ax (P6+P7)Ax 
[iPstana + 2 ]no + [i(l-Ps)tana - 2 ]~o = 0 

aAx a=-2 

2At r=­Ax 

(4-42) 

(4-43) 

(4-44) 

Equations (4-41) and (4-42) constitute a homogeneous system of 

algebraic equations in no and ~ . o 
For a nontrivial solution, the 
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determinant of the coefficient matrix should identically vanish. This 

condition yields: 

where 

exp(-iB~t) = 1 _ (N-iQ)(M+No) - i(N-iQ)(P-Qo) 
(M+No)2 + (p_Qo)2 

2 N = P2r tan (J 

Q = P 4~t tana 

Dividing Equation (4-45) by (p_Qo)2: 

where 

exp(-iB~t) = 1 _ (ST-U) - i(US+T) 
1 + S2 

S = M+No 
P-Qo 

N 
T = P-Qo 

..JL 
U = P-Qo 

Expressing the complex B as 

(4-45) 

(4-46) 

(4-47) 

(4-48) 

(4-49) 

(4-50) 

(4-51) 

(4-52) 

(4-53) 

(4-54) 

and separating Equation (4-50) into the real and imaginary components: 

and 

= - (US + T) 

I+S2 

(4-55) 

(4-56) 
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From Equations (4-55) and (4-56), 

and 

tan(BRAt) = -(U~ + T) 
l+S -ST+U 

= -(US+T) 
[(1+S2_ST+U)2+ (US+T)2]1/2 

= [1+S2_ST+U)2 + (US+T)2]1/2 

1+s2 

Equations (4-57) and l4-59), express the dispersi.on and diffusion 

(4-57) 

(4-58) 

(4-59) 

functions for the finite difference analog of the linearized system 

(Equation (4-13)). The celerity of a Fourier component of solution 

Equations (4-39), (4-40) is given by BRIo and the amplification 

factor at time At is given by exp[BIAt]. These functions are next 

used in studying the convergence ratios of the difference analog. 

4.5 Convergence Ratios 

In the previous two sections, the diffusion and dispersion 

characteristics of the differential system (Equations (2-4) and (2-5)) 

have been developed for its linearized version (Equation (4-13)) and for 

the finite difference analog of Equation (4-13) based on the implicit 

difference scheme (Equations (3-1) through (3-5)). It is of considerable 

interest to study the closeness with which the finite difference analog 

represents the diffusion and dispersion characteristics of the differential 

system. Of necessity, this study can only be made approximately, in 

terms of the linearized system (Equation (4-13)) that is valid for small 

perturbations only. Two convergence ratios for one time step At 

are defined as: 
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_ wave damping in the finite difference system 
Rl - wave damping in the linearized differential system 

and 

R = wave celerity in the finite difference system 
2 wave celerity in the linearized differential system 

From the results developed in Section 4.2 and 4.3, these ratios are: 

exp(B111t) 

Rl = exp(B1t) 

where t = l1t. 

(4-60) 

(4-61) 

Substituting Equations (4-34) and (4-59) into Equation (4-60): 

(4-62) 

Similarly substituting Equation (4-31) and (4-57) into Equation (4-61): 

-l[ - (US+T) ] tan 2 
l+S -ST+U (4-63) 

These ratios are next analyzed for frictional and nonfrictional systems. 

4.6 Convergence Ratios for Prismatic Frictionless Systems 

The simplest case of the differential system is that of a 

prismatic, frictionless channel, that does not experience any dissipation 

or dispersion of the bed and water surface perturbations. For such a 

system: 

£ = £ = 0 fB B (4-64) 
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M=Q=U=O 

and Equations (4-62) and (4-63) simplify to: 

From Equations (4-27), (4-47) and (4-48): 

so that 

N p = -cor tana 

{[l + 0(0-1) (cor tana)2]2 + (cor tana)2}1/2 

1 + (oc r tana)2 
o 

[ 
c r tana ] R = _1_ tan-l ___ o ______ _=_ 

2 ~cor 1 + o(o-l)(c r tana)2 
o 

(4-65) 

(4-66) 

(4-67) 

(4-68) 

(4-69) 

(4-70) 

(4-71) 

Equations (4-70) and (4-71) indicate that the convergence ratios are 

functions of dimensionless parameters c r, a and o. Also these o 

ratios are expressed in terms of one time step At. As parameters 

c r and a vary with a varying At, it is necessary to adopt a 
o 

fixed typical time span over which the convergence ratios are studied. 

After Leendertse [12], the time TL required for a wave to travel its 

original wavelength, is taken as such a time span. The number of time 

steps, N, contained in TL is 
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N L 211' = c AT = acr (4-72) 
o 0 

Based on the values of parameters c r, a. and 
o 

o used at the first 

time step, the cumulative product of the convergence ratios at time 

TL are given as 

Rl * = (Rl)N (4-73) 

and 

(4-74) 

Inspection of Equations (4-70) and (4-71) shows that for c r = 2 o 

and 0 = 0.5, the convergence ratios Rl * and R2* are identically 

equal to 1. The variation of Rl * and R2* with parameters cor, 

o and a. is shown in Figure 4.1(a) through (c) for a. = 11'/40, 11'/100 

and 11'/400. The results of these figures can be interpreted as: 

1. The convergence ratio Rl * is greater than 1.0 for 

o < 0 < 0.5 for all values of c r and a.. Any perturbations 
o 

resulting from truncations errors, etc., will therefore grow in 

time for this range of o. The finite difference analog is thus 

unstable for 0 < 0.5 and this range should be avoided. In 

practice, the nonlinear systems always generate some high 

frequency perturbations [10] that can lead to instabilities 

unless some damping (Rl * < 1) is provided in the finite dif­

ference analog. Therefore, a value of 0 > 0.5 is necessary 

to assure the stability of the scheme. 

2. A value of cor = 2 provides a value of Rl * = R2* = 1 for 

o = 0.5 and for all values of a. less than 11'/2. For other 

values of cor, ratios Rl * and R2* are closest to 1 at 

different values of o. Physically, cor = 2 amounts to 

following the perturbation along a characteristic direction. 
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Fig. 4.1 Variation of Convergence Ratios R1* and R2* with 
Discretization Parameters in a Frictionless System. 
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4.7 Convergence Ratios for Frictional Prismatic Channels 

A more realistic case than the frictionless channel considered in 

the last section is that of a frictional channel. For a prismatic 

frictional channel, 

and 

~B = 0 

~fB = ~f 
P4 = P7 :: 0 

(4-75) 

(4-76) 

(4-77) 

Q = U :: 0 (4-78) 

Equations (4-62) and (4-63) can be accordingly simplified. The 

simplified equations indicate that the convergence ratios RI and R2 

are functions of terms pertaining to the resistance and transport 

functions such as PI' P2, P3, P5 and P6, as well as parameters 

c f r , a and o. Therefore, parameters c fr, a and 0 in frictional 

systems do not completely define the convergence ratios by themselves 

as they did in the nonfrictional systems. These ratios for frictional 

prismatic channels are not as simple as they were for the nonfrictional 

channels. However for a given problem, where values of PI' P2, P3 , Ps 
and P6 are fixed, it is possible to define the variation of RI and 

R2 with the basic discretization variables Ax, At and o. 

Another problem with the study of cumulative convergence ratios 

RI* and R2* in frictional systems arises from dispersion of waves. 

The celerity cf (Equation (4-28)) depends on the wave number 0 of 

a sinusoidal perturbation and 0 changes continuously in time due to 

diffusion and dispersion. Ratios Rl * and R2* in a frictional 

system are herein defined as 
N 

RI* = (RI) f (4-79) 
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e4-80) 

where 

(4-81) 

In Equations (4-79) through (4-81), Rl , R2, Land cf pertain to the 

initial values of channel and wave parameters. It can be shown that 

in subcritical flow in prismatic sand-bed channels, these equations 

represent the upper bounds of Il-Rl * I and Il-R2* I calculated from 

updating the values of Land cf at each time step 6t with new 

values of a, 0 and cfr. 

The variation in Rl * and R2* with a, 0 and cfr is shown in 

Figures 4.2(a) through ec). These graphs pertain to the numerical 

problem studied in Chapter V. For this problem the equilibrium data are: 

and 

Q = 15000 cfs (424.752 m3/sec) 

B = 300 ft (91.44 m) 

F = 0.20 

Sf = 0.0001 

gb = 0.1030 lbs/ft/sec (1.50 N/m/sec) 

g = 0.2528 lbs/ft/sec (3.68 N/m/sec) s 

gt = 0.3558 lbs/ft/sec (5.18 N/m/sec) 

The value of resistance and transport parameters are: 

PI = -0.002565 lbs/cu. ft. 

P2 = -0.015862 lbs/sec/ft2 

P3 = 107.484 lbs/cu. ft. 

P5 = 0.96021 

P6 = -0.0000019344 ft- l 
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Fig. 4.2 Variation of Convergence Ratios Rl * and R2* with 
Discretization Parameters in a Frictional System. 
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Figures 4.2 show: 

1. For all values of a and cfr, 6 = 0.5 gives Rl * = 1.0. 

2. 

However, for reasons discussed in nonfrictional system, 

it may be necessary in practice to use 6 > 0.5. 

Only for cfr = 2, and 6 = 0.5 both Rl * and R2* are 

equal to 1 for all values of a < tr/2. For cfr ~ 2, the 

values of Rl * and R2* depart from 1. Note that a value 

of cfr = 2 corresponds to following a perturbation along 

the characteristic. 

3. For all values of 0 and cfr the values of Rl * and 

R2* closest to 1 are found for the smallest values of a. 

Apparently, the number of discretization points per wave­

length are more important in determining the convergence 

ratios than the choice of ~ and cfr. 

The variation in Rl * and R2* was also studied by increasing 

the resistance and sediment transport values used in Figure 4.2. 

Figure 4.3 shows the variation in convergence ratios for the channel in 

Figure 4.2, if the Manning's n is increased by 50 percent for all 

values of the Froude number. Similarly, the variation in the convergence 

ratios for the same channel is shown in Figure 4.4 if the bed material 

load is increased threefold at all values of F. These figures show 

that the individual values of Rl * and R2* are somewhat affected 

by these variations but the general conclusions stated above remain 

valid. 

4.8 Convergence Ratios for Frictional Nonprismatic Channels 

In natural and man-made channels, the channel width may be 

contracting or expanding along the direction of flow. The general 
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problem treated in Chapters II and III therefore provided for a 

linearly varying channel width. For such a case~ Equations (4-62) 

and (4-63) apply in full. 

The celerity of a small disturbance in a frictional~ nonprismatic 

channel~ cfB is given by Equation (4-31). One can therefore define 

the convergence ratios Rl and R2 in terms of parameters cfBr~ a 

and 0 as well as the resistance and transport parameters Pl~ P2~ 

P3~ P4, P5 , P6 and P7· The cumulative values of convergence ratios 

Rl * and R2* are defined as 

N 

Rl * = (R ) fB 
1 (4-82) 

N 
R2* = (R ) fB 

2 (4-83) 

where 

NfB 
L 2'l1' = = cfBt.t acfBr 

(4-84) 

and celerity cfB is defined by Equation (4-31). 

The variation in Rl * and R2* with a, 0 and cfBr is 

shown in Figures 4.S(a) and (b). These graphs pertain to the channel 

used in Section 4.6 and with B' = 0.01. Similar graphs for B' = -0.01 

are shown in Figures 4.6(a) and (b). The scales in these two figures 

are different from the scales used in Figures 4.1 through 4.4. The 

following conclusions can be drawn from Figures 4.5 and 4.6 regarding 

the convergence ratios in nonprismatic frictional channels. 

1. The behavior of Rl * is qualitatively similar for prismatic 

and nonprismatic channels. 

2. The behavior of R2* for nonprismatic channels departs 

considerably from that for prismatic channels, as shown by 

Figures 4.5 and 4.6. In general, it is more difficult to 
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maintain R2* close to unity than with the prismatic channel. 

Gross inaccuracies may result for values of 0 not in the 

vicinity of 0.5, for all values of cfBr. 

4.9 Summary 

The stability and convergence properties of the numerical scheme 

developed in Chapter III have been analyzed by using linearized versions 

of both the system of partial differential equations, Equation (4-13), 

and its finite difference analog, Equation (4-37) and (4-38). These 

properties have been expressed as the aggregate values of the dispersion 

and damping ratios over the time required for a wave to travel its own 

length. The following conclusions are drawn from this analysis: 

1. Frictionless Prismatic Systems: the convergence ratios 

are functions of the dimensionless parameters c r, a o 

and o. Ideally, for c r = 2 and 0 = 0.5, the o 

convergence ratios Rl * and R2* are identically equal 

to 1, regardless of the value of a. For 0 < 0 < 0.5, 

Rl * is greater than 1, and the numerical scheme is 

unstable. For 0.5 < 0 ~ 1.0, Rl * is less than 1, and 

artificial damping results in a stable scheme. In 

practice, however, high frequency perturbations are 

generated by the nonlinear system. Therefore, a value 

of 0 near 0.70 may be necessary to provide numerical 

damping required for stability. 

2. Frictional Prismatic Systems: the convergence ratios are 

functions of the dimensionless parameter cor, a and 0, 

and of the resistance and transport functions. The 

variation of Rl * and R2*, however, show qualitatively 

similar behavior as that observed for ideal frictionless systems. 
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3. Frictional Nonprismatic Systems: the convergence ratios 

are functions of the dimensionless parameters c r, a 
o 

and 0, the resistance and transport functions, and the 

specified width variation. RI* shows qualitatively 

similar behavior as that observed for prismatic systems. 

However, the behavior of R2* represents a considerable 

departure from that observed for prismatic channels, and 

large amounts of dispersion and damping can occur for values 

of 0 not in the neighborhood of 0.5. 

The preceding conclusions on the convergence ratios are of a 

qualitative nature and the actual magnitude of damping and dispersion 

can only be obtained through model verification based on experimental 

data. 
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CHAPTER V 

NUMERICAL EXPERIMENTS 

The numerical model developed in Chapter III was simulated on the 

Colorado State University CDC 6400 digital computer. This chapter 

presents the results of numerical experiments carried out to assess the 

capabilities and limitations of the model. 

In this phase of testing, various physical phenomena were 

hypothetically simulated with the numerical model, and the results are 

judged primarily on the realism of results obtained. The following 

test runs were carried out: 

Test Run Objective and Description 

1 (a) The formation and migration of a bed wave in 

the upstream reach of a channel due to a 

nonequilibrium sediment inflow hydro graph 

imposed on the upstream boundary. 

(b) The migration of a bed wave specified as initial 

condition on the channel bed. 

2 (a) The phenomena posed by two bed waves of different 

3 

celerity coalescing to form a larger wave. 

(b) The effect of the variation of the tail water 

elevation on the evolution of the channel bed 

configuration. 

The formation of a negative bed wave in the 

upstream reach of a channel due to a nonequilib­

rium sediment inflow hydrograph. 
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4 The effect of local sediment removal mechanisms 

(dredging, sediment ejectors, etc.) on the 

configuration of the channel bed. 

In these test runs particular attention was given to the practical 

value of the dimensionless discretization parameters ~, cr and a. 

The following were given due consideration: 

1. Selection of ~ to provide sufficient numerical damping to 

preclude instability caused by high frequency perturbations 

generated by the nonlinear system. 

2. Selection of ~t and ~x to ensure a value of cr consis-

tent with the convergence criteria developed in Chapter IV. 

3. Selection of a to avoid the errors due to insufficient 

amount of discretization. 

In addition, the accuracy of the linearized version was assessed by 

testing the satisfaction of the governing equations for all space 

intervals at every time step. 

5.2 Test Reach 

A simulated test reach was used for all test runs. The equilibrium 

properties of the test reach are the following: 

Discharge 15,000 ch 

Average width 300 ft 

Average depth 12.5 ft 

Froude number 0.20 

Energy gradient 0.0001 

Bed material transport 114 ppm, 
0.3558 lbs/sec/ft 

Median bed material size 0.25 mm 
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The resistance function was expressed as follows: 

n = 0.00380/Fl . 03 

following Equation (2-14), where 

Kl = 0.00380 

a = 0 

b = 1.03 

(5-1) 

For the transport function, the bed load function ,-, is used as 

given by Einstein (Figure 9, reference [2]) except the coefficient al 

was multiplied by a factor of 2.0, so that the bed material load is 

increased by the same factor. For the equilibrium data, 

a = 21.104 
1 

bl = -1.67 

in Equation (2-35). 

The length of the channel is 12 miles. The celerity of small 

perturbations is 0.00049 fps or 0.008 miles/day. From Chapter IV, 

a value cr = 2 is indicated to minimize the convergence error. 

Expressed in terms of ~t and ~x the condition is: 

c !! = 1 (5-2) 

Taking ~t = 10 days, it follows that ~ = 0.08 miles if 

Equation (5-2) is to be satisfied. Note that a smaller value of ~t 

will require a smaller value of ~ to maintain the same values of 

convergence ratios. 

For ~x = 0.08 miles, the number of computational reaches in the 

12 mile-long channel is 150. 

The simulation can be carried out for any number of time steps. 

However, for this particular example, a small wave will travel the whole 

length of the channel in 1500 days or a total number of 150 time steps. 
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In test runs 1 and 2 the simulation was carried over 100 time steps. 

Note here that by fixing Ax the value of a has already been fixed. 

In effect, 

1T 
a = L/Ax (5-3) 

and since L, the wavelength of the disturbance is a characteristic of 

a given problem and independent of the discretization parameters, 

fixing Ax is tantamount to fixing a. Caution should be used, however, 

to avoid values of a greater than ;0' since this could introduce 

wave distortion and damping due to insufficient amounts of discretization 

(refer to Figure 4.1). 

A summary of the discretization characteristics for the test 

reach follows: 

Ax = 0.08 mi 

At = 10 days 

c = 0.008 mile/day 

cr = 2 

number of computational reaches = 150 

number of time steps = 100 

5.3 Test Run 1: Formation and Migration of a Bed Wave 

Two problems were simultaneously studied as part of Test Run 1: 

1. The migration and dissipation of a bed wave specified as 

initial condition on the channel bed. This wave was made 

trapezoidal in shape, with an amplitude of 2 ft and 

wavelength of 2.4 miles. The initial value of a for this 

test run is 1T/30. 

2. The formation of a bed wave in the upstream reach of the 

channel due to a nonequilibrium sediment inflow hydro graph 
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imposed on the upstream boundary. For test run 1, the 

nonequi1ibrium sediment hydrograph was made triangular in 

shape, with an amplitude of 2.25 times the equilibrium 

transport rate and a duration of 100 days. 

Figure 5.1 shows the bed elevation of the channel at 20, 40, 60, 

80, 100, 120, 250, 750 and 1000 days. 

The following observations are made regarding test run 1: 

1. The theoretical analysis of stability and convergence made 

on a linearized version of the system has focused on the 

necessity of keeping 0 equal to or greater than 0.5 to 

avoid instability. In practice, however, a value of 0 

in the neighborhood of 0.70 appears to be the smallest value 

that will numerically dampen the instabilities of the 

nonlinear system. Trial runs with a value of 0 of 

0.60 showed a marked tendency to instability, as shown 

in Figures 5.2 and 5.3. 

2. The accuracy of the linearized numerical scheme has been 

studied by testing the satisfaction of the governing 

equations at every time step. This was done by using the 

values of y and z for time steps n6t and (n+1)6t 

to calculate the various terms of the governing equations 

for every time and space interval. These discrete values 

were used in Equations (2-4) and (2-5) as follows: 

a 
(gb) 

0.5 [ n+l n+l n n 6
1 ax = - g - g + gb gb.l = 6x b. 1 b. 

J+ J j+1 J 
(5-4) 

a 0.5 [ n+1 n+1 n n 62 ax (gs) = - g gs. g gs.1 = 6x s. 1 s. 1 J+ J J+ J 
(5-5) 
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..!.. (C h) = 0.5 [(C h)~+l + (C h)~+l_ (C h)~ - (C h)~] = 
at s llt s J + 1 s J s J + 1 s J 

a (Q
2 

) = 0.5 [Hrn+l _ Hrn+l + Hrn _ Hrn] A '1x 2 2 + Y A = U 6 
a 2 gB h uX j + 1 j j + I j 

'1aX (Sf) • °Ao 5 [Sfn+ I - sfn+ I + sfn - S n] = 117 
a uX j+l j j+l fj 

£\3 

(5-6) 

(5-7) 

(5-8) 

(5-9) 

(5-10) 

The errors in satisfying the sediment continuity and momentum 

equations were then expressed as: 

Ideally, in a discretization scheme that introduces no errors, 

& = & = O. However, the linearized numerical scheme always s m 

introduces truncation errors. These errors are taken as a 

measure of the inaccuracy of the numerical scheme. 

This test run showed that the linearized version is an 

accurate representation of the governing equations. However, 

at points of discontinuity in the first derivative of the 

dependent variable, the governing equations may not be rigor-

ously satisfied. This effect is likely to be of a secondary 

nature because it occurs only at local points and it is 

counteracted by the numerical damping provided in the scheme. 
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3. The existing bed wave travels downstream, and it is subject 

to damping and dispersion as will also occur in a natural 

system. However, the damping and dispersion of the simulated 

bed wave have two components: (1) a physical (natural) 

component, governed by the value of Ef (see Chapter IV, 

Equation (4-30)), and (2) a numerical (artificial) component, 

governed by the discretization parameters 0, cr and Q. 

The amount of physical damping in the linearized equations 

can be assessed by calculating the value of the amplitude 

logarithmic decrement after one period of propagation. From 

Equation (4-35), for a prismatic channel: 

(5-11) 

For t = T, and using Equation (4-29) 

(5-12) 

Since cfT = L, and Lo = 2n, 

(5-13) 

And the amplitude decrement after one period of propagation 

can be related by the following equation: 

z 
1n(~) = 2nEf (5-14) z 

0 

where zl is the bed elevation after one period of 

propagation, z is the bed elevation at the beginning of the o 

period, and Ef , the frictional parameter given by Equation 

(4-30), is a function of the channel flow and wave 

characteristics. 
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The numerical damping in the linearized system can be 

estimated from Figure 4.1. This figure gives the value of 

Rl * for one period, for given 6, cr and ~. Since the 

convergence ratios are based on linearized equations and cr 

and ~ vary in time, the value obtained from Figure 4.1 

represents only a qualitative indication of the actual 

amount of numerical damping. 

In the absence of closed form solutions of the governing 

equations it is difficult to separate the physical and 

numerical components of damping except by a qualitative 

estimation of the latter. For this reason, it is necessary 

to verify the model with data obtained from physical systems. 

4. A bed wave is generated in time in the upstream reach of the 

channel, due to a sediment inflow hydro graph that exceeds 

the equilibrium transport rate for a given time period 

(see Figure 5.1). A significant feature of the nonlinear 

formulation of the upstream boundary condition is that the 

channel bed at the upstream boundary recedes to its 

equilibrium value as the inflow hydro graph recedes to 

equilibrium. This feature, that otherwise would be considered 

normal, has shown not to be possible with a strictly linear 

formulation of the boundary condition, see for instance 

Cunge and Perdreau [7]. 

5. In modeling the formation of a bed wave caused by a non­

equilibrium sediment inflow values of cr less than 2 are 

not practical. With cr < 2, local oscillations are 

generated that may not preclude stability but are of 
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sufficient magnitude to render the solution meaningless. 

In practice, both for convergence purposes and for eliminating 

oscillations when modeling nonequilibrium sediment inflow 

into a channel, a value of cr equal to or slightly greater 

than 2 is indicated. 

6. The bed wave generated at the upstream boundary travels 

downstream subject to damping and dispersion. The foregoing 

comments regarding natural and artificial damping are also 

applicable to the bed waves. 

7. The linearized numerical scheme is based on the assumption 

that over a time step ~t the change ~h in a quantity h 

is small enough so that second and higher order terms in 

~h/h can be neglected without considerably impairing the 

accuracy of the solution. In general, a limit of ~/h < 0.10 

is indicated. Larger values of ~/h for any given time 

step will generate local instability that mayor may not be 

dissipated by the numerical damping provided in the system. 

Maximum local values of ~h/h for test run 1 are of the 

order of 0.10. 

In this respect, the shape of the sediment inflow 

hydrograph may impose a significant limitation on the 

discretization parameters. In theory, any shape of 

sediment inflow hydrograph can be modeled provided At can 

be adjusted to keep Ah/h within a specified tolerance, 

say 0.10. In practice, however, it is also necessary to 

keep cr > 2 to avoid oscillations and to improve convergence. 

Thus, reducing At should be accompanied by a decrease in 
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~x, and this may extend computer time and core requirements. 

When core requirement is a limitation and large values of 

Ah/h are anticipated, the modeling may be carried out in 

two sequential stages: (1) modeling the formation of the 

bed wave, and (2) modeling the migration of the bed wave. 

In modeling the formation of the bed wave, the total length of 

the channel need not be taken. Instead, only a fraction of 

it, corresponding to an upstream reach of suitable length 

can be modeled as a first stage. This enables the decrease 

of ~x and ~t, thus distributing ~h over several time 

steps. Once the bed wave has formed on the upstream reach, 

its migration over the total length of the channel can be 

modeled as the second stage, with correspondingly larger 

values of ~x and ~t. 

5.4 Test Run 2: Coalescing of Bed Waves and Variation of Tail Water 
Elevation 

Test run 2 was carried out using the discretizing parameters of 

Section 5.2, and a value of 6 of 0.70. Two problems were simultaneously 

studied: 

1. The coalescing of two bed waves of different celerity: one 

specified as initial condition in the bed, and the other 

formed by a nonequilibrium sediment inflow hydrograph. For 

this problem, the nonequilibrium sediment inflow hydro graph 

was made trapezoidal in shape with an amplitude of 2.5 times 

the equilibrium transport rate and a duration of 120 days 

(see Figure 5.4). The maximum value of Ah/h was 0.14. 

2. The effect of the variation of the tail water elevation on 

the channel bed configuration. For this problem, the tail 



71 

water elevation was increased 1 foot in the 250-500 day 

simulation interval, and decreased 1 foot in the 750-1000 

day interval. 

Figure 5.4 shows the bed elevation of the channel at 

20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, 600, 800 

and 1000 days. 

The following observations are made on test run 2: 

1. Two waves of different celerity can coalesce and form larger 

waves (Figure 5.4). 

2. The effect of the cyclical variation of the tail water level 

on the channel bed level is manifested by a cyclical change 

in the bed level. This change is qualitatively the same as 

caused by a cyclical variation in the sediment inflow. 

In this run a decrease of 1 foot in the tail water level 

caused a readjustment of the bed level to reflect that 

decrease. In the long run, the channel would have achieved 

a new equilibrium with the bed level lowered by 1 foot 

throughout. 

3. The local instabilities shown are attributed to the high value 

of ~h/h, 0.14. At such a value, some high frequency 

perturbations are still being amplified, even though damping 

is provided. 

5.5 Test Run 3: Formation of a Negative Bed Wave 

Test run 3 was carried out using the discretizing parameters of 

Section 5.2, and a value of 0 of 0.70. In this test run, the 

degradation of the channel and formation of a negative bed wave following 

a decrease in the equilibrium sediment inflow hydrograph was modeled. 
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Figure 5.5 shows the results of bed elevation for 20, 40, 60, 80, 100, 

120 and 140 days. The results are physically realistic and show the 

versatility of the scheme for modeling bed waves of sinusoidal shape. 

5.6 Test Run 4: The Effect of Local Sediment Removal 

Test run 4 was carried out using the discretizing parameters of 

Section 5.2, and a value of 6 of 0.70. In this test run, the 

degradation of the channel bed following localized sediment removal 

was modeled. An amount of sediment equal to one-half of the equilibrium 

transport rate was removed at a distance of 3.2 miles from the upstream 

boundary. This was accomplished by balancing the sediment continuity 

equation at x = 3.2 miles to reflect a distributed sediment sink over 

the length Ax. Figure 5.6 shows the results of bed elevation for 

20, 40, 60, 80, 100, 120 and 140 days. The following observations are 

made on the results of this run: 

1. The localized sediment removal causes local degradation that 

propagates downstream in time. If the rate of sediment 

removal is kept constant, new equilibrium conditions are 

reached at the point of removal. 

2. The disturbance originated in the bed does not travel upstream. 

A theoretical explanation for this behavior lies in the fact 

that there is only one characteristic direction for the 

propagation of a bed discontinuity in subcritical flow, 

and this is in the downstream direction. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

A mathematical model of sedimentation transients in straight 

alluvial channels has been developed for subcritical flow. The model 

has a sound phenomenological structure inasmuch as it is based on 

widely accepted bed material transport functions and separately 

considers the bed load and suspended load components of the transport. 

It has considerable versatility and can successfully simulate various 

transients yielding realistic solutions. The model uses the momentum 

and sediment continuity equations in a coupled mode with the result 

that it can use rather long time steps. This represents a significant 

advantage because sedimentation transients are exceedingly slow 

phenomena. 

Underlying assumptions: The mathematical model is based on the 

following simplifying assumptions. It is assumed that the sedimenta­

tion transients are a very slow process when compared to the water 

transients. Therefore, for the time scale used for these transients, 

the water discharge is considered invariant. This is a realistic 

assumption. On the upstream boundary, it is assumed that the bed level 

instantaneously adjusts to the flow depth and the prevailing transport 

rate. In actual channels, there is a developing flow region extending 

over some tens of hydraulic depth. However, in the length span of 

the channel, it represents a small segment and the physical dissipation 

evens out the conditions in time and space. This assumption is very 

convenient and enables the modeling of a sediment inflow hydrograph. 

Boundary conditions: The implicit numerical scheme can be solved 

by resorting to a double sweep algorithm, provided the boundary 
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conditions are well posed. It is shown here that for the upstream 

boundary, either h or z need to be specified at every time step. 

Alternatively, since the bed material transport gt is directly 

related to the depth of flow h, a hydrograph of gt can be specified 

at the upstream boundary in lieu of h. For the downstream boundary, 

the model requires that stage y be specified at every time step. 

Numerical analog: The governing equations for sedimentation 

transient are nonlinear. In the model presented herein, the resistance 

and sediment transport functions are expressed as power functions of 

the flow depth and the nonlinear character of the governing equation 

is maintained. A linear numerical analog of these equations is used in 

the model. This analog is based on the assumption that the proportional 

increment in the depth of flow, over one time step is small enough 

(say under 10 percent) so that second and higher order terms in Ah/h 

can be ignored. In the course of this study, a nonlinear numerical 

solution was also developed, using the Newton-Raphson technique. This 

solution has not been presented herein. Experience with the nonlinear 

solution shows that for similar space and time spans of simulation it 

is considerably more expensive in computational time than the linearized 

solution. 

Convergence ratios: The convergence ratios, as criteria of the 

stability and convergence of the numerical analog, have been derived 

herein. These are also ba-sed on linearized equations. General 

expressions are developed for the convergence ratios Rl * and R2* 

for frictional nonprismatic channels. A study of these ratios shows 

that for the simplified case of nonfrictional prismatic channels 

convergence is a function of three dimensionless discretization 
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parameters: 6, cor and o. Both Rl * and R2* are identically 
'II' equal to 1 for 6 = 0.50 and cor = 2 for all 0 < 2- As 6 and cor 

depart from 0.5 and 2.0, respectively, the value of a becomes 

increasingly relevant for convergence. Very low values of a(a ~ '11'/100) 

assure a high degree of convergence even though 6 might not be in 

the neighborhood of 0.5 and cor may differ from 2.0. 

Convergence for frictional prismatic channels is a function of 

6, cfr and a, as well as of the resistance and transport parameters. 

A sensitivity study of Rl * and R2* shows that variations in the 

resistance and transport parameters do not affect them to a significant 

degree. 

Convergence for frictional nonprismatic channels is a function of 

6, cfBr and a, as well as of the resistance and transport parameters 

and the specified channel width variation. Although Rl * does not 

seem to be appreciably affected by the width variation effect, R2* for 

nonprismatic channels differ considerably from that of its prismatic 

counterpart, and it is difficult to generalize its behavior. 

In nonprismatic channels, it will be necessary to study the values of 

Rl * and R2* for the selection of discretization parameters. 

The results of actual test runs carried out to test the performance 

of the model indicate that a value of 0 of 0.70 is necessary to 

provide sufficient numerical damping to counteract the high frequency 

perturbations introduced by the nonlinearity of the system. 

Test runs: The numerical model presented herein effectively 

simulates the formation of a bed wave due to a nonequilibrium sediment 

inflow hydrograph. There is no limitation to the shape of the sediment 

hydrograph that can be modeled, provided the linearization is valid 

(8h/h ~ 0.10) and cr is equal to or slightly greater than 2. 
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The numerical model presented herein can be used to model the 

transient phases of various types of aggradation and degradation 

problems. The examples presented herein relate to: (1) the formation 

and migration of positive and negative bed waves, (2) the effect of 

the variation of the tail water elevation on the channel bed configura­

tion, and (3) the transient effect of local sediment removal. 

Model limitations: The suspended bed material model cannot 

effectively account for values of the Rouse number Z equal to 1.1667 

and 1.0. Coefficients t 5 , t
6

, t7 and ts (Equations (2-46), (2-49), 

(2-53) and (2-56), respectively) contain terms such that they increase 

unbounded as Z ~ 1.1667 for t5 and t 6 , and as Z ~ 1.0 for t7 and 

tS. In practice, this condition will need to be monitored in the numerical 

solution, and if present, it will be necessary to modify the transport 

function to circumvent the numerical instability. 

The linearized model is based on Ah/h ~ 0.10. In general, the 

discretization can be arranged so that this condition is satisfied. In 

certain cases of rapid change, it may be necessary to isolate different 

reaches and progress the solution sequentially in time with a small 

enough ~t in the region of rapid change. 

Although the mathematical model presented herein has a sound 

phenolnenological structure and the hypothetical test runs have yielded 

realistic results, it is necessary to verify it over some transient 

phenomena. This is needed more so because the governing equation of the 

phenomena are nonlinear and the convergence ratios are particularly 

sensitive to the discretization parameters. Data are now being 

especially collected on the Alluvial Channels Observation Project in 

Pakistan on sedimentation transients for the verification of the 

mathematical model developed herein. 
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APPENDIX II 

DESCRIPTION OF PROGRAM SETRAN 

Program SETRAN calculates the sedimentation transients in alluvial 

channels, according to the mathematical model presented in this report. 

A description of the structure of the program follows. Input-output 

examples are also given. 

1. Program SETRAN 

SETRAN is the name of the main program. It reads the input data 

and executes the main steps in the calculation. Program SETRAN calls 

ten subroutines for the execution of various aspects of the calculation. 

2. Input Description 

The input to SETRAN consists of the following: 

Card No.1, Format (2110) 

This card reads in the integer indicators INDU and INDT that provide 

for alternative choices in the upstream boundary condition and transport 

function, respectively. The following values of the indicators are used: 

a) INDU = 1: the inflow sediment hydrograph gt(t) is specified 

as the upstream boundary condition, at every time step. 

b) INDU = 2: the bed level hydro graph zl(t) is specified as 

the upstream boundary condition, at every time step. 

c) INDT = 1: the ~ - ~ relationship from Einstein's transport 

function, Figure 9, reference [2], will be used. 

d) INDT = 2: the user has the option of specifying one set of 

transport parameters al and bl (Equation 2-35), obtained 

from experimental data. This set should cover the total 

range of transport experienced in a particular problem. 
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Card No.2, Format (6FlO.0) 

This card reads in the following real variables: viscosity of water, 

bed material properties, and the resistance parameters kl , a and b 

(Equation 2-14). 

Variable 

Kinematic viscosity v 

Channel bed porosity p 

Median bed material size D 

Coefficient kl in Equation 2-14 

Exponent a in Equation 2-14 

Exponent b in Equation 2-14 

Card No.3, Format (2FlO.0) 

Units 

sq ft/sec 

ft 

(Empirical) 

FORTRAN NAME 

VNU 

POR 

DIA 

CK 

CA 

CB 

This card reads in the minimum and maximum values of the Froude number 

to be expected at the upstream boundary. These values are needed 

in the calculation of the upstream depth of flow from the specified 

inflow sediment hydrograph. 

Variable 

Minimum Froude Number 

Maximum Froude Number 

Card No.4, Format (3FlO.O, 2110) 

Units FORTRAN NAME 

FRMIN 

FRMAX 

This card reads in the information related to the discretization. 

Variable 

Weighting factor 6 

Reach length 

Total time 

Number of space intervals 

Number of time intervals 

Units 

miles 

days 

FORTRAN NAME 

DEL 

RLENGTII 

TTIME 

NL 

NT 
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Card (Sequence) No.5, Format (4F10.0) 

The next input is a sequence of (NT + 1) cards with the information 

related to the boundary conditions at every time step_ The following 

variables are read in: 

Variable Units FORTRAN NAME 

Water discharge 
(upstream boundary) cfs QU(J) 

Bed material concentration 
(upstream boundary) ppm CU(J) 

Bed elevation 
(upstream boundary) ft ZU(J) 

Water surface elevation 
(downstream boundary) ft YD(J) 

Note 1: Depending on the available boundary conditions (refer to 
Card NO.1) either CU or ZU will be known in a problem. The field 
for variable unavailable in a problem should be left blank on every 
card. 

Card (Sequence) No.6, Format (5FIO.O) 

The next input is a sequence of (NL + 1) cards with the information 

related to the initial conditions at every space grid point. The 

following variables are read in: 

Variable Units FORTRAN NAME 

Horizontal relative distance mile X(J) 

Channel width ft BZ(J) 

Water surface elevation ft YO(J) 

Bed elevation ft ZO(J) 

Reference bed elevation ft ZREF(J) 

The reference bed elevation is the elevation to which the bed 

level will be referenced at every time step. Either the initial bed 

elevation or any other suitable reference elevation should be read 

in as reference bed elevation. 
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Card No.7, Format (2FIO.O) 

If INDT = 2, an additional card which constitutes the last card in 

the input logical record should be read in. This card contains the 

values of al and bl in Equation 2-35; Format (2FlO.0) 

Variable Units FORTRAN NAME 

EA 

EB 

3. Description of the Main Program 

A flow chart shown in Figure A-I depicts the structure of the 

main program. A brief description of the subroutines is given in the 

following section. 

4. Description of Subroutines 

Subroutine ULMT 

This subroutine calculates variables 1., m., and t., for 
1 1 1 

i = 0,1,2,3. 

Variable Units FORTRAN NAME 

1 , m , t UL(4), UM(4), UT(4) 
0 0 0 

11, ml , tl UL(!), tiM(I), UT(I) 

12, m2, t2 UL(2), UM(2), UT(2) 

13, m3, t3 UL(3), UM(3), UT(3) 

Subroutine VLMT 

This subroutine calculates variables 1., m. and t., for 
1 1 1 

i = 5,6,7,8. It also calculates the local value of the shear 

intensity parameter , and the Rouse number Z. 
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Variable Units FORTRAN NAME 

15, mS' ts VL(S), VM(S), VT(S) 

16, m6, t6 VL(6), VM(6), VT(6) 

'1.,7' m7, t7 VL(7), VM(7), VT(7) 

'1.,8' m8, t8 VL(8), VM(8), VT(8) 

l/J PSI 

Z ROU 

Subroutine VARI 

This subroutine calculates the following variables at each space 

grid point, and prints them out at every time step. 

Variable 

Referenced bed elevation 

Average velocity 

Froude number 

Bed load transport 

Suspended load transport 

Bed material concentration x h 

p*llZ. 
J 

Total energy 

Energy gradient 

Units 

ft 

fps 

lbs/sec/ft 

lbs/sec/ft 

3 lbs-ft/ft 

3 lbs-ft/ft 

ft 

ft/ft 

FORTRAN NAME 

ZPLaf(J) 

V 

FR 

GBE(J) 

GSU(J) 

CSH(J) 

PZ(J) 

Hf(J) 

SF(J) 
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Subroutine MOMENT 

This subroutine computes the statistical parameters of the first 

bed wave from the upstream boundary. 

Variable Units FORTRAN NAME 

mile XMD 

Z plot - mode 

Mean X 

ft 

mile 

ZMD 

INN 

Standard deviation a 

Coefficient of variation c 

Skewness coefficient Yl 

Kurtosis coefficient Y2 

Subroutine HZUP 

v 

SD 

CV 

SKC 

CKU 

This subroutine calculates the value of the depth of flow at the 

upstream boundary corresponding to the specified inflow sediment 

hydro graph , (INDU. 1). It uses successive interpolations starting 

with two extreme values provided by FRMIN and FRMAX. The maximum 

number of iterations provided is 20, which is sufficient for most 

cases. If the Rouse number is near 1.00 or 1.1667 (see Chapter 6, 

Limitations), subroutine HZUP may not converge in 20 iterations. 

Variable Units FORTRAN NAME 

Trial hI ft H3TRY 

Trial 2 G3TRY gtl lbs/sec/ft 

Interpolated hI ft HZB 
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Subroutine COEF 

This subroutine calculates the values of the entries to the 

coefficient matrix. It also calculates the value of the bed wave 

celerity at the upstream boundary, to be used as a guide for the 

discretization. 

Variable 

Parameter PI 

Parameter P2 

Parameter P3 

Parameter Ps 
Parameter P6 

Bed celerity 

A** J 

B*j 

C*" J 

D*j 

E*. 
J 

F*. 
J 

G*. 
J 

H*. 
J 

Q*. 
J 

R*. 
J 

cf 

Units 

lbs/cu ft 

2 lbs/sec/ft 

lbs/cu ft 

ft/sec 

lbs/sec/ft3 

Ibs/sec/ft3 

Ibs/sec/ft3 

Ibs/sec/ft3 

ft- l 

ft- l 

ft- l 

ft- l 

2 Ibs/sec/ft 

ft/ft 

FORTRAN NAME 

PI 

P2 

P3 

ps 

P6 

CNF 

AS(J) 

BS(J) 

CS(J) 

DS(J) 

ES(J) 

FS(J) 

GS(J) 

HS(J) 

QS(J) 

RS(J) 
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Subroutine DSWP 

This subroutine calculates the values of Ay. and Az. for 
J J 

j = 1,2, ... (NL + 1), by a double sweep algorithm. In a first 

sweep, the upstream boundary conditions are picked up, and inter-

mediate vectors S*o, T*", and U*" are calculated. In a second 
J J J 

sweep, the downstream boundary conditions are picked up, and Ay. 
J 

and Az. are calculated based on the intermediate vectors. 
J 

Variable 

T*. 
J 

U*" J 

Ay. 
J 

Az. 
J 

Subroutine TEST2 

Units 

ft 

ft 

FORTRAN NAME 

SS(J) 

TS(J) 

US(J) 

DY(J) 

DZ(J) 

This subroutine checks the solution vector at each time step by 

testing the balance achieved on the governing equations, using 

the values of the variables at time steps nAt and (n + l)At, 

for all space intervals. It is based on Equations 5-4 to 5-10. 

Subroutine GT 

This subroutine calculates the local value of the bed material 

transport for the specified values of Kl , a, b, a l and bl . 

Subroutine BACKW 

This subroutine calculates a backwater curve for the new value of 

water discharge, thus readjusting the water surface level to the 

change in water discharge at every time step. 
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s. List of Variables (Arrays) in SETRANS 

FORTRAN Variable Symbol Units 

BZ channel width B ft 

BZP dB/dx Bt ft/ft 

CSH concentration xh (C h) lbs/ft2 
s 

* CSHO concentration xh (C h) lbs/ft2 
s 0 

CU concentration upstream cl ppm 

DY change in y Ay ft 

DZ change in z Az ft 

GBE bed load transport gb lbs/sec/ft 

* GBEO bed load transport (gb)o lbs/sec/ft 

GSB upstream bed material gtl lbs/sec/ft 
transport 

GSU suspended load gs lbs/sec/ft 

* GSUO suspended load (gs)o lbs/sec/ft 

HT total energy "r ft 

* HTO total energy (Rr) 0 ft 

HZ flow depth h ft 

* HZO flow depth h ft 
0 

PZ p*z. p*z. lbs/ft2 
J J 

* PZO p*z. p*z. lbs/ft2 
J JO 

QU water discharge Q cfs 

SF energy gradient Sf ft/ft 

* SFO energy gradient Sfo ft/ft 

X horizontal relative x ft 
distance 

YO downstream stage YN ft 

* YO stage Yo ft 
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Z bed level z ft 

* ZO bed level z ft 
0 

ZU upstream bed level zl ft 

ZPLOT plot bed level ft 

ZREF reference bed level ft 

* Subscript 0 refers to conditions at the previous time step n~t. 

6. Input and Output Examples 

Follows a sequence of cards as an example of an input logical 

record, with the corresponding output. 
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Card I-A 
INDU INDT 

IOEIiTIFICATIOIt 

3'3'33333333333333333333333333 

444444444444444444444444444444 

5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 555555555 5 5 5 



Card ill-A 

Card IV-A 

DEL RLENGTH 

95 

FORTRAN STATEMENT IOE"Tlf'ICATlON 

•••••••••••••••••••• 1 •••••••••••••••••••••••••••••••••••••••••••• 

333333333333333333333333333333 

444444444444444444444444444444 

5 5 5 5 5 5 5 5 5 :. 5 5 5 5 5 5 5 5 5 5 5 5 5'5 5 5 5 5 5 5 5 

STATEMENT IOE .. TlFICATlON 

333333333333333333333333333333 

444444444444444444444444444444 

555555555555555555555555555555 

1:11n 1111111 J 1 J J 11 11 J J 111 J J 1n J J J J J J 1 J J J J 1 J J J J 11 J 1 J J J J J J 1 J J J J J J J J J 11 J J 
I UNIVERSITY COMPUTER CENTER 
.~ ••••••••• II ••••••••• I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
1111111111111 ••••••••••••••• 111.11111111.11 ••• 11111"19"1.111 •• 1 •• 11.1 •• 11 •• 1 •• 1 
lIJJ45'J"."UUMBM"MHanunMa."aa.HU»Ma.n •• QflQa~a.fl ••• ~UUMH.U.H.~UUM •• U. n 



Card V-A 
QU(l) 

Card V-B 
QU(2) 

CU(l) 

CU(2) 
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Card Sequence V 

STATEMENT IDI:IITIFICATlCMt 

'IIISSSS'ISIJSI!'!!"'!SS'SSSS 

•••••••••••••••••••••••••••••• 
555555555~555555155555555555555 

IKIITIFICATIOfI 



Card V-C 

QU(3) 

Card V-D 
ClU(4) 

CU(3) 

CU(4) 
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132.078 

FORTRAN STATEMENT IDENTIFICATION 

Z 4) m(4) 

132.078 

33 3 333 3 3 3 3 3 1 3 1 3 3 33 3 3 3 33 3 33 33 3 1 

4 4 4 4 4 4 4 444 4 4 4 4 4 4 4 4 4 4 4 414 4444444 

5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5i5 5 5 5 5 5 5 5 

FORTRAN STATEMENT IDENTIFICATION 

3 3 3 3 3 33 3 3 3 1 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 33 3 

444 444444 4 44 44 44 44 44 44 4 44 4 44 4 4 

555555555S555555555555555555555 

1:, J J 1 J 1 J JIll J 1 J J 1 J J J 1 1 J 1 1 J J J 111 J 111 1111111111 7 11111 11111 1 11 J 1 11 J 1 1 1 11 1 
: UNIVERSITY COMPUTER CENTER 'l"" ••••••• 1 •••• 111.1 •• 11118 ••• 1.·11 ••• 8 •• 8 •••• 888688 •••••••• 1 •••••••••••••••• 
I 

Ill. 111111111111111111 •• I 11111111111 • I I • 11111 •••• 1III I •• 9 II •• I • 1II1I ••• II. I • 1I1I1 
,12 1 • • • J I I II " " 'I ,. ,. \I " ,. 'UI n 22 n I. H 21 II 21 2t JI 11 12 n ,. 35 • 11111,. .. , U .ue 45 .. ., 41 .t II SI 12 U Sf 55 .. SIll It • 1112 Il 54 IS lUlU It " II 12"1 Ie 15 " 

GUl8E 101'1147 



Card V-E 

QU(S) CU(S) 
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ZU(S) lD(S) 

FORTRAN STATEMENT Ill£IIT1f'ICATIOlW 

1 :11 1 J J , J J J J 11 1111 J J 1 J 1 J 1 J 111 J 1 7 1 1 J 1 J 1 J J t , 1 J J 1 1 J 1 1 1 J J J J 1 J J J J J J J 11 J 1 JIll 
: UNIVERSIT COMPUTER CENTER 'l"" ",.11 ••• ,1 •• ",1"" •• "., •• ,.1"1""""".1, •• 1.,,."1., •• ,1""".,,, 
I 

.: •••••••••• S ••••••• , ••••••••• ' •••• " •• , •• ' •••••••••••••••• "., •• , •••••• " ••• " •• 
I', l' S, II .ltUIJIS .. I$Il"ltltJlllnnHlulrn.ltllllltUMU.l!.!!..3!. .. U.uu .. s ... , .... Jl5lsrS15USIl ••• lIlln .. D." • I URn I 

zu(6) YD(6) 

FORTRAN STATEMENT IllEIIITIflCATlOlW 

333333333333333333333333333333 

444444444444444444444444444444 



Card VI-A 

X(1) 

I 
BZ(1) YoU) 
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Card Sequence VI 

ZO(1) ZREF(1 ) 

IDEIITII'ICATION 

••• 1 •••• 110.1.11"" •••••••••••• 1 

3 33 33 3 3333 33 3 3 3 3 3 3 3 3 33 3 33 3 3 33 3 

444444444444444444444444444444 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 

1:11111111111111 J J J 11111111111 J 1 11 11 1 , 1 11111 1 J 111 7 1111 J 1 J 1 J J 11111 J 11111 
I UNIVERSITY COMPUTER CENTER 
'~I"'I""I'III""I'II'1111111111111111111111111111111I11111111111111111111111 
.llllll •••••••• I.III •••••••••• I.I •••••• I.,I.I •••• , •••••• !I" •• " ••• " ••••••• ,., •• 
112J.5'l.t.""UMR.uMn.nunMa.N ••• nnuMu.N ••• ~uu.a.u.u.~uuMDSU ••• 1UU ••• U •• 

Card VI-B 
X(2) BZ(2) YO(2) ZO(2) ZREF(2) 

IDEIfTlI':CATION 

33 3 33333 33 3 3 33 3 33 3 3 33 3 33 33 33 33 

444444444444444444444444444444 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 55 



Card VI-C 

x <:3) 

, 

BZ(j) Yo() ZO() 
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ZRBF() 

'OEIIT'''~TlOfI 

333333333333333333333333333333 

444444444444444444444444444444 

5 ~ 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 5 5 5!5 5 5 5 5 5 5 5 

I:' J J J J J J 1 J J J J J J J J J J J 1 J J J 1 J J 1111 J J J J 11 1 J J 11 1 7 7 111 J 1 711 1 t 7 J 1 J J 11 J J J J J J J J 
, UNIVERSITY COMPUTER CENTER 
.~ ...........•.........•.........•.........•................ , .................. . 
tillllll.I •••• I.I •• III'I.I.IIII'I.' •• ' ••• , •••••• 19 •• ""!'II'II""""'I!'I"'" 
,',S ••• , •• _"UPMaN»NWftnUUMaanaa»unPM •• n» •• ftuu ••• U ••• flUUMU " •• pu ••• u. un M , 

Card VI-D 
X(4) BZ(4) YO(4) ZO(4) ZREF(4) 

IOEIITlFICATION 

33333.333333333333333333333333 

444444444444444444444444444444 

5 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 



Card VI-E 

xeS) 

Card VI-F 
X. 6) 

BZ(S) 

BZ(6) 
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IDEIITIFICATION 

YO(6) ZO(6) ZREF(6) 



Card VI-G 

X(7) BZ(7) YO(7) 

4:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 414 4 4 

5:51555555555555555555555555555 
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ZO(7) ZREF(7) 

119.747 

STATEMENT 

IOEtfTlFICATlOIi 

.... ~~a:--..._I , 1 I 1 11 1 , I 1 I 1 1 1 1 111 1 1111 1 11 1 1 1 I 1 1 1 1 

22222222222222222222222222222222 

33333333 3 3 3 3 33 33 3 3 3 33 3 3 3 3 33 3 33 

444444444444444444444444444444 

555555555555555555555555555555 

1;11111111.11111. II 1111 II 1111 ... 1 .5111 I I 56 I 5' 56 I"" 1111 .Is .. , I I" 

III J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J I J 1 J 1 J J 1 J 11 J 71 J 11 J J 1 1 J 11111'" 1 J 1 J J J J 
: UNIVERSIJY OMPUI R CENTER I 

••••••••••••• 1 ••••••••• 1 ••••••••••••••••••••• 6 •••••••••••••••• 1 •••••• 1 •• 1 •••• 1 ••• 

~., •• I ••••• I.I ••••• ltt.I.I.I •••• I.III.I ••• I.III •• ,tt.,I!III"IIIIII'II"~""'" 
\1 I » • , • 1 ••• II II II It IS • II • It 21 II lUI Ie IS 8 118 It II JI II II ,. II 8 Jf II II 41 41 U a .. Q .. ., 4141 ,. 51 51 535' SUUI ,. ". IIIUU4 a .. 51 • It 1111 nlll K ...... ~..!L!.!..JI J.L!Ll ..... 

ILOIII! 



Card VI-I 
1(9) BZ(9) YO(9) 
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ZO(9) 

IDEtoITIFICATION 

1:11 J J J 1 J J J J J J 1111 J J 11 J 11 J 1 J J 111 J 1 J J 1111 1 11111 , , 1 , , , , , J 1 J J , 1 11111111 J 1 J 
I UNIVERSITY COMPUIER CENTER 
1~1'1""'I"I""""II"'III'IIII"II"I'II •• al"I" •• 1 ••••••••••••••••••••••• 
'll. I • I • I ••• III •• I1I1I11111I1111111I II1111 1 111111 9 I 1 II 9 II ! 1 111I11I11111111 ! II • II • I 
I', J 4 I • J • t 11 11 11 13 14 15 11 1/ l' 11 2111 n 1314251111 21 It JUI JI U U JI II n II II .. 4' 414344 45 .. 41 .. 41 51 51 51 U 54 55 511' 51 " II II IIIU4 55 'U' II" n II n 14 15 "" It 

Card VI-J 
x(10) BZ(10) YO(10) ZO(10) ZREF(10) 

FORTRAN STATEME~ IDEtoITlFICATlDN 



Card VI-I 

X(11) BZ(11) YO(11) 
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ZO(11) ZRIF(11) 

," ....... . ............................................................... . 
I:JI.I.,.t."QqMn.U.H.nDU.a.V •••• UU ••• D ••• flaa~ •• flaa."UQ~"." ••• ~uaM •• Q ••• nnDMnNnN •• 
1;111 I 111 t I I 1 I 1 I t 11 I 111 I I 111 I 1 1111 I 1 I I 111111 I I I I I 11 I I I 11 I 11 I 1 , 11 1111 I 

I 

*222222222222222222221222222222 

,.333113,3313113333 S 331313 S 3 333 

~44444~44'44444444"."444'444 . 
5;5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

I 

1;1111 I II11 ; II e II I I I III I I I I I I I I I I 
I 

22222222222222222222222222222222 

3 3 3 3 3 1311 3 3 3 31 3 S 3 3 3 3 3 3

1
3 3 3 3 3 3 3 3 

• 4 ••• 44.444 4 4 •• 4 4 ••••• ,.44 • 4 •• 4 
I 

55555555~5555555555555~5555555 

111111111111111111'11111111111" 

,!, , , 'J J J J J J 1 J 11 J J J 1 J J J J J J ttJ J n tJ In III 11 III Jllll 11 J J lJ lJ n n Jl n lJ J 
I NIVERS MPUJE CENTER 
'~I"""""I""""'.".""" ••••••• 1 ••••••••••••• 1 ••••••••••••••••••• 

Il., ••• I ••••••••••••• " •• I,'IIII.I ••••••••• I ••••• ' ••• ,.'9"1 ••• 1 •••• '1 •••••• 11111 
1111."J"."UQMD.u.".naUNa.V ••• fluu.a.v ••• uaa~u.u.q."UUM •• u ••• uua •• U" f 
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Description of the Output: The following is a list and explanation of 

the output from Setran. Some of the output is self-explanatory. 

First Page: Initial Data and Calculations. 

Variable Description 

Kl, A, B Empirical coefficients of resistance equation, 
see Equation (2-14) 

NL, NT 

J 

X 

ZPLOT 

BZ 

Y 

Z 

HZ 

V 

FR 

GBE 

GSU 

CSH 

PZ 

HT 

SF 

Number of intervals of space and time 

Grid point in the space discretization 

Distance in miles from upstream end of reach 

Referenced bed elevation, ft 

Channel width, ft 

Water surface elevation, ft 

Bed elevation, ft 

Channel depth, ft 

Velocity, ft/sec 

Froude number 

Bed load transport, lbs/sec/ft 

Suspended load transport, lbs/sec/ft 

Spatial concentration of bed material times depth, 

lbs/ft2 

P* times bed elevation, lbs/ft2, see Equation (2-4) 

Total head above selected datum, ft 

Energy gradient 

If INDU = 1, subroutine HZUP is used to calculate the upstream 

depth from the given sediment hydrograph. The number of iterations 

to achieve this is printed. 
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Following Pages: Data and calculations at each time step 

Variable 

Parameter PI, P2 
P3, PS, P6 

Bed Wave Celerity 

Dl, D2, D3, D4, D5 

ES 

D6, D7 

EM 

Description 

Calculation of parameters given in Equations (4-14) 
through (4-19) at the upstream grid point. 

Celerity at upstream grid point, given by 
Equation (4-27) 

Accuracy of terms of continuity equation, see 
Equations (5-4) through (5-8) 

ES' given on page 66 

Accuracy of terms of equation of motion, see 
Equations (5-9) and (5-10) 

Em' given on page 66 

The root mean square of ES and Em summed over all grid points 

is also given. 

The shape of the bed wave is defined by the following moments of 

ZPLOT. For this purpose values of ZPLOT ~ 0.01 ft only are considered. 

If there are not at least five such grid points, the moments are not 

calculated. 

Variable 

XMODE 

ZMODE 

XMEAN 

STAND. DEV. 

COEFF. VAR. 

SKEW COEFF. 

KURTOSIS COEFF. 

Description 

Distance in miles from upstream boundary to 
ZMODE 

Greatest value of ZPLOT along the reach 

Distance in miles from upstream boundary to 
center of gravity of the wave 

Standard deviation of the wave description 

Coefficient of variation of the wave 
distribution 

Skew coefficient of the wave distribution 

Kurtosis coefficient of the wave distribution 

Note: This problem was set up as an example only. For more accurate 

modeling of the wave, a lower value of a should be chosen (see page 61). 



MATHEMATICAL MODELING OF SEDIMENTATION TRANSIENTS 

KINEMATIC VISCOSITy: .00000Q21 SQ.FT./SEC. 
.350 POROStTy= 

MEDIAN RED SIZE= 
1<1= 

.001 FT. 
.003803 

A= 0.000 
8= 1.030 
FROUDE NO MINIMUM: .100 
FROUDE NO MUJMUM= 
WEIGHT F. OELTA= 
REACH LENGTH= 
TOTAL TIME= 

.1C:;0 

.700 

.AOO MILES 
50. DAYS 

NL= 
NT= 
INOU= 
INOT= 

J X 

1 0.000 
2 .080 
3 .160 
4 .240 
5 .320 
6 .400 
1 .480 
A .560 
9 .640 

10 .120 
11 .800 

ZPLOT AZ 

10 
5 
1 
1 

Y Z 

0.000 300.000 132.500 120.000 
0.000 300.000 132.458 119.958 
0.000 300.000 132.416 119.916 
0.000 300.000 132.373 119.873 
0.000 300.000 132.331 119.831 
0.000 300.000 132.289 119.789 
0.000 300.000 132.241 119.141 
0.000 30n.000 132.204 119.704 
0.000 300.000 132.162 119.662 
0.000 300.000 132.120 119.620 
0.000 300.000 132.078 119.1578 

NUMRfR OF ITERATIONS IN SUH~OUTIN£ HZUP= 

HZ V FR 

12.1500 4.00 .20 
12.1500 4.00 .20 
12.1500 4.00 .?O 
12.500 4.00 .20 
12.1500 4.00 .20 
12.1500 4.00 .?O 
12.1500 4.00 .20 
12.500 4.00 .20 
12.500 4.00 .20 
12.500 4.00 .20 
12.500 4.00 .20 

7 

GBE GSU CS'" 

.10304E+00 .25278£+00 .160J7F+OO 

.10304F+00 .25278£+00 .16,,32E+00 

.10304F+OO .25278E+00 .16"3?F+00 

.10304F+OO .25278£+00 .16032F+00 

.10304F+OO .2'5278£+00 .lM32F.+00 

.10304F.+OO .25278F.+OO .1603?E+00 

.10304F.:+00 .25278F+00 .1603?E+00 

.10304F.+00 .25278F.'+OO .1"032[+00 

.10304E+OO .25278£+00 .161)32£+00 

.10304F+OO .25218E+OO .16032'::+00 

.10304[+00 .2527~f+OO .1(1)32£+00 

P1 liT 

.12898£+0'5 .1377-=;E+03 

.12894E+05 .13211£+03 

.171\89£+05 .13266~+03 

.12R84£+0C:; .1326?F:+03 

.12881)£+05 .t3?C:;tI£+03 

.1287SF+05 .13254£+03 

.12811£+05 .13?C:;O£+03 

.12A66F.+OC; .13i?45£+03 

.12862£+05 .13:?41£+03 

.12851£+05 .13231E+03 

.12R'S3F+05 .13?33E+03 

SF 

.10000E-03 

.10000~"'03 

.1001)0£-03 

.10000£-03 

.10000E-03 

.10000£-03 

.10000E-03 

.10000£-03 

.10000£ ... 03 

.)01)00£-03 

.100QOE-03 

...... 
o 
....J 



TIME STEP= 

WATER DISCHARGEa 15000.00 CFS 

PARAMETER PI­
PARAMETER p2= 
PARAMETER P3-
PARAMf'TF.R P5= 
PAR_M£TER P6= 

-.86"58628E-02 
-.50567218E-01 

.10748400E+03 

.96021138E+00 
-.19466672E-05 

.48991645£-03 FT./SEC. REO WAVE CELERITYa 

NUMBER OF ITEPATIONS IN SUBROUTINE "ZUPa 1 

J X ZPLOT AZ Y Z HZ V FR GRf' 

1 0.000 .000 300.000 132.500 120.000 12.500 4.00 .20 .10304£+00 
2 .080 .000 300.000 132.458 119.958 12.500 4.00 .20 .10304E+00 
3 .160 -.000 300.000 132.416 119.916 12.500 4.00 .20 .10304£+00 
4 .240 -.000 300.000 132.373 119.813 12.500 4.00 .20 .10304£+00 
5 .320 -.000 300.000 132.331 119.831 12.500 4.00 .20 .10304E+OO 
6 .400 -.000 300.000 132.289 119.789 12.500 4.00 .20 .10304£+00 
7 .480 -.000 300.000 132.247 119.747 12.500 4.00 .20 .10304£.00 
8 .560 -.000 300.000 132.204 119.704 12.500 4.00 .20 .10304£.On 
9 .640 -.000 300.000 132.162 119.662 12.500 4.00 .20 .10304£.00 

10 .120 -.000 300.000 132.120 119.620 12.500 4.00 .20 .10304E+OO 
11 .800 -.000 300.000 132.078 119.578 12.500 4.00 .20 .10304E·00 

J 01 02 03 04 OS 

1 -.446988F.-l1 -.604998E-l1 -.631012E-15 .105204£-10 O. 
2 -.278055E-12 -.376338E-12 -.130128E-14 .655712£.-12 O. 
3 • 424015F-12 .51389~E-12 -.128061"-14 -.99~739£-12 o • 
4 .541985£-12 .733582E-12 -.114430E-14 -.1274.7E-11 O. 
5 • 562112F-12 .160809E-12 -.988435£-15 -.132200E-l1 O • 
6 • 56'S890E-12 .765926E-12 -.829203F-15 -.133096,.-11 O. 
7 .564;897£-12 .767324E-12 -.669286£-15 -.133359E-l1 O. 
8 • 561524£-12 .168145E-12 -.509131E-15 -.133527£-11 O • 
9 .567991E .. 12 .768763E-12 -.348830E-15 -.133652E-l1 O. 

10 • 568487£-12 .769455E-12 -.188401E-15 -.133770£-11 O • 
ROOT M£.AN SQUARE 

GSU CSH PZ "T SF 

.21)218£+00 .16032£+00 .12M98E+05 .13215E+03 .10000£-03 

.25278f'+00 .16032F+00 .12A94£+01) .13~l1E+03 .10000£-03 

.25278£+00 .16032£+00 .12"89E+05 .13266£+03 .10000£-03 

.25278E+OO .16032£+00 .12"84£+05 .13~62£+03 • 10000E-03 ..... 

.25278£+00 .16032£+00 .12880£+05 .13158E+03 .IOOOOE-03 0 

.25278£+00 .16032F.+00 • 12875E+05 .13254£+03 .10000E-03 
CO 

.25~78F..OO .16032£.00 .12871E.05 .13~I)OE·03 .10000E-03 

.25278'.00 .16032'.00 .1?A66F..05 .13245E+03 .10000E-03 

.25278E.OO .16032£.00 .12A62E.0~ .13~41£.03 .10000£-03 

.25278£.00 .16032£.00 .12851E+05 .13237£+03 .10000£-03 

.25278£+00 .16032£.00 .12853£+05 .13233£.03 .10000E-01 

ES 06 01 E" 

-.652849E-16 -.100000E-03 .100000£-03 .406793F.-lr; 
.179323E-16 -.100000E-03 .100000E-03 .300194F.-14 

-.112666E-15 -.100000E-03 .100000E-03 -.195677£.-14 
-.491659E-16 -.100000£-03 .100000E-03 .809682F.-15 
-.681512F-16 -.100000£-03 .100000E-03 .169743'-14 

.2'S3790£-16 -.100000£-03 .100000E-03 .673506£-15 
-.368604E-16 -.100000E-03 .100000E-03 -.474013F-15 
-.112723£-15 -.100000E-03 .100000E-03 -.r;13478E-15 
-.107363£-15 -.100000£-03 .100000E-03 .248239f!-14 

.559113E-16 -.100000E-03 .100000E-03 • 113624F-15 

.732545E-16 .1!'.3818F-14 



TIMF STEP: 2 

WATER DISCHARGE: 15000.00 CFS 

PARAMETER pI: -.81)858628E-02 
PARAMETER p2: -.50567238E-Ol 
PARAMETER P3: .11)748400£+03 

.96021138£+00 PARAMETER P5: 
PARAMETER P6: .... 19466672£-05 

.48991645£-03 FT./SEC. RED WAVE CELERITY: 

NUMBER OF IT£RATIONS IN SUBROUTINE HlUP= 5 

J 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

X ZPLOT 82 Y Z HZ V FR GBE 

0.000 1.654 300.000 132.433 121.654 10.779 1t.64 .25 .15160£+00 
.080 .271 300.000 132.1t46 120.235 12.212 4.09 .21 .10949F.+OO 
.160 .046 300.000 132.414 119.962 12.452 1t.02 .20 .10408£+00 
.240 .OOA 300.000 132.373 119.881 12.1t92 1t.00 .20 .10321F.+00 
.320 .001 300.000 132.331 119.832 12.499 4.00 .20 .10307E+OO 
.400 .000 300.000 132.2A9 119.189 12.500 4.00 .20 .10304F+00 
.480 .000 300.000 132.247 119.747 12.500 4.00 .20 .10301t£+00 
.560 .000 300.000 132.204 119.701t 12.500 4.00 .20 .10304[+00 
.640 .000 300.000 132.162 119.&62 12.500 4.00 .20 .10304F.+00 
.720 .000 300.000 132.120 119.620 12.500 1t.00 .20 .10304£+00 
.800 .000 300.000 132.078 119.578 12.500 4.00 .20 .10304E+OO 

J 01 02 03 04 05 

1 -.697732F-04 -.910778E-04 
2 -.897120F.-0~ -.120145E-04 
~ -.144145F.-05 -.194919E-05 
4 -.239662E-06 -.32433?E-06 
5 -.4007?5~-07 -.5423&7E-07 
6 .... 670621£-08 -.907682E-08 
7 -.112208£-08 -.151874E-08 
8 -.lA7359F.-09 -.253590E-09 
9 -.308908F-IO -.41AIOA£-10 

.120190£-07 .120076E-03 O. 

10 -.1t~9842F.-ll -.635930E-11 
wOOT M£AN SQUARE 

• 173773E-08 
.284293£-09 
• 474092£-10 
.793126£"'11 
.13276"£-11 
.222331E-12 
.372496E-13 
.62101t5£-11t 
.957148~:-15 

.201001F.-04 O • 

.3364&7E-05 O. 

.563230E-06 O • 

.'142811£-07 O • 
• 157811E-07 O. 
.2640':;8F.-08 O. 
.440912£-09 O. 
.72&953£-10 o. 
.11 0566£-10 O. 

ASU CSH PZ HT SF 

.31644E+00 .17851F.:+00 .13076E+05 .13277£+03 .10361£-03 

.26148E+OO .16?91F+OO .12Q23E+OS .13271F.+03 .10051£-03 

.25420E+00 .16074F,+00 .1?894E+0':; .13266£+03 .10009E-03 

.25302£+01) .1603QF.+OO .12~B5F.+05 .1321)2£+03 .10002£-03 ..... 

.25282E+OO .11;1)34F.+OO .12880£+05 .13258E+03 .10000E-03 0 

.25279F.+OO .16033F+00 .12875[+05 .132541!+03 .10000E-03 <:0 

.25279F.+00 .16032F.+00 .12871E+05 .13250£+03 .10000E-03 

.25279E+OO .1603?f+OO .12866E+05 .13245E+03 .10000E-03 

.2527fSE+OO .1(1)32£+00 .12862£+05 .13241£+03 .10000E-03 

.25278F.+OO .16032E+00 .12857£+05 .13?37E+03 .10000E-03 

.25278E+OO .16032F+00 .12853£+05 .13233£+03 .10000£-03 

ES D" 07 EM 

·.~07633£-04 -.129319E-03 .101484£-03 -.278355F-04 
-.943801E-06 -.1008A8E-03 .100232£-03 -.656124£-06 
-.256839E-07 -.100056£-03 .100038£-03 -.179016F-07 
-.716231E-09 -.100007£-03 .100006£-03 -.499425E-09 
-.200542£-10 -.100001£-03 .100001E-03 -.139A20F.-10 
-.562009£-1? -.100000F-03 .100000E-OJ -.391431F-12 
-.157736E-13 -.100000E-03 .100000f-03 -.746885E-14 
-.593293£-15 -.100000E-03 .100000E-03 .277209F.-14 
-.739202£-16 -.100000E-03 .100000£-03 .130408E-14 
-.136~83F.-15 -.100000F-03 .100000£ .. 03 • 177592F-14 

• 128939F.-04 .880482F-05 



TIME STEP= 3 

WATER DISCHARGE= 15000.00 CFS 

PARAMETER Pl= 
PARAMETER P2= 
PARAMFTER P3= 
PARAMFTER p5= 
PARAMF.TER P6= 

-.12774362£-01 
-.833829~2£-01 

.1074A400E+03 

.Q3794635E+OO 
-.23403616£-05 

.82699041E-03 Fr./SEC. REO waVE CELERITY= 

NUMRF~ OF ITERATIONS IN su~wOUrINE HlUP= 7 

J X 7PLor ... z Y z HZ V FR GAE 

1 0.000 .015 300.000 132.515 120.015 12.500 4.00 .20 .10304F+00 
2 .080 .875 300.000 132.420 120.833 11.587 4.32 .22 .12557£+00 
3 .160 .375 300.000 132.400 120.291 12.110 4.13 .21 .11192F+OO 
4 .240 • 098 300.000 132.369 119.971 12.398 4.03 .20 .10525E+00 
S .320 .022 300.000 132.330 119.853 12.477 4.01 .20 .10353F.'+00 
6 .400 .005 300.000 132.289 119.793 12.495 4.00 .20 .10314E+OO 
7 .480 .001 300.000 132.247 119.747 12.499 4.00 .20 .10306£+00 
8 .560 .000 300.000 132.204 119.704 12.500 4.00 .20 .10304F.+OO 
9 .64" .000 300.000 132.162 119.662 12.500 4.00 .20 .10304£+00 

10 .720 .000 300.000 132.120 119.~20 12.~00 4.00 .20 .10304£-00 
11 .800 .000 300.0no 132.GT8 119.578 12.500 1t.00 .20 .10304f+OO 

J III 02 03 04 OS 

1 .741615£-0C; .10701~E-04 -.691t01t2F.-08 -.b4705?F.-04 O. 
2 -.264575E-04 -.351~92E-04 .538864F.-08 .576780[-04 O. 
3 -.116701t£-04 -.156123E-04 .22801/tf!-G8 .260388£-04 O. 
4 -.2(6)77[-05 -.1t00)4a£-05 .5838181::-09 .687153E-05 O. 
5 -.660445F-06 -.893518£-06 • 130559f.:-09 .154888E-05 o. 
6 -.138200£-06 -.187036£-06 .2734C;2E-I0 .324981E-06 O. 
7 -.277784f-07 -.375974E-07 .549720E-l1 .6S3612E-07 O. 
8 -.542807[-08 -.734687£-08 .107381£-11 .127735E-07 o. 
9 -.103854F-1)8 -.140Sb7E-08 .205040F-12 .244399E-08 O. 

10 -.195203F.-09 -.2642I)AE-09 .381491E-13 .459372E-09 O. 
QOOT MElN ~QUARE 

GSU CSH PZ MT SF 

.25278E+00 .16032F+OO .12900E+05 .13~16E+03 .10000£-03 

.28280E+00 .16910E+00 .12988E+0~ .13211£+03 .10186E-03 

.26473E+00 .11,386f.+OO .12929E+05 .13261£+03 .10078E-03 

.2&;578£+00 .16172F.'+00 .12895£+05 .13?62E+03 .10020E-03 .... 

.25345E+00 .160C;?F+00 .1:?882E+05 .13258E+03 • 10004£-03 .... 

.25292E+OI) • 1603*,F.'+00 .12876E+05 .13?54E+03 .10OO1E-03 0 

.252~1E+OO .16033F.'+00 • 12871£+0C; .132S0£+03 .10000£-03 

.25279E+OO .16013F+00 • 1281,6E+05 .13245£+03 .10000£-01 

.?5279f.+OO .16032F+no .12862E+OS .13241E+03 • JOOOOE-03 

.25279E-00 .lM32F+00 .12857E+05 .13231£+03 .10000E-01 

.25278[+00 .1"032£+1)1) .12853£-OS .13233£+03 .JOOOOE-03 

ES 0(' 07 £M 

-.465742E-01t -.132383£-03 .101288£-03 -.310946£-04 
-.388331£-OS -.103670F.-03 .101023E-03 -.26469S£-05 
-.130170£-0~ -.101260£-03 .100357£-03 -.902453F.-06 
-.951269F.-07 -.100154£-03 .100088E-03 -.662382F-07 
-.495338E-08 -.100023£-03 .100019£-03 -.345280F-OA 
-.221807E-09 -.100004E-03 .100004E-03 -.154651F-09 
-.907951E-l1 -.1000~1£-03 .100001E-03 -.632884f!-11 
-.349708£-12 -.100000£-03 .100000£-03 -.240409[-12 
-.128892E-13 -.100000F-03 .100000E-03 -.138212F-14 
-.573209£-15 -.100000£-03 .100000£-03 .9.t.4sr;7[-1C; 

.147849£-04 .987210':--05 



TIME STEP= 4 

WATER OISCHARGE= 15000.00 CFS 

PARAMETER PI= 
PARAMETER PZ= 
PARAMETfR P3= 
PARA~ETER P5= 
PARA"'ET£R P6= 

-.868'58628E-02 
·.50'567238E-Ol 

.10148400E'+03 

.96021138E+00 
-.19466672E-05 

REO WAVE CELERITY= .48991645E-03 FT./SE'C. 

NUMRER OF ITERATIONS IN SUBROUTINE HZUP= 7 

J )( lPLOT RZ Y 1 HZ V F'R GRE 

1 0.000 -.005 300.000 132.495 119.995 12.500 4.00 .20 .10304E+00 
2 .080 .174 300.000 132.454 120.132 12.322 4.06 .20 .10696E+00 
3 .160 .620 300.000 132.389 120.535 11.853 4.22 .22 .11834E+00 
4 .240 .398 300.000 132.357 120.271 12.085 4.14 .21 .112C;1£+OO 
5 .320 .141 300.000 132.325 119.972 12.353 4.05 .20 .10626F.+00 
6 .400 .039 300.000 132.287 119.828 12.459 4.01 .20 .10392f.'+00 
7 .480 .010 300.000 132.246 119.756 12.490 4.00 .20 .10326F+OO 
A .560 .002 300.000 132.204 119.707 12.4914 4.00 .20 .10309E+OO 
9 .640 .001 300.000 132.11",2 119.663 12.499 4.00 .20 .10305E'+00 

10 .720 .000 300.000 132.120 119.620 12.500 4.00 .20 .10304E+00 
11 .800 .000 300.000 132.0lA 119.578 12.500 4.00 .20 .10304E+00 

J Dl 02 03 04 05 

1 .2?5115F-04 .J00990E-04 -.416584F-08 -.448133E-04 o. 
2 • 9}5468F.-05 .123251E-04 -.2724~5F.-08 -.Z83902E-04 O • 
3 -.143954E-04 -.192003E-04 .310497E-08 .339048E-04 O. 
4 -.115RI2F-04 -.155407F.-04 .229926E-08 .261064E-04 O. 
5 -.414833E-05 -.559A30E-05 .81A422F-09 .958281E-05 O. 
6 -.116253F.-05 -.157221E-05 • 229751f-09 .272054E-05 O • 
7 -.291307E-06 -.394205E-06 .576214E-IO .684539E-06 O. 
8 -.681558F.-07 -.922446E-07 .134791E-I0 .160335E-06 O. 
9 -.151957E-07 -.205672E-01 .299872E-l1 .351573E-07 O. 

10 -.3?~778E-08 -.442293E-08 .637987F.-12 .768996£-08 O. 
ROOT "'fAN SQUARE 

GSU CSH PI ... T SF 

.25278f+00 .11",03?f+00 .12898E+05 .13274E+03 .10000F-03 

.25809E+00 .16190F+00 .12912F.+05 .13271E+03 .10035E-03 

.27326£+00 .16635£+00 .12956E+05 • 13?I",7£+03 .10130F.-03 

.26C;52E.00 .16409E+00 .12927E+05 • 13262£.03 .100A2£-03 ...... 

.25714£+00 .16162E+OO .12895£+05 .13?5A£+03 • 10029£-03 ...... 

.2539~f+00 .1606BF+OO .12AROE+05 • 13?54£+03 .1000RE-03 
...... 

.25308E+00 .16041£+00 .12872£+05 .13250£+03 .10002E-03 

.2S2A5E+00 .16034F..00 .12B67E+05 .13245E+03 .lOOOOf.'-03 

.25280£+00 .ll1031F.+OO .12862F..05 .13241E+01 .)OOOOE-O] 

.25279E+00 .16032F.:+OO .12SS7F+0C; .13237E+1)3 .10000E-01 

.2'5Z79f+OO .lM32E+OO .12A53E+05 .13211E+03 .1001)0£-01 

ES n6 [17 EM 

.779JOIE-05 -.9504?4F.-04 .100402f-03 .535957£-05 
-.691317E-05 -.105683F-03 .100974£-03 -.470929£-05 

.312233E-06 -.100662E-03 .100~90E-03 .~2842AF-06 
-.101323~-05 -.101126E-03 .J00426£-03 -.700c;73~-06 
-.163003F.-06 -.100250E-OJ .100137£-03 -.113368[-06 
-.139654E-07 -.100046F-03 .100037E-03 -.973010E'-08 
-.~16103E-09 -.1000IOE-OJ .100009E-03 -.638597£-09 
-.514601F-IO -.100002E-03 .100002E-03 -.358757F-IO 
-.259841E-l1 -.100000E-03 .100000E-03 -.180906E-l1 
-.120471£-12 -.100000E-03 .100000F-03 -.805970F.-13 

.331170F.-05 .226A44F-05 



TIME STEP- 5 

WATE~ OISC~ARGE- 15000.00 CFS 

PARAMETER PI­
PARAMETER P2-
PARAMETER P3= 
PARAMETER P5= 
PARAMETER P6-

-.86858628E-02 
-.50567238£-01 

.10748400[+03 

.96021138E+00 
-.1946~672E-05 

.48991645E-03 FT./SEC. BED WAVE CELERITY= 

NUMBFR OF IT£PATIONS IN SUeROUTIN£ HZUP= 7 

J X ZPLOT AZ Y Z ~Z ." FR GHE 

1 0.000 .004 300.00~ 132.504 120.004 12.:;00 4.01) .20 .l031)4E+OO 
2 .0liO .027 300.000 112.457 119.CJ85 12.472 4.01 .20 .10364F.+00 
3 .160 .220 300.000 132.408 120.135 12.273 4.07 .21 .10808F+OO 
4 .240 .491 300.000 132.352 120.365 11.988 4.17 .21 .11491E+00 
5 .320 .389 300.000 132.315 120.220 12.094 4.13 .21 .11229£-00 
6 .400 .173 JOO.OOO 132.282 119.962 12.320 4.06 .20 .10701'+00 
7 .480 .058 300.000 132.244 119.804 12.440 4.02 .20 .10434£+00 
4 .560 .017 300.00n 132.204 119.721 12.483 4.01 .20 .10341£+00 
CJ .640 .004 300.000 132.162 11~.666 12.495 4.00 .20 .10314F.'.OO 

10 .720 .001 300.000 132.120 119.6~1 12.499 4.00 .20 .10306F.'.OO 
11 .800 .000 300.000 132.078 119.S78 12.500 4.00 .20 .10304E+O() 

J 01 02 03 04 05 

1 .378909F.-0C; .511&72E-05 -.771718£-09 -.863A47F-0C; O. 
2 • 154J93F.-04 .207031E-04 -.30902~F-08 -.340202E-04 O. 
3 .71fH54F-05 .CJ6)n41E-05 -.177554E-08 -.190691E-04 O. 
4 -.87CJ037E-05 -.117518£-04 • 192357E-Oij .212354£-04 o. 
5 -.104020£-04 -.13956CJE-04 .209133£-08 .237611E-04 O. 
6 -.4~CJCJI1F.-05 -.660657£-05 .969867E-0"l .113074E-04 O. 
7 -.166263F.-05 -.224766E-05 .3?8626F-09 .388402E-05 O. 
8 -.4A4~07F-06 -.655962E-06 • 951;061£-10 .113832£-05 O • 
CJ -.12911~f-06 -.174142£-0" .25452A£-10 .303658£-06 O. 

10 -.3?2776E-07 -.436A6AE-07 .629118£-11 .759471E-07 O. 
.:lOOT "'F.~~ St'lIJAr:t£ 

XMOOf= .2400£+00 ZMOOE.= .4913E·OO X~F.AN· .280~E+OO 

C;SU CIS'" Pl HT SF 

.25278£+00 .1603~F+00 .1?Io\CJ8£+05 .13275f.+03 .10000F-03 

.2'5160E+OO .160~7E+OO .1?A96E+05 .13271E+03 .10005E-03 

.25959£+00 .16235£-00 .12913E+05 .13267E+03 .IDQ4t;F.'-OJ 

.26812£+00 .16'503[+00 • 12CJ37E-0'5 .13262E+03 .10102£-03 

.26522[+00 .16401F.+00 .12Q22£+05 • 13?5A£+03 .10081£-03 

.25815£+00 • 161CJ2F.'+Ofl .121194£+05 .13254£-03 .100J5£-OJ 

.25455£-00 .16085£+00 .12817£+0':; .13::»50£+03 .10012£-03 

.25329£+00 .16047[+00 .128610\£+05 .13245£+03 .10003F.-0:l 

.252CJ2£+00 .16036F.+OO .12862£+05 .13?41E+03 .10001£-0.1 

.252&2E+00 .1603'3£+00 • 12B57F.'.0C; .13237£+03 .loonO£-03 

.2'5279£+00 .1l-033£+00 .1?853£+05 .13233£+03 .10000E-03 

F.S 06 07 EM 

.266559£-06 -.9910\848£-04 .100072£-03 .18613"F.-06 

.211CJ09£-05 -.CJAQ5li2£-04 .100423£-03 .14650lF-05 
-.225AA7E-05 -.102383F.-OJ .100A34[-03 -.154940F-05 

.,,951c;a£-06 -.100321£-03 .100A07E-03 .486621F-O,. 
-.595760F.-0~ -.100A72E-03 .100461£-03 -.410477F-06 
-.lQ7324E-06 -.100317[-03 .100180E-OJ -.131058F-0~ 
-.259505E-01 -.100075E-03 .100051E-03 -.110\0699£-07 
-.235605F.-08 -.100017E-03 .100016£-03 -.164191F-OR 
-.11J416F.-09 -.100004£-03 .100004£-03 -.1208R6£-OCJ 
-.11006CJE-IO -.100001E-03 .100001£-03 -.1l-1475F-l1 

.11')2614F.-05 .7015471="-0" 

STANO.Ofll.= .CJ253E .. 01 
COEFF."'AIOI.= .3,2415r.oo 13KF.''lII.COfFF.= .41550£+00 KURTOC;IS CO£FF.= .Jl~nF.+Ol 

..... ..... 
~ 
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APPENDIX III 

PROGRAM FLOlVCHART AND LISTING 



u4 

TIME = TIME + I 

Call ULMT 

Call COEF 

Call HZUP 

Call DSWP 

Calculate Z(J)~HZ(J) 

Call MOMENT 

Figure A.I 

Program SETRAN Flow Chart 

Call VARI 

Call TEST2 

Call MOMENT 

Update Variables 

Call BACKW 

< 0 



115 

PROGRAM SETRAN 
leINPUT,OUTPUT,PUNCH.TAPE5=INPUT,TAPE6=OUTPUT,TAPE7=PU~CH) 

C •••• PROGRAM SETRAN CALCULATES THE SEDIMENTATION TRANSIENTS IN ALLUVIAL 
C •••• CHANNELS. ACCORDING TO THE NUMEPICAL MODEL DEVELOPED BY K. MAHMOOD 
C**** AND V. M. PONCE 

COMMON/AI GRAV,GAM.SS 
COMMON/BI POR,DIA.CK.CA.C8.VNU,WL,BR,MP 
COMMON/C/ DEL 
COMMON/Of RLENGTH.Nl,DX.NX.TTIME,NT,DT,NZ 
COMMON/E/ TIME 
COMMON/F/ FRMIN.FRM.X 
COMMON/SI INDT.E_.ER 
COMMON/HI INDU 
COMMON/VCI UL(4),UM(4),UT(4).VL(S),VM(S).VTe8) 
CO~~ON/VAI X(151),RZP(lSl),ZREFC151),ZPLOT(151) 
DIMENSION QU(151),CU(151).ZU(151),YOClSl) 
DIMENSION HZO(151).HZ(15I),ZO(151),ZeI51).DY(151).Dze151),BZe151) 
DIMENSION YO(IS1) 
DIMENSION 6S9(151) 
DIMENSION GBEelSl),GSUe151),CSHe151),PZ(151),HT(15l).SFe151). 
IGBEO(151),GSUO(15l).CSHoe151),pZOe151).HTO(I~I),SFO(151) 
WRITEef).200) 
GR .• V= 32.17 
GAM = 62.40 
5S = 2.65 
READeS,lOS) INDU,INDT 
READ(S,lOO) VNU,POR,DIA,CK,CA.CB 
REAOC5.100) FRMIN.FRMAX 
READ(5,l02) DfL.RlENGTH,TTIME.Nl.NT 
WRITE(6.110) VNU.POR,DIA,CK.CA.CB,FRMIN.FRMAX.OEL,RLENGTH.TTIME. 

INl,NT.INDU.INDT 
OX= RlENGTH/FLOATeNl)* 5280. 
OT= TTIME /FLOAT(NT)*86400. 
NX= Nl+l 
NZ= NT+l 
00 2 J=I,NZ 

2 READe~.lOO) QU(J).CU(J).zUeJ),YDeJ) 
00 3 J=l.NX 

3 READ (5.100) X(J),BZ(J),YO(J).ZO(J).ZREF(J) 
00 10 J=l.NX 

10 HZOeJ)= yoeJ)-ZoeJ) 
RZpel)= eAZ(2)-eZel»/DX 
DO 15 J=2.NL 

15 ~ZP(J)= (RZ(J+l)-RZ(J-l»/(2.*DX) 
RZPCNX)= (BZ(NX)-BZeNL»/DX 
00 20 "'=I.NZ 

20 GSR(J)= CU(J)*QU(J)/81(1)*GAM/I0.**6. 
IFeINDT.EQ.l) GO TO 9 
RE_O(5.100) EA,EB 
WRITE(6.112) EA,ER 

9 CONTINUE 
N=O 
TIMF= O. 
EQ= QU(I) 
CALL ULMT(EQ) 
CALL V~RI(HZO,ZO,BZ,GBEO,GSUO.CSHO.PZOtHTOtSFO,EQ) 
CALL ~OMENT 
CALL HZUP(HZBO,BZ(l).GSB,N,EQ) 
00 60 N=ltNT 



TIME- TIME+1. 
WRITE(6,150) N,EQ 
CALL ULMT(EQ, 
CALL COEF(HZO,lO.BZ,EQ' 
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CALL HZUPCHZ8.BZe1"GSB,N.EQ, 
CALL DSWP(HZ8,HZ80.ZU.VD,N,DV,DZ' 
00 40 J=l,NX 
Z(J)= ZO(J)+DZ(J) 
HZeJ'= HZOeJ)+oV(J)-OZ(J' 

40 CONTINUF. 
CALL VARI(HZ,Z,BZ.GBE.GSU,CSH,Pl,HT,SF.EQ, 
CALL TEST2(G8E,G8EO.GSU,GSUO,CSH,CSHO,Pl,PZO,HT,HTO.SF,SFO,9Z,8ZP) 

41 CONTINUE 
CALL ~OMENT 
1'4180= HZ8 
00 50 J=l,NX 
HZO(J)= HZCJ' 
lO(J)= l(J) 
GRF.OCJ)= GBECJ) 
GSUO(J)= eSU(J) 
CSHO (,J) = CSH (J) 
PZO(J)= PZ(J) 
HTO(J)= HT(J) 
SFO(J)= SF(J) 

50 CONTINUE 
EQ= QU(N+l) 
CALL 8ACKW 

60 CONTINUE 
100 FORMAT (8FI0.0) 
101 FORMAT (110) 
102 FORMATC3F10.0,2II0) 
105 FORMATC2I10) 
110 FORMATe* KINEMATIC VISCOSITV=*,F10.8.* SQ.FT./SEC.*I 

1 * POROSITV= *.F10.3,1 
2 * MEDIAN BED SIZE= *.FI0.3,* FT.*I 
3 * K1= *.F10.6,1 
4 * A= *.FI0.3.1 
5 * 8= *,FI0.3.1 
6 * FROUDE NO MINIMUM= *.F10.3.1 
7 * FROUDE NO MAXIMUM= *.F10.3.1 
8 * WEIGHT F. OELTA= *,F10.3,1 
9 * REACH LENGTH= *,F10.3,* MILES*I 
9 * TOTAL TIME= *.F10.0.* DAYS*I 
1 * NL= *.110.1 
2 * NT: *.110.1 
3 * INDU= *.110.1 
4 * INDT= *.110/' 

III FOR~ATe7E15.8) 
112 FORMAT(* TRANSPORT PARA~ETER Al= *.FlS.5.1 

2 * TRANSPORT PARAMETER 81= *,FlS.5/» 
150 FORMAT(III* TIME STEP= *15.1/ 

1 * WATER DISCHARGE= *.FI0.2.* CFS*/, 
200 FORMAT(lHl.III.10X.* MATHE~ATICAL MODELING OF SEDIMENT_TION TRANSI 

1ENTS *111' 
STOP 
END 
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SUBROUTINE GT(H.B.G) 
COMMON/VCI UL(4).UM(4),UT(4).VL(S).VM(8).VT(A) 
G= VL(4)*H**VM(4)*B**VT(4) 

1 +VL(S)*H**VM(S)*B**VT(S) 
1 +VL(6)*H**VM(6)*B**VT(6) 

RETURN 
ENO 

SURROUTINF VARI(HZ,Z.HZ,GRE.GSU,CS~,PZ,HT,SF.EQ) 
COMMON/AI GRAV.GA~.SS 
COMMON/el POR,OIA,CK.CA,C~.VNU,Wl,8R.MP 
COMMON/CI DEL 
COMMON/OI RlEN6TH.Nl.OX.NX,TTIME.NT.DT.NZ 
COMMON/EI TIME 
COMMON/VAI X(151).BZP(151),ZREFe151).ZPLOTe151) 
COM~ON/VCI Ul(4).UM(4),UTe4),VleS).VM(S).VTeA) 
DIMENSION HZ(I),Z(l),RZ(),GBEel),GSUel),CS~Cl"pZel).HTel),SFel) 
WRITE(6.300) 
00 10 J=l,NX 
V= EQ/CHZeJ)*BZ(J» 
FR= V/(GRAV*HZ(J)'**O.S 
CALL VlMT(HZ(J),8Z(J» 
GRE(J)= Vl(4)*HZ(J)**VM(4)*BZ(J)**VT(4) 
GSU(J)= Vl(S)*HZeJ)**VMCS)*BZCJ)**VTeS) 

1 +VL(6)*HZeJ)**VMe6)*eZeJ)**VTC6) 
CSH(J)= Vl(7)*~Z(J)**VMe7)*8Z(J)**VTC7) 

1 +VL(S)*HZeJ)**VM(S)*8ZeJ)**VTeS) 
PZ(J): (l.-POR)*SS*GAM*ZeJ) 
y= ZeJ)+HZeJ) 
HT(J)= V*V/e2.*GRAV)+Y 
SF(J)= Ul(Z)*HZCJ)**UM(2'*BZ(J)**UTeZ, 
ZPLOT(J)= Z(J)-ZREF(J) 
WRITE(6.400) J.X(J).ZPlOTeJ),RZeJ),y.ZeJ).HZeJ).V.FR,GBFeJ),GSUCJ) 
1.CS~(J).PZ(J).HT(J).SF(J) 

300 FORMATe* J X ZPlOT BZ Y Z HZ V 
1 FR GRE GSU CSH PZ HT 
2 SF*/) 

400 FORMATe}X,I3.F7.3.SF8.3.ZF5.2,6F12.S) 
10 CONTINUE 

RETURN 
rNO 



SUBROUTINE UlMTCEQ) 
COMMON/AI GRAV.GAM.SS 
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CO~MON/BI POR.OIA.CK.CA.C8.VNU.Wl.8R.MP 
COM~ONICI DEL 
COMMON/VCI UL(4).UMC4).UT(4).VL(S).VMCS).VT(A) 
VSS= (C2./J.*GRAV*CSS-l.'*OIA**J.+J6 •• VNU**2.'**O.S-6. oVNU)lOlA 
XKAPPA= 0.4 
UL(I). CCO.OJ42*OIAo*CO.1667-CA)*EQ*.C8)/CCKoGRAV.*CCB/2.),)*01.5 
UMC}). 1.-2.25.C8 
UT(l). -1.SoCS 
UL(2). «CK*OIA**CA*EQ*oCl.-CB'*GQAV**(CB/2."/l.486'**2. 
UMC2'. l.*C8-l0./l. 
UT(2). 2. 0 (CB-l.' 
UL(l). (7.*EQ*OIA*0(1./6.')/C6.*(GRAV*UlCl).UlC2),O.O.5) 
UMe]). -CUMel)/2.+U"(2)/2.+7./6.) 
UTC]'. -(UTC1)/2.+UT(1.)/2.+1.) 
Ul(4). VSS/(XK.PPA*CGRAV*ULe2»**O.5) 
UM(4). -0.5*(UM(2)+I.) 
UT(4). -0.5*UT(2) 
RETURN 
END 



SUBROUTINE VLMT(HZD,BZD) 
COM~ON/A/ GRAV,GAM.SS 
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COMMON/B/ POR,DIA.CK.CA.CB.VNU.WL.BR,MP 
COMMON/GI INDT.FA.EA 
COMMON/VCI UL(4).UM(4).UTC4).VL(8),VM(8).VTC8) 
DIMENSION EINSA(8).EINSR(8) 
OATACEINSACI).J=I.8)/7.714.7.357,10.SS2,2S.668.138.263,1610.638. 

136020496 •• 139500000000000./ 
DATACfINSB(I),I=1,8)/-1.Ol.-1.19.-1.67,-Z.30,-3.Z3,-4.26.-7.81, 

1-12.661 
If(INOT.EO.2) GO TO 10 
PSI=(SS-1.)*DIA/(UL(1)*UL(2'*HZD**(UMCl)+UM(2»*BZO**(UT(I)+UT(2» 

1 ) 
IFCPSJ.LE.O.77) IRANGE= 1 
IF(PSI.GT.O.77.ANO.PSI.LE.2.12) IRANGE=2 
IFCPSI.GT.2.1Z.ANO.PSI.LE.4.1C) IPANGE=3 
IFCPSI.GT.4.10.ANO.PSI.LE.6.10) IRANGE=4 
IFCPSI.GT.6.10.ANO.PSI.LE.ll.0) IRANGE=5 
IfCPSI.GT.l1.0.ANO.PSI.L£.16.7) IPANGE=6 
If(PSI.GT.16.7.ANO.PSI.LE.ZZ.S) IRANGE=7 
IFCPSI.GT.Z2.S) IRANGf=R 
EA= EINSACIRANGE) 
EB= EJNSBCIRANGE) 
EA= 2.*EA 

10 CONTINUE 
VL(4)= EA*GRAV**O.S*CSS-l.)**CE8+0.S)*OIA**(EB+l.S)*SS*GAM/ 

1(UL(I)*UL(2»**EB 
VM(4'= -ER*(UM(I)+UMC2» 
VT(4)= -E8*(UT(I)+UT(2)' 
ROU= UL(4)*HZO**UM(4'*BZO**UT(4) 
VL(S)= C2.**0.1667*UL(3)*VL(4')/Cl1.6*Cl.1667-ROU'*C2.*DIA'**Cl.16 

167-ROU) ) 
V~(5)= UM(3)+VM(4)+ 1.1667-ROU 
VT(S): UT(3) + VT(4) 
VL(6)= -(2.**0.1667*UL(3)*VL(4»/Cll.6*(1.1667-ROU)' 
VM(6)= UM(3)+VM(4) 
VT(6)= VTeS) 
VL(7)= VL(4)/Cl1.6*(1.-ROU)*(GRAV*ULC1)*Ul(Z»**0.5*C2.*DIA)** 

1(1.-ROU» 
VM(T)= -0.S*CUM(I)+UM(Z»+YMC4)+1.-ROU 
VT(T)= -0.5*CUT(1)+UT(Z»+VT(4) 
Yl(8): -VL(4)/(11.6*(I.-ROU)*CGRAV*ULC1)*UL(Z»**0.S) 
YM(8): -0.5*(UM(1)+UM(Z» + YM(4) 
VTCR)= VT(7) 
RETURN 
END 
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SUBROUTINE COEFfHZ,Z,RZ,EQ, 
COMMON/AI GRAVtGAMtSS 
COMMON/BI POR,OIA.CKtCA.CB.VNU,WL,BR,MP 
COMMON/CI DEL 
COMMON/OI RlENGTH,Nl.OX,NX,TTI~E.NT.DT.NZ 
COMMON/VAI X(151),8Zpe151).ZREF(lSl),ZPlOT(lSl) 
COMMON/vel UL(4),UMe4)tUTC4).VLeS),VM(S,.VT(S) 
COMMON/VOI ASelSO),BSe150).CSC150),DSClSO).ESC150),FS(}SO),GSClSO' 

1,HS(lSO),QSClSO).RSClSO) 
DIMENSION HZel).zel).BZ(l) 
CAll VlMTeHZel).BZ(l» 
VL4L= VL(4) S VM4L= VM(4) S VT4L= VT(4) 
VLSL= VLCS) S VM5L= VMCS) S VT5L= VTes, 
Vl6L= Vl(6) S VM6L= V~(6) $ VT6l= VT(6) 
VL1L= VLe1' S VM1L= VM(1) S VT1L= VT(1) 
VL8l= VL(8) S VMSL= VM(8) S VT8l= VT(8) 
~2L= Ul(2) *UM(2' *HZ(I)**CUM(2)-1.)*~Z(1)**UTe2' 
~4L= VL4L*VM4L*~Z(1)**(VM4L-l.)*ijZ(1)**VT4L 
HSL= VlSL*VM5l*Hzel)**(VM5L-l.'*SZ(l'**VT5L 
H6L= YL6L*VM6l*Hzel)**eVM6L-l.'*Rzel'**VT6l 
~1L= VL1L*VM1l*Hzel)**eVM1L-l.)*ezel,**VT1L 
~8L= VL8L*VM8l*Hzel,**eVM8L-l.'*8zel'**VT8L 
FRL= EQ/eBzel,*eGRAV*Hzel,**3.'**O.S, 
ZRL= ULe4'*Hzel)**UMe4)*Rzel,**UT(4) 
DlSl= UM(4'*VLSl*ZRL*(CI.1661-ZRL)*ALOG(2.*DIA'+1.'/eHzel,*e1.166 

11-ZRL» 
OL6l= UM(4)*VL6l*ZRl/eHzel,*el.1661-ZRl" 
Ol1l= UMe4'*VL1L*ZRl*(Cl.OOOO-ZRL )*ALOGe2.*DIA'+I.'/(HZC1'*Cl.000 

10-ZRl') 
Ol8L= UM(4)*VL8L*ZRL/eHZ(1)*Cl.0000-ZRL') 
XISl=DLSL*HZ(l)**VMSL*BZe},**VTSL 
XI6l=OL6L*HZC1'**VM6L*BZ(}'**VT6L 
XT1L=OL1l*HZ(}'*·VM1L*BZCl'*·VT1L 
XI8l=OL8L*Hzel'**VM8L*Bzel)*·VT8l 
XL2L= ULe?)*HZ(1'**UM(2)*SZ(1)**UT(2' 
XL4l= Vl4l*HZCl'·*VM4l*8Zcl'·*VT4l 
XL5l= Vl5l*Hzel,**VMSl*Bzel)··VTSl 
Xl6l= Vl6L*HZCl'··VM6l*aZCl)·*VT6l 
DM5l= -UMC4,*ZRl/Hzel) 
DM1l= DMsl 
XJ5L= DM5l*Rzel)**VT5L*VL5l*HZ(1)**VMSL*ALOGeHZel,) 
XJ7L= DM1L*Bzel'**VT1L*VL1l*HZCl,**VM1L*Al06eHZel» 
XK4L= Xl4l*CVT4L+l.' 
XK5L= XLSL*CVTSL+l.) 
XK6L= XL6L*eVT6L+l.) 

10 CONTINUE 
PI= H1L+H8L+XI1L+XI8L+XJ1L 
P2= H4L+H5L+H6L+XISL+XI6l+XJSL 
Pl= el.-POR).SS.GAM 
ps= 1.-FRl*FRL 
P6= H2L 
P8= Pl*P5-PI 
CNF= -P2/P8 
WRITE(6.100) Pl,P2,P3.PS,P6,CNF 
no 20 J=I,Nl 
CALL VLMTeHZeJ+l),8ZeJ+l» 
HZ = lJL(2)*UM(Z)*HZCJ+l)··CUMeZ)-1.)·BZCJ+l)·*UTCZ) 
H4 = VLC4'*VM(4)*HZ(J+l)··CVM(4)-1.'·8Z(J+l)·*VT(4' 
H5 = VL(S).VM(S).HZ(J+l)··CVM(S)-l.'*BZCJ+l)**VT(S) 
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H6 = VL(6)*VM(6)*HZ(J+l)**(VM(6)-1.)*8ZCJ+l)**VT(6) 
H7 = VLC7'*VM(7)*HZCJ+l)**(VM(7)-1.)*BZeJ+l)**VTC7) 
H8 = VL(SI*VMeS'*HZeJ+l,**eVMCS)-1.)*AZ(J+l'**VT(8) 
FR= EQ/(8Z(j+1)*(GRAV*HZ(j+l,**3.)**O.S) 
7R = Ul.(4)*HZeJ+l)**UM(4)*RZej+1)**UT(4) 
OL5= UM(4)*Vl(S)*ZR*«1.1667-ZR)*ALOS(2.*OIA)+I.)/eHZeJ+l)*el.166 

17-ZR» 
OL6= UMe4'*VL(6)*ZR/CHZ(J+l,*(1.1667-ZR» 
Ol7= U~(4)*Vle7)*ZR*Cel.OOOO-ZR)*ALOGe2.*OIA)+1.)/(HleJ+l)*(1.000 

10-ZR» 
OL8= lJM(4)*VLe8)*ZR/eHZ(J+l)*(1.OOOO-ZR» 
XIS= OL5*HZ(J+l)**V~(5'*RZ(J+l)**vTeS) 
XI6= OL6*HZ(J+l)**VM(6)*~Zej+l)**VT(6) 
XI1= Ol7*HZ(J+l)**V~(7)*HZeJ+l)**VTe7) 
XI8= Ol8*HZeJ+l)**VM(8l*RZeJ+l)**VTCS) 
XL2= UL(2)*HZeJ+l)**UMeZ)*8Z(J+l)**UTC2) 
XL4= VLe4'*HZ(J+})**VM(4)*BZ(J+l)**VT(4) 
XLS= VL(S)*HZ(J+l)**VM(S)*RZeJ+l)**VT(S) 
XL6= Vl(6)*HZ(J+l)**VM(6)*~Z(J+l)**vTe6) 
OMS= -UM(4'*ZR/HZ(J+l) 
D~7= OMS 
XjS= DM5*BZ(J+l)**VT(S)*VL(S)*HZ(j+l)**VMe;)*ALOGeHZ(J+l» 
XJ7= DMS*BZeJ+l)**VTel)*VL(7)*HZ(J+l)**VMC7)*ALOG(HZ(J+l)' 
XK4= XL4*(VT(4)+1.) 
XK5= XLS*eVT(S)+l.) 
XK6= XL6*(VT(6)+1.) 
AS(J)= -CH4L+HSL+H6l+XISl+XI6L+XJSL)*DEL/OX 

1 +( H1L+HSL+XI7l+xIBL+Xj1L)*0.S/DT 
2 +(BlP(J)/BZeJ»*(H4L+HSL+H6L+XI5L+XI6L+XJSL)*OEL/Z. 
RS(J)= +eH4+HS+H6+XIS+XI6+XJS)*OfL/DX 

1 +( H7+H8+XI7+XI8+XJ7)*O.5/DT 
Z +(8ZP(j+})/BZ(j+l»*eH4+HS+H6+XIS+XI6+XjS'*OEL/Z. 

TEM=0.5*(1.-POR)*SS*GAM/OT 
CSeJ)= TEM - ASeJ) 
DSeJ)= TEM - AS(J) 
QS(J)= -(XL4 +XLS +XL6 )/OX 

1 +exL4L+xL5L+XL6L'/OX 
ESCJ)= -Cl.-FRL**2.)*DEL/OX + HZL*OEL/Z. 
FS(J)= +(l.-FR**Z.)*OEL/OX + HZ *OEL/Z. 
GS(J)= +(O.-FRL**Z.)*OEL/OX - HZL*OEL/Z. 
HSeJ)= +CO.+FR **2.)*OEL/OX - HZ*DEL/Z. 
RSeJ)= -CFR**Z.*HZ(J+l,-FRL**2.*HZeJ»/(Z.*OX) 

1 -CHZeJ+l)+ZeJ+l)-HZeJJ-ZeJ»/OX 
Z -eXL2+xL2L)/Z. 

HZL=H? $ 
H4L=H4 $ ZRL= ZR S 
HSL=H5 S DLSL=OL5 S 
H6L=H6 S DL6L=OL6 $ 
H7L=H7 , OL7L=OL7 , 
HSL=HS , OL8L=OLS , 
XK4L= JK4 
XKSL= XKS 
XK6L= XK6 

20 CONTINUE 

FRL= FR 
XI5L=XIS 
XI6L=XI6 
XY7L=XI1 
XI8L=XI8 

100 FORMATe/* PARAMETER P1= 
1 * PARAMETER PZ= 
2 * PARAMETER P3= 
3 * PARAMETER P5= 
4 * PARAMETER P6= 

XL2L=XLZ 
, XL4L=XL4 
S XL5L=XLS S OMSL=DM5 S XJSL=XJS 
$ XL6L=XL6 
$ 

*E1S.81 
*E1S.81 
*E15.S1 
*E15.81 
*E1S.SI 

OM7l=DM7 S XJ7L=XJ7 
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S * BED ~AYE CELERITY= 
RETURN 
END 

SUBROUTINE DSWP(HlA.Hl80.lU,VD,N,DY,Dl) 
COMMON/DI RLENGTH.NL.DX,NX,TTIME.NT,DT,Nl 
COM~ON/HI INDU 
COMMON/VOI AS(150).BSeI50).CSeI50),OS(150)'ES(lSO',F~(lSO),GS(150' 

1.HS(150),QSCI50).RS(150) 
DIMENSION 5S(151).T5(151).U5(151) 
OIMEN~ION ZU(I),VDel),DYel),DZ(I) 
IF (INDU.EQ.2)GO TO 10 
T5(1)= HZ8-HlBO 
S5(1)= 1. 
GO TO 20 

10 CONTINUE 
OZ(l)= ZU(N+l)-ZU(N) 
55(1)= 1000000. 
TS(I)= -S5(1)*DZ(I) 

20 CO~TINUE 
00 30 J=2,NX 
U5eJ)= (E5(J-l)*5S(J-l)+GSCJ-l»/(AS(J-l)*SS(J-l)+CSeJ-l» 
TS(J)= CCRSCJ-l)-ESeJ-l)*TSCJ-l»-USeJ)*(QSeJ-l)-ASeJ-l)*TSeJ-I'» 

l/eFSeJ-l)-U5eJ)*BSeJ-l» 
SSeJ)=-fHS'J-l'-USeJ)*OS'J-l)'/(FS'J-l'-USeJ)*SSeJ-l») 

30 CONTINUE 
OY(~X)= YOeN+l)-YOeN) 
OZCNX): COY(NX)-TSCNX»/SSCNX) 
no 70 J=2.NX 
K= NX-J+l 
DZCK): CCQS(K'-ASeK)*TS(K»-(8S(K)*DY(K+l)+DS(k)·OZ(K+l»)/CASeK). 

lSSCK)+CS(K» 
DYCK)= SS(K'*DZ(K'+ TSeK) 

10 CONTINUE 
RETURN 
END 
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SURROUTINE HZUPCHZB,8Z,GSR,N,EQ) 
COMMON/AI GRAV.GAM,SS 
COMh10N/CI DEL 
COM~ON/FI FRMIN.FRMAX 
CO~MON/VCI UL(4).UMC4),UT(4).VLCS),VM(S).VT(8) 
DIMENSION 8Z(}),GSB(1) 
HZ~IN= CEQ/C8Z(1)*FPMAX*GRAV**O.5»**C2./3.) 
HZMAX= CEQ/CBZ(1)*FRMIN*GRAV**0.5»**(2./3.) 
CALL VLMT(HZMIN.BZ(l» 
CALL GT(HZMIN,8ZC1),GSBMAX) 
CALL VLMTCHZMAX,BZCl» 
CALL GTeHZMAx.BZCl).GSB~IN) 
KOUNT=O 
Hl= ALOGCHZMAX) 
H2= AtOGCHZMIN) 
Gl= AlOGCGSBMIN) 
62= ALOGCGSBMAX) 
63= ALOGCGSBCN+l» 
TOL= 0.000001*G3 
TOl= ABSCTOL) 

900 FORMATC2C6E15.8/» 
901 FORMATCI0X,E15.8) 

10 KOUNT= KOUNT+l 
IFCKOUNT.EQ.20) GO TO 40 
H3TRY= HI-CHI-H2)*CG3-Gl)/CG2-Gl) 
H3TRY= EXPCH3TRY) 
CALL VlMTeH3TRy.BZC}» 
CALL GTCH3TRY,BZel),G3TRY) 
G3TRY= AlOGCG3TRY) 
TEMP= G3-63TRY 
IFeARSeTEMP).LT.TOL) GO TO 40 
tFeTEMP.lT.O) GO TO 20 
Hl= ALOGCH3TRY) 
t;1= G3TRY 
GO TO 30 

20 CONTINUE 
H?= ALOGCH3TRY) 
G2= G3TRY 

30 CONTINUE 
GO TO 10 

40 CONTINUE 
HZg= H3TRY 

45 WRITEe6,100) KOUNT 
50 CONTINUE 

100 FORMAT(/* NUMBER OF ITERATIONS IN SUBROUTINE HZUP- *12/) 
RETURN 
END 
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SURROUTINE MOMENT 
COM~ON/8/ POR,OIA.CK,CA,CB,VNU.WL.BR,MP 
COMMON/OJ RLENGTH.NL.DX,NX,TTIME.NT.OT.NZ 
CO~MON/VA/ X(151).RZPC151),ZREFelSl).ZPLOT(151' 
DIMENSION XME(151,.Z~eI51) 
BR: 0.01 
MP=5 
N= 0 
00 10 J= 1.NX 
ZPLOT(J)= ZPLOTeJ) - AR 
IFeZPLOT(J).LE.O.) GO TO 10 
H= H+l 
XME(N)= XeJ) 
ZMCN'= ZPLOTeJ' + RR 

10 CONTINUE 
IFCN.LE.MP) RETURN 
SUMA= O. 
SUMB= o. 
00 20 J= I.N 
SUMA= SUMA + XMEeJ)*ZMeJ) 
SUMA= SUMB + ZMeJ) 

20 CONTI~IUE 
XMN= SUMA/SUMB 
NH= N-l 
00 30 J= I.NN 
CC= Z~UJ+l' 
(\O= ZMeJ' 
IFCCC.LT.OD) GO TO 40 

30 CONTINUE 
40 1"0= DO 

XMO= XMECJ) 
S50= o. 
SSK= O. 
SKU= o. 
DO 50 J= I.N 
UU= XMECJ'-XMN 
sso= SSO + UU**2*ZMeJ'/SUMB 
SSK: SSK + UU**3*ZMeJ)/SUMB 
SKU= SKU + UU**4*ZMeJ,/SUM8 

50 CONTINUE 
SO= SQRTCSSO) 
CV= SO/XMN 
St(C= SSK/SD*-3 
CKU= SKU/SO*-4 
PRINT 100, XMO.ZMO.XMN.SO.CV.SKC.CKU 

100 FORMAT (lX,*XMODE=*.Ell.4,10X,*ZMOOE=*.Ell.4.10x.*XMEAN=*.Ell.4.10 
IX.-STANO.OEV.=*,El1.4./,IX,*COEFF.VAR.=*.EI1.4.10X.*SKEW.COEFF •• *. 
2El1.4,10X,*KURTOSIS COEFF.=*.fl1.4) 
RETUR~J 

END 
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SUBROUTINE TEST2(A,R.Al,Bl,AZ,B2,C,D,E,F,G.H,8Z,8ZP) 
COMMON/CI DEL 
COMMON/DI RLENGTH.NL,DX,NX,TTIME,NT.DT,NZ 
DIMENSION Ael).8e1).A1(1).Ble1),AZel).BZel).Cel).DCl),E(1).Fel). 

16(1) ,HCI) 
DI~ENSION BZ(1).8Zpel) 
S~= O. 
SU= O. 
XL= NL 
PRINT 200 
00 10 J= 1,NL 
P= DEL/DX*eAeJ+I'-A(J)'+(1.-DEl)/DX*eReJ+1)·geJ» 
PI: OEL/OX*(AleJ+l)-AleJ»+(l.-OEL)/DX*eBleJ+l)-BleJ» 
P2: 0.5/0T*eA2eJ+l)+A2eJ)-B2eJ+l)-82(J» 
Q= 0.5/DT*CCeJ+l)+CeJ)-OeJ+1)-OCJ» 
PJ= P+Pl+P2 
P4: OEL/2.*C8ZpeJ+l)/BZeJ+l)*AeJ+I)+BZpeJ)/BZeJ).ACJ»+Cl.-OEL)/2. 

1*CBZpeJ+l)/9ZeJ+1)*SCJ+l'+8ZpeJ'/RZeJ)·B'J» 
P5= OfL/2 •• e8ZpeJ+l)/RZeJ+I)*AlCJ+1)+8ZPCJ)/8ZCJ)*A1CJ»+'I.-OEL)I 

12.*'8ZPCJ+l)/BZCJ+1)*Bl'J+l)+BZpeJ)/BZ'J)*81eJ» 
P6= P4+PS 
R= PJ+Q+P4+PS 
SR= SP + R.R 
S= OEl/DX*'E'J+I)-E'J)+Cl.-OEL)/OX*CFCJ+I)·FeJ» 
T= OEL/2 •• 'GCJ+l)+GCJ»+Cl.-OEL)/2.*CHCJ+l)+HeJ» 
u= C;+T 
SU: SU + U.U 
PRINT 100,J.P,PI.P2,Q,P6.R,S.T,U 

10 CONTINUE 
V= SQRT(SR/XL) 
W= SQRTeSU/XL) 
PRINT 120, V,., 

100 FORMATCII0.9EIJ.6) 
120 FORMAT(20X,*ROOT MEAN SQUARE*.31X.E15.6.24X.E1S.6/) 
200 FORMAT(II* J 01 02 OJ n 

14 05 ES D6 01 EM 
2*/) 

RETURN 
END 
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