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ABSTRACT 
 
 
 

BIO-INSPIRED DESIGN FOR ENGINEERING APPLICATIONS: EMPIRICAL AND FINITE 

ELEMENT STUDIES OF BIOMECHANICALLY ADAPTED POROUS BONE 

ARCHITECTURES 

 
 
 

Trabecular bone is a porous, lightweight material structure found in the bones of mammals, 

birds, and reptiles. Trabecular bone continually remodels itself to maintain lightweight, 

mechanical competence, and to repair accumulated damage. The remodeling process can adjust 

trabecular bone architecture to meet the changing mechanical demands of a bone due to changes 

in physical activity such as running, walking, etc. It has previously been suggested that bone 

adapted to extreme mechanical environments, with unique trabecular architectures, could have 

implications for various bioinspired engineering applications. The present study investigated 

porous bone architecture for two examples of extreme mechanical loading. 

 Dinosaurs were exceptionally large animals whose body mass placed massive gravitational 

loads on their skeleton. Previous studies investigated dinosaurian bone strength and biomechanics, 

but the relationships between dinosaurian trabecular bone architecture and mechanical behavior 

has not been studied. In this study, trabecular bone samples from the distal femur and proximal 

tibia of dinosaurs ranging in body mass from 23-8,000 kg were investigated. The trabecular 

architecture was quantified from micro-computed tomography scans and allometric scaling 

relationships were used to determine how the trabecular bone architectural indices changed with 

body mass. Trabecular bone mechanical behavior was investigated by finite element modeling. It 

was found that dinosaurian trabecular bone volume fraction is positively correlated with body mass 
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like what is observed for extant mammalian species, while trabecular spacing, number, and 

connectivity density in dinosaurs is negatively correlated with body mass, exhibiting opposite 

behavior from extant mammals. Furthermore, it was found that trabecular bone apparent modulus 

is positively correlated with body mass in dinosaurian species, while no correlation was observed 

for mammalian species. Additionally, trabecular bone tensile and compressive principal strains 

were not correlated with body mass in mammalian or dinosaurian species. Trabecular bone 

apparent modulus was positively correlated with trabecular spacing in mammals and positively 

correlated with connectivity density in dinosaurs, but these differential architectural effects on 

trabecular bone apparent modulus limit average trabecular bone tissue strains to below 3,000 

microstrain for estimated high levels of physiological loading in both mammals and dinosaurs.  

Rocky Mountain bighorn sheep rams (Ovis canadensis canadensis) routinely conduct 

intraspecific combat where high energy cranial impacts are experienced. Previous studies have 

estimated cranial impact forces up to 3,400 N and yet the rams observationally experience no long-

term damage. Prior finite element studies of bighorn sheep ramming have shown that the horn 

reduces brain cavity translational accelerations and the bony horncore stores 3x more strain energy 

than the horn during impact. These previous findings have yet to be applied to applications where 

impact force reduction is needed, such as helmets and athletic footwear. In this study, the velar  

architecture was mimicked and tested to determine suitability as novel material architecture for 

running shoe midsoles. It was found that velar bone mimics reduce impact force (p < 0.001) and 

higher energy storage during impact (p < 0.001) and compression (p < 0.001) as compared to 

traditional midsole architectures. Furthermore, a quadratic relationship (p < 0.001) was discovered 

between impact force and stiffness in the velar bone mimics. These findings have implications for 

the design of novel material architectures with optimal stiffness for minimizing impact force.  
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Chapter 1: Introduction: Trabecular architecture in large mass animals 

 
 
 

1.1  Trabecular bone 

Trabecular bone is a porous, strong, stiff, and lightweight structure. Trabecular bone is 

composed of a network of highly interconnected beam-like struts and is found in the ends of long 

bones, vertebrae, and between the dense outer and inner layers of the skull [1] and is shown in 

Figure 1-1.  

 

 
Figure 1-1:  A) Femoral trabecular bone with a close up shown in B). Image adapted from [2] 

 
Trabecular bone is adapted to the mechanical needs of the whole bone, where there is 

evidence showing the individual trabecula are oriented in the directions of the principal stresses 

[3], [4]. Bones need to be sufficiently strong and tough enough to resist fracture for habitual 

physical activity. It is known that bones have different mineral content to optimize strength and 

toughness needed for the loading condition of the bone [1]. However, the cellular maintenance 

(e.g., bone remodeling) and transport (e.g., during locomotion) of bone is metabolically expensive. 

Thus, bony architecture must achieve mechanical competence while maintaining light weight. If 

A 500μm 
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an individual bone was so large that the mechanical strains were low during routine activities such 

as walking and running, then the animal would expend unnecessary energy to move an 

unnecessarily heavy skeleton during these activities. However, if mechanical loading becomes too 

large the risk of failure increases [5], [6]. 

The physiological process of bone remodeling helps achieve a balance between bone 

weight and mechanical competence, and repairs and limits the accumulation of fatigue damage 

[7].  The remodeling process consists of the coordinated resorption and formation of the boney 

material due the response of mechanical forces. This resorption happens at the microstructural 

level where osteoclasts destroy unneeded tissue and osteoblasts rebuild the new trabecular 

structure [4]. However, this remodeling comes at a metabolic cost and the energy needed for 

remodeling must be prioritized based on the availability of fuel to drive the remodeling process 

[8]. Therefore, it is been suggested that bone has a highly optimized structure to meet mechanical 

demands and while maintaining lightweight [9].  

 

1.2  Trabecular bone architectural indices 

To assess trabecular architecture several indices have been established [10]. Bone volume 

fraction (BV/TV) is defined as the bone volume (BV) normalized by the total volume (TV) of the 

region of interest (ROI). The trabecular thickness (Tb.Th) is the average thickness of all trabeculae 

within the ROI. Similarly, trabecular spacing (Tb.Sp) is the average linear distance between 

trabeculae within the ROI. The trabecular number (Tb.N) is the number of trabecular intersections 

per unit line length and connectivity density (Conn.D) is the number of connected structures  in 

the ROI divided by the total volume (TV). Examples of the structural indices are shown in Figure 

1-2. Changes in these indices have been associated with changes in trabecular strength [4]. 
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Figure 1-2: Trabecular bone architectural indices: trabecular thickness, Tb.Th (green arrows), 
trabecular separation, Tb.Sp (purple arrow), trabecular number, Tb.N (blue lines and crosses), 

TV (red square), and Conn.D (orange circles) 
 

1.3  Allometric scaling 

Allometry is the study of the relationship of body size to shape, anatomy, physiology, and 

behavior. One study [11] has shown that trabecular bone architectural indices in the femoral head 

and lateral condyles scale with increasing femoral head radius in mammalian, avian, and reptilian 

species. At the time of the study the body mass of each specimen was not known so femoral head 

radius was used as a surrogate for body mass. In that study the trabecular bone structural indices 

in the femoral head and the lateral femoral condyle were quantified for 72 terrestrial mammals, 18 

birds, and 1 crocodile, spanning six-orders of magnitude of body mass ranging from 3 grams to 3 

tonnes. A full list of these species can be found at [12]. This study showed that there was no 

significant correlation with the bone volume fraction and increasing femoral head radius, positive 

correlations for both trabecular spacing and trabecular thickness with increasing femoral head 

radius, and negative correlation between connectivity density and increasing femoral head radius 

(Figure 1-3). 
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Figure 1-3: Double logarithmic plots of A) bone volume fraction, B) trabecular thickness, C) 
trabecular spacing, and d) Connectivity versus increasing femoral head radius. Image adapted 

from [11] 
 

A similar study [13] investigated how the structural indices of trabecular bone scaled with 

body mass in various mammalian bones. In this study trabecular bone from the mandibular 

condyle, humerus, radius, metacarpal bones, vertebrae, femur, iliac crest, tibia, and calcaneus for 

12 different species were analyzed. The study showed weak but significant negative correlation 

between body mass and trabecular number and connectivity density and positive correlation 

between trabecular spacing and trabecular thickness. There was no correlation between body mass 

and bone volume fraction Figure 1-4. 

A B 

C D 
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Figure 1-4: Double logarithmic plots of A) bone volume fraction, B) trabecular number, C) 
connectivity density, D) trabecular thickness, and E) trabecular spacing versus increasing body 

mass. Image adapted from [13] 
 

Synthesizing the results of these studies [11], [13] show that there are significant 

relationships between the trabecular bone architectural indices and increasing body mass. This is 

important because trabecular bone mechanical properties are heavily dependent on architecture. 

Bone strength decreases with age due to decreased trabecular number, trabecular thickness, and 

connectivity density [14]–[16]. Furthermore, the lack of correlation between bone volume fraction 

and body mass is interesting to because bone strength decreases with decreasing volume fraction 

[17].  

  

A 

B C 

D 

E 
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1.4  Mechanics of cellular solids 

A cellular material is define is a porous body composed of repeatable units (or cells) that 

are used to build a structure [17]. Cellular materials can be open- or closed-cell. Examples of 

cellular materials include the honeycomb structure in cork, the foam structure found between 

external layers of plant leaves, the interior of porcupine quills, and trabecular bone. The 

mechanical response of these materials is heavily dependent on the cell shape and the volume 

fraction of these structures where any measured property (mechanical/thermal/electrical) 

decreases quadratically or cubically with decreased volume fraction [17]. Figure 1-5 shows how 

trabecular bone apparent elastic modulus decreases with decreasing volume fraction. 

 

 
Figure 1-5: Measured apparent elastic modulus versus volume fraction  

 

Shown in Figure 1-5 is the governing equation for elastic modulus with decreasing or 

increasing volume fraction. In this equation 𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴 is the apparent elastic modulus measured from 

stress strain curve measured on the porous body, 𝐸𝐸𝑠𝑠 is the elastic modulus of the solid, i.e. the 
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material that the porous body is made from, and BV/TV is the volume fraction. Deformation in 

open cell foams is primarily due to bending of the cell edges. Applying this to trabecular bone it 

been previously observed that the strength of trabecular bone is not only dependent on bone 

volume fraction but also the trabecular architecture. [18], [19]. The primary cause for decreases in 

bone volume fraction are attributed to decreases in trabecular thickness [14]. Finite element studies 

have shown that decreasing trabecular number has been shown to cause between a 2 to a 5 fold 

reduction in bone strength [20] and strength increases have been observed with increasing 

connectivity density [19], [21]. 

 

1.5  Finite element modeling and trabecular bone risk assessment  

Finite element modeling is technique where solutions to the equations governing a physical 

process are numerically approximated [22]. Finite element modeling has countless applications in 

engineering including thermal analysis [23], fluid dynamics [24], and solid mechanics [25]. Finite 

element modeling is most useful when equation solutions are difficult/impossible to obtain and 

has been a useful tool for understanding the mechanics of trabecular bone [26], [27], [27]–[31], 

where failure of risk of important concern. Failure risk is typically assed using a multi-axial failure 

theory, where failure is the onset of yielding [32]. The distortion energy theory has been used with 

finite element models to predict failure fracture in the proximal femur [33]. Though failure was 

accurately predicted, the distortion energy theory does not account for trabecular bone mechanical 

property anisotropy [34], [35]. This further excludes the maximum normal stress, maximum shear 

stress, maximum principal strain, maximum strain energy density theories due to the inherent 

assumption of material isotropy. Tsai-Wu [36] theory has been be suggested for bone [37] and has 

shown reasonable accuracy [38] but it was later shown that planar failure envelopes were 

uncoupled from each other during biaxial [39] and triaxial [38] loading of bovine trabecular bone. 
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This has been observed in other cellular materials [40]–[42], where different failure mechanisms 

(rupture due to tensile stress or crushing/buckling of the cell walls) occur at different stress levels 

in different directions. Expanding on previous works, the modified super ellipsoid failure theory 

was developed to account for material anisotropy [26]. This approach showed great accuracy for 

trabecular bone but has limited utility. According to the authors, the analysis is anatomic site 

specific, thus limiting applicability to a single site in a single patient, let alone patients of the same 

species and furthermore, other species. [43]. Figure 1-6 displays the modified super ellipsoid , Von 

Mises, and Tresca failure envelopes (converted to strain). These data are shown here to establish 

the differences between the modified super ellipsoid, Von Mises, and Tresca failure envelopes and 

how these failure theories apply to experimental data.  

 

 

 
Figure 1-6: Yield envelopes for the (top left) 𝛆𝛆𝐱𝐱𝐱𝐱 −  𝛆𝛆𝐲𝐲𝐲𝐲, (top right) 𝛆𝛆𝒛𝒛𝒛𝒛 −  𝛆𝛆𝒚𝒚𝒚𝒚, and (bottom 
left) 𝛆𝛆𝐳𝐳𝐳𝐳 −  𝛆𝛆𝒙𝒙𝒙𝒙 normal strain planes, and (bottom right) three-dimensional modified super 

ellipsoid yield surface 
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 Plots of this nature are interpreted by identifying data points outside the failure envelopes. If 

a data point falls outside of the envelope the strain experienced has exceeded the failure criterion 

(often the yield stress or strain). For data points who are inside the envelope the strain has not 

exceeded the failure criterion and thus did not fail. From Figure 1-6, the modified super ellipsoid, 

Von Mises, and Tresca failure theories show agreement for some species of this study and disagree 

on others. Since these theories disagree on several specimen there is motivation to find better 

methods for evaluating failure risk in trabecular bone.  

 

1.6  Dinosaurs and their bones  

Dinosaurs were massive animals that placed exceptional mechanical demands on their 

bones and were the largest animals to walk the Earth. Allometric relationships estimate that 

dinosaurs weighed in excess of 40,000 kg. Edmontosaurus annectens 7,936 kg [44], 

Edmontosaurus regalis  420 kg [44], Supersaurus 40,000 kg [45], Camarasaurus 47,000 kg [46], 

[47], Apatosaurus 22,400 kg [48], Diplodocus 20,000 kg [48] are examples of exceptionally 

massive animals. Several finite element analysis studies have been able to successfully investigate 

the biomechanics of dinosaur limbs. These studies primarily focus on the locomotor behavior the 

limbs [49]–[58]. There have also been numerous studies into the bite mechanics of dinosaurs [59]–

[64]. One study [65] utilized finite element models to “rebuild” the skull of a Diplodocus using 

topological optimization to minimize mass and maximize strength. Making a few a priori 

assumptions about the location of eye sockets and the bite force of Diplodocus this study was able 

reconstruct the skull with reasonable accuracy. A recent finite element study [2], [66], [67] 

investigated the trabecular architecture of the hind limbs of Theropod dinosaurs. Though closely 

related to birds the trabecular bone architecture in plesiomorphic theropods was found to more 

closely resemble the trabecular architecture of modern humans, implying similar biomechanics as 
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humans. These conclusions were made based on the oblique nature of the trabeculae in the 

diaphysis of the femur being like that of humans. This study investigated the trabecular architecture 

and the effect it has on the behavior of the whole bone. There has been extensive research into the 

locomotor behavior and the whole bone strength of dinosaur bones there has been no investigation 

into the strength of dinosaur trabecular bone. 

 

1.7  Motivation for research 

The motivation for this research was to investigate the trabecular architecture of large mass 

animals as potential novel lightweight stiff material. According to the FAA 15,800,000+ flights 

are handled annually and is estimated that in 2017 there were 7,309 commercial planes in the 

United States alone [68]. It is estimated that $3,000 in fuel costs is saved annually per kilogram in 

reduced weight of a commercial plane [69], totaling an estimated annuals savings of $21,927,000 

across the commercial airline industry. Furthermore, it is costs ~$10,000 per pound to send a 

payload into earth’s orbit [70]. Independent of fuel costs it is estimated that the maintenance cost 

of an airplane is twice the initial purchase price over a 30 year life time of an aircraft [71]. The 

reduction of weight without sacrificing strength and reducing maintenance costs in structural 

components has been the main driving force for advances in aerospace components. 2000 series 

aluminum alloys are mainly used for aircraft structural frames where a key feature of this alloy are 

Al2Cu and Al2CuMg phases that increase fracture toughness and strength [72]. Higher strength 

alloys such as 7000 series aluminum alloys are commonly used in aircraft structural elements 

because of their high strength to weight ratios as compared to other aluminum alloys. However, 

because of the chemical composition these alloys suffers from corrosion, which is an important 

concern because of the environments (oil, hot/cold temperature, and high/low humidity) aircraft 

components are subjected to [73] and it is estimated that corrosion has cost $276 billion annually 
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to the aerospace industry [74]. Attempts to solve these problems and while maintaining high 

strength to weight ratios the aerospace and other industries have turned to fiber reinforced polymer 

matrix composites. An example of such composites are carbon fiber thermoset composites where 

these materials satisfy the needs of high operating temperatures, rigid design, and high strength to 

weight ratios [75]. However, these composites are prone to processed induced distortion due to 

mechanical property anisotropy in materials and high processing temperatures [76]. This combined 

with shortages of skilled composites workers [77], [78] there is significant motivation for 

aerospace materials development. For aluminum and other metals and metal alloys to stay 

competitive weight reduction and improvement in structural performance is imperative [71].  

 

1.8  Hypotheses 

It is hypothesized that trabecular architectures from large body mass animals have adapted to 

maximize stiffness while minimizing mass and therefore could be used as novel structures with 

high strength-to-weight ratio. The hypotheses of this study are as follows: 

1. The apparent modulus of the trabecular bone in the long bones of animals will show 

positive correlation with body mass. 

2. The trabecular architecture in the long bones of large mass extinct animals will show 

morphological changes like extant animals to accommodate increases in apparent 

modulus. 

3. The trabecular architecture in the long bones of large mass animals will show similar 

levels of strain as smaller body mass animals under anatomic levels of strain for extant 

animals. 
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Chapter 2: Strong and light weight structures from dinosaur trabecular 

architecture 1 

 
 
 

2.1  Methods 

2.1.1  Species analyzed in study 

The species used in the study were chosen to cover a wide range in body mass, from 1 to 

47,000 kg, and are listed in Table 2-1. The CT and μCT scans from previous studies are indicated 

in Table 2-1 and for the mammoth, Edmontosaurus, Apatosaurus, Camarasaurus, and 

Supersaurus, new bone samples were obtained and scanned with μCT for the current study. 

 
Table 2-1: Species used in the finite element models of this study 
Study Common Name Specimen Number Scientific Name Body 

mass (kg) 

[11] Java Mouse Deer UMZC H15013 Tragulus javanicus 1 
[11] Wild Turkey RVC turkey 1 Meleagris gallopavo 4 
[2] Troodontid MOR 748 Troodontidae 23 
[11] Emu RVC emu_1 Dromaius 

novaehollandiae 

27 

[2] Caenagnathid TMP 1986.036.0323 Caenagathidae 49 
[11] Domestic sheep RVC sheep2 Ovies aries 57 
[2] Ornithomimid TMP 1999.055.0337 Ornithomimidae 100 
[2] Therizinosaur UMNH VP 12360 Falcarius Utahensis 128 
[11] Siberian Tiger RVC tiger_2 Panthera tigris 130 

 

 

 

 

1 This dissertation chapter was adapted with permission from Aguirre, T. G.; Ingrole, A; Fuller, L.: Seek, T. W.; 
Fiorillo, A. R.; Sertich, J. J. W.; Donahue, S.W. Differing trabecular bone architecture in dinosaurs and mammals 
contribute to stiffness and limits on bone strain, PLOS One, In review.  
Funding was provided by the National Science Foundation Office of Polar Programs (OPP 0424594), as well as the 
National Geographic Society (W221-12) for the collection of Alaska Edmontosaurus materials used here.  And, the 
Arctic Management Unit of the Bureau of Land Management provided administrative support. The specimens 
discussed here were collected under BLM permit number AA−86367.  Travel funding for Mammuthus columbi 
sample collection was provided by the George C. Frison Institute of Archaeology and Anthropology. 



13 

Current Hadrosaur PMNS 22386 Edmontosaurus sp. 420 
Current Hadrosaur 1DMNH 22231 Edmontosaurus sp. 420 
Current Hadrosaur 1DMNH 22235 Edmontosaurus sp. 420 
Current Hadrosaur 1DMNH 2012 25-57 Edmontosaurus sp. 420 
Current Hadrosaur 1DMNH 22228 Edmontosaurus sp. 420 
Current Hadrosaur 1DMNH 22242 Edmontosaurus sp. 420 
[11] White Rhino RVC french_rhino Ceratotherium 

simum 

3,000 

[11] Asian Elephant RVC gita Elephas maximas 3,400 
Current Hadrosaur 2DMNH 44398 Edmontosaurus 

regalis 

7,936 

Current Hadrosaur 2DMNH 42169 Edmontosaurus 

regalis 

7,936 

Current Mammoth WA322-9 Mammuthus columbi 9,980 
Current Sauropod UW20501 Apatosaurus sp. 22,000 
Current Sauropod WYDICE DMJ-0021 05 Supersaurus 40,000 
Current Sauropod  UW20519 Camarasaurus 47,000 
University Museum of Zoology Cambridge (UMZC), Royal Veterinary College (RVC), 
Museum of the Rockies (MOR), Royal Tyrrell Museum of Palaeontology (TMP), Natural 
History Museum of Utah (UMNH), Perot Museum of Nature and Science (1DMNH), Denver 
Museum of Nature & Science (2DMNH), University of Wyoming (UW), Wyoming Dinosaur 
Center (WYDICE). 48WA is the archaeological site identification code per the Smithsonian 
trinomial system. The specimen was obtained from the University of Wyoming 
Archaeological Repository (UWAR) fossil collection.   

 

The body mass estimations for the extinct species of this study are as follows: 

Edmontosaurus regalis 7,936 kg [44], Edmontosaurus sp.  420 kg [44], Supersaurus 40,000 kg 

[45], Camarasaurus 47,000 kg [46], [47], Apatosaurus 22,400 kg [48], Troodontid 23kg [79], 

Caenagnathid 49kg [80], Falcarius utahensis 128 kg [81], Ornithomimid 100 kg [82], and 

Mammuthus columbi 9,980kg [83]. For the Mammuthus columbi and Supersaurus, the body mass 

estimations are for the specific specimens used in this study. For the other species, the body masses 

were obtained from the published estimates shown above and were assumed to be the same for all 

specimens of a given species. 
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2.1.2  Fossilized bone verification through optical microscopy and energy dispersive x-ray 

spectroscopy 

To verify trabecular bone in Apatosaurus, Supersaurus, and Camarasaurus samples used for 

µCT were comprised of fossilized bone tissue, the samples were imaged using an optical 

microscope, scanning electron microscope (SEM), and elemental analysis was performed using 

energy-dispersive x-ray spectroscopy (EDS). The bone samples were sectioned and polished to a 

mirror finish using a 1-micron polycrystalline diamond suspension. Samples were imaged using a 

Hitachi S-4800 SEM equipped with an x-ray energy dispersive spectrometer (EDAX Genesis). 

Samples were coated with ~ 10 nm of carbon to prevent charging of the sample surface. Bone 

specimen collected for this study were imaged with 20 μA probe current and 15 keV excitation 

voltage. Planar maps of the elemental composition were obtained and confirmed the bone tissue 

contained high percentages of calcium and phosphorous.  

 

2.1.3  Computed tomography scanning 

For the species in this study, trabecular bone samples from the medial portion of either the 

proximal tibia or distal femur were analyzed based on availability (Figure 2-1). These locations 

were selected because of similarities in the trabecular bone architectural indices in these two 

regions [84]. Archival μCT scans of trabecular bone from the lateral femoral condyles were 

accessed via a public database (Doube, 2018). High-resolution CT scans of fossilized dinosaur 

limbs were provided by Dr. Peter Bishop at the Royal Veterinary College in the United Kingdom 

[2], [66], [67]. Sections of trabecular bone were virtually cropped from the lateral femoral condyle 

in the CT scans. Additionally, cylindrical cores of trabecular bone were collected from several 

fossilized specimens. Two adult hadrosaur (Edmontosaurus annectens) tibiae were provided by 

the Denver Museum of Nature & Science. Six juvenile hadrosaur (Edmontosaurus sp.) tibiae were 
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provided by the Perot Museum of Nature and Science.  A tibial core was collected from the 

Supersaurus in the Wyoming Dinosaur Center fossil collection. Samples from a Camarasaurus 

tibia and Apatosaurus lateral femur were collected from the University of Wyoming Geology and 

Geophysics Department fossil collection. A femoral core was collected from a Columbian 

mammoth (Mammuthus columbi) in the University of Wyoming Archaeological Repository fossil 

collection. Figure 2-1 displays the anatomical locations from which cores for this study, and from 

previous studies [2], [11], [12], were obtained. Trabecular cores collected for this study were 8 

mm diameter and 50–75 mm long and were harvested using a diamond sintered coring bit. During 

drilling, water was pumped through the center of the coring bit to cool the sample/bit and flush out 

debris. The trabecular cores were scanned with a SCANCO micro-computed tomography machine 

(SCANCO µCT 80) at high resolution, 8W, and 70 kV peak excitation voltage to produce 10-

micron voxels. To prevent image distortion fossilized trabecular bone cores were scanned through 

a copper filter [85]. The trabecular bone volume fraction (BV/TV), trabecular thickness (Tb.Th), 

trabecular spacing (Tb.Sp), and connectivity density (Conn.D) for each  CT scan [2], [11] were 

measured using BoneJ [86] and the trabecular number (Tb.N) was computed using the methods in 

[87]. 
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Figure 2-1: A) Femoral core location, B, E) µCT scans of trabecular cores, C, F) finite 

element models of trabecular bone, D) Tibial core location. 
 

2.1.4  Finite element model generation  

The CT and µCT DICOM files were binarized with Seg3D to separate the bony material 

from the marrow space. Cubes were cropped from the center of the cylindrical scan volume to 

generate the finite element models (Figure 2-1 C & F). This location was chosen so that peripheral 

damage from cutting the cylindrical cores was not included in the finite element models. The bulk 

dimensions of the finite element models varied due to differences in the available µCT scan regions 

of intact bone (e.g., some Edmontosaurus and the Mammuthus samples had irregular geometries 

due to the coring process). However, all finite element models had the dimensions required to treat 

trabecular bone as a continuum, which is 5-10 trabecular spacings [88]. Sample image files were 
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exported in the ASCII STL file format for further file preparation. The STL files were opened 

using MeshMixer to create a solid volume from the surface model exported from Seg3D and to 

repair any errors during surface triangulation. The files were then meshed in ICEM CFD to 

generate a linear tetrahedral element mesh, and finite element models were generated using 

ABAQUS. Shown in Figure 2-2 is an example of a meshed trabecular bone cube used in this study. 

  

 

Figure 2-2:  Meshed trabecular bone cube used in the finite element models 
  

2.1.5  Finite element modeling  

2.1.5.1 Mesh Convergence 

To determine the optimal mesh for the finite element models a mesh (numerical) 

convergence study [30], [89] was performed. For this study, five unique mesh densities, ranging 

from 50,797 to 1,019,808 elements per cubic millimeter, were created for the trabecular bone 

specimen with the smallest average trabecular thickness and the models were subjected to a strain 

of 0.415%. To determine whether the mesh had converged, the change in strain energy between 
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each mesh was analyzed and compared to the finest mesh as a percent difference using Equation 

1.  

      ∆ =  
𝑋𝑋𝑁𝑁− 𝑋𝑋𝑖𝑖𝑋𝑋𝑁𝑁 100%     (2 - 1) 

Where Δ is the percent difference and X is strain energy. 𝑋𝑋𝑁𝑁 is strain energy for the finest mesh in 

the mesh convergence study and 𝑋𝑋𝑖𝑖 is the strain energy for the other meshes used in the study.   

 

2.1.5.2 Quasi-static compression finite element models 

The FEM size for each specimen was chosen to be between 5 and 10 trabecular spacing’s, 

depending on the available size of the scanned bone. However, for each model the minimum 

dimensions were greater than 5 trabecular spacing’s and are therefore within the range of 

continuum dimensions for trabecular bone [88]. Because each specimen used in the FEA study 

had a different physical size and different bone volume fraction, an apparent stress of 9.36 MPa 

was applied to each FEM. This applied stress is equal to one-half of the yield stress for human 

femoral trabecular bone [31]. This stress was converted to a force using the bulk specimen 

geometry for each FEM and was chosen because it is within the ranges of stress that occur in 

trabecular bone for physiological activities [65], [90]. All FEM were assigned an elastic modulus 

of 15 GPa and Poisson’s ratio of 0.3 [10], [31] and modeled as linear elastic with linear (4 node) 

tetrahedral elements and parallel processed using 8 CPUs. An example finite element model is 

shown in Figure 2-3. 
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Figure 2-3: Example finite element model after compression to a macroscopic strain of 4,150 
microstrain (µε). The color gradient corresponds to the max principal strain in each element. 

Dark blue regions with zero strain correspond to the marrow spaces. 
 

2.1.6  Apparent and Specific Apparent Modulus 

The effect of the trabecular bone architecture on the apparent elastic modulus was 

determined from the linear region of the stress-strain curve from each finite element model. To 

account for differences in BV/TV between each cube, the specific apparent elastic modulus was 

computed by dividing the apparent elastic modulus by the product of the bone volume fraction and 

a trabecular bone tissue density of 1.874 grams/cm3 [4]. This was done because the bone tissue 

density of the fossilized samples could not be accurately measured due to the fossilization process.  

 

2.1.7  Risk of failure assessment  

To assess the likelihood of failure of the samples in this study, trabecular principal strains 

were analyzed. The normal and shear strain components were collected from element centroids for 

every element in each finite element model using a custom Python script. Data were collected from 
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the centroids of the elements because the Gauss (integration) point is located at the element 

centroid for a linear tetrahedral element [91]. A custom MATLAB script was used to compute the 

principal strains for each model by computing the eigenvalues of the 3D strain tensor [92]–[94]. 

The average tensile and compressive principal strains (of all the elements) were computed for each 

finite element model. Additionally, the average tensile and compressive principal strains were 

computed for each finite element model only considering elements that had strain values that 

exceeded the tensile (εy = 0.41%) and compressive (εy = -0.83%) yield strains of human trabecular 

bone. The yield strains for human trabecular bone were used because the yield strains are narrowly 

distributed [26], [95], [96]. These four strain parameters were regressed against body mass.  

 

2.1.8  Allometric scaling 

To determine how the trabecular bone architectural indices of the specimen of this study 

scale with body mass, log-log plots for these properties were created and compared to mammalian 

and avian species [11], [13]. Allometric scaling relationships were created for the trabecular bone 

architectural indices versus body mass by linearization of the equation 𝑦𝑦 = 𝑎𝑎 ∙ 𝑥𝑥𝑏𝑏 [97] through a 

base-10 logarithmic transformation such that: 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑦𝑦) =  𝑙𝑙𝑙𝑙𝑙𝑙10(𝑎𝑎) + 𝑏𝑏 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑥𝑥)    (2 - 2) 

In Equation 2 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑦𝑦) and 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑥𝑥) are the logarithmically transformed trabecular bone 

architectural indices and body mass, respectively and 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑎𝑎) and b are the y-intercept and 

slope, respectively, from the linear regressions performed on base-10 logarithmically 

transformed values for the trabecular bone architectural indices and body mass [98]. 
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2.1.9  Statistical analyses 

Linear regressions between trabecular bone architectural indices and body mass were made 

to determine allometric scaling relationships for mammalian, avian, and dinosaurian species. 

Pairwise comparisons were made between regression slopes of the mammalian, avian, and 

dinosaurian species. In the pairwise comparisons, species was used as a categorical predictor with 

dinosaurian species used as the reference level. Stepwise regressions were used to determine if the 

trabecular bone architectural indices predict the apparent and specific apparent elastic moduli. The 

candidate independent variables were Tb.Th, Tb.Sp, and Conn.D, and the dependent variables 

were apparent elastic modulus and specific apparent elastic modulus. Trabecular number and bone 

volume fraction were excluded from stepwise regression models to avoid collinearity since both 

of these parameters are dependent on trabecular thickness and trabecular spacing [87]. For the 

stepwise regressions the mammalian and dinosaurian apparent and specific apparent elastic moduli 

data from the finite element models were analyzed separately. Similarly, the apparent elastic 

modulus, specific apparent elastic modulus, and principal strains for the dinosaurian and 

mammalian species were analyzed separately for linear regressions versus body mass. Pairwise 

comparisons were made between the regression slopes for data from the finite element models. 

Linear regressions, pairwise comparisons, and stepwise regressions were computed using Minitab. 

Due to the imbalance between the numbers of dinosaurian samples the average values for 

Edmontosaurus regalis and Edmontosaurus sp. were used in all regressions. Due to the low 

number of dinosaur samples we let α = 0.1 to reduce the chance of Type II error [99]–[101].  
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2.2  Results 

2.2.1  Fossilized bone verification  

Figure 2-4 shows optical images of the trabecular architecture of the Camarasaurus, 

Supersaurus, Apatosaurus, and Diplodocus show heavy sedimentation within the trabecular 

architecture. Specimen were imaged using the appropriate light polarization angle to best show the 

trabecular architecture and sedimentation. The diplodocus specimen shows that the trabecular 

architecture has been shattered and is indicated by the red arrow shown in Figure 2-4. This 

eliminated this specimen from the EDS and histological studies.  

 
Figure 2-4: Optical microscopy images of the trabecular architecture A) Apatosaurus, B) 

Supersaurus, C) Camarasaurus, D) Diplodocus. Scale bars are 500 microns. The blue arrows 
indicate trabeculae and orange arrows indicate sedimentation in the marrow space. 

 

Figure 2-5 shows the elemental maps from EDS imaging of Apatosaurus, Supersaurus, 

and Camarasaurus specimens. The elemental mapping shows high concentrations of calcium and 

phosphorous occur concurrently indicating the structures shown are indeed fossilized bone tissue. 
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Similarly, previous EDS analyses of Edmontosaurus samples established that the structures 

demonstrating calcium and phosphorous concurrently were similar to the trabeculae imaged with 

μCT, without the mineralized material in the marrow space [102]. Apatosaurus and Supersaurus 

specimens show high calcium concentrations surrounding trabeculae, which is indicative of a 

mineral containing high amounts of calcium such as calcium bentonite or fluorite in the marrow 

space. The sedimentation within the marrow space of the Camarasaurus specimen is composed of 

mineral that contains neither calcium nor phosphorous and therefore does not show up in these 

EDS maps. 

 
Figure 2-5: SEM and EDS elemental maps of the trabecular architecture from dinosaur 

trabecular bone that was harvested for this study. Left) Apatosaurus, Middle) Camarasaurus, 
Right) Supersaurus. In the images pink = calcium and yellow = phosphorous 
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2.2.2  CT scan segmentation  

Shown in Figure 2-6, Figure 2-7, and Figure 2-8 are the segmented CT scans for 

Camarasaurus, Supersaurus, and Apatosaurus, respectively. From these figures the marrow space 

sedimentation was unable be separated from the CT scans as indicated by the yellow arrows. 

Furthermore, evidence of artifacts from the CT scanning process are observed in all images. Since 

the trabecular structure could not be segmented all these specimens were not used to generate finite 

element models. 

 
Figure 2-6: Segmented Camarasaurus CT scan 
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Figure 2-7: Segmented Supersaurus CT scan 
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Figure 2-8: Segmented Apatosaurus CT scan 

 

2.2.3  Trabecular indices and allometric scaling 

The average and standard deviation for the mammalian, avian, and dinosaurian 

architectural indices are shown in Table 2-2.  Allometric scaling relationships are shown in Figure 

2-9 - Figure 2-13 and Table 2-3. The regressions indicate that for mammals, bone volume fraction, 

trabecular thickness, and trabecular spacing show positive correlation with body mass, and 

trabecular number and connectivity density show negative correlation with body mass. For the 

avian data, the regressions indicate that bone volume fraction, trabecular thickness, and trabecular 
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spacing show positive correlation with body mass, and trabecular number and connectivity density 

show negative correlations with body mass. For the dinosaurian species, positive correlation with 

body mass is observed for trabecular number and connectivity density and negative correlation 

with body mass for bone volume fraction, trabecular thickness, and trabecular spacing. The data 

for the trabecular bone architectural indices covers seven orders of magnitude of body mass.  

 

Table 2-2: Trabecular bone architectural indices (mean ± standard deviation_ 

  Mammalian Avian Dinosaurian 

BV/TV (%) 29.31 ± 8.75 12.97 ± 5.45 37.21 ± 6.47 

Tb.Th (μm) 145.84 ± 80.43 180.95 ± 111.98 335.98 ± 122.49 

Tb.Sp (μm) 428.48 ± 165.91 2030.37 ± 1310.46 452.11 ± 221.32 

Tb.N (mm-1) 2.15 ± 1.24 0.62 ± 0.39 1.55 ± 0.78 

Conn.D (mm-3) 54.17 ± 126.71 4.75 ± 5.26 19.01 ± 28.16 

 

 

 
Figure 2-9: Logarithmically scaled plots of the bone volume fraction (BV/TV) versus body 
mass. Pairwise comparisons indicate the dinosaur regression slope is not different from the 

mammalian (p = 0.352) and avian (p = 0.695) slopes. The solid circle indicates the mammoth. 
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Figure 2-10: Logarithmically scaled plots of the trabecular thickness (Tb.Th) versus body 

mass. Pairwise comparisons indicate the dinosaur regression slope is different from the 
mammalian (p < 0.001) and avian (p < 0.001) slopes. The solid circle indicates the mammoth. 

 

 

 
Figure 2-11: Logarithmically scaled plots of the trabecular spacing (Tb.Sp) versus body mass. 
Pairwise comparisons indicate the dinosaur regression slope is different from the mammalian 

(p < 0.001) and avian (p = 0.007) slopes. The solid circle indicates the mammoth. 
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Figure 2-12: Logarithmically scaled plots of the trabecular number (Tb.N) versus body mass. 
Pairwise comparisons indicate the dinosaur regression slope is different from the mammalian 

(p < 0.001) and avian (p = 0.004) slopes. The solid circle indicates the mammoth. 
 
 

 

 
Figure 2-13: Logarithmically scaled plots of connectivity density (Conn.D) versus body mass. 
Pairwise comparisons indicate the dinosaur regression slope is different from the mammalian 

(p < 0.001) and avian (p < 0.001) slopes. The solid circle indicates the mammoth. 
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Table 2-3: Linear regression results: Slope (b), with 95% confidence intervals (CI), intercept 
(𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏𝟏𝟏(𝒂𝒂)), coefficient of determination (R2), and p-values for the regression slopes. 
Class   b -CI +CI log10(a) R2 p 

Mammalian BV/TV (%) 0.040 0.02 0.06 1.425 0.161 <0.001 
  Tb.Th (µm) 0.156 0.14 0.18 2.020 0.726 <0.001 
  Tb.Sp (µm) 0.106 0.09 0.12 2.545 0.583 <0.001 

  Tb.N (mm-1) -0.118 -0.13 -0.10 0.334 0.698 <0.001 

  Conn.D (mm-3) -0.376 -0.42 -0.33 1.449 0.763 <0.001 

Avian BV/TV (%) 0.146 0.02 0.28 1.021 0.249 0.030 
  Tb.Th (µm) 0.238 0.17 0.31 2.125 0.761 <0.001 
  Tb.Sp (µm) 0.069 -0.11 0.24 3.209 0.039 0.416 

  Tb.N (mm-1) -0.081 -0.24 0.08 -0.249 0.061 0.306 

  Conn.D (mm-3) -0.524 -0.79 -0.26 0.556 0.513 <0.001 
Dinosaurian BV/TV (%) 0.068 -0.02 0.15 1.410 0.552 0.091 
  Tb.Th (µm) -0.115 -0.40 0.17 2.753 0.235 0.330 

 Tb.Sp (µm) -0.185 -0.37 0.00 3.036 0.649 0.053 

 Tb.N (mm-1) 0.170 -0.04 0.38 -0.241 0.549 0.092 

  Conn.D (mm-3) 0.631 -0.10 1.36 -0.619 0.591 0.074 
 

2.2.4  Finite element modeling 

2.2.4.1 Mesh convergence 
Shown in Figure 2-14 and Table 2-4 are the results of the mesh convergence study. 

Convergence was achieved at a mesh density of 435,725 elements per cubic millimeter, which had 

a 3% difference from the finest mesh density of 1,019,808 elements per cubic millimeter.  

 

Table 2-4: Mesh convergence study 
Study 

# 

Elements 

per unit 

volume 

Displacement 

(µm) 

Displacement 

(% difference) 

Peak Strain 

Energy 

(mJ) 

Peak Energy 

(% difference) 

Computation 

time 

 (hours)  

1 50,797 62.34 10.20% 16.5520 10.40% 0.19 

2 91,278 65.14 6.17% 16.9810 8.08% 0.35 

3 227,742 66.18 4.67% 17.7088 4.14% 0.89 

4 435,724 67.43 2.87% 17.9692 2.73% 1.79 

5 1,019,808 69.42 0.00% 18.4730 0.00% 4.60 
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Figure 2-14: Mesh convergence study 

 

2.2.4.2 Apparent and Specific Apparent Modulus 
The apparent modulus and specific apparent modulus show positive correlation with body 

mass (Figure 2-16 & Figure 2-16). For the dinosaurian species, positive correlation with body mass 

is observed for apparent (p = 0.007, R2 = 0.865) and specific apparent modulus (p = 0.008, R2 = 

0.857). For the mammalian species, no correlation with body mass is observed for apparent (p < 

0.268) and specific apparent modulus (p = 0.164). The apparent and specific apparent moduli were 

dependent on the trabecular bone architectural indices. For the dinosaurian species, apparent 

elastic modulus was found to follow the equation E App = 0.0722 x Conn.D (p = 0.062, R2 = 0.5337) 

and specific apparent modulus was found to follow the equation E App Spec = 0.0974 x Conn.D (p = 

0.056, R2 = 0.5504). For the mammalian species, apparent elastic modulus was found to follow 

the equation E App = 10.67 x Tb.Th (p <0.001, R2 = 0.9644) and specific apparent modulus was 

found to follow the equation E App Spec = 5.32 x Tb.Th + 4.65 x Tb.Sp (for the constants, p = 0.056 

and 0.017, respectively, for the regression, p = 0.001 and R2 = 0.9741) 
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Figure 2-15: Apparent elastic modulus versus body mass. Trabecular bone apparent modulus 

is positively correlated with body mass in dinosaurs, while for mammalian species no 
correlation is observed. The solid circle indicates the mammoth. 

 

 
 

Figure 2-16: Specific apparent elastic modulus versus body mass. The solid circle indicates 
the mammoth. 
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2.2.4.3 Principal strains 
Average tensile and average compressive principal strains are shown in Figure 2-17, where 

all strain magnitudes were all less than or equal 2,856 microstrain. For the dinosaurian models no 

correlation with body mass was observed for the average tensile (p = 0.403) or average 

compressive (p = 0.156) principal strains. Similarly, there was no correlation between body mass 

and the largest tensile  (5,394 ± 1,750 microstrain, p = 0.668) or largest compressive  (10,587 ± 

3,099 microstrain, p = 0.122) principal strains. For the mammalian models, no correlation with 

body mass was found for the average tensile (p = 0.398) or average compressive principal strain 

(p = 0.167). Similarly, for the mammalian models, no correlation was observed between body mass 

and the largest tensile (4,992 ± 1,080 microstrain, p = 0.649) and compressive (10,018 ± 2,062 

microstrain, p = 0.316) principal strains. 

 

 
 

Figure 2-17: Average compressive and tensile principal strains versus body mass. Strains are 
shown in microstrain (µε). There is no correlation between body mass and the 

compressive/tensile principal strains in both mammalian and dinosaurian trabecular bone.   
 

 

  



34 

2.3   Discussion 

Allometry and mechanical performance of trabecular bone architecture of extant and extinct 

species (i.e., dinosaurs and mammoth) were investigated to provide framework for understanding 

how trabecular bone helped support extremely massive animals. Previous studies of extant 

mammalian and avian species found no correlation between trabecular bone volume fraction and 

body mass in animals ranging in body mass from mouse to elephant [11], [13]. This result is 

surprising since animals with greater mass require stiffer bone structures to support larger 

gravitational loads and apparent elastic modulus is positively correlated with bone volume fraction 

[17]. It is possible that the trabecular architecture of extremely massive animals was adapted to 

accommodate large gravitational loads while minimizing bone mass by maintaining a constant 

bone volume fraction. The trabecular architecture of dinosaurs has been related to locomotor 

behavior [2], [66], [67], but relationships between trabecular bone architectural indices and 

mechanical performance indices were not established. Our results show that dinosaurian trabecular 

bone volume fraction is positively correlated with body mass unlike what has been observed in 

extant mammalian and avian species previously. However, when data from mammalian and avian 

species is limited to trabecular bone from the femoral and tibial condyles for direct comparison to 

samples in this study, they too demonstrate positive correlation between bone volume fraction and 

animal mass. Additionally, trabecular spacing is negatively correlated with body mass while 

connectivity density is positively correlated with body mass in dinosaurs. These trends exhibit 

opposite behavior of the trends observed for extant mammalian and avian species. Despite these 

differences, it was found that both mammalian and dinosaurian trabecular bone architectures limit 

average trabecular tissue strains to under 3,000 microstrain for estimated high levels of 

physiological loading. Interestingly, mammalian trabecular bone was found to limit strains by 
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increasing trabecular thickness while dinosaurian trabecular bone limits strains by increasing 

connectivity density.  

One limitation of this study is that human trabecular bone mechanical properties were used 

in the finite element models because it was impossible to know the mechanical properties of the 

fossilized bone samples. Despite this assumption, our findings are insightful because using the 

same mechanical properties across all finite element models allows for direct comparison between 

the trabecular architectures of these animals. However, it should be recognized the fossilized 

samples could have had different material properties in life due to factors such as differences in 

mineral content. Another limitation with this study is the relatively low number of samples. This 

was due to the limited amount of dinosaur and mammoth bone samples available for assessing 

trabecular bone architecture. With that said, our results are insightful as this is the first study to 

assess relationships between trabecular bone architectural indices and mechanical behavior in 

dinosaurian species. A third limitation is that the exact mass of each species was unknown. While 

current estimates of species masses likely provide reasonably accurate values for the context of 

this study, a lack of individual sample masses limits the power of the regression analyses. Despite 

these limitations, we found the trabecular bone allometry in dinosaurian species exhibits allometric 

scaling with opposite behavior, except bone volume fraction, compared to extant mammalian and 

avian species, apparent trabecular bone stiffness is positively correlated with body mass in 

dinosaurian species, and dinosaurian and mammalian trabecular bone architecture limits average 

strains to below 3,000 microstrain. These findings provide insight into how trabecular bone in the 

distal femur and proximal tibia adapted to support extremely large body masses.  
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The allometric scaling relationships show how the trabecular bone architectural indices scale 

with body mass in dinosaurian, mammalian, and avian species. Unlike previous studies [13], [86], 

the present research focused only on the trabecular bone from the distal femur and proximal tibia 

which uncovered some interesting differences.  First, the trabecular bone volume fraction in these 

locations shows positive correlation with body mass for dinosaurian, mammalian, and avian 

species (Figure 2-10). These results contrast previous findings that showed no correlation between 

bone volume fraction and body mass when looking at numerous skeletal locations together [11], 

[13]. Skeletal locations in previous studies included the calcaneus, femoral condyles, head, 

trochanter, and neck, proximal and distal tibia, vertebrae, radius, ulna, iliac crest, and humerus. It 

is possible that our results for the distal femur and proximal tibia differ from previous results due 

to differences in mechanical loading at each location. Trabecular bone in the distal femur and 

proximal tibia have been shown to have similar architectural properties [84] and therefore may 

have adapted differently than trabecular architectures in other bones to accommodate their specific 

mechanical loading conditions. Second, no correlation between trabecular thickness and body 

mass was observed for dinosaurs while a positive correlation was observed for mammalian and 

avian species Figure 2-10. Previously, it has been shown that larger body mass animals have 

greater trabecular thickness to prevent individual trabeculae from being overly strained [11]. The 

fact that dinosaur trabeculae do not follow this trend is an interesting result and suggests other 

trabecular bone indices may adapt to provide increased mechanical competence instead. In support 

of this theory, we have shown that trabecular spacing and connectivity density were negatively 

and positively correlated with body mass, respectively, in the dinosaurian species (Figure 2-11 & 

Figure 2-13). Both trends are opposite of those observed for the avian and mammalian species. 

Thus, it appears that, as dinosaurs grow larger, decreased trabecular spacing and increased 
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connectivity density provide sufficient mechanical stability while maintaining a relatively constant 

trabecular thickness. These trends are further elucidated with results from the finite element 

models. 

Computational models demonstrated positive correlations between body mass and trabecular 

bone apparent and specific apparent moduli for the dinosaurian species as expected (Figure 2-15 

& Figure 2-16). These findings confirm the hypothesis that stiffer trabecular architectures are 

developed as animal size increases to support greater mechanical loads. Interestingly, this contrasts 

previous findings which showed no correlation between animal size and apparent modulus of 

trabecular bone in mammalian species [11]. For dinosaurian species, the apparent and specific 

apparent moduli are both dependent only on connectivity density. For the mammalian species, 

trabecular bone apparent modulus is dependent only on trabecular thickness, but specific apparent 

modulus is dependent on trabecular thickness and spacing together. The dependence of trabecular 

bone stiffness on trabecular thickness and connectivity density is not novel [17], [19]–[21]. 

However, it is interesting that increases in bone stiffness were achieved through increased 

connectivity density in dinosaurs but increased trabecular thickness in mammals. The reason for 

this is currently unclear, but one explanation could be that high connectivity is a more efficient 

stiffening mechanism than increased trabecular thickness, especially for the exceptional loads 

produced by the mass of the largest animals. This idea is analogous to the load sharing utilized by 

trusses to achieve weight reduction in structural design and may have been used by dinosaurs to 

constrain whole bone weight and trabecular bone tissue strains.  

Despite the allometric scaling of the apparent and specific apparent moduli, we found that 

the average principal strain magnitudes were not correlated with body mass. Furthermore, average 

principal strain magnitudes were limited to 3,000 microstrain for all samples in this study. Similar 
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limits have been previously observed for mammalian bone from a variety of species during routine 

activities such as running, jumping, walking, and chewing [103]–[108]. Strain limits are achieved 

as bone remodels in response to mechanical loading [9], [109], [110]. The remodeling process 

limits high strains to decrease the risk of fracture [107], [111] and low strains to avoid excess bony 

material in areas where it is mechanically unnecessary [112]. Previous studies on the trabecular 

architecture in mammalian species suggested that trabecular thickness increased with increasing 

body mass in order to modulate the strains experienced in individual trabeculae [11]. In the case 

of dinosaurian species, it appears that an equivalent result is achieved by increasing connectivity 

density instead of trabecular thickness. This result is like what was observed for the apparent and 

specific apparent moduli of each species. It is unclear why dinosaur bone adapted to have higher 

connectivity density instead of increased trabecular thickness; however, as mentioned previously, 

it’s possible that this mechanism of strain modulation more efficiently balances the structures 

mechanical competence and weight. 

The present study provides evidence of how trabecular architecture supported large body 

masses. However, it must be considered that dinosaurian trabecular tissue may differ from extant 

mammalian trabecular tissue on a compositional level which would have implications for the 

mechanical behavior of this tissue [113]–[124]. However, due to the fossilization of dinosaur 

bones, this cannot be accurately assessed. Either way, using the same material properties in direct 

comparisons of bone architectures showed that dinosaur trabecular bone apparent modulus and 

bone volume fraction are positively correlated with body mass. Additionally, the trabecular bone 

apparent modulus shows strong dependence on trabecular bone connectivity density in dinosaurian 

species.  Taken together, it is concluded that the trabecular architecture in dinosaurs evolved to 

maintain bone stiffness and modulate strain levels to prevent failure across a wide range of body 
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masses. Our data also demonstrate that changes in connectivity density were the primary 

mechanism for dinosaur bone adaptation. However, at this point, it is unclear why dinosaurs altered 

connectivity density to achieve this result instead of adjusting trabecular thickness like mammals. 

We suggest that increasing connectivity is a more efficient stiffening mechanism than increasing 

strut thickness for animals of this extraordinary size. This would have allowed for sufficient 

mechanical competence to be achieved with less bone material (i.e. minimizing the metabolic cost 

of maintaining and transporting bony material). These findings have potential implications for 

novel bioinspired designs of stiff and lightweight structures that could be used in aerospace, 

construction, or vehicular applications. 

 

2.4  Conclusions  

- Distal femur and proximal tibia trabecular bone volume fraction is positively correlated with 

body mass in mammalian, avian, and dinosaurian species.  

- Dinosaurian trabecular spacing, trabecular number, and connectivity density show allometric 

scaling behavior opposite of extant avian and mammalian species. 

- Dinosaurian trabecular bone increases stiffness by increasing connectivity density while 

mammalian trabecular bone increases trabecular thickness 

- Dinosaurian and mammalian trabecular bone was found to limit trabecular tissues strains 

below 3,000 microstrain for estimated high levels of physiological loading.  
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Chapter 3: Introduction: Bighorn Sheep velar architecture 

 
 
 

3.1  Bighorn Sheep and bioinspired structures 

High-energy impact causes substantial damage to structures (e.g., vehicles) and humans 

(head and joints). Rocky Mountain bighorn sheep (Ovis canadensis canadensis) routinely 

experience repetitive high energy cranial impacts for up to several hours per day during mating 

season, which lasts several weeks [125]. During impact, the horn experiences forces of up to 3,400 

N [126], and bending stresses ranging from 1 to 6 MPa in tension and 1 to 7 MPa in compression 

[127]. After impact, the ram may seem momentarily stunned but otherwise show no long term ill 

effects from ramming [125]. The keratinous horn material has been reported to have high work of 

fracture to prevent catastrophic failure during loading [128]. To supplement the outer keratin layer, 

the bony horncore has been shown to play a large role in energy absorption during simulated quasi-

static [129] and dynamic [130] loading conditions and reduce brain cavity accelerations during 

impact [130]. The unique architecture of the horncore is made up of a foam-like bone structure 

composed of sail-like features (i.e. velar bone), which differs from the more rod-like structure of 

trabecular bone. Trabecular architecture is typically characterized by trabecular thickness, spacing, 

and number, connectivity density, and bone volume fraction. Analogously, velar bone can be 

characterized by velar thickness, spacing, and number, connectivity density, and bone volume 

fraction. Interestingly, velar bone has a volume fraction comparable to typical trabecular bone 

(approximately 20%), but individual velae have a thickness of 2.87 ± 0.78 mm, which is 

approximately 26 times higher than typical trabecular bone struts [102]. There are also about 20 

times fewer velae per unit length compared to trabeculae, and the separation between velae is about 

20 times greater than the separation between trabeculae. Due to the extreme impact forces 

generated during ramming, these differences suggest that velar bone architecture may be 
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evolutionarily adapted to absorb energy during dynamic loading to prevent brain damage. 

Conversely, human head impacts often result in traumatic brain injury (concussions) [131] and 

chronic traumatic encephalopathy [132], [133]. To help design head trauma prevention materials 

and mechanisms, researchers have begun to study bighorn sheep keratin horn and bony horncore 

to better understand the energy absorption and storage capabilities of these materials. The impact 

properties of horn keratin [134] and other horn-like structures [135] have been studied, but these 

results have yet to be applied to developing a bio-mimicked material or structure. Bio-mimics for 

armor and structural applications have been successfully developed for natural impact resistant 

and energy-absorbing materials such as nacre [135]–[141], mantis shrimp dactyl club [142], [143], 

woodpecker skull [144], conch shell [145], and beetle shell [146], but not bighorn sheep horns. 

Thus, mimicking the velar bone architecture may lead to novel structures optimized for weight-

efficient energy absorption for impact applications. 

 

3.2  Motivation for research 

Helmets are used to prevent injury during almost all sport activities (recreational, 

occupational), during travel (motorcycles, bicycles), and have additional occupational 

(construction, military) uses as well. There are approximately 800 million bicycles worldwide and 

half as many cars. In many countries bicycle related injuries are not recognized as a road safety 

problem and thus, attract little to no research. In Beijing China one-third of all traffic related deaths 

occur among cyclists [147]. In Sweden, risk of cyclist injury is 6 times higher than the risk of 

injury as a motorist where cyclists make up the majority of injured road users since 2008 [148] 

and in the US cyclist related accidents result in 81,000 emergency room where 77% patients 

experienced traumatic brain injury [149]. In a study high school football practices and games, it 

was found that impact accelerations, ranging from 70 to 98g an experienced by defensive line 



42 

players [150]. At the collegiate level, impact accelerations are reported to be 103g [151], while 

concussions have been reported to occur as low as 56g [152] and as high as 146 g [153]. Military 

helmets see the harshest physical environments and widest range of protection needs. These 

helmets must provide soldiers with protection from blunt impact as well as stop high velocity 

projectiles (shrapnel and bullets) [154]. These impact velocities can be as high as 477 m/s for 9mm 

rounds and 413 for steel ball bearings simulating improved explosive devices [155]. Research to 

improve impact attenuation of bicycle helmets using aluminum honeycomb has been investigated 

but suffers from plastic deformation [149] and therefore needs material improvement. Reports of 

high impact materials in military helmets has been reported but no investigation of the geometry 

of the structure used [155]. Improvements in material and geometry have been reported in football 

helmets, however, no data has been provided publicly [156]. 

Athletic footwear (e.g., running/tennis/basketball shoes and hiking/climbing/military 

boots) have a variety of purposes and mechanical needs for effective and optimal performance, but 

all have impact in common. Running generates vertical ground reaction forces of 2.5 - 3x 

bodyweight [157], [158], and joint reaction forces of 3.6 - 4.2x bodyweight in the knee [159], 

[160], and as high as 10x bodyweight in the hip [161]. The ground reaction force may be up to 

4.6x bodyweight for moderate impact jumping [162] and up to 11.6x bodyweight during higher 

impact jumping [163]. These impact forces are exacerbated in military personnel whose effective 

body mass is higher because of additional gear (~22 kg) [164]. These high forces from physical 

activity have been associated with tibial stress fractures [165], damage to soft tissues [166], and 

running-related injuries costing between $28.8 and $37.2 billion annually to individuals and 

insurance companies in the United States [167]. It has been hypothesized that running-related 
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injuries can be reduced if shoes are better designed to 1) limit excessive forces, 2) support the foot 

during standing, and 3) guide the foot to the ground [168].  

 Running shoe midsoles have traditionally been made from ethylene-vinyl acetate (EVA) 

because of its durability and low density [169] and resistance to degradation [170]. More recently, 

polyurethane foam has been used in running shoe midsoles because of its long term mechanical 

properties (low creep) [171], [172]. EVA foams are typically made through traditional foaming 

techniques where a physical or chemical blowing agent creates gas pockets that produce a random 

closed-cell architecture [173]. Typical cell sizes in these stochastic foams are on the order of 7-11 

microns [174]. It has been shown that the average cell size and uniformity of the cells (distribution 

and size) are two important parameters to control for mechanical property enhancement [174]. For 

impact applications, the primary mechanical properties of interest are the maximum impact force 

and the energy absorption. During typical impact tests performed per ASTM F1976 [175] on EVA 

foams, the maximum impact force is 985-992 N and the energy absorbed is 2-7 J [176]. That study 

used whole shoes (size 8.5 US) but only the heel was subject to impact. Other studies have shown 

that midsoles that are either too stiff or too compliant can increase impact forces during running. 

Stiffer midsole materials increase impact force because they do not provide enough deformation 

(i.e. the foot is slowed down too quickly)  and more compliant materials increase impact force 

because the foot is not slowed down sufficiently during impact [177]. Measured under a variety of 

testing methods and shoe types, midsole stiffness was found to be between 30-439 N/mm  [171], 

[176]–[178]. These studies suggest that lower stiffness midsoles provide better cushioning (i.e. 

more energy absorbed) but experience high impact forces because the foot is not slowed down fast 

enough. These findings imply that there is a balance between midsole compliance and impact force 

minimization. 
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In the United States fatal crashes had been declining since 2005, but has begun to climb 

since 2014 [179]. To a degree, these deaths can be mitigated through better passive safety systems 

in automobiles. One such passive system is the bumper subsystem where, a foam and beam are 

used to absorb a portion of the kinetic energy during impact [180]. Since the bumper beam absorbs 

most of the impact energy this component is an ideal candidate for improvement in vehicle passive 

safety systems. FEA results have shown methods to optimize the external geometry of metallic 

hollow shape structures used a car bumper beams  [181]–[183], however these studies are 

theoretical with no physical experimentation performed. Other research has shown conceptual 

methods for improving polymeric bumper beam impact performance [184] and FEM and 

experimental results show good agreement for functionally graded steel foams [185]. The 

previously cited student utilized a standard box shape for the external bumper beam geometry 

filled with the steel foam. Though these results show high impact performance, further research 

should be performed into designing the cellular structure of these metallic foams for enhanced 

impact performance.  

 

3.3  Hypotheses 

Because Rocky Mountain bighorn sheep routinely engage in high-impact intraspecific 

combat, it is hypothesized that velar architecture can be biomimicked for use as novel cushioning 

system. The specific hypothesis of this study are as follows: 

1. 3D printed velar mimic structures will reduce impact accelerations compared to 

commercial materials and will more effectively store energy during impact 

2. Finite element models of the velar bone mimics can be utilized to identify a new unit cell 

to generate new velar bone mimics with improved performance as compared to the initial 

velar bone mimic design. 
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Chapter 4: Velar bone mimic development 2 

 
 
 

4.1  Methods 

4.1.1  Bighorn sheep velar bone architecture 

Velar architectures were obtained from five male bighorn sheep skulls, which were 

provided for research purposes by the state of Colorado Department of Natural Resources under 

Colorado Parks and Wildlife scientific collection license number 14SALV2052A2. The skulls 

were obtained from sheep that were killed by motor vehicle accidents and frozen shortly after 

death. Thus, Colorado State University’s Research Integrity and Compliance Review Office 

determined the research was exempt from Institutional Animal Care and Use Committee oversight. 

The skulls were scanned using a Gemini Time-of-Flight Big Bore PET/16 slice CT scanner 

(Philips Healthcare, Andover, MA, USA). Scan voltage was 140 kV, current was 321 mA, and 

time was exposure 350 mAs . The architectures for the velar bone mimics (VBMs) were created 

from the left horn from five different sheep with horn curl lengths ranging from 0.55 to 0.95 meters. 

Sections of the velar architecture were cropped from the regions of high compressive stress in the 

horncore [130]. These regions were chosen for the mimics because running shoes experience 

compressive loading during standing and gait. The region of interest (ROI) for each horncore was 

 

 

 

 

2 This dissertation chapter was adapted with permission from Aguirre, T. G.; Fuller, L.; Ingrole, A; Seek, T. W.; 
Wheatley, B. W.; Steineman, B. D.; Haut-Donahue, T. L.; Donahue, S.W. Bioinspired material architectures from 
bighorn sheep horncore velar bone for impact loading applications, Scientific Reports, In Review. 
Funding for velar bone mimic development was provided by the Colorado Office of Economic Development and 
International Trade. 
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a 45mm cube, which maximized the amount of velar bone that could consistently be utilized from 

the compressive region of the horncore from each sheep. Bighorn sheep velar architecture and the 

velar bone ROI are shown in Figure 4-1.  

 

 
Figure 4-1: A) Horn and horn core spatial arrangement, B) horn core longitudinal-section 
showing the velar bone inside the thin cortical shell, C) velar structure in the compressive 

region of the horncore 
 

4.1.2  Velar architecture quantification 

Velar bone architectural index measurements are depicted in Figure 4-2 and were measured using 

BoneJ [86]. The velar bone volume fraction (BV/TV) is the volume of bone (BV) normalized by 

the total volume (TV) of the velar bone ROI. The velar thickness (V.Th) is the average thickness 

of all velae within the ROI. The velar spacing (V.Sp) is the average linear distance between two 

velae. The velar number (V.N) is the number of velae per unit line length. The connectivity density 

is the total number of connections between two or more velae normalized by the volume of the 

ROI.  
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Figure 4-2: Velar bone architectural indices: velar thickness, V.Th (green arrows), velar 

separation, V.Sp (purple arrow), velar number, V.N (blue lines and crosses), TV (red square), 
and Conn.D (orange circles). 

 

4.1.3  Bighorn Sheep velar bone mimic generation 

First, velar architecture was isolated in each CT scan from the horncore compressive region 

(Figure 4-3), which was identified from a finite element model study sheep ramming  [130]. 

 

  

Figure 4-3: Compressive region of horncore during impact. Image adapted from [130] 
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After velar bone architecture was quantified, each ROI was cropped out of the CT scans to 

generate 3D models of the velar bone mimics (VBMs). First, Seg3D (version 2.2.1, University of 

Utah, Salt Lake City, UT, USA) was used to separate the bony horncore and horn keratin using 

manual binary thresholding operations (Figure 4-4A). Due to contrast differences in the images 

that compose the DICOM files, small perforations in the velar structure were inevitable and needed 

minor repair Figure 4-4B). These perforations were repaired by manually adding pixel values to 

the threshold layer (Figure 4-4D & E). VBMs were only repaired in CT scan regions where it was 

evident that bony material was displayed within the CT images yet there were no pixel values in 

the threshold layer (Figure 4-4D). Finally, the repaired velar structure (Figure 4-4C) was saved in 

the ASCII STL file format for further mimic preparation.  

 

 
Figure 4-4: A) Binarized ram skull, B) velar cube cropped from the compressive region of 

horncore indicated in A, C) repaired velar cube, D) velae perforations in threshold mask layer, 
E) repaired perforations in the threshold mask layer. 
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MeshMixer (version 3, San Rafael, CA, USA) was used to isometrically scale the 

45x45x45 mm cube (Figure 4-5A) to produce 20x20x20mm unit cell (Figure 4-5B), which were 

then mirrored across two mirror two planes to produce a 40x40x20mm geometry (Figure 4-5C). 

Scaling and mirroring provided mimic structures that preserved the natural velar bone architecture 

and were approximately the same thickness as a running shoe midsole. Additionally, this process 

allowed us to achieve continuum dimensions using only velar bone from the compressive region 

of the horncore. For trabecular bone, continuum dimensions have been estimated to be at least five 

trabecular spacings [88], therefore we assumed five velar spacings were adequate for the velar 

bone mimics. These mimicked geometries were exported in the ASCII STL file format for further 

processing. 

 

 
Figure 4-5: A) 45x45x45 mm unit cell cube cropped from compressive region of horncore and 

saved in ASCII STL file format, B) 20x20x20 mm scaled cube, C) mirrored scaled cube to 
produce 40x40x20 mm mimic structure. The dashed red lines in C) indicate lines of symmetry. 
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NetFabb (Autodesk, San Rafael, CA, USA) was used to further repair the mimic STL files 

using automated operations to fix errors during the surface triangulation process (i.e. remove 

duplicate and penetrating faces). In this step, a 2mm thick plate was added to the top and bottom 

to create a sandwich structure (Figure 4-6) to better approximate loading conditions of the velar 

bone mimic during use as a midsole. After repair, the final files were exported in the ASCII STL 

file format to be used in mesh generation for the FEA study and additive manufacturing. 

 

 

 
Figure 4-6: Velar bone mimic sandwich structure after STL file repair 

 

4.1.4  Velar bone mimic manufacture and mechanical test specimen 

The novel velar bone mimics developed in section 2.3 were 3D printed on a Carbon 

Speedcell™ using Elastomer Polyurethane (EPU) #40. Mimics were manufactured by Ramaco 

Carbon (Sheridan, WY, USA) and printed with 75-micron resolution in the x-y plane and 100-

micron layer thickness where the build direction was coincident with anatomical loading during 

impact (z-direction Figure 4-6). For comparison to the velar architecture, three running shoe EVA 
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foams were tested. Running shoe midsole high-density (HD), medium-density (MD), and low-

density (LD) EVA foam samples were mechanically tested to compare to the EPU VBMs.  Seven 

coupons of each EVA foam and each VBM were used for both static and dynamic tests. All test 

coupons were 40x40x20 mm. 

 

4.1.5  Quasi-static compression testing 

Quasi-static compression tests were performed using a hydraulic load-frame (Instron 

model 8501, Norwood, MA, USA) in displacement control per ASTM D1621 [186]. Crosshead 

displacement rate was 5 mm per second, samples were compressed to 25% strain (5mm), and then 

released at 5 mm per second. This displacement was chosen as the maximum allowable 

displacement to ensure runner comfort [187]. Applied load and crosshead displacement were 

measured and used to compute energy absorption, specific energy absorption, and stiffness. 

 

4.1.6  Impact testing 

Dynamic impact tests were performed on custom drop tester (Figure 4-7)  inspired by the 

design presented in ASTM F1976 [175]. The mass of the missile was 8.5 kg and was dropped from 

a height of 60 mm to provide an energy of 5 Joules at impact.  Missile position was measured using 

a linear displacement transducer (176-0521-L3N, Firstmark Controls, Creedmoor, NC) and impact 

force was measured using an impact force transducer (200B05, PCB, Depew, NY). Impact force 

and displacement were used to compute the maximum impact force, energy absorption, and 

specific energy absorption. 
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Figure 4-7: Custom designed drop tester  

 

 A substantial amount of engineering went into the design, selection of transducers, data 

acquisition, and assembly of the drop tester. There were two primary engineering problems after 

the drop tester was fully assembled. The first problem was the original release mechanism was an 

electromagnet. The solution initially required design of the missile bracket to concentrate the 

magnetic field and prevent eddy currents. Once this issue was fixed, the transducers attached, and 

the data acquisition hardware/software connected it became apparent that the electromagnet, when 

shut off, was causing interference in the collected data. This issue was then fixed by utilizing a 

mechanical release mechanism. The second problem was the impact force transducer. Initially the 

transducer would only registers impact forces of 20 N, which was too low for an impactor whose 

weight is 83. This issue was solved by designing a plate to evenly distribute the force over the 

measurement surface of the transducer.  
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4.1.7  Equations 

Energy absorption (𝐸𝐸𝐴𝐴) during quasi-static compression and impact was computed by 

numerically integrating the force-displacement loading curve (Equation 4-1), where 𝐹𝐹 is the 

applied force and 𝛿𝛿 is the displacement. 𝐸𝐸𝐴𝐴 =  ∫ 𝐹𝐹𝛿𝛿 𝑑𝑑𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚0       (4 - 1) 

Due to differences in the volume of material present in each velar bone mimic and EVA foam, the 

specific energy absorption (𝑊𝑊𝑠𝑠) was computed by numerically integrating (Equation 4-2 [188]). 

Where 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum strain, 𝜎𝜎(𝜀𝜀) is the stress at each value of the strain, ∆𝜌𝜌 is the relative 

density of the foam (BV/TV is equivalent), 𝜌𝜌𝑠𝑠 and is the density of the material that the foam is 

comprised of. 

𝑊𝑊𝑠𝑠 =  
∫ 𝜎𝜎(𝜀𝜀)𝑑𝑑𝜀𝜀𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚0 ∆𝜌𝜌𝜌𝜌𝑠𝑠       (4 - 2) 

4.1.8  Finite element model generation for velar bone mimics 

Velar bone mimics were meshed in ICEM CFD (version 18.1, ANSYS, Canonsburg, PA, 

USA) to generate a linear triangular shell (S3) mesh and analyzed using Abaqus FEA (Dassualt 

Systems, Vélizy-Villacoublay, France, EU). Shell elements were chosen because these elements 

can accurately model the behavior of cellular solids in finite element models [188]. Shell element 

thickness varied between each velar bone mimic due to intrinsic differences in velar thickness 

between animals but did not vary within an individual finite element model. Quasi-static 

compression was simulated for each structure by placing the velar bone mimics between two rigid 

plates, applying an encastre boundary condition to the bottom plate, and allowing the top plate to 

translate in the z-direction only (Figure 4-8). From the starting configuration, the top plate was 

displaced at 5 mm per second for a total displacement of 5mm to simulate the mechanical testing 
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procedure. All finite element models used linear elastic material properties. For each velar bone 

mimic, the shell thickness was iterated until the simulated stiffness closely matched the 

experimentally measured stiffness [189]. Self-contact was used to capture the behavior of contact 

between locally buckled velae. In Abaqus, the interaction property was set to “ALL WITH SELF” 

using the general contact option. The tangential behavior was set with a friction penalty of 0.2 and 

normal behavior was set to hard contact [188]. To reduce computation time mass scaling was 

utilized; thus, the Dynamic/Explicit solver was used. To avoid small vibrations (oscillatory 

behavior) in the force-displacement curves caused by mass scaling, minimal damping was used (α 

= 1 x 10-5) [190].  Models were given the experimentally determined properties of EPU 40 (E = 

6.81 MPa and ν = 0.48). Optimal mesh density was determined via a numerical convergence study 

[30], [89]. Five unique mesh densities ranging from 13 to 222 elements per cubic millimeter were 

created for VBM3, which had the smallest average velar thickness. To determine whether the mesh 

had converged, the change in strain energy between each mesh was analyzed and compared to the 

finest mesh as a percent difference using Equation 4-3.  

      ∆ =  
𝑋𝑋𝑁𝑁− 𝑋𝑋𝑖𝑖𝑋𝑋𝑁𝑁 100%     (4-3) 

Where Δ is the percent difference and X is strain energy. 𝑋𝑋𝑁𝑁 is strain energy for the finest mesh in 

the mesh convergence study and 𝑋𝑋𝑖𝑖 is the strain energy for the other meshes used in the study. 

Convergence was achieved at a mesh density of 188 elements per cubic millimeter, which had a 

2.16% difference from the finest mesh density of 222 elements per cubic millimeter. 
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Figure 4-8: Velar bone mimic finite element model meshed with triangular shell (S3R) 

elements  
 

4.1.9  Velar bone mimic iterative design process 

After validating the finite element models with data from the quasi-static compression tests 

of the first-generation velar bone mimics, an iterative design process was used to improve the 

mechanical performance of the VBMs. Specifically, we wanted to increase energy storage, reduce 

impact force, and satisfy the stiffness requirements. We hypothesized that second generation 

VBMs made with new unit cells from the regions with the highest strain energy storage in the 

original VBMs would have improved energy absorption. We chose the quasi-static stiffness values 

of the HD and LD EVA foams as the upper and lower stiffness limits for the second generation 

VBMs. The iterative design process is depicted in Figure 4-9. First-generation VBM finite element 

models were visually interrogated to identify regions with the highest strain energy storage, as 

reported by the Abaqus strain energy color maps (Figure 4-9A). Regions with the highest energy 

absorption were visually correlated back to the original unit cell STL file and then isolated within 

the original unit cell (Figure 4-9B). The new unit cell was then used to construct the second 

generation of velar bone mimics (Figure 4-9C). Second-generation VBMs were then subjected to 

the same finite element modeling procedures as the first-generation VBMs (Figure 4-9D). Stiffness 

of second-generation VBMs were then compared to the EVA foam stiffness constraints (Figure 
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4-9E). This process was iterated until second-generation VBMs stiffness were within the range of 

the EVA foam stiffness constraints. These second-generation mimics were named as VBM-2G, 

and unit cell size ranged from 32-256 unit cells per mimic. 

 

 
Figure 4-9: A) Unit cell encompassing regions with highest energy storage, B) isolate unit 
cell, C) generate 2nd gen VBM, D) finite element model, E) compare to experimental quasi-

static compression results. 
 

4.1.10  Statistical analyses 

The velar bone architectural indices (BV/TV, V.Th, V.Sp, V.N, and Conn.D) were 

compared to trabecular bone architectural indices from the distal femur and proximal tibia of 

human [13] and sheep [11], [13], [191]–[193]. These anatomical locations were chosen because 

they experience impact loading during physical activities such as running and jumping. Analysis 

of variance (ANOVA, α = 0.05) was used to compare the porous bone architectures of each species.  

Stepwise regressions (α = 0.05) were used to determine the influence of velar architecture on 

mechanical performance of the VBMs during the compression and impact tests.  For the stepwise 

regressions, the candidate independent variables were V.Th, V.Sp, and Conn.D measured from the 

velar bone mimics. V.N and BV/TV were excluded from the regression models to avoid 

collinearity since they are both correlated with V.Th, V.Sp and Conn.D. For the quasi-static 

compression tests, the dependent variables were stiffness, energy absorbed, and specific energy 
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absorbed. For the impact tests, the dependent variables were the maximum impact force, energy 

absorbed, and specific energy absorbed. ANOVAs (α = 0.05) were used to compare from the 

VBMs and EVA samples for the impact and compression tests. The stepwise regressions and 

ANOVA were performed in Minitab (version 18, State College, PA, USA). Linear regressions 

were performed on the impact force and stiffness for EVA foams, the first-, and second-generation 

VBMs. 

 

4.2  Results 

4.2.1  Velar bone architectural quantification from large horncore section 

Shown in Table 4-1 are the results of the velar bone architectural parameter quantification 

with the results of the single factor ANOVA.  It is seen that there are no statistically significant 

differences between the compression region of left and right horns of these sheep when comparing 

the BV/TV, the velar number, velar spacing, and velar thickness. As result of this, only the left 

horn was used to generate velar bone mimics for mechanical testing and finite element models.  

 

Table 4-1: Velar bone architectural indices from large horncore section  

Sheep 

BV/TV Velar # 

(1/mm) 

Velar Spacing 

(mm) 

Velar Thickness 

(mm) 

LH RH LH RH LH RH LH RH 

1 11.77% 15.50% 0.0723 0.0782 14.1205 13.5492 2.0884 1.7921 

2 16.01% 17.52% 0.0650 0.0843 15.8386 11.7423 1.8973 1.8577 

3 12.22% 13.61% 0.0939 0.0915 10.7882 10.9695 1.3874 1.4860 

4 18.74% 16.10% 0.0929 0.0843 10.9511 12.7487 2.1321 2.1436 

5 18.34% 15.51% 0.0761 0.0564 13.5029 18.2524 2.1683 2.2828 

p - value 0.72 0.79 0.76 0.86 

 LH = left horn, RH = right horn 
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4.2.2  Velar bone architectural quantification from isolated region of interest from the 

compressive region of the horncore 

Velar architectural index measurements are presented in Table 4-2. Velar bone volume 

fraction was not significantly different from human (p = 0.992) and sheep (p = 0.851) trabecular 

bone volume fraction. However, significant differences were found between velar thickness, 

spacing, number, and connectivity and trabecular thickness, spacing, number, and connectivity for 

sheep and humans (p ≤ 0.001 for all). 

Table 4-2: Velar bone architectural index measurements from isolated region of interest 

Sheep BV/TV (%) V.Th (mm) V.Sp (mm) V.N (mm-1) Conn.D (mm-3) 

1 33.14 1.91 5.51 0.19 0.00041 

2 21.11 1.40 11.12 0.18 0.00089 

3 26.17 1.73 7.05 0.26 0.00068 

4 29.72 1.71 6.01 0.29 0.00035 

5 30.20 1.67 5.99 0.29 0.00022 

Mean ± SD 28.07 ± 4.61 1.68 ± 0.18 7.13 ± 2.3 0.24 ± 0.05 0.00051 ± 0.00027 

 

4.2.3  Finite element modeling 

4.2.3.1 Mesh convergence 
Shown in Figure 4-10 and Table 4-3 are the mesh (numerical) [89] convergence study 

results for sheep #2. This sheep was chosen because this geometry has the smallest average velar 

thickness. Figure 4-10 shows that 188 elements per cubic millimeter is a sufficient mesh density 

(2.16% difference in total internal strain energy from the finest mesh). Therefore, our assumption 

is that this mesh density was sufficient for velar bone mimics with larger velar thickness and was 

used because of decreased computation time for meshing and FE simulations. 
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Figure 4-10: FEA mesh convergence study 

 

Table 4-3: Mesh convergence study 
Study 

# 

Mesh Density 

(Elements/mm3) 

Displacement 

(mm) 

Displacement 

(% difference) 

Strain Energy 

(mJ) 

Peak Energy 

(% difference) 

1 13 1.517 21.32% 46.7452 21.31% 

2 22 1.597 17.17% 49.0901 17.36% 

3 47 1.71 11.31% 52.7017 11.28% 

4 88 1.761 8.66% 54.2043 8.75% 

5 188 1.887 2.13% 58.1200 2.16% 

6 222 1.928 0.00% 59.4010 0.00% 

 

4.2.3.2 Finite element model validation 
Simulated and experimentally measured stiffness showed excellent agreement, where the 

largest percent error was 0.64%. However, simulated energy absorption was much lower than the 

experimentally measured energy absorption with differences as large as ~60%. Energy absorption 

differences can be attributed to differences between the shape of the force-displacement curves. 

The finite element modeling results are shown in Figure 4-11.  
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Figure 4-11: First-generation VBM finite element model validation. A) Stiffness, B) Energy 

absorption, and C) stress-strain curve comparison between finite element model and 
mechanical compression tests. The black error bars indicate +/- one standard deviation. 

 

4.2.3.3 Finite element modeling of velar bone mimics 
Shown in Figure 4-12 are comparisons of the stiffness and energy absorption of the first- 

and second-generation velar bone mimic finite element models. The results show that after the 

iterative design process, the second-generation velar bone mimics satisfy the stiffness constraints 

of the EVA foams and absorbed more energy than the first-generation velar bone mimics.  
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Figure 4-12: First and second generation VBM finite element model comparison. A) Stiffness 

and B) energy absorbed. The dashed lines indicate the EVA foam stiffness constraints. 
 

4.2.4  Compression testing 

Figure 4-13 shows stiffness, energy absorbed, and specific energy absorbed for EVA foams 

and velar bone mimics tested in quasi-static compression. Second-generation VBMs were stiffer 

than the first-generation velar bone mimics (p < 0.001) and EVA foams (p = 0.001) while first-

generation VBMs were less stiff than the EVA foams (p = 0.003) (Figure 4-13A). Similar results 

were found for energy absorption, where the second-generation VBMs absorb more energy than 

the first-generation VBMs (p < 0.001) and the EVA foams (p < 0.001), but  first-generation VBMs 

absorbed less energy than EVA foams (p < 0.001) (Figure 4-13B). Finally, EVA foams 

demonstrated greater specific energy absorption than the first (p < 0.001) and second (p < 0.001) 

generation VBMs. However, second generation velar bone mimics showed improved specific 

energy absorption compared to first-generation velar bone mimics (p < 0.001). 
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Figure 4-13: Compression test results. A) Stiffness, B) energy absorbed, and C) specific 

energy absorbed. The black error bars indicate +/- one standard deviation. The dashed lines 
indicate the ranges for the EVA foams. Red lines indicate design constraint, blue lines indicate 

value to optimize, and black lines are for comparative purposes. 
 

4.2.5  Impact testing 

Figure 4-14 shows impact force, energy absorbed, and specific energy absorbed for EVA 

foams and velar bone mimics tested under dynamic compression. Second-generation VBMs 

experience less impact force than the first-generation VBMs (p = 0.001) and comparable impact 

force to EVA foams (p = 0.709) while first-generation VBMs experience greater impact forces 

than the EVA foams (p < 0.001) (Figure 4-14A). Shown in Figure 4-14B, VBM-2G experience 

less displacement during impact than VBM-1G (p < 0.001) and the EVA foams (p < 0.001). Figure 

4-14C shows that the first-generation (p < 0.001) and second-generation (p < 0.001) VBMs absorb 

less energy than the EVA foams. No significant difference was found between energy absorption 

of the first- and second-generation VBMs (p = 0.840). Figure 4-14D shows that first-generation (p 

< 0.001) and second-generation (p < 0.001) VBMs had less specific energy absorption than the 

EVA foams. However, second generation VBMs showed lower specific energy absorption than 
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the first-generation VBMs (p = 0.003). Lastly, shown in Figure 4-14D VBM-2G experience less 

displacement during impact than VBM-1G (p < 0.001) and the EVA foams (p < 0.001). 

 

 

 
Figure 4-14: Impact testing of shoe foams and velar bone mimics. A) Impact force, B) 

displacement, C) energy absorbed, and D) specific energy absorption during impact. The black 
error bars indicate +/- one standard deviation. The dashed lines indicate the ranges for the shoe 

foams. Blue lines indicate value to optimize and black lines are for comparison purposes. 
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The relationship between stiffness and impact force was investigated by linear regressions 

(Figure 4-15). Impact force for the EVA foams (R2 = 0.743, p < 0.001), first-generation (R2 = 

0.577, p < 0.001), and the second generation (R2 = 0.178, p = 0.057) VBMs showed negative 

correlation with stiffness for values of stiffness below 60 N/mm. However, for stiffness above 80 

N/mm the second-generation VBMs showed positive correlation with stiffness (R2 = 0.670, p < 

0.001). Therefore, first- and second-generation VBMs were grouped for a quadratic regression, 

which showed  a significant (p < 0.001, R2 = 0.502) quadratic relationship (Figure 4-15). 

 
Figure 4-15: Impact force versus stiffness regressions 

 

4.2.6  Stepwise Regressions 

Strong correlations were found between the velar architectural indices of the VBMs and 

mechanical testing parameters (Table 4-4). Mechanical performance was positively correlated with 

velar thickness for both quasi-static compression and impact. Mechanical performance showed 

negative correlation during quasi-static compression and positive correlation during impact with 

both velar spacing and connectivity density. 
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Table 4-4: Stepwise regression coefficients and regression statistics. The dependent variables 
were the stiffness (k), energy absorbed (EA), the specific energy absorbed (WS), and the impact 
force (Fimpact). The independent variables were velar thickness (V.Th), velar spacing (V.Sp), and 
connectivity density (Conn.D). The p-values for each regression coefficient are shown in italics. 
Test Parameter V.Th V.Sp Conn.D Regression statistics 

Q
u

a
si

-s
ta

ti
c 

k 76.49 -11.79 -1728 
R2 = 0.8525, p < 0.001 

 < 0.001 < 0.001 ` 0.012 

EA 1.24 -0.19 -37.70 R2 = 0.8380, p < 0.001 
 < 0.001 < 0.001 < 0.001 

WS 105.3 -15.24 -1915 
R2 = 0.8652, p < 0.001 

 < 0.001 < 0.001 ` 0.045 

Im
p

a
ct

 

Fimpact 214.7 98.99 `- - -  R2 = 0.9701, p < 0.001 
 < 0.001 < 0.001 `- - -  

EA =  1.32 0.18 24.26 R2 = 0.9907, p < 0.001 
 < 0.001 < 0.001 ` 0.004 

WS 26.20 48.80 7644 
R2 = 0.9643, p < 0.001 

 `0.065 < 0.001 < 0.001 
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4.3  Discussion 

The mechanical performance of velar bone mimics was investigated to determine 

candidacy as a novel running midsole architecture. Previous studies of bighorn sheep have 

established that velar architecture stores energy during quasi-static [129] and impact [130] loading. 

However, there have not been any previous attempts to mimic this structure as has been done for 

other natural impact resistant and energy-absorbing materials such as nacre [135]–[141],  mantis 

shrimp dactyl club [142], [143], woodpecker skull [144], conch shell [145], and beetle shell [146]. 

Our results show that velar architecture exhibits similar bone volume fraction, larger velar 

thickness and spacing, and lower velar number and connectivity density compared to the analogous 

architectural indices in human and sheep trabecular bone. This knowledge was used to design a 

novel biomimetic architecture that was mechanically tested and compared to EVA running shoe 

midsole foams. Through an iterative design process, we developed velar bone mimics which had 

greater stiffness and higher energy absorption during quasi-static compression than the EVA 

foams. Additionally, our results show that velar bone mimics can provide higher energy storage 

and comparable impact forces to the EVA foams during impact. These results support the 

hypothesis that velar architecture has the potential to improve the performance of athletic footwear.  

One limitation of this study is the difference in geometry between the EVA foams and the 

velar bone mimics. Velar bone mimics are an open-cell foam whereas the EVA  foams are closed-

cell. Trapped air has been shown to increase stiffness in closed-cell foams. However, our study is 

valuable because our results indicate that, despite the difference in geometry, velar bone mimics 

show comparable stiffness, improved energy absorption in quasi-static compression and lowered 

impact forces during impact. Another limitation of this study is visual isolation of the second-

generation VBMs. This method was used since Abaqus does not provide utility to physically crop 

sections from the mesh for mimic preparation. Despite this limitation, the second-generation 
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VBMs showed improved stiffness and energy storage over the first-generation VBMs. A final 

limitation of our study is knowledge of the herd dominance of each sheep. VBM1 and VBM1-2G 

samples experienced less impact force than the other mimics in their respective generation of velar 

bone mimics. The lower impact force indicates that this sheep may have been able to ram harder 

than other sheep thus implying dominance. If the sheep were the dominant male this could explain 

why VBM1 outperformed the other mimics. Nevertheless, our results show that velar architecture 

possess intrinsic energy storage capabilities.  

Velar bone mimics were shown to be stiffer and absorb more energy during quasi-static 

compression than the EVA foams. Furthermore, the stiffness of most velar bone mimics were 

within the range of previously measured midsole stiffnesses (30-429 N/mm [171], [176]–[178]). 

These values include previous studies that tested midsoles from different manufacturers, different 

test geometries (whole shoe or midsole section), different materials (PU, EVA, or EPS), and with 

different mechanical testing procedures (displacement versus load-controlled compression). For 

energy absorption, our results are in the range of previously published values for  energy absorption  

of midsole foams during quasi-static compression (960-1,680 mJ) [171]. However, specific energy 

absorption of the velar bone mimics is significantly lower than that of the EVA foams. These 

differences can be attributed to a variety of factors such as material density or intrinsic energy 

absorption of the material, but it seems the primary factor in this case is material architecture. The 

velar bone mimics are an open cell foam and the EVA foams are closed cell. It has been shown 

that elastic compression of trapped air within the foam cells contributes to ~22% of the stiffness 

and ~28% of the energy absorbed at 25% strain during compression [194]. Velar bone mimics 

were shown be stiffer than EVA foams but experience comparable impact forces. Impact forces 

ranged from 446-820N for the EVA foams and 499-1145N for the velar bone mimics. However, 
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these impact forces are on the low end of a previously reported range between 992 and 1,500N 

found in a study that followed the same testing procedures on different midsoles foams [176]. 

Additionally, velar bone mimics were shown experience less displacement during impact, which 

implies greater stiffness during impact and increased runner comfort. Furthermore, energy 

absorption shown for the velar bone mimics was within the range of published values for similar 

impact tests (2.2-3.0J) [176]. However, specific energy absorption was significantly higher in the 

EVA foams than in velar bone mimics. Like quasi-static compression, these differences are likely 

attributed to the differences in material architectures (closed-cell vs. open-cell structures) and may 

be improved upon through further design iteration.  

 Peak impact force during running is intrinsically linked to midsole stiffness [177], [195]. 

Contradicting studies have shown negative [196], no [197], [198], and positive [177], [199] 

correlation between midsole stiffness and impact force. Our data demonstrated impact force was 

negatively correlated with stiffness below ~ 60 N/mm and positively correlated with stiffness 

above ~80 N/mm that is explained by a quadratic relationship. This implies that impact force can 

by minimized by optimizing stiffness. However, care must be taken in interpreting the quadratic 

regression from our data since it encompasses different architectures from velar bone mimics 

unique to each horn. Nevertheless, our data indicate that a complex relationship between impact 

force and stiffness exists. This relationship is further complicated by results from the stepwise 

regressions. Strong dependence was found between impact force, energy storage, and velar 

architecture. Decreased impact force is achieved by increasing velar spacing and decreasing velar 

thickness, while increased energy absorption is achieved by increasing velar thickness and 

decreasing velar spacing. These contradictions suggest that velar bone adaptions are the result of 

a complex optimization process and that there are other aspects of the velar architecture that likely 
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play a role in impact force reduction and energy storage. For example, length, width, and curvature 

of velae have not yet been quantified and no automated procedure exists to quantify these 

parameters. Changes in velar length, thickness, and curvature would surely affect the mechanical 

response of the structure. Regardless, our data show that iterative design of velar bone mimics can 

reduce impact forces. Therefore, it is concluded that velar architecture is adapted for impact and 

mimicking this architecture may lead to novel structure designs for impact applications. However, 

desired results of reduced impact force and increased energy storage were not yet achieved for all 

velar bone mimics developed in this study. Despite this, we show that the second-generation 

VBMs have improved performance over first-gen VBMs, thereby indicating potential success of 

our iterative design process to guide the design of novel midsole structures. Broadly speaking, our 

findings have implications for the design of biomimetic material architectures with optimized 

parameters for impact force minimization. In the future, similar methodology can be used to guide 

further development of bighorn sheep velar bone bioinspired energy absorbing material 

architectures for other applications such has helmets, packing, and vehicle panels. 

 

4.4  Conclusions 

- Velar architecture is adapted for impact loading.  

- Velar bone mimics are can reduce impact forces and displacements while maintaining stiffness 

to support body weight during standing and therefore are suitable for midsole architecture 

replacement. 

- Impact force and midsole stiffness are quadratically related.   
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Chapter 5: Future Work 

 
 
 

5.1  Velar bone mimics 

5.1.1  Material choice 

One of the limitations of this study is that one material was used to create these 

architectures. A material with elastic modulus less than that of EVA (48 MPa) and greater than 

that of EPU 40 (~6.94 MPa) will have different performance and likely show better impact 

performance, likely a reduction in maximum impact force and an increase in impact energy 

absorption. This conclusion is made based on the material index for impact energy absorption on 

page 72 of [17]. 

 

5.1.2  Material enhancement 

Using shear lag analysis [200] to analyze potential fiber reinforcement it may be possible 

to reinforce EPU 40 with a reinforcing fiber. This method can be used to evaluate fibers that are 

introduced to matrix and are intended to act as reinforcement. In the mathematical analysis below 

(Figure 5-1) Ematerial is the elastic modulus of the reinforced, νmaterial is the Poissons ratio of the 

reinforced material, Gmaterial is the Shear Modulus of the reinforced material, lfiber is the 

reinforcement fiber length, dfiber is the reinforcement fiber diameter, Afiber is the cross-sectional 

area of the reinforcement fiber, Efiber is the elastic modulus of the reinforcement fiber, σultimate_fiber 

is the ultimate strength of the reinforcement fiber, Rmatrix is the radius of the matrix of material 

surrounding the reinforcement fiber, in this case the thickness of an singular velae, and σultimate_matrix 

is the ultimate strength of the reinforced material. These values are used in the shear lag equations 
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presented in [200]. In the shear lag equations β is the load transfer parameter, τi is the shear stress 

transferred to the fiber from the matrix, and lc is the critical length of the fiber.  

 
Figure 5-1: Shear lag analysis for improving the strength of velar bone mimics printed from 

EPU40.  
 

Interpretation of these results is as follows: if the computed critical length is less than or 

equal to the length of the fiber you are reinforcing with, the fiber will act as a reinforcement. From 

manipulation of these equations one can conclude 1) Increasing the elastic modulus of the matrix 

decreases the critical length of the fiber, 2) increasing the elastic modulus of the fiber increases the 

critical length of the fiber, 3) increasing the ultimate strength of the fiber increases the critical 

length of the fiber, and 4) increasing the fiber diameter increases the critical length of the fiber. If 

it is necessary to design the elastic modulus of the fiber composite to be equivalent to the elastic 

modulus another material it is imperative to combine the above considerations with the 
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considerations shown in Figure 5-2. In this analysis the elastic modulus of the fiber reinforced 

composite material is set equal to the elastic modulus of EVA, a common running shoe midsole 

material, and then used to compute the fiber volume fraction necessary to achieve this equivalence 

of the elastic moduli. The mechanics of cellular solids equations [17] are used to compute the 

elastic modulus of EVA from the measured apparent elastic modulus. The Rule of Mixtures [200] 

calculations are used to compute the necessary fiber volume fraction. In the equations below 

Eapparent_shoe is the apparent elastic modulus measured from the running shoe midsole samples of 

this study (30 MPa), ρfractional_shoe is the volume fraction of material in the shoe (70%), Eactual_shoe is 

the computed material elastic modulus using the mechanics of cellular solids equations, Efiber is 

the elastic modulus of the reinforcement fiber and for examples purposes is assumed to be 2 MPa, 

and Ematrix is the elastic modulus of the reinforced material (EPU 40, 6.94 MPa).  

 

Figure 5-2: Rule of mixture calculations to achieve equal elastic moduli between EVA and 
EPU40 using a reinforcement fiber. 
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From these calculations in is seen that a fiber volume fraction of ~26% is necessary to 

increase the elastic modulus of EPU40 to that of EVA. However, using fiber reinforcement is only 

possible if the matrix material wets the surface of the fiber. Otherwise, functionalization of the 

fiber surface such that it chemically attaches to the matrix would be necessary. 

 

5.1.3  Optimize the angle for directional energy transfer 

Directional energy transfer is relatively new term that has been used to describe the transfer 

of energy from the input direction to another direction [201]. It has been shown that this can be 

optimized for energy transfer in the direction of running thus assist with athlete performance [187], 

[202]. This study found that my rotating the tubes by 18 degrees (Figure 5-3) that the energy stored 

during compression would help propel the runner forward when released.  

 

Figure 5-3: (a) Adidas bounce shoe and (b) Adidas bounce shoe with energy transfer 
optimized and maximize. Image adapted from [202] 

  

A similar concept may apply to the velar bone mimics by rotating the cropped section such 

that the velar bone mimic experiences similar loading as to what is depicted in Figure 5-3. 

However, directional energy transfer control may be something that is more appropriately suited 

for regular geometries as presented in [187], [202]. 
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5.1.4  Closed cell structure 

Polymeric foams are typically made through traditional foaming techniques where a 

physical or chemical blowing agent creates gas pockets that produce a random architecture [173].  

Therefore, mechanical behavior can be described by two at least two unique components: a 

recoverable nonlinear elastic component due to the air compression and a non-recoverable ideal 

cushion due to the plastic and/or elastic collapse of the foam [194]. A potential method to create 

closed cell velar bone mimics is a 2-part manufacturing process: 1) 3D print these mimics from 

EPU40 (or stiffer material as mentioned in 5.1.1 ) with a 2mm thick side wall on the bottom, left, 

right, front, and back of the mimic and 2) 3D print a 2 mm wall and then adhere to the top of the 

mimic with acetone, an adhesive, or a vulcanizing agent to create the closed structure (Figure 5-4). 

If an airtight seal is created when adhering the top surface to the mimic the effects of the elastic 

air compression would be observed. One thing to consider here is that if produced using a Carbon 

Speedcell™ high suction forces are generated during printing and would cause warping of the box 

walls if the box is printed separately. Printing the box and the mimic simultaneously could solve 

any warping issues, assuming there is proper venting for uncured resin to flow out of the printed 

architecture.  
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Figure 5-4 A) 44x44x22mm box with 2mm wall thickness, B) 44x44x2mm plate, and C) 

VBM1 inserted into the cutout of the box shown in A) 
 

 

  

B 

A 

C 
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5.1.5  Topology optimization 

Topology optimization is a method for optimizing material location within a given design 

problem subject to a given set of constraints with the goal of optimizing strength, toughness, etc. 

while minimizing the amount of material used. Shown in Figure 5-5 [203] is an example of 

topology optimization performed on a cube in that is being compressed.  

 

 

 

Figure 5-5: (Top) design space and constraints. Optimized structure from (a) Abaqus discrete 
compliance optimization, (b) and Abaqus stress-constrained optimization, and (c) Optistruct 

continuous compliance optimization. Image adapted from [203] 
 

From Figure 5-5 the material within the design space was minimized three different ways 

subject to the three different constraints. This method maybe be able to improve on this work by 

optimizing the topology of the velar bone mimics.  
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5.1.6  Improved iterative design process  

The velar bone mimics of this study were modeled as linear elastic. A different constitutive 

model such as hyperelastic, hypoelastic, hyperfoam, or viscoelastic will show different behavior 

that the models of this study and possibly model behavior of the velar bone mimics in a more 

accurately. By utilizing a better constitutive model combined with impact finite element models 

the iterative design process could be improved upon.  

 

5.1.7  Novel additive manufacturing technologies 

When the bulk of this work was performed the primary option for additive manufacturing 

of elastomeric velar bone mimics was using a Carbon Speedcell™. Additive manufacturing is a 

rapidly growing and changing industry, therefore as new technology is developed there may be 

more efficacious methods for additive manufacture of these structures. A potential option would 

be collaboration with Dr. Brett Compton3 at the University of Tennessee-Knoxville in the 

Mechanical, Aerospace, and Biomedical Engineering Department. Dr. Compton is developing 

direct-write technology that is capable of printing closed cell elastomeric foams that cure in 

ambient conditions, i.e. oven or UV curing is not necessary. As the technology further develops 

and elastomeric printers with higher resolution are developed velar bone mimics can be made with 

more unit cells by isotropically scaling each unit cell to smaller size.  

  

 

 

 

 

3 https://mabe.utk.edu/people/brett-g-compton/ 
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5.1.8  Shape memory alloys 

The shape memory effect is shown in materials whose crystallography allows for a thermo-

elastic martensitic transformation [204], [205]. These materials exhibit not only superelasticity but 

recoverable plastic strains up to 10% and sometimes higher [206]. Shape memory alloys, such as 

Cu-Al-Ni or NiTi, show deformation recoverability when heated above the critical temperature 

where the material transforms back to its austenitic phase [207]. It has been shown that his heat 

can be generated through Joule (resistive) heating [208], [209].  Nickel-titanium foams have been 

shown to exhibit brittle behavior during compression testing [210], [211]. However, these foams 

were manufactured using spark plasma sintering (SPS). Since it is not well understood what effect 

the electric magnetic fields have on sintered samples it is possible that this influenced the integrity 

of the tested samples. Considering the complex geometry of the foams of this study SPS is not a 

suitable manufacturing method to create velar bone mimics. Therefore, it is suggested that a 

selective laser sintering process is used to consolidate shape memory alloy powders to create velar 

bone mimic specimen. It has been shown that selective laser sintering and selective laser melting 

are suitable methods for creating NiTi foams [212]–[214] 

 

5.1.9  Impact force versus stiffness 

The data presented in the velar bone mimic study show that stiffness and impact force are 

quadratically related. By performing the same impact test on a foam that has been carefully 

designed such that the stiffness can be controlled would provide more insight into the relationship 

between stiffness and impact force (i.e. provided more resolution between 50 and 80 N/mm). This 

potential study could be used to optimize cushioning structures for athletic shoes, helmets, and 

shipping/packaging materials.  
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5.1.10  Midsole design approach 1  

One potential route for midsole design is shown in Figure 5-6. With knowledge of the 

runner’s plantar pressure map, one could combine first- and second-generation velar bone mimics 

in parallel and/or series to achieve 70 N/mm stiffness to minimize impact force (494 N). This new 

structure could then be placed  in high pressure regions with mimics around the periphery of the 

sole to provide support to the runner. For example, VBM5-1G in parallel with the series 

combination of 2x VBM3-2G in parallel and 2x VBM4-2G parallel has an effective stiffness of 

70.64 N.  An example calculation is shown in Figure 5-7. 

 

 
Figure 5-6: Potential shoe sole design approach 1. Image adapted from [215], [216] 
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Figure 5-7: Example equivalent stiffness calculation 

 

5.1.11  Midsole design approach 2  

A second potential route for midsole design is shown in Figure 5-8. In this approach, 

knowledge of the runner’s plantar pressure map, one could combine VBM-1G and VBM-2G unit 

cells to provide the appropriate stiffness where it is needed. That is, the stiffest unit cell in high 

pressure regions and lowest stiffness unit cell in the area with the lowest pressure. This would 

create a sort of stepwise functionally graded midsole.  

 

 
Figure 5-8: Potential shoe sole design approach 2. Image adapted from [216] 

 

5.1.12  Midsole design approach 3  

Use the methods demonstrated in 5.1.10 to create a midsole with homogenous optimized 

stiffness.  
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5.2  Velar architecture in other species of bighorn sheep 

Ovis canadensis canadensis is only one subspecies of one species of bighorn sheep. Table 

5-1 lists additional bighorn sheep species and subspecies. It would be interesting to study the velar 

architecture in other species of bighorn sheep to determine differences/similarities in the velar 

architecture. It may be possible to find skulls of these animals at universities and museums in the 

respective regions.   

 

Table 5-1: Species, subspecies, and region of various bighorn sheep 

Species Subspecies Common Name Region 

Ovis 

canadensis 

O. c. sierrae Sierra Nevada bighorn 
sheep 

California, North 
Dakota, BC Canada 

O. c. nelsoni Nelson's bighorn sheep California, Arizona 
O. c. mexicana Mexican bighorn sheep New Mexico, 

Chihuahua Mexico 

O. c. cremnobates Peninsular bighorn sheep Baja California 
Mexico 

O. c. weemsi Weems' bighorn sheep Baja California 
Mexico 

Ovis dalli O. d. dalli Dall sheep Alaska, Canada 
O. d. stonei Stone Sheep Alaska, Canada 

Ovis 

nivicola 

O. n. koriakorum Koryak snow sheep Kamchatka peninsula 
Russia 

O. n. ssp. Kolyma snow sheep Kolyma Mountains 
Russia 

O. n. alleni Okhotsk snow sheep Khabarovsk region 
Siberia 

O. n. lydekkeri Yakutian snow sheep Magadan region 
Russia 

O. n. nivicola Kamchatkan snow sheep Kamchatka peninsula 
Russia 

O. n. borealis Putorana snow sheep Taimyr Peninsula 
Russia 

O. n. 

tschuktschorum 

Chukotka snow sheep Chukotka 
Autonomous Region 
Russia 
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5.3  Strong and lightweight structures 

5.3.1  Topology optimization 

As previously discussed in 5.1.5, the same principles apply to optimizing the trabecular 

bone of large mass animals for strong light weight structures.  

5.3.2  Finite element modeling 

It has been shown that 3D printed trabecular bone shows higher stiffness during off-axis 

loading in sheep (Ovis aries) [217], where on-axis loading refers to loading in direction that 

physiological loading is experienced. In this study trabecular bone from the talus (ankle bone) 

were scanned in micro-CT and off-axis volumes of interest were virtually cropped from the images 

files by rotating the cropping cube (Figure 5-9).  

 
Figure 5-9: Creation of off-axis specimen for 3D printing. Image adapted from [217] 

 

The findings of this study contradicted the author’s hypothesis that trabecular bone would 

have higher stiffness when loaded on-axis as compared to off axis loading. This study investigated 

only one species. A similar study could be performed by investigating distal femur and proximal 

tibia trabecular architectures of a wide range of species, including species from this study as well 

as the trabecular architectures found at [12].  
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5.4  Allometric studies of the long bones of large mass animals 

5.4.1  Trabecular bone in the femur/tibia of larger body mass dinosaurs 

This study was limited to animals who weighed up to  ~10,000 kg. There are several species 

of dinosaur who would be candidates for this study. The species, body masses, references, 

museums, and bones are summarized below in Table 5-2. Other large body mass dinosaur fossils 

have been discovered but, in some cases, only vertebrae or bones outside the scope of this study 

have been discovered.  

 
Table 5-2: Femurs and/or tibias of large body mass dinosaurs not included in present study 

Dinosaur 
Body mass 

(kg) 
References Museums Bone 

Argentinosaurus 

hinculensis 
81,650 [218]–[220] 

Museo Municipal 
Carmen Funes 

Femur 
(partial) 

Patagotitan 

mayorum 
69,850 [221] 

Field Museum of 
Natural History 

Femur 
(whole) 

Mamenchisaurus 

sinocanadorum 
68,000 [222] 

National Museum of 
Nature and Science 

Skeleton 
(whole) 

Alamosaurus 

sanjuanensis 
66,200 

[218], [219], 
[223] 

New 

Femur 
(whole) 

Mexico Museum of 
Natural History & 
Science 

Apatosaurus 

ajax 
66,200 [224] 

Carnegie Museum of 
Natural History 

Femur 
(distal) 

 

 

  



84 

5.4.2  Trabecular bone in other bones of larger body mass dinosaurs 

If further allometric studies similar to [11], [13] are to be performed several large body 

mass dinosaurs have been summarized in Table 5-3. 

Table 5-3: Fossils of other large body mass animals.  

Dinosaur 
Body mass 

(kg) 
References Museums Bone 

Natocolossus 

gonzaleparejasi 
68,850 [218] 

Universidad 
Nacional De Cuyo 

Humerus 
(whole) 

Sauroposeidon 

proteles 
54,400 

[219], [225], 
[226] 

Oklahoma Museum 
of Natural History 

Vertebrae 

Dreadnoughtus 

schrani 
53,500 [218], [227] 

Museo Padre 
Molina 

Humerus 
(distal 
condyle) 

Paralititan 

stromeri 
53,500 [219], [228] 

Egyptian Geological 
Museum 

Humerus 
(whole) 

 

In addition to the above various bones or CT scans from different species of dinosaurs of 

smaller body masses can be possibly obtained by contacting the authors of any of studies cited in 

this work or journal articles accessed through Wikipedia4,5. Additionally, contacting Mr. Bill 

Wahl6 at the Wyoming Dinosaur Center, Dr. Laura Vietti7 in the Geology and Geophysics 

Department at the University of Wyoming, and/or Dr. Marieka Arksey8 in the Department of 

Anthropology at the University of Wyoming could yield additional fossil samples.  

 

 

 

 

4 https://en.wikipedia.org/wiki/Dinosaur 
5 https://en.wikipedia.org/wiki/Dinosaur_size#Heaviest_sauropodomorphs 
6 https://wyomingdinosaurcenter.org/ 
7 http://www.uwyo.edu/geolgeophys/people/faculty/laura-vietti.html 
8 http://www.uwyo.edu/anthropology/directory/m-arskey.html 
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