
DISSERTATION

OUTLIER DISCORDANCY TESTS BASED ON SADDLEPOINT APPROXIMATIONS

Submitted by

Andrew D. Sleeper

Department of Statistics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2019

Doctoral Committee:

Advisor: Louis Scharf

Duane Boes

Jay Breidt

Anura Jayasumana



Copyright 2019 by Andrew D. Sleeper

All Rights Reserved



ABSTRACT

OUTLIER DISCORDANCY TESTS BASED ON SADDLEPOINT APPROXIMATIONS

When testing for the discordancy of a single observed value, a test based on large values of

the maximum absolute studentized residual (MASR) or maximum squared studentized residual

(MSSR) is known to be optimal, by maximizing the probability of correctly identifying an outly-

ing value, while controlling the risk of a false identification to α. The exact distribution of MASR

and MSSR is not known. In its place, the first Bonferroni bound on the distribution of these statis-

tics is commonly used as an outlier test; see Grubbs (1950). We present new approximations to the

distribution of MASR or MSSR, based on saddlepoint approximations of the density of statistics

calculated from truncated normal random variables. These approximations are developed in three

settings: a one-sample case, univariate regression, and multivariate regression. In comparisons

with three versions of Bonferroni bounds and a Monte Carlo simulation, the saddlepoint approxi-

mations are shown to perform well in a wide range of situations, especially at larger sample size.

The saddlepoint approximations also calculate faster than the improved versions of Bonferroni

bounds.
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Chapter 1

Introduction

The problem of detecting outliers in a set of data is centuries old, yet still not fully solved. In

specific settings, the optimal statistic for detecting a single outlying observation is well known, but

its exact distribution is not. As methods evolve, a series of ever sharper approximations are pro-

posed, generally in the form of Bonferroni bounds. For testing the discordancy of a single outlying

observation from among independent and identically distributed (i.i.d.) normally distributed vari-

ates, a new and better approximation is presented here. As will be seen, the same method works as

well in a broader class of problems with left-orthogonally invariant error distributions.

Following this introductory chapter, this outlier discordancy test is presented in three settings

of increasing complexity:

• Chapter 2 describes an outlier test applied to a one-sample case, where a set of univariate

data is assumed to be independent and identically normally distributed, except possibly for

one value. This setting is the most common application for outlier tests.

• Chapter 3 considers the univariate regression setting, where a linear model has been fitted to

explain the effects of independent variables, and then the studentized residual vector is exam-

ined for outlying observations, using the maximum absolute studentized residual (MASR)

as a metric.

• Chapter 4 examines the multivariate regression setting, in which each observation is a vector

of m dimensions. After fitting a multivariate linear model, the residuals can be considered

for the presence of outliers in m dimensions. In multivariate literature, the maximum Maha-

lanobis distance is often used for this purpose, and for balanced designs, this is an optimal

metric, providing the best probability of detecting a single outlying value. However, for both

balanced and unbalanced designs, an optimal metric is the maximum squared studentized

1



residual (MSSR). Chapter 4 presents approximate distributions for MSSR, comparing them

to Bonferroni bounds and a Monte Carlo simulation.

• Appendix A describes the R code developed for this project. The code itself will be available

from the author. In the code, one top-level function PMASR calculates discordancy test

p-values for all settings considered, based on saddlepoint approximations. PMASR_Bonf

provides similar calculations based on Bonferroni bounds. Full comments are included in

the code.

1.1 Definition of Outlier

What is an outlier? Even this simple question has no simple answer. Here are definitions

written by three prominent authors in the field:

"An outlying observation, or ’outlier,’ is one that appears to deviate markedly from

other members of the sample in which it occurs." - Grubbs (1969)

"The intuitive definition of an outlier would be ’an observation which deviates

so much from other observations as to arouse suspicions that it was generated by a

different mechanism.’" - Hawkins (1980)

"We shall define an outlier in a set of data to be an observation (or subset of

observations) which appears to be inconsistent from the remainder of that set of data."

- Barnett and Lewis (1994)

Each of these definitions is about feelings and appearances, but not math. Without the specifica-

tion of a mathematical model presumed to explain the data, these are the best available definitions.

Once a null model is specified to describe the outlier-free case, an alternative model incorporating

one or more outlying values can be evaluated probabilistically. To establish a mathematical method

for an outlier discordancy test, each of the following chapters defines a more mathematically pre-

cise definition for the potentially outlying observations to be tested.
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1.2 Outlier Handling Practices

For as long as data has been collected and explanatory models applied, the responsible han-

dling of outliers has been a serious concern eliciting divergent practices and strong opinions from

different analysts. In a publication laying the groundwork for maximum likelihood estimation,

Daniel Bernoulli (1777) expresses ambivalence about these practices:

"I see no way of drawing a dividing line between those (observations) that are to

be utterly rejected and those that are to be wholly retained; it may even happen that

the rejected observation is the one that would have supplied the best correction to the

others. Nevertheless, I do not condemn in every case the principle of rejecting one or

other of the observations, indeed I approve it, whenever in the course of observation an

accident occurs which in itself raises an immediate scruple in the mind of the observer,

before he has considered the event and compared it with the other observations. If

there is no such reason for dissatisfaction I think each and every observation should

be admitted whatever its quality, as long as the observer is conscious that he has taken

every care.

In modern statistical practice, the divergent handling of suspected discrepant values remains

unresolved. Practices regarding outliers may be broadly assigned to these three categories:

• Discordancy testing, in which the dataset is subjected to a procedure to identify whether one

or more observations can be proven to be outlying, beyond a reasonable doubt, as quantified

by a known and specified risk level α.

• Accommodation, in which a modified descriptive or modeling procedure attaches greater

weight to more central observations than to more outlying ones, thus reducing the bias intro-

duced by outliers, should they be present.

• Ignorance, in which the existence, the causes, and the potential impact of outliers are not

considered.

3



Understandably, other scholarly works on outliers omit the third practice, ignorance, from

discussion, but it is real and widespread. With computers, it is far easier to apply statistical methods

than to understand the theory and assumptions behind them. Because of the proliferation of Six

Sigma and related business initiatives, legions of business leaders have become accustomed to

making data-based decisions from rote summaries comprising mean, standard deviation, and other

statistics derived only from those two. Such summaries rarely account for the bias induced by

outliers, should they exist. Unless individual observations are evaluated thoughtfully, the impact

of contaminating outliers is omitted from the decision process.

Accommodation takes many forms. From Chauvenet’s method of 1863, discussed below, to

today’s sophisticated robust modeling tools, accommodation procedures algorithmically handle

outliers by diminishing their influence on the conclusions reached from the analysis. The appli-

cation of an outlier accommodation method requires no thought about the potentially denigrated

outliers or the causes behind them, other than to select a particular procedure to apply. Since

each accommodation procedure may perform differently than other procedures on similar data,

this selection process is inevitably biased by the practitioner’s experience, and likely an a priori

examination of the data. As a result, the conclusions reached may depend as much on who analyzes

the data as on the process that produced the data.

Only discordancy testing, based on an optimal test statistic, provides a repeatable assessment of

the existence of outliers, free from the analyst’s biases. Once an outlier is identified, all options are

available. One may explore the potential causes behind the discrepant observations, to the extent

they can be known. After investigation, one can rationally decide whether to accept the outlier into

the data, reject it, remeasure it, or attempt to replicate the trial, depending on the situation. After

handling the outlier in a scientific and transparent manner, the model applied to the data may be

presented with greater confidence.

The remainder of this work will only consider discordancy tests based on an optimal test statis-

tic and applied to a dataset presumed to follow specified types of models.
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1.3 Brief History of Outlier Discordancy Tests

In an appendix to an astronomy text published in 1863, Chauvenet advises this method of

handling outliers: "Any result of a series containing n ... observations shall be rejected when

the magnitude of its deviation from the mean of all measurements is such that the probability of

occurrence of all deviations as large or larger is less than 1/2n." In effect, Chauvenet’s method

rejects one-half an observation, on average, from every dataset. Barnett and Lewis (1994) aptly

describe the statistical weaknesses of this algorithm, especially its high likelihood of rejecting an

otherwise reasonable observation, while also observing that Chauvenet’s method lives on through

citations in modern textbooks. Chauvenet’s method is notable as one of the first proposals to adopt

a probabilistic basis for identifying an outlier, flawed as it may be. Because of the recommendation

to reject selected observations, this may be regarded as both a detection and an accommodation

algorithm.

In 1884, Wright recommended rejecting any observation deviating from the mean by more

than 3 times the standard deviation, while making no allowance for sample size. As will be seen,

sample size and model complexity have an enormous effect on the distribution of the maximum

absolute residual. The ad hoc value of 3, like any other single value, cannot perform well in

all situations, and it does not maintain a reasonable risk level α. Therefore, it ought not to be

recommended. This conclusion is clear to anyone who has studied the distribution of residuals,

but even today, such methods persist. Montgomery, in his widely used textbook on the design and

analysis of experiments (2005, p. 396), defines the ith standardized residual as di = ei/σ̂, where

ei is the raw residual and σ̂ is the estimated residual standard deviation. Montgomery continues

with this advice: "Most of the standardized residuals should lie in the interval −3 ≤ di ≤ 3, and

any observation with a standardized residual outside of this interval is potentially unusual with

respect to its observed response." Montgomery is not alone in offering similar advice, based on

the maximum absolute residual value of 3. A web search for "outlier residual three," or similar

keywords, finds many authors and instructors training practitioners in this way. The same value,

3, is even applied to different varieties of residuals with clearly different distributions. Figure 1.1
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illustrates the impact of applying this rule of 3 to standardized residuals as Montgomery advises.

The graph plots the risk of a Type 1 error α, that is, identifying a non-discordant observation as

outlying, as a function of sample size. This figure uses the best methods from Chapter 2, with a

conversion from studentized to standardized residuals.

Figure 1.1: Alpha from Outlier Test Based on the Maximum Absolute Standardized Residual Exceeding 3

To control type 1 error to α = 0.05 or any other value, one must consider both sample size

and the model applied to the data. For the mean-only model setting of Chapter 2, Figure 1.2

plots critical values for an outlier discordancy test based on maximum absolute residuals, of both

standardized and studentized varieties. In Figure 1.2, the type 1 error risk is controlled to α =

0.05. A program CritValue, written for this work, calculates this value using the best available

methods.

6



Figure 1.2: Critical Values for a Discordancy Test of a Single Outlier, with a Fixed Alpha Risk of 0.05

In the time of Wright, there was no effort to distinguish between the sample and population

standard deviation. If the only information available was derived from the sample at hand, its stan-

dard deviation was assumed to be correct. Following the work of William Gosset ("Student," 1908)

and others, the distributions of sample statistics from Gaussian (normal) data gained acceptance.

After inference procedures for means and variances were well established, attention eventually

turned to outlier identification. William Thompson (1935) published a distribution for what would

become known as studentized residuals. E. S. Pearson and Chandra Sekar (1936) applied Thomp-

son’s result to the rejection of outlying observations by observing the maximum absolute deviation

from the mean and rejecting the null hypothesis when large. Pearson and Chandra Sekar include a

graph of critical values quite similar to Figure 1.2.

Notably for this work, Pearson and Chandra Sekar identify a value within the support of the

maximum absolute residual beyond which it is not possible to observe more than one absolute

residual. We label this value M2. When the observed maximum absolute residual exceeds this

value, a simple and exact formula for the distribution of the maximum absolute residual is available

7



from the first Bonferroni inequality. Grubbs (1950) developed this prior work into tests for outliers

in normally distributed samples based on the maximum absolute studentized residual. This method

has become widely known as Grubbs’ test, and this test is available in the "Outlier Test" menu

item in Minitab 18 statistical software (2017). Grubbs’ test provides an exact p value for an outlier

test only when the observed value exceeds M2, and an upper bound on the p value otherwise.

Srikantan (1961) extended this work to selected regression settings. Stefansky (1969, 1971, and

1972) applied this method to balanced experimental designs and outlined a procedure by which

higher-order Bonferroni bounds could be calculated. Butler (1984) applied this concept to the

selection of a best-fitting regressor variable in the general linear regression setting, for which the

outlier identification problem turns out to be a special case. Hunter (1978) and Worsley (1982)

proposed an improvement to the first Bonferroni bound by using spanning trees. Applied to outlier

testing, the Hunter / Worsley procedure sharpens the upper bound to the p value for residuals in all

applications where Grubbs’ test does not provide an exact value.

The popular box plot, or box-and-whisker plot, of John Tukey (1977) often includes an outlier

test by which observations deviating beyond the first or third quartile by more than 1.5 times the

interquartile range are shown with a distinctive symbol. As an outlier test, this algorithm suffers

from the same lack of risk control as the rule of 3 discussed above. For normal data without

outliers, the probability of incorrectly identifying one or more observations as outlying varies from

0 to almost 1, depending on sample size.

Multivariate literature on the detection of outliers is both more sparse and more varied in the

approach to outliers. Wilks (1963) proposed an outlier test for a single outlier in multivariate

normal data. In this paper, Wilks showed that when the dimensionality m ≥ 2, it is possible

to have multiple observations with distances from the mean up to the maximum possible value.

This concept will be graphically illustrated below. Srivastava and Van Rosen (1998) published

a distribution for one residual and a joint distribution of two such residuals from a multivariate

regression setting. But we have found no publication of an exact distribution for the most outlying

8



multivariate residual. Therefore, the available choices for an optimal outlier test include Bonferroni

bounds and the approximate methods we developed here.

A survey of articles published in 2017 and 2018 on "multivariate outliers" found them evenly

divided between discordancy testing and accommodation methods. Also, there is no consensus

in the literature on which metric of deviation from the centroid ought to be employed. While

many authors use versions of the Mahalanobis distance, many other metrics, with and without

modifications for "robustness" are being employed, and new variations continue to be published.

Although Chapters 2 and 3 discuss an absolute residual metric, we have chosen to follow the

lead of most authors in the multivariate literature by using a squared residual metric for the multi-

variate case. In Chapter 4, the optimality of the maximum squared studentized residual (MSSR) as

a test statistic for a single outlying value in multivariate regression is discussed. Any other metric

monotonically related to MSSR is also optimal. Mahalanobis distance, as generally defined, does

not include an adjustment for the variance of individual fitted values, calculated from the design

matrix X. Therefore, in balanced designs when all fitted value have equal variance, Mahalanobis

distance is equivalent to MSSR. In more general regression cases, it is not equivalent.

1.4 The Window of Opportunity

With an easily calculated Bonferroni bound offering an exact p value in a portion of the right

tail of the MASR and MSSR statistics, is there any need for an improved method? This section

illustrates why a better method is needed.

Srivastava and Van Rosen (1998) provides a joint density function for two studentized residuals

in a multivariate regression setting. A simplified version of this density was used to produce the

contour plot in Figure 1.3. In this example, the sample size n = 6, there is only p = 1 parameter,

the mean, and, since m = 1, the observations are univariate. The vector of studentized residuals,

a, is defined in Chapter 2. The upper end of the support for each ai is
√
5, which is the outer

boundary of the probability contours in this figure.
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Figure 1.3: Joint Density of Two Studentized Residuals ai and aj when n = 6, p = 1, and m = 1
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Since the optimal outlier test is based on the maximum absolute studentized residual (MASR),

Figure 1.4 shows the joint density function of |ai| and |aj|, for the same example. The red lines on

Figure 1.4 are located at M2, which is
√
3 for this example. It is possible for one residual to have

a value in the range |ai| >
√
3, but the probability is 0 that |ai| >

√
3 and |aj| >

√
3 for i 6= j.

Figure 1.4: Joint density function of |ai| and |aj | when n = 6, p = 1, and m = 1, with lines representing

M2

The first Bonferroni inequality provides an upper bound on the distribution of maxi |ai|, based

on the marginal density of a single residual, multiplied by the sample size. When any |ai| exceeds

11



M2, at most one value can be in that range, so this lower bound is the exact distribution of maxi |ai|.

When maxi |ai| < M2, the first Bonferroni bound diverges rapidly from the true distribution.

The second Bonferroni inequality is more difficult to calculate, but it provides an exact distri-

bution of maxi |ai| down to M3 < M2, where the M3 is the smallest value such that there is a zero

probability that 3 values |ai| could exceed M3. The formulas for this calculation are provided in

Chapters 2 and 3, and a program PMASR_Bonf written for this project and described in Appendix

A calculates these bounds, as well as the values of M2 and M3 for any setting considered here.

Now consider what happens in the multivariate setting. Chapter 4 discusses the distribution

of maxi a
2
i , the maximum squared residual, but for easier comparison, Figure 1.5 plots the joint

density of ai and aj in the bivariate case where sample size n = 6, there is only p = 1 parameter,

the mean, and the observations have m = 2 dimensions. Notice that the general shape of the

density in Figure 1.5 is similar to Figure 1.4, except in the upper right corner. There is a positive

and significant probability that more than one residual ai could exceed the value
√
3. Because of

this fact, there is no region of values for which the first Bonferroni inequality provides an exact

distribution for maxi a
2
i .
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Figure 1.5: Joint density function of a1 and a2 when n = 6, p = 1, and m = 2
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Outside of academic papers, we have not seen any second or higher-order Bonferroni bound

applied to outlier discordancy testing. Each higher bound is significantly harder to calculate, so

this is understandable. In this work, we present approximate distributions for maxi |ai| based on

saddlepoint methods. These new approximations require one univariate root finding operation

followed by a set of formulas that calculate quickly in all but the most complicated situations.

These formulas have been coded in the PMASR function described in Appendix A.

We offer one more example to show the importance of the multivariate approach. Figure 1.6

is a scatter plot of randomly generated bivariate data, with n = 30 observations. The positive

correlation is obvious. But where is the outlier? The observation represented by the red diamond

appears to be outlying, but it is not. At least two models are reasonable here. If a univariate

regression model were fit to this data, the observation represented in red would have high leverage

on the model, but it is very close to a regression line fit through the data, so it is not an outlier. Using

a bivariate model where only the mean and the correlation are estimated, the red observation is not

significantly far from the bivariate mean, considering the variation along that vector. However, in

either model, the observation represented by the purple diamond has an unusually large studentized

residual value. Applying the methods from Chapter 4 to this bivariate dataset, the MSSR of the

purple observation is 11.413, with a p-value of 0.033 generated by saddlepoint methods, so it is

a significantly outlying value. But if any univariate outlier test were applied to either variable

individually, this outlier would be undetectable.
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Figure 1.6: Example Scatter Plot of Bivariate Observations with One Outlier
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1.5 Recommendations

To summarize this research, here are our recommendations to practitioners on the best way to

perform tests of discordancy of a single possibly outlying observation.

• We discourage the use of robust methods or other techniques designed to accommodate

possible outlying values. An outlier has a story to tell. After applying an accommodation

method, that story will never be heard.

• Use a discordancy test based on the MASR or MSSR, as this is the optimal test for a single

outlying observation, minimizing the probability of making a testing error.

• Always calculate the first Bonferroni bound, a.k.a. Grubbs’ test, because this provides an

upper bound on the p-value. If this upper bound is less than the chosen error risk α, the

outlier is significantly discordant, and no further calculation is required.

• For univariate problems, when only one y variable is observed:

– Calculate M2. If the observed value of MASR, x ≥ M2, then the first Bonferroni bound

(Grubbs’ test) provides the exact p-value. When x < M2, this calculation provides

a bound that may not settle the question of whether the suspected outlying value is

significantly discordant.

– When x < M2, calculate the calibrated second-order exponential saddlepoint approxi-

mation for the p-value, represented as 1 − F̄2e(x) in Chapters 2 and 3. Use this value

to make the best decision about outlier discordancy.

– The second Bonferroni bound and the improved first Bonferroni bound often provide

tight upper and lower bounds on the p-value, but these require numerical integration

which may consume more time than the saddlepoint method. This is especially true

when regressing empirical data, in which each pair of observations may have different

correlation, and therefore require a different numerical integration.

• For multivariate problems, when m > 1 variables are observed:
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– Always analyze the dataset as a multivariate dataset, looking for an outlier in m-

dimensional space.

– The calibrated second-order exponential saddlepoint approximation for the p-value,

represented as 1 − F̄2e(x) in Chapter 4, is generally the best saddlepoint alternative,

especially for larger sample size n. If calculation takes too long, the calibrated first-

order saddlepoint approximation may be used instead.

– The second Bonferroni bound and the improved first Bonferroni bound provide lower

and upper bounds on the p-value. In multivariate applications, these bounds require a

numerical triple integral for each pair of observations with a different correlation. In all

of the multivariate examples we have examined, this Bonferroni calculation consumes

significantly more computing time than any of the saddlepoint methods.
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1.6 Our Analytical Approach

We conclude this chapter by briefly discussing the novel approach to the analysis of this prob-

lem, proposed in this dissertation. Some portions of this approach were previously applied to the

approximation of other less challenging distributions in Butler and Sutton (1998). These distribu-

tions include gamma, Poisson, binomial, and negative binomial. Full details are presented in the

subsequent chapters, but here are the major steps.

• The statistic of interest, M = maxi |ai| is an ancillary statistic, which allows the parameters

of the underlying noise distribution to be set to any convenient values.

• By Basu’s theorem, ancillary statistic M is independent of any complete, sufficient statistic

θ̂, so any probability statement about M can be conditioned on any convenient value for θ̂.

• Applying Bayes theorem, the probability statement about M can be reexpressed in terms

of a conditional density of θ̂, given a probability statement about M , combined with other

factors that are simple to calculate.

• The probability statement about M is reexpressed in terms of an intersection of events con-

cerning the observed data. In this work, the event maxi |ai| ≤ x is the intersection of events

Ei = {|ai| ≤ x} for all i.

• If the statistic θ̂ is calculated from a distribution truncated in such a way that Pr [Ei] = 1

for all i, then the conditioning event becomes certain and disappears from the probability

statement.

• The unconditional density of θ̂ can then be calculated from truncated distributions using a

saddlepoint approximation from Butler (2007).
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Chapter 2

One-Sample Outlier Discordancy Test

This chapter examines the most common application for an outlier test, a univariate sample

with no model applied, other than the mean. This application can be referred to as the independent

and identically distributed (i.i.d.) case, the mean-only case, or the one-sample case. The dis-

cordancy test based on saddlepoint approximation requires finding the root of one equation, then

using that root to calculate the approximate probability that the maximum absolute studentized

value (MASV) M exceeds the observed value x. In this chapter, the saddlepoint approximation

is compared to Grubbs’ test, which is also the first Bonferroni bound, two improved Bonferroni

bounds, and a Monte Carlo simulation.

2.1 Setting

In this section, we define the setting for the outlier discordancy test and discuss the test as an

optimal test, from among a large class of potential tests.

2.1.1 Null model setting

The null model assumes that there are no outliers in the data. The null model is simply

y = ε, (2.1)

in which y = (y1, . . . , yn)
T is an n × 1 vector of observed values. The random vector ε =

(ε1, . . . , εn)
T is typically assumed to be i.i.d. normally distributed, but as detailed in Chapters

3 and 4, these methods work equally well over a larger class of distributions referred to as left-

orthogonally invariant (l.o.i.).

We define yj to be an outlier when this alternative model holds:
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y = θej + ε, (2.2)

when θ ∈ R, θ 6= 0, and ej is the jth column of In, for j = 1, . . . , n.

When ε
iid∼ N (µ, σ2), the usual unbiased parameter estimates are µ̂ = ȳ = n−1

∑n
j=1 yj and

σ̂2 = (n− 1)−1∑n
j=1 (yj − ȳ)2. The vector of studentized values is a = (a1, . . . , an)

T , where

aj =
yj − ȳ

σ̂

√

n

n− 1
j = 1, . . . , n. (2.3)

The more customary "standardized" values are (yj − ȳ) /σ̂, but this chapter retains the
√

n/ (n− 1)

factor so that aj has a consistent definition throughout this dissertation.

The maximum absolute studentized value (MASV) is the statistic M = maxj |aj| whose cu-

mulative distribution function (CDF) under the null model is denoted as FM (x) = Pr (M ≤ x).

A typical test for the discordancy of a single outlier caused by a change in distribution for one

component of ε rejects the null model when M is large. Thus, if x is the observed value of M ,

then the p -value is 1 − FM(x). Since the exact distribution FM is intractable, the purpose of this

chapter is to derive an approximation for the distribution of M , using saddlepoint methods.

Alternatively, upper and lower Bonferroni bounds are available. In limited ranges at the upper

end of the support of M , these bounds can be exact. The upper Bonferroni bound on the p -value

has become known as Grubbs’ test. The details of these bounds, and the ranges within which they

are exact, are presented in Section 2.5. This chapter will show where the Bonferroni bounds are

adequate or inadequate and show the opportunity for an improved method to be provided by the

saddlepoint approximations.

In Chapter 3, based on Butler (1986), we discuss that the outlier discordancy test defined here

as the optimal test among a large class of tests, in that no other test can have a higher probability

of making a correct decision about whether θ 6= 0 in (2.2), and about which observation j is

discordant.
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2.2 Saddlepoint Approximation

An approximation for FM(x) is derived by first reexpressing this CDF as a conditional proba-

bility to which Bayes’ theorem can be applied. A reversal of the probabilities in Bayes’ theorem

allows approximation to the CDF to be reexpressed in terms of a saddlepoint density approxima-

tion. Using first- and various second-order saddlepoint approximations for this multivariate density

leads to various CDF approximations F̂M(x) with second-order approximations providing greater

accuracy.

Statistic M has bounded support, and owing to the nature of saddlepoint approximations, this

can lead to a loss in accuracy for the various F̂M(x). Since the least upper bound on the support of

M is
√
n− 1, these approximations can be calibrated by using a known exact value at the upper

end of the support of M , as described in Section 2.2.4. For small sample sizes, a correction may

also be needed at the lower end of the support. This calibration procedure is shown to improve

accuracy.

2.2.1 Reformulation of FM(x)

The studentized vector a has a joint distribution which does not depend on the parameters

(µ, σ2), so that a is ancillary. Thus, there is no loss in generality in assuming µ = 0 and σ2 = 1.

Since estimates (µ̂, σ̂2) form a complete sufficient statistic for (µ, σ2), (µ̂, σ̂2) and a are indepen-

dent by Basu’s theorem. Thus, the distribution of a may be conditioned on any convenient value

for (µ̂, σ̂2), say (0, 1). The net effect of such conditioning leads to

FM(x) = Pr

(

max
j

|aj| ≤ x
∣

∣ µ̂ = 0, σ̂2 = 1

)

= Pr

(

max
j

|yj|
√

n

n− 1
≤ x

∣

∣ µ̂ = 0, σ̂2 = 1

)

(2.4)

By defining the events Ej =
{

|yj| ≤ x
√

(n− 1) /n
}

, so that {M ≤ x} =
⋂n

j=1Ej , then Bayes’

theorem for densities is applied to the conditional probability in (2.4) to give
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FM(x) =
fµ̂,σ̂2

(

0, 1 |
⋂n

j=1 Ej

)

Pr
(

⋂n
j=1 Ej

)

fµ̂,σ̂2 (0, 1)
, (2.5)

where fµ̂,σ̂2 (0, 1) denotes the marginal density of µ̂, σ̂2 at (0, 1), and fµ̂,σ̂2(0, 1 |
⋂n

j=1 Ej) denotes

the conditional density of µ̂, σ̂2 at (0, 1) given event
⋂n

j=1 Ej . The denominator density is simple

and explicit. With µ = 0 and σ2 = 1, then µ̂ ∼ N{0, 1/n} and σ̂2 (n− 1) ∼ χ2
n−1 are independent,

so that

fµ̂,σ̂2 (0, 1) = fµ̂ (0) fσ̂2 (1) =

√

n

2π
× (n− 1) fχ2

n−1
(n− 1)

=

√

n

2π
× (n− 1)

(n− 1)(n−1)/2−1 exp {− (n− 1) /2}
2(n−1)/2Γ{(n− 1)/2}

=

√
n

2π

√

n− 1

2

Γ̂{(n− 1)/2}
Γ{(n− 1)/2} =: g, (2.6)

where Γ̂ (v) =
√
2πvv−1/2e−v denotes Stirling’s approximation for Γ (v).

Since {Ej} are independent events and y1, . . . , yn are i.i.d. N (0, 1),

Pr
(

⋂n
j=1Ej

)

=
n
∏

j=1

Pr (Ej) =
n
∏

j=1

erf

(

τ√
2

)

=

{

erf

(

τ√
2

)}n

, (2.7)

where erf (x) := (2/
√
π)
∫ x

0
e−t2dt, and τ := x

√

(n− 1) /n.

Only the conditional density in the numerator of (2.5) offers any difficulty. Note that µ̂ is linear

in {yj}, and

(n− 1) σ̂2=
n
∑

j=1

y2j − nµ̂2,

is linear in
{

y2j
}

apart from its dependence on µ̂. To obtain a multivariate density in which all

components are linear in {yj} and
{

y2j
}

, write the conditional density of (µ̂, σ̂2) given
⋂n

j=1 Ej

in terms of the conditional density of (nµ̂, v) = (nµ̂,yTy) given
⋂n

j=1 Ej through a one-to-one

transformation. The Jacobian of this transformation is n (n− 1) and

fµ̂,σ̂2

(

0, 1 |
⋂n

j=1Ej

)

= n (n− 1) fnµ̂,v

(

0, n− 1 |
⋂n

j=1Ej

)

.
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Next, note that the net effect of conditioning on the event
⋂n

j=1 Ej is to truncate the normal

random variables so that yj is restricted to the range |yj| < τ for j = 1, . . . , n. Conditioning on

⋂n
j=1 Ej affects the distribution theory in such a way that yj is independent of

⋂

i 6=j Ei and is only

affected by the conditioning on Ej . Thus {yj |Ej } are independent with yj |Ej having a standard

normal distribution truncated to {|yj| < τj}. Let zj denote such a truncated random variable with

density

fzj (x) =
φ (x)

erf
(

τ/
√
2
) |x| < τ,

where φ (·) is the standard normal density function, and let (n× 1) random vector z have indepen-

dent elements zj . In terms of z,

nµ̂
∣

∣

∣

⋂n
j=1Ej

D
=

n
∑

j=1

zj = nz̄ =: b, and (2.8)

v
∣

∣

∣

⋂n
j=1Ej = yTy

∣

∣

∣

⋂n
j=1Ej

D
= zTz =: u. (2.9)

The conditional distributions on the left-hand side of (2.8) and (2.9) are the same as the un-

conditional distributions on the right-hand side using truncated random variables, thus effectively

removing the conditioning required in the distribution theory. From (2.5) we may write

FM (x) = fb,u(0, n− 1)
n(n− 1)

g

{

erf

(

τ√
2

)}n

. (2.10)

In (2.10), the density fb,u(0, n−1) cannot be readily computed but a saddlepoint approximation

can be constructed for it and used in its place to calculate an approximation for FM(x), as detailed

in the next section. This will be called a saddlepoint approximation for FM (x).

Saddlepoint Density Function

A saddlepoint approximation for the density function of 2-dimensional (b, u) , as defined in

(2.8) and (2.9), is provided in Butler (2007, eqn. 3.2). Let 2-dimensional (s, t) index the moment

generating function (MGF) of (b, u) denoted as
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M(s, t) = E
(

esb+tu
)

.

The corresponding cumulant generating function (CGF) is K(s, t) = lnM(s, t). Since the density

fb,u is to be evaluated at (0, n− 1), a joint first-order saddlepoint density for fb,u(0, n− 1) is

f̂1 (0, n− 1) :=
exp

{

K
(

ŝ, t̂
)

− t̂(n− 1)
}

2π
∣

∣K′′
(

ŝ, t̂
)∣

∣

1

2

, (2.11)

where saddlepoint (ŝ, t̂) simultaneously solves the equations

K′
s

(

ŝ, t̂
)

=
∂K(s, t)

∂s

∣

∣

∣

∣

s=ŝ,t=t̂

= 0 (2.12)

K′
t

(

ŝ, t̂
)

=
∂K(s, t)

∂t

∣

∣

∣

∣

s=ŝ,t=t̂

= n− 1 (2.13)

and matrix K′′ (ŝ, t̂
)

is the 2× 2 Hessian matrix of K (s, t) evaluated at (ŝ, t̂).

Much of the analysis needed to complete the details of this expression is provided in a later

section. Section 2.4 gives formulas for K(ŝ, t̂) and its derivatives and shows that ŝ = 0. The

remaining saddlepoint component t̂ can be found numerically as a 1-dimensional root of (2.13),

K′
t

(

0, t̂
)

= n − 1, in two steps. Since K(0, t̂) and its derivatives have a removable discontinuity

at t̂ = 1/2, corresponding to the MASV value x =
√
3, the first step in the solution process is to

determine on which side of the discontinuity the solution lies, according to x. Here is the decision

rule:

t̂ S 1

2
⇐⇒ x T

√
3. (2.14)

Let q := 1− 2t and q̂ := 1− 2t̂ . Then saddlepoint t̂ is the solution to

n

q̂

{

1−R
(

t̂
)}

= n− 1,

where
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R
(

t̂
)

=

√

2q̂
π
τ exp

(

−q̂τ2

2

)

erf

(

τ
√

q̂
2

) .

We now present different versions of the saddlepoint approximation: first-order, second-order,

and second-order exponential denoted respectively as f̂1, f̂2, and f̂2e. Upon substitution into (2.10)

to approximate FM(x), a calibration procedure may also be applied, which is indicated by changing

the circumflex to a macron. This leads to the possibility of six approximations of FM(x), denoted

by F̂1, F̄1, F̂2, F̄2, F̂2e, and F̄2e.

2.2.2 First-Order Approximation

The CGF K (s, t) and its derivatives are listed in Section 2.4, for t̂ 6= 1/2, corresponding to the

almost certain case where x 6=
√
3. From (2.26),

exp
{

K
(

0, t̂
)}

= q̂−n/2





erf
(

τ
√

q̂/2
)

erf
(

τ/
√
2
)





n

. (2.15)

When q̂ < 0, corresponding to x <
√
3, note that erf( ) in the numerator has a complex argument,

which is ok.

In the denominator of (2.11),
∣

∣K′′ (0, t̂
)∣

∣ is the determinant of a 2× 2 matrix of second deriva-

tives. From (2.30), K̂′′
st(0, t̂) = 0. This separates the determinant into

∣

∣K′′ (0, t̂
)∣

∣ = K′′
s2

(

0, t̂
)

K′′
t2

(

0, t̂
)

(2.16)

=
n2

q̂3
R1

(

t̂
)

R2

(

t̂
)

,

where

R1(t̂) = 1−R(t̂)

and

R2(t̂) = 2− (1 + q̂τ 2)R(t̂)−R2(t̂).
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Now all the pieces are in place to complete the approximate distribution of MASV M . Substi-

tuting the expressions from (2.11) and (2.15) into (2.10) and simplifying gives this result for the

first-order approximation:

F̂1(x) =
(n− 1) exp

{

−t̂ (n− 1)
}

2πq̂(n−3)/2g
√

R1

(

t̂
)

R2

(

t̂
)

{

erf

(

τj

√

q̂

2

)}n

, (2.17)

where g is defined in (2.6).

2.2.3 Second-Order Approximation

The saddlepoint density is an asymptotic expression, of which the first-order approximation is

only the leading term. Including the second term often improves the accuracy of the approximation.

From Butler (2007, eqn. 3.37), the second-order saddlepoint density approximation of f (x) is

f̂2 (x) = f̂1 (x) (1 +O) (2.18)

where O = {κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24}.

The κ terms are sums of higher-order cumulants, defined later in section 2.4.

In the one-sample setting of this chapter, O can be calculated by this function of polynomials

in R = R(t̂):

O =
1

24n

(

−6
R2(t̂)

R2
1(t̂)

+ 3
R4

(

t̂
)

R2
2

(

t̂
) − 5

R3(t̂)

R3
2(t̂)

− 6

)

, (2.19)

where

R3

(

t̂
)

:= 8−
(

q̂2τ 4 + 2q̂τ 2 + 3
)

R− 3
(

1 + q̂τ 2
)

R2 − 2R3,

and

R4

(

t̂
)

:= 48−
(

q̂3τ 6 + 3q̂2τ 4 + 9q̂τ 2 + 15
)

R

−
(

7q̂2τ 4 + 14q̂τ 2 + 15
)

R2 − 12
(

1 + q̂τ 2
)

R3 − 6R4.
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An alternative second-order exponential approximation, based on McCullagh (1987, § 6.3) is

f̂2e (x) = f̂1 (x) e
O, (2.20)

where O is the same as in (3.17). In many cases we have evaluated, including the examples shown

below, this 2e approximation is the best of all.

Therefore, the second-order saddlepoint approximations for F (x) are

F̂2(x) = F̂1(x) (1 +O) (2.21)

and

F̂2e(x) = F̂1(x)e
O (2.22)

Section 2.4 provides more details on the derivation of K and its derivatives required for this

application.

2.2.4 Calibration

Calibration is a simple procedure recommended to correct for known inaccuracies with the

saddlepoint approximation at the ends of the support of M . We denote the support of M as the

interval [ML,MU ], where ML = 1 when n is even, or {n/ (n− 1)}1/2 when n is odd, and MU =

(n− 1)1/2. These limits can be derived from the joint distribution for residuals, as derived by

Raiffa and Schlaifer (1961, p. 259).

We use only the first- and second-order saddlepoint density approximations, which do not

integrate to 1, so they may be scaled too high or too low. For large values of M , where p-values for

a discordancy test are small, uncalibrated saddlepoint p-values could be negative or significantly

too high. Fortunately, this discrepancy is easily corrected. There are three options for where to

calibrate, specifically, M∗ ∈ {MU ,M2,M3}. As defined in Section 2.5, M2 and M3 are the points

above which it is not possible to have two or three, respectively, of the absolute residuals |aj|.

Once the value of M∗ is selected, we use the saddlepoint formula from (2.17), (2.21), or 2.22) to
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calculate F̂•(x), F̂•(ML) and F̂•(M∗), where the • subscript represents either 1, 2, or 2e.. With these

values, the calibrated saddlepoint value is

F̄• (x) =
FM (M∗)

{

F̂•(x)− F̂•(ML)
}

F̂•(M∗)− F̂•(ML)
. (2.23)

To calibrate at M∗ = MU = (n− 1)1/2, set F (MU) = 1.

To calibrate at M∗ = M2, Section 2.5 shows that

M2 =

√

n

2
. (2.24)

Since no more than one absolute residual may ever exceed M2, the exact value of FM (M2) is

calculated from the tail probability of the marginal distribution of a single residual and the sample

size n:

FM (M2) = 1− 2n
{

Tn−2

(√
n
)}

,

where Tν( ) is the right tail probability of the Student’s t distribution with ν degrees of freedom.

To calibrate at M∗ = M3 is a lot more work, and uses an algorithm from Butler (1984). Section

2.5 provides the calculation algorithms for both M3 and FM (M3), using the second Bonferroni

bound.

When n > 11, F̂•(ML) is so small as to be irrelevant, and the calibration at the low end can be

ignored, by setting F̂•(ML) = 0.

As a compromise between accuracy and computational difficulty, we recommend calibrating

at M∗ = M2, and when M > M2, using the first Bonferroni bound, an exact solution. This choice

assures a smooth transition between calibrated saddlepoint and Bonferroni methods at M2. This

is the method used to generate the calibrated p-values in the tables below. Comparing calibrated

to uncalibrated values in the tables shows the importance of calibration in providing a usable and

reliable discordancy test procedure.
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Table 2.1: Saddlepoint and Bonferroni p-values for Four Examples

n = 6 n = 18 n = 30 n = 100
n 6 18 30 100
M value x 1.996 2.577 2.790 3.220
Simulated p-value 0.100 0.100 0.100 0.100
Saddlepoint approx.:

1− F̂1 (x) −0.015 0.048 0.069 0.090

1− F̂2 (x) 0.112 0.099 0.100 0.100

1− F̂2e (x) 0.104 0.097 0.099 0.100
1− F̄1 (x) 0.097 0.104 0.099 0.099
1− F̄2 (x) 0.116 0.100 0.100 0.100
1− F̄2e (x) 0.114 0.101 0.100 0.100
Bonferroni bounds:

1st upper (Grubbs) 0.100 0.100 0.101 0.102
1st upper (Worsley) 0.100 0.100 0.101 0.102
2nd lower 0.100 0.100 0.100 0.100
Limits on M :

MU 2.236 4.123 5.385 9.950
M2 1.732 3.000 3.873 7.071
M3 1.195 2.423 3.143 5.763

2.3 Results

We present four examples, which are compared using the same outlier discordancy p-value of

approximately 0.1, corresponding to FM(x) = 0.9. The examples are all one-sample problems

with sample sizes n = 6, n = 18, n = 30, and n = 100.

Table 2.1 lists p-values for all versions of saddlepoint and Bonferroni methods discussed in

this article. Also included is a simulated p-value, based on sufficient trials that the width of a 99%

confidence interval is less than the least-significant digit listed.

For smaller sample sizes, the Bonferroni upper bound (Grubbs) performs very well, but it starts

to diverge for higher sample sizes. The saddlepoint methods are inaccurate at smaller sample sizes,

but perform very well at larger sample sizes. The 2nd Bonferroni lower bound performs well at

all sample sizes tested, but this is more work to calculate than even the most complex saddlepoint

method tested.
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For the four examples discussed here, Figures 2.1 through 2.4 below show all approximations

of 1−FM (x) for 100 values of x in the support of M . Each of these four-panel graphs is organized

in a similar way. The top left panel shows all saddlepoint approximations of 1 − FM (x), plus a

Monte Carlo simulation. The top right panel shows all Bonferroni bounds on 1 − FM (x), plus

a Monte Carlo simulation. The bottom two panels show errors by subtracting the best available

estimate of 1−FM (x) from each approximation in the top two panels. The best available estimate

is the Bonferroni lower bound when x ≥ M3, and the Monte Carlo simulation otherwise. When

x < M3, these graphs appear jittery because of the uncertainty in the Monte Carlo values.
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31



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Saddlepoint MASR P−value
 One Sample, n=30

P
−

va
lu

e

Monte Carlo
1st order
1st order cal
2nd order
2nd order cal
2nd order exp
2nd order exp cal
discontinuity
M2

2 3 4 5

−
0
.0

1
0

−
0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

MASR value

E
rr

o
r

Bonferroni MASR P−value
 One Sample, n=30

Monte Carlo
Upper bound (Worsley)
Upper bound (raw)
Lower bound
M2
M3

2 3 4 5

MASR value

Figure 2.3: Comparison of p-values when n = 30

32



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Saddlepoint MASR P−value
 One Sample, n=100

P
−

va
lu

e

Monte Carlo
1st order
1st order cal
2nd order
2nd order cal
2nd order exp
2nd order exp cal
discontinuity
M2

2 4 6 8 10

−
0
.0

1
0

−
0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

MASR value

E
rr

o
r

Bonferroni MASR P−value
 One Sample, n=100

Monte Carlo
Upper bound (Worsley)
Upper bound (raw)
Lower bound
M2
M3

2 4 6 8 10

MASR value

Figure 2.4: Comparison of p-values when n = 100

33



2.4 Cumulant Generating Function K(s, t) and its Derivatives

In this section, the joint CGF K(s, t) of b = nz̄ and u = zTz is developed into a form for

calculation at the saddlepoint (ŝ, t̂), along with its derivatives required for the saddlepoint approx-

imations. With q = 1− 2t, define the function

M1(s, t) = E
{

exp(sz1 + tz21)
}

=
1√

2π erf
(

τ/
√
2
)

∫ τ

−τ

exp
(

sz − qt
2
z2
)

dz.

After completing the square separately for q ≷ 0, let ς = sig(q) := q/ |q|, so that

M1(s, t) =
exp (s2/2q)√
2π erf

(

τ/
√
2
)

∫ τ

−τ

exp







−ς

(
√

|q|
2
z − v

√

2 |q|

)2






dz,

for q 6= 0. Now we change the variable of integration and substitute erf (x) := (2/
√
π)
∫ x

0
e−t2dt,

which will have an imaginary argument when q < 0, so that

M1(s, t) =
exp (s2/2q)

2
√

|q| erf
(

τ/
√
2
)× (2.25)

[

erf

{

√
ς

(
√

|q|
2
τ − s

√

2 |q|

)}

− erf

{

√
ς

(

−
√

|q|
2
τ − s

√

2 |q|

)}]

.

When q = 0, at the boundary between real and complex arithmetic, Mj has a removable singu-

larity, as do all other formulas in this section. Relevant limiting forms are presented in Section

2.4.1.

The joint MGF of (b, u) is

M (s, t) = E
{

exp
(

snz̄ + tzTz
)}

= E

{

exp

(

∑

j

{

szj + tz2j
}

)}

= {M1(s, t)}n

and is convergent for all (s, t) ∈ R
2.Therefore, K (s, t) = n lnM1(s, t).
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Note that since zj ∈ (−τ, τ), for j = 1, . . . , n, then b ∈ (−nτ, nτ). Also,

u = zTz < nτ 2 = x2(n− 1)

and u ∈ (0, x2(n− 1)). Thus the support is bounded in R
2.

To show that ŝ = 0, note

0 = K′
s

(

ŝ, t̂
)

=
n

M1(ŝ, t̂)

∂M1(s, t)

∂s

∣

∣

∣

∣

s=ŝ

=
n

M1(ŝ, t̂)
E
[

z1 exp
(

sz1 + t̂z21
)]

.

For any value of t̂, ŝ = 0 solves the equation since E
[

z1 exp
{

t̂z21
}]

= 0. If, for ŝ = 0 a solution

t̂ can be determined for K′
t

(

0, t̂
)

= n − 1, then (0, t̂) must be the saddlepoint, since there is only

one solution to both equations. (Note that as t ↑ ∞ then K′
t

(

0, t̂
)

must exceed n− 1). The finding

that ŝ = 0 induces symmetry into the evaluation of K and its derivatives at saddlepoint (0, t̂). At

the saddlepoint, exp
{

K
(

0, t̂
)}

, required by (2.11), simplifies to

exp
{

K
(

0, t̂
)}

=
{

M1(0, t̂)
}n

= q̂−n/2





erf
(

τ
√

q̂/2
)

erf
(

τ/
√
2
)





n

, (2.26)

where q̂ = 1− 2t̂.

The saddlepoint t̂ is the solution to

n− 1 = K′
t

(

0, t̂
)

=
n

M1(0, t̂)

∂M1(0, t)

∂t

∣

∣

∣

∣

t=t̂

=
n

M1(0, t̂)
E
{

z21 exp(t̂z
2
1)
}

=
n

q̂



1−
√

2q̂/πτe−q̂τ2/2

erf
(

τ
√

q̂/2
)



 =
n

q̂

{

1−R
(

t̂
)}

(2.27)

The derivatives of K (s, t) presented below are shown only for s = ŝ = 0.

First derivatives:
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K̂′
s(0, t) =

∂

∂s
K (s, t)

∣

∣

∣

∣

s=0

= 0 ∀t

K̂′
t(0, t̂) =

∂

∂t
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
nR1

(

t̂
)

q̂

where

R1

(

t̂
)

:= 1−R
(

t̂
)

(2.28)

R
(

t̂
)

:=

√

2q̂/πτe−q̂τ2/2

erf
(

τ
√

q̂/2
) (2.29)

Second derivatives:

K̂′′
s2(0, t̂) =

∂2

∂s2
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
nR1(t̂)

q̂

K̂′′
st(0, t̂) =

∂2K (s, t)

∂s∂t

∣

∣

∣

∣

s=0,t=t̂

=
∂K′

s(0, t)

∂t
= 0 ∀t (2.30)

K̂′′
t2(0, t̂) =

∂2K (s, t)

∂t2

∣

∣

∣

∣

s=0,t=t̂

=
nR2

(

t̂
)

q̂2

where

R̂2

(

t̂
)

:= 2− (1 + q̂τ 2)R
(

t̂
)

−R2
(

t̂
)

(2.31)

Third derivatives:

K̂(3)

s3 (0, t̂) =
∂3

∂s3
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

= 0 ∀t

K̂(3)

s2t(0, t̂) =
∂3

∂s2∂t
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
nR2(t̂)

q̂2

K̂(3)

st2(0, t̂) =
∂3K (s, t)

∂s∂t2

∣

∣

∣

∣

s=0,t=t̂

= 0 ∀t

K̂(3)

t3 (0, t̂) =
∂3K (s, t)

∂t3

∣

∣

∣

∣

s=0,t=t̂

=
nR3

(

t̂
)

q̂3

where
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R3

(

t̂
)

:= 8−
(

q̂2τ 4 + 2q̂τ 2 + 3
)

R
(

t̂
)

− 3
(

1 + q̂τ 2
)

R2
(

t̂
)

− 2R3
(

t̂
)

(2.32)

Fourth derivatives:

K̂(4)

s4 (0, t̂) =
∂4

∂s4
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
n
{

R2(t̂)− 2R2
1(t̂)
}

q̂2

K̂(4)

s3t(0, t̂) =
∂4K (s, t)

∂s3∂t

∣

∣

∣

∣

s=0

= 0 ∀t

K̂(4)

s2t2(0, t̂) =
∂4K (s, t)

∂s2∂t2

∣

∣

∣

∣

s=0,t=t̂

=
nR3(t̂)

q̂3

K̂(4)

st3(0, t̂) =
∂4K (s, t)

∂s∂t3

∣

∣

∣

∣

s=0

= 0 ∀t

K̂(4)

t4 (0, t̂) =
∂4K (s, t)

∂t4

∣

∣

∣

∣

s=0,t=t̂

=
nR4

(

t̂
)

q̂4

where

R4

(

t̂
)

:= 48−
(

q̂3τ 6 + 3q̂2τ 4 + 9q̂τ 2 + 15
)

R
(

t̂
)

(2.33)

−
(

7q̂2τ 4 + 14q̂τ 2 + 15
)

R2
(

t̂
)

− 12
(

1 + q̂τ 2
)

R3
j

(

t̂
)

− 6R4
(

t̂
)

From (2.18), the second-order term in the saddlepoint approximation is O = {κ̂4/8− (2κ̂2
23 +

3κ̂2
13)/24}, where the κ̂ terms are now defined. Using the Einstein summation convention as in

McCullagh (1987, §1.2), where summation is implied over any subscript appearing once in a

subscript and once in a superscript, the three new κ̂ terms in the O formula are defined as

κ̂4 := K̂ijklK̂ijK̂kl

κ̂2
23 := K̂ijkK̂rstK̂irK̂jsK̂kt

κ̂2
13 := K̂ijkK̂rstK̂ijK̂krK̂st

, (2.34)

where the subscripted K̂ terms are derivatives of K with respect to the subscripted components,

evaluated at the saddlepoint (s, t) =
(

0, t̂
)

, and the superscripted K̂ terms are components of

the inverse of the Hessian matrix K′′ (0, t̂
)

. When any index is 1, the referenced derivative is
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by s; when the index is 2, the derivative is by t. For example, when i = j = 1 and k = 2,

K̂112 = ∂3K (s, t) /∂s2∂t|(s,t)=(0,t̂). In more complex applications, as in Chapters 3 and 4, these

sums must be calculated and summed term by term. However, in this case, O can be simplified

into this combination of the R functions defined above in (2.28), (2.31), (2.32), and (2.33).

O =
1

24n

(

−6
R2(t̂)

R2
1(t̂)

+ 3
R4

(

t̂
)

R2
2

(

t̂
) − 5

R2
3(t̂)

R3
2(t̂)

− 6

)

(2.35)

2.4.1 Limiting Forms

As noted, the CGF K (s, t), its derivatives, and all saddlepoint distributions for M have a

removable discontinuity at t = 0.5, corresponding to the M value x =
√
3. Although this is

a set of probability 0, with theoretically no significance, it is important in programming these

methods. When calculating approximations of F , using typical double-precision arithmetic, there

is a neighborhood of the discontinuity within which these calculations become unstable. In this

neighborhood, it is advisable to switch to a Taylor series approximation, built using these limiting

forms, to present a well-behaved function for the user. Here are the limiting values of K (0, 1/2),

and its non-zero derivatives.

exp

{

K
(

0,
1

2

)}

=

(

2τ√
2π erf

(

τ/
√
2
)

)n

(2.36)

K′
t

(

0,
1

2

)

= K′′
s2

(

0,
1

2

)

=
nτ 2

3
(2.37)

K′′
t2

(

0,
1

2

)

= K(3)

s2t

(

0,
1

2

)

=
4nτ 4

45
(2.38)

K(3)

t3

(

0,
1

2

)

= K(4)

s2t2

(

0,
1

2

)

=
16nτ 6

945
(2.39)

K(4)

s4 (0,
1

2
) =

−2nτ 4

15
(2.40)

K(4)

t4

(

0,
1

2

)

=
−32nτ 8

4725
(2.41)
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2.5 Bonferroni Bounds

A Bonferroni expansion provides upper and lower bounds for the distribution of M . In fact,

the series of Bonferroni inequalities provides ever-sharper alternating bounds for the true value. If

all the terms in the Bonferroni inequalities could be calculated, the exact distribution of M would

be known. Only the first bound is easily calculated, and the second bound requires numerical

integrations. Additional terms become increasingly difficult to calculate.

However, each Bonferroni bound has a region of M values for which it provides the exact

answer. When M ≥ M2, the first Bonferroni bound is exact; when M ∈ [M3,M2), the second

bound is exact. Since the saddlepoint method is only an approximation, it is reasonable to use the

exact Bonferroni method when it is available and easier to calculate. We recommend calibrating

the saddlepoint method to provide a smooth transition point to the exact Bonferroni bound, either

at M2 or at M3.

Grubbs (1950) and others have used the first Bonferroni bound to estimate p-values for an

outlier test. Table 2.1 lists these values as 1st upper (Grubbs) Bonferroni bounds on the p-value.

Kounias (1968), Hunter (1976), and Worsley (1982) developed an improved Bonferroni first bound

that is sharper. Table 2.1 lists these values as 1st upper (Worsley) bounds.

2.5.1 Bonferroni Inequalities

As defined earlier, Ej = {|aj| ≤ x} =
{

|yj| ≤ x
√

(n− 1) /n
}

, so {M ≤ x} =
⋂n

j=1 Ej ,

and 1−FM (x) = Pr (M > x) = Pr
{

⋃n
j=1 Ej

}

. Now, define sums of probabilities of collections

of k events as follows:

S1 =
∑n

j=1 Pr
(

Ej

)

S2 =
∑

1≤i<j≤n Pr
(

Ei ∩ Ej

)

...

Sk =
∑

1≤i1<i2<···<ik≤n Pr
(

Ei1 ∩ Ei2 ∩ · · · ∩ Eik

)
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From elementary probability theory, as in Ross (1988), 1 − FM (x) = Pr
(

⋃n
j=1Ej

)

= S1 −

S2 +S3 − ...+ (−1)n+1 Sn. Noting that the probability of an intersection cannot be larger than the

probability of the component events, this leads to the following series of inequalities:

S1 − S2 ≤ 1− FM (x) ≤ S1

S1 − S2 + S3 − S4 ≤ 1− FM (x) ≤ S1 − S2 + S3

...

S1 − S2 + ...− S2r ≤ 1− FM (x) ≤ S1 − S2 + ...+ S2r−1

for r = 1, . . . ,
⌊

n+1
2

⌋

(2.42)

From this point on, we focus only on the first line of (2.42), comprising the first Bonferroni bound

S1 and the second bound S1 − S2.

Kounias (1968), Hunter (1976), and Worsley (1982) derived an improvement on the upper

bound S1, using a spanning tree on the graph of the set of intersections. From Worsley’s Theorem

1, represent events E1, . . . , En as vertices of a graph G, where vertices Ei and Ej are joined by an

edge eij if and only if Pr
(

Ei ∩ Ej

)

> 0. Let T be a subgraph of G. Then,

Pr
(

⋃n
j=1Ej

)

≤ S1 −
∑

i,j:eij∈T
Pr
(

Ei ∩ Ej

)

(2.43)

if and only if T is a tree, defined as an acyclic connected graph, in which any two vertices are

connected by exactly one path. T is defined to be a spanning tree of G if every vertex in G is

included in T . It follows that to achieve the sharpest upper bound on 1 − FM (x) by this method,

one should find the spanning tree T that maximizes
∑

i,j:eij∈T Pr
(

Ei ∩ Ej

)

and subtract this sum

from S1 in (2.43). Denoting that sum of intersection probabilities over the maximal spanning tree

as S2∗, the improved first two Bonferroni bounds are

S1 − S2 ≤ 1− F (x) ≤ S1 − S2∗ (2.44)
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For each Bonferroni bound, there is a value of M , say Mq for the qth bound, such that if M ≥

Mq, then all q-way intersections have zero probability. In other words, Mq = inf {M : Sq = 0}.

When M ≥ M2, Sj = 0 for j ≥ 2, and the first bound is exact, i.e., 1−F (x) = S1 when x ≥ M2.

When M ≥ M3, Sj = 0 for j ≥ 3, and the second bound is exact, i.e., 1− F (x) = S1 − S2 when

x ≥ M3.

For the one-sample problem providing the setting for this chapter, all Pr
(

Ei ∩ Ej

)

are equal

for any i 6= j, and therefore, the probability S2∗ of any spanning tree is the same. Therefore, only

one calculation Pr
(

E1 ∩ E2

)

is required. From this probability, S2∗ = (n− 1) Pr
(

E1 ∩ E2

)

and

S2 = {n (n− 1) /2}Pr
(

E1 ∩ E2

)

.

2.5.2 Distribution Theory

The theory behind the computation of M2, M3, S1, S2, and S2∗ derives from the joint distribu-

tion of the studentized residuals. Butler (1984) presented this as Lemma 3.1, in a slightly different

setting. For more generality, Butler uses a Z matrix, here set to the identity matrix for outlier iden-

tification; Butler also scales the r residual vector to a maximum value of 1. To adapt to our setting,

let r = a (n− 1)−1/2
.

Let S = {i1, . . . , iq} be any q-tuple subset of {1, . . . , n}. Let RS be the q×q correlation matrix

of (rj : j ∈ S), namely RS = (ρij). In this setting, ρij = −1/ (n− 1) for all i 6= j and ρij = 1 for

i = j. The q-variate density of rS is

f (r) = Γ{(n−1)/2}
Γ{(n−1−q)/2} π

−q/2 |RS |−1/2 (1− rTR−1
S r
)(n−q−3)/2

if rTR−1
S r ≤ 1 (2.45)

To calculate M2, Butler provides the following formulas in Lemma 4.1, here including the

√
n− 1 adjustment to this setting.

Pr (|ai| > x, |aj| > x) = 0 iff x ≥
√

(n− 1) (1 + |ρij|)
2

.

From this, it directly follows that:
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M2 =

√

n

2
.

The calculation of M3 depends on the bounds of the ellipsoid defined by rTR−1
S r = 1, the

boundary of the density function in (2.45). The calculation procedure is based on Lemma 4.2 of

Butler (1984), with q = 3. This algorithm could be simplified for the one-sample setting. The

PMASR_Bonf code described in Appendix A uses the same algorithm for all settings analyzed in

this dissertation.

The sum S1 =
∑n

j=1 Pr (|aj| > x) is calculated by using the marginal distribution from (2.45),

which has been shown by Grubbs (1950) and others to be related to Student’s t distribution through

this identity:

aj

√

n− 2

n− 1− a2j
∼ tn−2 (2.46)

Therefore, in terms of the t distribution:

S1 = 2n

{

Tn−2

(

x

√

n− 2

n− 1− x2

)}

,

where Tν( ) is the right tail probability of the Student’s t distribution with ν degrees of freedom.

The sums S2 and S2∗ comprise probabilities of intersections Pr [|ai| > x, |aj| > x]. Calculating

the intersection probability Pr
(

Ei ∩ Ej

)

is an integration of the bivariate marginal density of r =

(ri, rj)
T

, given as:

f (r) = n−3

2π
√

1−ρ2ij

(

1− rTR−1r
)

n−5

2 if rTR−1r ≤ 1 (2.47)

where

R =

[

1

ρij

ρij
1

]

,

and ρij = −1/ (n− 1)

Calculation of Pr (|ai| > x, |aj| > x) = Pr (|ri| > c, |rj| > c), where c = x (n− 1)−1/2
, re-

quires bivariate integration over four regions of the ellipse defined by rTR−1r ≤ 1. By symmetry,
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this can be reduced from four to two regions. For each of the two regions, using the analysis of But-

ler (1982), we simplify the bivariate into univariate integration, computed using the integrate

function of R. Note that for the one-sample setting of this chapter, all Pr
(

Ei ∩ Ej

)

are equal, so

only Pr
(

E1 ∩ E2

)

needs to be calculated,

One special case, when n = 3, requires special handling in the algorithm. For this small sample

size, the joint density of two residuals becomes degenerate. In this case, use (2.46) to calculate

joint probabilities to avoid a calculation error.
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Chapter 3

Outlier Discordancy in Univariate Regression

In the univariate regression setting, the optimal test for a single outlying observation is provided

by testing for large values of the maximum absolute studentized residual (MASR) M . Since the

exact distribution of M is intractable, we present approximations to the distribution based on a

saddlepoint approximation. These are compared to first and second Bonferroni bounds and to a

Monte Carlo simulation.

3.1 Setting

In this section, we define the setting for the outlier discordancy test and discuss the optimality

of the test.

3.1.1 Null model setting

The null model assumes that there are no outliers in the data. The data derive from a standard

univariate linear model

y = Xβ + ε, (3.1)

in which y = (y1, . . . , yn)
T is an n× 1 vector of observed values; X =

(

xT
1 , . . . ,x

T
n

)T
is the n× p

design matrix of full rank p < n, in which the first column is a vector of ones and β is an unknown

p × 1 parameter vector, which may consist of both fixed and random effects. The studentized

residuals, defined shortly, are ancillary to any potential random effect parameters and hence are

independent of the corresponding random effect distributions. Hence these outlier results apply to

all fixed, random, or mixed models. Note that for residuals to have a non-degenerate distribution,

this requires p < n− 1.

The random error vector ε in (3.1) is assumed to be left-orthogonally invariant (l.o.i.) with un-

correlated elements. This means that its distribution is invariant to premultiplication by any n× n
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orthogonal matrix. The most prominent members of this class are independent and identically

distributed (i.i.d.) normal components and the class of spherically symmetric multivariate t dis-

tributions; see Butler (1986) and Dawid (1977) for details. From Dempster (1969, Section 13.3),

the distribution of ε is fully determined by that of εT ε. Also, from Butler (1986), any statistic

which is a function of the least square residuals will have the same distribution regardless of which

l.o.i. distribution is assumed for ε. Therefore, the following results in this chapter assume that

ε ∼ Nn (0, σ
2In), and the same results also apply to any model (3.1) where ε may follow any l.o.i.

distribution.

We define yj to be an outlier when this alternative model holds:

y = Xβ + θej + ε, (3.2)

when θ ∈ R, θ 6= 0, and ej is the jth column of In, for j = 1, . . . , n.

Define σ2 := E
(

εT ε
)

/n. Denote the hat matrix as H = X
(

XTX
)−1

XT = (hij) and the

residual projection matrix as I −H. The usual parameter estimates are β̂ =
(

XTX
)−1

XTy and

σ̂2 = yT (I−H)y/(n − p) = ε̂T ε̂/ (n− p), where ε̂ = (I−H)y = (ε̂j) and ŷ = Hy. The

vector of (internally) studentized residuals is a = (a1, . . . , an)
T , where

aj =
ε̂j

σ̂
√

1− hjj

=
yj − xT

j β̂

σ̂
√

1− hjj

j = 1, . . . , n. (3.3)

The maximum absolute studentized residual (MASR) is the statistic M = maxj |aj| whose cu-

mulative distribution function (CDF) under the null model is denoted as FM (x) = Pr (M ≤ x).

The distribution FM is the same, regardless of the assumed l.o.i. distribution for ε. A typical test

for the discordancy of a single outlier caused by a change in distribution for one component of ε

rejects the null model when M is large. Thus, if x is the observed value of M , then the p -value is

1− FM(x). The exact distribution FM is intractable.

Alternatively, upper and lower Bonferroni bounds are available. In limited ranges at the upper

end of the support of M , these bounds can be exact. The upper Bonferroni bound on the p -value
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has become known as Grubbs’ test. The details of these bounds, and the ranges within which they

are exact, are presented in Section 3.5. This chapter will show where the Bonferroni bounds are

adequate or inadequate and show the opportunity for an improved method to be provided by the

saddlepoint approximations.

The approach is also applicable when some of the columns of X are random. It this instance,

the distribution theory is conditional upon the attained values of these random columns. Fur-

thermore, the approach applies to classical linear mixed models in which some components of β

represent random effects. Conditional upon the values these random effects, the distribution of M

does not depend upon these values; hence neither does the unconditional distribution. However,

the design matrix for the accompanying random effects must be a part of the matrix X.

3.1.2 Optimality

The optimality of this outlier test occurs when the distribution of ε is left orthogonally invariant

and 1-extendable with the latter property now defined. Error vector ε is said to be 1-extendable

if ε is the marginal distribution of some (n+ 1) × 1 random vector which is also l.o.i. This

condition is still satisfied by normal, spherically symmetric multivariate t, and many other error

distributions. Butler (1986) proved that the two-hypothesis F test in ANOVA is uniformly most

powerful invariant (UMPI) for all such 1-extendable l.o.i. error distributions.

Butler (1986) also showed that the test based on large M = maxj |aj| is optimal within a

multiple (n + 1)-hypotheses framework with H0: no outliers vs. Hj: the j th element of y is an

outlier for j = 1, . . . , n, as defined in (3.2). Let φj denote the probability of selecting Hj , for

j = 0, 1, . . . , n and choose a loss function that is the indicator of a correct decision. Then the

Bayes risk with respect to a prior weighting of the hypotheses is the probability of an incorrect

decision.

Subject to group invariant conditions on the tests allowed, Butler (1986, thm. 4.1) shows that

the test defined by φj∗ = 1 if |aj∗ | = M > c1, and φ0 = 1 otherwise is the Bayes decision rule that

minimizes the probability of an incorrect decision uniformly in θ ∈ R as given by the Bayes risk.
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The tests over which the optimality applies are restricted as follows: (i) invariant to y → y +Xγ

for any γ ∈ R
p, i.e. translation of y by an arbitrary (n× 1) vector in the column space of X,

(ii) invariant to y → y/ξ for any ξ > 0, i.e. rescaling of y by an arbitrary constant, (iii) with

level 0 ≤ α ≤ 1, so that E
(

∑n
j=1 φj |H0

)

= 1 − E (φ0 |H0 ) ≤ α, and (iv) based upon an equal

prior weighting of 0 < π < n−1 given to H1, . . . , Hn, where π ensures the level α in (iii). The

consequence of this is that any other test for a single outlier that meets the given criteria can not

have a higher probability of making a correct decision than the test we consider here, i.e. the test

based upon large values for M = maxj |aj|.

3.2 Saddlepoint Approximation

An approximation for FM(x) is derived by first reexpressing this CDF as a conditional proba-

bility to which Bayes’ theorem can be applied. A reversal of the probabilities in Bayes’ theorem

allows approximation to the CDF to be reexpressed in terms of a saddlepoint density approxima-

tion. Using first- and various second-order saddlepoint approximations for this multivariate density

leads to various CDF approximations F̂M(x) with second-order approximations providing greater

accuracy.

Statistic M has bounded support, and owing to the nature of saddlepoint approximations, this

can lead to a loss in accuracy for the various F̂M(x). Since the least upper bound on the support

of M is
√
n− p, these approximations can be calibrated by using a known exact value at the

upper end of the support of M , as described in Section 3.2.4. This procedure is shown to improve

accuracy.

3.2.1 Reformulation of FM(x)

The studentized residual vector a has a joint distribution which does not depend on the param-

eters (β, σ2), so that a is ancillary. Thus, there is no loss in generality in assuming β = 0 and

σ2 = 1. Since estimates (β̂, σ̂2) form a complete sufficient statistic for (β, σ2), (β̂, σ̂2) and a are

independent by Basu’s theorem. Thus, the distribution of a may be conditioned on any convenient
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value for (β̂, σ̂2), say (0, 1). The net effect of such conditioning leads to

FM(x) = Pr

(

max
j

|aj| ≤ x
∣

∣

∣ β̂ = 0, σ̂2 = 1

)

(3.4)

= Pr

(

max
j

|yj|
√

1− hjj

≤ x
∣

∣

∣ β̂ = 0, σ̂2 = 1

)

.

By defining the events Ej =
{

|yj| ≤ x
√

1− hjj

}

, so {M ≤ x} =
⋂n

j=1Ej , then Bayes’ theorem

for densities is applied to the conditional probability in (3.4) to give

FM(x) =
fβ̂,σ̂2

(

0, 1 |
⋂n

j=1 Ej

)

Pr
(

⋂n
j=1 Ej

)

fβ̂,σ̂2 (0, 1)
, (3.5)

where fβ̂,σ̂2 (0, 1) denotes the marginal density of β̂, σ̂2 at (0, 1), and fβ̂,σ̂2(0, 1 |
⋂n

j=1 Ej) denotes

the conditional density of β̂, σ̂2 at (0, 1) given event
⋂n

j=1 Ej .

The denominator density is simple and explicit. With β = 0 and σ2 = 1, then β̂ ∼ Np{0, (XTX)−1}

and σ̂2 (n− p) ∼ χ2
n−p are independent, so that

fβ̂,σ̂2 (0, 1) = fβ̂ (0) fσ̂2 (1) =

∣

∣XTX
∣

∣

1/2

(2π)p/2
× (n− p) fχ2

n−p
(n− p)

=

∣

∣XTX
∣

∣

1/2

(2π)p/2
× (n− p)

(n− p)(n−p)/2−1 exp {− (n− p) /2}
2(n−p)/2Γ{(n− p)/2}

=

∣

∣XTX
∣

∣

1/2

(2π)(p+1)/2

Γ̂{(n− p)/2}
Γ{(n− p)/2}

√

(n− p)/2 =: g, (3.6)

where Γ̂ (v) =
√
2πvv−1/2e−v denotes Stirling’s approximation for Γ (v).

Since {Ej} are independent events and y1, . . . , yn are i.i.d. N (0, 1),

Pr
(

⋂n
j=1Ej

)

=
n
∏

j=1

Pr (Ej) =
n
∏

j=1

erf
(

τj/
√
2
)

,

where erf (x) := (2/
√
π)
∫ x

0
e−t2dt, and τj := x

√

1− hjj for j = 1, . . . , n.
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Only the conditional density in the numerator of (3.5) offers any difficulty. Note that β̂ is linear

in {yj}, and

(n− p) σ̂2= yTy − β̂TXTXβ̂,

is linear in
{

y2j
}

apart from its dependence on β̂. To obtain a multivariate density in which all

components are linear in {yj} and
{

y2j
}

, write the conditional density of (β̂, σ̂2) given
⋂n

j=1 Ej

in terms of the conditional density of
(

nβ̂, v
)

= (nβ̂,yTy) given
⋂n

j=1 Ej through a one-to-one

transformation. The Jacobian of this transformation is np (n− p) and

fβ̂,σ̂2

(

0, 1 | ⋂n
j=1Ej

)

= np (n− p) fnβ̂,v

(

0, n− p | ⋂n
j=1Ej

)

.

Next, note that the net effect of conditioning on the event
⋂n

j=1 Ej is to truncate the normal

random variables so that yj is restricted to the range |yj| < τj for j = 1, . . . , n. Conditioning on

⋂n
j=1 Ej affects the distribution theory in such a way that yj is independent of

⋂

i 6=j Ei and is only

affected by the conditioning on Ej . Thus {yj |Ej } are independent with yj |Ej having a standard

normal distribution truncated to {|yj| < τj}. Let zj denote such a truncated random variable with

density

fzj (x) =
φ (x)

erf
(

τj/
√
2
) |x| < τj,

where φ (·) is the standard normal density function, and let (n× 1) random vector z have indepen-

dent elements zj . In terms of z,

nβ̂
∣

∣

∣

⋂n
j=1Ej

D
= n

(

XTX
)−1

XTz =: b, and (3.7)

v
∣

∣

∣

⋂n
j=1Ej = yTy

∣

∣

∣

⋂n
j=1Ej

D
= zTz =: u. (3.8)

The conditional distributions on the left-hand side of (3.7) and (3.8) are the same as the un-

conditional distributions on the right-hand side using truncated random variables, thus effectively

removing the conditioning required in the distribution theory. From (3.5) we may write
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FM (x) = fb,u(0, n− p)
np(n− p)

g

n
∏

j=1

erf
(

τj/
√
2
)

. (3.9)

In (3.9), the density fb,u(0, n−p) cannot be readily computed but a saddlepoint approximation

can be constructed for it and used in its place to calculate an approximation for FM(x), as detailed

in the next section. This will be called a saddlepoint approximation for FM (x).

Saddlepoint Density Function

A saddlepoint approximation for the density function of (p+1)-dimensional (b, u) , as defined

in (3.7) and (3.8), is provided in Butler (2007, eqn. 3.2). Let (p + 1)-dimensional (sT , t), with

s = (s1, . . . , sp)
T , index the moment generating function (MGF) of (b, u) denoted as

M(s, t) = E

(

es
Tb+tu

)

.

The corresponding cumulant generating function (CGF) is K(s, t) = lnM(s, t). Since the density

fb,u is to be evaluated at (̂s,t̂), this determines a joint first-order saddlepoint density for fb,u(0, n−

p) as

f̂1 (0, n− p) :=
exp

{

K
(

ŝ,t̂
)

− t̂(n− p)
}

(2π)(p+1)/2
∣

∣K′′
(

ŝ, t̂
)∣

∣

1

2

, (3.10)

where saddlepoint (̂s,t̂) simultaneously solves the (p+ 1)-dimensional equation

K′
s

(

ŝ,t̂
)

=
∂K(s, t)

∂s

∣

∣

∣

∣

s=ŝ,t=t̂

= 0 (3.11)

K′
t

(

ŝ,t̂
)

=
∂K(s, t)

∂t

∣

∣

∣

∣

s=ŝ,t=t̂

= n− p (3.12)

and matrix K′′ (ŝ,t̂
)

is the (p+ 1)× (p+ 1) Hessian matrix of K (s,t) evaluated at (̂s,t̂).

Much of the analysis needed to complete the details of this expression is provided in a later sec-

tion. Section 3.4 gives formulas for K(̂s,t̂) and its derivatives and shows that ŝ = 0 = (0, . . . , 0)T .

The remaining saddlepoint component t̂ can be found numerically as a 1-dimensional root of

(3.12), K′
t

(

0,t̂
)

= n − p, in two steps. Since K(0, t̂) and its derivatives have a removable dis-
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continuity at t̂ = 1/2, corresponding to the MASR value x =
√
3, the first step in the solution

process is to determine on which side of the discontinuity the solution lies, according to x. Here is

the decision rule:

t̂ S 1

2
⇐⇒ x T

√
3. (3.13)

Let qt := 1− 2t and q̂ := 1− 2t̂ . Then saddlepoint t̂ is the solution to

n
∑

j=1

1

q̂

{

1−Rj

(

t̂
)}

= n− p,

where

Rj

(

t̂
)

=

√

2q̂
π
τj exp

(−q̂τ2j
2

)

erf

(

τj

√

q̂
2

) .

We now present different versions of the saddlepoint approximation: first-order, second-order,

and second-order exponential denoted respectively as f̂1, f̂2, and f̂2e. Upon substitution into (3.9)

to approximate FM(x), a calibration procedure may also be applied, which is indicated by changing

the circumflex to a macron. This leads to the possibility of six approximations of FM(x), denoted

by F̂1, F̄1, F̂2, F̄2, F̂2e, and F̄2e.

3.2.2 First-Order Approximation

The CGF K (̂s) and its derivatives are listed in Section 3.4, for t̂ 6= 1/2, corresponding to the

almost certain case where x 6=
√
3. From (3.24),

exp
{

K
(

0,t̂
)}

=
n
∏

j=1

erf

(

τj

√

q̂
2

)

√
q̂ erf

(

τj√
2

) . (3.14)

When q̂ < 0, corresponding to x <
√
3, note that erf( ) in the numerator has a complex argument.

In the denominator of (3.10),
∣

∣K′′ (0, t̂
)∣

∣ is the determinant of a (p + 1) × (p + 1) matrix of

second derivatives, some of which are zero. From Section 3.4, K′′
s,t

(

0, t̂
)

= 0. This separates the

51



determinant into

∣

∣K′′ (0, t̂
)∣

∣ = K′′
t2

(

0, t̂
)

×
∣

∣K′′
ssT

(

0, t̂
)∣

∣ (3.15)

=

(

n
∑

j=1

R2j(t̂)

q̂2

)∣

∣

∣

∣

∣

n
∑

j=1

cjc
T
j

R1j(t̂)

q̂

∣

∣

∣

∣

∣

,

where R1j(t̂) = (1 − Rj(t̂)), R2j(t̂) = 2 − (1 + q̂τ 2j )Rj(t̂) − R2
j (t̂), and C =n(XTX)−1XT =

{cij} = (c1, . . . , cn).

Now all the pieces are in place to complete the approximate distribution of MASR M . Sub-

stituting the expressions from (3.10) and (3.14) into (3.9) and simplifying gives this result for the

first-order approximation:

F̂1(x) =
np(n− p) exp

{

−t̂ (n− p)
}

g (2π)(p+1)/2 q̂n/2
∣

∣K′′
(

ŝ, t̂
)∣

∣

1

2

n
∏

j=1

erf

(

τj

√

q̂

2

)

, (3.16)

where g is defined in (3.6).

3.2.3 Second-Order Approximation

The saddlepoint density is an asymptotic expression, of which the first-order approximation is

only the leading term. Including the second term often improves the accuracy of the approximation.

From Butler (2007, eqn. 3.37), the second-order saddlepoint density approximation of f (x) is

f̂2 (x) = f̂1 (x) (1 +O) (3.17)

where O = {κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24}.

Using the Einstein summation convention as in McCullagh (1987, §1.2), where summation is

implied over any subscript appearing once in a subscript and once in a superscript, the three new κ̂

terms in the O formula are defined as
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κ̂4 := K̂ijklK̂ijK̂kl

κ̂2
23 := K̂ijkK̂rstK̂irK̂jsK̂kt

κ̂2
13 := K̂ijkK̂rstK̂ijK̂krK̂st

, (3.18)

where the subscripted K̂ terms are derivatives of K with respect to the subscripted compo-

nents, evaluated at the saddlepoint (s, t) =
(

0, t̂
)

, and the superscripted K̂ terms are compo-

nents of the inverse of the Hessian matrix K′′ (0, t̂
)

. For example, when i, j, k ≤ p, K̂ijk =

∂3K (s, t) /∂si∂sj∂sk|(s,t)=(0,t̂). In (3.18), the subscripts i, j, k, l, r, s, t ∈ {1, 2, . . . , p+ 1}, and

include t as the (p+ 1)th
argument of K.

An alternative second-order exponential approximation, based on McCullagh (1987, § 6.3) is

f̂2e (x) = f̂1 (x) e
O, (3.19)

where O is the same as in (3.17). In many cases we have evaluated, including the examples shown

below, this 2e approximation is the best of all.

Putting all this together, the second-order approximate distributions of MASR M are one of

the following:

F̂2(x) = F̂1(x)
{

1 + κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24
}

(3.20)

F̂2e(x) = F̂1(x) exp
{

κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24
}

. (3.21)

In some special cases, as in Chapter 2, the κ̂ functions might be simplified, but in general, the

four-way and six-way sums must be calculated and summed term by term. Section 3.4 lists all the

third- and fourth-order derivatives of K(s, t) required to make these calculations.
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3.2.4 Calibration

Calibration is a simple procedure recommended to correct for known inaccuracies with the

saddlepoint approximation at the upper end of the support of M . We denote the support of M as

the interval [ML,MU ], where ML = 1 when n is even, or {n/ (n− 1)}1/2 when n is odd, and

MU = (n− p)1/2. These limits can be derived from the joint distribution for residuals, as derived

by Raiffa and Schlaifer (1961, p. 259).

We use only the first- or second-order saddlepoint density approximation, which generally does

not integrate to 1. Thus, a calibration procedure is required. There are three options for where to

calibrate, specifically, M∗ ∈ {MU ,M2,M3}. As defined in Section 3.5, M2 and M3 are the points

above which it is not possible to have two or three, respectively, of the absolute residuals |aj|. Once

the value of M∗ is selected, the calibration formula is

F̄• (x) =
FM (M∗) F̂•(x)

F̂•(M∗)
, (3.22)

where FM (M∗) is the known exact value of FM at M∗ and F̂•(x) and F̂•(M∗) are the (uncalibrated)

saddlepoint approximations for FM at x and M∗, respectively, where the • subscript represents ei-

ther 1, 2, or 2e. In Chapter 2, for the one-sample case, the calibration formula includes an additional

element F̂• (ML) at the low end of the support and for very small values of n. Because of its neg-

ligible impact in regression examples, we ignore this complication here.

To calibrate at M∗ = MU = (n− p)1/2, set F (MU) = 1.

To calibrate at M∗ = M2, Section 3.5 shows that

M2 =

√

n− p

2

(

1 + max
i<j

|ρij|
)

, (3.23)

where ρij = −hij/
√

(1− hii) (1− hjj) is the correlation between residuals ai and aj . Since no

more than one absolute residual may ever exceed M2, the exact value of FM (M2) is calculated

from the tail probability of the marginal distribution of a single residual and the sample size n:
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FM (M2) = 1− 2n

{

Tn−p−1

(

M2

√

n− p− 1

n− p−M2
2

)}

,

where Tν( ) is the right tail probability of the Student’s t distribution with ν degrees of freedom.

To calibrate at M∗ = M3 is a lot more work. Section 3.5 provides the calculation algorithms

for both M3 and FM (M3), using the second Bonferroni bound. In general, this calculation requires

many numerical integrations.

As a compromise between accuracy and computational difficulty, we recommend calibrating at

M∗ = M2, and then using first Bonferroni bound, an exact solution, for any problems where M ≥

M2. This is the method used to generate the calibrated p-values in the tables below. Comparing

calibrated to uncalibrated values in the tables shows the importance of calibration in providing a

usable and reliable discordancy test procedure.

3.3 Results

We present four examples, compared with the same outlier discordancy p-value of 0.1, corre-

sponding to FM(x) = 0.9. The examples are:

• A balanced design with n = 100 observations, p = 10 treatments, and 10 replications per

treatment.

• A subset of the airquality dataset distributed with R (2019). The fitted model with

p = 3 terms, expressed in R, is Ozone ~ Temp + Wind, and this model is fitted to the

n = 116 rows without missing values in any of the three involved variables.

• A 12-run Plackett-Burman (1946) design, with 1 replication and p = 8 terms in the model,

including a mean and 7 main effects. This example is notable because of the failure of the

Grubbs’ test. At least two of the residuals have a correlation ρij = 1, with the consequence

that more than one residual may assume any value up to the maximum value, with positive

probability.
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Table 3.1: Saddlepoint and Bonferroni p-values for Four Regression Examples

10× 10 balanced airquality PB 12-run DSD 17-run

n 100 116 12 51
p 10 3 8 9
M value x 3.213 3.445 1.904 2.971
Simulated p-value 0.100 0.100 0.100 0.100
Saddlepoint approx.:

1− F̂1 (x) −0.229 0.068 −3.603 −0.506

1− F̂2 (x) 0.140 0.100 3.382 0.222

1− F̂2e (x) 0.090 0.100 −0.009 0.071
1− F̄1 (x) 0.101 0.099 0.236 0.108
1− F̄2 (x) 0.099 0.100 0.262 0.099
1− F̄2e (x) 0.100 0.100 0.222 0.110
Bonferroni bounds:

1st upper (Grubbs) 0.102 0.103 0.149 0.101
1st upper (Worsley) 0.102 0.103 0.100 0.101
2nd lower 0.100 0.100 0.100 0.100
Limits on M :

MU 9.487 10.63 2.000 6.481
M2 7.071 7.843 2.000 5.180
M3 5.669 6.376 1.732 4.061

• A definitive screening design (DSD) after Jones and Nachtsheim (2011), with 17 runs and

3 replications, for n = 51. This X matrix comes from the DSD example packaged with

Minitab 18 (2017), and the fitted model includes p = 9 terms for the mean, A, C, D, E, G,

GG, AE, and CE.

Table 3.1 lists p-values for all versions of saddlepoint and Bonferroni methods discussed in

this article. Also included is a simulated p-value, based on sufficient trials that the width of a

99% confidence interval is less than the least-significant digit listed. Determining these p-values

required at least 2.4 million trials for each case.

Note that in three of the four examples, the first Bonferroni upper bound, also known as Grubbs’

test, performs well at the upper end of the distribution of M , where p-values are small. For the

PB 12-run design, the Grubbs p-value is substantially too high. The Worsley improvement to

the upper bound, or the lower bound, are significantly more accurate for this case, although each
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requires more computational time. The calibrated saddlepoint approximations also perform well,

when sample size is larger. Saddlepoint approximations generally work best at larger sample sizes.

For the same PB 12-run example, with only n−p = 4 degrees of freedom, none of the saddlepoint

approximations return accurate p-values. In general, when degrees of freedom are few, neither the

first Bonferroni bound (Grubbs test) nor the saddlepoint approximations work particularly well.

The two improvements to the Bonferroni bound evaluated here, the Worsley improvement using

spanning trees, or the second Bonferroni bound, both show improved performance at the upper end

of the support of M , at the expense of additional computation.

For the four examples discussed here, Figures 3.1 through 3.4 show all approximations of

1− FM (x) for 100 values of x in the support of M . Each of these four-panel graphs is organized

in a similar way. The top left panel shows all saddlepoint approximations of 1 − FM (x), plus a

Monte Carlo simulation. The top right panel shows all Bonferroni bounds on 1 − FM (x), plus a

Monte Carlo simulation. The bottom two panels show errors by subtracting either the Bonferroni

lower bound, when x ≥ M3, or the Monte Carlo simulation otherwise, from each approximation

in the top two panels.
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Figure 3.1: Comparison of p-values for a 10× 10 Balanced Design
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Figure 3.2: Comparison of p-values for airquality Dataset
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Figure 3.3: Comparison of p-values for a Plackett-Burman 12-run Design

60



Figure 3.4: Comparison of p-values for a Definitive Screening Design
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3.4 Cumulant Generating Function K(s, t) and its Derivatives

In this section, the joint CGF K(s, t) of b = n
(

XTX
)−1

XTz and u = zTz is developed into a

form for calculation at the saddlepoint (̂s, t̂), along with its derivatives required for the saddlepoint

approximations. Let

C := n(XTX)−1XT = (c1, . . . , cn) = (cij) ,

so that b = Cz. Also, with qt = 1− 2t, define the function

Mj(v, t) = E
{

exp(vzj + tz2j )
}

=
1√

2π erf
(

τj/
√
2
)

∫ τj

−τj

exp
(

vz − qt
2
z2
)

dz.

After completing the square separately for qt ≷ 0, let ςt = sig(qt) := qt/ |qt|, so that

Mj(v, t) =
exp (v2/2qt)√
2π erf

(

τj/
√
2
)

∫ τj

−τj

exp







−ςt

(
√

|qt|
2
z − v

√

2 |qt|

)2






dz,

for qt 6= 0. Now we change the variable of integration and substitute erf (x) := (2/
√
π)
∫ x

0
e−t2dt,

which will have an imaginary argument when qt < 0, so that

Mj(v, t) =
exp (v2/2qt)

2
√
qt erf

(

τj/
√
2
)×

[

erf

{

√
ςt

(
√

|qt|
2
τj −

v
√

2 |qt|

)}

− erf

{

√
ςt

(

−
√

|qt|
2
τj −

v
√

2 |qt|

)}]

.

When qt = 0, at the boundary between real and complex arithmetic, Mj has a removable singu-

larity, as do all other formulas in this section. Relevant limiting forms are presented in Section

3.4.1.

The joint MGF of (b, u) is
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M (s, t) = E
{

exp
(

sTCz+ t ‖z‖2
)}

= E

{

exp

(

∑

j

{

(sTcj)zj + tz2j
}

)}

=
n
∏

j=1

Mj(s
Tcj, t)

and is convergent for all (s, t) ∈ R
p+1.Therefore, K (s, t) =

∑n
j=1 lnMj(s

Tcj, t).

Note that since z ∈ ⊗n
j=1(−τj, τj), then b is in a bounded subset of the column space of C.

Also,

u = ‖z‖2 <
∑

j

τ 2j = x2
∑

j

(1− hjj) = x2(n− p)

and u ∈ (0, x2(n− p)). Thus the support is bounded in R
p+1.

To show that ŝ = 0, note

0 = K′
s

(

ŝ, t̂
)

=
n
∑

j=1

1

Mj (̂sTcj, t̂)

∂Mj(s
Tcj, t)

∂s

∣

∣

∣

∣

s=ŝ

=
n
∑

j=1

1

Mj (̂sTcj, t̂)

∂Mj(v, t̂)

∂v

∣

∣

∣

∣

v=ŝT cj

cj

=
n
∑

j=1

1

Mj (̂sTcj, t̂)
cjE

[

zj exp
{

(̂sTcj)zj + t̂z2j
}]

.

For any value of t̂, ŝ = 0 solves the equation since E
[

zj exp
{

t̂z2j
}]

= 0 for all j. If, for ŝ = 0, a

solution t̂ can be determined for K′
t

(

0, t̂
)

= n− p, then (0, t̂) must be the saddlepoint, since there

is only one solution to both equations. (As t ↑ ∞ then K′
t (0, t) must exceed n − p). Saddlepoint

ŝ = 0 induces symmetry into the evaluation of K and its derivatives at saddlepoint (0, t̂). At the

saddlepoint, exp
{

K
(

0,t̂
)}

, required by (3.10), simplifies to

exp
{

K
(

0,t̂
)}

=
n
∏

j=1

Mj(0, t̂) =
n
∏

j=1

erf

(

τj

√

q̂
2

)

√
q̂ erf

(

τj√
2

) , (3.24)

where q̂ = qt̂ = 1− 2t̂.

The saddlepoint t̂ is the solution to
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n− p = K′
t

(

0, t̂
)

=
n
∑

j=1

1

Mj(0, t̂)

∂Mj(0, t)

∂t

∣

∣

∣

∣

t=t̂

=
n
∑

j=1

1

Mj(0, t̂)
E
{

z2j exp(t̂z
2
j )
}

=
n
∑

j=1

1

q̂









1−

√

2q̂
π
τje

− 1

2
q̂τ2j

erf

(

τj

√

q̂
2

)









=
n
∑

j=1

1

q̂

{

1−Rj

(

t̂
)}

, (3.25)

where Rj

(

t̂
)

is given in (3.26).

The derivatives of K (s, t) presented below are shown only for s = ŝ = 0.

First derivatives:

K̂′
s(0, t) =

∂

∂s
K (s,t)

∣

∣

∣

∣

s=0

= 0 ∀t

K̂′
t(0, t̂) =

∂

∂t
K (s,t)

∣

∣

∣

∣

s=0,t=t̂

=
n
∑

j=1

R1j

(

t̂
)

q̂

where

R1j

(

t̂
)

:= 1−Rj

(

t̂
)

Rj

(

t̂
)

:=

√

2q̂
π
τj exp

(−τ2j q̂

2

)

erf

(

τj

√

q̂
2

) (3.26)

Second derivatives:

K̂′′
ssT

(

0, t̂
)

=
∂2

∂s∂sT
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
n
∑

j=1

cjc
T
j

R1j(t̂)

q̂

K̂′′
s,t

(

0, t̂
)

=
∂2K (s,t)

∂s∂t

∣

∣

∣

∣

s=0,t=t̂

=
∂K′

s(0, t)

∂t
= 0 ∀t

K̂′′
t2

(

0, t̂
)

=
∂2K (s,t)

∂t2

∣

∣

∣

∣

s=0,t=t̂

=
n
∑

j=1

R2j

(

t̂
)

q̂2

where

R̂2j

(

t̂
)

:= 2− (1 + q̂τ 2j )R̂j − R̂2
j
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Third derivatives: Let K̂(3)
klm = ∂3K/∂sk∂sl∂sm|s=0,t=t̂, for k, l,m ≤ p. Then

K̂(3)
klm(0, t̂) = 0 ∀t

K̂(3)

ssT ,t

(

0, t̂
)

=
∂3

∂s∂sT∂t
K (s, t)

∣

∣

∣

∣

s=0,t=t̂

=
n
∑

j=1

cjc
T
j

R2j(t̂)

q̂2

K̂(3)

s,t2

(

0, t̂
)

=
∂3K (s,t)

∂s∂t2

∣

∣

∣

∣

s=0,t=t̂

= 0 ∀t

K̂(3)

t3

(

0, t̂
)

=
∂3K (s,t)

∂t3

∣

∣

∣

∣

s=0,t=t̂

=
n
∑

j=1

R3j

(

t̂
)

q̂3

where

R3j

(

t̂
)

:= 8−
(

q̂2τ 4j + 2q̂τ 2j + 3
)

Rj − 3
(

1 + q̂τ 2j
)

R2
j − 2R3

j

Fourth derivatives: Let K̂(4)
klmr = ∂4K/∂sk∂sl∂sm∂sr|s=0,t=t̂, for k, l,m, r ≤ p. Then

K̂(4)
klmr(0, t̂) =

n
∑

j=1

{

R2j(t̂)− 2R2
1j(t̂)

}

q̂2
ckjcljcmjcrj

K̂(4)
klm,t(0, t̂) =

∂4K (s, t)

∂sk∂sl∂sm∂t

∣

∣

∣

∣

s∗=0

= 0 ∀t and k, l,m ∈ {1, ..., p}

K̂(4)

ssT ,t2
(0, t̂) =

∂4K (s, t)

∂s∂sT∂t2

∣

∣

∣

∣

s∗=0,t=t̂

=
n
∑

j=1

cjc
T
j

R3j(t̂)

q̂3

K̂(4)

s,t3(0, t̂) =
∂4K (s,t)

∂s∂t3

∣

∣

∣

∣

s=0

= 0 ∀t

K̂(4)

t4 (0, t̂) =
∂4K (s,t)

∂t4

∣

∣

∣

∣

s∗=0,t=t̂

=
n
∑

j=1

R4j

(

t̂
)

q̂4

where

R4j

(

t̂
)

:= 48−
(

q̂3τ 6j + 3q̂2τ 4j + 9q̂τ 2j + 15
)

Rj

−
(

7q̂2τ 4j + 14q̂τ 2j + 15
)

R2
j − 12

(

1 + q̂τ 2j
)

R3
j − 6R4

j
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3.4.1 Limiting Forms

As noted, the CGF K (s, t), its derivatives, and all saddlepoint distributions for M have a

removable discontinuity at t = 0.5, corresponding to the M value x =
√
3. Although this is

a set of probability 0, with theoretically no significance, it is important in programming these

methods. When calculating approximations of F , using typical double-precision arithmetic, there

is a neighborhood of the discontinuity within which these calculations become unstable. In this

neighborhood, it is advisable to switch to a Taylor series approximation, built using these limiting

forms, to present a well-behaved function for the user. Here are the limiting values of K (0, 1/2),

and its non-zero derivatives.

exp

{

K
(

0,
1

2

)}

=
n
∏

j=1

2τj√
2π erf

(

τj/
√
2
)

K′
t

(

0,
1

2

)

=
n
∑

j=1

τ 2j
3

K′′
ssT

(

0,
1

2

)

=
n
∑

j=1

cjc
T
j

τ 2j
3

K′′
t2

(

0,
1

2

)

=
n
∑

j=1

4τ 4j
45

K(3)

ssT ,t

(

0,
1

2

)

=
n
∑

j=1

cjc
T
j

4τ 4j
45

K(3)

t3

(

0,
1

2

)

=
n
∑

j=1

16τ 6j
945

K(4)
klmr(0,

1

2
) =

n
∑

j=1

− ckjcljcmjcrj
2τ 4j
15

K(4)

ssT ,t2

(

0,
1

2

)

=
n
∑

j=1

cjc
T
j

16τ 6j
945
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K(4)

t4

(

0,
1

2

)

=
n
∑

j=1

−32τ 8j
4725

3.5 Bonferroni Bounds

Bonferroni bounds and their application to outlier discordancy testing were explained in section

2.5. Only the details that are different for the regression setting are listed here.

3.5.1 Bonferroni Inequalities

In the regression setting of this chapter, Ej = {|aj| ≤ x} =
{

|yj| ≤ x
√

1− hjj

}

, so

{M ≤ x} =
⋂n

j=1 Ej . Reexpressing FM (x) in terms of a union of events, 1 − FM (x) =

Pr (M > x) = Pr
{

⋃n
j=1 Ej

}

. With this definition of events Ej , refer to section 2.5.1 for the

remaining details.

3.5.2 Distribution Theory

The theory behind the computation of ρij , M2, M3, S1, S2, and S2∗ derives from the joint

distribution of the studentized residuals. Butler (1984) presented this as Lemma 3.1, in a slightly

different setting. For more generality, Butler uses a Z matrix, here set to the identity matrix for

outlier identification; Butler also scales the r residual vector to a maximum value of 1. To adapt to

our setting, let r = a (n− p)−1/2
.

Let S = {i1, . . . , iq} be any q-tuple subset of {1, . . . , n}. Let RS be the q × q correlation

matrix of (rj : j ∈ S), namely RS = (ρij), where ρij = −hij/
√

(1− hii) (1− hjj). The q-variate

density of rS is

f (r) =
Γ(n−p

2
)

Γ(n−p−q

2
)
π

−q

2 |RS |
−1

2

(

1− rTR−1
S r
)

n−p−q−2

2 if rTR−1
S r ≤ 1 (3.27)

To calculate M2, Butler provides the following formulas in Lemma 4.1, here including the

√
n− p adjustment to this setting.
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Pr (|ai| > x, |aj| > x) = 0 iff x ≥
√

(n− p) (1 + |ρij|)
2

.

From this, it directly follows that:

M2 =

√

(n− p) (1 + maxi<j |ρij|)
2

.

In the case where |ρij| = 1 for any pair of residuals ai and aj , indicating perfect correlation, observe

that M2 =
√
n− p, equaling the upper end of the support of M . In effect, this perfect correlation

means there is no region of positive probability in which the Bonferroni upper bound is exact. In

the test data sets evaluated for this work, some experiments, such as a 12-run Plackett-Burman

design with more than 6 factors, exhibit this pattern for some but not all pairs of residuals.

The calculation of M3 depends on the bounds of the ellipsoid defined by rTR−1
S r = 1, the

boundary of the density function in (3.27). The calculation procedure is based on Lemma 4.2 of

Butler (1984), with q = 3.

The sum S1 =
∑n

j=1 Pr (|aj| > x) is calculated by using the marginal distribution from (3.27),

which has been shown by Grubbs (1950) and others to be related to Student’s t distribution through

this identity:

aj

√

n− p− 1

n− p− a2j
∼ tn−p−1 (3.28)

Therefore, in terms of the t distribution,

S1 = 2n

{

Tn−p−1

(

x

√

n− p− 1

n− p− x2

)}

,

where Tν( ) is the right tail probability of the Student’s t distribution with ν degrees of freedom.

The sums S2 and S2∗ comprise probabilities of intersections Pr [|ai| > x, |aj| > x]. Calculating

each intersection probability is an integration of the bivariate marginal density of r = (ri rj)
T

,

given as:
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f (r) = n−p−2

2π
√

1−ρ2ij

(

1− rTR−1r
)

n−p−4

2 if rTR−1r ≤ 1 (3.29)

where

R =

[

1

ρij

ρij
1

]

.

Calculation of Pr (|ai| > x, |aj| > x) = Pr (|ri| > c, |rj| > c), where c = x (n− p)−1/2
, re-

quires bivariate integration over four regions of the ellipse defined by rTR−1r ≤ 1. By symmetry,

this can be reduced from four to two regions. For each of the two regions, using the analysis of But-

ler (1982), we simplify the bivariate into univariate integration, computed using the integrate

function of R.

Two special cases requires special handling in the algorithm. First, for any pair of residuals ai

and aj with |ρij| = 1, the bivariate distribution of ai and aj degenerates into univariate. In this

case, the intersection probability is calculated this way:

Pr [|ai| > x, |aj| > x] = 2
[

Tn−p−1

(

x
√

n−p−1
n−p−x2

)]

when |ρij| = 1. (3.30)

The second special case is when n − p = 2. In this minimal case, the joint density of two

residuals becomes degenerate, so again we use (3.30).

With all
(

n
2

)

intersection probabilities calculated, S2 is their sum. S2∗ requires selecting a span-

ning tree of the non-zero intersection probabilities that maximizes the summed probability. The

Kruskal (1956) algorithm, modified to find a maximal spanning tree, works for the task, although

certainly faster algorithms are available.
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Chapter 4

Outlier Discordancy in Multivariate Regression

In the multivariate regression setting, the optimal test for a single outlying observation is pro-

vided by testing for large values of the maximum squared studentized residual (MSSR) M . Since

the exact distribution of M is intractable, we present approximations to the distribution based on

a saddlepoint approximation. These are compared to first and second Bonferroni bounds and to a

Monte Carlo simulation.

4.1 Setting

In this section, we define the setting for the outlier discordancy test and discuss the optimality

of the test. There is a significant difference in notation between earlier chapters and this one.

In Chapters 2 and 3, M is MASR. Here, M is MSSR, the square of MASR. Most multivariate

literature focuses on squared distance metrics such as Mahalanobis distance, so in this chapter, we

are consistent with that convention.

4.1.1 Null model setting

The null model assumes that there are no outliers in the data. The data derive from a standard

multivariate linear model

Y(n×m)= X(n×p)B(p×m)+E(n×m), (4.1)

in which Y = (yT
1 , . . . ,y

T
n )

T is the matrix of observed values, X =
(

xT
1 , . . . ,x

T
n

)T
is the design

matrix of full rank p < n − m in which the first column is a vector of ones and the remaining

columns may be fixed or random, and B is an unknown parameter matrix, which may comprise

both fixed and random effects. The studentized residuals, defined shortly, are ancillary to any

potential random effect parameters and hence are independent of the corresponding random effect

distributions. Hence, these results apply to fixed, random, or mixed models.
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The random error matrix E in (3.1) is assumed to be left-orthogonally invariant (l.o.i.) with

uncorrelated rows, as discussed in chapter 3. It suffices this chapter to assume that vec (E) ∼

Nnm (0, In ⊗Σ), where vec (E) is the vector of stacked columns of E, that is, the rows of E are

i.i.d. Nm (0,Σ), since the same results apply to any model (4.1), in which E is a l.o.i. distribution.

We define yj to be an outlier when the following alternative model holds in which

Y = XB+ ejθ
T + E, (4.2)

when θ ∈ R
m, θ 6= 0, and ej is the jth column of In, for j = 1, . . . , n.

Define Σ := E
(

ETE
)

/n. Denote the hat matrix as H = X
(

XTX
)−1

XT = (hij) and the

residual projection matrix as I − H. The usual parameter estimates are B̂ =
(

XTX
)−1

XTY

and Σ̂ = YT (I−H)Y/(n − p) = ÊT Ê/ (n− p), where Ê = (I−H)Y = (ε̂T1 , . . . , ε̂
T
n )

T and

Ŷ = HY. A vector of (internally) studentized residuals is a = (a1, . . . , an)
T , where

a2j =
ε̂jΣ̂

−1ε̂Tj
1− hjj

=
(yj − xjB̂)Σ̂−1(yj − xjB̂)T

1− hjj

j = 1, . . . , n. (4.3)

The maximum squared studentized residual (MSSR) is the statistic M = maxj a
2
j whose cu-

mulative distribution function (CDF) under the null model is denoted as F (x) = Pr (M ≤ x). A

typical test for the discordancy of a single outlier caused by a change in distribution for one row of

E rejects the null model when M is large. Thus, if x is the observed value of M , then the p -value

is 1− F (x). The exact distribution F is intractable.

Alternatively, upper and lower Bonferroni bounds are available. The upper Bonferroni bound

on the p -value has become known as Grubbs’ test in univariate applications. Unlike the univariate

settings of earlier chapters, there is no range of values for which Grubbs’ test provides an exact

p-value, as shown by Wilks (1963). The details of these bounds are presented in Section 4.6.

This chapter will show where the Bonferroni bounds are adequate or inadequate and show the

opportunity for an improved method to be provided by saddlepoint approximations.
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4.1.2 Optimality

The optimality of this outlier test occurs when the distribution of E is left orthogonally invariant

and m-extendable with the latter property now defined. Error matrix E is said to be m-extendable

if E is the marginal distribution of some (n+m) ×m random matrix which is also l.o.i., using a

(n+m) × (n+m) orthogonal transformation. This condition is still satisfied by normal, spher-

ically symmetric matrix-variate t, and many other error distributions. Butler (1986) proved that

Hotelling’s T 2 test in MANOVA is uniformly most powerful invariant (UMPI) amongst all such

m-extendable l.o.i. error distributions.

Butler (1986) also showed that rejecting the null hypothesis of no outliers when M = maxj a
2
j

is large is the optimal test for a single outlying observation within the same class of error distribu-

tions. The context is that of a multi-decision problem with H0: no outliers vs. Hj: the j th row of

Y has slipped by θ ∈ R
m, with φj denoting the probability of selecting Hj , for j = 0, 1, . . . , n.

Let the loss in deciding Hi when Hj is true be the indicator function of i 6= j, so the Bayes

risk, with respect to a prior weighting of the hypotheses is the probability of an incorrect deci-

sion. Subject to group invariant conditions on the tests allowed, Butler (1986, thm. 4.1) shows

that the test defined by φj∗ = 1 if a2j∗ = M > c1, and φ0 = 1 otherwise is the Bayes decision

rule that minimizes the probability of an incorrect decision uniformly in θ ∈ R as given by the

Bayes risk. The optimality applies amongst tests restricted as follows: (i) invariant to translation

of Y by any n×m matrix whose columns are in the column space of X, (ii) invariant to rescaling

of Y by post-multiplication with any m × m nonsingular matrix, (iii) with level α, 0 ≤ α ≤ 1,

so that E(
∑n

j=1 φj |H0 ) = 1 − E (φ0 |H0 ) ≤ α, and (iv) based upon an equal prior weighting of

π ∈ (0, n−1) given to H1, . . . , Hn, where π ensures level α in (iii).

The practical consequence of this is that any other α-level test for a single outlier that meets

the given criteria must have a lower probability of making a correct decision than the α-level test

considered here, i.e. the test based upon large values for M = maxj a
2
j .
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4.2 Saddlepoint Approximation

An approximation for FM(x) is derived by first reexpressing this CDF as a conditional proba-

bility to which Bayes’ theorem can be applied. A reversal of the probabilities in Bayes’ theorem

allows approximation to the CDF to be reexpressed in terms of a saddlepoint density approxima-

tion. Using first- and various second-order saddlepoint approximations for this multivariate density

leads to various CDF approximations F̂M(x) with second-order approximations providing greater

accuracy.

Statistic M has bounded support, and owing to the nature of saddlepoint approximations, this

can lead to a loss in accuracy for the various F̂M(x). Since the least upper bound on the support of

M is n− p, these approximations can be calibrated by using the fact that FM(x) = 1, as described

in Section 4.2.3. This procedure is shown to improve accuracy.

4.2.1 Reformulation of FM(x)

The studentized residual vector a = (a1, . . . , an)
T , where a2j is defined in (4.3), has a joint

distribution which does not depend on the parameters (B,Σ), so that a is ancillary. Thus, there is

no loss in generality in assuming B = 0 and Σ = Im. Since estimates (B̂, Σ̂) form a complete

sufficient statistic for (B,Σ), (B̂, Σ̂) and a are independent by Basu’s theorem. Thus, the distri-

bution of a may be conditioned on any convenient value for (B̂, Σ̂), say (0, Im). The net effect of

such conditioning leads to

FM(x) = Pr

(

max
j

a2j ≤ x
∣

∣

∣
B̂ = 0, Σ̂ = I

)

(4.4)

= Pr

(

max
j

yT
j yj

1− hjj

≤ x
∣

∣

∣
B̂ = 0, Σ̂ = I

)

.

By defining the events Ej = {yT
j yj ≤ x (1− hjj)}, so {M ≤ x} =

⋂n
j=1Ej , Bayes’ theorem for

densities can be applied to the conditional probability in (4.4) to give

FM(x) =
fB̂,Σ̂

(

0, I |
⋂n

j=1 Ej

)

Pr
(

⋂n
j=1 Ej

)

fB̂,Σ̂ (0, I)
, (4.5)
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where fB̂,Σ̂ (0, I) denotes the marginal density of B̂, Σ̂ at (0, I), and fB̂,Σ̂(0, I |
⋂n

j=1 Ej) denotes

the conditional density of B̂, Σ̂ at (0, I) given event
⋂n

j=1 Ej .

The denominator density in (4.5) is explicit. With B = 0 and Σ = I, then B̂ and Σ̂ are

independent, with vec(B̂) ∼ Npm

{

0, Im ⊗ (XTX)−1
}

, and Σ̂ (n− p) = ÊT Ê ∼ Wm (I, n− p),

a Wishart distribution. With a Jacobian of (n− p)m(m+1)/2,

fΣ̂(I) = (n− p)m(m+1)/2 fWm(I,n−p) {(n− p) I} ,

so that

fB̂,Σ̂ (0, I) = fB̂ (0) fΣ̂ (I) =

∣

∣XTX
∣

∣

m/2

(2π)mp/2
× (n− p)m(m+1)/2 fWm(I,n−p) {(n− p) Im}

=
∣

∣XTX
∣

∣

m/2

(

n−p
2

)m(n−p)/2
exp {−m (n− p) /2}

(2π)mp/2Γm{(n− p)/2} =: g, (4.6)

where Γm (x) is the multivariate gamma function, with

Γm (x) = πm(m−1)/4
∏m

j=1
Γ {x+ (1− j) /2} .

Since {Ej} are independent events and y1, . . . ,yn are i.i.d. Nm (0, Im),
{

yT
j yj

}

are i.i.d. χ2
m,

and

Pr
(

⋂n
j=1Ej

)

=
n
∏

j=1

Pr (Ej) =
n
∏

j=1

Fχ2
m
(τj) ,

where τj := x (1− hjj) for j = 1, . . . , n. Define

Pm (τ) :=

∫

zT z<τ

(2π)−m/2 exp
(

−zTz/2
)

dz = Pr
(

χ2
m < τ

)

= Fχ2
m
(τj) , (4.7)

so that Pm (τ) is the readily available incomplete gamma function. With this substitution,

Pr
(

⋂n
j=1Ej

)

=
n
∏

j=1

Pm (τj) .
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Only the conditional density in the numerator of (4.5) offers any difficulty. Note that B̂ is linear in

{yj}, and

(n− p) Σ̂ = Y
T
Y − B̂TXTXB̂,

is linear in {yjy
T
j } apart from its dependence on B̂. To obtain a multivariate density in which all

components are linear in {yj} and {yjy
T
j }, write the conditional density of (B̂, Σ̂) given

⋂n
j=1 Ej

in terms of the conditional density of (nB̂,YTY) given
⋂n

j=1 Ej through a one-to-one transfor-

mation. The Jacobian of this transformation is npm (n− p)m(m+1)/2
and therefore,

fB̂,Σ̂

(

0, I |
n
⋂

j=1

Ej

)

= npm (n− p)m(m+1)/2 fnB̂,YTY

(

0, (n− p) I | ⋂n
j=1Ej

)

.

Next, note that the net effect of conditioning on the event
⋂n

j=1 Ej is to truncate the m-variate

normal random variables so that yj is restricted to the range yT
j yj < τj for j = 1, . . . , n. Condi-

tioning on
⋂n

j=1 Ej affects the distribution theory in such a way that yj is independent of
⋂

i 6=j Ei

and is only affected by the conditioning on Ej . Thus {yj |Ej } are independent and yj |Ej has a

standard m-variate normal distribution that has been spherically truncated to {yT
j yj < τj}. Denote

this truncated variable as zj with density

fzj (x) =
exp

(

−xTx/2
)

(2π)m/2 Pm (τj)
, xTx < τj . (4.8)

Let (n×m) random matrix Z have independent rows zTj and elements zji for j = 1, . . . , n, and

i = 1, . . . ,m. In terms of Z,

nB̂
∣

∣

∣

⋂n
j=1Ej

D
= n

(

XTX
)−1

XTZ =: V (4.9)

YTY

∣

∣

∣

⋂n
j=1Ej

D
= ZTZ =: U (4.10)

The conditional distributions on the left-hand side of (4.9) and (4.10) are the same as the un-

conditional distributions on the right-hand side using truncated random variables, thus effectively
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removing the conditioning required in the distribution theory. From (4.5) we may write

FM (x) = fV,U(0, (n− p) I)
npm (n− p)m(m+1)/2

g

n
∏

j=1

Pm (τj) , (4.11)

where g is defined in (4.6).

In (4.11), the density fV,U(0, (n− p) I) cannot be readily computed, but a saddlepoint approx-

imation can be constructed for it and used in its place to calculate an approximation for FM(x),

which we refer to as a saddlepoint approximation for F (x).

Saddlepoint Density Function

A saddlepoint approximation for the density function of (V,U) is provided in Butler (2007,

eqn. 3.2). Since V is (p×m) and U = {uik} is (m×m) symmetric, (V,U) is treated here

as a random vector with m {p+ (m+ 1) /2} elements. Let (S,T) index the moment generating

function (MGF), where S is (p×m). Since U is symmetric, with only m (m+ 1) /2 distinct

elements, we define T as an (m×m) upper triangular matrix, with elements {tik}, i ≤ k. The

MGF of (V,U) is denoted as

M(S,T) = E
[

exp
{

tr
(

STV
)

+ tr
(

TTU
)}]

,

where S ∈ R
pm and TU ∈ R

m(m+1)/2, with AU defined as the upper triangular portion of square

matrix A. The corresponding cumulant generating function (CGF) is K(S,T) = lnM(S,T).

Since the density fV,U is to be evaluated at (Ŝ = 0, T̂ = t̂Im), this determines a joint first-order

saddlepoint density for fV,U (0, (n− p) I) as

f̂1 (0, (n− p) I) :=
exp

{

K(Ŝ, T̂)− (n− p)mt̂
}

(2π)m{p+(m+1)/2}/2
∣

∣

∣K′′(Ŝ, T̂)
∣

∣

∣

1/2
, (4.12)

where saddlepoint (Ŝ, T̂ = t̂Im) simultaneously solves the m {p+ (m+ 1) /2}-dimensional equa-

tion
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∂

∂S
K(S,T)

∣

∣

∣

∣

S=Ŝ,T=T̂U

= 0 (4.13)

∂

∂TU
K(S,T)

∣

∣

∣

∣

S=Ŝ,T=T̂U

= (n− p) IUm. (4.14)

Matrix K′′(Ŝ, T̂) is the Hessian matrix of K (S,T) evaluated at (Ŝ, T̂).

As shown in Section 4.4, the saddlepoint equation is solved by Ŝ = 0 and T̂ = t̂Im. From

(4.32), the scalar value t̂ is the solution to

n− p =
n
∑

j=1

Pm+2 (q̂τj)

q̂Pm (q̂τj)
, (4.15)

where q̂ = 1−2t̂, and Pm is defined in (4.7). It is important to note that the range of possible values

for t̂ is (−∞, 1/2), corresponding to the right tail of M , the MSSR statistic. All these formulas

have a removable discontinuity at t̂ = 1/2, and the form of the equations changes on the other side

of the discontinuity, although these alternate forms when t̂ ≥ 1/2 are not presented here. At the

saddlepoint, from (4.29),

exp
{

K(0, T̂)
}

=
n
∏

j=1

Pm (q̂τj)

q̂m/2Pm (τj)
.

The Hessian matrix is a potentially large, block diagonal matrix, with determinant |K′′(Ŝ, T̂)| given

by (4.41). Putting these pieces together, the first-order saddlepoint approximation for the density

of V,U is

f̂1 (0, (n− p) I) :=
exp

{

−(n− p)mt̂
}

(2π)m{p+(m+1)/2}/2 |K′′(Ŝ, T̂)|1/2
n
∏

j=1

Pm (q̂τj)

q̂m/2Pm (τj)
. (4.16)

With this approximate density for fV,U(0, (n− p) I), substituted into (4.11), the first-order sad-

dlepoint approximation for the CDF of M , the maximum squared studentized residual, is

F̂1 (x) =
npm (n− p)m(m+1)/2 exp

{

−mt̂(n− p)
}

gq̂nm/2 (2π)m{p+(m+1)/2}/2 |K′′(Ŝ, T̂)|1/2
n
∏

j=1

Pm (q̂τj) , (4.17)

where g is defined in (4.6). After substituting g and simplifying,
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F̂1 (x) =
2m(m+1)/2npm

(

n−p
2

)m(m−n+p+1)/2
exp

{

mq̂
(

n−p
2

)}

Γm{n−p
2
}

q̂nm/2 (2π)m(m+1)/4 |XTX|m/2 |K′′(Ŝ, T̂)|1/2
n
∏

j=1

Pm (q̂τj) (4.18)

The ˆ on F̂1 (x) denotes the use of a saddlepoint density approximation to approximate FM (x),

and the 1 subscript denotes the first-order saddlepoint approximation.

We now present different versions of the saddlepoint approximation: first-order, second-order,

and second-order exponential denoted respectively as f̂1, f̂2, and f̂2e. Upon substitution into (4.11)

to approximate FM(x), a calibration procedure may also be applied, which is indicated by changing

the circumflex to a macron. This leads to the possibility of six approximations of FM(x), denoted

by F̂1, F̄1, F̂2, F̄2, F̂2e, and F̄2e.

4.2.2 Second-Order Approximation

The saddlepoint density is an asymptotic expression, of which the first-order approximation is

only the leading term. Including the second term often improves the accuracy of the approximation.

From Butler (2007, eqn. 3.37), the second-order saddlepoint density approximation of f (x) is

f̂2 (x) = f̂1 (x) (1 +O) (4.19)

where O = {κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24}.

Using the Einstein summation convention as in McCullagh (1987, §1.2), where summation is

implied over any subscript appearing once in a subscript and once in a superscript, the three new κ̂

terms in the O formula are defined as

κ̂4 := K̂ijklK̂ijK̂kl

κ̂2
23 := K̂ijkK̂rstK̂irK̂jsK̂kt

κ̂2
13 := K̂ijkK̂rstK̂ijK̂krK̂st

, (4.20)

where the subscripted K̂ terms are derivatives of K with respect to the subscripted components,

evaluated at the saddlepoint (S,T) =
(

0, t̂Im
)

, and the superscripted K̂ terms are components of
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the inverse of the Hessian matrix K′′ (0, t̂Im
)

. Since S is a (p×m) matrix and T is a (m×m) upper

traingular matrix, the vectorized version of (S,T) has m{p+ (m+ 1)/2} elements. Therefore, in

(4.20), the suffixes i, j, k, r, s, t range from 1 to m{p+ (m+ 1)/2}.

In programming this calculation, the inverse Hessian matrix, third- and fourth-order deriva-

tives are stored into two-, three-, and four-dimensional arrays of size m{p + (m + 1)/2} in each

dimension. It is convenient to assign rows 1, . . . ,mp to elements of S, rows mp+1, . . . ,m(p+1)

to diagonal elements of T, and rows m(p + 1) + 1, . . . ,m{p + (m + 1)/2} to the off-diagonal

elements of T, in each dimension. These arrays may be sparse, with many zero elements, but also

many non-zero elements. Except for the i.i.d. special case discussed in Section 4.5, it is necessary

to store and calculate with the full arrays. Formulas for each derivative of K̂ are provided in section

4.4.

An alternative second-order exponential approximation, based on McCullagh (1987, § 6.3) is

f̂2e (x) = f̂1 (x) e
O, (4.21)

where O is the same as in (4.19). In many cases we have evaluated, including the examples shown

below, this exponential approximation is the best of all.

Putting all this together, the second-order approximate distributions of MASR M are one of

the following:

F̂2(x) = F̂1(x)
{

1 + κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24
}

(4.22)

F̂2e(x) = F̂1(x) exp
{

κ̂4/8− (2κ̂2
23 + 3κ̂2

13)/24
}

. (4.23)

In some special cases,the κ̂ functions might be simplified, but in general, the four-way and six-way

sums must be calculated and summed term by term. Section 4.4 lists all the third- and fourth-order

derivatives of K(S,T) required to make these calculations.
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4.2.3 Calibration

Calibration is a simple procedure recommended to correct for known inaccuracies with the

saddlepoint approximation. The upper end of the support of M is MU = n−p, so that FM (MU) =

1. Whichever version of the saddlepoint approximation is used, it may not meet F̂•(MU) = 1,

where here the • subscript represents either 1, 2, or 2e. To improve the accuracy of p-values for the

discordancy test, it is recommended to calculate saddlepoint approximations for both F̂•(MU) and

F̂•(x), and then calibrate the approximation by

F̄• (x) =
F̂•(x)

F̂•(MU)
, (4.24)

where the macron over F̄ denotes the calibrated saddlepoint approximation.

In Chapter 3, with the univariate regression setting, options for calibrating at M2 or M3 were

described. However, in the multivariate setting, with nonzero probabilities of two or more residual

values all the way up to MU , these calibration alternatives are not available.

4.3 Results

In this section, we apply the methods of this chapter to eight examples. All examples are

compared with a value of M determined by simulation to correspond to a survival probability of

approximately 0.1. Four examples of the multivariate i.i.d. case are summarized in Table 4.1, using

the streamlined calculation formulas from section 4.5. Table 4.2 summarizes multivariate versions

of regression examples first analyzed in Section 3.3 in the univariate case. Following the tables are

graphs comparing survival curves for some of these examples.

From the graphs and tables, but also from the experience of running these calculations, we

make these observations:

• The only saddlepoint approximation that consistently approximates the survival probability

determined by simulation is the calibrated, second-order, exponential version. This version

of the saddlepoint method is recommended for all applications.

80



Table 4.1: Saddlepoint and Bonferroni p-values for Four Multivariate i.i.d. Examples

n 30 30 100 100
p 1 1 1 1
m 2 5 2 5
M value x 9.969 14.519 13.084 19.058
Saddlepoint approx.:

1− F̂1 (x) −0.011 −1.05 0.069 −0.139

1− F̂2 (x) 0.085 −1.40 0.096 −0.199

1− F̂2e (x) 0.081 −1.43 0.095 −0.201
1− F̄1 (x) 0.091 0.059 0.097 0.090
1− F̄2 (x) 0.099 0.098 0.100 0.102
1− F̄2e (x) 0.099 0.105 0.100 0.102
Bonferroni bounds:

1st upper (Grubbs) 0.102 0.104 0.103 0.105
1st upper (Worsley) 0.102 0.104 0.103 0.104
2nd lower 0.100 0.100 0.100 0.100
Limits on M :

MU 29 29 99 99

• The Bonferroni bounds listed in these tables are deceptively encouraging for the Bonferroni

method. It is worth noting two important weaknesses of the Bonferroni approach to this

problem:

– Only the 1st upper (Grubbs) bound is fast and easy to calculate. Both the improved

Worsley upper bound and the 2nd lower bound require calculation of all joint prob-

abilities of pairs of residuals, and each pair of residuals with a different correlation

requires a separate numerical triple integral. In the airquality example, the 116

observations require the calculation of 6,670 such triple integrals.

– In the examples tabulated here, the 1st upper bound looks quite good, but in some other

examples, this bound could be substantially higher than the true value, with no way to

determine when this is happening, other than to calculate the lower bound.
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Table 4.2: Saddlepoint and Bonferroni p-values for Four Multivariate Regression Examples

DSD 17-run DSD 17-run airquality airquality

n 51 51 116 116
p 9 9 3 3
m 2 5 2 4
M value x 11.224 16.319 13.420 17.68
Saddlepoint approx.:

1− F̂1 (x) 0.785 0.992 0.069 1.000

1− F̂2 (x) 1.000 −1.40 1.000 1.000

1− F̂2e (x) 0.921 −1.43 0.095 1.000
1− F̄1 (x) 0.104 0.059 0.097 0.093
1− F̄2 (x) 1.146 0.098 0.100 0.103
1− F̄2e (x) 0.113 0.105 0.100 0.102
Bonferroni bounds:

1st upper (Grubbs) 0.102 0.102 0.104 0.104
1st upper (Worsley) 0.101 0.102 0.104 0.104
2nd lower 0.099 0.099 0.100 0.100
Limits on M :

MU 42 42 113 113
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Figure 4.1: Comparison of p-values for i.i.d. case, n = 30 and m = 2
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Figure 4.2: Comparison of p-values for i.i.d. case, n = 30 and m = 5
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Figure 4.3: Comparison of p-values for i.i.d. case, n = 100 and m = 2
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Figure 4.4: Comparison of p-values for i.i.d. case, n = 100 and m = 5
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Figure 4.5: Comparison of p-values for DSD example, n = 51 and m = 2
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4.4 Cumulant Generating Function K(S,T) and its Derivatives

In this section, the joint CGF K(S,T) of V = n
(

XTX
)−1

XTz and U = ZTZ is developed

into a form for calculation at the saddlepoint (Ŝ, T̂), along with its derivatives required for the

saddlepoint approximations. Let

C := n(XTX)−1XT = (c1, . . . , cn) = (cij)

be p× n. Then V = CZ =
∑n

j=1 cjz
T
j is p×m. Also, U = ZTZ =

∑n
j=1 zjz

T
j is m×m

The joint MGF of (V,U) with index variables S, (p×m), and upper triangular T, (m×m),

is

M(S,T) = E
[

exp
{

tr
(

STV
)

+ tr (TU)
}]

= E

[

exp

{

tr

(

ST

n
∑

j=1

cjz
T
j

)

+ tr

(

T

n
∑

j=1

zjz
T
j

)}]

= E

[

n
∏

j=1

exp
{

tr
(

STcjz
T
j

)

+ tr
(

Tzjz
T
j

)}

]

.

Since the {zj}, the rows of Z, are uncorrelated,

M(S,T) =
n
∏

j=1

E
[

exp
{

tr
(

STcjz
T
j

)

+ tr
(

Tzjz
T
j

)}]

:=
n
∏

j=1

Mj(S,T).

Since zj is spherically truncated standard normal,

Mj(S,T) =
1

(2π)m/2 Pm (τj)
×

∫

zT z<τj

exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zjz
T
j

}]

dz, (4.25)

where Pm (τ) is defined in (4.7). The integrand in (4.25) is bounded and τj is finite, therefore

Mj(S,T) is convergent for all real, finite (S,T). The cumulant generating function (CGF) is
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K(S,T) = lnM(S,T) =
∑n

j=1 Kj(S,T), where Kj(S,T) = lnMj(S,T). Therefore, K(S,T)

is also convergent.

To show that Ŝ = 0, note that

K′
S

(

Ŝ, T̂
)

:=
∂K
∂S

∣

∣

∣

∣

S=Ŝ

=
n
∑

j=1

1

Mj(Ŝ, T̂)
Mj,S(S, T̂)

∣

∣

∣

S=Ŝ

=
n
∑

j=1

∂
∂S
E
[

exp
{

tr
(

STcjz
T
j

)

+ tr
{(

T− 1
2
I
)

zjz
T
j

}}]∣

∣

S=Ŝ

(2π)m/2 Pm (τj)Mj(Ŝ, T̂)

=
n
∑

j=1

cjE
[

zTj exp
{

tr
(

ŜTcjz
T
j

)

+ tr
{(

T− 1
2
I
)

zjz
T
j

}

}]

(2π)m/2 Pm (τj)Mj(Ŝ, T̂)
.

For any value of T̂, the saddlepoint equation K′
S(Ŝ, T̂) = 0 is solved by Ŝ = 0, since

E
[

zTj etr
{(

T− 1
2
I
)

zjz
T
j

}]

= 0

for all j, where etr(A) = exp {tr(A)}. If, for Ŝ = 0, a solution T̂ can be determined for

K′
T(Ŝ, T̂) = (n− p) I, then (Ŝ, T̂) must be the saddlepoint, since there can be only one solu-

tion to both equations in the solution space for all real, finite (S,T).

Saddlepoint Ŝ = 0 induces symmetry into the evaluation of K and its derivatives at the saddle-

point (0, T̂). The density of Z is symmetric in that it is invariant to replacement of any element

of Z, say zij , with −zij . As a consequence, K(S,T) must be an even function of each element of

S, and therefore, all odd-order derivatives of K with respect to any element of S are equal to 0 at

(0, T̂).

To show that the off-diagonal elements of T̂ are 0, at the saddlepoint (0, T̂), consider any tik,

where 1 ≤ i < k ≤ m. Note that
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∂

∂tik
K (0,T) =

n
∑

j=1

1

Mj(0, T̂)

∂Mj(0,T)

∂tik

∣

∣

∣

∣

T=T̂

=
n
∑

j=1

∂
∂tik

E
[

tr
{(

T− 1
2
I
)

zjz
T
j

}]

∣

∣

∣

T=T̂

(2π)m/2 Pm (τj)Mj(0, T̂)

=
n
∑

j=1

E
[

zjizjktr
{(

T− 1
2
I
)

zjz
T
j

}]

(2π)m/2 Pm (τj)Mj(0, T̂)

The saddlepoint equation (4.14) requires that ∂K (0,T) /∂tik = 0 at the saddlepoint. Given the

spherically symmetric nature of zj as given in (4.8), the saddlepoint must have t̂ik = 0 for i 6= k.

To show that T̂ = t̂Im, observe that Z is right orthogonally invariant, so that interchanging

columns of Z has no effect on the distribution. Therefore, Mj(0, T̂) must also be invariant to

interchanging diagonal elements of T̂. Therefore, T̂ = t̂Im.

We now define q := 1− 2t and q̂ := 1− 2t̂. Therefore, at the saddlepoint, (4.25) simplifies to

Mj(0, T̂) =
1

(2π)m/2 Pm (τj)

∫

zT z<τj

exp

{

(

t̂− 1

2

) m
∑

i=1

z2i

}

dz

=
1

(2π)m/2 Pm (τj)

∫

zT z<τj

exp

(

m
∑

i=1

−q̂z2i
2

)

dz.

Now change variables with y = (y1, . . . , ym)
T = (

√
qz1, . . . ,

√
qzm)

T . This leads to

Mj(0, T̂) =
(2πq̂)−m/2

Pm (τj)

∫

yTy<q̂τj

exp

(

m
∑

i=1

−y2i
2

)

dy. (4.26)

Re-expressing the integral in spherical coordinates,

Mj(0, T̂) =
(2πq̂)−m/2

Pm (τj)

∫

√
q̂τj

0

∫

Sm−1(r)

e−r2/2dAdr

where Sm−1(r) is an (m− 1)-sphere of radius r, an (m− 1)-dimensional manifold in R
m, and dA

is an area element on that sphere. Since exp(−r2/2) is rotationally invariant, the integral separates.

It is well-known that the surface area of Sm−1(r) is
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∫

Sm−1(r)

dA =
2πm/2rm−1

Γ(m/2)
, (4.27)

and therefore, with χm being the χ distribution with m degrees of freedom,

Mj(0, T̂) =
(2πq̂)−m/2 2πm/2

Pm (τj) Γ(m/2)

∫

√
q̂τj

0

rm−1e−r2/2dr

=
q̂−m/2

Pm (τj) 2m/2−1Γ(m/2)

∫

√
q̂τj

0

rm−1e−r2/2dr

=
q̂−m/2

Pm (τj)
Pr
[

χm <
√

q̂τj

]

=
q̂−m/2

Pm (τj)
Pr
[

χ2
m < q̂τj

]

Mj(0, T̂) = q̂−m/2Pm (q̂τj)

Pm (τj)
. (4.28)

Therefore,

K(0, T̂) =
n
∑

j=1

Kj(0, T̂) =
n
∑

j=1

lnMj(0, T̂)

=
n
∑

j=1

ln

(

q̂−m/2Pm (q̂τj)

Pm (τj)

)

. (4.29)

At the saddlepoint, T̂ = t̂Im, where t̂ is the solution to n− p =
∑n

j=1 ∂Kj(0,T)/∂t11. To find

this derivative, start from this formula, where tik = 0 when i < k, but all tii are distinct:

Kj(0,T) = ln

[

1

(2π)m/2 Pm (τj)

∫

zT z<τj

exp

{

m
∑

i=1

(

tii −
1

2

)

z2i

}

dz

]

.

The first derivative by t11 is

∂Kj(0,T)

∂t11
=

∫

zT z<τj
z21 exp

[
∑m

i=1

(

tii − 1
2

)

z2i
]

dz
∫

zT z<τj
exp

[
∑m

i=1

(

tii − 1
2

)

z2i
]

dz
. (4.30)

Now, allowing t̂ = tii for all i and q̂ = 1− 2t̂,
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∂Kj(0,T)

∂t11
=

∫

zT z<τj
z21 exp

{

−q̂zTz/2
}

dz
∫

zT z<τj
exp {−q̂zTz/2} dz .

Using the fact that Pm (x) is the χ2
m CDF,

∫

zT z<τj

exp
{

−q̂zTz/2
}

dz = (2π/q̂)m/2 Pm (q̂τj) ,

and

∂Kj(0,T)

∂t11
=

∫

zT z<τj
z21 exp

{

−q̂zTz/2
}

dz

(2π/q̂)m/2 Pm (q̂τj)

To make these formulas more compact, we define this new notation:

Ij {g (z)} :=

∫

zT z<τj
g (z) exp

{

−q̂zTz/2
}

dz
∫

zT z<τj
exp {−q̂zTz/2} dz (4.31)

=

∫

zT z<τj
g (z) exp

{

−q̂zTz/2
}

dz

(2π/q̂)m/2 Pm (q̂τj)
,

so that

∂Kj(0,T)

∂t11
= Ij

{

z21
}

.

Ij {z21} can be derived from the identity that Ij
{

zTz
}

= mIj {z21}, because of the interchange-

ability of columns of Z. Then,

Ij
{

zTz
}

(2π/q̂)m/2 Pm (q̂τj) =

∫

zT z<τj

zTz exp
[

−q̂zTz/2
]

dz.

Since the integrand is rotationally invariant, we apply the same change of variables as in (4.26) and

the surface area of Sm−1(r) from (4.27) so that

Ij
{

zTz
}

(2π/q̂)m/2 Pm (q̂τj) =

(

2π

q̂

)m/2
m

q̂
Pm+2 (q̂τj) ,

and
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Ij
{

z21
}

=
∂Kj(0,T)

∂t11
=

Pm+2 (q̂τj)

q̂Pm (q̂τj)
.

Therefore, the saddlepoint equation is the solution to

n− p =
n
∑

j=1

Pm+2 (q̂τj)

q̂Pm (q̂τj)
. (4.32)

The Hessian matrix K′′(Ŝ, T̂) is a possibly large matrix, with m(p + (m + 1)/2) rows and

columns, each corresponding to a unique element of S and T. Fortunately for computation, the

matrix is block diagonal at the saddlepoint, with this form:

K′′(Ŝ, T̂) =

mp m m(m−1)
2

mp

m

m(m−1)
2













K′′
SS(0, T̂) 0 0

0 K′′
tii
(0, T̂) 0

0 0 K′′
ti<k

(0, T̂)













In the top left of the Hessian, K′′
SS

(

0, T̂
)

= ∂2K (S,T) /∂vec(S)∂vec(S)T
∣

∣

S=0,T=T̂
. Because

∂K (S,T) /∂sik = 0 at the saddlepoint for every element of S, K′′
SS

(

0, T̂
)

is a diagonal matrix.

Starting from (4.25),

Mj(S,T) =
1

(2π)m/2 Pm (τj)
×

∫

zT z<τj

exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz

Kj(S,T) = ln

∫

zT z<τj
exp

[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz

(2π)m/2 Pm (τj)

∂Kj

∂S
=

∫

zT z<τj
cjz

T exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz
∫

zT z<τj
exp

[

tr (STcjzT ) + tr
{(

T− 1
2
I
)

zzT
}]

dz
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∂2Kj

∂S2
=

∫

zT z<τj
vec
(

cjz
T
)

vec
(

cjz
T
)T

exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz
∫

zT z<τj
exp

[

tr (STcjzT ) + tr
{(

T− 1
2
I
)

zzT
}]

dz
−

(∫

zT z<τj
vec
(

cjz
T
)

exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz
∫

zT z<τj
exp

[

tr (STcjzT ) + tr
{(

T− 1
2
I
)

zzT
}]

dz

)

×

(∫

zT z<τj
vec
(

cjz
T
)

exp
[

tr
(

STcjz
T
)

+ tr
{(

T− 1
2
I
)

zzT
}]

dz
∫

zT z<τj
exp

[

tr (STcjzT ) + tr
{(

T− 1
2
I
)

zzT
}]

dz

)T

At the saddlepoint, where Ŝ = 0 and T̂ = t̂I,
∫

zT z<τj
zj exp

∑m
i=1

(

t̂− 1
2

)

zidz = 0 for all j.

Based on this fact,

∂2Kj

∂sik∂slo

∣

∣

∣

∣

S=Ŝ,T=t̂I

= 0

when {i, k} 6= {l, o}, and

∂2Kj

∂s2ik

∣

∣

∣

∣

S=Ŝ,T=t̂I

= c2ij

∫

zT z<τj
z2k exp

{
∑m

i=1

(

tii − 1
2

)

z2i
}

dz
∫

zT z<τj
exp

{
∑m

i=1

(

tii − 1
2

)

z2i
}

dz
= c2ij

∂Kj

∂tkk

∣

∣

∣

∣

S=Ŝ,T=t̂I

Therefore,

∂2K
∂s2ik

∣

∣

∣

∣

S=Ŝ,T=t̂I

=
n
∑

j=1

c2ijIj
{

z21
}

,

for i = 1, . . . , p and k = 1, . . . ,m. Of the mp diagonal elements of K′′
SS(0, T̂), there are no more

than p distinct values, each with multiplicity m. For a balanced design, all diagonal elements of

K′′
SS

(

0, T̂
)

will be the same. The determinant of this portion of the Hessian is

∣

∣

∣
K′′

SS(0, T̂)
∣

∣

∣
=

(

p
∏

i=1

n
∑

j=1

c2ijIj
{

z21
}

)m

. (4.33)

In the center of the Hessian, K′′
tii
(0, T̂) is the second derivative by the diagonal elements of

T at the saddlepoint. This matrix is not diagonal, but it has a pattern aI + b11T for some a and

b, owing to the interchangeability of the m rows of Z. This means that all diagonal elements of

K′′
tii
(0, T̂) have one value, and all off-diagonal elements have the same different value.

To calculate ∂2Kj(0,T)/∂t211, start from (4.30) and take one more derivative to get
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∂2Kj(0,T)

∂t211
=

∫

zT z<τj
z41 exp

{
∑m

i=1

(

tii − 1
2

)

zi
}

dz
∫

zT z<τj
exp

{
∑m

i=1

(

tii − 1
2

)

z2i
}

dz
−

(∫

zT z<τj
z21 exp

{
∑m

i=1

(

tii − 1
2

)

z2i
}

dz
∫

zT z<τj
exp

{
∑m

i=1

(

tii − 1
2

)

z2i
}

dz

)2

.

Now, allowing t̂ = tii for all i and q̂ = 1− 2t̂,

∂2Kj(0, T̂)

∂t211
= Ij

{

z41
}

−
(

Ij
{

z21
})2

Therefore,

∂2K(0, T̂)

∂t211
=

n
∑

j=1

Ij
{

z41
}

−
(

Ij
{

z21
})2

. (4.34)

For second and higher derivatives, it will be useful to have a general formula for Ij {zν1}, where

ν is an even integer. This expression can be simplified in this way:

Ij {zν1} =
1

(2π/q̂)m/2 Pm (q̂τj)

∫

zT z<τj

zν1 exp

{

− q̂zTz

2

}

dz

=
1

(2π/q̂)m/2 Pm (q̂τj)

∫
√
τj

−√
τj

zν1e
−q̂z2

1
/2

∫

zT
−1

z−1<τj−z2
1

exp

{−q̂zT−1z−1

2

}

dz−1dz1,

where z−1 = (z2, . . . , zm)
T

. Substituting Pm−1 for the inner integral,

Ij {zν1} =
1

(2π/q̂)m/2 Pm (q̂τj)

∫
√
τj

−√
τj

zν1e
−q̂z2

1
/2

(

2π

q̂

)(m−1)/2

Pm−1

{

q̂
(

τj − z21
)}

dz1

=
1

(2π/q̂)1/2 Pm (q̂τj)

∫
√
τj

−√
τj

zν1e
−q̂z2

1
/2Pm−1

{

q̂
(

τj − z21
)}

dz1. (4.35)

For a given value of m, it is possible to evaluate the remaining univariate integral into an integral-

free formula, but not a simple one. For practical reasons, we chose to numerically integrate the

remaining integral using the R function integrate in the stats package. Despite the incomplete

gamma function Pm−1 in the integrand, the integral evaluates rapidly using pchisq for Pm−1.

The remaining terms in the Hessian matrix require this expression:
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Ij
{

z21z
2
2

}

=
1

(2π/q̂)m/2 Pm (q̂τj)

∫

zT z<τj

z21z
2
2 exp

{−q̂zTz

2

}

dz

=
1

(2π/q̂)1/2 Pm (q̂τj) (m− 1)
× (4.36)

{

(

2π

q̂

)1/2
(m+ 2)Pm+4 (qτj)

q̂2
−
∫

√
τj

−√
τj

z4e−q̂z2/2Pm−1

{

q̂
(

τj − z2
)}

dz

}

.

This formula derives from the identity that

Ij
{

(zTz)2
}

= mIj
{

z41
}

+m (m− 1) Ij
{

z21z
2
2

}

, (4.37)

a convenience induced by the interchangeability of columns in Z. The left-hand side in (4.37) can

be evaluated, again using the (m− 1)-sphere surface area substitution, so that

Ij
{

(zTz)2
}

=
m(m+ 2)

q̂2
Pm+4 (q̂τj)

Pm (q̂τj)
. (4.38)

Also, Ij {z41} is calculated according to (4.35). From these formulas, Ij {z21z22} can be shown to

have the formula in (4.36).

The off-diagonal elements of K′′
tii
(0, T̂) are all equal to ∂2K(0, T̂)/∂t11∂t22. With Ŝ = 0,

∂2

∂t11∂t22
Kj(0,T)

∣

∣

∣

∣

T=T̂

= Ij
{

z21z
2
2

}

−
(

Ij
{

z21
})2

.

After summing over j,

∂2

∂t11∂t22
K(0,T)

∣

∣

∣

∣

T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2

}

−
(

Ij
{

z21
})2

. (4.39)

Because of the pattern in K′′
tii
(0, T̂), its determinant is formulaic, based on the fact that

∣

∣aIm + b11T
∣

∣ = am
(

1 +m
b

a

)

.
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Using the derivative forms from (4.34) for a+ b, and (4.39) for b,

∣

∣

∣
K′′

tii
(0, T̂)

∣

∣

∣
=

(

n
∑

j=1

Ij
{

z41
}

− Ij
{

z21z
2
2

}

)m

× (4.40)

(

1 +m

∑n
j=1 Ij {z21z22} − (Ij {z21})

2

∑n
j=1 Ij {z41} − Ij {z21z22}

)

.

In the bottom right of the Hessian, K′′
ti<k

(0, T̂) is the second derivative by all m(m − 1)/2

unique off-diagonal elements of T. Because the solution to the saddlepoint equation, T̂,

is a diagonal matrix, it follows that the off-diagonal elements of K′′
ti<k

(0, T̂), representing

∂2Kj(0,T)/∂tik∂tlh, where (i, k) 6= (l, h), are all 0. Also, the diagonal elements are all equal,

because of the interchangeability of the m rows of Z. At the saddlepoint, the diagonal elements of

this matrix are

∂2

∂t212
Kj(0,T)

∣

∣

∣

∣

T=t̂I

= Ij
{

z21z
2
2

}

Given this value,

∂2

∂t212
K(0,T)

∣

∣

∣

∣

T=t̂I

=
n
∑

j=1

Ij
{

z21z
2
2

}

,

and
∣

∣

∣
K′′

ti<k
(0, T̂)

∣

∣

∣
=

(

n
∑

j=1

Ij
{

z21z
2
2

}

)m(m−1)/2

.

With these pieces calculated, the determinant of the Hessian matrix is

∣

∣

∣
K′′(Ŝ, T̂)

∣

∣

∣
=

(

p
∏

i=1

n
∑

j=1

c2ijIj
{

z21
}

)m( n
∑

j=1

Ij
{

z41
}

− Ij
{

z21z
2
2

}

)m

×

(

1 +m

∑n
j=1 Ij {z21z22} − (Ij {z21})

2

∑n
j=1 Ij {z41} − Ij {z21z22}

)(

n
∑

j=1

Ij
{

z21z
2
2

}

)(m−1)/2

. (4.41)

For the second-order saddlepoint approximation, all third- and fourth-order derivatives of

K(S,T) are required at the saddlepoint. Many of these derivatives are 0, because of the sym-

metry in K(S,T). Any odd-order derivative of any element of S or of any off-diagonal element

of T is zero. The non-zero derivatives are listed here, without details of their derivations. Terms
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of the form Ij {zν1} are evaluated using (4.35), and Ij {z21z22} is given in (4.36). A useful tool for

verifying these formulas is the polar integration function adaptIntegrateBallPolar in the

SphericalCubature library, Nolan (2017), for R.

Ij
{

zν1z
Tz
}

=

∫
√
τj

−√
τj
zν+2e

−qz2

2 Pm−1 (q̂ (τj − z2)) dz + m−1
q̂

∫
√
τj

−√
τj
zνe

−qz2

2 Pm+1 (q̂ (τj − z2)) dz

(2π/q̂)1/2 Pm (q̂τj)

Ij
{(

zTz
)ν}

=

(

2

q̂

)ν
Γ (m/2 + ν)

Γ(m/2)

Pm+2ν (q̂τj)

Pm (q̂τj)

Ij
{

zν1z
2
2

}

=
1

m− 1

[

Ij
{

zν1z
Tz
}

− Ij
{

zν+2
1

}]

Ij
{

z21z
2
2z

2
3

}

=
Ij

{

(

zTz
)3
}

m (m− 1) (m− 2)
− 3Ij {z41z22}

m− 2
− I {z61}

(m− 1) (m− 2)

Ij
{

z41z
4
2

}

=











9P10(q̂τj)

q̂4P2(q̂τj)
, m = 2

3q̂
128Pm(q̂τj)

∫
√
τj

0
ρ9e−q̂ρ2/2Pm−2 {q̂ (τj − ρ2)} dρ, m > 2

Ij
{

z41z
2
2z

2
3

}

=

(

2π

q̂

)−1/2
(m+ 1)

q̂2 (m− 2)Pm (q̂τj)
×

∫
√
τj

−√
τj

z4e−q̂z2/2Pm+3

{

q̂
(

τj − z2
)}

dz − Ij {z41z42}
(m− 2)

Ij
{

z21z
2
2z

2
2z

2
4

}

=
Ij

{

(

zTz
)4
}

m(m− 1)(m− 2)(m− 3)
− Ij {z81}

(m− 1)(m− 2)(m− 3)
−

4Ij {z61z22}+ 3Ij {z41z42}
(m− 2)(m− 3)

− 6Ij {z41z22z22}
m− 3
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∂3

∂s2ik∂tkk
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij

{

Ij
{

z41
}

−
(

Ij
{

z21
})2
}

for i = 1, ..., p and k = 1, ...,m

∂3

∂s2ik∂tll
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij

{

Ij
{

z21z
2
2

}

−
(

Ij
{

z21
})2
}

for i = 1, ..., p, and k, l = 1, ...,m, k 6= l

∂3

∂t3ii
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z61
}

− 3Ij
{

z41
}

Ij
{

z21
}

+ 2
(

Ij
{

z21
})3

for i = 1, ...,m

∂3

∂t2ii∂tkk
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
2
2

}

−
(

2Ij(z
2
1z

2
2) + Ij

{

z41
})

Ij
{

z21
}

+ 2
(

Ij
{

z21
})3

for i, k = 1, ...,m, i 6= k

∂3

∂tii∂tkk∂tll
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2z

2
3

}

− 3Ij
{

z21z
2
2

}

Ij
{

z21
}

+ 2
(

Ij
{

z21
})3

for i, k, l = 1, ...,m, i 6= k 6= l 6= i

∂3

∂t2ik∂tii
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
∂3

∂t2ik∂tkk
K(S,T)

∣

∣

∣

∣

S=0,T=t̂I

=
n
∑

j=1

Ij
{

z41z
2
2

}

− Ij
{

z21z
2
2

}

Ij
{

z21
}

for i, k = 1, ...,m, i 6= k

99



∂3

∂t2ik∂tll
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2z

2
3

}

− Ij
{

z21z
2
2

}

Ij
{

z21
}

for i, k, l = 1, ...,m, i 6= k 6= l 6= i

∂4

∂s4ik
Kj(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c4ij

[

Ij
{

z41
}

− 3
(

Ij
{

z21
})2
]

for i = 1, ..., p and k = 1, ...,m

∂4

∂s2ik∂s
2
lk

Kj(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ijc
2
lj

[

Ij
{

z41
}

− 3
(

Ij
{

z21
})2
]

for i, l = 1, ..., p, i 6= l, and k = 1, ...,m

∂4

∂s2ik∂s
2
lo

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ijc
2
lj

[

Ij
{

z21z
2
2

}

−
(

Ij
{

z21
})2
]

for i, l = 1, ..., p and k, o = 1, ...,m, k 6= o

∂4

∂t4ii
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z81
}

− 4Ij
{

z61
}

Ij
{

z21
}

− 3
(

Ij
{

z41
})2

+

12Ij
{

z41
} (

Ij
{

z21
})2 − 6

(

Ij
{

z21
})4

for i = 1, ...,m
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∂4

∂t3ii∂tkk
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z61z
2
2

}

− 3Ij
{

z41z
2
2

}

Ij
{

z21
}

−

3Ij
{

z21z
2
2

}

Ij
{

z41
}

+ 6Ij
{

z21z
2
2

} (

Ij
{

z21
})2

+

6Ij
{

z41
} (

Ij
{

z21
})2 − Ij

{

z61
}

Ij
{

z21
}

− 6
(

Ij
{

z21
})4

for i, k = 1, ...,m, i 6= k

∂4

∂t2ii∂t
2
kk

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
4
2

}

− 4Ij
{

z41z
2
2

}

Ij
{

z21
}

− 2
(

Ij
{

z21z
2
2

})2
+

8Ij
{

z21z
2
2

} (

Ij
{

z21
})2 −

(

Ij
{

z41
})2

+

4Ij
{

z41
} (

Ij
{

z21
})2 − 6

(

Ij
{

z21
})4

for i, k = 1, ...,m, i 6= k

∂4

∂t2ii∂tkk∂tll
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
2
2z

2
3

}

− 2Ij
{

z41z
2
2

}

Ij
{

z21
}

− 2Ij
{

z21z
2
2z

2
3

}

Ij
{

z21
}

−

2
(

Ij
{

z21z
2
2

})2 − Ij
{

z21z
2
2

}

Ij
{

z41
}

+

10Ij
{

z21z
2
2

} (

Ij
{

z21
})2

+ 2Ij
{

z41
} (

Ij
{

z21
})2 − 6

(

Ij
{

z21
})4

for i, k, l = 1, ...,m, i 6= k 6= l 6= i

∂4

∂tii∂tkk∂tll∂too
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2z

2
3z

2
4

}

− 4Ij
{

z21z
2
2z

2
3

}

Ij
{

z21
}

−

3
(

Ij
{

z21z
2
2

})2
+ 12Ij

{

z21z
2
2

} (

Ij
{

z21
})2 − 6

(

Ij
{

z21
})4

for i, k, l, o = 1, ...,m, all distinct

∂4

∂s2ik∂t
2
kk

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂t3kk
Kj(0, T̂), for i = 1, ..., p and k = 1, ...,m
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∂4

∂s2ik∂tkk∂tll
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂t2kk∂tll
Kj(0, T̂), for i = 1, ..., p and k, l = 1, ...,m

∂4

∂s2ik∂t
2
ll

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂tkk∂t2ll
Kj(0, T̂), for i = 1, ..., p and k, l = 1, ...,m

∂4

∂s2ik∂tll∂too
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂tkk∂tll∂too
Kj(0, T̂),

for i = 1, ..., p and k, l, o = 1, ...,m, k 6= l 6= o 6= k

∂4

∂s2ik∂t
2
kl

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂tkk∂t2kl
Kj(0, T̂),

for i = 1, ..., p, and k, l = 1, ...,m, k 6= l

∂4

∂s2ik∂t
2
lo

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

c2ij
∂3

∂tkk∂t2lo
Kj(0, T̂),

for i = 1, ..., p, and k, l, o = 1, ...,m, k 6= l 6= o 6= k

∂4

∂t4ik
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
4
2

}

− 3
(

Ij
{

z21z
2
2

})2

for i, k = 1, ...,m, i 6= k

∂4

∂t2ii∂t
2
ik

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z61z
2
2

}

− 2Ij
{

z41z
2
2

}

Ij
{

z21
}

−

Ij
{

z21z
2
2

}

Ij
{

z41
}

+ 2Ij
{

z21z
2
2

} (

Ij
{

z21
})2

for i, k = 1, ...,m, i 6= k
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∂4

∂tii∂tkk∂t2ik
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
4
2

}

− 2Ij
{

z41z
2
2

}

Ij
{

z21
}

−

(

Ij
{

z21z
2
2

})2
+ 2Ij

{

z21z
2
2

} (

Ij
{

z21
})2

for i, k = 1, ...,m, i 6= k

∂4

∂t2ii∂t
2
kl

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
2
2z

2
3

}

− 2Ij
{

z21z
2
2z

2
3

}

Ij
{

z21
}

−

(

Ij
{

z21z
2
2

})2
+ 2Ij

{

z21z
2
2

} (

Ij
{

z21
})2

for i, k, l = 1, ...,m; i 6= k 6= l 6= i

∂4

∂tii∂tkk∂t2il
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
2
2z

2
3

}

− Ij
{

z21z
2
2z

2
3

}

Ij
{

z21
}

−

Ij
{

z41z
2
2

}

Ij
{

z21
}

−
(

Ij
{

z21z
2
2

})2
+

2Ij
{

z21z
2
2

} (

Ij
{

z21
})2

for i, k, l = 1, ...,m; i 6= k 6= l 6= i

∂4

∂tii∂tkk∂t2lo
K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2z

2
3z

2
4

}

− 2Ij
{

z21z
2
2z

2
3

}

Ij
{

z21
}

−

(

Ij
{

z21z
2
2

})2
+ 2Ij

{

z21z
2
2

} (

Ij
{

z21
})2

for i, k, l, o = 1, ...,m; i, k, l, o all distinct

∂4

∂t2ik∂t
2
il

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z41z
2
2z

2
3

}

for i, k, l = 1, ...,m, i 6= k 6= l 6= i
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∂4

∂t2ik∂t
2
lo

K(S,T)

∣

∣

∣

∣

S=0,T=T̂

=
n
∑

j=1

Ij
{

z21z
2
2z

2
3z

2
4

}

for i, k, l, o = 1, ...,m; i, k, l, o all distinct

4.5 Special Case: i.i.d.

In the common special case where the oberserved data Y are independent and identically dis-

tributed, the design matrix X = 1n. This has the effect of streamlining the calculations required

for the second-order saddlepoint approximation. The algorithm in the previous section requires

a six-way nested loop to calculate κ̂2
23 and κ̂2

13. This calculation time is of order O (m12) and is

impractical for larger m. In this section, single formulas are presented for κ̂4, κ̂2
23, and κ̂2

13 only

for this special case. Although the formulas are lengthy, their use shortens calculation time dra-

matically for this situation. For brevity in this section, I {g (z)} = I1 {g (z)}, since Ij {g (z)} is

constant for all j = 1, . . . , n.

In this special case, the Hessian matrix is

K′′
(

Ŝ, T̂
)

=



















nI {z21} Im 0 0

0
n (I {z41} − I {z21z22}) Im+

n
(

I {z21z22} − I {z21}
2
)

1m1
T
m

0

0 0 nI {z21z22} Im(m−1)/2



















with this inverse:

{

K′′
(

Ŝ, T̂
)}−1

=













(nI {z21})
−1

Im 0 0

0 K′′
tii

(

Ŝ, T̂
)−1

0

0 0 (nI {z21z22})
−1

Im(m−1)/2













where
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K′′
tii

(

Ŝ, T̂
)−1

= [n (I {z41} − I {z21z22})]
−1

Im+

I{z21}2−I{z21z22}
n(I{z41}−I{z21z22})

(

I{z41}+(m−1)I{z21z22}−mI{z21}2
)1m1

T
m

From (4.20),

κ̂4 := K̂ijklK̂ijK̂kl

κ̂2
23 := K̂ijkK̂rstK̂irK̂jsK̂kt

κ̂2
13 := K̂ijkK̂rstK̂ijK̂krK̂st

In the formulas that follow, factors of the form K̂ij from the center part of the inverse Hessian will

be denoted as follows:

K̂t11 :=
I {z41}+ (m− 2)I {z21z22} − (m− 1) I {z21}

2

(I {z41} − I {z21z22})
(

I {z41}+ (m− 1) I {z21z22} −mI {z21}
2
)

K̂t12 :=
I {z21}

2 − I {z21z22}
(I {z41} − I {z21z22})

(

I {z41}+ (m− 1) I {z21z22} −mI {z21}
2
)

Note that these formulas exclude the n in the denominator.

We also use the following symbols to represent various derivatives of K:

D3
s2
1
t11

:= I
{

z41
}

− I
{

z21
}2

D3
s2
1
t22

:= I
{

z21z
2
2

}

− I
{

z21
}2

D3
t3
11

:= I
{

z61
}

− 3I
{

z41
}

I
{

z21
}

+ 2I
{

z21
}3

D3
t2
11
t22

:= I
{

z41z
2
2

}

− 2I
{

z21z
2
2

}

I
{

z21
}

− I
{

z41
}

I
{

z21
}

+ 2I
{

z21
}3

D3
t11t22t33

:= I
{

z21z
2
2z

2
3

}

− 3I
{

z21z
2
2

}

I
{

z21
}

+ 2I
{

z21
}3

D3
t2
12
t11

:= I
{

z41z
2
2

}

− I
{

z21z
2
2

}

I
{

z21
}

D3
t2
12
t33

:= I
{

z21z
2
2z

2
3

}

− I
{

z21z
2
2

}

I
{

z21
}
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D4
s4
1

:= I
{

z41
}

− 3I
{

z21
}2

D4
s2
1
s2
2

:= I
{

z21z
2
2

}

− I
{

z21
}2

D4
s2
1
t2
11

:= I
{

z61
}

− 3I
{

z41
}

I
{

z21
}

+ 2I
{

z21
}3

D4
s2
1
t11t22

:= D4
s2
1
t2
22

:= I
{

z41z
2
2

}

− 2I
{

z21z
2
2

}

I
{

z21
}

− I
{

z41
}

I
{

z21
}

+ 2I
{

z21
}3

D4
s2
1
t22t33

:= I
{

z21z
2
2z

2
3

}

− 3I
{

z21z
2
2

}

I
{

z21
}

+ 2I
{

z21
}3

D4
s2
1
t2
12

:= I
{

z41z
2
2

}

− I
{

z21z
2
2

}

I
{

z21
}

D4
s2
1
t2
23

:= I
{

z21z
2
2z

2
3

}

− I
{

z21z
2
2

}

I
{

z21
}

D4
t4
11

:= I
{

z81
}

− 4I
{

z61
}

I
{

z21
}

− 3I
{

z41
}2

+ 12I
{

z41
}

I
{

z21
}2 − 6I

{

z21
}4

D4
t3
11
t22

:= I
{

z61z
2
2

}

− 3I
{

z41z
2
2

}

I
{

z21
}

− 3I
{

z21z
2
2

}

I
{

z41
}

+ 6I
{

z21z
2
2

}

I
{

z21
}2

+

6I
{

z41
}

I
{

z21
}2 − I

{

z61
}

I
{

z21
}

− 6I
{

z21
}4

D4
t2
11
t2
22

:= I
{

z41z
4
2

}

− 4I
{

z41z
2
2

}

I
{

z21
}

− 2I
{

z21z
2
2

}2
+ 8I

{

z21z
2
2

}

I
{

z21
}2 −

I
{

z41
}2

+ 4I
{

z41
}

I
{

z21
}2 − 6I

{

z21
}4

D4
t2
11
t22t33

:= I
{

z41z
2
2z

2
3

}

− 2I
{

z41z
2
2

}

Ij
{

z21
}

− 2I
{

z21z
2
2z

2
3

}

I
{

z21
}

− 2I
{

z21z
2
2

}2 −

I
{

z21z
2
2

}

I
{

z41
}

+ 10I
{

z21z
2
2

}

I
{

z21
}2

+ 2I
{

z41
}

I
{

z21
}2 − 6I

{

z21
}4

D4
t11t22t33t44

:= I
{

z21z
2
2z

2
3z

2
4

}

− 4I
{

z21z
2
2z

2
3

}

I
{

z21
}

− 3I
{

z21z
2
2

}2
+

12I
{

z21z
2
2

}

I
{

z21
}2 − 6I

{

z21
}4

D4
t4
12

:= I
{

z41z
4
2

}

− 3I
{

z21z
2
2

}2

D4
t2
11
t2
12

:= I
{

z61z
2
2

}

− 2I
{

z41z
2
2

}

I
{

z21
}

− I
{

z21z
2
2

}

I
{

z41
}

+ 2I
{

z21z
2
2

}

I
{

z21
}2

D4
t11t22t212

:= I
{

z41z
4
2

}

− 2I
{

z41z
2
2

}

I
{

z21
}

− I
{

z21z
2
2

}2
+ 2I

{

z21z
2
2

}

I
{

z21
}2

D4
t2
11
t2
23

:= I
{

z41z
2
2z

2
3

}

− 2I
{

z21z
2
2z

2
3

}

I
{

z21
}

− I
{

z21z
2
2

}2
+ 2I

{

z21z
2
2

}

I
{

z21
}2

D4
t11t22t213

:= I
{

z41z
2
2z

2
3

}

− I
{

z21z
2
2z

2
3

}

I
{

z21
}

− I
{

z41z
2
2

}

I
{

z21
}

− I
{

z21z
2
2

}2
+

2I
{

z21z
2
2

}

I
{

z21
}2

D4
t11t22t234

:= I
{

z21z
2
2z

2
3z

2
4

}

− 2I
{

z21z
2
2z

2
3

}

I
{

z21
}

− I
{

z21z
2
2

}2
+ 2I

{

z21z
2
2

}

I
{

z21
}2

D4
t2
12
t2
13

:= I
{

z41z
2
2z

2
3

}

D4
t2
12
t2
34

:= I
{

z21z
2
2z

2
3z

2
4

}
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In the formulas that follow, some terms will only become active when m ≥ 3, 4, 5 or 6.

Indicator functions of the form 1{m≥3} denote these groups of terms.

κ̂4 =
m

n

[

D4
s4
1

I
{

z21
}−2

+ 2D4
s2
1
t2
11

I
{

z21
}−1 K̂t11 +D4

t4
11

(

K̂t11
)2
]

+

m!

(m− 2)!n
×

[

D4
s2
1
s2
2

I
{

z21
}−2

+D4
s2
1
t11t22

I
{

z21
}−1

(

2K̂t11 + 4K̂t12
)

+

2D4
s2
1
t2
12

I
{

z21
}−1

I
{

z21z
2
2

}−1
+ 4D4

t3
11
t22
K̂t11K̂t12 +D4

t2
11
t2
22

{

(

K̂t11
)2

+ 2
(

K̂t12
)2
}

+

2D4
t2
11
t2
12

I
{

z21z
2
2

}−1 K̂t11 + 2D4
t11t22t212

I
{

z21z
2
2

}−1 K̂t12 +D4
t4
12

I
{

z21z
2
2

}−2
]

+

1{m≥3}
m!

(m− 3)!n
×

[

D4
s2
1
t2
23

I
{

z21
}−1

I
{

z21z
2
2

}−1
+ 2D4

s2
1
t22t33

I
{

z21
}−1 K̂t12 +D4

t2
11
t22t33

(

2K̂t11 + 4K̂t12
)

K̂t12+

D4
t2
11
t2
23

I
{

z21z
2
2

}−1 K̂t12 + 4D4
t11t22t213

I
{

z21z
2
2

}−1 K̂t12 +D4
t2
12
t2
13

I
{

z21z
2
2

}−2
]

+

1{m≥4}
m!

(m− 4)!n
×

[

D4
t11t22t33t44

(

K̂t12
)2

+D4
t11t22t234

I
{

z21z
2
2

}−1 K̂t12 +
1

4
D4

t2
12
t2
34

I
{

z21z
2
2

}−2
]
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κ̂2
23 =

m

n

[

3
(

D3
s2
1
t11

)2

I
{

z21
}−2 K̂t11 +

(

D3
t3
11

)2 (

K̂t11
)3
]

+

m!

(m− 2)!n
×

[

6D3
s2
1
t11
D3

s2
1
t22
I
{

z21
}−2 K̂t12 + 3

(

D3
s2
1
t22

)2

I
{

z21
}−2 K̂t11 + 6D3

t3
11

D3
t2
11
t22

(

K̂t11
)2

K̂t12+

3
(

D3
t2
11
t22

)2 (

K̂t11
)3

+ 6
(

D3
t2
11
t22

)2

K̂t11
(

K̂t12
)2

+ 6D3
t3
11

D3
t2
11
t22
K̂t11

(

K̂t12
)2

+

(

D3
t3
11

)2 (

K̂t12
)3

+ 3
(

D3
t2
11
t22

)2 (

K̂t12
)3

+ 6
(

D3
t2
11
t22

)2 (

K̂t11
)2

K̂t12+

3
(

D3
t2
12
t11

)2

I
{

z21z
2
2

}−2
(

K̂t11 + K̂t12
)

]

+

1{m≥3}
m!

(m− 3)!n
×

[

3
(

D3
s2
1
t22

)2

I
{

z21
}−2 K̂t12+

(

D3
t2
11
t22

)2
{

3
(

K̂t11
)2

K̂t12 + 21K̂t11
(

K̂t12
)2

+ 12
(

K̂t12
)3
}

+

6D3
t3
11

D3
t11t22t33

K̂t11
(

K̂t12
)2

+ 6D3
t3
11

D3
t2
11
t22

(

K̂t12
)3

+

12D3
t2
11
t22
D3

t11t22t33

{

(

K̂t12
)3

+ K̂t11
(

K̂t12
)2

+
(

K̂t11
)2

K̂t12

}

+

(

D3
t11t22t33

)2
{

(

K̂t11
)3

+ 3K̂t11
(

K̂t12
)2

+ 2
(

K̂t12
)3
}

+

6D3
t2
12
t11
D3

t2
12
t33
I
{

z21z
2
2

}−2 K̂t12 +
3

2

(

D3
t2
12
t33

)2

I
{

z21z
2
2

}−2 K̂t11

]

+

1{m≥4}
m!

(m− 4)!n
×

[

3

2

(

D3
t2
12
t33

)2

I
{

z21z
2
2

}−2 K̂t12 + 2D3
t3
11

D3
t11t22t33

(

K̂t12
)3

+

D3
t2
11
t22
D3

t11t22t33

{

18
(

K̂t12
)3

+ 18K̂t11
(

K̂t12
)2
}

+ 9
(

D3
t2
11
t22

)2 (

K̂t12
)3

+

(

D3
t11t22t33

)2
{

6K̂t11
(

K̂t12
)2

+ 3
(

K̂t11
)2

K̂t12 + 9
(

K̂t12
)3
}]

1{m≥5}
m!

(m− 5)!n
×

[

6D3
t2
11
t22
D3

t11t22t33

(

K̂t12
)3

+
(

D3
t11t22t33

)2
{

3K̂t11
(

K̂t12
)2

+ 6
(

K̂t12
)3
}]

+

1{m≥6}
m!

(m− 6)!n

(

D3
t11t22t33

)2
(

K̂t12
)3
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κ̂2
13 =

m

n

[

(

D3
s2
1
t11

)2

I
{

z21
}−2 K̂t11 +

(

D3
t3
11

)2 (

K̂t11
)3

+ 2D3
s2
1
t11
D3

t3
11

I
{

z21
}−1

(

K̂t11
)2
]

+

m!

(m− 2)!n
×

[

(

D3
s2
1
t11

)2

I
{

z21
}−2 K̂t12 +D3

s2
1
t11
D3

s2
1
t22
I
{

z21
}−2

(

2K̂t12 + 2K̂t11
)

+

2D3
s2
1
t11
D3

t3
11

I
{

z21
}−1 K̂t11K̂t12 +D3

s2
1
t11
D3

t2
11
t22
I
{

z21
}−1 K̂t11

(

6K̂t12 + 2K̂t11
)

+

4D3
s2
1
t11
D3

t2
11
t22
I
{

z21
}−1

(

K̂t12
)2

+D3
s2
1
t11
D3

t2
12
t11
I
{

z21
}−1

I
{

z21z
2
2

}−1
(

2K̂t11 + 2K̂t12
)

+

(

D3
s2
1
t22

)2

I
{

z21
}−2

(

K̂t11 + K̂t12
)

+D3
s2
1
t22
D3

t3
11

I
{

z21
}−1 K̂t11

(

2K̂t11 + 2K̂t12
)

+

+D3
s2
1
t22
D3

t2
11
t22
I
{

z21
}−1

{

4
(

K̂t12
)2

+ 6K̂t11K̂t12 + 2
(

K̂t11
)2
}

+

D3
s2
1
t22
D3

t2
12
t11
I
{

z21
}−1

I
{

z21z
2
2

}−1
(

2K̂t12 + 2K̂t11
)

+
(

D3
t3
11

)2 (

K̂t11
)2

K̂t12+

D3
t3
11

D3
t2
11
t22

{

2
(

K̂t11
)3

+ 6
(

K̂t11
)2

K̂t12

}

+D3
t3
11

D3
t2
12
t11
I
{

z21z
2
2

}−1 K̂t11
{

2K̂t11 + 2K̂t12
}

(

D3
t2
11
t22

)2 (

K̂t11
)3

+ 8
(

D3
t2
11
t22

)2

K̂t11
(

K̂t12
)2

+ 4D3
t3
11

D3
t2
11
t22
K̂t11

(

K̂t12
)2

+

4
(

D3
t2
11
t22

)2 (

K̂t12
)3

+ 5
(

D3
t2
11
t22

)2 (

K̂t11
)2

K̂t12

+D3
t2
11
t22
D3

t2
12
t11
I
{

z21z
2
2

}−1
{

2
(

K̂t11
)2

+ 6K̂t11K̂t12 + 4
(

K̂t12
)2
}

(

D3
t2
12
t11

)2

I
{

z21z
2
2

}−2
(

K̂t11 + K̂t12
)

]

+

continued below
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1{m≥3}
m!

(m− 3)!n
×

[

2D3
s2
1
t11
D3

s2
1
t22
I
{

z21
}−2 K̂t12 +D3

s2
1
t11
D3

t2
11
t22
I
{

z21
}−1 K̂t12

(

2K̂t11 + 4K̂t12
)

+

2D3
s2
1
t11
D3

t2
12
t11
I
{

z21
}−1 K̂t12I

{

z21z
2
2

}−1
+D3

s2
1
t11
D3

t2
12
t33
I
{

z21
}−1

I
{

z21z
2
2

}−1
(

K̂t11 + 2K̂t12
)

+

D3
s2
1
t11
D3

t11t22t33
I
{

z21
}−1

{

2K̂t11K̂t12 + 4
(

K̂t12
)2
}

+

(

D3
s2
1
t22

)2

I
{

z21
}−2

(

K̂t11 + 3K̂t12
)

+ 2D3
s2
1
t22
D3

t3
11

I
{

z21
}−1 K̂t11K̂t12+

D3
s2
1
t22
D3

t2
11
t22
I
{

z21
}−1

{

2
(

K̂t11
)2

+ 12
(

K̂t12
)2

+ 10K̂t11K̂t12

}

+

D3
s2
1
t22
D3

t2
12
t11
I
{

z21
}−1

I
{

z21z
2
2

}−1
(

6K̂t12 + 2K̂t11
)

+

D3
s2
1
t22
D3

t2
12
t33
I
{

z21
}−1

I
{

z21z
2
2

}−1
(

4K̂t12 + 2K̂t11
)

+

D3
s2
1
t22
D3

t11t22t33
I
{

z21
}−1 K̂t12

{

8K̂t12 + 4K̂t11
}

+

D3
t3
11

D3
t2
11
t22

(

K̂t11
)2

K̂t12+

(

D3
t2
11
t22

)2
{

7
(

K̂t11
)2

K̂t12 + 16K̂t11
(

K̂t12
)2

+ 12
(

K̂t12
)3
}

+

D3
t3
11

D3
t11t22t33

{

4K̂t11
(

K̂t12
)2

+ 2
(

K̂t11
)2

K̂t12

}

+D3
t3
11

D3
t2
11
t22

(

K̂t12
)2 {

6K̂t12 + 4K̂t11
}

+

2D3
t3
11

D3
t2
12
t11
I
{

z21z
2
2

}−1 K̂t11K̂t12 +D3
t3
11

D3
t2
12
t33
I
{

z21z
2
2

}−1 K̂t11
(

K̂t11 + 2K̂t12
)

+

(

D3
t2
11
t22

)2 (

K̂t11
)3

+

D3
t2
11
t22
D3

t11t22t33

{

16
(

K̂t12
)3

+ 16K̂t11
(

K̂t12
)2

+ 4
(

K̂t11
)2

K̂t12

}

+

D3
t2
11
t22
D3

t2
12
t11
I
{

z21z
2
2

}−1
{

2
(

K̂t11
)2

+ 10K̂t11K̂t12 + 12
(

K̂t12
)2
}

+

D3
t2
11
t22
D3

t2
12
t33
I
{

z21z
2
2

}−1
{

8K̂t11K̂t12 + 2
(

K̂t11
)2

+ 8
(

K̂t12
)2
}

(

D3
t11t22t33

)2
{

(

K̂t11
)3

+ 2K̂t11
(

K̂t12
)2

+ 4
(

K̂t12
)3
}

+

D3
t11t22t33

D3
t2
12
t11
I
{

z21z
2
2

}−1 K̂t12
(

8K̂t12 + 4K̂t11
)

+

D3
t11t22t33

D3
t2
12
t33
I
{

z21z
2
2

}−1 K̂t12
(

4K̂t12 + 2K̂t11
)

+

continued below

110



4D3
t2
12
t11
D3

t2
12
t33
I
{

z21z
2
2

}−2 K̂t12 +
(

D3
t2
12
t33

)2

I
{

z21z
2
2

}−2
(

1

2
K̂t11 + K̂t12

)

+

2D3
t2
12
t11
D3

t2
12
t33
I
{

z21z
2
2

}−2 K̂t11 +
(
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continued below
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4.6 Bonferroni Bounds

Bonferroni bounds and their application to outlier discordancy testing were explained in section

2.5. Only the details that are different for the regression setting are listed here.
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4.6.1 Bonferroni Inequalities

In the multivariate regression setting of this chapter, Ej = {yT
j yj ≤ x (1− hjj)}, so

{M ≤ x} =
⋂n

j=1Ej . With this definition of events Ej , refer to section 2.5.1 for the remaining

details.

4.6.2 Distribution Theory

The theory behind the computation of ρij , S1, S2, and S2∗ derives from the joint distribution of

the studentized residuals. Srivastava and Van Rosen (1998) derive the density of Tj and the joint

density of Ti and Tj , where Tj = a2j/(n− p). After converting into our notation, the density of Tj

is given by

n− p−m

m

Tj

1− Tj

∼ Fm, n−p−m.

Therefore,

S1 = n

{

1− FFm,n−p−m

(

(n− p−m) x

m (n− p− x)

)}

,

where x is the observed value of M , and FFµ,ν
is the CDF of the F distribution with µ and ν

degrees of freedom.

The bivariate density of Ti and Tj is

|R|−
n−p−3

2

∏m
i=1

(

n−p−1−i
2

)

√
πΓ
(

m
2

)

Γ
(

m−1
2

)× (4.42)

∫ b

a

(TiTj − Tij)
m−3

2

{

(1− Ti) (1− Tj)− (ρij − Tij)
2}v dTij ,

where

R =
[

1
ρij

ρij
1

]

ρij =
−hij√

(1−hii)(1−hjj)

a = max
{

−
√

TiTj, ρij −
√

(1− Ti) (1− Tj)
}

b = min
{

√

TiTj, ρij +
√

(1− Ti) (1− Tj)
}

v = n−p−m−3
2
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The sums S2 and S2∗ comprise probabilities of intersections Pr
[

a2i > x, a2j > x
]

. Given the

integral in (4.42), this is a triple integral over the region where b > a. The integral must be

calculated separately for each distinct value of ρij . For some balanced design where all values ρij

are equal, only one calculation is required, but for a general regression problem where each ρij

may be different, this calculation can consume a lot of time.

Some problems may have partially degenerate residual distributions, where |ρij| = 1. For

general-purpose applications, the code must detect these situations and substitute the univariate

distribution Pr [a2i > x] for Pr
[

a2i > x, a2j > x
]

, as required.

114



References

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data, 3rd ed. New York: John Wiley

and Sons

Bernoulli, D. (1777). "The most probable choice between several discrepant observations and

the formation therefrom of the most likely indication," translated from Latin by C. G. Allen (1961).

Biometrika, 48, 1/2, 3-13

Bjornstad, J. F. and Butler, R. W. (1988). "The Equivalence of Backward Elimination and

Multiple Comparisons." J Amer. Stat. Assoc. 83:401 (March) 136-144

Butler, R. W. (1982). "Bounds on the Significance Attained by the Best-Fitting Regressor

Variable." Journal of the Royal Statistical Society, Series C (Applied Statistics), 31(3), 290-292

Butler, R. W. (1984). "The Significance Attained by the Best-Fitting Regressor Variable." J

Amer. Stat. Assoc.79:386, (June) 341-348

Butler, R. W. (1986). "Extendability and the Optimality of F, T2 and Forward Variable Selec-

tion." Scandinavian Journal of Statistics, 13, 4, pp 257-262

Butler, R. W. and Sutton, R. K. (1998). "Saddlepoint Approximation for Multivariate Cu-

mulative Distribution Functions and Probability Computations in Sampling Theory and Outlier

Testing." J Amer. Stat. Assoc.93:442, 596-604

Butler, R. W. (2007). Saddlepoint Approximations with Applications. Cambridge: Cambridge

University Press

Chauvenet, W. (1863). "Method of Least Squares," appendix to Manual of Spherical and

Practical Astronomy, vol 2. Philadelphia: Lippincott. reprinted (1960) New York: Dover

Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman &

Hall

Daniels, H. E. (1954). "Saddlepoint Approximations in Statistics." Ann. Math. Stat. 25,

631-650

115



Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis. Reading, MA: Addison-

Wesley

Dawid, A. P. (1977). "Spherical Matrix Distributions and a Multivariate Model." Journal of the

Royal Statistical Society, Series B (Methodological), 39, 2, 254-261

Ferguson, T. S. (1961) "On the Rejection of Outliers." Proc. Fourth Berkeley Symp. Math.

Statist. Prob. 1 253-287. Univ. of California.

Gossett, W. S."Student" (1908). "The Probable Error of a Mean." Biometrika, 6(1), 1-25

Grubbs, F. E. (1950). "Sample Criteria for Testing Outlying Observations." Annals of Mathe-

matical Statistics, 21, 27-58

Grubbs, F. E. (1969). "Procedures for Detecting Outlying Observations in Samples." Techno-

metrics, 11, 1-21

Hawkins, D. M. (1980). Identification of Outliers. London: Chapman and Hall

Hossain, A. and Naik, D. N. (1989). "Detection of influential observations in multivariate

regression." Journal of Applied Statistics, 16, 25-37

Huber, P. (1977). "Robust Statistical Procedures." No. 27, Regional conference series in ap-

plied mathematics. Philadelphia: SIAM

Hunter, D. (1976). "An Upper Bound for the Probability of a Union." Journal of Applied

Probability, 13, 3 (Sep.), 597-603

Jones, B., and Nachtsheim, C. J. (2011), "A Class of Three-Level Designs for Definitive

Screening in the Presence of Second-Order Effects," Journal of Quality Technology, 43, 1-15

Kounias, E. G. (1968). "Bounds for the Probability of a Union, with Applications." The Annals

of Mathematical Statistics, 39, 6 (Dec.), 2154-2158

McCullagh, P. (1987). Tensor Methods in Statistics. Chapman and Hall/CRC

Minitab 18.1 Statistical Software (2017) [Computer software]. State College, PA: Minitab, Inc.

(www.minitab.com)

Montgomery, D. C. (2005). Design and Analysis of Experiments, 6th ed. Hoboken, NJ: John

Wiley & Sons

116



Muirhead, R. J. (2005). Aspects of Multivariate Statistical Theory. Hoboken, NJ: John Wiley

& Sons

Neter, J., Wasserman, W., and Kunter, M., (1985). Applied Linear Statistical Models. Home-

wood, IL: Irwin

Nolan, J. P. (2017). SphericalCubature package for R [Computer software]. https://cran.r-

project.org/web/packages/SphericalCubature/index.html

Park, J. T. (2004). "Some Properties of a Certain Patterned Matrix." J. Appl. Math & Comput-

ing, Vol. 15, No. 1-2, pp 485-493

Pearson, E. S. and Chandra Sekar, C. (1936). "The Efficiency of Statistical Tools and a Crite-

rion for the Rejection of Outlying Observations." Biometrika 28, 308-320

Plackett, R. L. and Burman, J. P. (1946). "The Design of Optimum Multifactorial Experi-

ments." Biometrika 33 (4), pp. 305-25, June 1946 doi:10.1093/biomet/33.4.305

Quesenberry, C. P. and David, H. A. (1961). "Some Tests for Outliers." Biometrika 48, 379-390

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Cambridge, MA: MIT

Press

R Core Team (2019). R: A language and environment for statistical computing [Computer soft-

ware]. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Ross, S. (1988). A First Course in Probability. New York: MacMillan Publishing

Srikantan, K. S. (1961). "Testing for the Single Outlier in a Regression Model." Sankhya: The

Indian Journal of Statistics, Series A, 23 (3), 251-260

Srivastava, M. S. and von Rosen, D. (1998). "Outliers in multivariate regression models."

Journal of Multivariate Analysis, 65, 195-208

Stefansky, W. (1969). "On the rejection of outliers by maximum normed residual." Ph.D.

Thesis. Berkeley: University of California.

Stefansky, W. (1971). "Rejecting outliers by maximum normed residual." Ann. Math. Stat. 42,

35-45

Stefansky, W. (1972). "Rejecting Outliers in Factorial Designs." Technometrics 14, 469-479

117



Thompson, W. R. (1935). "On a Criterion for the Rejection of Observations and the Dis-

tribution of the Ratio of Deviation to Sample Standard Deviation." The Annals of Mathematical

Statistics, 6 (4), 214-219

Timm, N. H. (2002). Applied Multivariate Analysis. Springer

Tukey, J. E. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley, pp 39-43

Wilks, S. S. (1963) "Multivariate Statistical Outliers." Sankhya: The Indian Journal of Statis-

tics, Series A, 25 (4), 407-426

Worsley, K. J. (1982). "An Improved Bonferroni Inequality and Applications." Biometrika, 69,

2, 297-302

Wright, T. W. (1884). A Treatise on the Adjustment of Observations by the Method of Least

Squares. New York: Van Nostrand

118



Appendix A

R Code for Calculations

This appendix describes the R code written to perform the calculations for this project. A file

containing the code is available on request from the author at AndrewDSleeper@gmail.com. The

code has been tested and runs properly with R version 3.5.3 (2019-3-11) "Great Truth". Here are

the top-level functions in the code, along with a description of required parameters. Note that only

minimal error-checking of parameters is performed.

The following R libraries are required for this code to run:

• NORMT3 provides the error function used for univariate calculations

• cubature is required for the Bonferroni bounds, when dimension m > 1

• tictoc is required for the optional reporting of calculation time

These discordancy test functions do not calculate the MASR or MSSR statistics. The regres-

sion, calculation of residuals, and determination of the maximum residual must be calculated prior

to running these functions. The studentized residuals are calculated using equation (2.3) for the

one-sample case, (3.3) for the univariate regression case, or (4.3) for multivariate regression. The

maximum absolute or squared studentized residual is the first parameter required for these func-

tions.

The second required parameter is the design matrix X. In the one-sample case, the sample size

n may be provided as a scalar value instead of matrix X.

Example: In a set of n = 30 observations from an assumed normal distribution, the most

outlying value lies at ȳ + 3.00σ̂. Is this value significantly discordant?

First, note that 3.00 is a standardized residual, which must be converted to a studentized residual

by equation (2.3). M = maxj |aj| = 3.00×
√

30/29 = 3.05.

In R, calculate the p-value for a discordancy test this way:
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> PMASR(3.05,30)$P

[1] 0.03242239

Since the p-value of 0.032 is less than 0.05, conclude that the value is significantly discordant.

Omitting the $P from the function call returns a list of information about the calculation, as de-

scribed below. By default, PMASR uses the Bonferroni method when it is exact, or the saddlepoint

method otherwise. In this example, saddlepoint was used. To see the Bonferroni bounds, enter

this:

> PMASR_Bonf(3.05,30)

$Upper_Bound

[1] 0.03310819

$Upper_Bound_Raw

[1] 0.0331091

$Lower_Bound

[1] 0.03309549

Example: A 24 full factorial design (FFD) with 16 total runs is performed. In the analysis with

only the 4 main effects and no interactions, the maximum absolute studentized residual is 2.50. Is

this significantly discordant?

For this problem, the PMASR function requires the X design matrix as the second parameter.

Matrices may be entered into R in different ways. If the data has been analyzed using the lm

function in R, the x member of the lm object is the design matrix. Another way to create the

matrix directly is to source this code from a text file:

X.FFD16 <- cbind( rep(1,16),

c(rep(-1,8),rep(1,8)),

rep(c(rep(-1,4),rep(1,4)),2),

rep(c(-1,-1,1,1),4),

rep(c(-1,1),8))

After creating the matrix, inspect it for correctness:
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> X.FFD16

[,1] [,2] [,3] [,4] [,5]

[1,] 1 -1 -1 -1 -1

[2,] 1 -1 -1 -1 1

[3,] 1 -1 -1 1 -1

...

[16,] 1 1 1 1 1

Then, calculate the discordancy test p-value this way:

> PMASR(2.5,X.FFD16)$P

[1] 0.07410689

With a p-value greater than 0.05, the MASR of 2.5 is not significantly discordant.

A.1 Description of PMASR Function

PMASR(value,X) performs all calculations involving saddlepoint approximations. When

an exact Bonferroni bound is available, this exact solution is substituted automatically, using the

default settings. The function returns a list including a PDF value for MASR and a p-value for the

outlier discordancy test, plus other information. Here are the parameters

• value (required) is the observed value x of MASR or MSSR. A vector of values is allowed,

and the function will calculate PDF and p-values for each element in the vector

• X (required) is the n × p design matrix for a regression setting. For a one-sample problem,

when X is a single column of 1’s, X can be an integer value representing the sample size n

• m (optional, default = 1) is the dimension m, representing the number of columns in the

observed data Y

• eps (optional, default = 10−5) is a convergence criterion used for some sub-algorithms

• order2 (optional, default = TRUE) is logical, FALSE for first-order saddlepoint, TRUE for

second-order
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• o2exp (optional, default = TRUE) is logical, FALSE for the 1 + O form of second-order

saddlepoint, TRUE for the eO form

• calibrated (optional, default=TRUE) is logical, TRUE for calibrated, FALSE for not

• calpoint (optional, default = 2) is either 1, 2, or 3 for which point to calibrate at. 1 is the

upper end of the support, 2 is M2, 3 is M3.

• method (optional, default = "best") is text, either "saddlepoint", "Bonferroni", or "best".

Only the first two characters are required

• quiet (optional, default = TRUE) for debugging only. FALSE produces lots of intermediate

results

• squared (optional, default = FALSE) FALSE for maximum absolute studentized residual

MASR, or TRUE for maximum squared studentized residual MSSR

• timing (optional, default=FALSE) TRUE will measure and print out the time required for

the calculation.

The value returned by the PMASR function is a list containing the following values.

• $Error is a string listing errors in the input parameters

• $P is the p-value for an outlier discordancy test, which is 1− FM (x).

• $CDF is the approximated value of FM (x).

• $MASR is the value of the MASR or MSSR statistic passed to the function in the first param-

eter.

• $squared echoes the parameter value passed to the function.

• $n is the number of observations, represented by the number of rows in the X matrix.

• $p is the number of parameters, represented by the number of columns in the X matrix.
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• $m is the number of dimensions, passed to the function

• $order2 echoes the value passed to the function.

• $o2exp echoes the value passed to the function.

• $calibrated echoes the value passed to the function.

• $calpoint echoes the value passed to the function.

• $method echoes the value passed to the function, which may be interpreted from only two

provided characters.

• $M2 is M2, the calculated limit beyond which it is not possible for two residuals to have

values, when m = 1.

• $M3 is M3, the calculated limit beyond which it is not possible for three residuals to have

values, when m = 1.

• $eps is the value passed to the function.

A.2 Description of PMASR_Bonf Function

PMASR_Bonf performs all Bonferroni-based calculations, including the limits M2 and M3.

Values are returned in a list, including all available bounds and other information. Here are the

parameters

• value (required) is the observed value x of MASR or MSSR. A vector of values is allowed,

and the function will calculate PDF and p-values for each element in the vector. Note: The

MSSR option (squared=TRUE) is not available for this function. Enter MASR or the

square root of MSSR.

• X (required) is the n × p design matrix for a regression setting. For a one-sample problem,

when X is a single column of 1’s, X can be an integer value representing the sample size n
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• mv (optional, default = 1) is the dimension m, representing the number of columns in the

observed data Y

• eps (optional, default = 10−4) is a convergence criterion used for some sub-algorithms

• quiet (optional, default = TRUE) for debugging only. FALSE produces lots of intermediate

results

• status (optional, default = FALSE) when runs take a long time, set status = TRUE to

get progress reports.

• maxeval (optional, default = 105) When mv > 1, this code may run a lot of triple numerical

integrals, and this may take time. To limit the number of iterations in these integrals, set this

parameter lower.

• timing (optional, default=FALSE) TRUE will measure and print out the time required for

the calculation.

The value returned by the PMASR_Bonf is a list containing these elements.

• $Error is a string returning an Error message, if any

• $Upper_Bound is the first Bonferroni bound, an upper bound on the p-value, including

the spanning tree improvement after articles by Kounias, Hunter, and Worsley

• $Upper_Bound_Raw is the first Bonferroni bound, an upper bound on the p-value, with-

out any improvements. This is identical to the Grubbs test, as generally calculated.

• $Lower_Bound is the second Bonferroni bound, a lower bound on the p-value.

• $Upper_Exact is a logical value, TRUE if the upper bound is exact.

• $Lower_Exact is a logical value, TRUE if the lower bound is exact.

• $M2 is the value of M2, above which no more than two residuals cannot occur.
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• $M3 is the value of M3, above which no more than three residuals cannot occur.

The code module contains numerous other subroutines and debugging functions with names

that start with . and will not appear in default directory listings. Each function is commented in

the code listing.
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