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,;!{<~;,;VE FOREVVORD 

This report is Part I of a preliminary study in connection 

with the Wind-tunnel Project under contract with the ONR to be 

carried out by the Hydraulics Laboratory of the Colorado Agricul-

tural and Mechanical College, Fort Collins, Colorado. Al though 

it is chiefly a review of existing literature, it also contains 

some original research. 

Review of much of the existing literature was done by 

K. c. ,Kuo at Fort Collins in the summer of 1949. This work has 

greatly facilitated the preliminary preparation of the present 

raport. 

The writer wants to express his thanks to Professor T. H. Evans, 

Dean of Engine ering of the College am Chairman of the Engineering 

Division of the Experiment Station and Dr. D. F. Peterson, Head of 

the Civil Engineering Department of the College and Chief of the 

Civil Engineering Section of the Experiment Station, for critical 

r\:;ading of the manuscript and many valuable suggestions. 

The present work has been done under the supervision of 

Dr. M, L. Albertson, Director of the Hydraulics Laboratory of the 

College, to whom the writer owE:s many valuable discussions and 

suggestions, and much assi.stance in preparing this report. 

To Mr. Fred Repper, Graduate Assistant, who has rendered in-

dispensable .- assistance with his fine draftsmanship, the writer also 

wants to show his appreciation. 

Part II covering the turbulent case of forced convection and 

part III covering free convection under the same general title 

will be completed in the near future. 
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INTRODUCTION 

In order to provide a theoretical basis for the experiments 

to be performed in connection with the ONR contract N9onr-.82401, 

and to profit by the results of previous research workers in the 

field of evaporation and in related fields, a comparative study of 

momentum transfer, heat transfer and vapor transfer has been carried 

out, Such a study is not only desirable from the fundamental point 

.of view~ but will actually be of value in determining the mutual 

applicability of results obtained in each of the three fields, 

thereby reducing the experiments to be performed to a minimum by 

the proper utilization of existing data. 

The process of evaporation is ·a process of mass transfer, and, 

like t hat of heat transfer, can be divided into two categories, 

namel y conduction and convection. If the process occurs in still 

air and does not r esult in an unstable dist~ibution of specific 

weight, it is call ed conduction, since no convection current ·is 

established and the transfer depends solely on molecular action. 

On t he other hand, if a convectional current is induced by an 

unstable distribution of specific wei ght as a r esult of evaporation, 

the process is called free convection; and if the evaporation is · 

mainly effected by a superposed, predominating f low, the process is 

called forced c onvection. In each of the t wo types of convection, 

the r esultant f low may of cours e be eith er l aminar or turbulent, 

or a combination of the t wo. 

Save f or a differ ence in the thermal and vapor diffusivities, 

evaporation by conduction is analogous to heat conduction, since in 

each of them the Lapl ace equation must be S,':1.tisfi ed in t he steady 
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case and the wave equation must be satisfied in the unsteady case. 

As heat conduction has been thoroughly and successfully treated 

problems of evaporation by conduction are already solved wher ever 

the solutions of their thermal counterparts exist. 

The dif ficulti es in convection problems lie chiefly in the 

non-linear character of the equations of motion and of diffusion, 

and in t he case of turbulent flow, in the l ack of a conclusive 

turbulent theory. As a r esult the existing solutions necessarily 

r et ain an individual and often a s emi-empirical character. It is 

because of this situation and t he fact t hat the convection types 

of evaporation are directly pertinent t o the experimental project 

that t his study is undertaken, ·which will treat th€: se types in 

detail with .a view to correl ating the existing r esults and guiding 

the experimentation at hand, and to pointing out the directions 

for future r esearch. 

In the following par t s dealing with the two types of convec-

tion, an effort is made to bring out, together wi t h its limitations, 

the analogy between momentum transfer, hea t trans f er, and vapor 

transfer. In Part I the boundary-layer equations v.,rill be developed 

and f orced convection in the laminar case will be treated in 

detail, Forced convection in the turbulent case and fre e con-

vection in both the l aminar and turbulent cases will be treated in 

Part II and Part III, r espectively. 

Becaus e in free convection the distributions of velocity and 

of vapor concentration ar e interdependent, t he pertaining problems 

are essentially more diff icult t han t he corresponding ones in forced 

convection. It is for this reason that forc ed convection will be 

treat ed first. 
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PART I 

FORCED CONVECTION, LAMINAR CASE 

1. Boundary-Layer Theory 

At the beginning of the present century, L. Prandtl (46) 

discovered that for the now of a fluid with a small viscosity or~ 

more generally, with a relatively high Reynolds number, the effect 

of viscosity is concentrated in a thin layer in the immediate 

neighborhood of any solid boundary present, and that outside that 

layer potential now prevails. This discovery, suggested perhaps by 

experimental evidence, led to the boundary layer theory which Prandtl 

presented to the Third International Mathematical Congress in 

1904 (46), furnishing equations which, in combination with the 

results of potential now, determine the velocity distribution in 

the boundary layer before separation occurs. The importance of 

the boundary layer equations, however, is not restricted to the 

above application, as they are found useful also for computing the 

distribution of velocity in jets and wakes. After the velocity 

distribution has been computed by these equations, the temperature 

or vapor distribution can be determined by equations similar to 

those used for the velocity computation. In view of this, the 

boundary layer e~uations and their important solutions will be dis-

cussed first in some detail in connection with forced convection. 

Denoting by u and v the velocity components in the x- and 

y-directions, by t, p, p and y r espectively the time, hydro-

dynamic pressure, mass density and kinematic viscosity, the 

..... 
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Navier-$tokes equat ions for t wo-dimensional motion 

o u. + u ~ + V Au = ..!.. ~ - d P + V (at,"' ..L J..:y_ ) o t · ;, x a '3 ·.:, f ~x · a.x.c · iJ ':J;; 

~ Y .L u "o V + V o V = _ ...!.. .d P .l.. -y ( l v+ 4,' ¥.). at • c) x d 1 . e ~ ·':I 1 ~ ;(" ~ -~ ,2 · 

(1) 

and the equation of continuity 

di.l+ dV=O 
dX oy · (2) 

can be converted by the substitutions 

t I_· t u,, I X ' <:f 
"I. - T > X = ·-y- ' '-J = T t 

into the dimensionless form after dropping the primes: 

~ lj_ + {.). J ~ + V i\U JP + I (d 11,A.. : a 2 U. ) == ~ - ~ xi 4 -a 4' Jt JX d'-j d )( 
J 

-~ .1 i ~ 
l ( 2. I ~ I ) __ ·_ (3) ... J.. r 1 b '- ,. Iz 

- ,!, P + I (i-v + f-~z) () y R 6 x.2. 
.> 

s , . {. ("(_ ¼ ) b ~ 0 T ' 
( 
<) 

o_ll + ~v =O 
a X o Y (4) 
1 i •' 

where R - _ u,, (. is the Reynolds number., · U0 being the free. 
V 

stream velocity and Z a characteris t ic body length. The 

dimensionless boundary layer thickness +- is very small comparect 

with 1. On the basis that u is of order of magnitude 1 

and that R,-...; ~ (since it has been shown from ·exact solutions 
. ~ .. 

of the Navier-Stokes equations that X 'V ~ ) , the orders of . 

magnitude of various terms in the above equations can be found to 

be those marked below them. That 4 V ,.._, 1 follows from the Jj . 

equation of continuity, This gives V ~ ~ .· The orders of ~e 

other t erms are then obvious. ~ p Q ,::> ( That - · r"'.J 1 and _,.;....... r-.1 " follows Jx - J ~ 
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from Equation (3). 

the pressure within 

The fact that ~ ;?. ,,..,J [ means physically that 
"Y 

the boundary layer is practically constant, 

and hence essentially the same as that obtained for potential flow. 

From the orders of magnitude of the·various terms, it can be 

readily seen that ~:?.~ can be neglected as compared with i~u~ 
o X u J 

The observation that p is given by the potential flow enables 

J_I:._ to be known beforehand. Thus Equation (1) may be reduced to 
J X 

the single equation 

(j{,< JI.) + V dU JP 
\_ ;:_. 

+u 
\ 

+ 
V ,1 ,.1._ 

(5) = -···---
.j t dX . d (j (: dX J ~ ( 

which together with Equation (2) and the boundary conditions 

y • ot U =Va 0 

y .. : u = u 

determines the velocity in t he boundary layer, where U is known 

from solution o;f the potential flow~ Equation (5) is the boundary-

layer equation for two-dimensional flow. For rotationally sym-

metric jet flow, the boundary-layer equation is 

a U + U iJU. + \/ .l.Y: = _ ...!..__ e,I ~ + V o ( . <l U.) 
J t ~ x 1) r f' 1))( · r ~ r tt ( 6) 

vvhere x and r are now the longitudinal and the radial distance 

respectively, and u and v the corresponding velocity components. 

It may be noted that for the flow of jets ~~ is found to 

be zero. For flow around solid bodies curvilinear co0rdinates 

must be used vd. th x measured along the body and y along a di-

rection nonnal to it~ The r esulting equations are the same if the 

curvature of the body is small, but are otherwise rather compli-

cated and difficult to use~ (See 19 ). 



2. Analogy between the Transfers of 

Momeritwn, Heat, and Vapor 

For convenience the two-di.~ensional case will be discussed. 

Equation (5) can be considered as the equation of momentum trans-

fer, with )/ as the co3fficiE,nt of diffusion or, for comparison, 

as the "momentum diffusivity." In the forced convection of heat, 

if the heat genera.ted by friction and change of pressure can be 

neglected and if the field is free of heat sources the equation 

for the distribution of temperature is 

(7) 

where T is the temperature, k the thermal conductivity, ·Cp 

the specific heat at constant pressure, and the ratio is 

called the. thermal diffu.si vi ty and denoted by o< which has the 

same dimension as y Equation (7) is analogous to the Navier-

Stokes equation only if the pressure p is constant. Since a . 

non-constant p can be considered as continuous sources of momen-

tum, for the case of non-constant p the analogy can be restored 

only when there are continuous sources of heat in the fluid with 

the same distribution as p , bearing the same. relation to the 

heat flux CI' f: J(; (~, -T,) as p to the momentum flux f? \)0 2. , 

U0 being the free-stream velocity, T0 the free-stream tempera-

ture, and T1 the constant temperature of the solid boundary. 

Denoting .by the variable h the strength .of these continuous 

sources, the addition of such sources will introduce a term 

- ·_I_ .) h on t he right side of Equation ( 7 ). This will restore 
cf>e o.X 

·.·..ii 
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the analogy when p is not constant. However, it must not be con-

strued that the velocity and (T-T1 ) distributions are then identical .• 

Identical distributions are obtained only when )/z. C>( · • The ratio 

! is called the Prandtl number. The following table is a summary 

of. the foregoing discussion: 

I p = constant P4 constant I 

I I without with proper. 
! heat BOU?i'Ce s heat sources 

I ···--··-- ----··--··· -··- -·-· . , .. ·----- .. ---.-·- ---· . 
_-v'~ (J - ........ ' I 

Analogy Lack of Analogy D( 
nalo.~ --------r------------·----- --··- - - - -- ·- ·· ··-··-·-··--·--- ·- ""'~·-·-·-

Complete Lack of Complete 
v nalogy and nalogy nalogy and 

<5 = - :::. l identical dis- identical dis-
0-:. tributions of tributions of 

u and T-T1 u and T-T1 I 

Now l et p be constant and the analogy exist. The product of 

the Reynolds number and t he Prandtl number, namely Uo?. , is called 
o< 

I 

the Peclet number. It has been seen that if R is very large, 

Equat ion (5) applies. If now Pe is also very Jarge (that is if 

'}' and o< have the same order of magnitude) by analogy the follow-

ing boundary l ayer equation is valid: 

(8) 

(When P~: R, the velocity and (T-T1) distributions are identical, 

and i t is obviously true that Equation (8) is valid.) 

. For vapor transfer at large Peelet number, t he boundary.layer 

equation* applies : 

JR +u. .\Pv +v :iP. =Kj1.R, _ 
.) f.. J ;.< 4(.j ' jlj2 (9) 

V i~ Her e (:f :: IC where K is the vapor conduct;i.vity, and Pe = Lbl 
K 
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It is of course assumed that Pv is small compared with the 

prevalent pressure in the flow, and that the flow pattern is 

essentially undisturbed by the motion of the vapor, - Equations (8) 

and (9) and ~quation (5) for constant pre$sure can be combined 

into the s:i,.ngle equation 

, ,2. \c=' L ~ ,J (10) ()' .,;) ·i.l-
For similar boundary conditions the distribution of 'f is there-

fore a function of the parameter rs e 

3, Exact Solutions of the 
Boundary-Layer Equations 

(a) The Pipe 

Since for the velocity distribution in established pipe flow 

the boundary-layer equations are exactly true, and since it is 

well-known to be parabolic, convection in pipes ~Till be heated 

first. 

Using the cylindrical coordinates r, ~ and z, the 

velocity-components are: 

? 

u. .. : z U. .. ,,i (,- .::· ) 
J, a."- ,, 

where ~ is the mean velocity and a the radius. 

If the boundary conditions are 

J<o 
I") '· -, A' ;' u .. , 

then defining 

T -= T, . -' 

one has to solve the boundar y-layer equation 

..,.2. \ () ~ 
- ·-- I . - - · 

o 2J J b 
<)(9) . 
or 

(11) 

(12) 

(13) 
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with the boundary conditions 

j" o a.rid r -< a : 
') > 0 a. r1d I'"' := O. : 

Putting 

(}::: 1 
(9 = 0 

& := A_ exp. ( - ~ ;; .:?Zi:~a. ~ ) t ( r) 

(14) 

(15) 

(16) 
where (3 is an undetermined constant., Equation (i(J) becomes 

cf X . __ I_ c\ 1.Y_ (3 Z ( ?. ) + + ~- I 1 - f-, ,jp:: o· dt- 2 r- dr a_ z ,, :;...L 1 (17) 
Writing one has 

d 1- 11, I ,.(d, r , 11 -~ + _ .. _,_ 'f' + L' -( -L) "- J \II-:;;:: o d r'' r' d ,~· · · ·, ( i -r (18) 

The series solution without irregularities at the origin ia 
• q + (r·', _(3) = I - f-,: +- ] .~·. ( ¾- + 

where 'f (t· ', (3) must satisfy 

( - (3 \ lf, (~, ;:::O 

~1.)·t ··· (3 <: . 

(19) 
so that Equation (15) is satisfied. Equation (19) has infinitely 

many roots, of which the fir s t three are 

(3 ,, -:: 2 .705, i l.. - ~ r: ... r-, i,:? ::. JO i_ {-' , · <o. 0 v, (··) %, .\.[} 

Taking the solution of (18) to be 

~, ( (:-;; ~o<J \ ,f ((3r '\ (:). ::; L A E·xp - .:Jn -~--,:::.;' 0 :-.!::_ , (3,,. J. . _n GU. '-'-· I ~ n~ 0 ~ 

( 20) 

one can detennine the A's from Equation (14). Nusselt (41) gave 

the first three to be 

The solution is due to Graetz (17) and Nusselt (41), and is 

in good agreement with the experimental results of McAdams (38), 

the deviation being probably due to the distortion of the parabolic 

velocity distribution caused by the vari3 tion of dynamic viscosity. 
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(b) The Flat Plate 

One of' the simplest examples of the application of the 

boundary layer equation is the essentially parallel flow along a 

flat plate, treated by H., Blasius ( 5) in his Gt5ttingen thesis. 

Let the plate begin at x • o, extend parallel to the x-axis, and 

be infinitely long~ ,And let the free-stream velocity be U • 

Here • For steady flow, Equations (5) and (2) become 

d V~ d U. J2. <J.. 
U.c}X t V ~~ ::y j<j?. 

(21) 
~ u ~ v' -+---o JX . ~lj 

the boundary conditions being 

lj"O: U.-=-v:z.Q: <-j-=<:,,O: u=U, 

Using the stream function 'f such that 

d '-f u. st -- , 

c)u 
.) 

the second of Equations 

V .:- - 9-:f:: 
JX 

(2~) is always satisfied. Making the 

substitutions 

-- · 
17 = Cf V i,Yx. ' 

the velocity components are 

u. := u ( '( '7) 
V == J.:. {vu ( 1"! f '·-f) t, -;:-· \ 

where the primes denoted differentiation with respect to ~ 

Furthermore 

~ u -== - _! JL ~1 f ,, 
dX L X · ' 

Substitution into the first of Equat ions ( 21) yi elds, 
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after simplification: 

ff il f 'II +2.. = 0 

with the boundary conditions 
n:::o: f==-f':::0 

I 

r1 =-<i : f'::: i 
Blasius' solution :._ives 

c<1 "' f L ( I ) · C ,; r>< '' ~ 1 3 n + 2. 
= n ::: o ·- I · f ?., .-~ + 7)-~ 'l 

where 

C3: 375, C4: 27,897, c5 = 3,817,137 

(22) 

(23) 

The asymptotic development near 'l ::o,o is formulated in the fonn 

f=f+F +f-+ ••• \ . t.. 2s 
where the higher appro.:x:Lmations are to be small in comparison 

with t he lower approximations, for instance (~<.< f, The 

first asymptotic approximation s hould, of course, correspond to 

the potential flow, and is therefore of the form ( = tl .- (3 
As £1, = o and f1 >> f2, Equation (22) can be written as 

( '1 - (3 _) +/ -t- e fz 111 

= 0 
the first integration of which is e.;isily seen to be 

r 1
' 1 1 c t = - r3 7 - - r ,. + C 

t ' 2' 4 ' 
If one writes C = - (31/4 + 1 n i one obtains 

/I I ( /)) z_ f,, = t e -4 1- 1·" 
~ 

which after integration, becomes 

{' = o' ['? e-iiC~-(3) ~d17 
z ~ ' 

the lower limit being chosen so that f 2 (e:.o): O. Sincef.'(~:::i 

the solution f = f 1 + f2 satisfies the third boundary condition 

f (~) = 1. ~nother integration gives 

(24) 
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This solution still contains two integration constants (3 and 

0 , corresponding to the fact that only one of the three boundary 

conditions was sati'sfied~ Further approximation with an additional 

f3 was obtained by Blasius. 

When the solutions given by Equations (21) and ( 24) are 

forced to make f, ff and f 11 from both solutions agree , at some 

intermediate point where both are s erviceable, it is found that 

o<'.. = 0.330, (i-:::: 1.1~0, t: 0,Z,51 
Because of the condition i mposed by Bquat ion (22), the higher 

derivatives will automatically agre e . The values of f, f', f 11 

are given by Table 1. The v el ocity distribution V -::. f 1

( r,) 
is shown in Fig. 1. It may be r emarked that f' 1 1 : 0 when 11 ~ O 

since f = o when 

curvature at y: 

~ = o, Thus, the ve locity profile has zero 

o, since t her e ~
2 

U - U f 1 1 t - o. The distribu-
d ~2 - -

tion of v i s plotted in Fig. 2. It is not eworthy that at ? :: oO 

V = o . ~ b s t) { k. =t= 0 
1../X 

This fact is caused by the deflection of the potential f low from 

the body due t o the boundar y laye r thickness increasing down-

stream. This ha s to be toler at ed as a very slight defici ency of 

the boundary l ayer solution. 

As the surface drag plays a n irnportan t role in the theory of 

transfer, it will be given h ere. With · b denoting the width, l 

the l ength of the plate, the total friction force from one side of 

the plate is 
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But 

' 1 U ) · · II -~-- =-~ IJ U ( O - · · U \ n; JK 
( cJ .:1 , v. =o y'x { ' ) - ex u vx 

So 

\J-::: 2c< b L) v'f< eL U - O.&&,Z b Uyµ, e LU (25) 

and 

c'v-./ :: w . -
b L 5JL.2 

? . ,.., 
where R = 1../L 

"V 

(26) 

Suppose now the oncoming fluid to be of temperature T0 

and the plate of temperature T8 • For convenience let the new 

variable 

be introduced. The function f(Y-t) is known from Blasius' 

· solution. Setting_ ) ( j) = f ( f'{) , and using the primes to 

indicate differenti ation one has Table 2 for the values of 
I I I 

) , ) ) as ' reconstructed from Table lo 

Also u I 

(.J ~--f ·, . (, i 

V = ~ /7 ( S ·(- f) 
Using the new variable J and with the substitution 

$-·:: T•Ts 
r v-TS 

Pohlhausen (41.i) reduced the boundary layer equation for 

temperature 
u. JT 

JX 
to the following ordinary differential equation 

(27) 

( 28i) 

..... 
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tith) known, Equation ( 28) can be solved for different values 

of a- with the boundF..T y conditions 

·f = 0: 

r' = z: 
The solution of Equation (28) is obviously 

rs -0--rffd!d (9-=Ci+Cz. J. e ;0 
• ·5 

0 
where c1 : o, and 

c21 ~ ('e -(l"" f ! r d r d 3 
0 . 

C9--=0 

Pohlhausen determines the a 'Proximate value of c2 to be 
I o. 664 C, J Hence 

I I 

(9., :o-= o. (o4'4 0- 5 
and the {eat transferred per unit width of plate per unit time 

is, for a length L; 
L ' T 

C.IJ' = '- K. f ( ~ lj ) _ d X :.:. 0 . ~LI 4 a , '-1 =o 
. 0 .) 

r,7-·- I 
1<' , _u L ~ °3 ( t - -t ) r, V V v s o 

This equation is in good agr eement with the r esult of direct 

measurement on air by Jakob and Dow (3.3 ) • The mean coefficient 

of heat transfer is therefore 
r-;-;--· .!... 

o( = 0.(Q~ 4 k y)IUL 0- 3 

The solution of Equation (28) as outlined in the fore going 

applies directly to evaporation from a plane surface if the 

flow .is laminar. For evaporation of water in air, 

where K is the coefficient of vapor diffusion (or vapor 

diff usi~ity) a t t he prevalent temper atw-e . 

In Pohlhausen 1s problem the l eading edge of the plate 

coincides with that of the diffusion surface. If this is not 

true, Pohlhausen 1s equation can no longer be solved to satisfy 

the boundary conditions. Equation (27) will then have to retain 
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its partial character. _Besides the independent variable j 
x as defined by Pohlhausen, a second variable X.,= has to be 

. Xo 
introduced, where x 0 is the length of approach, With <S- defined 

now as 0 - Cs where c is the vapor concentration (dimension-
Co - Cs 

less) and the rubscripts retain their meanings as in the case cf 

temperature, Equation ( 27) can be trans formed to the dimensionless 

form 
I 

GJJ + a- ) Ct-~ = 2. o- X) ~ x. 
to be solved with the boundary conditions 

X·::1 

5=0 
J = oO: (9., (9Q (9. 

.:.....------+-----3 

This at once suggests the use of the relaxation me thod, 

Using finite differences ,a~ I = -n 
' . and Ll 'X_.:: -
l'i ' 

and des ignating the values of ©, at the point in question by 

(Sl , and those around the point in the manner shovm by the 
(J 

above sketch, we have 

& H = n .,_ ( 09 4 + C9 2. - 2.. ~ o ) 

0r = 1 (©4 -0~) 
(9 :c: D~. (C9_3 ·- (9,) 

Substituti~n into Equation ( 29 ) giv es 

(29 ) 

P' f' 
(9 :: J- (t + ~.!) ~ ;,- .l.(1-cl)1 m + <J~ ) 0 - o-~ (j (Jo) 
~ 6 . 2. ~·1 ~ 2, 2, Yl Vz. 2 ti , (. C') 3 

Equation (30) is the basis for the calculation _by r elaxation, 
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which consists of its repeat ed use. With the boundary values 

fixed from the boundary conditions (the value 1 of©- at infinity 

can be assumed to be attained at sufficiently large values of J ) , 
a plausible assumption is made for the values of <9- at staggered 

joints. The values of ~ at the other joints can be computed from 

E,quation (30). The assumed values are then corrected by using 

Equation (30) again, the amount of correction influencing further 

the neighboring (first computed) values of (9 by an amount con-

sistent with Equation (30 ). For instance, if (9, is assumed at 

the odd joints and computed at 

the even joints, calculation 

at joint 13 by Equation (30) 

with the ()}-values at the 

joints 12, 18, 14, 8 will show a 

discrepancy 6 (9 . This amount .6,. (9 

is imposed on joint 13 to make the 

(9 -value identical with the newly 

11 12 

16 .17 

21 . 22 - · 
I 

I 
15 I i 13 14 I 

I 
18 19 I 20 

f 
I 

23 24 I 25 
I I 

computed value. In accordance with Equation (30), this imposition 

will, when the joints 12, 18, 14, 8 are considered in turn as the 

central joint, contribute to these jIDints r espectively the amounts 

This process is applied at all the odd joints. The accumulation 

of the contributions at the even joints will contribute back to 

the odd joints in the same manner, and the process continues 

until the contributions become insignificantly small. Occasional 

checks by computing anew from the neighboring joints are often 

helpful and a final check is always desirable. The process of 



-17-

relaxation does not r equire the joints to be divided in t wo groups 

as explained in the foregoing, but can be performed in any manner 

whatsoever so long as ev eT1r joint is accounted for. 

Taking n: 2 the writer performed a rough relaxation. Al-

though the r esult needs further r efinement to be of use, the value 

at ( = ½ 1 )(= ½, is found to have a rather sensitive .effect on 

the boundary condition at 1 =- 00 • The calculated value at that 

point, which is around O. 46, will be utilized as a rough check in 

the analytic method outlined below. 

Since the point ;' = O 'X_-:::. 1. is a singularity vd th an 
) ' 

infinite ~ , the change of (9 near that point is too .rapid 

for a coarse r elaxation to yi eld sufficiently accurate r esults 

near the singularity. A new method using the eigen-functions is 

applied, Let 

~(f ,x) = Y< ~) X('X_) 
Substitution into Equation (29) gives, af ter division byfY($)K('%) 

y "+a- fy' -

where k 
-+'''( -
J 

is an arbitrary constant. Hence 

(31) 

x· ·ft .. (32) 

The solution of Equation (32) is 

X = C % <tz 
The solution of Equation (31) has to satisfy t he boundary conditions 

at j = O and 5 = oo • When k :. o, the Equation ( 31) is obviously 

Equation (30), the rolution of which by Pohlhausen giving 

· .. _,J 
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It is desired therefore that for the 

other values of k, the solutions Yk ( J ) will satisfy the 

To determine the values of 

k for which Yk( J ) will satisfy the condition Yk(..::)) : o, the 

asymptotic behavior of Yk( j) must be studied. If Y" at a certain 

value of .J is very small compared with the other two terms of . 

Equation (Jl) ( this condition is satisfied ne ar a point of inflec-

tion) then neglecting Y" the solution of Equation (31) is 
. ( y..:: C Ot-lSTAl'-.JT ) 

From Blasius solution, J-;.. 00 as the first power of J, as J ~ bO. 

Therefore for k < o, the situation that Y" is small compared 

with the other t wo t erms of Equation (31) will maintain, Y will 
~ 

vary asymptotically as) { , and the condition Yk (o0): 0 will 

be satisfied. The solution can thus be put in the form 
-n0 ~ 

ctt- ( § , X ) = ~ f (-\ ) x_ z y~ CJ ) d ~ 
and if the function f(k) is determined so that the boundary 

condition &(J, 1): 1 is satisfied, the problem is solved. From 

the considerations of t he next paragraph it will be s hown that 

f(k) is everywhere zero except at a set of points of Lebesque 

measure zero, in fact at the points where k is equal to zero or a 

negative odd number. The solution may t herefore be put in the fonn 

G ( j ''X ) ::: Yo . ( 5 ) ~t- %-i y_ I (5 )-+ X: 31; y_; ("5 ) + • • • (33) 

where Y0 ( J ) is the Pohlhausen solution and Y_1 (} ) , 

Y_3(J) etc. are as yet indeterminate to a constant factor (any 

constant multi ple of these eigen-functions will satisfy Equation 

(Jl) which is linear). It must be noted that 
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so that the condition at ':t= oO is satisfied. The condition 

0 ,(5,i) '= 1 
can be replaced by 

y_ ' () ) + '{ 3 ( 5 ) + t 5 ( 3 ) + · · · = i - '(e (} ) 0 4) 
where Y0 ( J ) is the knovm solution of Pohlhausen. 

The fo llowing con::;ideration justifies the selection of the 

eigen-values. As the value of O (SI at f::. O should be asymptotically 
~ 1 ) . 

I 

equal to o.552 obta ined by Pohlhausen and is evidently infinite at 

')( = 1, a plausible assumption for ~) is 
J ~ ~-= 0 !(9

1 
)j~o = 0.55?.. + c('"x.,-1)-i ::: o.s

1

5c..+C%i .. (,-%-·/i 05) 
) 

such that 

d (9.) L Ji:!_ ro 5 -2 ( ,.. - )-.!.. J (36) t1<j y=o z\;-:vx ~- 5-tC KI z. 
The choice of the pov.rer -½ is based on the assumption that the 

order of magnitude of ~(9 ),_.- at the point'!,= l is the same for the ,)!:J 1-0 )<_ 

case when the appro ach l ength X O is occupied by the plate and the 

case when it is not. In the Jatter case ,with x measured from a 

point ·with a distance Xo ahead from the l eading edge of the plate, 

Pohlhausen's solution gives 

c) (9) = 0 · "5 5 P.. / - U - ::: , I ru-- \ )- ~ (3 7 ) 
, l..{ _ ., · 11,.1( . 0.2-7 0\/, - 'x.,--1 

t1 .J J-o kl ~, X~~ ., ) V )/XI> 

The power-½ is ther efore chosen. From Equat ion (35) it is s een 

that o, -1, -3, -5 etc. a r e the ei genvalues , 

Since (:J = 0 at j =- 0 , the functions Yk( J ) do not con-

tain a constant t erm, but start with the f irst power. Denote 

the coefficient of the first power of ; in Yk() ) by ak• 

. -~ 



Then by Equation (35) 

a. =- o €"5Z a ·= c a = .£... a = 3c 
0 • J , -( J -3 Z, ' - 5 8 

in general and 

Q, z.!]_l<, 
-;,, 17+! -(17-R.,) 

The linearity of Equation (31) permits the use of 

1 
1, 2 ' 

for the values of 

3 . 5 t 
~ , lb , e c~ 

a_1, a_3 , ~-5, a_7, etc. 

Numerical integration of Equation ( 31) can then be performed for 

Gach k. The r esults are multiplied by the same constant C deter-

mi11ed to satisfy Equation ( 34). The Y_l ( J ) , Y_3 (; ) etd. thus 

obtained are then used in Equation (33) to constitute the solution. 

Table 3 i s the r esult of calculation by finite differ ences 

with 4 > = ..!,_ up to k : .15. 
) · ~ 

C is det ennined t o be 0.185. The 

last two columns are plotted in Fig. 3 to show the extent to which 

the boundary condition as expressed by Equation (34) is satisfied. 

It will be noted here the value 0.185 of C corresponds approx-
. p 

imately t o the value o.40 for (9. at )=0,5 and r? =0.5 • This 

is roughly checked by the value o.46 obtained with the coarse 

relaxation. 

Integrat·ng Equat ions (36) and (37) from x0 to x0 + L, the 

corresponding values of the total rate of evapor.?..t ion are 

r espectively 

M·~= K-~~; [o,~5Z('X-~ -9+0.oc,3 2,;,(2.~l-1+v:<-x.J(cs-c .. )tJ8) 
and , 

/V\7..= K f7 [o. 5SZ. ( X c- •.> 2 J ( Cs - c,J f (39) 
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'X, L where ::: -
I I )( 

and e is the density of air, since it is assumed 
- 0 

that for small vapor concentration f is essentially unaffected 

by the presence of vapor. The following table shows the influence 

of the length of approach 

1 

.34 

2 

.71 

3 

.79 

4 

• 83 

5 

.86 

10 

• 93 

20 

It may be remarked that as 'X,_1...,. co , M/M
2
,~ 1 , as can be 

expected. 

Experimental works done in heat transfer and evaporation 
, ' 

usually i gnore the effect of the cp proach length. Elias (14) 

used an approach length of 10 ems. and measured over a heated 

surface of length 50 ems . This corresponds to ;( :: b 
L 

, and 

according to the above t able int roduces a devi ation of around 12% 

from Pohlhausen 1 s solution. However, free convection, which was 

also ignored, offers a compensating effect, and the resultant 

devia tion is less than 12%. The very recent work of Yamamoto also 

ignores the effect of the approach len gth, whi ch was not mentioned 

in his work. Fr om the sketch of his paper, 'X. L is about 5. His 

result confirms the equation ( in c. g. s . system) 
\ 

E :: [o. Z q 8 + o. 9 Z 5 U ( J{,f' ) ... 2 ] ( C ~ - C 
0 

) 

where Eis the average r ate of evaporation, 0.298 accounts for 

the effec t of f r ee convect ion, and the other term is Pohlhausen's 

solution i'or ]/ = Q.15 , K ; O. 25, and 0-- = O. 60. Here, 

deviation from Poh1hausen 1s solution due to the approach length 

is 9vershadowed by the effect of free convection, the net effect 

being expressed by the t erm 0.298. 
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So far the only consideration ~. iven to the approach length is 

to be found in the Iowa Dissertation of Alberts on (3 ). He per-

fanned a s eri es of experiments for different "XL and different 

u. Defining 

C =-e 
.M 

lvhere x 1 " x - x0 , his data show the depenq.ence of Ce on x 1 /x and 

s = ux' 
K= , x · 1 

C _ . c-t )2. ( x) - l 
e-L03 S · 

From equation (28), it follows that 

(40) 

where 0.6 = l and F( 'X,) is defined by the equation. 
K 

A compari-

son of Equation (40) with Albertson's data is sh0vvn in Fig. 4. The 

systematic deviation s eems to decrease as S increases, and is 

probably due to free convection. Similarly, Equation (39) gives 
- ~ .!.... _, 

Ce= (o,(o) '(u.5's-2.)sz.:::. o ,723 s~ 
which is the limiting form of Equation (40) when x0 :; o. 

(c) Wedge-shaped Bodies 

Let x be measured along the wall and y in a direction 

normal to it, and J.B t (3 'fT' be the interior angl e of the wedge. 

If the flow is parallel to the plane of symmetry of the wedge , 

it can be easily shown that 

u -= ex l 

f\"1 

(41) 
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where U, is the velocity of potential flow at the wall, c 

is a constant, and m is related to (3 by the following equation 
0 g.rn ,.; = m-t- i z~a ) 

Following Hartree (22), one makes the following substitutions: 

n- 'j .~· t,-v ---v~ __ z_ y 
· 1n+1 

r = J ~ IC Y)( 1n~, r ( ~} 
where J; is the stream-function, The velocity components along 

I 
the x and y dir ections are respectively 

. / 
I.,{:. d"# = ex,.,.,+' 

d ':1 
V -:; ~ ~ ; ~ -{ :~ 1 JC Y Xm- 1 (tnt I f i- ~-

1 YJ f •) 
and 

\. --· - 5r>'1-I II ~~"Jm;'{~ C)( a { 

dU. ( rn-r, m- 1 l"t1- 1 f") ox;: ·~ mx f -t x T~ 1 
where the primes denote differentiation with r espect to ~, • 
Then the boundary layer equation 

LA.. QU+ V Ju. - u.. J u.,+y flu.. (42) -JX . dlj 1 dX ay2. 
can be transformed to 

Ill 11 • 2. f +(f-(3( f -1) -::.0 (43) 

with the boundary conditions 
f 

Y) = o : f ~f '= 0; ll = cO : ( == 1 
Equation (43) was solved for different values of (3 by Hartree 

The quantity f '-= ~ is given in Fig. 5. . u..., 

( 22). 
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·When 0-= O , Equation (43) is precisely Blasius' equation 

for the variable 1) • When 8 • 1 ( and m • 1), the flow is the 

so...called stagnation flow, and Equation (43) becomes 

Ill · Jt l 2.. ( ) f -tff --f -,.1-: 0 44 
This equation was solved in 191],. by K. Hiemenz (25) . Hartree 1 s 

contribution is t herefore the solution of Equation (43) for 

intermediate values of (3 • 

Let again 

In terms of the new variable ') , the equation 

d G d C ~ 2 C 
u... dX +v Jj :: K d':J 1 

becomes 
II 1 

©+a- (& ~o 
with t he boundar y conditions 

17-=oo: C9=1 
The solution is easily seen to be 

. C C f '1 - o- f_ ri f d rid ~= + e " n t 2., I 
. . C, 

where 

f 
,, 

C _,__ f 00 -a- tcl11d - e O ('\ 
.. 2, o . I 

and 

The rate of evaporation is 

where 

(uS) 

(46 ) 

(47) 

(~8) 
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(d) Arbitrarily-shaped Bodies 

Let x and y again be measured along and nonnal to the wall 

respectively. For the symmetric case, the velocity u1 (x) of 

po'tential flow at the wall can be expanded in the following form 

L. 'x) ,r·. x" c·· )( 3 5 
!. \ \ = V -·+ <- + Q >( + • • • ·• 1 I :, . ' !) 

(49) 

where the constants depend solely on the shape of the body, and 

where only the odd power.s occur due to symmetryo 

From Equation ( h9)., . 
- 2 

u , j ~' = a [y_ \ x -+ LI a :!, x 3 -.-( 6 u 5 + 3 i ~ ) x ,; + ... ·] c 5 o) 

Using the new variable 

?~lj/f 
and the stream-function 

(51) 

(42) yields, after collecting t erms containing 
:, '.) 1. .; t 

(). , X) 1-lO-/I.,,X , 0u.,O.:.-X , <.oC...3 X e C., 

r 1-_ r f !l~ i -t f. "' 
·f 'I J 

(52) 

I I Ii -4-+ f --3 f f - r [" :z. - r',.· 
, 1 , i~ r, . 3 I + 1 3 

(SJ) 
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1 I _ L II r. II 0{ qs - ~ r, gs - i gis -

0 ( h ~ - 5 (N h ~- f I h: :l:: 

(54) 

(55) 
and so forth~ The shape pa~ameters are thus eliminated from the 

differential equations to be solved, The boundary conditions 
1.j::.::O : u.i::v=o 
<j;;:;oo: U.=U, 

can be wTitten as 

h;:o: r=. r'==o· f I I ' r. - r'-o · 9 ..,.c/-n · I -h' -o :, - f-~ - , ~ ,_ ..,/ '-t - U , .""') ,• .. _ -
.;.; .,I .. ~ .J... ,., ~ 

f 

'+ ' 

I 

h "X. o. s .,. . " 
It must be noted that Equations (52) and (~4) are identical, 

and has been solved by Hi emenz (25), and tha t Equations (53) to 

(5$) and further equations of the same series ar e all linear and of 

the third order. Hiemenz also cal culat od f3 which was later improved 

by Howarth (30) o The functions q$ and h 5 have been calculated 

by Nils Fr~ssl ing (16) • . 

For slender bodies, the s eries f or u1(x) and u(x,y) converge 

poorlyc The r eason is that for such bodies u1(x) has a very 

steep ascent in the nei ghborhood of the stagnation point, while 

sh owing a rather flat curve furth er on. Such a function cannot 

be r eadily developed into a Taylor series . For blunt bodi es, 

application of the method yields considerably better r e~ults .• 

As an exampl e, consider the boundary l ayer of a parallel 

flow past a cylinder whose axis is perpendicul ar t o the uniform 

velocity. With R denoting· the radius a.nd U the free-stream 

velocity, one has 

U (. X ') . 2 u r A-, - '/ U -· X - " U { ~-- _I_ ( X ) ~ _l_ ( ~ )5+ • • \ 
' I · = · ~1 '\ 'Y - ~ ) If": I~ - (_. \ ,-z 3 2 1~ ) '. K. .. ) 



so that 

and 

h :: Y Jvo-· 
·r . ~ -v ·y 

_£_ JL . 
3 1 I~ 1 

, 

The velocity distribution is then given by 

. .. 

• - I 

u.(X ,t1) V I '1('>()>' 1 
I (;x.)':i( I ·h' +. . . z .p_ f -e :::- . -~ . t -t .:=-T if <~ CJ - + 2,o .-)·-\,- · ,. • z.. ·U· R. I ) _1 . h. J .., . . -~ .; 

The point of s eparation is given by 

6V.) -::. 0 
Jtj ~= o 

or 
. II X q ((o)ef-~ 

With f"(o )-::: I 2-324;,4., f 3''<0)=- C .'7Z,40 'i g}o)=0,<,, 3~ 8 and 

h ;· ( o) ~- 0 . t 1 'l =\ 

· ~ ~= I.Coo ; (ys =qz
0 

Hiemenz (25) based his calculat ion on his experimental pres-

sure distribution, and cal culated the separation point t o be 

at 82° whe r eas his measurements gave 81 °. 'lhe differ enc e between 

this r esult and that obta i ned v<l. th the potential-theoretical pres-

sure distribution is due to the fact that near the s eparation 

point the actual pressur e distribution deviates conside r ably from 

that obtained for potential flowo 

The unsymmetrical case has be en treat ed by Howarth (30). 

In order t o compute t he rat e of evaporation from an 

arbitrarily-shaped body in symmetric flow, ~ , as defined before , 

can be expanded in the following form: . ~ . · I C <. ( r' . .. , 1../ G-::: a., t0 ,©" --t a. 3X '32,-+ \o.. s- C9,~ -t- --;_3 ~s) X -+· • • .. 
' 

..,.., 
J 
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Then 
a c'l O - ') a. o x + y. 'Gs 0 + a; @ .-1 x~+ · - · · i ax - i..., 3 ' r- c: '-+ a, :, __ 

1.. II If 2, 11 ·l./ Z It 4 = o. , f90 + a., a1 (!),:. x + o... . a. 5' {!)~ x + a .3 <9s- x ..,... . , . 
Equating t erms with the s ame powers in the a I s and in x, we 

have i· 

rt-i -a-) t1 f.d ri 
~Q, ~ C )

0 
e . a d r/ 

where 
c-'" (" e - er ("t, clr:J'7 

CJ 

(56) 

(57) 

(58) 

(60) 

Using the f 1 comput ed by Hiemenz, Equation ( 60) was evaluated 
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by E. Eckert ( 8 ) fnr <:r = 0'. 73 • 

writer evaluated C to be o.466. 
for(;= 0.60, the present 

I 
The values of &0 and (9

0 
for 

different values of 7 are shown in Table 4, where (9 
0

' is shown in 

more detail because of its subsequent occurrence in Equations (57)-
(59) etc. 

It should be noted that Equations (57 ){59) etc.. are all linear 

and of the second order. 

can be solved ~lth the boundary conditions 
C9z (o) ~ (94 (o) =C9s (o)-:: • .. • = 0 

and 

Numerical solution of (9 , ~ . and /f'i by relaxation is nov,r being 
.2 \..74 I.J~· 

undertaken by the present writer both for er = o. 6d and er = O. 73. 

Although the solutions may not be expected to give satisfactory 

results for slender bodies, they are important for fundamental con-

siderations and se rve as useful initial steps for further develop-

ment in the already clearly indicated direction. 

should give satisfactory results for blunt bodies. 

Besides, they 

Three dimensional cases have been considered by Fr~ssling (16). 

An exact account of his work is not available. 

(e) Wakes 

The wake behind a plate of length { will be considered. 

Let x be measured from the leading edge, Denoting by U the 

free-stream velocity, u the velocity in the wake, and 6. u the 

difference U .. u, under the assumption that Au is small compared 

with U, the equation of motion in the wake can be written as 
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with the boundary conditions 
~GU.. -..._;.... :. 0 
d j 

Introducing the variable 

'? = yJ V .· 
·i,, X. 

and putting 

ALA--::u(l )-½9(11) 
one has, by substitution into Equation (61), 

It l I / 1 it,. ~g-+z~ =O 
with. the boundary conditions 

I 

r") :. o: ~=o; 
Two successive integr ations give 

rt' --g =- ce '+ 

To determine t he constant C I the momentum equation must be 

utilized. The loss of momentum per unit width is 

(61) 

(62) 

since U: u. On t he other hand, the total drag on the plate is, 

by Blasius $olution, 

2 w = L 32G f U zJ ·"v' • 
u 

The momentum equation is 

f' U f ::' u d'1 :::: I. H8 9 U 2J :tj-
- oO 

or 
I l. . . 

V - - s ..,0 - '1/ ,-,- 2@ ,.-. 2 r, 2 I • ' / 'J. , V. CJ V >< f U ( t") e ~dt')::. 2{fi' C fU vu. =/.32'ifUJ) 
V \ - <>0 
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which yields 
0,,(9~ nf 

and 
,l'j, u. --u .( 63) 

Treatment of three-dimens:i.onal wakes can be found in (19). 

(f) Jets 

The velocity distribution in a steady, laminar_ air jet issuing 

from either a slit or a small hole in a plane wall was obtained in 

1933 by Schlichting (.54 ). Later, in 1937, Bickley ( 4 ) gave a 

closed solution for the two-dimensional case. 

For the two-dimensional case, let x be measured along the 

center line of the jet and y be measured normal to it, in the 

plane of flow. The velocity components in the x- and y-

directions are -denoted respectively by u and v,, 

With the subs ti tut ions 
. _ ( M ) 1/3 Y 3 - .LIS e V 2 X -i I J 

and 

where M is the momentum flux per unit width and r the s t ream-

function, the Schlichting-Bickley solution of Equation ( 21) gives 

(6h7 

(65) 

u -: ( } /V\ 2. . ). \ ~ e h °?- ~ ( 66) 
32f 2 Yl( . .. c, ) 

V (67) 

If the air ·e t is preheated, the temperature distribution can 

be found (67) by using the substitution 
2 1 

. 

© ~ I - To . -.: ( _:!~-) ( f V - ) .-~ t ( ~ ) ( 68) 
Tc To V M X · 1 

\ . 
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where T0 is the t emperature of the suFrounding air and H is 

defined to be 

Substitution of Equations (64) to (68) into Equation (27) gives 

the differential equation 

(69) 

- 2 0- [-t ( ~) S-e.c~ 2- ~ + t' ( ~) fc..nh 3 l :: t/J ( 5) (70) 

with the boundary condition 

t'(o)-=o 
and the condition imposed by Equation (69), The solution of 

Equation (7 0) is 

(
e , l ua 

t. s ) ;;: C Sc c 11 S 
where 

So 

For the axial-..symmetry case let x be measured along the 

center line of the jet and r be measured in the radial direction, 

and let u denote the longitudinal velocity component and v the 

radial velocity component, If the Stokes stream-function is 

denoted by 'f , it follows that 

I Jf! I d f u=y- Jr' \I C::-i;-rx 
With the substitutions 

_ ..!- ( 3 A'\ ) Vz.. r 
11 - i.i Tif1,; i x 

and ~ 
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where M now is the total momentum flux. 

Schlichting obtained the solution of the boundary-layer 

as 

dU~ dU I i, ( . &c~ .... ) u d X -+" V i .r :: )I 7 ; ·i-- t p 

u-== 

v:;:: 

3 
~ 

81r' 

I -"' 
M -evx ( 

1 
+ I 2)1. Zi r, 

17(1-¼nt) 
U+~q")z 

equation 

( 72) 

(73) 

( 74) 

If the air jet is preheated, t he t empe r ature distribution can 

be found (67) by using the substitution 

(9- ::: T ~ ;Q -: T ~ X i. ( 17) (75) 

where H is now defined as 

H =- ( c,oz 1T r u., ( T -T
0 

) d .-. ~ .2 17' T., f ,.~ (A. & J r- ( 7 6) )0 V 

Substitution of Equations (71) and (73) to (75) into the boundary..-

layer equa tion 

t\© . 0~ U- --+ v-·-:= 
~ X d I" 

(77) 

yields an ordinary differentia l equat ion in t. (I() the solution 

of which with consideration of the satisfaction of Equa tion (76) is 

so that 

T-T-= 
0 

I + Z o------·~ 81' 
H ( r/· - 2-<r yx . _I+~) 

v~ ha t has been obta ined fo r the t emp er ature distribution in 

preheated jet s applies directly to the moisture dis tribution in 

pre...-moistened j ets if the proper value of ()° (0, 60) is used. 
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4. Approximate 'Solutions for the 

· Boundary~ayer Equations 

As the exact solutions of the boundary layer equations are 

with a few exceptions very laborious, and since there are as yet 

no exact solutions that can be applied satisfactorily to arbitrarily-

shaped slender bodies, resorts are often made to approximate methods 

in which the boundary layer equa.tions are renounced and only cer-

tain integral relations are required to hold in consistency with 

the momentum equation or with the continuity principle of heat-

or vapor-transfer. In 1925 papers were published by Von Kl rrnan (36) 

and Pohlhausen (45) describing an approximate method to determine 

the distribution of velocity in the boundary layer, Similar 

methods applying to heat or vapor boundary-layers were certainly 

only extensions of the Karma'.n-Pohlhausen method. In the following, 

x and y will be the curvilinear coordinates de~ined before • 

. 
(a) Definitions of Various Boundary-Layer 

'Phicknesses 

It is adequate to define the boundary-layer thicknesses first, 

which -will be used frequently in the next two sections, 

. *' 
The displacement thickness ,6 of the boundary layer is 

defined by 

where U, is the velocity of potential flow at the point in 

questiono The above equation can be written as 

(78) 
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The m?mentum thickness ;1.) is defined by 

u, A~= ~ o<'> V- (a,- U..) cl J 
or 

-/IJ = J ~ ~ ( f - U ) d 4 
o I U~, J 

(79) 

- r 
We shall use the symbol d to mean the thickness at which 

the velocity in the boundary-layer is essentially the same as 

(say 99% of) /J..,, Thus the value of cf is more -ct -less 

arbitraryo 

(b) The Kirman-Pohlha.usen Method . 

Integration of Equation (42) with respect to y yields: 

I d f h Z,...J s·h d U. d h du ( <"h,.)'"1 (80) - ..:__ _ U o l-1 + V -:- y -= u.. - 1 ·t }ll--
Z. dx O J O d'j J t dX ,c1j o 

?y partial integr cJt. ion and t he equation of continuity 
. o V _ ~U-
~ ----
c) ~ 6 X 

we have 

( \r; ~ u f h o V cf f hd u.. I ( i1 d U... I \,V <'>'j d~::: u,V11 --
0 

aij U- J:. -u., 
0
'Txo <-J+)

0
u·rx--c,J 

Insertion in Equation (80) gives 

\.-i dP ~ --------- (81) 
f dX e 

where -C is the shearing stress at the wall and 

- ~ =Y(Ju/ 
f.' J'j 0 

Equation (81) is the K~nnan integral-condition (36). 

Remembering the definitions of J* and / ) , and that 

I dP -(' d u.. , pax= .-1-,d.x 
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Equation (81) can be written in the form 

(,_, Zr:J)}- ( Q (J(. ctU., f:;: U.., dx + Z/'J -t- Ci ) U., dX 
(82) 

Pohlhausen (45) then assumed that 

. ..!::!_ = a. r-1 + b.1,.../ + C y-;3 + d n 4 
u, I ; , l 

( 83) 

where 
. y 
·~ = cf p (X) ( 84) 

the subscript p (=Pohlhausen) being used to avoid confusion with 

the cf mentioned in 4(a). From the boundary conditions 
.a. 

u -=o , y~:::::-l)_ 6U,. 
d yt I (j X 

u=u,, ~t,o, ~·~'>o 
the coefficients a, b , c, dare det ermined to be 

a -= Z + : , b -= .._ -~ , C = - Z + 1 , d -= I ·-- t· 
where t 

~ ~· J p du., 7- dx 
The velocity distribution is then g iven by 

where 

F ( I,, ) - p._, 11 - z, I 13 t ll 4 

c; ( '- . I ( I 2. , . 3 4 ) . I)::: 0 1-· 311 + :H1 - l) . 
Thus the only unknown is J f> • The solution consists in finding 

Jo from Equation ( 82)o The value of A is limited (on the 
I 

positive side by the r easonableness of ~ and on the negative 
I 

side by s eparation) to the r ange / 'l ~ A.. '>,- - J 2; 

Using Equations (78) (79 ) (84) and (87) one has 

('~ 
d -- - 3 - _..!_\__ ~ ((A) 

\0 I L O 1 

( 85) 

( 86) 

( 87) 

( 88 ) 
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J- 37 .), ~I. f ( ) (8 ) 
JP :::: 310 - 'qt.ts - q3'iz =, z >. 9 

Besides, from 7,; :. µ ( tj v<. ) • 9nd Equations ( 84) and ( 87) · · d'j ~-0 

_ "- _k. : 1 Z + .A :: ( ( A ) ( 90) 
U... u, 0 3 

Equation (82) can be written in the form 

which is a differential equation in/\} with the unknown 

J* -quantiti9s and le expressible in t erms of 

Now set ;J-z 
f< =zu.'= -u· 

I Y' I 

with 
1
J 2 

z::; Y 
Then from Equations (86) and (89): 

;., 
(< -;:: A [ (.) .>-. ) ] . 

Also, from Equations (88) imd (89): 

J_*:: f. (,~) :: F ( (<) 
/\_:} f;_ ( /\ ) . I 

and, from Equations(89) and (90) 

i ~ :: ~ SL! ~) ~ f (A) £ (A) = ,~. ( «) 
A u.. . r u. , ,; ,"> ~ 2- · ,:.. 

From Equations (91) and (92) 

I d? [ - J . z V, dx + 2,. + 1-, ((,) ((. -- ~ (.{<): 0 
If one s ets 

2 ~(K)- 4C<-2F;(k:)(<-:: F·(«) 
one has 

dl F((<) 
- = ox u, ' 

I 
(< = z u._,, 

where 

(92) 

( 93) 
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Equation (93) should be solved with {(0 : 0.0770 correspond-

ing to A_
0

_ : 7. 052 wher~ ({0 a.nd A
O 

are the values of (( and 

A at the stagnation point, o. 0770 being a zero of F(K). 

For the flat plate, solution by this method yields 

03 J Y~ • o.685 and ~ r- --J~: 0.343, .AA.U .. {..<.., 

whereas the exact vaJ.ues given by Blasius' calculation are 

respectively Oo664 and 0.332. The agreement is good. 

For the stagnation point profile the exact solution was 

discussed in 3(c). The approximate method gives 
i----- · -n-~J ~ = J C<o ~ O.Z78 

::: F; ( k ) J K
0

• = o, <ol.( f 

,-
\ / y 

),( {).; V U. I 

Fz (k) -= I, I q 
\} ("( 0 

whereas the values by the exact solution are respectively 0.292, 

o. 648 and 1. 234. The agreement is again· 7ery good. 

(c) An Approximate Method for Calculations in 

Vapor Transfer or Heat Transfer from 

Arbitrarily-shaped Bodies. 

In 3 ( c), exact methods for determinin[ the velocity and 

moisture fields in the laminar boundary-layer attached to a 

wedge-shaped body were discussed. For arbitrarily-shaped bodies, 

H. Schuh (61) mentioned a method for determining the temperatur e 
., ' in the field of flow. The method is similar to the Karman-

Pohlhausen method. Maintaining the pot ential velocity and its 

derivative ~~th r espect to x , it r equires only the balance 
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of he ate In the following, Schuh' s met hod will be presented, 

with the necessary changes to render the method applicable to 

evaporation. 

Remembering 

with r espect to Lj 
the boundary-layer 

V =: -[ ~ ~ ~ d lj , integration of'. Equation (45 ) 

with the condition ~C = 0 at the outside of 
o<j 

(or at y = oo ) gives 

J ( o4 · ( K · < 4) tJX J
0

U(C-Co)dlj =-k ~y\ 9 
Now imagine the body to be replaced in successive rang es by 

wedge-shaped bodies with the same velocity and the same x ... 

derivative thereof j ust outsi~e of the boundary layer. The stagna-

tion point of the given body and those of the elemental wedges 

naturally do not coincide. Denoting by x0 the difference between 

the stagnation points of the body and the wedge replacing it at the 

point ip question, from the f ollowing r elations 

X and XO 

I Ju., (3 ~ u.. ::- - == I dx 2 -(3 X+ Xo 
can be eliminated to give 

) = j ru.;-
7 Wv 

wher e it must be noted that the definition of ri is exactly the 

same as that given in J(c). 

11\ith (9. defined as in Equation (46), 
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As u is the f I 
in Equation (43) the solution of which is known u., 

for a cer t ain (3 and. as I -· (:} is known from the solution of 

Equation (46) for the same (3 , the integral loo u (1-19 Jd4 () u. , J 
is a function of 0 only. Writing 

5"° Ji. (1-(!))d4= }((3) 
~ u., ) 

one has 

Equation (94) can then be written as 

~ -(· u,113 J(G}~ _t fu:(0- ') 
dx Ju.,' I/ a-- J(3 o 

(95) 

where u =. J:: • Let · x 1 ;; ~ where ( is a characteristic l ength 
I< i 

of the body, and l et the free-stream velocity be u, then rrmltiply-

ing Equation (95) by Ji gives 

where 

and 

d !(~)' -,w== _!_ V V _ (0') 
dx o- {??:' · o 

w co Tiff ;( (3) J( u,r 
( O,) 1 

denot~s the derivative 
V 

of lA., with respect to x 1 • 

u 
At the s tagnation point , u1 = o, and hence w-: O. Thill! 

I (_· )( \;J-::;: ~) 
\.,J Q 

,---J( ~,· {<T' (&), d"' 

which can be solved step by step, giving as the main result (3 
as a function of xt. 

(96) 
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The local rate of· evaporation is 

(97) ... j( ( C ~ - (
0

) (u', ( ~ ) 
/(3Y o 

- - ·J<~c;J J ~ J, ( (3) 
and the total rate of evaporation can be found from Equation ( 97) 

by integration. 

5, Concluding Remarks 

(a) Since the equations of motion and of diffusion have been 

well formulated, the difficulti es encountered in finding the . 

distributions of velocity, t emperature and moisture in a f i eld of 

flow are chiefly mathematical. With the use of the approxirrate 

boundary-layer equations, solutions for these distributions have 

in many instances been found wher e the use of the exact equations 

wouJd present prohibitive difficulties. 

(b) As has been mentioned before, a complete analogy between 

momentum transfer, h eat transfer, and vapor transfer does not 

exist whenever there is a pressure gradient in the field of flow. 

It can be further stated that this is also true whenever the internal 

friction in the case of heat transfer or the velocity perpendicular 

to a solid boundary in the case of vapor transfer cannot be neg-

lected, or the physical constants suffer variations that ar e not 

negligible. !side from these limitations, the distribution of 

temperature or moisture for forced convection in a certain field 

of laminar flow is a function of the velocity distribution and the 

Prandtl number CS alone.'). 

(c) For problems ~her ein the differ encEsin velocity, t empera-

ture , and moisture are not exceedingly large, the physical 
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properties of the fluid can be consider ed as constant and the 

interdependence of these quantities can be neglected, From the 

foregoing it can be seen that these problems may be consider ed as 

essentially solved whenever the boundary-layer equations can be 

applied, the method of solution of the yet unsolved problems being 

clearly indicated by the exi s ting liter ature . In view of the 

non~linear character of the boundary-layer equations, t his fact 

offers a consider able satisfaction indeed, 

(d) Variable density has been extensively treat ed in the 

·'trensomic and supersonic theories in aerodymamics. Gener a ti on of 

heat by internal friction has be6n more or l ess rigorously dealt 

with in (8), (9), (10), ci1),· (12), (32), (39), (61), and possibly 

( 60). Treatment of problems involving large differ ences in 

t emper ature and moisture can be found i n ( 2) and ( 60). As problems 

of t his kind a r e important and r epresent a fi eld not yet sufficient-

ly explored, it can be safely predicted that future r esearch ~~11 

be greatly concerned with them. 

( e) It must be noted th~t sinc e the boundary-layer equations 

are approximate, and since the pressure corresponding t o potential 

flow can be di sturbed by the growth of a boundar y l ayer, experi-

mental data are often desirable t o check the th eoretical deductions . 

Moreover, in nature pure l aminar flow seldom occurs; whenever 

turbulence is present or t here is a ·possibility for its occurrence, 

experiments ar e indispensable, Thus, theoretical consider ations 

contained i n t his r eport f acilitate experimentation ~Qthout 

eliminating its necessity. 
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Table 1 ~---- ·--,---- ·-----·-- . ~-----··- - ··- --
f ft ! f" 

I I ---+--·----! 
I l, O O O 0.33206 

0.2 0.00664 0.06641 I 0.33199 
. o.4 0.02656 0.13277 0.33147 

o.6 0.05974 o.19894 0.33008 
o.8 0.10611 0.26471 0.32739 
1.0 0.16557 0,32979 0.32301 
1.2 0,23795 Q.39378 0.31659 
1.4 0,32298 0.45627 0.30787 
1.6 o.42032 o.51676 0.29917 
1.8 0.52952 0.57477 0.28293 
2.0 o.65003 0.62977 0.26675 
2.2 0,78120 0.68132 0.24835 
2.4 0,92230 0.72899 0.22809 
2.6 1.07252 0.77246 0.20646 
2.8 1,23099 0.81152 0.18401 
3.o 1.39682 0.84605 0.16136 
3.2 1.56911 o.87609 0.13913 
3.4 1.74696 0.90177 0,11788 
3.6 1.92954 0.92333 0.09809 
3.8 2.11605 0.94112 0.08013 
4.o 2.30576 0.95552 0.06424 
4.2 2.49806 0.96696 0.05052 
4.4 2.69238 0.97587 0.03897 
4.6 2.88826 0.98269 0.02948 
4.8 3.08534 0.98779 0.02187 
5.0 3.28329 0.99155 0.01591 
5.2 3.48189 0.99425 0.01134 
5.4 3.68094 0.99616 0.00793 
5.6 3.88031 0.99748 0.00543 
5.8 4.07990 0.99838 0.00365 
6.G 4.27964 0,99898 0.00240 
6.2 4.47948 0.99937 0.00155 
6.4 4.67938 0,99961 0.00098 
6. 6 4.87931 0,99977 0.00061 
6.8 5.07928 0.99987 0.00037 
7.0 5.27926 0.99992 0.00022 
7.2 5.47925 0.99996 0.00013 
7.4 5.67924 0.99998 0.00007 
7.6 5~87924 0.99999 0.00004 
7, 8 6.07923 1.00000 0.00002 
8.o 6.27923 1.00000 0.00001 
8.2 6.47923 1.00000 0.00001 
8.4 6.67923 1.00000 O 
8. 6 6. 87923 I 1. 00000 j O 

, 8. 8 '1 7. 07923 . 1. 00000 I O 
1 I I ' ----.--..-~----,.-..~--·----- - ··---·-·--···--·-_ .. _ _. _ 
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'!'able 2 

·-- ··- ··--- ,-·-·-·- - i- ---··- --- ,--···- - ····--····, 
, I 

1 ) i -r' I f" --·-·-···-- - -~+----~----1 
o I o 

1

1 o j 1. 33 
o. 2 . o. 04 o. 29 I 1. 33 
0.4 O.lJ i 0. 55 ! 1.32 

I I o.6 0.26 I 0.80 l 1.27 
o. a o. 44 I 1. 04 i 1. 18 
1. o o. 66 ! 1. 21 I 1. 05 
1.2 0. 93 

1
, 1,47 I 0. 90 

1.4 1.24 
1 

1.64 j 0.70 
1. 6 1, 58 I 1. 77 J o. 53 
1,8 1, 96 1. 88 i 0.39 
2.0 2.37 I 1.94 i 0.21 
2. 2 2. 8 I 1. 98 l 0.11 
2. 4 ! 2. oo I o .10 
2.6 I 2.00 I . 0.04 
2.8 

1

. 2.00 I o. oo 
J.O • 2.00 I 0,00 
3. 2 I 2.00 1 o.oo 

I ; I {. -·---·- - - ·~ - ----.. ·-·-1·--... -- -·---- -- - -.. - ~t 



Table 3 

)? .,i ¼ml t (Vi y ml y -\ n ly ( n-1i-v--c-,-)· ;~(-r?-~i!:-.-(-S-Jl_\_/ --( e-, ,! tY?1f :~c !~ 1-Y / ~~.
1.Cli\ l~ 

! J · -; ' I -5 J I -7 ) ! '-'t J i ·-1r SI , 1- \';, · ., I ' - 1"5 \ ') )f' i .! . .,d (G..fpro~ .)i 

-+ I L I . . . . : I I f I ( 1.!. r>·~v,:;.><, ,, • ' 
t i l f I f • 1 .. , 1 ~ {( - r f \ - -- ~ J 

-·-·- - :I . --- -!----:--+-----,· ------1-- -- --1-------4-- - - - - --l--------..--- t \I... -v. !; ':.,) i • 1 r 1 , , • - . --i------- ---r·, I i I I } l i ! I I 

0 I O ' 0 I O I O I o.., I O ! 0 
1

1· 0 l O I O I O ! l I O '1 
0.25 I .138 .25. 1 .125 ! .094 I .o,8 ! .068 I .062 , . 057 I .053 ! • 787 I J.945* I .862 I • 730 i 
0.50 .• 274 .h91.i 1 .. 245 l .181 I .149 1 .128 , .116 I .104 1 _ .094 11.511 4.121: i • 726 

1
. .763 i 

o. 75 .406 . • 718 .343 , .243 . .191 , .157 ! .136 i .113 I .098 : 1.999 ! 3d76::_ 1 .594 . .625 i 
1.00 .533 j .905 .398 j . .257 I .183 I .133 ! .101 l .067 J .04s I 2 .092 12 •. 592n I .467 j .480 I 
1.25 .648 , 1.033 .393 ! .212 ! .118 I .057 i .019 ! -.013 / -.030 11. 789 , l. 789 ! .352 I .331 l 
1.50 .747 11.089 I .327 I .122 I .020 j -.035 :-.062 I -.073 i -.073 ! 1.315 . 1.315 ! .253 .243 ,, 
1. 75 I .828 1.071 I .217 I .014 ! -.068 I -.092 1-.089 I -.066 l -.044 j .943 I .943 ! .172 I .174 .I 

2.00 1' .889 I .993 f .095 j -.071 / -.105 [ -.086 ,-.051 : -.009 ! .018 i • 784 j • 784 ! .111 ! .145 ! 
2 .25 , .9J2 1 .811 .

1 
-.008 ; -.112 1 -.081 i -.035 

1 
.009 1 .031 ! .045 I • 126 i • 126 , .068 1 .134 

1

. 
2.~o ! .960 l . 749 

1 
-.073 [ -.104 ! -.038 i .011 ! . 042 : .038 r .022 i .653 ; .653 I .040 I .121 

2. i 5 j .977 i .627 I -.099 f -.068 I .007 i .039 i .034 j .009 I -.011 i .538 l .538 ! .023 ! .100 
3.00 I .987 ! .523 -.096 1 -.028 I .029 . 1 .031 i-.008 I -.014 i -.020 I .417 ; .417 l .013 ! .077 l 

I ! : ! ! ! I : i I I I 
I ! i . ; ! I l : t 

~----------'-'--·------ __ __ ., ___ ~ ·----.- ·-- - - ! ~l.._ ! --- .. .J. 

-i .. Extrapolated 

J. 
0 
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Table 4 

1 I 1 ! II ___ J_ . ©(: (90 (9 ( (90 •I> 

11 
I 

0 o.4663 0 2.1 I 0.2268 
I 0.1 o.4663 I 2.2 0.2071 o.8417 I 

o.4659 I I 0.1889 0.2 I 0.0932 2.3 I 
I I I 

0.3 o.4649 I 2.4 I 0.1698 o.8794 I I 
0.4 o.4629 

I 
0.1862 . I 2.5 I 0.1524 

0.5 o.4599 I [ 2.6 I 0.1359 0.9100 I 
o.6 0.4555 ! 0.2781 I I 0.120.s I I 2.7 

I I 
o.4496 I I 

2.8 0.1062 0.9341 0.7 I 

0,8 o.4422 I 0.3680 I I I I 2.9 i 0.0931 · 

0.9 0,4330 I 3.0 I 0.0811 0,9527 I I 
1.0 o.4222 I o.4545 I I 3.1 I 0.0702 

·I 
I 

i I I o.o6oh 1.1 o·.4098 I I 3.2 0,9668 I I I I I I I 1.2 0,3958 o.5364 I 3.3 I 0.0,17 

1.3 0.3803 3.4 I 0.0439 0.9772 

1.4 0.3635 0.6124 I 3.5 I 0.0371 
I j ! 1.5 0,3456 3.6 

I 
0.0312 0,9846 i 

I 
1.6 0.3268 0.6815 3.7 0.0261 I 

I i 
1.7 0.3073 3.8 I 0.0216 0.9899 I I 

I 
1.8 0,2873 0,7429 3.9 I 0.0179 I 

I 

I 
I I 

i I I I 

1.9 0.2670 Li..o. I 0.0146 
I 

0.9935 l 
I 

i 
I 

I 2.0 
! I i I 

I 0.2468 0.7 963 4.1 ! 0.0120 ! 
I i i I i 

i ! : I I ! ~---·-·--- --t----·------- --. --~---- - ------·-
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Figure 1.-Vel~ity distribution u(x,7) 1n the boand8J7 
layer on the flat plate (according to Blasius). 
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!'igui-e 2.-Tlle transverse velocity v(x.1) in the bo'Ulldary 
layer on the nat plate. 
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Figure J. -Comparison of the last two eolumns in Table .3 .. 
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