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ABSTRACT 

 

HABITAT ESTIMATION THROUGH SYNTHESIS OF SPECIES PRESENCE/ABSENCE 

INFORMATION AND ENVIRONMENTAL COVARIATE DATA 

 

This paper investigates the statistical model developed by Foster, et al. (2011) to estimate 

marine habitat maps based on environmental covariate data and species presence/absence 

information while treating habitat definition probabilistically.  The model assumes that two sites 

belonging to the same habitat have approximately the same species presence probabilities, and 

thus both environmental data and species presence observations can help to distinguish habitats 

at locations across a study region.  I develop a computational method to estimate the model 

parameters by maximum likelihood using a blocked non-linear Gauss-Seidel algorithm.  The 

main part of my work is developing and conducting simulation studies to evaluate estimation 

performance and to study related questions including the impacts of sample size, model bias and 

model misspecification.  Seven testing scenarios are developed including between 3 and 9 

habitats, 15 and 40 species, and 150 and 400 sampling sites.  Estimation performance is 

primarily evaluated through fitted habitat maps and is shown to be excellent for the seven 

example scenarios examined.  Rates of successful habitat classification ranged from 0.92 to 0.98.  

I show that there is a roughly balanced tradeoff between increasing the number of sites and 

increasing the number of species for improving estimation performance.  Standard model 

selection techniques are shown to work for selection of covariates, but selection of the number of 

habitats benefits from supplementing quantitative techniques with qualitative expert judgement.  



iii 

 

Although estimation of habitat boundaries is extremely good, the rate of probabilistic transition 

between habitats is shown to be difficult to estimate accurately.  Future research should address 

this issue.  An appendix to this thesis includes a comprehensive and annotated collection of R 

code developed during this project. 
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CHAPTER 1:  INTRODUCTION 
 

1.1  Background 
 

The research described in this paper relates to the model for habitat estimation developed by Foster, et 

al. (2011).  They developed a statistical model that uses species presence/absence information, as well 

as environmental covariate measurements from a set of sampled sites to define both habitat 

characteristics and habitat boundaries while explicitly accounting for uncertainty.  An attractive feature 

of this approach is that we do not need to restrict our view to looking at one species at a time, nor are 

we basing our habitat definition solely on the environmental factors of the study region.  Rather, this 

model can incorporate both biological and environmental information to define and locate habitats.  

Thus, habitats are estimated from more of an ecosystem viewpoint than a physical or spatial viewpoint.  

The model is described in detail in Section 2.1. 

 

The work I describe here pursues several different avenues of research related to this model.  Primarily, 

I develop and study model performance for several examples, both simple and challenging.  Study of 

these examples is done via Monte Carlo simulation in many cases.  These scenarios demonstrate the 

model’s range of flexibility and illustrate methods for the challenging task of parameter estimation.  

Also, I illustrate specific issues such as the use of the model including sample size effects, model 

selection, choice of starting parameter values, and convergence of the estimation algorithm.  Finally, I 

present code and documentation used for my research.  These items are given in the Appendix. 

 

1.2  Motivation 
 

Suppose that we are asked to advise resource managers and policy makers about the spatial location of 

species habitats or related ecosystems within a larger spatial domain.  For example one might seek to 

understand the composition of fish species that might be found at various locations throughout the 

Great Barrier Reef.  The distribution of species across locations may be seen as being dependent upon, 

or as a de facto definition of, habitats.   
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Imagine that we have access to a data set comprised of presence/absence information for a collection of 

species observed (or not observed) at a sample of locations throughout the Great Barrier Reef.  Further, 

assume that for each site we can obtain several physical covariates that are relevant to marine life, for 

instance, salinity, water temperature, pollutant levels, etc.  Such covariates are measured only at species 

sampling sites.  The model discussed in this paper allows us to incorporate both types of information 

into habitat estimation and prediction of species presence probabilities within habitats.  

 

In fact, there is nothing fundamental to the model itself that requires that we study marine habitats, or 

even habitats at all.  We could easily apply this method to animal and/or plant habitats on land without 

any change to our conceptualization of the model.  We could replace species data with mineral 

presence/absence data and use the model to estimate maps of mineral families across the Rocky 

Mountains.  For simplicity, I will refer to the baseline context of marine habitats characterized by species 

presence/absence for the remainder of the paper. 

 

There are two types of data used by the model.  First we need binary presence/absence data for the 

species whose joint presence probabilities are used to distinguish our habitats.  Second, the model 

requires covariate data for each of the locations in the sample.  It is important to note that these data 

need not be sampled over some grid.  Locations may be chosen by convenience. 

 

It is worth noting from the outset that the two broad questions that we want to address with this 

model, namely the character and the location of habitats, are actually deeply interrelated.  Specifically, if 

we describe a set of habitats differently in terms of characterizing species presence probabilities, it is 

natural that the habitat boundaries will be different as well.  The converse is equally true.   
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Figure 1.2.1:  Colorado Map1 with two competing habitats and a sample of sites with mock species 

presence/absence data.  

 

Throughout the exercises described in this paper, plots and maps are indispensible tools in 

understanding the model.  Figure 1.2.1 visually introduces the concept of probabilistic habitats 

competing over a map of Colorado.  We see two habitats, represented by blue in the east and purple in 

the west.  For each, darker colors represent greater probability that the location truly corresponds to 

that particular habitat.  We also see a sample of sites taken from across the state (dots).  At each 

sampled location a binary vector of species presence/absence observations is displayed (1 representing 

presence, 0 for absence).   Sites that share a tendency toward a common habitat are generally expected 

to share a similar set of species observed.  As described mathematically in Section 2.1 and developed 

through examples in Chapters 3 and 4, the model in Foster et al. naturally allows for habitats to overlap 

in the sense that we see here in Figure 1. 

 

 

 

  

                                                           
1
  Underlying map Image found at  http://geology.com/state-map/colorado.shtml on August 17, 2011 
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Figure 1.2.2:  Example of habitat estimation for a 9 habitat system. 

 

Figure 1.2.2 is an example of the type of habitat scenario that can be estimated with the model and 

likelihood optimization algorithm described in this paper.  While much more explanation is required to 

fully understand these plots, a cursory description can be understood now.  The left-hand plot above 

displays a study region with 9 color-coded habitats.  Through maximum likelihood estimation using the 

framework of this model, we obtain the estimated habitat map displayed in the right-hand plot.  Clearly, 

extremely good results can be obtained for some analyses. 

 

  



5 

 

 

 

CHAPTER 2:  A STATISTICAL MODEL FOR IDENTIFYING HABITATS 
 

The formal statistical model examined in this paper was developed by Foster et al. (2011).  It is essential 

that a full formulation be provided here as well to understand what follows.  Thus in the following 

section I describe the model which the authors began developing in 2009.  The authors have granted me 

permission to describe their model in language that is, in large part, the same as theirs.  Description of 

my own work will continue again in Section 2.2.   

 

2.1  The Model 
 

Let us begin by considering presence/absence information for S species at n locations throughout the 

study region.  If at a given site, i = 1…n, we find the presence of a given species, j = 1…S, we denote yij = 

1.  Conversely, if species j is absent at site i, we let ��� = 0	.  Thus �� = (��	, … , ���)� is the binary vector 

of presence/absence data for all j species at the i
th site.  Next, consider a set of p physical covariate 

measurements at each of the n locations in our sample of sites, namely �� = (��	, … , ���)� .  Suppose 

further that there are H habitats in the study region and for the sake of exposition assume that site i is a 

member of habitat h.  This extra assumption will be relaxed during the development of the model.  The 

goal of this analysis is to incorporate both the presence/absence and covariate information to model 

presence probabilities and habitat definition. 

 

Temporarily ignoring the information about habitats contained in the covariate data—which will later be 

used—Foster, et al. argue that the effect of such information is manifested in species distributions.  

Specifically, a habitat can be defined as a region of environmental space that has approximately 

constant presence/absence probabilities for each species.  Further, these probabilities are 

distinguishable from those of other habitats.  The authors of this model believe that directly linking 

species distribution to habitat definition is a more defensible approach than simply correlating habitat 

definition to covariate data. 
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The model assumptions specify that, within habitat h, the probability of detection for the jth species is 

constant.  That is to say 

������site	�	is	in	habitat	ℎ = !�" = #$%�&'	�(� +	*�" = 	 exp	{(� +	*�"}1 + exp	{(� +	*�"}																			(1) 

where !�" 	 ∈ 10,12 and  ∑ *�" = 0"  for the jth species.  (� is the mean presence probability for species j 

across all habitats while *�" is the habitat specific contribution to species j’s presence probability within 

the hth habitat.  In accordance with our definition of habitats, there are no terms involving i on the right 

hand side of (1) since species probabilities are assumed to be constant within a (known) habitat.  

However, that statement is conditional on habitat-knowledge that is, in fact, not known prior to 

analysis.  We allow the probability of a site belonging to each habitat to vary with physical covariates.  

The changes in these probabilities alter the marginal distribution produced by the model.  Until that 

dependence is specified (below), covariate effects may be viewed as unexplained variation.  

 

Later, when I estimate these model parameters, it will be convenient to group the (� and *�" into one 

parameter matrix.  I denote this matrix of species presence probability contributions as A, and define: 

	4�×(67	) = 8	(	 *		 … *	6⋮ ⋮ ⋱ ⋮	(� *�	 … *�6;																																																										(2) 

Now we admit that we do not know which habitat site i belongs to.  We introduce a random vector for 

each site, =� = (>�	, … , >�6)�, that identifies site i to its unobserved habitat.  The elements of any single 

zi are all zeros except one element, which equals one in the hth position when the ith site belongs to the 

h
th habitat.  It is important to understand from the outset that while we assume that each site truly 

belongs to a single habitat, we concede that we will never know this relation with certainty.  Later we 

will introduce a model component that allows a smooth probability map for habitats rather than the 

hard-edged partition implied by the zi. 

 

The model for yi conditional on habitat type can be expressed as 

 

�(��|=�) = 	@ >�"A•"
6

"C	 																																																																											(3) 
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where logit(A•") = (H	 + *	", HI + *I", … , H� + *�")�	 using the obvious notation.  Note that equations 

(1) and (3) are equivalent but (3) directly incorporates habitat type. 

 

Recalling that zi is not observable, the unconditional expectation is required.  It is obtained via 

 

�(��) = ���(��|=�) = � 8@ >�"A•"
6

"C	 ; = 	@J�"A•"
6

"C	 																																									(4) 

 

where the outer expectation is with respect to zi, the inner expectation is with respect to yi|zi and L� = (J�	, … , J�6)� is the expectation of zi, where the elements of πi sum to one for any site i.  This 

corresponds to the expectation of a standard mixture model (McLachlan & Peel, 2000). 

 

Equation (4) implies that the modeled value of probability of presence for all the species at site i is a 

weighted average of each habitat’s modeled probability.  The weights are prescribed by the probability 

of the site belonging to the different habitat groups.  The authors feel that this aspect of the model is 

important as it implies that each site is not deterministically assigned to any one habitat, thereby 

allowing a smooth map of, in essence, the relative degree to which a site is characteristic of the various 

habitats.  It also allows uncertainty in habitat membership to naturally be incorporated in the model 

output. 

 

The full distribution of the observations can be completed with further assumptions about the 

distributions of zi and yi|zi.  We assume that zi is a single draw from a multinomial distribution with 

mean parameters πi.  For the distribution of yi|zi, we assume an independent Bernoulli distribution for 

each species with mean as in (3).  Accordingly each of these distribution assumptions will be a source of 

variability.  The unconditional distribution of all species’ data at site i is 

 

M(N�; P� , A) = @M(��|>�" = 1;A•")Q1>�" = 1;P�26
"C	 																																										(5) 

 

Note that (5) describes the presence probabilities at the i
th site only, where A = (A�	, … , A�6) is the S × T matrix of binomial means.  When multiple sites are considered we allow the possibility that 

habitat membership probabilities depend on the covariates available to delineate the sample locations.  

This is done by considering a link-linear model 
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 P� = %(��; U)																																																																											(6) 

 

where U is a matrix of parameters with dimension W × (T − 1) and g maintains the constraint that the 

elements of P�  sum to one for each i. 

 

A suitable choice for g is the additive logistic function (Aitchison, 1982), which is sometimes referred to 

as the multinomial logit (Kedem & Fokianos, 2002), and is specified through a model for the site 

membership probabilities 

 

Pr(>�" = 1	|	��) = π�" =
\]̂
]_ exp	(���U•")1 + ∑ exp	(���U•")6'	"C	 	,					�M	1 ≤ ℎ ≤ T − 1
1 −@ π�"6'	

"C	 ,																					�M	ℎ = T																 																																(7) 

 

where U•" is the h
th column of U.  Note that this implies that the final habitat is defined as the 

remainder region where all other habitats are unlikely. 

 

Inference for this model follows from the estimation of the bc", (� and *�" parameters. 

 

2.2  Likelihood Function 
 

Having reviewed the model of Foster et al. (2011), I now turn to the tasks of fitting the model through 

the maximum likelihood method and examination of its performance.  This section will develop the 

likelihood function associated with this model.  At this point, and everywhere hereafter, I resume with 

my own work.  The likelihood function for the ith site is 

M(��; L�, A) 		= 		M 8d��	⋮���e ; d
J�	⋮J�6e , A; 		= 		@ fM 8d��	⋮���e	|	>�" = 1; d!�	⋮!�6e;Q 8>�" = 1; dJ�	⋮J�6e;g

6
"C	

= 		@hijM����|>�" = 1; !�" �
�C	 k Q i=� = (0…1…0); dJ�	⋮J�6ekl

6
"C	 			.																																		(8) 

where the 1 occurs in the hth position of the zi vector in the final expression, and the last equivalence is 

true by the conditional independence of species within habitat.  Using the assumptions that yi|zi has an 
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independent Bernoulli distribution and zi is a single draw from a multinomial distribution with mean 

parameters πi, we can further say that (7) is proportional to 

@hij!�"nop�1 − !�" 	'nop�
�C	 k J�	qor …J�"qos …J�(6'	)qo(tur) v1 −@ J�"∗6'	

"∗C	 x	'∑ qos∗turs∗yr l	.6
"C	 												(9) 

Because all but one of the zih (h=1…H) for a given site i is equal to zero, only the J�"qos  term corresponding 

to the hth habitat will differ from  J�	{ = 1.  Moreover, since >�" = 1 when the ith site belongs to the hth 

habitat, the term that remains can be reduced to the membership probability, J�", itself.  Finally, the 

joint likelihood based on all n sites can be written as 

j{|	}	 + |I}I +⋯+|6}6}�
�C	 																																																													(10) 

where 

|" = j!�"nop�1 − !�" 	'nop�
�C	 ,															ℎ = 1…T 

and 

}" =
\]̂
]_ exp	(���U•")1 + ∑ exp	(���U•")6'	"C	 	,					�M	1 ≤ ℎ ≤ T − 1

1 −@ π�"6'	
"C	 ,												�M	ℎ = T		.  

Putting these parts together, the overall likelihood is: 

jhij!�	nop�1 − !�	 	'nop�
�C	 k exp	(���U•	)1 + ∑ exp	(���U•")6'	"C	 + ⋯�

�C	
+ ij!�(6'	)nop �1 − !�(6'	) 	'nop�

�C	 k exp����U•(6'	) 1 + ∑ exp(���U•")6'	"C	
+ ij!�6nop�1 − !�6 	'nop�

�C	 k �1 − exp(���U•	)1 + ∑ exp(���U•")6'	"C	 − ⋯− exp����U•(6'	) 1 + ∑ exp(���U•")6'	"C	 �l	.					(11) 

In the next section I develop a method to estimate the model parameters via optimization of this 

likelihood function. 
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2.3  Estimation Algorithm 
 

I use maximum likelihood estimation to fit the bc", (� and *�" parameters that characterize the 

modeled habitats and presence/absence probabilities.  Right away we notice that this can be a very 

large estimation problem.  The B parameter matrix is of size W × (T − 1), where p is the number of 

covariates that describe each site.  I group the related (� and *�" parameters into one matrix, denoted A 

(see equation (2) in the previous section), where the first column contains αj’s and the subsequent H 

columns contain the τjh’s.  There is one row for each species, thus the A parameter matrix is of size S × (T + 1).  However, since I constrain the sum of the τjh’s to equal zero, we only need to estimate the 

first H columns of this matrix.  All told, we must estimate W × (T − 1)	+ 	S × T parameters.  In the case 

of a realistic Great Barrier Reef data set, this could be more than 4,000 parameters2. 

 

The method used here employs a blocked non-linear Gauss-Seidel algorithm (Givens & Hoeting, 2005).  

In other words, the strategy is to optimize our parameter matrices cyclically one set at a time.  In 

particular, I define a block to include one row in the A parameter matrix or one column in the B 

parameter matrix.  Then I optimize over that set of parameters while holding the rest fixed at their 

current value.  Since rows correspond to species in the A matrix and columns to habitats in the B matrix, 

a total of S + T − 1	 individual optimizations must be performed to include all parameters we wish to 

estimate at this stage.  By utilizing this strategy, a potentially very large optimization problem has been 

broken into many manageable optimization tasks, each of size p or H parameters.  Having completed 

this process for each row, I repeat the process starting back at the first row in the A parameter matrix.  

Algorithm iterations continue like this until convergence is reached.  Algebraically, this process can be 

specified as: 

1) Assume U{ = U{,�×(6'	)			and				4{ =	4{,�×6  

2) Let j=1 and   4�•,������ = 	arg�H���p• �((, *, b|�, �)   

3) Set 4�,	:6 	= 	4�•,������ 

4) Let   4�,(67	) = 	−� �4�c 6cCI  

5) Repeat steps 2-4 for j=2…S 

                                                           
2
 From the beginning of my work with the project, the goal of the development of this model has been to 

eventually apply it to at least one of three real marine species datasets from Australia.  The largest set is Great 

Barrier Reef data with approximately 1200 sites, 200 species, 13 covariates and 15-20 habitats.  Two smaller sets 

are for a Southeast Australian fishery and a Northwest Australian fishery, each of which having on the order of 120 

sites and 100 species.  The scenarios developed for this paper keep this motivation in mind, but tackle more 

manageable examples while investigating the possible effects of increasing S, H and/or n. 
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6) Let h=1 and   U•",������ =	arg�H�U•s �((, *, b|�, �) 

7) Set U•" 	= 	U•",������ 

8) Repeat steps 6 and 7 for h=2,…,H-1 

9) Repeat steps 2-8 until convergence 

10) Final matrices are U�  and 4� 

A coded version of this algorithm can be found in Appendix A. 

 

I considered a relative convergence criterion to halt the algorithm when it appeared to converge 

(hopefully to the MLEs).  This criterion was to stop when the following expression was satisfied: 

���� = �H�c," 1H��(�c")2 < �									H��									���� = �H��," �H�����" � < � 

where �c" is the k, h element of  
����'� ¡�¢o£¤¥� ¡�¢o£¤¥7¦   and ��" is the p, h element of  

����'� ¡�¢o£¤¥� ¡�¢o£¤¥7¦ .  

I set ε=10-5 which ensures against dividing by zero, and δ is set to 10-6 for the examples in this paper. 

However, in practice I typically found that this algorithm converges fairly rapidly and clearly (i.e. in 3 or 4 

iterations), so monitoring the RCC was not essential.  The topic of convergence will be discussed further 

in Section 4.3.7. 

 

As seen in Appendix 1, each individual optimization step is done using the optim() function in R.  While I 

experimented with BFGS, conjugate gradients and simulated annealing, I used the Nelder-Mead method 

for every example displayed in this paper because it provided the most consistent results.  The 

likelihood surface for the model is very complex and high-dimensional, so a more thorough study of 

optimization techniques would be an interesting topic for further investigation.   
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CHAPTER 3:  SIMULATION STUDIES 
 

3.1  Introduction 
 

In this chapter I will describe simulation studies I used to evaluate the model and better understand its 

strengths and weaknesses.  In Section 3.2, I will introduce some of the simulation-estimation factors that 

will be investigated later on.  Section 3.3 will list and describe each of the habitat scenarios whose 

estimation results will be presented in Chapter 4.  This chapter will additionally serve as a primer for 

understanding some of the plots that will be relied on heavily to describe these habitat scenarios and 

the results of estimation.  

 

The first step in the simulation process is to create a testing (‘truth’) scenario.  By scenario, I mean a set 

of maps of the probabilities of each habitat over spatial and covariate regions, along with species 

presence probabilities within each habitat.  Specifically considering a single habitat, this truth is created 

by inventing both a set of bc" parameters, which define the probabilistic shape and location of the 

habitat within the study region, and a set of (� and *�" parameters which determine the underlying 

presence probabilities for each of the species considered within this habitat.  The leftmost plot in Figure 

3.1.1 is an example of a map for a single habitat under a specific set of characterizing bc" parameters.  

Red represents areas where this particular habitat has a very high probability of existence and blue 

indicates very low probability for that habitat.  Intermediate colors indicate the transition between 

these extremes. 

 

The second step of the simulation process here is to generate random data consistent with the assumed 

‘truth’.  First, we must draw a sample of sites from the study region.  Then for each site we sample other 

relevant covariate data and binary species presence/absence information.  Note that for my work, there 

is no difference between considering spatial coordinates versus covariate values because one could 

imagine a direct mapping from the latter to the former.  Therefore, I use the spatial coordinates 

(longitude and latitude) as the covariate variables hereafter without loss of generality.  For the purposes 

of the examples in this paper, the covariate data are sampled uniformly over the spatial extent of the  
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Figure 3.1.1:  Illustration of an underlying testing (‘truth’) scenario. 
 

 

study region.  As previously stated, however, this site sample may be chosen by convenience in practice.  

The presence/absence data are generated from Bernoulli trials with success probabilities being our 

species presence probabilities, namely !�" = #$%�&((� + *�")	for the jth species in the hth habitat.  At this 

point we ‘forget’ the truth that we’ve invented and fit the model to the simulated data to evaluate how 

well the bc", (� and *�" parameters can be estimated. 

 

It is important to realize that sites are not actually assigned to a particular habitat.  The habitat at a 

specific location is a random variable whose distribution depends on the covariates.  Therefore each site 

is only probabilistically related to each habitat.  Section 3.3 will introduce a way to classify sites into 

specific habitats artificially for the purpose of conceptualization of the scenario, and to provide a useful 

diagnostic plot to understand model performance.   

 

 

3.2  Factors Investigated Through Simulation 
 

There are several settings we can adjust (in terms of parameter assumptions, size and complexity of the 

truth scenario, algorithm execution options, etc.) that affect how the scenario creation, simulation, and 

estimation processes operate.  The following is a list of factors that we must consider as we conduct 

simulation and Monte Carlo investigation.  With a change in some of these factors, we expect a change 

in our ability to estimate successfully.  These effects will be investigated directly in chapter 4 through 

specific scenarios.  Where applicable, the strategy for each factor that is employed throughout the 

examples in this paper is described.   
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3.2.1 Quantity and Complexity of True Habitat Maps 

Perhaps the most important factor to be decided on in a given problem is the number of habitats, H.  

With an increase in H, the size of both the A and B parameter matrices grow, thus making the estimation 

task considerably more demanding.  Examples in this paper will contain between three and nine 

habitats.  An interesting topic is misspecification in the number of habitats between truth and model.  

Section 4.3.5 explores this topic.  The potential for using model selection methods to choose the 

number of habitats will be discussed as well. 

 

Since the U parameter matrix of covariate coefficients defines the habitat maps and we are interested in 

the types of habitat shapes that can be invented in this framework and estimated by this model, a focal 

point of my investigation will be to consider several quite distinct true habitat scenarios.   For each of 

the examples in this paper I include just two independent predictors, namely longitude and latitude, 

denoted X1 and X2 respectively.  Even while making this simplification, we can still generate interesting 

habitat maps by introducing polynomial relationships between these two location covariates and habitat 

probabilities (see Section 3.3).  Presumably when using this model with real data, we would have many 

more covariates and covariates that have their own underlying spatial structure.   

 

3.2.2 Random Sample of n Sites 

For each of the examples in this paper we sample sites uniformly across the study region.  

Unsurprisingly, the number of sites in the sample is one of the biggest factors in our ability to estimate 

effectively.  Chapter 4 will present results pertaining to the effect that sample size has on estimation. 

 

We can easily visualize a situation where a random sample of sites would omit key locations, for 

instance near habitat boundaries.  For this reason, it will also be important to investigate whether site 

location variability affects estimation.  In section 4.3.2 I present the results of Monte Carlo simulation to 

further understand this variability.   

 

3.2.3 Number of Species 

The number of species, S, provides an interesting feature in this model because with an increase in S we 

gain more data as we simultaneously increase the number of parameters that need to be estimated.  An 
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examination of the effect of S on estimation, and specifically the balance between the number of sites 

and the number of species, will be explored in Section 4.3.3. 

 

3.2.4 Choice of Species Prevalences in each Habitat 

Recall that αj and τjh respectively represent the grand mean and habitat-specific adjustment for the 

probability of presence for species j.  Unless otherwise noted in this paper, we adopt the assumption 

that αj=0 for all j.  Given the logit transformation we use to obtain presence probabilities μjh, this 

dictates that the average presence probability across habitats is 0.5 for every species.  The power of 

each species to help discriminate among habitats is therefore isolated in the τjh parameters. 

 

Presumably, habitats are easier to distinguish if less common species in a given habitat are very rare and 

more common species are very common.  Based on this notion, we expect estimation to be easier when 

the magnitudes of the τjh are large.  Note that if τjh=log(x), the odds of finding species j in habitat h 

increase by a factor of x relative to the baseline effect of α alone.  Likewise, if τjh=-log(x), those odds 

decrease by a factor of x.  Unless otherwise stated in this paper we will use ±log(3) for τ values, thus 

making species presence probabilities 0.25 and 0.75.  For simplicity, we draw randomly from these two 

values of τ when creating the truth from which to simulate data.  Note that because of the constraint 

that the τ’s must sum to zero, the last habitat’s specific probability effect need not be ±log(3).  An 

investigation comparing various values of τ will be conducted in Section 4.3.6. 

 

3.2.5 A Note on Model Selection 

Because the addition of either habitats or covariates (including polynomial coefficients, interactions, 

etc.) to the model increases the number of total parameters to estimate, we may, in theory, use 

standard model selection methods to evaluate the inclusion set of either.  Doing model selection on 

covariates is the more familiar of the two topics, and will be investigated in Section 4.3.4.  A study on 

misspecification of the number of habitats can be found in Section 4.3.5. 

 

Model selection may not be feasible in terms of computation time for large scale problems.  The topic of 

computation time will be addressed throughout Chapter 4. 
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3.2.6 Choice of Starting Values for Optimization 

Finding an appropriate and successful strategy for choosing parameter starting values to be fed into the 

optimization algorithm used to find the MLE has proven to be a very challenging topic.  Many different 

strategies were tested and some are compared in Section 4.3.8.  Unless otherwise noted, a single, 

consistent method for choosing initial values will be assumed.  Starting values, A0,jh and B0,kh , for the two 

parameter matrices are selected by drawing randomly from the following two distributions, 

														§{,�"	~	|$©�H# v§�" 	, H��(	§�"2 	)x 							H�� 

b{,c"	~	|$©�H# vbc" 	, H��(	bc"2 	)x	. 
Thus the signal-to-noise ratio (SNR) for the generation of starting values with respect to the true values 

is set at 2.  Of course, such an approach is not possible in real-world applications.  An approach like 

random starts local search might be useful (Givens & Hoeting, 2005).  Later we compare different SNRs 

against one another and to uninformed starting values to understand better how the choice of starting 

values affects optimization. 

 

 

3.3  Testing Scenarios 

In keeping with the motivation for this paper, this section will list and display a collection of habitat 

scenarios that I will later attempt to estimate.  As described in Section 3.2, the methods for choosing 

true values for αj, τjh and covariates are consistent throughout the examples presented (unless 

otherwise stated).  I also assume a set of Bkh parameters that define the shapes and locations of the 

habitats.  In this paper I consider seven different testing scenarios, each of which I introduce with the 

defining B parameter matrix and illustrate with habitat probability plots.  

 

The description of a given scenario requires two last pieces of information, namely the sample of n sites 

across the study region and the simulation of species presence/absence for S species at each site.  

Scenarios listed in this paper employ between 150 and 500 sites, and between 15 and 50 species.  While 

I explore the choice of n and S in Chapter 4, this section will investigate the specification of the Bkh 

parameters through the resultant habitat probability plots. 

 

 

 



17 

 

Scenario #1:  Linear Baseline 

The first scenario includes three habitats and linear probabilistic boundaries for each individual habitat.  

In order to set up a three-habitat example, I only need to explicitly define the first two habitats.  A 

simple, linear, three habitat scenario is constructed by the following B matrix: 

Uª =	 «0 0.4 −0.20 			0 						1¬	. 
This scenario will be referred to as the baseline case throughout the paper.  We will explore many of the 

features and results of this model through the lens of this baseline example.  Estimation for this scenario 

is based on a sample of n=200 sites and S=20 species, results are presented in Section 4.2.1. 

 

It is important to understand how these Bkh parameters combine with the covariate data, X, to generate 

a set of habitat probabilities across the study region.  The first row of BT defines the first habitat in the 

system (I present BT rather than B only to save space).  In this linear case, the three elements in this row 

of B
T correspond, in order, to an intercept contribution, a linear longitude contribution, and a linear 

latitude contribution to the probability that Habitat 1 exists at a given location in our study region.  

Denoting longitude and latitude as X1 and X2, the ith row of the design matrix is 

��ª = (1 �	 �I)	. 
Figure 3.3.1 illustrates the habitats defined by B over a square study region with side lengths of 20 units, 

centered at the origin.  For simplicity, this study region will remain constant throughout the paper.  The 

plots seen here are actually constructed by dividing the study region into a 101×101 grid, taking the 

covariate (location) data in each subregion, and computing a set of probabilities for each grid point.   

 

For now we will inspect habitat probability plots that are generated while ignoring any other habitats in 

the system.  Specifically, the set of probabilities displayed in the plots in Figure 3.3.1 are calculated in 

the following way: π�" = #$%�&'	����U•" ,								ℎ = 1… (T − 1)	 
Habitat probability plots whose probabilities are derived from the standard logistic model—expressed 

separately from the other habitats in the system—will henceforth be referred to as ‘individual logistic 

habitat probability plots/maps’.  As described in Section 3.1, red regions correspond to probability near  
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Figure 3.3.1:  Individual logistic habitat probability maps for Scenario #1 (Baseline Linear). 

 

1, blue to probability near 0, and intermediate colors to intermediate probabilities of habitat h existing 

at a given location.  Note that both of the defined habitats coexist over the same study region.  The third 

habitat, which is defined as the absence of the first two habitats, also exists over this same region.   

 

These plots, illustrate how a vector of parameters, U•" directly define the membership probabilities of 

the h
th habitat across the study region, separately from the other habitats.  Thus, we have not yet 

employed the feature of the model that manages habitat intersection and competition.  A challenging 

topic in the early part of my research was how to take these two autonomous sets of B parameters and 

corresponding pictures, and think about the system of habitats holistically.  Mathematically, it is the 

additive logistic aspect of the model that allows us to require the probabilities of habitat membership to 

sum to one across all habitats for a given site.   

 

The additive logistic model is also the mechanism by which we say that the third habitat is the absence 

of the first two.  Figure 3.3.2 illustrates all three habitats after this transformation.  Imagine stacking the 

three plots of Figure 3.3.2 on top of each other.  The additive logistic model ensures that the three 

habitat membership probabilities at any single location will sum to one.  More explicitly, the 

probabilities mapped in these plots are given by the π�" (h=1…H) defined by equation (7) in Section 2.1.  

I will refer to these images as ‘additive logistic habitat probability plots/maps’ because these three 

pictures become dependent upon one another through the additive logistic model.   
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Figure 3.3.2:  Additive logistic habitat probability plots for Scenario #1 (Baseline Linear). 

 

 

For example, we can see in Figure 3.3.1 that sites in the top right corner of the map have high individual 

logistic membership probabilities for both Habitat 1 and Habitat 2.  This competition is echoed in the 

additive logistic habitat probability plots where these habitats seem to ‘bend away’ from one another in 

the top-right corner of the plots.  Habitat 3 can be found exactly where we should expect it, in the 

bottom left corner where neither Habitat 1 nor Habitat 2 have high probability. 

 

It will not always be necessary to inspect these additive logistic habitat probability plots, but they are 

useful in many cases.  The individual logistic habitat probability plots are a good visualization of the 

actual B parameters, while the additive logistic habitat probability plots more accurately represent what 

this model tries to emulate. 

 

In the interest of parsimonious results, it would be great to have a way to summarize the H additive 

logistic habitat probability maps into a single image.  To this end, I developed a plot that displays the 

most probable habitat across a grid of locations in the study region (these are not sampled sites).  The 

method for choosing the most probable habitat at a given site is simple: each point on the grid is 

assigned to the habitat for which the plurality of additive logistic probability at that point is attributed. 

This graph will be referred to as the habitat classification plot, and for the Baseline Linear example, is 

displayed in Figure 3.3.3.  Black represents the region where habitat one is attributed to locations on the 

grid, while blue does so for habitat two and red for habitat three.   
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Figure 3.3.3:  Habitat classification plot for Scenario #1 (Baseline Linear). 

 

Because of its simplicity, it will often be expedient to look to the habitat classification plot as the chief 

determination of estimation results.  However, we must not forget that there is an uncertainty structure 

that underlies this hard-edged plot.  Two different sets of individual logistic habitat probability plots 

could in fact lead to identical classification plots (see Section 4.3.9). 

 

Scenario #2:  Two Circular Habitats 

This second scenario also includes three habitats but employs linear and quadratic effects in both X1 and 

X2.  The model is specified by the following matrices: 

Uª =	 «−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51¬															��ª = (1 �	 �	I �I �II) 

By introducing a quadratic term for each of the location covariates (in the third and fifth columns of BT) 

we can start to include more complex probability surfaces than planes.  The individual logistic habitat 

probability plots in Figure 3.3.4 show a circular island of high probability for each of the two defined 

habitats.  Estimation results for this scenario are based on a sample of n=150 sites and S=15 species, and 

are presented in Section 4.2.2. 

 

The corresponding additive logistic habitat probability plots, are shown in Figure 3.3.4.  Since there is no 

overlap of high probability areas of Habitat 1 and Habitat 2, these additive logistic habitat probability 

plots are not particularly helpful for understanding  how the three habitats coexist.  For the examples I 

study in this paper whose first H-1 habitats don’t overlap in areas of high probability, I will often omit 

these additive logistic probability maps. 
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Figure 3.3.4:  Individual logistic habitat probability plots (top), additive logistic habitat probability plots 

(middle) and habitat classification plot (bottom) for Scenario #2 (Two Circles). 

 

 

Notice the shape of the third habitat in the additive logistic habitat probability plots.  I think it is 

impossible for a set of parameters conforming to the quadratic polynomial structure of B to result in a 

habitat with this shape, defined directly.  In other words, it is possible that only the first two habitat 

shapes could be parameterized (recall that the third habitat is defined in the model as the absence of 
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the other two habitats).  In fact, this feature proves to be true more often than not in the examples 

listed in this paper.  The ramifications of this idea will be explored in Chapter 4. 

 

Another difference between Scenario #1 and Scenario #2 is the sharpness of the habitat boundaries.  In 

the three-dimensional space where this probability surface exists, we should think of this as the 

steepness of the probability surface.  This steepness can easily be adjusted for a habitat by multiplying 

the corresponding row of parameters in BT by a scalar.  A scalar multiple that is less than one makes 

boundaries broader (i.e. less steep), while a scalar greater than one creates steeper boundaries that 

appear sharper in these two-dimensional habitat probability plots. 

 

Scenario #3:  Cubic 

This scenario employs linear, quadratic and cubic effects in the covariates (X1 and X2 denoting longitude 

and latitude).  The model is specified by the following parameter matrix and (partial) design matrix:  

Uª =	 «			10 			10 −0.4 −0.2 40 −0.07 −0.7−15 −10 			0.4 			0.2 −2 					0.3 0.08¬											��ª = (1 �	 �	I �	­ �I �II �I­) 

Estimation results for this scenario are based on a sample of n=150 sites and S=15 species, and are 

presented in Section 4.2.3.   

 

Figure 3.3.5 shows the habitat plots for this scenario.  By inspecting the additive logistic habitat 

probability plots, we can see that Habitat 1 is the most dominant habitat.  I claim this because after 

using the additive logistic model, Habitat 1 ‘wins’ the areas that are contested by Habitat 2, thus 

retaining a similar shape to its individual habitat region.  Habitat 3 is oddly shaped and divided across 

three separate areas.   

 

In the classification plot (Figure 3.3.5), we see that even with the apparently simple framework of only 

two covariates with polynomial expressions we can achieve complex habitat maps.  This cubic scenario 

naturally lends itself to an ecological interpretation of prime habitat (black), fringe habitat (red), and 

non-habitat (blue) regions.  For example, a collection of fish living on a coral reef may find ideal water 

temperature, salinity and vegetation in the prime habitat region, but only two of those three 

characteristics in the fringe habitat and zero or one in the non-habitat region. 
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Figure 3.3.5:  Individual logistic habitat probability plots (top), additive logistic habitat probability plots 

(middle) and habitat classification plot (bottom) for Scenario #3 (Cubic). 

 

 

Scenario #4:  Linear/Quadratic/Cubic 

This scenario is the first to include four habitats, generated by a third row of parameters in the B
T 

matrix.  Within this system, I incorporate linear, quadratic and cubic individual logistic habitat 

boundaries (recall these are only probabilistic transition between habitats).  This scenario is specified by 

the following B matrix and the same design matrix as used in Scenario #3: 
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Uª = 	d−14.85 −1.98 									0 						0 −0.40 									0 						0						4.46 −0.30 −2.38 0.18 				0.59 −1.19 0.24−34.20 				7.63 −0.55 						0 −7.63 −0.55 						0e	 
��ª = (1 �	 �	I �	­ �I �II �I­) 

Notice that the first row of BT, having zeroes in the quadratic and cubic coefficients, generates the linear 

habitat boundary seen in the top-leftmost panel of Figure 3.3.6.  Figure 3.3.6 displays the individual 

logistic habitat probability plots and the habitat classification plot defined by B.  I choose not to display 

the additive logistic habitat probability plots here because the three parameter-defined habitats are 

clearly disjoint. 

 

In Section 4.2.4 I present estimation results based on a sample of n=225 sites and S=24 species.  Then, in 

Section 4.3.4, I will use this scenario to investigate model selection based on covariate polynomial order.   

 

 
Figure 3.3.6:  Individual logistic habitat probability plots (top) and habitat classification plot (bottom) for 

Scenario #4 (Linear/Quadratic/Cubic). 
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Scenario #5:  Diamond 

This scenario includes five habitats and employs only linear effects in the longitude and latitude 

covariates (X1 and X2).  The model is specified by the following matrices: 

Uª =	 ®−10.69 −1.19 			1.19−10.69 			1.19 −1.19−10.69 			1.19 			1.19−10.69 −1.19 −1.19¯																						��ª = (1 �	 �I) 

Figure 3.3.7 shows the associated individual logistic habitat probability plots and the habitat 

classification plot.  Estimation results for Scenario #5 (Diamond) are based on a sample of n=200 sites 

and S=20 species, and are presented in Section 4.2.5.  Additionally in Section 4.2.5 I will fit both a linear 

form model and a quadratic form model to this scenario to examine the possible effect of model 

misspecification. 

 

 
Figure 3.3.7:  Individual logistic habitat probability plots (top) and habitat classification plot (bottom) for 

Scenario #5 (Diamond). 
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Scenario #6:  Four Circles 

This scenario includes four circular habitats (plus the fifth remainder region) by employing linear and 

quadratic effects in X1 and X2.  The model is specified by the following matrices:  

Uª =	 ®−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51−12.75 −5.10 −5.10 			5.10 −5.10−12.75 			5.10 −5.10 −5.10 −5.10¯															��ª = (1 �	 �	I �I �II) 

In this scenario, the four circular regions are defined by separate quadratic functions of the covariates.  

The associated individual logistic habitat probability plots and the habitat classification plot can be seen 

in Figure 3.3.8.  Estimation results for Scenario #6 (Four Circles) are based on a sample of n=400 sites 

and S=30 species, and are presented in Section 4.2.6.  An analysis of the effect of misspecifying the 

number of habitats (H) will be performed in Section 4.3.5 using this scenario.  

 

 
Figure 3.3.8:  Individual logistic habitat probability plots (top) and habitat classification plot (bottom) for 

Scenario #6 (Four Circles). 
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Scenario #7:  Diamond/Circles 

This scenario includes nine total habitats with four linear boundaries, four quadratic boundaries and the 

remainder region.  This scenario is modeled with the following matrices:              

Uª =	
°±±
±±±
±²−10.69 −1.19 									0 			1.19 									0−10.69 			1.19 									0 −1.19 									0−10.69 			1.19 									0 			1.19 									0−10.69 −1.19 									0 −1.19 									0			−2.84 			2.57 −0.43 			2.57 −0.43			−1.44 −2.57 −0.43 −2.57 −0.43			−2.14 −2.57 −0.43 			2.57 −0.43			−2.14 			2.57 −0.43 −2.57 −0.43³́́

´́́
µ́
															��ª = (1 �	 �	I �I �II) 

Estimation results for Scenario #7 (Diamond/Circles) are based on a sample of n=400 sites and S=40 

species, and are presented in Section 4.2.7.  This scenario is potentially challenging since it requires 400 

specifying parameters, however we will see in Section 4.2.7 that estimation performance is actually 

quite good.  Figure 3.3.9 shows the eight individual logistic habitat probability plots defined by the 

above BT.  In Figure 3.3.10, I display both the additive logistic habitat probability plots and the habitat 

classification plot for this scenario.  These plots demonstrate that this scenario is large and complex. 

 

Figure 3.3.9:  Individual logistic habitat probability plots for Scenario #7 (Diamond/Circles). 
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Figure 3.3.10:  Additive logistic habitat probability plots (top) and habitat classification plot (bottom) for 

Scenario #7 (Diamond/Circles). 
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3.4  Summary of Scenarios    

The next chapter will provide a lengthy analysis of simulation results for these 7 scenarios.  Table 3.4.1 

below summarizes the key feature of the scenarios, and may serve as a useful reference for the 

remainder of this paper. 

Table 3.4.1:  Summary of habitat scenarios. 

 

Scenario H n S 

Highest Polynomial 

Effect in X1 and X2 Other Investigations 

   1)  Baseline Linear 3 200 20 Linear MC, Choice of n and S, etc. 

   2)  Two Circles 3 150 15 Quadratic MC, Boundary Width Analysis 

   3)  Cubic 3 150 15 Cubic MC, Convergence  

   4)  Lin/Quad/Cube 4 225 24 Cubic MC, Covariate Model Selection 

  5a)  Diamond 

          (Linear Model) 
5 200 20 Linear Model Misspecification 

  5b)  Diamond 

          (Quadratic Model) 
5 200 20 

Linear 

(Quadratic Model) 
Model Misspecification 

   6)  Four Circles 5 400 30 Quadratic H Misspecification 

  7)  Diamond/Circles 9 400 40 Quadratic N/A 
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CHAPTER 4:  RESULTS 
 

4.1  Evaluation of Parameter Estimates 

Assessing the success of estimation results for this model is multifaceted.  Throughout the examples that 

follow I use a combination of three approaches for performance evaluation. 

 

First, we can compare the true parameter values to the MLE parameter values directly.  Two 

phenomena discussed in the next section, habitat swapping and steepness misspecification, however, 

make direct comparison difficult, particularly for the B parameter matrix.  In some cases we can get a 

better indication of the estimation performance by considering the derived values πih and μjh instead. 

 

A second method for assessing estimation performance is simply to compare estimated individual 

logistic habitat probability plots, additive logistic habitat probability plots, and habitat classification plots 

to their true counterparts.  This is an indirect evaluation of estimation B, whose values define the 

habitat plots, however it is possible—and relatively common—for the model to produce accurate 

habitat mappings while the parameter estimates, U� , are not accurate. 

 

A final approach that is useful for assessing B estimation is to consider how many sites we classify 

correctly into habitats.  To do this, I assign each sampled site to the most likely habitat (i.e. the habitat 

with the largest π�" value at that site).  Then I do the same thing for each site using the estimated 

probabilities, P¶.  To evaluate performance, I calculate the proportion of sites for which the classifications 

agree.  Considering this classification success rate for estimation evaluation has the advantage of 

producing a single number to summarize performance.  However this is artificial and potentially 

misleading in the same way that the classification plot is because sites are never actually attributed to a 

specific habitat.  Nevertheless, this success rate is a useful summary which I use to present estimation 

results throughout Chapter 4. 

 

 

 



31 

 

4.2  Estimation Results 

In the following subsections I describe the results from the seven scenarios used to test the model and 

estimation performance.  The scenario specifications range from simple to complex and the estimation 

problems range from easy to challenging.  Interestingly, some of the simplest scenarios are not 

necessarily the easiest to achieve good estimation performance. 

 

As discussed in Section 3.1, simulation evaluation of estimation performance begins by specifying a true 

habitat scenario (in terms of Bkh, αj and τjh parameters).  The number of sites and species are important 

components of scenario specification.  Section 4.3 will investigate the effect that different combinations 

of n and S have upon estimation.  Here I provide results for a single combination of n and S for each 

scenario.  Then a set of sites must be sampled before we may simulate data and run the estimation 

algorithm.  Starting values for likelihood optimization must also be chosen (see Sections 3.2.6 and 4.2.8). 

 

A more comprehensive comparison of results would control for random variation due to the choice of 

sites and starting values.  In four of the seven scenarios I consider below, I conducted Monte Carlo 

replications, repeatedly sampling random site sets.  These cases were:  Scenario #1 (Baseline Linear), 

Scenario #2 (Two Circles), Scenario #3 (Cubic), and Scenario #4 (Linear/Quadratic/Cubic).  For each of 

these examples, the results corresponding to the sample which provided the Monte Carlo median 

classification success rate are reported here.  Detailed results of the Monte Carlo simulation may be 

found in Section 4.3.2.  For the remaining three scenarios, Monte Carlo simulation was not feasible due 

to long computation times. 

 

4.2.1 Baseline Linear Scenario 

 For the Baseline Linear scenario we use a sample of n=200 sites and S=20 species.  Although these 

numbers may seem large, recall from Section 3.4 that realistic applications may entail more like n=1200 

sites and S=200 species.  The true and estimated BT parameter matrices are: 

Uª =	 «0 0.4 −0.20 			0 							1¬													U�ª 	= 	 «0.003 			0.87 −0.240.090 0.127 			2.19¬ 										·ℎ¸©¸	��� = (1 �	 �I)	
Although these estimates seem poor, the model exhibits a feature suggestive of overparameterization 

or collinearity in the sense that many different U�  can produce reasonably good habitat probability 

estimates.  Even for this relatively small parameter matrix, it is not easy to tell exactly how well our  
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Figure 4.2.1:  Comparison of true and MLE values of parameters and re-expressed parameters for 

Scenario #1 (Baseline Linear).  

 

estimation has worked.  This difficulty increases with larger B matrices.  In this small example, the A 

parameter matrix (consisting of αj and τjh values) has S × (T + 1) = 80 elements, making pointwise 

comparison of estimated parameter values difficult. 

 

Figure 4.2.1 displays plots of MLE results against true values for the B, α, and τ parameters, as well as for 

the derived values μ and π.  If the estimation were perfect we would find every point lying along the 45° 

line in each plot.  The leftmost panel in Figure 4.2.1 shows that values in U�  generally have higher 

magnitude than their true counterparts in this estimation example.  In particular, the points in this plot 

lie approximately along a line with a slope of 2.  Because the estimates are about twice the magnitude of 

the true values in U, we expect that the estimated habitats have boundaries that are approximately 

twice as sharp as those of the true habitats. 

 

The second and third panels in Figure 4.2.1 show the estimation results for the αj and τjh parameters and 

the corresponding μjh values respectively (recall that A is composed of αj and τjh values as defined in 

Section 2.1).  We find evidence that A is estimated well since estimates form a reasonably tight pattern 

around the true values.  Recalling that !�" = logit((� + *�"), it is not surprising that these plots look 

alike.  Thus, in future examples I will not display both.   

 

The rightmost panel in Figure 4.2.1 plots the estimated habitat membership probabilities, J¹�" , against 

their true values for each of the locations in the sample.  There are 600 points shown in the plot 

representing the three J¹�" values at each of the n=200 sites.  Notice the ‘S’ shape of the points in the 

plot.  We see that the J¹�"estimates are likely to underestimate the true values when that true J�" is 

Goodness of Fit Graphs 
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Figure 4.2.2:  True (top) and estimated (bottom) individual logistic habitat probability plots for Scenario 

#1 (Baseline Linear). 

 

below 0.5, and overestimate when the true J�" is above 0.5.  This feature tells the same story as the 

leftmost plot suggesting that estimated habitat boundaries are sharper than the true habitat 

boundaries. 

 

Next I examine the habitat probability plots (Figure 4.2.2).  The top two panels in this figure are the 

same two true individual logistic habitat probability maps for the linear baseline scenario that were 

presented in Section 3.3.  The bottom two panels show the individual logistic habitat probability maps 

generated from U� .  The estimated maps look very similar to the true maps with only a slight difference 

in the positions and orientations of each of the habitat boundaries.  More noticeably, the estimated 

habitats have sharper boundaries.  This agrees with the results shown in Figure 4.2.1, where we realized 

that the estimated values for the B parameter matrix looked more like a scalar multiple of B.  As 

predicted, the habitat boundaries are about twice as narrow in the estimated habitat maps. 

True 

MLE 
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Figure 4.2.3:  True (top) and estimated (bottom) additive logistic habitat probability plots for Scenario 1 

(Baseline Linear). 

 

As we did while initially considering the Linear Baseline scenario in Section 3.3, we may inspect the 

additive logistic habitat probability plots that are generated through the additive logistic model of the 

true and estimated B parameters.  Here, we see that this model and associated estimation algorithm do 

a good job of reconstructing the habitat maps of this linear baseline scenario.  As stated before, these 

additive logistic habitat probability plots are constructed as an aid in understanding how the three 

habitats interact with one another.  For most of the examples ahead, I will omit these plots in the 

interest of saving space. 

 

Figure 4.2.4 displays the true and estimated habitat classification plots.  These plots illustrate that 

habitat estimation for this example has been highly successful.  In the remainder of this chapter, 

comparing  

True 

MLE 
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Figure 4.2.4:  True (left) and estimated (right) habitat classification plots for Scenario #1 (Baseline 

Linear).  Black=Habitat 1, Blue=Habitat 2, Red=Habitat 3.  

 

classification plots between truth and MLE will be the most effective graphical diagnostic for assessing 

estimation performance.  Hence, these plots will be included in every habitat estimation exercise in this 

paper. 

 

The ‘Classification Success Rate’ Diagnostic Metric: 

In Section 4.1, I introduced the idea of classifying each of the sampled sites into the most probable 

habitat.  To do this I use the same method by which the classification plot is created, namely assigning 

each sampled site to the habitat for which the plurality of the additive logistic probability is attributed. 

Each classification decision reflects our best estimate of z, the binary vector with all zeros except for a 

single 1 in the position corresponding to the habitat to which the given site belongs.   

 

The leftmost panel in Figure 4.2.5 shows the habitat classifications for the 200 sites in the sample based 

on the B that specifies this scenario.  The same color scheme that was used in the classification plot is 

applied here, and the resemblance is obvious.  The only difference here is that I compute the estimated 

classification at each site in the sample rather than along a systematic grid that spans the study region.  

The right-hand plot in this figure shows the habitat classifications for the same sites based on bº .  The 

two plots disagree on only seven habitat classifications, giving a classification success rate of 

193/200=0.965. The plot is not necessary to compute the success rate, hence only the number is 

reported hereafter. 
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Figure 4.2.5:  True (left) and estimated (right) sample habitat classification plots for Scenario #1 

(Baseline Linear).   

 

 

 

A Note on ‘Habitat Swapping’: 

The estimation results presented above possessed the convenient feature that the colors assigned to 

the ML estimates matched the true color assignments.  This is not guaranteed to be the case, and 

depends on the choice of parameter starting values for the algorithm and the number of habitats in the 

system.   

 

To illustrate this, consider the following example.  Another estimation attempt is made for this Baseline 

Linear scenario under a different set of parameter starting values3.  The result is shown in Figure 4.2.6.  

Again, the individual logistic habitat probability maps are displayed above the estimated individual 

logistic habitat probability maps, but this time there appears to be little resemblance between the two 

pairs of maps.   

 

Upon initial inspection of these plots, one might guess that this estimation is completely incorrect.  

However, a closer look will show that this is not the case.  Figure 4.2.7 displays the true and MLE habitat 

classification plots, indicating that while the individual logistic habitat labels have changed locations, the 

general shape of the habitat boundaries looks reasonably accurate. 

                                                           
3
 For this example, A0,jh and B0,kh values are set as zero for all j=1…S, k=1…p, and h=1…H.  More investigation of 

parameter starting value strategies is included in Section 4.3.8. 
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Figure 4.2.6:  True (top) and estimated (bottom) individual logistic habitat probability plots for the 

example where colors were ‘swapped’ (see text). 

 

 

Looking at these classification plots, we can see that the labels for Habitat 2 and Habitat 3 have been 

swapped in the estimated maps while Habitat 1 is located fairly accurately.  We should not be surprised 

that this is a possible result of estimation, nor should we be perplexed when it occurs.  The habitat 

names attached to these groups of locations with similar species presence/absence characteristics are 

completely artificial and arbitrary.  In the context of simulation evaluation we may exchange these 

habitat labels freely after estimation, and in the context of a real world example the researchers will 

presumably want to denote each habitat with descriptive scientific names anyway.  Despite this, it is 

necessary to ‘properly’ label the habitats in the context of simulation for us to be able to derive the 

classification success rate to aide in estimation evaluation and to ensure that the figures fairly represent 

the true performance. 

True  

MLE 
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Figure 4.2.7:  True (left) and estimated (right) habitat classification plots illustrating the swapping of 

Habitats 2 and 3 for Scenario #1 (Baseline Linear). 

 

 

In this small example with very accurately estimated habitat boundaries, it is easy to visualize the switch 

necessary to put these habitats in their correct locations.  However, if we need to estimate a higher 

number of habitats or decipher a set of less accurately estimated habitat boundaries, finding the proper 

habitat ordering may be considerably more difficult.  For this reason, a clear definition is needed for 

determining the proper habitat labeling.  I simply rearrange the labels/colors to be the arrangement that 

results in the highest classification success rate.  From now on, this habitat swapping process will be 

treated as an internal component of the habitat estimation process for the purpose of performance 

evaluation. Results will be presented with habitats already swapped into their optimal permutation. 

 

Figure 4.2.8 shows all the possible permutations of the three habitats alongside the true habitat 

classification plot.  It is obvious that permutation #2 is the optimal order.  Table 4.2.1 displays the 

classification success rates that correspond to each of the permutations shown in the plots.  Note that 

the 0.96 success rate associated with swapping habitats 2 and 3 is much higher than any other ordering.   

 

The last, implicitly defined habitat here has been estimated by the model directly, with explicit U�  

parameters.  This may become problematic in scenarios when the shape of the H
th habitat cannot 

conform to the modeled order.  Moreover, it is not clear how to constrain B estimation to those first H-1 

habitats when estimating habitat systems like Scenario #2, which we previously noted has a third habitat 

that cannot be explicitly defined by the quadratic framework that characterize the first two. 
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Figure 4.2.8:  True (right) and estimated (left 6 panels) sample habitat classification plots with all 

possible habitat permutations for Scenario #1 (Baseline Linear). 

 

 

Table 4.2.1:  Success Rates for each of the possible permutations of estimated habitat labels.  

Permutation #2, having the highest classification success rate, is defined as the correct labeling. 

 

Permutation # 1 2 3 4 5 6 

Classification 

 Success Rate 
0.285 0.96 0.005 0.475 0.240 0.035 

 

 

4.2.2 Two Circles Scenario 

 

Recall that the simulation chosen to illustrate Scenario #1 (Two Circles) includes n=150 sites and S=15 

species.  The true and estimated B  matrices are: 

 Uª = 	 «−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51¬ 
 U�ª =	 «−216.88 119.28 −12.43 118.63 −12.73			−13.87 		−6.59 			−0.67 		−5.21 		−0.54¬ 
 ·ℎ¸©¸						��ª = (1 �	 �	I �I �II) 

 

While Habitat 2 is estimated roughly correctly, the MLE parameters, U� , for Habitat 1 are approximately 

20 times the magnitude of their true counterparts.  Figure 4.2.9 displays true and estimated individual 
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logistic habitat probability plots, and as we should expect, Habitat 1 estimate exhibits a much sharper 

boundary than the truth.  Notwithstanding this, estimation of the habitat boundaries is very accurate.  

Moreover, this accuracy has been achieved with a smaller sample size and more parameters to estimate 

than in Scenario #1 (Baseline Linear).  This is suggests that spatially distinct habitats, like the two circular 

habitat regions in this scenario, are easier to estimate than habitats which overlap like the upper right 

region in Scenario #1 where two habitats with individual membership probabilities near one compete.   

For this simulation-estimation exercise (Two Circles Scenario), we achieve a success rate of 0.98. 

 

These results are impressive in terms of two of our three diagnostic methods, namely the classification 

success rate and the estimated habitat maps.  Now let’s consider the third diagnostic, a direct 

comparison of the true and estimated J�" values.  Though the J�"‘s are not directly estimated by the 

optimization algorithm, J¹�"’s are calculated from U�  and may be compared to the J�"‘s.  The left-hand 

plot in Figure 4.2.10 graphs J�"’s versus J¹�"’s.  Most true J�"‘s are very near zero or one, and we see 

that these are estimated accurately.  Among the sites that have intermediate probabilities, the ‘S’ shape 

found in this plot reflects the fact that Habitat 1 boundary probabilities are estimated to be overly 

abrupt.  We would like to confirm or refute this suspicion by better understanding exactly which types of 

sites tend to be estimated poorly. 

 

The right-hand panel in Figure 4.2.10 shows the distribution of estimation error among our J�"‘s.  Only a 

few of the J�" estimation errors deviate substantially from zero, but some that do err by as much 0.7.  In 

the MLE classification plot of Figure 4.2.11, I overlay a set of yellow dots.  The area of each dot is 

proportional to the squared error for J¹�" at site i within habitat h.  Note that the larger errors tend to 

fall along habitat boundary lines. 

 

The conclusion here is clear: sites for which habitat allegiance is uncompetitive are easily estimated, 

while sites on or near a habitat boundary with two or more competitive candidate habitat assignments 

are more likely to be incorrectly classified.    
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Figure 4.2.9:  True (top) and estimated (bottom) individual logistic habitat probability plots for Scenario 

#2 (Two Circles). 

 

 
Figure 4.2.10:  Scatter plot of L vs. L¶ (left) and histogram (right) of L¶ estimation errors for Scenario #2 

(Two Circles).  

True  

MLE 
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Figure 4.2.11:  True (left) and estimated (right) habitat classification plots with yellow point area 

proportional to squared π-estimation error for Scenario #2 (Two Circles).  Black=Habitat 1, Blue=Habitat 

2, Red=Habitat 3.  

 

 

4.2.3 Cubic Scenario 

Recall from Section 3.3 that Scenario #3 (Cubic) employs n=150 sites and S=15 species, and has habitats 

characterized by the following matrices: 

Uª =	 «				10 				10 −0.4 −0.2 40 −0.07 −0.7−15 −10 			0.4 			0.2 −2 						0.3 0.08¬ 
 H��						��ª = (1 �	 �	I �I �II)	. 
Estimation of B yields: 

U�ª =	 «			30.19 			12.98 −0.16 −0.32 	50.90 0.11 −0.81−21.22 −21.48 			1.04 			0.39 −4.22 0.48 				0.20¬	. 
Below, I will show that poor estimation of B still yields excellent habitat estimation.  Indeed the 

classification success rate is 0.973. 

 

True and estimated individual logistic habitat probability maps are presented in Figure 4.2.12.  In these 

results we find further evidence that the model in Foster, et al. (2011), in combination with the blocked 

non-linear Gauss-Seidel estimation algorithm described in Section 2.3, is an effective approach for 

relating species presence/absence and covariate data to the underlying habitat shape, location and 

characterizing species profile.  At this point I have increasing confidence that this model will be able to 

fit more complex scenarios including more covariates, spatially correlated covariates, and more habitats. 
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Figure 4.2.12:  True (top) and estimated (bottom) individual logistic habitat probability plots for Scenario 

#3 (Cubic). 

 

 
Figure 4.2.13:  True (left) and estimated (right) habitat classification plots with yellow point area 

proportional to squared π-estimation error for Scenario #3 (Cubic).  Black=Habitat 1, Blue=Habitat 2, 

Red=Habitat 3. 

True 

MLE 
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The true and estimated habitat classification plots for Scenario #3 are shown (Figure 4.2.13) with yellow 

dots indicating π estimation error as in the previous scenario.  In Section 3.3 I proposed a possible 

ecological interpretation of this scenario as including prime (black), fringe (red) and non-habitat (blue) 

regions.  Using this idea, the prime habitat represents ideal conditions for a set of species whose 

presence characterize a habitat, the fringe habitat region represents the area for which those species 

have moderately favorable conditions and the non-habitat region is area for which presence of those 

species is not favored by the local covariates.  In this case, the estimated habitat classification plot above 

shows that the boundaries between these habitat categories are estimated fairly accurately.  

Unsurprisingly, higher estimation error occurs along the two smaller fringe habitat portions on the left 

side of the map where the three habitat categories are in close proximity (competition). 

 

4.2.4 Linear/Quadratic/Cubic Scenario 

This scenario (see Section 3.3) is the first to include four habitats.  Because of its increased complexity, it 

employs a larger sample of n=225 sites and S=24 species.  The specifications are:  

Uª =	 d−14.85 −1.98 									0 					0 −0.40 									0 					0						4.46 −0.30 −2.38 0.18 			0.59 −1.19 0.24−34.20 			7.63 −0.55 					0 −7.63 −0.55 					0 e 
 H��								��ª = (1 �	 �	I �	­ �I �II �I­) 

The estimated parameters are: 

U�ª =	 d−108.02 						5.01 								0.47 −0.11 			−19.70 			−0.35 		0.17			542.54 −14.37 −337.77 22.41 −196.31 −62.53 24.80−700.56 108.72 								2.55 −1.00 −192.00 −17.18 −0.24e 
This estimation exercise achieves a success rate of 0.92. 

 

The true and estimated individual logistic habitat probability maps are shown in Figure 4.2.14.  While 

the shape and location of Habitats 2 and 3 are estimated accurately, the estimate for Habitat 1 

underestimates the true size of the habitat.  This error accounts for the 0.92 classification success rate, 

which is a smaller than we have found in previous examples. 
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It is obvious from the estimated individual logistic habitat probability maps and that once again 

estimated habitat boundaries are much too abrupt.  Throughout my experience of fitting many 

simulated scenarios  

 

 
 

 

Figure 4.2.14:  True (top) and estimated (bottom) individual logistic habitat probability plots for Scenario 

#4 (Linear/Quadratic/Cubic). 

 

 

 

with this model, it has been much more common for this error to occur than for estimated boundaries 

to be insufficiently sharp.  I believe that this problem might be mitigated if I inserted either 1 or H-1 

parameters to scale modeled probabilistic habitat boundaries. A single scaling parameter would scale all 

the boundaries equally, whereas the larger set of parameters would scale each habitat’s probabilistic 

boundaries individually.  However, it is not currently clear to me how to do so in a way that ensures 

identifiability.  This topic is discussed further in Section 4.3.9. 

 

MLE 

True 
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Figure 4.2.15:  Scatter plot of L vs. L¶ for Scenario #4 (Linear/Quadratic/Cubic).  

 

 
Figure 4.2.16:  True (left) and estimated (right) habitat classification plots with yellow point radius 

proportional to estimation error for π for Scenario #4 (Linear/Quadratic/Cubic).  Black=Habitat 1, 

Blue=Habitat 2, Red=Habitat 3, Green=Habitat 4. 

 

Figures 4.2.15 and 4.2.16 examine the estimation errors.  The scatter plot in Figure 4.2.15 shows that 

despite the existence of intermediate true π probabilities, all estimates π values are near zero or one.  

This is evidence for the most severe steepness misestimation presented so far.   In the right panel of 

Figure 4.2.16 we find errors along habitat boundaries again.  Unsurprisingly, large errors also exist where 

Habitat 1 (black) is misclassified as Habitat 4 (green). 

 

4.2.5 Diamond Scenario 

This scenario was introduced in Section 3.3.  In addition to evaluating estimation performance I will 

investigate the effect of mis-specifying the model form.  Specifically I will present results when a linear 
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truth is fit with a quadratic polynomial in the covariates.  Results of fitting a model of the correct form 

will also be provided for comparison.  First, the results of the correct model specification (which I will 

refer to as Scenario #5a) are shown below. Here, U	� is the same parameter matrix that is displayed in 

Section 3.3, and U�	ª is the linear fit. 

 

U	� =	 ®−10.69 −1.19 				1.19−10.69 				1.19 −1.19−10.69 				1.19 				1.19−10.69 −1.19 −1.19¯																				U�	ª =	 ® 				−23.50 	−2.85 								2.01−4399.44 478.78 −439.64−1335.42 150.44 			125.84			−622.81 −72.23 		−78.66¯ 

 ·ℎ¸©¸									��ª = (1 �	 �I) 

Below, UIª also represents the true scenario, where two columns of zeroes reflect the absence of true 

quadratic effects in a parameterization that would allow quadratic forms.  Thus, UI generates the exact 

same habitat maps as the one above.  This parameterization will be referred to later as Scenario #5b.  U�Iª is an estimate of UIª in the usual sense.  Estimating UIª can be seen as a method for overfitting U	�. 

 

UIª =	 ®−10.69 −1.19 0 			1.19 0−10.69 			1.19 0 −1.19 0−10.69 			1.19 0 			1.19 0−10.69 −1.19 0 −1.19 0¯ 

 

U�Iª =	 ® 		−697.35 		−21.06 					3.96 			123.86 	−4.40−1397.04 			215.31 		−7.62 		−76.18 					6.07			−121.94 					23.20 		−1.00 								3.69 					1.62−4410.14 −670.00 −21.16 −592.53 −16.87¯ 

 ·�&ℎ															��ª = (1 �	 �	I �I �II) 

Figure 4.2.17 includes individual logistic habitat probability maps for the true parameters and estimates, 

with the two sets of MLE estimates being derived from the correct (linear) predictor and the incorrect 

(quadratic) predictor.  The linear habitat estimates are accurate except for the familiar boundary 

sharpness problem.  For the quadratic estimates, Habitat 1 is of particular interest.  It is clearly not a 

good fit if estimating Habitat 1 is our only concern.  However, when considering the additive logistic 

habitat system, Habitat 3 correctly dominates the upper right portion of the study region over Habitat 1.  

Evidence for this can be found in the classification plots in Figure 4.2.18.  Thus, the overall estimation of 

the system of habitat maps is very good. 
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Figure 4.2.17:  True (top), estimated with a linear model form (middle) and estimated with a quadratic 

model form (bottom) individual logistic habitat probability plots for Scenario #5 (Diamond). 

 

 

 

The result for Habitat 1 suggests that the data in the upper right portion of the study region must 

include an unusually large proportion of sites and species presences that are similar to those found in 

Habitat 1.  This feature results in confusion when estimating only the probability map for Habitat 1.  

However, the bottom panels in Figure 4.2.18 indicate that Habitat 3 dominates the top right region, 

assuring that the additive logistic habitat probability plots estimate the truth well.   

 

True 

MLE – Linear Model 

MLE – Quadratic Model 
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Figure 4.2.18: True (left), estimated with a linear model form (middle) and estimated with a quadratic 

model form (right) habitat classification plots for Scenario #5 (Diamond).  Black=Habitat 1, Blue=Habitat 

2, Red=Habitat 3, Green=Habitat 4, Purple=Habitat 5. 

 

Viewing the true habitat classification plot next to the estimated versions corresponding to the linear 

and quadratic polynomial models, we see that both models can yield excellent estimated habitat maps.  

Moreover, model success rates are virtually identical: the linear model achieves a success rate of 0.945, 

while the quadratic model has a 0.95 success rate.  This example raises questions about model selection 

that will be investigated in Section 4.3.5. 

 

 

4.2.6 Four Circles Scenario 

 

Recall from Section 3.3 that Scenario #6 (Four Circles) employs n=400 sites and S=30 species.  The model 

is parameterized with: 

U� =	 ®−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51−12.75 −5.10 −5.10 			5.10 −5.10−12.75 			5.10 −5.10 −5.10 −5.10¯ 														H��				��ª = (1 �	 �	I �I �II) 

The estimates are: 

 

U�ª =	 ®−12677.36 		5009.64 −512.48 5611.76 −571.24								−84.24 					−37.53 					−3.80 		−30.97 					−3.16			−2667.81 −1062.17 −107.26 1152.03 −116.12			−1060.58 					462.11 		−48.15 −506.02 		−53.63¯ 

 

True Linear Fit Quadratic Fit 
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Figure 4.2.19:  True (left) and estimated (right) habitat classification plots for Scenario #6 (Four Circles).  

Black=Habitat 1, Blue=Habitat 2, Red=Habitat 3, Green=Habitat 4, Purple=Habitat 5. 

 

For 96.5% of the sampled sites, the true and estimated sample habitat classifications agree.  The true 

and MLE classification plots are displayed in Figure 4.2.19.  Here, we see another example of excellent 

shape and location estimation for a relatively complex 5-habitat scenario. 

 

4.2.7 Diamond/Circles Scenario 

This scenario uses simulated covariate data and species presence/absence information from n=400 sites 

and S=30 species to estimate the following model. 

U� = 	
°±±
±±±
±²−10.69 −1.19 									0 			1.19 									0−10.69 			1.19 									0 −1.19 									0−10.69 			1.19 									0 			1.19 									0−10.69 −1.19 									0 −1.19 									0			−2.84 			2.57 −0.43 			2.57 −0.43			−1.44 −2.57 −0.43 −2.57 −0.43			−2.14 −2.57 −0.43 			2.57 −0.43			−2.14 			2.57 −0.43 −2.57 −0.43³́́

´́́
µ́
													H��				��ª = (1 �	 �	I �I �II) 

Estimation yields the following U�  and has a 0.932 classification success rate. 

 

U�ª =	
°±±
±±±
±² 				−845.44 −140.33 		−6.64 						47.14 						4.82		−2191.99 			318.57 		−9.44 −144.59 						7.59−17969.64 1815.46 			10.62 	1626.66 				45.71		−1176.32 −182.10 		−6.93 −119.79 			−1.11					−163.18 			165.44 −27.32 			103.12 −20.23							−11.21 		−21.80 		−3.69 			−16.55 			−3.03							−12.92 		−29.17 		−5.15 						31.72 			−5.69					−188.69 			153.34 −23.18 −104.13 −16.72³́́

´́́
µ́
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Figure 4.2.20:  True (left) and estimated (right) habitat classification plots for Scenario #7 

(Diamond/Circles).  Black=Habitat 1, Blue=Habitat 2, Red=Habitat 3, Green=Habitat 4, Purple=Habitat 5, 

Orange=Habitat 6, Brown=Habitat 7, Dark Grey=Habitat 8, Light Grey=Habitat 9. 

 

True and estimated habitat classification plots are presented in Figure 4.2.20.  Using the statistical 

model of Foster, et al. (2011), and the estimation algorithm shown in Section 2.3 of this paper, we are 

able to estimate the 400 bc", (� and *�" parameters that define this system of habitats.  Despite the 

usual probability surface steepness misestimation apparent in U�ª, the MLE habitat classification plot in 

Figure 4.2.20 is an excellent estimate. 
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4.2.8 Overview of Estimation Results 

For the reader’s convenience, a table summarizing the estimation results presented so far is included in 

this section.  The MC Median column specifies whether, for a given scenario, the estimation results 

presented correspond to the random sample led to the Monte Carlo median classification success rate.  

For the scenarios in which a Monte Carlo simulation was not completed, the random seed used to 

generate the random sample of sites was chosen arbitrarily.  Note that n and S values were chosen in 

part to achieve a relatively similar success rate across scenarios and are smaller than the values that 

might be used for the Great Barrier Reef application.   

 

Table 4.2.2:  Summary of estimation results for the seven scenarios. 

Scenario MC Median n S Success Rate 

   1)  Baseline Linear Yes 200 20 0.965 

   2)  Two Circles Yes 150 15 0.980 

   3)  Cubic Yes 150 15 0.973 

   4)  Lin/Quad/Cube Yes 225 24 0.920 

  5a)  Diamond 

          (Linear Model) 
No 200 20 0.945 

  5b)  Diamond 

          (Quadratic Model) 
No 200 20 0.950 

   6)  Four Circles No 400 30 0.965 

  7)  Diamond/Circles No 400 40 0.932 
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Table 4.3.1:  Computation times for the 7 scenarios with stated n, S combination listed in Table 4.2.2   

 

Scenario 1 2 3 4 5(a) 5(b) 6 7 

Time 11m 25s 7m 25s 8m 35s 28m 50s 28m 40s 35m 15s 2h 53m 48s 15h 8m 38s 

 

4.3  Special Topics 
 

Having presented basic estimation results in the previous sections, I now address specific topics relevant 

to the construction of habitat scenarios, simulation of data, and estimation of the model parameters. 

 

4.3.1 A Note on Computation Time 

 

Throughout the simulation and estimation phase of my testing of the model, management of 

computation time has been a constant concern.  Some of the largest scenarios I ran (in terms of the 

number of sites, species, habitats, algorithm iterations and estimation method) required several days to 

complete estimation. 

 

Simulations were run on two computers.  The slower computer had a 2.8 GHz Pentium 4 processor with 

1GB of RAM running Windows XP and 32-bit R v 2.12.  The faster computer had a 2.4 GHz Intel® Core™ 

i5 CPU with 4GB RAM, running Windows 7 and a 64-bit version of R 2.12.  The times listed in Table 4.3.1 

and throughout this section will refer to computation time on the slower Windows XP machine.  The 

faster Windows 7 machine takes only approximately 40% the time of the slower computer for a given 

simulation. 

 

Some general rules of thumb were found: 

• Computation time increases approximately linearly with both n and S, all else being equal. 

• For large values of S (i.e. S > 50), computation time begins to grow roughly exponentially with S. 

• Growth in the number of habitats, H, has a very large increasing effect on computation time. 
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4.3.2  Monte Carlo Simulation & The Effect of n and S 

During the early testing of the estimation of this model, I noticed that simulation trials with identical 

assumptions produced very different results.  Specifically, taking a different random sample of sites 

sometimes led to important differences in the estimated habitat maps.  Based on this observation I 

speculate that the variability that exists within the sample of sites and simulation of data is more 

influential than I had previously expected.  To address this inquiry, and to understand the model’s 

variability better, I used additional Monte Carlo replication. 

 

A Monte Carlo simulation study was performed on the random sample of site locations for the first four 

habitat scenarios.  In each case, 50 replicated simulations were run, using the same scenario parameters 

(B) but different, random sites and covariate values.  Additionally each of these Monte Carlo studies was 

repeated for various combinations of n and S.  The details are as follows.  For Scenario #1 (Baseline 

Linear), I compared all pairwise combinations of three values for each n and S.  For Scenarios #2-#4 I use 

only two values for each n and S.  Only 50 replications were used in each study in order to limit total 

simulation time. 

 

For each MC trial, three measurements were taken and are presented in Tables 4.3.2:  the median 

classification success rate (Rate), the Monte Carlo standard error of the 50 classification success rates 

(S.E.), and the median computation time (Time) in seconds among the 50 estimation tasks.  We should 

expect an increase in median success rate and computation time as n increases, while the standard error 

of classification success rates should decrease when n grows.  These trends are found to be true in the 

MC results for the Baseline Linear scenario.  Additionally, we find that increasing S, controlling for n, has 

a very similar effect upon the three measures we are considering.  The Monte Carlo standard error 

among all trials ranged from 0.015 to 0.142, the upper end of which is quite high and reflects the 

variable results mentioned above.   Even though these high standard error values correspond to trials 

with especially low sample sizes, the topic of how estimation variation depends on site sample variation 

should be addressed further in future study and in application to real data. 

 

In general, increasing n is the most reliable way to improve estimation results (recall that increasing n 

does not increase the number of parameters, while increasing S does).  However Tables 4.3.2 show that 

increasing S has a very similar effect in most cases.  Section 4.3.3 will investigate balance between n and 

S more directly. 
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Tables 4.3.2:  Monte Carlo simulation results for Scenarios 1-4, and for various combinations of n and S.  

Here ‘Rate’ refers to the median success rate, ‘S.E.’ refers to the MC standard error, and ‘Time’ is the 

median computation time in seconds on the Windows XP machine described above. 

Scenario #1: Baseline Linear 

Monte Carlo 

Simulation 

# of Species, S 

5 10 20 

# of 

Sites, 

n 

50 

Rate = 0.88 

S.E. = 0.079 

Time = 55 

Rate = 0.90 

S.E. = 0.049 

Time = 88 

Rate = 0.94 

S.E. = 0.042 

Time = 205 

100 

Rate = 0.92 

S.E. = 0.033 

Time = 78 

Rate = 0.94 

S.E. = 0.03 

Time = 148 

Rate = 0.945 

S.E. = 0.029 

Time = 323 

200 

Rate = 0.94 

S.E. = 0.031 

Time = 150 

Rate = 0.945 

S.E. = 0.029 

Time = 298 

Rate = 0.962 

S.E. = 0.025 

Time = 548 

 

Scenario #2: Two Circles 

Monte Carlo 

Simulation 

# of Species, S 

5 15 

# of 

Sites, 

n  

50 

Rate = 0.68 

S.E. = 0.118 

Time = 49 

Rate = 0.81 

S.E. = 0.071 

Time = 150 

150 

Rate = 0.672 

S.E. = 0.142 

Time = 149 

Rate = 0.98 

S.E. = 0.015 

Time = 285 

   

Scenario #3: Cubic 

Monte Carlo 

Simulation 

# of Species, S 

5 15 

# of 

Sites, 

n 

50 

Rate = 0.88 

S.E. = 0.071 

Time = 51 

Rate = 0.60 

S.E. = 0.106 

Time = 147 

150 

Rate = 0.85 

S.E. = 0.115 

Time = 220 

Rate = 0.973 

S.E. = 0.032 

Time = 431 

 

Scenario #4: Linear/Quadratic/Cubic 

Monte Carlo 

Simulation 

# of Species, S 

8 24 

# of 

Sites, 

n 

75 

Rate = 0.78 

S.E. = 0.074 

Time = 244 

Rate = 0.853 

S.E. = 0.043 

Time = 687 

225 

Rate = 0.907 

S.E. = 0.035 

Time = 842 

Rate = 0.922 

S.E. = 0.05 

Time = 2422 

 

Unexpected results were found for Scenario #2 (Two Circles) using 150 sites and 5 species, where the 

median success rate was lower than that of the trials with 50 sites and 5 species.  Likewise, for Scenario 

#3 (Cubic) using 50 sites and 15 species, we find the unexpected result that using 50 sites and 15 species  

results in a much smaller median success rate than using 50 sites and 5 species.  These findings are not 

fully understood, but could be a result of the small number of Monte Carlo iterations. 
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Table 4.3.3: MC results comparing various combinations of n and S that satisfy � × S = 2400. 

n 600 300 200 150 120 100 80 60 50 40 30 

S 4 8 12 16 20 24 30 40 48 60 80 

MC Median  

Success Rate 

0.94

9 

0.95

2 
0.96 0.94 0.95 0.94 0.95 0.95 0.96 0.95 

0.93

3 

MC 

Standard 

Error 

0.02

4 

0.02

1 

0.02

7 

0.02

1 

0.03

1 

0.02

5 

0.02

6 

0.02

5 

0.02

8 

0.03

8 

0.04

5 

MC Median 

Computatio

n Time (s) 

338 291 298 340 366 402 474 629 721 1014 1455 

 

4.3.3 The Choice of n and S 

 

In Section 3.2.3 I highlighted the fact that an increase in S increases the amount of available data at the 

same time that it increases the number of parameters that must be estimated.  In this section, I address 

the effect of this tradeoff upon the classification success rate and computation time.  

 

To accomplish this, I further investigate the Baseline Linear scenario with all its standard simulation 

assumptions about true parameter generation and starting parameter value choices.  I fix » = � × S, 

the total number of species presence/absence observations to be 2400 and examine the results of 

choosing different values for n and S that satisfy this constraint.  Again, a Monte Carlo simulation is used 

to average out the variation due to the random sample of sites.  Table 4.3.3 shows the results, in terms 

of median classification success rate, standard error, and computation time, for eleven different n, S 

combinations. 

 

We find remarkably consistent results among the different combinations of number of sites and number 

of species except when the number of species is particularly large relative to the number of sites. In that 

case, performance is worse as measured by the standard error.  This makes intuitive sense because with 

this few sample locations it becomes difficult to draw a sample that represents all the features of the 

true habitat maps.  The same difficulty does not appear to be true for involving increasingly fewer 

species, at least through S=4.  Despite this increase in standard error for trials with fewer sites, success 

rates are generally quite high.  The fact that even a scenario with just 30 sites can deliver a high success 

rate, provided there are enough species to compensate, offers flexibility that is encouraging for the 

context of real world research.   
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Perhaps it is not surprising that there is some counterbalancing between the number of sites and 

number of species present in the scenario.  With more sites, we gain more data directly informing us 

about the location of the habitats.  On the other hand, more species observations directly helps in the 

task of defining and distinguishing these habitats in terms of their characterizing species.   These effects 

seem roughly equal. 

 

4.3.4 Model Selection and Misspecification 

 

In this section I present an exercise in model selection based on covariate polynomial order.  Until this 

point, the form of the logit-linear model for π has been chosen to be the same form as the model from 

which the simulation data were generated except for the brief investigation in Section 4.2.5.  Here I 

apply a standard model selection technique to evaluate model misspecifation. 

 

My approach is to estimate the Linear/Quadratic/Cubic scenario (simulating 24 species at each of 225 

sites across the study region) by fitting linear, quadratic, cubic, quartic, and quintic models for the 

effects in the additive logistic exponent.  The data sample used is the sample corresponding to the 

Monte Carlo median classification success rate in Section 4.2.4.  For each of the five model forms, I 

measure the classification success rate and the log likelihood value corresponding to the estimated 

parameters in A and B.  Using the log likelihood values, I also calculate associated the Akaike 

information criterion (AIC) and the small sample corrected AIC version (AICc) defined as (Akaike, 1973; 

Hurvich & Tsai, 1989): 

§¼� = 2½ − 2 ln(�) 									H��											§¼�¾ = §¼� + 2½(½ + 1)| − ½ − 1 

where  ½ = W(T − 1) + S(T + 1)  is the number of parameters and | = � × S  is the total number of 

observed data points.  Lower values of these statistics indicate better models. 
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Table 4.3.4:  Covariate model selection results for Scenario #4 (Linear/Quadratic/Cubic). 

 Model 

Order 

Log 

Likelihood 

Value 

AIC AICc 
Success  

Rate 

Linear -3050 6358 6365 0.680 

Quadratic -2974 6218 6225 0.871 

Cubic -2957 6195 6203 0.924 

Quartic -3099 6491 6500 0.876 

Quintic -2960 6225 6234 0.924 

 

Results of the model selection experiment based on covariate polynomial order for this scenario are 

presented in Table 4.3.4.  As we expected, the cubic model has the lowest AIC and AICc, the highest log 

likelihood, and is tied for the highest success rate among all model orders considered.  The fact that we 

have identified the correct model order suggests that standard model selection techniques are 

appropriate and useful when fitting this model. 

 

Figure 4.3.1 shows the classification plots resulting from each of the covariate polynomial order models 

listed in Table 4.3.4.  In this set of maps we find visual evidence to corroborate our previous model 

selection decision based on log likelihood and AIC.  Each of the MLE maps in this figure show reasonably 

good habitat estimation within the limitations of the polynomial order used (for example, the linear 

version can produce only a single linear boundary in the individual logistic habitat probability plot).  The 

logit-linear model, while badly erring in terms of habitat shape and completely omitting Habitat 1 

(black), at least locates Habitats 2 (blue), 3 (red) and 4 (green) reasonably.  The quadratic version locates 

all habitats well, but still lacks the sufficient degrees of freedom to estimate the shapes of Habitats 1 

and 2 correctly.  The cubic MLE is clearly the most accurate fit to the true scenario, successfully 

estimating the difficult Habitat 2 and providing reasonably good fits for Habitats 1 and 3.  The 4th and 5th 

order models show that in this case overfitting the model allows for more accurate map estimation than 

underfitting it, but certainly does not perform as well as fitting the correct cubic model.  It is also worth 

noting that the red habitat (defined by the quadratic parameters in the underlying model) is best 

estimated by the quadratic model, and the blue cubic habitat (defined by the cubic parameters) is best 

estimated by the cubic model.   
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Figure 4.3.1:  Habitat classification plots for models postulating various covariate polynomial orders for 

Scenario #4 (Linear/Quadratic/Cubic). 

 

 

 

4.3.5 Misspecification of H and the Potential for Empirical Selection of H  

In a real world habitat estimation situation, a researcher will not necessarily know or wish to assume the 

true number of habitats represented within a study region.  This uncertainty motivates the need for an 

approach to compare models that include different numbers of habitats for a given scenario.  In other 

words, we can consider how to choose H.  In theory, model selection techniques similar to the previous 

section may aid in addressing how many habitats should be included.  However, a researcher might not 

base his/her choice of H entirely on the results of this type of model selection since he/she will 

incorporate their expert knowledge about the subject.  

 

 

TRUE MLE - Linear MLE - Quadratic 

MLE - Cubic MLE - Quintic MLE - Quartic 
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Table 4.3.5:  Model selection metrics for several estimation attempts of the Four Circles scenario using 

different numbers of modeled habitats. 

 

# Modeled  

Habitats 

Log Likelihood  

Value 
AIC AICc 

3 -7550 15360 15363 

4 -7555 15440 15445 

5 -6957 14315 14322 

6 -6918 14306 14316 

7 -6795 14131 14143 

 

In the following exercise I model the five-habitat Scenario #6 (Four Circles) with models postulating 3, 4, 

5, 6 and 7 habitats.  The standard setting of 30 species at each of 400 sampled sites (see Section 4.2.6) is 

used.  Also, I used the same specific random sample of sites that was used before.  Because the true 

number of habitats and estimated number of habitats differ in four of these estimation attempts, we 

lose the ability to calculate and compare classification success rates.  For example, if we model 7 

habitats to a 5 habitat system, there is no direct way to draw a one-to-one correspondence between the 

5 true and 7 estimated habitats.  Thus we must rely on comparing log likelihood values and visually 

assessing estimated habitat maps. 

 

The table above presents log likelihood values and Akaike information criteria for the habitat estimation 

attempts which model each of three through seven habitats.  In this case, all three criteria lead us to 

choose the model that involves seven habitats, which contrasts with the five habitats that we know to 

truly exist in this study region.  Development of an appropriate model selection criterion or method to 

better balance explanatory power and parsimony in selecting the number of habitats in a system will be 

left as an avenue for future research. 

 

In the context of this experiment, we can still compare the results to the truth to evaluate the potential 

impact of misspecification.  To do this, we can examine Figure 4.3.2 which presents the true 

classification plot alongside classification plots corresponding to models that estimate 3, 4, 5, 6 and 7 

habitats.  However, a consequence of our inability to calculate the classification success rate is that we 

also lose our ability to swap habitats into their ‘correct’ color labels.  Thus when viewing the maps in 

Figure 4.3.2, we should consider the shapes of the habitats but not the colors.   
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Figure 4.3.2:  True habitat classification plot and estimated habitat classification plots for models 

postulating 3, 4, 5, 6, and 7 habitats for Scenario #6 (Four Circles).  

 

 

Before discussing Figure 4.3.2, we must note a subtle difference between this experiment and the 

straightforward estimation of the Four Circles scenario presented in Section 4.2.6: the difference in size  

between the true and estimated B matrix necessitates a different strategy for choosing parameter 

starting values.  For simplicity, I choose to set all parameter starting values to zero.  This starting value 

choice is not a favorable one, resulting in relatively poor estimation.  From better starting values, 

Section 4.2.6 shows better performance. 

 

Understanding that habitat colors, like habitat labels, are arbitrary, we compare only the habitat shapes, 

sizes and locations of the five MLE plots to the true classification plot.  The model with H=3 successfully 

estimates shape and location of the bottom left habitat, while the other three circular habitats are not 

accurately fit.  In the classification plot for the model with H=4, the upper right habitat is estimated 

successfully and the two leftmost circular habitats are lumped together in to one MLE habitat.  The  

 

 

TRUE MLE:  H=3 MLE:  H=4 

MLE:  H=6 MLE:  H=5 MLE:  H=7 
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Habitat Maps for H=7 Model  

 
Figure 4.3.3:  Estimated individual logistic habitat probability plots from model postulating H=7 for 5-

habitat Scenario #6 (Four Circles). 

 

 

model with H=5 provides for a much more successful habitat classification plot.  Here we see that the 

two leftmost circular habitats and the upper right circular habitat are estimated closely, while the 

bottom right habitat is too large.  For the model with H=6, one habitat is dominated by the other five 

habitats at every location within the study region, thus only five of the habitats claim any region of the 

classification plot.   

 

The final classification plot representing the model with H=7 is interesting in that we see evidence that 

the two circular habitats in the rightmost quadrants are fringed by tiny, superfluous habitats (red and 

brown).  To investigate this further, consider Figure 4.3.3 which shows the estimated individual logistic 

habitat probability plots.  We see that the probability maps for Habitats 3 and 4 are nearly identical.  

Meanwhile, because of the almost universal coverage of the first six habitats, the indirectly estimated 

Habitat 7 will be able to claim the tiny brown sliver represented in the final plot of Figure 4.3.2.  My 

tentative conclusion is that it is better to fit large H, then ignore any small or trivial habitats that result. 

 

After inspecting the habitat classification plots for various modeled H values, we can better assess the 

model selection exercise conducted above.  Neither standard model selection techniques (log likelihood, 

AIC, AICc), nor comparing true to estimated habitat classification plots advocate matching the modeled 
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H with the true H.  It seems we want the modeled value for H to be at least as big as the true value of H.  

In a sense, AIC provides the wrong answer by suggesting that we model H too high.  However, this 

answer is in agreement with a qualitative assessment of the estimated classification plots. 

 

In the context of real world application, scientists often have a sense of first the reasonable range of the 

number of habitats, and second, limitations on the reasonable and scientifically meaningful sizes of 

possible habitats, or both.  It may even be possible to synthesize several of the habitat maps into one 

understanding of the underlying true habitat structure.  For instance, by combining the information 

found in the classification plots for only the 5 and 6 habitat models, we have strong evidence that there 

are two circular habitats occupying the left-hand side of the study region, and evidence—albeit less 

strong—that two circular habitats reside on the right-hand side as well.  Further consideration for the 

selection of the quantity of modeled habitats is left to individual users of the model, and to future study. 

 

 

4.3.6 Analysis of Species Prevalences 

In Section 3.2.4 I hypothesized that habitats might be easier to distinguish when rare species are very 

rare and common species very common.  This section will further examine that hypothesis. 

 

To do so, I again experimented with the Baseline Linear habitat scenario.  As elsewhere in this thesis, the 

sample of 20 species and 200 sites that generated the Monte Carlo median success rate is used.  I ran six 

trials using this linear scenario and these data, each time changing only the magnitude of the τjh values 

which (with αj) define the abundance of species j in habitat h.  The method described in 3.2.4 for 

randomly attributing positive and negative τ values to species within habitats during the data simulation 

step applies here.  The smallest τ values I chose are ±log(1.1).  This generates a common species 

presence probability of 0.52 and a rare species presence probability of 0.48.  Thus, this case provides 

very little information about habitat differentiation.  The largest τ values I chose are ±log(10).  This 

generates a presence probability contrast of 0.91/0.09 for the common and rare species respectively, 

thereby providing extremely strong discriminatory power. 

 

Table 4.3.3 displays the classification success rates for each of the six trials along with τ values, the 

corresponding odds for the presence of common species, and the associated common/rare species 

presence probability contrasts.  Inspecting the column of classification success rates, we find that this  
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Table 4.3.3:  Comparison of classification success rates for six different values of τ for Scenario #1 

(Baseline Linear). 

Trial # Tau 

Odds for 

Common 

Species 

Common/Rare 

Species 

Presence 

Probabilities 

Classification 

Success 

Rates 

1 ±log(1.1) 11:10 0.52/0.48 0.855 

2 ±log(1.5) 3:2 0.60/0.40 0.855 

3 ±log(2) 2:1 0.67/0.33 0.91 

4 ±log(3) 3:1 0.75/0.25 0.965 

5 ±log(5) 5:1 0.83/0.17 0.945 

6 ±log(10) 10:1 0.91/0.09 0.975 

 

metric generally increases with the magnitude of τ.  This evidence seems to support my initial intuition 

that habitats are easier to distinguish when the probability disparity between common and rare species 

within a set of habitats is large.  It must be noted that these success rates are subject to some variation 

based on site sample.  I have not controlled for this variation with Monte Carlo simulation because of 

computing limitations. 

 

 

4.3.7 Algorithm Convergence 

This section will address the topic of convergence of the optimization algorithm used to find the 

maximum likelihood estimates of the model parameters.  In Section 2.3 I presented the relative 

convergence criterion (RCC) used to halt the estimation algorithm when the following condition is 

satisfied:       

���� = �H�c," 1H��(�c")2 < �									H��									���� = �H��," �H�����" � < � 

Where �c" is the k, h element of  
����'� ¡�¢o£¤¥� ¡�¢o£¤¥7¦   and ��" is the p, h element of  

����'� ¡�¢o£¤¥� ¡�¢o£¤¥7¦ .  

I set ε=10-5 which ensures against dividing by zero, and δ is set to 10-6 for the examples in this paper.  

Not surprisingly, this threshold is found to be more difficult to achieve for models with larger numbers 

of parameters than for simpler problems.  Because this algorithm was found to converge fairly rapidly 

and clearly, monitoring of the RCC was not crucial, though retaining this stopping criterion did help to 

conserve computation time especially during Monte Carlo simulation.   
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Convergence of A Convergence of B 
 

 
Figure 4.3.4:  Relative Convergence Criterions across iterations for estimated A and B matrices. 

 

A more tangible understanding of the algorithm’s convergence can be obtained by viewing the plots in 

Figure 4.3.4.  Here, the convergence criterion is plotted across the 61 algorithm iterations required for 

Scenario #1 (Baseline Linear) to reach the convergence condition shown above.  The jump made in the 

first iteration is by far the largest, and is omitted to prevent stretching the vertical axis too much.  Most 

change in both the A and B parameter matrices can be seen to occur in the first few iterations of the 

algorithm.  Beyond that, we observe several small spikes and one relatively large change in the B matrix  

around the twelfth iteration.  

 

Evidence that optimization can converge rapidly can also be seen by examining the evolution of the 

individual logistic habitat probability plots and classification plots generated by the set of parameter 

matrices updated at the end of each iteration.  These plots are presented in Figure 4.3.4 for the 

estimation of Scenario #3 (Cubic).  I set all parameter starting values to zero, thus resulting in featureless 

initial habitat maps.  We can see features in the probability surface begin to emerge after the first 

iteration, and the maps already look reasonable by the second or third iteration.  The estimated habitat 

maps achieve roughly their final form by the fifth or sixth iteration. 

 

Note that in order to compare these habitat estimates with the true maps, we would need go through 

the additive logistic model, and swap habitats for proper colors.  Rather than doing all this, we can 

inspect the evolution of the habitat classification plots, which automatically take this process into 

account.  The result is shown in Figure 4.3.5.  The classification plots seem to converge to their final 

appearance—and to a good estimate of the true classification plot—by about the fifth or sixth iteration  

in this example.   
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Figure 4.3.4:  Evolution of the individual logistic habitat probability maps for Habitat 1 (top two rows) 

and Habitat 2 (bottom two rows) through nine iterations of MLE optimization.  In each case, iterations 

progress from left to right and then top to bottom. 

 

 

Habitat 1 

Habitat 2 
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Figure 4.3.5:  Evolution of the habitat classification plot through 9 iterations of MLE optimization.  

Iterations progress from left to right and then top to bottom. 

 

 

 

4.3.8 Analysis of Starting Value Strategies for Optimization 

 

Because of the complexity of the likelihood function, a challenge in likelihood maximization is finding the 

true global optimum rather than a local one.  In many cases, the choice of starting values at which the 

nonlinear blocked Gauss-Seidel algorithm begins is important.  In this section, I explore several 

strategies for generating parameter starting values and the effect that this choice has on our ability to 

uncover the (presumably) global maximum of the likelihood function. 

 

I consider three general strategies for generating parameter starting values.  These strategies are 

implemented and compared with respect to the estimation of the familiar Linear Baseline scenario.  As 

elsewhere in this thesis I use the sample of 20 species at 200 sites that produced the Monte Carlo 

median success rate.  The three methods for generating starting values are described below.  First, it is 

useful at this point to recall the true parameter values we attempt to estimate in this scenario. 

 

U� =	 «0 0.4 −0.20 			0 						1¬(6'	)×� 									H��								4 =
°±±
±²0 ±log(3) ±log(3) @ *	""⋮ ⋮ ⋮ ⋮0 ±log(3)	 ±log(3) @ *�"" ³́́

µ́
�×6
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Method #1:  Random (Uniform) Starting Values 

For the first method, I draw random values uniformly across a specified range for §{,�" and b{,c", the 

values that populate the A and B starting parameter value matrices, respectively.  Several different 

ranges from which to draw are compared in the results table in this section. 

 

 

Method #2:  Fixed Starting Values 

The second strategy simply sets §{,�" = 	b{,c" = ¾				∀	Á, ½, ℎ 

where c is a constant scalar.  This method, like the previous one, incorporates no prior knowledge of the 

true parameter values themselves, nor of their values relative to one another.  

 

 

Method #3:  ‘True Values + Noise’ Starting Values 

The final method generates parameter starting values that are informed by the true parameters that 

were originally used to generate the true scenario.  Thus this method requires an educated guess of the 

true parameter values.  This strategy would be particularly applicable if, for instance, we had access to 

the fitted model pertaining to the same study region from a previous analysis and wanted to update the 

estimated habitat maps with new data.  However, from a practical point of view, the purpose here is 

merely to hasten convergence in some of my estimation attempts.  For this method, I generate starting 

values by randomly drawing from the following distributions. 

 §{,�" 	~	|$©�H# v§�" 	, H��(	 §�"S|�	)x 

b{,c"	~	|$©�H# vbc" 	, H��(	 bc"S|�	)x 

 

where SNR is a signal to noise ratio.  The SNR can be chosen to allow for more simulated uncertainty in 

the choice of starting parameter values.  Using this framework, a small SNR will generally allow for high 

variability around the true parameter values, while a large SNR should produce starting parameter 

values that are near to the true parameter values.  I compare values of SNR that range from 0.1 to 10 

below. 

 

Table 4.3.4 contains success rates and log likelihood values for experiments utilizing several variations 

on each of the three defined methods.  The most obvious result in this table is that most trials result in a 
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log likelihood value near -2388 (highlighted in green), and that among those trials, success rates are high 

and only vary between 0.945 and 0.97.  A second important observation is that each case that uses 

informed starting values with high SNRs—which should provide an advantage in accurate estimation of 

parameters—agrees upon the same -2389 log likelihood value.  These two notes provide compelling 

evidence that -2388 does in fact correspond to the global maximum of the likelihood function. 

 

Three pathological results exist among these trials and are highlighted in other colors.  The trial for 

which I randomly chose starting values uniformly over the broadest range, [-10,10], and the trial for 

which the most noise was added to the starting values (SNR=0.1) find unsatisfactory local modes with 

lower log likelihood values and success rates.  It is important to note that these results are from an 

experiment that was run only once.  It is likely that better results could be achieved in these three cases 

by overlaying a ‘random starts’ approach, i.e. repeating the optimization many times for (random) 

diverse starting values and choosing the best result.  This very simple approach is based on hoping that 

the global optimum is found in at least one case.  The multiple starts help increase the chances of 

getting at least one success. 

Table 4.3.4:  Classification success rate and log likelihood value measurements for 18 trials broken into 3 

different methods for generating starting parameter values. 

Method Submethod 
Success 

Rate 

Log Likelihood 

Value 

Uninformed, 

Random 

(Uniform) 

with range: 

[-0.5,0.5] 0.945 -2390 

[-1,1] 0.955 -2390 

[-2,2] 0.96 -2389 

[-5,5] 0.96 -2389 

[-10,10] 0.755 -2455 

Uninformed, 

fixed 

starting 

value: 

-1 0.97 -2389 

-0.5 0.96 -2389 

0 0.825 -2473 

0.5 0.96 -2389 

1 0.97 -2389 

Informed, 

with SNR: 

0.1 0.745 -2497 

0.5 0.96 -2389 

1 0.97 -2389 

2 0.965 -2389 

3 0.97 -2388 

4 0.97 -2388 

5 0.97 -2389 

10 0.965 -2388 
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Thus I have shown that the estimation procedure can succeed with disparate sets of starting parameter 

values, finding the unique, globally optimal estimate in most cases.   

 

4.3.9 Analysis of Habitat Boundary Width 

Throughout the examples in this paper, habitat estimation has consistently generated overly sharp 

habitat boundaries.  In Section 3.3 I introduced the idea that habitat boundaries can be made sharper or 

gentler simply by multiplying B by a scalar.  Through Section 4.2 we observed U�  matrices that appeared 

to be, essentially, scalar multiples of B.  In this section, I investigate the hypothesis in Section 4.2.4, 

namely that habitats with gentler boundaries tend to be estimated with gentler boundaries. 

 

To address this, I did 250 Monte Carlo replicated estimates for each of the three parameter matrices 

shown below.  The only difference between the three matrices is the scalar factor controlling the 

sharpness of the probabilistic habitat boundaries.  I then tested whether the U� ’s retained evidence that 

could distinguish which true U they originated from. 

U�ÂÃÄ�Åª = 	 «−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51¬ 
UÆ"�Ã�ª = 	8 × «−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51¬ 
UÇ���Å�ª = 	18 × «−12.75 			5.10 −0.51 			5.10 −0.51−12.75 −5.10 −0.51 −5.10 −0.51¬ 

To quantify the amount by which U��—the d
th replicated estimate of one of the above U matrices—

misestimated the true habitat sharpness, I calculated a set of individual parameter scalars, ¾�,c".  These 

values are explicitly defined by the following relation: 

bc" = ¾�,c"bº�,c",		       k=1…p, h=1…(H-1) and d=1…250 

where the k and h subscripts index the rows and columns, respectively, of the U matrices.  Thus, for 

each of the 250 Monte Carlo replications I obtained a matrix of scalar (i.e. multiplicative) errors between U and U� , È�,�×6.  I then found the median of these scalars within each of these matrices, and denoted it 

as ��, d=1…250.  Finally, I let C denote the median of the 250 ��’s.  The � values for the three boundary 

sharpness scenarios are presented in Table 4.3.5 along with the median classification success rate. 
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Figure 4.3.6:  True individual logistic habitat probability plots displaying normal, sharp and gentle 

boundaries for Scenario #2 (Two Circles). 

 

 
Figure 4.3.7:  True habitat classification plot common to all three scenarios presented in Figure 4.3.6. 

 

The true individual logistic habitat probability plots corresponding to the three parameter matrices are 

presented in Figure 4.3.6.  The visible difference in habitat boundary width is a result of the scalar factor 

difference of 8 between the gentle and normal scenario and between the normal and sharp scenario.  

Despite this difference, all three of these B matrices produce the same true habitat classification plot, 

seen in Figure 4.3.7. 

Normal Boundaries 

Sharp Boundaries Gentle Boundaries 

True Classification Plot 
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Table 4.3.5:  Median scalar errors between U and U�  and median classification success rates for 250 

Monte Carlo replications for each of three boundary sharpness variations of Scenario #2 (Two Circles). 

Boundary Width Overall Median B Scalar, C Median Classification Success Rate 

Gentle 463.251 0.873 

Normal 98.045 0.980 

Sharp 5.097 0.993 

 

 

Table 4.3.5 shows an important difference in classification success rates between the habitats with 

gentle boundaries and those with normal or sharp boundaries.  The gently sloping habitat probability 

surfaces are more difficult to estimate than steeper surfaces, resulting in a classification success rate of 

only 0.873.  This is likely because there is closer competition between Habitat 3 and the other two 

habitats in the gentle boundary sharpness variation. 

 

Now we consider the scalar factors in Table 4.3.5.  The C value under the normal scenario is nearly 20 

times the C value under the sharp boundary scenario.  Knowing that U�ÂÃÄ�Åª  and UÆ"�Ã�ª  differ by a 

scalar factor of only 8, we can say that on average, estimation of the normal boundary scenario actually 

attains sharper boundaries than the estimates of the sharp boundary scenario, since 20 is larger than 8.  

The reason for these results is not well understood, but it provides evidence that is contradictory to our 

hypothesis that habitats with gentler boundaries tend to be estimated with gentler boundaries.  Rather, 

it seems that this model is unable to detect the true steepness of habitat probability surfaces effectively 

at all; excessively sharp boundaries result in each case.  This topic is left to further study. 

 

It is worth noting that despite this failure to distinguish the boundary sharpnesses of the normal and 

sharp scenario variations, the median classification success rates are extremely high for both.  This fact 

is direct evidence that the habitat classification plot is estimated exceptionally accurately and 

consistently among the 250 MC replicated estimations.   

 

 

  



73 

 

 

 

CHAPTER 5:  CONCLUSIONS & FUTURE WORK 
 

5.1 Summary 
 

This paper has investigated the performance of a statistical model developed in Foster et al. (2011) to 

estimate habitat maps from species presence-absence information and environmental covariate data.  

The model is characterized simultaneously by a parameter matrix B parameters which determines the 

shape and location of habitats in a study region, and by a parameter matrix A which determines the 

underlying species presence probabilities that are assumed to define habitats and distinguish them from 

one another.   

 

A collection of simulation testing scenarios were invented and species and covariate data was simulated 

from each.  Scenarios ranged from simple to complex, including: between three and nine habitats, 

between fifteen and forty characterizing species, between 150 and 400 sites, and polynomial 

coefficients in the covariate effects up to cubic terms.  Estimation proved to be very successful for each 

of the habitat scenarios presented.  This conclusion was evidenced by diagnostic plots of the estimated 

parameters, comparisons between true and estimated habitat probability plots and habitat classification 

plots, and by considering the habitat classification success rates. 

 

Each of these scenarios was estimated using the maximum likelihood method and a blocked non-linear 

Gauss-Seidel optimization algorithm.  The algorithm was found to clearly and quickly converge within 

five or six iterations for all of the estimation exercises included in the paper.  However, the computation 

time required by the estimation algorithm was often demanding, with the nine habitat scenario 

requiring six hours to complete nine iterations.   

 

Many additional investigations addressed several special topics related to the performance of the model 

and estimation algorithm.  Monte Carlo simulation was used to compare the relationship between 

estimation performance, number of sites samples, and number of species while while controlling and 

studying the variation due to the random site locations.  When considering Monte Carlo replications, 

this computational cost is sometimes prohibitively expensive. 
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An exercise in covariate model selection showed that comparison of AIC and AICc values is a viable 

method for selecting the polynomial order of the covariate effects.  Misspecification of the number of 

habitats was also studied. This was another form of model selection.  Visual inspection of estimated 

habitat probability plots and qualitative scientific reasoning were argued to be important components of 

a strategy to choose an appropriate number of habitats rather than relying exclusively on AIC values. 

 

An analysis comparing species prevalences was conducted confirming that when the difference in 

presence probabilities between rare and common species grows, habitats are more distinguishable from 

one another and habitat estimation is more successful.   

 

As with any complex optimization problem, the choice of parameter starting values can be important.  It 

was shown that for this model, the optimization algorithm would sometimes converge to a local 

maximum of the likelihood function rather than the global optimum when using poor starting values.  

This was rarely a problem, however, when reasonable parameter starting values were chosen.  Users of 

this model should consider a random starts local search approach to find a good set of parameter 

starting values, especially for more complex scenarios where the parameter matrix B is very large. 

 

Lastly, an investigation was conducted into effective estimation of habitat boundary widths.  It was 

shown that the model has a lot of trouble accurately estimating boundary sharpness, even though 

boundary locations are estimated well.  Throughout this paper, the examples illustrate this tendency.  

The reason for this issue is not presently known and is left to be investigated in future study. 

 

Despite the boundary sharpness misestimation issue, the model described in Foster, et al. (2011) 

combined with the estimation algorithm described in this paper have the capability to estimate complex 

habitat scenarios very accurately.  Estimation results for the largest, most complex scenario presented in 

the paper (Scenario #7 is specified by 400 parameters) are impressive.  

 

5.2 Future Work 
 

Having successfully estimated this assortment of simple and complicated habitat scenarios, future work 

with this model and estimation algorithm should introduce more complexity, and ultimately real data.  A 

good first step toward increasing model complexity (while still working with simulated data that can be 
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objectively tested) is to introduce new covariates.  While all examples in this paper simply used spatial 

coordinates as the covariate variables or as proxies for covariate variables (see Section 3.1), introducing 

covariates with their own underlying spatial structure (e.g. high shipping traffic areas, ocean currents, 

high pollutant areas, etc.) will allow for more naturally shaped habitats.   

 

The Great Barrier Reef data set mentioned in Section 2.2 includes data for 13 covariates.  This real life 

scenario is much more complex than any of the testing scenarios presented in this paper, especially 

after allowing for polynomial and interaction terms among these variables.  Therefore, future work with 

this model should use a higher quantity of covariates to evaluate how estimation results change with 

greatly increased covariate complexity.  Additionally, this would allow for much a more in depth practice 

in model selection.   

 

Scenario #7 (Diamond/Circles), whose estimation results are presented in Section 4.2.7, includes n=400 

sites, S=40 species and H=9 habitats.  Meanwhile, the Great Barrier Reef data set includes n=1200 sites, 

S=200 species and 15-20 habitats.   While increasing n and S to these levels will increase computation 

requirements, examples in this paper have shown that an increase in these values will improve model 

estimation.  The more challenging step, which will require future investigation, is to increase the number 

of habitats to 15 or 20.  Moreover, eight of the habitats in Scenario #7 are simplified in the sense that 

they are each connected sets.  Future work should investigate more complex scenarios where a single 

habitat type can be found in many disjoint locations across the study region. 

 

Perhaps the largest unresolved question left by this paper is how to estimate habitat boundary 

transitions properly.  Sections 4.2 and 4.3.9 demonstrate the tendency for overly precise boundary 

estimates.  Clearly, future work is needed to address this problem.  One possible method to investigate 

this would be to sample more sites along the (expected) habitat boundary regions.  Although this is not 

a remedy to the problem, it might help formulate some hypotheses about how to adjust the model.  It 

may be useful to introduce a ‘tuning parameter’ to the model that is a scalar multiplier of the B 

parameter matrix.  The exact placement of this parameter in the model framework is unclear, since it 

must be both effective and identifiable/estimable. 

 

Finally, future work with this model should explore potential biological/ecological interpretations of the 

typical results.  For example, the idea of a habitat mosaic (defined as an area comprised of multiple 
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habitat types) may be applicable where multiple habitats have high individually computed probabilities 

of existence in a single region.  It would also be worthwhile to connect this framework to the idea of 

prime and fringe habitats.  Finally, it would be interesting to consider 3-dimensional habitats existing, for 

instance, at different ocean depths (surface, reef, deep sea) but at the same latitude/longitude 

coordinate.   

 

5.3 Reflections on my Master’s Project 
 

Although my project involved a variety of efforts—both theoretical and applied—the lion’s share of my 

research time was spent programming in R to investigate questions about the model.  Through this 

practice, I learned a tremendous amount of the R programming language.  Specifically, I learned how to 

build code that is as general as possible (to cope with the ever-changing components of simulation 

testing), and the importance of this style of programming.  For example, my code is written to handle a 

general number of sites, species, habitats, and a general covariate polynomial model form.  This sounds 

trivial, but, as described below, this was a very challenging issue because it involved writing code that 

would automatically write additional code tailored specifically to the habitat scenario at hand. 

 

One of the most challenging specific tasks required for this research was to enable my code to generate 

an arbitrary number of conditional likelihood functions—one for each of the separately estimated blocks 

in a single iteration of the blocked non-linear Gauss-Seidel estimation algorithm4.  This was necessary 

because the optim() R function used within the algorithm for the estimation of each parameter block 

requires a uniquely named likelihood function which needed to be written slightly differently for each 

block.  A general outline of the code that wrote S unique likelihood functions corresponding to the S 

blocks in the A parameter matrix is shown here. 

 

for (s in 1:S) { 

 assign ( paste ( log likelihood function name ),  

function ( A block, Au, Bu, covariate data, presence/absence data ) {; 

  Au[s,] = A block 

 rest of log likelihood function 

} 

 ) 

} 

                                                           
4
 Recall that there are S+H-1 blocks for a given scenario. 



77 

 

 

where A block is the chunk optimized for log-likelihood, all else constant, and Au and Bu are the most 

recently updated sets of parameter estimates for the A and B parameter matrices respectively.  Note 

that I use red text to denote the items whose names change depending on block.  The likelihood 

functions are then called through optim() within the estimation algorithm with code like: 

 

optimal A block = optim( A block, eval(as.name(paste( log likelihood function name ))),…) 

 
By using the same combination of assign(), paste(), eval() and as.name(), a similar set of code was used 

to generate a likelihood function tailored to optimize each of the blocks within the B matrix. 

 

Generality for the modeled number of habitats and modeled covariate polynomial order was also 

incorporated to allow for misspecification of H and p.  My code was also built to easily compare various 

values for τj parameters, various random samples of sites, and various strategies for generating 

parameter starting values among other testing questions.  At every point along the way, it was 

important to produce informative diagnostic plots and measurements to evaluate the simulation-

estimation process, and to organize the vast amount of estimation results effectively.  Also, I learned 

that user-friendliness is a very important aspect of good code writing.  Developing my code in this 

regard was helpful for myself as I ran hundreds of simulations, and will be important as I pass on the 

code to those who will use it next.  The appendix provides annotated code and an overview of the 

functionality of the code. 

 

In the process of researching and writing this paper, I learned a tremendous amount about investigating 

statistical models, statistical computing, and organizing and communicating complex results and 

interpretations. This was also my first experience working with a mixture model, here used to allow the 

probabilistic membership of sites to habitats.  Also, the additive logistic function used in the model to 

transform a linear combination of covariate data and coefficient parameters to the probability scale was 

new to me. The cornerstone of my contribution to the understanding of this model was the 

development of sophisticated testing scenarios, the coding of data generation and, particularly, model 

estimation procedures and the evaluation of estimation performance.  Consequently, I now know this 

process well.   
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APPENDIX 

Overview of Code 
 

In the following appendices I have included the principal R code used to run habitat simulation-

estimation exercises.  This code is broken into four broad sections, each written to address a specific 

task.  They are designed to be run sequentially and take a habitat estimation example from initialization 

all the way to post-estimation evaluation and habitat maps.  The four sections of code are introduced 

here. 

 

1. Testing Scenario Setup 

‒ Initializes sample size, algorithm options, plotting and save options, etc. 

‒ Sets up scenario – B and A matrices. 

2. Function Library 

‒ Writes different ‘flavors’ of the likelihood function recursively depending on S and H. 

‒ Defines function to simulate presence/absence data. 

‒ Several miscellaneous functions. 

3. Parameter Estimation 

‒ Samples sites and simulates presence/absence observations. 

‒ Plots and saves true habitat maps. 

‒ Generates optimization starting values and initializes updatable parameter arrays. 

‒ Runs blocked nonlinear Gauss-Seidel likelihood optimization algorithm to estimate model 

parameters. 

‒ Performs habitat swapping to correctly label estimated habitats. 

‒ Computes model selection criteria. 

‒ Outputs estimation results to save folder as .csv files. 

4. Plots and Diagnostics 

‒ Creates plots to directly compare parameters to their estimates. 

‒ Creates habitat probability plots (individual and logistic). 

‒ Creates habitat classification plots (for sampled sites and across grid)
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Appendix A – Testing Scenario Setup 
 

############################################################################# 

 

This collection of code sets up a simulation testing scenario in terms of underlying habitats (B matrix, A 

matrix), data/sample (n, S), optimization preferences (max iterations, convergence threshold, 

optimization method, etc.), plotting/saving options, and model misspecification.  The items in the first 

segment are individually described.  The second segment defines the B matrix and calculates the H and p 

values which are implicit within this matrix.  The final segment allows for misspecification of covariate 

polynomial order and number of habitats, and is optional. This code must be run first when doing a 

simulation-estimation exercise.  The setup for Scenario #1 is presented with descriptions of each input 

item, and the setups for Scenarios #2-#7 are included subsequently. 
 

############################################################################# 

         ##  SCENARIO #1  ## 

 

NAME="BASELINE LINEAR EXAMPLE" # scenario name, for save pathname 

n=200     # number of sampled sites 

S=20     # number of species 

m=9     # maximum algorithm iterations 

inits=2     # SNR for starting parameter value creation 

seed=26     # random number seed for site sample  

tauseed=2011     # random number seed for simulated tau values 

tauspread=log(3)    # tau magnitude 

method="Nelder-Mead"   # optimization method within optim() 

delta=0.000001    # convergence threshold 

pixels=101    # resolution of maps 

rawpoly=T    # raw or orthogonalized covariate polynomials 

trueplots=T    # should true maps be drawn? 

saveplots=F    # should maps/excel files be saved? 

savepath="pathname"   # for creation of save folder 

 

############################################################################# 

 

B1=c(0,2,-1)*(20/pixels)    # habitat 1 B parameters 

B2=-c(0,0,-5)*(20/pixels)   # habitat 2 B parameters 

B.true=rbind(B1,B2)      

p.true=p.model=ncol(B.true)   # assume correct covariate specification 

H.true=H.model=nrow(B.true)+1   # assume correct H specification 

parscale=c(1,100,300)   # parameter scale for optim()  

 

############################################################################# 

 

# Model Misspecification    

# p.model=3 ; parscale=rep(1,p.model) # allows for  p.true ≠ p.model 

# H.model=3    # uses 0-starting values if H.true ≠ H.model 

 

############################################################################# 
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############################################################################# 

############################################################################# 

         ##  SCENARIO #2  ## 

 

NAME="TWO CIRCLES EXAMPLE" 

n=150  

S=15 

m=9 

inits=2 

seed=13 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=c(-1.27513012,0.51025615,-0.05102561,0.51025615,-0.05102561)*10  

 B2=c(-1.27513012,-0.51025615,-0.05102561,-0.51025615,-0.05102561)*10 

 B.true=rbind(B1,B2) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(25,10,1,10,1) 

 

# Model Selection 

# p.model=5 ; parscale=rep(1,p.model) 

# H.model=3         

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #3  ## 

 

NAME="CUBIC EXAMPLE" 

n=150 

S=15 

m=9 

inits=2 

seed=2 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=-c(-10,-10,.40,.20,-40,.07,.7)  

 B2=c(-15,-10,.40,.20,-2,.3,.08)    

 B.true=rbind(B1,B2) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(100,100,4,2,150,1,1) 

 

# Model Selection 
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# p.model=7 ; parscale=rep(1,p.model) 

# H.model=3  

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #4  ## 

 

NAME="LIN-QUAD-CUBE EXAMPLE" 

n=225 

S=24             # 30 

m=9      ################## 25 

inits=2     ###   ??????   ### 0 

seed=35     ################## 2011 

tauseed=2011 ; tauspread=log(3)        # log(3) 

method="Nelder-Mead"          # NM 

delta=0.000001           # 0.000001 

pixels=101            # 101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=-c(75,10,0,0,2,0,0)*(20/pixels)  

 B2=-c(-75,5,40,-3,-10,20,-4)*(6/pixels)  

 B3=c(-1.78028927-0.5,0.50875790,-0.03633985,0,-0.50875790,-0.03633985,0)*15 

 B.true=rbind(B1,B2,B3) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(20,10,2,1,10,2,1) 

 

# Model Selection 

# p.model=7 ; parscale=rep(1,p.model) 

# H.model=4  

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #5a  ## 

NAME="DIAMOND (Linear) EXAMPLE" 

n=200 

S=20 

m=9 

inits=2 

seed=2 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=-c(9,1,-1)*(120/pixels)  

 B2=c(-9,1,-1)*(120/pixels)  

 B3=-c(9,-1,-1)*(120/pixels)  

 B4=c(-9,-1,-1)*(120/pixels) 
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 B.true=rbind(B1,B2,B3,B4) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(10,1,1) 

 

# Model Selection 

# p.model=3 ; parscale=rep(1,p.model) 

# H.model=5  

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #5b  ## 

 

NAME="DIAMOND (Quad) EXAMPLE" 

n=200 

S=20 

m=9 

inits=2 

seed=2 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=-c(9,1,0,-1,0)*(120/pixels)  

 B2=c(-9,1,0,-1,0)*(120/pixels)  

 B3=-c(9,-1,0,-1,0)*(120/pixels)  

 B4=c(-9,-1,0,-1,0)*(120/pixels) 

 B.true=rbind(B1,B2,B3,B4) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(10,1,1,1,1) 

 

# Model Selection 

# p.model=5 ; parscale=rep(1,p.model) 

# H.model=5  

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #6  ## 

 

NAME="FOUR CIRCLES EXAMPLE" 

n=400 

S=30 

m=9 

inits=2 

seed=5 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 
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trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=c(-1.27513012,0.51025615,-0.05102561,0.51025615,-0.05102561)*10  

 B2=c(-1.27513012,-0.51025615,-0.05102561,-0.51025615,-0.05102561)*10 

 B3=c(-1.27513012,-0.51025615,-0.05102561,0.51025615,-0.05102561)*10 

 B4=c(-1.27513012,0.51025615,-0.05102561,-0.51025615,-0.05102561)*10 

 B.true=rbind(B1,B2,B3,B4)  

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(25,10,1,10,1) 

 

# Model Selection 

# p.model=5 ; parscale=rep(1,p.model) 

# H.model=5 

 

 

############################################################################# 

############################################################################# 

         ##  SCENARIO #7  ## 

 

NAME="DIAMOND-CIRCLES EXAMPLE" 

n=400 

S=40 

m=9 

inits=2 

seed=1 

tauseed=2011 ; tauspread=log(3) 

method="Nelder-Mead" 

delta=0.000001 

pixels=101 

rawpoly=T 

trueplots=T ; saveplots=T 

savepath="pathname/" 

 

 B1=-c(9,1,0,-1,0)*(120/pixels)  

 B2=c(-9,1,0,-1,0)*(120/pixels)  

 B3=-c(9,-1,0,-1,0)*(120/pixels)  

 B4=c(-9,-1,0,-1,0)*(120/pixels) 

 B5=c(-2.8428571,2.5714286,-0.4285714,2.5714286,-0.4285714) 

 B6=c(-1.4428571,-2.5714286,-0.4285714,-2.5714286,-0.4285714) 

 B7=c(-2.1428571,-2.5714286,-0.4285714,2.5714286,-0.4285714)  

 B8=c(-2.1428571,2.5714286,-0.4285714,-2.5714286,-0.4285714) 

 B.true=rbind(B1,B2,B3,B4,B5,B6,B7,B8) 

 p.true=p.model=ncol(B.true) ; H.true=H.model=nrow(B.true)+1  

 parscale=rep(1,p.model) ; parscale=c(10,5,1,5,1) 

 

# Model Selection 

# p.model=5 ; parscale=rep(1,p.model) 

# H.model=9 
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Appendix B – Function Library 
 
############################################################################# 

 

This collection of code defines the functions that will later be used for data simulation and estimation.  

S+H-1 versions of the likelihood function are required by the blocked non-linear Gauss-Seidel algorithm, 

and thus must be defined conditional on knowing S and H.  Consequently, this section must be run after 

the ‘Testing Scenario Setup’ section of code.  The various ‘flavors’ of coded likelihood function are 

specified in the first two segments of code below. 

 

The artificial.data2() function simulates presence absence data across the n sites for S species.  These are 

obtained by Bernoulli draws with success probabilities according to the mixture model of species 

presence probabilities defined by alpha and tau values weighted by habitat membership probabilities.  

The function outputs a binary matrix of presence/absence ‘observations’ where 1 represents presence 

and 0 represents absence. 

 

Lastly, a few miscellaneous functions and one required R package are included which are used at various 

points of the code that follows. 

 
 

############################################################################# 

#   LOG-LIKELIHOOD FUNCTIONS FOR EACH 'BLOCK' (for optim)     # 

############################################################################# 

 

## NOTE: at.mat is the A parameter matrix described in the paper including alphas and taus. 

## optim() requires that the block of parameters (at.piece, B.piece) to optimize for each   

## small optimization be the first argument of the function.  Thus a unique function must 

## be written for each of the S+H-1 blocks, each allowing the corresponding parameter block 

## to to be input separately and then gluing that block into the larger parameter matrix. 

 

for (s in 1:S) { 

   assign( paste("loglike.at",s,sep='') , function(at.piece,at.mat,B.mat,Xdata,Ydata) { ; 

 at.mat[s,1:H.model]=at.piece ; 

 at.mat[s,H.model+1]=-sum(at.mat[s,2:H.model]) ; 

 Xdata=as.matrix(Xdata) ; 

 Ydata=as.matrix(Ydata) ; 

 n=nrow(Xdata) ; 

 S=nrow(at.mat) ; 

 bin=array(NA,c(n,S,H.model)) ; 

 for (j in 1:S) { ; 

  logitmu=at.mat[j,1]+at.mat[j,2:(H.model+1)] ; 

  mu=exp(logitmu)/(1+exp(logitmu)) ; 

  for (i in 1:H.model) { bin[,j,i]=ifelse(as.logical(Ydata[,j]),mu[i],1-mu[i]) } ; 

    } ; 

 b=matrix(NA,nrow=n,ncol=H.model) ; 

 for (k in 1:H.model) { b[,k]=apply(bin[,,k],1,prod.fun) } ; 

 expXB=exp(pmin(pmax(Xdata%*%t(B.mat),-100),100)) ; 

 M=matrix(NA,nrow=n,ncol=H.model) ; 

 M[,1:(H.model-1)]=expXB/(1+apply(expXB,1,sum)) ; 

 M[,H.model]=1-apply(M[,1:(H.model-1)],1,sum) ; 

 sitelike=apply(b*M,1,sum) ; 
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 llval=sum(log(sitelike)) ; 

 list(llval=llval) ; 

    } 

   ) 

} 

############################################################################# 

############################################################################# 

for (h in 1:H.model) { 

   assign( paste("loglike.B",h,sep='') , function(B.piece,at.mat,B.mat,Xdata,Ydata) { ; 

 B.mat[h,]=B.piece ; 

 Xdata=as.matrix(Xdata) ; 

 Ydata=as.matrix(Ydata) ; 

 n=nrow(Xdata) ; 

 S=nrow(at.mat) ; 

 bin=array(NA,c(n,S,H.model)) ; 

 for (j in 1:S) { ; 

  logitmu=at.mat[j,1]+at.mat[j,2:(H.model+1)] ; 

  mu=exp(logitmu)/(1+exp(logitmu)) ; 

  for (i in 1:H.model) { bin[,j,i]=ifelse(as.logical(Ydata[,j]),mu[i],1-mu[i]) } ; 

    } ; 

 b=matrix(NA,nrow=n,ncol=H.model) ; 

 for (k in 1:H.model) { b[,k]=apply(bin[,,k],1,prod.fun) } ; 

 expXB=exp(pmin(pmax(Xdata%*%t(B.mat),-100),100)) ; 

 M=matrix(NA,nrow=n,ncol=H.model) ; 

 M[,1:(H.model-1)]=expXB/(1+apply(expXB,1,sum)) ; 

 M[,H.model]=1-apply(M[,1:(H.model-1)],1,sum) ; 

 sitelike=apply(b*M,1,sum) ; 

 llval=sum(log(sitelike)) ; 

 list(llval=llval) ; 

 } 

   ) 

} 

############################################################################# 

 

 

 

############################################################################# 

#      ARTIFICIAL.DATA2() FUNCTION        # 

############################################################################# 

artificial.data2 <- function (H.form,parms,dat,S,alpha,tau) { 

 ## length(alpha)=S, dim(tau)= S,H+1 

   link.fun <- make.link("logit") 

   H <- nrow(parms)+1 # number of habitats 1 more that specified in glm form 

   mu <- tau + alpha 

   for(i in 1:(S*(H)))  

  mu[i] <- link.fun$linkinv(mu[i]) ## logit link on mu 

     X <- model.matrix(H.form,dat) 

 p.habitat <- matrix(NA,dim(X)[1],H) 

   for(h in 1:(H-1)) 

      p.habitat[,h] <- (pmin(pmax(X%*%parms[h,],-100),100)) 

 ## glm form for H-1 habitats -> additive.logistic give H habitats 

   for(i in 1:dim(X)[1]) 

      p.habitat[i,] <- additive.logistic(p.habitat[i,-H]) 
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 p <- matrix(NA,dim(X)[1],S) 

 set.seed(1234) 

   for(i in 1:dim(X)[1]) 

      p[i,] <- mu%*%p.habitat[i,] ## mu H rows long, p.habitat H cols 

   sample <- rbinom(dim(p)[1]*dim(p)[2],1,p) 

   dim(sample) <- c(dim(X)[1],S) 

 colnames(sample) <- colnames(p) <- paste("S.",1:S,sep="") 

   list(sample=sample,p=p,phab=p.habitat,X=X,mu=mu) # output sample from binomial & probabilities of 

species 

} 

############################################################################# 

 

 

 

############################################################################# 

#      ADDITIVE.LOGISTIC() FUNCTION        # 

############################################################################# 

additive.logistic <- function (x,inv=FALSE)  

{ 

 if(inv){ 

    x <- log(x/x[length(x)]) 

    return(x) 

  } 

  x.t <- exp(x) 

  x.t <- x.t/(1+sum(x.t)) 

  x.t[length(x.t)+1] <- 1-sum(x.t) 

  return(x.t) 

} 

############################################################################# 

 

 

############################################################################# 

#          MISCELLANEOUS FUNCTIONS         # 

############################################################################# 

 

prod.fun <- function(x) { 

  exp(sum(log(x))) 

} 

 

invlogit=function(x) { exp(x)/(1+exp(x)) } 

 

############################################################################# 
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Appendix C – Parameter Estimation 
 

############################################################################# 

 

This collection of code samples sites, simulates data and estimates model parameters using a blocked 

nonlinear Gauss-Seidel algorithm.  If the user chooses to plot the true habitat maps and save estimation 

results (saveplot and trueplots options), this section of code does these tasks. 

 

Before estimation, parameter starting values are chosen based on the user's preferences specified in the 

setup of the scenario.  After the estimation procedure, habitat swapping is done to give the best possible 

set of labels to the habitats, the classification success rate is computed, and the log likelihood is used to 

compute AIC and AICc values.  Finally, relevant results are output as .csv files into the save folder. 

 

This set of code must be run after the Testing Scenario Setup and Function Library collections of code. 

 
############################################################################# 

 

## create folder to save plots and .csv results 

if (saveplots) { 

  time=Sys.time() 

  newpath=paste(savepath,NAME,"  ",format(time, "%a %b %d %Y  %H.%M.%S %Z"),sep="") 

  dir.create(newpath) 

} 

 

################################### 

 

## create folder to save plots and .csv results 

if (saveplots) { 

  time=Sys.time() 

  newpath=paste(savepath,NAME,"  ",format(time, "%a %b %d %Y  %H.%M.%S %Z"),sep="") 

  dir.create(newpath) 

} 

 

################################### 

 

## max polynomial effect in covariates, used to create data sample 

ord.model=(p.model-1)/2 

ord.true=(p.true-1)/2 

 

################################### 

 

## colors for habitat plotting   

colors=c("black","blue","red","green2","purple", 

 "darkorange1","chocolate4","gray47","gray75", 

 "blue4","purple4","red4","deeppink1","slateblue3") 

 

################################### 

 

## Sample sites, compute corresponding covariate data (lat, long, and poly's)  

set.seed(seed) 

x=runif(n,-10,10) ; z=runif(n,-10,10) 
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if (exists("rawpoly") && rawpoly) {  

 dat.sample <- data.frame(y=1,poly(x,ord.true,raw=T),poly(z,ord.true,raw=T)) 

 form.data <- y~poly(x,ord.true,raw=T)+poly(z,ord.true,raw=T)     # Raw Polynomials 

} else {dat.sample <- data.frame(y=1,poly(x,ord.true,raw=F),poly(z,ord.true,raw=F))  

 form.data <- y~poly(x,ord.true,raw=F)+poly(z,ord.true,raw=F) }   # Orthogonal 

Polynomials 

 

## Generate 'true' alpha and tau values 

set.seed(tauseed) 

alpha.true=rep(0,S) 

taubits=c(tauspread,-tauspread) 

tau.true=matrix(sample(taubits,size=S*(H.true-1),replace=T),nrow=S) 

tau.h=-apply(tau.true,1,sum) 

tau.true=cbind(tau.true,tau.h) 

at.true=cbind(alpha.true,tau.true) 

 

## Simulate species presence/absence with Bernoulli trials 

test <- artificial.data2(form.data,B.true,dat.sample,S,alpha.true,tau.true) 

 

 

if (trueplots) { 

############################################################################# 

#          CREATE HABITAT PLOTS           # 

############################################################################# 

 

## Create data (lat and long) at each point in a grid across the study region 

xx=seq(-10,10,length.out=pixels) ; zz=seq(-10,10,length.out=pixels)  

dat.grid <- data.frame(xx,zz) 

dat.grid <- expand.grid(dat.grid$xx,dat.grid$zz) 

dat.grid <- data.frame(y=1,dat.grid)   ## create grid for map 

names(dat.grid) <- c("y","xx","zz") 

if (exists("rawpoly") && rawpoly) {  

 form.data2 <- y~poly(xx,ord.true,raw=T)+poly(zz,ord.true,raw=T)  

} else { form.data2 <- y~poly(xx,ord.true,raw=F)+poly(zz,ord.true,raw=F) } 

X.true <- model.matrix(form.data2,dat.grid) 

 

############################################################################# 

  ##  Individual Logistic Habitat Probability Plots  ## 

 

## 'Individual' logistic probabilities (see paper) for each point in grid 

link.fun <- make.link("logit") 

myprobs.indiv.true=matrix(NA,nrow=pixels^2,ncol=H.true-1) 

for (h in 1:(H.true-1)) { 

 myprobs.indiv.true[,h] <- link.fun$linkinv(X.true%*%B.true[h,]) 

} 

indivprobs.grid.true <- array(NA,c(pixels,pixels,H.true-1)) 

for (i in 1:length(xx)) { 

  for (j in 1:length(zz)) { 

    for(k in 1:(H.true-1)) { 

     indivprobs.grid.true[i,j,k] <- myprobs.indiv.true[,k][which(dat.grid$xx==xx[i] & dat.grid$zz==zz[j])] 

    } 

  } 

} 
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## Define plot layout 

if (H.true==2) { par(mfrow=c(1,2),oma=c(0,0,2,0))  

} else if (H.true==3)  { windows(width=9,height=5) ; par(mfrow=c(1,2),oma=c(0,0,2,0)) 

} else if (H.true==4)  { windows(width=12,height=4.5) ; par(mfrow=c(1,3),oma=c(0,0,2,0)) 

} else if (H.true==5)  { windows(width=13,height=4) ; par(mfrow=c(1,4),oma=c(0,0,2,0))  

} else if (H.true==6)  { windows(width=12,height=9) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,1,1,2,2,3,3,0,4,4,5,5,0,0,4,4,5,5,0), 4, 6, byrow=TRUE)) 

} else if (H.true==7)  { windows(width=12,height=9) ; par(mfrow=c(2,3),oma=c(0,0,2,0)) 

} else if (H.true==8)  { windows(width=13,height=7.5) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,0,5,5,6,6,7,7,0,0,5,5,6,6,7,7,0), 4, 8, byrow=TRUE)) 

} else if (H.true==9)  { windows(width=13,height=7.5) ; par(mfrow=c(2,4),oma=c(0,0,2,0))  

} else if (H.true==10) { windows(width=12,height=15) ; par(mfrow=c(3,3),oma=c(0,0,2,0)) 

} else if (H.true==11) { windows(width=15,height=6.5) ; par(mfrow=c(2,5),oma=c(0,0,2,0)) 

} else if (H.true==12) { windows(width=13,height=10) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,5,5,6,6,7,7,8,8,0,9,9,10,10,11,11,0,0,9,9,10,10,11,11,0), 

6, 8, byrow=TRUE)) 

} else if (H.true==13) { windows(width=13,height=10) ; par(mfrow=c(3,4),oma=c(0,0,2,0)) 

} else { print("Matrix Layout not predifined for this number of Habitats") } 

 

## plot individual probs for each habitat (& indicate where samples are taken) 

for (l in 1:(H.true-1)) { 

 image(xx,zz,indivprobs.grid.true[,,l],xlab="Longitude",ylab="Latitude",main=paste("Habitat",l),zlim=c(0,1),c

ol=rev(rainbow(100,end=4/6))) 

# points(x,z,col="white",cex=4,pch='.') 

} 

title("True Individual Habitats",outer=T,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_True Indiviual Habitat Maps",".pdf",sep="")) } 

 

 

############################################################################# 

  ##  Additive Logistic Habitat Probability Plots  ## 

 

## 'Additive' logistic probabilities (see paper) for each point in grid 

myprobs.joint.true=t(apply(pmin(pmax(X.true%*%t(B.true),-100),100),1,additive.logistic)) 

jointprob.grid.true <- array(NA,c(pixels,pixels,H.true)) 

for (i in 1:length(xx)) { 

  for (j in 1:length(zz)) { 

    for(k in 1:(H.true)) { 

     jointprob.grid.true[i,j,k] <- myprobs.joint.true[,k][which(dat.grid$xx==xx[i] & dat.grid$zz==zz[j])] 

    } 

  } 

} 

 

## Define plot layout 

if (H.true==2) { par(mfrow=c(1,2),oma=c(0,0,2,0))  

} else if (H.true==3)  { windows(width=12,height=4.5) ; par(mfrow=c(1,3),oma=c(0,0,2,0)) 

} else if (H.true==4)  { windows(width=13,height=4) ; par(mfrow=c(1,4),oma=c(0,0,2,0)) 

} else if (H.true==5)  { windows(width=12,height=9) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,1,1,2,2,3,3,0,4,4,5,5,0,0,4,4,5,5,0), 4, 6, byrow=TRUE)) 

} else if (H.true==6)  { windows(width=12,height=9) ; par(mfrow=c(2,3),oma=c(0,0,2,0)) 
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} else if (H.true==7)  { windows(width=13,height=7.5) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,0,5,5,6,6,7,7,0,0,5,5,6,6,7,7,0), 4, 8, byrow=TRUE)) 

} else if (H.true==8)  { windows(width=13,height=7.5) ; par(mfrow=c(2,4),oma=c(0,0,2,0))  

} else if (H.true==9)  { windows(width=12,height=15) ; par(mfrow=c(3,3),oma=c(0,0,2,0))  

} else if (H.true==10) { windows(width=15,height=7) ; par(mfrow=c(2,5),oma=c(0,0,2,0)) 

} else if (H.true==11) { windows(width=13,height=10) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,5,5,6,6,7,7,8,8,0,9,9,10,10,11,11,0,0,9,9,10,10,11,11,0), 

6, 8, byrow=TRUE)) 

} else if (H.true==12) { windows(width=13,height=10) ; par(mfrow=c(3,4),oma=c(0,0,2,0)) 

} else { print("Matrix Layout not predifined for this number of Habitats") } 

 

## plot each habitat (& indicate where samples are taken) 

for (l in 1:(H.true)) { 

 image(xx,zz,jointprob.grid.true[,,l],xlab="Longitude",ylab="Latitude",main=paste("Habitat",l),zlim=c(0,1),co

l=rev(rainbow(100,end=4/6))) 

# points(x,z,col="white",cex=4,pch='.') 

} 

title("True Additive Habitats",outer=T,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_True Additive Habitat Maps",".pdf",sep="")) } 

 

############################################################################# 

   ##  Habitat Classification Plot  ## 

 

windows(width=6,height=7) 

par(mfrow=c(1,1),oma=c(0,0,2,0)) 

votfun=function(x) { 

  ismax=x==max(x) 

  ((1:H.true)[ismax])[1]  #uniqueness ensured  

  } 

winner.true=apply(myprobs.joint.true,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="True") 

points(dat.grid[,2],dat.grid[,3],col=colors[winner.true],pch=16) 

#points(x,z,col="white",cex=4,pch='.') 

title("Classification Plot",outer=T,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_True Classification Plot",".pdf",sep="")) } 

 

############################################################################# 

} 

 

############################################################################# 

#      LIKELIHOOD OPTIMIZATION STEP        # 

############################################################################# 

 

epsilon=.00001 

w.conv=m 

 

## Create Xdata at each of the previously sampled sites according to the  

## MODELED polynomial order in the covariates (this may differ from true order) 

dat.sample.trueorder <- as.matrix(data.frame(y=1,poly(x,ord.true,raw=T),poly(z,ord.true,raw=T))) 

if (p.model != p.true) { 

if (exists("rawpoly") && rawpoly) {  
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 dat.sample <- data.frame(y=1,poly(x,ord.model,raw=T),poly(z,ord.model,raw=T)) 

 form.data <- y~poly(x,ord.model,raw=T)+poly(z,ord.model,raw=T)     # Raw Polynomials 

} else {dat.sample <- data.frame(y=1,poly(x,ord.model,raw=F),poly(z,ord.model,raw=F))  

 form.data <- y~poly(x,ord.model,raw=F)+poly(z,ord.model,raw=F) }   # Orthogonal 

Polynomials 

} 

 

dat.sample=as.matrix(dat.sample) 

 

## Generate parameter starting values based on user preferences 

## Note: some of my choices here for starting value generation are extremely arbitrary. 

##       The paper shows that the choice of starting values does not matter much. 

if (H.true == H.model) { 

if (inits == 0) { at.inits=matrix(0,S,H.true) 

      B.inits=matrix(0,H.true-1,p.true) 

} else { at.inits=at.true[,1:H.true]+matrix(rnorm(S*H.true,0,abs(at.true/inits)),S,H.true) 

    B.inits=B.true+matrix(rnorm((H.true-1)*p.true,0,abs(B.true/inits)),H.true-1,p.true) } 

} 

 

if (H.true != H.model) { 

 at.inits=matrix(0,S,H.model) 

 B.inits=matrix(0,H.model-1,p.true) 

} 

 

if (p.model < p.true) { B.inits=B.inits[,c(1,2:(ord.model+1),(ord.true+2):(ord.true+ord.model+1))] } 

if (p.model > p.true) { B.inits=cbind(B.inits[,1:(ord.true+1)],matrix(0,nrow=H.model-1,ncol=ord.model-

ord.true),B.inits[,(ord.true+2):p.true],matrix(0,nrow=H.model-1,ncol=ord.model-ord.true)) } 

 

## set up arrays that will contain true and progressively updated values for alpha/tau/mu 

mu.true=invlogit(at.true[,1]+at.true[,2:(H.true+1)]) 

at.array=array(0,c(S,H.model+1,m+1)) 

at.array[,1:H.model,1]=at.inits 

at.array[,H.model+1,1]=-apply(at.array[,2:H.model,1],1,sum) 

at.update=at.array[,,1] 

at.rcc=rep(0,m) 

 

## set up arrays that will contain true and progressively updated values for B/pi 

pi.true=t(apply(pmin(pmax(dat.sample.trueorder%*%t(B.true),-100),100),1,additive.logistic)) 

B.array=array(0,c(H.model-1,p.model,m+1)) 

B.update=B.array[,,1]=B.inits 

B.rcc=rep(0,m) 

loglikelihood=0 

 

## Blocked Nonlinear Gauss-Seidel Algorithm 

pb <- winProgressBar(title = "progress bar", min = 0,max = m, width = 300) 

opt.start <- proc.time() 

for (w in 1:m) { 

    for (s in 1:S) { 

 

 at.opt=optim(at.update[s,1:H.model],eval(as.name(paste("loglike.at",s,sep=''))),gr=NULL,at.update,B.updat

e,dat.sample,test$sample,method=method,control=list(fnscale=-1)) 

  at.new.piece=at.opt$par 

  at.new.piece.h=c(at.new.piece,-sum(at.new.piece[2:H.model])) 
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  at.update[s,]=at.new.piece.h 

    } 

    at.array[,,w+1]=at.update 

    at.rcc[w]=max(abs((at.array[,,w+1]-at.array[,,w])/(at.array[,,w]+epsilon))) #relative convergence 

criterion 

    for (h in 1:(H.model-1)) { 

 

 B.opt=optim(B.update[h,],eval(as.name(paste("loglike.B",h,sep=''))),gr=NULL,at.update,B.update,dat.sampl

e,test$sample,method=method,control=list(fnscale=-1,parscale=parscale)) 

  B.update[h,]=B.opt$par  

    } 

    B.array[,,w+1]=B.update 

    B.rcc[w]=max(abs((B.array[,,w+1]-B.array[,,w])/(B.array[,,w]+epsilon))) #relative convergence criterion 

 

 w.conv=w 

 setWinProgressBar(pb, w, title=paste( round(w/m*100, 0),"% done")) 

 print(paste("Completed Iterations:",w)) 

 if (at.rcc[w]<delta & B.rcc[w]<delta) { 

  print(paste("ALGORITHM HAS CONVERGED AFTER",w,"ITERATIONS")) 

  break() 

 } 

 if (w==m) { 

  print(paste("ALGORITHM HAS NOT MET THE CONVERGENCE CRITERION AFTER",m,"ITERATIONS")) 

 } 

} 

close(pb) 

opt.stop <- proc.time() 

opt.time=opt.stop-opt.start ; opt.time 

n.iters <- w.conv ; n.iters 

 

## Name estimated parameters and compute related pi and mu estimates. 

at.est=at.array[,,w.conv+1] 

mu.est=invlogit(at.est[,1]+at.est[,2:(H.model+1)]) 

B.est=B.array[,,w.conv+1] 

pi.est=t(apply(dat.sample%*%t(B.est),1,additive.logistic)) 

 

############################################################################# 

#    OPTIMIZATION DIAGNOSTICS        # 

############################################################################# 

 

at.rcc ; at.true ; at.est 

B.rcc 

mu.true ; mu.est  

 

############################################################################# 

  ##  Correct Classification Rate and Habitat Swapping  ## 

############################################################################# 

 

## See paper for discussion of and motivation for habitat swapping 

 

rate=0 

flip=backflip=1:H.model 
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if (H.true == H.model) {    # Swapping can only be done when this is true 

 

votfun=function(x) { 

  ismax=x==max(x) 

  ((1:H.model)[ismax])[1] #uniqueness ensured 

  } 

 

## True Habitat Classifications 

mytruedataprobs.joint=t(apply(pmin(pmax(dat.sample.trueorder%*%t(B.true),-100),100),1,additive.logistic)) 

truehabclass=apply(mytruedataprobs.joint,1,votfun) ; truehabclass 

 

## Find all permutations of habitat labels 

flips=permutations(H.model,H.model) 

numflips=nrow(flips) 

 

## Estimated Habitat Classifications 

myestdataprobs.joint=t(apply(pmin(pmax(dat.sample%*%t(B.est),-100),100),1,additive.logistic)) 

rates=rep(0,numflips) 

esthabclass=rep(0,n) 

for (permutation in 1:numflips) { 

   myestdataprobs=myestdataprobs.joint[,flips[permutation,]]  

   esthabclass=apply(myestdataprobs,1,votfun) 

   rates[permutation]=length(which((esthabclass-truehabclass)==0))/n 

} 

rates ; flips 

rate=max(rates) ; rate 

flip=flips[which.max(rates),] ; flip 

backflip=(1:H.model)[order(flip)] ; backflip 

} 

 

############################################################################# 

    ##  Model Selection  ## 

############################################################################# 

 

## Get LogLikelihood Value 

Xdata=as.matrix(dat.sample) 

Ydata=as.matrix(test$sample) 

bin=array(NA,c(n,S,H.model)) 

for (j in 1:S) { 

 logitmu=at.est[j,1]+at.est[j,2:(H.model+1)] 

 mu=exp(logitmu)/(1+exp(logitmu)) 

 for (i in 1:H.model) { bin[,j,i]=ifelse(as.logical(Ydata[,j]),mu[i],1-mu[i]) } 

} 

b=matrix(NA,nrow=n,ncol=H.model) 

for (k in 1:H.model) { b[,k]=apply(bin[,,k],1,prod.fun) } 

expXB=matrix(NA,nrow=n,ncol=H.model-1) 

for (l in 1:(H.model-1)) { expXB[,l]=exp(pmin(pmax(Xdata%*%cbind(B.est[l,]),-100),100)) } 

M=matrix(NA,nrow=n,ncol=H.model) 

for (mm in 1:(H.model-1)) { M[,mm]=expXB[,mm]/(1+apply(expXB,1,sum)) } 

M[,H.model]=1-apply(M[,1:(H.model-1)],1,sum) 

sitelike=apply(b*M,1,sum) 

loglikelihood=sum(log(sitelike)) 
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## AIC 

numBparams=p.model*(H.model-1) 

numATparams=S*(H.model+1) 

k=numBparams+numATparams 

AIC=2*k-2*loglikelihood 

 

## AICc 

N=n*S 

AICc=AIC+(2*k*(k+1))/(N-k-1) 

 

############################################################################# 

 

## Print a bunch of results 

rate 

n ; S  

H.true ; H.model 

p.true ; p.model 

m ; n.iters  

AIC ; AICc 

inits ; seed ; delta  

method ; rawpoly ; parscale ; pixels 

flip ; backflip 

B.true ; B.inits ; B.est  

opt.time 

 

############################################################################# 

 

## Save a bunch of results to savepath folder 

if (saveplots) {  

 write.table(round(rate,3),paste(newpath,"/~Success Rate.csv",sep="")) 

 write.table(flip,paste(newpath,"/~flip.csv",sep=""))   

 write.table(round(AIC,3),paste(newpath,"/~AIC.csv",sep="")) 

 write.table(round(AICc,3),paste(newpath,"/~AICc.csv",sep="")) 

 write.table(round(loglikelihood,3),paste(newpath,"/~Log Likelihood Value.csv",sep="")) 

 write.table(n.iters,paste(newpath,"/~Number of Iterations.csv",sep="")) 

 write.table(m,paste(newpath,"/~Maximum Iterations.csv",sep="")) 

 write.table(round(opt.time[3],3),paste(newpath,"/~OptTime.csv",sep="")) 

 write.table(inits,paste(newpath,"/~inits.csv",sep="")) 

 write.table(seed,paste(newpath,"/~seed.csv",sep="")) 

 write.table(tauseed,paste(newpath,"/~tauseed.csv",sep="")) 

 write.table(delta,paste(newpath,"/~delta.csv",sep="")) 

 write.table(B.true,paste(newpath,"/~B True.csv",sep="")) 

 write.table(B.inits,paste(newpath,"/~B Starting Values.csv",sep="")) 

 write.table(B.est,paste(newpath,"/~B MLE.csv",sep="")) 

 write.table(parscale,paste(newpath,"/~parscale.csv",sep="")) 

 write.table(H.true,paste(newpath,"/~H.true.csv",sep="")) 

 write.table(H.model,paste(newpath,"/~H.model.csv",sep="")) 

 write.table(p.true,paste(newpath,"/~p.true.csv",sep="")) 

 write.table(p.model,paste(newpath,"/~p.model.csv",sep="")) 

 write.table(n,paste(newpath,"/~n.csv",sep="")) 

 write.table(S,paste(newpath,"/~S.csv",sep=""))  

 save.image(file=paste(newpath,"/Workspace.RData",sep="")) 

} 
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Appendix D – Plots and Diagnostics 
 

############################################################################# 

 

This collection of code creates plots that evaluate the performance of parameter estimation.  Specifically, 

plots directly comparing true to estimated parameter values, true and MLE habitat maps (individual and  

additive) and classification plots are generated.   

 

If requested by the user, plots are output to the same save folder as described in the Parameter 

Estimation section. 

 

The Testing Scenario Setup, Function Library and Parameter Estimation code sections must be run prior 

to this section.   

 

 
############################################################################# 

 

## Allows toggling of various diagnostic/evaluation plots 

param.estimation=T 

mle.maps=T 

pi.histogram=T 

class=T 

 

 

############################################################################# 

#       Parameter Estimation & Convergence       # 

############################################################################# 

 

## Direct comparison of parameters to MLE estimates, and plots of relative 

## convergence criteria. 

 

if (param.estimation && H.true==H.model) { 

 

windows(width=12,height=4.5) 

par(mfcol=c(1,3),oma=c(0,0,2,0)) 

plot(c(at.true),c(at.est[,c(1,flip+1)]),xlab="True Value",ylab="MLE Value",main="Alpha/Tau") 

abline(0,1) 

plot(c(mu.true),c(mu.est[,flip]),xlab="True Value",ylab="MLE Value",main="MU") 

abline(0,1) 

plot(c(pi.true),c(pi.est[,flip]),xlab="True Value",ylab="MLE Value",main="PI")  

abline(0,1) 

title("Parameter & Pseudo-Parameter Estimation",outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_Parameter Estimation",".pdf",sep="")) } 

 

if (p.true == p.model) { 

windows(width=8,height=4.8) 

par(mfcol=c(1,2),oma=c(0,0,2,0)) 

at.rcc=at.rcc[which(at.rcc>0)] 

plot(3:length(at.rcc),at.rcc[3:length(at.rcc)],type='l',main="Convergence of Alpha/Tau",xlab="iteration",ylab="RCC") 

B.rcc=B.rcc[which(B.rcc>0)] 

plot(3:length(B.rcc),B.rcc[3:length(B.rcc)],type='l',main="Convergence of B",xlab="iteration",ylab="RCC") 
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title("Algorithm Convergence",outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_Algorithm Convergence",".pdf",sep="")) } 

} 

 

if (p.true == p.model) { 

windows(width=4,height=4.8) 

par(mfcol=c(1,1),oma=c(0,0,2,0)) 

B.true.0=rbind(B.true,0) ; B.est.0=rbind(B.est,0) 

plot(c(B.true.0),c(B.est.0[flip,]),xlab="True Value",ylab="MLE Value",main="B") 

abline(0,1) 

title("B Estimation",outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_B Estimation",".pdf",sep="")) } 

} 

 

} 

############################################################################# 

 

 

 

 

############################################################################# 

#     Estimated Habitat Maps         # 

############################################################################# 

 

if (mle.maps) { 

 

## Recreate data (lat and long) at each point in a grid across the study region 

xx=seq(-10,10,length.out=pixels) ; zz=seq(-10,10,length.out=pixels)  

dat.grid <- data.frame(xx,zz) 

dat.grid <- expand.grid(dat.grid$xx,dat.grid$zz) 

dat.grid <- data.frame(y=1,dat.grid)   ## create grid for map 

names(dat.grid) <- c("y","xx","zz") 

if (exists("rawpoly") && rawpoly) {  

 form.data2 <- y~poly(xx,ord.model,raw=T)+poly(zz,ord.model,raw=T)  

} else { form.data2 <- y~poly(xx,ord.model,raw=F)+poly(zz,ord.model,raw=F) } 

X.model <- model.matrix(form.data2,dat.grid) 

 

############################################################################# 

     ##  MLE Individual Logistic Habitat Probability Plots  ## 

 

## Estimated 'Individual' logistic probabilities (see paper) for each point in grid 

link.fun <- make.link("logit") 

myprobs.indiv.mle=matrix(NA,nrow=pixels^2,ncol=H.model-1) 

for (h in 1:(H.model-1)) { 

 myprobs.indiv.mle[,h] <- link.fun$linkinv(pmin(pmax(X.model%*%B.est[h,],-100),100)) 

} 

indivprobs.grid.mle <- array(NA,c(pixels,pixels,H.model-1)) 

for (i in 1:length(xx)) { 

  for (j in 1:length(zz)) { 

    for(k in 1:(H.model-1)) { 

     indivprobs.grid.mle[i,j,k] <- myprobs.indiv.mle[,k][which(dat.grid$xx==xx[i] & dat.grid$zz==zz[j])] 

    } 

  } 
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} 

 

## Define plot layout 

if (H.model==2) { par(mfrow=c(1,2),oma=c(0,0,2,0))  

} else if (H.model==3)  { windows(width=9,height=5) ; par(mfrow=c(1,2),oma=c(0,0,2,0)) 

} else if (H.model==4)  { windows(width=12,height=4.5) ; par(mfrow=c(1,3),oma=c(0,0,2,0)) 

} else if (H.model==5)  { windows(width=13,height=4) ; par(mfrow=c(1,4),oma=c(0,0,2,0))  

} else if (H.model==6)  { windows(width=12,height=9) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,1,1,2,2,3,3,0,4,4,5,5,0,0,4,4,5,5,0), 4, 6, byrow=TRUE)) 

} else if (H.model==7)  { windows(width=12,height=9) ; par(mfrow=c(2,3),oma=c(0,0,2,0)) 

} else if (H.model==8)  { windows(width=13,height=7.5) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,0,5,5,6,6,7,7,0,0,5,5,6,6,7,7,0), 4, 8, byrow=TRUE)) 

} else if (H.model==9)  { windows(width=13,height=7.5) ; par(mfrow=c(2,4),oma=c(0,0,2,0))  

} else if (H.model==10) { windows(width=12,height=15) ; par(mfrow=c(3,3),oma=c(0,0,2,0)) 

} else if (H.model==11) { windows(width=15,height=6.5) ; par(mfrow=c(2,5),oma=c(0,0,2,0)) 

} else if (H.model==12) { windows(width=13,height=10) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,5,5,6,6,7,7,8,8,0,9,9,10,10,11,11,0,0,9,9,10,10,11,11,0), 

6, 8, byrow=TRUE)) 

} else if (H.model==13) { windows(width=13,height=10) ; par(mfrow=c(3,4),oma=c(0,0,2,0)) 

} else { print("Matrix Layout not predifined for this number of Habitats") } 

 

## Plot each habitat (& indicate where samples are taken) 

for (l in 1:(H.model-1)) { 

 image(xx,zz,indivprobs.grid.mle[,,l],xlab="Longitude",ylab="Latitude",main=paste("Habitat",l),zlim=c(0,1),c

ol=rev(rainbow(100,end=4/6))) 

# points(x,z,col="white",cex=4,pch='.') 

} 

title("MLE Individual Habitats",outer=T,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_MLE Individual Habitats",".pdf",sep="")) } 

 

############################################################################# 

     ##  MLE Additive Logistic Habitat Probability Plots  ## 

 

## Estimated 'Additive' logistic probabilities (see paper) for each point in grid 

myprobs.joint.mle=t(apply(pmin(pmax(X.model%*%t(B.est),-100),100),1,additive.logistic)) 

jointprob.grid.mle <- array(NA,c(pixels,pixels,H.model)) 

for (i in 1:length(xx)) { 

  for (j in 1:length(zz)) { 

    for(k in 1:(H.model)) { 

     jointprob.grid.mle[i,j,k] <- myprobs.joint.mle[,k][which(dat.grid$xx==xx[i] & dat.grid$zz==zz[j])] 

    } 

  } 

} 

 

jointprob.grid.mle=jointprob.grid.mle[,,flip] 

 

## Define plot layout 

if (H.model==2) { par(mfrow=c(1,2),oma=c(0,0,2,0))  

} else if (H.model==3)  { windows(width=12,height=4.5) ; par(mfrow=c(1,3),oma=c(0,0,2,0)) 

} else if (H.model==4)  { windows(width=13,height=4) ; par(mfrow=c(1,4),oma=c(0,0,2,0)) 

} else if (H.model==5)  { windows(width=12,height=9) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,1,1,2,2,3,3,0,4,4,5,5,0,0,4,4,5,5,0), 4, 6, byrow=TRUE)) 
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} else if (H.model==6)  { windows(width=12,height=9) ; par(mfrow=c(2,3),oma=c(0,0,2,0)) 

} else if (H.model==7)  { windows(width=13,height=7.5) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,0,5,5,6,6,7,7,0,0,5,5,6,6,7,7,0), 4, 8, byrow=TRUE)) 

} else if (H.model==8)  { windows(width=13,height=7.5) ; par(mfrow=c(2,4),oma=c(0,0,2,0))  

} else if (H.model==9)  { windows(width=12,height=15) ; par(mfrow=c(3,3),oma=c(0,0,2,0))  

} else if (H.model==10) { windows(width=15,height=7) ; par(mfrow=c(2,5),oma=c(0,0,2,0)) 

} else if (H.model==11) { windows(width=13,height=10) ; par(oma=c(0,0,2,0)) ; 

layout(matrix(c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,5,5,6,6,7,7,8,8,0,9,9,10,10,11,11,0,0,9,9,10,10,11,11,0), 

6, 8, byrow=TRUE)) 

} else if (H.model==12) { windows(width=13,height=10) ; par(mfrow=c(3,4),oma=c(0,0,2,0)) 

} else { print("Matrix Layout not predifined for this number of Habitats") } 

 

## Plot each habitat (& indicate where samples are taken) 

for (l in 1:(H.model)) { 

 image(xx,zz,jointprob.grid.mle[,,l],xlab="Longitude",ylab="Latitude",main=paste("Habitat",l),zlim=c(0,1),col

=rev(rainbow(100,end=4/6))) 

# points(x,z,col="white",cex=4,pch='.') 

} 

title("MLE Additive Habitats",outer=T,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_MLE Additive Habitats",".pdf",sep="")) } 

 

} 

 

############################################################################# 

 

 

 

############################################################################# 

#      Reality Check         # 

############################################################################# 

 

if (pi.histogram && H.true==H.model) { 

windows(width=7,height=5) 

par(mfrow=c(1,1),oma=c(0,0,2,0)) 

diffs=c(abs(pi.true-pi.est[,flip]))  

hist(diffs,xlab="Estimation Errors",main="PI:  |MLE-True|") 

title("Reality Check: PIs",outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

} 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_PI Histogram",".pdf",sep="")) } 

 

 

## Check relation of B.est to B.true (boundary abruptness misestimation) 

if (H.true==H.model) { 

B.ratio=B.est/B.true 

B.ratio=B.ratio[which(-1000<B.ratio & B.ratio<1000)] 

B.scalar=round(sum(B.ratio)/length(B.ratio),2) ; B.scalar 

 

B.est.adjust=B.est/B.scalar ; B.est.adjust 

} 

 

 

############################################################################# 
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#      Classification Plots        # 

############################################################################# 

 

## Several versions of Classification plots, both for sampled sites and along 

## a grid throughout the study region.  Many of these maps are provide redundant  

## information, so they may be deleted. 

 

if (class) { 

 

############################################################################# 

##      Gridpoint Classification Plots       ## 

############################################################################# 

 

windows(width=8,height=4.8) 

par(mfcol=c(1,2),oma=c(0,0,2,0)) 

 

## Plot true and MLE classification plots side-by-side. (Important Evaluation Tool) 

## true 'winner-takes-all' (classification) plot 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="True") 

points(dat.grid[,2],dat.grid[,3],col=colors[winner.true],pch=16) 

xxx=rep(x,H.true) 

zzz=rep(z,H.true) 

#symbols(xxx,zzz,circles=sqrt(diffs),fg="white",bg="yellow",inches=0.1,add=T) 

 

## estimated 'winner-takes-all' (classification plot 

votfun=function(x) { 

  ismax=x==max(x) 

  ((backflip)[ismax])[1] #uniqueness ensured 

  } 

winner.mle=apply(myprobs.joint.mle,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="MLE") 

points(dat.grid[,2],dat.grid[,3],col=colors[winner.mle],pch=16) 

xxx=rep(x,H.model) 

zzz=rep(z,H.model) 

if (H.true==H.model && p.true==p.model) { 

 symbols(xxx,zzz,circles=sqrt(diffs),fg="white",bg="yellow",inches=0.1,add=T) } 

 

title(expression("Classification Plots"),outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_MLE Classifications",".pdf",sep="")) } 

 

windows(width=4,height=4.4) 

par(mfcol=c(1,1)) 

 

## estimated 'winner-takes-all' plot 

votfun=function(x) { 

  ismax=x==max(x) 

  ((backflip)[ismax])[1] #uniqueness ensured 

  } 

winner.mle=apply(myprobs.joint.mle,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="MLE") 

points(dat.grid[,2],dat.grid[,3],col=colors[winner.mle],pch=16) 

xxx=rep(x,H.model) 
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zzz=rep(z,H.model) 

if (H.true==H.model && p.true==p.model) { 

 symbols(xxx,zzz,circles=sqrt(diffs),fg="white",bg="yellow",inches=0.1,add=T) } 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_MLE Classification Plot (yellow dots)",".pdf",sep="")) } 

 

windows(width=4,height=4.4) 

par(mfcol=c(1,1)) 

 

## estimated 'winner-takes-all' plot 

votfun=function(x) { 

  ismax=x==max(x) 

  ((backflip)[ismax])[1] #uniqueness ensured 

  } 

winner.mle=apply(myprobs.joint.mle,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="MLE") 

points(dat.grid[,2],dat.grid[,3],col=colors[winner.mle],pch=16) 

xxx=rep(x,H.model) 

zzz=rep(z,H.model) 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_MLE Classification Plot",".pdf",sep="")) } 

 

############################################################################# 

##    Sample Classification Plots       ## 

############################################################################# 

 

windows(width=8,height=4.8) 

par(mfcol=c(1,2),oma=c(0,0,2,0)) 

 

## true sample classification plot 

myprobs.true.dat=t(apply(pmin(pmax(dat.sample.trueorder%*%t(B.true),-100),100),1,additive.logistic)) 

votfun=function(x) { 

  ismax=x==max(x) 

  ((1:H.model)[ismax])[1] #uniqueness ensured 

  } 

winner.true.dat=apply(myprobs.true.dat,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="True Classifications") 

symbols(x,z,circles=rep(0.2,n),fg="black",bg=colors[winner.true.dat],inches=0.1,add=T) 

 

## estimated sample classification plot 

myprobs.est.dat=t(apply(pmin(pmax(dat.sample%*%t(B.est),-100),100),1,additive.logistic)) 

votfun=function(x) { 

  ismax=x==max(x) 

  ((backflip)[ismax])[1] #uniqueness ensured 

  } 

winner.est.dat=apply(myprobs.est.dat,1,votfun) 

plot(xx,zz,type="n",xlab="Longitude",ylab="Latitude",main="Estimated Classifications") 

symbols(x,z,circles=rep(0.2,n),fg="black",bg=colors[winner.est.dat],inches=0.1,add=T) 

 

title(expression("Sample Classification Plots"),outer=TRUE,line=-0.5,cex.main=2,font.main=4,col.main="blue") 

 

if (saveplots) { dev.copy2pdf(file=paste(newpath,"/_Sample Habitat Classifications",".pdf",sep="")) } 

} 


