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1. SOME BASIC NOTATION

We begin by presenting some definitions and notations that are

basic in this study.

minimum of explanatory discussion.

Symbol
1 e, (§)
e ()
30 =

4° {a,b,c,...}

s AUB

6 ANB

o w,(w e Q)

iii

This will be given in abbreviated form with a

Meaning
is (is not) an element of
is contained in, contains
implies

the set consisting of the elements
a.,b,Cqs .

the union of sets A and B

the intersection of sets A and B

the union of sets Al’ A2, A

3"

the

Kiioas

the

intersections of sets Al’ A2’

complement of A
the empty set (impossible event)
the space of elementary event
an elementary event

for all (for every)

o-field

borel field

absolute value of x

the greatest integer not greater
than x

probability measure

there exist (s)



229 g

23% ¢

24° ¢ -t
xl

25° x

26° z

27° E

iv

Meaning

the rainfall intensity at scme
instant of time t

total amount of precipitaticn in
some interval of time (to,t)

number of storm periods in (to,t)

moment of time when observations
begin

the elapsed time up to the end of
v-th storm period

the total amount of precipitation
during exactly v storm periods

total amount of precipitaticn
during v-th storm period

the event that exactly v conplete
storm periods will occur in
(t,»t)

the events that total amount of
precipitation during v storns
will be less or equal (x—xo)

the average number of storms in
(tgst)

the distribution function of <t
the density function of T,
the distribution function of X
the density function of Xv
the distribution function o= Z
the density function of Zv

Gamma function



Symbol

37° sup (x,y)

389 inf (x,y)

390

520

sup X
v
1svgn

f, (X)
Fie ()

Fae (%)

1t

£¢(X)

Meaning

x if x>y or y if y > x

1}

x if x <y or y if y <x

=x., 1if x. >x Vwv=1,2...n

is the smellest storm among
Zl"lozn

is the largest storm among

Zl""zn

is the distribution function of
Z (n)

is the density function of Z (n)

is the distribution function of
Z (n)

is the density function of
Z (n)

is the distribution function of

X for all t 3 to

is the density function cf

is the lower approximation of
F, (x)

is the upper approximation of

Fo (x)

' dFlt(x)

is equal to —
dFZt(x)

is equal to e



Symbol Meaning
53° E X) is the mathematical expectation of
the random variable X
54° { €t; tz to } represents a stochastic process OT
a family of random variables
55° T, is the length of the v-th storm
period
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2. PREFACE

The main purpose of this work is to provide a method for
mathematical treatment and analysis of some aspects of rainfall phenomena
which have shown themselves to be important in many of the water resource
problems. Those characteristics of precipitation such as the frequency
of storm periods, total amount of precipitation during one or more storm
periods, the elapsed time up to the end of v-th storm period where v =
1,2,..., etc., represeﬁt objectives of this stucy.

In the further exposition, an attempt has been made to establish
a theoretical base for an investigation of these problems. Because pre-
cipitation is a random phenomenon depending on time, the theory of sto-
chastic processes represents one of the most appropriate mathematical
tools for the interpretation and analysis of the phenomena considered.

Toward this end, a particular stochastic process has been con-
sidered whose sample functions provide the total amount of precipitation
in the given interval of time (to,t) . These functions are nondecreasing
functions of time.

In this study, an analysis of the precipitation phenomenon has
been performed by means of the stochastic process considered. Some
effort was made to give the phenomenological interpretation and dis-
cussion of every important mathematical result. It is hoped that this
will make the study easier for reading.

Finally, I wish to express my gratitude to Professor V. Yevjevich
who gave me the opportunity to work on this problem. The criticism
given by him and by Professor H. Morel-Seytoux, was always prized even

when not accepted.
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I would especially like to acknowledge Professor J. W. N. Fead
and Professor D. B. Simons for their discreet support during the work
on this study. I am also indebted to Don Collins for editing the man-
uscript. Thanks are due Mrs. Arlene Nelson for her patience in typing

the first version of this study and to Mrs. Ann Brown for the final

typing.

April 1968 P. Todorovic

Fort Collins
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3. SUMMARY

The purpose of this study is to provide a method for matﬁematical
treatment and analysis of some aspects of rainfall phenomena which have
shown themselves to be important in many water resource problems. As
the theoretical base for such an analysis, a particular stochastic proc-
ess, Xt = 1 (t,w), has been considered.

Consider a hydrograph of a rainfall gaging station (Fig. 1) and

)&

S

il -

t
|
|
1
|
1

¢

Fig. 1 Graphical representation of a rainfall hydrograph

denote by ¢ _ the rainfall intensity at some instant of time t . If

t
t, 'stands for the moment of time when observation begins, the total

|
amount of precipitation X, up to time t > L is equal to the follow-

ing integral

X, = x_ + f Es ds (5.1)

where X is the total amount of precipitation up to time t, -

Since ¢_ is a random variable for any t 2 ty s it is apparent

t
that

represents a stochastic process; since Et 2 0 for every t 3 to

ix



the sample function of the process Xt = 1 (t,w) are nondecreasing t

functions (Fig. 2)

X

X
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|
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O A = \

Fig. 2 Graphical representation of a sample
function of the process w (t,w)
and provide total amount of precipitation during the interval of tine
(to,t). The following characteristics of the precipitation phenomenon

are objectives of this study:

N, the number of storm periods in (to,t),
T,-t, the elapsed time up to the end of v-th storm period,
X, the total amount of precipitation during exactly v

~ storm periods,

Z the total amount of precipitation during v-th storm,

X the total amount of precipitation during the interval

of time (to,t).
It is apparent that T, Xv y ZV are random variables for all

v=12,..., and n_ and X forall t>t . For the purpose of

t
applications it is indispensable to possess distribution functions of
these random variables. Toward this end, a series of theorem has been

proved providing analytical expressions for these distributions.



For this purpose two classes of random events have been considered

E, and Gx , where

t
£t
Et = { E s v 01,2005 ) (3.2)
X X
Gx = { Gv : ve0,1,2,.0. } (3.3)
t .t
where Ev represents the event that exactly v storm periods will
X ;X
occur in the interval of time (to,t) and Gv = represents the event

that the total amount of precipitation during v storm periods will be

less or equal to (x-xo) and for (v+1) storms will exceed this value.
T .
Probability P(Ev © ) satisfies the following differential

equations
t ,t
s IR A 1 Eto’t A, (t) P Etc”t
—— = A(t,v-1) P(E,_ ) - A (8) P(E, )
3.4
to,t ( )
9P(E,° ) tost
—c— = AM®,0) PE )
Under the assumption that
Al(t,v) = Al(t) 3.5
for every v = 0,1,2,... we have
t t
~f A (s) ds (f A (s) ds)V
t .t ty t,
P[Ev ) = e = . (3.6}
The function
t
A (t,t) = Ito A () ds (G.7)

represents the average number of complete storm periods in to,t).

xi



According to definition Al(t) > 0 for all t 2 ts and represents
the instantaneous intensity of storm periods. With regard to the seasonal
variations it is realistic to expect that Al(t) is a periodic function

of time (Fig. 3).

} A (1)

Fig. 3 Graphical presentation of Al(t)

The distirbution function Av(t) of random variable L is equal

to
® Bt
A(t) = ) P (E, ) (3.8)
\Y . ]
j=v
or using (3.6) we have
t t j
-[ A G6) ds (f A (s) ds)
t © t
A(t)y=¢e °©° ) - (3.9)
v < j!
j=v
Corresponding density function av(t) is equal to
ot
- f Al(s) ds
\ Mt t v-1
a,(t) = o7 © ( ft A (s) ds) (3.10)
0

for all v =1,2,...

X X
o’ .
Probability P(GV ) satisfies the following differential

xii



equations

X 5X
3P(G, ° ) X_,X XX

- = 2, (x,v-1) P(Gv?I ) - A, 0x,v) PG, ) . (3.11)

Under assumption that
A, (x,v) = 4, (x) (3.12)
for every v = 0,1,2,... we have

X X v-1
- f Az(s) ds ( f Al(s) ds )
| X

XX "
PG, )= e : ) (3.13)

v!

Consider now random variable Xv which represents the total
amount of precipitation during exactly v storm periods. Let Fv(x)

be its distribution function then for every v = 1,2,... we have

Xo,x
P(Gj ) ; (3.14)

ne~8

Fo(x) =

j=v

By virtue of (6.13), Fv(x) becomes

X X j
-f A, (s) ds ] A,(s) ds )
X o X
F(x) =e ° ) S (3.15)
v i 2 j!
j=v
and corresponding density function fv(x) is equal to
X
o 3 .-jx A, (s) ds )
fF(x)= 2> _ e ° ([ A ) ds)Vt (3.16)
v T'(v) x 2 ! ’
. ]

If the functions Al(t) and Az(x) are constant ones, i.e.,

Al(t) = Al = const. Az(x) = XZ = const.

xiii



assuming to = 0 and X, = 0, (3.10) and (3.16) become the Gamma

density functions

zY -t
1 1 \)-1 3
av(t) = Toy © t (3.17

v
A =2 X
_ 2 2 v-1
fv(x) ) e X (3.18)
Suppose that Zys ZyseevZy... are independent random variables

and let bv(z) stand for the density function of Zv , then it could
be obtained as a solution of the following integral equation

u

£ (x +w) = fo £, 4 [(xo+u)(1-§)] b (2) dz . (3.19)

If Az(x) = A, = const. the solution of (3.19) is equal to

2

_ Azt
fv(z) = Az e i (3.20)

The following important problem is the problem of extreme storms.

If n storms Z .Zn are expected in the interval of time (to,t)

1 22,..
then among them one is minimum Z(n) and another one is maximum Z(n) ,

. |
i.e.,

Z(n) = inf Z Z(n) = sup Z . (3.21)
lgvgn ¥ lsvgn

The distribution function Qn(z) of the minimum storm Z(n) has the

following form

"M
Q(z) =1 - \Ql (1 - Bv(ZH (3.22)
where
Bv(z) =P { Zv <z}

xiv



and corresponding density function qn(z) is equal to

qn(Z) =

v

[l s =)

bv(z) fﬁ (1 - Bk(Z)]
1 k v

(3.23)

Let Hn(z) denote the distribution function of the random

variable Z(n) and h_(z) corresponding density function, then

n
H () = [1 B (2)
v=1
] f
h (2) = b (z) B, (z)
n v=1 » k$v k
If the parameter Az = const. then by virtue of (3.20) we have
-Aznz
qn(z) = AZ ‘n e
=A,Nnz -A,2
hn(z) = Az ‘ne . (1-e i )n-l

The corresponding mathematical expectations are

B2 -

n-1 k
= n (-1) n-1
E(Zn) = )\—2- kZO T_"’ka ( k )

Finally, consider the stochastic process

t>t 1}

X o

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

where X_ represents the total amount of precipitation during time

t

(t-to). Let Ft(x) stand for the distribution function of Xt then

o t, st .
F,(x) = Z P(E, ) F *(x,t)

v=0

XV

(3.29)



where

F *(x,t) = P { X b (3.30)

t\
Since the method for calculation (3.30) is not xnown, an attempt nas been

made to obtain some information about this function. It has been shown

that the following inequality is valid

pd Xq, X L b > P ty,t
I PG T E ) s Frx,t) s TP, O E 2 (3.5
j=v+l I = b j=v J v
hence we have
oo oo to’t xo,x
Fle@= 1 ] P(E, n ¢. ) (3.32)
v=0 j=v+l J
® o tost X5y X
Fpe®) = [ 1 P(E n c. ) (2.33)
v=0 j=v J
where
0 s Flt(x) < Ft(x) < F2t(x) € 1 (5.34)
(see Fig. 4).
X

(x4,0)

Fig. 4 Graphical representation of the distributior
function Ft(x) and its approximations

The approximations th(x) could be obtained as solutions of

the following partial differential equation

Xvi



3%F 1, () 3F (x) OF,, (x)

1t 1t .
oxat * wl(x,t) —ax T ¥,y (x, ) e 0 £3.35)
aqu (x) oF ,, (x) 3F ., (x)
.. T 2t — 2t
st~ ¢ V1 (1) —% + U, (x,t) —¢ 0 (3.36)

where

dLn Az(x,t)

= Xl(x,t) - ———a—x———. wz

<
—
!

Az(x,ft)

3in A, (x,t)
Az(x,t) s e

<
-
(1L

Al(x:t) wz
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Chapter I

1. INTRODUCTION

The analysis of hydrologic time series and other sequences by
appropriate mathematical models, which describe the patterns and sequence
of a river flow and precipitation, is one of the objectives of modern
hydrologic investigations.

Among the known mathematical approaches that have been used for
this purpose, one can distinguish two basically different concepts,
deterministic and probabilistic ones. In the following exposition the
two examples will be outlined, which point out distinction between these
two philosophical aspects.

It is known that a hydrologic (or generally speaking a physical)
phenomenon is subject to laws which govern its evolution. A physical
phenomenon can be assumed as a deterministic one if, on the basis of the
present state, the future states are determined (are sure outcomes).

For instance, the newton laws of motions are deterministic in the sense
that the given present state of a moving particle uniquely determines
its future position.

The laws which govern the rainfall phenomsnon evolutions are
stochastic in the sense that on the basis of the present state cnly
probabilities of the future outcomes are determined. For example, if

n, denotes the number of storm periods during the interval of time

t

(o,t), (the present state), the number of storm periods in the

Mg T

interval of time (t,T) can never be predicted with certainty for any

Tt i.6., n is a random variable (defined over some space

t,T



Q = {w} of elementary events w). Since N T is a discrete random
3
variable for every T > t (nt T = 0, 1, 2,...) only the probabilities
3
of the future states
P { nt,T =v } = Pv(t,T) v==0, 1; 2,44

are determined.

The present exposition follows in principle probabilistic ideas
as one of the most modern theoretical approaches to the problem cf anal-
ysis and predicting the future characteristics of the hydrologic and
metereologic phenomena such as the river flow, precipitation, etc., which
are of the greatest importance in many of the water resource protlems.

To be precise, the precipitation phenomenon which is the subject
of this study will be considered from the aspect of the stochastic proc-
ess theory. A stochastic process is a mathematical abstraction of an
empirical process whose development is governed by probabilistic laws.
Most of the hydrologic and metereologic phenomena are of this kird.

With respect to the complexity of the precipitation phenomenon
(a random phenomenon which depends on time t) we have separately studied
its "dynamic" and "quantitative' characteristics. This separation needs
some explanation. Under the '"dynamic' properties of the phenomenon con-
sidered one understands those features which give information concerning
the frequency of storm periods in the given interval of time (to,t),
duration c¢f a storm period, the elapsed time up to the end of v-th
storm period where v = 1,2,..., etc,

As quantitative characteristics of the rainfall phenomenon, one
understands the total amount of precipitation during one storm period

or during v storm periods or the amount of precipitation for the time

(t - to), etc.



Finally, for the purpose of the practical application, it is of
interest to consider these properties combined. For example, information
that the average number of storm periods is v in the interval of time
(to,t) is insufficient if we know nothing about the average amount of
precipitation during a storm period. Likewise, information that the
average amount of precipitation during one storm is x does not mean
very much if it is not known how many storms could be expected in the
considered interval of time.

The second and third chapters of this study are devoted to in-
vestigation of the "dynamic'" and ''quantitative" properties of rainfall
phenomena respectively. As far as the fourth chapter is concerned, it
represents an attempt to investigate a problem such as obtaining the
distribution function Ft(x) of the random variable Xt for every
t>t, where Xt represents the total amount of precipitation up to
time t , or obtaining the distribution function of random variable Tx s
where Tx represents the time necessary for that amount of precipitation
to be equal x , etc.

Toward this end, a particular stochastic process of nondecreasing
sample functions, denoted by

)(t =7 (t,w) R

has been introduced. The most of the theoretical results that have been
considered in this study and connected with this process are of an orig-

inal nature and appear here for the first time.
2. OBJECTIVES

The general purpose of this paper is to present a mathematical

study of precipitation phenomenon (not entering into its physical nature,



although some conclusions concerning the physics of the phenomenon

can be drawn indirectly from the results obtainec) based on probability
theory and stochastic processes. In fact, a family of stochastic proc-
esses will be established (derived from the stochastic process of non-
decreasing sample functions n(t,w) ) and used for an interpretation of
some aspects of rainfall phenomenon.

This paper should represent the inifial steps in establishing a
general mathematical theory which makes it possible to prediét the future
behavior of rainfall. It is expected that these results will help to
better understand the precipitation phenomenon and that this understanding
will make possible better predictions of future characteristics. It is
also hoped that this study will discover new problems and open the way
to new investigations and discussions.

In this paper, studying of the rainfall will be restricted to the
consideration of that portion of the total amount of precipitation which
reached the ground and has been measured or recorded at the existing
network of raingage stations.

In order to achieve these goals, let us denote by £t the rain-
fall intensity over a small part AS (of an area S), at some moment of

time t . £, 1is non-negative and in addition is dependent not only on

t

time t , but on the position of AS witain S , i.e.,

£, = E(t,X,y) (1.2.1)

where (x,y) is a point which belongs to S (see Fig. 5).



£ (1, x,y)

Fig. 5 Graphical representation of intensity of
precipitation over an area S at the
moment of time t
It is assumed that precipitation intensity is uniform over AS
at any moment of time, i.e., if the area AS 1is sufficiently small,
the following is valid: for any two points (xl,yl) eAS and (xz,yz)
eAS we have

E(t,xy,y) ~ E(t,x5,Y,)

This small part AS could be, for instance, a precipitation station in
the area S .
In addition, the function £(t,x,y) 1is a random variable for every

t , x and y . Therefore, & _  1is a continuous parameter stochastic

t
process. Since the rainfall phenomenon will be considered over & small
part AS , obviously gt'= £(t,x,y) becomes a stochastic process with

parameter t only. Consequently we have

{ E, ittt }

as an objective of further investigation.



3. APPROACH

The last several years have seen an extraordinary increase of
interest in the problems of planning of water resource projects and in
the problems of increasing natural water supplies. For the first of these
two problems (or the group of problems) a method for predicting future
characteristics of the water supplies is indispensible. As far as the
second prcblem is concerned, it is important to develop sound mathematical
methods for evaluating weather modification attainments applicable to a
variety of natural conditions.

In order to achieve these goals, it is necessary to establish a
quantitative (mathematical) theory of some aspects of weather phenomena.
It is realistic to expect that the theory must be probabilistic in nature,
but since weather phenomena occur randomly and depend on time t , it is
apparent that the theory of stochastic processes will play the basic role.

We are far from concluding that the results represent a complete
theory (mathematical) of the rainfall phenomenon. In fact, this paper
represents the initial steps in establishing methods which should make
it possible to predict the future behavior of precipitation and to esti-
mate development of practical weather modification techniques. 1In addi-
tion, the aim of this theory is not only a simple evaluation of weather
modification attainment but also to point out better application of
weather mcdification tecﬁniques such that optimization of the seeding
procedure may be examined.

In this study, we have resolved to take as a subject of the in-

vestigation a precipitation station, i.e., all changes in the weather



phenomena related to precipitation that could be recorded in the
raingage station being considered. We are not going to talk about ad-

vantages of such an approach, but it would seem to be a very natural

one.

Let t0 denote the instant of time when observation of the

rainfall phenomenon begins and let §¢_  be the rainfall intensity at

t

some moment of time t . Obviously, Ee is a random variable for all

t>t . Therefore, we have a family of random variables

{ £ t > t, }

or a stochastic process. With respect to the nature of precipitation

phenomenon, it is apparent that for every t > t

g, 20

o’ t

An intermittent hydrograph at a rainfall gaging station has the
shape of the curve in Fig. 6 and represents a sample function of the

stochastic process, §& Obviously then, the total amount of precipita-

t

tion during some interval of time (to,t) recorded at the gaging in-
strument is equal to the following integral:
t
f Es ds

i

VA N

Fig. 6 Graphical representation of a rainfall hyetograph



Since gs is a random variable for every s 2 to , it follows
that the integral considered is a random variable for every t > L
In the present study, we are not going to inveétigate properties of the
process &t directly. In fact, we are going to deal with the stochastic

process Xt which represents a cumulative process, i.e.,

where x = represents the total amount of precipitation up to the instant

of time t0 . Since Xt is a random variable for every t > to , we'

have a new family of random variables:

{X. :t>t }

£ o
or a continuous parameter stochastic process, which will be denoted by

Xt =7 (t,w)

Since £, 2 0 for every s > ty it is apparent that any sample
function of w(t,w) 1is a nondecreasing t function. In other words,

for every t 3 E, and At , the following inequality is valid

!
m(t,w) € n(t + At,w) ¥ At > 0

The following exposition is devotec to the problems of interpre-
tation and investigations of the rainfall phenomena by the stochastic
process X = m(t,0) . One will see that studying of some important
characteristics of preciﬁitation phenomencn can be reduced to studying
corresponding properties of the stochastic process. Therefore, the more
we know atout the process Xt = m(t,w) , the more we know about the rain-

fall phencmenon. It is hoped that this study represents a contribution

to investigations of this problem.



Chapter II

1. THE FUNDAMENTAL CONSIDERATIONS

1°. In this section will be discussed how and why the precipita-

tion phenomenon should be studied from the aspect of the theory of sto-
chastic processes. For the sake of clarity, the exposition of the first
section will start with nonmathematical description of the quantitative
properties of the rainfall phenomenon not entering into its physical
nature.

Let us first explain why this phenomenon should be considered as
a stochastic process or why probabilistic approach is more realistic
than deterministic. Toward this end, consider the rainfall hydrograph
at a rainfall gaging station; it is known that it has the shape of the

curve in Fig. 6. An ordinate ¢£_ of this curve at some instant of time

t

t represents rainfall intensity at the moment t . If to denotes the
moment of time when observation of the rainfall phenomenon begins and

€+ is the rainfall intensity at this moment, then with respect to its
o |

nature it is not possible to predict with certainty, the value of the

variable §&_ at any moment of time t after to . In other words, on

t

the basis of the present state the future outcomes cannot be predicted

with certainty, i.e., &, 1is a random variable for any t > t_ or

t 0o

for any te(to,w). For example, if an arbitrary sequence tl, t2, 0wy

tv"" from (to,m) is selected such that tv < tv+tfor ¥ 1,250

then corresponding rainfall intensities

are obviously random variables.
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Since it is valid for any sequence of moments of time from
(to,w) , obviously we have a family or random variables (one variable

for each t ) which is denoted in the following manner:

e | £ t 3 to } (2.1.1)

This family or random variables represents a stochastic process of a
continuous parameter (see Doob (5) p. 46). A particular hydrograph rep-
resents a sample function of this process (see Fig. 7), where Tv de-
notes the length of the v-th storm period (starting from the instant
of time to) and T, 1s its upper bound. Obviously T and T, are
random variables for every v = 1,2,... . Therefore, we have two more

families of random variables

{ T, v=1,2,... } and { T v =12, }

or the two stochastic processes of the discrete parameter.
In the following exposition we shall not consider the stochastic
process (2.1.1), but we will deal with integral of the function Et

of the following form

X, =x + [ £ ds (2.1.2)

where X, is a constant. It is obvious that the integral considered
represents the total amount of precipitation during the interval of
time (to,t) , so that it is a random variable for every t > tO ;
Therefore Xt is a random variable for every t > ty and the follow-
ing

{ X €=t} (2.1.3)

t? o]

represents a continuous parameter stochastic process, which will be
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denoted by

Xt = m(t,w)

Since for every s >t , & 3 0, it is obvious that for every

o} S

At > 0 the following inequality is valid:

, At >0

Xt < Xt+At YVt > to

Therefore, sample functions of the process (2.1.3) are nondecreasing t

functions (see Fig. 8).

29, Probability background - The purpose of this part of the
paper is to replace preliminary intuitive notions with a sound mathemati-
cal base for further investigations. Toward this end, assume that the

following system is given:

(o' ={w 3}, £, P )

where

a) Q' = {w'} is the space (or sure event) of elementary events
w' , and domain of definition of random variables E s for every
teT* , such that (see Doob (5) p. 10)
w': (xt; teT*) (2.1.4)

where X, 2 0 1is any real number. In other words, Q' is the space
of sample functions of teT* , or, from another point of view, the co-
ordinate space, whose dimensionality is the cardinal number of the set

T* . The value of a t function at the point t = s defines an w'

function Es if we set

Eg (') = xg . (2.1.5)
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Fig. 8 A sample function of the stochastic process
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b) The class 7 is a smallest o-field (or Borel field)

generated by the class of Q' subsets of the following form
{ w'; g, €l }  teT*

where I 1is an interval of the real line.

c) Finally, one assumes that the probability measure Py s with
the class of sets of as the domain of definition, is complete and per-
fect, following Gnedenko and Kolmogorov (see (8) §§ 2, 3).

For the purpose of the further investigations, it would be nec-
essary to assume £, is a separable stocchastic process, i.e., if T

denotes an everywhere dense set in (to,T) , then the stochastic process

£, 1is called T-separable or separable with respect to T , if there

t

exists an event A (i.e., a subset of Q' such that Aca@) having

probability zero, i.e., PB(A) = 0 such that

[+)
AU {w'; £, €F Vtel*} 2 {w'; £, €F Vte T N1*} (2.1.6)
where F 1is a closed set and I”* an open interval from T* . The set

on the right side of the relation (2.1.6) is a measurable one and con-

tains the following set:
{ w; g, eF Vtel* }
which then, under separability hypothesis, is also a measurable one
(see Doob (5) p. 51 or Skorohod (26) p. 6).
On the basis of the separability hypothesis it follows that w

set

{ w'; £, = 0 VteAt } (2.1.7)

where At c (to,T) is also measurable. In the further investigations,

we shall suppose that probability of this set is not equal zero for any
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At e (to,T) 3 1a€.;
PO{ w'; gt=0, YteAt } # 0 ; (2.1.8)

Finally, we assume that the stochastic process is measurable and inte-
grable (Doob (5), p. 60). The last hypothesis is of great importance in
the study of the stochastic process w(t,w) . It will be seen that on

the basis of this hypothesis it is possible to prove that the last proc-

ess is a separable one as well.

3°. Comment - For better understanding of.the notions and hy-
pothesis of the previous exposition (Probability Background), let us try
to give the phenomenologic interpretation of these symbols and assump-
tions. In other words, let us express all these notions and definitions
in hydrologic terms.

First of all, the evolution of the rainfall phenomenon is con-
sidered in the time interval T* = (to,T) where T < » so that instead

of (2.1.1) we have the following:
{ Et; te(to,T) } 2 (2.1.9)

If we start to consider the rainfall phenomenon at the moment of
time t, then it is not possible to predict the shape of the hydrograph
in the time interval (to,T) , since there exists an infinite number of
outcomes (hydrograph curve) which could be realized. The set of all these
curves is Q' , and w' 1is any of these curves. In other words, the
space ' 1is the set oflall sample functions of the stochastic process
(2.1.9).

The class df consists of the sets of sample functions which are

particular (measurable) subsets of Q' . For example, the set
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belongs to the class A and consists of all sample functions of the
process (2.1.9) with the property that the ordinates at the point
t; (tO ¢ t £ T) are less than x . The sets belonging to the class
are callec (random) events; the space Q' 1is an event, i.e. G'e A .
The probability measure Po is a function (so-called set func-
tion) defined over the class Jé in the sense that to every event Ae ¥4
corresponds a number PO(A), the probability of this event. This func-
tion is completely additive, i.e., if Bl’ B2, ... 1is an accountably

infinite set of mutually disjointed events, then
) =y
p (.U B. ) R P (Bi)

Finally, let us give the meaning of separability hypothesis;
according to definition, if we have an denumerable (countable) family

of events, say

Ars Mgy wev Ay won g Aveﬂ_—' Yv=1, 2,
then, according to definition of the class J% , the union and inter-

section cf this event is an event as well, i.e.,
o] oo

U A. ¢ A. €

- o@ icll icd

The situation is more complicated, however, if one deals with non-
denumerable family of events, for instance if Ate Jé for every tel*
then

N a

tel*

is not necessarily an event; i.e., generally speaking,

N a ¢ A

tel*
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and therefore

P (N A )
° tel* £

has no sense. In our case, the set (2.1.7) can be represented as an
nondenumerable intersection of events, and therefore it is not necessarily

an event; i.e.,

{w' £ =0 vteat } = N {w; g, =0} . (2.1.10)
telAt

On the basis of (2.1.6), we have the following:

AUN {wy Et =01} 2 N ' Et =0}
teAt teAtNT

Since the second set on the left side is a subset of the set on the
right side (which is measurable; i.e., an event) of the last relation,

it follows that (2.1.10) is also measurable under separability hypothesis.

2. AN ANALYSIS OF THE PROCESS w(t,w)

1°. On the basis of definition (2.1.2), it is obvious that the
stochastic process

Xt = m(t,w), weR , teT* = (to,T) (2.2.1)

represents a cumulative process, namely if at the instant of time t,

when observation begins the total amount of precipitation was X5 then

t
The difference

X, denotes the total amount of precipitation up to time t (see Fig. 8).

m (t,w) - X

represents the total amount of precipitation recorded at a rainfall

gaging station during the time interval (to,t)
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For the purpose of establishing an appropriate theoretical
description of the quantitative aspect of the rainfall phenomenon which
will give us a complete as possible analysis of precipitation, it is
more convenient to study the properties of stochastic process (2.2.1)
than (2.1.1) or (2.1.9). Therefore, invaestigation of characteristics
of (2.2.1) will be the main objective of the further exposition.

To achieve a full analysis of the rainfall phenomenon, it is
necessary to study the various aspects of the stochastic process con-
sidered. This leads to a new series of stochastic processes, derived
from the process m(t,w)

Consider n

- the number of the full storm periods in an interval

of time (to,t) , where te(to,T) . Obviously, since iy, ™ 0, 1, 2,...
is a random variable for every t from (to,T) , we have a new continu-

ous parameter stochastic process:

{ n s teT* } .

t;

The upper bound of the v-th storm period has been denoted by
Ty (see Fig. 7 or 8); information about T, for every v =1, 2,...
is of remarkable phenomenological interest. Since T, isa random

variable for all v , we have a discrete parameter stochastic process
{ T3 V= 1, 2,:0: } ; (2.2.2)

The other two variables are of great importance for analysis of
the precipitation phenomenon; the first X, Tepresents the total amount
of precipitation during exactly v storm periods (see Fig. g§) and Zv 5

where
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which represents the total amount of precipitation during v-th storm
period only. Both Xv and Zv are random variables for every v =
1, 2,... so that two more discrete parameter stochastic processes will

be considered:
{ X5 v =1, 2,... } and { Z,; v =1, 2,... 1} . (2.2.3)

Finally, duration T = of the v-th storm period has particular
phénomenological interest for the rainfall phenomenon study. Since Tv
is a stochastic variable for every v =1, 2,... we have another sto-

chastic process

{ Tv; vel, 2,000 } (2.2.4)
which is of interest in the following investigations.

2°. Some definitions - For the purpose of further study, the two
particular classes of measurable sets (events) whose elements are sample
functions of the stochastic process m(t,w) will be defined. It will

be shown that events such as
{ w; T, &t | | X, € X },¥v=1, 2,..

could be expressed over unions and intersections of sets from these
classes. Since we are able to calculate probability of these sets, the

probability of the previous event can be obtained as well.

| W
Let Ev = represents the set of all sample functions of the

stochastic process m(t,w) having exactly v points Tj in the inter-
val of time (to,t) , or, in other words, the set of all sample functions

for which the following is valid: T,E <t i.e.

3

ty,t
E ={w; 1 st<n1

: y el |} (2.2.5)



20

(see Fig. 8). On the basis of definition of these sets of sample

functions, obviously the following class

E. = { Ev s e 0, 1, 2,00 } (2.2.6)

for fixed t is a countable one. Elements of this class are disjointed

sets, i.e., for every i # j , the following is valid

- t,,t © £t
E. "N E, % =8 and U E ° =2 2.2.7)
i j v
v=0
where symbol 6 denotes an empty set.
t,,t
Phenomenologically speaking, the set Ev ° represents the event

that exactly v storm periods will occur in the interval of time

(to,t) .

Let us define another class of sets of sample functions. Let
Xq3X
o)

L be the set of sample functions of the process n(t,w), which

have exactly v points n*(rj) in the interval of time (xo,x) .

Xg,X .,
" = { w} ﬂ*(Tv) < X < T* (Tv+l) } (2.2.8)
(see Fig. 4). By definition, the following relations are valid

X X

6 U c ® =2 . (2.2.9
A\
v=0

X_sX X, X
i r ) 0?
Vi # 3 Gi N Gj

° of sample

The phenomenological interpretation of the set G,
functions is evident; it represents the event tkat the total amount of
precipitation during exactly v storm periods will be less than or

equal to (x - xo) and for (v + 1) storms it will be larger than

(x - xo)
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3°. Probability background - Relation (2.1.2) represents a
transformation with Q' = { w' } as the domain of definition. The set
of all values of this transformation will be denoted by @ = { w } .

In order to avoid purely technical difficulties, we shall assume that
the following system is given:

(2={wl},n, P)

where @ is the space of elementary events w , Jd is the smallest

o-field generated by the class of Q subsets of the following form:

T, £t ,t

eI}, (¢, °° N G, "y i, 35=0,1, 2,.

{ w; X
J

t

where I 1is an interval of the real line. Elementary event w should
be realized as a sample function of the process = (t,w) . P 1is a prob-
_ability measure defined over class J3 .

Since &_ > 0 for every (t,w) e (T*xQ) , (where T*xQ repre-

t

sents the Cartesian product of the sets T* and Q , (see Halmosh (12)

p.- 137) obviously the sample functions of the process X, = m(t,w) are

nondecreasing t functions, i.e., for any weQ

X, = n(t,w) s X

& m(t+At,w) VAt > 0 ,

t+At

Finally, let us examine the question of separability of stochastic
process Xt = n(t,w) . First, if it is supposed that almost all sample
functions of the process

{ Ees teT* }

are continuous functions then w(t,w) 1is a separable stochastic process.
If £t is stochastically continuous, then w(t,w) is separable. Let

us now prove the following theorem:
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Theorem 13

If almost all sample functions of the measurable stochastic
process
{ €t; fET* }
are integrable, then stochastic process
{ Xt; teT* }
is separable.
Proof.
Consider two instants of time t and t, and assume t, <t

1

On the basis of monotony of sample functions of w(t,w) , we have

2 .

X, - th > 0 . Therefore, for every e > 0 , probability of the

following event

2
{ w; Xe_ = Xt >et=1{w; | £ ds 3> ¢ }
2 1 1
obviously tends to zero, if t, - t1 + 0 , since
%
& ds >0
s
Y
i.e.,
lim P { w; Xt - Xt > ¢ }=40
t,-t,=»0 2 1

2 71

Therefore, the stochastic process w(t,w) 1is a stochastically continuous
one so that by virtue of the foregoing (see Skorohod (27), p. 209), it

is separable.
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3. STOCHASTIC PROCESSES R and T,

o

1. It has been mentioned in the previous section that n

t 3
where teT* , denotes the number of the complete storm periods occurring
in the interval of time (to,t) . Since Ny is a random variable for

any t from T* , we have a continuous parameter stochastic process
1 ng; teT* } (2.3.1)

where Ty, = 0, 1, 2,.
In order to estimate the average number of storm periods in some
interval (to,t) , which is obviously a t function, and other charac-

teristics of the variable Ny it is necessary to calculate the follow-

ing probabilities:

for every teT* and v =0, 1, 2,...
t.,t
According to definition of the events E\J ¥ (see 2.2.5), it
follows that

to,t
Pv(t) = P(Ev ) (2.3.2)

and on the basis of (2.2.7) it follows that

} P (t) =1
v=0 v

The corresponding distribution function F(x|t) of the random variable

ne has the form

[x]
sx}= 1 P () (2.3.3)
v=0

F(x|t) = P { w; n,

where the symbol [x] denotes the greatest integer not greater than x .
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On the basis of (2.3.2) the average number of storm periods E(nt) in

the interval of time (to,t) is equal to

to,t
v P(E_ ) : (2.3.4)

e~ 8

E(nt) =
Vv

1

For an effective calculation of the probabilities Pv(t) and
mathematical expectation E(nt) , it is necessary to possess the prob-
abilities P(Evto’t) for any teT* and v =0, 1, 2,... . In the next
section, it will be shown how this probability can be obtained under very
general assumptions about the phenomenon considered.

The next characteristic which will be studied is the upper bound
T, of the v-th storm period. Study of this characteristic has a par-
ticular phenomenologic interest. Since T, is a random variable for

cevery v =1, 2,... we have a family of random variables or a continuous

parameter stochastic process

For practical application, it is necessary to possess information
about distribution function Av(t) of random variable T, for every
v=1, 2,... . The following theorem gives the relationship between

Av(t) and the probabilities (2.3.2).

Theorem 2.
For every v =1, 2,... and t 3 to , we have
co to’
A (L) = ] P(E, ) . (2.3.5)

The proof of this theorem is very simple (see appendix to this section).

Phenomenologically speaking, the relation (2.3.5) means that T, will
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be less than t if at least v storm period will occur in (to,t)
Let a (t) represent the corresponding density function of the
distribution function (2.3.5), i.e.,

3A (t)
3t

a,(t) =

Then the following theorem can be prbven:
Theorem 3.

Assume that the following conditions are satisfied:

Z P(E t,t+At)
i =2 T
a) lim T = 0 VvVt >t
At>0 °
t..,t
p(Elt,t+AtI Ev i’
b) lim - A (L) Ve >t s
At>0 Ax 1 o
then for every v =1, 2,...
tyt
av(t) = Al(t) P(EV_1 ) . (2.3.6)

The proof of this theorem will be given later.
' Let us now discuss the conditions a) and b) of the theorem and
try to give their pure phenomenological interpretation. Toward this end,

consider first the condition a) and its physical meaning. First of all,

the following sum

,t+At

) P(ETt ) (2.3.7)

=2

expresses the probability that in the interval of time (t,t+At) at
least the two events T, will appear (i.e., will occur and, of a rainfall

and the next storm period, will belong wholly to the same time interval).



Condition a) means that the sum (2.3.7) is an infinitesimal of a higher
order than At , when At>0 . With respect to the nature of the pre-
cipitation phenomenon, this condition is very realistic.

Consider now the condition b) of the theorem and its phenomenologi-

I .
cal interpretation. On the basis of definition of the events Ev © 5
obviously
A, o ol o to,t
P(E)’ | Evfi ) (2.3.8)

represents the conditional probability that the upper bound of the wv-th
storm period will belong to the interval of time (t,t+At) , under the
condition that exactly (v-1) storms occurred in the interval of time
(t,,t).

Since the conditional probability (2.3.8) depends on t , At and
v , it represents a function which in the most general case depends on

these variables, i.e.,

p(pbrtHat | Ef°’t

1 °17) = A (kstv-1) (23,9

If it is assumed that:

1. Probability that a termination instant will lie between the
two instants of time, t and t+At do not depend on the number of storm
periods up to time t

2. For very small At, Al is a linear function with respect to
At , then the following is valid
t .t

o’ t,t+At

t,t+At _
v-1 ) = P(El

P(E, | E ) = A (t,5t)

and
Al(t,At) = A, (t) ot

then condition b) of the previous theorem is satisfied.
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Certainly the assumption (2.3.9) that conditional probability
(2.3.8) is a function of t , At and v is most general. As far as
the other two hypotheses are concerned, there is no doubt that the
second,

Al(t,At,v—l) = Al(t,v-l) At
is realistic, but the first, that
Al(t,At,v-l) = Al(t,At)

is discussible and needs experimental testing. In fact, a very realis-
tic hypothesis is to suppose that the relation

t,t+At to,t

P(El | E\)_1 ) = Al(t,\)-l) At (2.3.10)
is valid.
Note:
Since the random variable T, for v =1, 2,... can assume any

value from the time interval (to,m) , it is supposed that T* = (to’m)'
In the following exposition it will be of particular interest to consider
no interval T* = (to,w) but an intervallof time T* = (to,T) where

T < » . 1In other words, let us consider the problem of calculation of

probability of the random event

under the condition that at least v storm periods have occurred in

(to,T) 5 #8805
P { w; T, § b, TE (to,T) }
Let us denote this conditional probability by Fv(tIT*) , 1.e.,

Fv(t|T*) =P { w; T, < tlrveT* }
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Then the following theorem is valid.

Theorem 3:

For every te(to,T)

F, (t1T%)

If fv(t T*) denotes the
*
f\)(tlT‘)

then
*
£, (£]T*)

In this part of the
be given.
Proof of Theorem 2.

First we have

!

{w

T <t}=
v_

so that on the basis of definition of the events

is valid

{w;rviﬁ}=

and v 1, 2,...

P(Ezo’t)

e
<

(2.3.11)
s T
to )

(E]

fr~glle—g

[N
<

corresponding density function
*
3F  (t]T*)
ot

]

t

) (2.3.12)

to:
Ay (£)P(ECOS

i

T raten

1=V
APPENDIX

paper the proofs of the previous theorems will

V)

i=v

}

{w; Ti—<-t<1i+1
t

g 0"
\Y]

, the following

©
t
OI
U Ej
1=V

t

Finally, by virtue of the first of relation (2.2.7) we have

P{m;tvit}

and the zssertion follows.

t t

p( U EEO’
i=v

)

p (eto-
1
\YJ

)

1

©



Proof of Theorem 3.

It is obvious that a) and b) represent sufficient conditions for
existence of derivatives of the function Av(t) . In order to prove the
theorem, consider the distribution function (2.2.5). It is not difficult

to see that the following is valid:
Av(t+At) = I P(
i=v

Ft tFAt)

Since

i
to,t+at _ to ,,t t+at
2 = U (E2°NE )

1=0

E

then the following is valid:

©

' @
t
) z P(EtO; N E_ )= & P(E ort ﬂE
i=v 1=0 i=v

t,t+AL t,t+At

1l

A, (t+at) ) +

© i
t4Lt
)+ I P(E:‘OttnEt 4

+

Z P(Eto, n Et t+at

i=v i=y 1=2

)

On the basis of the following irequality,

t,t+at
N E by =

i

to, +
: P(Ezc_’; {P(E]C tﬂ Et Lt
2

A\

+ ..

Il 8
I o
fl a8

t,t+At

+
+P(Et°’ N EJ )} Eplhat

P(E )

Il o1 8

Therefore, on the basis of condition a) of the theorem, we have

A (t+at) = P(Eto’ n Et A
v ‘ i=v
> to,t o t,tHat
' + 0(at
+ i (El,l N By ) (at)

and consequently,
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3A (t) ®
+ to,t
Y st =1z {p(E' "N B FN- p(EjO T 4
ot L
i=v
+1opEef A e 4 o)
i=v
On the basis of the following equality,
if AcB , then P(B-A) = P(B) - P(A) , (2.3.13)
we have
A (t) °° +
VA= - 1 (Eto,t to, n Et t At) +
ot . 1
i=y
® +
+ xeEtertn el 4o
i=v
so that by virtue of the set relation
A-B = A n BS (2.3.14)

where B® means the complement of the set B, the following equality is

valid:

} t ,t ot .t t .t t ,t

o’ o’ t,t+At _ o
P(Ei -Ei N Eo ) = P(Ei

0’ t,t+At.c
n (Ei n Eo )7)
By virtue of de Morgan's laws (see (1) p. 17 or (13), p. 10), it follows

that

ty,t to,t t . t+At ty,t t, teAt.c
P(E. ° -Ei"n E -’ )=P(Eio n (g, 1)

and since

(Et (ot C O gty tHiL

T (2.3.15)
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the following relation holds:

t

os* t
) = P(E; N E,

t.;t t

t
0 0’ t,t+At
P(E. -E,° N E,

,t+At) + 0(At)

Therefore, on the basis of these results the following is

obtained:
3A (t) ®
v _ to,t t,t+at
1=V
+ 1 p@Eotn TN 4 0
i=v

and by virtue of condition b) of the theorem the assertion follows.
Froof of Theorem 4.
The proof of this theorem is very simple; indeed on the basis

of the following obvious relation
{w; T,5t, rviT}={m; Tvit}

and Theorem 2, we have

:

° t
P{w;tvit,tviT}= Z P(Eio' )

! i=v

or ] p(etort)

=

Plojr st|r <T}= K
P{uw;t_<T}

-—

from which the proof of the theorem follows.

t_ ;t
4. CALCULATION PROBABILITIES OF THE EVENTS Ev B

o

17. We have seen from the previous exposition that several very

important characteristics of the stochastic process m(t,w) are closely

t

tos
) . More precisely,

related to the probabilities of the events P(Ev
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the distribution functions of the two stochastic processes may be ex-
pressed as sums of these probabilities.
Therefore, an effective obtaining of one-dimensional distribution

functions of the processes n and T, depends on our capability to

t
£t &
calculate probabilities P(Ev ° ) for every v =0, 1, 2,... and
t >t . On the basis of conditions a) and b) of Theorem 3, this cal-

o

culation can be done. To accomplish this objective it is necessary to

prove the following theorem:

Th=zorem 5.

Assuming that conditions a) and b) of Theorem 3 are satisfied,

t

to,
) for every v =20, 1, 2,... are

then the probabilities P(EV

solutions of the following system of differential equations:

aP(ESO’t)

at

to,t

to,t
0T = P(ECID)] (2.4.1)

Al(t)[P(E

To obtain a solution of the system (2.4.1) we will use the method
of generating functions which has been applied by Khintchin (see (17),
p. 18 and p. 23), under the assumption that the following condition is
satisfied:

tg,t
Vet P(E O ) =0 if v<O . (2.4.2)

The general solution of the system (2.4.1) has the following form:

- A1(s)ds ([T aq(s)as)’
t e {o Yo ' (2.4.3)

v!

The expression (2.4.3) represents a solution to the system of
equations under conditions a) and b) of Theorem 3. If it is assumed

that condition a) of Theorem 3 is satisfied and b) is modified in the
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following manner

t,t+at ot

1 | E,210)
At

P(E

lim

Al(t,v—l)
At-o

then the system (2.4.1) becomes

to,t
3P (E;°") t

—_ tOl tOr
s = A1(t,v-1) P(E21T) = A) (£, v)P(E/

) (2.4.4)

The particular important case is if the function Al does not depend

on t but on v only, then (2.4.4) becomes

aP(Eto’t) to,t A
B = 2 (v=1)P(E;2]7) = A (W)P(E ) (2.4.5)

In the following, the proofs of the previous assertions will be given.

2°. Appendix - Let us prove Theorem 5 and other assertions in
the previous exposition.
Proof of Theorem S.

In order to prove the theorem consider the following relation:

to, t+at) Voo ¢
P(E O’ = ort t,t+At
v P(t\=/o(Ev_; N eSrtHet)).

_ to,t ~ _t,t+at t £, b+
P(E°""n B )+P (B °' n et 54 0(at)

Therefore, we have

P(Eto,t+At) P(Eto’t)= -P(Eto't gtort n Et S EHat)

t,t+At

+P(Et 16 B )+ O(At)=—p(vt°'t

{\(Eto, nEt t+atyc) .

t,t+At

to,t
+ P(E 2] N Ej

)+ 0(at)
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so that the following is obtained:

ap (£T0 Y .
18
— ¥ st ==p(Efortn Ity S ip et t A EY B h0 (at)
v o v-1 1
st
Finally, on the basis of (2.3.15) we have
to,t
AP(E©C’ ")
v o tort t,t+At to,t t,t+At
3t At = P(Ev f\El )+P(Ev-l f\El )+0(At)

which proves the theorem.
Let us now state the procedure to obtain the solution of the
system of differential equations (2.4.1). In order to achieve this

goal, consider the function

¢(t,z) = (2.4.6)

e~ 8
o
~
m

and multiply both left and right sides of the system of equations (2.4.1)
by z¥ and take the sum of the both sides from v = 0 up to v = @ .,

Then, obviously, the following is obtained:

t,,t
© QJP(EO’") o
I o — 2 2% = (t) T o(p(etortyp(etortyysy -
Mol at 1 Vs v v=1
= A () (z-1) T p(efortyyY
v=0

Therefore, on the basis of (2.4.6) the last relation results in the

following form

221%%31 = Al(t)(z—1)¢(t,z)
or

3lng (t,z) _ &3 o

el = Al(;) (z-1)
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wherefrom we have
Ing (t,z)- Ing(t,z) = (z-1) foc WOLE (2.4.7)

Since, by definition,
0if v <O

(o]
P(E

so that (2.4.7) becomes
1n¢(t,Z) = (Z’l) Al (to’t)

Therefore, on the basis of (2.4.6) we have

$(t,z) = (2= Ay tEg t)

| i A, (e, )]
o oZh (tost) | mhy (o, t)_ 3 e-AJto,t)[ (650 0)] oV

v!
v=0

i.e.,
: p(Etorh)Y = g e~11 (tor
A\
V=0 V=

t) [Al(to’t)]v

v!

Z
@)

and finally

AY
p(etort)y - oA (tost) [Al(to,tﬂ
v v.

whicn proves the theorem.

The results (2.4.3) represent the most general expression for the

£.,1
probability of the events E © v=20,1, 2,... t=>t
v

, under con-
o]
ditions a) and b) of Theorem 5. Obviously, these probabilities depend

on an unknown function xl(t) , therefore it is important to possess a

method for its evaluation.
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As will be seen in the following section, in some particular cases
important for practical application function Al(t) can be obtained im-
mediately. In any case, this function or its integral Al(to,t) must be
obtained either from the properties of the rainfall or experimental data,

or it has to be given.
5. DISCUSSION AND APPLICATIONS

In the previous section, an analytic expression for the probabili-
. to:t
ties P(E ) , for every v =0, 1, 2,... and t > t_ , has been ob-
v 0

tained. This result is very important since it can be seen from (2.3.3)
and (2.3.5) that the one-dimensional distribution functions of the proc-
esses T Vv = 1, 2,... and Ne t = to , can be expressed over these
probabilities. Only the question of how the function Al(t) can be
effectively obtained remains open.

In order to contribute to the solution of this problem, it is
necessary, besides the pure probabilistic definition of the function
Al(t) given by the limit

t,t+at, _to,t
P(E) | Eyc1 )

Aiig At = A, (t)

(2.5.1)

to possess its phenomenological interpretation. Toward this end, con-

sider first the stochastic process Ne - Since by (2.3.2)

t
P (t) = P(E,

,t
)

(0]

then on the basis of (2.4.3) the following is valid

-t x,(s)as,  t v
to | (ftokl(s)ds)

P“(t) =e =
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where, as it has been seen, Pv(t) represents the probability that

exactly v complete storm periods will occur in the interval of time

(to,t) , for every teT* . The expected (average) number of storm

periods during this interval is given by the function

-f5r  (s)as (JE A ts)@s)”
E(n,) = e to °

e~ 8
&
.
1}

t
o]
= e z =
v=1  (v-1)!
- ft A, (s)ds t
e = (f r (s)as)”
t R t
=e (/" aj(s)as) L = [ A ts)ds
to v=1 vl to

Therefore, the average number of storm periods in the interval of
time (to,t) is given by the integral

t
E(nt) = ft Al(s) ds

(2.5.2)
0

On the basis of this, integrand Al(s) represents some kind of intensity

measure of storms.

Obviously, if the function Xl(t) is larger then the average
number of storms is larger. Particularly, if in some subinterval
(tl,tz) of T* valuesAof Al(t) are larger than for instance in
(to,tl) . a larger number of storms can be expected in (tl,tz) , even
if the following equality is valid

(t, - t) = (t, - t))
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Consider now the distribution function Av(t) of the random
variable Ty 2V & 1, 2,... . On the basis of (2.3.5) and (2.4.3),

the following relation is valid

-ft A, (s)ds

@ t : (2.5.3)
— to 1 J
A\)(t) = e .E ijTi_)_ (f )\l(S)dS)
=y to

Since (2.5.3) could be written in the following manner,

t t

- _ A, (s)ds —{o Ay (s)ds 4 . & ;
A\)(t)z e (e ".E TT]‘—:'_I)— (I Al(S)dS) )=
j=o to
-/ oAl(s)ds 1 . & !
=1-e jio TACTINE ({ A (s)ds)
we have
t
-{o Al(s)ds
Al(t) =1 - e
t t
-ftoxl(s)ds —ftokl(s)ds t
Az(t) =1-e -e / Al(s)ds
t0

etc.

Bv virtue of Theorem 3, the corresponding density function

av(t) of distribution function Av(t) has the following shape:

t
- A, (s)ds
A, (E) L 1 t =
_ 1 o ds)® 2.5.4
o, (t)= 57 © (Lo A, (s)ds) (2.5.4)

Thereforz, for v =1 and v = 2 we have,
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t
-[% A, (s)ds
I ™

: _ o
t
- . ll(s)ds t
0, (t) = 2 (L) e [ A (s)ds
tO
etc.
The mathematical expectation of the random variable T, for
v=1, 2,... 1is given by the following expression:
t.
- - ll(s)ds t
E(t ) = 1 [ tr,(t)e 9 (f 1 (s)ds)“’ldt(Z.Siﬂ
v r(v) 1 1
to to

Formula (2.5.5) represents the arithmetic mean of the upper bound

of the v-th storm period. 1In the following, the difference
E(Tv) - t0 v =1, 2;:i4s

represents the minimal average time during which exactly v storm
periods will occur.

| It is possible to give another interpretation of the difference
(2.5.4); it is the average total time elapsed up to the end of the v-th
storm period.

Let us now return to the problem of evaluation of the function

t

Ay (t,t) = 'fto A (s) ds : (2.5.6)

On the basis of definition A,(t) » 0 , therefore, integral (2.5.6)
represents a monotonous nondecreasing t function. Further, since

integral (2.5.5) represents the average number of storm periods in the
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interval of time (to,t) , the integrand Al(t) represents some kind

of intensity measure of storm periods.

Ny

(1,,0)

Fig. 9 Graphical presentation of the
function Al(to,t)

Let us now consider a particular case where the function Al(t)
can be easily evaluated and which is of a great importance for practical
applications. Toward this end, consider relation (2.5.1); as is seen,
it expresses the stipulation that the probability of belonging to some
interval (t,t+At) of the termination instant of a storm period does
not depend on v , i.e., on the number of storm periods up to time t ,
but on t and At only. The immediate consequence of this hypothesis
is the nonnegative function Al(t) , which represents a kind of measure
of storm period intensity.

With respect to the seasonal variation, it is realistic to expect
that the function Al(t) is a periodic function. For a temperate zone,
the corresponding period is usually one year; generally speaking for

different climatic zones the function Al(t) has different shapes.
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As an example, consider a tropical zone. In this case, it is
realistic to assume that the function Al(t) can assume the two dif-
ferent values Al.l and Al.2 only, for the wet and dry season re-
spectively, i.e.,

Ay 1 if t belongs to the wet season
A (£) =

1.2 if ot belongs to the dry season

(see Fig.10a)
To justify this assumption, suppose that the instant of time t

represents the beginning of the wet season; then the following integral

t
Ayt ot) = A, (s)ds
to
where t , (t 2 to) belongs to the wet season as well, representing
the average number of storms in (to,t) is a linear t function, i.e.,

if t increases, then the average number of storms increases as a linear

function,

Al(to,t) = at + b

Since, A&to,to) = 0 it follows that b = 0 , and, by virtue of the

following relations

dA1 dA1 .
t

- = Al(t), I - @
where a = constant, it follows that Al(t) is a constant as well.
If it is assumed that to =0 and T* represents the wet season,
then on the basis of (2.3.2) and (2.4.3) probabiiity of v storm periods

occurring in the interval of time T* = (0,T) is

(ry,T)"’
AT 11 (2.5.7)

PV(T) "
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A (1)
A (N
1
Xy
f
wet dry Xf
season season {
Fig.10a A graphic illustration of intensity function X(t)
for a tropical zone
Ag(t)

Ad)

Summer Autumn Winter Spring

Fig. 10b  Graphic illustration of intensity function A{t)
for a temperate zone
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Therefore, the number of storm periods in the wet season is distributed
according to Poisson law. The corresponding distribution function

F(x|t) given by (2.3.3) is equal to the following expression

v
(x] (AHT)

¥(x[t) = ottt Y —— (2.5.8)
\).
v=0
Since the random variable L for v =1, 2,... can take any value
from the interval of time (to,w) , it is assumed that T = = . Therefore,

assuming Al = cons. on the basis of (2.5.4), the following is obtained:

v
A
M -A,t  ,v-1 (2.5.9)
Av(t) =T © i
where to=0 . Obviously, (2.5.9) represents a Gamma density function
with parameter Ay - As is known,
= .\.’._ = v . 2.5.
E(Tv) % D(rv) T{ ( 10)

Finally, on the basis of (2.4.3), the conditional density function

fv (tlT*) becomes

[T Aq(s)ds
A (t)e (5 rp(eras)
£ (t]T*) = w Q (2.5.11)
v = (fy A;(s)ds)d
rv) ) T
1=V

If a tropical zone is of interest (assume, for instance, that the interval
of time (tO,T) represents a wet season) then xl(t)=kll , and (2.5.11)

becomes
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v=1 A,, (T-t)

l Xll (t’to) e 11
f, (t[T*)
2 r(v) S-u: ((T-t )12 (2.5.2)
1 !
i____\) 1.
or, settirg to=0 s
v

fu(t!T*) = T (V)

6. PRECIPITATION AND MARKOV CHAIN

1. Up to the present time, the precipitation phenomenon and its
most important characteristics have been considered in a given interval
of time (to,T) independent of and isolated from the previous behavior
of the phenomenon considered. For example, does the number of storm
periods in a previous interval of time influence the number of storms in
the interval (to,T)?

According to experience, there are cases where this relationship
can be assumed as justified. For example, the number of storms in the
springtime influences the number of storms in the summer time. But the
question, is there correlation between number of storm periods in two
successive years, is discussible, according to the opinion of some
hydrologists and metereologists.

The purpose of this section is not to discuss in which cases there
exists such a stochastic relationship and in which there is none. The
response to such a question can be obtained by studying corresponding
data only. In the following, we are going to present some methods by

the help of which this problem could be studied.
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Consider a sequence of successive time inzervals
U0 Lis (Balgde see (o gD he wus

and denote by

c oo n e e
nyr 27 v’ (2.6.1)

the corresponding number of storm periods respectively; then n, is a

random variable for every wv=1,2,... such that
T T
_E oy v=1""v
Plojn,= i,}= P(Ei\J ) (2.6.2)

Of particular interest is the following question: does the
knowledge of the number of storm periods in the past and the present
time give to us some information concerning the future behavior of the

phenomenon considered? In other words, if it is known that

what could be said about future Noe1 2 i.e., what about the following

conditioral probability

- :‘ - = }
Plusng,=iy4 | ™M v v (2.6.3)

On the basis of

T x T
_ g k177K

{w;nkzik} lk 3

conditional probability (2.6.3) becomes
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v+l Tr—l'Tr
P (E; )

. g o3 ey T =1 T
Blosngy =iye | mel Lvl= =5 T 1T,
e/ (g, )
T=1 T
T ,T T . .,T
ey P(E AV \J+1| n EiT+l I')
v+l =1 (2.6.4)

Ir. the simplest case, if it is assumed that (2.6.4) represents a

sequence of independent random variables, then (2.6.3) becomes

Tv'Tv
} = P(Ei
v+l

+1

Pluin,,y = 1,4 ) (2.6.5)

The other possibility is to assume that the future state depends on the
present state only, so that (2.6.3) can be written in the following
manner:

T,T Tv_l,T;

. 3 s _ v/ v+l
P{U’nv+l—lv+l'nv—lv} - P(Ei\’_l_l | Elv ) .(2.6.6)

Therefore, under this condition, the sequence (2.6.1) represents a

Markov chain with (2.6.6) as transition probabilities. If (2.6.6) is
denoted by Pi i (v, v+¢1) , i.e.,

v’ T+l

T
i e

T

(v,v+l) = P(E,

v Tyl lETv-l'
i i

v+l v

P.
1v:1v+1-

then obviously the following is valid:

I8

P. . (v, v+#l) =1 ¥Vi=0,1,2,... v=0,1,2,...
o lv"‘”1

i
v
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If each time interval (Tk_l,Tk) , k=0,1,2.... represents a

year, then it seems realistic to suppose that transition probabilities
are independent on v , i.e., (2.6.1) represents a Markov chain with
stationary transition probabilities. Then (2.6.7) can be written in the

following manner:

Tv—l’Tv

T,,T
E; ) - (2.6.8)

P.. = P(E.

v+1 l
1j J

In order to effectively obtain transitioﬁ probabilities (2.6.8),

consider the expression

Tt T 1T
j

Pyy(t) = P(E." 1 E4 ) (2.6.9)

where Tv<ti.T ; then, if the condition is satisfied that

v+l
T . T Tt
P(E;'t+&t lEiv 1 Wquv )
lim == = Ay (¥) (2.6.10)

At-o

the system (2.6.11) of differential equations is obtained:

I A TS

aP(E. © JEY * V) T,t T ,,T T ,t T T
) i _ v velt Ty v v=1,"v
- = Ai(t)[P(Ej_l |E; ) =P (E; B )]
(2.6.11)

The solution of this system of equations can be obtained in a
manner similar to the solution of the system (2.4.1), so applying the
same method for solution, the following is obtained:

a3 (T, ) [Ai(Tv,t)]J
3%

Tt T g7
P(Ej |E{

Vi = & (2.6.12)
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where

t
) = . (s)ds .
Al(Tv,t) é rj (s)ds @619
AY]

Let us discuss now the condition (2.6.10) which represents the
basic hypothesis under which results (2.6.12) have been obtained. For

sufficiently small At , (2.6.10) can be written as

T,_,T, Tt

t,t+At N Ejv } & Ai(t)At ) (2.6.14)

P(El

| E
1

Phenomenologically speaking, the last relation expresses the following:
the expression on the left side of (2.6.14) represents the conditional

probability that a termination instant will lie between t and t+At

3

under the condition that exactly i storms have occurred in the previous

period (T Tv) and exactly j storms from T, upto t . In other

v-1’
words, this is the probability that the end of the (j+1) storm period
will occur somewhere in (t,t+At) under the condition that nv=i and

Ty,t
j

E
The right side of (2.6.14) is a function of t , i and At
only, therefore under condition (2.6.10) or (2.6.14) it follows that the
probability that a termination instant will belong to a time interval
(t,t+At) depends on the number of storms i in the previous period
(Tv-l’Tv) , on t but not Pn the number of j storms in (Tv’t)
The more general hypothesis represents the assumption that the
function Ai(t) depends on j as well, i.e., of the number of storms
in (T,t):

. T ,t
P(E:'t+At | Eiv 1 vr\ .V )

lim J = 2. (E) . (2.6.19)
At-o At ]
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Under this condition, the system (2.6.11) becomes

T, b B 70T

9P (E; N E; ) _
ot
T,k T _.,0 R R .
- el T v’ v=1’"v
Ai’j_l(t)P(Ej__l | By )= Ay, 5 (B)P(E, | B, )

(2.6.16)

On the basis of definition of (2.6.9), the following relation

obviously is valid

¥ Pys(t) =1 te(Ty,T ,q)
J=0

Therefore, on the basis of (2.6.12) mathematical expectation
(-]

J=1
“A; (T ,t) = A (T ,t) J
=e *+ zlj 1V = 2, (T ,t)
I= je
j.e.,
t
m. (t) = A.(s)ds .
1() Jx"“ 1 (2.6.17)

In this manner, the phenomenologic interpretation of the integral

(2.6.13) has been obtained and represents the average number of storm

periods in some interval (Tv,t) under condition that nv=i . There-

fore, the expected number of storm periods in (Tv’Tv+1) under condition

that exactly 1 have occurred in (Tv-l’Tv) is equal to mi(Tv+1) , 1:€as

mi(Tv+l) = E(q\)+l lnv=l)
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Obviously, the theory of Markov chains can be applied in the
whole to the problem of investigation of properties of the sequence
(2.6.1). Since, with respect to the extent of all these problems, such
an investigation represents a separate study, we shall restrict consid-
eration to the problems which have been studied in this section.

2. Appendix - Let us prove now that under condition (2.6.10),
the function (2.6.9) satisfies the system of differential equations

(2.6.11). In order to achieve this goal, consider the following ex-

pression:

P(Ej"' | E; L™y =
T ,t+At T IT
= 1 P(EJ" Ne,” 179y o
Tv—l'Tv
P(Ei )
j T ,t T - ’T
- 1 ZTP(Ejjt N E:'t+Atf\Eiv ) § vy =
T T =0
17 v
P(E. ° )
i
j TV't T e !Tv
- 1 5y P(Ej—T n Ei't+AtﬂEiv 1 )
T &' T T1=0
v=1'"v
P (E. )
i

On the basis of the inequality
; il

T .
L -t

. N )
nE'Tc,tMtn N YT ? p(ptrtHat)
‘ -

T =2 ¥

it is nct difficult to see that for sufficiently small At the following

T

relatior is valid:



T ,t+At T o T .t .
v v=1""v v t,t+At v=1""v
‘ N ” —— . +
P(E] IEl ) p(EJ N Eg | E )
¢ I - T W .
v t,t+At v=1’""v o
+ P(Ej_l n Eq I E; )+ o(at)

Therefore, we have

T ,t+at T _.,T Tt T 4T
P(Ejv | Eiv 1 v)_ P(Ejv lEiv v) =
T 't T - ,T T ,t T - 'T
- P(Ejv ' Eiv 1 v)+P(Ejv f\Eg't+At IEiv 1 v) +
T ,t T ,,T
+ P(Ejzl N Eirt+At | Eiv 4 Yy 4+ 0(at)
Since
¢ By - T T T .t G i 7
v v=1'%v v’ t,t+at v-1'"v,  _
P(Ej | Ey )+ p(Ej f\Ei I Ej ) =
 JPE S T T
- - P(Ejv _ Ejv n E;,t+At l Eiv 1 ¥ =
T ,t T ..t T 4,7
- - P(Ejv r‘(Ejv E;,t+At)c | Eiv 1 v) -
T .t ¢ T
_ v t,t+40t, C v=1'"v
= - P(E; N(E )~ By )
and
@ + ,
(Eg,t+At)c - U E:'t At
=1
the following is obtained:
T ,t+At T _,T T ,t T T
v v=1'"vy v’ v=1""y
E. e - . . =
P( j | E, ) p(EJ |E1 )
T .t T o T
-1""v
ap(E," | E," ) T ,t T ,,T
It st = - p(E,V N BpTHAR BT 4

t T s
v’ t,t+2t [ _“v=1""v
+ P(Ej_l N Ey |E; ) + 0(at) | (2.6.18)
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On the basis of this relation, the following conclusions can be drawn.

If it is assumed that the condition (2.6.10) is valid, then apparently
the system of equations (2.6.11) follows immediately. On the other hand,
if instead of (2.6.10) we suppose that the condition (2.6.15) is truthful,
then the probability

R T, 1T,

v
- = . |
PlJ (t) P(EJ | E )

1

is a solution of the system of equations (2.6.10).

Neze:

With respect to the nature of the rainfall phenomenon, obviously
the relationship considered among the sequence of time interval (Tv-l’Tv)
where v=1,2,..., depends on these intervals. In other words, the con-
ditional probability (2.6.4) up to a certain point depends on these
intervals.

The hypothesis established that the sequence (2.6.4) represents a
Markov chain with stationary transition probabilities (homogenous Markov
chafns) is very realistic under the assumption that (Tv-l’Tv) repre-
sent; a ye=ar for every wv=1,2,.... We arrive at the Markov chain of

order k , if given fixed k , for all v and for all possible values

of the variables n, (v=1,2,...) it is true that

Plu; ny q=i 40 | ny=igs np=iy, v np=ifl=

Plo; No+1- ty+l l My—t4l™ Ty-k+1’ °*° nv=1v}

etc. All these questions, for example, are of the greatest interest in

water storage problems and evaluation of weather modification attainments.
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However, if it has been taken that (T represents

v—l’Tv)
smaller periods of time, then, generally speaking, the hypothesis is
not true that the sequence of random variables represents a Markov
chain with stationary transition probabilities. Therefore, the condi-
tional probability Pij given by the relation (2.6.8) becomes a func-

tionon v , i.e

X

TorToar | JTo-1rT)

v
Pij(v) = P(Ej | E-
For example, it could be taken that (TO,T ) represents the
spring time, (Tl,Tz) summertime, (T2,T3) autumn, etc. In this case
it looks very realistic to take into consideration the possibility that
(2.6.1) may represent a Markov chain of a higher order than one.
All these problems, of the greatest importance for applications
in hydrologic investigation, will not be considered in this paper.

Their consideration can be the subject of a separate study. In this

paper, we shall restrict ourselves to the previously stated problems.
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Chapter III
1. Introductory Remarks

The two fundamental characteristics of ths stochastic process of
nondecreasing sample functions Xt=n(t,m) have deen considered in the
previous chapter. The first of these characteristics, Ne giving us
information concerning the frequency of storms, represents the number
of full storm periods in some interval of time (to,t) . As has been
shown, the distribution function F(x|t) of the random variable can be

written in the form

(x] -
= 0’
F(x|t) 5 P(EC’") Vt >t

V=0
where Eto’t represents the random event that exactly v full storm
periods will occur in the interval of time (to,t).

Another characteristic is the random variable Ty » representing

the total elapsed time up to the end of the v-th storm period or the

upper bound of the v-th storm period (see Fig. 3). As has been seen,

the corresponding distribution function Av(t) was

o

t.,t
A (1) = ;;; P(E;"T)
etc.
Otviously, the random variables Ny and T, v=1,2,... do not
give us information concerning the quantitative aspect of the rainfall
phenomencn, i.e., we have no idea about amount of precipitation during

these stoerms. In other words, these variables represent some 'dynamic'

characteristics of the phenomenon considered.
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In this chapter, the quantitative aspect of the precipitation
phenomenon will be studied. The random variables, such as the total
amount of precipitation during exactly v storm periods, or during one

storm period only, etc., will be investigated.
2. STOCHASTIC PROCESSES 1 - and Xv

1. Suppose that at the instant of time t, @ when the
observation of the rainfall phenomenon begins, the total amount of
precipitation was x_, if 1x denotes the maximum number of complete

storm periods such that their total amount of precipitation is smaller

or equal to (x-xo) , then obviously

Plu; 1= v} = p(Gio’x) (3.2.1)

where Gzo’x is given by (2.2.8). In other words, the random variable
lx represents the number of storms such that the corresponding total
amount of precipitation is less or equal to (x-xo) , while total
amounts for 1x+1 storms exceed (x—xo) « Since 1x represents the
random variable for all x > X, s we have a family of random variables

or a continuous parameter stochastic process
1; x>x 5.2.2
(15 x > x} (3.2.2)

where 1 = 0,1,2,..
X
We should be very'éareful with the probability of the value 0

of the random variable 1x . Namely, the event

{w; 1= 0} = G:)‘o’x X > x (3.2.3)
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could mean that t  belongs to the first storm period and that the
following relation is valid:

* - X >X
n* (1 A

1)
In other words, (3.2.3) represents the event that the total amount of
precipitation during the first storm period either exceeds the value
(x—xo) or there is no precipitation at all in the considered interval
of time T*

On the basis of (3.2.1), the mathematical expectation of the

random variable 1x is equal to

E(l) = \,;1 vB(G") (3.2.4)

and represents an average number of storm periods such that the corre-
sponding total amount of precipitation does not exceed (x—xo), while

the amount of precipitation for

@®
5 vR(GOT) + 1
v=1
storm periods exceeds (x-xo) . Finally, if P{u|x) denotes the dis-

tribution function of the random variable n, 1€as

Plujn, < ul = P(u[x) u>0

then obviously the following is valid:

(ul
P(ulx) = T P(Gto'x) (3.2.5)

where u denotes the greatest integer not greater than u
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Consider the random variable Xv , where

X = n(rv,w) (3.2.6)

Since Xv is a random variable for every v=1,2,..., it means that we
have a countable family of random variables or a discrete parameter

stochastic process

(X7 v=1,2,... } . (3.2.7)

On the basis of (3.2.6), Xv represents the total amount of precipita-
tion during exactly v storm periods. Obviously, for all v=1,2,...,

the following inequality is valid:

X,S Xy o= ks

Consider now the event
{msxvig}

i.e., the random event that the total amount of precipitation will be
less or equal to x (where x 3_x0); then the following theorem is
valid:

Theorem 6.

Let Fv(x) denote the distribution of the random variable x%

for every v=1,2,..., i.e.,

Fv(x) = Pluw; Xv:x}

’
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Then

F,(x) =} P(G§O'X) (3.2.8)
=v

(For proof of this theorem see Appendix of this section).

Let us denote the corresponding density function of the distri-
bution function (3.2.8) by fv(x) , 1.e.,
.y 3Fv(x)
v (X)) =
If the derivative exists, then we have:

Theorem 7.

Assume that the following conditions are satisfied:

- X, X+ A%
£2 P(GT )
a) lim <X e =0
AX~>0O
X, X+0X | Xq,X
~ PlG) 16,217) R
b) lim = 2(x)
Ax+0 ax
then
XA, X
£f (x) = A P(G 0!
y = g ENENEGLy ) (3.2.9)

(For the proof of the theorem see Appendix.)
Let us discuss now the conditions a) and b) of Theorem 7, which

represent the fundamental assumptions for further investigations. Ac-

. § X, X+AX
cording to definition, G2 ’ represents the event (random) that

exactly two successive points XV and X\)+1 will belong to the inter-

val (x,x+Ax) where v =1, 2,... . Phenomenologically speaking,

+ - .
sz,x Ax represents the event that the total amount of precipitation
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Xv during v storms and Xv during (v+1) storms will lie

+1

between x and x+Ax, i.e

*

x<Xvix+Ax and x<X < X+AX (v=l,2,;..)

v+1
Obviously, U GTX’X+Ax represents the event that at least two
=2

of the events will occur in (x,x+Ax) . Condition a) means that the
probability

S X, X+ - +

P L} XX Ax) - Z P(Gx,x Ax)
et T T
=2 =2

when Ax»>0 is an infinitesimal of a higher order than Ax . With

respect to the nature of the precipitation phenomenon, this condition
seems very realistic.
Let us dwell now on the second condition of Theorem 7. The

expression

X,X+AX

XorX
1 | 6,21

P(G ) (3.2.10)

represents the conditional probability that the total amount of precip-
itation of the previous (v-1) storms is less or equal to x .

Since, generally speaking, (3.2.10) depends on x,Ax and v ,

it would be realistic to assume that the function X, depends on x

2
and v , i.e., to assume that
Under this hypothesis (3.2.9) becomes
- _1 Xo,X (3.2.11)
fv(x) Ay (%, v=1) PG 2:7)

Cn the basis of (3.2.5) and (3.2.8), it is easily seen that

between distribution functions P(u[x) and Fv(x) there exists the
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relationship

P(L]x) =1 - Fv+l(x) and [u] = v . (3.2.12)

Therefore, it is sufficient to calculate only one of the functions
(3.2.5) or (3.2.8); the other follows automatically from the relation
(3.2.12).

If the domain of definition of the stochastic process Xt = 7m(t,w)

is a finite interval of time T* = (to,T) , then it is necessary to

consider the probability that Xv < x under the condition that TvET* .

F*(x|T*)=P{uw; X <x|t_eT*} (3.2.13)
v v— \Y

Theorem 8.
For every v =1, 2,... and x > Xy the following is valid
I ] P(GJ" ¥ NET)
* ) = j=v i=v
F * (x[T%) = o I . (3.2.14)
! P(E;O’)

If fz (x|t) denotes the corresponding density function, then we have:
Thzorem 9.

If the following conditions are satisfied

Z P(Gx x+Ax)
a) lim I=2 — =0
AX-+0
'z P (G o,anx X+AX(\E§°’T) ,
b) lim &=V ~ =(x) | p(c¥or¥netort)
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then -
A(x) L PG, NEPS)
f:(xlT*) » Q1=" T (3.2.15)
DR AT
1=V

The function (3.2.15) represents the density function of the
random veriable Xv under the condition that at least v storms have
occurred in the interval of time (to,T)

2. Appendix - Let us prove the theorems which have been con-
sidered in this section.

Proof of Theorem 6.

The proof of this theorem is very similar to that of Theorem 2.

X 2 X
Indeed on the basis of definition of G ° (see (2.2.8)), obviousl
" Y
the following relationship is valid:
(-]
S — .k *
{m;Avf_x}—jz\' {winky) <x<m (Tj+1)}

so that by (2.2.8) we have

Finally, on the basis of (2.2.9) the following is obtained:

-]
. < X X
. O'
th,xv <X Z
and the assertion follows.

Proof of Theorem 7.

In order to prove the theorem, consider the next relation

X,X+AX

P(G

Fv(x+Ax) = )

e 8

\Y

j
J

|
Ne--1 8

J ©
P U XO, nG AX)=.Z P(Gxo’ nGX ‘{+A‘() _

j=v j=v 1=0 )=t
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el
Q
(6]
R
o
9]
“
"
+
=S
s
+
e~ g
e
Q)

Since

e , X+AX
Z P(Gxo,x n G}:,erAx)i 22 p (¥ )
T:

v 1=

e~ 8

3
then on the basis of condition a) of theorem, for sufficiently small

Ax , the following is valid:

X, X+A%

o } &

E, (x40x) = ) Pfc’J‘O”‘nG

Xs, X n X, X+AX

PG
3=v

Consequently, we have
aF“(X; o o

On the basis of (2.3.14) and the following relation,

x, x+Ax (- +
- L} Gx P X+LX

(G’ (3.2.16)

=1
we obtain (see the proof of Theorem 3):
aFv(x)
ax

X, X+AX)

Ax = ) P(Cxo’ NGy +

sy P(GI1* N el )+ 0tan) =

j=v

, X+AX

= P(c;"o'x N G ) + 0(ax)

where from condition b) of the theorem the assertion follows.
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Proor of Theorem 8.

On the basis of (3.2.13), the following is valid

Plu;X < x,7 <T}
F:(XIT*) =

P{r, <T}

Therefore, by virtue of Theorem 2 and 6 we have
P(U NV B
j= i=vy

J=v =

i

P(U E°5)
i=v

F\,(XIT*)

©

@ £ )
PU U (G’j‘o,xﬂEio

j:\/ i:\)

Ty

L

7 p(etorT
i=v -

)

which proves the theorem.
Proof of Theorem 9.
Since the numerator of the expression (3.2.14) depends on x

only, it is obviously sufficient to find its derivative only. Toward

this end, consider the following relation:

v 1

e 8

] p(elorX N Efort)
Jev A=y

= = 3 +A
'Z‘ .E }‘ P(G;(S;Xn G}:'x XnEEOIt)
J:\) 1=V T=0

@ ] @® (=]
- X, X+A + . %
=1 ir@eney” *neferH+ 1T 1 e@or*nct i netort) s
j=\) 1=\ j=v i=v

@© © 1 - .
) gp(c’.‘o'xﬂcx”““‘[\E:O’T)

j=v i=v 1=2 =T T
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Further, on the basis of the following inequality

@ @ @©

~ ’ +A3
) y 2 P(Gxo’ ﬂGx \:+A~<[.\EEV,T)iZ P(GJT( X Ax)
j=v i=v T=2 =2
we have
3%{ E Y p(GxO Xf\EEO'T)} AX =

j=v 1=

s +
=- 7 2 p(cior*n efo T~ clorXngk ¥ ¥ ngler™)
j=v i=v ] = .

@

) Z P(G"O'xncX Wt io' ) + 0(ax) =
&

= 1=V

+ z Z P(Gxo’xf\GX x+AYr\Eto, ) + 0(ax) =
] v i=v

= Z P(G.21*NG] XMXHEEO'T) + 0(ax)
i=v

Therefore, on the basis of condition b) the proof of the theorem
follows.

X ,X
3. CALCULATION OF PROBABILITIES ?(Gv * )

1°. It is seen that distribution functions of the random variables

XgsX

1x and Xv are expressed over probabilities P(Gv ) . The same is
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valid for their density functions. Therefore, an effective obtaining
of one-dimensional distribution functions of the stochastic processes
lx and X, depends on our capabilities to calculate probabilities

Xgs X
P(GV ) for every x = Xy and v =10, 1, 2

,... . On the basis of
condition a) and b) of Theorem 7, this calculation can be done. To
accomplish this objective, it is necessary to prove the following
theorem.

Theorem 10.

Assuming that conditions a) and b) of Thecrem 7 are satisfied,

X5 X
then the probabilities P(Gv © ) for every v =20, 1, 2,... are

solutions of the following system of differential equations.

ap (cXor¥)

v XA X _ XorX
-—————ﬁ—— = = Xz(X)[P(GvO ) P(G\)"l )]

(3.3.1)

To obtain a solution of the system (3.3.1), the same procedure
as in the case of Theorem 5 should be applied, and, under the assumption
that the following conditions are satisfied:

vx>x P(GO'F) =0 if <0

we have

X
[" 2, (s)as (LZ x, (s)ds)”

Xo (3.3.2)

P(Gfo’x) = e

v!

The function considered represents a solution of the system of
equation (3.3.1). If the condition a) of that theorem is satisfied and
the condition b) is modified in the following manner:

P(G§,X+Axr\Gi8ix)
lim = xz(x, v=-1) (3.3.3)
Ax-0 AX
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then (3.3.1) becomes

X

— = A, (x,v-1)P(G2%) - Ay (X, V) P(G.O'™) (5.5.4)

Solution of this system of differential equations will not be con-
sidered in this study. Finally, the particular very important case is
if it is assumed that X\, does not depend on x , but on the variable

2

v only, then (3.3.4) becomes

xo,x)
v
X

a7 (G
- xz(v—l)P(G’:Eix) - xz(v)P(G’:O'X) (3.3.5)

In the following exposition, the proof of the previous assertions will

\

be giver.

Appendix - Let us prove now Theorem 10: Cbviously this proof
must be very similar to the proof of Theorem 5.

Proof of Theorem 10.

In order to prove the theorem consider the relation

xO,X"‘AX

P(Gv

v
) =B U (clertne )

+ x
= P(GO NG N4 (e neT ) 4 0 (ax)

It is not difficult to see that the following is valid:

3P(G§O'X) Xor X X ¢ X X,a+AX
—_— = - oL 4 - Or ~ LA D,
e AX | P(Gv G, f]Co ) +
X, X X,X+4x _
+ P(G 2;"NG] )+ 0 (ax) =

X0, KL XEAS X5 o3 X, x+AX
- P(GLO N (G TP Clapcier N T ) 4 6 (ax)
: v=1 4
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Therefore, on the basis of relation (3.2.16) the following is obtained:

XorX
G i 3 4 X,X+A .
iff_i___l.Ax = - P{ETOP*N GO )+ p(cror¥n el T )+ 0lax)
ax v

which proves the theorem.
The solution (3.3.2) of the system of differential equations
(3.3.1) is obtained in the same manner as the solution of the system

(2.4.1). This result represents the most general expression for the

Ry > K

probability of the event Gv , v=20,1,2,... and x > x

0 3

if conditions a) and b) of Theorem 7 are satisfied. Obviously these
probabilities depend on an unknown function Az(x) > 0. Therefore, it

is of interest to possess a method for its evaluation.

4. DISCUSSION AND APPLICATIONS

X X
As we have seen, an analytic expression for probability P (G 0 )

has been given in the previous section, for every v =0, 1, 2,... and

X > X, - This result is very important since one-dimensional distribu-

tion function of the processes lx and Xv . Only the question of

how the function Az(x) can be effectively obtained remains open.

|

In order to answer this question, it is necessary, besides the

pure probabilistic definition of this function given by the limit

P(GX,X+AXI GXO,X)
. 1 v-1 _
Ax~>0O

to possess a phenomenologic interpretation of this function. In order

to achieve this goal, consider first the process 1x . Since by (3.2.1),

Plo; 1= v}= p(GfO'X)

then by virtue of (3.3.2) we have "
-[ ayts)as (] A, (s)ds)”
P{w; 1 =v} = e °0 o
X v!
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Therefore,

X X v
(7 A, (s)ds)
-L A, (s)ds %, 2

E(l) =e ©° T v =
X v=1 v!
® ([x A, (s)ds)V
“[ A, (s)ds x = %o 2 X
=e O ([ A (s)as) [ =[ A,(s)ds
Xo v=0 V! Xo
l.e.
X (3.4.1)
E(l) = [ A, (s)ds
Xo

Since 1x represents the maximum number of storm periods such
that the corresponding total amount of precipitation does not exceed
the value (x-xo) , integral (3.4.1) represents the average maximum
number of storms whose total amount of precipitation is less than or
equal to (x-xo)

Let us dwell now on the problem of evaluation of the function

X

Ay(x,x) = [ A, (s) ds
%o
On the basis of definition, it follows that Az(x) > 0 for all x > Xy
Therefores, the integral considered represents a nondecreasing x func-

tion (see Fig. 11).

Az

(x,,0)
Fig. 11 Graphical presentation of the function A2(xo,x)
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On the basis of the phenomenological interpretation of the function
k2 , obviously the integrand Az = Xz(x) represents some kind of fre-
quency of storm in the interval (xo,x). In the case when tronical :zone
is considered, this function can be easily evaluated. Then it is very
realistic to assume that the function Xz(x) can have only the two
values, X2,1 in the case of wet season and x22 in the case of dry
season. Under this assumption, the problem becomes very similar to the
problem which has been considered in section 5 of Chapter II.

Consider now distribution function Fv(x) of the random variable

X , v=1, 2,... . On the basis of (3.2.8) and (3.3.2) the following

relation is valid

b4

x 1 sead (3.4.2)
é m (‘Lo X2(S)Cl.,)
Since (3.4.2) could be written in the following manner:

X
-£O A, (s)ds -£X Ay (s)ds v-1

C 1 X .
F = C - B A o
‘)(X) e [(e j=o "(—“‘j‘r j+l (}J;O 2(5)35)] 1=
Ix
- A,(s)ds v-1 b'e s
-1 - 2 ; 1 j
& ] e Xo jéo AGES) (Lo xz(s)ds)
we have "
= A, (s)ds
Fl(x) =1-e £° 2
fx
- A, (s)ds X
Fy(x) =1 -e 072 (1 - [ a,(s)ds)

X0

etc.
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By virtue of Theorem 7, the corresponding density function

fv(x) cf the distribution function Fv(x) has the following shape:

X
A,(x) =) A (s)ds x _
£(x) = 2 o Xo? (f a9t 545

Xo

Therefore, for v =1 and v = 2 , the following is obtained:

X
-[ A, (s)ds
£ (x) = a,(x) & X0

-[* A, (s)ds

Xo d
£, (x) = A,(x) e [ A, (s)ds
2 (x) 2 Xo 2
etc.
The mathematical expectation of the random variable XV , for
v=1, 2,... , is given by the following expression:
B d
- s
E(X ) = -~ fxx (x) e 012(5) (f a (s)ds) " tax (5.4.4)
(X)) = roy = 2afx) e v 2 4
' (e}

5. STOCHASTIC PROCESS Zv

One of the most interesting questions concerning the rainfall
phenomenon is the problem of the total amount of precipitation during
one storm period only. Generally speaking, it could be assumed that
this anount depends on the number v , where v indicates the serial

number of storms, or on v and the total amount of precipitation in

the previous storms, etc.
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The purpose of this section is to establish some mathematical
models which could help to investigate all of these problems. Toward
this end, let us denote by Zv the total amount of precipitation during

the v-th storm period. Obviously, then,

Z =X -X v =1,2,... (3.5.1)
v v v=-1

(see Fig. 12), and

Therefors, we have a countable family of random variables or a discrete

parameter stochastic process

{Zv; L W SR (3.5.2)

In the following exposition, we shall start to study the simplest
case; we will suppose that (3.5.2) is a sequence of independent random
variables, i.e., that the stochastic process (3.2.7) is a process with
independent increments. Phenomenologically speaking, it is assumed
that the total amount of precipitation during the wv-th storm period
does not depend on the amount of precipitation during the previous
storms, but on the serial number v only.

For the following exposition, it will be necessary to prove that
Zv and X are independent random variables for every v =1, 2,.

v-1

Indeed, consider the characteristic function

E{e(axv—l+ Bzv)i
v-1

Bie 4L Tt ¥ AL
v-1

zZ, + 82 1i
Vv

B{e ®kI1 2y }
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Y

TV- i TV

Fig. 12  Graphic Representation of the Physical
Meaning of the Process Z,,

Xo+U

1
(0, x,) u

Fig. 13 Graphic Representation of the Relation (353)



~
(93}

Since, ty definition, random variables ZV vE1l, 2,.0. are
independent, i.e., every finite class of Borel set (ST

STn ), the following relation is valid:

n n
P {w; st S } = [1Plw ; st stn}

k=1 n k=1 ’
and we have

BZ 1

vgl
(a0, ). 2))i
e k=1 } B{ePZvly

E{e(axy_l+ Bzv)i} = E{

Eg.eaXv_ll} E. {eSZvl}

Let Bv(z) denote the one-dimensional distribution function of

the stochastic process (3.5.2), i.e.,

B (z) = Pluw; 2 < 2z}

and suppose that the following derivative exists

dBv(z)
b,(2) = —g—
for every z 2> 0 . Consider now the sum

then by virtue of the previous results we have (See Fig. 13)

P + X u+ = . < —]
{w; X, zu ’fo} Pluj X,_1+2 su+x_}

[x f(xo+u)(l~§)

£ _,(x) b (z) dx dz
o Xo v-1 v
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Therefors, we have

N
~
[ R}
wu
w
~—

_— B o .
Fo(x_+u) = é [ £,_1(0)3 (2)dx 4

Differentiating (3.5.2) by u , the following is obtained

£, (x +u) f £ l[(xo+u)(1—§)] b, (z)d

or, on the basis of (3.2.9),

A, (x_+u)P (G| +u (1—— )1 P (G

+ 1
Xo s X0 u =IL) (x

o,{X +u) (1- ) e
i) ‘2[ 2 o )bv(z)la

(¢]
O

(3.5.4)
where bv(z) is an unknown function. Therefore, by virtue of (3.3.2),

the following is obtained:

Xotu

X+l _
-LO lz(S)dS ([XO xz(s)ds)v 1

AL (x +u) e Q =
270 (v-1)!

(%4 +u) (1-2) (%, +u)(l-z)

-Ix 1 (S ds (fx X (s)ds)

. O
= % A, (x_+u) (1-%) e b (z)dz
270 u’ - v
o (v-2) !

(3.5.5)

The equation (3.5.4) represents an integral equation. Since, by
definition, Az(x) =0 for x < 0, this is a Voltera's integral equa-
tion of the first kind with

(xo+u)(1—§)

w2299 iy (17
W=-1) A, (xg+u) (1-7) e (f  A,(s)ds)
Xo

v=-2

as the kernel.
Solution of this integral equation gives the one-dimensional

density function bv (z) of the stochastic process (5.5.2). In fact,
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the equation considered represents a particular Voltera's integral
equation called '"convolution integral equation' (see F. Tricomi (33)).

One of the methods for studying such an equation is by Laplace trans-

forms.

Consider now the simplest case, i.e., when

A,(x) =, = const. (3.5.6)

Then on the basis of (3.5.5), the following is valid:

_ v . -2
auvTl = (-1 [ e2%(u-2) ¥ %b (2)dz
2 v
(o]
where we assume X, = 0. Solution of the equation considered can be

easily obtained by differentiating its left and right side (v-1)
times. If we do that, the following relation is obtained:

_ .A2u
Ay = e bv(u)

or (3.5.7)
_ =X 92
bv(z) = i,e
i.e., an exponential distribution has been obtained.

Obviously, under assumption (3.5.6) the one-dimensional density

function bv(z) of the process (3.5.2) does not depend on v , i.e.,

bv(z) = b(z)
Therefore, all Zv v =1, 2,... has the same density function given
by (3.5.7).

The basic hypothesis in the former exposition was that the

following relation is valid:

?lu; 2, < 22y = 29,... 2,y =2 1} =Plu; 2 < z}

If this relation is not valid, then it is necessary to find new

solutions for the problem considered.
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6. PROBLEM OF THE EXTREME STORMS

In this part of the study, a particular problem concerned with
the maximum and minimum storms in the given interval of time will be
considered. In other words, if n storm periods are expected in some
interval of time (tO,T) , and L represents the corresponding amount
of precipitation during the v-th storm period, where v =1, 2,...n,
then one of these n storms has a minimum amount of precipitation and

will be denoted by Eﬂ , where

z = inf 2 (3.6.1)
l<v<n v

and the other one has a maximum amount,

Z = sup 2 (3.6.2)
n l<v<n v

Obviously, (3.6.1) and (3.6.2) are random variables which depend
on n=1, 2,... ; therefore, we have two new families of random var-

iables or two discrete parameter stochastic processes.

| {z ; n=1,2,...} {75; il ,2, 0041

Let Qn distribution function of the random variable Eﬂ i.e.

Qn(Z) = P{w; 2 _gz} =

then on the basis of the relation (see Halmosh (12))

n
{w; inf 2 >z }= {w; 2 >z}
livin v=1 v
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it follows that

n
P{w; inf 2 <z} =1 - PN (u; 2>z} =

l<v<n v=l Y
n c n
1l - P[ N {w;: 2 <z}] =P U (w; Z <z}
v— v—
v=1 v=1 .
(3.6.3)
Therefore, the following is valid:
n n .
n(Z) = ) Plw; 2 <z} - ) Plw; 2.<z Z.<z} +
s V= 36 i— j—
v=1 i#j
Y n
Plw; 2.<2z, 2.<z, 2,< z}-... 4+(-1) P{w;2 <z v=1,n}
i#j#k 1" T3 Tk— v— d
If it is assumed that Zv v =1, 2,... are independent random
variables, we have then the following:
i }
0 (z) = 1- P{w;2 >z
n v=1 v
or, finally,
Mo ]
(z) =1 - 1-B_(2)
Qn vel s (3.6.4)

Let qn(z) denote the corresponding density function of the distribu-

tion function Qn(z); then obviously the following is valid:

n n
q. (z) = b (z) [1[1-B,(2)] 3.6.5
n a7k vtk K (5-6-%)

1

Consider now the distribution function Hn(z) of the random

variable Z_, i.e.
n
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Since the following is valid (see Halmosh (12))

n
{w; sup 2 <z! = N ; ZviZ}
y v=1

then we have

v —

n
H (z) = P {w; 2 <z}
n

v=1

Consequently, assuming that Zv v =1, 2,...n are independent random

variables, the following is valid:

n
E_ (2) =!21 B, (2)

(3.6.6)

The corresponding density function hn(z) is of the following shape:

o

n
b, [1 B,(2)

h_(z) ’
n 1 B v#k

]
[

k

Suppose now that all random variables Zv v o=

same distribution function, i.e., assume that
Bv(z) = B{z) v=1,2,...

then on the basis of (3.6.4) and (3.6.6) we have

Q,(z) =1-[1-8(=)]"

B" (z)

Hn(z)

Therefore, the corresponding density functions qn(z)

of the following form:

nb(z) [1 - B(z)] "1

qn(z)

]

h_(z) = nb(z) 5771 (z)

(3.6.7)

have the

(3.6.8)

and hn(z) are

(3.6.9)
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Finally, if it is assumed that

kz(x) = xz = cons

then we have seen that

= a_jk"z = - _AZZ
bv(z) X2 e . 2 Bv(z) 1 e
for every v =1, 2,... so that (3.6.9) becomes
(z) = A ne” 272
q,(z) = A;ne (3.6.10)
" -1s2 o ~AnE Bl
hn(z) Azne (1 = )

(3.6.11)

Graphical representation of the functions (3.6.10) and (3.6.11) for
different values of n are given in Fig. 14 and Fig. 15.

Let us make a very brief analysis of the density function hn(z)

Since
- o N 2 o n-1 -1,z
hl:l(z) = A% n(n—l) (1-e )\zz)n 2-e 2l22 . )\2 n(l-e 122) e 2
obviously
1
= z = — 1ln(n
hn(z) 0 for ig (n)

|
and therefore

1 _ 1. n-1
hn[T; lIn(n)] = A (1 = 2)

_ _ 1,n=1
mgx hn(z) = Az(l H)

If n»>~ , then obviously

X

N

m_ax h
z n(z) -

o]

Consider now the mathematical expectation of the random variable

isf Z, and sup Z, for the particular case when corresponding density
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functions are given by (3.6.10) and (3.6.11) respectively. On the basis

of (3.6.10), we have the following:

Pl 1
BE{ inf 2 ) = Azn ] ze Apnz dz =
l<v<n v o] Az

n

On the basis of (3.6.11), the mathematical expectation of the

random variable sup Z is
lsvsn

o - - -2
n [ z(l-e 2Zyn L o~z 4
o

E(sup 2 ) =2
l<v<n b

2

n-1 ©

k n-1 “A,Z (K+1)

A,n T (-1)7 () [ze R &5 &
k=0 o)

n-1 k 5

22 k=0 (1+k)?2

and variance

D( sup 2 ) = A,n [{z-E( sup ZV)}2 (l—e-lzz)n—l-e—’\ZZ dz =
l<v<n ¥ o l<v«n

n-1 k vel _q K 3 42
4n z (-1) n-1 __{ ?_'kz (-1) n l)}

In the following table, the values of the mathematical expecta-

tion
n-1 k
E( sup Z') = _;_\1_ ("l_) I‘L;l)
l<v<n 4 2 k=0 (1l+k)?2 :
are given for n = 2,... 9.
o2 3 -0k 1 31 _ 1.50
=2 e ) e L} B3 e = Rrie
2 k=o (14k}2 ° A2 Ao
e 3 2 0¥ 2. 111 _1.83
n=3 =. ] ——= (1) = = i B
Az k=o (l+k)?2 Xg A
wea 43 DX 3, 251 _2.03
A2 ko (1+m)2 B 12 a0y



s 4 (nk 4 1321 _2.28
n=5 = | ——=— () = g 07
A2 k=0 (1+k)2 A3 - A2
6 6. % (=N s _4s 1 2.4
el = L == ) T3R5 3
2 k=o (1+k)2 2 2
7 2 (—1)k 6 363 1 _ 2.59
e Lp NG gmL 2
A2 k=0 (1+k)2 2 2
o Bk =1® 7. G043 1 2,72
ne8 g Lo ) T I T,
2 k=o (1l4k)?2 2 2
o & (X 5. 4042 1 _2.83
n=9 = 1 = ) =1y T,
2 k=0 (l+k)2 " 2 2

It is of interest to see how the average amount of precipitation

of the maximum storm depends on the parameter Ay In Fig.l6 , a

graphical representation of the mean

. n-1 + K _
E( sup 2 ) = i ) —i—flj-(nkl)
l<v<n v 2 k=0 (1l+k)?2

is given for different values of n as a function of the parameter X
Apparently, if Az is larger the average value of precipitation of the
maximum storms is smaller. For example, if it is expected that two

storms will occur (i.e., n = 2), then obviously, the expected value of

the total amount of precipitation of the maximum storm is

-

for AZ = 1 E(sup 2 ) = 1,50
l<v<n

for Az-z

¥ )
h
-~~~
wn
-
a
S
i
=
~
~
ut

etc. Therefore, parameter AZ is some kind of characteristic of the

total amount of precipitation during one storm period.

2 -
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Fig. 16 Graphic Presentaticn of E{sup Zy}(ISV <n) for n=2,3,4,....,9
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Chapter IV

1. SOME PREVIOUS CONSIDERATIONS

As has been noted, the general purpose of this paper is to
present a new mathematical study of the rainfall phenomenon (not enter-
ing into its physical nature) based on the theory of a particular sto-

chastic process of the nondecreasing sample function

{Xt; teT*} (4.1.1)
where
t
X, = x, + i g ds
to

and £, represents the rainfall intensity at the instant of time t .

With respect to the nature of precipitation, we have

YteT* 5t:0

therefore

VAt>0 X < X +At  t,tAteT*

In the second chapter of this study some "dynamic'" properties of
the rainfall phenomenon were considered (those characteristics which give
us information concerning the frequencies of storm periods in the inter-
val of time under consideration, the distribution function Av(t) 6f
the total elapsed time up to the end of the v-th storm period, i.e.,
of (Tv - to) , the relationship between numbers of storm periods in
two successive intervals of time, etc.)

It is obvious that the dynamic "properties'" do not give us in-

formation about amount of precipitation, a subject of primary interest.



86

Consequently, in the third chapter the quantitative characteristics
(such as the total amount of precipitation Xv during exactly v storm
periods or the total amount of precipitation Zv = Xv - Xv_1 during the
v-th storm period, where v =1, 2,..., etc.) of the rainfall phenomenon
were discussed.

It is obvious that neither dynamic nor quantitative aspects con-
sidered separately can furnish us with a complete description of the pre-
cipitation phenomenon. For example, information that the total amount
of precipitation during v storms is Xv is inéomplete if nothing is
known about time interval (Tv - to)

In order to avoid this inconvenience, one can use the average

values; for instance, it is possible to say that the average elapsed

time up to the end of the v-th storm period is
E(Tv) - to
and the average amount of precipitation during this time is

E(Xv) - X

This result gives us some information about the relationship
between a dynamic and a quantitative characteristic of the phenomenon
considered, but in application it is necessary to know much more. If
Xe denotes this amount of precipitation, obviously Xt is a random
variable for every t > to and therefore it is necessary to study
this variable. On the 6ther hand, if an amount of precipitation has
been observed, say x , what amount of time would be necessary for this
amount to be realized? If Tx denotes this time, then TX is a random
variable for every x 2 Xy - In the following section, these problems

will be studied.
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2. ONE-DIMENSIONAL DISTRIBUTION

FUNCTION OF THE PROCESS m(t,w)

In this section, the problem of estimating the total amount of
precipitation Xt up to time t will be considered. As has been said,
Xt is a random variable for every t > t, » so it is impossible to pre-

dict a certain value of Xt at any moment of time t > to . Instead of

this, the event

= ; } <> 3 ol
Bt(x) {v; Xt < x} Vxﬁ%o (4.2.1)

will be considered. (4.2.1) represents the random event that the total
amount of precipitation up to time t will be less than or equal to x .

Therefore, the corresponding probability

Ple; X. < x} = F_(x) (4.2.2)

£ t
represents a one-dimensional distribution function of the stochastic
process Xt = m(t,w) (see Chapter II, sect. 1).

Let us now try to obtain effectively the distribution function
(4.2.2). Toward this end, consider (2.2.5); then on the basis of the

relations (2.2.7) the following is valid

B, () = U (50t By

P ( tO' N s,) (4.2.3)

1
nfg

p
E, (%)
Let us write the function considered in the following manner:

_ ; S .
Ft(") = L PLE 9 ) F*(x,t) (4.2.4)
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where the function Fc(x,t) represents conditional probability that the
total amount of precipitation Xt up to time t will be less than or
equal to x , under the condition that exactly v complete storm periods

have occurred in time interval (to,t) , i.e.,
F*(x,t) = P{u; X,<x| ETO’F) (4.2.5)
v o S v

Obviously, the following is valid:

jO if X<X
F:(x,t) =9
0<Fr<l if x>¥

We have seen that under condition a) and b) of Theorem 3, the
calculation of the probability P(Evto’t) is not difficult, but as far
as the calculation of the conditional probability (4.2.5) is concerned,
the situation is considerably more difficult. In fact, up to now a
method for calculation of this probability in the very general form is
not known.

In the following exposition, an attempt will be made to obtain
some information about this function. Instead of exact calculation of
(4.2.5), a method will be established for obtaining its lower and upper
approximations. In this manner, instead of exact distribution function
(4.2.4) the two lower and upper approximations

(x) and F,, (x)

F 2t

1t
where

F2t(x)

will be used.

The approximations considered satisfy the following condition

e () S FL(X) < Fo(x) < (4.2.6)
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and the upper approximation is a distribution function for Vt > t,

namely
(-=) =0 FZt(+w) = 1
and for VYAx>0

Foo(X) < Fy (x+ax)  Vx2xg

In the next section, the method for obtaining these approximations

will be established, and it will be shown that Flt(x) and FZt(x)

to,t
could be expressed over the probabilities of the events Ev ©" and
X

G.
J

0,X

3. APPROXIMATIONS OF DISTRIBUTION

Function Ft(x)

1°. In the previous exposition it has been pointed out that
instead of the distribution function of the stochastic process Xt =
m(t,w) the corresponding approximations will be used. This approach
is justified by the fact that the method for an effective calculation
of ghe conditional probability (4.2.5) is not known, and therefore the
distribution function Ft(x) cannot be obtained. On the other hand,
in the numerous cases important for practical application, the functions
Flt(x) and th(x) can be easily obtained. Toward this end, let us
prove the following theorem:

Theorem 11.

0>

to,t
Let P(Ev ) >0 for every v=20.1, 2,... and t > to i

Then the following inequality is valid,
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F¥(x,t)> ) P(G*o’XIESO’

t
j=v+1 J

(4.3.1)

F*(x,t)< ) p(cror¥|gtort
v = j v

The proof of this theorem is very simple (see Appendix of this
section). Phenomenologically speaking, inequality (4.3.1) means the
following: first, as one has seen, functions (4.2.5) represent conditional
probability that the total amount of precipitation up to time t will be
less or equal to t , under the condition that exactly v complete
storm periods have occurred up to the instant of time t . This proba-
bility is greater than the probability that the total amount of precipita-
tion during (v+1) storms is less than (x-xo) , under the condition
that exactly v complete storms have occurred in the interval of time
(to,t) . Indeed, on the basis of the first of the inequalities (4.3.1),

the following is valid:

Fi(x,t)2 [ p(efor¥glorty- L I p(c¥orXpgtot) -
j=v+1 J p(E‘O' ) j=v+l J v
= gt 2l (U cforFnetert]
P(EC"7) j=v+l
9
According to Theorem 2, we have
F¥(x,t)> - i PR 425, Eto’t}
P(:, o) '
' b,
= s o4
P{X ,q,<x | EO77)

In a similar manner, it is possible to prove that
Y o —;t .
F*(x,t)< P{X <x|E oty
AV L — v— pY]

Finally, on the basis of (4.3.1) we have

!FS(x,t) -

l}hﬂs

pecior* g Sortyy. <P (GFor ¥ g0ty (4.3.2)
j V]

J.
%
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where k =v or v +1 Indeed,
v R o i B o B ) P 4 t-\ t
’ ! ¢ ~ ’ r Qr ™~
F*(x,t) - ) P(G DR B )<P(G O TE )
j=v+l
: iy Xo X ntort, __ XorX|ptort
F¥(x, %) Z P(GO"T|E O ) > PIG |[ESC"7)
j=v
Therefore, we have
3 S T
F*(x,t) - [ p(cior¥gtert) p(g¥or¥|etart)
v j=\)+1 J \Y] L= V Vv
5 t.:%
I (GXO"IE “orty F*(x,t)<P(G§o’x|EVO’ )
- v -—

"‘\)

and the assertion follows.

On the basis of (4.2.4) and Theorem 11,

obviously the following

is valid:
o’ e sk
Fo)c [ pEbor®)] Py [EOT) =
T v=0 & j=v J v
= z Z p(gtor f\GxO’ )
v=0 Jj=v
and
'y T T ¥o,X [oto,t
F.(x) >! P(EO'T) ] p(cjo [E°" )

V=0 j=v+1

X X
fos  k or
P(ESS NGy )

@ ©
= j=v+1l
Therefore, we have

@

A
=y+1

AY] =O j

otart ;
P\Evu J - %

®
I A
reg

The left side of the inequality considered is

bt ,to,t XO,X\
L, BESNGET

(4.3.3)

Flt(x) and the right side
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is FZt(x)’ i.e.

Fi () = 1 ! P(Eto’tﬂG)j(O’x)
’ v=0 Jj=v+l
(4.3.4)
& o Lt g, X
Fo ) = I I (B N6l ™)
v=0 J=V

The functions considered represent the lower and upper approxima-
tion of the distribution function Ft(x), i.e., we do not know the exact
value of probability that up to an instant of time t > to the total
amount of precipitation Xt will be less than or equal to x , (see Fig.
17), but we know that it will lie between Flt(x) and F2t(x)

On the basis of (4.3.4), obviously the following is valid

|F (x) = Fy () |<Fy (x) = Fp, (%) =

t

E p(etortn g¥or¥
\)=0 v AYJ

Therefore, using any one of the function Fit(x) instead of Ft(x) .

the error is less than or equal to the sum

I} ©~18

, to,t Xo X
P(E f\Gv )

V=0

2°. Appendix - The first of two proofs of Theorem 11 is based on
Theorem 6; the second proof is independent of any previous results.

First proof of Theorem 11.
Obviously, any t such that t > to must belong to some interval

(Tv,T ) , i.e., where v =0, 1, 2,... and T, =ty - Assume, for

v+l

instance, that considering that the moment of time t belongs to the

interval (Tv, i.e.,

LIS
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then obviously the corresponding amounts of precipitation X, s Xt
and X satisfy the following inequality:
v+1 q
Xv “ Xt ) x\:+l
Therefore, the next set of relations is valid.
(w; X <xt2la; X< xb2{w; ¥ 3%} ,
and consequently,
4.3.5
{w; 2 y}ﬂ“tc' 2{w; X < x}ﬂEﬁo’t . )
t.,t tast
° . E o =5 x ) E (o
{w; xti.<}n N 2 {w; X415 xt N 5 B 5.6
Therefore, on the basis of Theorem 6 we have
U (GXO"‘nI-tO’ ) 2 {uw; X <<}ﬂEt°’t
j=v ?
(or X exinefort 2 U (lor¥nztort)
- v j=v+l
i.e.,
| t w
U U (G_‘O’ [\Evo,t’) =) U (U; X <\:}r\k u s |4.3.7)
V=0 J=v - v=0 -
] t - ©
U {u; Xt<¥}f\E ot 2y U (ﬁ;orx(\ﬁvo,t)
V=0 =0 1=y4
v J=vtl '4.3.8)

which proves the theorem.

Note:

Let us try to explain the meaning of approximations Flt(x: and
FZt(x) . Toward this end, consider relation (4.3.5). Phenomenolcgically

speaking, the left side of (4.3.5) denotes the event that total amount of
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precipitation during v storm periods will be less than or equal to x
and that exactly v storms have occurred in the interval of time (to,t).

Obviously, the following is valid.

P {w; X < x}f\EtO’t > P {w; X, < x}r\:tc't
N=— \Y _— t—
or
? P{w; X < X rto’t1> F.(x) (4.3.9)
Wy ol 7 » e t
v=0
where

{w; X < x, Eto’t} = {w; X < x}f\Eto’t
N v v— \"J

The left side of (4.3.9) denotes the probability that the total amount
of precipitation of the complete storms in (to,t) will be less than

or equal to x (see Fig. 8 ), i.e., we exchange the quantity Xt with

X where 1 < t < T
v v v+1

The second proof of the theorem can be found in ref. (29).

4. APPROXIMATIONS OF DENSITY

FUNCTION ft(X)

49, Let ft(x) denote the corresponding density function of

the distribution function Ft(x), i.e.

aFC(x)
ft(X) T TTax
Obviously, then,
IF.  (x)
_ it s
fit(x) S e i1 =1,2

could be assumed as approximations of ft(x) . Of course, among the
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functions flt(x) 5 ft(x) , and f2t(x) there is no existing relation

of the following form:
Flt(x) < Ft(x) 3 EZt(x)

Let us prove the following theorem:

Theorem 12.

If conditions a) and b) are satisfied, i.e.,

R +4
) P(G’f’x 1%
a) lim IZ2 s
AX->0 AX
] P(Eto'tf\Gxo'xf\Gﬁ'x+Ax)
— < v @ )
b) lim 2=2 =1, (x,8) I p(EporficKe ™)

x>0 AX v=0
where k =v , v+ 1, then the following is valid:
f (x) = ) (x t) E P(Eto’tn 'XOIX
V=0

- v Lot Xo s
£, () = 2, (x,t) véo B{E " nelo X, (4.4.1)

The proof of the theorem will be given in the Appendix of this seetion.

Let us discuss conditions a) and b) which obviously reprcsent
the basic hypothesis and as such are of importance in the further in-
vestigations. The first of these two conditions was discussed in the
previous exposition. Therefore, we shall dwell on the second coniition
of Theorem 12.

Obviously, it could be written in the following manner:

v P, o3 X s X X, XEAM
O ! ~SO 7 ’
{ P(E, nGe™n Gy

AX

P(GX’X+AX(\EF°’“{\ Gxo,x)
1 ) 4 v

k

. to,t Xo, X
= J P(EC'TN G0
=0 ¥ A%
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so that assuming the following relation is correct

) P(E]t(’:”t r\gﬁo,x r\Gi,x+éx)

Jim S =
AX->0 AX
+A: L XA, X
" p (¥ ¥HA¥ | glort n gFor¥)
V=0 k AX->0 AX

apparently everything depends on the limit

fx t X o X
P(GX;X+A“ i E,O'tlﬂ cXo \>
: 1 X v
lim —

AX~O Ax . (4.4.2)
The expression

X,X+AX Xo 1 X
P(Gy | Eso’t N G.°") (4.4.3)

represents the conditional probability that the total amount of precip-
itation of the (v+1) storm period will lie between x and x+Ax
under condition that in the interval of time (to,t) there occurred
exactly k = v, v + 1 storm periods, and the total amount of precipita-
tion during previous v storms is less than or equal to x (and for
(v+1) storms exceeds x ).

Since (4.4.3) depends on v , t , x and Ax , it would be natural

to assume that the function Xz depends on v , t and x , i.e.,

p(al X% | prorty gXor®y 1 W x,e,0)  for kev
lim =
Ax
Ax~>0

X(g)(x,t,v) for Revil
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and, consequently, (4.4.1) becomes

§ (1) (I P e
F1.00 = LAt (xt,) B(ECTTN GO
V=0
5o (1) . . . Xess X
Spped = viox 2’ (Kotov) PEJOTTN GO (4.4.4)

The hypothesis that (4.4.2) does not depend on v leads to the (4.4.1);

b

ta.t X ,X
finally, the assumption that Ei ©*" and G, °° are independent events
results in

Az(x,t) = xz(x)

(see Appendix) and (4.4.1) becomes

v Lo, t Xe s X
F1e(X) = ap(x) [ P(ERTIP(G O
v=0
0 () = 2,(x) [ P(ESQINIPGIO)

v 4.4.5
G ( )

Therefore, on the basis of (2.4.3) and (3.3.2), the following is valid:

. t
-(£ X, (s)ds + { A1 (s)ds)

flt(x)=x2(x)e © -

t v i v
(f x1(s)ds)” ([ r,(s)ds)
to 8

| &8

o v! v!

( * (s)d ¢ (s)ds)
- A,(s)ds + by s)ds
) L b [h
fzt(x)—lz(x)e.

P a et (fF s s1as)”
t p 4
(e} (o]
o (v+1)!

1 08

v!
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2°. Appendix - let us now prove Theorem 12. Toward this end,

consider the function Flt(x)

-]

F t(x+Ax) ) ) p(EtO' N GXO'X+AY) -
v=0 Jj=v+l J
- Z z P(E P LI(GXO'X N GX x+Axn
v=0 Jj=v+l =0
- z Z‘ z P(E,to, nGXo,X n GX X+AX)
v=0 Jj=v+l =0 =T
Since,
- - J o j
z Z, Z P(Eto’tf\Gsf’x N Gf,x+Ax)i z P(GX’X+AX)
v=0 J=v+1 1=2 ° )=t =2 T

then by virtue of condition a) of the theorem the following is valid:

Z P(Eto't N G:;O'X n Gi,X‘f'AX) +

(x+4x)
o j=v+l -

lt

]
Il v 8

A\

t
Z P(E, ot [’\Gxo' f\Gx *HiXve 0 (A%
0 j=v+l

it
I o~ 8

Thus it turns out that

(X)
Ax v

) P(E:'O’tﬂ cFor¥y 4
o j=v+l J

I8

+ 1 Z P(E ortp gXorXpgX xtax) |
v=0 3 \).1.1 J o
+ I D op@EpE N6l ne N+ otex) =

v=0 J=v+l
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I p(efortpg¥or¥.glortn G’.‘O'Xr\c’l"x*'“) +
o j=v+l J 3

i
!
Il o~ 8

\Y

Z P(Eto’ nG O'X ﬂc“ X+AXy 4 0 (ax)
o Jj=v+l

+

! >18

v

Since we have

X, X+A%, C T X, x+6%
(G, ym = U o6y’

T

then the following is valid:

P(EtO’tf\Ggo’x _ to, f\G o'X[W Gi,X+AX)
v J v

- P[Eto' nGXo, n(Eto, nG‘(O,XnGX , XFAX C]
J J

=pl Eto' nGXO'X N (61 *TE%) €)=
X, X+AX)

=p (f0r *nclor ¥ nel X”")+ 3 p(ELo’ "NGiO* NG
T=2

Therefore, we have

3F |, (x) o ;
2 ax=- ] I p(EC" nG’j‘O'XnG’l"XM") +

v=0 J=v+l

Z p(E’\fO'“nc”‘O'xf\c;‘< BHLXy o glax) =
o Jj=v+l

+
I &8

t X,X+AX

= [ p(epo thgXorx NGy ) + 0(ax)

from which by condition b) the proof of the first part of the theorem
follows. In a similar manner, it is possible to obtain the proof of the

second part of the theorem.
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On the basis of the Theorem 12 and the following inequality,

@ v-1
‘ to,t X0, X
F (x)<F, (x) =1- [ ] P(E°S NG <1,
Eoet v=1 j=o Y ]

it follows that

FZt(x) - 1 vt > to

if x»», but since f2t(x) >0 FZt(x)+1 . Finally, it is not difficult

to see that

Ft(x) 3 F (x)

t+at

Indeed,
Plui Xp<x} 2 Plug Xppe<x )

since Xt < Xt+At , and the assertion follows.

to,t EgeX
S. CALCULATION PROBABILITIES P(Ek r\Gv )
As is seen, the approximations of the density function ft(x)

are expressed over the probabilities

. otort Xor X tort Xo X -

P(Ev r\Gv ) and P(Ev+l r\Gv Y v=1,1,2,¢00 (4.5.1)
Therefore, for any effective calculation of approximations flt(x) and
f2t(x) it is necessary to possess a method for calculation of (4.5.1).

In the following exposition we shall assume that the conditions

are satisfied that

FAX
t,t+At) P(Gx,x+ b4

lim 2 lim = 0" (4.5.2)
At->0 At Ax->0 AX

P (E

I
o
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P(E;'t+At|EE°’tf\G§°’X)
lim T = Xl(t) (4.5.3)
At>o
p(cy ¥ |Bfortn GloX)
lim = Az(x)
At-o Ll (4.5.4)

where k = v, v+ 1.
Theorem 13.
Let the function p(x,t,z) denote the following sum:
v tort A XorXy_V
px,t,2) = 1 P(E""NG,O")z
V=0
then under the assumption that conditions (4.5.2), (4.5.3) and (4.5.4)

are satisfied, the following is valid

2204, (x) 22 - (0) 22 aa (1) A, () (142)p  (4.5.5)

Proof:
Consider the probability

Xorx

p(EtO'tr\Gv

v

) ;
theﬁ, on the basis of (4.5.2) we have

Xo,Xtdx

tat to,t Xo,X X,X+AX
- 14 7 ’
P(Evo NG )= P(Ev f\GV NG ) +

to,t X0, X X, X+A
+ P(E° Nne,2; NGy Xy + 0(ax)

Therefore, the following is obtained:

t ,t Xo X
P(Evo NG, )
X

i = _p(EtOrtf\Gxo'x_Eto'tf\GXOIX[\erX+AX)+
v v v v (@]
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+4<
+P(Et°’ nGXO’ NGy’ X+“)+0(A~<)—-—P(Lt°’tf\ Sor¥ NGy TR 4

X, X+AX

+ P(E tor nGXO’xr\G ) + Q(ax)

so that on the basis of (4.5.4) we have

3P(Et°’ nG’\fO'x)

X

to,t

A, ) [p(ES T NGK¥) - pEfortngler®)] (4 5.6)

In a similar manner, it is possible to obtain

to,t XO,X
3P(Ev I'\GV )

3t
A ‘t)[P(Eto'tﬂGxo’x) - P(Eso’tﬂcio’x)] (4.5.7)

therefore, o & ‘o

P01 6121 = Ty o gl gl

p(E-0; Y nGior¥)= xll(t) aP(ESO'#:\tGi:O'X) +p (L0 TN GRorY)

Finally, differentiating (4.5.6) by t we obtain

2 to,t— XO,X
32P(E°' "N G0 ) o,

)

= 2,0 (2 (OrED T A
atax

p(EtO' r\c-: 1) p(EtO' ncxo’ )+P(E o r\c;xo’x)]} =

A ()2, () [p(ESe B naXor¥)p (E01 nGXor¥) 4

tot XX

tort Xor X
7 P(E NG =) 1 3P (E NG ;="'")

¥ Az(x) X - A (6) ‘ at
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Multiplying the left and right sides by 2V , we obtain the following

partial differential equation:

ta,t XA, X
= 3ZP(E°'"NG°') ‘” ta,t . Xo,X
) ¢ y 2V = A, (8) A, (x)[ T P(EP'TNGO 2" +
V=0 atox V=0
c to,t . Xo,X,_V 1 EaP(Eto'tnGtO’x) v
Yy P(E 9’ NG °rMz’ + z' -
v=1 v-1 v=1 Az(x) e ax

4

;8] Loy 3t
or

32p  _ 130 _ 1 3p

Jeax = Mithg [(Q4z)e 4 X, ax g 5

Therefore, we have

30

9 -
22 - () 0 = xl(t)xz(x)(l z)p

3x

3%p
tax * kZ(X)

which proves the theorem.
On the basis of the previous theorem, in order to obtain the

Xps X

’t . .
= 3 2 y %y
© N Gv ) for v=20,1, 2 it is necessary

probabilities P(Evt
to solve the partial differential equation of the second order. Its
solution will give us the function p(x,t,z) , from which the probabili-
ties can be obtained. 1In this manner, we get the approximation flt(x)

In order to obtain the approximation th(x), it is necessary to
possess a method for the calculation of the probability

T

P(E\)+l

X X
r\GvO' ) wv=0,1,2,...

It is not difficult to see that the following is valid:
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to,t A ~Xo,X
aP(E\)+l l’\ U\f )

3t

to,t Xor X Xor X Xf),X
iy (RVPLE P N6 2™ = RIE 217 ne,~ ) ]

from which it follows that

X, _V

tO’ X0
P(Ev+L f\G

pl(x,t,z) = )z

Il o8

where

moe—e % X Py = lpl

6. SOME PARTIAL DIFFERENTIAL EQUATIONS

In this section of the study we will show that the approximation
functions Flt(x) and FZt(x) can be obtained as solutions of partial
differential equations of the second order and hyperbolic type. Toward
this end, let us prove the following theorem.

Thesrem 14.

Assume that the following conditions are satisfied:

- t,t+at
§ P(ET' L)
a) lim 1=2 i =0
At->0 -
z P(G?‘:O'xﬂv or nEt t+A;)
b) lim 229 . = A; (x,t) Z P(Gxo’xf\hto’ )
At-o0 & =0

(k = v, v + 1); then the'following is valid:

F.,(x) 4
=T == Mmal L PP neier™
- (4.6.1)
2 =)
2t _ ) to,;t Xn, X
S = - 2, (¢, ) 2 P(EC'"NG,2"T)

V=0
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Proof:

The proof of Theorem (14) can be obtained in a manner similar to

the proof of Theorem (8). If we consider the function F1 t(x) first,

it is not difficult to see that

@ t ,
d v=0 J=v+l
v=0 j-‘—'\)+1 =
«© @ j
= z z 5. P (G* O,XnBto, nEt t+[.\t)
v=0 Jj=v+l <=0 J

On the basis of condition a) of the theorem, we have the following:

§ p(ciorX nEtO' NEg
o j=v+l I

: ol t+A+)

o~ 8

Fi taat ™ .

sk
e f\E

t,t+At

+ ) + 0(at)

| ~18

) P(G?O’Xf\E

v=0 Jj=v+l

and consequently,

F..(x) @
— i 8t =] I p(Ecor* neie - B0 “Nelo  NE
WE v=0 Jj=v+l
. +
+ 7 p(co ¥nEfortnelt 8%+ o(at) =
v=0 J=ytl
& z z [P Eto’tﬂG}.{O’ n(Et t+At C]
v=0 j=v+l Y J
+ z E P(Fto’tnGxo’ant t+At) + O(At) -
v=0 Jj=v+l
o °2° Z P(Eto,tncxo, nEt SEHAE)
v=0 j=v+l J

t,t+at

)+
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+ ] I P(EO] Fnefor*nelr EHAYy 4 0(ax) =
v=0 j=v+l y

- -] p(efortngtor Xt 8 1 plortnglo el ) -

J=1 J §=2 J

- <] , @ t
+ { z P(Eto tnG}FO,XnEt’t+At)+ Z P(Bto,tnGXO,XnE‘i,t‘!’A )+...

i= -1 ] | ‘o o j

J"l J 2
+ 0(at)= - Z p(FtO' fﬂGto'xf\Ei’t+At) + 0(at) =
= - Z P(Etol nG O' nEt t+At) + O(At)

V=0

Therefore, on the basis of condition b), the first part of the theorem
follows. In a similar manner, it is possible to obtain the proof of the
second part.

On the basis of Theorem 12 and Theorem 14, it is possible to

prove that approximations (x) and Fz t(x) could be obtained as

Fl,t
solutions of corresponding partial differential equations of the seconc
order and hyperbolic type. Proof of this assertion gives the following
theorem.

Theorem 15.

If the conditions a) and b) of Theorems 12 and 14 are satisfied,

then the following is valid:

Fs, (x) F . . (x) oF, . (x)
lt 1t 1
“axat ¥ l"1(X t) — % T ) (x,t) a3t 0
(4.6.2)
F t(x) 3F2t(X) ant(x)

e T et St v tt) ——— =0

}
}

1+
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where
axqu,t)
‘bl(xyt) = l\l(x:t) _——at wz(xlt) = A‘—?'(Xlt)
_ ﬁlnxl(x,t)
¥y (x,t) = a;(x,t) vy (x,t) = A,y (x,t) =

Proof:
First, consider the approximation Flt(x); differentiating by
t , the following relation will be obtained:

aFlt(x) ~ axz(x,t)

tost Xo X
3tax 3t EP(E\; ne,s~"1 #
V=0
) v tort A (Xo X
+ A, (x,t) ¢ :Z_ P(E; ﬂc,v )
If we set
a(x,t) = P(ESO'tnGi)‘O'x) ,
vV=0

then obviously the following is valid:
«©
@ (x,t+at) = J p(ESO'tMtnGXO'X)
V=0 ¥
z Z P(EtgétnGXo,X Ef\;_,t‘FAt)
v=0 1=0 v
On the basis of condition a) of Theorem 14, we have

-]

a(x,t+at) = Z P(EtO’tnGxolant:t+At) +

«© t ,
I PO neio*net t) 4 g

V=0

Therefore,
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| (X ot tiat
dalx.t) ¢ o Zp(BtO' NGIo ¥+ I P(ELO" S NGl ¥ el T 4

3 V=0 V=0
+ [ pELr ncior*nEl T 0 at)

V=0
- - z P(Eto’ N GXO,X Eto’tﬂGxO’xﬂE§’t+At) i

V=0

- . £, t4At
+ 1 pESortnaior X n el M vo(at) =- 7 p(ELO "N GlorXn T TH0F) +
v=0 V=0

Xo X t,t+At

+ ) P(E tO' NG °'"NE; ) + 0(at)

so that, on the basis of condition b) of the Theorem 14, we have

@

at 1 "

(-]
t XarX
sa,0,t) [ opebertnglorX)
V=0
If we use Theorem 12, then the following is obtained:

xl(x,t) aFZt(x) aFlt(x)

aa(x t) _ _ _
?t Az(x,t) X 3t
Therefore,
a(Flt(x) _ alnkz(x,t) aFlt( )A+ P aFlt(x)
atax at X 1 ! ot
F,. (x)
1t
~Bg Eetl) . =g

from which the first part of the theorem follows.
In order to prove the second part of the theorem, let us

differentiate by x the function
ant(x)
at
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ax t
8F2t(x) . 1£f' ) 7 p(Eto'tr\Gxo'x)
axot X e v v
- X b2, 1) A P(Eto’t(\Gxo'x)
1 ax o v v

In a manner similar to that in the previous exposition, it can be shown

that the following is valid:

2 o ta,t %
= L PEL NG
V=0

) Az(x,t) . aFZt(x) . 3F2t(x)
iltxfff It ax

from which the proof of the theorem follows.
Note:

In the case when

Al = Al(t) and 12 = Az(x)

we have
Y1 = A1(v) Y2 2o (x)
so that the system (4.2.6) reduces to a single partial differential

equation of the second order and hyperbolic type,

aF, (x) 3F, (%) aFt(x)

t t
v BV & TR 4.6.3
st T A (B A (%) —% o )

Neither the solution of the system (4.2.6) nor the solution of (4.6.3)

will be considered in this study.
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7. SOME IMPORTANT NOTES

In previous sections of this chapter, the random variable X,
has been considered to represent the total amount of precipitation up
to the moment of time t . As we have seen, Xt is a random variable

for every t > to , such that O < Xt < X ; therefore, we have a

t+At
continuous parameter family of random variables or a continuous parameter
stochastic process of nondecreasing sample functions.

As has been shown, the study of some important characteristics
of the precipitation phenomenon can be reduced to the study of the cor-
responding properties of the stochastic process. Therefore, one of the
main objectives of this study has been development of the process Xt 5
its analysis, the calculation of corresponding one-dimensional distribu-
tion functions, and their application to the problem of precipitation
phenomenon. In fact, the discussion has been limited in this study to
those problems of stochastic process which are closely related to the
problem of the rainfall phenomenon.

In the following exposition, we will consider one other aspect of
the‘precipitation phenomenon. Toward this end, let us denote by T,

times indispensible for an amount of precipitation x to be reached.

Apparently Tx is a random variable for every x > X, such that

Ossz TX+Ax Yax>0

and therefore represents a stochastic process of nondecreasing sample

functions.

{Tx; x>xo}
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If F;(t) represents the corresponding one-dimensional distribu-

tion function, i.e.,

&

F;(x) = P{w; T.st}

where t > t_ , then obviously the following is valid:

Plw; Tx < t} = Plu; X >x}=
(4.7.1)
1l - Pluw; Xtix =1 - Ft(x)

(see Fig.18).

| ————————— — —— ——

Fig.18 Graphical interpretation of the
relation (4.7.1)

F;(t) =1 - Ft(x)

If f;(t) is the corresponding density function, i.e.,

BF;(t)

£ = =Fo—

then obviously
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Further, by virtue of the following inequality

1l - Fl,t(x) > F;(t)i 1 - FZ,t(x)

we have that the upper FEx(t) and lower Fix(x) approximations >f

Fx(t) are of the following form:

Fi (t) =1 - F, (x) (4.7.2)
F;X(t) =1 - Flt(x) (4.7.3)
If one denotes
aF;x(t)
* = e . i =
fix(t) 3¢ i=1.2 ,
approximations of the density function f;(t) are
aF. |, (x)
% = - ___‘.:_‘_t__.__.
fl.x(t) 3t ‘
(4.7.4)
£ (6 = - o2t
2.x ot
Therefore, by virtue of (4.6.1) we have
@
ta,t Xz, X
£ (6 = 2t 1 2aleitnalor)
V=0 (4 7.5)
* _ s to,t Xn e X
£5 4(8) = A (x,) 1 P(EOTTNGST)

V=0

etc.
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Chapter V
APPLICATIONS

In this part of the paper, mathematical methods described in
previous sections will be applied to an analysis of rainfall data col-
lected over 54 years at the Austin, Texas precipitation station during
the period 1914-1967. Because the chief aim of this section is not com-
plete analysis of the rainfall data but to use the data to test theoreti-
cal results, only some aspects of precipitation phenomenon will be con-
sidered.

The most desirable data for this purpose would be the continuous
long-term precipitation records. These, however, were not available,
and, as an alternative, the daily rainfall records have been studied.
Although these records do not give complete information about the rain-
fall phenomenon, they can serve as valuable tools for an orientational
investigation.

In the following exposition data concerning the number of storms
and the termination time of the first and second storm period will be
objects of an analysis. Since we have daily precipitation records instead
of the number of storm periods the number of stormy days in an interval
of time will be investigated.

Toward this end, consider the distribution of the stormy days
during the period of thé first five days in January (Table 1). Since
this period of time is sufficiently small, the effect of seasonal vari-
ations is practically negligible so that the function Al(t) could be
assumed as a constant X, . On the basis of the records (see Table 1)

1

an estimation of the parameter A; * 0.181 , hence taking for t =5



115

(five days) by virtue of (2.5.7) we obtain theoretical (in Table 1
expected) values. In a similar manner the distributions for the first
ten and for the first fifteen days have been obtained (see Tables 2 and
3). In Fig. 19 a graphical presentation of these distributions is given.
The values of the parameter AL for the first, second and third
distributions are 0.181, 0.200 and 0.208, respectively. Therefore, it
could be assumed that influence of the seasonal variation is negligible

during these fifteen days.

—————————— Empirical distributions

\ e—-———— Theoratical distributions

20i\\, _~—The five days period

8 9 {0 11 12

Fig. 19 Theoretical and empirical distributions of the
number of stormy days

Under the assumption that for January an estimation of Al ¥ 02,
it is very easy to obtain the corresponding distributions for 3 and

T In Table 4 observed and expected frequency distributions for 1

2 -
and T, calculated on the basis of (5.3) for xl * 0.2 are presented.

In Figs. 20 and 21 a graphical presentation of these distributions is

given.
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‘847// V// Theoretical distributions
l 6..-(../.4? A
| 4 Empiricel distributions

124 Lo

1 O

/\/ '
Z 4%////'7/7//-17'/-"'-" l ]
0 2 4 6 8 10 12 14 16 18 20 22 24

i %/%/;/7/

ot

Fig. 20 Graphical representation of expected and observed distributions
of random varioble T,

N

N

7
(AL {4

g
//
.

-
7
/

r /(///A 7
%’/ {».i.-.-_;-.cr_:pm

10 12 14 16 18 20 22 24

> 1

Fig. 21 Grophical representation of cxpected and observed
distributions of random variabte 7,
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TABLES



Table 1. Number of stormy days during the first five

days in January for period 1914-1967. Al * 0.181
Number of
stormy days 0 1 2 3 4 5
Observed 25 16 7 5 1 0

Expected 21.95 15.98 8.89 2.67 0.60 0.00

Table 2. Number of stormy days during the first ten

days in January for period 1914-1967. Al * 0.2
Number of
stormy days 0 1 2 3 4 5 6 7 8 9 10
Observed 8 15 14 9 4 3 1 0 0 0 0

Expected 7.306 14,618 14.618 9.741 4,871 1.949 0.648 0.179

0.048 0.00 0.00

Table 3. Number of stormy days during the first fifteen

days in January for period 1914-1967. Al ® 0.208
Number of
stormy days 0 1 2 2 4 5 6 7 8 9 10 11 12
Observed 3 7 10 12 9 6 3 2 1 0 0 0 0

Expected 1.992 6.572 10.843 11.934 9.844 6.496 3.575 1.685 0.697

0.178 0.005 0.000 0.000

laal
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Table 4.

Frequency distributions Frequency distributions

of random variable T of random variable T,

observed expected observed expected

0 2 16 17.803 5 3.328
2 4 10 11.934 -8 7.000
4 6 8 8.013 12 7.824
6 8 6 5.318 9 7.452
8 - 10 5 3.596 6 6.416
10 - 12 3 2.408 4 5.312
11 - 14 2 1.614 3 4,168
14 - 16 1 1.080 2 3.220
16 - 18 1 0.729 2 2.464
18 - 20 1 0.486 0 1.840
20 - 22 1 0.324 1 1.356
22 - 24 1 1.017
24 - 26 1 0.728
54 53.305 54 52.185
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