
THESIS

RNA SECONDARY STRUCTURE PREDICTION USING ALPHAZ

Submitted by

Tanveer Pathan

Department of Electrical and Computer Engineering

In partial ful�llment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2010

COLORADO STATE UNIVERSITY

August 18, 2010

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER

OUR SUPERVISION BY TANVEER PATHAN ENTITLED RNA SECONDARY

STRUCTURE PREDICTION USING ALPHAZ BE ACCEPTED AS FULFILLING

IN PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Committee Member : Sudeep Pasricha

Committee Member : A. P. Willem Bohm

Advisor : Sanjay Rajopadhye

Department Head : Anthony A. Maciejewski

ii

ABSTRACT OF THESIS

RNA SECONDARY STRUCTURE PREDICTION USING ALPHAZ

Optimizing complex algorithms using conventional programming languages can

be a di�cult task. The performance aspect of such implementations relies on the

programmer and the target architectures. Minor alterations to the algorithm can

result in a considerable amount of reprogramming e�ort.

In our work, we experiment with equational programming using the AlphaZ tool.

We illustrate our work using a fairly complex algorithm for RNA secondary structure

prediction. The algorithm is extracted from the UNAFold software package, a

huge C library, by identifying the time consuming parts. It is then represented as

equations, which are transformed for optimizations, followed by code generation

and �nally validating the generated code by plugging it back into the original C

program. The algorithm, in its basic form, has complexity O(N4). We show that

the optimized O(N3) algorithm can be derived systematically using AlphaZ. We

used the AlphaZ system to automatically generate a C program that implements

this improved algorithm. Our work forms the basis for future optimizations and

also acts as a case-study for polyhedral equational programming in the real world.

Tanveer Pathan
Department of Electrical and Computer Engineering
Colorado State University
Fort Collins, CO 80523
Fall 2010

iii

ACKNOWLEDGEMENTS

I sincerely thank my adviser Dr. Sanjay Rajopadhye for his continuous support

and guidance throughout my stay at Colorado State University. I am very grateful

to have had the opportunity to work with him in the �eld of High Performance Com-

puting. He has also helped me experience the industrial aspects of High Performance

Computing by providing me opportunities to intern at the Los Alamos National Lab-

oratory and Apolent Corporation. He has been a mentor to me and has constantly

guided me through the di�cult times during this entire period.

I would also like to thank Dr. A. P. Willem Bohm and Dr. Sudeep Pasricha for

being on my committee and for their valuable feedback with respect to my work. I

have had the opportunity to learn from Dr. Bohm through his class and it was a

delightful experience. I thank Dr. Pasricha for accepting my request for being on

the committee.

I would like to thank Dr. Craig Rasmussen for being my mentor and providing

both personal and professional support during my stay at the Los Alamos National

Laboratory.

I would like to thank my lab mates for their support and feedback during the

entire course of my research. Being a part of the MELANGE research group has

helped me gain some wonderful experiences which have helped me and will continue

to help me through the rest of my professional life. I would like to specially thank

Dr. DaeGon Kim and Tomofumi Yuki for helping me by �xing the bugs in the

AlphaZ tool as quickly as possible. I would also like to thank Dr. Gautam Gupta

and Pradeep Srinivasa for their invaluable support and guidance, and for being such

great friends.

iv

I would like to thank Elisabeth Wadman, Karen Ungerer, Sharon Van Gorder

and Kim Judith for helping me with all the administrative process.

I would like to express my gratitude towards all my friends for supporting me

through the di�cult times and always being there for me when I needed them. I

specially thank my friends Guhan, Sridhar, Bala, Anand, Avantika and Karthik for

their continuous support. I thank my parents for their blessings and guidance which

have helped me get through di�cult situations. I thank my brother for his support

and wishes.

On an ending note, I extend my sincere regards to the almighty God, the most

bene�cent and the most merciful.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 The Polyhedral Model . 2

1.2 RNA Secondary Structure Prediction . 2

2 Background 5

2.1 AlphaZ . 5

2.1.1 Alphabets . 6

2.1.1.1 Structure of an Alphabets program 6

2.1.1.2 Domains in Alphabets . 7

2.1.1.3 Equations in Alphabets . 7

2.1.2 Interactive Console . 9

2.1.3 AlphaZ Utilities . 9

2.2 RNA Secondary Structure Prediction . 11

2.2.1 RNA Secondary Structure . 11

2.2.2 Prediction Algorithm based on Thermodynamic model 12

2.3 Related Work . 14

3 Implementation 16

3.1 Pro�ling the UNAFold program . 16

3.2 Extracting Equations . 19

3.2.1 A Simple Example . 20

3.2.2 UNAFold Equations . 22

3.3 Optimizations . 27

3.3.1 Mathematical derivation of Fast-i-loops 28

3.3.2 Fast-i-loops using AlphaZ . 31

3.4 Code generation . 40

vi

4 Results 41

5 Conclusion And Future Work 46

5.1 Future Work . 46

vii

LIST OF FIGURES

1.1 Primary, secondary and tertiary structures for tRNA. [2] 3

2.1 Block diagram showing the AlphaZ system framework from a user's per-

spective. 6

2.2 Structure of an Alphabets program. 7

2.3 Geometrical representation of the domain DX 8

2.4 Sub-structures within the RNA secondary structure [20]. 12

3.1 Flowchart showing the entire higher level process of using AlphaZ. 17

3.2 UNAFold code structure . 17

3.3 A Simple C function . 20

3.4 Alphabets equivalent of the C function in �gure 3.3 21

3.5 Alphabets system declaration for �llMatrices1 22

3.6 Alphabets equivalent of equation (3.2) 24

3.7 Alphabets equivalent of equation (3.3). 25

3.8 Alphabets equivalent of equation (3.4). 25

3.9 Alphabets equivalent for equation (3.5) 25

3.10 Alphabets equivalent of equation (3.6) 26

3.11 Alphabets equivalent for equation (3.7) 26

3.12 Alphabets equivalent for equation (3.8) 26

3.13 Alphabets equivalent for equation (3.9) 27

3.14 �llMatrices1 system with the new local variable Ebi. 31

3.15 New Alphabets equations for QBI. 32

3.16 Introducing Ebi_special and Ebi_generic in the �llMatrices1 system. . . 32

3.17 Alphabets equation for Ebi_special. 33

viii

3.18 Alphabets equation for Ebi_generic. 33

3.19 Alphabets equation for Ebi. 33

3.20 QBI after SubstituteByDef command. 34

3.21 QBI after ReductionDecomposition command. 34

3.22 QBI after NormalizeReductions command 34

3.23 QBI after RenameVariable command. 35

3.24 QBI_X after PermutationCaseReduce command 35

3.25 QBI_X after NormalizeReductions and RenameVariables commands. . 36

3.26 X after SubstituteByDef command. 36

3.27 X after FactorOutFromReduction transformation. 36

3.28 X after NormalizeReductions and RenameVariable transformations. . . 37

3.29 Y after SimplifyingReductions transformations. 37

3.30 Y after NormalizeReductions and RenameVariable transformations. . . 38

3.31 Script for deriving Fast-i-loops algorithm using AlphaZ. 39

4.1 Execution time comparison between original and fast-i-loops version of

RNA secondary structure prediction algorithm generated using Alp-

haZ on a 3.0 GHz processor with 16 GB of memory. 42

4.2 Execution time comparison using logarithmic scale between original and

fast-i-loops version of RNA secondary structure prediction algorithm

generated using AlphaZ on a 3.0 GHz processor with 16 GB of memory. 43

4.3 Speed Up of the fast-i-loops version against the original version of the

RNA secondary structure prediction algorithm generated using Alp-

haZ on a 3.0 GHz processor with 16 GB of memory. 44

ix

LIST OF TABLES

3.1 Time pro�le for UNAFold C program. 18

3.2 SLOC for UNAFold C program . 19

4.1 Execution time of UNAFold C program vs WriteC generated program. . 41

x

Chapter 1

Introduction

Bioinformatics is the application of statistics and computer science to the �eld of

molecular biology. The �eld of bioinformatics is advancing at a rapid rate. With

these advances, various algorithms are being developed to simulate sub-�elds like

RNA folding, protein folding, sequence alignment and so on, because experimental

methods to realize the results for these sub-�elds are expensive and time consuming.

Each of these sub-�elds have various algorithms to achieve their end results, which are

computationally intensive, often with correspondingly signi�cant space requirements.

Since processor technologies are no longer scaling with respect to Moore's law, we

are now in the era of multi-core processors and parallel architectures. Programming

for these architectures is a challenging and time consuming task for an algorithm de-

veloper. Hence, the task of implementing various bioinformatics algorithms, which

are generally complex, turns out to be a strenuous one when considering these ar-

chitectures. Fortunately, most of these algorithms involve mathematical operations

over a�ne control loops (ACLs). This enables us to represent these algorithms in

the polyhedral model, which is a mathematical framework for representing the itera-

tion space of these loops along with the equational speci�cation of the computations

within the iteration space. The polyhedral representation enables us to apply trans-

formations on the algorithm in a easy and precise manner. One such transformation

is code generation, which produces a program to implement the algorithm on the

speci�ed target architecture. Since most bioinformatics algorithms are designed us-

ing mathematical equations, writing a speci�cation for the polyhedral model can be

1

a relatively easy task for an algorithm developer, which can then be transformed into

code for a speci�ed architecture using code generators. Ideally, this would eliminate

the need to write programs by hand for the new upcoming architectures including

multi-core processor architectures.

1.1 The Polyhedral Model

The polyhedral model can be viewed as a mathematical framework where the algo-

rithmic speci�cation is represented in the form of equations. These equations are

associated with domains which represent regions in the space where the equational

speci�cation holds. The domains for these equations are required to be strict, so

that computations are de�ned for every point in the domain space.

The polyhedral model allows us to realize a general view of the algorithms, in the

form of equational speci�cation, without the necessity to know the target architecture

on which the algorithms are to be implemented. These equational speci�cations can

later be transformed to programs for one or many target architectures with the help

of code generators developed for the polyhedral model.

At Colorado State University, our research group is developing a tool called Alp-

haZ to provide the functionality of the polyhedral equational model. It uses a basic

transformation engine developed by COREquations [14]. The AlphaZ client and the

COREquations engine together provide access to the various transformations avail-

able in the framework. This framework takes in an Alphabets program as input

which is a list of equations specifying the computation along with their associated

domains. The frameworks enables the user with the ability to analyze, transform

and generate code for the input Alphabets program.

1.2 RNA Secondary Structure Prediction

In this thesis, we illustrate the advantages of using equational programming for

realizing bioinformatics algorithms. Speci�cally, we concentrate on one of the bioin-

formatics algorithms, RNA Secondary Structure Prediction, also known as RNA

2

Figure 1.1: Primary, secondary and tertiary structures for tRNA. [2]

folding.

RNA molecules play a very important role in the process of protein synthesis

which is essential to all living organisms on this planet. Also, viruses consist of

RNA molecules and their biological role can be deduced from the functionality of

the RNA molecules. This functionality of RNA molecules is determined by its sec-

ondary and tertiary structures shown in �gure 1.1. However, as mentioned earlier,

the experimental realization of these structures is a very expensive and time consum-

ing process and therefore one has to resort to computational methods of determining

secondary structures such as Comparative Sequence Analysis and Thermodynamics

based structure prediction. In this thesis, we focus on one of the thermodynamics

based structure prediction algorithm implemented in the UNAFold software pack-

age [22] developed by Markham and Zuker. The current implementation of UNAFold

is composed of sequential C programs and Perl scripts. The UNAFold package ad-

dresses the folding of one single-stranded nucleotide sequence and the hybridization

between two single-stranded nucleotide sequences.

In this thesis, we only focus on the single-stranded nucleotide sequence folding

algorithm of the UNAFold package. We extract the equational speci�cations from

3

the UNAFold C program and present it in the form of an Alphabets program, which

can then be analyzed and transformed to explore the scope of optimizations that can

be performed within the polyhedral framework. Using the transformations provided

in AlphaZ, we systematically derive the O(N3) algorithm, proposed by Lyngso et.

al. [20], starting from the original O(N4) algorithm. We then use the demand-

driven code generator in AlphaZ to generate the program for the derived O(N3)

algorithm and plug it back into the original UNAFold C program. Our work justi�es

that AlphaZ can make a transition from handling toy problems like matrix-matrix

multiply and LU decomposition to tackling real-life applications like RNA secondary

structure prediction.

In the following chapter, we introduce AlphaZ, a system for programming us-

ing equations, and the algorithm for RNA secondary structure prediction used in

UNAFold [22]. The next chapter will explain the details involved with respect to

the implementation using the AlphaZ system, including a formal derivation for the

O(N3) algorithm proposed by Lyngso et. al. [20]. This is followed by a chapter

showing the results of our work. The �nal chapter concludes this document along

with the prospective work that would follow.

4

Chapter 2

Background

In this chapter, we introduce the AlphaZ system which enables programming using

equations. We explain the semantics of Alphabets, the input language for AlphaZ,

followed by the various transformations available in the AlphaZ system. Later, we

explain the algorithm for RNA secondary structure prediction. And, �nally, we

introduce the state of the art in RNA secondary structure prediction.

2.1 AlphaZ

AlphaZ is a system for polyhedral equation transformation and code generation. It

makes extensive use of the COREquations transformation engine[14]. The CORE-

quations transformation engine implements the polyhedral model framework based

on the Parma Polyhedral Library [5]. It provides AlphaZ with a basic foundation by

exporting functionality like Alphabets program parser, AST constructor, basic poly-

hedral operations, transformations, analyses and so on. AlphaZ communicates with

the COREquations engine through a client-server setup. In addition to the function-

ality imported from COREquations engine, AlphaZ provides its own transformations

and analyses. The interaction with the COREquations engine is completely invisible

to the user, who simply sees an integrated system.

The block diagram in �gure 2.1 shows the functionality aspect of the AlphaZ

system framework from a user's perspective. The AlphaZ system takes in an Alpha-

bets program as input. Within the AlphaZ system, the Alphabets program is parsed

to create an Abstract Syntax Tree (AST) which acts as an intermediate representa-

5

Figure 2.1: Block diagram showing the AlphaZ system framework from a user's
perspective.

tion for the system. Transformations and analyses are applied on the AST to either

modify or analyze the AST, respectively. The output from the AlphaZ system is

obtained from the AST by either unparsing it to get another Alphabets program or

by using a code generators to get programs that run on the speci�ed architectures.

The AlphaZ system is currently under active development and is used as a research

tool. As a result, it has some limitations, which will be mentioned as needed.

2.1.1 Alphabets

Alphabets is an equational programming language which uses equations to specify

the computations and domains to specify the computational space, and is based on

the polyhedral model. It is an extension to the earlier Alpha [25, 38, 13] language

and hence is very close in terms of syntax and semantics.

In this section, we introduce the key elements of the language necessary to un-

derstand this document. For a complete grammar of Alphabets, one may refer to [1].

2.1.1.1 Structure of an Alphabets program

Figure 2.2 shows the syntactic structure of an Alphabets program. An Alphabets

program begins with declarations for the external functions used in the program.

This is followed by a number of Alphabets system declarations. The system declara-

tion consists of a system name with the associated size parameters along with their

6

[External function declarations]

affine systemName {sizeParameters | sizeParameterDomains}

given

[data type] inputVars {domain};

returns

[data type] outputVars {domain};

using

[data type] localVars {domain};

through

[Equations defining outputVars and localVars]

.

Figure 2.2: Structure of an Alphabets program.

domains, a list of input, output and local variable declarations, and the equations

de�ning the output and local variables. The keywords given, returns and using

identify the input, output and local variable declarations respectively. Variable dec-

laration consists of data type, variable name, and its domain, the set of index points

where the variable is de�ned. The domain is a union of polyhedra, each one de�ned

by a set of constraints. The through keyword identi�es the functionality of the sys-

tem which is speci�ed using a list of equations. The period at the end marks the end

of the system de�nition. An Alphabets program can contain more than one system

in it.

2.1.1.2 Domains in Alphabets

Domains in Alphabets take the form {indexList | indexConstraints}. As an

example, consider a domain, DX = {0 ≤ i ≤ j ≤ N}, which in Alphabets syntax

is written as {i,j | 0<=i<=j<=N}, where i and j are indices suggesting that the

domain is two dimensional and N is a parameter for the domain. Figure 2.3 shows

the geometrical representation of the domainDX which illustrates that it is a triangle,

due to the constraint i ≤ j, on the two-dimensional (i, j) plane.

2.1.1.3 Equations in Alphabets

Equations in Alphabets are of the form var = expr; where var is the computed

variable and expr is an Alphabets expression.

An Alphabets expression can be of the following forms,

7

Figure 2.3: Geometrical representation of the domain DX .

• Atomic: a variable or a constant.

• Index: val (indexList->f (indexList)) or [f (indexList)] that is, the

value of an a�ne function f applied to the list of indices.

• Pointwise Operators: There are three types of pointwise operators in Al-

phabets, as listed below.

◦ Operator: expr op expr, where op is a binary operator.

◦ Conditional: if (condition) then expr1 else expr2

where condition is an expression which evaluates to a boolean

type. The conditional expression in Alphabets is strict, that is, both true

and false cases should be de�ned.

◦ External function application: funcName(expr1, expr2, ... ,

exprN) where funcName is the name of the external function to be called.

• Case: case expr1; expr2; ...; exprN; esac, which is list of semi-colon

separated expression enclosed by the keywords case and esac.

8

• Dependence: (indexList -> f (indexList))@expr or

expr[f (indexList)] where f is an a�ne dependence function.

• Restriction: {domain}:expr that is, expr is restricted to domain.

• Reduction: reduce(op ,(indexList->f p(indexList),expr) where op is a

commutative and associative binary operator and fp is the projection function

which speci�es the projection along which the reduction is to applied. Alternate

syntax for a reduction expression is OP ([fp(indexList)], expr) where OP is

either MAX , MIN or SUM .

Also, expr can comprise of multiple Alphabets expressions nested together.

Equations in Alphabets are strict, which means expr should be de�ned at every

point in the domain of var. The domain of the expression need not be speci�ed

unless its a restriction expression. In all other cases, AlphaZ evaluates their domains

by using the rules of the polyhedral model.

2.1.2 Interactive Console

From an AlphaZ user perspective, the interactive console is an important part of

the tool as it provides a means to interact with the underlying AlphaZ system.

Currently, AlphaZ adopts BeanShell [28] console to export its transformations and

analyses in the form of commands to the user. BeanShell also enables the user to

apply a sequence of transformations on the input Alphabets program through scripts

which call the required transformations in the form of commands. If a user does not

prefer to use the interactive console, he/she can choose to adopt the command line

interface by using the BeanShell Interpreter instead.

2.1.3 AlphaZ Utilities

The AlphaZ system provides many utilities to modify the input Alphabets program.

These utilities are accessed though commands from the BeanShell console. AlphaZ

broadly classi�es these commands into six categories which are listed below.

9

1. Basic

2. Analysis

3. Transformation

4. Domain Calculator

5. Expression

6. TPM (Time, Processor and Memory) Speci�cation

In this section, we just focus on the commands we use in our work. However, a

complete guide on the commands can be accessed either through the Help utility or

the AlphaZ website [27]. The following is the list of commands used in our work.

More details on these commands are provided in the Appendix.

• ConnectServer(String serverName)

• ReadProgram(String inputFilePath)

• Show() and AShow()

• Save(String outputFilePath) and ASave(String outputFilePath)

• RenameVariable(String sysName, String oldName, String newName)

• Normalize()

• FactorOutFromReduction(String sysName, String varName, int occr,

int optr, int oprd)

• NormalizeReductions(boolean unique, String sysName, String

varName, int occr)

• PermutationCaseReduce(String sysName, String varName)

• ReductionDecomposition(String sysName, String varName, int occr,

String func1, String func2)

10

• RemoveUnusedVariables(String sysName, boolean removeInputs)

• SimplifyingReductions(String sysName, String varName, String

reuse, int occr)

• SubstituteByDef(String sysName, String trgVar, String srcVar,

int numOccr)

• WriteC(String sysName, String dirPath)

2.2 RNA Secondary Structure Prediction

2.2.1 RNA Secondary Structure

RNA (Ribonucleic acid) molecule is made up of a single-stranded sequence of nu-

cleotide units. These nucleotide units consist of a nitrogen base, a ribose sugar and

a phosphate. The nitrogen bases in the nucleotide units have a tendency to chem-

ically interact with one another to form covalent hydrogen bonds resulting in base

pairs. This causes the nucleotide sequence to fold on itself. RNA nucleotide units

typically constitute of four such nitrogen bases, namely, Adenine (A), Guanine (G),

Cytosine (C) and Uracil (U). According to Watson-Crick base pairing rules, Adenine

(A) can pair with Uracil (U) and Guanine (G) can pair with Cytosine (C). Under

some special circumstances, Guanine (G) can pair with Uracil (U) which is called

the wobble base pair. These base pairings among the bases in the sequence result in

the secondary structure. In reality, knots and pseudoknots can occur, but in many

algorithms that predict the secondary structure they are ignored for computational

simplicity. A pseudoknot free folding is planar. In order to maintain the planar

structure, pseudoknots are avoided by imposing a restriction on base pairing rules

where a base pair cannot share bases with any other base pair in the structure and

also, that a base can contribute to only one sub-structure.

Figure 2.4 shows a typical RNA secondary structure comprising of all the di�erent

sub-structures. The sub-structure with two consecutive bases pairs is called a stacked

pair or a stack. The sub-structure with one closing base pair and no enclosed base

11

Figure 2.4: Sub-structures within the RNA secondary structure [20].

pairs is called a hairpin loop. The sub-structure with one closing base pair and

exactly one enclosed base pair is called an interior loop. An interior loop having a

length of zero on one of the sides is called a bulge. The sub-structure with one closing

base pair and more than one enclosed base pairs is called a multibranched loop or

a multiloop. Any unpaired base or base pair which does not belong to any of the

sub-structures is called as external or dangle.

2.2.2 Prediction Algorithm based on Thermodynamic model

Thermodynamic based RNA secondary structure prediction algorithm �nds the op-

timal structure for a given RNA sequence with minimum free energy. It is devised

around dynamic programming [8] techniques to optimize the associated cost func-

tion, which is the free energy for a subsequence (i, j) where i and j are the nucleotide

(base) indices and 1 ≤ i < j ≤ N for a RNA sequence s with N nucleotides (bases).

The free energy of subsequences for the di�erent kinds of substructures are stored in

three data arrays, namely, Q, Q′ and QM , which are then traced back to �nd the

optimal structure.

The recurrence equations to �ll these arrays, from [21], are presented below for

convenience.

For 1 ≤ i < j ≤ N , we have

12

Q(i, j) = min

b+Q(i+ 1, j),
b+Q(i, j − 1),
c+ END(i, j) +Q′(i, j),
b+ c+ E5′D(i+ 1, j) +Q′(i+ 1, j),
b+ c+ E3′D(i, j − 1) +Q′(i, j − 1),
2b+ c+ EDD(i+ 1, j − 1) +Q′(i+ 1, j − 1),
QM(i, j)

(2.1)

Q′(i, j) = min

EH(i, j)

ES(i, j) +Q′(i+ 1, j − 1)

min
i<i′<j′<j

{EBI(i, j, i
′, j′) +Q′(i′, j′)}

a+ c+ END(j, i) +QM(i+ 1, j − 1)

a+ b+ c+ E3′D(j, i) +QM(i+ 2, j − 1)

a+ b+ c+ E5′D(j, i) +QM(i+ 1, j − 2)

a+ 2b+ c+ EDD(j, i) +QM(i+ 2, j − 2)

(2.2)

QM(i, j) = min
i+1≤k≤j−2

{Q(i, k − 1) +Q(k, j)} (2.3)

where a, b, c are constants for calculating energy of a multibranched loop and

ES, EH , EBI , E5′D, E3′D, END, EDD are energy functions contributing for di�erent

sub-structures. ES(i, j) is the energy of the stacked pair with [i.j] as the closing base

pair and [i+ 1.j − 1] as the enclosed base pair. EH(i, j) is the energy of the hairpin

loop with [i.j] as the closing base pair. EBI(i, j, i
′, j′) is the energy of the internal

loop (including bulges) with [i.j] as the closing base pair and [i′.j′] as the enclosed

base pair. E5′D(i, j) is the terminal stacking energy of the base pair [i.j] with the

unpaired base i− 1 at 5′ end. E3′D(i, j) is the terminal stacking energy of the base

pair [i.j] with the unpaired base j + 1 at 3′ end. END(i, j) is the terminal stacking

energy of the base pair [i.j] with the no dangling or unpaired bases at either 3′ end or

5′ end. EDD(i, j)is the terminal stacking energy of the base pair [i.j] with unpaired

bases i− 1 and j + 1 at both 5′ and 3′ ends respectively.

When the third term in equation (2.2) is observed, we notice that its computa-

tional domain is four dimensional, as indicated by the presence of four free index

variables, i, j, i' and j'. As a result, the computational complexity of this algorithm

is O(N4). In order to avoid huge execution times, a common heuristic is adopted.

13

The heuristic is to restrict the size of internal loops to k which is usually 30 [17].

With this heuristic, the complexity of evaluating internal loops reduces to O(k2N2).

However, in 1999, Lyngso et. al. [20] derived a new method of evaluating internal

loops with O(N3) complexity which does not restrict the size of internal loops to

k. With O(N3), the execution time is still large. But, when the heuristic is applied

to O(N3) algorithm, the complexity reduces O(kN2), thereby reducing the execu-

tion time. However, the O(N3) algorithm has never been implemented in the public

release of the software.

2.3 Related Work

Many algorithms exist for the RNA secondary structure prediction problem along

with the sequential and parallel implementations. A web server based application

Mfold [41], written in FORTRAN and C, implements the algorithm [43, 42] based on

calculating minimum free energy of the structure using thermodynamic data from

Mathews et. al. [23]. The UNAFold software [22] is an extension and update to

Mfold written in C and Perl using the algorithms described in [21] which forms the

basis for our work.

The Vienna RNA package [17] implements prediction of secondary structure using

two approaches, minimum free energy [43, 42, 40] and partition functions [26], and

targets both sequential and parallel architectures with distributed memory.

GTfold [24] implements the minimum free energy algorithm [43, 42, 40] along with

the optimization proposed by Lyngso et. al. [20] on shared memory architectures

using OpenMP [3] parallelization. The work of Jacob et. al. [18] implements the

maximum base pairing algorithm by Nussinov [29] on Field Programmable Gate

Arrays (FPGAs) using systolic array synthesis [31]. Their recent work [19] tackles the

implementation of Zuker algorithm [40] on FPGAs. Rizk et. al. [37, 36] implemented

the algorithms in UNAFold [22] on Graphic Processing Units (GPUs) exploiting

parallelism at multiple levels using CUDA [30].

More recent e�orts [32, 35, 34, 39, 4, 9, 10, 11, 12] involve the realization of al-

14

gorithms predicting secondary structures including pseudoknots which usually tend

to have a computational complexity of O(N5). NUPACK [39, 10, 11, 12], pknot-

sRG [33, 34] and pknotsRE [35] are some of applications which implement these

algorithms.

15

Chapter 3

Implementation

The RNA secondary structure prediction algorithm proposed in [21], is currently

implemented using C in the UNAFold software package [22]. In this chapter, we

will systematically implement the RNA secondary structure prediction algorithm in

AlphaZ. The �owchart in �gure 3.1 illustrates the procedure that we followed to

realize this implementation. We start by pro�ling the C program which implements

the RNA secondary structure prediction algorithm to identify the compute-intensive

parts. The compute-intensive part is rewritten in Alphabets by using the equations

extracted from the C program. The Alphabets program is then loaded into the Alp-

haZ system to carry out the necessary transformations for optimizing the algorithm.

This is followed by code generation. The generated code is then plugged back into the

UNAFold C program to replace the compute-intensive part. The following sections

in this chapter explain these steps in detail.

3.1 Pro�ling the UNAFold program

For the purpose of time pro�ling, the UNAFold program for RNA secondary structure

prediction consists of the four following modules as shown in �gure 3.2 .

1. Input module: This module comprises of functions to parses command line

inputs and read the input �le containing the RNA sequence.

2. Energy Table Initialization (ETI) module: This module comprises of

functions to initialize the required energy tables which assist in energy function

16

Figure 3.1: Flowchart showing the entire higher level process of using AlphaZ.

Figure 3.2: UNAFold code structure

17

Sequence

length

Input

Module

ETI

Module

Algorithm

Module

T/O

Module
Total

1000 1 55 1678 15 1749 Time(ms)

0.057 3.145 95.940 0.858 100 Percentage

5000 1 631 225467 54 226153 Time(ms)

4.4e-4 0.279 99.697 0.024 100 Percentage

10000 1 2401 2661763 242 2664407 Time(ms)

4.0e-5 0.090 99.901 0.009 100 Percentage

Table 3.1: Time pro�le for UNAFold C program.

calculations.

3. Algorithm module: This module comprises of one function namely �llMa-

trices1() which implements the RNA secondary structure prediction algorithm

and �lls the three arrays Q, Qprime and QM to compute the minimum free

energy and the RNA secondary structure.

4. Traceback/Output (T/O) module: This module comprises of functions for

traceback to reconstruct the optimal structure from the three arrays Q, Qprime

and QM. It also writes the optimal secondary structure for the RNA sequence

to an output �le.

The UNAFold program for RNA secondary structure prediction is pro�led to measure

the time spent in each of these modules. The purpose of this time pro�le is to validate

our hypothesis that the algorithm module accounts for majority of the execution

time. This implies that the algorithm module is to be rewritten in Alphabets so

that it can be optimized using AlphaZ. It also implies that the other modules can

be reused in their original form without the necessity for being rewritten. Table 3.1

shows the time pro�le with varying sequence lengths. It can be seen that about 99

percent of the time is spent in the algorithm module which calculates the Q, Qprime

and QM arrays. Hence, it can be deduced that the algorithm for �lling these arrays

is the compute intensive part of the UNAFold program for RNA secondary structure

prediction.

18

Module Source Lines of Code

Input 410

Energy Table Initialization 1070

Algorithm 120

Traceback/Output 1500

Total 3100

Table 3.2: SLOC for UNAFold C program

We use the Source Lines of Code (SLOC) metric to provide an estimate of the

size of the UNAFold C program, namely, hybrid-ss-min.c as show in the table

3.2 . From this table, we see that a large part of the code implements the Input,

Energy Table Initialization and Traceback/Output modules. The part of the code

implementing the Algorithm module is just 120 lines. This implies that we can reuse

2980 lines of source code from the UNAFold C program with slight modi�cations

which make it compatible with the code generated from AlphaZ.

3.2 Extracting Equations

The equations for RNA secondary structure prediction described in section 2.2.2

cannot be directly translated to an Alphabets program as they do not have the

necessary and complete domain speci�cation associated with them. Hence, there is

a need to extract these equations from the C program, hybrid-ss-min.c, of the

UNAFold software package. We can extract the complete and exact domains for

these equations by inspecting the iteration spaces of these computations in the C

program. These new equations with their domain speci�cations can now be written

as an Alphabets program which forms the basis for the rest of our work.

The equational speci�cation representing the RNA secondary structure prediction

algorithm can be extracted from the C program in two ways namely, automatic

and manual. The automatic extraction term is a bit misleading as the tools which

implement this require the input C program to comply with speci�c formats. This

is mainly because these tools are still under development and extracting equations

from a generic C program is a di�cult problem. One such tool is FADA (Fuzzy

19

void foo (int N, int *A, int *B, int *C)

{

int i;

for (i = 1; i < N; i++)

{

if (i < 10)

{

C[i] = A[i] * B[i];

}

else

{

C[i] = A[i] + B[i];

}

}

}

Figure 3.3: A Simple C function

Array Dependency Analysis) [6, 7], which performs a data�ow analysis to track the

de�nitions and uses of variable values in order to compute an equivalent equational

speci�cation of the input C program. However, FADA tool has some strict constraints

on the input C program. It requires that the C program be static, that is, the control

�ow in the C program should be known at compile time, and also that the array

subscripts for the variables be a�ne functions of the surrounding loop indices.

In this thesis, we take the manual approach to extracting equations in order to

avoid rewriting the C program to make it FADA tool friendly. The manual approach

is also not simple as it involves extracting the exact domains for the computations by

analyzing the loop bounds surrounding the computation in the C program. Care has

to be taken to account for the conditional statements, if any, within the loop body

which a�ect the iteration space of the computation. The following section explains

how to deduce equations from a simple C function.

3.2.1 A Simple Example

Consider the C program snippet in �gure 3.3. This C function has a one dimensional

for loop construct with a conditional if-else construct within its body surround-

ing the statements specifying the computations. The Alphabets equivalent of this C

function is shown in �gure 3.4. The function name foo translates to the system name

20

affine foo {N | N > 0}

given

int A {i | 0 < i < N};

int B {i | 0 < i < N};

returns

int C {i | 0 < i < N};

through

C[i] = case

{| i < 10}: A[i] * B[i];

{| i >= 10}: A[i] + B[i];

esac;

.

Figure 3.4: Alphabets equivalent of the C function in �gure 3.3

in Alphabets. The arguments in the function de�nition translate to input/output

variables and parameter speci�cations, that is, A and B are declared as inputs (spec-

i�ed by the keyword given), C is declared as an output (speci�ed by the keyword

returns) and N is declared as a parameter for the system foo. The domains for

these input/output variables are deduced from the for loop construct in the C func-

tion, speci�cally, the range of the loop variable i. In this example, we see that the

range of i is from 1 to N , hence the domain corresponding to variables A, B and C

is 1 ≤ i < N which in Alphabets speci�cation is written as {i|1 ≤ i < N}. Note

that in this example, the conditional if-else construct does not a�ect the domains of

the input/output variables because computations are de�ned over the entire range of

the for loop. However, it does a�ect which computational statement is contributing

to the result C for speci�c regions of the iteration space. By analyzing the condi-

tional in the if statement, we see that for the region of the iteration space where

i < 10, C[i] = A[i] ∗ B[i]; is the computational statement, and for the remainder of

the iteration space it is C[i] = A[i] + B[i];. The conditional if-else construct in the

C function translates to case statements (enclosed within the keywords case and

esac) with domain restrictions corresponding to the conditional in the if statement.

However, in C, the else statement spans the remainder of the loop iterations where

the if statement evaluates to a false. In Alphabets, this has to speci�ed in the

form of a domain which is the relative complement of domain corresponding to the

21

affine fillMatrices1 {N, MAXLOOP|N>4 && MAXLOOP > 0}

given

int valid_pairs {i,j | 1 <= i <= N && 2 <= j <= N};

returns

int Q {i,j | 1 <= i <= N && 2 <= j <= N};

int Qprime {i,j | 1 <= i <= N && 2 <= j <= N};

int QM {i,j | 1 <= i <= N && 2 <= j <= N};

using

int QBI {i,j | 1 <= i <= N && 2 <= j <= N};

Figure 3.5: Alphabets system declaration for �llMatrices1

if statement, represented by Dif , in the domain of C, represented by DC , that is,

Delse = DC − Dif where Delse is the domain corresponding to the else statement.

Alternatively, the C function represents the following equation,

C[i] =

{
i < 10 A[i] ∗B[i]

i >= 10 A[i] +B[i]
for 1 ≤ i < N (3.1)

Through equation (3.1), we see that the Alphabets program is very identical to

the actual equations implemented by the C program. Hence, the claim that it is

easier to write algorithms in Alphabets directly though equations is solidi�ed.

3.2.2 UNAFold Equations

We follow the same analysis, as the example in the previous section, on the �llMa-

trices1() function (refer to Appendix) of the UNAFold C program which implements

the RNA secondary structure prediction algorithm. We deduce that the Alphabets

program will comprise of a�ne system named �llMatrices1 which takes one input

valid_pairs and produces three outputs Q, Qprime and QM by using a local variable

QBI. The input valid_pairs holds the information about which bases in the input

RNA sequence can form base pairs (i.j) according to the Watson-crick base pairing

rules. All these variables share the same domain, that is, (1 ≤ i ≤ N, 2 ≤ j ≤ N).

The �llMatrices1 system takes N and MAXLOOP as input parameters, where N

is the length of the RNA sequence and MAXLOOP is the maximum size of the in-

ternal loop (previously referred as k). 3.5 shows the corresponding Alphabets code

22

fragment. The details of the computations involving each of these variables follow.

The values of the array Q are computed according to equation (3.2) given below.

Q(i, j) =

i < j − 3 min

b+Q(i+ 1, j)

b+Q(i, j − 1)

c+ END(i, j) +Q′(i, j)

QM(i, j)

b+ c+ E5′D(i+ 1, j) +Q′(i+ 1, j)

b+ c+ E3′D(i, j − 1) +Q′(i, j − 1)

2b+ c+ EDD(i+ 1, j − 1) +Q′(i+ 1, j − 1)

i ≥ j − 3 ∞

(3.2)

where EDD(i, j) = END(i, j) + Etstackm(j, i) and the last three cases of the min

term are considered only if dangle = 1. Also, if noisolate = 1, the occurrence of

Q′(m,n) is replaced by ES(m,n) +Q′(m+ 1, n− 1).

The Alphabets code fragment corresponding to equation (3.2) is shown in �gure

3.6

The values of the array Q' are computed according to equation (3.3) given below.

Q′(i, j) =

i < j − 3

min

EH(i, j)

ES(i, j) +Q′(i+ 1, j − 1)

QBI(i, j)

a+ c+ END(j, i) +QM(i+ 1, j − 1)

a+ b+ c+ E3′D(j, i) +QM(i+ 2, j − 1)

a+ b+ c+ E5′D(j, i) +QM(i+ 1, j − 2)

a+ 2b+ c+ EDD(j, i) +QM(i+ 2, j − 2)

if i.j pair

∞ otherwise

i ≥ j − 3 ∞
(3.3)

where the last three cases of the min term are considered only if dangle = 1 and

QBI(i, j) =

{
i < j − 6 min

4≤d≤j−i−3, i<i′<j−d
{EBI(i, j, i

′, i′ + d) +Q′(i′, i′ + d)}

i ≥ j − 6 ∞
(3.4)

23

Q[i,j] = case {|i>=j-3}: INFINITY_VAL(0);

{|i<j-3}: min((b(0) + Q[i+1,j]),

(b(0) + Q[i,j-1]),

(if (noisolate(0) == 1) then (c(0) + End([i],[j]) +

Es([i],[j]) + Qprime[i+1,j-1]) else (c(0) + End([i],[j]) + Qprime[i,j])),

QM[i,j],

(if (nodangle(0) == 0) then

(if (noisolate(0) == 1) then

(min((if ([i] < ([j]-6)) then (min((b(0) +

c(0) + End(([i]+1),[j]) + Ed5([j],([i]+1)) + Es(([i]+1),[j]) + Qprime[i+2,j-1]),

(b(0) + c(0) + End([i],([j]-1)) + Ed3(([j]-1),[i]) + Es([i],([j]-1)) +

Qprime[i+1,j-2]))) else INFINITY_VAL(0)),

(if ([i] < ([j]-7)) then ((2*b(0)) +

c(0) + End(([i]+1),([j]-1)) + Etstackm(([j]-1),([i]+1)) + Es(([i]+1),([j]-1)) +

Qprime[i+2,j-2]) else INFINITY_VAL(0))))

else (min((b(0) + c(0) + End(([i]+1),[j]) +

Ed5([j],([i]+1)) + Qprime[i+1,j]),

(b(0) + c(0) + End([i],([j]-1)) +

Ed3(([j]-1),[i]) + Qprime[i,j-1]),

(case {|i<j-3-2}: ((2*b(0)) + c(0) +

End(([i]+1),([j]-1)) + Etstackm(([j]-1), ([i]+1)) + Qprime[i+1,j-1]);

{|i>=j-5}: INFINITY_VAL(0);

esac))))

else INFINITY_VAL(0)));

esac;

Figure 3.6: Alphabets equivalent of equation (3.2)

where the occurrence of Q′(m,n) is replaced by ES(m,n) + Q′(m + 1, n − 1) if

noisolate = 1.

The corresponding Alphabets code fragment for equations (3.3) and (3.4) are

shown in �gures 3.7 and 3.8 .

The values of the array QM are computed according to the equation (3.5) given

below.

QM(i, j) =

{
i < j − 8 min

i+4≤k≤j−5
{Q(i, k − 1) +Q(k, j)}

i ≥ j − 8 ∞
(3.5)

Figure 3.9 shows the equivalent Alphabets code fragment for equation (3.5).

In all the above equations, the energy functions ES, EH ,EBI ,END,E3′D,E5′D and

Etstackm are speci�ed as external functions in the Alphabets program. These external

functions refer to the respective functions de�ned in the UNAFold C program.

Before we move on to optimizations, we restrict the RNA secondary structure

prediction algorithm by ignoring special cases like dangle and noisolate as it helps

24

Qprime[i,j] = case {|i>=j-3}: INFINITY_VAL(0);

{|i<j-3}: if (Eval_isFinite(valid_pairs[i,j]) > 0) then

min(Eh([i],[j]),

(Es([i],[j]) + Qprime[i+1,j-1]),

QBI[i,j],

(a(0) + c(0) + End([j],[i]) + QM[i+1, j-1]),

if ((nodangle(0) == 0) && ([j] > 2))

then (a(0) + b(0) + c(0) + End([i],[j]) + Ed5([i],[j]) + QM[i+1,j-2]) else

INFINITY_VAL(0),

if ((nodangle(0) == 0) && ([i] < ([N]-1)))

then (a(0) + b(0) + c(0) + End([i],[j]) + Ed3([i],[j]) + QM[i+2,j-1]) else

INFINITY_VAL(0),

if ((nodangle(0) == 0) && ([j] > 2) && ([i]

< ([N]-1))) then (a(0) + (2 * b(0)) + c(0) + End([i],[j]) + Etstackm([i],[j])

+ QM[i+2,j-2]) else INFINITY_VAL(0)) else

INFINITY_VAL(0);

esac;

Figure 3.7: Alphabets equivalent of equation (3.3).

QBI[i,j] = case {|i>=j-6}: INFINITY_VAL(0);

{|i<j-6} : MIN([d,ip], {|d<=j-i-3 && d>=3+1 &&

d>=j-i-2-MAXLOOP && ip>i && ip<j-d && ip<=N}: if (noisolate(0) == 1) then

(Ebi([i],[j],[ip],[ip+d]) + Es([ip],[jp]) + Qprime[ip+1,ip+d-1]) else

(Ebi([i],[j],[ip],[ip+d]) + Qprime[ip,ip+d]));

esac;

Figure 3.8: Alphabets equivalent of equation (3.4).

QM[i,j] = case {|i>=j-8}: INFINITY_VAL(0);

{|i<j-8}: MIN([k], {|i+3+1<=k<=j-3-2}: (Q[i,k-1] + Q[k,j]));

esac;

Figure 3.9: Alphabets equivalent for equation (3.5)

25

Q[i,j] = case {|i>=j-3}: INFINITY_VAL(0);

{|i<j-3}: min((b(0) + Q[i+1,j]),

(b(0) + Q[i,j-1]),

(c(0) + End([i],[j]) + Qprime[i,j]),

QM[i,j]);

esac;

Figure 3.10: Alphabets equivalent of equation (3.6)

Qprime[i,j] = case {|i>=j-3}: INFINITY_VAL(0);

{|i<j-3}: if (Eval_isFinite(valid_pairs[i,j]) > 0) then

min(Eh([i],[j]),

(Es([i],[j]) + Qprime[i+1,j-1]),

QBI[i,j],

(a(0) + c(0) + End([j],[i]) + QM[i+1, j-1]))

else INFINITY_VAL(0);

esac;

Figure 3.11: Alphabets equivalent for equation (3.7)

to illustrate, with simplicity, the transformations applied to optimize the algorithm.

The resulting equations (3.6), (3.7), (3.8), (3.9) for Q, Q', QBI and QM are given

below along with their Alphabets equivalents in �gures 3.10 , 3.11 , 3.12 and 3.13

respectively. Also, note that the equation forQM is unchanged since it is independent

of dangle and noisolate cases.

Q(i, j) =

i < j − 3 min

b+Q(i+ 1, j)

b+Q(i, j − 1)

c+ END(i, j) +Q′(i, j)

QM(i, j)

i ≥ j − 3 ∞

(3.6)

QBI[i,j] = case {|i>=j-6}: INFINITY_VAL(0);

{|i<j-6} : MIN([d,ip], {|d<=j-i-3 && d>=3+1 && d>=j-i-2-MAXLOOP

&& ip>i && ip<j-d && ip<=N}: (Ebi([i],[j],[ip],[ip+d]) + Qprime[ip,ip+d]));

esac;

Figure 3.12: Alphabets equivalent for equation (3.8)

26

QM[i,j] = case {|i>=j-8}: INFINITY_VAL(0);

{|i<j-8}: MIN([k], {|i+3+1<=k<=j-3-2}: (Q[i,k-1] + Q[k,j]));

esac;

Figure 3.13: Alphabets equivalent for equation (3.9)

Q′(i, j) =

i < j − 3

min

EH(i, j)

ES(i, j) +Q′(i+ 1, j − 1)

QBI(i, j)

a+ c+ END(j, i) +QM(i+ 1, j − 1)

if i.j pair

∞ otherwise

i ≥ j − 3 ∞
(3.7)

QBI(i, j) =

{
i < j − 6 min

4≤d≤j−i−3, i<i′<j−d
{EBI(i, j, i

′, i′ + d) +Q′(i′, i′ + d)}

i ≥ j − 6 ∞
(3.8)

QM(i, j) =

{
i < j − 8 min

i+4≤k≤j−5
{Q(i, k − 1) +Q(k, j)}

i ≥ j − 8 ∞
(3.9)

3.3 Optimizations

The following types of optimizations can be done using AlphaZ.

1. Exploiting re-use in reductions.

2. Specifying a memory mapping.

3. Specifying a processor allocation.

4. Specifying a schedule.

5. Tiling

Of all the above optimizations, we explore the �rst one, that is, to exploit the re-use

in reductions. We do not explore the other optimizations since we are currently

27

limited to code generation using WriteC which is a demand-driven code generator.

More details on this issue will be covered in section 3.4.

Referring to equation (3.8), we see that the domain of the reduction expression

is four dimensional over N . Hence, it has a computational complexity of O(N4). As

as result, the complexity of the entire algorithm is O(N4). Lyngso et. al. [20] has

derived a O(N3)algorithm by exploring reuse of partial results in the reduction term

of QBI. This result is classically known as fast internal loop evaluation or fast-i-loops.

We provide a systematic derivation and proof of this result using the transformations

in AlphaZ, thereby arriving at the O(N3) algorithm. A similar derivation is presented

in [15], but has never been implemented using AlphaZ.

3.3.1 Mathematical derivation of Fast-i-loops

The equation for evaluating internal loops is reproduced here for convenience.

QBI(i, j) =

{
i < j − 6 min

4≤d≤j−i−3, i<i′<j−d
{EBI(i, j, i

′, i′ + d) +Q′(i′, i′ + d)}

i ≥ j − 6 ∞
(3.10)

To expose the reuse in the reduction expression of the equation (3.10),we need to

split the EBI term into its constituents. The EBI term accounts for the energy values

of the internal loops based on the asymmetry, size, closing base pair and enclosed

base pair. Hence, EBI is split into the following constituents,

1. Asymmetry penalty, Asym, of the internal loop.

2. Size penalty, Sp, depending on the size of the internal loop.

3. Stacking energy, ES, of the closing base pair (i.j).

4. Stacking energy, ES, of the enclosed base pair (i′.j′).

This is represented by the equation (3.11) given below,

EBI(i, j, i
′, j′) = Asym(i′−i−1, j−j′−1)+SP (i

′−i+j−j′−2)+ES(i, j)+ES(i
′, j′)

(3.11)

28

Note that, special case of internal loops like bulges and internal loops of size < 4

are handled di�erently. Hence, we rewrite equation (3.11) as

EBI(i, j, i
′, j′) =

{
EBIspecial(i., j, i

′, j′) for special cases

EBIgeneric
(i, j, i′, j′) for generic case

(3.12)

where

EBIgeneric
= Asym(i′−i−1, j−j′−1)+SP (i

′−i+j−j′−2)+ES(i, j)+ES(i
′, j′) (3.13)

Reuse within the reduction expression is exploited in the generic case. Substitut-

ing equation (3.13) in equation(3.10), we get,

QBI(i, j) =

i < j − 6 min

4≤d≤j−i−3, i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)

+SP (j − i− d− 2)

+ES(i, j)

+ES(i
′, i′ + d)

+Q′(i′, i′ + d)

i ≥ j − 6 ∞

(3.14)

For the sake of simplicity, we extract the �rst case in equation (3.14) and present

it below,

QBI(i, j) = min
4≤d≤j−i−3, i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+SP (j − i− d− 2)
+ES(i, j)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.15)

In equation (3.15), we see that the term ES(i, j) is independent of d and i′. Also,

since addition distributes over min, we can distribute out ES(i, j) from the reduction.

As as result, we have,

QBI(i, j) = ES(i, j) + min
4≤d≤j−i−3, i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+SP (j − i− d− 2)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

(3.16)

29

Since the reduction in equation (3.16) is a double reduction, we decompose it into

two reductions to exploit further reuse. The resulting equation after decomposing

reductions is given below,

QBI(i, j) = ES(i, j) + min
4≤d≤j−i−3

 min
i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+SP (j − i− d− 2)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

(3.17)

Now, let us isolate the inner reduction expression from equation (3.17). We have,

QBI(i, j) = ES(i, j) + min
4≤d≤j−i−3

{X(i, j, d)} (3.18)

where

X(i, j, d) = min
i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+SP (j − i− d− 2)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.19)

In equation (3.19), we see that SP (j − i − d − 2) is independent of i′. Hence,

SP (j − i− d− 2) is distributed out of the reduction resulting in,

X(i, j, d) = SP (j− i− d− 2)+ min
i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.20)

Now, let us replace the reduction in equation (3.20) by Y (i, j, d). Hence, we have,

X(i, j, d) = SP (j − i− d− 2) + Y (i, j, d) (3.21)

where

Y (i, j, d) = min
i<i′<j−d

Asym(i′ − i− 1, j − i′ − d− 1)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.22)

In equation (3.22), we detect a scan in the reduction along i+j. This scan reduces

the complexity for evaluating internal loops by re-using previously calculated partial

results. Hence, we can rewrite equation (3.22) as,

Y (i, j, d) = min

Y (i+ 1, j − 1, d)

min
i+1<i′<j−d−1

Asym(i′ − i− 1, j − i′ − d− 1)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.23)

30

affine fillMatrices1 {N, MAXLOOP|N>4 && MAXLOOP > 0}

given

int valid_pairs {i,j | 1 <= i <= N && 2 <= j <= N};

returns

int Q {i,j | 1 <= i <= N && 2 <= j <= N};

int Qprime {i,j | 1 <= i <= N && 2 <= j <= N};

int QM {i,j | 1 <= i <= N && 2 <= j <= N};

using

int QBI {i,j | 1 <= i <= N && 2 <= j <= N};

int Ebi {i,j,ip,jp | 1 <= i < ip < jp < j <= N && ip-i+j-jp-2 <= MAXLOOP};

Figure 3.14: �llMatrices1 system with the new local variable Ebi.

The �nal simpli�ed and complexity reduced equations are presented below,

QBI(i, j) = ES(i, j) + min
4≤d≤j−i−3

{X(i, j, d)} (3.24)

where

X(i, j, d) = SP (j − i− d− 2) + Y (i, j, d) (3.25)

and

Y (i, j, d) = min

Y (i+ 1, j − 1, d)

min
i+1<i′<j−d−1

Asym(i′ − i− 1, j − i′ − d− 1)
+ES(i

′, i′ + d)
+Q′(i′, i′ + d)

 (3.26)

3.3.2 Fast-i-loops using AlphaZ

In order to circumvent the current limitations of AlphaZ, we need to slightly modify

the derivation explained in the previous section. Particularly, the factoring out of the

ES(i, j) term should be performed after decomposing the double reduction, in order

to work around the current limitation of the PermutationCaseReduce transformation

(see Appendix for details on the limitations of the transformation).

So far all the energy functions were implemented as external function calls in

the Alphabets program. But, in order to split EBI , we need to represent it as a

local variable in the Alphabets system. We introduce a local variable Ebi in the

�llMatrices1 system as shown in �gure 3.14 . The new Alphabets equation for QBI

is shown in �gure 3.15 where the functional call for Ebi (refer �gure 3.12) is replaced

31

QBI[i,j] = case {|i>=j-6}: INFINITY_VAL(0);

{|i<j-6} : MIN([d,ip], {|d<=j-i-3 && d>=3+1 && d>=j-i-2-MAXLOOP

&& ip>i && ip<j-d && ip<=N}: (Ebi[i,j,ip,ip+d] + Qprime[ip,ip+d]));

esac;

Figure 3.15: New Alphabets equations for QBI.

affine fillMatrices1 {N, MAXLOOP|N>4 && MAXLOOP > 0}

given

int valid_pairs {i,j | 1 <= i <= N && 2 <= j <= N};

returns

int Q {i,j | 1 <= i <= N && 2 <= j <= N};

int Qprime {i,j | 1 <= i <= N && 2 <= j <= N};

int QM {i,j | 1 <= i <= N && 2 <= j <= N};

using

int QBI {i,j | 1 <= i <= N && 2 <= j <= N};

int Ebi {i,j,ip,jp | 1 <= i < ip < jp < j <= N && ip-i+j-jp-2 <= MAXLOOP};

int Ebi_special {i,j,ip,jp |ip-i-1 == 0 && j-jp-1 == 1} ||

{i,j,ip,jp |ip-i-1 == 1 && j-jp-1 == 0} ||

{i,j,ip,jp |ip-i-1 == 0 && j-jp-1>1} ||

{i,j,ip,jp |ip-i-1>1 && j-jp-1==0} ||

{i,j,ip,jp |ip-i-1==1 && j-jp-1 == 1} ||

{i,j,ip,jp |ip-i-1==1 && j-jp-1 == 2} ||

{i,j,ip,jp |ip-i-1==2 && j-jp-1 == 1} ||

{i,j,ip,jp |ip-i-1==2 && j-jp-1 == 2};

int Ebi_generic {i,j,ip,jp|ip-i>=2 && j-jp>=4 && jp-ip>=1} ||

{i,j,ip,jp|ip-i>=4 && j-jp==3 && j-ip>=4} ||

{i,j,ip,jp|ip-i==1 && j-jp==1 && j-i>=3} ||

{i,j,ip,jp|ip-i>=4 && j-jp==2 && j-ip>=3};

Figure 3.16: Introducing Ebi_special and Ebi_generic in the �llMatrices1 system.

by the local variable. But, as seen in equation (3.12), we need to handle special

cases of internal loops separately. Hence, we introduce two new local variables,

namely Ebi_special and Ebi_generic, in the �llMatrices1 system as shown in the

�gure 3.16 and their de�nitions are given in �gures 3.17 and 3.18 , respectively.

Also, the Alphabets equation for Ebi is shown in �gure 3.19 which complies with the

equation (3.12). With these modi�cations to the existing Alphabets program, we are

ready to apply transformations in AlphaZ according to the derivation in section 3.3.1

with slight changes to be in compliance with the current version of AlphaZ (refer

section 2.1.3).

The �rst transformation is to substitute Ebi by its de�nition in QBI. This is done

using the command SubstituteByDef("fillMatrices1", "QBI", "Ebi");. This

32

Ebi_special[i,j,ip,jp] =

case {|ip-i-1 == 0 && j-jp-1 == 1} || {|ip-i-1 == 1 && j-jp-1 == 0} :

Ebi_Bulge1([i],[j],[ip],[jp]);

{|ip-i-1 == 0 && j-jp-1>1}: Ebi_Bulge([i],[j],[ip],[jp],[j-jp-1]);

{|ip-i-1>1 && j-jp-1==0}: Ebi_Bulge([i],[j],[ip],[jp],[ip-i-1]);

{|ip-i-1==1 && j-jp-1 == 1}: Ebi_iloop1x1([i],[j],[ip],[jp]);

{|ip-i-1==1 && j-jp-1 == 2}: Ebi_iloop1x2([i],[j],[ip],[jp]);

{|ip-i-1==2 && j-jp-1 == 1}: Ebi_iloop2x1([i],[j],[ip],[jp]);

{|ip-i-1==2 && j-jp-1 == 2}: Ebi_iloop2x2([i],[j],[ip],[jp]);

esac;

Figure 3.17: Alphabets equation for Ebi_special.

Ebi_A2[i,j,ip,jp] = Sp([ip-i-1+j-jp-1]) + Es([i],[j]) + Es([jp],[ip]) +

Asym([ip-i-1],[j-jp-1]);

Figure 3.18: Alphabets equation for Ebi_generic.

is followed by the command RemoveUnusedVariables(); to delete the de�nition and

declaration of Ebi as it is no longer needed. The resulting equation for QBI is show

in �gure 3.20 .

The next transformation is to decompose the double reduction in QBI. This

is done using the command ReductionDecomposition("fillMatrices1", "QBI",

"(i,j,d->i,j)", "(i,j,d,ip->i,j,d)");. The resulting equation for QBI is

shown in �gure 3.21 .

We, then, apply the NormalizeReductions(true, "fillMatrices1",

"QBI", 1); command to move the reductions into temporary lo-

cal variables. The resulting equation for QBI is shown in the �g-

ure 3.22 . This is followed by two RenameVariable commands,

RenameVariable("fillMatrices1","AlphaZTempRed_1_QBI","QBI_W"); and

RenameVariable("fillMatrices1","AlphaZTempRed_2_QBI","QBI_X"); to pro-

vide sensible names to the temporary variables introduced by AlphaZ. The resulting

equation for QBI is shown in �gure 3.23 .

Ebi_A[i,j,ip,jp] = case

Ebi_A1[i,j,ip,jp];

Ebi_A2[i,j,ip,jp];

esac;

Figure 3.19: Alphabets equation for Ebi.

33

QBI[i,j] = case {|i-j>=-6} : INFINITY_VAL(0);

{|-i+j>=7} : reduce(min, [k,l], case

{|-i+l>=1 &&

-i+j-k>=3 && k>=4 && j-k-l>=1 && MAXLOOP+i-j+k>=-2 && N-l>=0} :

(Ebi_special[i,j,l,k+l]+Qprime[l,k+l]);

{| -i+l>=1 &&

-i+j-k>=3 && k>=4 && j-k-l>=1 && MAXLOOP+i-j+k>=-2 && N-l>=0} :

(Ebi_generic[i,j,l,k+l]+Qprime[l,k+l]);

esac);

esac;

Figure 3.20: QBI after SubstituteByDef command.

QBI[i,j] = case {|i-j>=-6} : INFINITY_VAL(0);

{|-i+j>=7} : reduce(min,[k],reduce(min,[l],case

{|-i+l>=1

&& -i+j-k>=3 && k>=4 && j-k-l>=1 && MAXLOOP+i-j+k>=-2 && N-l>=0} :

(Ebi_special[i,j,l,k+l]+Qprime[l,k+l]);

{|-i+l>=1

&& -i+j-k>=3 && k>=4 && j-k-l>=1 && MAXLOOP+i-j+k>=-2 && N-l>=0} :

(Ebi_generic[i,j,l,k+l]+Qprime[l,k+l]);

esac));

esac;

Figure 3.21: QBI after ReductionDecomposition command.

QBI[i,j] = case {|i-j>=-6} : INFINITY_VAL(0);

{|-i+j>=7} : AlphaZTempRed_1_QBI[i,j];

esac;

AlphaZTempRed_1_QBI[i,j] = reduce(min, [k], AlphaZTempRed_2_QBI[i,j,k]);

AlphaZTempRed_2_QBI[i,j,d] = reduce(min, [k], case

{|-i+k>=1 &&

-i+j-d>=3 && d>=4 && j-d-k>=1 && MAXLOOP+i-j+d>=-2 && N-k>=0} :

(Ebi_special[i,j,k,d+k]+Qprime[k,d+k]);

{|-i+k>=1

&& -i+j-d>=3 && d>=4 && j-d-k>=1 && MAXLOOP+i-j+d>=-2

&& N-k>=0} : (Ebi_generic[i,j,k,d+k]+Qprime[k,d+k]);

esac);

Figure 3.22: QBI after NormalizeReductions command

34

QBI[i,j] = case {|i-j>=-6} : INFINITY_VAL(0);

{|-i+j>=7} : QBI_W[i,j];

esac;

QBI_W[i,j] = reduce(min, [k], QBI_X[i,j,k]);

QBI_X[i,j,d] = reduce(min, [k], case

{|-i+k>=1 && -i+j-d>=3 && d>=4 && j-d-k>=1 &&

MAXLOOP+i-j+d>=-2 && N-k>=0} : (Ebi_special[i,j,k,d+k]+Qprime[k,d+k]);

{|-i+k>=1 && -i+j-d>=3 && d>=4 && j-d-k>=1 &&

MAXLOOP+i-j+d>=-2 && N-k>=0} : (Ebi_generic[i,j,k,d+k]+Qprime[k,d+k]);

esac);

Figure 3.23: QBI after RenameVariable command.

QBI_X[i,j,d] = case

{|i-j+d==-3 && -i+j>=7 && i>=1 && N-j>=0} ||

{|-i+j-d>=4 && d>=4 && i-j+d>=-5 && i>=1 && MAXLOOP+i-j+d>=-2

&& N-j>=0} : reduce(min, [k], (Ebi_special[i,j,k,d+k]+Qprime[k,d+k]));

{|-i+j-d>=6 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} :

(reduce(min, [k], (Ebi_special[i,j,k,d+k]+Qprime[k,d+k])) min reduce(min, [k],

(Ebi_generic[i,j,k,d+k]+Qprime[k,d+k])));

esac;

Figure 3.24: QBI_X after PermutationCaseReduce command

Then, PermutationCaseReduce("fillMatrices1", "QBI_X"); command is ap-

plied to pull the case statements out from the body of the reduction expression in

QBI_X. The resulting equation for QBI_X is shown in the �gure 3.24 .

To make the Alphabets code more legible, we then apply the four commands

show below in order,

1. NormalizeReductions(true, "fillMatrices1", "QBI_X");

2. RenameVariable("fillMatrices1","AlphaZTempRed_1_QBI_X","QBI_X1");

3. RenameVariable("fillMatrices1","AlphaZTempRed_2_QBI_X","QBI_X2");

4. RenameVariable("fillMatrices1","AlphaZTempRed_3_QBI_X","X");

The result of these four transformations is shown in �gure 3.25 .

We now shift our focus to the equation for X as it has Ebi_generic term to ex-

pose reuse. We substitute the de�nition of Ebi_generic in X by using the command

SubstituteByDef("fillMatrices1", "X", "Ebi_generic");. This is followed by

35

QBI_X[i,j,d] = case

{|i-j+d==-3 && -i+j>=7 && i>=1 && N-j>=0} ||

{|-i+j-d>=4 && d>=4 && i-j+d>=-5 && i>=1 && MAXLOOP+i-j+d>=-2

&& N-j>=0} : QBI_X1[i,j,d];

{|-i+j-d>=6 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} :

(QBI_X2[i,j,d] min X[i,j,d]);

esac;

QBI_X1[i,j,d] = reduce(min, [k], (Ebi_special[i,j,k,d+k]+Qprime[k,d+k]));

QBI_X2[i,j,d] = reduce(min, [k], (Ebi_special[i,j,k,d+k]+Qprime[k,d+k]));

X[i,j,d] = reduce(min, [k], (Ebi_generic[i,j,k,d+k]+Qprime[k,d+k]));

Figure 3.25: QBI_X after NormalizeReductions and RenameVariables commands.

X[i,j,d] = reduce(min, [k], {|-i+k>=2 && d>=1 && j-d-k>=4} ||

{|j-d-k==3 && -i+j-d>=7 && d>=1} ||

{|i-j+d==-2 && i-k==-1 && -i+j>=3} ||

{|j-d-k==2 && -i+j-d>=6 && d>=1} : (Sp([-i+j-d-2]) +

Es([i],[j]) + Es([d+k],[k]) + Asym([-i+k-1],[j-d-k-1]) + Qprime[k,d+k]));

Figure 3.26: X after SubstituteByDef command.

the command RemoveUnusedVariables(); to get rid of the declaration and de�ni-

tion of Ebi_generic as it is not used anymore. The resulting equation for X is shown

in the �gure 3.26 .

Now, we can distribute out Es([i],[j]) and Sp([-i+j-d-2]) from the reduction ex-

pression in X as they do not depend on the reduction index k. This can be ideally

done using the transformation FactorOutFromReduction. But, due to the current

limitations, this transformation does not handle index value expressions. So, we ap-

ply this transformation by hand after saving the intermediate Alphabets program

using Save(�temp.ab�); command. The modi�ed equation for X is shown in �g-

ure 3.27 . This modi�ed temp.ab �le is then loaded back in to AlphaZ using the

X[i,j,d] = Ebi_stacking([i],[j]) + Ebi_sizePenalty([-i+j-d-2])

+ reduce(min, [k] ,{|-i+k>=2 && d>=1 && j-d-k>=4} ||

{|j-d-k==3 && -i+j-d>=7 && d>=1} ||

{|i-j+d==-2 && i-k==-1 && -i+j>=3} ||

{|j-d-k==2 && -i+j-d>=6 && d>=1}:

(Ebi_stacking([d+k],[k]) + Ebi_asymmetry([-i+k-1],[j-d-k-1]) + Qprime[k,d+k]));

Figure 3.27: X after FactorOutFromReduction transformation.

36

X[i,j,d] = ((Ebi_stacking([i],[j]) + Ebi_sizePenalty([-i+j-d-2])) + Y[i,j,d]);

Y[i,j,d] = reduce(min, [k], {|-i+k>=2 && d>=1 && j-d-k>=4} ||

{|j-d-k==3 && -i+j-d>=7 && d>=1} ||

{|i-j+d==-2 && i-k==-1 && -i+j>=3} ||

{|j-d-k==2 && -i+j-d>=6 && d>=1} :

(Ebi_stacking([d+k],[k]) + Ebi_asymmetry([-i+k-1],[j-d-k-1]) + Qprime[k,d+k])

);

Figure 3.28: X after NormalizeReductions and RenameVariable transformations.

Y[i,j,d] = case

{|-i+j-d>=6 && d>=4 && i-j+d>=-7 && i>=1 && MAXLOOP+i-j+d>=-2

&& N-j>=0}: reduce(min, [k], {|i-k==-2 && -i+j-d>=7 && d>=4 && i>=1 &&

MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-6 && i-k==-2 && -i+j>=10 && i>=1

&& MAXLOOP>=4 && N-j>=0} || {|j-d-k==4 && -i+j-d>=7 && d>=4 && i-j+d>=-8

&& i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-7 && i-k==-4 &&

-i+j>=11 && i>=1 && MAXLOOP>=5 && N-j>=0} || {|j-d-k==2 && -i+j-d>=6 &&

d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} : ((Ebi_stacking([d+k],[k]) +

Ebi_asymmetry([-i+k-1],[j-d-k-1])) + Qprime[k,d+k]));

{|-i+j-d>=8 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} :

(reduce(min, [k], {| i-k==-2 && -i+j-d>=7 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2

&& N-j>=0} || {|i-j+d==-6 && i-k==-2 && -i+j>=10 && i>=1 && MAXLOOP>=4 && N-j>=0}

|| {|j-d-k==4 && -i+j-d>=7 && d>=4 && i-j+d>=-8 && i>=1 && MAXLOOP+i-j+d>=-2 &&

N-j>=0} || {|i-j+d==-7 && i-k==-4 && -i+j>=11 && i>=1 && MAXLOOP>=5 && N-j>=0}

|| {|j-d-k==2 && -i+j-d>=6 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} :

((Ebi_stacking([d+k],[k]) + Ebi_asymmetry([-i+k-1],[j-d-k-1])) + Qprime[k,d+k]))

min Y[i+1,j-1,d]);

esac;

Figure 3.29: Y after SimplifyingReductions transformations.

command ReadProgram(�temp.ab�);.

In order to isolate the reduction expression from X, we now apply

NormalizeReductions(true, "fillMatrices1", "X"); command followed by

RenameVariable("fillMatrices1","AlphaZTempRed_1_X","Y"); command re-

sulting in the Alphabets equation shown in �gure 3.28 .

The �nal step is to apply the transformation to expose the scan in the equation

for Y. This is done by using the SimplifyingReductions("fillMatrices1", "Y",

"1,-1,0,0"); command. The last parameter in the SimplifyingReductions transfor-

mation speci�es the direction of sharing along each of the dimensions. The resulting

equation for Y is shown in �gure 3.29 .

To make the Alphabets code more readable, we apply the following commands

in the order shown below,

37

Y[i,j,d] = case {|-i+j-d>=6 && d>=4 && i-j+d>=-7 && i>=1 && MAXLOOP+i-j+d>=-2 &&

N-j>=0}: Z1[i,j,d];

{|-i+j-d>=8 && d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0}:

(Z2[i,j,d] min Y[i+1,j-1,d]);

esac;

Z1[i,j,d] = reduce(min, [k], {|i-k==-2 && -i+j-d>=7 && d>=4 && i>=1 &&

MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-6 && i-k==-2 && -i+j>=10 && i>=1

&& MAXLOOP>=4 && N-j>=0} || {|j-d-k==4 && -i+j-d>=7 && d>=4 && i-j+d>=-8

&& i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-7 && i-k==-4 &&

-i+j>=11 && i>=1 && MAXLOOP>=5 && N-j>=0} || {|j-d-k==2 && -i+j-d>=6 &&

d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} : ((Ebi_stacking([d+k],[k]) +

Ebi_asymmetry([-i+k-1],[j-d-k-1])) + Qprime[k,d+k]));

Z2[i,j,d] = reduce(min, [k], {|i-k==-2 && -i+j-d>=7 && d>=4 && i>=1 &&

MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-6 && i-k==-2 && -i+j>=10 && i>=1

&& MAXLOOP>=4 && N-j>=0} || {|j-d-k==4 && -i+j-d>=7 && d>=4 && i-j+d>=-8

&& i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} || {|i-j+d==-7 && i-k==-4 &&

-i+j>=11 && i>=1 && MAXLOOP>=5 && N-j>=0} || {|j-d-k==2 && -i+j-d>=6 &&

d>=4 && i>=1 && MAXLOOP+i-j+d>=-2 && N-j>=0} : ((Ebi_stacking([d+k],[k]) +

Ebi_asymmetry([-i+k-1],[j-d-k-1])) + Qprime[k,d+k]));

Figure 3.30: Y after NormalizeReductions and RenameVariable transformations.

1. NormalizeReductions(true, "fillMatrices1", "Y");

2. RenameVariable("fillMatrices1", "AlphaZTempRed_1_Y", "Z1");

3. RenameVariable("fillMatrices1", "AlphaZTempRed_2_Y", "Z2");

The resulting equation for Y is shown in the �gure 3.30 . Observe that the domains

in the reduction expressions in Z1 and Z2 have equalities between dimensions. This

shows that the computational complexity of the equation has been reduced.

The complete script which applies the transformations mentioned above is shown

in �gure (3.31) . In the script, one might notice the Normalize(); command being

called a couple of times. This helps in simplifying the AlphaZ AST and eases the

job of the code generators. Also, notice the WriteC(); command called at the end of

the script. This command generates Demand-driven C program for the Alphabets

program.

38

ConnectServer("alphabets.corequations.com");

ReadProgram("unafold.ab");

SubstituteByDef("fillMatrices1", "QBI", "Ebi");

RemoveUnusedVariables();

Normalize();

ReductionDecomposition("fillMatrices1", "QBI", "(i,j,d->i,j)",

"(i,j,d,ip->i,j,d)");

Normalize();

NormalizeReductions(true, �fillMatrices1�, �QBI�, 1);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_1_QBI�, �QBI_W�);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_2_QBI�, �QBI_X�);

PermutationCaseReduce("fillMatrices1", �QBI_X�);

Normalize();

NormalizeReductions(true, �fillMatrices1�, �QBI_X�);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_1_QBI_X�, �QBI_X1�);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_2_QBI_X�, �QBI_X2�);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_3_QBI_X�, �X�);

Normalize();

SubstituteByDef("fillMatrices1", "X", "Ebi_generic");

RemoveUnusedVariables();

Normalize();

Save("temp.ab");

#Edit this file and do a FactorOutFromReduction by hand.

ReadProgram("temp.ab");

Normalize();

NormalizeReductions(true, �fillMatrices1�, �X�);

RenameVariable(�fillMatrices1�, �AlphaZTempRed_1_X�, �Y�);

Normalize();

SimplifyingReductions("fillMatrices1", "Y", "1,-1,0,0");

Normalize();

NormalizeReductions(true, "fillMatrices1", "Y");

RenameVariable("fillMatrices1", "AlphaZTempRed_1_Y", "Z1");

RenameVariable("fillMatrices1", "AlphaZTempRed_2_Y", "Z2");

Normalize();

WriteC();

Figure 3.31: Script for deriving Fast-i-loops algorithm using AlphaZ.

39

3.4 Code generation

After the transformations described in section 3.3.2 have been applied, we use the

WriteC(); command in AlphaZ to generate a demand-driven C program for the RNA

secondary structure prediction algorithm. Since AlphaZ is a research tool which is

still in development, we are limited to using the demand-driven code generator.

The demand-driven code generator has the following limitations.

1. It uses its own default memory map. Hence, we cannot explore optimizations

based on memory usage.

2. As the name implies, a demand-driven code generator uses the demand-driven

schedule. So, optimizations based on scheduling computations is ruled out.

3. Since a demand-driven schedule is inherently sequential, processor allocation

does not come in to the picture.

4. Tiling of the computation space cannot be explored because of the demand-

driven schedule.

Although, the demand-driven code generator, WriteC, is the most functional code

generator in AlphaZ, it has some issues. The memory access function generated by

WriteC for the input and output variables is i ∗ (N + 1) + j whereas the UNAFold

C program uses (i− 1) ∗ (N − 1) + (j − 1) instead. Currently, this issue is resolved

by editing the generated C program manually. Another issue involves the macros

generated by WriteC. The UNAFold C program has a macro MAX(a, b) which also

exists in the C program generated by WriteC. This gives rise to compilation errors as

there are multiple macro de�nitions with the same identi�er. This issue is currently

resolved by inspecting the WriteC generated code manually and editing out the

duplicated macro if it is not used. If it is used, then the duplicate macro is renamed

and all its occurrences in the WriteC generated program are replaced by the new

name for the macro.

40

Chapter 4

Results

The focus of this thesis is not comparing performances against various implementa-

tions of RNA secondary structure prediction algorithms that exist. On the contrary,

our objective is to compare the performance we have achieved between the original

and the fast-i-loops versions of the algorithm implemented using AlphaZ. It is to

show that we can bene�t from equational programming by using AlphaZ to do the

transformations needed to arrive at the fast-i-loops algorithm. Before we get to the

comparison between original and fast-i-loops algorithm, we will see where the AlphaZ

generated demand-driven C program (WriteC program) stands against the original

UNAFold C program. Table 4.1 shows this comparison. We see that WriteC program

is slower than the original UNAFold C program. This is because WriteC program is

demand-driven which essentially means that when a computational statement, let's

say, S1 needs the value produced by another computational statement S2, that is,

S1 demands S2, it is then when S2 is computed and S1 waits for the result. This is

inherently implemented by recursive calls to functions computing these statements.

And, the UNAFold C program is implemented using a sequential schedule with some

Sequence length
UNAFold C program

Time (ms)

AlphaZ WriteC program

Time (ms)

100 3 7
200 18 47
300 50 137
400 107 313

Table 4.1: Execution time of UNAFold C program vs WriteC generated program.

41

Figure 4.1: Execution time comparison between original and fast-i-loops version of
RNA secondary structure prediction algorithm generated using AlphaZ on a 3.0 GHz
processor with 16 GB of memory.

optimizations to improve cache behavior. However, as more e�cient code genera-

tors are implemented in the AlphaZ framework, we can use them to generate more

e�cient programs using the same Alphabets code.

The graph in �gure 4.1 shows a comparison of execution times between the WriteC

generated programs for the original and fast-i-loops version of the RNA secondary

structure prediction algorithm on a 3.0GHz processor with 16 GB of memory. The

same graph is shown in �gure 4.2 on a logarithmic scale. The relative speed up

between the two versions is displayed in the graph shown in �gure 4.3 . From these

graphs, we can see that the WriteC generated program for the fast-i-loops version

is signi�cantly faster than the WriteC generated program for the original O(N4)

algorithm. Note that, in order to ensure that the computations in the program remain

dense, base pairing was forced for all the combinations of A, G, C, U bases, as opposed

42

Figure 4.2: Execution time comparison using logarithmic scale between original and
fast-i-loops version of RNA secondary structure prediction algorithm generated using
AlphaZ on a 3.0 GHz processor with 16 GB of memory.

43

Figure 4.3: Speed Up of the fast-i-loops version against the original version of the
RNA secondary structure prediction algorithm generated using AlphaZ on a 3.0 GHz
processor with 16 GB of memory.

44

to following the Watson-Crick base pairing rules which result in sparse computations.

This was done only to collect performance data for the WriteC generated programs.

45

Chapter 5

Conclusion And Future Work

In this thesis, we have shown that programming using equations is bene�cial and

the AlphaZ framework helps us to realize this. It is relatively easy to optimize

algorithms when we think in terms of equations. This has been shown by deducing

the fast-i-loops algorithm for evaluation of internal loops in the RNA secondary

structure prediction algorithm. It would be a very ardent task to achieve this by

writing programs in imperative languages manually. Also, implementing complex

algorithms manually on new complex and parallel processor architectures would be

quite challenging and time consuming. But, with the help of code generators in

AlphaZ, this could be a relatively simple and time saving task.

Our case study of implementing RNA secondary structure prediction algorithm

using AlphaZ proves that the AlphaZ framework is ready to tackle real-life applica-

tions and leave the toy problems like matrix-matrix multiply, LU decomposition and

optimal string parenthesization behind. It also acts as a base for future optimiza-

tions of the algorithm using AlphaZ. This thesis also serves as a limited guide for

new users to get started with AlphaZ and explore the advantages associated with

the idea of programming using equations.

5.1 Future Work

As mentioned earlier, AlphaZ is a research tool which is still under development.

Lot of optimizing transformations and code generators are still under development

and are in their early stages. Code generators like Sequential C code generator,

46

Tiled C code generator and OpenMP code generator are in development. As these

code generators develop, we will have more options to optimize and implement our

algorithms. For example, we can explore di�erent memory mappings in each of these

code generators to reduce the memory space requirements of the RNA secondary

structure prediction algorithm. We can also explore di�erent schedules and processor

allocations including the popular wavefront schedule for the algorithm using the

OpenMP code generator. The availability of a Tiled C code generator allows us to

optimize the algorithm by exploring di�erent tile sizes and tile dimensions to improve

data locality depending on the target architecture for implementation.

47

REFERENCES

[1] Alphabets Grammar. http://www.cs.colostate.edu/ cs560/Lectures/GrammerAlphabets.pdf.

[2] max planck institut informatik. http://www.mpi-inf.mpg.de/.

[3] OpenMP: OpenMP API Speci�cation for parallel programming.
http://openmp.org/wp/.

[4] T. Akutsu. Recent advances in rna secondary structure prediction with pseu-
doknots. Current Bioinformatics, 1:115�129, MAY 2006.

[5] R. Bagnara, P. M. Hill, and E. Za�anella. The Parma Polyhedra Library: To-
ward a complete set of numerical abstractions for the analysis and veri�cation
of hardware and software systems. Science of Computer Programming, 72(1�
2):3�21, 2008.

[6] D. Barthou, J. F. Collard, and P. Feautrier. Fuzzy Array Data�ow Analysis.
Journal of Parallel and Distributed Computing, 40(2), 1997.

[7] M. Belaoucha, D. Barthou, A. Eliche, and S. Touati. FADAlib: an open source
C++library for fuzzy array data�ow analysis. International Conference on
Computational Science, ICCS, 2010.

[8] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ., 1957.

[9] X. Chen, S. He, D. Bu, F. Zhang, Z. Wang, R. Chen, and W. Gao. Flexstem:
Improving predictions of rna secondary stuctures with pseudoknots by reducing
the search space. Bioinformatics, 24:1994�2001, SEP 2008.

[10] R. M. Dirks, J. S. Bois, J. M. Schae�er, E. Winfree, and N. A. Pierce. Ther-
modynamic analysis of interacting nucleic acid strands. SIAM Rev, 49:65�88,
2007.

[11] R. M. Dirks and N. A. Pierce. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. J Comput Chem, 24:1664�1677,
2003.

[12] R. M. Dirks and N. A. Pierce. An algorithm for computing nucleic acid base-
pairing probabilities including pseudoknots. J Comput Chem, 25:1295�1304,
2004.

48

[13] F. Dupont de Dincehcin. SystËmes structurÈs d'Èquations rÈcurrentes : mide
en ÷uvre dans le langage Alpha et applications. PhD thesis, UniversitÈ de
Rennes, IRISA, Rennes, janvier 1997.

[14] G. Gupta. COREquations: Equational Programming., 2008.
www.corequations.com.

[15] G. Gupta and S. Rajopadhye. Generation of the fast-i-loops algorithm.

[16] G. Gupta and S. Rajopadhye. Simplifying reductions. In POPL '06: Confer-
ence record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 30�41, New York, NY, USA, 2006. ACM.

[17] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoe�er, M. Tacker, and
P. Schuster. Fast Folding and Comparison of RNA Secondary Structures.
Monatshefte fur Chemie, 125:167�188, FEB 1994.

[18] A. C. Jacob, J. D. Buhler, and R. D. Chamberlain. Accelerating Nussinov RNA
secondary structure prediction with systolic arrays on FPGAs. IEEE Interna-
tional Conference on Application-speci�c Systems, Architectures and Processors,
2008.

[19] A. C. Jacob, J. D. Buhler, and R. D. Chamberlain. Rapid RNA Folding: Anal-
ysis and Acceleration of the Zuker Recurrence. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2010.

[20] R. B. Lyngso, M. Zuker, and C. N. S. Pedersen. Fast evaluation of internal
loops in rna secondary structure prediction. Bioinformatics, 15:440�445, JUN
1999.

[21] N. R. Markham. Algorithms and Software for Nucleic Acid Sequences. PhD
thesis, Rensselaer Polytechnic Institute Library, May 2006.

[22] N. R. Markham and M. Zuker. UNAFold: software for nucleic acid folding and
hybriziation. Bioinformatics, II. Structure, Functions and Applications(453):3�
31, 2008.

[23] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence de-
pendence of thermodynamic parameters improves prediction of RNA secondary
structure. J Mol Biol, 288(5):911�40, 21 May 1999.

[24] A. Mathuriya, D. A. Bader, C. E. Heitsch, and S. C. Harvey. GTfold: A Scalable
Multicore Code for RNA Secondary Structure Prediction. 24th Annual ACM
Symposium on Applied Computing (SAC), March 2009.

[25] C. Mauras. Alpha, un langage equationnnel pour la conception et la program-
mation d'architectures paralleles synchrones. PhD thesis, Universite de Rennes
I, Rennes, France, December 1989.

[26] J. S. McCaskill. The equilibrium partition function and base pair binding prob-
abilities for RNA secondary structure. Biopolymers, 29:1105�1119, 1990.

49

[27] MELANGE. AlphaZ. http://www.cs.colostate.edu/AlphaZ/.

[28] P. Niemeyer. BeanShell. http://www.beanshell.org/.

[29] R. Nussinov, G. Piecznik, J. R. Grigg, and D. J. Klietman. Algorithms for loop
matchings. SIAM Journal on Applied Mathematics, 1978.

[30] NVIDIA. CUDA (Compute Uni�ed Device Architecture).
http://www.nvidia.com/object/cuda_home.html#.

[31] S. V. Rajopadhye. Synthesizing systolic arrays with control signals from recur-
rence equations. Distributed Computing, 3(2):88�105, 1989.

[32] J. Reeder and R. Giegerich. Design, implementation and evaluation of a prac-
tical pseudoknot folding algorithm based on thermodynamics. BMC Bioinfor-
matics, 5(104), AUG 2004.

[33] J. Reeder and R. Giegerich. Design, implementation and evaluation of a prac-
tical pseudoknot folding algorithm based on thermodynamics. BMC Bioinfor-
matics, 5(1):104, 2004.

[34] J. Reeder, P. Ste�en, and R. Giegerich. pknotsRG: RNA pseudoknot folding
including near-optimal structures and sliding windows. Nucleic Acids Research,
35:W320�W324, JUL 2007.

[35] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J Mol Biol, 285(5):2053�68, 5 February 1999.

[36] G. Rizk and D. Lavenier. GPU accelerated RNA folding algorithm. Addison
Wesley (in press). GPU Computing Gems 4.

[37] G. Rizk and D. Lavenier. GPU accelerated RNA folding algorithm. Internation
Conference on Computational Science, pages 1004�1013, 2009.

[38] H. L. Verge. Reduction operators in alpha. In PARLE '92: Proceedings of the
4th International PARLE Conference on Parallel Architectures and Languages
Europe, pages 397�411, London, UK, 1992. Springer-Verlag.

[39] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R.
Khan, R. M. Dirks, and N. A. Pierce. NUPACK: analysis and design of nucleic
systems. J Comput Chem.

[40] M. Zuker. Computer prediction of RNA structure. Methods Enzymol., 180:262�
88, 1989.

[41] M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res., 31(13):3406�15, 1 July 2003.

[42] M. Zuker and D. Sanko�. RNA Secondary Structures and their Prediction.
Bull. Mathematical Biology, 46:591�621, 1984.

50

[43] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133�
48, 10 January 1981.

51

Appendix

I. List of AlphaZ commands

• ConnectServer(String serverName)

◦ This command connects the AlphaZ client to the COREquations server

which is available at �alphabets.corequations.com �.

• ReadProgram(String inputFilePath)

◦ This command reads the Alphabets program from the �le speci�ed by the

path inputFilePath and synchronizes it with the COREquations server.

• Show() and AShow()

◦ These commands print the current program on to the BeanShell console

in two di�erent formats, pure and array respectively.

• Save(String outputFilePath) and ASave(String outputFilePath)

◦ These commands save the current program to a �le speci�ed by the path

outputFilePath in pure and array formats respectively.

• RenameVariable(String sysName, String oldName, String newName)

◦ This command renames a variable from oldName to newName in the Al-

phabets system sysName.

• Normalize()

52

◦ This command normalizes the current program by simplifying nested ex-

pressions and domains.

• FactorOutFromReduction(String sysName, String varName, int occr,

int optr, int oprd)

◦ This command factors out the operand oprd of the operator optr from

the reduction expression at occurrence occr in the variable varName of

the system sysName. Currently, this command does not handle index

expressions correctly and it also does not check for the legality of the

resulting expression.

• NormalizeReductions(boolean unique, String sysName, String

varName, int occr)

◦ This command replaces reduction expression at occurrence occr in the

variable varName of the system sysName with reference to a automatically

generated local variable which contains the replaced reduction expression

as its de�nition. All the arguments for this command are optional. If none

of the arguments are speci�ed, the command applies to all the reduction

expressions in the current program. If the argument unique is set to true,

the transformation replaces every reduction expression by a unique local

variable. Otherwise, identical reduction expressions are replaced by the

same local variable.

• PermutationCaseReduce(String sysName, String varName)

◦ This commands moves out a case expression from within a reduction ex-

pression in the variable varName of the system sysName. varName is an

optional argument. If it is not speci�ed, the transformation is applied to

all the reduction expressions in the system sysName. Currently, this com-

mand does not handle a case expression having more than two cases. It

53

also does not handle reduction expression with projections to more than

one dimension.

• ReductionDecomposition(String sysName, String varName, int occr,

String func1, String func2)

◦ This command replaces a reduction expression at occurrence occr in the

variable varName of the system sysName with a nested reduction expres-

sion having projection functions as func1 and func2. The function com-

position of func1 and func2 should be equal to the projection function of

the original reduction expression. The occr argument is optional which

defaults to 0 if not speci�ed.

• RemoveUnusedVariables(String sysName, boolean removeInputs)

◦ This command removes all unused variables, that is, the variables which

do not contribute to any equations that de�ne output variables or other

variables that are used by the output. Both the arguments to this com-

mand are optional. If sysName is not speci�ed, the command is applied

to all the systems in the current program. If removeInputs is not set to

false, then unused input variables will also be removed by default.

• SimplifyingReductions(String sysName, String varName, String

reuse, int occr)

◦ This command transforms a reduction expression into multiple reduction

expressions which enable the re-use of partial results along the direction

speci�ed by the re-use vector reuse when computing the result at a dif-

ferent location in the domain of the reduction expression. This transfor-

mation is applied to the reduction expression at occurrence occr in the

variable varName of the system sysName. occr is an optional argument

with the default value being 0. This command implements the simplifying

reductions technique proposed in [16].

54

• SubstituteByDef(String sysName, String trgVar, String srcVar,

int numOccr)

◦ This command substitutes the references to the source variable srcVar,

by its de�nition, in the equation for the target variable trgVar of the

system sysName. numOccr is an optional argument. By default, all the

occurrences of srcVar are substituted unless limited to numOccr.

• WriteC(String sysName, String dirPath)

◦ This command generates a demand driven C function for the system

sysName and writes the generated code to the directory speci�ed by

dirPath. Both its arguments are optional. If sysName is not speci�ed,

then the command generates a C function corresponding to each Alpha-

bets system in the current program. If dirPath is not speci�ed, the

generated code is written to the current working directory.

II. �llMatrices1() function from hybrid-ss-min.c

void fillMatrices1()

{

int i, j, k;

for (j = 2; j <= g_len; ++j)

for (i = j - TURN - 1; i >= 1; --i)

{

ENERGY au;

au = auPenalty(i, j);

if (isFinite(Qprime(i, j)))

{

Qprime(i, j) = min4(Eh(i, j),

Es(i, j) + Qprime(i + 1, j - 1),

QBI(i, j),

g_multi[0] + g_multi[2] + au + QM(i + 1, j - 1));

if (!g_nodangle)

{

if (j > 2)

Qprime(i, j) = min2(Qprime(i, j), g_multi[0] + g_multi[1] +

g_multi[2] + au + Ed5(i, j) + QM(i + 1, j - 2));

55

if (i < g_len - 1)

Qprime(i, j) = min2(Qprime(i, j), g_multi[0] + g_multi[1] +

g_multi[2] + au + Ed3(i, j) + QM(i + 2, j - 1));

if (j > 2 && i < g_len - 1)

Qprime(i, j) = min2(Qprime(i, j), g_multi[0] + 2.0 * g_multi[1] +

g_multi[2] + au + Etstackm(i, j) + QM(i + 2, j - 2));

}

}

QM(i, j) = INFINITY;

for (k = i + TURN + 1; k <= j - TURN - 2; ++k)

QM(i, j) = min2(QM(i, j), Q(i, k) + Q(k + 1, j));

if (g_noisolate)

Q(i, j) = min4(ssOK(i, i) ? g_multi[1] + Q(i + 1, j) : INFINITY,

ssOK(j, j) ? g_multi[1] + Q(i, j - 1) : INFINITY,

i <= j - 2 ? g_multi[2] + au + Es(i, j) + Qprime(i + 1,

j - 1) : INFINITY,

QM(i, j));

else

Q(i, j) = min4(ssOK(i, i) ? g_multi[1] + Q(i + 1, j) : INFINITY,

ssOK(j, j) ? g_multi[1] + Q(i, j - 1) : INFINITY, g_multi[2] + au + Qprime(i,

j), QM(i, j));

if (!g_nodangle)

{

if (g_noisolate)

{

if (i < j - TURN - 3)

{

Q(i, j) = min2(Q(i, j), g_multi[1] + g_multi[2] + auPenalty(i + 1,

j) + Ed5(j, i + 1) + Es(i + 1, j) + Qprime(i + 2, j - 1));

Q(i, j) = min2(Q(i, j), g_multi[1] + g_multi[2] + auPenalty(i, j -

1) + Ed3(j - 1, i) + Es(i, j - 1) + Qprime(i + 1, j - 2));

}

if (i < j - TURN - 4)

Q(i, j) = min2(Q(i, j), 2.0 * g_multi[1] + g_multi[2] + auPenalty(i

+ 1, j - 1) + Etstackm(j - 1, i + 1) + Es(i + 1, j - 1) + Qprime(i + 2, j - 2));

}

else

{

Q(i, j) = min2(Q(i, j), g_multi[1] + g_multi[2] + auPenalty(i + 1, j)

+ Ed5(j, i + 1) + Qprime(i + 1, j));

Q(i, j) = min2(Q(i, j), g_multi[1] + g_multi[2] + auPenalty(i, j - 1)

+ Ed3(j - 1, i) + Qprime(i, j - 1));

if (i < j - TURN - 2)

Q(i, j) = min2(Q(i, j), 2.0 * g_multi[1] + g_multi[2] + auPenalty(i

+ 1, j - 1) + Etstackm(j - 1, i + 1) + Qprime(i + 1, j - 1));

}

}

}

}

}

56

