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INTRODUCTION

In order to provide a theoretical basis for the experiments
to be performed in connection with the ONR contract N9onr-82401,
and to profit by the results of previous research workers in the
field of evaporation and in related fields, a comparative study of
momentum transfer, heat transfer and vapor transfer has been carried
outs, Suchla study is not only desirable from the fundamental point
of view, but will actually be of value in determining the mutual
applicability of results obtained in each of the three fields,
thereby reducing the experiments to be performed to a minimum by
the proper utilization of existing data,.

The process of evaporation is a process of mass transfer, and,
like that of heat transfer, can be divided into two categories,
namely conduction and conveetion. If the process occurs in still
air and does not result in an unstable distribution of specific
weight, it is called conduction, since no convection current is
established and the transfer depends solely on molecular action.

On the other hand, if a convectional current is induced by an
unstable distribution of specifié weight as a result of evaporation,
the process is called free convection; and if the evaporation is
mainly effected by a superposed, predominating flow, the process is
called forced convection, In each of the two types of convection,
the resultant flow may of course be either laminar or turbulent,

or a combination of the two.

Save for a difference in the thermal and vapor diffusivities,
evaporation by conduction is analogous to heat conduction, since in

each of them the Laplage equation must be satisfied in the steady
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case and the wave equation must be satisfied in the unsteady case.
As heat conduction has been thoroughly and successfully treated
problemé of evaporation by conduction are already solved wherever
the solutions of their thermal counterparts exist. ’

The difficulties in convection problems lie chiefly in the
non-linear character of the equations of motion and of diffusion,
and in the case of turbulent flow, in the lack of a conclusive
turbulent theory. As a result the existing solutions necessarily
retain an individual and often a semi~-empirical char;cter. It is
because of this situation and the fact that the convection types
of eVaporation are directly pertinent to the experimental project
that this study is undertaken, which will treat these types in
detail with a view to correlating the existing results and guiding
the experimentation at hand, and to pointing out the directions
for future research.

In the following parts dealing with the two types of convec-
tion, an effort is made to bring out, together with its limitations,
the analogy between momentum transfer, hgat transfer, and vapor
transfers In Part I the boundary-layer equations will be developed
and forced convection in the laminar case will be treated in
detaii, Forced convection in the turbulent case and free con-
vection in both the laminar and turbulent cases will be treated in
Part II and Part III, respectively.

Bgcause in free convection the distributions of velocity ard
of vapor concentration are interdependent, the pertaining problems
are essentially more difficult than the corresponding ones in forced
convection, It is for this reason that forced convection will be

trecated first.
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PART I
FORCED CONVECTION, LAMINAR CASE
1ls Boundary-Layer Theory
At the beginning of the present century, L. Prandtl (L6)
discovered that for the flow of a fluid with a small viscosity or,
more generally, with a relatively high Reynolds number, the effect
of viscosity is concentrated in a thin layer in the immediate
neighborhood of any solid boundary present, and that outside that
layer potential flow prevails. This discovery, suggested perhaps by
experimental evidence, led to the boundary layer theory which Prandtl
presented to the Third International Mathematical Congress in
1904 (46 ), furnishing equations which, in combination with the
results of potential flow, determine the velocity distribution in
the boundary layer before separation occurs. The importance of
the boundary layer equations, however, is not restricted to the
above application, as they are found useful also for computing the
distribution of velocity in jets and wakes. After the velocity
distribution has been computed by these equations, the temperature
or vapor distribution can be determined by equations similar to
those used for the velocity computation. In view of this, the
boundary layer equations and their important solutions will be dis-

cussed first in some detail in connection with forced convection,

Denoting by u and v the velocity components in the X« and
y=directions, by 1, Ps e and y respectively the time s hydro-

dynamic pressure, mass density and kinematic viscosity, the
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Navier-Stokes equations for two-dimensional motion

du du qu _ 2u
E+u;—;+v;—: “'f'(ax +V(3-—¢. %-g’,_
&Y 4 Y fydl=— ' ( +.__%) i
0t ' T aX y t_-[ 1%
and the equation of continuity
°“+°;-o (2)
can be converted by the substitutions
‘-\tU, L X oy ' P ' U !
'f;—-——*’ Ty = s = T g =
?. ’ x { ‘j Z P ‘Ouﬁl, . Uo v @«
into the dimensionless form after dropping the primes?
d1h J U AU 3P gty Yu
) uax+v3g 5x T (52+ag?)
< ¢ 2 I
1 ; O § o 'gL 1 2 (‘ <2 ) "y (3)
A% RY AV o _ef g L (dhv Mt
UtV Tyt R Gty
~ o '.‘ e !
§ 45 1 3 5 (5 1)
AU 4 OV "
ax b3 y =9 (L)
1 1

where R = ‘.‘;;Z< is the Reynolds number, U, being the free-
stream velocity and Z a characteristic body length. The
dimensionless boundary layer thickness -—%—« is very small compared
with 1. On the basis that u is of order of magnitude 1
and that R ~ -51-2- (since it has been shown from exact solutions
of the Navie.r-Stokes equations that § ~V7/~ ), the orders of
magnitude of various terms in the zbove equations can be found to
be those marked below them, That %—V— ~ 4 follows from the

equation of continuity. This gives Vo~ S. The orders of the

2
other terms are then obvious, That ﬁ— ~ 1 and %—:j— ~ § follows
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from Equation (3). The fact that %g-fu { means physically that
the pressure within the boundary layer is practically constant,
and hence essentially the same as that obtained for potential flow.

From the orders of magnitude of the various terms, it can be
Hu
dy*
The observation that P is given by the potential flow enables

readily seen that ?%% can be neglected as compared with

%{% to be known beforehand. Thus Equation (1) may be reduced to

the single equation

Hrudpavit--3 ol o
which together with Equation (2) and the boundary conditions
YV = 0% U=Va=0
Y= ¢ u=70
determines the velocity in the boundary layer, where U is known
from solution of the potential flow, Equation (5) is the boundary-
layer equation for two-dimensional flow. For rotationally sym-
metric jet flow, the boundary-layer equation is
Sepuddaydto o Sy X (bl ()
where x and r are now the longitudinal and the radial distance

respectively, and u and v the corresponding velocity components.

It may be noted that for the flow of jets ~%§% is found to
be zero. For flow around solid bodies curvilinear coordinates
must be used with x measured along the body and y along 2 di=-
rection normal to it, The resulting equations are the same if the

curvature of the body is small, but are otherwise rather compli-

cated and difficult to use. (See 19 ).
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2. Analogy between the Transfers of

Momentum, Heat, and Vapor

For convenience the two-dimensional case will be discussed.
EQuation (5) can be considered as the equation of momentum trans-
fer, with )/ as the coofficient of diffusion or, for comparison,
as the "momentum diffusivity." 1In the forced convection of heat,
if the heat generated by friction and change of pressure can be
neglected and if the field is free of heat sources the equation

for the distribution of temperature is

T 3T 3T £ 3T 3T (7)
s (e e (e 25 e § e ey
ot i o X va‘j e @ (ax“ 3 532
where T 1is the temperature, k the thermal conductivity, Cp
the specific heat at constant pressure, and the ratio Ej%; is
P

called the thermal diffusivity and denoted by o which has the
same dimension as.)/ « Bguation (7) is analogous to the Navier-
Stokes equation only if the pressure p is constant, Since a
non-constant p can be considered as continuous sources of momen=-
tum, for the case of non-constant p the analogy can be restored
only when there are continuous sources of heat in the fluid with
the same distribution as p , bearing the same relation io the
heat flux ¢.¢ UO (r,-T}as p to the momentum flux ¢ U,%

U, being the free-stream velocity, T, the free-stream tempera-
ture, and Ty the constant temperature of the solid boundary.
Denoting by the variable h the strength of these continuous

sources, the addition of such sources will introduce a term

h

>

= > X

?LE on the right side of Equation (7). This will restore
(\
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the analogy when p 1is not constant. However, it must not be con=
strued that the velocity and (T-T;) distributions are then identical,
Identical distributions are obtained only when J/=e< , The ratio

2 45 called the Prandtl number,

= The following table is a summary

of the foregoing discussions

p = constant p % constant
without with proper

heat sources heat sources

Remubiioiipoin : (i

tributions of
u and T-Ty

-V
g =l Analogy Lack of Analogy
‘nalogy
Complete Lack of Complete
+/ nalogy and . nalogy nalogy and
C== i identical dis- identical dis+

tributions of
u and T-Tl

Now let p be constant and the analogy exist. The product of

Ve 2

the Reynolds number and the Prandtl number, namely s is called

the Peclet number. It has been seen that if R is very large,

Equation (5) applies. If now Pé is also very large (that is if

Y and o< have the same order of magnitude) by analogy the follow-

ing boundary layer eguation is valids

3T, T 4 AT, T
T rUS Y TR (8)

(When Pé = R, the velocity and (T-Ty) distributions are identical,

and it is obviously true that Equation (8) is valid.)

For vapor transfer at large Péelet number, the boundaryelayer

equations# applies:
aF"

%

o

Ak
+ U T

e
Iv/

-
H

P,

+V

|

=K

n

(9)

o
£

# Here O = ﬁ; where K is the vapor conductivity, and Pe = E%l
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It is of course assumed that Py is small compared with the
prevalent pressure in the flow, and that the flow pattern is
essentially undisturbed by the motion of the vapor, Equations (8)
and (9) and fquation (5) for constant pressure can be combined

into the single equation

Yo 3 W () " "y :)2' Y (10)
2 ; J 2 == X 2
3t AR el Y g T & S

For similar boundary conditions the distribution of ‘f is there-

fore a function of the parameter & .

3. Exact Solutions of the
Boundary-Layer Equations

(a) The Pipe
Since for the velocity distribution in established pipe flow
the boundary-layer equations are exactly true, and since it is
well=-known to be parabolic, convection in pipes will be heated
first,
Using the cylindrical coordinates .r, e and 2z, the

velocity-components ares

“o=Ug = O o | (1)
Uy =2U,(-5%5)
where u, is the mean velocity and a the radius.

If the boundary conditions are
3<0 end r<o s T=T,
"T':

—

2550 and r=a

a b

then defining

A Rl 1
G =55 (12)

2u1=3) ¥ =($8+ 4% (13)
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with the boundary conditions

30 end r£a. G=1 (1)
3>0 ad r=ag: =0 (15)
Putting
@:A exp.(—(ﬁd‘.%:%ae) 4’(") (16)
where (3 is an undetermined constant, Equation (13) becomes
' d¥ 52( Y =
L L4 L0- 8)y- o
Writing (3 75: st see hes
dﬁw_ dY o ceNa1g,
S (%) ]ly=0 (18)

The series solution without irregularities at the origin is

y(ry (3= ()

where (r’ L‘) must satisfy

y(3,3)=0 (19)
so that Equation (15) is satisfied. Equation (19) has infinitely
many roots, of which the first three are

(3.%2.705, (3,:6.66, (3,°10.6

i

Taking the solution of (18) to be
Qe or } \ -
(9' - E /'\n ExP (.. "umcl-_":/' V ( “'— ’ ( ) (20)
n=o

one can determine the A's from Equation (k). Nusselt (L1) gave

the first three to be

A, = 1.L77, 4y = -0.810, s = 0.385

The solution is due to Graetz (17) and Nusselt (}1), and is
in good agreement with the experimental results of lcidams (38),
the deviation being probably due to the distortion of the parabolic

velocity distribution caused by the variztion of dynamic viscosity.



(b) The Flat Plate
One of the simplest examples of the application of the
boundary layer equation is the essentially parallel flow along a
flat plate, treated by H, Blasius ( 5) in his GBbtingen thesis,
Let the plate begin atvx = 0, extend parallel to the x-axis, and
be infinitely long, 4&nd let the free-stream velocity be U .

Here 2.0 = o For steady flow, Equations (5) and (2) become

a
U dU _ ., 2%
¥l *Vasy' 3y*
(21)
I U vV o
ox T auj’o

the boundary conditions being

Yy=0: UV =01 Y=ol U=U.
Using the stream function Vp such that
4
uc)ql 3 v--—aw

et

a X
the second of Equatlons (21) is always satisfied., Making the

substitutions

,.—.._--- rr—e

e Y Vi u/;-\l/xu 1(('(

X

the velocity components are
uU= Uf’(q)
V‘VU ( (1— -

where the primes denoted differentiation with respect to rz

Furthermore
QU _ L Ut e T du o Yo
3 X L x Y ik iyt o¥x

Substitution into the first of Lguations (21) yields,
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after simplifications

ffv2f"=0

(22)
with the boundary conditions
n=g: f=£=0
— . ' -
N fe
Blasius! solution :ives
Gz L (3f%+2)!
where Co=1ls 0 =1, Gy =11

03 = 375, Ch = 27’897: CS = 3,8173137

The asymptotic development near r{ zo<> is f ormulated in the form

{:szff;ﬁ+¥i+ e s 8

where the higher approxfmations are to be small in comparison
with the lower approximations, for instance (Z<( ( . The
1
first asymptotic approximation should, of course, correspond to
the potential flow, and is therefore of the form §{ = r‘( ~(3
t
As i'i = o and f3 >» fp, Equation (22) can be written as
s ¥ o™
(h-e)f +2f" =0
the first integration of which is easily seen to be
" l /... ’ b .
n = = | -+
, | (E. 2 \57 pr t’{ C
If one writes C = — 62/4 + In 8 one obtains
t 2
£y e ¥R
which after integration, becomes
> & ,7 [ <
{ =y [ ealntgy
2 (] v ;
the lower limit being chosen sothat fé (0) = O Since{ () =1
the solution f = f; + fp satisfies the third boundary condition

f (0©) = 1. 4nother integration gives

Lo i M- (n-2)° (2
fer-ftyf dqf e*Pay

]



This solution still contains two integration constants'(3 and
2{ s corresponding to the fact that only one of the three boundary
conditions was satisfied. Further approximation with an additional

f3 was obtained by Blasius.

When the solutions given by Equations (21) and (2L) are
forced to make £, f' and f" from both sclutions agree, at some

intermediate point where both are serviceable, it is found that

ol = G.332 | (3=1.130, ¥ = G.2314
Because of the condition imposed by iquation (22), the higher

derivatives will automatically agree. The values of f, ff, f®

/ ’ . - - : [V
are given by Table 1. The velocity distribution ET = f‘(!‘)
is shown in Fig., 1. It may be remarked that f''' z O when q-:o
since f = o when ,2;: o, Thus, the velocity profile has zero

2
curvature at y = o, since there U =Uf'"'! = o. The distribu-

y?
tion of v is plotted in Fig. 2, It is noteworthy that at q z o0

V=0.565 UfX #0
This fact is caused by the gg;lection of the potential flow from
the body due to the boundary layer thickness increasing down=-
stream. This has to be tolerated as a very slight deficiency of

the boundary layer solution.,

As the surface drag plays an important role in the theoryof
transfer, it will be given here. With b denoting the width, L
the length of the plate, the total friction force from one side of

the plate is

W:b)(:ﬁ dx = bu LL( '%).ﬁ_.adx

Q&
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But

(55 U (') = UfF
So

W=2xXbU JueLU = 0.662 bUJxeLu (25)
and

C " w = L3§ 8
ot bl €v? VR (26)
where R = _L.{...l-:_ -
vV

Suppose now the oncoming fluid to be of temperature T,
and the plate of temperature Tg, For convenience let the new
variable |

] =% )/x /x 3% *q
be introduced. The function f(Y{) is known from Blasius!
solution. Setting S’(;)={(r{) » and using the primes to
indicate differentiation one has Table 2 for the values of
*g’, s.} 5” as reconstructed from Table 1,

Also U '

u=s <%

=zF‘T<§f £)

Using the new variable ? and with the substitution

T-T
6= 2
-7,
Pohlhausen (l);) reduced the boundary layer equation for

temperature

wiT ’T
<)x \/M Kégz (27)

to the following ordinary differential equation

(&

H

+o §8=0 (28)
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With j; known, Equation (28) can be solved for different values

~of @ with the boundary conditions

§=o0: f=0: f=6: 06:=0:
zeo; Pzz2. O =1

The solution of Equatlon (28) is obv1ously

=C,+C, f ol P gy

where Cl = 0, and
o 5
g e_o-fofd§d§

Pohlhausen determines the a proximate value of 02 to be

0.66L G 3 Hence

G} = . 0441CT“>
and the‘ﬁeat transferred per unit width of plate per unit time

is, for a 1ength L,

o gt . UL -t -

. Kf \()(j :de = 0.044}(\;‘:;7' o3 (ts {o)
Thls equation is in good agreement with the result of direct
measurement on air by Jakob and Dow (33 ). The mean coefficient
of heat transfer is therefore

friweon L
v
= 0.644 — 3
o = 0.644 K5
The solution of Egquation (28) as outlined in the foregoing
applies directly to evaporation from a plane surface if the
flow is laminar. For evaporation of water in air, "= ;Z:O.b

where K is the coefficient of vapor diffusion (or vapor

diffusivity) at the prevalent temperature.

In Pohlhausen's problem the leading edge of the plate
coincides with t hat of the diffusion surface, If this is not
true, Pohlhausen's equation can no longer be solved to satisfy

the boundary conditions. Equation (27) will then have to retain
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its partial character. Besides the independent variable ;
as defined by Pohlhausen, a second variable X = _-E—o has to be
introduced, where x4 is the length of approach, With & defined
now as : - gs where ¢ is the vapor concentration (dimension-
less) ang thessubscripts retain their meanings as in the case o
temperature, Equation (27) can be transformed to the dimensionless
form ‘
G§§+O’f@§=ZG‘X§’&x (29)

to be solved with the boundary conditions

X=1 | O=1 o,

350 . Q=0

§=oof o=1 G, S, &,

2)
This at once suggests the use of the relaxation method,

~ |
Using finite differences A§ = -"; and A X = r 5
and designating the values of (@ at the point in question by
@0 , and those around the point in the manner shown by the

above sketch, we have

G%:nz(@qﬂr@z— 20,)
§ = _(®u*@ )
0. (® @ )

Substltutlon 1n?Eo Equatlon (29) gives
_ (T’? ) c f 0
Gt,—'a (% Z ™y )(3 ‘f ) g e ‘“'Elﬁ““<93 (30)

Equation (30) is the basis for the calculatlon by relaxation,
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which consists of its repeated use, With the boundary values

fixed from the boundary conditions (the value 1 of & at infinity
can be assumed to be attained at sufficiently large values of 3 15
a plausible assumption is made for the values of ® at staggered
joints. The values of & at the other joints can be computed from
Eqﬁation (30). The assumed values are then corrected by using
Equation (30) again, the amount of correction influencing further
the neighboring (first computed) values of {® by an amount con=-
sistent with Equation (30). For instance, if (§ is assumed at

the odd joints and computed at

the even joints, calculation

at joint 13 by Equation (30) 6 7 8 9| 10

with the Q@ -values at the
11 12 13 1L 15

joints 12, 18, 1L, 8 will show a

discrepancy /A (Q . This amount A@ 16| 17 181 19 20

is imposed on joint 13 to meke the
21 22 23 2l 25

(Q -value identical with the newly

computed value. In accordance with Equation (30), this imposition
will, when the joints 12, 18, 1L, 8 are considered in turn as the

central joint, contribute to these joints respectively the amounts

‘“’O;n) e, 2.(' 2 0 )A@ %‘%“AG "Z(' c‘f A0

This process is applied at all the odd joints. The accumulation

of the contributions at the even joints will contribute back to
the odd joints in the same manner, and the process continues
until the contributions become insignificantly small, Occasional
checks by computing anew from the neighboring joints are often

helpful and a final check is always desirable, The process of
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relaxation does not reguire the joints to be divided in two groups
as explained in the foregoing, but can be performed in any manner

whatsoever so long as every joint is accounted for.

Taking n = 2 the writer performed a rough relexation, Al=-
though the result needs further refinement to be of use, the value
at ? = é y X = é: is found to have a rather sensitive effect on
the boundary condition at§ =0 |, The calculated value at that
point, which is around 0.L6, will be utilized as a rough check in

the analytic method outlined below,

Since the point 5":(),7@1 is a singularity with an
infinite CQ} s the change of (§ near that point is too .rapid
for a coarse relaxation to yield sufficiently accurate results
near the singularity., A new method using the eigen-functions is
applied, Let

& (5,%) =Y ($) X(X)

Substitution into Equation (29) gives, after division bY'f\((g)EECXJ

L

Y+afy'_ 20xX'

_ #
\lg'v X -G‘}ﬁ
where k is an arbitrary constant. Hence
" t “ 1 )
Y+ofY ~ci fY=0 (31

iXd < ‘}t& (32)
X 2X

The solution of Equation (32) is

X=C% "

The solution of Equation (31) has to satisfy the boundary conditions

at 5 =0 and §=‘ oo, VWhen k = 0, the Equation (31) is obviously

Equation (30), the solution of which by Pohlhausen giving
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Y,(0) = 0 and Yg (00) = 1. It is desired therefore that for the
other values of k, the solutions Yy (; ) will satisfy the
conditions Y, (0) = 0, Yi(e®) = O. To determine the values of
k for which Yk(§ ) will satisfy the condition Y, (+0) = O, the
asymptotic behavior of Yk(g) must be studied, If Y" at a certain
value of ; is very small compared with the other two terms of
Equation (31) (this condition is satisfied near a point of inflec-
tion) thenlneglecting Y" the solution of Equation (31) is
Y = consTanT fﬁ
From Blasius solution, j—»oo as the first power of 3 as 3—> e,
Therefore for k < o, the situation that Y" is small compared
with the other two terms of Equation (31) will maintain, Y will
vary asymptotically as 5’£ s and the condition Yk (¢0) = 0 will
be satisfieds The solution can thus be put in the form
iy % ‘
G(3.x)=f £(R)%2 Y, (5)d*k
and if the function f(k) is determined so that the boundary
condition @(‘E’ 1):1 is satisfied, the prcblem is solved. From
the considerations of the next paragraph it will be shown that
f(k) is everywhere zero except at a set of points of Lebesque
measure zero, in fact at the points where k is equal to zero or a
negative odd number. The solution may therefore be put in the fomm
O(5.%) = Y, (§)+ %% Y, (%) XY (5) 40 33)
whers Yo(g) is the Pohlhausen solution and Y-l(j i
Y_3(§ ) etc. are as yet indeterminate to a constant factor (any
constant multiple of these eigen-functions will satisfy Equation

(31) which is linear). It must be noted that

& (=)= Y.(5)
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so thet the condition at X =eO is satisfied. The condition
&4 ( § ' 1) =
can be replaced by
Yo (5% Y (5) + Yy ()44, (5) o

where Yo(f) is the known solution of Pohlhausen.,

The following consideration justifies the selection of the
eigen-values. As the value of 5_@_ at ;': O should be asymptotically
2
equal to 0,552 obtained by Pohlhausen and is evidently infinite at

X =1, a plausible assumption for 3? >3 is
§ T -4
such t’l}lat

a@,)(j =0 va (O 552+C(&—l)z] (36)

The ch01cc of the power =3 is based on the assumption that the

order of magnitude of f))—-gi) at the point’k.: 1 is the same for the

4=0
case when the approach length X, is occupied by the plate and the
case when it is not. In the latter case,with x measured from a

point with a distance X, ahead from the leading edge of the plate,

Pohlhausen's solution gives

(37)

N“

30O 6552 U o
.—*)u c;‘“—-il “ =0.275

24 &Y (xexa v (%1
The power =% is therefore chosen, From Equatlon (35) it is seen

that 0, =1, =3, =5 etc. are the ¢igen values,

Since O@=0O at 5 =( , the functions Yk(;) do not con-
tain a constant term, but start with the first power, Denote

the coefficient of the first power ofj in Yk(; ) by ap.
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Then by Equation (35)

. - " - C 3C
a.GEOoQEZJ ? a-"c 3 a’3" —E s Q . —
and in general
n
- 2
-0 = mw; F-(n-2)
The linearity of Equation (31) permits the use of

1, P) %': T% » ete,

for the values of

ol

a.1s 2_3s 2.5, 2_7, etce
Numerical integration of Equation (31) can then be performed for
sach ke The results are multiplied by the same constant C deter-
mined to satisfy Equation (3L), The Y_; (f i Y-3(§ ) etde thus

obtained are then used in Equation (33) to constitute the solution.

Table 3 is the result of calculation by finite differences
< §_ | : " & m
w1th£§,)—;§ up to k = -15. C is determined to be 0,185. The
last two columns are plotted in Fig. 3 to show the extent to which
the boundary condition as expressed by Equation (3L) is satisfied.
It will be noted here the value 0.185 of C corresponds approx-
imately to the value 0,40 for (@ at 5’: 0.5 2nd [)=0.5 + This
is roughly checked by the value 0.L6 obtained with the coarse

relaxation,

Integrating Equations (36) and (37) from x, to x4 + L, the
corresponding values of the total rate of evaporation are

respectively

M= K{ZE [0.552(%E -)+0.0G3 (22 014X ey )39

and '
M= K{ZE ossz (% 1) ](Cs-c)e (39)
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where )Q': 3{' and f? is the density of air, since it is assumed

- ©
that for small vapor concentration f’ is essentially unaffected
by the presence of vapor. The following table shows the influence
of the length of approach

N 1 2 3 L 5 10 20

ul

I\IZ 03)4 071 079 083 .86 093 .96
It may be remarked that as X *00 M*/Mz...;» 1 s as can be

expected.

Experimental works done in heat transfer and evaporation
usually ignore the effect of the g proach length, Elias (1k)
used an approach length of 10 cms. and measured overv a heated
surface of length 50 cms. This corresponds to X,=6 5 and
according to the above table introduces a deviation of around 12%
from Pohlhausen's solution. However, free convection, which was
also ignored, offers a compensating effect, and the resuitant
deviation is less than 12%. The very recent work of Yamamoto also
ignores the effect of the approach length, which was not mentioned
in his worke. From the sketch of his paper, ’)(_L is about 5., His
result confirms the equation (in c.g.s. system)

\

£ =[o 248+ 0925 U(EF )% J(c,-C,)
where E is the average rate of evaporation, 0,298 accounts for
the effect of free convection, and the other term is Pohlhausen's
solution for }/ = 0.15 , K = 0.25, and 0" = 0.60. Here,
deviation froxﬁ Pohlhausen's solution due to the approach length
is overshadowed by the efiect of free convection, the net effect

being expressed by the term 0,298,



So far the only consideration -iven to the approach length is
to be found in the Iowa Dissertation of Albertson (3 ). He per=-
formed a series of experiments for different 7(‘- and different

U. Defining
¢ s M
= Ux'{cs-c )€

Where x' w x - X5, his data show the dependence of Cg on x'/x and

. Ux' .

et

Cc=;.03('§)‘2('

-—

K X' 'g
X

From equation (28), it follows that

H

Ce KIZE Joss2 (30514 003 In (21030 ) 1 es-c )@

UOX,<C5”CQ}€

= [o.a, (.- i)] E [0,55;& (Xft—{ )+0.043 (X -+ JX? 7-315’!

g X
- F(rb)s s (ho)

where 0.6 = ig} and F(X ) is defined by the equation. A compari-
son of Equation (LO) with Albertson's data is shown in Fig. Le The
systematic deviation seems to decrease as S increases, and is

probably due to free convection. Similarly, Equation (39) gives

Ce = (O.é)'li(o.s's'z.) 5"2' = 0.723 5'15, (11)

which is the limiting form of Equation (LO) when Xo = Oe

(¢) Wedge-shaped Bodies
Let x be measured along the wall and y in a direction
normal to it, and let CBﬂT-be the interior angle of the wedge.
If the flow is parallel to the plane of symmetry of the wedge,
it can be easily shown that

“u,=cx”
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where M, is the velocity of potential flow at the wally, ¢

is a constant, and m is related to (3 by the following equation

3
(3 77)11 (or m= -3
Following Hartree (22) s one makes the following substitutions:
r - —4-"‘?—-——- C Xm—'
’ W£~ %
1

p= J \fcw(”’“ f(n)

where \‘I/ is the stream-functlon. The velocity components along

the x and y directions are respectively

\/:-g-—fzﬁ f‘Jnym ,(/’n—ﬂ *» )7{‘)
and

U [mer [c "

3 2 fv CX f

Y
Su _ mr g _am- oW
9 i

du i M1 m ‘ "
Yt (mx"f 4+ x h f )
where the primes denote differentiation with respect to )")

Then the boundary 1ayer equation

ax*"ég “Lax Y Ty (
can be transformed to
i ] e )-l )
{4+6f-p3(f-1)=0 (L3
with the boundary conditions
h=o: f={=0; n=e0: =1

Equation (L43) was solved for different values of B by Hartree (22).

The quantity ( ‘= -—3—~ is given in Fig, 5,

!
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When 6=O » Equation (L3) is precisely Blasius' equation
for the variable ) . Then (3 =1 (and m = 1), the flow is the
so=called stagnation flow, and Equation (L3) becomes

{—"“-f{{“»(’i.;:o (hh)
This equation was solved in 1911 by K. Hiemenz (25). Hartree's
contribution is therefore the solution of Equation (L3) for
intermediate values of (3 .

Let again O = ...S.Z.,%i-
s S

In terms of the new variable r) s the equation

\ \R
becomes
@'+ o fo =0 (16)

with the boundary conditions

N=0: G6=0: hH=eo: G=1
The solution is easily seen to be

- - n
0=C+C, (e oSty (L7)

where Gl = © and

h
ot - —-0‘{ £dn
- <
Cz, N g o € d d
The rate of evaporation is

G= k35 K ler CIgd ) k(e OB 6o

= C,K{(Cs-C.)Y 75%17 (k8)

' du,

where UL = TF7
' d X



(d) Arbitrarily-shaped Bodies
Let x and y again be measured along and normal to the wall
respectively., For the symmetric case, the velocity ul(x) of
potential flow at the wall can be expanded in the following form
U,(X): O,X*"C{3X3+0.5XS+"" (L9)
Where the constants depend solely on the shape of the body, and
where only the odd powers occur due to symmetry.
From Equation (L9),
U35 ;“,‘( =afax+4aa,x>(6G, +3C")x e 60)

Using the new variable
-y

1=9/5
and the stream-function
5&1(%’7 {a,x(,(r))+L+o;3>:<3ﬂ{r)')+(o><"'[a5
one has %"‘;g(l})] + ...}.
¥y P

E " ke

& hg]*’

(51)

9&&,

axf+uax+ex.1a55

t‘;c

el 7 - Lt
ke =a € +iz QX g~+3ox Lag(j;r

t
i -1?;— fa x§ +ua,x (+é>x [6sGa+ ]+ )\
3 {a X{”L}—l—(ax{.ﬂ—ex (G 95 ai"‘s}f‘“‘}

vt-—q‘:\:'_ ga(+§2a3x{,+gox[asg+ ;7].;...‘}

Substitutidn o Equation (SO) and the above equatlons in Equation

(L2) yields, after collccting terms containing

AX, 4o,a,x",66.6:.X", Ga, X" etc., |
a4 -~ !l A
(.*'r, =t+f, (52)

T A (53)
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H

0f/qs =595~ .95 = 1+q; o
LI _,H W . i
Gglhg_‘bg hS“ %+h5“8((3—+3¥3) (55)

and so forth, The shape parameters are thus eliminated from the

H

differential equations to be solved. The boundary conditions
Y=0 : U=V=0O
y=eo !  U=U,

can be written as

FFoFFogsq@o ;7 h.co
heeo: §'=1: fo=%; Ge=&; he=0 ==

It must be noted that Equations (52) and (LlL) are identical,
and has been solved by Hiemenz (25), and that Equations (53) to
(55) and further equations of the same series are all linear and of
the third order. Hiemenz also calculated f3 which was later improved

by Howarth (30). The functions ¢, and F}S have been calculated

by Nils Fréssling (16).

For slender bodies, the series for uj(x) and u(x,y) converge
poorly. The reason isthat for such bodies ul(x) has a very
steep ascent in the neighborhood of the stagnation point, while
showing a rather flat curve further on. Such a function cannot
be readily developed into a Taylor series. For blunt bodies,

application of the method yields considerably better results,

As an example, consider the boundary layer of a parallel
flow past a cylinder whose axis is perpendicular to the uniform
velocity. With R denoting the radius and U the free-stream

velocity, one has

' 4 3 o4/x
U (X)=2USnd = A/,u\.rr:fu{‘{»ﬁ(%)wﬁ borr}



so that
Y o _ &Y _ 2 U .
A=2R ;5 Gy 73T, Gz, e
and
n= 4 fvp

The velocity distribution is then given by

- 1

L w4 X \° N e
2 U x"ﬁ_‘{ ( )(—i—"( (G(j +,<,Oh5)§- .
The point of separation is given by
3 UL o

or
m )(S
(o550 FO(F )+ =0
With £ (0)= 1. 23264, €3 0,‘)-6.7.’54(9 ) '»”j;( =0.6 34§ and
b (o) =0.1193

X. ©
'j%* = LG ; (Ps =42
Hiemenz (25) based his calculation on his experimental pres-
sure distribution, and calculated the separation point to be
at 82° whereas his measurements gave 81°, The difference between
this result and that obtained with the potential~theoretical pres-
sure distribution is due to the fact that near the separation
point the actual pressure distribution deviates considerably from
that obtained for potential flow,
The unsymmetrical case has been treated by Howarth (30).
In order to compute the rate of evaporation from an
arbitrarily-shaped body in symmetric flow, & , as defined before,

can be expanded in the following form:

- 3
Gz [a.0+a,x'c,+( 0+ % &)X+ )

G

-
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Then “
a.if)ff—f‘-‘ ;0.X +4[as 0,

[

a,?@— J—_[g '+a, 6, x +(a, .+ a’@)x+

el N~ TR PP R
u,jfj L (6,04 0,0 X +(@: O+ S © )X + -]

Substitution in Equation (35) gives
2 i ; Z/ ’ - s N

o [2a,0,f'8, x" +ya.asf 6, X+ a(4f O +8(6,)x+---

' ' % e P “
— G 0.~ .Gy (£,0] +12F,8,)x-aa.(£ 6+304 9
o 2 { i i t | q‘

2 (64160, +30h 6 )X '+ -]
" i 2 4

a8 s, a,®."x"+ a,a.e, *U O X ne

Equating terms with the same powers in the a's and in x, we

haves 3
o =-0f6, (56)
©; = (T(Z{‘CS’Z~E @Z'ﬁ—vZFB@;) (z)
G'= c(4f 0,-fG,-304.C,) L

Os= CUF G+ 8 6,-F s +126,6 +30h.0,) k37)

From Equation (56), we have, corresponding to the boundary condi-

tions O, {0) =0 and Q.(e0) =1
o'« ce™ S fdn

and "
" "€dn,
6.7 ¢ | e 7 'dn (60)
where - ' )('”'( C!
- ™ s n ’

SRS T - S

Using the f1 computed by Hiemenz, Equation (60) was evaluated



by E. Eckert (8) far 0= 0.73 + For ¢ = 0.60, the present
writer evaluated C to be 0,166, The values of S, and C}; for
different values of l) are shown in Table l, where C;J is shown in
more detail because of its subsequent occurrence in Equations (57)=-

(59) ete.

It should be noted that Equations (57X5%9) etc. are all linear
- o !

and of the second order. With fy, f3, g5, hg and (3, known, they
can be solved with the boundary conditions

@, (C) =0@4(0) =@s(0)=--.= O
and

C32 (“cﬂ =<324(c<3)1= <95.<G<3):: ceex=((
Numerical solution of ®, s ng and ng by relaxation is now being
undertaken by the present writer both for - = 0.60 and o = 0.73.
Although the solutions may not be expected to give satisfactory
results for slender bodies, they are important for fundamental con-
siderations and serve as useful initial steps for further develop-
ment in the already clearly indicated direction. Besides, they

should give satisfactory results for blunt bodies.

Three dimensional cases have been considered by Frossling (16).

An exact account of his work is not available,

(e) Wakes
The wake behind a plate of length 'z will be considered,
Let x be measured from the leading edge. Denoting by U the
free-stream velocity, wu the velocity in the wake, and A u the
difference U - u, under the assumption that Au is small compared

with U, the equation of motion in the wake can be written as
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é—é——u'_. -)/ é—fe...u." (61)
ax 7 oyt
with the boundary conditions
Uu=0 ‘—)—9—-“‘“:
‘1 3 Y
Y=o Auz=0 (w=U)

Introducing the variable

'7=<1J;,“—’;

and putting ‘
x -
o 2.\"2z
one has, by substitution into Equation (61),
o'+ & 't g = 62
YrENGFZzg 50 heR}
W.i.th_ the boundary conditions

n=o: cj':o; N=se: =0

Two successive integrstions give
3

L
GELe %
To determine the constant C , the momentum equation must be

utilizeds The loss of momentum per unit width is

¢ S_+£(U—w)dt1= Ff_gAudﬂ“éGUI%;dj

since U= u. On the other hand, the total drag on the plate is,

by Blasius solution,

2W=1.326¢€ u“\/kaz.

The momentum equation is

45C
eu faudy= 13280V Y%

CiEeuv™(T)

or

-

- _',}1 , 2 233
| e “dn=2{nCeU J%—?=l.3JS€UJg
- o0



which yields

C.(LH
C ; 3
and 2
au _ 06hH (X 5 . b
ek = Y X (63)
v T 2 -

Treatment of three-dimensional wakes can be found in'(19).

(£) Jets

The velocity distribution in a steady, laminar air jet issuing
from either a slit or a small hole in a plane wall was obtained in
1933 by Schlichting (54). Later, in 1937, Bickley (L ) gave a
closed solution for the two-dimehsional case.

For the two-dimensional case, let x be measured along the
center line of the jet and y be measured normal to it, in the
plane of flow, The velocity components in the X= &nd y=-
directions are denoted respectively by u and v,

Wlth the substitutions

v u
§ . (Il_gﬁ/z 3 ><)"/3 (6L)
and y
= (R () ®

where M is the momentum flux per unit width and y& the stream-

function, the Schlichting-Bickley solution of Eguation (21) gives

TR AR 66
il (32321&) sech § 5
- (%7)‘/7253““2?*"“‘“?) il

If the air jet is preheated, the temperature distribution can

be found (47) by using the substitution

T o (LX) (S ()
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where T, is the temperature of the surrounding air and H is

defined to be

He= [ w(T-T)dy=T.uody (&)

- ol

Substitution of Equations (6L) to (68) into Equation (27) gives
the differential equation
s 2_" ' . ) 1]
—20 [t(8)sech™§+t (§)tnh §]=t"(8) (1@
with the boundary condition
t(c) =0
and the condition imposed by Equation (69). The solution of

Equation (70) is

f(§)=c36c"\.26‘§)

where
C = |
(3@) '/3 )(ﬁ;er_'r\“zc‘*ds
o -5
So
_ € _\B__ 20
FeTo=CH (f41/X') sech g

For the axial-symmetry case let x be measured along the
center line of the jet and r be measured in the radial direction,
and let u denote the longitudinal velocity component and v the
radial velocity component, If the Stokes strcam-function is

denoted by &// sy it follows that

) 4 ~_L3Y
a2 T A ¢ F

With the substitutions
D £y _l__ 3mMm ) !/Z i
4\mert/  x

and \)D = X ((r])
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where M now is the total momentum flux,

Schlichting obtained the solution of the boundary-layer equation

LW o ., L 2 &
“aX +Var"’ r M(Y (72)
as
I M !
= : 73)
U Sﬂ 61/)( (‘+ jr)i)z (
i nl-vn?)
N (N e ) X (H— 3 (7h)

If the air jet is preheated; the temperature diétribution can

be found (67) by using the substitution

, T = .
75)
ek T Tzfxt(” (
where H is now defined as
0 oo
H={ 2Tru(T-T)dr=2T T [ ruodr (76)

Substitution of Equations (71) and (73) to (75) into the boundary-

layer equation

86 0 &

20 (77)
M.Ax.*-var__ k dr(r

yields an ordinary differential equation in (r?) the solution

of which with consideration of the satisfaction of Equation (76) is

f’( ) +-2,C5' (" % h*° )

~2a

so that

S R |+20 H (H’ nt, "2 0"
&1

What has been'obtained for the temperature distribution in
preheated jets applies directly to the moisture distribution in

pre-moistened jets if the proper value of ¢ (0,60) is used.
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L. Approximate Solutions for the

Boundary-Layer Equations

As the exact solutions of the boundary layer equations are
with a few exceptions very laborious, and since there are as yet
no exact solutions that can be applied satisfactorily to arbitrarily-
shaped slender bodies, resorts are often made to approximate methods
in which the boundary layer equations are renounced and only cer-
tain integral relations are required to hold in consistency with
the momentum equation or with the continuity principle of heat-
or vapor-transfer. In 1925 papers were published by Von Kirmdn (36)
and Pohlhausen (L5) describing an approximate method to determine
the distribution of velocity in the boundary layer, Similar
methods applying to heat or vapor boundary-layers were certainly
only extensions of the Karman-Pohlhausen method, In the following,
x and y will be the curvilinear coordinates defined before,

(a) Definitions of Various Boundary-Layer
Phicknesses
It is adeguate to define the boundary-layer thicknesses first,

which will be used frequently in the next two sections.,

*
The displacement thickness 5 of the boundary layer is

defined by

fudy =uly-§"

AL = U, 14 -é;

Bt g AL L3P

where (L, is the velocity of potential flow at the point in

question, The above equation can be written as

5*=£(1—-~‘§-’)d% (78)
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The momentum thickness J is defined by

a'/r_‘?: I a,(d,—u_)dj

g o
-,ff'—‘{ & (-4 )dy (79)

Wie shall use the symbol J to mean the thickness at which

or

the velocity in the boundary-layer is essentially the same as
(say 99% of) AL,ce Thus the value of J is more or_less

arbitrary,
(b) The Kdrman-Pohlhausen Method
Integration of Equation (hz) with respect to y yieldss
+ 2 {dawj v d<j =h S 3(ge), (0

2y partial integrstion and the equation of continuity

8V
A(«j a X

we have

§Ciﬁd = u f‘ d j"aww"é‘.&g
Vg dy S udy s o ] xdqr (Uit dy

Insertion in Equation (80) gives

c( g 2 ; hde e
L uj QL = DG (81)
ax 5,0y axdj cdx e
where T, is the shearing stress at the wall and
e d U
g k¥ o .,)j)

Equation (81) is the Kamman integral-condition (36).

* Q
Remembering the definitions of C( and /3 s and that

1 4P _ du.,
€ dx” ~Uigx
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Equation (81) can be written in the form

{ ‘d,& du, (82)
—(3“ 'dx -+ (2/3+0 )u ax
Pohlhausen (L5) then assumed that
=ant br;z+crf+ dn® (83)
where . :
RS
N= 5760 (8

the subscript p (=Pohlhausen) being used to avoid confusion with

the ¢f mentioned in l(a). From the boundary conditions

=0 ! U=0 . U Ly A (85)
: v £y 3
(j:JP: b(.’fl-,, i-(-&v: é——(:izzo
. A('l Y .9
the coefficients a, b, c, d are determined to be
A A A ey /\
.22 “é’vb'-‘—“‘z‘ja ,=“4+~é~,d'f~'€*
where 7
X o Cgf"_ C’(JL, (86)
Yo aX

The velocity distribution is then given by

——-~( () +AG(M) (87)

where
A el w5 e S 4
FLpsgn=antn
Ny = ~(h-3n%+3n3-n"
G(n) = (h-3n*+307-n")
Thus the only unknown is él” « The solution consists in finding
‘Q(P from Equation (82)s The value of A is limited (on the

U
positive side by the reasonableness of 7y and on the negative

!

side by separation) to the range (2 2 A > —|2
Using Equations (78) {79) (8L) and (87) one has

(88)

I * 1 /\
2 2 IR .
dp 10 12O (;<A)
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) 37 A a"
$u 515 ~ 345~ 387 = f (A)
Besides, from [, = /4(' ) and Equations (8L) and (87)
T de = 12+xA -
“wo o« F’ (A)
Equation (82) can be wrltten in the form
(4.139 CS.D* u',jz__ T /3
+(2 e ) Vo AR M,

which is a differential egquation in/C} with the unknown

*® s
quantities éy and (, expressible in terms of ,E) .

o W
Now set / "
K=Zw=é;%
with 32
Z = —

Then from Equations (86) and (89):

kK=A[6(0)]
Also, from Equations (88) and (89):
x
{ g o
I A = f (k)

A € F 5%
and, from Equations(89) and (90)

Eaiebode o Le il (3Y=F ()

2. e f i A ey h
From Equations (91) and (92)

‘éu.dxﬂ%[zw(«)]«* (k)=0
If one sets

cR(K)-4k-2F (KK = F(&)

one has

Q.
N
T
.
A

- W 9 (<: Z‘u_‘:

j.

o
x
¥

where

F=a6,(MNf2- 35 A+ (Fe+iks) X

90"

(89)

(90)

(1)

(92)

(93)

A

/
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Equation (93) should be solved with f{, = 0,0770 correspond-
ing to Ao = 7.052 where ko and A, are the values of €.  and

A at the stagnation point, 0,0770 being a zero of F(@).

For the flat plate, solution by this method yields

ﬂj,[&, w 0.685  and L 7% 0.3,

whereas the exact values given by Blasius'! calculation are

respectively 0.66L and 0.332. The agreement is good,

For the stagnation point profile the exact solution was

discussed in 3(c). The approximate method gives

o9y %”:v/"{j\;‘; = 0.278

L = F( &, = 0.641

-

G '3 F, (K)
i X et = G
/'(ulv (‘Ll \I((O
whereas the values by the exact solution are respectively 0.292,

i

0.6L8 and 1.23l, The agreement is again' very good.

(¢) An Approximate Method for Calculations in
Vapor Transfer or Heat Transfer from

Arbitrarily-shaped Bodies.

In 3(c), exact methods for determining the velocity and
moisture fields in the laminar boundary-layer attached to a
wedge-shaped body were discussed. For arbitrarily-shaped bodies,
He Schuh (61 ) mentioned a method for determining the temperature
in the field of flow, The method is similar to the Kdrmsn-
Pohlhausen method, Maintaining the potential velocity and its

derivative with respect to x , it requires only the balance
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of heat, In the following, Schuh's method will be presented,
with the necessary changes to render the method applicable to

evaporation,

1
Remembering \/=- é—.‘f d , integration of Equation (L5)
By B -

with respect to (d with the condition _é___C_ = 0 at the outside of

ey
the boundary-—layer (or at y = oo ) gives
35§ wle-cady =-k (45), (1)

Now imagine the body to be replaced 1n successive ranges by
wedge-shaped bodies with the same velocity and the same Xe
derivative thereof Just outside of the boundary layer, The stagna-
tion point of the given body and those of the elemental wedges
naturally do not coipcide. Denoting by x, the difference between
the stagnation points of the body and the wedge replacing it at the

point in question, from the following relations
% ,_.,__._._.‘u-—-—-—-v

h T e ._..—‘-4'-'-......
\)Z—(j\{y(x/‘;‘xo)
{
= c(x+X,)2-63

gty T By

T dX 2= X+ Xe
can be eliminated to give

yfu!
Bv

where it must be noted that the definition of q is exactly the

X and Xq

same as that given in 3(c).

With & defined as in Equation (hé) 3

Lwé’('(c'co)dﬁj L (Cs C )) (\"@)dlj
(4~c9)d

W

X% (
= al<cs"€0) V__________.

\f‘u&,
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As —::-:—- is the { 'in Equation (L43) the solution of which is known
i

for a certain (3 and as | -~ (& 1is known from the solution of

Equation (L6) for the same (3 s the integral g S (. G)d(j

is a function of (]_) only. |Vriting

5, & (1-0)dy=T(G)

one has

S:G“‘ (c-caddy=w, (Cs5-c.) }2’ T(G)

Equation (9L) can then be written as

o i, (95)
J}(%EJ(G»: F }"—2—‘*(0}0

Wherecj‘.—.z . Let x' =X
I< {
of the body, and let the free-stream velocity be Uy then multiply-

where 2 is a characteristic length

ing Equation (95) by \/JL gives

"‘W;{;M

i
U
A= 3@

and (-—---) denotes the derivative of }_{‘:_ with respect to x!'.

U

At the stagnation point, u; = O, and hence W z O, Thus

where

W~

Nl
=7 (e dx

which can be solved step by step, giving as the main result 8

(96)

as a function of x!t,
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The local rate of evaporation is

_ )¢ - Ja!
%"‘(("‘) o TK (g0 = (6 (97)
AL} ‘l b/‘é"_;/ o

'k(CAsv'Ce)@ T (@)

and the total rate of evaporation can be found from Equafion (97)

by integration.

5. Concluding Remarks

(a) Since the equations of motion and of diffusion have been
well formulated, the difficulties encountered in finding the
distributions of velocity, temperature and moisture in a field of
flow are chiefly mathematical. With the use of the approximate
boundary-layer equations, solutions for these distributions have
in many instances been found where the use of the exact equations
would present prohibitive difficulties.

(b) As has been mentioned before, a complete analogy between
momentum transfer, heat transfer, and vapor transfer does not
exist whenever there is a pressure gradient in the field of flow.
It can be further stated that this is also true whenever the internal
friction in the case of heat transfer or the velocity perpendicular
to a solid boundary in the case of vapor transfer cannot be neg-
lected, or the physical constants suffer variations that are not
negligible. Aside from these limitations, the distribution of
temperature or moisture for forced convection in a certain field
of laminar flow is a function of the velocity distribution and the
Prandtl number & alone.

(¢) For problems wherein the differencesin velocity, tcmpera-

ture, and moisture are not exceedingly large, the physical
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properties of the fluid can be considered as constant and the
interdependence of these quantities can be neglected, From the
foregoing it can be seen that thesc problems may be considered as
essentially solved whenever the boundary-layer equations can be
applied, the method of solution of the yet unsolved problems being
clearly indicated by the existing literature. In view of the
non-linear character of the boundary-layer equations, this fact
offers a considerable satisfaction indeed.

(d) Variable density has been extensively treated in the
“transomic and supersonic theories in aerodymamics. Generation of
heat by internal friction has been more or less rigorously dealt
with in (8), (9), (10), (11), (12), (32), (39), (61), and possibly
(60)s Treatment of problems involving large differences in
temperature and moisture can be found in (2) and (60). As problems
of this kind are important and represent a field not yet sufficient-
ly explored, it can be safely predicted that future research will
be greatly concerned with them,

(e) It must be noted that since the boundary-layer equations
are approximate, and since the pressure corresponding to potential
flow can be disturbed by the growth of a boundary layer, experi-
mental data are often desirable to check the theoretical deductions.
Moreover, in nature pure laminar flow seldom occurs; whenever
turbulence is present or there is a 'possibility for its occurrence,
experiments are indispensable, Thus, theoretical considerations
contained in this report facilitate experimentation without

eliminating its necessity,
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Figure 1.--Velocity distribution u(x,y) in the boundary
layer on the flat plate (according to Blasius).
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Figure 2.-=The {ransverse velocity v(x,y) in the boundary
layer on the flat plate. ,
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