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ABSTRACT 

 
 

ABOVEGROUND WOODY BIOMASS ESTIMATION OF GREEN ASH TREES 

(FRAXINUS PENNSYLVANICA MARSH.) ALONG COLORADO’S NORTHERN FRONT 

RANGE IN RESPONSE TO THE INVASIVE EMERALD ASH BORER (AGRILUS 

PLANIPENNIS FAIRMAIRE) 

 
 

The invasive emerald ash borer (Agrilus planipennis Fairmaire) has killed hundreds 

of millions of ash trees (Fraxinus spp.) in forests and urban areas across the United States. 

Green ash (Fraxinus pennsylvanica Marsh.) is the most widely planted street tree in the 

greater Denver Metro Area, comprising 15% of the urban tree population on a per-stem 

basis, and up to 33% of the canopy cover in some cities. EAB is currently established in 

Boulder, Colorado and as the infestation progresses along the Colorado Northern Front 

Range, municipalities will need to predict and budget for woody debris disposal from EAB-

killed trees. Though existing green ash biomass predictive equations exist, most were 

developed for areas outside the arid West and generally represent only trees in natural 

forests, with full, healthy crowns. This study aimed to test whether these equations can 

accurately predict aboveground woody biomass of green ash trees removed as part of 

emerald ash borer mitigation efforts in urban areas of Colorado’s Northern Front Range.  

Data from 42 destructively sampled ash trees removed from 11 sites as part of 

emerald ash borer mitigation efforts were used to evaluate the predictive capability of 12 

forest-derived and five urban green ash biomass equations. The published urban equations 

underpredicted total sampled biomass by as much as 38% and overpredicted by as much as 

47%. Forest-derived equations underpredicted by as much as 57% and overpredicted up to 

52%. A local, published equation developed in the Northern Front Range overpredicted 
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biomass by 47%. This local urban equation was developed using only open-grown trees with 

full, healthy crowns while the trees sampled for this study exhibited a broad spectrum of 

crown conditions, better representing trees that will routinely be removed as part of 

emerald ash borer management strategies. Sampled trees were also used to develop new 

local green ash biomass equations, more appropriate for use in emerald ash borer 

management strategies in Colorado’s Northern Front Range cities. In addition, the locally-

derived average specific gravity value for green ash wood was 0.57, and the locally-derived 

average moisture content value was 41%. These are 7.5% higher and 24% lower 

respectively than widely-used published values. The locally-derived values can be used to 

further improve the accuracy of urban forest mensuration efforts in Colorado’s Northern 

Front Range.  
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1. INTRODUCTION 
 
 
 

Since its discovery in Detroit, MI in 2002, the emerald ash borer (EAB) (Agrilus 

planipennis Fairmaire) has caused the death of hundreds of millions of ash trees (Fraxinus 

spp.) in the U.S. and is considered to be the most destructive and costly invasive forest pest 

in U.S. history (Herms and McCullough, 2012). Sydnor et al. (2009) estimate that treating 

or removing 50% of the ash trees in urban areas in the U.S. will cost approximately $10.5 

billion by 2019. This number does not include suburban areas, which are also often heavily 

planted with ash. Another important cost to municipalities and landowners is wood 

disposal. Trees that are either killed by EAB outright or are preemptively removed are 

often chipped into mulch or disposed of in regulated landfill sites inside federal quarantine 

areas. The resulting volume of mulch from routine forestry operations, let alone mulch 

produced during peak EAB infestation, is often more than can be utilized by a municipality, 

and cities often pay to have mulch hauled away at considerable expense (Tom Wells and 

Kathleen Alexander, pers. comm.). Trees killed by EAB have generated an unprecedented 

amount of wood waste in states where the insect has become established, resulting in 

storage and disposal issues for those cities. 

At the time of writing, Colorado is the westernmost state in which EAB has been 

detected, having been discovered in Boulder in September of 2013. Ash has been widely 

planted in many of Colorado’s communities due to its suitability as a street tree and its 

adaptability and ability to cope with Colorado’s changeable climatic conditions. Green ash 

is the most widely planted street tree in the Denver Metro Area of the Northern Front 

Range, and many Colorado communities’ urban forests are comprised of 15-20% ash on a 

per-stem basis, with percentages in individual neighborhoods of up to 70-80%. According to 

a recent i-Tree Eco study (i-Tree Eco v6.0, www.itreetools.org) performed by Davey 
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Resource Group in Fort Collins, CO, ash trees constitute 33% of the city’s canopy cover 

(Ralph Zentz, pers. comm.), suggesting that ash contribute even more to the urban canopy 

than previously thought (a 2013 canopy assessment of the Denver Metro Area estimated 

ash populations on a per-stem basis), especially in cities that have many older, large 

diameter ash trees. 

The cost of EAB management in the Denver Metro Area could be devastating to 

many cities’ budgets and will overwhelm forestry operations. The City of Denver has 

estimated removal costs of $432 million (Wood, 2014). Additional economic losses associated 

with lost environmental services provided by the ash canopy in the Denver Metro Area, 

such as property value increases, stormwater mitigation, and air temperature reductions, 

could be as high as $82 million (Colorado State Forest Service, 2015; McPherson et al., 

2013). Experience from other states managing EAB infestations has shown that the best 

way to avoid this is prior planning for the arrival of EAB by creating a comprehensive 

management plan that includes treatments to slow tree mortality so a controlled removal 

schedule can be implemented. Even with treatments, removals can quickly become 

unmanageable once EAB populations peak in an area, which has been estimated to occur 

around eight years after the initial arrival of the insect. Boulder is already experiencing 

this phenomenon in most areas throughout the city. Once this point is reached, wood 

volumes can become overwhelming as most cities do not have large sort yards able to 

handle the rate at which trees must be removed during peak infestations.  

The Colorado Department of Agriculture’s Emerald Ash Borer Response Team has 

stated that comprehensive management plans including a wood utilization plan should be 

in place before the arrival of the insect (Colorado Department of Agriculture, 2014). The 

first step to understanding the potential impact of EAB in a community is a complete 

inventory of ash trees. Most cities do not include privately owned trees in municipal 
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inventories, but urban foresters have long used rule-of-thumb of 10:1 private to public 

trees. Inventories including routine measurements such as tree height and diameter at 

breast height (DBH, 1.37m) can be used to estimate biomass and give resource managers a 

better understanding of the amount of ash material produced from EAB-killed and 

preemptively removed trees. McHale et al. (2009) produced biomass equations for 10 

commonly planted tree species in the Fort Collins area, including green ash; however, these 

equations used LiDAR measurements to predict tree volume, and estimates were not 

verified using harvested trees due to the difficulty in destructively sampling and weighing 

trees.  

There are several real and perceived barriers to the utilization of urban wood, 

including logistical (transportation, lack of sort yards), financial (economics of processing 

urban logs for solid sawn timber products), unknown resource quantity (lack of complete 

inventories, and lack of knowledge of number of trees on private property), and marketing 

(perception of urban wood as low-value and lack of existing supply chain networks and 

markets). Some states have created successful urban wood utilization programs even prior 

to the arrival of EAB (Bratkovich, 2001), and several books and other resources that 

promote the utilization of wood from urban areas exist to help promote putting trees 

removed from urban forests to their highest value use rather than simply mulching the 

material or directing it to landfills (Brashaw et al., 2012; Solid Waste Association of North 

America, 2002). 

To overcome these issues, more needs to be known about the quantity and quality of 

the ash resource across urban landscapes. While biomass equations exist for ash trees, they 

have often been developed for traditional forestry settings, and do not address the 

differences that exist between forest trees and urban trees (McHale et al., 2009). 
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Furthermore, the accuracy of biomass equations has been shown to be location specific 

(Pillsbury et al., 1998). 

This thesis provides urban forest managers in Colorado’s Northern Front Range 

with a way to predict the amount of ash wood produced from trees preemptively removed as 

part of an EAB management strategy or from trees that are removed as they become 

infested with EAB. This was achieved by developing an equation to accurately predict 

aboveground woody biomass for green ash trees growing in Northern Colorado’s urban 

forests. It is the intention that the equation will be incorporated into the Colorado Tree 

Coalition’s inventory and EAB cost calculator tool, CO-TreeView (https://cotreeview.com, 

n.d.). Municipal forest managers will have the ability to identify ash trees scheduled for 

removal from inventory data. The EAB tool will calculate a biomass quantity that can be 

used in debris disposal estimates. A specific gravity and moisture content value for this 

area is also of interest as these can further assist urban foresters, researchers and others 

interested in making accurate biomass estimations. 

The objectives of this study were to determine: 1) whether locally developed, species-

specific biomass equations outperform equations developed for areas outside of Colorado’s 

Northern Front Range; 2) the best predictive equation for above-ground woody biomass of 

green ash trees for emerald ash borer management activities in urban areas of Colorado’s 

Northern Front Range; and 3) whether the average wood specific gravity and moisture 

content of urban ash trees along Colorado’s Northern Front Range differed from published 

values. 

These findings will assist urban forest managers in Colorado’s Northern Front 

Range in making management decisions regarding ash trees in response to the recent 

discovery of emerald ash borer in Colorado. Data and tools generated from this study can be 
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used in conjunction with municipal tree inventories to predict the amount of wood waste 

from EAB-killed trees in Northern Front Range urban areas. 
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2. LITERATURE REVIEW 
 
 
 

2.1 Emerald ash borer and the issue of wood disposal 

The emerald ash borer (Agrilus planipennis Fairmaire, EAB) presents an 

unprecedented management challenge to urban foresters and other resource managers in 

the municipalities in which it has become established. Ash trees in the U.S. have no natural 

resistance to this pest, and EAB has no effective natural enemies outside of its native 

range. Mortality rates exceeded 99% for untreated trees 8 years after its detection at the 

original infestation epicenter in Michigan (Herms and McCullough, 2014). While effective 

treatments exist, not every ash tree is a good candidate for treatment because insecticides 

used to control EAB are systemic, therefore requiring that the tree’s vasculature is 

uncompromised by previous injuries. Such pre-existing injuries (resulting from abiotic and 

biotic issues) are commonly found in ash trees in urban areas (Cranshaw, 2017; Jesse et al., 

2011).  

This invasive insect has been difficult to detect in Colorado since many of the 

symptoms produced by EAB-infested trees are also caused by Colorado’s often harsh 

climactic conditions, such as drought, unseasonable snowstorms and freezes, and other 

insect and disease problems. Many municipalities and other organizations managing ash 

trees have moved away from detection activities and instead are primarily focused on 

management activities, including conducting ash inventories, initiating treatment, and 

preemptive removal of ash trees with small diameter, trees in poor health, or trees in 

undesirable planting locations. To date, Colorado communities have removed over 5,000 ash 

trees as the result of EAB management activities (Keith Wood, pers. comm.). 

All too often the issue of wood disposal resulting from large numbers of trees killed 

by EAB is a low priority until the problem is present and the need to find solutions becomes 
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urgent. Many resources exist to aid municipalities in planning for the logistics of wood 

disposal (e.g., the Ash Utilization Options Project developed by the Southeast Michigan 

Resource Conservation and Development Council, Southeast Michigan RC&D, 2007), but 

the costs associated with disposal are not well documented. Several estimates for costs 

resulting from EAB infestations are available in the literature, but none specifically 

address wood disposal (Table 2-1 ). The insect has now spread to over 30 states and has 

killed hundreds of millions of ash trees. A means of predicting the amount of ash wood 

waste for budgetary and utilization purposes is therefore of great need and value to urban 

forest managers. 

2.2 Biomass equations: Their uses and challenges 

Allometric equations in forestry relate measurements of one or more tree 

characteristics to another. In this way, an easy-to-measure characteristic, such as diameter 

at breast height, can be used to estimate whole tree volume or the volume of tree 

components. Biomass estimates can then be extrapolated to different spatial scales (e.g., 

locally, regionally, nationally or continental) with volume-to-mass conversions using a 

species-specific wood density value (Asner et al., 2009; Chave et al., 2014; Dubayah et al., 

2010; Pan et al., 2011). Equation development entails sampling the population of one or 

more species of interest and developing an equation representative of the entire population 

(Brand and Smith, 1985). Destructive sampling and weighing of whole trees is preferred 

since this is a direct measurement, but this method is often cost- and labor-prohibitive 

(Ketterings et al., 2001). Tree biomass equations were traditionally used for commercial 

forest management purposes, such as estimating the amount of merchantable timber in 

forest stands (e.g. Schlaegel, 1984), estimating the impacts of various forest management 

activities (e.g., Sollins and Anderson, 1971), to better understand nutrient cycling and other 

biological processes (e.g., Bunce, 1968), and estimating woody biomass stocks for use in 
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bioenergy applications (e.g., Milbrandt, 2005). Biomass estimates are increasingly used for 

urban forest valuation and in carbon accounting to support climate change initiatives. The 

latter has resulted in numerous studies of forest structure and function, primarily in 

tropical areas (e.g. Banin et al., 2012; Chave et al., 2014; Chave et al., 2005; Chave et al., 

2004; Ngomanda, 2014), but also Canada (Pasher et al., 2014), China (Fang et al., 2001), 

and other places. The U.S. Forest Service Forest Inventory and Analysis (FIA) Program 

provides comprehensive inventory data on U.S. forests. These data have been used for 

numerous analyses relating to forest structure and function including carbon accounting in 

U.S. forests (Brown, 2002; Houghton, 2005), and in worldwide carbon stock estimates (Pan 

et al., 2011), land cover and land use change (Homer et al., 2015; Lawler, 2014; McGarigal 

et al. 1995), the effects of disturbance (Asner et al., 2016, Cohen et al., 2016, Kurz et al. 

2008), and developing biomass equations (Jenkins et al., 2003; Chojnacky et al., 2014).  

Similarly, biomass equations have been used to study urban tree ecosystem services 

in the United States and elsewhere (e.g. McPherson et al. 2016, Roy 2012, Nowak et al. 

2013). Applications include using allometric equations to predict various attributes of tree 

growth to assist with urban planning and management functions (for example, planning 

tree placement to avoid conflicts with structures and utilities based on estimated mature 

crown spread) (Peper et al. 2014, Pretzsch et al. 2015, Dahlhausen et al. 2016), and 

improving risk assessment related to tree failure by predicting biometric variables (Rust 

2014).  

Though there have been many studies related to allometry and biomass estimation, 

there are still many sources of uncertainty in developing accurate predictive equations. The 

challenges associated with the development and use of biomass equations are outlined 

subsequently. 
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Table 2-1 Summary of literature sources that provide tree removal costs related to EAB infestation. 
Literature source Management activity Source of estimate Estimated cost Disposal costs1 Study area 
Hauer and Peterson 
2017 

Tree and stump removal Survey of 1723 communities in 
50 US states 

Tree and stump removal costs 
increased from 20% of total 
urban forestry budgets prior to 
EAB infestation to 38.1% after 
infestation 

N/A Survey of 1723 US 
communities 

Kovacs et al. 2011 Tree removal and replacement Kovacs 2010 $800/tree residential and non-
residential; $600 parks 

N/A Twin Cities Metropolitan 
Area, MN 

Kovacs et al. 2010 Tree removal Purdue EAB Cost Calculator $850 - $2400/tree homeowner2 

$150 - $1200/tree public 
N/A 25-state region centered on 

Detroit, MI 
McCullough and 
Mercader 2012 

Tree removal and replacement 2010 cost estimates from 
arborists or urban foresters in 
six Midwestern cities 

$888 ± 54/tree Included in 
removal/replacement 
estimate 

Simulated environment/ 
Midwestern US 

McKenney et al. 2012 Community overhead costs 
(also includes managing the 
response, communication and 
monitoring activities) 

City foresters in study area CAD $0.40/year for the duration 
of an outbreak (USD $0.42) 

Included in community 
overhead costs 

641 urban areas (pop. ≥ 
1000) in eastern and western 
Canada 

McKenney and Pedlar 
2012 

Tree removal City foresters and tree removal 
companies in study area 

CAD $16 - $20/cm DBH3 

(USD $16.78 - $20.97) 
N/A Canada 

Sadof 2017 Tree removal and stump 
grinding 

City of Indianapolis, IN 2014 $14.00 - $36.00/cm DBH4 N/A Indianapolis, IN 

Sydnor et al. 2011 Tree removal – stump removal 
dep. on site: street and private 
yes, park no 

Based on survey responses of 
commercial arborists 

$413/tree private or street 
$331/tree park 

N/A Four-state area, including 
IL, IN, MI, WI 

Sydnor et al. 2007 Tree removal (stump removal 
dep. on site: street and private 
yes, park no) 

Based on survey responses of 
commercial arborists 

$675/tree private or street 
$600/tree park 

N/A State of Ohio 

VanNatta 2012 Tree removal Based on MacPherson 2005, 
which includes removal and 
disposal 

$10/in DBH Included in removal 
estimate 

University of Wisconsin, 
Stevens Point campus 

EAB Cost calculators      
Hauer 2012 
EAB Planning 
Simulator 
(EAB-PLANS) 

Tree removal User specified User specified Does not include 
functionality to specify wood 
waste disposal 

 

Sadof 2016 
EAB Cost Calculator 

Tree removal User specified User specified Does not include 
functionality to specify wood 
waste disposal 

Model assumptions validated 
using EAB experience from 
cities in Indiana 

1 A value of N/A indicates disposal costs were not specified, so it is unclear whether they are included in the cost of removal and/or replacement. 
2 Estimates for trees 2.5 cm to >61 cm DBH. 
3 Estimates for trees <20 cm to >40 cm DBH. 
4 Estimates for trees 3 to >91 cm DBH. 
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2.3 The ambiguous origins of biomass equations  

A large body of literature exists for development and use of tree allometric and 

biomass equations. Most U.S.-derived information for calculating wood volume and biomass 

relies on literature-based volume tables and specific gravity measurements developed 

decades ago, primarily for forests in eastern or Midwestern states (e.g., the publication by 

Clark et al. (1985) for the Gulf and Atlantic coastal plains is the green ash reference used 

by Jenkins et al., 2003, which is in turn used by the FIA Program for green ash across the 

U.S.). Newer references for wood characteristics simply aggregate a wide array of published 

values and report them in a compendium (e.g., Alden, 1995; Miles and Smith, 2009). 

Likewise, biomass and volume equations may also be aggregated for a single or for multiple 

species (e.g., Ter-Mikaelian and Korzukhin, 1997), leaving the practitioner unsure which to 

use for a given purpose. 

More place-based research is needed to support studies of climate change impact and 

worsening disturbances causing widespread tree mortality. Many newer studies are forced 

to rely on unsuitable equations due to the lack of more appropriate alternatives (McPherson 

et al., 2005). Uncertainty around the origin of equations, including the conditions under 

which they were developed, can lead to unintentional misuse of the equations and the 

opportunity for error propagation through time. Figure 2-1 and Figure 2-2 illustrate the 

origin of the equations used in the current study. 

2.3.1 Sources of uncertainty and error in biomass equation development 

The process of creating biomass and allometric equations unavoidably includes 

many sources of error. The main sources of error are sampling design, measurements in the 

field, and model development. The uncertainties associated with each are compounded 

throughout the biomass equation development process. Individual biomass studies often 

have limited sampling areas due to the challenging logistics required to sample even a
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Figure 2-1 Biomass equations used to estimate green ash (F. pennsylvanica) and assessed by McHale et al. (2009) along with 
their origins. 
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Figure 2-2 Biomass equations used to estimate green ash (F. pennsylvanica) and assessed 
by Olson (2017) along with their origins. 
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small number of trees, and it is questionable whether samples used in many biomass 

studies are truly random (Chave et al., 2004; Clark and Kellner, 2012; Paul et al., 2016; 

Temesgen et al., 2015). Samples may represent individuals taken from a single stand, or a 

small number of stands, or from an area that is easily accessible. In some cases, trees are 

weighed opportunistically when they are removed for reasons other than for research 

purposes (Lopez-Lopez, 2017; Olson, 2017). Trees of varying sizes, ages, and conditions are 

rarely represented in a single sample (McPherson et al., 2016). Small and large trees are 

often underrepresented (Chave et al., 2014), and there are idiosyncrasies associated with 

each: the amount of variance increases with tree size, and small trees are often inaccurately 

estimated with biomass equations because tree form changes during ontogeny (MacFarlane, 

2015; Troxel et al., 2013). To provide an accurate representation of “average” trees, some 

datasets include only trees with full healthy crowns, leaving trees with less-than-perfect 

crowns underrepresented (Paul et al., 2016). These factors create uncertainty in model 

parameters (Temesgen et al., 2015). 

There is no standard protocol for obtaining field measurements of destructively 

sampled trees (Weiskittel et al., 2015). Different weighing instruments are used, each 

having varying accuracy. Trees may be weighed using hanging scales, ground scales, or 

whole trees may be placed in a truck which is driven over a truck scale. Similarly, height 

measurements may be taken with a plummet, clinometer, a Biltmore stick (sighting), or 

other methods. Sometimes methods differ within a single study (Blood et al., 2015; Pretzsch 

et al., 2015). There are measurement errors associated with laboratory techniques used to 

determine moisture content and specific gravity. In addition, moisture content and specific 

gravity values are commonly based on a small number of samples for practical reasons 

(Paul et al., 2017). This is problematic because moisture content and specific gravity values 
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greatly influence biomass estimation, and each varies throughout the tree (Mate, et al., 

2014; Paul et al., 2016, Weimann and Williamson, 2012).  

There is a tradeoff between simple model forms using easy-to-measure variables and 

including more measurements that may improve model performance. Height is often 

considered an important characteristic to include in biomass predictive equations (Chave et 

al., 2005; Duncanson et al., 2015). However, there is more measurement error associated 

with height than with DBH (Chave, et al., 2004; Ducey, 2012). Error in height 

measurements is introduced when personnel are unfamiliar with measuring equipment 

(Kim, 2016) or simply because measurements are not taken correctly (Arias-Rodil et al., 

2017). The error associated with taking certain measurements can outweigh the predictive 

accuracy achieved by including them (Temesgen et al., 2015; Weiskittel et al., 2015). 

Lastly, there is a considerable amount of error introduced when developing biomass 

estimation models. Chave et al. (2004) found the most important source of error in biomass 

estimation comes from model selection. A thorough exploration of the data should be 

performed, and model diagnostics consulted rather than relying solely on mechanical model 

selection processes or model dredging (Sileshi, 2014). While these processes select the most 

parsimonious form of the model based on specified criteria, such as AIC, these processes 

rely on the correct form of the full model being included in the selection process to begin 

with. 

The combination of these sources of uncertainty can result in grossly erroneous 

biomass estimations. Sileshi (2014), Temesgen et al. (2015), and Weiskittel et al. (2015) 

provide comprehensive summaries of error propagation in biomass equation development. 

2.3.2 Local, regional and species-specific equations 

Many datasets used to develop biomass equations from harvested trees represent 

few individuals of a single species or a limited number of species. It is widely recognized 
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that species-specific, locally developed equations provide the most accurate biomass 

estimates (Basuki et al., 2009; Ngomanda et al., 2014). 

Oftentimes, bias occurs when published equations are applied to areas outside of 

those for which they were developed. Timilsina et al. (2017) found the widely used i-Tree 

Eco model (i-Tree Eco v6.0, www.itreetools.org) developed by the U.S. Forest Service, and 

based on trees sampled in Chicago, Illinois by Nowak (1996), overpredicted leaf area of 

trees in Stevens Point, Wisconsin by 106%‒115%. Similarly, Boukili et al. (2017) found that 

the i-Tree Streets model and the newer U.S. Urban Tree Database (UTD) (McPherson et al., 

2016) equations overpredicted carbon sequestration estimates in Cambridge, 

Massachusetts when compared to empirical measurements combined with the UTD 

equations. McHale et al. (2009) found that the predictive capability of the published 

equations they evaluated was inconsistent, and that depending on the equation source and 

the species to which the equation was applied, published equations underpredicted biomass 

by up to 76% and overpredicted by as much as 205%. The authors stated that some of the 

equations had been applied to trees outside of the diameter range for which they were 

developed, demonstrating that predictive equations become unreliable when applied to 

trees outside of the ranges for which they were developed (McHale et al., 2009).  

There is evidence that biomass equations are highly location specific and it may not 

be appropriate to apply the same model across areas that aren’t relatively close in 

proximity or similar in character to those for which they were developed. Escobedo et al. 

(2012) found that trees sampled in two subtropical forests in Florida yielded different 

carbon storage estimates. Pillsbury et al. (1998) found that no one predictive equation 

developed for each of seven sites across the range of a single species (Lithocarpus 

densiflorus) in the western U.S. accurately predicted biomass at the other sites. These 
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examples demonstrate the need to use caution even when applying intraspecific equations 

to relatively small geographic areas. 

2.3.3 Generalized, mixed species equations 

 Destructively sampling trees and developing species-specific, local equations is time 

consuming, labor intensive, and in many cases infeasible, especially if the trees to be 

measured must represent the average tree form (i.e., healthy trees with full crowns). 

General equations have been proposed by researchers attempting to balance accuracy of 

biomass estimates with the need to obtain suitable estimates within operational 

constraints. Now that more datasets are publicly available, researchers have avoided the 

issue of small sample sizes by fitting new equations to multiple datasets. In this way, many 

individual trees representing one species are used to expand the size range and area 

represented by the equations. 

Jenkins et al. (2003) developed a series of 10 national-scale regression equations 

intended to provide consistent biomass predictions for all tree species found in the U.S. 

Jenkins et al. (2003) used a “modified meta-analysis” method after Pastor et al. (1984), 

which uses predictions (referred to as “pseudodata” by Pastor and others) from all 

discoverable published equations to refit new regression equations. Jenkins et al. (2003) 

grouped species according to taxonomic relatedness and similarities in specific gravity, then 

fit equations for each of these groups. Based on these groupings, green ash was placed in a 

general “mixed hardwood” category representing 289 data points from trees of 13 genera 

and over 20 species. This grouping contained plants ranging in form from small, multi-

stemmed ornamental trees to large-maturing shade trees. Specific gravity values within 

this grouping ranged from 0.32 to 0.64. Pseudodata generated from 40 published equations 

were used to create new regression coefficients relating biomass to diameter at breast 

height. To extend the accuracy of the Jenkins et al. (2003) equations, Chojnacky et al. 
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(2014) provided a set of updated generalized biomass equations using refined taxonomical 

groupings that attempted to place individuals within family groupings. The authors further 

subdivided family groupings with wide ranges in specific gravity. 

Generalized, mixed-species equations were not necessarily intended to replace 

species-specific biomass equations for smaller-scale biomass estimation; however, 

MacFarlane (2015) found generalized multi-species models based on an individual 

components method applied at the stand level produced estimates that were as good as, or 

better than, species-specific models due to intraspecific variability in tree form at a local 

level, especially when a small number of trees are included in a sample. Paul et al. (2016) 

found generalized multi-species biomass equations created for Australian forests 

representing a wide range of ecotypes predicted stand-level biomass with an accuracy of 

99%.  

In contrast, subsequent studies found that wide-scale generalized biomass equations 

produced biased estimates when applied at a finer scale. Zhou and Hemstrom (2009) used 

the Jenkins et al. (2003) equations to provide regional estimates of major softwood species 

in Oregon. This resulted in overpredictions of aboveground biomass by 17%. According to 

Zhou and Hemstrom (2009), local and regional equations are more appropriate when the 

goal is to obtain accurate biomass predictions at smaller scales in forests dominated by a 

few species. The authors recommended against using generalized wide-scale biomass 

equations without understanding the implications of doing so.  

The national-scale models may produce biased biomass estimates even at the scale 

for which they were intended. A recent study by Domke et al. (2012) found that the Jenkins 

et al. (2003) national-scale biomass equations overpredicted biomass, and thus carbon, on a 

national scale when compared to the newer components ratio method (CRM; Heath et al., 

2009; Woodall et al., 2011) employed by the U.S. Forest Service FIA program. The authors 
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compared biomass estimates between the two methods for 20 of the most common tree 

species in the U.S. and found that the CRM provided estimates of national-scale biomass 

that were 16% lower than those produced using the Jenkins et al. (2003) approach. 

Ironically, the authors attribute this reduction in estimated biomass to adding tree height 

into equations as a measurement variable. Jenkins et al. (2003) decided to exclude all 

equations that used height as variable in favor of DBH-only equations so they would be 

more accessible for practitioners. 

Other studies have found that wide-scale generalized equations can perform 

accurately. Fayolle et al. (2013) found pan-tropical moist forest generalized multi-species 

equations developed by Chave et al. (2005) produced accurate predictions when applied to 

regions in central Africa, illustrating the range to which generalized equations may be 

extended. Fayolle et al. (2013) point out the importance of this finding given the magnitude 

of forestland requiring biomass estimation in central Africa and the absence of local 

equations. Thus, generalized equations have a place where local equation development is 

not feasible due to limitations of resource availability, scale, or timeframe in which 

estimations must be done. However, these equations should be used with caution when 

accurate estimations of biomass are critical since it would be necessary to carry out 

national-scale mensuration campaigns to truly know the extent of bias associated with 

wide-scale mixed-species equations (Jenkins et al., 2003). 

2.3.4 Other methods of indirect tree biomass measurement 

Allometric scaling theory 

To create the most accurate predictive biomass equations, trees must be 

destructively sampled; that is, they must be cut down, meticulously measured, and 

weighed. The labor and cost involved in this endeavor commonly leads researchers to 

pursue non-destructive sampling methods acknowledged as less accurate, but more 
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practicable (Ketterings et al. 2001, Pearson et al. 2007, McHale et al. 2009, Ngomanda et 

al. 2014). Equations based on various allometric scaling theories, first described by Huxley 

and Tessier (1936), have led to several attempts to create an idealistic representation of 

tree form, invariant across species, environment, age or location, thus eliminating the need 

to destructively sample trees (Pilli et al., 2006). These include Metabolic Scaling Theory 

(MST), and the Geometric Similarity and Stress Similarity models. Each theory attempts to 

explain archetypical growth based on physical constraints, such as the tree’s ability to 

effectively transport water throughout, or mechanically support the entire organism 

(Enquist, et al., 2009; West, 1999).  

Attempts by subsequent studies to substantiate these models have shown that tree 

form does not follow universal scaling rules when architecture is affected by environmental 

conditions (Feldpausch et al., 2011; Lines et al., 2012; Lopez-Serrano et al., 2005; Motallebi 

and Kangur, 2016), competition (Forrester et al., 2017; Poorter et al., 2003), disturbance 

(Moncrieff et al., 2011; Tredennick et al., 2013), or in cases where a tree’s canopy is altered 

by management activities such as pruning (Peper et al., 2001; Rust, 2014). By definition, 

allometry relies upon stable scaling relationships; therefore, scaling laws do not adequately 

describe trees whose forms are altered by adverse growing conditions, pruning, insect 

damage, or mechanical damage.  

Remote sensing of biomass  

Remote sensing techniques are increasingly used to create biomass estimates.  

Terrestrial laser scanning has been used to produce biomass estimates of individual trees in 

lieu of costly destructive sampling techniques (McHale et al., 2009; Lefsky and McHale, 

2008; Stovall et al., 2017). Larger scale estimation is accomplished via airborne LiDAR 

scanning or satellite imagery (Lefsky et al., 2005; Muukkonen, 2007; Ploton et al., 2012). 

Direct measurements of individual trees obtained in the field using measuring poles and 
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diameter tapes are still more accurate than remote sensing methods (Dassot et al., 2010; 

Dittmann et al., 2017; Weaver et al., 2015; West, 2009) because errors in sampling, 

measurement, and model selection are combined with errors associated with the remote 

sensing equipment used (Clark and Kellner, 2012). For instance, Vastaranta et al. (2009) 

found laser-based measurements of height and DBH varied widely depending on the 

equipment used. However, the authors determined that errors for some methods were 

within “acceptable limits” given traditional measurement instruments (such as calipers in 

the case of DBH) had similar error rates.  

Remote sensing is prone to the same sources of error as biomass indirectly estimated 

with allometric techniques because direct measurements needed to calibrate these methods 

are also error-prone. Further, there are additional sources of error inherent to remote 

sensing equipment. While remote sensing may not produce estimates as accurate as other 

indirect allometric techniques or destructive sampling, the technology is evolving quickly, 

and these methods have the advantage of being able to achieve biomass estimates over 

large areas that are otherwise impractical, and in a short amount of time without the need 

for removing and weighing trees (Stovall et al., 2017). 

2.4 The lack of urban, species-specific biomass equations 

The problem of scale and unrepresentative datasets is compounded in the case of 

urban-based biomass equations. This is a comparatively new area of interest with relatively 

few extant urban-specific studies. This paucity underscores the need for urban-based 

equations, since there are many well-documented differences between open-grown trees and 

those grown in natural forests (McPherson and Peper, 2012; McPherson et al., 2016; Zhou 

et al. 2015).  

Urban trees are often open-grown and intensively managed. Management regimes 

with different pruning, supplemental irrigation and fertilization, and tree placement 
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approaches result in trees with architecture varying widely from one location to another 

and differing from the “average” form of a forest conspecific (McHale et al., 2009; McHale 

and Lefsky, 2008; McPherson et al., 2016, Peper et al., 2014; Quigley, 2004). Though there 

is an amount of genetic control exerted over tree form, tree growth habit, and thus biomass 

allocation, are plastic and are strongly influenced by growing conditions (MacFarlane, 2015; 

Pretzsch and Dieler, 2012). Urban trees are often not native to the area—and thus 

climate—in which they are planted. This, along with a host of various anthropogenic 

stressors found in urban environments such as compacted soils, planting sites that offer 

limited rooting space, impervious surfaces leading to increased temperatures and reduced 

soil water, pollutants and contaminants, and insufficient irrigation, all influence tree 

growth, often in the form of a decrease (Jim, 1998; Quigley, 2004). Each of these factors can 

produce differences in growth within and across sites (Blood et al., 2016; McPherson and 

Peper, 2012). 

As noted in section 2.2.1 (Figure 2-1 and Figure 2-2), it is often difficult to determine 

the provenance of published equations. Equations used for urban areas are typically based 

on those developed for natural forests in areas with different growing conditions from the 

locations in which the equations are applied. When an equation is used in an urban study it 

is often reused by subsequent urban studies, and the original source of the now “urban” 

equation becomes unclear. Authors self-cite, further obfuscating the origin of an equation 

(e.g., Nowak et al., 2013). Equations used for green ash are often equations developed for 

other species of ash (Brenneman, 1978; Bunce, 1968; Pillsbury et al., 1998), or are 

generalized equations applied to a large group of related or unrelated species (Jenkins et 

al., 2003; Chojnacky et al., 2014). Unintended misuse of forest-derived equations occurs 

when forest equations are applied to urban areas without understanding their provenance. 
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If an equation is cited in an “urban” study, this equation is often reused in studies in other 

urban areas, resulting in error propagation over time. 

To account for differences between urban trees and those growing in forested areas, 

published correction factors have been proposed and are intended to be used in conjunction 

with forest-derived equations for open grown trees. One such correction factor from a study 

by Nowak (1994) found forest-derived equations overpredicted urban tree biomass by 20%. 

Nowak (1994) proposed that biomass estimates from forest-derived equations be multiplied 

by 0.80 in all urban areas to reflect this difference. This correction has often been used 

without regard to the potential differences in tree biomass based on factors such as regional 

climactic, site, and management differences mentioned previously (e.g., McPherson, 1998; 

Nowak and Crane, 2001; Nowak et al., 2008; Strohbach and Haase, 2012; Yang et al., 2005; 

Zhao et al., 2010). A different correction suggested by Zhou et al. (2011) states that biomass 

estimations for open-grown trees be multiplied by a correction factor of 1.2. This 20% 

upward correction in biomass directly contradicts Nowak’s suggested use of a 20% decrease. 

While the trees in both cases are pruned and grown in open conditions, the difference 

highlights that such corrections cannot be applied generally or without scrutiny and 

reinforces the need for a greater understanding of factors contributing to variations in 

urban tree growth across locations. 

In an attempt to address these matters, the U.S. Forest Service Pacific Southwest 

Research Station recently introduced their Urban Tree Database and Allometric Equations 

(McPherson et al., 2016). Though this resource provides numerous equations for the most 

widely grown tree species in the 17 cities covered by the study, the authors stress the need 

to continue improving the accuracy of urban biomass equations by obtaining data for more 

regions across the country. 
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3. GREEN ASH (FRAXINUS PENNSYLVANICA MARSH.) BIOMASS EQUATIONS FOR 

URBAN TREES REMOVED IN RESPONSE TO THE EMERALD ASH BORER 

(AGRILUS PLANIPENNIS FAIRMAIRE) 

 
 

3.1 Introduction 

Since the arrival of the emerald ash borer (Agrilus planipennis Fairmaire) in the 

United States in 2002 (Haack et al., 2002; Cappaert et al., 2005; Poland and McCullough, 

2006), urban forest managers have been faced with an unprecedented challenge. Emerald 

ash borer (EAB), labeled as the most destructive forest pest in United States history 

(Herms and McCullough, 2014), has caused the death of hundreds of millions of ash trees 

(Fraxinus spp.) in the 34 U.S. states in which it has been detected. Since eradication of EAB 

is infeasible due to the difficulty of detection (Herms and McCullough, 2014; Knight et al., 

2014; McCullough et al., 2009), most emerald ash borer management programs aim to slow 

the spread of the insect to give urban forest managers time to respond (Fahrner et al., 2017; 

McCullough and Mercader, 2012).  

Costs for treating and removing trees is expected to reach USD $10.5 billion by the 

year 2019 (Sydnor et al., 2009). However, the cost estimates for EAB management activities 

presented by Sydnor et al. (2009), Kovacs et al. (2010; 2011), Hauer and Petersen (2017), 

Sadof et al. (2017) and others do not include wood disposal costs, or combine disposal costs 

with those for other management activities. Costs can be expensive at the local scale; for 

example, between March, 2015 and April, 2016, wood disposal costs for the City of Boulder’s 

Forestry Division related to EAB and a winter kill event primarily affecting Siberian elm 

(Ulmus pumila) trees were approximately USD $35,000 (Kathleen Alexander, pers. comm.).  

Urban wood disposal is an ongoing problem in U.S. cities. In 2014, yard trimmings 

and wood accounted for 7.9% and 8.1% respectively of the 136 million tons of total landfilled 
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municipal solid waste (EPA, 2016). Nash (2009, unpublished thesis) estimated that 128,292 

tons of urban forest residues were generated in the Tri-City Area of the Northern Front 

Range annually, an area including the cities of Fort Collins, Loveland and Greeley. Of this, 

the study found that approximately 40 percent of the material was disposed of in landfills 

while the remaining fraction was taken to wood recycling facilities to be turned into mulch, 

compost, or firewood. 

The Colorado State Forest Service developed a statewide inventory tool, CO-Tree 

View (https://cotreeview.com, n.d.), to assist Colorado municipalities in creating accurate 

ash tree inventories as the first step in creating an EAB management plan. The software 

includes an EAB cost calculator which currently allows urban forest managers to estimate 

planned treatment, removal, and replacement costs for ash trees. It does not include a way 

to predict costs of ash wood disposal.  There is a need for an accurate method to predict and 

budget for wood disposal costs as part of a comprehensive emerald ash borer management 

plan (Colorado Emerald Ash Borer Response Team, 2015). 

Part of the difficulty in making such predictions is that biomass equations are 

regionally specific. Environmental factors and site conditions affect tree growth, leading to 

intraspecific differences in allometric relationships, thereby decreasing prediction accuracy 

when equations are applied to areas for which they were not developed (Duncanson et al., 

2015; Hulshof et al., 2015, Urban et al., 2010). For instance, Forrester, et al. (2017) and 

Hulshof et al. (2015) found that trees growing in cold, arid environments and whose 

climates experienced high seasonal variability were shorter than those growing in areas 

experiencing less extreme environmental conditions. These conditions are similar to those 

found along Colorado’s Northern Front Range. 

In using existing forest and urban equations to predict biomass of urban green ash 

trees in Fort Collins, Colorado, McHale et al. (2009) found that biomass predictions from 
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these equations ranged from a 27% overprediction to a 96% underprediction of total 

aboveground woody biomass woody biomass when compared to detailed tree measurements 

taken with ground-based LiDAR. Furthermore, Blood et al. (2016) found that models were 

location-specific, and that models developed for one location may not provide accurate 

predictions when applied to another location in the same climactic zone or region. 

McPherson and Peper (2012) found that green ash growing in Cheyenne, Wyoming were 

consistently smaller than same-aged trees in nearby Fort Collins, Colorado, likely due to 

Cheyenne’s harsher climate and poorer soil conditions.  

Current green ash aboveground woody biomass (AGB) predictive equations have 

largely been developed for areas in the eastern and Midwestern states, or Canada (e.g. 

Bunce, 1968; Peper et al., 2014; Schlaegel, 1984). Furthermore, most have been developed 

for trees growing in natural forests, not urban areas. Due to the unique and varied growing 

conditions of urban trees versus those growing in natural forests, and the climactic 

differences between Colorado’s Front Range versus the Midwest and eastern United States, 

it is uncertain whether these equations provide adequate predictions of biomass for green 

ash growing in Colorado’s urban areas. 

The study conducted in Fort Collins, Colorado by McHale et al. (2009) provided 

volume equations for ten urban street tree species, including green ash. Measurements of 

individual trees were obtained using ground-scanning LiDAR as part of a carbon storage 

analysis of urban trees in Fort Collins, Colorado. These equations were not validated using 

destructively sampled trees. Although removing and directly weighing trees remains the 

most accurate measure of tree biomass (McHale et al., 2009; Nelson et al., 1999; Nogueira 

et al., 2008), researchers commonly use non-destructive sampling methods to estimate 

biomass due to prohibitive cost and labor requirements. 
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Furthermore, specific gravity is another important attribute influencing mechanical 

and physical properties of wood, such as the quality of wood used for solid sawn products, 

paper and pulp, and wood energy applications (Shmulsky and Jones, 2011; Zobel and van 

Buijtenen, 1989). Specific gravity values may be converted to density values, which can 

then be used in volume-to-mass calculations whereby a known volume is multiplied by a 

known density to produce a mass. These calculations are widely used for estimating 

biomass for individual trees as well as on varying spatial scales from single stands to entire 

landscapes. Specific gravity values for urban trees are largely absent from the literature 

(McHale et al., 2009). Values from sources such as Alden (1995) and Miles and Smith (2009) 

have long been the standard for green ash and other tree species in the United States, but 

as is the case with the aforementioned biomass equations, these measurements were 

primarily taken from natural forests in areas whose climates differ greatly from Colorado’s. 

Specific gravity is influenced by climate, growing conditions, and management regimes 

(Whitmore 1973; Wiemann and Williamson 1989; Wiemann and Williamson 2007), and 

differs between forest-grown and open-grown trees (Zhou et al., 2011); therefore, published 

values may not accurately represent wood specific gravity of green ash trees growing in 

Colorado’s Northern Front Range cities. 

The objectives of this study were to determine: 1) whether locally developed, species-

specific biomass equations outperform equations developed for areas outside of Colorado’s 

Northern Front Range; 2) the best predictive equation for above-ground woody biomass of 

green ash trees for emerald ash borer management activities in urban areas of Colorado’s 

Northern Front Range; and 3) whether the average wood specific gravity and moisture 

content of urban ash trees along Colorado’s Northern Front Range differed from published 

values. To accomplish the first objective, predictive accuracy of existing published 

equations, including an equation developed for Fort Collins, Colorado, was evaluated using 
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pairwise multiple comparisons with repeated measures. To accomplish the second objective, 

locally-derived equations for Colorado’s Northern Front Range were developed and 

compared to existing biomass equations that have been used for urban green ash biomass 

prediction. Published specific gravity and moisture content values were compared to locally-

derived values for Colorado’s Northern Front Range to accomplish the third objective. 

Identifying biomass equations and specific gravity and average moisture values suitable for 

green ash along Colorado’s Northern Front Range will allow resource managers engaged in 

EAB wood disposal efforts and urban forest mensuration initiatives to more accurately 

estimate green ash biomass. 

3.2 Methods 

3.2.1 Study area 

For this study, 42 green ash trees were destructively sampled at 11 sites in publicly-

managed parks, rights-of-way, and municipal open spaces in five cities along Colorado’s 

Northern Front Range Urban Corridor (Chronic and Chronic, 1974): Fort Collins, Loveland, 

Longmont, Boulder and Broomfield. Location attributes can be found in Table 3-1. 

Table 3-1 Northern Front Range cities from which green ash trees were destructively 
sampled during this study. 

3.2.2 Field measurements 

Trees were measured, removed, and weighed after leaf-drop during the early spring 

of 2016, and the fall of 2016 through the winter of 2017. Foliage biomass was not included 

City Collection Site(s) City Latitude, 
Longitude 

No. of 
trees 

Site Description 

Fort Collins North Meldrum Street 40.59219, -105.08246 3 Irrigated public right-of-way 
Loveland Westside Park 

Centennial Park 
Winona Outdoor Pool 

40.395, -105.08314 1 
1 
1 

Public park, irrigated turf 
Public park, irrigated turf 
Public park, irrigated turf 

Longmont Izaak Walton Park 
Boulder County Fairgrounds 
AHI Property Open Space 

40.16175, -105.11895 7 
7 
8 

Public park, irrigated turf 
Fairgrounds, irrigated turf 
Non-irrigated property boundary 

Boulder University of Colorado, Boulder Campus 40.00758, -105.26594 4 Irrigated turf 
Broomfield Community Center 

City and County Building 
The Bay Aquatic Park 

39.92041, -105.06875 4 
5 
1 

Irrigated parking lot island 
Irrigated parking lot island 
Irrigated parking lot island 
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given the goal of the study was to determine aboveground woody biomass (AGB) on both a 

green and oven-dry basis. The destructively sampled trees had been designated for removal 

prior to the study as part of planned efforts to reduce the number of ash trees at risk from 

EAB. Removal locations were in cities willing to provide trees, staff, and equipment 

required for destructive sampling.  

Measurements included diameter at breast height (DBH) measured in cm at 1.3 m 

from the base of the tree, total tree height (m), and height to the first live branch (m). 

Percent canopy thinning was recorded using the ash canopy thinning scale created for 

emerald ash borer-infested ash trees in Michigan by Smitley et al. (2008). Additional data 

collected included whether or not the tree was infested with EAB as evidenced by the 

presence of larval feeding galleries or larvae, whether the tree was dead, and whether the 

tree was multi-stemmed (defined as having two or more leaders starting below diameter at 

breast height). Summary statistics for the trees sampled for this study are presented in 

Table 3-2. 

Table 3-2 Summary statistics for trees destructively sampled for this study. Numbers in 
parentheses represent the standard deviation of each measurement. 

 

Twigs and branches less than 10.16 cm (4 in) in diameter were processed in a 

chipper. Chips were blown directly into Flexible Intermediate Bulk Containers (FIBCs) 

attached to the spout of a drum-style wood chipper. Each FBIC was weighed on a low-

profile floor scale (Uline model H-754, 2267.96 kg (5000 lb) x 0.453592 kg (1 lb)). The FBICs 

were of known weight, and the weight of the container was subtracted from each FBIC of 

chips weighed to obtain biomass of twigs and branches < 10.16 cm. A representative sample 

of chips per tree were collected from the FBICs at different points during the chipping 

 DBH (cm) Branching Ht. (m) Tree Ht. (m) % Crown Dieback Total Green Wt. (kg) 
Range 7.6 - 66.0 0.63 - 6.40 2.79 - 20.12 0 - 100 7.26 - 3276.30 
Mean 33.9 (8.5) 2.28 (1.11) 10.0 (4.03) 22.41 (31.53) 1051.25 (1028.27) 
s2 352.08 1.26 16.68 1029.68 1083132.21 
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process for later laboratory processing to determine moisture content (MC). Each sample 

bag was given a unique identifier associating it with a specific tree. Larger woody material 

was broken down into two size classes, and each was weighed separately: branches 10.16 

cm (4 in) in diameter up to 25.4 cm (10 in) in diameter, and logs 25.4 cm or greater in 

diameter. Branches and logs were weighed whole when feasible; if they were too large to 

rest on the scale they were sectioned, and the weight of the sections summed for a total 

branch or log biomass. 

Wood cross sections were removed from the stump end of the main stem and top of 

one > 25.4 cm log of each tree to later be used in determining MC in the lab. Paul et al. 

(2017) demonstrated that, if it is not feasible for reasons of practicality to collect moisture 

samples from many locations throughout the tree, then collecting representative samples of 

the bole and crown to use in MC estimation best approximates whole-tree moisture. 

Moisture loss was mitigated by wrapping tree cross sections in plastic as soon as they were 

cut. Once the cross sections were relocated to the laboratory at the end of each field day, the 

bags were placed in large plastic tubs with tight-fitting lids to further prevent moisture loss 

until the samples could be processed. 

3.2.3 Laboratory measurements 

Whenever possible, sample processing in the laboratory was completed the day 

following sample collection to minimize changes in MC from the time the tree was felled to 

the time green wood measurements were taken. 

Wood moisture content and specific gravity 

Each cross section was de-barked and sawn into portions. All cuts were made 

through the pith of the cross section to capture differences in specific gravity from the 

cambium to the pith (Wiemann and Williamson, 1989; Woodcock and Shier, 2002; 

Williamson and Wiemann, 2010). Each was labeled with a unique identifier indicating 
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whether the portion was from a cross section from the top or the bottom of the main stem, 

and the tree from which it was cut. Each cross-section portion was then weighed to obtain 

its green weight (g). After each portion was weighed, it was placed into a tub of water for at 

least 48 hours to ensure the cell walls exceeded fiber saturation point (FSP). FSP is defined 

as the point at which free water has been removed from cell lumina, but the cell walls are 

saturated. Above FSP point, the dimension of the wood does not change as a function of 

moisture content (Glass and Zelinka, 2010). 

As outlined in American Society for Testing and Materials Standard D2395 Method 

B, Mode II, once each cross-section portion reached FSP, its green volume was measured 

using water displacement. The weight in grams of the water displaced when the specimen 

was fully submerged was used to represent the specimen’s volume in cm3. Specific gravity 

was measured on a green basis (basic specific gravity) using the equation: 

SGBasic = MOD / (VolGreen * ρwater) 

where:  

MOD is the oven-dry weight of wood in g 

VolGreen is the green volume of wood in cm3 

ρwater is the density of an equal volume of water in g/cm3  

After obtaining volume measurements, each cross-section portion was placed in an 

oven maintained at 105° C. Weight was checked periodically until it remained unchanged 

for at least three consecutive hours, at which time the portion was considered to have 

reached oven-dry status. Drying time ranged from 2 days for small samples to 4 days for 

large samples. Cross-section portions were then reweighed, and their weight recorded in 

grams. The moisture content as a percentage of the green weight of the cross-section pieces 

was calculated using the formula: 

MC% = 100 * (WG – WOD)/WOD 
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where:  

MC% is the moisture content of the wood expressed as a percentage 

WG is the green weight of the chips or cross section pieces (g) 

WOD is the oven-dry weight of the chips or cross section pieces (g) 

Moisture content of chips 

The green weight of a sample of chips taken from the FBICs representing twigs and 

small branch wood < 10.16 cm diameter for each tree were weighed (g). The chips were then 

placed in an oven at 105° C, and their weight was checked periodically until it remained 

unchanged for at least three consecutive hours, at which time the chip specimens were 

considered to have reached oven-dry status. Drying time took approximately 48 hours. The 

chips were then re-weighed and their weight recorded in grams. Moisture content of the 

chips was measured using the same method outlined previously for cross sections. The 

percent moisture content for the chips and two cross sections collected from each tree were 

used to obtain an estimate of the moisture content of the whole tree. 

3.3 Statistical analysis 

All statistical analyses were done using R Studio statistical software version 1.0.153 

(R Studio Team, 2015). A significance level of ∝ = 0.05 was used for all statistical tests. 

3.3.1 Evaluation of published green ash biomass equations 

The Fort Collins, Colorado equation developed by McHale et al. (2009) and the 

equations identified as having been used in other urban biomass studies by McHale et al. 

(2009) were evaluated in this study (hereafter, the McHale equation). Some of the equations 

evaluated by McHale et al. (2009) had several forms (e.g. volume, oven-dry weight, green 

weight), and since it was not always clear which form of the equation was used, all forms of 

each literature equation evaluated by McHale et al. were included (hereafter, the 
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Brenneman equations, Bunce equations, Pillsbury equations, and Schlaegel equations). 

Another green ash biomass equation developed by Olson (2017) using destructively-sampled 

urban green ash in the Twin Cities Metro Area, Minnesota was evaluated (hereafter, the 

Olson equation), in addition to an equation developed by Jenkins et al. (2003) (hereafter, 

the Jenkins equation) since it was one of the underlying published equations assessed in 

that study.  

An equation developed by Hahn (1984) evaluated in the Twin Cities study was not 

included in the comparisons of published green ash models for three reasons: 1) comparing 

models for which data collection methods were different introduces error into the 

comparisons (Sileshi, 2014); 2) it is unlikely that urban forest managers would routinely 

take the measurements specified by Hahn as part of their tree inventory process (cull 

percentage, volume of a 1-foot stump, etc.); and 3) if total tree mass is the measurement of 

interest, as was the case in the present study, a total mass equation may perform better 

than a components-based equation (McFarlane, 2015).  

Lastly, because Olson evaluated the performance of the national scale biomass 

equation developed by Jenkins et al. (2003), the updated national scale biomass equation 

developed by Chojnacky et al. (2014) (hereafter, the Chojnacky equation), was also 

evaluated. Chojnacky et al. (2014) used finer-scale groupings than in the Jenkins et al. 

(2003) equations to improve estimates. A list of the equations evaluated in this study can be 

found in Table 3-3. 

One-factor repeated measures using linear mixed-effects models (Pinheiro and Bates 

2000) allow for comparison of the mean predicted weight (biomass) of each equation for 

each tree. In this way, published equation predictions of biomass were compared to 

measured green and measured oven-dry biomass. This methodology is common in the 
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Table 3-3 Green ash biomass equations evaluated in this study. All are for total aboveground woody biomass minus foliage. 
Equation source Species1 Equation Quantity measured (Y) Moisture 

basis2 
a b c n DBH range 

(cm) 
McHale et al., 2009 Green ash tvol = a(DBH)^b Volume (kg/m3) N/A 0.0005885 2.206 --- 15 14.8-122.6 
Brenneman, 1978 White ash Y = a x^b Biomass (lbs) 

Biomass (lbs) 
Oven-dry 
Green 

4.1914 
2.3626 

2.4309 
2.4798 

--- 
--- 

15 5.1-50.8 

Bunce, 1968 
     Meathop 
     Roudsea 

European ash loge y = a + b (loge (DBH))  
Biomass (kg) 
Biomass (kg) 

 
Oven-dry 
Oven-dry 

 
-5.308133 
-5.386958 

 
2.488218 
2.546645 

 
--- 
--- 

15  
9.0-104.0 
9.5-57.5 

Pillsbury, 1998 Modesto ash V = a(DBH^b) 
V = a(DBH^b)(Ht^c) 

Volume (lbs/ft3) 
Volume (lbs/ft3) 

N/A 0.022227 
0.001287 

2.633462 
1.762964 

1.427822 50 14.5-84.8 

Schlaegel, 1984 Green ash ln(Y) = b0 + b1 ln(D^2*H) 
 
 
ln(Y) = b0 + b1 ln(D^2) 
 

Volume (lbs/ft3) 
Biomass (lbs) 
Biomass (lbs) 
Volume (lbs/ft3) 
Biomass (lbs) 
Biomass (lbs) 

N/A 
Green 
Oven-dry 
N/A 
Green 
Oven-dry 

-5.371 
-1.104 
-1.759 
-2.644 
1.518 
0.935 

0.92436 
0.88814 
0.91023 
1.17048 
1.12431 
1.1515 

--- 
--- 
--- 
--- 
--- 
--- 

70 2.3-77.7 

Olson, 2017 (Jenkins 
refit) 

Green ash Bm = exp(b0 + b1 log(DBH)) 
Bm = exp(b0 + b1 log(DBH) + b2 log(ht)) 

Biomass (lbs) 
Biomass (lbs) 

Green 
Green 

1.8865 
0.4693 

2.2166 
1.8394 

--- 
0.6316 

38 7.6-83.8 

Jenkins et al., 2003 Mixed hardwood spp. Bm = exp(b0 + b1 ln DBH) Biomass (kg) Oven-dry -2.48 2.4835 --- 148 2.54-27.69 
Chojnacky et al., 2014 Oleaceae spp., specific 

gravity < 0.55 
ln(biomass) = b0 + b1 ln(DBH) Biomass (kg) Oven-dry -2.0314 2.3524 --- Unk. 3-42 

1Species for which the published equation was developed. 
2Moisture basis as indicated by author. 
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medical field for assessing agreement between instruments or methods (van Stralen et al., 

2008). The lmer() function in R from the lme4 package (Bates et al., 2014) was used for 

Repeated measures analyses. Individual trees were treated as the “by-subject” random 

effect in order to account for individual tree variability, and measured biomass of each tree 

served as the fixed factor. Published equations served as the blocking variable (each tree’s 

biomass was estimated using each of the 17 predictive equations). If there was no 

significant difference (p > 0.05) between a published equation’s mean predicted biomass 

(PB) versus the mean measured biomass (MB), this indicated the two methods agreed 

(mean PB of the published equation was not significantly different from mean MB of the 

sample trees). RMSE and mean absolute deviation (MAD) were used to evaluate the 

predictive accuracy of these equations. MAD is calculated as: 

MAD = ∑ni=1|measured biomass – predicted biomass|/n. 

Volume equations were included in both green biomass and oven-dry biomass 

analyses since either green or oven-dry wood density values can be used for volume-to-mass 

conversions. Published density values for F. pennsylvanica wood from published sources as 

specified by the author of each published equation were used for volume-to-biomass 

conversions. In the case of the Pillsbury equations, no published source for density was 

given, so a density value from Miles and Smith (2009) was used. 

Bland-Altman plots provide a graphical technique to clearly visualize the degree of 

agreement between methods (Bland and Altman, 1986), and were constructed to further 

evaluate consonance between MB and PB produced by published equations. The center 

dashed line on the plot represents the mean predicted biomass of the published equation. 

Top and bottom dashed lines represent ±2 standard deviations (SD). Dotted lines are the 

95% confidence intervals for mean response and SD lines. Mean response lines that are 



 35 

near zero with points scattered relatively evenly about the mean and within two standard 

deviations indicates agreement between the mean observed green biomass values and the 

mean predicted published equation green biomass values. 

3.3.2 Development of Northern Front Range green ash biomass equations 

Northern Front Range biomass predictive models for green ash were developed on a 

green-wood basis and an oven-dry wood basis. The response variable of interest in this 

study was total tree biomass (kg) on either a green- or an oven-dry basis. Due to a small 

number of unique values relative to the sample size for each of these variables (in this case 

n<5,) the independent variables “infested” (n=4), “dead” (n=2), and “multi-stemmed” (n=1) 

were excluded from further analysis to avoid bias in regression coefficients, thus lowering 

model fit (Ogundimu et al., 2016; Royston and Saurbrei, 2008). The remaining independent 

variables were diameter at breast height (“DBH”), total tree height (“height”), height to the 

first live branch (“branching height”), and percent crown dieback (“dieback”). Biomass and 

DBH were transformed using the natural logarithm to correct for unequal variance. All 

possible models containing the remaining predictor variables DBH, height, branching 

height and dieback were evaluated, and a model based on lowest AICc for a small sample 

size (Akaike, 1973) was chosen for further evaluation. Diagnostic plots of the final model 

were assessed to ensure regression assumptions were satisfied. 

Correction factor for a log transformation 

It has been widely noted that back-transforming data from the log scale to the 

arithmetic scale introduces a downward bias to predicted values (Baskerville, 1972; 

Beauchamp and Olson, 1973, Clifford et al., 2013, Moscaro et al., 2013, Sprugel 1983); 

therefore, a correction factor was calculated for both the green and oven-dry predictive 

equations to account for this bias. The correction factor was calculated after Baskerville 

(1972), and has the form: 
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CF = e(MSE/2) 

where:  

MSE is the mean square error of the regression. 

3.4 Results 

3.4.1 Performance of existing green ash biomass equations 

Evaluation of published equations on a green wood basis 

Measured biomass (MB) of the 42 destructively sampled trees was compared to 

predicted biomass (PB) of the green basis and volume (converted to green biomass using 

published wood density values) equations. Three green biomass and one volume equation 

produced PB values that were not significantly different from MB for the sample trees: both 

the Olson DBH and DBH-height equations, the Schlaegel DBH volume equation, and the 

Schlaegel DBH green biomass equation (Table 3-4). The Olson DBH-height (4% 

overprediction of MB) and the Schlaegel DBH green biomass equations (4% underprediction 

of MB) produced estimates of PB that were nearly identical; however, the Olson DBH-

height equation had an RMSE seven times that of the Schlaegel green biomass DBH 

equation (RMSE = 448.7 and 64.3, respectively). This indicates the Schlaegel equation 

better predicts green ash tree biomass on a per-tree basis with fewer extreme over- or 

underpredictions. The Olson DBH-only equation was only marginally significant (t448 = -

3.050, p = 0.0582). It overpredicted mean biomass by 26%, and therefore less accurately 

predicted mean MB than the Olson DBH-height (+4%), Schlaegel green biomass DBH (-4%), 

and Schlaegel volume DBH (+10%) equations (Table 3-4).  

The local urban equation developed by McHale et al. (2009) for Fort Collins 

overpredicted biomass on a green wood basis by 47%. The greatest overprediction of 
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Table 3-4 Observed green and oven-dry biomass versus predictions from green and oven-dry published equations 

aA positive value indicates the mean predicted biomass is more than the mean observed biomass, and a negative value indicates the mean predicted biomass is less than the 
mean observed biomass. 
bMinimum and maximum relative prediction errors are a ratio of min(published equation predicted values:observed values) and max(published equation predicted 
values:observed values). This illustrates how much each published equation over- or underpredicted observed green or oven-dry biomass. 
cMean absolute deviation (MAD) is calculated as ∑ni=1|measured biomass – predicted biomass|/n. 
dP-values adjusted using the Holm method for multiple comparisons to control FWER may produce p-values = 1. 

Equation source Difference from 
MB (kg)a 

Standard deviation 
of the errors (kg) 

Minimum and maximum 
relative prediction errors (kg)b 

MAD (kg)c RMSE (kg) t Holm-adjusted 
p-valued 

Volume and green biomass published equations (n = 42, SE of the differences = 88.76 and df = 451 for all tests) 
Brenneman green 539.2 873.5 0.78-3.82 565.6 158.4 -6.074 <.0001 
McHale 491.2 728.3 0.81-5.66  513.0 135.6 -5.534 <.0001 
Olson-Jenkins refit DBH + height 45.0 446.4 0.59-4.09 262.2 448.7 -0.507 1.000 
Olson-Jenkins refit DBH 270.7 561.3 0.69-4.75 342.0 623.2 -3.050 .0582 
Pillsbury DBH + height -360.0 526.0 0.25-1.24 392.9 98.4 4.056 .0018 
Pillsbury DBH -287.9 441.0 0.35-1.77 351.5 81.3 3.243 .0318 
Schlaegel volume DBH + height -499.01 561.7 0.22-1.28 566.8 115.9 5.622 <.0001 
Schlaegel volume DBH 103.67 492.4 0.51-2.88 264.0 77.6 -1.170 1.000 
Schlaegel green DBH + height -555.2 604.0 0.23-1.57 555.4 126.7 6.255 <.0001 
Schlaegel green DBH -43.8 414.5 0.52-3.41 253.8 64.3 0.493 1.000 

Volume and oven-dry published equations (n = 42, SE of the differences = 63.13 and df = 533 for all tests) 
Brenneman oven-dry 287.3 525.5 0.71-2.99 328.7 92.4 -4.551 .0003 
Bunce – Meathop 111.7 380.3 0.59-2.49 211.2 396.3 -1.770 1.000 
Bunce – Roudsea 320.7 576.3 0.72-3.14 358.1 659.5 -5.080 <.0001 
Chojnacky 26.5 303.6 0.55-2.29 171.9 304.7 -0.419 1.000 
Jenkins 79.1 356.4 0.56-2.39 196.2 365.1 -1.253 1.000 
McHale 290.5 448.5 0.76-4.05 320.8 82.5 -4.602 .0003 
Pillsbury DBH + height -284.2 393.2 0.22-1.18 305.2 74.9 4.502 .0004 
Pillsbury DBH -235.4 303.6 0.33-1.53 266.5 59.3 3.730 .0085 
Schlaegel volume DBH + height -416.4 445.3 0.22-0.92 423.6 94.1 6.595 <.0001 
Schlaegel volume DBH -51.6 276.8 0.48-2.06 168.8 281.6 0.820 1.000 
Schlaegel oven-dry DBH + height -431.4 457.0 0.22-0.96 431.4 97.1 6.834 <.0001 
Schlaegel oven-dry DBH -89.5 270.8 0.47-2.14 169.6 285.2 1.417 1.000 
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biomass was produced by the Brenneman green biomass equation (+52%). In their analysis 

of equations used to predict biomass of green ash trees, McHale et al. (2009) found that the 

Brenneman equation was the only equation that predicted within the 95% confidence 

interval compared to their observed biomass values. The results of the multiple comparison 

analysis found that the predictions produced by the McHale equation were not significantly 

different from the predictions produced by the Brenneman green biomass equation 

(difference in mean predicted green biomass = 48kg, t41 = -1.90, p = 0.0623). The Pillsbury 

DBH volume equation, the Pillsbury DBH-height volume equation, the Schlaegel DBH-

height volume equation, and Schlaegel DBH-height green biomass equations 

underpredicted mean observed green biomass. McHale et al. (2009) reported the same 

result when the Pillsbury and Schlaegel equations were used for PB of green ash trees in 

Fort Collins, Colorado. The Schlaegel DBH-height volume equation produced the largest 

underprediction, predicting 53% less than the mean MB on a green wood basis.   

Figure 3-1 provides Bland-Altman plots illustrating prediction trends for the published 

green basis biomass equations. 

Evaluation of published equations on an oven-dry basis 

Of the seven oven-dry biomass equations and five volume equations (converted to 

oven-dry biomass using published wood density values), five produced a PB value that was 

not significantly different from oven-dry MB of sample trees: the Bunce Meathop equation, 

the Chojnacky generalized equation for trees in the family Oleaceae with specific gravity 

<0.55, the Jenkins general hardwood equation, Schlaegel’s DBH volume equation, and 

Schlaegel’s DBH oven-dry biomass equation (Table 3-4). Schlaegel’s DBH volume equation 

underpredicted MB by 7% and had the lowest MAD and RMSE values compared to the 

other published oven-dry biomass and volume equations (Table 3-4); however, prediction 

accuracy of the Bunce Meathop (15% overprediction), Schlaegel oven-dry biomass (12%  
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Figure 3-1 Bland-Altman plots comparing mean observed green biomass versus published 
equation green predicted biomass. 
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underprediction), Chojnacky (4% overprediction) and Jenkins (11% overprediction) 

generalized biomass equations was nearly identical to the Schlaegel DBH volume equation. 

The Bunce Roudsea equation produced the largest overprediction of oven-dry MB 

(43%). The McHale urban volume and Brenneman oven-dry equations both overpredicted 

oven-dry MB by 38% for local green ash trees. The Pillsbury urban DBH-height volume 

equation and the Pillsbury urban DBH-only volume equation underpredicted MB by 38% 

and 32%, respectively. The Schlaegel DBH-height volume and oven-dry DBH-height 

equations underpredicted oven-dry MB by the largest amount (55% and 57%, respectively), 

and their predictive capability was nearly indistinguishable as indicated by mean difference 

in PB compared to MB, MAD, and RMSE (Table 3-4). Bland-Altman plots illustrating the 

prediction trends for each of the published oven-dry equations are presented in Figure 3-2.  

Additional methods of comparison for published equations 

APPENDIX A contains scatterplots illustrating the range of predictions obtained 

from each published equation compared to observed values for each of the 42 destructively 

sampled trees. Nowak (1994) proposed that a correction factor of 0.80 (20% reduction) be 

applied to biomass estimates when using forest-derived equations to estimate urban tree 

biomass based on a sample of 30 urban trees representing nine species in Oak Park, 

Illinois, U.S.A. Conversely, Zhou et al. (2011) recommend a correction factor of 1.2 be 

applied to biomass estimates when using forest-derived equations to estimate open-grown 

tree biomass based on a study in the Great Plains region of the U.S. Panel B of APPENDIX 

A, Figure 3-4 and Figure 3-5 demonstrate forest-derived equations produced both over- and 

underpredictions of urban tree biomass indicating such broad corrections may be 

unsupported. The box and whisker plots of the distribution of the errors between PB and 

MB in APPENDIX B further illustrate this fact. In addition, the box and whisker plots  
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Figure 3-2 Bland-Altman plots comparing mean observed oven-dry biomass versus 
published equation oven-dry predicted biomass.  
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more clearly illustrate bias in the predictions produced by each equation, as well as overall 

accuracy of published equation predictions. 

3.4.2 Locally-derived Northern Front Range green ash biomass equations 

Green wood biomass equation 

Model selection based on lowest AICc using ln(green biomass) as the response 

variable resulted in a model containing the predictors ln(DBH), branching height, and 

dieback (AICc= 12.57). The predictor ln(DBH) explained the greatest proportion of the 

variability in ln(green biomass) (F1,25 = 646.92, p < 0.0001). Additional steps were taken to 

explore a model containing only ln(DBH). Examination of a plot of residuals versus fitted 

values showed curvature in the residuals that indicated a higher order term was needed in 

the model. When compared to the model containing ln(DBH), branching height, and dieback 

(R2 = 0.9766, RMSE = 0.2440), the reduced second order polynomial model with ln(DBH) 

(R2 = 0.9744, RMSE = 0.2516) resulted in a model with very similar fit to the full model. 

Therefore, using the quadratic form of the model containing predictors ln(DBH) + ln(DBH)2 

is recommended. The form of the final predictive oven-dry biomass equation, partial 

regression coefficients, RMSE, MAE, and R2 values are displayed in Table 3-5. A graph 

showing the fitted regression line and the associated 95% confidence and prediction 

intervals is shown in Figure 3-3, panel A. 

Table 3-5 Predictive equation developed for the Northern Front Range 

Modela Estimated coefficientsb   RMSE MAD R2 

 a b c    
Green basis model -7.9704 [-10.41, 5.54] 6.1705 [4.64, 7.70] -0.5661 [-0.80, -0.33] 0.2516 0.1913  0.9744 
Oven-dry basis model -7.3965 [-9.77, -5.02] 5.6248 [4.13, 7.12] -0.4867 [-0.72, -0.26] 0.2491 0.1819 0.9631 

aThe form of the model is ln(biomass) = a + b(DBH) + c (DBH)2 + ℇ.		The	correction	factor	(CF)	for	both	models	is	1.03.	Exponentiated	predicted	values	
should	be	multiplied	by	the	correction	factor	to	account	for	back-	transformation	from	the	log-predicted	value.	
bNumbers	in	brackets	are	the	95%	CI	for	the	estimated	coefficients.	

Oven-dry wood biomass equation 

Model selection based on lowest AICc using ln(oven-dry biomass) as the response 

variable and the predictors ln(DBH), branching height, and dieback resulted in a model  
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Figure 3-3 Plotted regression lines for locally-derived Northern Front Range green and oven 
dry biomass equations, showing actual tree biomass (points), fitted regression line (solid), 
95% confidence interval (dashed lines), and 95% prediction intervals (dotted lines) of trees 
measured for this study on both a green (panel A) and an oven-dry (panel B) basis. 
  

ln(Biomass) = -7.9704 + 6.1705 (lnDBH) – 0.5661 (lnDBH2)
R2: 0.9744

Regression line
95% Confidence interval
95% Prediction interval

Regression line
95% Confidence interval
95% Prediction interval

ln(Biomass) = -7.3965 + 5.6248 (lnDBH) – 0.4867(lnDBH2)
R2: 0.9631

A

B

Northern Front Range Green Basis AGB Equation

Northern Front Range Oven-dry Basis AGB Equation
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containing predictors ln(DBH) and dieback (AICc = 18.05). The greatest proportion of the 

variability in this model was explained by regressing ln(oven-dry biomass) on ln(DBH) (F2,26 

= 504.8, p = 0.0001). The model containing both ln(DBH) and dieback was compared to a 

second-order polynomial model with the independent variable ln(DBH). When compared to 

the model containing dieback and ln(DBH) (R2 = 0.9749, RMSE = 0.2491), the second order 

polynomial ln(DBH) model (R2 = 0.9631, RMSE = 0.3021) performed relatively well. 

Therefore, the recommendation is to use the quadratic model regressing ln(dry biomass) on 

ln(DBH). The form of the final predictive oven-dry biomass equation, partial regression 

coefficients, RMSE, MAE, and R2 values are displayed in Table 3-5. A graph showing the 

fitted regression line and the associated 95% confidence and prediction intervals is shown 

in Figure 3-3, panel B. Residual diagnostic and quantile-quantile plots of the final models 

on a green and oven-dry basis indicate the assumptions of equal variance and normality 

were satisfied. 

Compared to published green and oven-dry basis equations, the local equation 

produced the most accurate predictions of green ash biomass for the Northern Front Range 

sample trees. Differences between mean MB and PB, percent over- or underprediction, and 

SD of residuals for the four green-basis equations and five oven-dry basis equations that 

predicted values that were not significantly different from observed values along with the 

local green-basis and oven-dry equations are presented in Table 3-6.   

3.4.3 Locally-derived average specific gravity and moisture content of green wood 

Specific gravity was measured on a green (basic) basis. Specific gravity values for 

the trees sampled for this study range from 0.43 to 0.74 with a mean of 0.57 (SD 0.11). The 

average value for specific gravity for trees in this study is higher than that of the published 

value of 0.53 (Markwardt, 1937; Miles and Smith, 2009), is in the upper range of the values 

used by Jenkins et al. (2003) for mixed hardwood species, and is higher than the value of  
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Table 3-6 Comparison of published equations and Northern Front Range predictive equations on a green and an oven-dry basis 

Equation source Difference from MB (kg) Standard deviation of the errors (kg) Average over- or underprediction MAD (kg) RMSE (kg) 

Green basis equations 
Northern Front Range green DBH 8.7 359.2 +0.8% 217.4 359.3 
Schlaegel green DBH -43.8 414.5 -4% 253.8 64.3 
Olson-Jenkins refit DBH + height 45.0 446.4 +4% 262.2 448.7 
Schlaegel volume DBH 103.7 492.4 +10% 264.0 77.6 
Olson-Jenkins refit DBH 270.7 561.3 +26% 342.0 623.2 

Oven-dry basis equations 
Northern Front Range oven-dry DBH 4.6 244.3 +0.2% 138.8 244.37 
Chojnacky 26.5 303.6 +4% 171.9 304.7 
Schlaegel volume DBH -51.6 276.8 -7% 168.8 281.6 
Jenkins 79.1 356.4 +11% 196.2 365.1 
Schlaegel oven-dry DBH -89.5 270.8 -12% 169.6 285.2 
Bunce – Meathop 111.7 380.3 +15% 211.2 396.3 
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0.55 used by Chojnacky et al. (2014) for the Oleaceae family grouping that contains green 

ash. Moisture content values of green wood ranged from 7% to 55% with an average value 

of 41% (SD 7.5%), which is lower than the average moisture content of 57% published in 

Miles and Smith (2009). 

3.5 Discussion 

3.5.1 Some existing biomass equations adequately predict green ash biomass 

A range of over- or underpredictions were associated with the existing green ash 

equations evaluated in this study when applied to trees removed as part of EAB 

management strategies. The published equations developed by Olson (2017) for urban areas 

in the Twin Cities, MN that use DBH and height as predictors of green biomass, and the 

DBH-only green biomass and volume equations developed for trees in the Mississippi Delta 

region by Schlaegel (1984), performed well when predicting green ash biomass on a green 

basis for the trees sampled for this study. Conversely, the volume equation developed by 

McHale et al. (2009) for Fort Collins, Colorado overpredicted biomass on both a green and 

an oven-dry basis. McHale’s equation was developed using only healthy trees with full 

crowns. Trees sampled for the present study were removed as part of emerald ash borer 

response plans. This often meant that the trees removed were small and/or in poor 

condition due to any number of factors, including excessive dieback, damage related to 

weather events or mechanical injury, or damage caused by insects or diseases. These trees 

were also pruned to varying degrees, so may contain less biomass relative to DBH than the 

trees in the McHale et al. (2009) study. 

The Schlaegel equations represent trees growing in forested areas where crowding 

increases competition, leading to taller trees with narrower crowns. Furthermore, these 

trees would experience reduced edge effects, such as exposure to wind, which leads to 

higher trunk biomass and less branchiness in the crown. Therefore, they are less likely to 
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represent healthy, open-grown trees with full crowns. However, this may explain why these 

models adequately predicted biomass of the trees sampled for this study as many had 

reduced crowns.  

The Olson (2017) DBH and DBH-height equations, which performed well when 

predicting green biomass of the sample trees, were refits of the general hardwood equation 

developed by Jenkins et al. (2003). Interestingly, Olson’s measurements were based on 

green biomass of urban green ash trees, whereas the Jenkins et al. (2003) equation 

explicitly states that model parameters are based on oven-dry biomass, and all equations 

used by Jenkins et al. (2003) were forest-derived. 

Brenneman’s biomass equations were developed for white ash (F. americana). White 

ash wood has a slightly higher specific gravity than green ash wood (0.55 and 0.53, 

respectively), which may account for the overprediction in both green and oven-dry 

biomass. On average, white ash is a larger tree compared to green ash and may reach 

mature heights of over 30.48 meters (100 feet) (NPIN, 2013; Schlaegel, 1984; USDA, NRCS, 

2018). Given the Brenneman equations use only DBH as a predictor, height may be a factor 

in the systematic overprediction of biomass produced by these equations if the trees were 

significantly taller on average than green ash which reaches heights of 15.24 to 21.34 

meters (50 to 70 feet) at maturity. 

The urban equations developed by Pillsbury (1998) for Modesto ash (F. velutina), but 

often used for green ash, consistently underpredicted biomass on both a green and oven-dry 

basis. The results presented here correspond with the McHale et al. (2009) study, which 

also found the Pillsbury equations underpredicted biomass of trees in Fort Collins, 

Colorado. Previous studies estimating carbon sequestration using this equation likely 

underpredicted biomass in Fort Collins (McPherson et al., 2005; McPherson, 2007). The two 

Pillsbury volume equations were developed for Modesto ash (F. velutina ’Modesto’) in urban 
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areas of California, U.S.A. Modesto ash is a smaller tree on average than green ash, rarely 

reaching mature heights over 12.19 meters (40 feet) in cultivation (NPIN, 2013). The 

equation that included height did not improve predictions, indicating differences are likely 

due to factors other than the biomass-height-diameter relationship.  

Miles and Smith (2009) use an average of all specific gravity values for Fraxinus 

species for F. velutina (0.51) because there is not a published value for this species. Specific 

gravity values given by Miles and Smith (2009) for Fraxinus species range from 0.45 for F. 

nigra (black ash) to 0.55 for F. americana (white ash). If the actual specific gravity value for 

F. velutina is closer to the lowest value, it may partially explain why all forms of this 

equation underpredicted biomass for the green ash trees sampled for this study.  

 The Jenkins et al. (2003) hardwood equation uses a grouping of “mixed hardwoods” 

containing 13 genera and 19 species. Wood specific gravities in this group range from 0.32 

(Tilia spp.) to 0.64 (Cornus florida). Species in this grouping differ significantly in form and 

range from small ornamental trees (e.g. Cornus florida) to large-maturing shade trees (e.g. 

Fraxinus spp.). In spite of its lack of specificity compared to other equations developed 

explicitly for green ash, it performed well when predicting biomass on an oven-dry basis. 

This was also true of the equation developed by Chojnacky et al. (2014), which is also a 

generalized equation, though it is slightly more specific in that it is meant for trees in the 

Oleaceae family with specific gravity < 0.55, which includes green ash. MacFarlane (2015) 

notes that generalized mixed-species models may outperform species-specific models when 

trees of anomalous forms are included in the sample set. He suggests that this is because 

generalized mixed-species models are developed using individuals that vary widely in form 

and thus better represent the morphological variation of atypical trees. 
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3.5.2 The green basis Northern Front Range predictive equation for green ash is 

recommended for emerald ash borer mitigation activities 

The Northern Front Range biomass equations presented here provided the most 

accurate estimates of urban green ash trees removed as part of EAB mitigation strategies 

(Table 3-6). Most of the urban forest residues currently disposed of are done so immediately 

or soon after the tree is removed. For this reason, measuring wood waste on a green basis 

may be more appropriate for municipal urban wood disposal budgeting purposes. Since 

EAB larvae feed in the phloem of the tree, thus cutting off the movement of water and 

decreasing a tree’s moisture content, there may be some concern regarding the green 

model’s accuracy when used to estimate costs associated with the disposal of EAB infested 

trees. However, many publicly-managed trees will be removed before they are in steep 

decline as the structural integrity of trees infested with EAB quickly deteriorates, making 

them a threat to public safety. In addition, several of the trees removed for this study were 

planted in unirrigated open space or in parking lots with limited irrigation, therefore 

representing typical growing conditions of trees likely to be removed by municipal forest 

managers. The local oven-dry wood predictive equation presented here can be used to 

estimate biomass of standing dead trees.  

It was decided that the trees collected for this study should be representative of the 

population of trees that will routinely be removed due to regular maintenance activities; 

therefore, trees were not selected based on their ability to represent the average green ash 

tree growth form. They were instead included in the sample because they were previously 

identified for removal as part of cities’ scheduled maintenance activities, and thus better 

represent trees that would typically be removed. Likewise, the variety of sites from which 

trees were removed (irrigated park sites, road-side planting strips, parking lots) adequately 
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represent public areas in which trees are routinely planted in urban areas, and for which 

maintenance responsibility falls to municipalities and other resource managers. 

An oven-dry equation is presented here as oven-dry status is the standard for most 

research purposes. From the oven-dry state, moisture content can be adjusted as needed to 

accommodate a variety of uses. For instance, standing dead trees or downed trees left 

outdoors can be adjusted using a known equilibrium moisture content for the region, which 

for Denver, Colorado varies monthly from 9.4 -11.0% (Simpson, 1998). 

3.5.3 DBH-only model for urban tree biomass estimation 

When developing biomass equations, Bunce (1968), Zhou (2007), and others have 

advocated for choosing fewer predictor variables that are easy to measure and are good 

predictors of biomass in order to balance accuracy of estimation with labor cost associated 

with taking tree measurements and likelihood the equation will be used. Harrell (2015) 

notes one of the most common reasons predictive models do not get used is because input 

variables (measurements) required to use the model are not part of normal data collection.  

While height is often included in tree biomass equations, some studies have 

indicated errors associated with height are generally larger than those associated with 

DBH which can reduce its usefulness as a predictor (Chave et al., 2004; Ducey, 2012; 

Weiskittel et al., 2015), or simply does not add to model accuracy, especially on a local scale 

(Paul et al., 2016; Yoon et al., 2013). With the exception of the Olson DBH-height equation, 

the equations that included both DBH and height measurements produced less accurate 

predictions than those that included only DBH. Furthermore, Peper et al. (2001) found that 

pruning practices for urban street trees, whether for management or aesthetics, varied 

widely across locations and had more of an effect on allometric relationships than did soil or 

climactic conditions. The difficulty in characterizing varying management regimes in urban 
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areas makes height an unreliable variable on which to base allometric relationships as it is 

inherently unstable due to management interventions. 

The goal of this study was to produce a model that would be widely used by urban 

forest managers. Given DBH is a measurement routinely collected as part of normal tree 

census data whereas dieback and branching height are variables rarely collected by 

practitioners except for reasons related to research, the DBH-only equation is 

recommended. 

3.5.4 Locally-derived green ash specific gravity and average moisture content 

differs from published values 

Average specific gravity for destructively sampled trees (0.57) was 7.5% higher than 

the widely used published value of 0.53 (Markwardt, 1937; Miles and Smith, 2009). The 

large range in specific gravity values found for trees in this study (0.43 to 0.74) likely 

reflects differences in growth rates due to considerable differences in site conditions and 

management regimes. The trees sampled were growing in parking lots, unirrigated open 

space, irrigated parks and rights-of-way. It was unclear whether some parking lot and 

right-of-way trees were irrigated.  

Zhou et al. (2011) used forest-derived specific gravity values to convert volume to 

biomass for open-grown trees in an agricultural shelterbelt, including green ash. Zhou et al. 

(2011) found that using forest-derived specific gravity for volume to biomass equations for 

open-grown green ash trees in the same region led to an underprediction of trunk volume 

by 8.0%. Like the shelterbelt trees in the Zhou et al. (2011) study, urban trees are typically 

open-grown, and have larger canopies that are subjected to greater wind loads. This results 

in greater strain in the stem and a higher incidence of reaction wood, which in turn is 

associated with an increase in specific gravity (Burton and Smith, 1972).  
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In addition, Zobel and van Buijtenen (1989) note that, while there is some 

disagreement on the subject, it is generally thought that growth rate is positively correlated 

with higher growth ring specific gravity in ring-porous hardwoods, a group that includes 

ash species (also Markwardt and Wilson, 1935). Trees growing in urban locations that are 

actively managed receive supplemental water and nutrients and so may exhibit faster 

growth rates, another factor leading to an increase in specific gravity (Zhou et al., 2011). 

Specific gravity values for urban-grown trees are absent from the literature. The 

average specific gravity value for the trees sampled for this study can be used in volume-to-

mass conversions for urban tree biomass estimation. The U.S.D.A. Forest Service Forest 

Inventory and Analysis (FIA) Program relies on volumetric estimations of standing trees. 

Currently, specific gravity and density values presented by Miles and Smith (2009) are the 

standard by which estimates are made for many tree species in both natural forests and 

urban forests in the United States, including those produced by the FIA Program. This 

study presents the opportunity to use a specific gravity value that was locally developed in 

future urban biomass volume estimates for Colorado’s Northern Front Range. 

3.6 Conclusions 

Local biomass prediction models presented here will better predict green ash 

biomass of trees removed in urban areas of the Northern Colorado Front Range due to 

emerald ash borer mitigation activities. The comparison presented here of existing 

predictive models for green ash used in past urban biomass prediction studies illustrates 

that caution should be used when applying biomass equations outside of the locations and 

conditions for which the equations were developed, and broad corrections should not be 

applied to predictions produced by those equations without first understanding how the 

equations perform given local conditions.  



 53 

A locally-derived specific gravity value that averaged 0.57 for urban green ash wood 

was 7.5% higher than forest-derived values. This local specific gravity value can be used to 

improve biomass estimates in urban areas of Colorado’s Northern Front Range. In addition, 

specific gravity influences wood utilization and is of interest to the forest products industry 

because many other wood properties are affected by specific gravity. As such, when EAB 

becomes more widespread in Colorado and ash trees are killed, there will be a need to find 

uses for the wood and this value may prove important. Lastly, a locally-derived average 

moisture content value was 41% and is thought to more accurately reflects conditions in 

arid temperate climates, such as Colorado’s Northern Front Range. 

Overall, the findings presented here add to an important and growing body of work 

that seeks to provide a greater understanding of the differences between urban-grown 

versus forest-grown trees, as well as the challenges associated with using forest-derived 

metrics for urban tree biomass estimation. 
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APPENDIX A: SCATTERPLOTS 

 
 

Scatterplots of observed biomass for each of the 42 destructively sampled trees and 

predicted weights from green and oven-dry basis published equations. Panel A is a fitted 

trend line for observed biomass. Panel B contains fitted trend lines for predicted biomass 

from the forest-derived equations. Panel C contains fitted trend lines for predicted biomass 

from the urban equations. Panel D contains fitted trend lines for predictions from all 

published equations. Note that forest-derived equations both over- and underpredict 

biomass of the 42 sample trees indicating broad-based corrections such as those proposed 

by Nowak (1994) and Zhou (2011) may not be supported. 
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Figure 3-4 Scatterplots for observed green biomass and predicted biomass from green basis equations for the 42 destructively 
sampled trees. 
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Figure 3-5 Scatterplots for observed oven-dry biomass and predicted biomass from oven-dry basis equations for the 42 
destructively sampled trees.
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APPENDIX B: BOX AND WHISKER PLOTS 

 
Box and whisker plots representing the distribution of the residuals for predicted 

biomass. Boxes represent the interquartile range. The center line of each box represents the 

median value. Dots represent outliers, which are defined as points that are 1.5 times the 

interquartile range. The p-values were adjusted using the Holm method to account for 

multiple comparisons. Boxes and whiskers with less spread (variability), i.e., closer to zero 

with the median centered on zero, indicate predictions more closely matched observed 

values (accuracy). More evenly distributed whiskers and outliers indicate literature 

equation precision, i.e., lower bias.  
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Figure 3-6 Box and whisker plots representing the distribution of the residuals for green basis published equations. 
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Figure 3-7 Box and whisker plots representing the distribution of the residuals for green basis published equations. 
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