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Abstract

This paper identifies factors that are influential in forecasting crude oil prices. We
consider six categories of factors (supply, demand, financial market, commodities mar-
ket, speculative, and geopolitical) and test their significance in the context of esti-
mating various forecasting models. We find that the Least Absolute Shrinkage and
Selection Operator (LASSO) regression method provides significant improvements in
the forecasting accuracy of prices compared to alternative benchmarks. Relative to
the no-change and future-based models, LASSO forecasts at the 8-step ahead horizon
yield significant reductions in Mean Squared Prediction Error (MSPE), with MSPE
ratios of 0.873 and 0.898, respectively. We also document substantial improvements in
forecasting performance of the factor-based model that employs only a subset of vari-
ables chosen by LASSO. Finally, the time-varying nature of the relationship between
factors and oil prices are used to explain recent movements in crude oil prices.

Keywords: Oil Prices; Forecasting; Least Absolute Shrinkage and Selection Operator
(LASSO); Mean Squared Prediction Error (MSPE); Success Ratio



1 Introduction

Crude oil is widely considered to be one of the most important commodities affecting global

economic growth. Estimates indicate that the oil and gas drilling sector makes up about

three percent of global GDP1, and imports of petroleum products account for about forty

percent of U.S. trade deficits.2. Movements in crude prices have been shown to signficantly

impact the world economy at various levels, from family budgets to corporate earnings and

to the nation’s economy (c.f. Eika and Magnussen, 2000; Kilian, 2009). According to IMF,

a 10% increase in oil prices results in a 0.2% drop in global GDP. Therefore, when oil prices

reached a record high of $145/bbl in 2008, and then began to drop sharply beginning 2014

and reaching a low of $29/bbl in early 2016, this resulted in significant revenue shortfalls

and economic stress on many energy exporting nations such as Russia and Saudi Arabia. On

the other hand, the availability of cheaper oil has been hailed as a potent economic stimulus

to many net oil importer countries such as China and India, while keeping inflation under

check.

Given the central role of oil in the economy there is a great deal of attention in the

literature in forecasting crude prices. According to a recent Wall Street Journal article,

“forecasting is always an inexact art, particularly for oil, a global industry with wildly

uneven data...it is a crucial one, underpinning companies’decisions about when to drill and

how much to hedge,”and importantly, “market watchers get this so wrong.”3

One of the most watched oil price forecast is from the US Energy Information Admin-

istration (EIA), which formally constructs monthly and quarterly forecasts of the price of

crude oil at horizons up to two years4. Although EIA’s short-term forecasts help inform

corporate investment and guide resource deployment decisions, their forecasts are often hard

to replicate and inaccurate. For instance, EIA reported a price projection of about $28/bbl

1http://data.worldbank.org/indicator/NY.GDP.PETR.RT.ZS
2https://www.census.gov/foreign-trade/Press-Release/current_press_release/index.html
3What Went Wrong in Oil-Price Forecasts? By Nicole Friedman, Dec. 10, 2015, Wall Street Journal.

http://www.wsj.com/articles/what-went-wrong-in-oil-price-forecasts-1449794306
4http://www.eia.gov/forecasts/steo/
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in 2010, yet the actual average price for oil traded on the New York Mercantile Exchange

in 2010 was $79.61/bbl. Ironically, right before the sharp fall of oil prices in mid-2014, EIA

raised its 2014 forecast on WTI crude-oil prices to nearly $96/bbl.5 In a letter defending the

veracity of EIA reports, Howard Gruenspecht, deputy administrator of the EIA, commented

that, “EIA does not characterize any of its long run projection scenarios as a forecast.”6

Futures-based forecasts provide a market-based expectation of oil prices. Although in

principle the futures market should be a good predictor of future spot prices, this is not

supported by empirical evidence. Alquist and Kilian (2010) document that oil futures prices

tend to be less accurate in the mean-squared prediction error sense than a simple no-change

forecast (which posit that oil prices will be the same tomorrow as they are today).

Various econometric approaches have been proposed to forecast oil prices. For example,

in an attempt to improve forecasting performancey, Pindyck (1999) adds a mean reversion

term to a deterministic linear trend model. Radchenko (2005) applies a shifting trend model

with an autoregressive process in error terms instead of the white noise process. Still others

apply ARIMA models to forecast the monthly WTI crude oil prices. However, such forecast-

ing methods have not been particularly successful when compared with the naive no-change

forecast (see Hamilton, 2009; Alquist and Kilian, 2010; Alquist et al., 2013). Overall, conclu-

sions from prior studies suggest that changes in oil prices are inherently unpredictable and

diffi cult to model, and as a result the current price of oil may be the best available forecast

of future prices.

Given the challenges faced by past forecasting approaches it would be important to un-

derstand why oil prices are so hard to predict. The literature provides interesting insights

(c.f. Hamilton, 2009). Crude oil prices are driven by a large set of dynamic and multi-

dimensional factors including physical markets factors, financial markets factors and trading

factors that are themselves often hard to predict, and may also have counteracting effects.

5http://blogs.marketwatch.com/thetell/2014/04/08/eia-raises-2014-forecast-on-wti-crude-oil-prices-to-
nearly-96/

6http://www.eia.gov/naturalgas/article/Nature_news_feature.pdf
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Perfect foresight is also hindered due to unexpected demand shifts in the global economy,

supply disruptions, changes in oil production and inventory demand, geopolitical events,

among other factors. These types of events create uncertainty about future supply or de-

mand, which can lead to higher volatility in prices. Of course, accidental events such as

refinery outages or pipeline problems adds to the unpredictability. Therefore, in accounting

for the history of past oil supply and demand shocks emanating from various events, market

participants are always assessing the possibility of future events and their potential impact

on prices. In addition to the size and duration of a potential disruption, agents also consider

the current stock levels and the ability of producers to offset a potential supply/demand

shock. Furthermore, the forward-looking behavior of speculators and the quantification of

speculative oil demand shocks can, at times, invalidate standard econometric models if spec-

ulators respond to information not available to the econometrician attempting to disentangle

demand and supply shocks based on historical data (Kilian and Lee, 2014). Confounding this

challenge, it is also diffi cult to relate changes in real oil prices to macroeconomic outcomes

due to the presence of reverse causality from macro aggregates to oil prices (see Barsky and

Kilian 2002; Kilian, 2009; Chatrath et al., 2016).

These challenges not withstanding, forecasting efforts have not entirely been in vain.

Researchers report success by expanding the range of explanatory factors and integrating

them into their models. Dees et al. (2007) model oil prices as a function of oil inventories

and demand, OPEC production, producer quotas and production capacity. Ewing and

Thompson (2007) focus on the relationship between macroeconomic variables and crude

oil prices, and find oil prices to be procyclical - i.e., leading consumer prices but lagging

industrial production activities. Kaufmann et al. (2008) study the potential effect of refinery

utilization rate on crude oil prices and show that lower refinery rates correspond with higher

crude oil prices. In adding to this mix, the role of speculation and forward looking behavior

in crude oil prices have been carefully examined by various authors. Sari et al. (2011)

use the VIX index as a proxy for global risk and find that oil prices are influenced by
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related commodities. Coleman (2012) finds positive relationships between crude oil prices

and proxies for speculative and terrorist activities while controlling for fundamental and

market parameters. More recently, Miao, et al. (2017) report how crude oil inventory

announcements impact oil futures and options prices. There is also some evidence that

forecasting models based on economic fundamentals work better at shorter horizons (up to 3

months); whereas, models based on the crack spread work better at longer horizons (between

12 and 24 months). Baumeister and Kilian (2015) present a combination approach with six

different models that marginally improves the forecasting performance in comparison to the

no-change forecast.

This paper contributes to the literature by using a relatively new methodology that op-

timally selects among various factors that underlie crude oil price movements. In aiding our

investigation, we consider a wide range of potential explanatory factors that are popularly

associated with oil prices. Our analysis employs weekly data, and for expository purposes

classifies variables along six broad factor dimensions: supply, demand, financial market,

commodities market, speculative, and political factors. Specifically, we employ the Least

Absolute Shrinkage and Selection Operator (LASSO) method to generate out-of-sample fore-

casts. Our results indicate that the LASSO method yields superior forecasts, as observed by

reductions in the mean squared prediction error relative to various benchmark models such

as the the no-change forecast, EIA projections and futures market predictions. The results

also provide insights into the temporal relationship between various influential factors and

crude oil prices.

The remainder of the study is organized as follows: Section 2 provides an overview of the

data used in the study and establishes the economic importance of variables that determine

oil prices. The various forecasting models and approaches are described in Section 3, followed

by discussion of empirical results in Section 4. Section 5 concludes the paper.
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2 Components of the Crude Oil Price ForecastingMod-

els

We use the West Texas Intermediate (WTI) crude oil spot prices as the dependent variable,

and 26 potential determinants or predictors that are classified into six broad groups. The

description, sample frequency and data source for each variable are shown in Table 1. 7

Our data spans the period from January 04, 2002 to September 25, 2015. The model is

estimated over various fixed length rolling windows (5, 6 and 7 years), which minimizes the

odds of generating spurious regression estimates. Table 1 provides a list of various factors,

corresponding descriptions and data source.

[Insert Table 1 Here]

Supply Factors: It is commonly believed that oil is an exhaustible resource. We

consider the following supply factors: 1) Global crude oil production. The global crude oil

production include both OPEC and non-OPEC production. The production of crude oil is

often subject to geopolitical developments, as well as factors such as weather-related events,

exploration and production (E&P) costs, investments and innovations. According to 2014

estimates, OPEC member countries control 81% of the world’s crude oil reserves, with the

bulk of OPEC oil reserves being in the Middle East, amounting to around 66% of the OPEC

total.8 The non-OPEC members also play an increasingly important role. According to

EIA, non-OPEC members represents about 60% of world oil production in 2015.9 2) Global

crude oil export. Global crude oil export can be viewed as an additional measure of global

7Consistent with the prior literature (c.f. Kilian, 2010, Baumeister and Kilian, 2012, 2015; Chatrath et
al., 2016), for daily and weekly data, we only keep the observations for each Friday. When dealing with lower
frequency data, we carefully distinguish the data into “points in time”values and “totals over an interval”
value. For example, “Global Stock” represents the stock of crude oil for each month and is categorized as
“points in time ”value. For these variables, we equal each Friday’s value in specific month to its corresponding
observed monthly value. When data represents totals over an interval, such as quarterly GDPs, the total
values of the larger intervals are evenly distributed to the smaller intervals (for instance, monthly GDPs).

8See: http://www.opec.org/opec_web/en/data_graphs/330.htm
9See: EIA report: What drives crude oil prices? https://www.eia.gov/finance/markets/supply-

nonopec.cfm

5



crude oil production. Whereas, the former set of variables provide a direct picture of supply,

this measures the potential capacity for (excess) supply. Hallock et al. (2004) shows a

strong relationship between the conventional oil production and the available export for the

world. 3) OPEC surplus crude oil production capacity. According to EIA, the surplus crude

oil production capacity by OPEC nations is a useful indicator of general market supply

conditions. Excess production capacity tends to stabilize global markets, and helps mitigate

supply disruptions that can occur from time to time. 4) Crude oil inventory. Several studies

examine the role of crude oil inventory on prices (see, for example Hamilton, 2009; Kilian and

Murphy, 2014). The accumulation of crude oil stock permit greater flexibility in responding

to short-term supply shortages.10 We include both the global crude oil closing stock and the

U.S. crude oil inventory in our forecast. 5) U.S. refinery utilization rate. Kaufmann et al.

(2008) find that the refining rate plays an important role in determining crude oil prices,

because lower refinery utilization rate will lead to a preference for higher quality crude oil,

putting upward pressure on prices. Note U.S. refining capacity represents about one-fifths

of world capacity. 6) Baltic exchange dirty tanker index. We follow Breitenfellner et al.

(2009) and Fan and Xu (2011) by using the Baltic exchange dirty tanker index to track

the shipping rates for transportation of unrefined oil on representative routes. Lower index

values generally correspond with declining oil prices.

Demand Factors: Demand factors have been shown to have a significant and positive

influence on crude oil prices (see Hamilton, 2009; Hicks and Kilian, 2009; Kilian, 2009). We

consider several demand factors: 1) GDP. Global economic growth are closely related with

oil demand. We consider the GDPs of the U.S., China and the Euro area (19 countries),

which together account for more than 60% of the global GDP. 2) Kilian index. Kilian (2009)

develops an index that measures shifts in the demand for industrial commodities that are

driven by the global business cycle. Specifically, the index is based on dry cargo single voyage

ocean freight rates. 3) Steel production. World steel production has also been shown to be

10See: EIA report: "High inventories help push crude oil prices to lowest levels in 13 years"
http://www.opec.org/opec_web/en/data_graphs/330.htm
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a reliable indicator of global economic activity (Ravazzolo and Vespignani, 2015). We use

the world steel production, as well as regional steel production in the U.S., China and the

Euro area, as an important proxy for economic activity. 4) ISM manufacturing index. The

ISM Manufacturing Index is widely viewed as an indicator of the business cycle (Scotti,

2013). The index is based on surveys of more than 300 manufacturing firms conducted by

the Institute of Supply Management. 5) Global crude oil imports. Global crude oil imports

is another key factor that reflects the state of the economy. Ghosh (2009) find a long-run

relationship between quantity of crude oil imports and the price of the imported crude, and

document unidirectional causality between economic growth and crude oil imports.

Financial Market Factors: The relationship between financial market factors and

oil prices can be complex. We consider the following three factors: 1) U.S. interest rates.

Frankel (2006) find that crude oil prices are negatively related with interest rates. In partic-

ular, U.S. monetary policy can impact oil prices through its effect on both currency values

and interest rates. We consider the three-month Treasury bill rate and the Federal fund

rate in our study. 2) Exchange rates. The importance of the U.S. dollar exchange rate in

influencing oil prices has been documented by Sadorsky (2000), and Wang and Wu (2012),

among others. Studies indicate that a weaker dollar usually leads to higher oil prices as oil

producers aim to regain the purchasing power of the export revenues that are denominated

in U.S. dollars. In addition, the country whose currency appreciates against the U.S. dollar

is likely to experience higher demand for crude oil due to reduced costs. We use the U.S.

dollar index, computed as the weighted geometric mean of the dollar’s value relative to se-

lect currencies that include the Euro, Japanese yen, British pound, Canadian dollar, Swedish

Krona and Swiss Franc. 3) Stock market. Jones and Kaul (1996) and Sadorsky (1999) find

that the stock market and oil prices tend to move together in the same direction, seemingly

in response to global aggregate demand factors. Shifts in aggregate demand influence both

corporate profits and the demand for oil. Following Hammoudeh and Li (2005) we use the

S&P 500 and MSCI World indexes, respectively as proxies for the U.S. and world equity
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markets.

Commodity Market Factors: It’s been noted that there is a relationship between

crude prices and the prices of other industrial commodities. Following Coleman (2012) and

Baumeister and Kilian (2015), we select two indices in our forecasting models: 1) S&P

GSCI Non-Energy Index serve as a benchmark for investments in commodity markets. It

consists of all commodities included in the S&P GSCI index, with the exception of crude oil

and natural gas. 2) CRB Raw Industrial Materials index (CRB Rind index) measures price

movements in 22 basic commodities whose markets are believed to be sensitive to changes in

economic conditions. The selection of the two indices, which exclude crude oil and natural

gas, mitigates potential endogeneity problems in the forecasting models.

Speculative Factors: The existence of an active derivatives market that allows for risk

sharing, price discovery and cost control is an important feature of crude oil markets. Over

the past decade, and in particular after 2004, there has been an ineluctable trend toward

greater financialization of commodity markets with inflows of large amounts of investments

into commodity futures. Derivatives markets which spawn speculative activities are believed

to exert an important influence on oil prices. Behind such appeals is the implicit belief that

crude oil prices are impacted in a significant manner by factors other than the prevailing

market demand and supply conditions (see Kaufmann, 2011; Kilian and Murphy, 2014). Fol-

lowing Coleman (2012), therefore, we use the ratio of trading volume of oil futures contracts

to global oil production as a measure of speculative activities.

GeoPolitical Factor: Crude oil is commonly recognized as a commodity that is sen-

sitive to geopolitical events. Although many different variables exist that may capture the

geopolitical environment, we follow Coleman (2012) by using the total amount of terrorist

attack in the Middle East and North Africa, which largely overlaps with OPEC countries11,

as a proxy for geopolitical (in)stability. This data is obtained from the Global Terrorism

Database at the University of Maryland, with details of individual international terrorist

11According to British Petroleum (2010), Middle East produces about one-third of the oil among the
world, and its reserves account for about 60% of the total world reserves.
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incidents since 1970.

3 Forecasting Models

3.1 Benchmark 1: No-change Forecast

Following the literature (see Alquist and Kilian 2010; Kilian and Lee 2014; Baumeister and

Kilian, 2015), we focus on the real price of oil rather than log prices. This helps avoid

log approximation errors when fitting the real price of oil. A commonly used benchmark

for judging the performance of forecasting models is provided by the random walk model

without drift. This model implies that changes in the spot price are unpredictable; so the

best available forecast of future spot prices of crude oil is simply the current spot price:

P̂t+h|t = Pt (1)

We consider three alternative forecasting benchmarks as described below.

3.2 Benchmark 2: EIA Forecast

The U.S. Energy Information Administration (EIA) of the Department of Energy (DOE)

provides comprehensive oil price forecasts regularly that are closely followed by market par-

ticipants. EIA constructs monthly and quarterly price forecasts, the Short-Term Energy

Outlook (STEO), with horizons ranging from one month to two years12. The STEO are

released on the first Tuesday following the first Thursday of each month. EIA analysts con-

struct forecasts based on information such as current and near-term futures prices of crude

oil, OPEC and non-OPEC production, global economic growth, crude oil stock, among other

factors. It is worth noting that while EIA uses large-scale multi-equation econometric models

12STEO forecasts can be obtained from: https://www.eia.gov/outlooks/steo/outlook.cfm
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to estimate supply and demand conditions for crude oil in various energy markets, as well

as employs a consensus mechanism to arrive at the final forecast.13

3.3 Benchmark 3: Futures-based Forecast

Market participants use oil futures prices to divine future spot prices. The futures-based

forecast is generated as follows:

P̂t+h|t = Ft (2)

where Ft is the price of crude oil WTI futures contract that matures in h periods and available

at time t.

3.4 Benchmark 4: Factor-based Model

Factor-based models provide an alternative approach to forecast oil prices (see Baumeister

and Kilian 2015). A full factor-based model includes all valid predictor variables relevant to

the determination of crude prices. By definition, the full factor model is not parsimonious

and is subject to significant collinearity problems due to the presence of strong correlations

across variables. We consider this "kitchen sink" model as a benchmark for comparison

purposes, and later refine this to include significant variables found from LASSO and stepwise

regression methodologies.

Pt = α +

n∑
i=h

βt−iPt−i +

n∑
j=h

γt−jXt−j + εt (3)

where the crude oil prices at time t (Pt) is a function of its lagged terms and s independent

variables, namelyXt,j, j = 1, ..., s. εt refers to error term at time t, representing any potential

temporary deviations from long term relationship that couldn’t be explained by the model.

13Since EIA’s forecasts only have monthly and quarterly horizons, in our study, we compare EIA’s one
(two) month(s) forecasts to our four (eight) weeks ahead forecasts made by each method.
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Note that this factor-based regression is in the form of a reduced-form one-dimensional vec-

tor autoregression (VAR) model with exogenous variables. The regular VAR model would

be more appropriate when there are bidirectional interactions between the dependent and

independent variables. In our study, given the relatively large number of factors that are em-

ployed, plus the unidirectional nature of influence for the majority of independent variables,

we use the reduced-form VAR model.

3.5 The LASSO Method

The LASSO method is an innovative variable selection method in which the choice of pre-

dictive variables is carried out using an algorithmic procedure. It was first introduced by

Tibshirani (1996) and has gradually found application in the energy area such as electricity

consumption (Wang et al., 2007), electricity prices (Suard et al., 2010), and natural gas

prices (Alfano et al., 2015).

The LASSO method adds a penalty term to the cost function which keeps the estimated

value of the regression coeffi cients small, thus reducing the inflation in standard errors often

found in the presence of multicollinearity. When selecting variables, LASSO minimizes the

residual sum of squares subject to the sum of the absolute value of the coeffi cients being less

than a constant. More specifically,

β̂L = argmin{
n∑
i=1

(yi − α−
n∑
i=1

βjxij)
2}, subject to

p∑
j=1

|β̂Lj | 6 c (Constant)

This problem is equivalent to β̂L = argmin{
n∑
i=1

(yi − α −
n∑
i=1

βjxij)
2 + λ

∑
j

|βj|}, λ > 0,

where λ is chosen so that
p∑
j=1

|β̂Lj | = c, and each λ corresponds to a unique LASSO parameter

c.

When the LASSO parameter is small enough, some of the regression coeffi cients shrink

to zero. Hence, the LASSO method selects only a subset of the regression coeffi cients for

each LASSO parameter. The LASSO parameter c > 0 controls the degree of shrinkage that

is applied for the estimates. Tibshirani (1996) uses quadratic programming techniques to

11



solve each lasso parameter of interest. Osborne et al. (2000) develops a “homotopy" method

to estimate the parameters for all values of c. In this paper we employ a computationally

effi cient method developed by Efron et al. (2004), a variant of the "least angle regression"

method to obtain a pre-determined sequence of LASSO solutions. All other LASSO solutions

are obtained by linear interpolation from the sequence of LASSO solutions.

3.6 Stepwise Regression Method

For comparison purposes, we also estimate a stepwise regression using the same set of pre-

dictive factors. The stepwise regression method has been used for evaluating movements in

crude prices (Alexandridis et al., 2008), electricity prices (Nan et al., 2014), heating energy

consumption patterns (Filippin et al., 2013). In this study, we use the "bidirectional elim-

ination" stepwise regression method to identify a subset of influential predictor variables.

Essentially, this approach combines the backward elimination and forward selection meth-

ods, and simultaneously adds and deletes variables according to a pre-defined criterion at

each step. Usually, this pre-defined criterion takes the form of a sequence of F-tests or t-

tests, but other techniques are also possible, such as adjusted R-square, Akaike information

criterion (AIC), and Bayesian information criterion (BIC). In our analysis, the selection cri-

terion is based on a specified significance level of the F-test. The default level is set at 0.15.

If the removal of any variables results in an F-statistic that is not significant at the default

level, then the variable whose removal yields the least significant F-statistic is removed and

the algorithm proceeds to the next step. Otherwise, the variable that produces the most

significant F-statistics will be added, provided that it is significant at the default entry level.
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3.7 Forecast Evaluation Methods

3.7.1 Diebold-Mariano test

Following previous studies we compare the reduction in Mean Squared Prediction Error

(MSPE) of proposed models against the benchmark to assess forecast accuracy. If the MSPE

of a particular model is significantly smaller compared to the benchmark forecast, it indicates

that the proposed model yields more accurate forecasts than the benchmark model.

To examine whether the MSPE reductions are statistically significant between models,

we use the Diebold-Mariano test (DM test) introduced by Diebold and Mariano (1995).

The DM test begins with calculating the loss differentials between two forecasting methods

by weighting the loss differentials equally. The loss differential for observation is defined

by dt = g(ei,t|t−h) − g(ej,t|t−h), with g(·) as some arbitrary loss functions. g(ei,t|t−h) and

g(ej,t|t−h) are the h steps ahead forecast errors for method i and j. The two forecasts

have equal accuracy if and only if the loss differential has zero expectations for all t. We

use the symmetric loss function to make this assessment. Following Khandakar and Hyn-

dman(2008), the g(·) with h steps forward forecast is defined as g(ei,t|t−h) = e2it, and the

loss differential series dt to be assumed normally distributed. The DM statistics can be

derived as DM = d√
γ̂0/h

˜N(0, 1),where d=

n∑
i=1

di

h
is the sample mean, and γ̂0 is the consistent

estimate of the variance of hd. The null hypothesis versus the alternative hypothesis is:

H0 : E(dt) = 0, H1 : E(dt) 6= 0, for all t.

3.7.2 Pesaran-Timmermann Test

As an additional test, the directional accuracy of different forecasting models are compared

to the success probability of 0.5. If the directional accuracy of a model is greater than 0.5,

it performs better than a random coin toss, or the no-change forecast. We use the test

provided by Pesaran and Timmermann (1992) to evaluate whether or not the improvement

is statistically significant.
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Pesaran and Timmermann (1992) propose a non-parametric test to examine the ability

of a forecasting model to accurately predict the direction of change. Denoting the series

of interest as yt and its forecast as xt,the general standardized test statistic for predictive

performance is as follows:

Sn =
P̂ − P̂∗√

V̂ (P̂ )− V̂ (P̂∗)
(4)

where the parameters are calculated as:

P̂ =
1

n

n∑
i=1

I(ytxt), (5)

P̂∗ = P̂yP̂x + (1− P̂y)(1− P̂x), (6)

V̂ (P̂ ) =
1

n
P̂∗(1− P̂∗), (7)

V̂ (P̂∗) =
1

n
(2P̂y − 1)2P̂x(1− P̂x) +

1

n
(2P̂x − 1)2P̂y(1− P̂y)

+
4

n2
P̂yP̂x(1− P̂y)(1− P̂x), (8)

P̂y =
1

n

n∑
i=1

I(yt), (9)

P̂x =
1

n

n∑
i=1

I(xt), (10)

The Sn defined above follows the standard normal distribution and I(·) is the indicative

function. Under the null hypothesis, xt is not able to predict yt.

4 Empirical Results

4.1 Forecasting Performance

As a first step to estimating regression models, we analyze the stationarity properties of each

variable using the Augmented Dickey Fuller (ADF) unit root test. The results are shown in
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Table 2. The ADF tests shows that for the majority of the variables under analysis they are

stationary under lags, drift or trend options. For example, the Baltic Dirty Tanker Index is

stationary with trend and lag 1. For variables that fail to reject the unit root hypothesis,

we take the first difference in levels to ensure their stationarity before using them in our

regression analysis.

[Insert Table 2 Here]

Table 3 shows the MSPE performance for each forecasting method with different forecasts

horizons (1, 2, 4, 8 steps-ahead forecasts) using a 5-year moving window length for estimation.

The results are compared with the no-change forecast (Panel A), the EIA forecast (Panel

B), the futures-based forecast (Panel C), and the factor-based model forecast (Panel D).

The MSPE ratios of the LASSO and Stepwise methods relative to each benchmark, as well

as the DM test for the MSPE reduction significance, indicate that the LASSO method

generate superior forecasting accuracy compared to the four alternative benchmarks, as well

as the stepwise regression forecasting model. For example, using the 8-steps ahead forecast

horizon, we observe that the LASSO method yields significant improvements compared to

the no-change forecast and the futures forecast benchmarks, with MSPE ratios of 0.873 and

0.898, respectively. In addition, although not found to be statistically significant, LASSO

generates better forecasting performance, with fewer variables, relative to the factor-based

model. While the statistical significance of MSPE reductions cannot be fully evaluated

for EIA forecasts because of the unmatched forecast dates between EIA reports (the first

Tuesday following the first Thursday of each month) and our sample record (each Friday),

the LASSO method still exhibits MSPE ratios that are less than one. For instance, the

MSPE ratios for the 8-steps ahead forecasts is as low as 0.813, indicating superiority over

the EIA forecast.

It is also interesting to note that the Stepwise regression method also provides MSPE

ratios that are smaller than one; however, most of these ratios are greater than corresponding
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ratios from LASSO. Notably, the DM test show that the reduction in MSPE from the Step-

wise method is not statistically significant, indicating that the forecast from this approach

underperforms the LASSO model.

[Insert Table 3 Here]

Table 4 presents the Pesaran-Timmerman success ratio statistics for each method14.

These results show that all three models perform similarly, with success ratio between 53%

to 60% that are statistically significant at the 10% level or better.

[Insert Table 4 Here]

4.2 Factors Driving Crude Oil Prices

The LASSO and Stepwise methodologies are useful in identifying a subset of important

variables that are influential in determining crude oil prices. We decide to primarily focus

our results on LASSO for several reasons. First, there is evidence that multi-collinearity

problems are exacerbated for stepwise regression which could result in spurious regression

results (c.f. Harrell, 2001). In contrast, LASSO adds an additional penalty term to the cost

function which keeps the estimated value of the regression coeffi cients small, thereby reducing

the inflation in standard errors often seen in the presence of correlated data. Second, in

comparison to the stepwise method, DM tests indicate that LASSO yields significant MSPE

reductions compared to the no-change forecast. This implies that LASSO method provides

better and more consistent forecasting performance than the stepwise method. Third, the

selection effi ciency of variables under LASSO is found to be higher than the stepwise method

(20.66% versus 52.47%). We believe the lower selection percentage of LASSO is useful in

identifying a parsimonious representation of crude oil price determination. Fourth, despite

underlying differences between the two methodologies, there is evidence of a fair degree of

14By definitions of the no-change forecasts and futures’forecasts, the success ratios for these two methods
are non-existence or meaningless.
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overlap between the variables selected under LASSO and stepwise regression. The most

frequently selected variables by LASSO all correspond with the top variables under stepwise

regression, and variables that are less frequently selected variables by LASSO appear in the

bottom quartile of variables identified by the stepwise regression model.

Our regression results are found to be stable in the presence of different rolling windows.

For the purpose of discussion, we discuss results obtained from a 5-year moving window that

includes a total of 456 forecasting periods. Table 5 shows parameters selected by LASSO,

including selection frequency and selection percentage. The most frequently identified para-

meter is lagged-WTI prices, which is selected 100% of the time. This is in accordance with

prior expectations. Specifically, given the relative superiority of the no-change forecast com-

pared to other forecasting methods it is not entirely surprising that the lagged-WTI prices

is the top selected variable.

[Insert Table 5 Here]

The importance of several demand factors are also evident. Within this group, we find

world steel production, ISM index and Kilian index to be among the most important vari-

ables. We do not find GDP to contain predictive value. One possible reason for this result

is that GDP growth rates are reported quarterly, and interpolation may have reduced its

contributions to the forecasting model. In examining variables in the supply factor group,

we find OPEC Surplus, Global Production, Baltic Dirty, and Capacity Utilization Rate to

be never selected in the model; while the remaining three variables are also selected with

less than 10% frequency. Within the commodity markets group, the CRB Rind index is the

third most selected variable, which suggests the importance of common factors across the

broader commodity market space. In examining the financial group, the dollar index appears

to dominate other financial variables. The Federal Funds and T-bills interest rates are never

selected. The geopolitical factor, proxied by the number of terrorist attacks in the Middle

East and North Africa, is selected with relatively high frequency. Finally, the speculative

factor does not seem to play an influential role in driving oil prices.
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4.3 Time-Varying Influence of Driving Factors

This section investigates whether or not the significant factors that explain crude oil price

movements are found to vary over time. Since each group contain different number of

explanatory variables, instead of using selection frequency, we examine their temporal in-

fluence by showing their quarterly selection percentage. During any specific time period, if

one group shows higher selection percentage, it is likely that this group of variables are the

driving force behind crude oil price movements. Given the relative lack of importance of

speculative variables, they are not included in this analysis.

An examination of supply factors in Figure 1 indicate that their influence varies consid-

erably over time. This finding is consistent with Kilian (2009) who suggests that oil price

changes have been driven mainly by shocks in aggregate demand and precautionary demand,

rather than by oil supply shocks. However, during specific time periods, like the price run

up in 2007, they may be driven by stagnant supply as shown in Figure 1 (also see Hamilton,

2009). Notably, our results are unable to implicate supply factors as the reason behind the

steep price declines in 2008 and 2014.

[Insert Figure 1 Here]

Figure 2 shows the relationship between the demand factors and crude oil prices. Demand

factors exert their influence across most time periods, but is especially evident after 2008.

Starting 2015, their influence is found to dissipate. Overall, demand factors seem to outweigh

supply factor in determining crude oil prices.

[Insert Figure 2 Here]

Results from the financial factor group indicate the oversized importance of the dollar

index relative to other variables. Its influence is particularly evident starting with the second

quarter of 2011, as shown in Figure 3. We observe a 100% selection of this variable for 7
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quarters. We can also conclude from the results that the recent oil prices decline since mid-

2014 has a lot to do with the relative strength of the US dollar. This finding is corroborated

by the EIA.15

[Insert Figure 3 Here]

Figure 4 documents a close relationship between commodity market factors and crude

prices, especially from the onset of the second quarter of 2008. This is consistent with the

findings of Barsky and Kilian (2002) and Baumeister and Kilian (2012). The results suggest

the presence of common factors, such as fluctuations in the global business cycle, that influ-

ence prices of both crude oil and industrial commodities. Indirectly, the findings reinforce

the importance of demand factors.

[Insert Figure 4 Here]

Finally, our results establish a significant link between geopolitical security risks and oil

prices. Figure 5 show that this factor is selected only when crude oil prices are either rising

or is at a relatively high level; but it doesn’t seem to play a role in the recent decline of oil

prices starting 2014.

[Insert Figure 5 Here]

4.4 Forecasting Performance of ’Enlightened’Factor-based Model

If individual factors selected by LASSO are truly informational, it follows that we should

expect stronger results of a factor-based model that uses selected parameters identified by

LASSO. To confirm this intuition, we examine whether the prediction accuracy of the factor

model improves after dropping the less frequently selected variables. In this case, we only

keep variables selected by LASSO at a 10% frequency or higher, and estimate a revised factor

model to generate forecasts of crude oil prices. The forecasting performance of the factor

model with selected factors, at different forecast horizons, is presented in Table 6.
15https://www.eia.gov/finance/markets/financial_markets.cfm
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[Insert Table 6 Here]

The forecasting performance of the new (or ’enlightened’) factor-based model is very

encouraging. The MSPE of this model is much lower compared to benchmarks, and fur-

thermore, we find the MSPE ratios to be lower than corresponding ratios in Table 3. The

success ratio also shows significant improvements compared to a fair toss, with a maximum

success ratio of 59.3% in the one step-ahead forecast in Table 7.

[Insert Table 7 Here]

5 Results from Robustness Checks

In order to establish the robustness of our results we re-estimate each model using alternative

rolling window lengths of 6 and 7 years. The MSPE results, comparing the LASSO method

with all benchmarks, for alternative window lengths are shown in Table 8 and 9, respectively.

Consistent with earlier results, for most forecast horizons, LASSO yields lower MSPE ratios

relative to other benchmark models as well as the stepwise method16.

[Insert Tables 8 and 9 Here]

We also calculate corresponding success ratios for LASSO and the revised factor-based

model using alternative rolling window lengths of 6 and 7 years.17 Overall the results from

robustness tests continue to affi rm the significance of LASSO in improving the forecast

accuracy of the factor-based model.

6 Conclusions

There is widespread agreement that fluctuations in energy prices carry important impli-

cations across a wide range of economic activities. Yet academic research appears to be
16The only non-compliant result (i.e., MSPE > 1) is the 8-step ahead forecast when compared to the EIA

forecast using the 7-year rolling window length.
17These results are available from the authors upon request.
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somewhat hamstrung on its ability to generate reliable forecasts of oil prices. However,

this hasn’t dissuaded commodity market participants to seek and identify important factors

that drive crude oil price movements, and using this information to construct better price

forecasting models. Our study finds that the LASSO method provides superior forecasting

results compared to the no-change forecast and other econometric-based forecasting models.

Relative to alternative models, LASSO yields statistically significant MSPE reductions as

well as improvements in predicting directional movements in prices.

The identification of important factors by LASSO provide motivation to examine their

time-varying influence on prices. We find that the lagged-WTI price is the most important

determinant of crude oil prices. Our results also document that demand factors (specifically,

world steel production, Kilian index and ISM index), commodity market factors (CRB rind

index), financial factor (dollar index) and the geopolitical risk factor (incidence of terrorist

attacks in the Middle East and North Africa) are among the most influential parameters.

Collectively, these factors outweigh the importance of supply and speculative factors. An

important implication of our finding is that the recent decline in oil prices (since mid-2014)

can be attributed to a combination of demand, commodity market and financial-related

variables. Finally, an ’enlightened’factor model that includes parameters selected by LASSO

yields significant improvements in forecast accuracy, with success ratios of about 60%.

We suggest several possible extensions to our study. First, one could try and implement

a logistic-LASSO method to obtain further improvements on the success ratio (see Harrell

2001). Second, the conversion of data from relatively low frequency to high frequency may

have resulted in loss of information that negatively impacted the forecast accuracy of this

study. Therefore, we posit that an alternative selection of data at the same frequency might

avoid the noise from interpolation. Third, it might be useful to try the simple moving average

of prices as an additional way to utilize information contained in lagged prices (see Han, Hu

and Yang, 2016). Fourth, it remains to be determined as to which subset of non-energy

commodity prices is most informative in forecasting oil prices. Lastly, as suggested by Wang
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and Yang (2010), it might be interesting to examine whether trading profits can be generated

using LASSO and other forecasting models. These issues are left unexplored in this study,

but provide rich fodder for future research.
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Table 5: Variable selection from LASSO

Notes: This table reports the most frequently selected factors with five year rolling window using the
LASSO method. We only shows factors selected by LASSO at the 5% percent frequency or more. Factors
are sorted by selected frequency.

Variable name Selected Frequency Selected percentage
lag_WTI 456 1.000
Steel World 345 0.757
CRB Rind 332 0.728
ISM 190 0.417
Terrorist 181 0.397
DXY 180 0.395
Kilian index 107 0.235
Steel China 67 0.147
MSCI 41 0.090
Global Export 34 0.075
Global Stock 23 0.050
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Table 6: LASSO Selected Factor-based Model

Notes: This table shows forecasting results using LASSO selected factors factor-based model. The
forecasting results are compared with with no-change forecast, EIA forecast, Futures-based forecast, and
the full factor-based models. Statistical signficance is provided by the Diebold-Mariano test. ∗∗∗, ∗∗ and ∗

denote significance at the 1%, 5% and 10% level, respectively.

Weeks Benchmark Selected Factors

MSPE MSPE MSPE Ratios DM-Tests

Panel A: No-Change Model as Benchmark
1 10.218 8.916 0.873 0.005∗∗∗

2 24.766 21.204 0.856 0.011∗∗

4 57.947 47.758 0.824 0.010∗∗

8 144.080 117.759 0.817 0.009∗∗∗

Panel B: Futures Forecasting as Benchmark
1 10.164 8.916 0.877 0.547
2 22.778 21.204 0.931 0.234
4 55.582 47.758 0.859 0.033∗∗

8 140.128 117.759 0.840 0.024∗∗∗

Panel C: Full Model as Benchmark
1 10.050 8.916 0.887 0.019∗∗

2 24.263 21.204 0.874 0.014∗∗

4 55.365 47.758 0.863 0.012∗∗

8 127.359 117.759 0.925 0.169

D: EIQA’s Forecast as Benchmark
4 53.908 47.758 0.886 -
8 154.617 117.759 0.762 -
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Table 7: Forecasting Accuracy of the LASSO Selected Factor-based Model —
Success Ratio

Notes: This table reports the forecasting success ratio for the LASSO selected factor-based model with
different horizons. Statistical signficance of the success ratio is tested using the Pesaran and Timmermann
(2009) test. The null hypothesis is of no directional accuracy. ∗∗∗, ∗∗ and ∗ denote significance at the 1%,
5% and 10% level, respectively.

Weeks Success Ratio PT-Test

1 0.593 3.989∗∗∗

2 0.551 2.190∗∗

4 0.555 2.339∗∗

8 0.583 3.501∗∗∗
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Figure 1: Supply Factors and Crude Oil Prices

Notes: The figure shows the relationship between quarterly crude oil prices and the percentage of inclusion
of the Supply Factors in the LASSO model with five year moving windows. In the graph, the left Y-axis
represents the percentage of selection of the Supply factors and the right Y-axis represents the crude oil price
(quarterly average of weekly prices).
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Figure 2: Demand Factors and Crude Oil Prices

Notes: The figure shows the relationship between quarterly crude oil prices and the percentage of inclusion
of the Demand Factors in the LASSO model with five year moving windows. In the graph, the left Y-axis
represents the percentage of selection of the Demand factors (quarterly average of weekly models) and the
right Y-axis represents the crude oil price (quarterly average of weekly prices).
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Figure 3: Dollar Index and Crude Oil Prices

Notes: The figure shows the relationship between quarterly crude oil prices and the percentage of inclusion of
the Dollar Index (quarterly average of weekly models) in the LASSO model with five year moving windows.
In the graph, the left Y-axis represents the percentage of selection of the Dollar Index and the right Y-axis
represents the crude oil price (quarterly average of weekly prices).

 

0

40

80

120

160

0

0.5

1

1.5

2

Dollar index

Crude oil prices

38



Figure 4: Commodity Market Factors and Crude Oil Prices

Notes: The figure shows the relationship between quarterly crude oil prices and the percentage of inclusion
of the Commodity Market Factors (quarterly average of weekly models) in the LASSO model with five year
moving windows. In the graph, the left Y-axis represents the percentage of selection of the Commodity
Market Factors and the right Y-axis represents the crude oil price (quarterly average of weekly prices).
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Figure 5: Political Factors and Crude Oil Prices

Notes: The figure shows the relationship between quarterly crude oil prices and the percentage of inclusion
of the Political Factors (quarterly average of weekly models) in the LASSO model with five year moving
windows. In the graph, the left Y-axis represents the percentage of selection of the Politics Factors and the
right Y-axis represents the crude oil price (quarterly average of weekly prices).
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