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ABSTRACT

Three quantitative measures are introduced for the concepts of "surplus" and
"deficit" in hydrologic series. These are: run-length, run-sum and run-intensity.
Positive and negative runs of a series are defined in terms of a fixed value, say
¢, of the variable under consideration, namely precipitation. The distribution
function, moments, and other statistical properties of the three variables,
run-length, run-sum, and run-intensity, are obtained analytically under the
following alternative assumptions on the sequence of annual precipitations:

1. It is independent and normally distributed.

2. It is independent and gamma distributed.

For monthly precipitations, Z, the series was first standardized by the trans-

formation

where t is of the form t = 12(n-1) + 7, t =1, ..., 12, n = 1,2, ..., and where v
and ¢, are mean and standard deviation of the series corresponding to the month t.
Calling "xt < ¢'" as state "0" and "xt > ¢" as state "1," the series is then analyzed
as a two-state Markov chain with stationary transition probabilities.

Annual precipitation from 27 stations in Colorado, and monthly precipitation

from 219 stations in the Western United States are analyzed.



RUNS OF PRECIPITATION SERIES

by

Jose Llamas*and M. M. Siddiqui**

Chapter I

INTRODUCTION

1.1 Subject of this study. The major objective
of this study is to carry out the mathematical analysis
of some parameters by which the concept of runs of a
precipitation series may be defined with reference to
the series itself. One of the main problems in water
resource projects is to predict accurately the amount
of water available during a period of operation and to
determine whether or not it will be sufficient. The
total amount of water necessary in a given period of
time, whether for one particular project or for a num-
ber of projects in one region, can be considered as the
water demand of that region. Of course, the demand
changes from region to region or from country to coun-
try. For instance, in arid areas the water demand must
be necessarily less than in the humid regions because
of different water availability. The same situation is
encountered in the agricultural countries as compared
to the industrial ones. If in one period of time the
supply of water is smaller or greater than the demand,
then this period can be considered as dry or wet,
respectively.

The concepts of dry or wet periods ought to be
taken only in a relative sense so that they depend on a
certain level, c. This value, ¢, can be a constant or
a variable according to the characteristics of the
water demand. In the case of agricultural projects on
a constant surface of land and for the same kind of
annual crops, the consumptive use of water is usually
constant every year. In the case of urban develop-
ment, the future requirement of water is related to the
growth of the population and to the expected industrial
expansion.

1.2 Background of the problem. The problem of
runs of a precipitation series has been initiated by
Downer, Siddiqui and Yevjevich [1], and Yevjevich [2].
In these two papers, the authors define a dry or a wet
run or a negative or positive run as the period in
which the total amount of precipitation is less or
greater than a certain constant, c. This constant may
correspond to the concept of water demands previously
defined. Three main factors may be used in order to
characterize a particular negative or positive run:
run-length, run-sum, and run-intensity. The run-length
of a wet (positive) or a dry (negative) run is the num-
ber of terms in a complete positive or negative run,
respectively. This is also the duration of a positive
or a negative run. This quantity is particularly

important in water resource problems because the knowl-
edge of the expected duration of drought or rainfall
provides the engineer with the necessary design infor-
mation.

The run-sum (or the magnitude of a run) is defined
as the sum of deviations from a level (water demand) of
precipitation over the run-length. These deviations
are negative or positive when the run is dry or wet,
respectively. In some water resource problems the run-
sum is the most important factor. The total capacity
of water that must be stored and then supplied depends
on the expected run-sum of the future dry negative run.
The run-sum of positive or negative rums is directly
related to the sizing of reservoir capacities, design
and operation of hydroelectric structures, projects of
water pollution, sizing of pumps, problems of erosion
and sedimentation, and so on.

The third factor characterizing the runs is the
run-intensity, which is defined throughout this study
as the average intensity or the ratio of run-sum to
run-length. This quantity of run-intensity may be used
as an index for the classification of regions with
respect to precipitation patterns. In this study, the
probability distributions of these three quantities
will be obtained taking into account several possible
cases of the original variable, which is the amount of
precipitation in a unit of time.

First, since the unit of time for the precipitation
measurement is one year, three different situations are
then considered:

(a) One single process of annual precipitation.

(b) Two processes of annual precipitation that
are mutually independent.

(c) Two processes of annual precipitation that
are dependent.

The term "process" is used in the narrow sense of '"sto-
chastic process." It is assumed that any functional
dependence on time, such as trend or periodicity, has
been removed from any process under consideration. The
total amount of annual precipitation is considered as
the original random variable.

*Former Ph.D. Graduate of Colorado State University, Civil Engineering Department, Fort Collins, Colorado,
presently Adjoint-Director of Hydraulic Management, Ministere des Richesses Naturelles, Quebec, P.Q. Canada.

**professor, Department of Mathematics and Statistics, Colorado State University, Fort Collins, Colorado.



With respect to the original process, two alterna-
tive assumptions are made:

(a) The annual precipitations are independent
identically distributed normal random varia-
bles,

(b) The annual precipitations are independent

identically distributed gamma-type random
variables.

The hypothesis of independence in annual precipi-
tation is supported by Markovic [3], and physically
speaking, seems to be realistic because only some fac-
tors of small effects (carry-over of water in river
basins, evaporation, etc.) may affect the amount of
precipitation of the following year. This hypothesis
may be easily verified (autocorrelation test, run test,
etc.) before analyzing data for positive and negative
runs.

The hypothesis of normality of the annual precipi-
tation is, in fact, one of truncated normality (no
negative precipitation) at origin. In the regions where
the probability of zero annual precipitation is high
(arid or arctic regions), neither the hypothesis of
normality nor the hypothesis of gamma distribution are
applicable.

From the analysis of the samples from 1141 stations
in the western United States, Markovic [3] found that,
on the average, the annual precipitations are positively
skewed, and the gamma distribution hypothesis is more
realistic than the hypothesis of normality.

Second, the three main variables, run-length, run-
sum, and run-intensity are analyzed also with monthly
precipitation as the random variables. In this case
the hypothesis of independence is tested and stated at
the beginning of analysis, and no hypothesis of distri-
bution of monthly precipitation is made.

The critical level (water demand) considered in
this study is the mean value of the process. In the
case of annual precipitation, the second order station-
arity of the process is assumed. Therefore, the criti-
cal level is assumed to be invariant in time. In the
case of monthly precipitation, the stationarity is ob-
tained by standardization of the process.

In order to simplify the algebraic operations, the
annual precipitation series is standardized, and in
both cases (annual and monthly precipitation) the criti-
cal level is assumed to be zero.



Chapter II

A SEQUENCE OF INDEPENDENT VARIABLES

2.1 Introduction. In this chapter, a single
process of annual precipitation is analyzed in order to
obtain the statistical properties of the three main
variables characterizing the positive and negative runs:
run-length, run-sum, and run-intensity. This type of
single record analysis is necessary before one can study
several series and obtain correlation properties of one
station with another or of one region with another.

2.2 Formulation of the problem. The problem was
formulated by Downer, Siddiqui and Yevjevich [1]. For
the sake of ready reference, however, it seems desira-
ble to summarize the essentials of that paper. Some
of their results are reported here in a strengthened
form, and some new results are also included.

Let Xn, n=1,2,..., be independent identically

distributed random variables with a common distribution,
F, which is assumed to be continuous. In the appli-
cation to be followed after the derivation of theo-
retical results, Xn is the total precipitation at a

given station during the n-th year. However, it can
also represent the sum of precipitations over several
stations in a given region. Also the unit of time may
be shorter or longer than a year.

A level, c, in the range of values of Xn is

chosen such that 0 < F(c) < 1, and the n-th year is
classified as a surplus year if Xn > ¢ and, in that

case, refer to Xn - c as the surplus. Similarly, the

n-th year is called a deficit year if xn < ¢, in which
case, ¢ - Xn is called the deficit. Thus defined,

these surpluses and deficits are all positive random
variables.

A consecutive sequence of k surplus years pre-
ceded and succeeded by a deficit year is called a posi-
tive run-length k, the sum of surpluses E(Xn-c) over

such a run is the positive run-sum, and this run-sum
divided by the run-length is called the positive run-
intensity. Similar definitions hold for negative runs.

For j = 1,2,..., let N.. denote the length of the

1j
j-th negative run-length and sz the length of the

following positive run-length., If the initial cbser-
vation, xl, is greater than c, the initial positive °*

run is disregarded. Suppose that the j-th negative run

starts with xi+1. Set
N
1j S
1
8. @ L (X . =
1j k=1 itk 13 Nlj o
.1

23 Say

5,.= I (X -c), I, =

2j k=1 1+N1j+k 2j sz

Then S.., S

15° 523 are the negative and positive run-sums,

respectively, for the j-th run, and Ilj’ I2j are the

corresponding run-intensities. The properties of

Nisy Siws Tisy 1 m1,2, 5 = 1,2,.,. are studied in the
1)° 13" 1]

further text.

2,3 The independence of {(Nlji—ﬁljj} and {(sz,

§lei: For convenience the following notations are
introduced:

p = F(e) = P(Xn gg) 5 1=L=p 5

F(e) - Fle = %) .

Fl(K) - F(c) » x>0,
=0 <0 ;
F(xtc) - Fle) .
Rala) W emns w W BT
w0 , ifx<0 (2.2)
Let X;n, n=1,2,..., be a sequence of independent

random variables each with the distribution Fl and
X;n, n=1,2,..., another sequence of independent ran-

dom variables, independent of the sequence in, with the
distribution F,. Then

2

* = - =
P(X]; £x) = P(c - X_ ixlxn se¢) =F(x ,

*
P(X,, <x) =P(X -c i"|xn >¢) = F(x)

m i m @m
P( I X];<x) = P( I (e-X,)<x|X.<¢, j =1,..m) = (),

j=1 ] j=1 ) J

m

m
P( £ x‘.<x):P( L (X.—c)<x|x.>c, j=1,...,m}=£§m(x) {2::3)
j=1 2j— j=1 ] =5 2

where, for any distribution function H and m = 1,2,
i .,ﬁgm denotes the m-fold convolution of H with
itself.

First consider the distribution of Nl" If

X; < c, then P(N,, = k|x1 2e) =P ¢, i=1,...k

1
k-1
Xiap > clXy 2 €) =ap 7, k=1,2,...
If Xl > ¢, then
PN,, = k[Xl >¢) = jilp(xi >g; 1w 1,...,j,xj+i % .05
5 kK i k-1
i = 1saagks xj+k+l>c|x]>c) ijflq = qp ;
¥ =B
is

Hence, the unconditional distribution of Nll



PNy = K) = PNy = k[X) < ) P(X; < c) + PN,

k'l, bS8l (- e

= klxl > c) P(X; > ¢) = qp m(2.4)
Similarly,

k1 kz k2—1

so that
P{Nll = kl. Nzl = sz = P(N11 = kl} P{N21 = kz} ,

and Nll and NZ] are independent, This argument can be

extended to show that N .. are mutu-

11 N30 Nigo Mo
ally independent, {Nlj} are identically distributed,

and {sz} are identically distributed.

Now, look at the joint distribution of {Nll’sllJ'
From (2.3) it follows that
P(S)y < [Ny = K) = FR0) 2.5)
hence
k-1 ®k
PO, =k, Sy £X) =qp P (), (2.6)
Similar expressions hold for (N21,521}. Finally,
A
F00 = PGS, <x) = & ot i) . 2.7)

Again, one can show that the sequence of vectors
(Nlj’slj) is mutually independent and identically dis-

tributed with (2.6). This sequence is also independent
of [NZj’SZjJ’ which themselves are-mutually independent

and identically distributed. Since the treatment of
one vector sequence is exactly parallel to the other,
only one is considered. (In fact Xn < ¢ is equivalent

to -Xn > -¢ so that a negative run for xn at level, c,
is equivalent to a positive run for -S at level, -c).
150

We drop the subscript, j, and write it as [Nl,SlJ unless
the whole sequence is considered.

We choose to concentrate on the negative Tun (Nlj,S

2.4 The distribution of Sl in some special cases.
From (2.7), the distribution function, Fs of Sl, is
directly related to Fl rather than to F. Since

0<p=<l, pn + 0, terms after some k =_n may be
negligible. For example, if p = 1/2, p7 < 0,01 and the
series may be truncated at the sixth term with the
error of approximation less than one percent uniformly

for all x. Actually, since #gk(x] < 1, then

n o
P s o T 1 @t et g
k=1 k=n+1

For example, let Flfx) = F(x,A,r) with the density

function

err-l =AX

f(x,A,7) = e, X7 o,

and r > 0. If r =1, then

£,(x) = Fi(x) = qre” ¥[1epax + X4

s qge W x50, (2.9)

an exponential distribution. For arbitrary r > 0,

F (x) = qF(x,),x)+p F(x,},2r) + P2E(x,A,3r) + ...]
n
=q I pk'l F(x,,kr) + R (x) ,
k=1
where
R0 = qlp"F(x,2, (1)) + p™1 F(x,h, (o)1) + ... )

< gp" F(X,A(n+1)1)[1+p+p?+...] = p" E(x,A, (n+1)r).(2.10)

This follows because, for x > 0 ,
F(x,\,kr) € F(x,A,(k-1)1) .

Usually, n = 2 or 3 may give a satisfactory approxi-
mation.

2.5 Moment generating functions. If y is any
random variable with the distribution function, J(y),
and E is the mathematical expectation operator,
then

My{ﬁ} = pe¥ = e? di(y)

is called the moment generating function of Y or of
the distribution, J. & is taken to be a complex number
and My(B] exists at least for Re 8 < 0. If for some

r=1,2,..., the r-th moment of Y exists, then it is
given by

! r_y (¥
up(y) = EY" = M (0
where M(r)(OJ is the r-th derivative of M evaluated
at 6= 0.
If Yl, Y

Y = Y1+...+Yn

20 e ,Yn are independent and

, then

M(8)=M (B)M (8) ...M (0) .
Y Yy Ya :
The function, K (6) = anyﬁﬁl, is called the cumulant

generating function of Y. The r-th cumulant of Y



exists if the r-th moment of Y exists and is given by

kr(Y) = r-th cumulant of Y = Ky(r](ol :

Clearly, for Y = YJ+...+Yn, where Y ,...,Yn are inde-

1
pendent

Ky(el - KYI(B} ot Kyn{GJ

kr(yJ = kr{yl) * iaa# kr(yn} .
Recall that {xln} have the common distribution function,
Fl' Set

c
i) e VX aF(x) ,

*
vX = cv
1
My(v) = Be ‘1= [ & ar (0 = 5

Kl[v} = Ean(v) .
From Downer, Siddiqui and Yevjevich [1],

uNl-i-vs1

q explu - K,(v)]
H.l(u,v) = Ee

= 1-p exp[u—Kl(\J)] 2

xl(ll.\?) = LnHl(u,v) .

Also
1

Eﬂl = E s Var Nl = i;

* * *

2
_— Exl1 o q var§£5_+ p(Exll)
1 q % 1 qZ
Cov(Nl,Sl) q2 Exll
PEX],

p(N;»S)) = = —— (2.12)

ﬁ//pq var xll +p [Exll)

where var X is the variance of X, and cov (X,Y) is the
covariance, and p(X,Y) is the correlation between X
and Y.

The authors just mentioned did not give the

moment generating function of l1 = but, in & similar

vy
argument, 3
. i
o1 1 n-1 8
ull(a) = Ee 1 =Ee = nil qp @ . (2.13)

The evaluation of the moments of I1 involves sums of
the form

@ zn—l
A(z) = I = g =l 2y s O 2l
¥ n= n
Now,
A (2) = 1+-§-+-§-+ u—%ln(l-z) :

Integrating both sides from 0 to p gives

P 1
2 . -;Az(p).

P 2 8

o [ M) = g SR R s
z ED

2 3 n

and so on.

Finally,

EI, = EX. 1, =4 X ¥ & 2
1 Exu, var I, pva.r 1 uq). (2.149)

There is little point in giving the algebraic form of
higher moments as they can be numerically calculated
in a specific situation.



Chapter 111

NORMAL AND GAMMA DISTRIBUTED VARIABLES

3.1 Normal sequence. Suppose that the original
sequence {Xn is an independent normally distributed

(If EX =u and
Xn = ¢2, then consider the standardized sequence

sequence with EX =0, var X, =1L

(xn - p)/a) Downer, Siddiqui and Yevjevich [1] have
studied this situation exhaustively for {sz,szj).
Their results are equally applicable to (“15’515)'

Now consider the case of c = Exn =0 to illustrate

a method of approximating to the distribution of §

and 111. Thus 11

ES, = 1.59577, var S, = 2.0, ES 3- 18.8615, ES:'=93.0225

1 1

where an approximation to the value of v is used. Also

EII = 0.797885, EI]%= 0.888496, 5113- 1.263186,

Ell“- 2.064387 EN1 = 2, var Nl =2, cov(Nl,Slj =

= 1.59577, p(N;,S;) = 0.798 .

The coefficients of skewness of S1 is
Cﬁlj= 1.82 ,
Since this is positive, a gamma distribution is chosen

to approximate to f_(x). Siddiqui [4] gives the method
for this type of approximation.

Let
o~X/28 (k/2-1
f(x;g,h) = o - for x > 0
(2g) " "r(h/2)
=0 otherwise, (3.1)

be the probability density function of a gamma variate,
to which the probability density function of Sl is

approximated,

In (3.1), g is a scale factor and h is the

effective number of degrees of freedom.

The approximation to the probability density of

S, can be improved as follows:

1
d L.

. )
£(x) = £(x;g,h) I 7—%;57}""‘" et 2 4. % e
o T (m+ [2g)m m 2g

where Lm{c)[y) is the Laguerre polynomial of degree, m.

n j
L, Om = 1 @i

(3.2)

(3.3)

and
a, = J_Eo e Tl (3.4)
where
vy = EspI .

The parameters g and h can be computed by the
method of moments, i.e., equating the first two
moments of the probability density function in Eq.
(3.1) with the moments, ES, and E{Sljz, already found.

The first two moments of the distribution in Eq. (3.1)
are gh and 33h£h+2). Thus, setting gh = ES1 and
g?h(h+2) = ES,%,

g = 0.626657, h = 2.546482 ,

Then

£(x:g,h) = 0.816398 ¢~0+797885x (0.273241

In this kind of approximation, only the first
few polynomials are really important. As a general
rule, the order, m, of the last polynomial considered
must be such that:

(a) No appreciable oscillations appear in the
probability density function.

(b) The coefficient of x™ must be small in com-
parison with the coefficients of the terms
of lower order.

With those considerations, the probability density
function of 5, is truncated at m = 4,

Table 1 shows the different computations. In
m!l(h/2
this table, A = T(w*h/2) °

Finally, the probability density function of Sl (and
S,)is
2

-0.797835xx0.2132d1

fs(x} = 0.816398e (0.790207 +

+ 0.514732x - 0.265132x2 + 0.042132x%-0.001922x") .

3.2 Approximated probability density functions
of I, and I,. As before, the probability density

function of L (and 12) will be approximated by a

function of a gamma-variate.

In this case,
Var I

g = }?T = (,157840



TABLE 1
IMPROVEMENT OF PROBABILITY DENSITY FUNCTION OF Si(i =1,2)

d (0.273241)
m A L X
(2g)" m n (7
0 1 1 1
1 0 - -
2 0 - -

3 -0.017781 0.633311 1.579002-2.968478x+1.041905%2-0.084658x>

4 -0.192013 0.592816 1.686864-4,228341x+2.226157x%-0.361764x°+
+0.016887x4

2@192

h = ———r0
Var II

= 5.055031 .

The parameters dm and Ay and the functions Lm -
for m = 0 to 4, are given in Table 2.

Finally, the probability density function of 11
and 12 is

70;3.167764x x1'527516

fI(x}=13.6505 (0.595968+2,070133x-

-2.848625x%+1,356767x3-0.198404x"*) . (3.5)

Figures 1 and 2 show the probability density functions
of S1 (or 52} and I1 (or 12).

where r > 0. One can introduce a scale factor A, but
it will simply involve multiplying the k-th moment by

,\k. Since EX = r,var X = r, we consider the moments of,

the standardized variable

X, = X-r :

1 s

and the sequence xn, n=1,2,..., which are identically
distributed.

If xh and Xiz denote the truncated random varia-
bles with ¢ = 0, then

*k -k/2 _ k

EX“ =T Exu ’
3.3 Gamma distributed sequence. Let a random
variable, X, have the distribution function, F(x), with
the probability density function where xu is the variable, X, truncated at EX = r.
Similarly, EX.X = r ¥/2 pxK
e R ? 22°
fi(x) = 7 if x>0 Let F, and F, be the distribution functions ob-
=0, ifx <0 tained from Eq. (2.2). Then
TABLE 2
IMPROVEMENT OF PROBABILITY DENSITY FUNCTION OF I.i(‘i =1,2)
dm (1.527516)
X
L
0 1 1 1
1 0 - 1
2 0 - -

3 0.035602 0.148638 5.727776-25.295999x+22.?161971&2-5.29794233

4 -0.439633 0,107562 9.296972-46.608005?62.782081x

2_29.284471x°+

+4.195661x




05¢ 11.0

Fs (x) =,|‘: falu)du

Q3ph - 06
= :
g7 fg (x ) =0.816398 ¢ 0 797888,0273281 5 790207 +0.514732%-0.265132x 2 ue
o2f +0.042132x°-0001922x*) 404
0.1F 402
0 1 L 1 1 L T L
0 | 2 3 4 5 6 7 ] 9

Figure 1 Distribution function and probability density function of S1 and S

2
1.0}
Frix)
flx)= 13680676+ X 52758(0505068 4 2.070133x - 2848625 x°
+1.356767 % - 0.198 404x%)
—_— X
x Fiix) = [ #,(u)du
=
.g O5F
B fr(x)
o} 1 | . '
o] | 2 3 4
X
Figure 2 Distribution function and probability density function of 11 and 12
(r-x)r'l e-(r-s] k ) )
TR =TrETEa e VIR "5 o0 e pergn
where Hence,
X X i k-j
S T"l(E)_I I R T - EXII(I 'EUE-J.J P (e )R (e, 1)
o By, 77 = 7 (3.6)
T T r'(r) P(r,r)
is the incomplete gamma function.
Then In a similar fashion .
) o £ (-1)3(';) ) p(rtk-3)
r(r) pr,r) Xy = K0l e ) & e - — =1 .
a r r I'(r) P(r,r)
> o k -y
= = - = *
Io y' T (z-y) e dy - (-n* Eax" (3.7)




In the distribution of N11 and N21 A The following table shows the values of the first
E]
* &
p = F(r) = B(r;2), q= 1op: . four moments of Xll and X21 for several values of r.
We define S, and S, in terms of the '"normalized" The values of the Incomplete Gamma Function have
variables xzn, x;n and then calculate their moments. been taken from K. Pearson [5].
TABLE 3

MOMENTS OF X¥, (i=1,2) FOR SEVERAL VALUES OF r

? 3 L3 Z E(xx)3 L
EXyy E(X$)° E(X§)” E(X4y)" EXgy  EOX5,)® E(X3,)7 E(X5,)

r
1 0.58198 0.41802 0.32788 0.27027 0.58198 1.16396 3,49184 13.96753
2 0.64412 0,54456 0.51807 0.53441 0.64412 1,13809 2,89771 9.56150
4 0.69031 0.65486 0,72614 0.87779 0.69031 1,11027 2.49127 7.06530
6 0.71055 0.71012 0.84056 1,10099 0.71055 1.09454 2.31406 6.11766

The following tables

show the first four moments of Si and I1 for several values of r.

TABLE 4
MOMENTS OF Si(i=1,2) FOR SEVERAL VALUES OF r

ES, 5(51}2 £(s))? E(S})4 ES, 5(52)2 E(s,)3 E(s,)*

—_

.58198 4.30027 17.20120 91,63671 0.92068 2.46503 9.89973 53.01123

2 1.58768 4.33840 17.35705 92.41097 1.08383 2.86815 11,18544 57,70780
4 1.59252 4.38432 17.63093 94.21243 1.21849 3.24693 12.64762 65.03209
6 1.59359 4.40703 17.77899 95.26155 1.28230 3.44160 13.46745 69.57820
TABLE 5
MOMENTS OF I;(i=1,2) FOR SEVERAL VALUES OF r

2 3 4 2 3 4
roES)  E(S))° E(5)) E(S))" ES, E(Sp)° E(S)) E(S,)
1 0.58198 0.38486 0.27422 0.20031 0.58198 0.98911 2.63477 9.77068
2 0.64412 0.49475 0.42168 0,37902 0.64412 0.96617 2.15717 6.50659
4  0.69031 0.59059 0.57961 0.60859 0.69031 0.94718 1.85078 4.74713
6 0.71055 0,63827 0,66659 0.75612 0.71055 0.93751 1.72266 4.09933

Comparing the moments of S; and I., i = 1,2, obtained similar for large values of r only as shown in Figs.

in this way with the same moments as for the normal,
it follows that the moments corresponding to the gamma
distribution of the original random variable, xl, con-

3, 4 and 5. -~

3.4 Example: Fort Collins, Station No. 5.3005.

verge to the moments corresponding to the normal dis- Years of records: N = 69

tribution of X,. This convergence is almost independ-
ent of r for the moments of §1» but for the other

random variables, S,, 1, and L, both assumptions are

Mean: u = 14.62

Standard deviation: ¢ = 4.00

Equating the mean and variance, it follows
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Figure 3 Expected values and variances of X;] and x;l for normal and gamma assumptions
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Figure 4 Expected values and variances of S1 and S2 for normal and gamma assumptions
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Figure 5 Expected values and variances of I1 and [2 for normal and gamma assumptions
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Then

A =0.9138

TABLE 6

EXPECTED VALUES AND VARIANCES OF X, and N, (i=1,2)
FOR DIFFERENT HYPOTHESES OF (X,

i * *
2¥p?§h?s1s EX1] Ele VarX?] Varx51 EI'!I £N2 Varﬂ1 Varﬂz
n

Normal  0.79789 0.79789 0.36338 0.36338 2.00000 2.00000 2.00000 2.00000

Gamma  0.740 0.740 0.245 0.565 2.166 1.857 2.527 1.760

From the
data 0.670 0.910 0.243 0.502 1.850 1.524 0.928 0.725

TABLE 7

EXPECTED VALUES AND VARIANCES OF S‘i AND 1,(i=1,2)
FOR DIFFERENT HYPOTHESES OF {X }

2¥p?§h§s1s ES1 ES2 Vars1 varsz EI] El2 ‘.'arI1 Varl2
n

Normal  1.59577 1.59577 2.00000 2.00000 0.79789 0.79789 0.25188 0.25188

Gamma 1.595 1.360 1.880 1.845 0.73800 0.73800 0.160 0.420

From the
data 1.239 1.386 0.816 1.027 0.673 0.957 0.123 0.586

The preceding example shows that the first moment
= 14.62 of all random variables, obtained from the data, agrees
quite well with the first moment of the theoretical
hypothesis (better if the comparison is done with gamma
hypothesis). For the random variables, Ni‘si’ and

Ii(i=1,2], the disagreement between the higher moments

in both cases, provided by the fact that the sample
size and consequently the number of runs, is very small
r = 13.360 in this example; therefore, the estimation is obviously
’ subject to large sampling fluctuations.

1



Chapter IV

TWO MUTUALLY INDEPENDENT PROCESSES

4.1 Introduction. In previous chapters, the
parameters defining the negative and positive runs of
annual precipitation were studied considering one sin-
gle sequence of original random variables: the total
amount of annual precipitation at one station. The
concept of runs defined in this way can be generalized
to several points in space simultaneously in order to
study the behavior of those phenomena in the joint di-
mensions of time and space. This situation is often
encountered in hydrology. For example, if a river is
passing through two regions with similar or different
meteorological conditions, the expected runs in a
downstream storage project depend on the combined pat-
tern of precipitation in both regions. In this case,
two different sequences will be required in order to
define the process. The same problem can arise in a
large watershed in regard to the particular model of
precipitation on its main tributaries.

4.2 Formulation of the problem. Consider a se-
quence of a two-dimensional process, (xn,Yn], ns=1,

2,..., where these vectors are mutually independent
and have a common distribution function, F(x,y). Given

two levels, cl and Cys such that 0 < F[cl,cz) <1, we
have four possible events:
An = {xn LR RR L CZ} Bn % {xn b LR c2}

n = {xn = By S5 n- {xn > %y ¥ ® c2}

0f these four, An and Dn are of interest to us.

The n-th year will be called deficit for both sequences
it An occurs and surplus if Dn occurs. A sequence of

k consecutive A's followed and preceded by any other
event is a negative run of length, k. A sequence of

k consecutive D's followed and preceded by any other
event is a positive run of length, k. (For the initial
run the requirement of "preceded by' is dropped.) The
situation is depicted in Fig. 6.

c
P[An) = F[cl,c2)=p, say,P(BnUCnUDn)=P(An )=1-p = q .

Thus the distribution of N

11 is still given by the

formula

k-1

PO, =K =ap ) k= 1,2,...

The difference is that now there is no guarantee
that a negative run will be immediately followed by a
positive run. In fact, it is quite possible that a
negative run is followed by a few B and C type
events, which in turn, are followed by another negative
run. Also here q # P(Dn). Since the discussion of

the positive runs is parallel to that of negative rums,
we omit their mention entirely. We now use the symbols
511 for E[c-xn) and 521 for E[c-Yn], where the summa-

tion is over a (common) negative run.

12

-

gt faget

Jr-
g
lng |
N*'

Figure 6 Graphical representation of the random

variables Sll’ 812’ 522, Nl and N2

When {Xn} is independent of {Yn}, we have

F(ey,ep) = Fe))6(cy)

where F(x) = P(Xn <x), G(y) = P[Yn < y). For example,
if both Kn and Yn are standard normal and ¢ =¢y = 0,
then F(0,0) = 1/4. However, we are at liberty to

choose F and G differently, for instance, F to be
normal and G to be a gamma distribution.

Now, let

Fra() = PlegXy £x, e5myy) S¥IXp Sepp ¥y < ¢))

P[c1~11§;|X1§p1] P[c2~Y1§y]Yl§pz), (4.1)

so that the random variables, {Xln} and {Yln}, can be

defined independently by the truncation of F and G,

respectively. The entire discussion of Chapter II
carries through for Slj and 52j except for their
covariance properties. We have



N. -1

L e
ESyy Sy = E[E(S);Sp1(Ny)] = M ap ©  EXJ,EY]

. 2 W* *
= EN2 EX], BY], ,

so that

— * - -
cov(511,521) = var N1 Exll EY11 qz 11

11

11

E_ px* EY*

11"

(4.2)
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4.3 Comment on the dependent case. From the
equation (4.1), it is apparent that no general dis-
cussion can be carried very far if {Xn} and {Yn} are

not independent, i.e., when F(x,y) # F(x)G(y). The
essential difficulty is in finding the joint distri-
bution of the truncated random variables [X;l,YIJ).

Even the marginal distribution of x;l {or of Y;) depends

on the joint condition {X, < ¢ ¥ 2 ¢k



Chapter V

MONTHLY PRECIPITATION SERIES

5.1 Introduction. In the three pervious chapters
the annual precipitation as the basic random variable
leading to an objective definition of runs was consid-
ered. The series in this form were independent within
and strictly stationary.

However, in some cases it is preferable to reduce
the length of this original random variable in order to
create another process in which the length of observa-
tions will be longer. In practical terms this new
process offers more advantages, in particular, in the
study of those phenomena renewable in a short period of
time. For example, the drought, defined as the negative
run over the mean of annual precipitation, does not mean
anything to a farmer so long as the precipitation is
concentrated in the right period.

In this chapter, the monthly precipitation is the
basic random variable. The time series formed by the
total precipitation during a month are not stationary
because of the seasonal variations. Each series must
be considered as a sample of 12 different populations,
and some transformations should be necessary in order
to bring about stationarity.

5.2 Formulation of the problem. We consider a
sequence of monthly precipitation. Let Pt' t = 1+12(n-1

be the total amount of precipitation in the t-th month

of the n-th year. Here, t =1, 2, ..., 12 andn = 1,
By vt Fix 1 and set
P, -u
£ ate—T ¢t uvt+i2n-d),
n o

T

where Mo is the mean value and o, is the standard devia-
Xn, nm Lds ey
ponds to the standardized values of Ft for the same

tion for the month 7. then corres-

month of successive years. Clearly, this may be assumed
to be either an independent sequence or a mildly depend-
ent stationary sequence. What we assume concerning the

dependence is the following. Let
X, =1, ifX >0 ,
=0, ifX <0
b

We assume that the sequence of X, forms a two state

Markov process with stationary transition probabilities.
That is,

POX X _1oX) gaeeeaXy) = POX X)) = P(x2|x1J. (5.1)
Let

P(x, = lel =0) =1-a, P(x, = 1[x1 =0) =a

P{x2=0|x1wlj =8 P(x2=1[x1=l)=1-8

The transition matrix of the model is

14

+0 1
0 l1-o o
P = §
i B 1-8

with equilibrium probabilities

lim B
n_H_P(xn-OJ-rroﬂm,

lim C
n*@P[xn *1) = By =

a+f

We further assume that the initial probability dis-
tribution is given by

P{xl =0) = LAY P(xl =1) =7

1

so that the chain is stationary. That is,

P(xn = 0) = L P{::.n =1) = Ty for all n = 1,2,...

Now let Nlj be the j-th run of 0's and sz the follow-

ing run of 1's. We have

P(N,, = klxl =0) = P(x; = 0,..0,% =0, X, = 1[x,=0)
- -k le

PN, = klx1 =1) = 5 P{xi-l. . £ e, X4 " 0,

j=1
I l,000.K

=lxy=1) = z 8371 (1-8) (1-0)¥ 1o

X
jrk+1 j=1

= (1) .

Hence, the unconditional probability

PN, = K) = aC-0)*), k=12,

which is the same as Eq. (2.4) withp=1 - a.

Similarly,
P(N21 = k) = 5(1-5)k'1 A R [ R Py

Let

n
Ty ™ & g Y e Zn .
j=1

Then Zn is the number of surplus months out of n, and



Y. is the number of deficit months. We know that [6]

Yn is asymptotically (n+«) normally distributed with

EY *nhé—,var\[ _nuﬁf_z—-m-ﬁl.
n a+8 n {u*B}a

i z =
(Since Yn + Zn = n, var (Yn + n) 0 for all n.)

1 S2’ IZ
as before, we note that for ¢ = 0, the model outlined
above is equivalent to the independent sequence model

except that q = o, p =1 - a for [Nl,Sl,Ilj and the

5.3 Properties of runs. Defining Sl, 1

same (p,q) will not apply for CNE’SE'Iz) unless B =

1 - a, which is the independent case. Thus, when
discussing "1'51'11’ i.e., negative run-length, run-

sum and run-intensity, we set p =1 - a, q = a, in the
formulas (2.11, 2.12 and 2.13).

5.4 Example.

Station 4.7740 San Diego WB APT

The probability density function of monthly pre-
cipitation for this station is given in Fig. 7. We
obtain the following values for the parameters:

EI, = 0.4629 ; E(1))? = 0.2508

EL, = 1.0041 ; E(1,) = 2.3969
From the data:

£s, = 1.5953 ; £(s,)? = 4.2286

S, = 1.5987 ; E(s,)? = 5.8756

EI, = 0.4629 ; E(1,)? = 0.2416

£, = 1.1023 ; E(1,)? = 2.2147

5.5 Explanation of appendices. In Appendix I

the following tables are provided:

1. Table of incomplete gamma function P(a,x)
for a = 1(1)14, and x = 1,2,4,6,10.

2. Data used in example of Chapter IIIL.
3. Locations of precipitation stations in Colorado.

4. Table giving numerical values of means and
variances of variables related to runs for the

B’ n » “1!

a = 0,290 annual precipitation series at stations in
Colorado.
8 = 0.683
Appendix II provides numerical values of parameters
5 discussed in Chapter V, such as EXY, o, &
ES, = 1.59 ; E{S1) = 4.6066 EN,, for monthly precipitation series at stations in
? the Western United States. Areal distribution of these
ES, = 1.609 ; E(S,)" = 5.5628 stations is also provided.
f(x)
toa
103
102
10l
1 | 1 T 1 ]
-3 -2 | 6] 2 3 4 5

Figure 7 Probability demsity function of monthly precipitation,

San Diego W.B. APT

Station No. 4.7740,
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TABLE OF INCOMPLETE GAMMA FUNCTION IN THE FORM P(a,x)

APPENDIX I

USED IN CHAPTER III

(FROM K. PEARSON [5]

X
a \ 1 2 4 6 10
1 0.63212 0.86498 0.98168 0.99752 0.99995
2 0.26424 0.59430 0.90745 0.98257 0.99990
3 0.08030 0.32362 0.76441 0.93761 0.99959
4 0.01899 0.14317 0.56653 0.84880 0.99668
5 0.00366 0.05295 0,37099 0.71374 0.98663
6 0.00060 0.01686 0.21456 0.55412 0.96183
7 0.,00009 0.00483 0.11026 0.39348 0,91243
8 0.00002 0.00139 0.05067 0,25579 0,83558
9 0.00001 0.00027 0.02135 0.15252 0.73226
10 0.00000 0.,00005 0.00813 0.08367 0.60625
11 0.00000 0,00001 0.00274 0.04139 0.47678
12 0.00000 0.00000 0.00094 0.02017 0,35680
13 0,00000 0.00000 0.,00028 0.,00883 0,24992
14 0,00000 0.00000 0,00008 0.,00356 0,16383
DATA USED IN EXAMPLE OF CHAPTER III
FORT COLLINS, COLO, STATION NO, 5.3005
Year P S Year P S
1891 17.50 i | 1926 13,57 - .26
1892 13,58 - .26 1927 15.77 .28
1893 5.65 -2,24 1928 13.54 - .27
1894 12.35 - .56 1929 14.08 - .13
1895 18.07 .86 1930 15.17 .13
1896 15.76 .28 1931 9.88 -1,18
1897 15.24 15 1932 12,80 - .45
1898 11.03 - .89 1933 15.65 .25
1899 16.19 .39 1934 8.87 -1.43
1900 19.21 1.14 1935 15.95 33
1901 21.17 1.63 1936 11.81 - .70
1902 18.43 .95 1937 12.93 - .42
1903 11.63 - .74 1938 19.72 1.27
1904 13.13 - .37 1939 7.85 -1,69
1905 19 .85 1.30 1940 13.94 - .17
1906 19 .88 1,31 1941 17.81 .79
1907 11.64 - .74 1942 21,19 1.63
1908 17.22 .64 1943 12,27 - .58
1909 16.24 .40 1944 13.53 - .27
1910 12.92 - .42 1945 15,73 27
1911 10.89 - .93 1946 14,11 - .12
1912 19 .61 1.24 1947 17,95 .83
1913 15.85 .30 1948 10.45 -1.04
1914 14,31 - .07 1949 18.79 1.04
1915 22,79 2.03 1950 12,70 - .48
1916 13,15 - .36 1951 22,52 1,97
1917 13.72 = ;82 1952 12.74 - .47
1918 21.79 1.78 1953 11,42 - .80
1919 10.92 - .92 1954 7.98 -1.66
1920 11.65 - .74 1955 12.97 - .41
1921 14.83 .05 1956 12,19 - .60
1922 9.98 -1.16 1957 19.56 1.23
1923 27.57 3.23 1958 17.44 .70
1924 10,64 - .99 1959 14 .67 .01
1925 14.46 - .04
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APPENDIX 1 (continued)

In the preceding Table, P means the total amount of amount of annual precipitation in standard measure,

annual precipitation in inches, and S 1is the total T Eég wiiere = 1468 and g md.b0)

Precipitation Stations in Colorado

»
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53867 L '
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< 5.3038 5
5.5116 59295
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16 .
.
s L 51179
5.1121
L ] [ ]
5.4884 5528
[ ]
[ ]
5.1440 55730 -
5.24
L ]
5.1294 A8
.
5631
54834
.
5.395| .
5.2184
[ ]
5.1886 ¢ 2.
°5.4250
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APPENDIX I (continued)

AMNUAL PRECIFPITATION

STATIONS OF COLORADO
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APPENDIX II

ANALYSIS OF MONTHLY DATA
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Key Words: Fum-Length, Run-Sum, Run-Intensity, Gamma snd Normal Distributions,
Moments

Abstract: Three quantitative measures are introduced for the concepts of “surplus™

icit" in hydrologic series. These are: run-lemgth, run-sum,and run-intemsity.
Positive and megative runs of a series are defined in terms of & fixed value, say c,
of the variable under considerstion, namely precipitation. The distribution functiom,
moments, and other statistical properties of the three variables, run-lemgth, Tum-sum,
and run-inteasity, are cbtained analytically under the following alternative sssumptions
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