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1. SOME BASIC NOTAT ION 

We begin by presenting some definitions and notations that are 

basic in th i s study. This will be given i n abbreviat ed form with a 

minimum of explanatory discussion. 

Symbol 

l o €: , . 

( :> ) 

0 4 {a,b,c, . . . } 

50 AU B 

60 Ans 

7° U A 
\I \I 

8° fl A 
\I \I 

90 Ac 

10° e 

110 S"l 

120 w, (w €: S"l ) 

13°V 

140 cit 

15° J6 

16° lxl 
170 [x] 

180 p 

iii 

Meaning 

is (is not) an e l ement of 

is contained in , contains 

implies 

the set consisting of t he el ements 
a,b,c ... 

the un ion of sets A and B 

the intersection of sets A and B 

the intersections of sets A1, A2 , 
A3, ... 

the complement of A 

the empty set (impossible eve~t) 

the space of elementary event 

an elementary event 

fo r all (for every) 

a-field 

borel field 

absolute value of x 

the greatest integer not greater 
than x 

probability measure 

ther e exi s t (s) 



Symbol 

20° ( t 

21° X 
t 

22° nt 

. 23° t 

24° 1 -t 
0 

25° X 
\.I 

26° z 
\.I 

270 
t

0
,t 

E 
\I 

28° G 
xo,x 

V 

t 
29° ft Al (s ) ds 

0 

30° A (t) 
V 

31° a (t) 
1) 

32° F (x) 
' ) 

33° f (x) 
'J 

34° B (z) 
•.; 

35° b (z) 
\I 

36° r ( v ) 

iv 

Meaning 

the r ainfall int ensity a t some 
instant of time t 

total amount of precipitation in 
some interval of time (t ,t ) 

0 

number of storm periods in (t ,t) 
0 

moment of time when observat ions 
begin 

the elapsed time up to th e end of 
v-th storm per iod 

the total amount of precipit at ion 
during exac tly v storm per iods 

total a□ount of precip i tation 
during v-th storm period 

the event that exactly v conplete 
storm periods will occur in 
(t , t) 

0 

the events that total amount of 
precipitation dur ing v storos 
will be less or equal (x-x

0
) 

the average numb er of storms in 
(t

0
, t) 

the dis t r i bution function of 1 
V 

the density function of 1 
\I 

the distri bution function of 

the density function of 

the dist ribution function 

the dens i:y function of 

Gamma function 

X 
V 

o= 

z 
V 

X 
V 

z 
V 



Symbol 

37° sup (x,y) 

38° inf (x,y) 

39° sup x 
\) 

l~v~n 

40° inf X 

l~v~n 
\) 

41° Z (n) = inf Z 
l ~v~n 

\) 

42° Z (n) = sup Z 
\) 

l~ v~n 

430 Qn (z) 

44° qn (z) 

45° H (z) n 

46° h (z) n 

47° Ft (x) 

48° f t (x) 

0 50 F2t(x) 

V 

Meaning 

= X if X > y or y if y > X 

= X if X < y or y if y < X 

= x. if X . > X 'v \) = 1, 2 . .. n 
J J \) 

= x. if x . < X 'v \) = 1, 2 ... n 
1 1 \) 

is the sm~llest storm amojg 
zl • ... Zn 

is the largest storm among 
zl, ... zn 

is the distribution function of 
~ (n) 

is the density function of ~ (n) 

is the istribution function of 
Z (n) 

is the density function of 
Z (n) 

is the distribution function of 
Xt for a:1 t ~ t 0 

is the dejsity function of 
xt 

is the lower approximation of 
Ft (x) 

is the upper approximation of 
Ft (x) 

is equal to 

is equal to 
dF 2t(x) 

dt 



Symbol 

53° E (X) 

55° T 
\) 

t ?:- t 
0 

} 

vi 

Meaning 

is t he mathematica l expectation of 
the random variable X 

represents a stochastic proc~ss or 
a family of random variables 

is the length of the v-th storm 
period 



2. PREFACE 

The main purpose of this work is to provide a method for 

mathematical treatment and analysis of some aspects of rainfall phenomena 

which have shown themse lves to be important in rr.any of the water resource 

problems. Those characteristics of precipitation such as the frequency 

of storm periods, total amount of precipitation during one or more storm 

periods, the el apsed time up to the end of v-th storm period where v = 

1,2, ... , etc., represent objectives of this stu~y. 

In the further exposition, an attempt has been made to establish 

a theoretical base for an investigation of these problems. Because pre

cipitation is a random phenomenon depending on time, the theory of sto

chastic processes r epresents one of the most appropriat e mathemat ical 

tools for the interpretation and analysis of the phenomena considered. 

Toward this end, a particular stochastic process has been con

sidered whose sample functions provide the total amount of precipitation 

in ~he given interva l of time 

functions of time . 

(t ,t) . These function s are nondecreasing 
0 

In this study, an analysis of the precipitation phenomenon has 

been performed by means of the stochastic process considered . Some 

effort \•;as made to give the phenomenological interpretation and di s•

cussion of every important mathematical result. It is hoped that this 

will make the study easier for r eading. 

Finally, I wish to express my gratitude to Professor V. Yevjevi ch 

who gave me the opportun i t y to work on this probl em . The crit i cism 

given by him and by Professor H. More l-Seytoux, was always prized even 

when no t accepted . 
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I would especially like to acknowledge Profes sor J . W. ~- Feai 

and Professor D. B. Simons for their discreet support during t · e work 

on this study. I am also indebted to Don Coll ins for editing the man

uscript. Thanks are due Mrs. Arlene Nelson for her patience in typ ing 

the first version of this study and to Mrs. Ann Brown for the final 

typing. 

April 1968 

Fort Collins 
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3. SUMMARY 

The purpose of this study is to provide a method for mathematical 

treatment and analysis of some aspects of rainf all phenomena which have 

shown themselves to be importan in many water r esource problems . As 

the theoretical base for such an analysis, a particular stochastic proc

ess, Xt = TT (t, w), has been considered. 

Consider a hydrograph of a rainfall gaging station (Fig . 1) and 

~t 

t t 

Fig. 1 Graphical representation of a rainfall hydrograph 

denote by t t the rainfall intensity at some instant of time t . If 

t ' stands for the moment of time when observation begins, the total 
0 

I 

amount of precipitation Xt up to time t > t 
0 

ing integral 

where X 
0 

is the 

X + 
0 

total 

t 

f t ds 
s 

.amount of precipitation 

Since t t is a random variable for any 

that 

{ tt; t ~ t } 
0 

represents a stochastic process; since tt ~ 0 

ix 

is equal to the follow-

(3 . 1 

up to time t 
0 

t ~ t , it is apparent 
0 

for every t ~ t 
0 



the sample function of the process Xt = TT (t, w) are nondecreasing t 

functions (Fig . 2) 

X 

Fig. 2 

I 
I 
I 
I 
I ,xv-1 
I 
I 
I 
I 

Tv-t Tv 

Graphica l representation 
functi on of the process 

t 
of a sample 
TT ' t , w) 

t 

and provide total amount of precipitation during the interval of tine 

(t
0
,t). The foll owing characteristics of the precipitation phenomeno~ 

are obj ectives of this s tudy : 

the number of storm periods in (t 't) ; 
0 

T -t 
\) 0 

X 
\) 

z 
\) 

the elapsed time 

the tota l amount 

storm periods, 

the tota l amount 

the total amount 

of time (t 't) . 
0 

up to th e end of ~-th storm period, 

of precipitation during exactly \) 

of prec ipitation during v -th storm, 

of precipitation during the interval 

It is apparent that -r , X , Z are random var iab les for all 
\) \) \) 

v = 1,2, ... , and nt and Xt for all t > t 
0 

For the purpose of 

applications it is indispensab le to possess distribution functions of 

these random variables. Toward this end, a series of theorem has been 

proved providing ana l ytical expressions for t hese distributions . 

X 



For this purpose t wo classes of random events have been considered 

and G , where 
X 

t ,t 
E = { E o 

t \) 

G = { G 
X V 

v = 0,1, 2, . . . } (3. 2) 

v = 0,1,2, ... } (3. 3) 

t 't 
where E 

O r epresents the event that exactly v storm periods wi ll 
\) 

occur in the interva l of t ime (t 't) 
0 

and represents the event 

that t he total amount of precipitation during v storm periods will be 

less or equa l to 

Probability 

equations 

t ,t 
aP(E o ) 

\) 

at 

t 't 
aP(E o ) 

0 

at 

(x -x) and 
0 

t
0
,t 

P(E ) 
\) 

= 

Under the assumpt i on that 

for (v+l) storms wil l exceed t hi s value. 

satisfies t he following different ial 

(3 . 4) 

3. 5: 

for every v = 0,1,2, .. . we have 

t 't 
P(E o ) = 

\) 

The func: ion 

e 

t 
(j >-

1 
(s) ds) v 

t 
0 

v! 

(3 . 7) 

represents the average number of complet e storm periods in c-
0
,t ). 

xi 



According to definition Al (t) ~ 0 for a l l t ~ t and r epresents 
0 

the instantaneous intensity of storm periods. Wi th regard to the seasonal 

variations i t is realistic to expect that Al (t) is a periodic function 

of time (Fig. 3). 

Fig. 3 Graphical presentation of Al (t) 

The distirbution function A (t) of random variable , is equal 
V V 

to 

00 t , t 
A (t) = I p (E. o ) 

V 
j==v J 

( 3. 8) 

or using ( 3, 6) we have 

t t 
ds)j - f Al (s) ds cf Al (s) 

t 00 t 
A (t) 0 I 0 

:: e 
V j ==v j ! 

( 3; 9) 

Corresponding density function a (t) is equal to 
V 

t 
.:. f Al (s) ds 

Al (t) t t 
a (t) 

0 
( f v-1 

:: 
r(v) 

e Al (s) ds ) 
V 

to 
( 3.10) 

for all v = 1,2, ... 

Probability 
X ,X 

P (G o ) 
V 

satisfies the following differential 

xii 



equations 

X , X 

ap (G O 
) 

\) 

ax 

Under assumption that 

for every v = 0,1,2, ... we have 

X ,X 

P G O 
) = e 

\) 

X 

( J Al (s) ds )v-l 
X 

0 

v! 

(3.11) 

(3 .1 2) 

(3 .13) 

Consider now random variable X which represents the total 
\) 

amount of precipitation during exactly v storm periods. Let F (x) 
\) 

be its distribution function then for every v = 1,2 , ... we have 

F (x) = 
\) 

00 X ,X l p (G. 0 ) 
J j=v 

By virtue of (6.13), F (x) becomes 
\) 

X 

-J A
2

(s) ds 
XO . 

(X) 

F (x) I = e 
\) 

j=v 

and corresponding density function 

f (x) = 
\) 

e 

X 

( J 
X 

0 

f (x) 
\) 

( J 
X 

X 
· O 

A2 (s) ds )j 

j ! 

is equal to 

v-1 
A

2 
(s) ds) 

(3 .14) 

(3. 15) 

(3.16) 

If the functions Al (t) and A2 (x) are constant ones , i.e., 

Al (t) =Al= const. 

xiii 



assuming t = 0 
0 

density functions 

a (t) 
\) 

f (x) 
\) 

and 

= 

= 

x = 0 , (3.10) and (3.16) become the Gamma 
0 

Av -;\. t 
v-1 1 1 

r (v) 
e t (3.17 : 

Av -;\. X 
v-1 2 2 

nvT e X (3.18 ) 

Suppose that z1, z2, ... Zv,· .. are independent random variables 

and let b (z) 
\) 

stand for the density function of Z , then it could 
\) 

be obtained as a solution of the following integral equation 

f (x +u) 
\I 0 = J 

u 

0 

z 
f 

1 
[ (x +u) (1--)] b (z) dz 

v- 0 U \I 

If A2 (x) = A
2 

= canst. the solution of (3.19) is equal to 

;\.
2

t 

( 3 .1 9) 

(3 . 20) 

The following important problem is the problem of extreme storms. 

If n storms z1 , z
2

, ... Zn are expected in the interval of time (t
0
,t) 

then ·among them one is minimum Z(n) and another one is maxim~m Z(n) , 

• I 
l.. e. , 

Z(n) = inf Z 
\) 

l~v~n 
Z(n) = sup 2 

\) 
l~v ~n 

(3. 21) 

The distribution function Q (z) of the minimum storm Z(n) has the 
n 

following form 
'YI 

~ (z) = 1 - n [l - B (Z)) (3.22) 
v=l \) 

where 

B (z) = p { z ~ 7. } 
V V 

xiv 



and corresponding density function q (z) 
n 

is equal to 

q (z) 
n 

n n 

= I b c z) n [l - Bk c z) 1 
v=l \i k rv 

(3.2 3) 

Let Hn (z) 

variable Z(n) and 

denote the distribution function of the random 

h (z) corresponding densi t y function, then 
n 

n 
H (z) 

n = n 

h (z) = 
n 

v=l 

n 

I 
v=l 

B (z) 
\) 

'I"\ 

b (z) 
\) n 

Jq,v 

If the parameter A2 = const. then by virtue of (3.20) we have 

-A nz 
q (z) = A · n e 

2 
n 2 

-A nz -A z 
h (z) = A • n e 2 (1-e 2 )n-l 

n 2 

The corresponding mathematical expectations are 

E(~) = 
1 

A
2

n 

n n-1 (-l)k 

= ½ k~O (l+k) 2 

n-1 
( k ) 

Finally, cons i der the stochastic process 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3. 28) 

where Xt represents the total amount of precipitation during time 

(t-t
0
). Let Ft(x) stand for the distribution function of Xt then 

I 
v=O 

C0 t
0
,t 

P(E ) F *(x,t) 
\) \) 

(3. 29) 

xv 



where 

(3 .30) 

Since the method for calcul ation (3 . 30) is not ~nown , an attempt ias been 

made to btain some information about this function. It has been shown 

that the followi ng inequality is valid 

co 

I 
j=v+l 

x0 ,x t 0 ,t 00 x ,x t 0 ,t 
P(G. I E ) ~ F *(x,t) ~ l P(G . 0 I E ) (3 .31) 

J V \! j =v J V 

hence we have 

Flt(x) 

F 2t (x) 

where 

0 ~ 

(s ee Fig. 4) . 

F1 

(x
0
,0) 

co 00 t 't 
= I I P(E o n 

v=O j=v+l 
\) 

co 00 t
0
,t 

= I I P( E n 
v= O j =v 

\) 

Flt (x) ~ Ft(x) ~ F2t(x) ~ 

~-- Ft(x) 

1---- Fi1(x) 

~ <------ ~t ( X) 

x0 ,x 
Gj ) 

x
0

,x 
G. ) 

J 

1 

X 

Fig. 4 Graphica l r epresentation of the distributio~ 
function Ft(x) and its approximations 

(3 .32) 

(3 .33) 

(3 . 34) 

The approximations Fjt(x) could be obtained as solutions of 

t he following partia l differential equation 

xvi 



where 

aF 1t (x) 
+ l/l l(x,t) ax 

~l - >. 1 (x,t) 

xvii 

(3.35) 

(3.36) 

ain >. 2 (x,t) 
l/12 - A2(x,t) - at 



Chapter I 

1 . INTRODUCTION 

The analysis of hydrologic time series and other sequences by 

appropriate mathematical mod els, which describe the patterns and sequence 

of a river flow and precipitation, is one of the objectives of modern 

hydrologic investigations. 

Among the known mathematical approaches that have been used for 

this purpose, one can distinguish two basically different concepts, 

deterministic and probabilistic ones. In the fo_lowing exposi ion the 

two examples will be outlined, which point out di stinction between these 

two philosophical aspects. 

It is known that a hydrologic (or generally speaking a physical) 

phenomenon is subject to laws which govern its evolution. A physica l 

phenomenon can be assumed as a deterministic one if, on the basis of the 

present state, the future states are determined (are sure outcomes). 

For instance, the newton laws of motions are det erministic in the sense 

that the given present state of a moving particle uniquely det ermines 

its future position. 

The laws which govern the rainfall phenomenon evolutions are 

stochastic in the sense that on the basis of the present state only 

probabilities of the future outcomes are determined . For example, if 

nt denotes the number of storm periods during the interval of time 

(o ,t), (the present state), the number of storm periods 17 t T , in the 

interval of time (t,T) can never be predicted with certainty for any 

T > t , i.e., 11t T is a random variable (defined over some space , 
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n = {w} of el ementary events w). Sinc e is a dis cr ete r ~ndom 

vari ab l e for every T > t (nt T = 0, 1, 2, .. . ) only the probabi lit ies 
' 

of the future states 

P { nt T = v } = 

' 
P (t, T) 

V 
v =0,1,2, . .. 

are det ermined . 

The pres ent exposition follows in principle probabilistic ideas 

as one of the most modern theoretical approaches to the prob l em of anal

ysis and predicting the future charac t eristics of the hydrologic and 

metereologic phenomena such as the river flow, precip itation, etc., which 

are of t he greatest i mportance in many of th e water r esource problems . 

To be precise , the precipit ation phenomenon which is the ~ub ject 

of this study will be considered from the aspect of the stochastic proc

ess theory. A stochastic process is a mathematical abstraction of an 

empirica l process whos e deve lopment is governed by probabilistic laws. 

Most of th e hydrologi c and metereo logic phenomena are of this kind. 

With r espect to the comp l exi ty of the precipi t ation phenomerton 

(a random phenomenon which depends on time t) we have s eparate ly studied 

its "dynarr.ic " and "quanti t ative" characteris tics . This separation needs 

some explanation. Under the "dynamic '; properties of the phenomenon con

sidered one unders t ands those featu res which give information concerning 

the frequency of storm periods in the given interval of t ime 

duration of a storm period, the elapsed t ime up to the end of 

storm period where v = 1,2, ... , etc , 

(t 't )' 
0 

v-th 

As quantitative charac t erist ics of the rainfall phenomenon, one 

understands the total amount of precipitation during one storm period 

or during v storm periods or the amount of precipitation for the time 
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Finally, for th e purpose of the practical application, it is of 

interest to consider these properties combined. For example, information 

that the average number of storm periods is v in the interval of time 

(t ,t) is insufficient if we know nothing about the average amount of 
0 

precipitation during a storm period. Likewise, information that the 

average amount of precipitation during one storm is x does not mean 

very much if it is not known how many storms could be expected in the 

considered interval of time. 

The second and third chapters of this study are devoted to in

vestigation of the "dynamic" and "quantitative" properties of rainfall 

phenomena respectively. As far as the fourth cha ter is concerned, it 

represents an attempt to investigate a problem such as obtaining the 

distribut i on function Ft(x) of the random variable Xt for every 

t > t
0

, where Xt represents the total amount of precipitation up to 

time t , or obtaining the distribution function of random variab l e T 
X 

where T represents the time necessary for that amount of precipitation 
X 

to be equal x, etc. 

Toward this end, a particular stochastic process of nondecreasing 

sampl e fu~ctions, denoted by 

xt = 7T (t ,w) 

has been introduced. The most of the theoretical results that have been 

considered in this study and connected wi th this process are of an orig

inal nature and appear here for the first time. 

2. OBJECTIVES 

The general purpose of this paper is to present a mathematical 

study of precipitation phenomenon (not entering into its physica l nature, 
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although some conclusions concerning the physics of the phenomenon 

can be drawn indirectly from the results obtainec ) based on probability 

theory and stochastic processes. In fact, a family of stochastic proc

esses wil be established (derived from the stochastic process of non

decreasing sample functions n(t, w) ) and used for an interpretation of 

some aspects of rainfall phenomenon. 

Th i s paper should represent the initial steps in establishing a 

general mathematical theory which makes i: possible to predict t he future 

behavior of rainfall. It is expected that these results will help to 

better understand the precipitation phenomenon and that this understanding 

will make possible better predictions of future characteristics. It is 

also hoped that this study will discover new problems and open the way 

to new inves tigations and discussions. 

In this paper , studying of the rainfall will be restricted to the 

considerat ion of that portion of the total amount of precipitation which 

reached the ground and has been measured or recorded at the existing 

network of raingage stations. 

In order to achieve these goals, let us denote by ~t the rain

fall intensity over a small part ~S (of an area S), at some moment of 

time t 

time t 

~t is non-negative and in addition is dependent not onl y on 

but on the position of ~S wit~in S, i.e. , 

~t = ~(t,x,y) (1.2.1) 

where (x,y) is a point which belongs to S (see Fig. 5). 



s 

((t , x,y) 

y 

Fig. 5 Graphical representation of intensity of 
precipitation over an area S at the 
moment of time t 

It is assumed that precipitation intensity is uniform over 6S 

at any moment of time, i . e . , if the area 6S is sufficiently small, 

t he following is valid: for any two points (x1 ,y1) E6S and (x2 , y2) 

E6S we have 

This small part 6S could be, for instance, a prBcipitation station in 

t he area S . 

In addition, the function E(t , x,y) is a random variable for every 

t , x and y . Therefore, Et is a continuous parameter stoch~stic 

process. Since the rainfall phenomenon will be considered over~ small 

part 6S, obviously Et~ E(t,x,y) becomes a stochastic process with 

paramet er t only. Consequently we have 

as an objective of further investigation. 
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3. APPROACH 

The last several years have seen an extraordinary increase of 

interest in the problems of planning of water resource projects and in 

the probl ems of increasing natural water supplies. For the firs: of these 

two problems (or the group of probl ems ) a method for predicting fut ure 

characteristics of the water supplies is indispensib le . As far as the 

second prcblem is concerned, it is important to deve lop sound mathematical 

methods for evaluating weather modification attainments applicable to a 

variety of natural conditions . 

In order to achieve these goals, it is necessary to establish a 

quantitative (mathematical) theory of some aspects of weather phenomena. 

It is realistic to expect that the theory must be probabilistic in nature, 

but since weather phenomena occur randomly and depend on time t , it is 

apparent that the theory of stochastic processes will play the basic role. 

We are far from concluding that the results represent a complete 

theory (mathematical) of the rainfall phenomenon. In fact, this paper 

represents the initial steps in establishing methods which should make 

it possible to predict the future behavior of precipitation and t o esti

mate development of practical weather modification techniques . In addi

tion, the aim of this theory is not only a simple evaluation of weather 

modific ation attainment but also to point out better application of 

weather modification techniques such that optimization of the seeding 

procedure may be examined. 

In this study, we have resolved to take as a subject of the in

vestigation a precipitation station, i.e., all chan ges in the weather 
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phenomena related to prec ipitation that could be recorded in the 

raingage station being consider ed . We are not going to t a lk about ad 

vantages of such an approach, but it would seem to be a very nat ur al 

one. 

Let t denot e the instant of time when observation of the 
0 

rainfall phenomenon begins and let l; t be the rainfal 1 intensity at 

some moment of time t Obviously, l; t is a ra::1dom variable 

t >,. t 
0 

Therefore, we have a family of random variables 

for al 1 

or a stochastic process. With respect to the nat~re of precipitation 

phenomenon , it is apparent that for every t >,. t , 
0 

An intermittent hydrograph at a rainfall gaging station has the 

shape of the curve in Fig. 6 and represents a sample function of the 

stochastic process, l; t . Obvious ly then , t he total amount of prec ipita-

tion during some interval of time (t ,t) r ecorded at the gaging ino 

strument is equal to the following integral: 

t 
J i;s ds 
to 

t 

Fig. 6 Graphica l r epresentation of a r ainfa ll hyetograph 
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Since is a random variable for every s ~ t , it follows 
0 

that the integral considered is a random variable for every t > t 
0 

In the present study, we are not going to investigate properties of the 

process ~t directly . In fact, we are going to deal with the stochastic 

process Xt which represents a cumu ative process, i.e., 

t 

I ~ ds 
s 

where x represents the total amount of precipitation up to the instant 
0 

of time t 
0 

Since Xt is a random variable for every t > t , we · 
0 

have a nev.· family of random variables: 

or a continuous parameter stochastic process, ~hich will be denoted by 

xt = 1T (t, w) 

Since ~ ~ 0 
s 

for every s ~ t , it is apparent that any samp le 
0 

function of n(t,w) is a nondecreasing t function. In other words, 

for every t ~ t 
0 

and t.t , the following inequality is valid 

n(t,w) ~ n(t + ~t,w) 'f/ t.t > 0 

The following exposition is devotee to the problems of interpre

tation and investigations of the rainfall phenomena by the stochastic 

process Xt = n(t,w) . One will see that studying of some important 

characteristics of precipitation phenomenon can be reduced to studying 

corresponding properties of the stochast i c process. Therefore, the more 

we know about the process Xt = n(t,w) , the more we know about the rain

fall phenomenon. It is hoped that this study represents a contribution 

to investigations of this probl em. 
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Chapter II 

1. THE FUNDAMENTAL CONSIDERATIONS 

1°. In this s ection will be discuss ed how and why the precipita

tion phenomenon should be studied from the aspec of the theory of sto

chastic processes. For the sake of clarity, the exposition of the first 

section will start with nor.mathematical description of the quantitative 

properties of the rainfall phenomenon not entering into its phys ical 

nature. 

Let us fir s t explain why this phenomenon should be consider ed as 

a stochast ic process or why probabilistic approach is more r ealistic 

than det erministic. Toward this end, consider the rainfall hydrograph 

at a rainfall gaging station; it is known that it has the shape of the 

curve in ~ig. 6. An ordinat e s t of this curve at some instant of t ime 

t represents rainfal l int ensi ty at the moment t . If t denote s the 
0 

moment of time when observation of the rainfall phenomenon begins and 

st 
I 
is t he rainfa ll int ensity at thi s moment, then with re spect to its 

0 I 

nature it is not possible to predict with certainty , the value of t he 

variabl e s t at any moment of time t after t 
0 

In other words, on 

the basis of the present state the future outcomes cannot be pred icted 

with cert a inty , i.e ., s t is a random variable for any 

for any ts (t , 00 ) . 

0 
For exampl e , if an arbitrary s equence 

is selected such that t < t for 
V \! +1 

th en corresponding rainfall intensities 

are obviously random variables. 

t >,, t or 
0 

tl' t2' ... ' 
\) = 1,2, ... , 
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Since it is va lid for any sequence of moments of time from 

(t
0

, 00 ) , obviously we have a family or r andom variab l es (one variable 

for each t) which is denoted in th e following manner: 

- { E.: t; t ~ to } (2.1.1) 

Thi s f amily or random variables represents a s tochastic process of a 

continuous parameter (s ee Doob (5) p . 46). A particular hydrograph r ep -

r esents a sampl e function of this process (s ee Fig. 7), where T de-
V 

notes t he l ength of the v-th storm period (starting from th e ins tant 

of time t ) and 1 is its upper bound . Obviously T and 1 are 
0 V V V 

random variab l es for every V = 1, 2, ... Therefore , we have two more 

families of r andom variables 

{ T . 
v' v = 1, 2, ... } and { 1 . 

v ' 
V = 1,2, ... } 

or the t wo stochastic processe s of t he discrete parameter . 

In the following exposition we shall not consider the stochas tic 

process (2 .1.1), but we will deal with integral of the function E.:t 

of ~he foll owing form 

E.: ds 
s 

(2 . 1. 2) 

where x is a constant . It is obvious that th e integral cons idered 
0 

represen~s the total amount of precipitation during the interval of 

time (t ,t) , so that it is a r andom variable for every t > t 
0 0 

Therefore 

ing 

is a random variable for every 

{ X · t > t } 
t' 0 

t > t , and the fo llow
o 

(2.1.3) 

represents a continuous par ame t er stochastic process, which wi ll be 



t 

Fig . 7 A sample function of the stochastic process { t t; t > t
0

} 
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denoted by 

xt = 1r(t , w) 

Since for every s >;. t 
0 

Es>;. 0 , it is obvious that for every 

~t > 0 the following inequality is valid: 

\ft >,. t 
0 

6t > 0 

Therefore, sample functions of the process (2.1.3) are nondecreasing t 

functions (see Fig. 8). 

2°. Probability background - The purpose of this part of t he 

paper is to repl ace preliminary intuitive notions with a sound mathemati

cal base for further investigations. Toward this end, assume that the 

following system is given: 

( Q' = { w' } ' ,A ' p ) 
0 

where 

a) Q ' = {w'} is the space (or sure event) of elementary events 

w' , and domain of definition of rahdom variables Et , for every 

tET* , such that (see Doob (5) p. 10) 

w': (xt; t ET*) (2.1.4) 

where xt ~ 0 is any real number. In other words, Q ' is the space 

of sample functions of tET* , or, from another point of view, the co

ordinate space, whose dimensionality is the cardinal number of the set 

T* . The value of a t function at the point t = s defines an w' 

function E if we set 
s 

E (w') = x s s 
(2.1.5) 
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Fig. 8 A sample function of the stochastic process .,, ( t, w) 
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b) The class J is a smallest a -field (or Borel field) 

generated by the class of ~ • subsets of the following form 

{ w I . C: El } t c:: T* , c, t 

where I is an interval of the real line. 

c) · Finally, one assumes that the probability measure p 
0 

with 

the class of sets J,; as the domain of definition, is complete and per

fect, following Gnedenko and Kolmogorov (see (8) §§ 2, 3). 

For the purpose of the further investigations, it would be nec

essary to assume E, t is a separable stochastic process, i.e . , if T 

denotes an everywhere dense set in (t ,T) , then the stochastic process 
0 

E,t is called T-separable or separable with respect to T, if there 

exists an event A (i.e., a subset of ~ • such that AcJl) having 

probability zero, i.e . , ~ (A)= 0 such that 

AU {w'; E, t c::F Vtc::I*} ~ {w' ; E,t c::F Vtc:: T n I*} (2.1.6) 

where F is a closed set and r• an open interval from T* . The set 

on the right side of the relation (2.1.6) is a measurable one and con

tai~s the following set: 
I 

{ w' · c: c:: F Vt c::I* } , c, t 

which t hen, under separability hypothesis, is also a measurable one 

(see Do b (5) p. 51 or Skorohod (26) p. 6). 

On the basis of the separability hypothesis it follows that w 

set 

{ w' . , E, t = 0 Vt c:: M } (2.1.7) 

where M C (t , T) is also measurable. In the further investigations, 
0 

we shall suppose that probab ility of this set is not equal zero for any 
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0 

15 

p Q { W I; ( t = 0 I \ft E: f'.t } f 0 (2.1.8) 

Finally, we assume that the stochastic process is measurable and int e 

grable (Doob (5), p. 60) . The last hypothesis is of great importance in 

the study of the stochastic process n (t, w) It will be seen that on 

the basis of this hypothesis it is possible to prove that the last proc

ess is a separable one as well . 

3°. Comment - For better und erstanding of the notions and hy

pothesis of the previous exposition (Probability Background), let us try 

to give the phenomeno logic interpretation of thes e symbols and assump

tions. In other words, let us express all these notions and definitions 

in hydrologic terms. 

First of all, the evolution of the rainfall phenomenon is con

sidered in the time interval T* = (t ,T) where T < 00 so that instead 
0 

of (2.1.1) we have the following: 

t E(t ,T) } 
0 

(2.1.9) 

If we start to consider the rainfa ll phenomenon at the moment of 

time t , then it is not possible to predict the shape of the hydrograph 
0 

in the time interval (t ,T) , since there exists an infinite number of 
0 

outcomes (hydrograph curve) which could be realized . The set of all these 

curves is rl ' and w' is any of these curves. In other words, the 

space n' is t he set of all sample functions of the stochastic process 

(2 .1. 9) . 

The class cJt consists of the sets of sample functions which are 

particular (measurable) subsets of rl ' . For example, the set 
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belongs to the class cft and consist s of a l 1 samp l e fun c t ions of th e 

process (2.1.9) with the property that t he ordina t es at the point 

t, (t ~ t ~ T) are less than x 
0 

The sets belonging to the clas s 

are callee (random) events; the space ~ ' is an event, i.e. ~ ' E d 

The probability measure p is a function (so-called s et fun c -
0 

tion) defi ned over the class Jt in the sense that to every even~ AE ,ft 

corresponds a numb er p (A), th e probability of this event . This func-
0 

tion is completely additive, i.e., if B1 , B2 , ... is an accountably 

infinit e set of mutually disjointed events , then 

00 

p ( u 
0 i=l 

B. ) 
1 

00 

= I 
i=l 

p (B . ) 
0 1 

Fi~ally, let us give the meaning of separability hypothesis; 

according t o definition, if we have an denumer ab l e (count ab le) family 

of events, say 

Al, 

then , according 

' section c,f this 

00 

u 
i=l 

A2, . . . A 
V' 

. . . , 

to definition of the 

event is 

A. EA 
1 

an event 

oc 

n 
i=l 

as 

AVE :t1: 'rf V = 1, 2, ... . 
cl as s cl , the union and int er -

well, i.e., 

The situation is more complicated, however, if one deals with non

denumerable family of events, for instance if At E Jt for every t EI*, 

then 

n 
t EI* 

is not necessarily an event; i.e., genera lly speak ing, 

n 
t EI* 



17 

and therefore 

P ( n At ) 
O tEI* 

has no sense. In our case, the set (2.1.7) can be represented as an 

nondenumerable intersection of events, and therefore it is not necessarily 

an event; i.e. , 

{ WI; ~t = 0 VtE~t } = n {w';~ =0} 
tUit t 

On the basis of (2.1.6), we have the follo~ing: 

AU n { w'· • = o} -::i ' <, t n { w'; 
tEM() T 

(2 .1.10) 

E;t = 0} . 

Since the second set on the left side is a subset or the set on the 

right side (which is measurable; i.e., an event) of the last relation, 

it follows that (2.1.10) is also measurab e under separability hypothesis. 

2. AN ANALYSIS OF THE PRO ESS n(t,w) 

1°. On the basis of definition (2.i.2), it is obvious that the 

stochastic process 

tE1'* = (t ,T) 
0 

(2.2.1) 

represents a cumulative process, namely if at the instant of time t 
0 

when observation begins the total amount of precipitation was x , then 
0 

Xt denotes the total amount of precipitation up to time t (see Fig, 8). 

The difference 

n (t ,w) - X 
0 

represents the total amount of precipitation recorded at a rainfall 

gaging station during the time interval (t
0
,t) . 
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For the purpose of establishing a~ appropr iate theoretical 

description of the quantitative aspect of the ra i nfall phenomenon which 

will give us a complete as possible anal1sis of precipitation, i t is 

more convenient to study the properties of stochastic process (2.2.1) 

than (2.1.1) or (2.1.9). Therefore, investigation of characteristics 

of (2.2.1) will be the main objective of the further exposition. 

To achieve a full ana lysis of the rainfall phenomenon, it is 

necessary to study the various aspects of the stochastic process con

sidered. This l eads to a new series of stochastic processes, derived 

from the p~ocess n(t,w) . 

Consider nt , the number of the full sto~m periods in an interval 

of time (t , t) , where tE: (t , T) 
0 0 

Obviously, since nt = O, 1, 2, .. . 

is a random variable for every t from 

ous parameter stochastic process: 

{ n • tE:T* } t' 

(t ,T) , we have a new continu
o 

The upper bound of the v-th storm period has been denoted by 

T 
\) 

(see Fig. 7 or 8); information about T for every v = 1, 2, ... 
\) 

is of r emarkable phenomenological interest. Since T . is a random 
\I 

variable for all v , we have a discrete parameter stochastic process 

{ T ; V = 1, 2, ... } 
\) 

(2.2.2) 

The other two variables are of great importance for analysis of 

the precipitation phenomenon; the first X represents the total amount 
\) 

of precipitation during exactly v stonn periods (see Fig. 8) and Zv 

where 

Z = X X 
V V V-1 
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which represents the total amount of precipitatiJn during v-th storm 

period only. Both X and Z are random vari~bles for every v = 
V V 

1, 2, ... so that two more discret e paramet er stJchastic processes will 

be cons i dered: 

{ X; v = 1, 2, ... } and { Z; v = 1, 2, .. . } . (2. 2 .3) 
V V 

Finally, duration T 
V 

of the v-th storm period has particular 

phenomenological interes t for th e r ainfall phenomenon study. Since T 
V 

is a stochastic variable for every v = 1, 2, ... we have another sto

chastic process 

{ TV; v = 1, 2, ... } (2. 2.4 ) 

which is of interest in the fol lowing investigations. 

2°. Some definition s - For the purpose of further study, t he t wo 

par ticular classes of measurabl e se t s (events) whose elements are sample 

functions of the stochastic process TT (t,w) will be defined . It wi ll 

be shown that event s such as 

{w;-r ~t},{X ~x},VV=l,2, ... 
V V 

could be expressed over unions and intersections of sets from these 

classes. Since we are able t o calculate probability of these sets, the 

probab ility of the previous event can be obtained as well. 

Let represents the set of all samp le functions of the 

stochastic process TT (t, w) having exact ly v points T. 
J 

in the inter-

val of time (t ,t) , or, in other words, the set of all sample functions 
0 

for which the following is valid: T ~ t < t l , i.e., 
V V+ 

t
0
,t 

E = { w; -r ~ t < -r 1 } 
V V V+ 

(2 .2 .5) 
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(see Fig . 8). On the basis of definition of these sets of sample 

functions , obviously the following class 

(2.2 .6) 

for fixed t is a countable one . Elements of this class are disjointed 

sets, i.e., for every if j , the following is val id 

t 0 ,t t 0 ,t 
E. n E. = 8 

1 J 

00 

and U 
v=O 

where symbo l 8 denotes an empty set. 

(2. 2. 7) 

Phenomenologically speaking, the set 
t

0
,t 

E represents the event 
\) 

that exactly v storm periods will occur in the interval of time 

(t , t) 
0 

Let us define another class of sets of sample func tions . Let 
x0 ,x 

G be the set of sample functions of the process n (t, w), which 
\) 

have exactly v points TT* (-r . ) 
J 

in the interval of time 

x0 ,x 
G = { w; n*('r ) ~ x < rr* (t 

1
) } 

V V \/+ 
(2.2 .8 ) 

(s e~ Fig. 4). By definition , the following re l ations are valid 
I 

00 

'v i .,. j u 
v=O 

X ,X 
G o = n 

\) 
(2.2.9) 

The phenomenological interpretation of the set G 
V 

X ,X 
0 of sample 

functions is evident; it r epresents the event t tat the total amount of 

precipi t ation during exactly v storm periods will be less than or 

equal to (x - x) and for (v + 1) 
0 

storms it will be l arger than 
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3° . Probability background - Relation (2.1.2) represents a 

transformation with Q ' = { w' } as the domain of definition. The set 

of all values of this transformation will be denot ed by n = { w} . 

In order ·o avoid purely technical difficulties, we shall assume that 

the following syst em is given: 

(Q={w},~, P) 

where n is the space of elementary events w J3 is the smallest 

o-field generated by the class of n subsets of the following fo rm: 

t ,t 
G. o ) 

J 
i, j = o, 1, 2, ... 

where I is an interval of the real line. Elementary event w should 

be realized as a sample function of the process n(t,w) . P is a prob

. ability measure defined over class ~ . 

Since ~t ~ 0 for every (t, w) E (T*xn) , (where T*xn repre 

sents the Cartesian product of the sets T* and O , (see Halmosh (12) 

p. 137) obviously the sample functions of the prJcess Xt = n(t ,w) are 

nondecreasing t functions, i.e., for any wEO 

Xt = n(t, w) ~ Xt+ 6t = n(t+tt, w) V6t > 0 

Finally, let us examine the question of separability of stochastic 

process Xt = n(t,w) . First, if it is supposed that almost all sample 

functions of the process 

{ cc- • tET* } 
"'t' 

are cont i nuous functions then n (t, w) is a separable stochastic process. 

If ~t is stochastically continuous, then n(t, w) is separable. Let 

us now pr ove the following theorem: 
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Theorem 1. 

If almost all sample functions of the measurab l e stochastic 

process 

{ '" · tET* } 't' 

are integ~able, then stochastic process 

is separable. 

Proof. 

{ X · tET* } 
t' 

Consider two instants of time t 1 and t 2 and assume t 1 < t 2 , 

On the basis of monotony of sample functions of TT(t , w) , we have 

Xt - X ~ 0 . Therefore , for every E > 0 ,. probability of the 
2 t1 

following event 

{ w; c;, ds ~ E } 
s 

obviously t ends to zero, if t 2 - t
1 

+ 0, since 

i.e., 

t2 

ft 
. 1 

E;, ds + 0 
s 

P { w; xt 
2 

Therefore, the stochastic process TT(t,w) is a stochastically continuous 

one so that by virtue of the foregoing (see Skorohod (2 7), p. 209), it 

is separable. 
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3. STOCHASTIC PROC ESSES and T 
\) 

1° . It has been mentioned in the previous section that nt , 

where t ET* , denotes the number of the comple·e storm periods occurring 

in the interval of time (t , t) . 
0 

Since is a random variable for 

any t f rom T* , we have a continuous parame·er stochastic process 

(2.3.1) 

where nt = 0, 1, 2, . .. 

In order to estimate the average number or storm periods in some 

int0rval (t
0
,t) , which is obviously a t function , and other charac-

t eristics of the variab l e 

ing probabilities: 

it is necessary to calculat e the follow-

P { n = v } = P (t) t \) 

for every t ET* and v = 0, 1, 2, ... 

Ac ording to definition of the events 

follows that 

t
0
,t 

P (t) = P(E ) 
\) \) 

and on the basis of (2.2.7) it follows that 

a, 

I 
v=O 

P (t) = 1 
\) 

(see 2.2.5), it 

(2.3. 2) 

The corresponding distribution function F(xlt) of the random variab le 

has the form 

F(xlt) = P { w; n ~ x} = 
t 

[x] 

I 
v=O 

p (t) 
\) 

(2.3 . 3) 

where the symbol [x] denotes the greatest int eger not greater than x . 
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On the b~sis of (2 .3. 2) the average numbe r of storm periods E( 1t ) in 

the interval of time (t ,t) is equal to 
0 

00 

L 
v=l 

t 't 
v P(E o ) 

\) 

For an effective calculation of the probabi liti es 

(2 . 3.4) 

P (t) and 
\) 

mathematica l expectation E(~t) , it is necessary to poss ess the prob
t0,t 

abilities P(E ) for any t ET* and v = 0, 1, 2, .... In th e next 
\) 

section, it will be shown how this probab ility can be obtained under very 

general ass umpt ions about the phenomenon cons idered . 

Th e next charact eri s t ic which will be studied is the upper bound 

T of th e v-th storm period. Study of th is characteristic ha s a par
v 

t icular phenomeno logic int eres t. Since T is a random variable for 
\) 

_every v = 1, 2, . .. we have a f ami ly of random variab l es or a cont inuous 

paramet er stochas tic process 

{T; v=l , 2, .. . } 
\) 

For practica l application, it is necessar y to possess information 

about dis ~r ibution function A (t) of random variable T for every 
\) \) 

v= l, 2 , . .. The follo wing theorem gives the relationship between 

A (t) and the probabilities (2.3.2). 
\) 

Theorem 2. 

For every v = 1, _2, ... and t} t , we have 
0 

A (t) = 
\) 

OO t , t 
L P(Ek O ) 

k= v 
(2.3.5) 

The proof of thi s th eorem is very simpl e (see appendix to this section). 

Phenomenologically speak ing, t he r e lation (2 .3.5 ) mea ns that T will 
\) 



25 

be less than t if at l east v . storm period will occur in (t
0
,t) . 

Let a (t) r epresent the corresponding densi ty function of the 
V 

distribut ion function (2.3.5), i.e., 

a (t) = 
V 

'dA (t) 
V 

at 

Then the following theorem can be proven: 

Theorem 3. 

Assume that the following conditions are satisfied: 

(X) 

I P(E t,t+t.t 
T ) 

a) lim ,=2 
0 Vt~ t = 

t.t➔O 
tit 0 

P(E/'t+titl 
t 0 ,t 

b) lim 
Ev-1 ) 

>. 1 (t) \ft~ t = 
tit➔O 

f).x 0 

then for every v = 1, 2, ... 

(2.3 .6 ) 

Th~ proof of this theorem will be given later. 

Let us now discuss the conditions a) and b) of the theorem and 

try to give their pure phenomenological interpretation. Toward this end, 

consider first the condition a) and its physical meaning. First of all, 

the following sum 

(X) 

l P(E t,t+f).t) 
T=2 T 

(2 .3.7) 

express es the probability that in the interval of time (t,t+f).t) at 

least the two events , will appear (i.e., w: 11 occur and, of a rainfall 
V 

and the next storm period, wil l belong wholly to the same time interval). 
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Condition a) means that the sum (2.3.7) is an infinitesimal of a higher 

order than At , when At➔O With r espect to the nature of the pre -

cipitation phenomenon, this condition is very real is tic. 

Consider now the condition b) of the theorem and its phenomenologi-

cal interpretation. 

obviously 

On the basis of definition of the events 

(2.3.8) 

represents the conditional probability that the upper bound of the v-th 

storm per i od will belong to the interval of ti□e (t,t+At) , under the 

condition that exactly (v-1) storms occurred i n the interval of time 

(t
0

, t). 

Since the conditional probability (2.3.8) depends on t , At and 

v, it r epresents a function which in the most genera l case depends on 

these variables, i.e., 

P (Et , t+At 
1 

If it is assumed that: 

). 1 (t,llt,v-1) (2.3.9) 

1. Probability that a terminat ion instant wi ll lie between the 

two instants of time, t and t+ At do not depend on the number of storm 

periods up to time t 

2. For very small At, Al is a linear function with respect to 

At , then the following is valid 

and 

then condition b) of the prev ious theorem is satisfied. 
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Certainly the assumption (2 .3.9) that conditional pr obabil ity 

(2.3.8) is a function of t , ~t and v is most general . As far as 

the other t wo hypotheses are concerned, there is no doubt that the 

second, 

Al (t, ~t, v-1) = Al (t,v-1) ~t 

is r ealistic, but the first, that 

is discussible and needs experimental t esting. In fact, a very realis

tic hypothesis is to suppose that the relation 

p (Elt 'tHt I E to' t) = 
v-1 Al (t, v-1) M (2.3. 10) 

is valid. 

Note: 

Since the random variable T fo r v = 1, 2, ... can assume any 
V 

value from the time interval (t
0

, 00 ) , it is supposed that T* = (t
0

, 00). 

In the following exposition it wi ll be of particular interest to consider 

no interval T* = (t
0

, 00 ) but an interval of time T* = (t ,T) 
0 

where 

T < 00 • In other words , let us consider the problem of calculation of 

probabi l ity of the r andom event 

{w;T ~t} v =l,2, ... 
V 

under the condition that at least v storm periods have occurred in 

(t ,T), i.e., 
0 

P { w; T ~ t, T E (t , T) } 
V V 0 

LBt us denot e this conditional probability by 

F (tlT*) = P { w; T , tl T e: T* } 
V V V 

F (t IT*) , i.e., 
V 
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Then the following theorem is valid. 

Theorem 4. 

For every tE:(t ,T) 
0 

Fll (t IT*} = 

and v= l,2, ... 

f (E~o,T) 
. 1 
i=v 

If f (t T*) denotes the corresponding density function 
\) 

then 

.f (tlT*) = 
V 

f (t!T*} == 
\I 

aF (tlT*) 
\I 

at 

APPENDIX 

(2. 3 .11) 

(2.3.12) 

In this part of the paper the proofs of the previous theorems will 

be given. 

Proof of Theorem 2. 

First we have 
CID 

{w; t <t}= V {w;. 'i~t<ti+l} 
v- i=v 

so that on the basis of definition of the events 

is valid 
CID 

{w;t <t}= U 
v- i==v 

t 0 ,t 
E , the fol lowing 

\I 

Finally, by virtue of the first of relation (2.2.7) we have 

i>{w;, <t} == 
\I-

and the assertion follows. 

CID 

P( U 
i ==v 

CID 

I 
i==v 
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Proof of Theorem 3. 

It is obvious that a) and b) represent sufficient conditions for 

existence of derivatives of the function A (t) . In order to prove the 
\I 

theorem, consider the distribution function (2.3.5). It is not di fficult 

to s ee that the following is valid: 

Since 

A (t+llt) = 
V 

E~o,t+llt = 
1 

i 
u 

:r=o 

0, 

E 
i=v 

then the following is valid: 

All (t+ tt ) = 

0, 

+ E P(E~o,t n Et,t+ ll t)+ 
. 1.-l 1 
1.=v 

On the basis of the following 

E 
i= ,) 

i 
E 

t=2 

inequality, 

co i 00 

Et ,t+t.t ) E , E p (E~o It n Et,t+6t ) = . r {P <EI~2t n 2 
i=v t=2 

1.-T T 
1.=v 

I 

E~ 1 t+ t1 t)} 
co 

+ p (Eto,t n < E P(Et,t+6t) 
0 l 

1 =2 T 

Therefore, on the basis of condition a) of the theorem, we have 
CD 

A (t+llt) = E p (E~o It n Et,t+lt) + 
V . i=v l 0 

co 

P(E~o,t t;"t ,t+6t )+ + E n 0 (lit) 
i=v 1 - 1 ..,1 

and consequently, 

+ ... 



we have 

aA (t) 
\) 

at 

CX) 

tit= r 
i=v 

a, 

+ r 
i=v 

30 

P(E~o,t n Et,t+ti t) + 0( 6t ) 
1.-l 1 

On the bas is of the following equality, 

if A£ B , then P(B-A) = P(B) - P(A) , 

aA (t) 
V 

at tit = 
CX) 

r 
i=v 

CX) 

+ r P( E~o,t n Et, t+ tit ) + O(tit) 
. 1.-l 1 1=v 

so that by virtue of the s et relation 

A-B = A ('\ Bc 

(2.3.13) 

(2.3. 14) 

where Bc means the compl ement of the set B, the following equality is 

valid : 

t ,t t ,t t t At 
P(E . o -E. o () E ' + u ) 

1 1 0 

t ,t t ,t t t At 
= P(E . o () (E . o n E ' +u )c) . 

1 1 0 

By virtue of de Morgan 's laws (s ee (1) p . 17 or (13), p. 10), it f ol lows 

that 

and since 

t , t 
E. o n 

1 

(2.3 .15) 
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the follo wing relation holds: 

t
0
,t 

P(E. 
1 

Therefore, on the basis of these r esults the follo wing is 

obtained: 

aA (t) a, 

P(E~o,t Et,t+t.t) \I t. t . I n + = at J. 1 i=v 

CZ) 

Et,t+tit) + L p (E~o, t () + 0 (tit) 
i=v J.-1 1 

and by virtue of condition b) of the theorem the assertion follows. 

Proof of Theorem 4 . 

The proof of this theor em 1s very simple; indeed on the basis 

of the following obvious r e l ation 

{w; t <t, t <T}={ w• t <t} 
\)- \)- I \)-

and Theorem 2, we have 

or 

P{w;-t· <t,t <T}= 
\/- \)-

p { (IJ ; T < t I t < 'l' } = v- \)-

I 
i=\/ 

a, 

l P (E~o,t) 
. 1 i=v 

P{ w; t <T} v-

from which the proof of the theorem follows . 

t 't 
4. CALCULATION PROBABILITIES OF THE EVENTS E o 

V 

1°. We have seen from the previous exposition that several very 

important characteristics of the stochastic 

related to the probabilities of th e events 

process n (t, w) are closely 
t

0
,t 

P(E ) More precisely, 
V 
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the distribution functions of the t wo stochastic processes may be ex

pressed a~ sums of these probabilities . 

Ther efor e , an effective obtaining of one-ciimensional distribution 

functions of the processes nt and 1: , depends on our capability to 
V 

calculate probabilities 
t 0 ,t 

for V = 0, 1, 2' . . . and P(E ) every 
V 

t ? t 
0 

On the basi s of conditions a) and b) of Theorem 3 , t hi s cal-

cul ation can be done . To accompli sh thi s objective it is necessary to 

prove the following theorem: 

Th~orem 5. 

As suming that conditions a) and b) of Theorem 3 are satisfied , 
t

0
,t 

then t he probabilit i es P(E ) for every v = 0, 1, 2, ... are 
V 

solutions of the following system of differential equat i ons : 

(2.4.1) 

To obtain a solution of the system (2.4.1) we will us e the method 

of generating func tions which has been app lied by Khintchin (see (17), 

p. 18 and p . 23), under the assumption that the foll owing condition is 

sat isfied : 

t t 
Vt~ t P(E 0

' ) = 0 if v < 0 
0 V 

(2.4 .2 ) 

The general solution of t he syst em (2.4.1) has the following form: 

(2. 4 .3 ) 

The expression (2.4.3) represents a so lut ion t o the system of 

equations under conditions a) and b) of Th eorem 3. I f it is assumed 

that condition a) of Theorem 3 is satisfied and b) is modified in the 
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following manner 

= "l (t, v-1) 

then the system (2.4.1) become s 

at (2.4.4) 

The particular import ant case is if th e function >.
1 

does not depend 

on t but on v only, then (2.4.4) become s 

aP(Eto,t) 
--~v __ = >. (v-l)P(Eto,t)- Al(v)P(Et\Jo,t) 

at 1 \J-l (2.4.S) 

. In the following, the proofs of the previous assertions will be given . 

2°. Appendix - Let us prove Theorem Sand other assertions in 

the previous exposition. 

Proof of Theorem S. 

I~ order to prove the theorem consider the following relation: 

= P(Eto,t n Et,t+tit)+P(Eto,t (\ Elt,t+tit)+ 
v o \)-1 0 ( lit ) 

Therefore , we have 

+ p (E to, t n E tl, t+ ll t) + 0 ( tit ) 
\J-1 
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so that the following is obtained : 

Finally, on the basis of (2.3.15) we have 

which proves the theorem. 

Let us now state the procedure to obtain t e solution of the 

system of differential equations (2.4.1). In order to ach ieve this 

goal, corsider the function 

a, 

Ht,z) = l 
t , t 

P (E o ) z v (2.4.6) 
v=O 

and multiply both left and right sides of the syst em of equations (2.4.1) 

by 
\) 

z and take the sum of the both sides from v = 0 up to v = 00 • 

Then, obviously, the following is obtained: 

CD 

I 
v=o at 

CD 

zv = -),.1 <t) I 
v=o 

CD 

= >.
1 

(t) (z-1) > 
v=o 

P(Eto,t)zv 
\) 

Therefore , on the basis of (2.4.6) the last relation results in the 

following form 

a~(t,z} = at >,. 1 (t) (z-l)cp(t,z) 

or 
alncp(t,z) = 

at >,. 1 (t) • (z-1) 



wherefrom we have 

Since, by definition, 

t ,t
0 

P(E 
O 

) = 
. \) 

then the following is valid 

<P(t , z) = 
0 

so that (2.4.7) becomes 

00 

I 
v=O 
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0 if v < 0 

lif v= O 

t , t 
P(E o 0

) zv = 1 
\) 

ln¢(t ,z) = (z-1) A1 (t
0
,t) 

Therefore , on the basis of (2.4.6) we have 

cp(t, z) = e (z-l) ,\1 (to,t) = 
ao 

= e z A 1 ( t 0 , t) • e - A 1- ( t 0 , t) = I: 

v=o 

(2.4.7) 

i.e., 

I 
ao 

I: 
v=o 

( t t) 
[ A l ( t

0 
, t ) ] v 

e - J\ 1 Q I -----=--- Z 
v! v=o 

and finally 

whic11 proves the theorem. 

The results (2.4.3) represent the most general expression for the 
t 0 ,t 

probability of the events E v = 0, l, 2, ... t ~ t , under con-
v 0 

ditions a) and b) of Theorem S. Obviously, these probabilities depend 

on an unknown function Al (t) , therefore it is i mportant to posses s a 

method for its evaluation. 
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As will be seen in the following section , in some particular cases 

important for practical application function Al (t) can be obtained im

mediately. In any cas e, this function or its int egra l _ A
1 

(t
0
,t) must be 

obtained either from the properties of the r ainfall or experimental data, 

or it has to be given. 

ties 

5. DISCUSSION AND APP LICATIONS 

In the previous section, an analytic expression for the probab ili
t0,t 

P(E ) , for every v = 0, 1, 2, ... and t ~ t has been ob-
\ ' 0 

tained. This r esult is very important since it can be seen from (2.3 . 3) 

and (2.3.5) that the one-dimensional distribution functions of the proc-

esses T v= l,2, ... 
V 

and t ~ t , can be expressed over t hese 
0 

probabilities. Only t he question of how the function A
1

(t) can be 

effective l y obtained r emains open. 

In order to contribute to the solution of this prob l em , it is 

necessary, besides t he pure probab ilistic definition of t he function 

Al (t) given by the limit 

P(E
1
t,t+Atl Et0 ,t) 

\J-1 
(2.5.1) 

to possess its phenomenological interpretation . Toward this end, con

sider first the stochastic process nt . Since by (2.3.2) 

then on the basis of (2 .4~3) the fol l owing is valid 

p (t) 
" 

==e 
" . 
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where , as it has been seen, P (t) represents the probability that 
V 

exactly v compl ete storm periods will occur in the interval of time 

(t
0
,t) , for every t ET* . The expected (average) number of storm 

periods during this interval is given by the function 

a, 

= e I 
v=== l 

V •--------, 
v! = 

:::. 

-It > to A1 (s ds a, 

e I 
rt . " to A1 (s)ds) 

= 
v=l (v-1) ! 

- It A1 (s)ds 
(ft Al (s)ds)" to 

cf t 
a, 

It A1 (s)ds) [ to 
Al cs )ds =e = 

t v=l V ! to 0 

Therefore, the average number of storm periods in the interval of 

time (t ,t) is given by the integral 
0 

t 
E(nt) = ft Al (s) ds 

0 

(2.5. 2) 

On the basis of this, integrand Al (s) represents some kind of intensity 

measure of storms . 

Obviously, if the function Al (t) is larger then the average 

number of storms is larger. Particularly, if in some subinterval 

(t1,t 2) of T* values of Al (t) are larger than for instance in 

(t
0
,t1) , a larger number of storms can be expected in (t 1,t2) , even 

if the following equality is valid 
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Consider how the distr ibution functi n A (t) of th e random 
\) 

variable , , v = 1, 2 , ... 
\) 

On t he basis of (2.3 . 5) and (2.4 . 3), 

the follo wing r elation is va lid 

-ft 
A (t) 
" 

= e to 
Al (s)ds 

a, 

1 
E r (J'+l ) 

j =v 

t 
([ Al (s)ds) j 
to 

Since (2.5.3) could be written in the fol lowing manner, 

(2 .5 .3 ) 

- r to r t t Al (s) ds -t Al (s)d s v-l 

A (t) = e (e 
O 

- I: 

" 
1 

r (J' +l ) j =o 

t 
(f :'1.

1
(s)ds)j)= 

to 

-ft >-1(s) ds v-1 
to 1 

=1-e I:~~~ 
j =o r(j +l ) 

t 
( ko :\ 1 ( s) d s ) j 

we have 

etc. 

a (t) 
\) 

1 -

t t 

1 - e 

-f A
1

(s)d s -[ :'1. 1 (s)ds 
t 0 to -

-e 

By virtue of Theorem 3, the corresponding density function 

of distr ibut ion function A (t) 
\) 

has the following shape : 

A.
1 

(.t} 

a,"(t}= r(v) 

t 
· -( >.

1
(s)ds 

to rt 
e (t 

0 

v-1 >. (s)ds) 
1 

(2.5. 4) 

Ther efor3, for v = 1 and v = 2 we have, 
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-ft >. 1 (s) ds 

0.1 ( t ) ). 1 ( t ) 
to = e 

t 
-{ >. 1 (s)d s t 

0,2 ( t ) = >- 1( t ) e o I >. 1 (s ) ds 
to 

e t c . 

The mathematical expectation of the random variable 

v = 1, 2 , .. . i s given by the following expressio~: 

T 
V 

for 

E ( • ) 
V 

= 1 
rTvT 

t 

-I 
f t). l (t)e o 
to 

GD 
;\ 1 (s ) ds t 

Cf ;\l(s) ds )v - l dt (2 .5.5) 
to 

Formula (2.5.5) represents the arithmetic mean of the upper bound 

of t he v-th storm period. In the following, the difference 

E(T ) - t 
V 0 

v =l, 2, .. . 

r epresent~ the minimal average time during which exactly v storm 

periods will occur . 

I t is possible to give another interpretation of the differ ence 

(2 .5 .4); it is the average total time elapsed up to the end of the v-th 

s t orm peri od. 

Let us now return to the problem of evaluation of the function 

(2. 5 .6) 

On the basis of definition ). l (t) ~ 0 , therefore, integral (2.5 . 6) 

represent s a monotonous nondecreasing t function. Further, since 

integral (2.5.5) represents the average number of storm periods in the 
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interval of time (t
0
,t) , the integrand Al (t) represents some kind 

of intensity measure of storm periods. 

(~,O) 

Fig. 9 Graphical pres entation of the 
function A1 (t

0
,t) 

Let us now consider a particular case where the function A1 (t) 

can be easily evaluated and which is of a great importance for practical 

applications. Toward this end, consider relation (2.5.1); as is seen, 

it expresses the stipulation that the probability of belonging to some 

interval (t,t+~t) of the termination instant of a storm period doe s 

not depend on v , i.e., on the number of storm periods up to time t 

but on t and ~t only. The immediate consequence of this hypothesis 

is the nonnegative function Al (t) , which represents a kind of measure 

of storm period intensity. 

With respect to the seasonal variation, it is realistic to expect 

that the f unction Al (t) is a periodic function. For a temperate zone, 

the corresponding period is usua lly one year; generally speaking for 

different climatic zones the function Al (t) has different shapes . 
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As an example, consider a tropical zone . In this case, it is 

realistic to assume that the function Al (t) can assume the two di f 

ferent values Al.l and A1 _2 only, for the wet and dry season r e 

spectively , i.e., 

if t belongs to the wet seaso n 

if t belongs to the dry season 
(see Fig . 10a) 

To justify this assumption, suppose that the instant of time t 
0 

represent s the beginning of the wet season ; then the following int egral 

where t , (t ~ t) be longs to the wet season as well, r epresenting 
0 

the average numb er of storms in (t , t) 
0 

is a linear t function, i.e. , 

if t increases, then the average numb er of s torms increases as a linear 

function, 

Since, 1\(t
0
,t

0
) = 0 it follows that b = 0 , and, by virtue of t he 

following relations 

" 1 (t), a 

where a = constant, it follows that >-
1 

(t) is a constant as well. 

If it is assumed that t = 0 
0 

and T* represents the wet s eas on, 

then on the basis of (2.3.2) and (2.4.3) probability of v storm periods 

occurring in the interval of time T* = (O,T) is 

(2.5.7) 



wet 
season 
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dry 
season 

Fig. IOo A graphic ii lustration of intensity function >-itl 
for a tropical zone 

Summer 

Fig. IOb 

Autumn Winter Sprino 

Graphic i llustrat i on of intensity function >.Jt) 
for a temp erate zo n 

t 

t 
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Therefore, the number of storm periods in the wet season is distributed 

according to Poisson law. The corresponding distribution function 

F(xlt) given by (2.3.3) is equal to the following expression 

lxJ 
F(xlt) = e-).tt_T L 

v=O \I • 
(2.5.8) 

Since the random variable T for v = 1, 2, ... can take any value 
\I 

from the interval of time (t
0

, 00 ) , it is assumed that T = 00 Therefore, 

assuming Al = cons. on the basis of (2.5.4), the following is obtained: 

v-1 t 
(2.5.9) 

where t =0 
0 

Obviously, (2.5.9) represents a Gamma density function 

with parameter Al As is known, 

E(t ) = L 
\I Al 

D(, ) = v 
\I II (2.5.10) 

Finally, on the basis of (2.4.3), t he conditional density function 

f (t!T*) becomes 
\I ! 

f (tlT*) = 
\) 

JT 
t 

). l (t) e 

Cl> 

r (v) L 
i=v 

A
1

(s)ds 

f t v-1 
( t Al (s)ds) 

( J!,/ 1 ( s) ds) i 

i. 

(2.5.11) 

If a tropical zone is of interest (assume, for i nstance, that the interval 

of time (t
0

,T) represents a wet season) then Al (t)=All , and (2.5.11) 

becomes 



or, s et tir_g 

f (t!T*) 
V 

t =0 
0 
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(t-t ) \)-1 eA11 (T-t) 
0 f [ (T-t<;>) Al l] l 

. l • 
l=\i 

t\)-1 e>-11. (T-t) 

oo (1111T)l 

i;v i ! 

6 . PRECIPITATION AND MARKOV CHAIN 

(2 .5. 2) 

1. Up to the present time , the precipitation phenomenon and its 

most important characteristics have been consider ed in a given int erval 

of time (t ,T) independent of and isol ated from the previous behavior 
0 

of the phenomenon considered . For example , does the number of storm 

periods in a previous interval of time influence t he number of storms in 

the interval (t ,T) ? 
0 

According to experience , ther e are cases Khere this rel ationship 

can be as sumed as justified. For example, the number of storms in the 

springtime influences the number of storms in the summer time. But the 

quest ion , is there corre lation Qetween number of storm periods in t wo 

successive years, is discussible, according to t he opinion of some 

hydrologi sts and metereologists. 

The purpose of this section is not t o discuss in which cases there 

exists such a stochastic relationship and in which there is none . The 

re sponse to such a question can be obtained by studying corresponding 

data only. In the following , we are going t o pres ent some methods by 

the help of which this problem could be s tudied . 
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Consider a sequence of successive time in:ervals 

(T 
1

,T ), 
v-... V 

and denote by 

the corresponding number of storm periods r espectively; th en 

random variab l e for every v=l, 2 , ... such that 

T ,T 

(2.6.1) 

is a 

P{w· n = i }= P(E.Y-l v ) 
1 

\) V l. (2.6. 2) 
\I 

Of particular interest is the following question: does the 

knowl edge of the number of storm periods in the past and the present 

time give to us some information concer ning the future behav ior of th e 

phenomenon considered? In other words , if it is known that 

what could be said about future 

condit ioua l probabili t y 

On the basis of 

conditiona l probabili ty (2.6 . 3) becomes 

Tl =i 
\) \I 

, i.e., what about the fo ll ow ing 

(2.6.3) 
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k=L,v}= 

v+l T ,T 
Pn(Ei-r-1 ' ) 

, =l ' 

T ,T l v T 1 ,T 
= P(E .v v+ In E .' + ' } 

1 v+l ,=l 1 (2. 6 .4) 

IL the simplest case, if i t is assumed t hat (2.6.4) represents a 

s equence of i ndependent random variab l es , then (2.6. 3) becomes 

T ,T l 
= P( E. v v+) 

1 v+l 
(2 . 6 . 5) 

The other possibility is t o assume t hat the future s t ate depends on the 

present state only , so that (2 .6 . 3) can be writ t en i n the following 

manner : 

T ,T l T 1 ,T 
= P (E. v v+ I E v - v } 

iv+l iv 
. (2.6.6) 

Therefore , under this condition , the sequence (2 . 6 .1) represents a 
I 

Markov chain with (2 .6.6) as transition probabilities . If (2.6 . 6) is 

denoted by , i . e. , 

P. i (v, v+ l) 
1 v• v+t 

T T 
= P( E. v' v+ l 

1 v+ l 

T 1 ,T 
E . v - V) 

1 
(2 . 6.7) 

\J 

then obvious l y the following is va l id: 

0D 

L 
i =o 

\) 

p. ~ 
l. ,.l Y+ 1 

V 

(v, v+l) = 1 Vi = 0,1, 2 , . .. v=0,1,2, . .. 
\) 
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If each t ime interval (Tk-l'Tk) k=0,1,2, .. . repres ents a 

year, then it s eems realistic to suppose that transition probabi l ities 

are independent on v , i.e., (2.6. 1) represents a Markov chain with 

stationary transition probabilities. Then (2.6.7) can be written in the 

follo wing manner: 

P .. 
1J 

T ,T l T 1 ,T 
= P(E.v v + jE.v- v) 

J 1 
(2.6.8) 

In order to effec tively obtain transition probabilities (2 . 6 .8), 

cons ider t he expression 

p .. (t) 
1J 

T ,t T 1 ,T 
= P(E .v I E .v - v) 

J 1 (2.6.9) 

where T <t < T · then i f the condition is satisfied that 
v - v+l ' ' 

T T T ,t 
I E . v -1 , vn E . v > 

1 J 
6t (2 .6 .10) 

the system (2.6.11) of differential equations is obtained: 

T ,t 
aP(E. v I 

J 
at 

T ,t T 1 ,T T ,t T l T 
= L(t)[P(E.vl !E.v- v}-P(E.v IE, v-, v)J. 

1 J- 1 J 1 

(2.6.11) 

The solut ion of this system of equations -:an be obtained in a 

manner simi l ar to the so lution of the syste~ (2.4.1) , so applying the 

same method for solution, the following is obt ained : 

-A,(T ,t) ( A, (T ,t)]j 
1 v 1 v 

= e j ! (2 .6.12) 
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where 

J\.(T,t) 
1. \) (2.6.13) 

Let us discuss now the condition (2.6.10) which represents t he 

basic hypothesis under which results (2.6.12) have been obtained . For 

sufficient ly small 6t , (2.6.10) can be written as 

P(Et,t+6t 
1 

T 1 ,T T ,t 
E.v- v n E.\) ) ::-: A· (t)6t 

l. J 1 
(2.6.14) 

Phenomenologically speaking, the last relation expresses the following : 

the expression on the left side of (2.6.14) represents the conditional 

probability that a termination instant will lie between t and t+ 6t 

under the condition that exactly i storms have occurred in the prev ious 

period (T 
1
,T) and exactly j 

\)- \) 
storms from T up to t 

\) 
In other 

words, this is the probability that the end of the (j+l) storm period 

will occur somewhere in (t 't+6t) under the condition that n =i and 
\) 

The right side of (2.6.14) is a function of t i and 6t 

only, therefore under condition (2.6.10) or (2.6.14) it follows that the 

probability that a termination instant will belong to a time interval 

(t,t+6t) depends on the number of storms i in the previous period 

, on t but not on the number of j storms in (T ,t) 
\) 

The more general hypothesis represents the assumption that the 

function ,"\.(t) depends on j as well, i.e., of the number of storms 
1 

in (T,t): 

P(Ei't+ ti t I E;v-l'Tv (\ ETJ_v,t) 

lim -----------------=:'----- = 
tit 

,, . . ( t) 
l. J 

. (2.6.15) 
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Under this condition, the system (2.6 . 11) becomes 

Tv ,t 
~ p (E. ('I 

J 

TV -1 'T 
E. ) 

l. 

TlJ ,t 
= "1· . l(t)P(E . 1 

I J- J-

T 1 ,T 
E.v- v)

l. 

= 

(2.6.16) 

On the basis of definition of (2.6.9), the following relation 

obviously is valid 

Therefore, 

Cl> 

.E 
J=O 

p .. (t) 
l.J 

= 1 

on the basis of (2 . 6 .1 2) 
Cl> 

mi (t) = .L 
J=l 

-A. (T ,t) CD 

1 \.' 
E j = e 

j=l 

i.e., 

mathematical expectation 

jP .. (t) = 
l. J 

J\.(T,t) j 
l. \) 

. ' J • 
= 

>,..(s)d s 
l. 

A . (T ,t) 
1 \) 

(2.6.17) 

In this manner, the phenomenologic interpretation of the int egral 

(2.6.13) has been obtained and represents the average number of storm 

periods in some interval (T ,t) under condition that n =i 
V V 

There-

fore, the expected number of storm periods in CT T ) under condit ion 
v' v+l 

that exactly i have occurred in is equal to m. (T 
1

) , i . e . , 
1 v+ 

m. (T +l) = E(nv+l ln.v=i) 
l. \) -



so 

Obvious l y, t he theory of Markov chains can be applied in t he 

who l e to the probl em of inves tigation of properties of the s equenc e 

(2. 6. 1) . Since, with respect to the extent of a l l these problems, such 

an investigation represents a separate study , we shall restrict consid

erat i on to the prob l ems which have been s t udied in th is section . 

2 . Appendix - Let us prove now that under condition (2 .6.10), 

the function (2.6 . 9) satisfies the syst em of differential equa t i ons 

(2.6 . 11). In order t o achieve t his goal, consider t he fol lowing ex

pression: 

T t +6 t 
P( E .v, 

J 

T 
1

,T 
E.v- v ) = 

l. 

1 
= 

T 
1

,T 
P(E . v- v ) 

l. 

1 = 
T 1 ,T 

P(E . v- V) 
l. 

1 
= 

T ,t+ t. t T 1 ,T 
P c:s. v n E. v- v > = 

J l. 

j T ,t t t T 1 ,T 
\p ( E ." n Et , +t. fl E. v - V) = 
/ =Eo J- t , i 

j 
[ 

't = o 

Tv,t T 1 ,T 
( n Et, t+ lltA E .v- V) 

p E. ,,.. ,.. I I l. J- L ~ 

On t he basis of the inequali t y 

j T t 
' P( E . v' n Et ,t+et n 
L.. ...., J- , 1 

t = ~ 

T T 
'J-1' V E~ ) < 

.J.. -

P( Et,t+e t) 
t 

it is net difficult to see that for sufficiently small 6t the following 

r e l atio~ is va lid: 
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T ,t+t.t T 1 ,T 
P(E.v IE,"- ") 

) l. 
= P( E~v'\') Et,t+ot I E~v-l'Tv) + 

J O l. 

T 1 ,T 
E. v- " )+ o(t.t) 

l. 

Therefore, we have 

Since 

and 

T ,t+ot T 1 ,T T ,t T 1 ,T 
P(E." I E . v- v)- P(E." IE,v- ") = 

J l. J l. 

T ,t T l'T T ,t t t At T l'T 
= ( v I E . "- ")+P(E." (\ E '+u IE,v- ") + - p Ej l. J o l. 

T ,t 
-P(E." 

J 

'I' 
P(E. :: -

J 
V 
,t 

T 
1

,T 
E . v- ) + O(t.t) 

l. 

T 1 ,T T ,t 
E."- ")+ P(E." n E~,t+t.t 

l. J l. 

T ,t 
Et,t+t.t 

T 1 ,T 
E." (\ E.v- ") - = 

J 0 l. 

T ,t T , t 
Et,t+ t. t)c 

T 1 ,T 
=: - P (E . " n (E . v E.v- ") 

J J 0 l. 

T ,t t t T 1 ,T 
= - P{E." n (E I +t.t)c IE \) - "> 

J O 0 

ao 

u 
t=l 

= 

the following is obtained: 

T ,t+t.t T 1 ,T T ,t T 
1

,T 
P(E." I E.v- ") - P(E.v IE,v- v) = 

J l. ) l. 

T ,t T 1 ,T 
aP( E. v IE."- ") 

J J. 

at 

(2.6.18) 
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On the basis of this relation, the follo wing conclusions can be drawn . 

If it is assumed that the condition (2.6.10) is valid, then apparently 

the system of equations (2.6.11) follows immediately . On the other hand, 

if instead of (2.6.10) we suppose that the condition (2.6.15) is truthful, 

then the probability 

T ,t 
P .. (t) == P(E.v 

l.J J 

is a solu~ion of the system of equations (2.6.1 6) . 

No:e: 

Wi:h respect to the nature of the rainfall phenomenon, obviously 

the relationship considered among the sequence of time interval (T 1,T) 
\/- \/ 

where v=l ,2, ... , depends on these intervals. In other words, the con-

ditional probability (2.6.4) up to a certain point depends on these 

intervals. 

The hypothesis established that the sequence (2.6.4) represents a 

Markov chain with stationary transition probabilities (homogenous Markov 

chai
1

ns) i.3 very realistic under the assumption that (Tv-l 'T) r epre-
1 

sents a year for every v= l,2, .... We arrive at the Markov chain of 

order k , if given fixed k for all v and for all possible values 

of the variables nv (v=l,2, ... ) it is true that 

n =i }= 
\) \/ 

n =i , v-,+l v-k+l 
n ==i } 

\/ V 

etc. All these questions, for example, are of the greatest interest in 

water storage problems and evaluation of weatl1er modification attainments. 
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However, if it has been taken that (T 
1
,T) represents 

V- V 

sma ller periods of time, then, generally speaking, the hypothesis is 

not true :hat th e sequence of random variables represents a ~larkov 

chain with stationary transition probabilities. Therefore, th e condi-

tional probability 

tion on ~ , i.e., 

p .. 
lJ 

p . . (v) 
l.J 

given by the relation (2.6.8) becomes a func-

T ,T l 
= P(E." v+ 

J 

T T 
E .'J-1' V) 

l. 

For example, it could be taken that (T
0

,T1) represents the 

spring time, (T
1

,T2) summertime , (T2 ,T3) autumn, etc. In this case 

it looks ·1ery r ealistic to take into considera ion the possibility that 

(2.6.1) may represent a Markov chain of a higher order than one. 

All these problems, of the greatest importance for applica t ions 

in hydrol ogic investigation, wil l not be considered in this paper. 

Their consideration can be the subject of a s eparate study. In th is 

paper, we shall restrict ourselves to the previously stated prob lems. 
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Chapter III 

1. Introductory Remarks 

The two fund amental characteristics of th,e stochastic process of 

nondecreasing sample functions Xt=-rr(t, w) have '.Jeen considered in the 

previous chapter. The first of these characteristics, nt ~ giving us 

information concerning the frequency of storms, represents the number 

of full storm periods in some interval of time (t , t) 
0 

As has been 

shown, the distribution function F(xlt) of the random variable can be 

written in the form 

F(xjt) \ft> t 
- 0 

where Eto,t represents the random event that exactly v full storm 
V 

periods will occur in the interval of time (t , t) . 
0 

Another characteristic is the random vari ab le , , representing 
V 

the total elapsed time up to_ the end of the v-th storm period or the 

upper bound of the v-th storm period (see Fig. 3). As has been seen , 

the corresponding distribution function 

co 

A (t) 
V 

[ 
j=v 

= 

etc. 

Otviously, the rand6m variables 

A (t) 
V 

was 

and , , v=l,2, ... do not 
V 

give us information concerning the quantitative 1spect of the rainfa ll 

phenomencn, i.e., we have no idea about amount of precipitation dur ing 

these stc,rms. In other words, these variables r epresent some "dynamic" 

characteristics of the phenomenon considered. 
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In this chapter, the quantitative aspect of the precipitation 

phenomenon will be studied . The random variables, such as tl1e total 

amount of precipitation during exactly v storm periods, or during on e 

storm period only, etc., will be investigated. 

2. STOCHASTIC PROCESSES 1 and X 
X V 

1. Suppose that at the instant of time t 
0 

when the 

observation of the rainfall phenomenon begins, the total amount of 

precipitation was X 
0 

' if 1 denot es the maximum number of complete 
X 

storm periods such that their total amount of precipitation is smaller 

or equal to (x-x) 
0 

, then obvious ly 

(3.2.1) 

Where Gxo,x · · b (2 2 8) 1s given y . . . 
V 

In other words, the random variable 

1 represents the number of storms such that the corresponding total 
X 

amount of precipitation is less or equal to 

amounts for 1 +1 storms exceed (x-x) 
X 0 

(x-x ) 
0 

while total 

Since 1 repres ents the 
X 

random variable for all x > x , we have a family of random variables 
0 

or a cont i nuous parameter stochastic process 

{1 ' X > X } 
x' o 

(3.2. 2) 

where 1 = 0,1,2, ... 
X 

We should be very carefu l with the probability of the value 0 

of the random variable 1 
X 

Namely, the event 

X > X 
0 

( 3.2. 3) 
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could mean that t
0 

belongs to th e first storm period and that the 

following r elation is valid : 

In other words , (3.2.3) represent s the event that the tot a l amount of 

precipitat ion during the first storm period either exceeds the value 

(x-x
0

) or there is no precipitation at all in the considered interval 

of time 't* 

On the basis of (3.2.1), the mathematical expectation of th e 

random variab l e 1 is equal to 
X 

Cl0 

L 
\l=l 

(3.2.4) 

and r epresents an average numb er of storm periods such that the corre -

spending tota l amount of pr ecipi t ation does not exceed 

the amount of precipitation for 

(x-x ), while 
0 

storm periods exceeds (x-x) 
0 

Finally, if P(ulx) denotes the dis-

tribution function of the random variable , i.e. , 

P{w;n < u} = P(ulx) u>O 
X -

then obvious ly the following is va lid: 

[U] 
P(ulx) = ~ P(Gxo,x) 

v=o v 

where u denotes the greatest integer not greater than u 

(3.2.5) 
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Consider the random variable X , where 
V 

X = n ( T ,w) 
V V 

(3.2.6) 

Since X is a random variable for every v=l,2, .. . , it means that we 
V 

have a countable family of random variables or a discrete parameter 

stochastic process 

{X; v=l,2, ..• } " . (3.2.7) 

On the basis of (3.2.6), X represents the total amount of precipita
v 

tion during exactly v storm periods . Obviously, for all v=l,2, ... , 

the following inequality is valid: 

Consider now the event 

{w;X <X} 
\I-

Vv= 1, 2, ... 

i.e., the random event that the total amount of precipitation will be 

less or equal to 

valid: 

Theorem 6. 

X (where x > x ); then the following theorem is 
- 0 

Let Fv(x) denote the distribution of the random variable ¾ 
for every v=l,2, ... , i;e., 

F (x) = P{w; X <x} 
\J v-



Then 

F (x) = 
\) 

a, 

l P(G~o,x) 
j=v J 
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(For proof of this theorem see Appendix of this section). 

(3. 2.8) 

Let us denote the corresponding density function of the distr i -

bution function (3.2.8) by 

aF (x) 
f (x) = --"a--

" X 

f (x) , i.e. , 
V 

If the derivative exi s ts, then we have: 

Theorem 7. 

Assume tha t th e following conditions are satisfied: 

a) 

b) 

then 

lim 
6X➔O 

lim 
fix-+o 

"" 
I 

T=2 
6X 

= 0 

P(Gx,x+tix I Gx0 ,x) 
1 v-1 

6x 

(3.2.9) 

(For the proof of the theorem see Appendix.) 

Let us discuss now the conditions a) and b) of Theorem 7, wh i ch 

repres ent the fund amental assumptions f or furth er investigations. Ac

cording to definition, G2x,x+ 6x represents the event (random) tha t 

exactly t wo successive points X 
V 

val (x,x+ 6x) where v = 1, 2, .. . 

and X v+l will belong to the intet- . 

Pheno~eno logically speaking, 

G
2
x,x+ 6x represent s th e event that th e tot a l amount of pr ecipitat ion 
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X during v 
V 

storms and X v+l during (v+l) storms wi ll lie 

between x and x+ 6x, i.e., 

X<X <x+llx v-
00 

Obviously, U 
T=2 

and x<X 1 < x+~x 
v+ -

(v=l ,2, ... ) 

G x,x+ 6x repres ents the event that at least two 
T 

of the events will occur in (x,x+ 6x) . Condition a) means that the 

probability 

"" "" 
P( U I 

t=2 t=2 

when 6x➔O is an infinitesima l of a higher order than 6x . With 

r espect to the nature of the precipitation phenomenon, this condition 

seems very realistic. 

Let us dwell now on the s econd condition of Theorem 7. The 

expression 

(3. 2.10) 

represents the conditional probability that the total amount of precip

itation of the previous (v- 1) storms is less or equal to x . 
I 

Since, generally speaking, (3.2.10) depends on x,6x and v 

it would be r ea listic to assume that the function A
2 

depends on x 

and v , i.e., to assume that 

..\. 2 = A2 (x,v-l) 

Under this hypothesis (3.2.9) becomes 

f (x) = ).
2 

(x, "-1) P (Gx0 ,x) 
V v-1 

(3. 2.11) 

Cn the bas is of (3.2.5) and (3.2.8), it i s easily seen that 

between distribution functions P(u!x) and F (x) 
\) 

th ere exists the 
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relation~hip 

P(~lx) = 1 - F 1 (x) 
v+ 

and [u] = V (3 . 2.12) 

Therefore, it is sufficient to calculate onl y one of the functions 

(3.2.S) or (3.2.8); the other follows automatically from the relation 

(3.2.12). 

If the domain of definition of the stochastic process Xt = n (t, w) 

is a finit e interval of time T* = (t ,T) , then it is necessary to 
0 

consider the probability that 

i.e., 

X ~ x under the condition that 
V 

T £T* 
V 

F *(x!T*)=P{w; X <XIT £T*} 
V v- \/ 

(3.2.13) 

where v = 1, 2, ... 

Theorem 8. 

For every v = 1, 2, ... 

I 
F *(xlT*) = j-=v 

and x ~ x , the following is valid 
0 

(3.2.14) 

If f* (xjt) denotes the corresponding density function, then we have: 
V 

Theorem 9. 

If the following conditions are satisfied 

QI) 

l P(Gx,x+llx ) 
T 

a) lim _-r_=-2-------
6x 

6X➔O 

b) lim 
6X➔O 

6X 

= 0 



then 

f*(xjT*) = 

" 
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(3.2.15) 
a, 

L 
i=v 

The function (3.2.15) represents the density function of the 

random v~riabl e X under the condition t hat at least v storms have 
V 

occurred in the int er va l of time (t ,T) 
0 

2. Appendix - Let us prove the theorems which have been con-

sidered in this section. 

Proof of Theorem 6. 

The proof of this theor em is very similar to that of Theorem 2 . 

Indeed on the basi s of definition of 

the foll owing r e lationship is valid: 

G 
V 

X 0 ,x 
(see (2.2.8)), obvious ly 

fw;X"2_x}=. I {wp-*(Tj)2_X< n*C.j+l)} 
J=,, 

so that by (2.2.8) we have 

{w•X 
I \1 

«> Xo I X 

< x}= U G. 
- j=v) 

Finally, on the basis of (2.2.9) the following is obtained : 

CD 

P{w;X c x}= t P(G~o,X) 
V -· j~v ) 

and the assertion follows. 

CD 

= ' j=v 

Proof of Theorem 7. 

In order to prove the theorem , consider th e next relation 

CD 

F (x+ llx ) = 
V .L 

J=v 

p 
j 

l. 
't = 0 
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0:, 
0:, 

= P(G~O , x n Gx , x+lx ) + . P( G~o , X A Gx , x+~x) 
. L J o . L · J-1 1

' l + 

+ 

Since 

J=v J=v 

0:, 

\ 
l 

j =v -r = 2 

then on the basis of condition a) of theorem, f or sufficiently small 

lx , t he following is valid: 

F ( x + t1x ) ... 
'.J X 

j =-= v 

Consequently, we have 
aF . {:x ) 

11 
c:o 

~x = 

0:, 

+ l P (G':~ ~x n Gx,x+~x ) + 0 ( llx) 
j ==\l J - 1 

On the basis of (2 . 3.14) and the following relation, 

0:, 

( Gx , x+lx )c = U Gx, x+t.x 

t =l 

we obtain (see the proof of Theorem 3): 

aF ( x ) 
V 

ax 

0:, 

+ I 
j = v 

a, 

6X = L P(GxJ_o, Xn G~ ' x+lx ) + 
j = v 

P(G~o, x n Gx,x+lx ) + O( tix ) = 
J-1 1 

~here from condit ion b) of th e theorem the assertion follows . 

(3 .2.16) 
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Prooi of Theorem 8. 

On t he bas is of (3.2 .1 3), the followin g is valid 

P{w;X < X, T 

F * (x!T*) 
\) - V 

= 
'\J Ph· <T} 

\) 

Therefore , by virtue of Theor em 2 and 

F (x!T*) = 
'\J 

a, 

P( U 
j =v 

Cl) 

p (. u 
i=v 

CD a, 

PU u 
= 

j =v i =v 
a, 

I 
i=v 

which proves the theorem . 

Proof of Theorem 9 . 

<T} 

6 we have 

= 

Since the numerator of the expression (3.2.14) depends on x 

only, it is obviously sufficient to find its derivative only. Toward 

thi s end, consider the following r elation: 
I 

CD a, 

\ 
L 

j=v 

CD 

\ 
L 

j=v 

Cl) 

~ 

L 
j=v 

I 
i=v 

Cl) j 

I L 
i =v T=O 

CX) 

I t 
i= v T=2 
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Further , on the basis of th e following inequa lity 

a, 

I 
j= .,1 

.L 
i =v 

we have 

a, 

a! { . ) 
J=V 

a, 

= I I 
j=v i=v 

OC> OC> 

= I I P(G~O,x(\G~' x+ t x (\ E~o,T)+ 

j=v i=,1 J 1 

OC> a:, 

+ .I . I p ( G~O, X (\ Gx Ix+ li X n E ~o I T} + 0 ( liX ) = 
J= v i=v J-1 1 l 

Therefore, on the basis of condition b) the proof of the theorem 

follo ws. 

X ,X 

3. CALCULATI ON OF PROBABILITIES P(G o ) 
\) 

1°. It is s een th at distribution fun ctio~ s of th e random variab l es 

1 and X are expressed over probabi l ities 
X V 

x
0

,x 
P (G ) 

V 
The s ame is 
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valid for their density functions . Therefore, an effective obtaining 

of one-di.J:lensional distribution functions of the stochastic processes 

1 and X depends on our capabi lit ies t o calculate probabilities 
X V 

X0 ,X 
p (G ) 

V 
for every X :;:_ X 

0 
and V = 0, 1, 2 , ... On th e basis of 

condition a) and b) of Theorem 7 , this calculation can be done . To 

accomplish this objective, it is necessary to prove t he fo ll owing 

theorem. 

Theorem 10. 

As suming that conditions a) and b) of Theorem 7 are satisfi ed, 
x0 ,x 

then the probabilities P(G ) for every v = 0 , 1, 2 , ... are 
V 

solutions of the following system of differential equations. 

(3.3.1) 
ax 

To obtain a solution of the system (3.3.1 ; , the same procedure 

as in the case of Theorem S should be applied, and , under the assumption 

that the following conditions are satisfied: 

we have 

Vx>x 
- 0 

= e 
I

x 
>.

2
(s)d s 

Xo 

if \) < 0 

<ft A2 (s)ds) V 

0 

\I! 

(3.3.2) 

The function considered represents a solution of the system of 

equation (3.3 . 1). If the condition a) of that theorem is satisfied and 

the condition b) is modified in the following manner : 

lim 
6x-+o 

= ,.
2 

(x, v-1) (3 . 3.3) 



then (3.3.1) becomes 

aP(GXO,x) 
V 

ax = 

66 

>- 2 ( x , v ) P ( G xo ' x ) ( ~ 3 4) \,' .) . . 

Solution of this system of differ ential equatio~s wi ll not be con

sidered in th is study. Finally, the parti cular very i mport ant case is 

if it is assumed that A
2 

does not depend on x, but on the variable 

v onl y, then (3 .3. 4) becomes 

= ax 
(3.3.5) 

In the following exposition, the proof of the previous assertions wi ll 

be giver . . 

Appendix - Let us prove now Theorem 10: Obviously this proof 

must be very simi lar to the proof of Theor em 5. 

Proof of Theorem 10 . 

In order to prove the theor em consider the relation 

" u = 
-r = o 

It is not difficult to see that the followin g is va lid: 

ax 
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Therefore , on th e basis of relation (3.2.16) the following is obtained: 

aP(GXo, X) 
V P( ~Xo ',XnGXo,X)+ P(GXo,XnGx,x+ tix )~ Q1 t1x) 

1x = - u v 1 -v-1 J l . \ ax 

which proves the theorem. 

The solution (3.3 . 2) of the system of differential equations 

(3. 3.1) is obtained in t he same manner as the solution of th e system 

(2.4.1 ] . This result represents the mos t general expression for the 

probability of the event 
x0 ,x 

G ' V 
v =0,1,2, ... and 

if conditions a) and b) of Theorem 7 are satisfied . Obviously these 

probabilities depend on an unknown function >-
2

(x ) ~ 0. Therefore , it 

is of interest to possess a method for its evaluation . 

4. DISCUSSION AND APPLICATIONS 

As we have seen, an analytic expression for probability 
x0 , X 

p (G ) 

has been given in the previous section , for every v = 0, 1, 2, ... and 

X ~ X 
0 

This result is very important since one-dimensional distribu-

tion function of the processes 1 and X 
X V 

Only the question of 

ho¼· the function A2 (x) can be effectively obtained remains open. 

In order to answer this question, it is necessary, besides the 

pure probabi listic definition of this func t ion given by the limit 

lim 
t.x-+o 

t.x = 

to possess a phenomenologic interpretation of this function. In order 

to achieve this goal, consider firs t the process 

th en by virtue of (3.3.2) we have 

P{ w; 

1 
X 

Since by (3.2.1), 

>- 2 (s)ds ) 
V 

V • 
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Therefore , 

i.e. 

X 

-I 
0 

a, XO 
Iv-----

v=1 v! 
X 

= 

X 
-J ). 2 (s)ds " 

CD <! ). 2 (s)ds) 
X Xo = e Xo 

X 

E(lx) = f ). 2 (s)ds 
Xo 

I 
v=o 

=f 
" ! Xo 

(3.4.1) 

Since 1 represents the maximwn nwnber of storm periods such 
X 

that the corresponding total amount of precipitation does not exceed 

.the value (x-x) , integral (3.4.1) r epresents the average maximum 
0 

number of storms whose total amount of precipitation is less than or 

equal to (x-x ) 
0 

Let us dwell now on the problem of evaluation of the function 

X 

A2(x
0

,x) = f \2(s) ds 
XO 

). 2 (s)ds 

On the basis of definition, it follows that X ~ X 
0 

Therefore , the integral considered represents a nondecreasing x func

tion (see Fig. 11). 

A2 

X 

( X
0 1 0 ) 

Fig. 11 Graphica l presentation of the function A2(x
0

,x) 
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On the basis of th e ph enomenological interpr etation of the fun ction 

A2 , obviously th e integrand A2 = A2 (x) repres ents some kind of fre 

quency of storm in th e int erval (x
0

, x). In t he case wh en t ropical zone 

is considered, this function can be easily eva l uated. Then it is \·e ry 

realistic to assume that th e f unction A2 (x) can have on l y the two 

values, A2 1 in t he case of wet s eason and A22 i n the case of dry 
' 

season. Under this assumption, the problem becomes very similar t o the 

problem which has been considered in section 5 of Chapter II . 

Consider now distribution function F (x ) of t he random var iable 
V 

X 
V 

v=l , 2, ... On t he basis of (3.2.8) and (3 . 3.2 ) th e fol owing 

r e l ation is va l id 

<D 

F ( x ) 
V 

L 
j == v 

1 
r (j +l ) 

X . 
(( \

2
( s ) ds)J 

i<o 

Since (3.4 . 2) could be written in t he fo llowing manner : 

X 

(3.4 . 2) 

F (x ) == 

" 
-( A2 (s) ds -Ix \2 (s) ds vi l 

e ~o [ ( e o - l 

j ==o 

1 
r (j+ l ) 

<fx 
Xo >. 2( s)ds)j 

X 

-f A2 (s) ds v- 1 
1 X 

A
2

(s ) ds )j = 1 - e Xo E r( j+ l) <I j =o 0 

we have 

-Jt ). 2 ( s)ds 
Fl ( x ) = 1 - e o 

X 

-fx \2 ( s ) ds 
e 

O 
(1 

X 

f >.
2 

(s ) ds) 
Xo 

etc. 

]= 
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By virtue of Theorem 7, the corresponding dens ity function 

f (x) of the distributi on function F (x) has th e following shape : 
V V 

X 

f (x) = 
V 

;\ 2 (x ) - J° >, 2 ( s ) d s x 
e xo (f 

f ( V) 
v-1 

;i.
2

(s) ds) (3.4.3) 

Therefore, for V = 1 and V = 2 , the fo llowing is obtained : 

X 
-J ;i. 2 (s) ds 

f
1 

(x) ;\ 
2 

(x) Xo = e 

f 2 (x) 

etc. 

The mathemat i cal expec t ation of the r andom variable X 
V 

for 

v = 1, 2, . .. , is given by th e following expression : 

E(X) 
\I 

v-1 
;i.

2
(s)ds) dx (3 .4.4) 

5. STOCHASTIC PROCESS Z 
V 

One of the most interesting ques tions concerning the rainfal l 

phenomenon is th e prob l em of the total amount of precipitation during 

one s t orm period only . General l y speaking , i t cou ld be assumed that 

th is anount depends on th e number v , where v indicates the serial 

number of storms , or on v and the tot a l amount of precipitat i on in 

th e previous storms, e t c. 
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The purpos e of this section is to establish some mathematica l 

mode ls which could help to investiga te al l of th es e prob l ems . Toward 

this end , let us denot e by z 
V 

th e tot a l amount of precipitation dur i ng 

th e v-th storm period. Obviously, then, 

Z = X - X v =1,2, ... 
V V v-1 

(see Fig. 12), and 

Z - 0 
0 

(3.5.1) 

Therefore , we have a countable family of random variables or a dis crete 

parameter stochastic process 

{ z • 
v' v=l,2, ... } (3.5. 2) 

In the following exposition, we shall start to study the simp l es t 

case; we will suppose that (3.5.2) is a sequence of independent r andom 

variabl es, i.e., that th e stochastic process (3.2.7) is a process with 

independent increments. Phenomenologica lly speaking, it is assumed 

that the total amount of precipitation during the v-th storm period 

does not depend on the amount of precipitation during the previous 

storms , but on the serial number v only. 

For the following expos it ion, it will be necessary to prove that 

z 
V 

and X v-1 are independent random variab les for every 

Indeed , consider the characteristic function 

E{e(aXv-1+ SZv)i = 

v-1 
E{e[ak!l (Xk- Xk- 1) + SZvl~ = 

v-1 

E{e[ 0 k~l 2k + 82 v 1i} 

V = 1, 2, ... 
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___ _,__ _________ _.__ ________ t 

Fig . 12 Graphic Representation of the Physical 
Meaning of the Process Z v 

u 

Fig . 13 Graphic Repre senta t ion of the Relation ( 3.5.3) 
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Since, ty definition, random variables Z V = 1, 2, . .. , 
V 

independent , i.e., every finit e class of Borel set 

S ), th e followin g r e lat i on is valid: 
Tn 

n 
P ('\ { w; zk E s 1 } = 

k=l n 

and we have 

n 
n P{w 

k=l 

V"""'l 

are 

( Cl X + a Z ) . ( Cl k[ l l k ) i a Z . 
E{e ~-1 µ v 1

} = E{e - } E{eµ v 1 } = 

Let B ( z) denote the one-dimensional distribution function of 
V 

the stochastic process (3.5.2), i.e., 

B (z) = P{ w; Z < z} 
V V -

and suprose that the following derivative exists 

l, (z) = 
" 

dB ( z) 
V 

dz 

I 
for every z ~ 0 . Consider now the sum 

then by virtue of the previous results we have (See Fig. 13) 

P{w; X <u+x} = P{w; X 1+z ~u+x} = 
V - 0 v- V 0 



Therefore , we have 

u 
F . (x +u) 

V 0 = l 
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(x +t!) (l-~) 
J O U 

XO 

f 
1

(x)b (z)dx dz 
,;- V 

Differentiating (3.5.2) by u, the following is obtained 

u -
f .x +u) = J f 

1
[(x +u) (1-~)] b (z)dz 

V O v - 0 U V 
0 

or, on the basis of (3.2.9), 

(,).5.3) 

(3.5.4) 

where b (z) is an unknown function. Therefore , by virtue of (3.3.2), 
\) 

the following is obtained: 

b (z)dz 
V 

(3.5.5) 

The equation (3.5.4) represents an integral equation. Since, by 

definition, \ 2 (x) = 0 for x < 0 , this is a Voltera's integral equa

tion of the first kind with 

as the kerne l. 

z 
(x0 +u) (1-u-) 

-fx ).2(s)ds ( + ) (1-z) o Xo u - cr v-2 
e CJ ;.

2 
(s)ds) 

Xo 

Solution of this integral equation gives the one-dimensional 

density function b (z) of the stochas tic nrocess ( .:i . 5 . 2). In fact, 
V 
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the equation considered represents a particular Vol t era's integral 

equation called "convolut i on integral equation" (see F. Tricomi (33)). 

One of the methods for studying such an equation is by Laplace trans

forms. 

Conside r now the simplest case , i.e., when 

(3.5 . 6) 

Then on the basis of (3 .5. 5), th e following is valid: 

= ( v -1) 
u 

f 
-A z v -2 e 2 (u-z) b (z) <lz 

\) 

0 

where we assume x = 0 . Solution of the equation considered can be 
0 

easily ob tained by differentiating its left and right side (v- 1) 

times. If we do that , the following relation is obtained : 

). = e). 2u b (u) 
2 \) 

or (3.5. 7) 
b (z) = A e-\2z 

V 2 

i. e., an exponentia l distribution has been obtained . 

Obvious ly, under assumption (3 . 5.6) the one-dimensional density 

function b (z) of t he process (3.5.2) does not depend on v , i. e., 
\) 

b ( z) = b( z) 
\) 

Therefore, a ll 

by (3.5.7). 

Z v = 1, 2 , . .. has the s ame density function gi ven 
\) 

The basic hypoth es is in th e former exposi tion was that the 

following relation is valid: 

P{ w; Z < z} 
V 

If this relation is not valid, then it is necessary t o find new 

solut ions for t he problem considered. 
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6. PROBLEM OF THE EXTREME STORMS 

In this part of the study, a particular problem concerned with 

the maximum and minimum storms in the given interval of time will be 

considered. In other words, if n storm periods are expected in some 

interval of time (t ,T) , and z represents the corresponding amount 
0 'J 

of precipitation during the v- th storm period, where v = 1, 2, .. . n, 

t hen one of thes e n storms as a minimum amount of precipitation and 

will be denoted by Z , where -n 

!n = inf 
l<v<n 

z 
\) 

and the other one has a maximum amount , 

z = n sup 
l<v<n 

z 
\) 

(3.6.1) 

(3.6.2) 

Obviously , (3.6.1) and (3 .6. 2) are random variables which depend 

on n = 1, 2, . .. ; therefore , we have two new families of r andom var

iaqles or two discrete parameter stochastic processes . 

Let 

{ Z ; n= 1, 2 , ... } 
-n 

{Z ; n=l, 2, .•. } 
n 

dis tribution function of the random variable Z -n 

Q (z) = P{ w ; Z ~z} = n -n 

= P{w; inf 
l<v<n 

Z <Z} 
v-

then on the basis of the relation (see Halmosh (12)) 

{w; inf 
l<v <n 

z > z } = 
'J 

n n {w; Z >Z} 
v=l v 

i.e ., 
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it follows that 
n 

P{ w.; inf 
l<v <n 

Z <Z} 
\)-

= 1 - p(\ {w; Z >Z} = 
v=l v 

n 
1 - P[ n {w ; Z <z}] c = P 

v=l v-

n 
U {w i 

v=l 
Z <Z} 
v-

Therefore, the following is valid: 

+ 

n 
I 

v=l 

n 

P{ w; Z <z} 
v-

I 
i;ij;ik 

P{w; Z .<z , 
]. 

n 
I 

i;ij 
P{w; Z.<z Z .<z } + 

].- J-

z . < z' J-

n-1 
zk~ z}- ... +(-1) 

(3.6.3) 

P{w;Z <z v= l,n } v-

If it is assumed that Z v = 1, 2, ... are independent random 
\) 

variables, we have then the following: 
n 

Q (z) = 1-
n 

or, finally, 

Q ( z) 
n 

n P{ w; Z >z} 
V 

v=l 

(3.6.4) 

Let q (z) denote the corresponding density function of the distribu
n 

tion function Qn(z); then obviously the following is valid: 

q (z) = 
n 

n n 
r bk c z) n ( 1 - Bk ( z) J 

k=l vfk 
(3.6.5) 

Consider now the distribution function H (z) of the random 
n 

variable Z i.e. n 

H ( z) n - P {w ; S'J.P 
l<v <n 

Z <zl v-. 
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Since the fol l owing is va id (see Halmosh (12)) 

{w; su p 
l< v<n 

th en we have 

z < z } = 
v-

n 
H ( z) 

n = p n {w; 
v= l 

n n {w 
·J=l 

Z <z} 
v-

z < z } 
v-

Consequently, assuming th at Z v = i, 2, ... n are independent r andom 
V 

variables, the following is valid: 

fi (z) 
n 

The corresponding 

h (z) n 

n =n 
v=l 

B ( z) 
V 

densi ty function 

n n 
= I: bk n 

k=l vik 

h ( z) is n 

B ( z) 
\) 

Suppose now that all random variables 

s ame distribution functi on , i . e., assume that 

B (z) = B(z) 
\) 

v=l,2, ... 

(3.6.6) 

of the following shape: 

Z v= l, 2, ... 
\) 

(3.6 .7) 

have the 

then on the basis of (3 . 6 . 4) and (3.6.6) we have 

Q (z) = 1-(1- B(z)]n 
!1 

n 
H (z) = B (z) n 

Therefore, the corresponding density functions 

of the fol lowing form: 

q (z) nb ( z) ( 1 n-1 = - B ( z) ] ~ n 

h ( z) = nb ( z) Bn-1 ) (z) 
n 

q (z) 
n 

(3.6.8) 

and h (z) 
n 

are 

(3.6.9) 
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Finally, if it is assume d that 

then we have s een that 

- A z 
0 "I - -, ' 

-). z 
B (z) = 1 - e 2 

\) 

r or every v = 1, 2, ... s o that (3.6.9) becomes 

(3. 6 .10) 

(3.6.11) 

Graphical representation of the functions (3.6.10) and (3 . 6 . 11) f or 

different values of n are given in Fig . 14 and Fig. 15 . 

Let us make a very brief analysis of the density function 

Since 

h~(z) 

obviously 

h (z) = 0 for 
n 

z = 1 ln(n) 
>-2 

I 
and therefore 

i.e., 

h ( 1 ln (n)] = n ).
2 

h ( ) , ( 1 __ 1) n-1 max z = I\ 
7. n 2 n 

If n➔00 , th en obviously 

). 2 
max h (z) + -

z 11 e 

h ( z) . 
n 

Consider now the mathematical expectation of the random variable 

iDf Zv and s~p Zv for the particular case when corresponding density 



z 

Fig . 14 Graphic Presentation of the Density Function q (z) for Different Values of n 

00 
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Fig. 15 Graphic Presentation of the Density Function for Different Values of n 
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functions a r e given by (3 .6 .10) and (3.6. 11) r espec tive l y. On th e basis 

of (3.6.10 ) , we have the fol l owing : 
00 

( ~ -A 2nz E inf Z ) = A
2

n J ze dz = 
l<v<n v o 

1 ... 

On the basis of (3 . 6 .11), the mathemati cal expectation of t he 

r andom variable sup z is 
l.5 v.$n 

00 

-~2 z n-1 - t-2 Z 
E( sup z ) = >, 

2
n I z(l- e ) e 

l<v <n V 

n-1 (-l)k 
:: ~ [ - ---

"2 k=o (l+k) 2 

and variance 
00 

0 

00 

I 
-:\ 2 7.(KH) 

ze 
0 

(n -; ) 
k 

D ( sup 
l<\/< D 

z ) 
V 

= A2n f{z- E( sup 
o l<v <n 

n-1 (-1) k v-1 (-1) k 4n I (·-1., - { ::_ I = - 2· ----- - ··----
A2 k=o (l+k ) 3 k ).2 k=o (l+k) 2 

dz= 

2. 
(n-1 )} 

k 

dz = 

In the following table , the values of the mathematical 

tio11 

E( sup 
l<v<n 

n-1 (-l',k z) = n l _ _ {n-1) 
v A2 k=o (l+k ) 2 k 

are given for n = 2, ... 9. 

n= 2 

3 
2 (-1) k { 2 ) n=3 I 

A2 k=o ( l+k) 2 
k 

4 3 (-1) k ( 3 \ n= li I k' A2 k=-o (1 +~·- ) z 

11 
= - 6· 

2 5 
= TJ 

, 
.L 

1. 50 

>..2 

1. 83 - - ----
>.. 2 >.. 2 

1 -- 2. 03 - - -- - ------
;\ 2 .\ 2 

expecta -
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5 
4 (-1 } k ( 4 } 1 32 1 2.2 8 

n=5 L ---- = 60 -- -- --- - -
,\2 k=o (l+k) 2 

k :\ -, )\ 2 

6 
5 (-1 ) k ( 5) 49 1 2 • .:! 5 

n=6 I ---- = 20 = 
,\ 2 k=o (l +k ) : 

'k ,\2 A2 

7 6 (-1) k ( 6) 363 1 2.5 9 
n=7 L = 140 = 

,\ 2 k=o (l +k ) 2 k >-2 A 2 

8 7 (-1) k ( 7) 30 43 1 2. 7 2 n=-:8 L - - ··-- •-- = 112-0 - -== ----
,\ 2 k=-=o (l+k) 2 k >- 2 ,\ 2 

9 
8 (-1) k ( 8 ) 4042 1 2.83 

n=9 L = 142 8 >- 2-:= -y;--,\2 k=o ( l + ~~ ) 2-
k 

It is of interes t t o see how the average amount of precipi t ation 

of the maximum storm depends on the parameter \
2 

. In Fig.16 , a 

graphica l r eoresentation of the mean 

n-1 (-l) k (n-1) E( z ) 
n L S Ui:) - ½ 

-----·-
l< \i <n k=o (l+'.,.;: ) 2 

k 

is given for different values of n as a function of t he parameter \ 2 

Apparently , if \ 2 is l arger the average value of precipitation of the 

maximum s torms is smaller. For example, if it is expected that two 

storms will occur (i.e., n = 2), then obviously, the expected value of 

the total amount of precipitation of the maximum storm is 

for A. 2 
1 

E(sur, z ) 1,50 - .L = 
l< ,J< n 

for \2 = 
.., r: ( S U_? z ) =- 0,7 5 c.. 

l< v <n 

etc. Therefore, parameter >- 2 is some kind of characteristic of the 

to al amount of precipitation during one storm period . 
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0.5 2 3 4 5 6 7 8 9 
Az 

Fig . 16 Gra ph ic Presentat ion of E {sup zv} ( 15 v 5 n) for n = 2, 3, 4, . .. . , g 
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Ch apt er IV 

1. SOME PREVIOUS CONSIDERATIONS 

As has been noted, the general purpose of this paper is to 

present a new mathematical study of the rainfall phenomenon (no t enter

i ng into its physi ca l nature) based on the theory of a particular sto

chastic process of the nondecreasing sample function 

where 
t 

f 
to 

c: ds 
"s 

(4.1.1) 

and ~t r epresents the r ainfall intensity at the instant of time t . 

With r espect to the nature of precipitation, we have 

Vb:'1'* 

therefore 

~ > 0 t-

t,t+~t sT* 

In the s econd chapter of this study some "dynami c" properti es of 

the rainfall phenomenon Kere considered (those characteris tics which give 

us information concerning t ' e frequencies of storm periods in the inter-

val of time under consideration , the distribution function A (t) 
\} 

of 

the total e lapsed time up to the end of th e v -th storm period, i.e ., 

of (T - t) , the r e lationship between numbers of storm periods i n 
\} 0 

two successive intervals of time , etc.) 

It is obvious tha· the dynamic "properties" do not give us in

formation about amount of precipitation , a subject of _rimary interest. 
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Cons equently, in the third chapter the quantitative characteristics 

X 
\) 

during exactly \) storm (such as the tot al amount of precipitation 

periods or the total amount of precipitation Z = X - i 1 during the 
\) \) \) -

v-th storm period, where v = 1, 2, ... , etc.) of the rain fa ll phenomenon 

were discuss ed. 

It is obvious that neither dynamic nor quantitative aspects con

sidered s eparately can furnish us with a complete description of th e pre

cipitation phenomenon. For example, information th at the total amount 

of precipitation during v storms is 

known about time interval (, - t) . 
\) 0 

X is incomplete if nothing is 
\) 

In order to avoid this inconveni ence, one can us e the average 

values ; for instance, it is possible to say that the average elapsed 

time up to the end of the v- th storm period is 

E(T ) - t 
\) 0 

and the average amount of precipitation during this time is 

E (X ) - x 
\) 0 

This result gives us some information about the relationship 

between a dynamic and a quantit ative characteristic of the phenomenon 

.considered , but in application it is necessary to know much more. If 

Xt denotes this amount of prec ipitation, obviously Xt is a random 

variable for every t > t , and therefore it is necessary to study 
0 

this variable . On th e other hand, if an amount of precipitation has 

been observed, say x, what amount of time would be necessary for this 

amount to be r ealized? If T 
X 

variab le for every 

will be studied . 

X ~ X 
0 

denot es this time, then T 
X 

is a random 

In the following s ection, thes e prob lems 
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2. ONE-DI~ENSIONAL DISTRIBUTION 

FUNCTIO ' OF THE PROCESS n(t , w) 

In this section, the problem of estimating the total amount of 

precipitation Xt up to time t will be considered. As has been said, 

is a random variable for every t > t , so it is impossible to pre
o 

diet a certain value of Xt at any moment of time 

this, the event 

Vx >x 
- 0 

t > t 
0 

Instead of 

(4. 2 .1) 

will be considered. (4.2 .1 ) represents the random event that the total 

amount of precipitation up t time t will be less than or equal to x 

Therefore, the corresponding probability 

(4. 2 .2) 

represents a one-dimensiona l distribution function of the stochast ic 

process Xt = n (t ,w) (see Chapter II, sect. 1). 

Let us now try to obtain effectively the distribution function 

(4.2.2). Toward this end, consider (2.2.5); then on the basis of the 

relations (2.2.7) the following is valid 

Bl (x) : : U 
v=o 

i.e.' 

"'° P(Eto,t .f' t ( x ) = ' (\ B~) (4.2.3) L V v =o ... 

Let us write the function considered in the following manner: 

..., 

Ft (x) 
~ 

P (E~o' t) = L F* (x,t) 
\J-:;:;O (4.2 . 4) 



88 

where the function F*(x,t) represents conditional probability that the 
V 

total amount of precipitatio Xt up to time t will be less than or 

equal to x, under the condition that exactly v complete storm periods 

have occurred in time interval (t ,t) , i.e., 
0 

*( ) { I Eto,t} F v x, t = P ul ; Xt.::_ X v 

Obviously, the following is valid: 

F* (x,t) 
V 

if X<X 
0 

O<F *<l if X > X 
- v- - 0 

(4.2.5) 

We have seen that under 

calculation of the probability 

condition a) and b) of Theorem 3, the 
t 0 ,t 

P(E ) is not difficult, but as far 
V 

as the calculation of the conditional probability (4.2.5) is concerned, 

the situation is considerably more difficult. In fact, up to now a 

method for calculation of this probability in the very general form is 

not known. 

In the following exposition, an attempt will be made to obtain 

some information about this function. Instead of exact calculation of 

(4. 2.5 ), a method will be established for obtaining its lower and upper 

approximations. In this manner, instead of exact distribution function 

(4.2.4) the two lower and upper approximations 

where 

will be used. 

The approximations considered satisfy the following condition 

(4.2.6) 
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and the upper approximation is a distribution function for 

namely 

'eft ~ t 
0 

and for 'rft:.x>O 

V X>X 
- 0 

In the next s ection , the method for obtaining these approximations 

will be established, and it will be shown that F1t(x) 

could be expressed over the probabilities of the events 
x0 ,x 

G. 
J 

3. APPROXIMATIONS OF DISTRIBUTION 

Function Ft (x) 

and F 2t (x) 
t 0 ,t 

E and 
\) 

1°. In the previo· s exposition it has been pointed out that 

instead of the distribution function of the stochasti c process X = t 

rr(t,w) the corresponding approximat ions will be used. This approach 

is ~ustified by the fact that the method for an effective calculat ion 

of 7he conditional probabil i ty (4.2.5) is not known, and therefore the 

distribution function Ft(x) cannot be obtained . On the other hand , 

in the numerous cases i mpor~ant for practical application, the functions 

F1t(x) and F2t(x) can be easily obtai ned. Toward this end, let us 

prove the following theorem: 

Theorem 11. 

t t 
Let P(E o, ) > 0 

\) 
for every v = 0. l, 2, ... and 

Then the following inequality is valid, 

t > t 
0 
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co 

F*(x,t)> 
V -

I 
j =v+l 

P ( G "_<o, x IE t'::), t .. 
J V J 

(4.3.1) 

The proof of this theorem is very simple (see Appendix of this 

section). Phenomenologica lly speaking, inequa lity (4.3 . 1) means the 

following: first, as one has seen, functions (4.2.5) represent condi tional 

probability that the total amount of precipitation up to time t will be 

less or equal to t , under the condition that exactly v complete 

storm periods have occurred up to the instant of time t . This proba

bility is greater than the probability that the total amount of precip ita-

tion duri ng (v+l) storms is less than (x-x) , under the condition 
0 

that exactly v comp lete storms have occurred in the interval of time 

(t
0
,t) . Indeed, on the basi s of the first of the inequalities (4.3 .1), 

the following is valid: 

co 

\_} 
j=v+l 

According to Theorem 2, we have 
1 ::;,to, t \ F*(x t) > - -- -~- P{X ~<x, ~ J = 

..., ' - P ( E t 0 , t) v + 1.- v 
V 

= P{X +l<x 
V --

In a similar manner , it is possible to prove that 

Finally, on the basis of (4 .3.1) we have 

1 F* (x,t) -
' V 

P(GX0,X 1vto, t, I P (GXo,X •- to,t -
. , · I •J , 1- "- ; t ) 

J ' J 1 
- V ' V 

(4.3 . 2) 



where k = v or v + 1. Indeed, 

F * (x, t ) -· 
V 

F *( _._, X' ,.J -
V 

Therefore, we have 

F*(x,t) -
\I 

a, 

L 
j=v+l 

a, 

L 
j ==v+l 

and the assertion follows. 
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On the basis of (4.2.4) and Theorem 11, obviously the following 

is valid : 

:::: 

and -

:::: 

CD CD 

L 
v==o 

CD 

> \ 
_L 

I 
j==v 

v=o 

a, CD 

I f 
v =o j =v+l 

Therefore , we have 

CD 

I 
'J =O 

xo,x 
P(G. 

J 

t Xo,X 
P(E o,t(\G. ) 

V J 

a, 

I 
.- t .._. V 

P { E '-O ' ['i G -~o ' . " 
V ) J 

(4.3.3) 

The l eft side of the inequality considered is F
1
t(x) and the right side 
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is F2t (x), i.e. 

CD CD 

p (E to' t n G~o IX) 
Flt(x~ = l l 

\J-=O j =v+ l 
V ] 

(4.3.4) 
CD CD 

F 2t (x) = l l p ( E to ' t n G ~c, I X) 

\J=O j=v v J 

The functions considered represent the lower and upper approxima

tion of the distribution function Ft(x), i.e., we do not know the exact 

value of probability that up to an instant of time t > t 
0 

the total 

amount of precipitation Xt will be less than or equal to x, (s ee Fig. 

17), but we know that it will lie between F1t(x) and F2t(x) . 

On the basis of (4.3.4), obviously the following is valid 

Fit ( X) , ~F 2 t ( X) - F 1 t ( X) = 

CD 

l 
v=O 

Therefore, using any one of he function Fit(x) instead of Ft(x) , 

the error is les s than or equal to the su.~ 

CD 

l 
\J=O 

2°. Appendix - Th e first of two proofs of Theorem 11 is based on 

Theorem 6; the second proof is independent of any previous results. 

First proof of Theorem 11. 

Obviously, any t 

(-r ,r 1) , i.e., where 
V v+ 

such that t ~ t must belong to some interval 
0 

v = 0, l, 2, ... and T = t 
0 0 

Assume, for 

instance, that considering that the moment of time t belongs to the 

interval (, , ) i e 
V' V+ 1 ' . . ' 

,: < t < 
'J 



I 
I 

I 
I 

I , 
I 

I 
I 

I 

I 1' 
I / 

~t (_x)~,/ ,-~·"-•--F,t(X) 

" " ,,,, .,,,, ,, .,, ,,,, ,,,, .,,., ,,, ,,,,, __ _,,__. ....... .... --

/ 
I 

I 

/ 

, 
/ 

/ 

--------------------- ----- ------- ------~ -------_,,.; __ ..,. 
,.,,,,. ,..-_,,,,,, ,,,..,,, ,,,, .,,. ,,, 

,, ,,,, 00 

/" ~ { to.t GXvo . X ) 
/' ~t (x)-F1t (x)= LP Ev n 

,, v=o 

---..;;;,..---_-_________________ _,_ ______________________ X 

( X0 , 0} X 

Fig . 17 Graphic Representation of Distribution Function Ft ( x) and I ts Approximations 
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then obviously the corresponding amounts of precipitation Xv, XL 

and X v+l satisfy the following inequality: 

X < X < X 
v - t v+l 

Therefore, the next set of relations is valid. 

(w; X < x } ~ { (;_) ; X t2- X } 2 { u; i 
v-

X l<X} v+ --

and cons equently, 

{w; X < X} n E to , t :;? ( Ul ; 
\I- V 

{(I); xt_< X} (\ E tv.o It ? { w; X < 
v+l-

Therefore, on the basis of Theorem 6 we have 

CID to t lJ (G~o,XnEtvo,t) ~ { w; X <x}f\E , 
j:::::v J . t- V 

CID 

{ w; X~ <x} f\ E to' t ::? U 
1,.- . \) 

j='J + l 

i.e.' 

(I) 

CID 

u 
v=o 

V {w; Xt<x} r\F.to:t 
v=o - ~ 

CID CID 

u {w; Xt.2,.X} (\ E:o,t '2 u 
v=o v~o 

which proves the theorem. 

Note: 

(4.3.5) 

(4. 3 .6) 

4.3.7) 

t4. 3. 8) 

F 2t (x) 

Let us try to explain the meaning of approximat i ons F1tcx= and 

Toward this end, consider relation (4.3.5). Phenomenol ~gically 

speaking , the left side of (4.3.5) denotes th e event that total anount of 
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precipitation during v storm periods will be less than or equal to x 

and that exactly v storms have occurred in the interva l of time 

Obviously, the following is valid. 

or 

a, 

t 
v=o 

where 

{ X ~t0 ,t} w; • < x, c, 
v- 'J 

} (\ ~ t 0 , t 
X t, 

V 

t t 
= {w; X < x}(\EO' 

V- V 

(t ,t). 
0 

(4. 3.9) 

The left side of (4.3.9) denotes the probability that the total amount 

of precipitation of the complete storms in (t ,t) will be less th an 
0 

or equal to x (see Fig. 8 ), i.e., we exchange the quantity Xt with 

Xv where ' v < t < 'v+l 

The second proof of the theorem can be found in ref. (29). 

4. APPROXIMATIONS OF DENSITY 

FUNCTION ft (x) 

4°. Let ft(x) denote the corresponding density function of 

the distribution function Ft(x), i.e. 

Obviously, then, 

fit(x) = 
3F. t (x) 

1 

ax 

aF (x) 
C 

ax 

i = 1,2 

could be assumed as approximations of ft(x) . Of course, among th e 
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functions f 1t(x) , ft(x) , and £2t(x) there is no existing re lat i on 

of the following form: 

Let us prove the following theorem: 

Theorem 12. 

If conditions a) and b) are satisfied, i.e., 

a) lim 
~X-►Q 

b) lim 
tiX➔o 

QJ 

1 
r=2 

co 

P(Gx ,x+~x) 
'! 

::: 0 
~x 

where k = v , v + 1 , then the following is valid: 

0:, 

flt(x) = E 
v=o 

co 

f2t (x) ::: A2 (x,t) [ 
v=o 

(4. 4 .1) 

The proof of the theorem will be given in the Appendix of this sect ion. 

Let us discuss co ditions a) and b) which obviously repr~s cnt 

the basic hypothesis and as such are of importance in the further in

vestigations. The first of these t wo conditions was discussed in the 

previous exposition. Therefore, we shall dwell on the second con li tion 

of Theorem 12. 

Obviously, it could be written in the following manner: 

a, 

I 
v==o 

0:, 

= I 
v=o 
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so that assuming the foll ow ing relation is correct 

~ 

I P(Eto,t n GXO,X n Gx , x+6x) 
k V l v=o 

lim -----· ------·---- = 
~x->-o 

apparently everything depends on th e limit 

P(G~~ )(+(\X 

lim 
~X -►0 

The expression 

(4.4 . 2) 

(4 .4 .3) 

represents the conditional probability that the total amount of precip 

itation of the (v+l) storm period wi ll lie between x and x+tix 

under condition that in t he interval of time (t ,t) ther e occurred 
0 

exactly k = v, v + 1 storm periods, and the total amount of precipi t a-

tion during previous v storms is l ess than or equal to x (and for 

(v+l) storms exceeds x ). 

Since (4.4.3) depends on v , t , x and tix , it would be natural 

to assume that t he funct ion A
2 

depends on v , t and x, i.e., 

P(Gx,x+tix 
1 

tix 

= (A(;) (x ,t, v ) 

'(2) ( ) A 2 x,t , v 

for k=v 

for k ;=v +l 
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and , cons equently , (4.4 . 1) be comes 
CX) 

fl t (x ) I (1 ) p (E t o , t n GXo , X) = A 
2 

(x , t , v ) 
V V 

v=o 

CX) 

(1 ) 
f2 t (x ) = I A 

2 
(x , t , v ) p (2to,tn GXo , X) 

(4.4 . 4) V \i 
v=o 

The hypothesis that (4 . 4.2) does not depend on v l eads to t he (4. 4 . 1); 

f i nal l y , the assumption t hat 

results in 

t 0 ,t 
E. 

1 
and 

xo,x 
G. 

J 
are independent events 

A
2

(x , t ) = A2 (x } 

(s ee Appendix) and (4.4.1) become s 

CD 

P( El.0,t) P {GXo , X) 
flt(x) = A

2
(x ) I 

v=o V V 

CD 

P( EtO , t )P( GXo , X) f2 t (x ) = A2( x ) L V+l V (4.4 . 5) 
v=o 

Therefore, on t he basis of (2.4.3) and (3 .3. 2) , t he foll owing is va lid : 

v=o V ! 

X -(i
0

.x 2 ( s ) ds + 

f 2t(x) =A 2 ( x ) e _ 

CD 

I 
v=o ( v+l ) ! 

V ! 

(I X V .x
2

(s)d s ) 
X 

0 

V ! 
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2°. Appendix - let us now prove Theorem 12. Toward this end, 

consider the function Flt (x) 

a, a, 

Flt(x-h~x) = I 
\l=O 

I 
j= v+l 

,a, CD j 
= I I P(EtO,t (\ u (G~o,X (\ Gx, x+tix)) 

. 1 V J-T T 
\l=O J= v+ ,=o 

a, a, j 
P(Eto,tn G~o,X = I I I (\ Gx,x+ ti x ) 

\l=O j= v+ l ,=o \I J-T T 

Since, 

a, a, 

I I 
\l=O j=v+l 

then by virtue of condition a) of the theorem the following is valid: 

F (x+nx) = lt 

a, 

= I 
\l=O 

0D a, 

I 
\l=o 

0D 

I ~(Eto,t n G~o,X (\ Gxl,x+6x)+ 0(6x) 
j=v+l " J-l 

Thus it turns out that 

aplt(x) a, 

tq< = I 
\l=O 

a, 

+ I 
\l=O 

a, 

+ I 
v=o 

= 
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.., 

= I 
\l=O 

.., a, 

+ I ' P(Eto,tnc~o, x () Gx,x+6x ) + 0( 6x ) 
l v J-1 1 ' 

v=o j=v+l 

Since we have 

CC> 

V 
t=2 

then the following is valid: 

P(Eto,tnd~o,X - Eto,tnc~o'x n Gx,X+6X) = 
\I J V J 1 

= P(Eto,tnG~o,X n(Eto,tnG~o,XllGx,x+tX)C) = 
\I J V J 0 

Therefore , we have 

~Flt (x) 

ax t,x = 

CC> CC> 

+ I 
v=o 

.., 

= I 
v=o 

.., 

I 
,1=0 

from which by condition b) the proof of the first part of the theorem 

follows. In a similar manner, it is possible to obtain the proof of the 

second part of the theorem. 
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On the basis of the Theorem 12 and the following inequality, 

CID 

Ft (x) ~F 2 t (x) = 1 - I 
v=l 

< 1 ' 

it follows that 

F2t(x) ➔ 1 Vt > 

if x-+oo, but since f 2t(x) ~ 0 

to see that 

F2t(x)tl . Finally, it is not difficu lt 

Indeed, 

since Xt ~ Xt+t.t , and the assertion follows. 

5. CALCULATI ON PROBABILITIES 
t t X ,X 

p (E o, rt. G o ) 
k i ' v 

As is seen, the approximations of the density function ft(x) 

are expressed over the probabi lities 

v=l,1,2, ... (4.5.1) 

Therefore , for any effective calculation of approximations f 1t(x) and 

f 2t(x) it is necess ary to possess a method for calculation of (4.5 .l). 

In the following exposition we shall assume that the condit ions 

are satisfied that 

lim 
t.t➔O 6 t 

= 0 lim 
6x➔o 

= 0. (4 . 5.2) 
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p (Et,t+lltlEto,tn GXO,x) 

lim 
1 k v = >- l (t) 

6t➔O 
Lit 

(4.5 . 3) 

P(Gx,x+tix
1
Eto,tnGXo,x) 

lim 
1 k v >. 

2 
(x) = 

6t➔O 
6x (4.5.4) 

where k = v, v + 1 . 

Theorem 13. 

Let the function p (x,t,z) denote the following sum: 

p(x,t,z) = 

then under the assumption that conditions (4.5.2), (4.5.3) and (4.5.4 ) 

are satisfied, the following is valid 

(4.5 . 5) 

Proof: 

Consider the probability 

I then, on the basis of (4.5.2) we have 

Therefore, the following i s obtained: 

ax 
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so that on the basis of (4.5.4) we have 

= ax 

(4 5.6) 

In a similar manner , it is possible to obtain 

= 

(4 . 5. 7) 

therefore , 

Finally, differentiating (4 .5.6) by t we obtain 

atax 

1 
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Multiplying the left and right sides by 

par ial differential equation: 

V z , we obtain the following 

CX) 

I 
v=o atax 

CX) 

I 
v=l 

CX) 

1 
Al (t) I 

v=o 
at 

or 

Therefore, we have 

which proves the theorem. 

z 

ax 
v=o 

1 ap 1 ap ) 
+ A

2 
ax - Ii at 

\) 
z 

:\
1

(t):\
2

(x) (1-z)p 

On the basis of the previous theorem , in order to obtain the 
t 0 ,t x0 ,x 

probabilities P(Ev () Gv ) for v = 0, 1, 2, . . . , it is necessary 

to solve the partial differential equation of the second order. Its 

solution will give us the function p(x,t,z), from which the probabili

ties can be obtained. In th i s manner, we get the approximation f 1t(x) 

In order to obtain the approximation f 2t(x), it is necessary to 

possess a method for the calculation of the probability 

v=-0,1,2, ..• 

It is not difficult to see t hat th e following is valid: 



from which it follows that 

I 
where v = o 
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AP 
1 

= 

6. SOME PARTIAL DIFFERENTIAL EQUATIONS 

In this section of the study we will show that the approximation 

functions F1t(x) and F2t(x) can be obtained as solutions of partial 

differential equations of the second order and hyperbolic type. T0ward 

this end, let us prove the following theorem. 

a) 

b) 

(k 

Theorem 14. 

Assume that the following conditions are satisfied: 

I P(Ei 't+6t ) 

lim T= 2 

ll t-►0 
ll t 

= v, V + 1) ; then the 

Flt(x) 
= -ot 

F2t(x) 
- - -at 

= 0 

following is valid: 

00 

Jt. 
1 (x,t) [ P(EtO,t(\ GXO,x) 

v v+l 
'11 =0 

00 

}, l (x ,t) z_ P (E t 0 , t () Gx0 , x) 
y y 

v :::o 

(4.6.1) 
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Proof: 

The proof of Theoren (14) can be obtained in a manner similar to 

the proof of Theorem (8). If we consider the function F1 t (x ) first, , 

it is not difficult to see that 

Fl,t+tit(x) --

CD 

= L 
v=o 

CD CD 

= I L 
v=o j =v+l 

CD CD 

L 
v=o 

j 

I 
,=o 

On the basis of condition a) of the theorem , we have the following: 

Fl t+tit(x) = l 
' v=o 

CD CD 

+ L 
v=o 

and consequently, 

CD 

=- I 
v=o 

CD 

+ I 
v=o 

= I 
v=o 

CD CD 

+ I I 
v=o j=v+l 

CD 

= I 
v=0 
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a, 

+ I 
v=o 

00 00 

= { - ~ P(Eto,tnG~o,XnEt,t+ ti t)- L P(Et10'tnG~o,X(\Ei't+ 0. t)- •. . } 
j=l o J 1 j=2 J 

a, 

= I 
v=o 

Therefore, on the bas is of condition b), the first part of the theorem 

follows. In a similar manner, it is possible to obtain the proof of the 

second part. 

On the basis of Theorem 12 and Theorem 14, it is possible to 

prove that approximations F1 t(x) and F2 t(x) could be obtained as 
, ' 

solutions of corresponding partial differential equations of the seconc 

order and hyperbolic type. Proof of this assertion gives the followi ng 

theorem. 

Theorem 15. 

If the conditions a) and b) of Theorems 12 and 14 are satisfied, 

then the following is valid: 

~Flt(x) 
1/1 1 (x,t) 

aF1t(x) 
l/J 2 (x,t) 

aF 1t(x) 
0 -- + -ax - + = axat at 

(4.6.2) 
aF 2t. (x) 

+ ~1 (x,t) 
aF 2t. (x) 

~ 2 (x,t) 
aF 2t(x) 

0 + = axat ax at 
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where 

IP1 (x,t) ,;\
1

(x,t) 
a;..2(x,t) 

1/1
2 

(x,t) = ).
2
(x,t) = - at 

~
1

(x,t) ~
2

(x,t) >..
2

(x,t) 
~ln).

1
(x,t) 

= >..
1 

(x,t) = - ax 

Proof: 

First, consider the approximation F1t(x); differentiating by 

t , the following relation wil l be obtained: 

= ata~ at 

Cl) 

+ >.. 2 (x,t) at I 
v=o 

If we set 

a(x,t) = I 
v=o 

then obviously the following is valid: 
0, 

a(x,t+6t ) = I 
v=o 

Cl) 

I 
v=o 

On the basis of condition a) of Theorem 14, we have 

0, 

a(x,t+6t ) = I 
v=o 

Cl) 

I 
v=o 

Therefore, 



a a (x, t) 
6 

t 
at 

CD 

+ L 
v=o 

= 

a, 

+ I 
v=o 
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=-

so that , on the basis of condition b) of the Theorem 14, we have 

aa (x,t) = 
at 

+:\. 1 (x,t) 

a, 

I 
v=o 

a, 

L 
v=o 

If we use Theorem 12, then the following is obtained : 

aa(x,t) >. 1 (x,t) aF 2t(x) aF 1 t (x) 
= at A

2
(x,t) ax - -at- · 

Therefore, 

a(F1 t(x) aln:>-.
2 

(x,t) aF 1 t (x) 
-+ Al (x,t) 

aF 1t (x) 
= 

atax at ax at 

from which the first part of the theorem follows. 

In order to prove the second part of th e theorem, let us 

different iate by x the function 

-aF 2 t {x) 

at 

+ 



oF Zt ( x ) 

axat = 

CD 

a 
- Al(x,t) ax I: 

v=o 
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a:, 

I 
v=o 

In a manner similar to that in the previous exposition, it can be shown 

that the following is valid: 

a:, 

I 
v =o 

A2 (x,t) 
=-~-

Al (x;ET 

aF 2 t(x) aF 2 t(x) 
--~ + ax 

from which the proof of th e theorem follows. 

Note: 

In the case when 

we have 

so that the system (4.2.6) reduces to a single partial differential 

equation of the second order and hyperbo lic tYP e , 

(4.6.3) 

Neither the solution of the system (4.2.6) nor the solut ion of (4.6.3) 

will be cons idered in this study. 
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7. SOME IMPORTANT NOTES 

In previous sections of this chapter , the random variable Xt 

has been considered to represent the total amount of precipitation up 

to the moment of t ime t As we have seen, Xt is a random variable 

for every t > t 
0 

such that 0 ~ Xt ~ Xt+6t ; theref ore , we have a 

cont inuous parameter family of random variables or a continuous paramet er 

stochastic process of nondecreasing sample functions. 

As has been shown , the study of some important characteristics 

of the precipi t ation phenomenon can be reduced to t he study of the cor

responding properties of the stochas t ic process. Therefore, one of the 

main obj ectives of thi s study has been development of the process Xt, 

its ana l ysis , t he calculation of corresponding one-dimensional dis tribu

tion functions, and their application to th e problem of precipitation 

phenomenon . In fact , the discussion has been limited i n this study to 

those problems of stochastic process which are close ly related to the 

probl em of the rainfall phenomenon. 

In the following exposition , we will consider one other aspect of 

the precipitation phenomenon . Toward this end, l et us denote by T 
X 

times indispensible for an amount of precipi t ation x to be reached . 

Apparently T 
X 

is a random var iab le for every 

V6x >O 

x > x , such that 
0 

and therefore represents a stochastic process of nondecreasing sample 

funct ions . 

{T; X>X} 
X 0 



112 

If F*(t) represents the corresponding one-dimensional distribux 

tion function, i.e., 

where t > t , then obviously the following is val i d: 
0 

P{ w· T < t} = P{ w,· Xt>x}= , X -

(see Fig. 18). 

X ___________ Tx ___________ _ 

(4.7 .1 ) 

"'---------------------------'--t 
t 

Fig. 18 Graphical interpretation of the 
relat ion (4.7.1) 

If f*(t) is the corresponding density function, i .e., 
X 

then obvious l y 

f*(t) = 
X 

f~(t) = 

aF*(t) 
X 

at 

aFt(x) 
.;t 
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Further, by virtue of the following inequality 

we have that the upper Fzx(t) and lower Fix(x) approximations ~f 

Fx(t) are of the following form: 

F* (t) lx 

If one denotes 

f* (t) = 
ix 

3F'!' ( t) 
ix i=l. 2 

approximations of the density function 

iH', t (x) 
f* <t) = - ~ at l.x 

f2* . (t) = .x 

aF1 _t(x) 
at 

Therefore, by virtue of (4.6.1) we have 

0:, 

I 
v = o 

etc. 

(4. 1 .2) 

(4. 7 .3) 

f* (t) 
X 

are 

(4 7 . 4 ) 

(4 7 .5) 
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Chapt er V 

APPLICATIONS 

In this part of the paper, mathematical methods described in 

previous sections will be applied to an analysis of rainfall data col

lected over 54 years at the Austin, - Texas precipitation station dur ing 

the period 1914-1967. Because the chief aim of this section is not com

plete analysis of the rainfall data but to use the data to test theoreti

cal results, only some aspects of precipitation phenomenon will be con

sidered. 

The most desirable data for this purpose would be the continuous 

long-term precipitation records. These, however , were not available, 

and, as an alternative, the daily rainfall records have been studied. 

Although these records do not give complete information about the rain

fall phenomenon, they can serve as valuable tools for an orientational 

investigation. 

In the following exposition data concerning the number of storms 

and the termination time of the first and second storm period will be 

objects of an analysis. Since we have daily precipitation records instead 

of the number of storm periods the number of stormy days in an interval 

of time will be investigated. 

Toward this end, consider the distribution of the stormy days 

during the period of the first five days in January (Table 1). Since 

this period of time is sufficiently small, the effect of seasonal vari

ations is practically negligible so that the function Al (t) could be 

assumed as a constant Al . On the basis of the records (see Table 1) 

an estimation of the parameter Al = 0.181 , hence taking for t = 5 



ll5 

(five days) by virtue of (2.5.7) we obtain theoretical (in Table 1 

expected) values. In a similar manner the distributions for the first 

ten and for the first fifteen days have been obtained (s ee Tables 2 and 

3). In Fig. 19 a graphical presentation of these distributions is gi ven . 

The values of the parameter Al for the first, second and third 

distributions are 0.181, 0.200 and 0.208,respectively . Therefore, it 

could be assumed that influence of the seasonal variation is negligible 

during these fifteen days . 

-- - -- - - - Empirical distributions 

--------- Tt1Qoret icol distri bu~ions 

f 1ve d::i }1s pe riod 

days period 

QL---.l..--..L__ _ __J___...L_:==:::,;,...--====----1.....:.==...:..:1...._-.....!.._-L.. _ _,.L __ 

0 2 3 4 6 7 8 9 I I 12 

Fig . 19 Theoretical and empirical distributions of the 
number of stormy days 

Under the assumption that for January an estimation of 

it is very easy to obtain the corresponding distributions for 

0.2, 

and 

,
2 

In Table 4 observed and expected frequency distributions for , 1 

and ,
2 

calculated on the basis of (5.3) for Al: 0.2 are presented . 

In Figs. 20 and 21 a graphical presentation of these distributions is 

given. 
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I e, 

16· -~ ~ -'A 

~~ Theoretical distributions 

14 

I 2-

10 

8 

14 

D Empirical distributions 

Fig . 20 Grorhicol re presentation of expec ted ond ob-ser 11ed dis tributions 
of rand om va riable -r

1 

I 2 - 1 

10 

Fig . 21 Gr aphica l r ep resen tat ion of expected and obs erved 
di stribution s o f random var iable i.- 2 
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TABLES 



Table 1. Number of stormy days during the first five 
days in January for period 1914-1967. Al ::: 0.181 

Number of 
stormy days 0 1 2 3 4 5 

Observed 25 16 7 5 1 0 

Expected 21.95 15.98 8.89 2.67 0.60 0.00 

Table 2. Number -of stormy days during the first ten 
days in January for period 1914-1967. Al ::: 0.2 

Number of 
stormy days 0 1 2 3 4 5 6 7 8 9 10 

Observed 8 15 14 9 4 3 1 0 0 0 0 
...... 
N 
N 

Expected 7.306 14 .618 14.618 9.741 4.871 1.949 0.648 0.179 0.048 0.00 0.00 

Table 3. Number of stormy days during the first fifteen 
days in January for period 1914-1967. Al 

::: 0.208 

Number of 
stormy days 0 1 2 3 4 5 6 7 8 9 10 11 12 

Observed 3 7 10 12 9 6 3 2 1 0 0 0 0 

ExEected 1.992 6.572 10.843 11. 934 9.844 6.496 3.575 1.685 0.697 0.178 0.005 0.000 0.000 



123 

Table 4. 

Frequency distributions Frequency distributions 
of random variable ,

1 
of random variable , 2 

observed expected observed expected 

0 - 2 16 17.803 5 3.328 

2 - 4 10 11. 934 ·8 7.000 

4 - 6 8 8.013 12 7.824 

6 - 8 6 5.318 9 7.452 

8 - 10 5 3.596 6 6.416 

10 - 12 3 2.408 4 5.312 

11 - 14 2 1.614 3 4.168 

14 - 16 1 1.080 2 3.220 

16 - 18 1 0. 729 2 2.464 

18 - 20 1 0.486 0 1.840 

20 - 22 1 0 .324 1 1.356 

22 - 24 1 1.017 

24 - 26 1 0. 728 

54 53.305 54 52.185 
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